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FOREWORD BY PROF. J. SLUPECKI 

Jan Lukasiewicz's selected papers on philosophy and logic appeared 
in Polish in 1961.1

) The present publication differs considerably from 
the Polish edition. On the one hand, several of the articles in the Polish 
edition are not incl~d;d·h~~e because they are now maii:tly of historical 
interest. On the other hand, the English-language version includes ten 
papers on mathematical logic, certainly the most valuable part of Luka
s!~Ficz';l_<;oIJ,tribution fo science, which do not form part of the 1961 
boo.k. These pap~;; have been selected -so as to bring out the problem 
in which Lukasiewicz was most interested almost all his life and which 
he strove to solve with extraordinary effort and passion, namely the 
pro~lem of determinism. It inspired him with his most brilliant idea, 
that of many-valued logics. 

Lukasiewicz's scholarly activity may be divided into three penods, 
separated from one another by two world wars.2

) 

Before World War I, Lukasiewicz:s attention was most strongly 
attracted to problems in the methodology of the empirical: sciences. 
He discussed those questions in two comprehensive papers: "On Induc-

1) Jan Lukasiewicz, Z zagadnieft logiki i jilozofii. Pisma wybrane (Problems of 
logic and philosophy .. Selected writings). Polish Scientific Publishers, Warsaw, 1961. 

2
) Jan Lukasiewicz was born in Lw6w on December 21, 1878. He took bis Ph.D. 

degree at the University of Lw6w in 1902, and in 1906 became a docent (roughly 
equivalent to an assistant professor). From 1915 to 1939 he was a professor at the 
University of Warsaw, of which he was also Rector in 1922/3 and 19~1/2. After 
World War II .he was Professor of Mathematical Logic at the Royal Irish Academy 
in Dublin, which conferred an honora.rY doctor's degree on him in 1955. (Before 
the war Lukasiewicz became an honorary doctor of Miinster University.) He died 
on February 13, 1956. Lukasiewicz was undoubtedly one of the most eminent lo
gicians of the first half of the 20th century. The study of many-valued logics and the 
methodological researches he initiated have developed into separate disciplines. 
The logical systems constructed by him are masterpieces of simplicity and formal 
elegance. He was also one of the best historians of logic, even though he wrote very 
little on that subject. 

vii 
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viii FOREWORD 

tion as the Inversion of Deduction" (1903) and "Analysis and Con
struction of the Concept of Cause" (1906).3

) Neither paper has been 
included in the present English-language edition, because in the passage 
of sixty years from the date of their original appearance both papers 
have lost much of their scientific ·value. Lukasiewic.i's research on the 
methodology of the empirical sciences is represented by only one brief 
paper: "Creative Elements in Science" (1912). It includes Lukasiewicz's 
views on the tasks and value of science and also an extremely simple 
classification of methods of reasoning. His interest in the methodology 
of-the-empirieal-seiences-iS-Iefl.ected....in._the.-pape~The Logical F ounda
tions of Probability Theory" (1913), which is certainly one of Luka
siewicz's most valuable works. His ideas contained therein were many 
years later repeated by the inost eminent founders of contemporary 
probability theory. 

Even before World War I Lukasiewicz had become concerned with 
mathematical logic, which in his earliest papers he termed "algebraic 
logic". His first comprehensive and valuable work connected with the 
issues of formal logic was the article "On the Concept of Magnitude" 
(1916), reprinted here with the omission of those parts which are no 
longer of any interest, especially for the foreign reader (I..ukasiewicz's 
criticism of Zaremba's book). The present publication also includes 
"The Farewell Lecture" delivered ffi: the Warsaw University Lecture 
Hall on March 7, 1918. That lecture makes the earliest reference to 
three-valued logic. 

After World War I -mathematical logic came to dominate Lukasie
wicz's research. The principal subject matter of his research was the 
propositional calculus and Aristotle's syllogistic. The results obtained 
by Lukasiewicz concerning the methodology of these systems are among 
the earliest works in this field. 

His papers on mathematical logic, published between the two world 
wars and included in the present publication are: "On Three-Valued 
Logic" (1920), "Two-Valued Logic" (1921), "A Numerical Interpre
tation of the Theory of Propositions" (1922/3), "Investigations into 
the Sentential qllculus" (1930), "Comments on Nicod's Axiom and 

~------'on..:.Generalizing]2C<_d1;1g_ti():Q:':_'~ ~c!. "The Equivalential Calculus" (1939). 

') A bibliography of Lukasiewicz's works is included in this p~blication (seep. 401). 

FOREWORD ix 

The paper "On Three-Valued Logic" for the first time formulates 
the formal foundations of logical calculus other than classical logic. 
Some comments on non-classical logic were formulated by Lukasiewicz 
in his earlier works, for instance in the monograph The Principle of 
Contradiction in Aristotle's Works (1910), but they were rather intuitive 
than formal in nature. 

·--'fhe-pap·er-'-':A--Numer.ieal ·Interpretation-of the Theory of Proposi 
tions" contains Lukasiewicz's earliest remarks on many-valued logics 
and on the applications they may have in the proofs of the independence 
of theses of the propositional calculus. 

The paper "Two-Valued Logic" was intended by Lukasiewicz to be 
part of a more comprehensive study of three-valued logic, which, how
ever, has never been published. Neither did Lukasiewicz ever revert 
to·themeth:od of·constructing a system of propositional calculus which 
he used in that paper. The paper, however, has visibly influenced the 
works of other logicians. It is interesting to note that in "Two-Valued 
Logic" Lukasiewicz first used the concept of rejected proposition, 
a concept which later came to play an important role in his research 
on Aristotle's syllogistic. 

"Investigations into the Sentential Calculus" was written jointly 
by Lukasiewicz and Alfred Tarski, and in addition to the results obtained 
by its authors it also includes results obtained by their disciples. This 
paper is to this day a classic and is probably the most important work 
on the methodology of the propositional calculus. 

"Comments on Nicod's Axiom and on 'Generalizing Deduction"' 
discusses in detail Lukasiewicz's parenthesis-free notation and offers 
simple and elegant methods of proving logical theses and writing down 
such proofs. It also discusses a philosophically important property 
of some kinds of logical reasoning, which Lukasiewicz termed "gen
eralizing deduction". 

"The Equivalential Calculus" was to appear in Vol. 1 of Collectanea 
Logica, a periodical initiated by Lukasiewicz, but the publication was 
destroyed during the hostilities in 1939. Only a few off-prints, including 
Lukasiewicz's paper, have been saved. 

The present publication includes the following five philosophical 
articles, published between the two world wars or during World War 
II: "On Determiirism", "Philosophical Remarks on Many-Valued 

·---------------~-----·~-~----·- _, ___ .. ____ , ___ _ 
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x FOREWORD 

Systems of Propositional Logic" (1930), "Logistic and Philosophy" 
(1936), "In Defence of Logistics" (1937), "Logic and the Problem 
of the Foundations of Mathematics" (1941). 

The first of these is a revised version of the speech delivered by Luka~ 
siewici: as Rector of the University of Warsaw at the opening of the 
academic year 1922/1923. This paper discusses the intuitions which 
contributed to the formulation of three-valued logic as well as the 
significance of that logic in the analysis of the problem of determinism. 

e second proves the thesis that modal logic cannot be based on 
two-valued logic but can be based on tfiieF-Viiluea.-logic:-

The third is the text of the paper read by Lukasiewicz in 1938 at the 
Zurich conference on the foundations and methods of the mathematical 
sciences. It outlines a modal three-valued propositional calculus dif
fe~ent from the system discussed in "Philosophical Remarks on Many

V alued Systems of Propositional Logic". 
The remaining two of these five papers _are concerned with Lukasie

wicz' s defence of mathematical logic, which he sees as the modern 
form of the formal logic originated by Aristotle, against the objections 
of nominalism, formalism, conventionalism and relativism. This paper 
provides a very fine example of Lukasiewicz's polemic talent. 

"On the History of the Logic of Propositions" (1934), concerned 
exclusively with the history of logic, is, according to H. Scholz, the ID:ost 
interesting thirty pages ever written on the history of logic. It demon
strates that Stoic dialectic, contrary to K. Prantl's opinion, is propo
sitional logic, and not term logic. Many historical remarks are also 
included in "Philosophical Remarks on Many-Valued Systems of the 
Proposi!J.onal Logic". One of Lukasiewicz's most important works is 
the monograph Aristotle's Syllogistic from the Standpoint of Modern 
Formal Logic (1951), which is largely a historical study. 

After World War II Lukasiewicz published twelve works, all of them 
on logic, seven of which have been included in the present publication: 
"The Shortest Axiom of the Implicational Calculus of Propositions" 
(1948), "On the System of Axioms of the Implicational Proposition,al 

~------~,akulus" (1950), "On Variable Functors of Propositional Arguments" 
· (1951), "On the futiritfomstic.Tlieory of Deduction" (1952), "Formal
ization of Mathematicali Theories" (1953, in Fre:µch), "A System of 

-~ < 

FOREWORD xi 

Modal Logic" (1953), and "Arithmetic and Modal Logic" (1954). 
The subject matter of the first two is explained by their titles. The 

third is concerned with a part of a system originating with Stanislaw 
Lesniewski (eminent Polish 'logician, 1886-1939) and termed pro
tothetics by him. The method of writing a definition as a single impli
cation, which is made possible by the introduction into the proposi-

·-tional cillcUlus of1Uncturvariables,is--particularly-interesting. "On the 
Intuitionistic Theory of Deduction" formulates the rather unexpected 
conclusion that the classical propositional calculus is a proper part 
of the mtuitioniStic calcUlils enriched by definitions of the terms of the 
classical prowsitional calculus. "Formalization of Mathematical 
Theories" is concerned with the arithmetic of natural nurq.bers. In the 
sixth paper of those specified above Lukasiewicz constructed a four
valued niodal cafoulus, thus reverting to the problems in which he was 
most interested for many years. He now offered a new solution of 
those problems, which both formally and intuitively differed essentially 
from his earlier solutions. That paper is to a certain extent supplemented 
by his "Arithmetic and Modal Logic". 

The present publication does not include any of Lukasiewicz's works 
on Aristotle's syllogistic, in spite of the fact that research on syllogistics 
was for many years one of the principal subject matter of his studies. 
This is due to the fact that in his monograph on Aristotle's syllogistic, 
referred to above and easily accessible to English-speaking readers, 
Lukasiewicz formulated, in a fuller and more satisfactory form, all his 
results included in his earlier works. 

* 
* * 

Lukasiewicz's papers are here arranged in chronological order, 
which makes it easier for the reader to follow the evolution of Lukasie
wicz's views on many philosophical and logical issues. This is impor
tant because in some cases (cf. the problem of the relationship between 
logic and reality) Lukasiewicz changed his opinions completely. 

The te:rmiriology used ill this publication is based mainly, though 
not without some exceptions, on that used in Lukasiewicz's works 
published origfually in English durjng bis .lifetime. All editorial notes 
are marked by asterisks or included in brackets. 
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xii l'OREWORD 

The notation used here had. not been unified as no consistent proce
dure could be used with reference to the various notations used by Lu
kasiewicz over a period of more than forty years. 

The terminology used in the text reprinted from ·polish Logic 4) and 
Logic, Semantics, Metamathematics 5) has remained unchanged. 

JERZY SLUPECKI 

•)Polish Logic 1920-1939, ed. by Storrs McCall, Oxford, Clarendon Press, 1967. 
These texts are: "On Determinism", "Philosophical Remarks on Many-Valued 
Systems of Propositional Logic", "On the History of the Logic of Propositions" 
and "The Equivalential Calculus". 

-----srl:ogir,Semanties;-Metamathematics, Papers from 1923 to 1938 by Alfred Tarski, 
Oxford, Clarendon Press, 1956. The text in question is "Investigations into the 
Sentential Calculus" by Lukasiewicz and Tarski. 
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CREATIVE ELEMENTS IN SCJENCE *) 

Both scientists and thosl! who are remote from science often deem 
that the goal of science is truth, and they understand .truth as agreement 
bet;:~e~ th.~:;;.gb.t anderutence. Hence they think that the scientist's 
work . consists in reproducing facts in true judgements, similarly as 
a photographic plate reproduces light and shadow and a phonograph 
reproduces sound. The poet, .. the painter, and the composer work 
creaTi;ety; tlie sCie:iitist does not create anything, but merely discovers 
the truth.1

) 

This knot of ideas makes many a scientist feel undue pride and makes 
many an artist treat science _lightly. Such opinions have dug a chasm 
between science and art, and that chasm has engulfed the comprehension 
of the priceless quality that is the creative element in science. 

Let us cut this knot of ideas with the sword of logical criticism. 

* 
* * 

1. Not all true judgements are scientific truths. There are truths that 
are too trifling for science .. Aristophanes says in The Clouds: 2

) 

1) After writing the introduction to the present paper I found the following formu
lations: "La science n'est pas une creation de notre esprit, dans le geme de l'art ... 
Elle n'est que la reproduction intellectuelle de l'univers", in a· work by Xenopol, 
a well-known methodologist of the historical sciences (cf. La thiorie de l'histoire, 
Paris, 1908, p. 30). 

2
) Aristophanes, The Clouds, Loeb Classical Library, London and Cambridge, 

1960, p. 275. 

*) First published as "O tw6rczosci w nauce" in Ksirtga pamiqtkowa ku uczczeniu 
250 rocznicy zalozenia Uniwersytetu Lwowskiego, Lw6w, 1912, pp. 1-15. Also pub
lished by the Philosophical Library, Lw6w, 1934, ·and rej:Jrinted, in an abridged ver
sion, as "O nauce" (On science), in Poradnik dla sam9uk6w, Vol. 1, Warsaw, 1915. 
Republished in the 1961 edition Z zagadnieft logiki i filozojii. 



2 CREATIVE ELEMENTS 1N SCIENCE 

"Twas Socrates was asking Chaerephon, 
How many feet of its own a flea could jump. 
For one first bit the brow of Chaerephon, 
Then bounded off to Socrates's head." 

Socrates caught the fl.ea and llnm.ersed its feet in molten wax; in this 
way he made shoes and took them off the :flea's feet, then used them 
to measure the distance. There is a truth about a :flea's jump which 
disturb~d Socrates, but the proper place for such truths is in a comedy, 
not science. 

The human mind, when producing science;--d0es-:i1of strive for omnis
cience. If it were so, we would be c'oncerned with even the most trifling 
truths. In fact, omniscience seems to be a religious, rather than scientific, 
ideal. God knows all the facts, for He is the Maker and the Providence 
of the world, and the Judge of human intentions and deeds. As the 
psalmist puts it, 

"The LORD.looketh from heaven; he beholdeth all the sons of men. 
From the place of his habitation he looketh upon all the inhabitants of the earth. 
He fashioneth their hearts alike; he considereth all their'works."3) 

How differentis Aristotle's idea of perfect ·knowledge! He, too, thinks 
that a sage knows everything; yet he does not know detailed facts, and 
has only a knowledge of the general. And as he knows the general, 
in a way he knows all the details falling under the general. Thus poten
tially he knows everything that can be known. But potentially only: 
actual omniscience is not the Stagirite's ideal. 4) 

2. Since it is not so that all true judgements belong to science, then 
besides their truth there must be some other value which gives some 
judgements the rank.of scientific truths. 

Even Socrates and his great followers considered generality to be 
that additional value. Aristotle said that scientific knowledge is concerned 
not with incidental events (like the :flea's jump from Chaerephon's 
brow), but with facts which recur constantly or at least often. Such 

3) Psalm 33, Exultate iusti in Domino, verse 29-30. Cf. also Psalm 139. 
-~------__,')-:M.=.e:.;:ta=:.'P:.chy;.::s~ic:.::.s-::A 2, 982 a 8 ff, 21 ff: 07to'.Aocµ~&.voµev 117) 7tp&'t"ov µl:v s7t£crrixcr-

- .&ixt 7t&.V'\"IX '\"OV croqiov ~rvaitxe't"iii~-µ.'ifxci.&~lfxocih'ov EXOV'l"IX smcr'l"'i]µ1)V IXU'l"WV [ ..• ] 
'\"O µi:v 7t&.V't"IX E7tLCl'l"IXCl.&IXt 'l"ijl µ&.7'.tcrT' ~OVTt -ri]v xoc.&67'.ou &mcr.&.fiµ7lv &vixyx0<!ov 
u7t&.pxetv· OUTO<; y&p o!lie m;ii; 7t&.VTOC T&. 07toxelµevoc. . 
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CREATIVE ELEMENTS IN SCIENCE 3 

facts are reflected in general judgements, and only such judgements 
belong to science 5). 

Yet generality is neither a necessary nor a sufficient characteristic 
of scientific truths. It is not necessary, for we may not eliminate singular 
judgements from science. The singular proposition "Wladyslaw Jagiello 

. --was-the-¥iete.:i:-in-the..hattle..Jlf Grun'Yald" ref~i:s to an important histor
ical event; the singular judgement which, on the basis of computations, 
foresaw the existence of Neptune was one of the greatest triumphs of 
· astronomy;-Without- singular. judgements, history would . cease to exist 
qua science, and natural science would be. reduced to shreds of theory. 

Generality is not a .. sufficient characteristic of scientific truths. The 
following four-line; stanza py ~ckiewicz: - · 

·-- .. - ---- ~-~-·<i-:Na'k33:<lymmiejscu i o ka±dej dobie, 

gdziem z tobit plakal, gdziem sill z tobit bawil, 
ws~dzie i z~wsze blld!il ja przy tobie, 
born wszlldzie czitstkll mej duszy zostawil"*) 

can be the subject-matter of the following general judgements: 
"Every line includes the letters," 
"In every line which includes the letter m that letter occurs twice," 
"In every line the number of occurrences of the letter m is a function 

of the number of the occurrences of the letter s expressed by the formula: 
m = s2-5s+6." 6) 

Such general truths can be turned out endlessly; shall we include 
them in science? 

3. Aristotle, when adopting generality as the characteristic of scien
tific truth, was succumbing to the charm of metaphysical value. Behind 

5) Metaphysics E 2, 1027 a 20, 21, 26: OTt Ii' &mcrT~µ1) aux foTt TOU cruµ
~&~1jX6Toi; qiocvep6v· smcr'l"'i]µ1) µE:v y&p 7tCXCllX ~ TOU &e:i '\) TOU &.i; s7ti TO 7tUAU [ ..• ] 
TO 111: cruµ~e:~7Jx6<; &O'Tt 7trxp& TIXuTix. B 6, 1003 a 15: xix.&o:Aou yocp ixt &mcrtjµoci 
7t&.\l"t'©V. 

6) These four lines form the third stanza in the poem Do M*** (To M***), which 
begins with the words Pr~cz z moich oczu, Adam Mickiewicz, Dziela (Works). The 

'· Adam Mickiewicz Literary Society, Lw6w, 1896, Vol. I, p. 179). It follows from the 
· formula that m = 2 for ·s = 1 (lines one and two), m = 0 for s = 2 (line three), and 

m = 2 for s = 4 (line four). 
*) The original example is left untranslated, since reference is .made by the author 

not to the meaning of the poem, but to the occurrence of certain letters. 
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CREATIVE ELEMENTS IN SCIENCE 

the constantly recurring facts he sensed a permanent existence differ
ent from the vanishing phenomena of the world of the senses. Today, 
scientists are more inclined to see in generality ;:i."prqctical value. 

General judgements, by defining the conditions under which phe
nomena occur, make it possible to forecast the future, to bring about 
useful phenomena, and to prevent detrimental ones from taking place. 
Hence the view that scientific truths are practically valuable judgements, 

rules of effective action. 7) 
But practtca:iva:hre;-too,-i&-neither-a-necessarJ-nor _a suffic::ient prop

erty of scientific truths. Gauss's theorem stating that every prime 
number of the form 4n+l is a product of two conjugate numbers has 
no practical value. a) On the other hand, the information supplied by 
tlJ_e police that stolen things have been recovered from thieves is,. 
for all practical purposes, very valuable for the owners of the stolen 
property. And how many phemomena can be foreseen, and how 
many accidents can effectively be averted, on the strength of the law 
in the formulation unknown to Galileo: "All pencils produced 
by Majewski & Co., Ltd., Warsaw, when neither suspended nor 
supported, fall with a velocity that increases in proportion to the 

period of fall!" 
Those who would like to turn science into a servant of everyday 

needs hold a low opinion of science. More exalted, though not better, 
was Tolstoy's idea of condemning the experimental sciences. and of 

7) A. Comte (cf. Cours de philosophie, 2nd ed., Paris, 1864, Vol. I, p. 51) defined 
as follows the relationship between science and action: "Science, d'ou prevoyance; 
prevoyance, d'ou actipn." But Comte did not yet see the goal of science in prediction 
or action (cf. footnote 3 on p. 6). Today, pragmatism identifies truth with utility, 
and H. Bergson, by replacing, in L'evolution creatrice (5th ed., Paris, 1909, p. 151) 
the term homo sapiens by homo Jaber (which was done before him by Carlyle: Man 
is a tool-using animal, Sartor Resarius, Book 1, Chap. 5) wants the whole of man's 
mind to serve the purpose of practical activity. H. Poincare in his book La valeur 
de la science (Paris, 1911, p. 218) quotes the following statement by Le Roy, one 
of Bergson's followers: "La science n'est qu'une regle d'action." 

') Gauss, Theoria residuorum biquadraticorum, commentatio secunda, § 33. Exitm-
---------ples.:-5 =;_(L-1::2!)_(!_-2i), 13 = (2+3i)(2-3i), etc. Gauss's theorem is equival

ent to Fermat's th~~re;;;·--stitb:ig -that-- every prime number of the form 4n+ 1 
can be represented. as a sum- of two square numbers; e.g., 5 = 12+22, 13 = 

22 +32
, etc. 

CREATIVE ELEMENTS IN SCIENCE 5 

~emandin~ of science. instruction in ethical issues only. 9) Science has 
1mm~nse importance ID practical matters, it can elevate man ethically, 
an~ 1t happens to be a source of aesthetic satisfaction; but the essence 
of its value rests elsewhere. ' 

4. Aristotle saw the origin of science in astonishment. The Greeks 
were astonished when they found out that the side and the diagonal 
?f a square h~ve no common measure. 10

) Astonislniieiit is a psycholog
ical state which is both intellectual and emotional. There are other 
su~h states, such ll-~ curiosity, fear of the unknown, incredulity, uncer
tainty .. They have not been thoroughly studied so far, but even a cursory 
~nalys1s shows that they all include, along with emotional factors, an 

· mtellectual element which is a desire for knowledge. 11) 

This desire is concerned with facts\vhich are important for individ
uals or for all men. A man who is in love and who is tortured by doubts 
as to whether his beloved responds, would like to know the fact that 
is import~nt to himself. But every man views death with · fear and 
curiosity while he tries in vain to fathom its mystery. Science is 
not concerned with the desires of individuals; it investigates that which 
may arouse desire for knowledge in every man. 

If the above statement is true, then the additional value besides truth 
which every judgement ought to have in order to belong to science might 
~e defined as the ability to arouse, or to satisfy, directly or indirectly, 
intellectual needs common to humanity, i.e., which may be felt by any 
man who has a certain level of mental development. 

5. The truth about the flea's jump from Chaerephon's brow does 

9) L. T_olstoy included his remarks on the goals of science in the conclusion of his 
b~ok agamst modern art. (I know that book only i.r). a German translation: Gegen 
~ze moderne Kunst,. deut~c~ v~n W:tlhelm Thal, Berlin, 1898, pp. 171 ff.) Tolstoy 
is ~uoted by. H. Pomcare m his article "Le choix des faits", included in his book 
Science et methode (Paris, 1908, p. 7). 
_ ' 0) ~e~aphy:ics ~ 2, 982 b 11 ff: IM. yap To .&ocuµ&.1;;e:tv ot &v.&p((lrcoc xoct 

vu: XOl:L ~o 7tp(()T~'J 'l'JP~Ol:'JTO qn).ocroqierv [ ... ] 983 a 16: .&ccuµoccrTO'J yap eLVC<t ooxer 
7tOl:O"tV, ,;t Tt (sell._~ ot&.µe-rpo.;;) Tij) e),ocxlcr-rij) µ-Ji µe-rper~cct. Comte (Zoe. cit.) 
says that the co~on_ of-_the laws governing phenomena satisfies that urgent need 
of ~~e human mmd wh~ch 1s expressed in astonishment, etonnement. 

) ~tat.es _o~ uncert:imty, as far _as they occur in desires, have been analysed by 
W. W1t~cki m Analzza psychologzczna objaw6w woli (A psychological analysis f 
the manifestations of will), Lw6w; 1904, pp. 99 ff. 

0 
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not belong to science, since it neither arouses nor satisfies any one's 
intellectual needs. The information supplied by the police about the 
recovery of stolen property may be of interest at the most to the persons 
concerned. Likewise, no one is interested in knowing how many times 
the letters m and s occur in a given poem, or what is the relationship 
between these two numbers. Even the judgement about the fall of pencils 
produced by Majewski & Co. will not find its way into a textbook of 
physics, since our desiJ:e for knowledge is satisfied by a general law about 

the fall of bodies. 
Gauss's theorem on tlie factori.ng--of-prime·numbers of the form 4n+ 1 

into complex numbers is known only to a few scientists. Yet it belo~gs 
to science because it reveals a strange regularity in the laws govermng 
numbers, which, being powerful instrument of research, arouse curiosity 
in every tb.i.nki.llg man. Not everyone need be concerned about the 
existence of Neptune, but that fact confirms Newton's synthetic theory 
about the structure of the solar system, and thus indirectly helps to 
satisfy the intellectual need which mankind has felt since the earliest 
times. The victory of Jagiello as such may be of little interest to a Jap
anese, but that event was an important element in the history of the 
relations between two nations, and the history of a nation may not 
be a matter of indifference to any cultured individual. 

While art developed from a longmg for beauty, science was shaped 
by a striving for knowledge. To look for the goals of s.cience outside 
the sphere of intellect is as grossly erroneous as to restrict art by con
siderations of utility. The slogans "science for science's sake" and 

"art for art's sake" are equally legitimate. 
6. Every intellectual need that cannot be immediately satisfied in 

an empirical manner gives rise to reasoning. Whoever is astonished by 
the incommensurability of the side and the diagonal of a square wants 
to find an explanation of that fact; hence he looks for the reasons of 
which the judgement about incommensurability would be a conse~uen~e. 
Whoever is afraid of the Earth's passing through a comet's tail tnes 
to infer, on the strength of the known laws of Nature, what might be 
the consequences of such an event. A mathematician who is not sure 

""---------~'hether-the-equatio:Q._2'~±Yn =.=..z." has no solution in positive integers 
for n > 2 looks for a proof, ie., reliable judgements which would 
justify Fermat's. well-known theorem. A person who is suffering from 

j 
J ' 

:J 
I 
I 
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hallucinations and at a given moment does not believe what he perceives, 
wants to verify the objective nature of what he perceives; hence he 
looks for the consequence of the assumption that he does not suffer 
from hallucinations. For instance, he asks others whether they see 
tlie same things he does. Explanation, inference, proof, and verification 
are kinds of reasoning. 12

) 

Every reasomng inctcrdes·aHeast two-judgements-between which tlxe 
relation .of consequence holds. A set of judgements connected by such 
relations might be called a synthesis. Since any intellectual need com-
mo.Jl"foli.uirlamtj-Ca.nfie satisfied by reasoning only, and not by expe
rience, which by its vefy nature is individual only, then science includes 
not f~olqted judgements, but only syntheses of judgements. 

· • 7. E~~fy \)inthesis of judgements includes the formal relation of 
. . conseque~ce !is anecessary Iicfoi. The sY/logism: "if every Sis M, and 

every M is P, ·then every S is P," is the most common, though not the 
only, example of judgements connected by such a logical relation. The 
relation of consequence which holds between the premisses of a syl
logism and its conclusion is called formal, because it holds regardless 
of the meanings of the terms S, M, and P, which form the ''matter" 
of the syllogism. 

The formal relation of consequence is non-symmetrical, i.e., it has 
the property that while the relation of conseqlience holds between 
a judgement or a set of judgements A and B, the same relation may, 
but.need no~, hold between B and A. The judgement A, of which B is 
a consequence, is the reason, and B is the consequence.*) The transition 
from reason to consequence determines the direction of the relation of 
consequence. 

Reasoning which starts from reasons and looks for consequences 
is called deduction; that which starts from consequences and looks for 
reasons is called reduction. In the ca.se of deduction the direction · of 

12) Professor K. Twardowski, was the first to use the term "reasoning" as a general 
term covering "inference'.' and "proof" in Zasadnicze pojgcia dydaktyki i logiki (The 
fundamental concepts of te<1ching methods and logic), Lw6w, 1901, p. 19, para. 97. 
As a continuation of his views I introduce the theory of reasoning outlined under 7 
in the present paper. 

*Unfortunately, two Polish terms have to be rendered by one English term "con
sequence" (the relation of consequence, and consequence as opposed to reason). 
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· i·s m· agreement with that of the relation of consequence; in reasomng 
reduction the two are contrary to one another. . 

Deductive reasoning can be either inference or verification, and. re
ductive reasoning can be either explanation or proof. !f from giveu 
reliable judgements we deduce a consequence, we infer; if we loo~ for 
reasons for given reliable judgements, we explain. Ifwe loo~for reliable 
· d ents which are consequences of given unreliable Judgements, 
JU gem hi h . z· bl 
we verify; if we look for reliable judgements of w c given unre za e 

judgements are consequences, we prove. 

· s. There is a creative ete:rn:entin-every-reasoning; this is most strongly 

manifested in explanation. . 
Incomplete induction is one kind of explanation. It ~s a way ~f reaso~

. hich for given reliable singular judgements: "S11s P, S2 is P, 83 1S 
mg w 1 . d t· " ery P, ... " looks for a reason in the form of a genera JU gemen . ev 

Sis P" . . 
Like all reductive reasoning, incomplete induction does not justify 

the result of reasoning by its starting point. For S1, S2, S3 ~o not ex
haust the extension of the concept S, and inferring a ge~er_al JUdgeme~t 
from a few singular judgements is not formally permissible. T~at 1s 
why the result of an argument by incomplete 1~duction as such 1s not 
a reliable judgement, but only a probable one. ) . 

The generalization "every S is P" m~y b~ ~:~rpreted ~ithe: as a set 
of singular descriptions or as the relation~hip if _some~g is_ S, then 
it is P". If a generalization is a set of smgular Judgements, it covers 
not only those cases which have been investigated, but ~own 
cases as well. By assuming that the unknown cas~s. behav~ like the 
known ones we do not reproduce facts that are empmcally given, but 
we create new judgements on the model of judgements about known 

cases. 
If a generalization expresses a relationship, it introduces a f~ctor 

that is alien to experience. Since Hume's time we have been permitted 
to say only that we perceive a coincidence or a sequence of events, but 

") This view on the essence of inductive inference is in agreemen~ with what is 
called the inversion theory of induction, formulated by Jevons and_S1gw::rt (cf. my 

~-------'pape~ "O indukc]rfa:Icofuwersji · tledukcji" (On induction as the mvers1on of de-

duction), in Przeglqd Filozoficzny 6 (1903), p. 9). , 

I 
l 
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not a relationship between them.14) Thus a judgement about a relation
ship does not reproduce facts that are empirically given, but again is 
a manifestation of man's creative thought. 

This is still insignificant creative activity; we shall come to know 
a fuller one. 

9. Consider Galileo's generalization: "All heavy bodies, if neither 
suspended nor supported; fall-with-a.-velocity-that inereas.es in pro
portion to the pme of fall." This generalization includes a law that 
expresses the functional relationship between the velocity v and the time 
0rrau!~-gJ.ve:lloytheformula: v =gt. 

Tb.e qµantity t may take on value~ that are expressed by integers, 
fractions, irrational numbers, and transcendental numbers. This yields 
an infirlite mtinber of judgem~nts about cases which no one has ever 
observed or-Will ever be able to observe. This is one element of creative 
thought which was already mentioned above. 

The other is inherent in. the form of the relationship. No measurement 
is exact. Hence it is impossible to ·State that the velocity is exactly pro
portional to the time of fall. Thus neither does the form of the relation
ship reproduce facts that are empirically given: the entire relationship 
is a product of the creative activity of the human mind. 

Indeed, we know that the law governing the fall of heavy bodies 
can be true only in approximation, since it supposes such non-existent 
conditions as a constant gravitational acceleration or a lack of resistance 
offered by the air. Thus it does not reproduce reality, but only refers 
to a fiction. 

That is why history tells us that the law did not emerge from the 
observation of phenomena, but was born a priori in Galileo's creative 
mind. It was only after formulating his law that _Galileo verified its 
consequences with facts. 15) Such is the role of experience ill every theory 
of natural science: to be a stimulus for creative ideas and to provide 
subjects for their verification. 

10. Another killd of explanation consists in the formulation of hypo
theses. To formulate a hypothesis means to assume the existence of 

14) Cf. David Hume, Enquiry Concerning Human Understanding, Leipzig, 1913, 
·Felix Meisner, p. 64: " ... we are never able, in a single instance, to discover any 
power of necessary connection." 

15) Cf. E. Mach, Die Mechanik in ihrer Entwickelung, 6th ed., Leipzig, 1908, pp. 129 ff. 
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a fact, not confirmed empirically, in order to deduce from a judgement 
about such a fact as its partial reason a given reliable judgement as 
a consequence. For instance,. a person knows that some Sis P, but does 
not known why. As he wants to find an explanation he assumes that 
the same S is M, although he does not verify it empirically .. But he 
knows that all M are P; so if he assumes that S is M, then from these 
two judgements he may conclude that S is P. , 

The judgement about the existence of Neptune was a hypothesis 
before the fact was confirmed empirically. The judgement about the 
existence of Vulcan, a plallelSituated-:-cluser-to-the--S-un than Mercury, 
is still a hypothesis. The views stating that atoms, electrons, and aether 
exist will always be hypotheses.16

) All palaeontology is based on hypo
theses; for instance, the statement that certain gray lumps of limestone 
found in Podolia are traces of the Brachiopoda which lived in the Silu
rian and the Lower Devonian periods pertains to phenomena which 
are not accessible to observation. History is an immense network of 
hypotheses which, by means of general judgements, in most cases· drawn 
from experience, empirically explain given data, such as historical 
monuments, documents, institutions and customs that exist now. 

All hypotheses are products of the human mind, for a person who 
assumes a fact that is not empirically confirmed creates something new. 
Hypotheses are permanent elements of knowledge and not temporary 
ideas that by verification can be changed into established truths. A judge
ment about a fact ceases to be a hypothesis only if that fact can be 
confirmed by direct experience. This happens only exceptionally. And 
to demonstrate that the consequences of a hypothesis are in agreement 

. with facts does not mean turning a hypothesis into a truth, for the 
truth of the reason: does not follow from the truth of the consequence. 

16) Many examples pointing to creative elements in physics are quoted by Dr. Br~
nlslaw Biegeleisen in his paper "O tw6rczosci w naukach 5cislych" (On creative ele
ments in the exact sciences), Przeglqd Filozoficzny 13 (1910), pp. 263, 387. Dr Bie
geleisen draws attention to the visualization of physical theories by mechanical 
models (pp. 389 ff). Between a model that explains a theory and an invention, which 
certainly is a creative work, there is only a difference in the goals and the applica- · 
tions of two such objects. There are also models in logic: for instance, Jevons's lo-

"---------gtcat-a:bacus-{see-the--drawing_in_his_book The Principles of Science, London, 1883) 
or Marquand's logical machines (cf. Studies in Logic by Members of the John Hop
kins University, Boston, 1883, pp. 12 ff). 

I 
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11. Other kinds of reasoning do not contain primary creative ele
ments, as explanation does. This is so because proving consists in look-

• ing for known reasons, and inference and verification develop the 

-·~ .. 1· .. ;.. consequences already contained in the premisses in question. yet in 
, all rea1>oning there is inherent formal creative reasoning: a logical 

_, principle of reasoning. 

i ---:A-prirrcip-le of reasoning-is-- a:-; judgement- stating that the icla
~ tion of consequence holds between certain forms of judgements. The 

syllogism "if S is M, and M is P, then S is P" is a principle of 
reasoiiillg.17J- --··· --- ---~-~ --

Principles of reasoning do not reproduce facts that are empirically 
given; for neither is the non-symmetrical relation of consequence 
a subject-matter of experience, nor do the forms of judgements, such 
as "S-is-'P"; express -phenomemL 

Non-symmetrical relations never link real objects with one another. 
For we call non-symmetrical a relation which may, but need not, hold 
between B and A if holds between A and B. And if A and B really exist, 
then: every relation either holds between them or does not hold. Actual
ity excludes possibility. 

Possibility is inherent in the forms of judgements, too. The terms S 
and P are. variables which do not denote anything definite, but which 
may denote anytlllng. The element of possibility suffices to make us 
consider the principles of reasoning as creations of the human mind 
and not as reproductions' of real facts. ' 

,, , Logic is an a priori science. Its theorems are true on the strength of 
definitions and axioms derived from reason and not from experience. 
This science is a sphere of pure mental activity. 

12. Logic gives rise to mathematics. Mathematics, according to Rus
sell, is a set of judgements of the form ''p iniplies q", where the judge
ments P and q may, in addition t-0 the same variables, contain only 
logical constants.18

) The logical constants include such concepts as the 
relation of consequence, the relation of membership that holds between 

'')For the concept of the ''principle of reasoning" I am indebted to Professor 
K. Twardowski (cf. Zasadnicze poj12cia dydaktyki i logiki (The fundamental con
cepts of teachll!g methods and logic)), Lw6w, 1901, p. 30, para. 64). 

") B. Russell, The Principles of Mathematics, Cambridge, 1903, p. 3. 
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an individual and a class, etc.*) If all mathematics is reducible to logic, 
then it is also a pure mental product. 

An analysis of the various mathematical disciplines leads to the same 
conclusion. The point, the straight line, the triangle,. the .cube, all the 
objects investigated by geometry have only an ideal existence; they 
are not empilically given. How much less are non-Euclidean figures 
and many-dimensional solids given~empirically! Nor are there, in the 
world of phenomena, integral, irrational, imaginary, or conjugate 
numbers. Dedekind called numbers "free products of the human spirit" .

19
) 

------:rurdD:umbers-a-re-th~foundatio~f_all_analysis ..... . 
Logic, with mathematics, might be compared to a fine net which is 

cast into the immense abyss of phenomena in order to catch the pearls 
that are scientific syntheses·. It is a powerful instrument of research, 
but an instrument only. Logical aoo mathematical judgements are 
truths only in the world of ideal entities. We shall probably never know 
whether these entities have counterparts in any real objects.

20
) 

The a priori mental constructions, which are contained in every syn
thesis, imbue the whole science with the ideal and creative element: 

13. The time has come now to consider the question: which scientific 
judgements are pure reproductions of facts? For if generalizations, laws, 
and hypotheses, and hence all the theories of the empirical sciences 
and the entire sphere of the a priori sciences are a result of the creative 
work of the human mind, then there are probably few judgements in 
science that are purely reproductive. 

The answer to this question appears to be easy. Only a singular state
ment about a fact which is directly given in experience can be a purely 
reproductive judgement, for instance: "a pine grows here", "this magnetic 
needle now deviates (from its previous position)'', "in this room there 
are two chairs". But whoever investigates these judgements more closely 

*) It would seem that Lukasiewicz means here the symbol of implication and the 
symbol "e" which denotes t):le membership relation that holds between an object 

and a set of which that object is an element. 
19) R. Dedekind, Was sind und was sollen die Zahlen, Braunschweig, 1888, p. VII: 

"die Zahlen sind freie Schopfungen des menschlichen Geistes." 
20) In my book 0 zasadzie sprzecznosci u Arystotelesa (On the principle of con

----------tradiction.Jn Aristotle's works), Cracow, 1910, pp. 133 ff, I tried to demonstrate 
that we cann~-b-;;--;iiiei:hai real objects are subject to the principle of contra-

diction. 

I 
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I 
l I will perhaps find creative elements even in them. The words "pine", 
I "magnetic needle_", and "two_ " stand for concepts, and hence concealed 
J labour of the spirit works through them. All the facts formulated in 
'1 words are, primitively it may be, interpreted by man. A "crude fact", 
l untouched by the human mind, seems to be a limiting concept. t Whatever the actual situation may lie, we feel that the creative ability 

-'j'·;·~'-------0.f-the-hnma-n-mi.nd .. is...noLunlimited .. Tdealis.tic...sys.tem~
fail to eliminate the feeling that some reality exists independent of man 
and that it is to be sought in the objects of observation, in experience. 

~- It has long since been the great task of philosophy to investigate which 
elements in that reality come from the human mind.21

) 

14. Two kinds of judgements must be distinguished in science: some 
are supposed to reproduce facts given in experience, the others are pro
duced by the human mind. The judgements of the first category are true, 
because truth consists in agreement between thought and existence. 
Are the judgements of the second category true as well? 

We cannot state categorically that they are false. That which the 
human mind has produced need not necessarily be a fantasy. But neither 
are we entitled to consider them as true, for we usually do not know 
whether they have counterparts in real existence. Nevertheless we 
include them in science if they are linked by relations of consequence 
with judgements of the first category and if they do not lead to conse-
quences that are at variance with the facts. -

Hence it is erroneous to think that truth is the goal of science. The 
human mind does not work creatively for the sake of truth. The goal 
of science is to construct syntheses that satisfy the intellectual needs 
common to humanity. 

Such syntheses include true judgements about facts; they are the ones 
which mainly arouse intellectual needs. They are reconstructive ele
ments. But these syntheses also include creative judgements; they are 
the ones which satisfy intellectual needs. They are constructive elements. 

21) The Copernican idea of Kant, who tried to prove that objects follow cogni
tion rather than cognition follows objects, includes views that favour the thesis 
of creative elements in science. But r have tried to demonstrate that thesis not on the 
basis of any special theory of cognition, but on the basis of common realism, by 
means of logical research. For the same reason I have not taken into consideration 
James's pragmatism and Schiller's humanism. · 
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Elements of the former and the latter combine into a whole by the 
logical relations of consequence. It is these relations which impart to 
the syntheses of judgements their scientific character. 

Poetic creativity does not differ from scientific creativity by a greater 
amount of fantasy. Anyone who, like Copernicus, has moved the Earth 
from its position and sent it revofv:ing around the Sun, or, like Darwin, 
has perceived in the mists of the past the genetic transformations of 
species, may vie with the greatest poet. But the scientist differs from the 
poet 1n that he reasons at all times and places. He need not and cannot 

---------T"rrstify-everytbing,-hut-whate:v:er-he-states-he_must link with ties of logic 
into a coherent whole. The foundation of that whole consists of judge
ments about facts, and it supports the theory, which explains, orders 
and predicts facts. · 

This is how the poem of science is created. 22) 

* 
* * 

we are living in a period of a busy collecting of facts. we set up 
natural science museums and make herbaria. We list stars and draw 
maps of the Moon. We organize expeditions to the Poles of our globe 
and to the towering mountains of Tibet. We measure, we compute, 
and we collect statistical data. We accumulate artifacts from prehis
toric civilizations and specimens of folk art. We search ancient tombs 
in quest of new papyri. We publish historical sources and list biblio
graphies. We would like to preserve from destruction every scrap of 
print-covered paper. All this is valuable and necessary work. 

But a collection of facts is not yet science. He is a true scientist who 
knows how to link facts into syntheses. To do so it does not suffice 
to acquire the knowledge of facts; it is also necessary to contribute 
creative thought. 

The more a person trains both his mind and his heart, and the closer 
he associates with the great creative minds of mankind, the more crea-

22) Ignacy Matuszewski in his paper "Cele sztuki" (The goals of art), included 
in the book Tw6rczosc i tw6rcy (Creation and creators), Warsaw, 1904, offers similar 

-~-------,vi=·e=w~s'-"o=n-=· c=r.:::ea::.:t:::iv~e. elements in .science. His studies, undertaken with different ends 
in view and from a-cliffeieiifsfa.lldpoint, have led him to the same results to which 
logical considerations have led me. 

-------------·--·-~··------
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tive ideas he can form in his rich soul. And perhaps in a happy moment 
he will be illuminated by a spark of inspiration which will beget some
thing great. For, as Adam Mickiewicz has said, 23) "all great things in 
the world-nations, legislation, age-old institutions, all creeds before 
the coming of Christ, all sciences, inventions, discoveries, all master
pieces of poetry and art-have taken their origin from the inspiration 

·· ---of-pre-phets,-sages,heFees,and-poets . .::... ... 

2
') This formulation, drawn from Odyniec's letters, is quoted by W. Bieganski 

in his paper "O filozofii Mickiewicza" (On Mickiewicz's philosophy), in Przeglqd 
Filozoficm:y 10 (1907), p. 205. 
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I 

THE THEORY OF TRUTII VALUES 

---------.--.-Illi!efim!epropnsitions;=-2:--'Fru:th·-values,-3.-·Implieation.-4. Theorem on the 
truth value of reason.-5. The calculus of truth values.-6. Principles of the calculus. 
-7. Theorems.-8. The law of addition.-9. Conclusions determined numeric
ally.-10. Relative truth val~.'-11. Independence of indefinite propositions.-
12. The law of multiplication.-13. A special theorem. 

1. Indefinite propositions 

I call indefinite those propositions which contain a variable. For instance, 
"x is an Englishman", "x is greater than 4". 

I shall consider hereafter only those indefinite propositions in which 
the values of the variables range over a well-defined, finite class of 
individuals. For instance, it may be assumed that in the statement 
"xis greater than 4" x will stand only for integers from 1 to 6. 

If in an indefinite proposition we substitute for the variable one of 
its values, we obtain a de.finite singular judgement which is either true 
or false. For instance, "5 is greater than 4:'', "3 is greater than 4". 

Indefinite propositions are true if they yield true judgements for all 
the values of the variables. For instance, "x is greater than O" for 
x = 1, 2, ... , 6. 

Indefinite propositions are false if they yield false judgements for 
all the values of the variables. For instance, "x is greater than 6" for 
x = 1, 2, ... , 6. 

1) I undertook the study of the subject described in this paper in Graz in 1909, 
where I studied as a fellow of the W. Os!awsk:i, Foundation, administered by the 
Cracow Academy of Learning. 

*) :Fi~st ptibllshed_fu_Cracow, 1913, as Die logische Grundlagen der_ Wahrschein
lichkeitsrech11ung, reprinted in the 1961 edition Z zagadnien logiki i filoznfii. 
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Indefinite propositions which yield true judgements for some values 
of the variables and false judgements for other values of the variables 
are neither true nor false. For instance, "xis greater than 4" for x = 
1, 2, ... , 6. 

2. Truth values 

-~y the truth value of an znde]inzte proposition"/ mean the ratzo between 
the number of values of the . variables for which the proposition yields 
true judgements and the total number of values of the variables. For 
instance, the truth value of the proposition "x is greater than 4", for 
x = 1, 2, ... , 6, is 2

/ 6 = 1/3, since out of the 6 values of x only 2 values, 
when substituted for the variable, yield a true judgement, i.e., "verify" it. 

The truth value of a true indefinite proposition is 1, since that propo
sition yields true judgements for all the value of its variables. 

The truth value of a false indefinite proposition is 0, since no value 
· .of its variables can verify such a proposition. 

The truth values of indefinite propositions which are neither true nor 
false -are proper fractions. 

3. Implication 

The relation of implication, or the relation between reason and con
sequence, holds between two indefinite propositions a and b if for every 
pair of values of the variables occurring in a and in b either the reason a 
yields a false judgement or the consequence b yields a true judgement. 

The three following cases may be distinguished: 

1. The reason a yields false judgements for all the values of its variables, 
i.e., a is a false indefinite proposition. Then the consequence may be 
arbitrary, since of the t"'.:o conditions for the occurrence of implication 
formulated above, each of which is sufficient, the first is satisfied. 

2. The consequence b yields true judgements for all the value of its 
variables, i.e., b is a true indefinite proposition. Then. the reason may 
be arbitrary, since of the two conditions of the occurrence of implica
tion the second is satisfied. 

3. Neither the reason a yields fals~ judgements for all values of its 
~ariab1es, nor the consequence b yields true judgements for all values 
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of its variables. Then the statements a and b must contain the same vari
able x, and all values of x which verify the reason a must verify the 
consequence b. For if i is a value of the variable occurring in a, then 
for that value the statement a yields either a false or a true judgement. 
In the former case, the first condition of t!1e occurrence of implication 
is satisfied. In the latter case, which by assumption must take place for 
some value of the variable occurring in a, the first condition is not 
satisfied, hence the second must be. Now, if b contains a variable other 
than that contairi.ed in a, and if the assumption that b does not yield 
true judgements for all values of its variable is valid, then we can always 
select a value j of the vana@eofor wlilcnb-yieids ·a false judgement. 
But then the relation of implication cannot hold between a and b, 
since for the pair (i, j) of values of the variables neither a yields a false 
judgement, nor b yields a true one. Therefore a and b must contain 
the same variable, and the same value i which yields a true judgement 
when substituted for the variable in a, must ·also yield a true judgement 
when substituted in b. 

Examples. The reason: "xis greater than 4'', the consequence: "xis 
greater than 3". The range of the values of xis arbitrary. All values 
of x which verify the reason, also verify the consequence, since as x 
is greater than 4, it must also be greater than 3. But it is obvious that 
for any value of x either the reason yields a false judgement or the 
consequence yields a true one, i.e., x must either be not greater than 4 
or be greater than 3. On the other hand, the relation of implication 
does not hold between the following statements: "xis greater than4" 
(a) and "xis greater than 5" (b), for x = 1; 2, ... , .6, because for x = 5 
a yields a true judgement, and b yields a false one. Or: "x is greater 
than4" (a) and "yis greaterthan3" (b), for x = 1, 2, ... , 6;y = 1, 2, ... , 6. 
Since the variables x and y are different, we may substitute the value 5 
for x and the value 2 for y, whereby a will yield a true judgement and 
b a false one. 

U suilly only the cases falling -cinder 3 are classified as instances of 
the relation between reason and consequence, but in formal logic it 
has proved useful to extend that concept to 1 and 2 as well. The defini
tion given at the begiruiing of this section covers all these cases. 
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4. Theorem on the truth value of reason 

The following theorem holds: The truth value of a reason cannot be 
greater than the truth value of the consequence. For, if the reason is 
false, it has the least truth value 0; if the consequence is true, it has the 
greatest truth value I ; if n~ither the reason is false nor the consequence 
is true, then both the reason and the consequence must contain the same 
variable, and all values of the variable which. venfy the reason also 
verify the consequence. If their denominators are the same, the numer
ator of the fraction representing. the truth value of the reason cannot 
be greater than the numerator of the fraction whic;h represents the 
truth value of the consequence. 

Here are examples of the third case: x = 1, 2, .. :, 6. 

Reason: 

X=6 

Consequences: 

x is greater than 5 
x is greater than 4 
x is greater than 3. 
x is greater than 2 
x is greater than 1 

The truth value of the reason is 1
/ 6 • 

Truth values of the 
consequences: 

1;6 
2;6 
3/6 

4/6 
% 

It can be seen that in the third case the numerator of the *) difference 
between the truth value of the consequence and that of ·the reason 
equals the number of values of the variaqle which verify the consequence 
but not the reason. For instance: Reason: "x = 6"; consequence: 
"x is greater than 3'', for x = 1, 2, ... , 6. The truth value of the reason 
is 1

/ 6 , and that of the consequence is 3 
/ 6 ; hence the difference is 2 

/ 6 • 

In fact, there are or\].y two values of the va~iable, 4 and 5, which verify 
the consequence but not the reason and thus change the proposition 
consisting of the negation of the reason and of the consequence: "x is 
different from 6 and greater than 3" into a true judgement. In algebraic 
logic, such propositions, connected by the word "and'', areealled 

*)The words "the numerator of" are added in translation; they are omitted in 
the original, but it follows from the rest of the sentence that the numerator of the 
difference is meant, and not the difference itself. (Ed.) 
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logical products. Hence for the third case of implication we may formulate 
the following "theorem on the truth value of a reason": 

The truth value of a reason, augmented by the truth value of the logical 
product of the negation of the reason and of the consequence, equals the 

truth value of the consequence. 
The same theorem is also valid for the first two cases of implication. 

For, if the reason has the truth value 0, then the negation of the reason 
is true and the truth value of the product of the negation of the reason 
and of the consequence depends solely on the truth value of the conse-

-------~quence,a:ncl-hence-equals_the_truth-. value.of .the .. consequence. If, on the 
other hand, the consequence has the truth value 1, then the truth value 
of the product of the negation of ·the reason and of the consequence 
equals the truth value of the negation of the reason. But then it is obvious 
that the truth value of any indefinite proposition plus the truth value 
of its negation, equals 1, and hence in our case also equals the truth 
value of the consequence. Hence the theorem on the truth value of 
a reason, as formulated above, is universally valid. 

5. The calculus of truth values 

A special calculus, which abounds in formulae, can now be construct
ed on the basis of the foregoing explanations and the theorem formu
lated above, with the help of the algebra of logic. 

Indefinite propositions are denoted by a, b, c, ... , and their truth 
values by w(a), w(b), w(c), ... The logical product ab denotes "a and b", 
while the logical sum a+b denotes "a orb" (the word "or" being taken 
in its inclusive sense); a' is the negation (contradictory opposite) of a; 
a < b stands for the relatiqn of implication: "from a follows b" ; the 
equivalence a= bis identical with the logical product of (a < b) (b <a) 
and means: "from a follows b and from b follows a". 

Most formulae of the calculus consist of a logical and a mathemati
cal part each. The logical part of a formula represents a relation between 
indefinite propositions, and the mathematical part is a numerical equa
tion between the truth values of such propositions. The whole of a for-

----·mu18:-e:xpresses a.relationship.between a logical relation and a numerical 
equation. In some cases the formulae are reduced to pure numerical 

'I
·.· ·.' 

I 
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equations; this occurs whenever a numerical equation is a consequence 
of a universally valid logical relation. 

In the text that follows it is assumed that the elementary and obvious 
rules of the algebra of logic are known to the reader. 2) 

Note: The formulae of the calculus contain both logical and mathe
matical o~erations. ~nd equations which are denoted by the same sym

'.·.·I ---b0:s.-~+; :i:uxt~QSlliQll_.o£.the symbols in the case of-multiplication; ). 
'I ~isunderstan~gs, however, are excluded, since mathematical opera

tions and equations occur only between expressions which stand for 
numbers, and such expressions can easily be recognized as they begin 
with w, for instance, w(a)1 w(a+b), etc. 

I
'• 
' 

·"', 
··);:{'·'-

6. Principles of the calculus 

The calculus of truth values is based on the following three principles: 

I (a = 0) = [w(a) = OJ. 
II (a= 1) = [w(a) = l]. 

III (a< b) < [w(a)+w(a'b) = w(b)]. 

The first two p~ciples state: "If an indefinite proposition a is false 
( = 0) or tr~e ( =. l}, then its truth value equals 0 or 1 respectively, and 
conversely, if the truth value of a proposition a equals O. or 1, then a is 
false or true respectively". The :figures O ·and 1 in these equivalences 
are not numbers but convenient symbols for false and true statements 
borrowed from the algebra of logic. , 

The third principle is that of the truth value of a reason: "If a is the 
reason for b, then the truth value of a,· augmented by the tr~th value 
of the logical product a'b, equals the truth value of b." 

In the first two principles the logical part is equivalent to the mathe
matical,. and the third principle as a whole is only an implication. 

These principles are based on the analyses carried out in the first 
four sections where they are explained by examples. Within the calculus 
of truth values they play the role of axioms. 

2) Couturat's concise work L' algebre de la logique (The Scientia series division 
of mathematics and physics, No. 24, Paris, 1905) can serve as the best in~oduction 
to the algebra of logic. 

.__ ______________________ .... ____________________ _ 
-----·-·---·---- -------------------------------· 
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7. Theorems 

(1) w(O) = 0. 

"The truth value of a false proposition is O." 

(2) w(l) = 1. 

"The truth value of a true proposition isl." 

Proof: The theorems result from I and II following the substitution 
for a in I of the symbol of a false proposition, and, in II, of the symbol 

------~o-f----a-true-pre-p0sitionJJius_the __ e_quiyalences_: __ _ 
I a= 0 and a= 1 

yield universally valid identities: 

0 = 0 and 1=1, 

so that their equivalent equalities: 

w(O) = 0 and w(l) = 1 

are proved. 

(3) (a= b) <lw(a) = w(b)]. 

"If the propositions a and b are equivalent, then their truth values 

are equal." 

Proof: a= b means the same as (a< b) (b <a). By III, (a< b) 

yields: 

(a;) 

On the other hand, 

which by I yields: 

(~) 

w(a)+w(a'b) = w(b). 

(b <a)= (a'b = 0), 

w(a'b) = 0. 

From the assumption that a= b we obtain, by (a;) and_(~): 

w(a) = w(b). 

Theorem (3) is not reversible, i.e., it may not be asserted that proposi
--------t,··ons-which-have--the same truth values are equivalent. For instance, 

for x = 1, 2, ... , 6, the statements "x = 4" and "x = 5" have the same 

I 
I 
I 
J 
I 
I 
i 

', ( 
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truth value, namely 1/5, yet not only are they not equivalent, they are 
even mutually exclusive. 

(4) w(a)+w(a') = 1. 

"The sum of the truth values of two contradictory propositions 
equals l." 

Proof: If 1, the symbol of a true pro12ositjon, is substituted for b in 
III, this yields: 

(a< 1) < [w(a)+w(a'l) = w(l)]. 

Now since 

a'l =a', 

hence by (3) 

w(a'l) = w(a'). 

Further, by (2) 

w(l) = 1. 

This yields 

(a < 1) < [w(a)+w(a') = 1]. 

In this formula the antecedent a < 1 is a logical law of universal valid
ity; hence the consequent, i.e., the thesis, also has universal validity. 

8. The law of addition 

Some auxiliary theorems will be proved :first. 

(5) w(ab)+w(a'b) = w(b) . . 

Proof: If the logical product ab is substituted for a in ID, this yields 

(ab< b) < {w(ab)+w[(ab)'b] = w(b)}. 

The following equivalences are valid in the algebra oflogic: 

(ab)'b = (a'+b')b = a'b+b'b = a'b. 

By (3) we obtain: 

w[(ab)'b] = w(a'b) 
and 

(ab < b) < [w(ab)+w(a'b) = w(b)]. 
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Now the antecedent ab <bis a logical law of universal validity; hence 
the ;onsequent, i.e., the thesis, is proved. · 

(6) w(a)+w(a'b) = w(a+b). 

Proof: If the logical sum a+b is substituted for b in III, this yields: 

(a< a+b) < {w(a)+w[d(a+b)] = w(a+b)}. 

The following equivalences hold: 

a'(a+b) = a'a+a'b = a'b. 

---· ____ .JJB-y-(3-), this yields 
w[a'(a+b)] = w(a'b) 

and 
(a < a,+b) < [w(a)+w(a'b) = w(a+b)]. 

Now, since the antecedent a < a+b is a logical law of universal 
validity, the consequent, i.e., the thesis, is proved. 

(7) w(a+b) = w(a)+w(b)-w(ab). 

Formula (7) is obtained by subtracting equation (5) from equation (6). 

The law of addition: 

(8) (ab= 0) < [w(a+b) = w(a)+w(b)]. 

"If the propositions a and b are mutually exclusive, then the truth 
vii.lue of their sum equals the sum of their truth values". 

Proof: Formula (8) results from (7), since, by I, the assumption 

ab=O 

yields 
w(ab) = 0. 

Example. Let a stand for "x = 4'', and b, for "xis less than 3". For 
x = 1, 2, ... , 6, w(a) = 1/ 6 , and w(b) = 

2
/ 6 • The propositicrns a and b 

are mutually exclusive. The truth value of the logical sum: "x = 4 
or xis less than 3" is 3/ 6 , hence w(a+b) = w(a)+w(b). 

The law of addition can, on the strength of mathematical induction, 
be extended ·so as to cover more than two propositions. The following 

holds: 

~-----(9J------ .. J21iE1(l1 ~-9) <:'. [w(};,ai) = 2iw(a;)]; 

i=fij, i=l,2, ... ,n, j=l,2, ... ,n. 

-----------

I 

I: .. • "If n P'OPO=.::.:::::i'7:=. then the tru: 
value of their sum equals the sum of their truth values". 

I-·.•·_·. -~___,rO) 9. Conclusions determined numerically 
_ The law of addition is reversible: 

[w(lr=l=b) = wta)-Fweb)] < (ab = O). 

"If the truth value of the sum of two propositions equals the sum 
of their truth values, then the propositions are mutually exclusive." 

Proof: By (7), the equation 

w(a+b) = w(a)+w(b)-w(ab) 

is universally valid. If now 

w(a+b) = w(a)+w(b), 

then 
w(ab) = 0. 

But then, by I, also 

ab= 0. 

Consequently, the law of addition may be formulated as an equiv
alence: 

(11) (ab= 0) = [w(a+b) = w(a)+w(b)]. 

If in (10) we put b' for b, we obtain 

(cc) [w(a+b') = w(a)+w(b')] < (ab'= 0). 

But now, on the one hand, 

(ab'= 0) = (a < b), 

and on the other, by (4) 

w(a+b') = 1-w[(a+b')'] = 1-w(a'b) 

= w(b)+w(b')-w(a'b). 

When these results are substituted in (cc), then after easy transforma
tions we obtain: 

(12) [w(a)+w(a'b) = w(b)] < (a < b). 

Theorem (12) is a reversion of Axiom III, i.e., the law of 
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value of reason. Hence that axiom, too, may be formulated as an equi

valence: 

(13) (a< b) = [w(a)+w(a'b) = w(b)]. 

Theorems (10) and (12) are most interesting from the logical point 
of view. They make it possible, on the strength of numerical equations 
holding between the truth values of certain propositions, to determine the 
logical relationships between those propositions. For instance, let us 
denote the indefinite proposition "xis A" by a, and the indefinite pro-

-------cP_Qsi:fum "xis B" by b, and assume!~a!_?_()_l11)Jutations yield the follow
ing numbers: 

m 
· w(a) =-• 

n 

m+r 
w(b)=--• 

n 

r 
w(a'b) = - · 

n 

Since the following equation holds between the truth values of the pro
positions in question: 

w(a)+w(a'b) = w(b), 

we may conclude that from the proposition "x is A" follows the propo
sition "xis B". Such conclusions may be called numerkally determined, 
since they can be presented in the following manner: -

m individuals out of a given n are A, 
m+r individuals out of the same n are B, 
r individuals out of the same n are B, but not A. 

Conclusion: All A out of the given n individuals are B. 

10. Relative truth values 

- Define: 

Df(l) 
--------· 

(b) 
_ w(ab) 

_~a - w(a) ' 

it being assumed that w(a) =/= 0. 
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This definition introduces an abbreviated notation, which is important 
since it points to a new concept, namely that of relative truth value. 

h · w(ab) b 1iz db b · · T e quotient w(a), sym o e y Wa( ), mdicates how many of those 

values of the variable which verify the proposition a ·also verify the 
proposition b, and hence also the product ab. In other words, ii indicates 

---how-great-is-thM~uth-value..oJb, assuming that a.-is..ti:ue..-ID~
is satisfied, so that a= 1, then the relative value of b equals its absolute 
value, ·since the following theorem can easily be proved: 

(14) W1(b) = w(b). 
Proof: 

(b) = w(lb) _ w(b) _ (b) 
W1 w(l) - 1 - W • 

Example. Let a stand for "x is divisible by 2", and bf or "x is divisible 
by 3". For x = 1, 2, ... , 9 the absolute truth value of bis 3fg = 1/3, 
so that w(b) = 1/ 3 • The'rela:tive truth value of b with respect to· a is only 
1/ 4 , so that Wa(b) = 1

/ 4 • This is so because, assuming that a is true, for 
four values of x which verify the proposition a: "x is divisible by 2" 
there is only one value, namely 6, which also verifies the proposition b : 
"xis divisible by 3". The same result is obtained by the computation 
of the truth values for a and ab: w(a) = 4

/ 9 ; w(ab) = 1
/ 9 ; the quotient 

w(ab) _ (b) _ 11 w(a) - Wa - 4. 

Df(l) yields immediately: 
(15) w(ab) = w(a)w0 (b) = w(b)wb(a). 

The truth value of a (logical) product equals the product of the (abso
lute) truth value of one factor and the relative value of the other factor 
with respect to the first factor. 

11. Independence of indefinite propositions 

Define: 
Df(2) aUb = [wa(b) = wa-(b)]. 

W'nile Df(l) introduces a new mathematical concept, or a concept 
from the theory of truth values, Df(2) introduces a new logical concept. 
aUb denotes a relation between the propositions a and b which holds 
if and onljT if the relative truth value of b with respect to a equals the 
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relative truth value of b with respect to a'. Note that a can be neither 
true nor false, since for a = 0, w .(b) is meaningless, and for a = l , 
wa,(b) is meaningless. Before the logical sense of aUb is clarified, certain 
formulae must first be proved. 

(16) aUb = [w(ab) = w(a'b) ]· 
w(a) w(a') 

Theorem (16) follows from Df(2) on the strength of Df(l ). 

(17) aUb = 1:~:L:_.:~~1 = w(b) ]· 

Proof: By (16), aUb is equivalent to the equation 

w(ab) w(a'b) 
w(a) = w(a') · 

On the strength of a well-known theorem from the theory of propor
tions we obtain: 

w(ab) w(a'b) w(ab)+w(a'b) 
w(a) = w(a') = w(a)+w(a') 

Now, by (4) and (5) 

w(ab)+w(a'b) = w(b) = w(b). 
w(a)+w(a') 1 

(18) aUb = [wa(b) = War(b) = w(b)J. 

Theorem (18) follows from (17) on the strength ofDf(l). 

(19) aUb = [w(ab) = w(ab)' J. 
w(b) w(b') 

Proof: By (17) aUb is equivalent to the equation 

w(ab) = (b) 
w(a) w · 

This yields: 

w(ab) 
(a) w(b) = w(a). 

Further, by (4) and (5) it follows that 

.... w(ab') . . w(a)-w(ab) 
w(b') 1-w(b) 

I 
I 

I
"" 
. 
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If in this equation the product w(a)w(b), obtained from (a), is substi
tuted for w(ab), we obtain 

(
R) w(ab') = w(a)-w(a)w(b) = () 1-w(b) _ 
t-' w(b') 1-w(b) w a 1-w(b) - w(a). 

(a) and (~)yield: 

.,.,__-----------'w(ab) w(ab.') 
w(b) = w(a) = w(b') · 

(20) aUb = bUa. 

Proof: If a and b are exchanged in (19), we obtain 

bUa = [w(ab) = w(a'b)] = aUb. 
w(a) w(a') 

On the basis of the formulae proved above the meaning of the relation 
U can now be defined. 

U is a symmetrical relation (Theorem 20) which holds between two 
propositions a and b if and only if both propositions are neither true nor 
false (Df(l), Df(2)) and the relative truth value of one proposition with 
respect to the other or with respect to its negation equals its absolute 
truth value (Theorem 18). 

If the relation U holds between the propositions a and b, then it is 
immaterial for the truth value of b whether we take it with respect 
to a or a', i.e., whether we assume that a is, o~ is not, verified; likewise, 
it is immaterial for the truth v.alue of a whether we assume that b is, 
or is not, verified. We say that the propositions a and b are independent 
of one another. 

Example. Let a stand for "x is divisible by 2", and let b stand for 
"x is divisible by 3". For x = 1, 2, ... , 6, the absolute value of a is 1/ 2 , 

and the absolute value of b is 1/3. The relative value of b with respect 
to a is 

likewise, 

(b) - w(a'b) - 1; . 1; - r; 
Wa· - w(a') - 6 • 2 - 3· 

The propositions a and bare independent of one another. 
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Now, it is obvious that propositions which are neither true nor false 
and contain different variables are always independent of one another. 

The concept of independence of indefinite propositions, as formulated 
above, is narrower than the usual concept of logical independence. 
Usually, propositions are treated as logically independent if neither 
implication nor exclusion holds between them or their negations. That 
characteristic does not suffice for our concept of independence, which 
in addition requires satisfaction of a certain numerical relationship 
formulated in Df(2). 

(21) 

12. The law of multiplication 

aUb = [w(ab) = w(a)w(b)]. 

"If the propositions a and b are independent of one another, then the 
truth value of their product equals the product of their truth values; 
and conversely, if the truth value of the product of two propositions 
equals the product of their truth values, then these proposition.$ are 
independent of one another." 

Theorem (21) follows directly from (17). 

Example. Let a stand for "xis divisible by 2''., and b for "xis divis
ible by 3". For x = 1, 2, ... , 6, a and bare independent of one anoth
er. The truth value· of a is 1 fi ,' and that of b is 1

/ 3 . The truth value of the 
product equals 1

/ 6 , hence w(ab) = w(a)w(b). 

The propositions which .are neither true nor false and contain different 
variables are always independent of one another, so that the law of 
multiplication is always valid for them. For instance, let a stand for 
"x = 4", and b for "y =-4", where x and y can take on the values of 
the integers from 1 to 6. The truth value of both a and bis 1

/ 6 , and the 
truth value of the logical product ab is equal to the arithmetic product · 
1/ 6 X 1/ 6 = 1/ 36 • Now out of the 36 pairs of values for which the inde
finite propositions "x = 4" and "y = 4" yield definite judgements, 
only one pair of values, namely ( 4, 4), yields a true judgement. 

Like the law of addition, the law of multiplication is reversible. Hence, 
if the product of the truth values of any propositions is compared with 

-the-truth-value-of-their -product, it can always be decided whether the 
propositions in question are independent of one another, or not. 
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The law of multiplication can also be expanded so as to cover more 
than two propositions, but the formula 

w(fl,a,) = n,w(a;), i = 1, 2' ... 'n, 

depends on fairly complicated conditions, and it would take us too far 
to lay them down here. One point, however, can be emphasized: if all n 
PJ.9PQsjJions contain different variable_s, then the formula certainly 
holds. 

13. A special theorem 

Finally, the following theorem can be proved: 

i=f:.j, i=l,2, .. .,n, j=l,2, ... ,n. 
The first assumption means that the sum of the propositions x1 +x2+ ... 
•.. +xn is true, while the second indicates that all the propositions x 
are pairwise mutually exclusive. The consequent states that under these 
assumptions the relative truth value of any proposition x, for instance 
Xm, with respect to any proposition a equals the quotient, the numerator 
of which is the product of the absolute truth value of Xm and the relative 
truth value of a with Tespect to Xm, and the denominator of which is the 
sum of all the expressions formed for all x in the same way as the nu
merator is formed. 

Proof: It follows from Df(l) that 

(o:) 
w(axm) 

wa(xm) = w(a) · 

J3y (15), the numerator of the quotient on the rightyields 

(~) w(axm) = w(xm)w,,m(a). 

By (4), the· denominator yields 

w(a) = w(axi)+w(axj). 

Now, on the strength of the first assumption stating that };;x; = 1: 
-j 

x.f =2txi' 
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-j 

where };;x; means the sum of all the propositions x with the exception 
of xi. Hence 

-j -j 

w(a) = w(axj)+w(a};ix;) =·w(axi)+w(};;axi)· 

But in view of the second assumption, all the propositions x are pairwise 
mutually exclusive; consequently, all ax; must also be mutually exclu
sive, and on the strength of the law of addition (9) we obtain 

-j -j 

----------~······(a)-- w(ax_r)+z1w(ax;) == 21w(ax;). 
:-.. 

Now by (15) 
w(ax;) = w(x;)Wx,(a), 

hence: 

(y) w(a) = };;w(x;)w,,,(a). 

Now if we substitute the results obtained by (~)and (y) for the nume
rator and the denominator of (oc), we obtaill the thesis. 

II 

THE CONCEPT OF PROBABILITY 

14. The calculus of truth values versus the calcillus of probability.-15. Two prin
cipal difficulties in probability theory.-16. Objective and subjective probability 
theory-17. Indefinite propositions and probabilistic propositions.-18. The prin
ciples of necessary. and insufficient reason.-19. Truth values and probability 
fractions.-20. Interpretation of probabilistic propositions.-21. The listing of results. 

14. The calculus of truth values versus the calculus of probability 

The calculus of truth values outlined in the foregoing Chapter has the 
property that, without in any way assuming the concept of probability, 
without even mentioning it, its theorems are in agreement with the 
principles of probability theory. If the expressions w(a), w(b), etc., are 
interpreted not as truth values of statements but as probabilities of 

_______ _.::events".:, .. then_the_theory of.truth.values becomes the theory of proba
bility. In particular, the law of addition then becomes the rule of complete 
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probability; the law of multiplication, the rule of compound probability; . 
' the concept of relative truth value, the concept of relative probability; 

and the theorem proved in the preceding Section becomes a general 
interpretation of Bayes' theorem. 

This remarkable agreement suggests that probability propositions are 
nothing else than indefinite propositions, while probability fractions are 

. ___ their_truth....v.alue~ This supp_osition becomes a certainty when we find 
that all the difficulties thus far attending the laying of the logical founda
tions of probability theory can be removed only on the basis of the 
interpretation of probability offered in this paper. The following Sec
tions will be concerned with proving this clrum. 

15. Two principal difficulties in probability theory 

According to Laplace, "the probability of an event is the ratio of the 
number of the cases favourable to that event to the number of all possible 
cases, if there is no reason for believing that one of the cases· is more 
likely to occur than another, so that for us they are all equallypossible".3

) 

This definition, which abounds in errors, is best suited to expose all the 
difficulties of probability theory. 

If we at :first disregard minor errors, for instance, that the definition 
refers only to the probability of events, future events at that, the principal 
shortcoming of Laplace's formulation seems to be that it is not a definition 
of probability, but at most only a definition of the probability fraction. 
It does not explain what probability is, but only tells us how to compute 
probabilities, in doing which it identifies probability with a numerical 
ratio. But probability is no more a numerical ratio than time, for example, 
although time is also measured in terms of a numerical ratio. Since 
Laplace's formulation is basically not an explanation of the concept of 
probability, it would not, perhaps, be correct to raise against it the 
objection that it is a vicious circle by pointing out that it explains prob
ability by referring to "equally possible" cases, which cannot mean 
anything but "equiprobable" cases.4

) The principal error of the defini-
tion is the more strongly brought into relief: it explains an obscure 

3
) Thlforie analytique des probabilitis, 3rd ed., Paris, 1820, p. 179. 

4
) This objection has been raised, among others, by Poincare (cf. Calcul des pro

babilites, Paris, 1896, pp. 5-6). 
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concept by means of another concept which is wrapped in a similar 
obscurity. 

The mysterious essence: of probability has not been fathomed by 
the great founders of probability calculus. Hence the first basic dif
ficulty and the first basic problem of probability theory is: what is 
probability? 

But even if we assume that Laplace's definition is not in any way 
intended as an explanation of the concept of probability, but merely 
indicates how to compute probability fractions, it still may not be 
absolved of error. According to Laplace, the computation of a proba
bility fraction is based on the concept of"equally possible", i.e., "equi
probable'', cases. But then the question arises: under what conditions 
can we consider two possibilities or two probabilities to be equal? Since 
Laplace answers this question by a reference to the subjective element 
of belief, he does so in a way which does not agree with the objective 
nature of the probability calculus and is the object of a cop.troversy 
which has continued till the present day. Here lies the second basic 
difficulty and the second basic problem of probability theory: how are 
probabilities computed? 

I shall now try to demonstrate that both difficulties vanish only when 
"probabilistic" propositions are interpreted as indefinite propositions. 

16 •. Objective and subjective probability theory 

The predicate "probable" is usually connected with "events", and 
future events at that. Without, for the time being, going into the problem 
as to whether it is at all possible to speak of a probability of events, 
we must state that in the same way in which we sp<:ak (falsely, as will 
be seen later) about the probability of future events, present and past 
events can also be probable; moreover, this refers not only to events, 
but also to many other states of things which do not fall under the 
-concept of "event". It may be asked: what is the probability that a two
digit integer is divisible by 3; but divisibility of a number by 3 is not 
an event. Hence another subject must be sought for the predicate "pro
bable". Now, it is quite certain that all states of things which are referred 

_______ t.o_as_pmhable_can_J?i<._:r.S:l?~~e.!lted. in the form of propositions. That 
is why it would be advisable to speak about the probability of pro-
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positions, the more so as in this way nothing is prejudged about 
the nature of probability.5

) 

Propositions can express subjective conditions, on the one hand, and 
objective facts, on the other. When I am looking at a game of dice and 
state: "6 has turned up", then this proposition, on the one hand, expres-
ses my subjective conviction, and on the other, denotes an objective 
stat_e_ill_affairs Now, it is possible that propositions eith.eerl:'.-<ia1.J:rn@--{c;aalfl-lll<'\eAd----
probable because the subjective conditions which they express are not 
convictions but mere suppositions, or that they are considered probable 
because the objective facts which they denote are not realities but pos-
sibilities. A theory of probability which adopted the former standpoint 
might be called subjective, while the other could be called objective. 

As far as I know, a purely objective theory of probability has not 
yet been formulated by anyone. This is so because it seems to be irrec
oncilable with two universally accepted principles : the principle of 
causality, and the principle of the excluded middle. By the former 
principle, we assume that everything in. the world occurs of necessity, 
so that no room is left for possibility. Even such an insignificant event 
as a delicate movement of the hand which sets the dice rolling has been 
predetermined in all its details. The causes work in such a way that six 
either must turn up, or cannot turn up. In the former case, the propo
sition "6 has turned up" is necessarily true; in the latter, it is necessarily 
false; in neither case is it objectively probable. 

However, should anyone believe that the principle of causality is 
not evidently true and that there are events which are not subject to 
the coercion of necessity, another principle can be referred to, namely 
the principle of the excluded middle, which, like the former, excludes 
all possibility. On the strength of that principle, of two contradictory 
propositions which pertain to definite individual objects, one must 
be true. Hence even under the assumption that an event, for instance, 
the drawing of a black ball out of an urn containing black and white 
balls, does not occur of necessity, one_ of the two must be true: a black 
ball either is drawn or is not drawn. If the former proposition is true, 

5) Cf. pertinent remarks by Stumpf in "Uber den Begriff der mathematischen 
Wahrscheinlichkeit'', Sitzungsberichte der philosophisch-philologischen und histo
rischen Klasse der bayerischen Akademie der Wissenschaften, No. 1, Munich, 1892, 
pp. 43 and 46. 
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then it is true at every time, hence also before the drawing of the ball; 
a black ball will be drawn, even if that event be not predetermined. If 
the latter proposition is true, then it is also true at every time, hence 
also before the drawing of the ball; a black ball will not be drawn, even 
if that event be not predetermined. In both cases we have to do with 
realities, even though not with necessities; again there is no room for 
objective possibility. 

It follows from these considerations that it would be useless to try 
to explain the essence of probability by the study of objective facts. 
This was sensed by the founders of the probability calculus, such as 
Jacob Bernoulli or Laplace, ana-hence, :iiiore 0r1ess exp1icitly, they tried 
~o solve the puzzle of probability by reference to subjective elements. 

There is no consistent subjective theory of probability; it can imme
diately be seen that any such theory would be unsatisfactory. Endeav
ours to formulate such a theory are to be found, for instance, in the 
works of Jacob Bernoulli, who defined probability as a degree or part 
of certainty. If, says he, complete certainty, which is assumed to equal I, 
consists of 5 parts or probabilities of which. 3 favour a certain event 
and the rest oppose it, then the probability of that event is 3 

/ 5. 
6
) 

It is not difficult to uncover the shortcomings of such a formulation. 
Should probability be a part of certainty then, like certainty, it would 
have to be a property of psychic processes, namely convictions and 
suppositions. Now, first, so far no one has succeeded in measuring 
beliefs and suppositions and their properties. The computation of prob
ability fractions would then be impossible, which is at variance with 
evident facts. Secondly, in the probability calculus we assume that under 
given objective conditions the probability of a proposition has only one, 
definite value. Now, should probability be a degree of certainty, then 
it would have to vary according to the psychic states of various indi
viduals. The hope of winning and the fear of losing in gambling have 
a strong effect on the degree of certainty with which events are expected. 
Finally, there is no doubt that the probability calculus has nothing to 
do with the measurement of degrees of certainty and with psychic 
phenomena. Should the essence of probability consist in subjective 
processes, then the entire theory of probability would have to be rele-

6) Ars conjedandi, Basel, 1713, p. 211. 
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gated to a psychological laboratory and would then· be an empirical 
discipline, like Fechner's psychophysics, but not an a priori branch 
of pure mathematics. The argument last adduced has a general validity 
and precludes any attempt to lay a subjective foundation for probabil
ity theory. 

Both paths·, the objective and the subjective, are thus blocked; hence 
._a_thir.d.must..be..s.o.ug&b"'t~--

17. Indefinite propositions and probabilistic propositions 

Although probability does not exist objectively., the probability cal
culus is not a science of subjective processes and has a thoroughly 
objective nature. Hence the essence of probability must be sought not 
in a relationship between propositions and psychic states, but in a re
lationship between propositions and objective facts. Now, such a re
lationship is not purely positive, but also negative. What is meant by 
this formulation can best be explained by reference to the. concept 
of falsehood. 

Falsehood, like truth, is a property of propositions which results 
from the relationship between the latter and objective facts. But while 
true propositions always have counterparts in certain facts, false pro
positions have no ·objective correlates. Thus falsehood is characterized 
by a negative relation to facts. Yet, although falsehood does not 
exist objectively, the concept of falsehood is free from subjective 
elements. 

The same holds for probability, which also does not exist objectively 
and is only a property of propositions. A negative relation to facts is 
also included in the concept of probability as one of its characteristics. 
Probability lies midway between truth and falsehood, in the same way 
as a proper fraction lies between 0 and 1, and gray between black and 
white. But it is not possible to mix truth with falsehood in order to 
obtain probability as it is possible to obtcrln a gtay colour from a mix
ture of white and black paint. No proposition can be both true 
and false. Something intermediate between truth and falsehood can 
be obtained only by forming a group consisting of true and false 
statements. This condition is satisfied precisely by indefinite pro
positions. 
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In my opinion, probability is a property of those indefinite proposi
tions which are neither true nor false. Thus each probable proposition 
has its counterpart in a group of true and false judgements. The propo
sition "x is A" is probable if at least one value of the variable x verifies 
that proposition, i.e., yields a true judgement, and at least one other 
value does not verify that statem~nt, i.e., yields a false judgement. 
This shows that falsehood, and with it the negative relation to facts, 
is necessarily contained in each probable proposition. If man were not 
in a position to formulate false propositions, then he would not know 
the concept of probability. This is not a subjective, but a purely human 

-------etenrenl,whic1rshottl~not-a:stonis1rus;-since·it is-man-who is the creator 
of the concept of probability. 

The interpretation of the essence of probability presented here might 
be called the logical theory of probability. According to this viewpoint, 
probability is only a property of propositions, i.e., of logical entities, 
and its explanation requires neither psychic processes nor the assump
tion of objective possibility. Probability, as a purely logical concept, 
is a creative construction of the human mind, arz instrument invented 
for the purpose of mastering those facts which cannot be interpreted by 
universally true judgements (laws of nature). 

The logical theory of probability seems to me to be only way out 
which avoids the reefs of both the objective and the subjective theory. 
In the light of that theory, the interpretation of those propositions 
which in probability calculus are considered probable must be subjected 
to a thorough criticism. It can no longer be asserted that such events 
or propositions as "this die will now turn up 6" or "the next drawing 
from this urn will yield a black ball" are probable. Such propositions, 
being definite judgements, are either true or false, even if before the 
event we can never know which of them are true and which are false. 
The fact that such judgements are to this day considered probable, 
although neither the objective nor the subjective theory of probability 
is tenable, and hence no real sense may be associated with the proba
bility of such judgements, is, in my opinion, to be explained by the fact 
that people have so far been unable to cope with the concept of proba
bility. Only those propositions which contain a variable can be prob-

_______ a_b_l~e,,___fo_r--'-'-in---"s:.::tance: "the x-th throw of the die yields 6" or "the x-th 
drawing from the urn yields- ·a. black ball". But if a proposition has 

--------·--·-··--.. ,-··------
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once been probable, it remains so forever; it can never be"come either 
true or false, and even an oniniscient and omnipotent mind could not 
in the least change its degree of probability. 

18. The principles-of necessary and insufficient reason 

=-----Bti-th--bas~o.Lprobability theory: What is probability? 
and How is probability computed?, are so closely intertwined that the 
latter cannot be solved if the former has not been solved. But since 
there are reasons to claim that there has been so far no satisfactory 
solution of the former problem, we cannot expect to find, in the exist
ing literature on the subject, a definitive clarification of the latter 
problem. 

All the attempts made so far to compute probabilities have been 
based on the concept of "equally possible" or "equiprobable" cases. 
There are two interpretations of this concept: an objective and a sub
jective one. The most eminent representatives of these two theories 
in modem times are von Kries and Stumpf. 

As the basis of Kries's theory we have to consider the theorem that 
assumptions pertaining to equal and "indifferent" original ranges are 
equiprobable.7) On the contrary, according to Stumpf, those cases are 
equally possible, and hence also equiprobable, with respect to which 
we are equally ignorant; two cases of ignorance can be held to be equal 
only if we know absolutely nothing as to which of the cases will occur. 8) 

The contrast between the two theories can best be explained by an 
example. 

The probabilities that a geometrically and physically regular die will 
yield 1, or 2, or ... or 6, are assumed to be equal. According to Kries, 
they are equal because "here the geometrical and physical regularity 
of the die necessarily results in the fact that a definite interconnected 
complex of possible movements, which yields 6, is always accompanied 
by other complexes, which in every respect differ very little from the 
former, are contained within almost the same reach, and yield I, 2, 3, 
4, 5, and that these six kinds of movements, repeated regularly in turn, 

1) Die Prinzipien der Wahrscheinlichkeitsrechmmg, Freiburg and Br., 1886, p. 157. 
•) Stumpf, op. Cit., p. 41. 
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fill the entfre range of possible movements." 9) The complexes of pos
sible movements mentioned in the quotation are called ranges by 
Kries. Thus, in a game of dice the ranges of all throws are approximately 
equal; further, they are also primary, i.e., not deducible from any other 
ranges, and finally they are "indiffereni", i.e., there is no reason to 
think that one of them is more probable than any other.10) These three 
conditions - equality, primacy, and indifference of ranges - are_ne~es

sary but also sufficient to justify the equal probability of all throws of 
the dice. 

Thus while Kries, as can be seen from the above example, requires 
the existence of objective equality, which woufcfnecessarily lead to the 
listing of equally possible cases, Stumpf holds that it is possible to 
disregard objective equality and, like I.:aplace, bases. equal possibility 
or probability on subjective elements, namely on a lack of knowledge. 
According to Stumpf we could thus assume that the possibilities of a die 
turning up 1, or 2, ... or 6 are equal even if the die is ge9metrically or 
physically irregular, but we know nothing about it. The contrast between 
the two theories is now clear. Special terms have been coined to express 
that contrast tellingly: the assumptions underlying both theories are 
set in op1>0sition to one another as the principles of necessary reason 
and of insufficient reason. 

It is, however, clear that both principles must fail if, as is usual, 
they are applied to the computation of the probabilities of definite 
individual events. Definite events cannot be probable at all, since they 
are either necessary or impossible, either real or unreal. When, in a game 
of dice, we mean a definite individual throw of a die, then there is only 
one strictly de:fined "complex of possible movements", which necessarily 
yields a given number. It is true that a quite small change in the original 
position of the die would result in another complex of possible move
ments, which in every respect would differ very little from the pre
vious one and would effect another throw, but such a change in fact 
does not take place. We cannot here compare any ranges at all, since 
only one range is given, which necessarily exists, and all others are 
excluded. Comparable ranges exist only when we consider not a de-

9)..Kr.ies., .. op_cit.,_p_._~~~--------- --···-
10) Ibid., p. 25. 
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finite throw, but any arbitrary throw. Then with each complex of pos
sible movements which yields 6, we can compare other complexes, 
which differ very little from the former and which effect the throws 
of 1, 2, 3, 4, 5; but in this case we have to do with an indefinite propo
sition, and to compute the probabilities of such propositions we must 
follow another path. 

Thus we can see anew that a purely objective theory of probability, 
based on the concept of objective possibility, cannot be realized. Kries 
seems to have sensed this, for he remarked that the totality o~ (;():O:cJi~ 
tions which constitiii:e tlie known range of a probable event does not 
suffice to predetermine the result. There is a remainder which evades 
our knowledge, but we should not have any reason to assume that 
that remainder favours any definite range.11) By introducing in this 
way the concept of iridifference of range into his considerations 
Kries actually abandoned his original, purely objective, standpoint 
and came closer to those favouring the principle of insufficient 
reason. 

The followers of that principle are in a still worse position when 
exposed to criticism than are the defenders of the principle of necessary 
reason. It is a subtle but untenable paradox to make lack of knowledge 
the basis of knowledge, be it only probable. Nothing results for the 
probability of an event from the fact that we know little or nothing 
about that event or have no reason to assume one event to be more 
probable than another. The probability of drawing just the white ball 
out of an urn which contains 999 black balls and one white ball is 
objectively very small, but it cannot be increased by the fact that a per
son does not know the ratio of the balls. If the principle of insufficient 
reason were true, then the computation of the probability would have 
to depend on subjective factors and would be different for different 
individuals, but the probability calculus as an objective discipline is 
not concerned with stating how probable an event is for an insufficiently 
informed observer, and strives to determine the probabilities of events 
or propositions without regard to any subjective factors. 

Thus both principles have proved unable to solve the second basic 
problem of probability theory; hence a third principle must be sought. 

11) Ibid., p. 61. 
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19. Truth values and probability fractions 

The principles of necessary and insufficient reason c~~ot be correct 
since th<:Y assume no correct concept~ or rather no concept at all, of 
probability. :Blit- the probabilitY Jr action, "if it is _not to- be- a pmely ex
ternal and arbitrary appendage of the concept of probability; must 
find its justification and its legitimation in the essence of probability. 

Now, if it is assumed that probability is a property of every inde
finite proposition which is neither true nor false, then the probability 
fraction is in fact based on the essence of the concept of probability. 
Tlie element of plurality and number is immeiliatelycontaiiied in that 
concept. An indefinite proposition can be probable only if the variable 
which occurs in it can take on values, both which verify and which do 
not verify the proposition. The greater the number of the verifying 
values in proportion to all values, the greater the probability of a pro
position, which in a limiting case can reach the degree of truth. It is 
thus self-evident that the probability fraction is identical with the truth 
value of an indefinite proposition. 

If this assumption is made, then aii the difficulties associated with 
the concept of "equally possible" or "equiprobable" cases vanish im
mediately.· That concept, so obscure and so hotly disputed, is no longer 
needed as a basis for the computation of probabilities. Probabilities will 
be computed not by being compared, but by having the verifying and 
the non-verifying values of the variables counted. If the range of the 
values of the variables involved is well defined and finite, no difficulties 
can arise. There may also be cases in which the degree of probability 
-0f an indefinite proposition can be found without counting. Only when 
probability fractions have been computed in this way can they be com
pared with one another,. and such a comparison immediately reveals 
which propositions are to be considered "equiprobable". 

Now is perhaps the time to make use of the most important argument 
which the logical theory of probability. has at its disposal and which 
forms the content of the entire first part of the present paper: if prob
abilistic propositions are interpreted as indefinite propositions and 
probability fractions are interpreted as truth values, then all the principles 

~~------cof-the-probability-ealeulus-ean be--obtained from this assumption in a strict
ly deductive manner by means of the algebra of logic. Moreover, new 

_________ .,_,~ .. -·-
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principles can be formulated and old concepts can be made more precise 
The theorem on the truth value of a reason, which can be considered 
an analogue of the law of addition, has, as far as I know, been unknown 
before; the relationship between the probability calculus and numerically 
defined conclusions also seems not to have been noticed previously; the 
important concept of independence of "events" or propositions has 

-"""'-----'fiF-st-eeeE.-gi:W:n---a-sYiGtl-y.-scie:lltifiC-formulation in Section 11 of tlris 
paper. The logical theory. of probability has thereby stood its test. 
It has proved workable from the very outset and, when supported 
by the algebra of logic, promises to remain a fertile working-theory.· 

20. Interpretation of probabilistic propositions 

It cannot be denied that the probability calculus, for all the previous 
uncertainty of its logical foundations, in its wider mathematical expan
sion has yielded numerous results that are in agreement with ~mpirical 
data. Theoretically interesting and practically important disciplines, 
such as the theory of games of chance on the one hand, and mathematical 
statistics, insurance theory, descriptive statistics (Kollektionmasslehre) 
on the other, are based on the principles of the probability calculus. 
Now in all these disciplines reference usually is made to the probability 
of definite individual events. For instance, the question may be: what 
is the probability of throwing a given number with a given regular 
die at a given moment, or of drawing a ball of a given colour from 
a given urn; or else the problem may be how to compute the proba
bility of the death within one year of a given person 40 years old. But 
in the light of the logical theory of probability, all such problem formu
lations and computations must be waived aside as meaningless. Indi
vidual events can never be probable, since probability is exclusively 
a property of indefinite propositions. Hence the problem arises how, 
in the light of the new theory as presented in this paper, we should in
terpret the propositions which in the probability calculus are inter
preted as probable. 

The question is not difficult to answer when it comes to statistical 
probability, that is, probability which is determined a posteriori: The 
following example will suffice: on the basis of the tables of survival 
of 23 German insurance companies it has been computed that out of 
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the 85 020.5 insured persons who were 40 years old, 940 died before 
becoming 41. This yields the following empirical value of the probability 
of death of a German who is 40 years old:12

) 

940 
P40 = 85 020.5 = 0.01106. 

The probability fraction thus obtained by the statistical method, does 
not in the least mean that a given person who is 40 years old has to 
expect death with the probability of about eleven thousandths. It mere
ly indicates that so far, on the average, out of 1000 persons 40 years 

------=of age, lTnavedied-befm:'e--tnrnirrg-41-:-ItissupposeO:-that this number 
of deaths depends on certain conditions, which are expected to continue 
to exist in: their essentials in the near future and to have similar effects. 
Hence it is expected that also in the future out of 1000 persons who 
are 40 years old, on the average 11 persons will die before becoming 
41 years old. But this means nothing else than that the indefinite pro
position: "x, who is now 40 years old, will die before becoming 41 years 
old", has on the average the truth value of 11 thousandths. This means 
in turn that if we substitute individual values for x, we obtain on the 
average 11 true propositions out of 1000 definite propositions. 

If the above probability fraction is interpreted in this way, then all 
the difficulties which inevitably accompany the usual interpretation 
disappear. In the light of the ordinary formulation, one had to assume 
that the probability of death within one year would be the same for 
a strong and healthy man of forty as for a seriously ill man of forty 
who may even be breathing his last. Such an assumption, however, 
is not admissible. But the new interpretation explains how it happens 
that an insurance company, which bases its calculations on the princi
ples of probability theory, does not need to fear losses. It need not be 
concerned which of its customer~ are doomed to death in a given year 
if it can only hope that the number of deaths will correspond to the 
statistically obtained truth value of a given indefinite proposition. 

All empirically determined probabilistic propositions can be inter
preted in the same way without any difficulty. The analogous interpre
tation seems, however, to encounter greater difficulties when it comes 

· ""tCf:-E:-ezaber,-Wahrscheinlichkeitsrechnung;··voI: II, Leipzig and Berlin, 1910, 
p. 154. 
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to a priori probability. Probability values obtained a priori usually 
occur in the theory of ga:ines of chance, that is, in that :field of science 
which gave rise to the probability calculus. We again select an example, 
namely the oldest one, which led to the computation of proba
bilities. 

Galileo Galilei was once asked by a careful observer of a game of dice 
----(passe-Zlix)-;-'fi'f'Whtcirthqroint is to obtainmore1:ha:rr-Ie in thxee throws, 

why the sum of 11 occurred more often than the sum of 12, although 
in the opinion of the person who asked the question both sums could 
be obtained by the same number of combinations. Galileo solVe<l tlie 
problem by proving that the sum of 11 could be obtained by 27 c~mbi
nations, whereas that of 12 by only 25 combinations.13) The calculation 
made by Galileo can be very well presented as the computation of truth 
values of indefinite propositions. The task reduces to :finding the truth 
values of the following propositions with three variables each: "x+y+ 
+z = 11" and "x+y+z = 12", for x = l, 2, ... , 6; y = 1;2, ... , 6; 
z = 1, 2, ... , 6. It can.easily be seen that out of the 63 = 216 combina
tipns of values, 27 verify . the former proposition, while 25 verify the 
latter. 

So far so good. But it cannot be asserted that in the interpretation of 
the probability of obtaining the sum of 11 by three throws the definite 
judgement: "the throw of these three dice will now yield 11" may be 
replaced by the indefinite proposition: "x+y+z = 11". It is true that 
the judgement referred to above cannot be probable as it is a definite 
proposition, so that in its place we must look for something else, which 
would in fact be probable; yet the above indefinite proposition cannot 
be what we seek since it pertains to something else than the demand 
to obtain the sum of 11 in three throws. This becomes clear as soon as 
we assume that the dice in question are not regular. In this _case the 
probability of throwing 11 cannot be assumed to be 27

/ 2m while the 
truth value of the indefinite proposition "x+y+z = 11" is 27

/ 216 as 
before, if it is assumed that the variables x, y and z can take on the 
values from 1 to 6, which corresponds to the condition that every die 
has six sides. Hence we must seek another interpretation of the proba
bility in question. 

13) Cf. Czuber, op. cit., Vol. I, p. 27. 
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In my opinion, the probable proposition which we seek in this case 
must be formulated as follows: "the x-th throw of three dice yields 
the sum of 11". To- give the truth value of this proposition we would 
have to know the total number o~ throws and to count those_ of them 
which yielded 11. But it is impossible to make such a count in any 
empirical way. We must therefore resort to an a priori determination 
by assuming that in view of the geometrical and physical regularity 
of the dice, the frequency qf the various sums which can be obtained 
by throwing the dice depends only on the number of ways in which they 
can be obtained. That is, for each die it is assumed that all the throws 
which can be made with it must be equally distribut~d o~;;= the six num
bers. Should that not be the case, we would have to suppose a cause 
t~at would_ favour the throw of a given number, for instance 6, and such 
a cause would have to :find its explanation :iy the irregularity of the 
die, which would contradict the assumption. It can thus be seen how 
the equality of the range, required by Kries in the computation of pro
babilities, finds its application here. It serves the purpose of determining · 
the ratio of the verifying values of a variable to all its values on the bas_is 
of an a priori fiction, without counting the individual values and even 
without knowing their number. 

This interpretation of a priori probabilistic propositions is not only 
in full agreement with the logical theory of probability, but also sheds 
light on the a priori element of probability. It can now be understood 
that here, as in all cases involving empirical data, a priori propositions 
have only the values of hypotheses which must later be checked in the 
light of the facts. it may be that the probability calculus, by becoming 
a sober logical theory; loses the charm of the mysterious, which has 
attracted so many eminent minds. But in exchange, it rises now as a 
clearly and sharply outlined structure to which we may not refuse 
a certain logical elegance. 

21. The listing of results 

To conclude let me list the most important results of the present 
paper, concisely and clearly, in the form of theses. 

--~------;/;--------------------------

LOGICAL FOUNDATIONS OF PROBABILITY THEORY 47 

I. The concept of probability 

1. Propositions are indefinite if they contain variables. 

2. Indefinite propositions are true if they are verified by all the values 
of the variables. 

3. Indefinite propositions a.re false if they are not verified by any 
values of the variables. -----------

4. Indefinite propositions are neither true nor false if they are verified 
by some, but not by all, values of the variables. 

5. Probability is a property of indefinite propositions which are neither 
true nor false. 

6. Definite propositions can never be probable, but are either true 
or false. 

7. Probable propositions can be neither true nor false, but ~e always 
probable. 

8. Propositions which in the probability calculus are considered 
probable must be formulated not for any definite case, but for any 
arbitrary case x. 

9. A purely_ objeetive theory of probability is impossible, sin-ce there 
is no objective possibility. 

10. A subjective theory of probability is impossible, since the proba
bility calculus has nothing to do with subjective processes. 

11. The logical theory of probability, as presented here, is objective· 
in so far as it interprets probability as a property of propositions which 
is characterized by its relationship to the" objective world. 

12. Nevertheless, probability is a concept invented by the human 
mind for the purpose of scientific treatment of those facts which cannot 
be interpreted by general judgements. 

II. The principles of the probability calculus 

13. The truth value of an indefinite proposition is the ratio of the 
number of those values of the variables which verify that proposition 
to the number of all the values of the variables: 
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14. The degree of probability of an indefinite proposition is identical 
with its truth value. 

15. The relation of implication, or the relation between reason and 
consequence, holds between two indefinite propositions a and b if for 
each pair of the values of the variables occurring in a and b either 
the reason a yields a false judgement, ·or the consequence b yields 
a true one. 

16. Theorem on the truth value of the reason: The truth value of the 
reason, augmented by the truth value of the logical product of the 

-------,n::::e""'g"'a"'ti::-:o""n~of the rea:s~:rira:rrd--urthe"consequericeequals the truth value 
of the consequence. 

17. All the principles of the probability calculus can be obtained from 
the foregoing explanations and theorems by means of the algebra of 
logic in a strictly deductive manner. 

In particular: 
a) the law of addition, or the rule of complete probability; 
b) the law of multiplication, or the rule of compound probability; 
c) Bayes's theorem.-

18. The theorem on the truth value of the reason, the law of addition, 
and the law of multiplication are conversible, i.e., they make it possible, 
on the basis of the numerical equalities between the truth values of 
given propositions, to infer the logical relations between such propo
sitions. 

19. The relative truth value of a proposition b with respect to another 
proposition a is the ratio between the truth value of the logical product 
of both propositions and the truth value of the proposition a. 

20. Relative truth values are identical with relative degrees of proba
bility. 

21. The concept of independence, as used in the probability calculus, 
denotes a symmetrical relation which holds between two probable 
propositions if and only if the relative truth value of one proposition 
with _respect to the other proposition equals the absolute truth value 
of the former. 

------·--·-------------------------------,,.-----~· 
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HISTORICAL AND CRITICAL REMARKS 

22. The history of the emergence of the present theory.-23. Russell's proposi
tional functions.-24. Bolzano's concept of validity.-25. Grelling's probability 
theory. 

22. The history of the emergence of the present theory 

It is to the study of algebraic logic that I owe the first inspiiation fo 
treat probabilistic propositions as indefinite propositions. In that 
discipline, the concept of indefinite proposition plays a very important 
role, and eminent mathematici~s and. logicians, such as G. Frege, 
G. Peano, and B. Russell, have recently contributed much to its clari
:fication.14) To Frege I am moreover indebted for the term "truth value'', 
which, however, I use in a different sense, since I denote by it not only 
truth and falsehood, as Frege does, but also all degrees of probability. 
The idea of using the rules of algebraic logic as foundations for the 
principles of the probability calculus was first suggested to me by the 
form of the formulae in the principal work on the probability calculus 
by the Polish mathematician Gosiewski.15) 

The ideas, as developed in the present paper, were for the first time 
outlined by me at Professor Meinong's philosophical seminar in Graz 
in the summer semester of 1909. I treated the same subject more compre
hensively in my lectures on probability theory which I gave in Lwow 
University in the winter semester of 1910/11. At the same time, the 
principal theses of my probability theory were presented in two public 
lectures at the meetings of the Polish Philosophical Society in Lwow, 
namely at the lOOth meeting, held on November 4, 1910, in honour 

14) Cf. Frege, Funktion und Begriff, Jena, 1891; Frege, Grundgesetze der Arithmetik, 
Jena, Vol. I, 1893, Vol. II, 1903; Peano, Formulaire mathematique, ed. -1902/3, Turin; 
Russell, The Principles of Mathematics, Cambridge, 1903. 

1')-Zasaqy rachunku prawdopodobienstwa (The principles of the probability calcu
lus), Warsaw, 1906. The introduction ·to this work, which was of particular in 
to me, was published earlier by the author as "O zasadach prawdopodobi 
(On the principles of probability) in the Polish philosophical journal Przegl 
zoficzny, Warsaw, ed. Dr. Weryho (cf. Vol. VII for 1904, p. 270). ~ 
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of Professor Twardowski, the founder of the Society, and at the lOlst 
meeting, held on November 12 of the same year.16

) 

This brief history of the emergence of the probability theory presented 
in this paper would not be complete if I di~_:ggt i,:ai_se !Wo issues. First, 
I wish to point to certain difficulties· inhe~e:qt in the concept of indefinite 
propositions as it is usually formulated by mathematical logicians, 
which for a long time disturbed my comprehending that concept, and, 
second, I should like to discuss two outstanding works which reveal 
tendencies similar to mine and which I came to know only at a later 
date. 

these critical analyses, which Will add more clarity to the problem 
of probability, will form the content of the following Sections. 

23. Russell's propositional functions 

Many authors, and Russell 17
) among them, divide those propositions 

which I call "indefinite" into two categories: sentences which contain 
a variable but are neither true nor false, for instance "x is a man", 
are called by Russell "propositional functions" and are not treated by 
him as propositions, since by "propositions" he means only true or 
false sentences. Accordingly Russell calls sentences which contain a 
variable but are true or false, for instance "x is a man implies that x 
is mortal'', "genuine propositions", and following Peano 18) he denotes 
the variables which they contain as "apparent variables" in opposition 
to "real variables", which occur in ·propositional functions. 

It might be supposed that it is purely a matter of terminology 
whether indefinite sentences which are neither true nor false be called 
propositions or propositional functions. Yet it is otherwise: Russell's 
terminology artificially divides entities which by their very nature belong 
to the same category. There is only a quantitative difference between 
propositional functions and propositions which contain apparent 
variables. Propositions with f!:Pparent variables yield true or false judge
ments for all values of their variables, whereas propositional functions 

1') A brief co=unique appeared in the philosophical periodical Ruch Filozoficzny, 
edited in Lw6w by Prof. Twardowski (cf. 1 (1911), p. 52). 

~-~~---~r" ef;-R:ttSsell,op.-eit..,-pp..-12.~1.3.and-Chap. VI!;· 
18) Cf. Peano, op. cit., p. 5. 
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are true only for some values of the variables and false for the .others. 
For instance, the proposition "x is not a prime number" yields, for 
x = 90, 91, .-.. , 96, 7 true and 0 false judgements; the propositional 
function "xis not divisible by 7" yields, for the same range of the values 
of the variables, 6 true and 1 false judgements. The difference between 
these two indefinite sentences finds its only expression in the ratios 7 

=ta1and..6-t0-1...Aftho:ngh it is true that sentences_with-apparent variables 
can take on only the limiting values 0 and 1 out of the whole range 
of all truth values, yet these limiting values do not differ essentially 
from the remaining truth- values. That is why I came to -the conclusion 
that no essential difference can be drawn between propositional functions 
and propositions with apparent variables, and I accordingly covered 
these two categories of sentences by one 9oncept, namely that of "indefi
nite proposition". Moreover, it seems to me that the terminology adopt
ed by Peano and Russell can easily prove misleading. The variable 
which is contained in true or false proposition cannot be called apparent; 
since it is as real, i.e., actual a variable, as those which occur in propo
sitional functions. There is no difference in the nature of the variables 
in the two cases. 

The sharp demarcation between propositional functions and propo
sitions perhaps contributed most to the fact that the idea of applying 
indefinite propositions to probability calculus could not develop easily. 
Probability is a property of propositions. But even now, after that idea 
has developed, the opposition to calling propositional functions, i.e., 
sentences which are neither true nor false, propositions or judgements 
and to treating them as probable does not easily vanish in view of its 
underlying venerable and widespread prejudice. 

Aristotle was the first to formulate the fateful assertion that all pro
positions must be either true or false. 19) He wanted thereby to charac
terize propositions as opposed to other kinds of sentences, which express 
requests, questions, and commands. 

0

He gave no other motive, much 
less proof of his assertion. But where there is no proof, there are also 
no counter-proofs, and thus the Aristotelian assertion has been uncriti
cally repeated until the present day, although formal logic since Aristotle 
has always demonstrated its theorems by means of indefinite propositions 

19) De interpretatione, c.4, 17 a 1-3. 
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such as "all Sare P", and has always considered the latter as judgements 
or propositions, although they can be neither true nor false. 

An end must be put to this prejudice once and for all. In order to 
characterize propositions as opposed .. to other· categories of sentences 
it is not necessary to squeeze them into two drawers, those of truth 
and falsehood, but it suffices to accept that which is self-evident and to 
admit that propositions are just sentences which predicate something 
about something and hence assert something, i.e., state that something 
is or is not, that it is so or not so. Hence the question: "is x a man?" 
cannot be a proposition since it does not assert ~~~· but the inde
finite proposition "x is a man" must be called a proposition in the same 
way as the definite judgement "Socrates is a man", because both sen
tences assert something. This not only leads to a better comprehension 
of probability, but also protects formal logic against inconsistencies. 

Russell could not overcome the Aristotelian prejudice. Perhaps that 
was why it was impossible for him, as for the other inspired founders 
and promoters of mathematical logic, to interpret probabilistic statements 
as indefinite propositions, in spite of the fact that most of them well 
knew the concept of indefinite proposition. 

24. Bolzano's concept of validity 

The Aristotelian prejudice also influenced an earlier author whose 
works have at present acquired great importance, as they well deserve, 
and who developed opinions. that come quite close to mine. 20

) In the 
second volume of his Wissenschaftslehre 21) Bolzano introduced a new 
logical concept, which he called the "validity" of a proposition. The 
starting point of his analysis is Aristotle's claim, quoted above, which 
Bolzano often repeated 22), that every sentence (i.e., every proposition) 
is either true, and then it is always true, or false, and then it is always 
false, unless, he adds, we change something in it, so that we have to 

20) For the reference to Balzano I am indebted to Professor Twardowski; although 
Bolzano's principal work was long known to me, I had previonsly paid no attention 
to his rema.rks on the concept of the "validity" of a sentence. 

21) Sulzbach, 1837, Vol. II, Sec. 147, p. 77 ff. 
:u.yff.-Jbfd;-;-Vol.-II,--Sec.-125,-p.-7,-and..Vol. T, Sec. 23, p. 93, Para. 2, where the 

well-known quotations from Aristotle, mentioned in foregoing sections, are cited. 
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consider not that proposition, but some other proposition in its place. 
For instance, we say that the proposition: "this flower smells nice" 
can be both true and false, according as "this" refers to a rose or to 
a stapelia (a. cactoid plant with fleshy leaves that smells of decayed 
meat). This, however, does not in the least contradict the principle 
formulated above, since here we no longer have to do with a single 

--preimsitiem-but-ha-ve-te-oo:as.ider two...essentially different IJfffj'Jesitiens · 
which are obtained by changing the idea denoted by the word "this". 
But when we, often without clearly realizing this fact, assume certain 
concepts in a proposition to be variable and then observe the relation;. 
ship between the proposition and truth, then, Bolzano says, it pays 
to take the pains of doing so with full consciousness and with the defi
nite purpose of acquiring the knowledge about the nature of a given 
sentence by observing its relationship to truth. 

Bolzano's consideration can best be explained by examples. If in 
the proposition "the man Caius is mortal" the idea "Caius" is treated 
as one that can be changed at will and replaced by ever new ideas, 
e.g., "Sempronius", "Titus'', "rose'', "triangle'', etc., then all the pro
positions obtained in this way are usually true, provided only that the 
subject of the proposition, and consequently the proposition itself, 
makes sense. But if the same idea is changed in the proposition "the 
man Caius is omniscient", only false propositions are obtained. Finally, 
from the proposition "the entity Caius is mortal", by changing the idea 
"Caius" we obtain propositions some of which are true, and some 
false, since in addition to mortal entities there are also immortal entities. 

The quantity of the true and the false propositions obtained by 
changing an idea in a given proposition can in certain cases be com
puted. For instance, if in the proposition "the ball marked by the number 
8 is among those which will be obtained in the next drawing" the idea 
8 be taken as changeable and replaced, consecutively, by integers from 
1 to 90, then under the assumption of the usual principles of a lottery 
(5 numbers are drawn out of 90 in each case) we obtain 5 true and 85 
false propositions. Now the ratio of the number of the true propositions 
obtainable from a given proposition by exchanging certain ideas, con
sidered changeable, with other ideas in accordance with a given rule, 
to the number of all propositions obtainable in this way, was called 
by Bolzano the "validity" of a proposition. The degree of validity is 
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represented by a fraction whose numerator is in the same ratio to its 
denominator as the number of the true propositions to the number of 
all propositions. Thus, for instance, the degree of validity of the 
proposition discussed above is 5

/ 90 = 1
/ 18 • 

It can be seen that Balzano defined the concept of validity of a pro
position :in a manner quite similar to that in which I have fornied the 
concept of truth value. There is, however, an essential difference between 
the two concepts: Bolzano's validity is a property of de.finite sentences 
or propositions, whereas truth values can be characteristic traits of 

______ ___.,_,· definite__p_m];2_ositions only. This prim~ diff~r@..£~,_ wliich is explained 
by the fact that Balzano did not know the concept of indefinite proposition 
and could not accept it as long as he was influenced by the Aristotelian 
prejudice, leads to numerous secondary differences. One of the most 
important is expressed by the following remark by Balzano: "It is self
evident that the validity of a sentence must depend on which ideas 
and how many are considered chanfoeable".23

) Balzano clarifies this 
remark by the example: if in the proposition: "this triangle has three 
sides" only the ~dea "this" is changed and changed so that the propo
sition always is meaningful, then we always obtain true propositions 
and the degree of validity of this proposition is 1. But if, along with the 
idea "this" also the idea "triangle", or instead of those two the idea 
"side", is taken as changeable, then the degree of vilidity of the propo
sition turns out to be quite different, since in addition to true propo
sitions we also obtain false ones. 

The difference pointed up by this remark, between· the concept of 
validity and that of truth value, is strongly borne out if we select examples 
constructed by analogy to those which I have used in the "theory of 
truth values". According to Balzano, the true definite proposition: 
"6-is diviS1ble by 3" (and likewise the false proposition: "5 is divisible 
by 3") must have a degree of validity of 2/ 6, if the term "6" (or "5") 
changes and is replaced by integers from 1 to 6 (of these numbers_ oi:ily 
two, namely 3 and 6, are divisible by 3). But the degree of validity of the 

23) Ibid, Vol. II, p. 81. A misprint seems to have crept into the text, which should 
read "mehrere" (many) instead of "wahre" (true). Bolzano, like Aristotle, considers 
truth and falsehood as exclusive properties of sentences, but not of ideas. (Cf. Vol. I, 

--~---...,· w;-5s,p-:-2J8):-(Trrtranslation;-Bolzano's--text has ·been corrected as suggested by 
Lukasiewicz. (Ed.)) 
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same true proposition "6 is divisible by 3" (and also of the false one: 
"6 is divisible by 5") is 4/ 6 if the term "3" (or "5") takes on the range 
of integers from 1 to 6 (since 6 is divisible by 1, 2, 3, 6). In my opinion, 
in all these cases the concept of truth value is not applicable, since truth 
values are attributes of indefinite propositions only. Consequently, 
it can only by asserted that in the former case the truth value of the 

-md~fin-ite-p-Fepes#ien ''xis dirisible_by 3" is 2 /6-->---amLin the latt€±' case 
the truth value of the indefinite proposition "6 is divisible by x" is 4

/ 6 , 

under the assumption that in both cases x stands only for integers from 
1 to 6. The two propositions are different from one another, and hence 
it is not smprising that they have different truth values. 

For all this, Bolzano's considerations so far are certainly free of 
error. Should it be possible to formulate and to solve problems occur
ring in the theory of truth values without the concept of variable and 
of indefinite proposition, then such a procedure would even have to be 
given methodological priority. Entia non sunt multiplicanda praeter 
necessitatem. It does seem to me, however, that in om case the formation 
of new logical concepts is advisable for many reasons. 

The concept of indefinite proposition, and with it the concept of log-
ical variable, play an important role not only in probability theory 
but also in logic in general. All the laws of formal logic are formulated 
and proved with the help of indefinite propositions. For instance, the 
law of the conversion of general negative propositions is: from the 
truth of the proposition "no A is B" follows the truth of the proposition 
"no B is A", and conversely. In these propositions occm the logical 
variables A and B, which may denote all possible objects; hence the 
propositions themselves are indefinite and can be neither true nor 
false, even though they have no :truth values, which can be calculated, 
since the ranges of the values of A and B are not strictly outlined. If the 
same law of conversion were to be formulated without using variables, 
we would have to select an example like this: "no man is an angel" 
and hence "no angel is a man'', and to add the following rule: if in 
these propositions "man" and "angel" are replaced by any other terms, 
then the propositions obtained in this way are always either both true 
or both false. It can thus be seen that it would be possible, though in 
a complicated form, to formulate logical laws without using variables, 
but I cannot conceive any way in which it would be possible to prove 
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such laws in a general way without variables. If we refuse to accept 
variables, then we always have to do with examples, and instead of 
constructing strictly deductive proofs we must be satisfied -with uncer
tain inductive generalizations. Mathematics has developed only when 
indefinite letters, that is variables, have been introduced instead of 
definite numbers, and the foundations of algebra have been laid in this 
way. It need not be mentioned that at present mathematics would :riot 
be possible without the concept of variable; but the concept of mathemat
ical variable falls under that of logical variable. Hence at least in mathe
matics it is impossible to do without the concept of variable and that 
of indefinite propositions (all mathematicarequatiOns, such as "2x+ 
+1 = x+2'', must be treated as indefinite propositions). Bolzano's 
procedure can be used as a striking testimony of the fact that the same 
is also valid in logic: without realizing the lack of consistency in his 
procedure, which he thus accepts, Balzano formulates all logical laws 
with the help of indefinite propositions, which he denotes sometimes 
by single letters A, B, C, ... , M, and sometimes by the words "A has b'', 
etc. 

If the concepts of variable and of indefinite proposition even for 
these reasons can be eliminated neither from logic nor from science 
in general, they prove even more necessary when it comes to the expla
nation of possibility and probability. In my opinion, the essence of pos
sibility cannot be grasped if it is not reduced to the concept of vari
able. Balzano failed to fathom the essence of possibility, although 
to explain that concept he chose the path which could have led him 
to his goal. According to rum, the existence of an object is called possible 
if it is not impossible. But an object A is impossible if the sentence 
"A does not exist" is a pure conceptual truth. For instance, we say 
that an almighty creature is impossible, since the sentence that there 
is no such being is a pure conceptual truth. On the other hand, it is 
possible that a man errs, since there is no conceptual truth which denies 
the existence of an erring man.24

) These are the most essential explana
tions to be found in Balzano concerning the concept of possibility. Had 
he advanced his analysis of this concept somewhat further, he would 
undoubtedly have come across the concepts of variable and of indefinite 

24) Ibid., Vol. II, Sec. 182, p. 230. 

LOGICAL FOUNDATIONS OF PROBABILTIY THEORY 57 

proposition. That the conceptual truth, e.g., "A does not exist" does 
not hold, can be asserted a priori, i.e., without recourse to facts or 
examples, only if the proposition "A exists", which contradicts the 
former, can be proved conceptually. But then the existence of the 
object A is not only possible, but also necessary. Hence if we want 
to define pure possibility, which would be confused neither with neces-

---sit-y-nor-with--aetttattty,-we-must assume that the second proposition, 
"A exists", is also not a conceptual truth. But it can never be proved 
a priori that out of the two contradictory propositions: "A exists" 
and "A does not exist" neither the former nor the latter is a.·coriceptiial 
truth; examples or cases must be found which show that among the 
objects falling under the concept A some verify the one proposition 
and some the other, If a person wants to prove, for instance, that neither 
of the two propositions: "man errs" and "man does not err" is a pure 
conceptual truth, he must find both human individuals who err and 
who do not. But then the existence of erring and non-erring men is not 
only possible, but also real. If we want to sort pure possibility out of 
that reality, we must select as the subject of such possibility not an mdi
vidual erring man, but any man, the man x. It is possible, and only 
possible, that "the man x errs", but it is neither necessary nor real, 
since there are erring and non-erring men. It is obvious that Bolzano's 
definition of the concept of possibility does not lose its validity, since 
if there are men who err then the sentence "there are no erring men" 
is certainly not conceptual truth. But in addition to Bolzano's negative 
condition other, positive, conditions are necessary too in order to ex
plain the.concept of pure possibility. These positive conditions consist 
in the acceptance of logical variables and the assumption that there are 
indefinite propositions, which need not be either true or false. 

What has been said concerning the concept of pure possibility is also 
valid for the concept of probability. Balzano sensed clearly that there 
is close relationship between the concept of the validity of a proposition 
and that of.probability. Since, however, the concepts of logical variable 
and of indefinite proposition were not known to him, he did not find 
the correct solution. Balzano defined the concept of -probability as 
follows: "We consider ... in a single proposition A or in several prop
ositions A, B, C, D, ... certain ideas i, j, ... as changeable, although 
always agreeing among the propositions A, B, C, D, ... then it is ex-

----·---------------------------·------~-... ~-----··,,·-- -~-----
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ceptionally important to establish the ratio of the number of those 
cases in which the propositions A, B, C, D, ... are all true to the number 
of those cases in which also another proposition lYf is true ... I take 
the liberty ... to call this ratio betwe~n the given numbers the compara
tive validity of the proposition M with respect to the propositions 
A, B, ~' D, ... , or the probability of the proposition M resulting from 
the assumptions A, B, C, D, ... " 25

) I shall try to explain this definition 
of probability by an example selected by myself, since Bolzano's defi
nition is not followed by an example. 

_______ .=..tho_ugh_llolzano denotes the chang_eabl~ . ig~as occurring in the 
propositions A, B, C, D, ... with the letters i,j, yet to be consistent 
he must mean by them not variables but only definite ideas, which are 
replaced by others in accordance with a certain rule. Let A and B stand 
for the following definite propositions: "18 is divisible by 2" and "18 is 
divisible by 3". The proposition M might be: "18 is divisible by 5". 
In all these propositions the idea "18" is treated as changeable, and 
we replace it in turn by two-digit integers. The comparative validity, 
or probability, of the proposition M with respect to the propositions A 
and B is 3/ 15 = 1/ 5, since out of 15 two-digit numbers for which the 
propositions A and B are true (they are the numbers of the arithmetical 
progression: 12, 18, 24, ... , 96), there are only three numbers, namely 
30, 60, 90, for which the proposition M is true too. 26

) In this way we 
come to the conclusion that the probability of a false proposition: 
"18 is divisible by 5" has the value 1/ 5• Obviously, under the same 
assumptions, if the number 18 is replaced by the number 10, the com
parative validity, or probability, of the true proposition: "10 is divis
ible by '5'', also is 3

/15 = 1
/5· 

The example I have selected and the problem resulting therefrom 
have sense when the definite numbers 18 or 10 are replaced by the var-

. iable x. Then the problem is: to find the relative truth value of the 
indefinite proposition "x is divisible by 5" with respect to the indefinite 
propositions: "xis divisible by 2" and "xis divisible by 3'', under the 
assumption that x ranges over all two-digit integers. This problem can 

2') Ibid., Vol. II, Sec. 161, p. 171 ff. 
-~------•""_As_._a'--r_es_ulc:ct_o;;_f_an;.:.. inexact formulation or just by mistake, in this quotation 

Balzano mentions in the jirStpfacetlia'fqiiantity which occurs in the denominator, 
and in the second that which occurs in the numerator. 
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be solved very easily on the basis of the explanations given in Section 10. 
But in Bolzano we obtain something nonsensical, not only because 
absolute probability is confused with relative probability, but also 
because propositions must be treated as probable which can never be 
probable, since they are either true or false. It might be objected that 
perhaps the examples I have chosen do not comply with Bolzano's 
xeasg.nffi.g-aacl-'mtentffi:a.&-Tu-this I can only answer that th€~se ~amples 
have been selected with the strictest consistency with Bolzano's analysis. 
He asserts that 1) all propositions must be either true or false; 2) the 
degree of validity of one and the same proposition varies· acqording 

. to which idea occurring in the proposition is treated as changeable. 
These two assertions are incompatible with the assumption of the 
existence of indefinite propositions. Copsequently, definite propositions 
must be treated as examples of probabilistic propositions. Moreover, 
I am convinced that Bolzano ·would have changed his mind in view 
of this consequence, if he had thought .of the examples I have given. 
In his further considerations he makes use of non self-evident judge
ments such as "Caius draws a black ball from the urn", as examples of 
probabilistic propositions, without noticing the error inherent in his 
reasoning from the very outset. 

Bolzano had sensed in the "validity" of a proposition an important 
concept and was moving toward the formulation of a new and original 
probability theory. But the force of the Aristotelian prejudice that every 
proposition must be either true or false nipped his ideas in the bud 
and resulted in an abortive concept which, not noticed by anyone 
before, can now claim only a historical importance. 

25. Grelling's probability theory 

More or less at the same time that I first presented my probability 
theory at the meetings of the Polish Philosophical Society in Lwow, 
the very interesting and· valuable paper by Kurt Grelling was published 
under the title Die philosophischen Grundlagen der Wahrscheinlich
keitsrechnung. 21) The author starts from the assumption that the logical 

27) Abhandlungen der Fries'schen Schute, New Series, Vol. III, Gottingen, 1912, 
pp. 439-478. Grelling's work appeared in the third part of that volume at the ~nd 
of 1910. 
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and philosophical foundations of probability theory as seen by philos
ophers and mathematicians are still controversial and obscure and 
endeavours to scrutinize the solutions of the problem obtained so far, 
especially those announced in recent decades in the German literature 
on the subject. For this purpose he selects three works which seem to 
him to exceed all others in importance: the works of von Kries and 
Stumpf, which I have quoted above, and A. Fick's Philosophischer 
Versuch uber die Wahrscheinlichkeiten. 28

) We must now focus our 
attention for a while on the last-named item. 

------~According to Fick, mathematical proba1Jili-!Y is _ _?, property of incom
pletely formulated hypothetical judgements: for instance, "when a coin 
falls upon a table, it turns heads up". Fick calls this sentence incom
plete, because in a complete and hence universally valid judgement 
the consequent would have to be: "it turns heads up or tails up'', or 
else the antecendent would have to be: "when a coin falls upon a table 
and its tail-side forms an angle of less than 90 degrees with the surface 
of the table". 

Grelling's comment on this presentation of Fick's fundamental idea 
is that Fick in fact by incompletely formulated hypothetical judge
ments means indefinite judgements, but since he did not have at his 
disposal the concepts of modern mathematical logic, which only later 
were formulated and examined mainly by Frege and Russell, his analy
ses are handicapped by a certain obscurity and helplessness. In Grel
ling's opinion, Aristotelian terminology is very poorly suited to de
scribe the concepts mentioned above. 

Without engaging in a discussion of whether Fick in fact did know 
the concept of indefinite proposition but was unable to formulate it 
clearly, or whether terminological helplessness was in his case combined 
with a lack of knowledge of concepts, I shall now outline Grelling's 
opinions. 

He recognizes with great clarity all the difficulties which mark both 
the objective and the subjective theory of probability. Grelling thinks 
that we could come to terms with the subjective interpretation if the on
ly point were to justify probabilistic propositions which are concerned 
with every-day life and in fact are usually nothing but expressions 

28) Wtirzburg, 1883. 
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of our defective knowledge. Yet the probabilistic propositions in science, 
for _instance in statistical mechanics, theory of games of chance, theory 
of mass phenomena, also require an explanation. They are propositions 
which have been well confirmed by experience so that objective validity 
must b.e their property. Yet the judgements of the calculus of proba
bility cannot be referred to objective definite events; hence they must 

-r0foF-te-oome-tBin-l';g-1i0;>1ls;t;e.___~ 

Grelling notices the resolution of this difficulty in the co:g.cept of 
indefinite judgement. He seems to understand by an indefinite judgement 
a sentence which contains a variable and is neither true nor false, for 
instance "x = 8". Sentences which contain variables but are either 
true or false, such- as "(x+l)2 = x +2x+I" are treated by Grelling 
as definite judgements. He presents the relationship which should hold 
between indefinite judgements and probabilistic propositions in a way 
which points to a lack of clarity of his basic idea. He states: "We may 
say that the state of things formulated in an indefinite judgement is 
certain if it can be confirmed, and is impossible if it can be denied. 
This is not far from saying that in all other cases it is more or less 
probable".29) Now, I find it difficult to understand how the state of 
things formulated in an indefinite judgement can be certain or 
impossible if it is assumed that indefinite judgements can be neither 
true nor false. 

That this obscure point is not due to stylistic clumsiness, but has 
deeper reasons, can be seen quite clearly from the way in which Grelling 
tries to define mathematical probability. We find the following formu
lation: "The question is about the probability of the in.definite judge
ment: 'If the assumption A is satisfied, then the event B occurs'. Let 
the following definite judgements be given: 'If A occurs, then there 
occurs one and only one of N equiprobable cases, among which there 
are n such that if one of them occurs, then B occurs, too'. Then n/N 
is the measure of the probability sought." 30

) 

In this definition it is, first, unclear to me why Grelling calls the 
former judgement indefinite and the latter definite. In the former occur 
two indefinite terms, A and B, but the same terms reappear in the latter 

29) Ibid., p. 454. 
"') Ibid., p. 4&3. 
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judgement, which is to be treated as definite. Now if A and Bare vari
ables in the first judgement, they must also be so in the second. Or is, 
perhaps, the second judgement to be interpreted like an identity which 
contains variables but must nevertheless be true? 

This obscure point is, however, far less important than the way in 
which Grelling defines the :measure of probability. Although he is correct 
in noticing that probabilistic judgements must be interpreted as indefi
nite judgements, and although he does not hesitate to treat as judge
ments those indefinite sentences which are neither true nor false, he 

-------=d-=o-=es~n'°'o'-'t--=-b:::rin=g his idea to a conclusion. He _r(!!fl!!!ns ignorant of the 
concept of truth value, a concept which in a :more penetrating analysis 
of indefinite propositions proves inevitable and which forms the natu
ral :measure of probability. Since Grelling does not possess that concept, 
he :must revert to the old, obscure concept of "equiprobable cases'', 
a concept that is ridden with difficulties. Finally, there is for him 
no other way out than to accept Kries's theory. 

* 
* * 

The history of the formation of those concepts which have served 
as the building :material of probability theory as presented in this paper 
is instructive and interesting. Two concepts are the comer-stones ·of 
that theory: the concept of indefinite proposition and that _of truth 
value. Both concepts had been known previously, but they have not 
always been interpreted clearly, and never associated with one another. 
Representatives of :modern· mathematical logic, such as Frege and 
Russell, knew the concept of indefinite proposition, even if they did not 
always treat it as a judgement; yet none of them has tried to apply . 
that concept to probabilistic propositions. Bolzano formulated the 
concept of validity, which corresponds to the concept of truth value, 
and used it in his own way, though not quite satisfactorily, to explain 
the concept of probability; but he did not know the concept of indefinite 
proposition. On the other hand, Grelling knew the last-named concept 
and applied it to probabilistic propositions, but the concept of truth 
value escaped his notice. It seems as if fate interfered enviously to pre-

-----~v~en=t~th=e~lif~tin~· g_oLth1~ _ __v.eiLofmystery. that surrounded the concept of 
probability. 
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Every correct scientific theory has its forerunners. It is only gradually 
that the human mind forces its way through to a clear comprehension 
of a difficult problem. The fact that the logical theory of probability 
also has its own forerunners, and such eminent ones at that, allows -
us to hope that the path toward the resolution of the problem of prob
ability has ultimately been found. 
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(In connection with Stanislaw Zaremba's Theoretical Arithmetic) 

I. Introduction.-2. Professor Zaremba's definition of magnitude.-3. On the formu
lation of the principles defining the formal properties of the relations "equal to", 

-------=''less-than~and--.::greatel'-tha.n:'..=d._Qn,_some-logical ... relationships between those 
principles.-5. On theorems "devoid ofcontent".-6. On the principle: "the inequal
ities A< Band B >A must hold simultaneously".-7. Other logical relationships 
between the properties defining the formal properties of the relations "equal to", 
"less than" and "greater than".-8. How the formal properties of those relationships 
are to be defined.-9. A criticism of Professor Zaremba's definition of magnitude.-
10. How the concept of magnitude is to be defined.-11. How to present the theory 
of magnitude to make it easily comprehensible and precise.-12. The importance 
and the tasks of contemporary formal logic. 

Stanislaw Zaremba, Professor of the Jagellonian University, has 
written a comprehensive work of 859 pages, entitled Arytmetyka teore
tyczna (Theoretical Arithmetic). His work, published in Cracow in 1912 
by the Academy of Learning, met with the fullest approval from mathema
ticians. 1) I have no doubt that approval is justified; as I am not 
a mathematician, I cannot appraise the book from the standpoint 
of mathematics and I rely completely on the opinion of the experts. 
But I can appraise that work from the standpoint of logic, the more 
so as some of the problems it raises are closely connected with logic. 

The author himself, when referring, on page XV, to advances in the
oretical arithmetic, says: "These advances consist partly in the intro-

1) Cf. the review by A. Hoborski, docent of the Jagellonian University, published 
in Wektor (Vector), Vol. III, No. 9, Warsaw, April 1914, pp. 418-431. 

*)First published in Przeglqd Filozoficzny 19(1916) as 0 poj~ciu wielkosci. It is 
included here in a largely abbreviated form, which retains only those parts which 
are of general theoretical importance. The sections concerned purely with the criticism 
of Zaremba's book have been left out as being now of merely historical interest for 
the Polish reader, who can read Zaremba's book in the Polish original. The table of 

~··------·Centents-that-follows··the··title of the article is quoted in full in order to give an idea 
about the full text. 
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duction of new concepts and new kinds of numbers, but the development · 
of theoretical arithmetic in recent times is primarily marked by the 
fact that certain quite elementary concepts that have existed in science 
for centuries have become well founded and interconnected in a way 
more satisfactory from the viewpoint of logic." 

I fully agree with the statement. In fact, both theoretical arithmetic 
and matli:ematics m general have recently gainetl-IIllICb:irrtogica:r--p-r-e-c1~------
sion. This logical improvement of mathematics is, in my opinion, to be 
ascribed first of all to the unprecedented development of formal logic. 
That development has been due t6 research by logicians who were 
also mathematicians. In 1854 Boole laid the foundations for the algebra 
of logic; he was followed by De Morgan, Peirce, and SchrOder, who 
improved that algebra and formulated the theory of relations; finally, 
in recent years Russell, Frege, and Peano and his school applied the 
algebra of logic to mathematics and improved it considerably. Owing 
to the work of these scientists, traditional formal logic, which has had 
practically no effect on contemporary research, has been replaced by 
a new logic that will undoubtedly become a powerful but subtle instru-
ment of cognition in all fields of knowledge. 

This new logic, which is ~ow :flourishing, is as yet very little known. 
Only some of its concepts, often distorted, are penetrating the circles 
of those scientists who are not professional logicians. Much time will 
be needed before these new logical concepts and methods overcome , 
all the obstacles of prejudice and become the property of all scientists. 
That is why I was not astonished when, in a book written by a learned 
professor of the Jagellonian University, I found none of the names 
mentioned above, but did find in many places opinions and methods 
which, from the standpoint of contemporary logic, are inexact or even 
erroneous. 

To justify my last statement I shall analyse critically in the present 
paper the definition of the concept of magnitude as formulated by 
Professor Zaremba, discuss some logical and methodological issues 
connected with that subject, and offer my own tentative definition of 
that concept. [ ... ] 

Logic tells us that every deductive theory, hence also theoretical 
arithmetic, includes two kinds of propositions: some, called principles, 



66 ON THE CONCEPT OF MAGNITUDE 

are assumed in a given theory without proof, while the others, called 
theorems, are proved on the strength of the principles. All the principles 
must be in agreement with· one another, and none may be a consequence 
of others; in other words, it may not be derivable from others. Should 
a principle be derivable from others, it could be proved on their basis, 
and as such would be not a principle, but a theorem. Every theorem 
is derivable either from all the principles taken together or from only 
some of them. It is always necessary to investigate most carefully which 
principles are necessary to the proof of a given theorem and which are 
not. It is also necessary to· investigate which lo_gicaJ: relations hold 
between the various theorems. For a loose set of propositions becomes 
a systematic scientific theory only when the logical relations between 
principles and theorems and· between one theorem and another are 
established. 

This interpretation of the essence of deductive theory, -as outlined 
above, results in a number of methodological rules, which are not 
explicitly formulated in logic, but which are observed in the construc
tion of logical theories. For instance, a combination of several propo
sitions, which do not result from one another, into a single principle 
is avoided, because the formulation of such "compound" principles 
prevents us from establishing ~xactly the logical relations holding 
between principles and theorems, since it may happen that a given 
theorem is derivable from only one part of a principle and is not deriv
able from the other parts ·of that principle. That is why each logical 
proposition should be formulated as. one principle in one grammatical 
sentence. [ ... ] 

When we speak about consequence in logic, we usually mean formal 
consequence. The expression: a proposition is "a formal consequence" 
of another proposition, is used to denote a certain relation which holds 
between indefinite propositions or propositional functions. These two 
terms are used with reference to propositions which contain some 
variables; for instance, "x is divisible by y" or "A is equal to B". 
Hence, if we want to examine whether certain definite propositions 
are, or are not, formal consequences of other propositions, we must first 
transform all these propositions into indefinite propositions, that 

~----~is,.-we-must~replase-defurite-terms-by-variables represented by cer
tain letters. 
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The indefinite proposition Z is a consequence of the indefinite propo
sitions P, R, S, : .. , if there exist no values of the variables contained 
in the propositions P, R, S, ... , Z which verify the propositions P, R 
s, ... , but do not verify the proposition z. In other words, all the values 
of the variables which verify the propositions P, R, S, ... , must also 
verify the proposition Z. For instance, the proposition "A is equal 
-te-~eonsequenee of the propositions·" 4 is equal to B" and "B is 
equal to C", for if we assume that the variables A, B, C range over 
the class of natural numbers, there are no values of these variables 
which verify the last two propositions without also verifying the first 
proposition, so that all the values of the variables A, B, C which verify 
the last two propositions also verify the first. 

The indefinite proposition .Z is not a consequence of the. propositions 
P, R, S, ... , if there do exist values of the variables contained in the 
propositions P, R, S, ... , Z which verify the propositions P, R, S, ... , 
but do not verify the proposition Z. For instance, the proposition 
"A is not equal to C" is not a consequence of the propositions "A is 
not equal to B" and "B is not equal to C'', for if we assume that the 
range of the variables A, B, C is the class of natural numbers, there 
exist values of these variables which verify the last two propositions 
without verifying the first, for instance A= 2, B = 3, C = 2. [ ... ] 

As we know, every deductive theory includes certain propositions 
which are accepted without proof; they are principles. Such propo
sitions must exist, because we cannot prove everything. With concepts 
it is the same as with propositions. Every deductive theory includes 
certain concepts which are adopted without definition; they are prim
itive concepts. Such concepts must exist, because we cannot define 
everything. We may formulate the following methodological rule, 
which.pertains to both principles and primitive concepts: the principles 
and: the primitive concepts of a given deductive theory should be se
lected so as td reduce their number as far as possible. In adopting this 
rule we are guided by two considerations: first, we want to have as few' 
unproved propositions and undefined concepts as possible, because 
we treg,t both as a malum necessarium. Secondly, the fewer primitive 
concepts and principles we need to present a deductive theory, the 
more fundamental are the concepts and principles we have chosen, 
and the simpler is the theory. [ ... ] 
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Both straight line segments and real numbers are called magnitudes. 
But there is one essential difference between these two kinds of magni
tudes, which is revealed in the fact that two different straight line seg
ments can be equal to one ::nother, whereas two different real numbers 
cannot be equal to one another. 

On the basis of this fact I make a distinction between those objects 
which only have magnitude, and those which are magnitudes. I say 
that objects belonging to a set are magnitudes if any two different, 
that is, not identical, ones among them cannot be equal to one another, 
but are not magnitudes and only have magni~u_t!t;: if two different ones 
among them can be equal to one another. 

Thus straight line segments are not magnitudes, but only have magni
tude, since two different straight line segments, e.g., two sides of a trian
gle, can be equal to one another. The magnitude which straight line 
segments have is called their "length". The lengths of straight line 
segments are magnitudes, because two different, that is, not identical, 
lengths cannot be equal to one another. Hence straight line segments 
which have dijferent lengths cannot be equal to one another. Likewise, 
real numbers are magnitudes, for . two different real numbers cannot 
be equal to one another. That is why there is a perfect correspondence 
between lengths of straight line segments and real numbers which does 
not exist between real numbers and straight line segments. 

The difference between objects which only have magnitude and those 
which are magnitudes is very common. A man is not a magnitude; but 
he has magnitude, for he has height, age, and body weight. The height 
of a man, his age, the weight of his body are magnitudes; this is why 
those properties can be expressed, whereas it is impossible to express 
man in terms of numbers.2) 

2) The. distinction between those objects which only have magnitude and those 
which are magnitudes occurred to me under the influence of a paper by B. Russell, 
L'idee d' ordre et la position absolue dans l' espace et le temps (Bibliotheque du Congres 

• international de Philosophie. ill. Logique et Histoire des Sciences. Paris, 1901, pp, 
241-277). Iu that paper Russell (on p. 242) makes a distinction between those series 
which are positions and those which have positions. It will soon be seen that 
the concept of magnitude is closely associated with those of series and order. 
I regret that at the time of writing the present paper I did not have at my disposal 

--------nusselI's prmclpal-WOflt:;-The··Prtnciplerof Mathematics, published in Cambridge 
in 1903. 

-------·---' 
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When we want to define the concept of magnitude, we have to take 
into account not objects which merely have magnitude, but objects 
which are magnitudes. [ ... ]In this Section I intend to present the results 
of my analysis in the fullest detail, by following the path of deduction 
from the final definition to its ultimate consequences, and I intend to 
present them in a way that is comprehensible even to those readers 

-Wno ao not grasp the precedii:ig par ts of my paper. 

1. Real numbers are typical magnitudes. These numbers form an 
ordered set, that is, form ::i. series, in which each number has its own 
unique and determined place. This is possible because of the three prop
erties characteristic of the relation "less than" in the domain of real 
numbers: 

First, if of any two real numbers, A and B, A is less than B, then B 
is not less than A; second, if of any three real numbers, A, B, and C, 
A is less than B and B is less than C, then A is less than C; third, if any 
two real numbers, A and B, are different from one another, then either 
A is less than B, or B less than A. 

These three properties are necessary, and also sufficient, for real 
numbers to form an ordered set. For let us assume that A, B, and C 
are any real numbers different from one.another. By the third property, 
either A is less than B, or B is less than A, and likewise either B is less 
than C, or C is less than B. Assume that A is less than B and B is less 
than C. By the first property, B is not less than A, nor is C less than B. 
Further, by the second property and the assumption that A is less than B 
and B is less than C, A is less than C and.thus C is not less .than A. 
Thus the relation "less than" connects the numbers A, B, C only in the 
direction from A to B, from B to C, and from A to C. Thus we can 
arrange these numbers in a series so that each of them bears the relation 
"less than" to every following one, but does not bear that relation to 
any preceding one. These conditions are satisfied only by the series: 
A-B-C, but they are not satisfied, for instance, by the series: B-C.A. 
Hence, with respect to the relation "less than", each number has a 
uniquely determined place in the series: A comes first, C comes last, 
and B comes between A· and C. Likewise, any other real number has 
some uniquely determined place in a series arranged on the basis of the 
relation "less than'', and all of them taken together form an ordered set. 
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Assume that A, B, C are any elements of a certain set. Every relation 
which has the property that if it holds between A and B then it does 
not hold in the opposite direction, between Band A, is called asymmetric. 
Every relation which has .the property that if it holds between A and B 
and B and C, then it holds between A and C, is called transitive. The 
relation "less than" is asymmetric and transitive. The third property 
has no special name of its own. *)It can only be said that any two different 
real numbers, A and B, must be connected by the relation "less than" 
in a definite direction, hence either, in the direction from A to B, or in 

·------'t-O.e-opp0site-dire_c_tion from B to A~_The_same-- three properties are 
characteristic of the relation "greater than", which, being converse 
to the relation "less than", co-exists with it in the opposite direction, 
so that real numbers, which· are ordered by the relation "less than"; 
are ordered in the opposite direction by the relation "greater than". 

2. By generalizing the foregoing considerations we may formulate 
the following definitions: 

If every two different elements of a set are connected in a definite 
direction by an asymmetric and transitive relation r, then the set is 
termed ordered. The elements of an ordered set are termed magnitudes. 

Thus the following principles are true for any magnitudes A, B, C 
that are members of a set: 

I. If A bears the relation r to B, then B does not bear the relation 
r to A. 

II. If A bears the relation r to B and B bears the relation r to C, then 
A bears ·the relation r to C. 

III. If A is different from B, then either A bears the relation r to B, 
or B bears the reiation r to A. 

3. All properties of the relation r expressed by these principles are 
necessary for a set to be ordered and for its elements to be magnitudes. 
This will be seen from the following considerations: 

Assume that the set of straight-line segments is given, and let the 
relation "less than" be represented by r. In the domain of straight-line 
segments, the relation ·"less than" satisfies the first two principles, 

*) This property ofreTations 'ii( denoted by . the terms "connexive" or "con
nected". The Polish term ("sp6jny") for this property was ~oined later. 
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but does not satisfy the third, for of two different straight-line segments 
one need not be less than the other, since they can be equal, as in the 
case of two sides of an equilateral triangle. Thus the set of straight-line 
segments is not ordered. In fact, the set of such segments also includes 
segments equal to one another, and equal segments cannot be arranged 
in a series so that each one has its uniquely determined place in the 
senes. If the elements A, B, C file equal to one another, then there is 
no reason that they should be arranged in the order "A-B-C" rather 
than "B-C-A". Likewise, brothers cannot be uniquely placed in series 
according to the relation of brotherhood, while they can be so arrmged 
on the basis of their age or height, if they differ in age and height. 

Since straight-line segments do not form an ordered set, they are not 
magnitudes. This may seem strange, and yet it is true, because straight 
line segments are not magnitudes, but only have magnitudes, in the 
same way as a man is not a magnitude, but only has a magnitude, be it 
age or height. The length of a straight-line segment is its :ri:ui.gnitude, 

,. and lengths are magnitudes, because of two different lengths one must 
be less than the other. Hence we must make a distinction between those 
objects which are magnitudes, and those objects which are not magni
tudes but have magnitudes. 

This shows that the first two properties of the relation r do not suffice 
for the elements of a set between wh,ich the relation r holds, to be 
magnitudes. Likewise, the last two properties do not suffice. This is 
proved by the following example drawn from the field of logic. 

Those propositions which contain only definite terms are called 
definite, as opposed to indefinite propositions, which contain variables. 
For instance, the proposition ."IO is divisible by 5" is definite, while 
the proposition "IO is divisible by x" is indefinite. Every definite prop
osition is either true or false. Assume that the set of definite proposi
tions is given, and let r stand for the relation of material consequence, 
defined as follows: the relation of material consequence holds between 
two definite propositions, A and B, when either A is false or B is true. 
Since every definite proposition is either true or false, the relation of 
material consequence holds between every two such propositions m 
some direction. For if A is false, then every definite proposition B 
follows from it; if A is true, then, too, from A follows B, if Bis true; 
and if B iS false, then again from B follows A. Thus the third principle 
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is satisfied. The second principle is satisfied as well, for if from A follows 
B and from B follows C, then from A follows C. On the other hand, 
the :first principle is not satisfied, for if A and B are both true or both 
false, then both from A follows B and from B follows A.· This 'is why 
the set of definite propositions is not ordered with respect to the relation 
of mat~rial consequence, and its elements are not magnitudes. 

It can also be demonstrated that the :first and third properties of the 
relation r do not suffice for a set to be ordered and for its elements to 
be magnitudes. Assume that the set of the following three months: "Janu-

-----~· ary;-May,-Septembe.F-is-given-,-and-let-r-stand-for ·the· relation: the 
fourth month following a given month. Since May is the fourth month 
following January, and Septell).ber is the fourth month following May, 
and January is the fourth month following September, then the third 
principle is satisfied under these assumptions. For let any of these 
months be symbolized by A or B: if A is other than B, then either the 
fo:urth month following A is B or the fourth month following Bis A . • 
The :first principle is satisfied too, for if B is the fourth month following 
A, then A cannot be the fourth month following B. On the other hand, 
the second principle is not satisfied, for if out of these three months B 
is the fourth month following A, and C is the fourth month following B, 
then C is not the fourth month following A. For instance, the relation r 
holds between January and May, and between May and September, 
but is does not hold between January and September, but conversely, 
it holds between September and January. That is why these three ele
ments cannot be ordered in a unique manner, because with respect 
to the relation r the series "January-May-September" and "May-Sep
tember-January" and "September-January-May" are equally possible. 
These elements form not an ordered series, but a cycle. Accordingly they 
may not be treated as magnitudes. 

This proves that all three properties of the relation r, formulated in 
principles-I, II and ill, are necessary for a set ~f elements to be 
ordered and for its elements to be magnitudes. It can also be seen 
that none of these principles follows from the remaining ones. 

4. If a set of elements satisfies all three principles defining the formal 
prop·erties-of-the-relation-r, then that relation, depending on certain 
other factual factors which are of no logical importan~e, may be called 
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either the relation "less than" or the relation "greater than". By using 
the former of these terms we may present the general principles I, II, 
and ill as principles pertaining to the relation "less than" and give 
them :first place in the theory of magnitude. 

For any magnitudes A, B, C, belonging to a set of magnitudes, the 
following principles are true: 

--Pl. I} A is less than B, then B is-not-kss-than-A. ··-----------

P2. If A is less than B and B is less than C, then A is less than C. 

P3. If A is different from B, then either A is less than l1 or B is less 
than A. 

These principles make it possible to formulate the following defi
nitions: 

Df. 1. "A is greater than B" means "Bis less.than A". 

Df. 2. "A is eq::al to B" means "A is not less than B and B is not less 
than A". 

The relation "greater than" is converse to the relation "less than". 
Thus these relations are two aspects of one and the same connection. 
This is revealed even in the symbolism used in mathematics. The expres
sion "A < B'', when read from left to right means "A is less than B'', 
and when read from right to left means "Bis greater than A". 

The relation of equality holds only b~tween identical magnitudes. 
This follows from Pl and P3. If A is less than B or Bis less than A, 
then A is different from B, for should A and B be identical, then, by 
~1 A would be both less and not less than itself. And if A is different 
from B, then, by P3, either A is less than B or ·B is less than A. Hence 
there is equivalence between the propositions '.'A is different from B" 
and "A is less than B or B is less than A". Likewise, there is equivalence 
between the negations of these propositions: "A is not different from B" 
or "A is identical with B'', and "A is not less than Band Bis.not less 
than A" or "A is equal to B". Thus the relation of equality may be inter
preted as the relation of identity. This is why we say that equal straight
line segments have the same. length and that people who are equal 
to one another in height. or age are of the same height or age. 

5. The above principles and definitions yield a number of theorems, 
the most important of which are listed below together with their proofs 
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and with explicit references to the principles and definitions on which 
they are based. 

The following theorems are true for any magnitudes A, B, and C, 
belonging to a certain set of magnitudes: 

Th. 1. If A is less than B, then B is greater than A. 

Th. 2. If A is greater than B, then B is less than A. 

These theorems follow immediately from Df. 1. 

Th. 3. If A is equal to B, then A is not less than B. 

This theorem follows immediately from Df. 2. 

Th. 4. If A is equal to B, then A is not greater than B. 

Proof: It follows from Df. 2 that if A is equal to B then B is not less 
than A. And from the proposition: B is not less than A, we obtain, 
by contraposition of Th. 2, the proposition: A is not greater than B. 

Th. 5. If A is less than B, then A is not greater than B. 

Proof: It follows from Pl that when A is less than B, then B is not 
less than A. And from the proposition: Bis not less than A, we obtain, 
by contraposition of Th. 2, the proposition: A is not greater than B. 

Theorems 3, 4, and 5, taken together, state that only one of the rela-
tionships: A is equal to B, A is less than B, A is greater than B, holds 
between any two magnitudes A and B. 

Th. 6. If A is not less than B and A is not greater than B, then A is 
equal to B. 

Proof: From the proposition: A is not greater than B, we obtain, 
by the contraposition of Th. 1 and with a simultaneous exchange of 
the l~tters A and B, the proposition: Bis not less than A. And from the 
propositions: A is not less than B, and B is not less than A, by Df. 2 
follows the proposition: A is equal to B. It must be borne in mind 
that all the propositions of the present theory, and hence all the prin
ciples, definitions, and theorems, are valid for any :qiagnitudes A, B, C,. 
and hence the letters contained in those propositions may be replaced 
by other letters, provided only that the places occupied by like letters 
must, after the replacement, also be occupied by like letters. 

Theorem 6 states that one of the relationships: A is equal to B, A is 
~----~ess_than..B,-Lis __ gr_e~ thi:m_n,_g~J:!!.qY§ liolds between any two magni

tudes A and B. 
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Th. 7. If A is not less than Band B is not less than C, then A is not 
less than C. . 

Proof: Suppose that with the assumptions: A is not less than B, and 
B is not less than C, the proposition: A is less than C, is true. Then 
one of the following propositions must hold: either C is less than B 
or C is not less than B. If C is less than B, then that proposition, togethe; 
with-t-he-sttppmiticm-ili-at-A-is-Iess than_C,_)delds, by P2, the propo
sition: A is less than B. But this proposition is in contradiction to the 
assumption that A is not less than B. Hence, if we suppose that A is 
less than C, we must assume that C is not less than B. But from the 
proposition: C is not less than B, and the assumption: B is not less 
.than C, taken together, it follows that Band C must be identical. For 
should they not be identical, but different from one another, then by 
P3 it would follow that either B is less than C or C is less than B. 
Hence, when assuming that A is less than C, we must assume that B 
is identical with C. But then the assumption: A is not less than B, is 
equivalent to the proposition: A is not less than C, and thus is in contra
diction to the supposition that A is less than C. Consequently, we must 
assume that if A is not less thari B and B is not less than C, then A is 
not less than C. 

Theorem 7 shows that not· only is the relation "less than" transitive, 
but that its negation, that is the relation "not less than", is transitive, 
toci. It is worth while noticing that this theorem is based on P2 and P3. 

Th. 8. A is equal to A. 

Proof: By substituting A for B in Pl we obtain: If A iS less than A, 
then A is not less than A. This is an example of a logical relationship 
in which a proposition implies its own negation. Hence the antecedent: 
A is less than A, must be false, for should it be true, then a contradiction 
would result, and the consequent: A is not less than A, must be true. 
Hence it follows, by the contraposition of Th. 2, that the proposition: 
A is not greater than A, must be true, too. By substituting in Th. 6 
A for B we obtain: If A is not less than A and A is not greater than A, 
then A is equal to A. Since the propositions which together form the 
antecedent in this conditional proposition are true, the consequent 
must be true too. Hence: A is equal to A. 

Every relation which has the property that it holds between any 
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element of a set and that element itself is called reflexive. Theorem 8 
states that_ the relation of equality is reflexive. · 

Th. 9. If A is equal to B, then Bis equal to A. 

Proof: By Df. 2 the proposition: A is equal to B, means: A is not 
Jess than Band Bis not less than A; .and the proposition: Bis equal 
to A, means: B is not less than A and A is not less than B. Both propo
sitions mean the same and one follows from the other. 

Every relation which has the property that when it holds between 
any two elements of a set, A and B, then it also holds in the opposite 

------direction-between-B--and-A-,is-called--symmetrie, -Theorem 9 states that 
the relation of equality is symmetric. 

Th. 10. If A is equal to B and B is equal to C, then A is equal to C. 

Proof: By Df. 2 this theorem can be expressed in the following words: 
If A is not less than B and B is not less than A, and B is not less than 
C and C is not less than B, then A is not less than C and C is not less 
than A. The consequent in this theorem consists of two propositions: · 
The.first: A is not less than C, follows by Th. 7 from the propositions: 
A is not less than B and B is not less than C, contained in the antecedent. 
The second: C is not less than A, follows in the same way by Th. 7 
from the propositions: C is not less than B and B is not less than A, 
contained in the antecedent. In this way Th. 10 is based on Th. 7, and 
hence also on P2 anci P3. 

Theorem 10 states that the relation of equality is transitive. Theorems 
8, 9, and 10 can also be proved in a shorter way, by making use of the 
proof included in Section 4, based on Pl and P3 and demonstrating 
that elements equal to one another are identical. 

Th. 11. If A is equal to B, and B is less than C, then A is less than C. 

Proof: If A is equal to B, then A is identical with B by Pl and P3. 
Hence the proposition: Bis less than C, implies the proposition: A is 
less than C. 

Th. 12. If A is less than B and B is equal to C, then A is less than C. 

Proof: If Bis equal to C, then Bis identical with C by P-1 and P3. 
Henee-the~proposition:- A .is less than B, implies the proposition: A is 
less than C. 
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Many other theorems could be proved in a similar way. It could be 
demonstrated, for instance, that both the relation "greater than" and 
its negation, that is, the relation "not greater than", are transitive. 
Likewise, we could prove theorems analogous to Th. 11 and Th. 12 
and differing from them only in that the word "greater" replaces the 
word "less". Those proofs, like all the preceding ones, except perhaps 
for_fae_pw.o.f-G.rn.....J.,..are qJJite easy. 

6. In this way the foregoing principles, definitions and theorems 
give rise to a deductive theory of magnitude. This theory combines 
in a logical whole all the laws defining the formal properties of the 
relations "equal to'', "less than", and "greater than", by deducing 
these laws from three simple principles and two definitions. Its logical 
significance is, accordingly, quite considerable. It turns out, for instance, 
that the proposition "two magnitudes, equal to a third one, are equal 
to one another", which so far has been considered as axiom, is a logical 
consequence of more general principles. This is so because that propo
sition is equivalent to Th. 10 or to the theorem: if A is equal to B and C 
is equal to B, then A is equal to C, which can easily be proved on the 
basis of Th. 9 and Th. 10. 

But the practical significance of this theory is quite considerable, 
too. If we want to make sure whether a set of elements is :J, set of magni
tudes, it suffices to examine whether there is a relation r which holds 
between· those elements and which is asymmetrical and transitive and 
such that it holds in a definite direction between any two elements 
of that set. Of course, in each particular case the relation r must be 
defined precisely so that we can see whether it in fact has the three 
properties specified above. We shall consider a number of. examples 
for that purpose. 

In the domain of natural numbers, the relation f' is the relation "less 
than" interpreted in the ordinary way. It is obviously asymmetrical and 
transitive, and it also has the third property, since of any two dif
ferent natural numbers one is always less than the other. This is why 
natural numbers form an ordered set, which we can call the series of 
natural numbers, and are magnitudes. 

In the domain of the lengths of straight-line segments, the relation 
r can be defined as that holding between a part and the whole. Assume 
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that a straight line is given, and let a point on that line be marked 0." 
On that line we measure the lengths of straight-line segments by making 
a given segment coincide with some part of the straight line to the right 
of the :fixed point 0. ·n is obvious that of two such different lengths 
one is always a part of the other, and that the relatio~ holding between 
a part and the whole is asymmetric and transitive. Hence, in view of 
the relation holding between a part and the whole, which may be called 
the relation "less than", the lengths of straight-line segments form an 
ordered set and are magnitudes. Since we assume that there is a perfect 
correspondence betw~en the lengths of straight-line segments and real 
numbers, real numbers also form an ordered set and are magnitudes. 

There are also sets of elements for which we can define several relations 
r satisfying the th.tee principles of the theory of magnitude. For instance, 
the set of proper fractions is an ordered set with respect to the relation 
"less than" defined in the ordinary way. In the domain of proper frac
tions that relation satisfies principles Pl, P2, and P3 and accounts for 
the fact that proper fractions are magnitudes. But set theory tells us that 
there is a perfect correspondence between the set of all proper fractions 
and the set of all natural numbers, so that all proper fractions can be 
numbered. When that is done, they are ordered on the basis of another 
relation, but one which satisfies principles Pl, P2, and P3 in the same 
way as does the relation "less than". Thus, proper fractions can also 
be magnitudes in a sense different from the usual. 

Finally, there are sets of elements for which we have not thus far 
succeeded in finding or defining any reiation r that satisfies principles 
Pl, P2, and P3, although we suspect that ruch a relation exists. We sup
pose, namely, that the infinite sets have magnitude as have the finite 
sets and that the "powers" of the infinite sets are magnitudes like finite 
ni:imbers. But we cannot prove this, because so far we have failed to 
demonstrate the existence of an appropriate relation r. By adopting 
tlie non-self-evident "postulate of choice" formulated by Zermelo, we 
can prove that all infinite sets can be "well ordered", and from that we 
could deduce the statement that their powers form an ordered set. 
Hence, if Zermelo's postulate is correct, then infinite sets have the 
nature of magnitudes, and their powers are magnitudes.3) Nevertheless I 

~------~·Gf.,-Artur-Seheenflies,-Entwtckelung-der Mengenlehre und ihrer Anwendungen, 
Leipzig and Berlin, 1913, Chap. ill and Chap. X. 
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think that the proofs of those theorems will be truly precise only when 
we can demonstrate that any two different powers of infinite sets are 
connected in a definite direction by an asymmetric and transitive relation 
r, that is, that the set of those powers satisfies all the principles of the 
theory of magnitude, as formulated in this paper. [ ... ] 

The way in which Professor Zaremba uses the term "convention" 
--I-consid-ertn-be not a li:ngt:tistic ell~lack-0f ..,erbal precision, 
which may result in grave ·1ogical errors. That term is very often en
countered on the pages of Professor Zaremba's book. For instance, when 
he adopts the phrase "quantitative comparability" in order·-tcrsimplify 
formulations, he says that he "adopts a convention". When referring 
to the principles defining the formal properties of the relations "equal 
to'', "less than", and "greater than", he says that "no logical necessity 
forces us to accept these principles unconditionally, but these principles 
have the nature of conventions adopted of free will but certainly not 
incidentaily". 

In view of the above we have to say that the term "convention" 
always means the mutual agreement.of at least two persons. The author 
who writes a book does not make an agreement with the reader, whom 
he does not meet and whom he does not know, but only expresses 
his ideas, of which the reader later takes cognizance and either approves 
or not. With whom then does the author majs:e an agreement? 

Further, it seems to me that in science only terminologicar isrues may 
be the subject of a convention. Scientists representing a given discipline, 
having met at a scientific conference, may agree that they will use a 
certain term or sign always with a given definite meaning. But no con
ference may adopt conventions as to which concepts or propositions 
are to be accepted and which are to be rejected. For in science we accept 
non.contradictory concepts and true propositions, and we reject contra
dictory concepts and false propositions. We also accept propositions 
about which we do not know whether they are true or false, but only 
if such propositions imply other propositions that help us to explain, 
foresee, or order certain facts. Now the contradictoriness and non.
contradictoriness of concepts, the truth and falsehood of propositions, 
and the following or non-following of s·ome propositions from. others 
do not depend on any conventions. That is why Professor Zaremba is 
inexact in his formulation when he says that the acceptance of the 
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principles that define the properties of the relations "equal to", "less 
than", and "greater than" is not forced upon us by any logical necessity, 
and that those principles have the nature of conventions. No principle 
can have .the nature of a convention, since_ none is __ a-ccepted on the 
strength of a convention. Two or more scientists can only agree that 
they "Will use a term to denote objects that have properties formulated 
as certain principles. For instance, they may agree to use the term 
"equality" to denote a relation which satisfies the principles that express 
the properties of reflexivity, symmetry, and transitivity. 

The fashion of using the term "convention", which has recently 
become widespread among mathematicians =perhaps under the 
influence of Poincare, a great mathematician, but not a logician - is 
not satisfactory for another reason as well. It leads to the view that 
mathematics is largely based on "conventions" and hence is conventional 
in nature. Such an oplnion is erroneous. This is why I think that it is 
better to avoid the term "convention" in mathematical works, or to 
use it only in such phrases as: "in accordance with the convention 
of such-and-such a scientific conference I use such-and-such a term 
in such-and-such a meaning."[ ... ] 

Contemporary formal logic, which is based on the algebra of propo
sitions and relations, is as· much superior to Aristotle's traditional 
logic as contemporary geometry is to Euclid's Elements. We may say 
without hesitation that today there is no form of reasoning in science 
that has not been analysed by contemporary logic, whereas traditional 
logic knew practically no forms of Teasoning other tha:q. direct reasoning 
based on the square of contradiction and syllogistic. For instance, the 
form of reasoning stating that if from a proposition follows its own 
contradition, then that proposition is false - which reasoning has been 
used above in the demonstration that every magnitude is equal to 
itself - was nqt known in traditional logic. That logic also did not 
know the ·concepts of indefinite proposition or propositional function, 
the concept of logical variable, and formal and material consequence. 
Today, owing to these new concepts and forms of reasoning, we can 
check and appraise all methods of reasoning and find errors where 
they could not be found by traditional lo~c. 

-------Moreo:vei:,~contemporary_JQgic _ formulates a number of methodol
ogical rules about which former logic knew nothing. We have become 
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acquainted with some of those rules, as far as they are concerned with 
deductive theories. We know that every such theory includes sorrie 
principles and theorems, that all the prinCiples ought to be in agreement 
with one another and ought not to follow from one another, that their 
number ought to be the least possible, and that it is to be mvestigated 
which principles yield given theorems and which do not yield them. 

-eanremporary logic says that-it dees not suffice to be satisfied with a 
proof of a theorem; it is also n((cessary to find out all the logical relation
ships which hold between that theorem and the principles and even 
betWeen various theorems. Former logic did not formulatesm:h-·ruies 
because, not knowing the concepts of indefinite proposition and logical 
variable, it could not even state what it means for a proposition not 
to be a formal consequence of another proposition. 

If we realize all this, we can easily understand why present-day logic 
exceeds former logic in its requirements of scientific precision. Mathe
m~tics, which so far has been considered the most precise discipline, 
turns out to be full of defects and errors when gauged by this new 
standard of precision. And if mathematics cannot pass the test, what 
shall we say about other disciplines, which always have been less precise 
and less perfect than mathematics? What a fine target for logical criti
cism are such natural sciences as physics and chemistry, astronomy and 
crystallography. How much more imprecision must be inherent in those 
natural sciences which do not make use of mathematics, such as biology 
or geology. And how can contemporary philology, psychology, sociology 
and philosophy defend themselves against precise logical criticism? 

Contemporary logic is faced with great and important tasks: to 
subject all scientific theories to criticism from the point of view of the 
new standard of logical precision, and to systematize those theories 
in . accordance with the new methodological rules. The implementation 
of these tasks seems to me to be exceptionally important mainly for three 
reasons. 

Firstly, it will facilitate the understanding of scientific theories; Because 
of the lack of logical precision, many scientific theorems have been 
obscure and not properly understood even by experts in a given disci
pline. We easily grasp any idea which is formulated precisely, even 
if it is false. It is equally clear to us that the proposition "two times 
two makes four" is true and that the proposition "two tinies two makes 
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five" is false. But if a scientific theorem is formulated without adequate 
precision, then along with truth it always includes an .admixture of 
falsehood. We do not realize the existence of that falsehood if a given 
theo:rem is accepted in that discipline, for we think that .it is true in 
toto. And nothing is so obscure and difficult to understand as a propo
sition which includes falsehood and in which we want by all means 
to see only truth. For centuries differential calculus was inaccessible 
even to very gifted minds. When the stuqent complained about the dif
ficulties he encountered in the study of that calculus, he was answered 
in the words of d'Alembert: "Allez, Monsieu,r,_ajle~, et la foi vous 
viendra." A person can' beconie accustomed to inexact theorems and 
beco.me used to them as something known, but he cannot understand 
them. Today we know what· errors and inexactitudes underlay the 
foundations of differential calculus, and no one now believes in the 
existence of differentials as infinitesimally small quantities. 

Secondly, compliance with these logical requirements will facilitate 
the remembering of scientific theories. The results of contemporary 
science are extremely rich. Although we accumulate them and list 
them in textbooks and encyclopaedias, scientific theories seem to be 
loose collections of propositions rather than systematized wholes. 
They . are only scientific data which increase every day with terrifying 
speed, and which even today, even within the scope of a single discipline, 
cannot be grasped by the human mind and memory. If all the propo
sitions combining to form a scientific theory are arranged according 
to the logical relationships between them, and if at the head of those 
propositions we place a few simple principles, of which the other prop
ositions are consequences, a clear and coherent whole will be formed, 
which can more easily be grasped by memory than the loose collections 
of propositions in today's textbooks. This is so because we remember 
better a well constructed poem than a loose series of words, and we 
remember better a tune than the chaos of loose sounds. It is easier, 
I think, to remember that magnitudes are elements of an ordered set 
than to learn Professor Zaremba's definition of magnitude and to 
assimilate eight logically unanalysed principles joined to that definition. 

Thirdly, the carrying out of these logical tasks will help to 
------di-stingrrisfr,in-sr:ientific-theories, between· those things which are really 

important and subordinate details. If a proposition contains other pro-

~-------------------·----··--·-· 
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positions as its consequences, then it is more important than those 
consequences. In science, a law of nature is more important than singu-
lar propositions about facts which are subsumed under that law. It is 
more important because whoever knows the law can deduce the con-
sequences and knows more than he who knows only detailed facts. 
Hence, whoever has assimilated the principles of a scientific theory 
knowrpoteill:Larry-llie wlio~ory. -'Fhe--affangement ~u""ff'-t1thf;,e>Tip:r;ro'\ip'-o>=-----
sitions belonging to a theory according to logical relationships between 
them and a study of such relationships will show which propositions 
ought to be adopted as principles, and which as theorems;·a.na-will 
also permit one to judge which theorems have more consequences 
than the others. In this way, the role of each proposition in a given 
scientific theory is strictly defined. It turns out then that the number 
of scientific laws' which really deserve to be known is small in every 
discipline, and the rest are subordinate details which proliferate in 
science, merely covering it with weeds. Science must be cleared ·of such 
weeds, so that they should not stifle great scientific truths arid great 
creative ideas developed by brilliant minds. 

My desire is that in every discipline there should be scientists versed 
in contemporary formal logic, for they can most effectively improve 
the discipline in which they work in accordance with the requirements 
of logic. And above all, my desire is that such scientists be found in 
our nation. Science in the hands of man is a weapon not only against 
elemental forces, but also against man. Nations struggle. with other 
nations for existence. The nation which is better equipped with the 
power of science has a greater chance of victory. To strive to improve 
and systematize science and thus to facilitate its assimilation means to 
work not only for the progress of human knowledge, but also for the 
good of one's own nation. 
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DELIVERED IN THE WARSAW UNIVERSITY LECTURE HALL 

ON MARCH 7, 1918 

In this farewell lecture I wish to offer a synthesis of my research, 
based on autobiographical confessions. I wish to describe the emotional 
background agamsfwliich my views have-developed. 

I have declared a spiritual war upon all coercion that restricts man's 
free creative activity. 

There are two kinds of coercion. One of them is physical, which 
occurs either as an external force that fetters the freedom of movement, 
or as inner impotence that incapacitates all action. 

We can free ourselves from that coercion. By straining our muscles · 
we can break the fetters, and by exertiii.g our will we can overcome 
the inertia of the body. And when all measures fail, there is still death 
as the great liberator. 

The other kind of coercion is logical. We must accept self-evident 
principles and the theorems resulting therefrom. That coercion is much 
stronger than the physical; there is no hope for liberation. No physical 
or intellectual force can overcome the principles of logic and mathe~ 
ma tics. 

That coercion originated with the rise of Aristotelian logic and Eu
clidean geometry. The concept was born of science as a system of prin
ciples and theorems connected by logical relationships. The concept 
came from Greece and has reigned supreme. The universe was con
ceived after the pattern of a scientific system: all events and phenomena 
are interconnected by causal links and follow from one another as theo
rems in a scientific theory. All that exists is subject to necessary laws. 

In the universe conceived in this way there is no place for a creative 
act resulting not from a law but from a spontaneous impulse. Impulses, 
too, are subject to laws, originate from necessity, and could be fore

-------:seen-by-an-emniscient.being .. Before I came into this world, my actions 
had been predetermined in the minutest details. 
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This idea pervaded even practical life. It turned out that action sub
ject to laws, both natural and social, am.d hence orderly and purposive, 
is always effective. If the whole nation can become a mechanism whose 
structure reproduces the scientific system, it gains such enormous 
strength that it can strive to become the master of the worid. 

The creative mind revolts against this concept of science, the 
universe;--and-life. A brave indffldual, conscious of-his value, does 
not want to be just a link in the chain of cause and effect, but wants him
self to affect the course of events. 

This has always been the background of the opposition --between 
science and art. But artists are remote from scientific issues and do not 
feel logical coercion. And what does a scientist to do? 

He has two paths to choose from: either to submerge himself in 
scepticism and abandon research, or to .come to grips with the concept 
of science based on Aristotelian logic. 

I ·have chosen that second path. Slowly and gradually I hav.e come 
to realize the final objective of the campaign I am conducting now. 
Yet even all my previous works also unconsciously served the same 
purpose. 

In my striving to transform. the concept of science. based on Aristo
telian logic I had to forge weapons stronger than that logic. It was 
symbolic logic that became such a weapon for me. 

I examined the great philosophical systems, proclaiming the universal 
causality of phenomena, in the light of that logic. I made sure that 
all of them, Krurt's criticism not excluded, fall into nothingness when 
subjected to logical criticism. They become a collection of loose ideas, 
sometimes brilliant, but devoid of scientific value. They are no threat 
to freedom at all. 

The empirical sciences arrive at general laws by inductive reasoning. 
I examined the logical structure of inductive conclusions. I started 
from the research done by Jevons and Sigwart and strove to demon
strate that indu9tion is a reductive ·reasoning that seeks reasons for 
given consequences. Such a reasoning never yields reliable results, 
but only yields hypotheses. Thus here, too, logical coercion ceases to 
work. 

The laws and theories of natural science, by being hypotheses, are 
not reproductions of facts, but creative products of human thought. 
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They should be compared not to a photograph, but to a picture painted 
by an artist. The same landscape can be interpreted in different ways 
in works by different artists; by analogy, different theories may serve 
to explail! the same pl:ienomena .. In this I saw for the first time a proxi
mity between scientific and artistic work. 

Logical coercion is most strongly manifested in a priori sciences. 
Here the contest was to the strongest. In 1910 I published a book on 
the principle of contradiction in Aristotle's work, in which I strove to 
demonstrate that that principle is not so self-evident as it is believed to 
be. Even then I strove to construct non-Aristotelian logic, but in vain. 

Now I believe to have succeeded in this.-My-pathwas indicated to 
me by antinomies, which prove that there is a gap in Aristotle's logic. 
Filling that gap led me to a transformation of the traditional principles 
of logic. 

4 

Examination of that issue was the subject-matter of my last lectures. 
I have proved that in addition to true and false propositions there are 
possible propositions, to which objective possibility corresponds as 
a third in addition to being and non-being. 

This gave rise to a system of three-valued logic, which I worked out -
in detail last summer. That system is as coherent and self-consistent 
as Aristotle's logic, and is much richer in laws and formulae. 

That new logic, by introducing the concept of objective possibility, 
destroys the former concept of science, based on necessity. Possible 
phenomena have no causes, although they themselve~ can be the be
ginning of a causal sequence. An act of a creative individual can be 
free and at the same fact affect the course of the world. · 

The possibility of constructing different logical systems shows that 
logic is not restricted to reproduction of facts but is a free product 
of man, like a work of art, Logical coercion vanishes at its very source. 

Such was my research, its emotional background, and the objective 
by which it was guided. 

And now I have to lay my work aside for some time and to subject 
myself to coercion l!Ild to observe laws and regulations and even become 
their guardian. I shall not be free, although I decided that of my own 
will. But when I feel free again, I shall revert to .science. I shall revert 
·to-:it-arrd-shall-perhaps-face-you- or your successors to continue that 
idt:al struggle for the liberation of the human spirit. 

----·-·---··-··--·--··-····-----

ON THREE-VALUED LOGIC*) 

Aristotelian logic, by assumiiig that every proposition is either true 
or false, distinguishes only two kinds of logical values, truth and 
falsehood. If truth is symbolized by 1, falsehood by 0, identity by 
=, ~nd implication by <, we can deduce all the laws of Aristotelian 
logic from the following principles. and definitions: 

I. The principles of the identity of falsehood, identity of truth, and 
non-identity of truth and falsehood: (0 = 0) = l, (I = 1) = 1, (0 = 1) 
= (1=0)=0. 

IL The principles of implication: (0 < 0) = (0 < I)= (1 ~ 1) = 1, 
(1 < 0) = 0. 

III. The definitions of negation, addition and multiplication: 
a'= (a < 0), a+b ;==[(a < b) < b], ab= (a' +b')'. 

Iri these definitions, a and b are variables which may take on only 
two values, 0 or 1. All logical laws, expressed by means of variables, 
can be verified by the substitution of 0 and 1 for the letters; e.g., 
(a= 1) = a is true, for (0 = 1) = 0 and (1 = 1) = 1. 

Three-valued logic is a system of non-Aristotelian logic, since it 
assumes that in addition to true and false propositions there also are 
propositions that are neither true nor false, and hence, that there exists 
a third logical value. That third logical value may be interpreted as 
"possibility" and may be symbolized by l ** If we want to formulate 
a system of three-valued logic, we have to supplement the principles 
concerning 0 and 1 by the principles concerning l This can be done 
in various ways; the system adopted by the present author in the pres
ent stage of research, and which deviates least from "two-valued" 
logic, is as follows: 

*) First published as "O logice tr6jwartosciowej" in Ruch Fi/ozoficzny 5 (1920), 
pp. 170-171. 

**) In this paper Lukasiewicz used the symbol "2" to denote a third logical 
value; in his later papers he always used the symbol "i" in that sense. 
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I. The principles of identity: CO=!)= (i- = 0) =Cl = t) = Ci-= 1) 

= t, Ct = i) = I. 
II. The principles of implication: (0 < t) = Ct < 1) = Ct < t) = 1, 

Ct < O) = Cl < t) = l . 
The. principles specified above concerning 0 and I, and the defini

tions of negation, addition and multiplication remain· the same in three
valued logic, with the only difference that the variables a ·and b may 
take on three values, 0, 1, and t. 

. The laws of three-valued logic differ partly from those of two-valued 
logic. Some laws of Aristotelian logic are only "possible" in three
valued logic, for instance, the principle of the--;yii;;gr;;;:-1; the ordinary 
formulation: Ca < b)Cb < c) < Ca < c) {but the principle of the 
syllogism in the formulation: Ca < b) <[Cb < c) < (a < c)] is true], 
the principle of contradiction aa' = 0, the principle of the excluded 
middle a+a' = 1, etc. Some laws of two-valued logic are false in three
valued logic, among them the law: Ca = a') = 0, since for a = t the 
sentence a = a' is true. This accounts for the fact that in three-valued 
logic there are no antinomies. 

The present author is of the opinion that three-valued logic has above 
all theoretical importance as an endeavour to construct a system of 
non-Aristotelian logic. Whether that new system of logic has any prac
tical importance will be seen only when logical phenomena, especially 
those in the deductive sciences, are thoroughly examined, and when 
the consequences of the indeterministic philosophy, which is the meta
physical substratum of the new logic, can be compared with empir
ical data. 

TWO-VALUED LOGIC*) 

The text that follows is an excerpt from a more comprehensive work -
on three-valued logic, which I am preparing for publication. I intend 
here to interpret two-valued logic in such a way that three-valued 
logic will prove a natural extension of it. -

The present paper is a listing of truths and opinions already known. 
Let me mention briefly from which authors I have drawn most. The 
concepts of "truth'', "falsehood'', and "assertion" I owe to Frege. 
In adding "rejection" to "assertion" I have followed Brentano. The 
idea of deducing logical laws from the principles pertaining to _O and 1 
I have drawn from Schroder. For practical reasons I have adopted 
the symbolism developed by Boole and Schroder, as simplified by 
Couturat; from the symbolism used by Peano and Russell I have only 
taken the use of dots after the symbol of assertion or rejection and after 
quantifiers. The term and the symbols for "quantifiers" are due to Peirce. 
In accepting only apparent variables I have followed Professor Lesniewski. 

The principles of three-valued logic have been summarized by me 
in a report published in Ruch Filozoficzny 5'(1920), p. 170. 

Contents 

1. Truth and falsehood.~2. Two-valued Iogic.-3. Assertion and rejection.--4. Cor
rect and erroneous procedure.-5. Abstention and indifferent procedure.-6. The 
principles of implication.-7. Logical variables and quantifiers.-8. An example of 
an expression containing a variable.-9. Dual interpretation of logical variables.
IO. The laws of implication.-11. Definitions.-12. Negation.-13. Addition.-14. 
Multiplication.-15. Equivalence.-16. Verbal rules.-17. Examples of deducing 
principles from definitions.-18. The principles oflogical operations and equivalence.-
19. The meaning of the quantifiers.__:___20. Theorems and laws.-21. Examples of veri
fication oflaws.-22. An axiomatic system of two-valued logic.-23. The list of axioms 
arid definitions of two-valued logic.-24. The most important laws of two-valued logic. 

*)First published as "Logika dwuwartosciowa" in Przeglqd Filozoficzny 13(1921), 
pp. 189-205. 
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1. Truth and falsehood 

These terms are not defined; and by truth I mean not a true propo
sition, but the object denoted by a ·true proposition, and by falsehood 
I mean not a false proposition, but the object denoted by a false prop
osition. I say that "2 times 2 is 4" is a truth, because the proposition 
"2 times 2 is 4" denotes the same object as does the term "truth'', in the 
same way as 2 times 2 is four, because the expression "2 times 2" de
notes the same object as does the term "four". 

_______ __,_~ifferent true propositions, for instance "2 JiJ:n:~s '.2 is 4" anq 
"Warsaw lies on the Vistula" differ only by their contents, but they 
denote the same object, that is truth, in the same way as the expres
sions ''2 times 2" and "3 plus l" differ only by their contents, but 
denote the same object, that is the number 4. All true propositions 
denote one and the same object, namely truth, and all false propo
sitions denote one and the same object, namely falsehood. I consider 
truth and falsehood to be singular objects in the same sense as the 
number 2 or 4 is. There are as many different names of the one and 
only truth as there are true propositions, and as many different names 
of the one and only falsehood as there are false propositions. Ontolo
gically, truth has its analogue in being, and· falsehood, in non-being. 

The objects denoted by propositions are called logical values. Truth 
is the positive, and falsehood is the negative logical value. Truth is 
represented by 1, falsehood-by 0. These symbols are also read as propo
sitions "truth is", "falsehood is". 

">. 2. Two--valued logic 

By logic I mean the science of logical values. Conceived in this way, 
logic has its own subject-matter of research, with which no other disci-
pline is concerned. Logic is not a science of propositions, since that 
belongs to grammar; it is not a science of judgements or convictions, 
since that belongs to psychology; it is not a science of contents ex
pressed by propositions, since that, according to the content involved, is 
the concern of the various detailed disciplines; it is not a science of 

-------"-tJ· bjeets--in-genei;al:',since . .that .belongs to ontology. Logic is the science 
of objects of a specific kind, namely a science of logical values. 

--1 
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All systems of logic known so far, both Aristotelian logic and Stoic 
logic, both traditional formal logic and modern symbolic logic, have 
been based on the principle that every proposition is either true or 
false. That principle, which has served so far as the foundation of all 
logic, will be called the principle of bivalence, and the logic which 
assumes that there are two and only two logical values will be called 

·---twe-value·t1-· .,..---------- --- ------·- ·-----·-------------

3. Assertion and rejection 

I do not define these terms, and by assertion and rejection I mean 
the ways of behaviour with respect to the logical values, the ways known 
to everyone from his own experience. I wish to assert truth and only 
truth, and to reject falsehood and only falsehood. The words "I assert" 
are denoted by U, and the words "I reject" by N. I consider the sen
tences: 

U:l, N: 0, . 
which are read: "I assert truth" and ''I reject falsehood'', respectively, 
to be the fundamental principles of two-valued logic, although I do not 
quote them anywhe~e. These propositions are also read: "I assert that 
truth is" and "I reject that falsehood is". 

. When I say and write: "I assert that something is" and "I reject that 
something is" I mean that I assert or reject the object denoted by the 
that-clause, that is, that I assert or reject some logical value. Likewise, 
when saying or writing "I assert the proposition p" or "I reject the 
proposition r" I mean that I assert or reject the object denoted by 
the proposition p or the proposition r. I assert that the proposition 
"truth is" denotes truth, and the proposition "falsehood is" denotes 
falsehood. 

4. Correct and erroneous procedure 

Although I wish to assert truth and only truth and to reject falsehood 
and only falsehood, it may nevertheless happen that as a result of 
ignorance or carelessness I may assert falseb.09d or reject truth. Then 
I commit an error. I say tiytt I proceed correctly when I assert truth 

• 
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or reject falsehood, and that I proceed erroneously when I assert false
hood or reject truth. An error is, obviously, something different from 
a falsehood. 
If before an expression denoting truth, that is, before a true propo

sition or the symbol I, I write U to indicate that I assert the object denoted 
by that expression, then I proceed correctly. I also proceed correctly 
if I write N before an expression which denotes falsehood. Should I 
write N: in the former case or U in the latter, I would proceed erro
neously. 

_______ .LLL-:tlie__present paper I write U and N _9_nJyJ>i<f 9re symbolic expres
sions, that is expressions consisting exclusively of symbols, and not of 
words. 

5. Abstention and indifferent procedure 

If I do not know whether something is a truth or a falsehood, I usually 
neither assert nor reject it, but abstain. This is the third way of pro
ceeding with respect to the lcrgical values. For instance I do not know 
whether "the beginning of Cicero's work De jato will. be found some
time" or-"the beginning of Cicero's work De jato will never be found". 

,. I "cannot write U or N before either of these two propositions, because 
neither proposition is asserted or rejected by me. By proceeding in this 
way I do not commit an error, but neither do I proceed correctly. I say 
that in such cases I proceed indifferently. 

I also assume that I would proceed indifferently by asserting or re
jecting something which is not any logical value at all. 

Abstention resulting from ignorance has no logical, objective, justi
fication, but is justified only psychologically, subjectively. For that 
reason this third way of proceeding with respect to the logical values 
has no significance in logic. 

6. The principles of implication 

The relation of implication is one of the 16 relations which can be 
distinguished in analysing the relationships between truth and falsehood. 

-------'Fha:t-relatic:m+symbolize.-by.-<- and-read- "implies", and an expression 
of the form "p < r" I read: "p implies r" Qi" "ifp is, then r is". I do not 

-------·--,--·---··----
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define the relation of implication, but I assume that it satisfies the 
following principles: 

Z1 U: 0 < 0, 
Z2 U: 0 < 1, 
Z3 N: 1<0, 
Z4 U: 1 < 1. 

These expressions are read, respectively: "I assert that falsehood 
implies falsehood", "I assert that falsehood implies truth", "I reject 
that truth implies falsehood", "I assert that truth implies truth". They 
are also read: "I assert that if falsehood is, then falsehood is", "I assert 
that if falsehood is, then truth is", "I reject that if truth is, then falsehood 
is", "I assert that if truth ·is, then truth is". 

I do not prove the principles of implication; they are in agreement 
with the meaning which in logic is ascribed to what is called the relation 
of material implication. 

7. Logical variables and quantifiers 

I introduce the symbols p, r, s, which I call variables, and which 
range over the logical values. Thus they are variables which may stand 
for any logical value, but only for a logical value. Such variables are 
called logical variables. In two-valued logic, logical variables range 
over two objects only, truth and falsehood_. The symbols for these 
objects, 0 and 1, are the values of the logical variables and may replace 
them. In contradistinction to the variables, the symbols 0 and 1 are 
called logical constants. 

Further, I introduce two kinds of other symbols, consisting of the 

Greek letters [J or 2 and the subscripts p, r, ors, for instance, [JP, 2 P. 
These symbols are called quantifiers, [JP being the universal, and };P 
the existential quantifier. [JP is read: "for any p", and };Pis read: "for 

some p". For the time being I make no use of the existential quantifier. 
A quantifier is inseparably connected with the expression that con

tains the variable indicated by the subscript. I place a quantifier before 
every expression that contains a variable. When a variable is replaced 
by one of its values, the quantifier is omitted. For the sake of brevity 

'"·"L•--=--~'-"·•-=--~---•-•••""'·~---··..C~-.. ,•L-<-.:.._-~""--•••~~-~---·~·~-~'--'<..~,~~~·~~~L~·~--~~--·~~~-'-'~···-·•L•"""'"' ~ .............. ~.......__,..,.,... ........ ~ 

I 



94 TWO-VALUED LOGIC 

I write flpr instead of flPfl,, which is read "for any p andr", and in

stead of flpfl,fl. I writeflp,., which is read "for any p, rands". 
In contemporary logic the variables preceded by quantifiers are 

called apparent variables. I make use of apparent variables only. 

8. An example of an expression containing a variable 

An example will best show the meaning of the symbolic expressions 
containing variables preceded by universal quantifiers. I formulate 

~-----__:the_PJ:Q~~~os~i~ti~o~n~:~~~~~~----
T3 U: flP ·p <p. 

This proposition is read: "I .assert that for any p, p implies p"; I also 

read it: "I assert that for any p, if p is, then p is". fl P followed by a dot 
pertains to the entire expression that comes after it. Since p may stand 
for any logical value, but only for a logical value, hence the sentence T3 
means the same as "every logical value implies itself". Hence falsehood 
implies falsehood and truth implies truth, in agreement with the princi
ples of implication, accepted above: 

U: 0 < 0, 

U: 1 <I. 

If we compare these principles with the proposition T 3, we see that 
they are obtained from T3 by replacing the variable p by its logical 
values 0 and I. The principles Z1 and Z4 are thus contained in the prop
osition T3, and the proposition T3 is based on them as their general
ization. 

One of the important functions of the logical variables and quanti
fiers is that they make it possibi~ to generalize principles. 

9. Dual interpretation of logical variables 

I have defined the logical variables as symbols which range over the 
logical values. In two-valued logic there are only two logical values, 
which are the objects truth ~c! _ _f~s_eg99d,. F;tlsehood is symbolized 
by 0 and truth by 1, so that the logical variables can take on only two 
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values, O and I. This is the first interpretation of the logical variables, 
which I term objective. However, a second interpretation is al::ro possible, 
which I term propositional. According to the latter, the logical variables 
can take on not two, but infinitely many values, all of which are propo
sitions. The latter interpretation is based on the former. 

I have assumed that all true propositions denote one and the same . 
----object~ly tr utlr, a.ad all false propositi0u~t~~a:anH<d'1-"tL±h""~'------

same object, namely falsehood. Hence every true proposition, for 
instance, "2 times 2 is 4", is a name of truth, which is only more compli-
cated than the symbol 1, and every false proposition, for instance, 
"2 times 2 is 5", is a name of falsehood, which is only more complicated 
than the symbol 0. 

In the objective interpretation I do not consider different names 
of truth (and the same applies to falsehood) to be different values of 
the variable, in the same way as I do not consider "2 X 2" and "3+ 1" 
to be two different roots of the equation x-4 = 0. But in the propo
sitional interpretation I do consider different names "of truth (and the 
same applies to falsehood) to be different values of the variable, and 
hence they are infinitely many, although each of them denotes one 
of the two objects over which the variable ranges. Such an interpreta
tion does not change the logical value of the theorems thus interpreted, 
since that .;alue depends on the objects denoted by those names, and 
not on the names themselves. 

In the objective interpretation the proposition: 

T 3 U: flp·p <p 

states that every logical value implies itself, and in the propositional 
interpretation, that every proposition implies itself. 

10. The laws ·of implication 

The following three laws of implication are based on the principles 

of implication: 

U: nP·O <p, 

U: np·p <I, 

U: np ·p <p. 
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The first law states: "I assert that, for any p, falsehood implies p"; 
the second states: "I assert that, for any p, p implies truth". The first 
law generalizes the principles Z1 and Z2 , while the second generalizes 
Zi and Z4. The third law has been discussed previously; it generalizes 
the principles Z1 and Z4 and expresses the reflexivity of the relation of 
implication. 

In the propositional interpretation, the laws T1 and T2 may be ex
pressed thus: "falsehood implies any proposition" and "truth is implied 
by any proposition". 

Thus, since "2 times 2 is 5" is a falsehQ_Qd, hence _"if 2 times 2 is 5, 
then London lies on the Thames" and "if 2 times 2 is 5, then Paris lies 
on the Thames", etc., are truths. And since "2 times 2 is 4" is a truth 
hence "if London lies on the Thames, then 2 times 2 is 4" and "if Pari~ 
lies on the Thames, then 2 times 2 is 4", etc., are truths. 

Any two laws of implication, together with the principle Z3 , can, 
in an axiomatic _presentation of the principles of two-valued -logic, 
replace the principles Z1 to Z4 • 

11. Definitions 

I use the principles of implication, logical variables, and universal 
quantifiers to define certain logical operations and relations. At the 
beginning of every definition, after the symbol of assertion; I place the 
universal quantifier, which pertains to the entire definition, after it 
I write the expression to be defined. Next I place the symbol =, which I 
read "means the same as", and finally on the other side of the symbol = 
I place the defining expression, which in addition to variables contains 
either symbols already known, such as Q -and <, or symbols defined 
previously. I adopt the following four definitions: 

D1 U: [JP ·p' =: (p < 0), 

*D2 U: IJpr ·p+r = (p' < r), 

D3 U: IJpr ·pr= (p'+r')', 

D4 U: [JP,· (p = r) = (p < r)(r <p). 

-------'.I'hese-ru-e---the--de:finitions of negation, logical sum, logical product, 
and equivalence. 
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12. Negation 

The first definition defines the expression p', which I term the nega
tion of p and read "not-:P" or "p is not". The definition states: "I assert 
that, for any p, 'not-p' means the same as 'p implies falsehood'"; or: -
"I assert that, for any p, 'p is not' means the same as 'if p is, then 

-fal:sehaad-:fs=:-1'he-icie2t-eentained in this deii:nitio~i~p-.......+is~u~o<+'t'"-' ----
is a truth if and only if it is truth that p implies falsehood. Now 
p implies falsehood if and only if p is a falsehood. Hence we may 
say that "p is not" means the same as ''p is a falseho-od". · With 
such an interpretation the definition agrees with the intuitive mean-
ing of the word "not" and with Sigwart's and Bergson's views on 
negation. 

The operation transforming the expression p into its negation by 
adding the apostrophe or the word "not" i~ also called denying. Denying, 
as opposed to other logical operations, is an operation of one argument, 
which means that one expression suffices for the performance of 
negation. If p is a proposition, for instance, "Peter is honest'', then p' 
means: "Peter is not honest". The propositions p and p' are con
tradictory. 

13. Addition 

The second definition defines the expression p+r, which I term log
ical sum and read "p or r" or else ''pis or r is". This definition states: 
"I assert that, for any p and r, 'p or r' means the same as 'not-p implies r'"; 
or "I assert that, for any p and r, 'p is or r is' means the same as 'if p 
is not, then r is'". This definition; especially in the second verbal formu
lation, is in agreement with the intuitive meaning of the word "or". 
Let it be added that, in conformity with the usage adopted in contem
porary symbolic logic, I interpret the word "or" in its non-exclusive 
meaning, that is, when I say "p or r" I do not mean that p excludes r. 

The operation which connects two symbols p and r by the symbol+ 
or the word "or" is termed addition. If p and r are propositions, for 
instance, "Peter is honest" and "Paul is honest'', then the sum p+r 
means: "Peter is honest or Paul is honest". 

----------~·-----·---- ·------------------~-----~---~-- .. -~-------·~·-----
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14. Multiplication 

The third definition defines the expression pr, which is termed logical 
product, and is read ''p and r" or "p is and r is". This definition contains 
the expression (p'+r')' ,which, if read literally, would be clumsy: "not
(notf or not-r)" or "(pis not or r is not) is not". On the strength of 
the explanation of negation I say instead: "it is a falsehood that not-p 
or not ~r" and "it is a falsehood that p is not or r is not". Thus this de
finition states: "I assert that, for any p and r, 'p and r' means the same 

_____________ .a.s'iLis_a_fa.Is_ehruid that not-p or not-r'"; or_ "I asser:t: _ tliii,t, for any p 
and r, 'p is and r is' means the same as 'it is a falsehood that p is not 
or r is not'". This definition, especially in its second verbal formulation, 
is in agreement with the intuitive meaning of the word "and". 

The operation which connects two symbols p and r by their simple 
juxtaposition or. by the word "and" is termed multiplication. If p and r 
are propositions, for instance, "Peter is honest" and "Paul is hone.st", 
then pr means: "Peter is honest and Paul is honest". 

15. Equivalence 

The fourth definition defines the expression p = r, which denotes 
the relation of equivalence, and which is read ''p is equivalent to r". 
The simplest way of formulating this definition verbally is: "I assert 
that, for any p and r, 'p is equivalent to r' means the same as 'p implies r 
and r implies p'". Hence equivalence is bilateral implication. This de
finition, too, is in agreement with the intuitive meaning of equivalence 
and with the opinions prevailing in logic. 

Equivalence is often interpreted as identity. The principles of equiv
alence, which I deduce below from the definition of equivalence, 
show that no objection is to be raised against such an interpretation. 

16. Verbal rules 

From the definitions I deduce, by inference, the principles of nega
tion, addition, multiplication, and equivalence. In deducing principles_ 

~--------c-f:rem--definitfons,-and-later-in-verifying . .laws on the strength of princi
ples, I make use of certain rules which I cannot formulate in symbols. 
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Accordingly, I term them verbal rules. I adopt four such verbal rules; 
the first two are needed for deducing principles from definitions, the 
fourth for verifying laws, and the third in both cases. These rules are 
as follows: 

(a) I assert any expression which is obtained from an asserted expres
sion containing variables with universal quantifiers by the replacement 
of tlrevariaolesDy"fl'feValues(Jorl:-----·-- -----------

(b) I assert any expression .which means the same as some asserted 
expression; I reject any expression which means the same. as some 
rejected expression. 

(c) I assert any expression which becomes an asserted expression on 
the substitution of the symbol 1 for an asserted expression or the sym
bol 0 for a rejected expression; I rej~ct any expression which becomes 
a rejected expression upon such substitutions. 

( d) I assert -any expression containing variables with universal quan
tifiers which yields on:Iy asserted expressions on the replacement of 
the variables by the values 0 and 1. 

I consider all these rules to be obvious. 

17. Examples of deducing principles from definitions 

Example 1 : The expression 

np ·p' = (p < o) 

is asserted on the strength of Definition D1 ; hence on the strength of 
the verbal rule (a) I assert the expression obtained from D1 by the 
replacement of the variable p by the value 0: 

U : O' = (0 < 0). 

Thus O' means the same as (0 < 0). The expression (0 < 0) is asserted 
on the strength of principle Z1 ; hence, on the strength of the verbal 
rule (b), I assert O'. In this way I obtain the principle of negation: 

Zs U: 0'. 

Example 2: The expression 

npr ·p+r = (p' < r) 

is asserted on the strength of Definition *D2 ; hence, on the s 
CXl 
o; -·0 

...... ... ~ 

""tJ " 'f Ftt osQ~' 
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of the verbal rule (a), I assert the expression obtained from *D2 by the 
replacement of the variables p and r by the value 0: 

. U: p+o = (O' < 0). 

In the expression (O' < 0) I substitute 1 for the asserted O'; I may 
do so, because I assert truth and only truth, unless I commit an error. 
The expression (O' < 0) by the substitution of 1 for O' becomes the 
rejected expression (1 < 0). Hence, on the strength of the verbal rule (c) 
I reject (O' < 0). Thus the expression o+o means the same as a certain 
rejected expression, and accordingly I reject it on the strength of the 

--------eroaJ.rule(bT.:tn--tlri:s-way-I-obtain--the-principle-ofaddition: 

N: o+o. 
The examples suffice to explain how I have inferred from definitions 

the principles listed below. 

Zs 
z6 

18. The principles of logical operations and equivalence 

The principles of negation: 

The principles of addition: 

U: O', 
N: 1'. 

Zi N: o+o, 
Zs U: 0+1, 
Z9 U: l+O, 
Z10 U: l+L 

The principles of multiplication: 

Z11 N: 00, 
Z12 N: 01, 
Z13 N: 10, 
Z14 U: 11. 

The· principles of equivalence: 

Z1s U: 0 = 0, 
Z16 N: 0=1, 

------Zr·~----·------ --N: 1 = 0, 
Z13 U: 1 = I. 

11: 1, 
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I assert the negation of falsehood and I reject the negation of truth, 
which means that I assert that falsehood is not, and I reject that truth 
is not . 

I assert the sum when at least one of its elements is a truth, and I re
ject it only when every element of it is a falsehood. 

I reject the product when at least one its factor is a falsehood, and I 
~-"-------~ 

assert it only when every factor of it is a truth. 

I assert the equivalence of falsehood to falsehood and truth to truth, 
and I reject the equivalence of falsehood to truth and truth to falsehood. 

19. The meaning of quantifiers 

The universal quantifier is closely connected with multiplication, and 
the existential, with addition. When I place before an expression that 

contains the variable p, the universal quantifier JJP, I underst~nd that 
in that expression I have to replace the variable p by the values 0 and 1 
and to multiply the expressions obtained in this way. When I place 
before an expression that c9ntains the variable p, the existential quan

tifier };P, I understand that in that expression I have to replace the 
varia.Qle p by the values 0 and 1 and to add the expressions obtained 
in this way. I proceed in an analogous way with expressions containing 
mote variables. Thus all the expressions containing variables with 
quantifiers could be defined as products or sums containing only logical 
constants, for instance: 

U: [JIP ·p <p] = (0 < 0)(1<1), 

U: [fl pr ·p < (r < p)] 

= [O < (0< O)][O < (1 < 0)][1 < (0 < 1)][1 < (1 < 1)], 

U: (};P ·pp')= 00'+11', etc. 

Since on the strength of the principles of multiplication I assert the 
product only if each of its factors is a truth, hence it is obvious that I 
assert the expressions preceded by universal quantifiers if and only 
if I assert all the expressions obtained from them by the replacement 
of the variables by the values 0 and 1. The foregoing sentence contains 
the verbal rules (a) and (d). 
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20. Theorems and laws 

I term theorems those propositions, other than principles, which I 
can deduce from principles by means of the -verbal rules. I divide the 
theorems of two-valued logic into theorems of the first kind, which 
do not contain variables, e.g.: 

U: (0 = 1) = 0, 

and theorems of the second kind, which contain variables with quan
tifiers, e.g. : 

-~~--..~~~~~~~~~~~ 

U: flP·p <p. 

Among the theorems of the second kind I consider those in which 
the syffibol of assertion is followed by the universal quantifier to be 
particularly important arid term them laws. The laws generalize either 
principles or theorems of the first kind, and in the propositional inter
pretation of the variables they present the principles of reasoning. 

Three such laws, generalizations of the principles of implication, were 
quoted in Section 10. The most important laws are listed in the last 

Section. 
One of the merits of the logical system as presented in this paper 

is the ease of proving theorems. Theorems of the first kind are deduced 
from principles by means \)f the verbal rule (c). The proving of laws 
consists in verifying them. To verify a law it suffices to demonstrate 
that, in accordance with the verbal rule (d), the law yields only 
asserted expressions when the variables are replaced by the values 0 
and 1. This procedure is explained by the examples given below. 

21. Examples of verification of laws 

Example 1: Verify the law: 

Ts U: flP·(p= l)=p. 

I verify it by demonstrating that, in accordance with the verbal rule ( d), 
the law yields only asserted expressions when the variable p is replaced 
by the values 0 and 1, namely: 

~-~--(i-J1~------U-:--{O-=l)-= 0, 

(2) u: (1 = 1) = 1. 

. I 
l 
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After 0 is substituted for (0 = 1), expression (1) yields the asserted 
expression 0 = 0, and, after 1 is substituted for (1 = 1), expression (2) 
yields the asserted expression 1 = 1. Thus both (1) and (2) must be 
asserted on the strength of the verbal rule (c). The law has been veri
fied. 

Example 2: Verify-the law: 

It turns out that, after the values 0 and 1 are substituted for the 
variables p and r, thiS law yields asserted expressions oiily, nariiely:" 

(1) U: 0 < (0 < 0), 

(2) U: 0 < (1 < 0), 

(3) U: 1 < (0 < 1), 

(4) U: I < (1 <I): 

When 1 is substituted for (0 < 0), expression (1) yields the asserted 
expression 0 < 1; the substitution of 0 for (1 < O) in expression (2) 
yields the asserted expression 0 < O; the substitution of 1 for (0 < 1) 
and (1 < 1) in expressions (3) and (4), respectively, yields the asserted 
expression 1 < 1. The law has been verified. 

With some practice such verifications can be performed automati
cally. 

22. An axiomatic system of two-valued logic 

I base all the theorems of two-valued logic on the principles Z1 to Z18 

and the verbal rules (c) and (d). Hence, to construct an axiomatic 
system of that logic it suffices to give a set of axioms from which the 
principles Zito Z1s can be deduced. 

I construct such a system out of three axioms, namely the laws of 
implicatiun Ti and T 2 and the principle of implication Z3 , quoted 
in Section 10. To these axioms I join the definitions of negation, sum, 
product and equivalence, as well as the verbal rules (a), (b) and (c). 
The previous sections have provided proofs that all the principles 
can be deduced from the whole consisting of these axioms, definitions, 
and verbal rules. 
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23. The list of axioms and definitions of two-valued logic 

In view of three-valued logic, instead of the definition of logical 
sum *D2 , giye'n in Section U, I adopt the following definition in the 
list below: 

U: llpr ·p+r = [(p < r) < r]. 

This definition states: "I assert that, for any p and r, 'p is or r is' 
means the same as 'if p implies r, then r is'". This definition is less 
simple and obvious than *D2 , but it results in the sa_l'.11:~£!1-nciples of 
addition. Since p' means the same as (p < 0), Definition *D2 can also 
be formulated as follows: 

*D2 U: llpr · p+r = [(p < 0) < r]. 

The difference between *D2 and Dza thus consists only in the replace
ment of the symbol 0 in *D2 by the variable r in D2a. The expressions 
[(p < 0) < r] and [(p < r) < r] are equivalent in two-valued logic: 

U: llpr · [(p < O) < r] = [(p < r) < r]. 

When r is 0, both expressions become [(p < 0) < O], and when r 
is 1, both are true. 

Here is the list of axioms and definitions: 

T1 U: llp·O <p, 

Tz U: np·p<l, 

Z3 N: 1 < 0, 

D1 U: np. p' = (p < o). 
Dz., U: npr ·p+r = [(p < r) < r], 

D3 U: npr -. pr= (p~ +r')', 

D4 U: npr. (p = r) = (p < r)(r <p). 

24. The most important laws of two-valued logic 

Out of the unlimited number of logical laws I specify here 40 which 
~-----cfoF--va:ri0us-reas0ns-seem--t0-me-important. -Every -law is accompanied 

with a short explanation. The asterisks which mark some laws are con-
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nected with three-valued logic: one asterisk means that the expression 
which follows the symbol of assertion is not true in three-valued logic, 
but is not false either; two asterisks mean that the expression which 
follows the symbol of assertion is false in three-valued logic. 

T1 U: IT p • 0 < p. 

T2 -- ~-'-P---<-t~-

These are the already known laws of implication; I have chosen T 1 an_d 
T2 as axioms, and T3 states that the relation of implication is reflexive. 

T4 is the law of identity, if equivalence is interpreted as identity. This 
law also states that the relation of equivalence is reflexive. 

In L'Algebre de la logique Couturat calls the law T5 the principle 
of assertion. The proposition "p = l", i.e., "p is equivalent to truth" 
I read briefly ''p is a truth"; likewise, the proposition ''p = O", i.e., 
''p is equivalent to falsehood" I read briefly "p is a falsehood". T 5 

states that the proposition ''p is a truth" is, for any p, equivalent to 
the proposition ''p is". 

u: n p • (p = o) = p'. 

T 6 states that the proposition ''p is a falsehood" is, for any p, equiv
alent to the proposition ''p is not". On the strength of this law p' might 
be defined by (p = 0) . 

U: ilP ·p" = p. 

By T7 , the expressions "not-(not-p)" and "p" are equivalent for any p. 
This is the law of double negation. 

U: llp·pp'=O. 

U: llp ·p+p' = 1. 

*T8 is the law of contradiction, and *T9 , the law of the excluded 
middle. Since aprnduct is a falsehood only if at least one of its factors 
is a falsehood, and the sum is a truth only if at least one of its elements 
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is a truth, it follows from these laws that of two contradictory propo
sitions one is fal:>e *T 8 , and that of two contradictory propositions 
one is true *T 9 • 

**T10 u = n p • (p = p') =; o. 
For any p, the equivalence of the contradictory propositions p and 

p' is a falsehood. If the equivalence of contradictory propositions is 
called absurdity, it may be said that **T10 states the falsehood of ab
surdity. 

If a proposition 1s implied by its own negation, then it is true. This is 
. a form of apagogic proof V ailati has written a monograph on the history 
of this form of reasoning {cf. article CXV_in Scritti di G. Vailati, Leip
zig-Florence, 1911). 

U: np·p+p=p. 

U: IIP ·pp =p. 

T11 and T13 are the laws of tautology. The expressions "p or p" and 
''p and p" are, for any p, equivalent to ''p". 

Ti4 U: IT pr· p+r = r+p. 

Tis U: npr ·pr= rp. 

Ti6 U: IT pr· (p = r) = (r = p). 

T14 is the law of commutativity of addition, T15js the law of commu
tativity of multiplication, and T16 states that the relation 'Of equivalence 
is symmetrical. Symmetry of relations corresponds to commutativity 
of operations. 

U: ITprs ·p(r+s) =pr+ps. 

Ti7 is the law of distributivity. 

Tis U: IT pr· (p+r)' = p'r'. 

Ti9 U: ITpr ·(pr)'= p'+r'. 

These are De Morgan's laws. By Tm the negation of a sum is equiv
~-----"""'a:Ienttotlie proatrcrofi:b:e-negated-·elements, ··and by T19 , the negation 

of a product is equivalent to the sum of the negated factors. 
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U: npr ·pr <p. 

U: npr ·p <p+r. 
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T20 and T21 are called the laws of simplification. A product may be 
simplified in the consequent by deducing from it any factor as a conse
quence, and a sum may be simplified in the antecedent by deducing 
itkom..any_elemeILt_as a reasqn. 

U: nvrs · (p < s)(r < s) = (p+r < s). 

U: nprs · (s < p)(s < r) = (s <pr). 

Tz2 and T23 are called the laws of combination. The proposition ''p 
implies s and r implies s" is, for any p, r and s, equivalent to the propo
sition ''p or r implies s", and the proposition "s implies p and s implies r" 
is, for any p, rands, equivalent to the proposition "s implies p and r". 

U: flpr·P < (r <p). 

T24 is a law of implication that has no special name. Its content 
resembles Axiom T2 • 

Tzs U: flpr · (p < r)' < (r <p). 

_ T25 states that, for any p and r, if p does not imply r, then r implies p. 
On the strength of this law the relation of implication might be termed 
anti-asymmetric, that is such that its negation is an asymmetric relation. 

U: npr · (p < r) = (p =pr). 

u: n pr . (p < r) = (pr' = 0). 

T26 and *T21 give the methods of transforming implication into 
equivalence. The latter method was known even to Chrysippus (cf. 
Cicero, be Fata 15, and Diog. Laert. VII 73). 

*T2s U: flpr · (p < r)=p'+r. 

The proposition "if p is, then r is" is, for any p and r, equivalent 
to the proposition ''pis not orris". By *T28 the relation of implication 
could be defined in terms of sum and negation. 

U: flpr ·'(p < r) = (r' <p'). 

u: nprs. (pr< s) =(rs' <p'). 
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These are the laws of transposition for two and three propositions. 
By T29 the proposition "if p is, then r is" is, for any p and r, equivalent 
to the propo~ition "if r is not, thenp is not". *T30 becomes T29 following 
the substitution of 1 for r and of r for s. *T30 serves a.S the foundation 
of what is termed reductio syllogismi, i.e., the form of reasoning which 
traditional logi.e used in reducing the mo_ods Baroco and Bocardo to 
the mood Barbara. · 

*T31 U: flprs ·(pr< s) = [p < (r < s)]. 

---*L2~-----"'U~:_[]_Li11, • (p < r) = [p < 1.e.._Q)L __ _ 

*T31 is called the law of importation ·and exportation. I export p when 
-I reason: if p and r imply s, then, if p is, r implies s. I import p when I 
reason in the reverse· direction: if, if p is, r implies s, then p and r imply s. 
*T32 is a special case of *T3i. from which it is obtained by the substi
tution of p for r and oir for s. 

U: flprs · (p < r)(r < s) < (p < s). 

U: flprs · (p < r) < [(r < s) < (p < s)]. 

*T33 is the law of the syllogism: it is true, for any p, rands, that if p 
implies r and r implies s, then p implies s. This law also states that the 
relation of implication is transitive. T34 is another form of the law of 
the syllogism, obtained from *T33 by the application of the law of 
exportation. 

U: flprs · (p = r)(r = s) < (p = s). 

U: flprs · (p = r) < [(r = s) < (p = s)]. 

The laws *T35 ·and 'F36 are analogues of the laws *T33 and T34 for the 
relation of equivalence. *T35 ~tates that the relation of equivalence is 
transitive. 

U: flpr · (p < r)p < r. 

U: flpr · (p < r)r' <p'. 

These are the laws of reasoning known as modus ponens and modus 
------tollens-:-*r31 states-fuat,-for-an)Lpand-r,-if p implies rand pis, then r is. 

*T38 states that, for anyp and r, if p implies rand r is not, thenp is not. 
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U: fl pr· (p' < rr') < p. 

u: n pr . [p' < (r = r')] < p. 

*T39 and **T40 are certain forms of apagogic proofs, us.ed especially 
in mathematics. On their basis we prove that if the negation of p, i.e., 
p', implies a tontradiction *T39 or an absurdity **T40, then p is true. 



ON DETERMINISM*) 

This article is a revision of an address which I delivered as Rector 
of Warsaw University at the Inauguration of the academic year 
1922/1923. As was my habit, I spoke without· notes. I wrote down my 
ddress-later--en,-but-never-published-it.------- ···-- --

In the course of the 'next twenty-four years I frequently returned 
to 1;he editing of my lecture, irp_proving its form and content. The main 
ideas, and in particular the critical examination of the arguments in 
favour of determinism, remained, _however, unchanged. 

At the time when I gave my address those facts and theories in the 
field of atomic physics which subsequently led to the undermining of 
determinism were still unknown. In order not to deviate too much 
from, and not to interfere with, the original content of the address, 
I have not amplified my articie witli arguments drawn from this branch 
of knowledge. 

Dublin, November 1946 

* 
* * 

1. It is an old academic custom that the Rector should open a new 
session with an inaugural address. In such a lecture he should state 
his scientific creed and give a synthesis of his investigations. 

A synthesis of philosophical investigations is expressed in a philo
sophical system, in a comprehensive view of the world and life. I am 
unable to give such a system, for I do not believe that today one can 
establish a philosophical system satisfying the requirements of scientific 
method. 

*)[Editorial note from Polish Logic 1920-1939, ed. by Storrs McCall, Oxford, 
1967, The Clarendon Press: This paper, entitled "O Det=inizmie", was published 

-------,lJ=or""'ffie:ffiSCT:iffie illZzaga7ltriefdugtkttfilozo/ii,-an anthology ofLukasiewicz's works 
edited by J. Slupecki, Warsaw, 1961. Translated by Z. Jordan.] 
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I belong, with a few fellow workers, to a still tiny group of philos
ophers and mathematicians who have chosen mathematical logic 
as the subject or the basis of their investigations. This discipline was 
initiated by Leibniz, the great mathematician and philosopher, but 
his efforts had fallen into oblivion when, about the middle of the nine
teenth century, George Boole became its second founder. Gottlob 
Frege-ID.-eremr~eharles-Peirce in the United-States, and Bertrand 
Russell in England have been the most prominent representatives of 
mathematical logic in our own times. · _ 

In Poland the cultivation of mathematical logic has produced. more 
plentiful and fruitful results than in many other countries. We have 
constructed logical systems which greatly surpass not only traditional 
logic but also the systems of_mathematical logic formulated until now. 
We have understood, perhaps better than others, what a_ deductive system 
is and how such systems should be built. We have been the first to 
grasp the connexion of mathematical logic with the ancient· systems 
of fonrial logic. Above all, we have achieved standards of scientific 
precision that are much superior to the requirements accepted so far. 

Compared with these new standards of precision, the exactness of 
mathematics, previously regarded as an unequalled mo9-el, has not 
held its own. The degree of precision sufficient for ihe mathematician 
does not satisfy us any lOnger. We require that every branch of mathe
matics should be a correctly constructed deductive system. We want 
to know the axioms on which each system is based, and the rules of 
inference of which it makes use. We demand that proofs should be 
carried out in accordance with these rules of inference, that they should 
be complete and capable. of being mechanically checked. We are no 
longer satisfied with ordinary mathematical deductions, which usually 
start somewhere "in the middle", reve.al freqi;tent gaps, and constantly 
appeal fo intuition. If mathematics has not withstood the test _of the 
new standard of precision, how are other disciplines; less exact than 
mathematics, to stand up to it? How is philosophy, in which fantastic 
speculations often stifle systematic investigations, to survive? 

When we approach the great philosophical systems of Plato o~ Ari
stotle, Descartes or Spinoza, Kant or Hegel, with the criteria of preci
sion set up by mathematical logic, these systems fall to pieces as if 
they were houses of cards. Their basic concepts are not clear, their 
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most important tb-eses are incomprehensible, their reasoning and proofs 
are inexact, and the logical theories which often underlie them are 
practically all erroneous. Philosophy must be reconstructed from its 
very foundations; it should take its inspiration . from scientific method 
and be based on the new logic. No single individual can dream of accom
plishing this task. This is a work for generations and for intellects 
much more powerful than those yet born. 

2. This is my scientific creed. Since I cannot give a philosophical 
system, today I shall try to discuss a certain problem which no philo-

___________ sopbicaLs.y:nthesis can ignore and which is c;lQs.ely_connected with my 
logical investigations. I should like to confess in advance that I am 
unable to examine this problem, in all its details, with the scientific 
precision that I demand from inyself. What I give is only a very imper
fect essay, of which perhaps somebody will one day take advantage 
to establish, on the basis of these preliminary examinations, a more 
exact and mature synthesis. 

I want to :,peak of determinism. I understand by determinism some
thing more than that belief which rejects the freedom of the will. 
I shall first explain what I mean by an example. 

John met Paul in the Old Town Square in Warsaw yesterday noon. 
The fact of yesterday's meeting no longer exists today. Yet that fact 
of yesterday is not a mere illusion today, but some part of the reality 
which both John and Paul have to take into account. They both re
member their yesterday's meeting. The effects or traces. of that meeting 
somehow exist in them today. Each of them could take an oath in 
a court of law that he saw the other in the Old Town Square in Warsaw 
yesterday noon. 

On the basis of these data I say, "it is true at every instant of today 
that John met Paul in the Old Tci;wn Square in Warsaw yesterday noon". 
I do not intend to maintain by this that the sentence "John met Paul 
in the Old Town Square in Warsaw yesterday noon" is true at every 
instant of today, for such a sentence, if nobody utters it or thinks of it, 
may not exist at all. I make use of the expression "it is true at instant 
t that p"-in which "instant" means an unextended time point and "p" 
any statement of fact-as equivalent to "it is the case at instant t that p". 

~--~--..... F~o=r~ffie presenrr-aml!nable-to-give ··a further analysis of the latter 
expression. 
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We believe that what has happened cannot be undone, facta infecta 
fieri non possunt. What once wa>i true remains true for ever. All truth 
is eternal. These sentences seem to be intuitively certain. We believe, 
therefore, that if an object A is b at instant t, it is true at any instant 
later than t that A is b at instant t. If John met Paul in the Old Town 
Square in Warsaw yesterday noon, it is true at any instant later than 
yesterda:y-naon-that-Jo-hn-met-Faul in the_Old..Iown Ser~ 
yesterday noon. 

The question occurs whether it was also true at any instant earlier 
than yesterday noon that John would meet Paul in the Old ToWn 
Square in Warsaw yesterday noon? Was it true the day before yesterday 
and one year ago, at the moment of John's birth and at any instant 
preceding his birth? Is everything which will happen and be true at 
some future· time true already today, and has it been true from all 
eternity? Is every truth eternal? • 

Intuition fails us in this case and, the problem becomes controversial. 
The determinist answers the question in the affirmative and the inde
termiuist in the neg"!-tive. By determinism I understand the belief that 
if A is b at instant t it is true at any instant earlier than t that A is b at 
instant t. 

Nobody who adopts this belief can treat the future differently from 
the past. If everything that is to occur and become true at some future 
time is true already today, and has been true from all eternity, the future 
is as much determined as the past and differs from the past only in so 
far as it has not yet come to pass. The determinist looks at the events 
taking place in the world as if they were a film drama produced in some 
cinematographic studio in the universe. We are in the middle of the 
performance and do not know its· ending, although each of us is not 
only a spectator but also an actor in the drama. But the ending is there, 
it exists from the begip.uing of the performance, for the whole picture 
is completed from eternity. In it all our parts, all our adventures and 
vicissitudes of life, all our decisions and . deeds, both good and bad, 
are :fixed in advance. Even the moment of our death, of. yours and 
mine, is laid down beforehand. We are only puppets in the universal 
drama. There remains for us nothing else to do but watch the spectacle 
and patiently await its end. 
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This is a strange view and by no means obvious. However, there are 
two arguments of considerable persuasive power which have been 
known for a long time and which seem to support determinism. One 
of them, originating with Aristotle, is based on the logical pri:riciple 
of the excluded middle, and the other, which was known to the Stoics, 
on the physical principle of causality. I shall try to present these two 
arguments, however difficult and abstract they 'are, i:ri a way as easy 
to understand as possible. 

3. Two sentences of which one is the denial of the other are called 
contradictory. I shall illustrate this notion by an example t_al<:<:i:rt from 
Aristotle. "There will be a sea battle tomorrow" and "There will .not 
be a sea battle tomorrow" ire contradictory sentences. Two famous 
pri:riciples derived from Aristotle, the principle of the excluded con
tradiction and the principle of the excluded middle, are concerned 
with contradictory sentences. The first of these states that two contra
dictory sentences are not true "together, that is, that one of them must 
be false. In my subsequent i:riquiry I shall. not deal with this important 
principle, which Aristotle and, following him, numerous other thinkers 
regarded as the deepest. mainstay of our thinking. 'I am concerned here 
with the principle of the excluded middle. It lays down that two con
tradictory sentences are not false together, that is, that one of them 
must be true. Either there will be or there will not be a sea battle to
morrow. Tertium non datur. There is· nothing in between the argu
ments of this alternative, no third thing that, being true; would inval
idate both its arguments. It may sometiri:ies happen that two dispu
tants, of ·whom one regards as white what the other considers black, 
are both mistaken, and the, truth lies somewhere in between these two 
assertions. There is no contradiction, however, between regarding 
something as white and considering the same thing as black. Only the 
sentences stating that the same thing is and is not white would be con• 
tradictory. In such cases truth cannot lie i:ri between or outside of these 
sentences, but must inhere in one of them. 

To return to our everyday example, if the principle of the excluded 
middle holds, and if Peter says today "John will be at home tomorrow 
noon" and Paul denies it by saying "John will not be at home tomorrow 

------..... ··<Yon";Lhen~one-of-them-speaks-the--truth.--We may not know today 
which one of them does so, but we shall learn by visitin15 John tomorrow 
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noon. If we find John at home, Peter made a true statement, and if 
John is away, Paul spoke the truth today. 

Therefore, either it is already true today that John 'Yi11 be at home 
tomorrow noon or it is true today that John will not ~ at home to-
morrow noon. If someone utters the sentence "p", and someone else 
utters its denial, "not-p", then one of them makes a true statement 
not-only-1:0cl:,a:y-bttt-at--a-ny-ffi&t&Ilt-tt-fe.F-either ''p'-'--or...::not-p:.:."-iies-s-it'FrtHueeo.c-------
I t does not matter at all whether anyone actually expresses these sen-
tences or even thinks of them; it seems to be i:ri the very nature of the 
case that either it is true at i:ristant t that ''p" or it is true at i:ristant t 
that "not-p". This alternative seems to be i:rituitively true. As applied 
to our example, it takes the following form: 

(a) Either it is true at instant t that John will be at' home tomorrow 
noon or it is true at instant t that John will not be at home tomorrow 
noon. 

Let us keep in mind this sentence as the first premiss of our reasoning. 
The second premiss is not based on any logical principle and can be 

~xpressed i:ri general form as the conditional "if it is true at i:ristant t 
that p, then p". In this conditional, ''p" stands for any sentence, either 
affirmative or negative. If we substitute for ''p" the negative sentence 
"John will not be at home tomorrow noon" we obtai:ri 

(b) If it is true at instant t that John will not be at home tomorrow 
noon, then John will not be at home tomorrow noon. 

This premiss also seems to be i:rituitively true. If it is true at an arbitrary 
i:ristant, t, e.g. now, that John will not be at home tomorrow noon
for we know that he has just left for a distant destination and for a long 
time-there is no use calli:rig upon John tomorrow noon. We are certai:ri 
that we shall not find him at home. 

We accept both premisses without proof as intuitively certai:ri. The 
thesiS of determi:riism is based upon these premisses. Its proof will be 
carried out rigorously in accordance with the so-called theory of de-

duction. 
4. Thanks to mathematical logic we know today that the basic sys

tem of logic is not the .small fragment of the logic of terms known 
as Aristotle's syllogistic, but the logic of propositions, i:ricomparably 

· more important than syllogistic. Aristotle made i:rituitive use of the 
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logic of propositions, and only the Stoics, with Chrysippus at their 
head, formulated it systematically. In our own times the logic of prop
ositions was .ionstructed in'., an almost perfect axiomatic form by 
Gottlob Frege -in 1879; it _was discovered independently of Frege and 
enriched with new methods and theorems by Charles Peirce in 1895; 
and under the name of "the theory of deduction" it was made the basis 
of mathematics and logic by Bertrand Russell in 1910. It was also 
Bertrand Russell who extended knowledge of it to the scientific com
munity at large. 

The theory of deduction should become as universfilly we:Il known 
as elementary arithmetic, for it comprises the most important rules 
of inference used in science and life. It teaches us how to use correctly 
such common words as "not", "and'', "or'', "if-then". In the course 
of the present exposition, which I begin with our second premiss, we 
shall become acquainted with three rules of inference included in the 
theory of deduction. 

The second premiss is a conditional of the form "if ex, then not-/3" 
in which "ex" stands for the sentence "it is true at instant t that John 
will not be at home tomorrow noon" and "{J" for the sentence "John 
will be at home tomorrow noon". In the consequent of premiss (b) 
there occurs the denial of the sentence "{J'', that is, the sentence "not-{J", 
"John will not be -at home tomorrow noon". In accordance with 
the theory of deduction the pren:llss "if rx, then not-{J" implies the 
conclusion "if {J, then not-ex". For if "rx" implies "not-{J''. then 
"ex" and "{J" exclude each other, and therefore "{J" implies "not-ix". 
According to. this rule of inference, premiss (b) is transformed into 
the sentence 

(c) If John will be at home tomorrow noon, then it is_;not true at instant 
t that John will not be at home tomorrow noon. 

Let us now pass to the first premiss, to the alternation of the form 
"y or rx'', in which "y" signifies the sentence "it is true at instant t that 
John will be at home tomorrow noon", and "rx" the same sentence 
as before, "it is true at instant t that John will not be at home tomorrow 
noon". It follows from the tl:[eory of deduction .that the premiss "y or ix" 

~------implies-the-c0nclusion-.::iLnobex,-then--y", For an alternative is true 
if and only if at least one of its arguments is true. If the second argu-
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ment is false, the first one must be true. In accordance with this rule 
of inference premiss (a) is transformed into the sentence 

(d) If it is not true at instant t that John will not be at home tomorrow 
noon, then it is true at instant t that John will be at home tomorrow 
no.on, .. 

Let us now compare sentences (c) and (d). They are both condi
honais; ana: the consequent itf ( c) is -equiform.-with~tlie antecedent 
in ( d); . these two sentences have the form "if {J, then not-rx" and "if 
not-ex, then y". According to the theory of deduction two such pre
misses imply the conclusion "if {3, then y". For if it is true-fuat "iI tb.e 
first, then the second" and "if the second, then the third", then it is 
also true that "if the first, then the third". This is the law of the hypo
thetical syllogism, as known by Aristotle. If we remember that "{J" 
stands for the sentence "John will be at home tomorrow noon'', and 
"y" for the sentence "it is true at instant t that John will be at home to
morrow noon", we obtain the conclusion 

(e) If John will be at home tomorrow noon, then it is true at instant t 
that John will be at home tomorrow noon. · 

Instant t is an arbitrary instant; therefore, it is either earlier than or · 
simultaneous with or later than tomorrow noon. It follows that if John 
will be at home tomorrow noon, then it is true at an arbitrary or at any 
instant that John will be at home tomorrow noon. To put it in general 
form, it has been proved on the basis of a particular example that 
if A is b at instant t, then iUs true at any instant, and therefore at any 
instant earlier than t, that A is b at instant t. The thesis of determinism 
has been proved by deducing it from the principle of the excluded 
middle: 

5. The second argument in favour of determinism is based on the 
principle of causality. It is not easy to present this argument in a com
prehensible way, for neither the word "cause" nor the proposition known 
as the pdllciple of causality have acquired an established meaning in 
science. they are only associatefl with a certain intuitive meaning 
which I should like to make explicit by giving a few explanations. 

I say that the ringing of the bell at the entrance door to my apart
ment at this moment is a fact taking place now. I regard John's pres
ence at home at instant t as a fact occurring at instant t. Ev~ry fact 

·- ,_._,, ....... ....__,L.•-~"-'~'-'"~•~~~=·~~·=~~-= ................. ....__.-=>=....-=~ 
I 
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takes place somewhere at some time. Statements of fact ate singular 
and include an indication of time and place. 

Fact F occurring at instants is called the cause of fact G occurring 
at instant t, and fact G the effect of fact F, if instant s is earlier than 
instant t, and if facts F and G are so connected with~each ofu~r that 
by means of known laws obtaining between the respective states of 
affairs it is possible to infer the statement of fact G from the statement 
of fact F.*) For instance, I consider the pressing of the button of an 
electric bell the cause of its ringing, because the bell is pressed at an 
instant earlier than the instant of its ringing, and I can deduce the 
statement of the seconUTact from tlie statement of the ·ru:s:Corie by 
means of the known laws of physics on. which the construction of an 
electric bell is based. 

The definition of cause implies that the causal relation is transitive. 
This means that for any facts F, G, and H, if Fis the cause of G and G 
is the cause of H, then Fis the cause of H. , 

I understand by the principle of causality the proposition that every 
fact G occurring at instant t has its cause in some fact F occurring .at 
instant s earlier than t, and that at every instant later than s and earlier 
than t there occur facts which are both effects of fact F ana causes of 
fact G. 

These explanations are intended to make explicit the following in
tuitions. The fact which is the cause takes place earlier than the fact 
which is the effect. I first press the button of the bell and the bell rings 
later, even if it appears to us that both facts happen sim'ultaneously. 
lf there occurs a fact which is the cause of some other fact, then the 
latter fact, which is the effect of the former, follows the cause inevitably. 
Thus if I press the button, then the bell rings. It is possible to infer the 
effect from the cause. As the conclusion is true provided that its pre
misses are true, in a similar way the effect has to occur provided that 
its causes exist. Nothing happens without cause. The bell does not 

*) This definition of the concept of cause differs from the· definition accepted in 
Lukasiewicz's paper "Aualiza i konstrukcja poji<cia przyczyny" (The analysis and 
construction of the concept of cause), Przeglqd Filozoficzny 9 (1906), pp. 105-179, 
reprinted in the 1961 edition Z zagadniefz logiki i filozofii. Both definitions lay down, 

-------rroweve-r,than:he-:relation-of-causality-is·transitive, and this point is of paramount 
importance in Lukasiewicz's subsequent investigations. 
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ring of itself; this only happens because of some earlier facts. In the 
set of facts succeeding each other, ordered by the causal relation, there 
are neither gaps nor jumps. From the instant when the button is pressed 
to the instant when the bell rings there constantly occur facts each of 
which is simultaneously an effect of the pressing of the button and 
a cause of the ringing of the bell. Moreover, everyone of these facts 

-Gccur-FHag-eai:lie~-is-the-cause-oLeveryone occurringJ.ate'h------------

6. The argument deducing the thesis of determinism from the prin
ciple of causality may become more intelligible after these explanations. 
Let us assume that a certain fact F occurs at instant t; for-instance,· 
that John is at home tomorrow noon. Fact F has its cause in some 
fact F1 , taking place at instant t1 earlier than t. Again, fact F1 has its 
cause in some fact F2 , taking place at,instant t2 earlier than t1. Since 
according to the principle of causality every fact has its cause in some 
earlier fact, this procedure can be repeated over and over again. There
fore, we obtain an infinite sequence of facts which extends back in
definitely 

because the facts take place at ever earlier instants 

In this sequence every earlier fact is the cause of every later fact, for 
the causal relation is transitive. Moreover, if fact F. occurring at in
stant tn is the cause of fact F occurring at instant t, then, in accordance 
with the principle of causality, at every instant later than t. and earlier 
than t there occur facts which are sim'ultaneously effects of fact Fn 
and causes of fact F. Since these facts are infinitely many, we are unable 
to order all of them in the sequence and can designate only some, for 
instance F._1 , F2, or F1 . 

While everything seems to be in order so far, the most important 
step in the determinist's argument comes only now. His reasoning 
wo'uld probably take the following course. 

As the sequence of facts which occur earlier than and which are the 
causes of fact Fis infinite, at every instant earlier than t, and therefore 
at every present and past instant, there occurs some fact that is the 
cause of F. If it is the case that John will be at home tomorrow noon, 
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then the cause of this fact exists already today and also at every instant 
earlier than tomorrow noon. If the cause exists or existed, all the effects 

. of this cause must inevitably exist .. Therefore it is already true today 
and has been true from all eternity that John would be at home tomor
row noon. In gener~, if A is b at instant t, it is true at every instant 
earlier than t that A is b at instant t; for at every instant earlier than t 
there exist the causes of this fact. Thus the thesis of determinism may 
be proved by means of the principle of causality. . 

These are the two strongest arguments which can be used in support 
of deter:miDism. Should we give up and accept them? Should we believe 
that everything in the world takes place of necessity.and that every 
free and creative act is only an illusion? Or, on the contrary, should 
we reject :the principle of causality along with the principle of the ex
cluded middle? 

7. Leibniz writes that there are two famous labyrinths in which our 
reason is often lost. One of them is the problem of freedom and necessity, 
and the other is concerned with continuity and infinity. While writing 
this Leibniz did not think it plausible that these two labyrinths should 
coD.Stitute one single whole and that freedom, if it exists at all, could 
be concealed in some nook of infinity. · 

Should the causes of all facts which could ever occur exist at every 
instant, there would be no freedom. Fortunately, the principle of caus
ality does not compel us to accept this consequence. Infinity and 
continuity come to our rescue. 

There is an error in the argument which derives the thesis of deter
minism from the principle of causality. For it is not the case that if 
John is at home tomorrow noon, . then the infinite sequence of causes 
of this fact must reach the present and every past instant. This sequence 
may have its lower limit at an instant later than the present instant: 
one which, therefore, has not yet come to pass. This is clearly implied 
by the following considerations. 

Let us consider time as a straight line and let us establish a one-to-one 
correspondence between a certain interval of time and the segment (0, 1) 
of that line. Let us assume that the present instant corresponds to 
point 0, that a certain future fact occurs at instant (corresponding to 

~-----4'1· oint-lt,-and-that-the causes-nfc this fact occur at instants determined 
by real numbers greater than !- This sequence of causes is infinite and 

----------·-----·----
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has no beginning, that is, no first cause. For this first cause would have 
to take place at the instant corresponding to the smallest real number 
greater than t, and no such real number exists; not even the smallest 
rational number greater than l exists. In the set of real numbers, and 
similarly in the ordered s·et of rational numbers, there ~e no two num
bers succeeding each other immediately, that is, being the immediate 
preaecessor andsuccessor of-·eirc:hotlier; between any two numbers 
there is always another one, and consequently there are infinitely many 
numbers between any two of them. Similarly there are no two instants 
succeeding each other immediately, that is, being the immeruate pre
decessor and successor of each other; between any two instants there 
is another one, and consequently there are in:finite!y many instants 
between any two of them. In accordance with the principle of causality, 
every fact of the sequence under consideration has its cause fu some 
earlier fact. Although it has a lower limit at instant t, which is later 
than the present instant 0 and has not yet been attained, the sequence 
is infinite. Furthermore, this sequence cannot exceed its lower limit 
and therefore ·cannot reach back to the present instant. 

This reasoning shows that there might exist infinite causal sequences 
which have not yet begun and which belong entirely to the future. 
This view is not only logically possible but also seems to be more prudent 
than the belief that each, even the smallest, future event has its causes 
acting from the beginning of the universe. I do not doubt at all that 
some future facts have their causes already in existence today and 
have had them from eternity. By means of observations and the laws 
of motion of the heavenly bodies astronomers predict eclipses of the 
moon and sun with great preciSion many years in advance. But nobody 
is able to predict today that a fly which does not yet exist will buzz 
into my ear at noon on 7 September of next year. The belief that this 
future behaviour of that future fly has its causes already today a.pd has 
had them from all eternity seems to be a fantasy rather than a propo
sition supported by even a shadow of scientific validation. 

Therefore the argument based on the principle of causality falls to 
the ground. One can be strongly convinced that nothing happens with
out cause, and that every fact has its cause in some earlier fact, with
out being a determinist. There remains to be considered the argument 
based on the principle of the excluded middle. 
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8. Although the argument based on the principle of the excluded 
middle is independent of that derived from the principle of causality, 
the former indeed becomes fully intelligible if every fact has its causes 
existing from all eternity. I shall explain what I mean by an example 
taken from ordinary life.*) Let us assume that John will be at home 
tomorrow noon. If the causes of all facts exist from all eternity, we 
should recognize that at the present instant there exists the cause of 
John's presence at home tomorrow noon. Therefore it is true, i.e. it is 
the case at the present instant, that John will be at home tomorrow 

-- ---ne<:>n..-1'.ht~-seme.whaL9_on:fused expression "it is :thsLcas_e __ at_ i:!_i_stant t 
that p", in which ''p" stands for sentences about future events, which 
I have previously been unable to elucidate, now becomes perfectly 
intelligible. It is the case at the present instant that ~'John will be at 
home tomorrow noon" implies first that at the present instant there 
exists a fact which is the cause of John's presence at home tomorrow 
noon, and secondly that this future effect is as much comprehended 
in that cause as a conclusion is included in its premisses. The cause of the 
future fact, which the sentence ''p" states and which exists at instant t, 
is an actual correlate of the sentence "it is the case at instant t that p". 

Shou1d we assume that John will not be at home tomorrow noon, 
we can follow the same course of reasoning. If we recognize that the 
causes of every fact exist from all eternity, we must also accept the 
fact that the cause of John's absence from home tomorrow noon exists 
already at the present instant. Therefore the sentence "it is true, i.e. 
it is the case at the present instant, that John will not be at home tomor
row noon" has its actual correlate in the cause of the stated fact, and 
this cause exists at present. 

As John will or will not be at home tomorrow noon, there exists 
either the cause of his presence at or of his absence from home tomorrow 
noon, provided that the causes of all facts exist from all eternity. There
fore, either it. is true at the present instant that John will be at home 
tomorrow noon or it is' true at the ·present instant that John will not 
be at home tomorrow noon. The argument based on the principle of the 
excluded middle has additional support in the argument derived from 
the principle of causality. 

*)Lukasiewicz repeats tbisreason:irig_iii _his_ paper "Philosophical Remarks on 
Many-Valued Systems of Propositional Logic" (pp. 153-178 of this book). 
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9. However, the second of these arguments has proved itself to be 
invalid. In accordance with the preceding investigations, we may assume 
that at the present instant there exists as yet neither the cause of John's 
presence nor the cause of John's absence from home tomorrow noon. 
Thus it might happen that the infinite sequence of causes, which bring 
about John's presence or absence from home tomorrow noon, has 
not-yet-begmr-arrd-Iies--entirely---i.n-fue future. To put--:i:t-corrlli+on;qr-rwrr·,..alirth1y-, ------
we can say that the question whether John will or will not be at home 
tomorrow noon is not yet decided either way. How should we argue 
in this case? 

We might adopt the following course. The sentence "it is true at the 
present instant t that John will be at home fomorrow noon" has no 
actual correlate, for the cause of this fact does not exist at instant t; 
therefore nothing compels us to recognize this sentence as true. Thus 
it might happen that John would not be -at home tomorrow noon. 
In the same way the sentence "it is true at the present instant t that 
John will not be at home tomorrow noon" has no real correlate, for the 
cause of this fact does not exist at instant t; again, nothing compels 
us to recognize this sentence as true. Thus it might happen that John 
would be ·at home tomorrow noon. We may, therefore, reject both these 
sentences as false and accept their denials "it is not true at instant t 
that John will be at home tomorrow noon", and "it is not true at instant t 
that John will not be at home tomorrow noon". The previously estab
lished conditional ( e ), "if John will be at home tomorrow noon, then 
it is true at instant- t that John will be at home tomorrow noon" becomes 
invalid. For its antecedent turns out to be true if John is at home tomor
row noon, and its consequent becomes false if we choose an instant t, 
earlier than tomorrow noon, at which the cause of John's presence at 
home tomorrow noon does not yet exist. But_ with conditional (e) the 
thesis of determinism, "if A is b ·at instant t, it is true at every instant 
earlier than t that A is b at instant t" also becomes invalid; for we can 
substitute values for variables A, b, and t such that the antecedent of 
this thesis becomes true and the consequent false. 

If on_ the assumption that a -certain future fact is not yet decided 
either way the thesis of determinism becomes false, the deduction 
of this thesis from the principle of the excluded middle must involve 
an error. Indeed, if we reject as false the sentence "it is true at instant 
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t that John will be at home tomorrow noon" as well as the sentence 
"it is true at instant t that John will not be at home tomorrow noon", 
we must also reject alternative (a) which is composed of these sentences 
as its arguments and which has been the starting-point of the deduction. 
An alternative both of whose arguments are false is itself false. So also 
conditional ( d), obtained by transforming premiss (a), "if it is not true 
at instant t that John will not be at home tomorrow noon, then it is 
true at instant t that John will be at p.ome tomorrow noon", turns 
out to be false, for we accept its antecedent and reject ·its consequent. 

·- -·-·----It-is-n0-w0mlel'--thaLthe.in.fur_e_n_c_e_p_r_o_d.uce.s__a_false_conclusion if one of 
its premisses and one of its intervening theorems are false. 

It should be pointed out that the rejection of alternative (a) is not 
a transgression of the principle of the excluded middle; for its arguments 
do not contradict each other. Only the sentences "John will be at home 
tomorrow noon" and "John will not be at home tomorrow· noon" 
are contradictory, and. the alternative composed of these sentences, 
"either John will be at home tomorrow noon or John will not be at 
home tomorrow noon", must be true in accordance with the principle 
of the excluded middle. But the sentences "it is true at instant t that 
John will be at home tomorrow noon" and "it is true at instant t that 
John will not be at home tomorrow noon" are not contradictory, for 
the one is not the denial of the other, and their presentation as alterna
tives need not be true. Premiss (a) has been deduced from the principle 
of the excluded middle on the basis of purely intuitive investigations 
and not by applying a logical principle. However, intuitive investigations 
may be fallacious, and they seem to have deceived us in this case. 

10. Although this solution appears to be logically valid, I do not 
regard it as entirely satisfactory, for it does not satisfy.all my intuitions. 
I believe that there is a difference between the non-acceptance of the 
sentence "it is true at the present instant that John will" be at home 
tomorrow noon" because John's presence at or absence from home 
tomotrow is not yet decided, and the non-acceptance of this sentence 
because the cause of his absence tomorrow already exists at the present 
instant. I think that solely in the latter case have we the right to reject 
the sentence in question and say, "it is not true at the present instant 

-------:t.-h-a-,-t""Jo--o-:-hn-will--=-· be at no:riforomorrow Ifoon". In the former case we Cali 

neither accept nor reject the sentence but should suspenq our judgement. 

--------------------
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This attitude finds its justification both in life and in colloquial speech. 
If John's presence at or absence from home tomorrow noon is not 
yet decided, we say, "it is possible that John will be at home tomorrow 
noon, but also it is possible that John will not be at home tomorrow 
noon". On the other hand, if the cause of John's absence from home 
tomorrow noon exists already at the present instant, we say, provided 

· that-we-krrow-tbis-eatt~i-t-is-not-possible that John--will-be-al:1't--lh!li(')'l'tmone-e----~ 
tomorrow noon". On the assumption of John's presence at or ab-
sence from home tomorrow noon not yet being decided, the sentence 
"it is true at the present instant that John will be at home tomorrow 
noon" cani be neither accepted nor rejected, that is, we cannot consider 
it either true or false. Consequently also the denial of this sentence, 
"it is not true at the present instant that John will be at home tomorrow 
noon", can -be neither accepted nor rejected, i.e . ..;,e cannot consider 
it as either true or false. The previous reasoning, which consisted in the 
rejection of the sentence under discussion and in the acceptanee of its 
denial, is now inapplicable. In particular. conditional (d), which was 
previously rejected, for its antecedent was accepted and its consequent 
rejected, need not now be rejected, for it is not true any longer that its 
antecedent is accepted and its consequent rejected. Furthermore, since 
conditional ( d) together with premiss ( c ), which does not seem to involve 
any doubts whatsoever, suffice to validate the thesis of determinism, 
it appears as though Aristotle's argument regains its persuasive power. 

11. However, this is not the case. I think that only now do we achieve 
a solution which is in agreement both with our intuitions and wii:h 
the views of Aristotle himself. For Aristotle formulated his argument 
in support of determinism solely for the purpose of its subsequent 
rejection as invalid. In the famous chapter 9 of De Jnterpretatione 
Aristotle seems to have reached the conclusion that the alternative 
"either there will be a sea battle tomorrow or there will not be a sea 
battle tomorrow" is already true and necessary today, but it is neither 
true today that "there will be a sea battle tomorrow" nor that "there 
will not be a sea battle tomorrow". These sentences concern future 
contingent events and as such they are neither true nor false today. 
This was the interpretation of Aristotle given by the Stoics, who, being 
determinists, disputed bis view, and by the Epicureans, who defended 
indeterminism and Aristotle. 



126 ON DETERMINISM 

Aristotle's reasoning does not undermine so much the principle of the 
excluded middle as one of the basic principles of our entire logic, which 
he himself was the first to state, namely, that every proposition is either 
true or false. That is, it can assume one and only .. one of-two truth
values: truth or falsity. I call this principle the principle of bivalence. 
In ancient times this principle was emphatically defended by the Stoics 
and opposed by the Epicureans, both parties being fully aware of the 
issues involved. Because it lies at the very foundations of logic, the 
principle under discussion cannot be proved. ·One can only believe it, 

·-··--------- ____ andkalone__\llili_o considers it self-evident believes it. I_Qme,_pe.rsonally, 
the principle of bivalence does not appear to be self-evident. Therefore 
I am entitled not to recognize it, and to accept the view that besides 
truth and falsehood there exiSt other truth-values, including at least 
one more, the third truth-value. 

What is this third truth-value? I have no suitable name for it.*). 
But after the preceding explanations it should not be difficult to under
stand what I have in mind. I.maintain that there are propositions which 
are neither true nor false but indeterminate. All sentences about future 
facts which are not yet decided belong to this category. Such sentences 
are neither true at the present moment, for they have no real correlate, 
nor are they false, for their denials too have no real correlate. Ifwe make 
use of philosophical terminology which is not particularly clear, we 
could say that ontologically there corresponds to these sentences neither 
being nor non-being but possibility. Indeterminate sentences, which 
ontologically have possibility as their correlate, take the third truth
value. 

If this third value is introduced into logic we change its very founda
tions. A trivalent system of logic, whose first outline I .was able to give 
in 1920**), differs from ordinary bivalent logic, the only one known 
so far, as much as non-Euclidean systems of geometry differ from Eucli
dean geometry. In spite of this, trivalent logic is as consistent and free 
from contradictions as is bivalent logic. Whatever form, when worked 
out in detail, this new logic assumes, the thesis of determinism will 
be no part of it. For in the conditional in terms of which this thesis is 

*)In "Philosophical Remarks ... " Lukasiewicz uses the term "possibility". 
**) The first mention of the ifu-00:.viiliiea fogic was made earlier, in the "Farewell 

Lecture ... " of 1918 (pp. 84-86 of this book). 
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expressed, "if A is b at instant t, then it is true at every instant earlier 
than t that A is b at instant t", we can assign such values to variables 
"A'', "b", and "t" that its antecedent changes into a true sentence and 
its consequent into an indeterminate one, that is, into a sentence having 
the third truth-value. This always happens when the cause of the fact 
that A is b at a future instant i does not yet exist today. A conditional 
whase-anteeedenHS-tr-tte-antl--eemsequent indetemmate ca-nna,.__t -1-b.,.c-a"'c-=-----
cepted as true; for truth can imply only truth. The logical argument 
which seems to support determinism falls decisiv~ly. 

12. I am near the end of my investigations. In my view, the age~old 
arguments in support of determinism do not withstand the test of 
critical examination. This does not at all imply that determinism is a 
false view; the falsehood of the arguments does not demonstrate the 
falsehood of the thesis. Taking advantage of my preceding critical 
examination, I should like to state only one thing, namely that determin
ism is not a view better justified than indeterminism. 

Therefore, without exposing myself to the charge of thoughtlessness, 
I may declare myself for indeterminism. I may assume that not the 
whole future is deterniined in advance. If there are causal chains com
mencing only in the future, then only'some future facts and events, those 
nearest to the present time, are causally determined at the present 
instant. On the basis of present knowledge even an omniscient mind 
could predict fewer and fewer facts the deeper into the future it tried 
to reach: the only thing actually determined in the ever broader frame
work within which facts occur, and within which there is more and 
more room for possibility. The universal drama is not a picture com
pleted from eternity; the further away we move from the parts of the 
film which are being shown just now, the more gaps and blanks the 
picture includes. It is well that it should be so. We may believe that 
we are not merely passive spectators of the drama but also its active 
participants. Among the contingencies that await us we can choose 
the better course and avoid the worse. We can oursdves somehow 
shape the future of the world in accordance with our designs. I do not 
know how this is possible, but I believe that it is. 

We should not treat the past differently from the future. If the only 
part of the future that is now real is that which is causally determined 
by the present instant, and if causal chains commencing in the future 
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belong to the realm of possibility, then only those parts of the past 
are at present real which still continue to act by their effects today. 
Facts whose effects have disappeared altogether, and which even an 
omniscient mind could not infer from those now occurring,. belong 
to the realm of possibility. One cannot say about them that they took 
place, but only that they were possible. It is well that it should be so. 
There are hard moments of suffering and still harder ones of guilt in 
everyone's life. We should be glad to be able to erase them not only 
from our memory but. also from existence. We may beli~ve that when 

_____________ aU__tlle____e:ffects of those fateful moments are exha:i,i,§1.ed, ~ven should 
that happen only after our death, then their causes too will be effaced 
from the world of actuality and pass into the realm of possibility. Time 
calms our cares and brings us forgiveness. 

I 
I 
I. 

A NUMERICAL INTERPRETATION OF THE THEORY OF 
PROPOSITIONS*) 

Refers to Chapters *l to *5, Vol. 1. of Principia Mathematica. The 
authors of that work, Whitehead and Russell, present there the "theory 
of deduction"; they do so by introducing variables connected by sym
bols of operations and logical relations, and by using that notation 
to formulate 192 logical laws (axioms and theorems) marked with the 
symbol of assertion. Professor Lukasie'wicz offered a numerical inter
pretation of those variables and their combinations, and of logical laws. 
The principles of that interpretation are as follows: 

I. The variables p, q, r, s, stand for any real numbers in the interval 
0-1, including the limiting values of that interval. 

IL The formula ''p :::i q" equals the number 1 'if p ~ q, i.e., 

_ -p :::i q . = . 1 for p ~ q. 
III. p :::i q. =. l-p+q forp~ q. 

Thus the formula ''p :::i q" always denotes a number in the interval 
0-1. Further the following definitions are adopted 

DI ,..., p . = . p :::i 0 (where 0 is a number). 
D2 
D3 
D4 

pvq.=.p:::iq.:::iq. 
p. q. = . ,..., (,..., p v ,...,q). 

p::=q.= .p:::iq.q:::ip. 

It can easily be proved, on the strength of these definitions and the 
principles I-ill above, that the number ,..., p equals the number 1-p, 
and that the logical sum of two different numbers always equals the 
greater number of the two, and that the logical product of two different 
numbers always equals the lesser of the two. Thus every logical function 

*) Report on Prof. Jan Lukasiewicz's lecture delivered at the 232nd meeting of the 
Polish Philosophical Society in Lw6w on October 14, 1922. The report was published 
in Ruch Filozoficzny 7 (1923), pp. 92-93. 
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is a number in the interval 0-1. The logical laws marked by the symbol of 
assertion also are numbers in that interval on the strength of the follow
ing principle: 

IV. Every logical law is equal to the least of the numbers obtained 
by substituting numerical values for the variables occurring in that law. 

Professor Lukasiewicz stated that in this numerical interpretation out 
of the 192 laws included in the part of Principia Mathematica under 
consideration 60 laws take on the numerical value 1

/ 2 , three take on the 
numerical value 0, and the rest take on the numerical value 1. The 

-------application-of-thiS-intel'pretation-iS-twofold-:-1)--It-Gan--be demonstrated 
that if those verbal rules, or directives, which are accepted by the 
authors of Principia Mathematica (the rule of deduction and the rule 
of substitution) are adopted, then no set of the logical laws that have 
the numerical value 1 can yield any law that would have a lesser numer
ical value. This would show that some logical laws are independent of 
the others. 2) If 0 is interpreted as falsehood, 1 as truth, and other 
numbers in the interval 0-1 as the degrees .of probability corresponding 
to various possibilities, a many-valued logic is obtained, which is an 
expansion of three-valued logic and differs from the latter in certain 
details. 

Speakers in the discussion were Messrs Ajdukiewicz, Bad, Ingarden, 
Kleiner, Lomnicki, Steinhaus, Weyberg and Lukasiewicz. 

INVESTIGATIONS INTO THE SENTENTIAL CALCULUS*) 

--In tlie course of the years ·192o=I930 invemgattonswe:re earned out in 
Warsaw belonging to that part of metamathematics-or bettermetalogic
which has as its field of study the simplest deductive discipline, namely 
the sentential calculus. These investigations were initiatecCby- Luka
siewicz; the first results originated both with him and with Tarski. In the 
seminar for mathematical logic which was conducted by Lukasiewicz 
in the University of Warsaw beginning- in 1926, most of the results 
stated below of Lindenbaum, Sobocillski, and Wajsberg were found 
and discussed. The systematization of all the results and the clarification 
of the concepts concerned was the work of Tarski. 

In the present communication the most important results of these 
investigations-for the most part not previously published-are collected 
together.**) 

1. General concepts 
It is our intention to refer our considerations to the conceptual ap

paratus which was developed in. the preceding article (see "On Some 
Fundamental Concepts of Mathematics" published as paper III in 
A. Tarski, op. cit., pp. 30-37). For this purpose we wish :first to define 

*) [Note from A Tarski, Logic, Semantics, Metamathematics. Papers from 1923 
to 1938, Oxford, 1956, The Oarendon Press : Bibliographical Note. This joint com
munication of J. Lukasiewicz and A Tarski was presented (by Lukasiewicz) to the 
Warsaw Scientific Society on 27 March 1930; it was published under the title "Un
tersuchungen iiber den Aussagenkalkiil" in Comptes rendus des seances de la Sociite 
des Sciences et des Lettres de Varso11ie 23 (1930), cl. iii, pp. 39-50]. The following text 
has been reprinted in the 1961 edition Z zagadnien logikt i filozofii; in this book it is 
published as a reprint from its first English version included in the. above mentioned 
edition of Tarski's papers (some bibliographical references, however, have been 
expanded to become comprehensible to the reader deprived of the larger context 
of Tarski's book). 

**) To avoid misunderstandlltgs it should be stated that the present article does 
not contain results discovered by both the authors jointly, but is a compilation of 
theorems and concepts belonging to five different persons. Each theorem and concept 
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the notion of a (meaningful) sentence and that of a consequence of a set 
of sentences with respect to the sentential calculus. 

DEFINITION 1. The set S of all sentences is the intersection of all 
those sets which contain all sentential variables (elementary sentences) 
and are closed-under the operations of forming implicationsandnegations.

1
) 

The concepts of sentential variable, of implication and of negation 
cannot be explained furtl;ler; they must rather be regarded as primitive 
concepts of the metatheory of sentential calculus (i.e. of that part of 
metaniathematics in which sentential calculus is investigated). The funda
mental prope-rties-o-f-these-GGnceptS-,-W-hich-suffice-for--the-construction 
of the part of metamathematics with which we are here concerned, 
can be expressed in a series of simple sentences (axioms) which need 
not now be stated. Usually the letters "p", "q'', "r", etc., are used as 
sentential variables. In order to express in symbols the sentences ''p im
plies q" (or "if p, then q") and "it is not the case that p", Lukasiewicz 
employs the formulas "Cpcf' and "Np" respectively. 2) With this nota
tion the use of such technical signs as parentheses, dots, etc., is ren
dered unnecessary. We shall encounter several ~xamples of sentences 
written in this symbolism in subsequent sections. In addition to the
formation of implications and negations other similar operations are 
commonly used in the sentential calculus. But as these are all definable 
by means of the two mentioned above they will not be considered here. 

is ascribed to its respective originator. Theorem 3, for instance, is not a theorem of 
Lukasiewicz and Tarski, but a theorem of Lindenbaum. Nevertheless, some scholars 
mistakenly referred to both authors, Lukasiewicz and Tarski, the many-valued 
systems of logic ascribed in the article to Lukasiewicz alone. In spite of a correction 
which appeared in 1933 in the Journal of Philosophy, vol. 30, p. 364, this mistake 
persists till today. It clearly follows from § 3 and notes of this article that the idea 
of a logic different from the ordinazy system called by Lukasiewicz the two-valued 
logic, and the construction of manY-valued systems of logic described here, are en
tirely due to Lukasiewicz alone and should not be referred to Lukasiewicz and Tarski. 

1) A set-according to the usual terminology of abstract set theory-is said to be 
closed under given operations if as the result of carrying out these operations on ele
ments of the set in question one always obtains elements of this same set. 

2) Cf. J. Lukasiewicz, "O znaczeniu i potrzebach logiki matematycznej" (On the 
significance and needs of mathematical logic), Nauka Polska 10(1929), pp. 604-620, 

~~------P~6JJL~ and Lukasiewicz Elem~nty logiki matematycznej, p. 40, 1st edition, 
Warsaw, 1929. [An English trans!afion-=Elements of Mathematical Logic-was 
published in 1963 and reprinted in 1966.] 
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The symbol "Cpq", which in the sentential calculus expresses the impli-
_cation between ''p" and "q", is to be clearly distinguished from the 
metamathematical symbol "c(x, y)", which denotes the implication with 
the antecedent x and the consequent y. The expression "Cpq" is a 
sentence (in the sentential calculus) whilst the expression "c(x,y)" is 
the name of a sentence (in the metasentential calculus). An analogous 
remark-applierto-the-sy~1ic expressiouS--'..:Np" antl-'-'ni-t(xx)+'''-::' .--------~~ 

The consequences of a set of sentences are formed with the help of 
two operations, that of substitution and that of detachment (the modus 
ponens scheme of inference). The intuitive meaning of the :first opera
tion is clear; we shall not, therefore, discuss its character more closely. 
The second operation consists in obtaining the sentence y from the 
sentences x and z = c(x, y). 

We are now in a position to explain the concept of consequence: 

DEFINITION 2. The set of consequences Cn(X) of the set X of sentences 
is the intersection of all those sets which include the set X ~ S and are 
closed under the operations of substitution and detachment. 

From this we obtain: 

THEOREM 1. The .concepts S and Cn(X) satisfy the axioms l-5 given 
in article III. 3) 

We are especially interested in those parts X of the set S which form 
deductive systems, i.e. which satisfy the formula Cn(X) = X. Two meth
ods of constructing such systems are available to us. In the first, the 
so-called axiomatic method, an arbitrary, usually finite, set X of sen
tences-an axiom system-is given, and the set Cn(X), i.e. the smallest 
deductive system over X, is formed. The second method, which can 
best be called the matrix method, depends upon the following definitions 
of Tarski: 4

) 

3) See article III, p. 31, in A. Tarski, op. cit. 
4) The origin of this method is to be sought in the well-known verillcation pro

cedure for the usual two-valued sentential calculus (see below Def. 5), which was 
used by Peirce ("On the Algebra of Logic'', Am. Journ. of Math. 7(1885), p. 191) and 
Schroder. This was thoroughly treated in J. Lukasiewicz, ["Two-Valued Logic", 
pp. 89-109 of this book]. Lukasiewicz was also the first to define by means of a ma
trix a system of the sentential calculus different from the usual one, namely his three
valued system (see below, p. 126, note **). This he did in the year 1920. Many-valued 
systems, defined by matrices, were also known to Post (see E. L. Post, "Introduction 

·' 
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DEFINITION 3. A (logical) matrix is an ordered quadruple S))c 

=[A, B,f, g] which consists of two di,fjoint sets (with elements of any . 
kind whatever) A and B, a function f of two variables and a function g of 
one variable, where the two functions are defined for. all elements of the 
set A+B and take as values elements of A+B exclusively. 

The matrix fie.= [A, B,f, g] is called normal if the formulas x EB 
and y EA always imply f(x, y) E A. 

DEFINITION 4. The function h is called a value function of the matrix 
SJ)l = [A, B, f, g] if it satisfies the following conditions: (1) the function 

-----frts-.dejirred-for-ever-y-x-E-S.y...{:'l}-if-x--is-a--sentent-ial··variable, then h ( x) 
EA+B; (3) if x ES and y ES. then 

h(c(x, y)) = f(h(x), h(y)); 

(4) ifx ES then h(n(x)) = g(h(x)). 

The sentence xis satisfied (or verified) by the matrix SJ)c =[A, B,f, g], 
in symbols x E (:t{illl ), if the formula h(x) E B holds for every value 
function h of this matrix. 

The elements of the set B are, foJlowing Bernays, 5) called designated 
elements. 

In order to construct a system of the sentential calculus with the help 
of the matrix method a matrix S))C (usually normal) is set up and the 
set @(SJJ() of all those sentences which are satisfied by this matrix is 
considered. This procedure rests upon the following easily provable 
theorem: 

THEOREM 2. If WC is a normal matrix, then @(fill) E@:). 

If the set @(illl) forms a system (as it always will, according to Th. 2, 
if the matrix fill is normal), it is called the system generated by the 
matrix illl. 

to a General Theory of Elementary Propositions'', Am. Journ. of Math. 43(1921), 
pp. 180 ff.). The method used by P. Bernays ("Axiomatische Untersuchung des 
Aussagenkalk!lls · der Principia Mathematica", Math. Z. 25 (1926),. pp. 305-320) 
for the proof of his theorems on independence also rests on matrix formation. The 
'\j.ew of matrix formation as a general method of constructing systems is due 
to .. Tarski. 

-~~-~~-4-see-P;--Bemays,!'-Axiomatische . .Untersuchung des Aussagenkalkiils der Prin
cipia Mathematica", Math. Z. 25(1926), p. 316. 

-------~·-·-·--,.,~-----
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The following converse of Th. 2, which was proved by Lindenbaum, 
makes evident the generality of the matrix method described here: 

THEOREM 3. For every system XE @J there exists a normal matrix 
SJ)l =[A, B,f, g], with an at most denumerable set A+B, which satisfies 
the formula X = G (ID1). *) 

Each of the two methods has its advantages and disadvantages. 
Systems constructed by means Qf-tll:ea:xiomahc method are easier to 
investigate regarding their axiomatizability, but systems generated by 
matrices are easier to test for completeness and consistency. In particular 
the following evident theorem holds: ·· ·· · . --· .. - .. --

THEOREM 4. If fill = [A, B,f, g] is a normal matrix and A =f=. 0, then 
@(ffi() E fil5 • 

2. The ordinary (two-valued) system of the 
sentential calculus 

In the fl'rst place we consider the most important of the systems of 
the sentential calculus, namely the well-known ordinary system (also 
called by Lukasiewicz 6) the two-valued system), which is here denoted 

~T. -
-Osing the matrix method, the system L may be defined in the follow-

ing way: 

DEFINITION 5. The ordinary system L of the sentential calculus is the 
set of all sentences which are satisfied by the matrix WC = [A, B,f, g] 
where A= {O}, B = {1} 7

) and thefunctionsf and g are defined by the 
formulas: f(O, 0) = f(O, 1) = f(l, 1) = 1, f(l, 0) = 0, g(O) = 1, g(l) = 0. 

From this definition it follows easily that the systei:r}. L is consistent 
and complete: 

THEOREM 5. L E ®.mun. 
6) See note 4, p. 133. 
7) The set having a. as its only element is denoted by {a}. 
*) A proof of this theorem has recently been published in J. Los, "O matrycach 

logicznych" ("On logical matrices", in Polish), Travaux de la Societe des Sci 
et des Lettres de Wroclaw, Ser. B, No. 19, Wroclaw (1949), 42 pp. 
H. Hermes, "Zur Theorie der aussagenlogischen Matrizen", Math. Z. 5 
pp. 414-418. 
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The system L can also be defined by means of the axiomatic method. 
The first axiom system of the sentential calculus was given by C. Frege.8

) 

Other axiom systems have been given by Whitehead and Russell 9) and 
by Hilbert.10

) Of the systems at present known the simplest is that of 
Lukasiewicz; he also has proved in an elementary manner the equiva
lence of the two definitions of L.11) His result may be stated thus: 

THEOREM 6. Let X be the set consisting of the three sentences: 

"CCpqCCqrCpr'', "CCJfppp'', "CpCpNpq"; 

--~th~en_x_eo_~fa _ _(L). Consequently Lis axiomatizable, L e __ W. _ , 

According to a method for investigating the independence of a set X 
of sentences developed by Bern_ays and Lukasiewicz, 12

) a normal matrix 
filey is constructed for every sentence y E X which verifies all sentences 
of the set X with the exception of y. 

S) Begri.ffsschrift, Halle a/S (1879), pp. 25-30. Frege's system is based upon thefol
lowing six axioms: "CpCqp'', "CCpCqrCCpqCpr", "CCpCqrCqCpr", "C,,,,CpqCNqNp" 
"CNNpp", "CpNNp". Lukasiewicz has shown that in this system the third axiom 
is superfluous since it can be·derived from the preceding two axioms, and that the 
last three axioms can be replaced by the single sentence "CCNpNqCpq". 

9) Principia Mathematica, 1 (1925), p. 91. 
11') See D. Hilbert, "Die logischen Grundlagen der Mathematik'', Math. Ann, 

88 (1923), p. 153. 
11) Cf. J. Lukasiewicz, Elements of Mathematical Logic, pp. 45and121 ff. The proof 

of the equivalence of the two definitions of L amounts to the same thing as proving 
the completeness of the system L when defined by means of the axiomatic method. 
The first proof of completeness of this kind 1s found in Post, op. cit.. • 

12) Bernays has published, in his article (note 5), which dates from the year 1926 (but 
according to the author's statement contains results from his unpublished Habilita
tionsschrift presented in the year 1918), a method based upon matrix formations, 
which enables us to investigate the independence of given sets of sentences. The 
method given by Bernays was known before its publication to Lukasiewicz who, 
independently of Bernays, and following a suggestion of Tarski (cf. "On the Primitive 
Term of Logistic", published as paper I in A. Tarski, op. cit., pp. 8-14), first applied 
his many-valued systelllS, defined by means of matrices, to the proofs of independence, 
and subsequently discovered the general method. On the basis of this method Luka
siewicz had already in 1924 investigated the independence of the axiom systems given 
by Whitehead and Russell and by Hilbert, and had shown that neither of them is 
independent. These results (without proof) are contained in the following note by 

~-~~-~-E"fiK;-;-i· as1ew1cz: "Demonstration-de···Ia:-compatibilite des axiomes de la theorie de 
la deduction", Ann. Soc. Pol. Math. 3 (1925), p. 149. 

I -, 
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With the help of this method Lukasiewicz proved that in contrast 
to the previously mentioned axiom system the following theorem holds: 

THEOREM 7. The set X of sentences given in Th. 6 is independent; conse
quently xis a basis of L, x E m(L). 

Tarski developed another structural method for the study of inde
pendence. Although less general than the method of .matrix formation. 
this can be succes-sfully in some cases. 

The following general theorem is due to Tarski:*) 

THEOREM 8. The system L, as well as every axiomatizable system of 
the sentential calculus which contains the sentences: "CpCqp" and 
"CpCqCCpCqrr" (or "CpCqCCpCqrCsr"), possesses a basis consisting. 
of a single sentence. 13

) 

The proof of this theorem enables us _in particular to .give effectively 
a basis of the system L which contains a single element. 14)**) Lukasie
wicz has simplified Tarski's proof and, with the help of previous work 
of B. Sobocmski, has established the following: 

THEOREM 9. The set which consists of the single sentence z: 
"CCCpCqpCCCNrCsNtCCrCsuCCtsCtuvCwv" 

is a basis of the system L, i.e. {z} E m(L). 

13) An analogous, but quite trivial, theorem applies to all axiomatizable systems 
of those deductive disciplines which already presuppose the sentential calculus and 
satisfy not only Axs. 1-5, but also Axs. 6*-10* of "On Some Fundamental Concepts 
of Mathematics" in A. Tarski, op. cit. . 

14) This result was obtained by Tarski in the year 1925; ef. S. Lesniewski, "Grund
ziige eines neuen SystelllS der Grundlagen der Mathematik", Fund. Math. 14 (1929), 
p. 58. An axiom system of the -ordinary sentential calculus consisting of a single 
axiom was set up by Nicod in the year 1917 (see J. Nicod, "A Reduction in the Number 
of the Primitive Propositions of Logic'', Proc. Cambridge Phil. Soc. 19 (1917), pp. 
32-41). The axiom of Nicod is constructed with the Sheffer disjunction "pJq" as the 
only primitive term, and the rule of detachment formulated by Nicod in connexion 
with this term is stronger than the rule of detachment for implication. This facilitated 
the solution of the problem. 

*) Compare in this connexion a recent paper of K. Schroter "Deduktive abgeschlos
sene Mengen ohne Basis", Mathematische Nachrichten 7 (1952), in particular pp. 
294 ff. 

**) The axiom originally found by Tarski is explicitly formulated in the article 
uy B. Sobociilski, "Z badan nad teori<! dedukcji" (Some investigations upon the 
theory of deduction), Przeglqd Filozoficzny 35 (1932), pp. 172-193, in particular 
p. 189. It consists of 53 letters. 
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This sentence z which has 33 letters, is the shortest sentence known 
at the present time which suffices as the only axiom for developing the 
system L~ The sentence z is not organic with respect to the system L. 
For a sentence y eX is said to be organic with respect to a system X 
lino (meaningful) part of y is an element of X (the term "organic" 
comes from S. Lesniewski, and we owe the definition of organic sentence 
to M. Wajsberg). The sentence z is not organic with respect to L because 
it contains parts, e.g. "CpCqp'', which are elements of L. Soboci.Ilski 
has given an organic axiom for the system L which contains 47 letters.*) 

----·------1'h~fo-ll-owing-the0rem-is..a...generalization_oLih--8-:.--·--

THEoREM 10. The system L, as well as every axiomatizable system of 
the sentential calculus which. contains the sentences "CpCqp" and 
"CpCqCCpCqrr'', possesses for every natural number m a basis containing 
exactly m elements. 

For the system L Soboci.Ilski has effectively proved this theorem; 
the generalization to other systems is due to Tarski.**) 

In contrast to this property of the system L, Tarski has effectively 
shown that: 

THEOREM 11. For every natural number m, systems of the sentential 
calculus exist every basis of which contains exactly m elements. 

The following considerations of Tarski concern the special case of 
this theorem when m = 1 (Def. 6 and Ths. 12-14). 

DEFINITION 6. The sentence x' is called indecomposable if x e S and if 
every basis of the system Cn({x}) consists of only ,one sentence (i.e. if no 

*) The results discussed in the last paragraph of the text were improved after the 
original publication of this article. In fact Lukasiewicz found in 1932 a single non
organic axiom consisting of 29 letters: see Sobociiiski "Z badati nad teoriii, dedu.1<:cji" 
(Some researches on the theory of deduction), Przeglqd Filozoficzny 35· (1932), pp. 
171-193, especially pp.181 ff. In 1936 on the ground of a result of Sobociiiski he 
published without proof a single organic axiom of 23 letters in J. Lukasiewicz "LogistiC 
and Philosophy", pp. 218-235 of this book, p. 224, note 10. The shortest hitherto 
known single organic axiom consisting of 21 letters was found in 1952 by C. A. Mered
ith; see his article, "Single axioms for the systems (C, N), (C, 0), and (A, N) of the 
two-valued propositional calculus", The Journal of Computing Systems 1 (1953), 
pp. 155-164. 

**) See B. Sobocmsk:i, "Z badati :iiad:"teori!i dedukcji" ("Some researches on the 
theory of deduction"), Przeglqd Filozoficzny 35 (1932), pp. 178 ff., 
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independent set of sentences containing more than one element is equivalent 
to the set { x }). 

If this condition is not satisfied then the sentence x is said to be de com-_ 
posable. 

It is found that almost all known sentences of the system L are in
decomposable; in particular: 

THEOREM 12. The sentences 

"Cpp", "CpCCpqq", "CCCpqpp", "CCCpqqCCqpp", 
"CCpqCCqrCpr'', "CCqrCCpqCpr" 

are indecomposable~ 

THEOREM 13. If x e S, y e S, and ~ e S then the sentences n(x), 

c(n(x), y), c(c(n(x), y), z), c(x, c(n(y), z)) are indecomposable; in partic
ular, this holds for the sentences: 

"CNNpp'', "CpNNp", "CNpCpq", "CpCNpq", 
"CCNppp", "CCpNpNp". 

From Ths. 12 and 13 it results that the set of sentences given in Th. 6 
consists exclusively of indecomposable sentences. 

On the other hand the following theorem has been proved: 

THEOREM 14. The sentences 

"CpCqp", "CCCpqrCqr", and "CCpCqrCqCpr" 

are decomposable.*) 

*) The following remarks may help the reader to reconstruct the proofs ot_ Ths. 
12-14: 

(i) Let x = "Cpp". It can easily be shown that the system Cn({x}) consists of all 
those and only those sentences which can be obtained from x by substitution; more· 
generally, if Y is any subset of Cn( { x }), then Cn(Y) consists of those and only those 
sentences which are obtainable from sentences of Yby substitution. Hence we conclude 
without difficulty that every independent set of sentences which is equivalent to {x} 
consists of just one sentence, in fact, of a sentence c(v, v), where v is an arbitrary 
variable. 

By means of a similar argument many of the sentences mentioned in Ths. 12 and 13 
can be proved to be indecomposable. 

(ii) Let x = "CpCqp'', y = "CCpCqpCpCqp" and z = c(y, x). Clearly the set 
{x} is equivalent to the set {Y, z}, Also it can easily be shown that the set {y, z} is 
independent. Hence the sentence x is decomposable. 
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A noteworthy theorem on axiom systems of L has been proved by 
Wajsberg: 

THEOREM 15. In every basis (and in general in every axiom system) 
of the system L, as well as of every sub-system of L which contains 
the sentence "CpCqCrp", at least three distinct sentential variables 
occur.15) In other words, if X is the set of all those sentences of the 
system L in which at most two distinct variables occur, then L-Cn(X) 
':fa 0 ;J in particular,J the sentence "CpCqCrp" belongs to L but not to 
Cn(X).*) 

3. Many-valued systems of the sentential calculus 

In addition to the ordinary · system of the sentential calculus there 
are many other systems of this calculus which are worthy of investiga
tion. This was first pointed out by Lukasiewicz who has also singled 
out a specially important class of such systems.16

) The systems founded 
by Lukasiewicz are here called n-valued systems of the sentential cal
culus and denoted by the symbol "Ln" (where either n is a natural 

15) It is not necessary to explain any further the meaning of the expression "in the 
sentence x two or three distinct variables occur "since it is intuitively clear. "Distinct" 

.here means the same as "notequiform" (cf. III, p. 31, note 3 in Tarski, op. cit.). 
1."') What is called the three-valued system of the sentential calculus was constructed 

by Lukasiewicz in the year 1920 and described in a lecture given to the Poli,sh Philo
sophical Society in Lw6w. A report by the author, giving the content of that lecture 
fairly throughly was published in the jotirnal Ruch Filozoficzny 5 (1920), p. 170 (in 
Polish). A short account of the n-valued systems, the discovery of which belongs to 
the year 1922, is given in J. Lukasiewicz, Elementy logiki matematycznej, pp. 115 ff. 
The philosophical implications of n-valued systems of sentential calculus are discussed 
in the article of Lukasiewicz, ''Philosophical Remarks on Many-Valued Systems of 
Propositional Logic",pp. 153-178 of this book. 

*) Wajsberg's proof of Th. 15 is given at the end of his paper "Aksjomatyzacja 
tr6jwartosciowego rachunku zdati" (Axiomatization of the three-valued sentential 
calculus), Comptes rendus des seances de la, Sociite des Sciences et des Lettres de 
Varsovie 24 (1931), cl. iii. Another proof of the result discussed can be obtained 
by the use of the method developed in the note of A. H. Diamond and J. C. C. McKin
sey, "Algebras and their subalgebras'', Bulletin of the American Mathematical Society 
53 (1947), pp. 959-962. For another proof of that part of Th. 15 which concerns the 
whole system L, see also S. Ja.Skowski, "Trois contributions au calcul des proposi
tions bivalent", Studia SocietatisSdeniiiirum Toi-unensis, section A, 1 (1948), pp. 3-15, 
in particular pp. 9 ff. 
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number or n = N0). These systems can be defined by means of the 
matrix method in the following way: 

DEFINITION 7. The_ n-vah:e:l system Ln of the sentential calculus 
(where n is et natural number or n =No) is the set of all sentences which 
are satisfied by the matrix file= [A, B,f, g] where, in the case n = 1 the 
set A is null, in the case 1 < n < No A consists of all fractions of the 

form -kj(n-1) for 0::;;;: k <-n-l, and in the case n =No it consists of 
all fractions k/l for 0::;;;: k < l; further the set B is equal to {1} and 
the functions f and g are defined by the formulas: j(x,y) 
=min (1, 1-x+y), g(x) = l-x. 

As Lindenbaum has shown, the system L'l1., is not changed if, in the 
definition of this system, the set A of all proper fractions is replaced 
by another infinite sub-set of the interval <O, 1): 

THEOREM 16. Let ~))( =[A, B,f,g] be a matrix where B = {l}, 
the functions f and g satisfy the formulas 

f(x,y) = min(l, l-x+y), g(x) = 1-x, 

and A be an arbitrary infinite set of numbers which satisfies the condi
tion: 0::;;;: x < 1 for every x EA, and is closed under the two operations f 
and g; then @ (fill) = L.~, .17) 

From Def. 7 the following facts established by Lukasiewicz are easily 
obtained: 

THEOREM 17. (a) Li= S, L2 = L; 
(b) if 2::;;;: m < N0 , 2::;;;: n ~ Nq and n-1 is a divisor of m-1, 

then L,,. S Ln; 
(c) L'l1., = IJ L,,. 

1~n<}t0 

THEOREM 18. All systems Ln for 3::;;;: n::;;;: No are consistent but not 
complete:Ln E 6. §.!.15-fil. 

The converse of Th. 17(b) was proved by Lindenbaum: 

17) Lindenbaum gave a lecture at the first congress of the Polish mathematicians 
<;Lw6w, 1927) mi mathematical methods of investigating the sentential calculus in 
which, among other things, he ·formulated the above-mentioned theorem. Cf. his note 
"Methodes mathematiques dans les recherches sur le systeme de la theorie de deduc
tion", Ksi!!ga Pamiqtkowa Pierwszego Polsldego Zjazdu Matematycznego, Krak6w, 
1929, p. 36. 
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THEOREM 19. For 2~ m <No and 2~ n <No we have Lm £ Ln 
if and only if n-1 is a divisor of m-1. 

Th. 17(c) was improved by Tarski by means of Th. 16: 

'THEOREM 20. Li:,, = TI Lni for every increasing sequence n; of 
l~i<~o 

natural numbers. 

Concerning the problem of the degree of completeness for systems Ln 
the following partial result has been obtained. 

THEOREM 21. If n- l is a prime number (in particular if n = 3), then 
-· ------·----there-are-only-two-scystems,namel-Y-S-and-b,whieh-eontain-L,, as a proper 

part; in other words, every sentence x E S-Ln satisfies one of the for
mulas: Cn(L11+{x}) =Sor Cn(Ln+{x}) = L; y(L11) = 3. 

This theorem was proved for n = 3 by Lindenbaum; the generali
zation to all prime numbers given in the theorem is due to Tarski.*) 
· Regarding the axiomatizability of the system Ln we have the follow
ing theorem which was first proved by Wajsberg for n = 3 and for 
all n for which n-1 is a prime number, and was later extended to all 
natural numbers by Lindenbaum: 

'THEOREM 22. For every n, 1 ~ n < No, we have L 11 E m.. 
The effective proof of Th. 22 enables us to give a basis for every 

system L 11 where 1 ~ n < N0 • In particular Wajsberg has established: 

THEOREM 23. The set X consisting of the sentences 

"CpCqp'', "CCpqCCqrCpr'', "CCNpNqCqp'', "CCCpNppp" 

forms a basis of L3, i.e. x Em (L3). 

The following theorem of Wajsberg is one of the generalizations 
of Th. 22 at present known: 

*) In May 1930 while the original printing of this article was in progress, Th. 21 
was improved and the problem of the degree of completeness was solved for systems 
L,, with an arbitrary natural n; this was a joint result of members of a proseminar 
conducted by Lukasiewicz and Tarski in the University of Warsaw. A proof of Th. 21 
and its generalizations appeared in print recently; see A. Rose, "The degree of com
pleteness of m-valued Lukasiewicz propositional calculus", The Journal of the Londo1J 
Mathematical Society 27 (1952), pp. 92-102. The solution of the same problem for 
L11t0 has been given in A. Rose, "The degree of completeness of the R 0-valued Luka-

~------s1-ew-,,-1~c-z_p_r_o-posi't1o:riiiTcalciilus";--71ie-1ow:nal 75f the London Mathematical Society 
28 (1953), pp. 176-184. 
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THEOREM 24. Let WC = [A, B,f, g] be a normal matrix in which the 
set A+ B is finite. If the sentences 

"CCpqCCqrCpr", "CCqrCCpqCpr", "CCqrCpp", 

"CCpqCNqNp", "CNqCCpqNp" 

are satisfied by this matrix, then G: (~)() E m.. *) 

The Ths. 8, 10, and 15 of§ 2 can be applied tothe sysf"emsL11 • Accord
ingly we have: 

THEOREM 25. Every system L 11 , where 2 ~ n < N0 , possesses, for 
every natural number m (and in particular for m = 1), a basis which 
has exactly m elements. 

'THEOREM 26. In every basis (and in general in every axiom system) 
of the system Ln at least three distinct sentential variables occur. 

As regards the problem of extending Th. 22 to the case n =No 

Lukasiewicz has formulated the hypothesis -that the system Li.., is 

*) There is a comprehensive literature related to Ths. 22-24 and, more generally, 
concerning the axiomatizability of various systems of sentential calculus. We list a few 
papers on this subject in which further bibliographical references can also be found: 
M. Wajsberg, "Aksjomatyzacja tr6jwartosciowego rachunku zdaii" ("Axiomatization 
-0f the three-valued sentential calculus", in Polish), Comptes rendus des seances de la 
Societe des Sciences et des Lettres de Varsovie 24 (1931), cl. iii, pp. 126-148. A further 
relevant paper by the same author: "Beitrage zum Meta:;i.ussagenkalk:iil I'', Monats
hefte fiir Mathematik und Physik 42 (1935), pp. 221-242. B. Sobociilski, "Aksjomaty
zacja pewnych wielowartosciowych system6w teorii dedukcji" ("Axiomatization of 
certain many-valued systems of the theory of deduction'~, in Polish), Roczniki prac 
naukowych Zrzeszenia Asystent6w Uniwersytetu J6zefa Pilsudskiego w Warszawie, 
1 (1936), Wydzial Matematyczno Przyrodniczy Nr. 1, pp. 399-419. J. Slupecki, 
.. Dow6d aksjomatyzowalnosci pelnych system6w wielowartosciowych rachunku zdan" 
("A proof of the axiomatizability of functionally complete systems of many-valued 
sentential calculus", in Polish), Comptes rendus des seances de la Sociite des Sciences 
et des Lettres de Varsovie 32 (1939), .cl. iii, pp. 110-128; and by the same 
author: "Pelny tr6jwartosciowy rachunek zdan" ("The full three-valued sentential 
calculus", in Polish), Amzales Universitatis Mariae Curie-Sklodowska 1 (1946), 
pp. 193-209. J.B. Rosser and A. R. Turquette, "Axiom schemes for m-valued propo
sitional calculi", Journal of Symbolic Logic 10 (1945), pp. 61-82, and "A note on 
the deductive completeness of m-valued propositional calculi", ibid., 14 (1949), pp. 
219-125. 

In the first paper of Wajsberg listed above we find a proof of Th. 23, in the second 
a proof of Th. 24. 
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axiomatizable and that the set consisting of the following five sentences 

"CpCqp", "CCpqCCqrCpr", "CCCpqqCCqpp", 

"CCCpqCqpCqp", "CCNpNqCqp" 

forms an· axiom system for LR,.*) 

It must be emphasized that, as defined here, the systems Ln for n > 2 
have a fragmentary character, since they are incomplete and are only 
sub-systems of the ordinary system L. The problem of supplementing 
these systems to form. complete and consistent systems which are at 

-----the-sam.©-time-distinctli:om_L.c_an __ he_p.ositivel:y--solved,. but. only in one 
way, namely by widening the concept of meaningful sentence of the 
sentential calculus, and by introducing, beside the operations of forming 
implications and negations, other analogous operations which cannot 
be reduced to these two (cf. also§ 5). 

Finally we may add that the number of all possible systems of the 
sentential calculus was determined by Lindenbaum. · 

= R~ --:- ' 
'THEOREM 27. ® = 2 ' but ®.~ = No.*'") 

This result was improved by Tarski as follows: 

'THEOREM 28. ®· i.215. m = 2R
0

, but ®. i.215. m. ~I = No.***) 

*) This hypothesis has proved to be correct; see M. Wajsberg, "Beitrage zum 
Metaaussagenkalkiil I'', Monatshefte fur Mathematik und Physik 42 (1935), pp. 
221-242, in particular p. 240. As far as we know, however, Wajsberg's proof has not 
appeared in print. 

The axiom-system above is not independent: C. A. Meredith has shown that 
"CCCpqCqpCqp" is deducible from the remaining ilxioms. 

**) A proof of the first part of Th. 27 (and in fact of a somewhat stronger result) 
can be found in the paper of K. Schroter, op. cit., pp. 301 ff. The proof of the second 
part of Th, 27 is almost obvious. 

***) The proof of Th. 28 can be outlined as follows: For any given natural number 
n = 1, 2, 3, ... let x,, be the sentence which is formed by n symbols "C" followed 
by n+l variables "p". Given any setNofnaturalnumbers, letXN bethe set consisting 
of all sentences x3,, where n belongs to N and of all sentences x3,,+1 where n does not 
belong to N. It can easily be shown that the set Cn(XN) coincides with the set of all 
those sentences which can be obtained from sentences of XN by substitution. Hence the 

·set XN is consistent and can therefore be extended to form a complete and consistent 
system XN. On the other hand, if Mand N are two different sets of natural numbers, 
then the sum of x M and xN· is Clearly iriCor:iS!Sfent; and hence the systems XM and 
Xfr cannot be identical. The remaining part of the proof is obviops. 
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4. The restricted sentential calculus 

In investigations into the sentential calculus attention is sometimes 
restricted to those sentences in which no negation sign occurs. This 
part of the sentential calculus can be treated as an independent de
ductive discipline, one which is still simpler than the ordinary s·entential · 
calculus and will be called here the festncted sentential calculus. 

For this purpose we must first of all modify the concept of meaningful 
sentence by omitting the operation of forming negations from Def 1. 
In a corresponding way the concept of substitution is also simplified, 
and this brings with it a change in the concept of consequence. After 
these modifications Th. 1 remains valid. 

For the construction of closed systems of the restricted s·entential 
calculus both of the methods described in § 1 are used: the axiomatic 
and the matrix method. But a logical matrix is now defined as an or
dered triple [A, B, f] and not as an ordered quadruple (Def. 3); con
sequently condition ( 4) in Def. 4 of a value function disappears. ~ 

Ths. 2-4 remain valid. 
The definition of the ordinary system L + of the restricted sentential 

calculus is completely analogous to Def. 5, with one obvious difference 
which is called for by the modification in the concept of matrix. This 
system has been investigated by Tarski. From the definition of the 
system its consistency and completeness are easily derivable; hence 
Th. 5 holds also in the restricted sentential calculus. The axioniatizability 
of the system is established in the following theorem: 

THEOREM 29. The set X consisting of the three sentences "CpCqp'', 
"CCpqCCqrCpr'', "CCCpqpp" forms a basis of the system L+; con
sequently L+ Em:. 

This theorem originates with Tarski; it contains, however, a simpli
fication communicated to the authors by P. Bernays. In fact the original 
axiom system of Tarski included, _instead of the sentence "CCCpqpp", 
a more complicated sentence, "CCCpqrCCprr".*) The independence of 
both axiom systems was established by Lukasiewicz. 

*) The original proof of Th. 29 has not been published. But a proof of this result 
can easily be obtained by means of a method developed in M. Wajsberg, "Metalo: 
gische Beitrage'', Wiadomofci Matematyczne 18 (1936), pp. 131-168, in particular 
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Ths. 8, 10, 11, 12, 14, and 15 from § 2 have been extended to the re
stricted sentential calculus by their originators. Tarski, in particular, 
has succeeded in setting up a basis of the system L + consisting of only 
a single. sentence. Two simple examples of such sentences, each co.n
taining 25 letters, are given in the next theorem. The first is an organic 

.sentence and.was found by Wajsberg, the second is not organic and 
is due to Lukasiewicz: 

THEOREM 30. The set of sentences consisting either of the single sentence 

"CCCpqCCrstCCuCCrstCCpuCst" 

or of the single sentence 

"CCCpCqpCCCCCrstuCCsuCruvv" 

forms a basis of the system L+.*) 
Def. 7 of the n-valued system Ln can be applied at once to the restricted 

sentential' calculus provided only that the concept of matrix is suitably 
modified. Ths. 16-22 as well as 24-26, which describe the mutual rela
tions among the various systems L't, determine the degree of complete
ness of the systems and establish. their axiomatizability, have been 
extended to the restricted sentential calculus by their originators. (In 
the case of Th. 21 this was done by Tarski; for Th. 22 by Wajsberg. 
In Th. 24 the sentences with negation signs are to be omitted.) The 
problem of ·the axiomatizability of the system Lt is left open. 

Finally, the number of all possible systems of the sentential calculus, 
which was determined by Lindenbaum and Tarski in Ths. 27 and 28, 
also remains unchanged in the restricted sentential calculus.**) 

pp. 154-157; the derivations which are needed for applying Wajsberg's method can be 
found, for example, in: W. V. Quine, System of Logistic, Cambridge, Mass. 1934, 
pp. 60:ff. 

*) More recently Lukasiewicz has shown that the sentence "CCCpqrCCrpCsp" 
can also serve a single axiom for system L + and that there is no shorter sentence 
with this property. See J. Lukasiewicz, "The Shortest Axiom of the Implicational 
Calculus of Propositions", p. 295-305 of this book. 

**) The footnote concerning Th. 27 on p. 144 applies to the restricted sentential 
cal cul us as well. 

l 
l 
I 

,,. 
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5. The extended sentential calculus 

By the extended sentential calculus we understand a deductive disci
pline in the sentences of which there occur what are called universal 
quantifiers in addition to sentential variables and the implication sign.18) 

·--For-tb:e11niversal-quantifier Lukasiewicz uses--the-sign "fl" which was 

introduced by Peirce.19) With this notation the formula "flpq" is the. 
s,Ymbolic expression of the sentence "for all p, q (holds)". The operation 
which consists in putting the universal quantifier "fl" with-~--sent-;;-i:;:ti~i. 
variable x in front of a given sentence y is called universal quantification 
of the sentence y with respect to the sentential variable x, and is denoted 

18
) In his article ''.Gniridziige eines neuen Systems der Grundlagen der Mathe

m~tik" Le5niewski has described the outlines of a deductive system, called by him 
Protothetic, which, compared with '!!he extended sentential calculus, goes still further 
beyond the ordinary sentential calculus in the respect that, in addition to quantifiers, 
variable functors are introduced. (In the sentence "Cpq" the expression "C" is called 
a functor, and "p" and "q" are called the arguments. The word functor we owe to 
Kotarbiiiski. In both the ordinary and the extended sentential calculus only constant 
functors are used.) In addition to this principal distinction, there are yet other dif
ferences between the extended sentential calculus and the protothetic as it is described 
by Lesniewski. In contrast to the extended sentential calculus, in the protothetic 
only those expressions are regarded as meaningful sentences in which no free, but 
only bound (apparent) variables occur. Some new operations (rules of inference or 
directives) are also introduced by means of which consequences are derived from 
given sentences, such, for example, as the operation of distributing quantifiers, which is 
superfluous in the extended sentential calculus. Finally it must be emphasized that Le§: 

niewski has formulated with the utmost precision the conditions which a sentence must 
satisfy if it is to be admitted as a definition in the system of the protothetic, whereas 
in the present work the problem of definitions has been left untouched. Article I 
belongs to protothetic. A sketch of the extended sentential calculus is given in J. Luka
siewicz, Elements of Mathematical Logic, pp.154-169; this sketch rests in great part 
on results of Tarski (cf. A: Tarski, op. cit. Preface, p. v:ll). The two-valued logic of 
Lukasiewicz ("The Shortest Axiom .... ", pp. 295-305 of this book) has many points 
of contact with the extended sentential calculus. Finally, there are many analogies 
between the extended sentential calculus and the functional calculus of Hilbert and 
Ackermann (see Hilbert, D., and Ackermann, W., GrundziJge der theoretis'chen Logik, 
Berlin, 1928, especially pp. 84-85). 

19) The e;xpression "quantifier" occurs in the work of Peirce (note 4), p. 197, 
although with a somewhat different meaning. 
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by "nx(Y)" in metamathematical discussions. This concept it to be 
regarded as a primitive concept of the metasentential cal~ulus. 20

) 

DEFINITION 8. The set sx of all meaningful sentences (of the extended 
sentential calcU!us) is the intersection of all those sets whi~h contain 
all sentential variables and are closed under the two operations of forming 
implications and of universal quantification (with respect to an arbitrary 

sentential variable). 21
) 

The operations of forming negations and of existential quantification 
which consists in prefixing to a given sentence y the existential quan

tifier"};" with a sententia vana ex, are not consfdered.lierebecause, 

in the system of the extended sentential calculus in which we are inter
ested, they can be defined with the help of the two operations previously 
mentioned. For example, we can use the formula "Cp flqq" as de-
:finiens for "Np". ; 

In deriving consequences from an ar1'itrary set of sentences Luka
siewicz and Tarski make use of the operations of insertion and deletion 
of quantifiers, in addition to those of substitution 22

) and detachment. 
The first of these operations consists in obtaining a sentence y = c( z, nt( u)) 
from a sentence of the form x = c(z, u), where z E sx and u E sx• 
under the assumption that t is a sentential variable which is not free 
in z.23) The second operation is the inverse of the first and cop.sists in 
deriving the sentence x = c(z, u) from the sentence yr c(z, nt(u)) 
(in this case without any restriction concerning the variable t).24

) 

20) Cf. the remarks following Def. 1 in § 1. 
21) In contrast to the above mentioned book of Hilbert and Ackermann, p. 52, as 

well as to the standpoint taken in Lukasiewicz, Elements of Mathematical Logic, 
p. 155, the expression :n:x(y) is also regarded as meaningful when x either occurs as 
a bound variable in y or does not occur in y at all. 
- 22) The operation of substitution undergoes certain restrictions in the extended 
sentential calculus (cf. J. Lukasiewicz, .Elements ... p. 160, and Hilbert and Acker
mann, op. cit. p. 54.) 

23) We do not need to discuss the meaning of the expression "x occurs in the 
sentence y as a free (or bound) variable" since it is sufficiently clear (cf. J. Lukasie
wicz, Elements ... , p. 156, and Hilbert and Ackermann, op. cit., p. 54). 

24) In the restricted functional calculus only the :first operation is used. Instead 
of the second an axiom is set up. (cf. Hilbert and Ackermann, op. cit., pp. 53-54). 

~~-----An~--an-al-=-og_o_u_s-procedure-wofilff norbepbSsible iri oiir calculus; for if we drop the 

second operation the system LX to be discussed _below would n~t have a finite basis. 

___________ , ____ _ 

~ i 
I 

·1 

i 
I 

'I 
'1 

'.\ 
l 

INVESTIGATIONS INTO THE SENTENTIAL CALCULUS. 149 

DEFINITION 9. The set CnX(X) of consequences of the set X of sentences 
(in the sense of the extended sentential calculus) is the intersection of 
all those sets which include the given set X .s;;; sx and are closed under 
the operations of substitution and detachment, as well as insertion and 
deletion of quantifiers. 

With this___filtezyi:e.tation of fue_cQncepts sx and cnx(X)1-T.i,_'hn,.--,1,-l-if'l're(}jm'J4-----
§ 1 remains valid. 

As before, two methods are available for the construction of deductive 
systems: the axiomatic and the matrix methods. The second method 
has not yet received a sufficiently clear general formulation, and in fact 
the problem of a simple and useful definition of the concept of matrix 
still presents many difficulties. Nevertheless this method has been suc
cessfully applied by Lukasiewicz in special cases, namely for the con
struction of the n-valued systems L~ (for n < No) and in' particular 
for the construction of the ordinary system Lx of the extended sentential 
calculus. The construction of the systems L~ is precisely described in 
the following 

DEFINITION 10. First let us introduce the following auxiliary notation: 
b = "p", g = nb(b) (falsehood), n(x) = c(x, g) for every x E sx (the 
negation of the sentence x), a(x, y) = c(c(x, y), y) and k(x, y) = 
n(a(n(x); n(y))) for every x E sx and every y E sx (the disjunction or 
rather alternation, and the conjunction of the sentences x and y); 25) further
more kf'~1 (x,) = x1 for m = 1 and "k"/,!,1 (x;) = k(k'['~f (x,), xm) for 
every arbitrary natural number m > 1, where x, E sx for 1 ~ i ~ m 
(the conjunction of the sentences x 1 , x2 , •.. , Xm). Further we put bm = b 
for m =-1, bm = c(n(b), bm-i) for every natural number m > l, and 
finally a,,.= nb(c(bm, b)) for every natural number m. 26) 

2-') The logical expressions "Apq" (''p or q") and "Kpq" (''p and q") correspond; 
in the symbolism introduced by Lukasiewicz, to the metalogical expressions "a(x, y)" 
and "k(x, y)" respectively. Of the two possible definitions of the alternation, which in 
the two-valued, but not in then-valued, system are equivalent: a(x, y) = c(c(x, y), y) 
and a(x, y) = c(n(x), y), the :first was chosen by Lukasiewicz for various, partly 
intuitive, reasons (cf. J. Lukasiewicz, "Two-Valued Logic'', p. 89-109 of this book). 

26) For example, 

h1 = ''p", b2 = "CCpIJppp", b3 = "CCpIJppCCpIJppp", 

and al = "IJpCpp", a, = "IJpCCCpIJpppp", 

a3 = "IJpCCCpIJppCCpIJpppp". 



150 INVESTIGATIONS INTO THE SENTENTIAL CALCULUS 

Now let n be a definite natural number > 1. We choose n sentences 
called basic sentences, and denote them by the symbols "g1", "g2", ••• , 

"gn"; in fact we· put gl = g, gz = ~-1' and gm= c(n(gz), gm-1) for 
every m, 2 < m ~ n. 27

) Let G be the smallest set of sentences which 
contains all sentential variables and basic sentences and is closed with 
respect to the operation of forming implications. 

A function h is called a value function (of the n-th degree) if it sat
isfies the following conditions: (1) the function h is defined for 
every sentence x E G; (2) if xis a sentential variable, then h(x) is a 

------·- ---ffiietion of-the-fonn-(m-1-)fEn--10,-wher&-m-is--a natural- number and 
1 ~ m ~ n; (3) for every natural number m, 1 ~ m ~ n, we have 
h(g,n)=(m-1)/(n,-1); (4) ff xEG and yEG, then h(c(x,y)) 
= min(l, l-h(x)+h(y)).28

) 

With every sentence x E sx a sentence f(x) E G is correlated by re
cursion in the following way: (1) if xis a sentential variable or a basic 
sentence, thenf(x) = x; (2) if x E sx, y E SX, and c(x, y) is not a basic 
sentence, we putf(c(x, y)) = c(f(x),f(y)); (3) if xis a sentential varia91e 
which is not free in the sentence y E sx, thenf(n,,(y)) =f(y); (4) but 
if the sentential variable x is free in the sentence y E sx and nx(Y) is 
not a basic sentence, then we put f(n,,(y)) = kf~1(f(y1)) where the 
sentenc:e y; for every i, 1 ~ i ~ n, arises from y by the substitution 
of the basic sentence gi for the free variable x. 

The n-valued system L; of the extended sentential calculus, where 
2 ~ n < No, is now defined as the set of all those sentences x E sxf 
which satisfy the fonnula h(f(x)) = 1 for every value function h (of 
the nth degree); in additionLx is set equal to sx. The systemL~ = Lx 
is also called the ordinary system of the extended sentential calculus.29

) 

27) For example, for n = 3: 
gi = "Jlpp", gz = "JipCCCpJipppp'', 

g3 = "GCJlpCCCpJippppJlppJipCCCpJipppp". 

28) Cf. Defs. 4· and 7 above. 
29) In the definition adopted by Lukasiewicz, instead of the basic sentences g,, 

g., ... , gn, there occur what are called sentential constants, c,, c., ... , en, i.e. special 
signs distinct from sentential variables. The concept of meaningful sentence is thereby 

-------tempornril)Lextended,_~ rest of the definition runs quite analogously to the definition 
in the text. In the final definitioll"-;f'the-$Y"~e~s L"':, all expressions which contain 
sentential constants are eliminated, and the concept of meaningful. sentences is reduced 

___________ , ___ _ 
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From this definition of the systems L~ the following facts easily 
result (they are partly in opposition to Ths. 18 and 19 of§ 3): 

THEOREM 31. L;E ®.l.l.15.Q:S for every natural n, 2 ~ n < No. 

THEOREM 32. For 2 ~ m < No and 2 ~ n < No we have L~ £ L"i: if 
and only if m = n (no system of the sequence L~ , where 2 ~ n < No, is 
included-in-anetheF--S-ystem...of..:this ~equence ). · 

THEOREM 33. The set of all sentences of the system L'1, (where I ~ 

n < N0) in which no bound variables occur is identical with the corre
sponding system L~ of the restricted sentential calcul~s. 

Regarding the axioinatizability of these systems Tarski has shown . 
that Ths. 8, 10, 22, 29, and 30 also hold in the extended sentential calculus. 
In this connexion Tarski has also proved the following: 

THEOREM 34. Every axi9m system of the system 4 = L+ in the 
restricted sentential calculus is at the same time an axiom system of 
the system L"f = lx in the extended sentential calculus.30) · 

On the other hand, not every basis of the system L+ in the restricted 
sentential calculus is at the same time a basis in the extended calculus 
(and not every set of sentences which is independent in the restricted 
sentential calculus remains independent in the extended calculus). 

THEOREM 35. For 3 ~ n < N0 universal quantifiers and bound variables 
occur in at least one sentence of every basis (and in general of every 
axiom system) of the system L~. 

It is worthy of note that the proof given by Tarski of Th. 22 in the 
extended sentential ·calculus makes it possible to construct effectively 

to the original expressions. By means of the modification introduced in the text, 
which is due to Tarski, the definition of the systems L; certainly takes on a simpler 
form from the metalogical standpoint, but at the same time it becomes less perspic
uous. In order to establish the equivalence of the two definitions it suffices to point 
out that the expressions chosen as basic sentences satisfy the following condition: 
for every value function h (in the sense of the original definition of Lukasiewicz), 

m-1 · 
h(f(gm)) = h(cm) = n-l , where 1 < m < n. 

'
0
) The completeness and axiomatizability of the system Ls was proved by Tarski 

in the year 1927. His proof was subsequently simplified by S. Ja§kowski. 
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an axiom system for every system L~ (3 ~ n < No). Relatively simple 
axiom systems of this kind were constructed by Wajsberg; in the case 
n = 3 bis result is as follows: 

THEOREM 36. Let X be the set consisting of the following sentences: 

"CCCpqCrqCCqpCrp", "CpCqp", "CCCpCpqpp", 

"CflpCCCp flppppCflpCCCp flpppp flpp", 

"CCflpCCCp flppppflpp flpCCCp flpppp"; 

then XE m:.:(Ln. 

An exact deliiiition ortheclenumeraJ51y-vaJ.uea-systeiii L~. of the 

extended sentential calculus presents much greater . di:ffic,ulties than 
that of the finite-valued systems. This system has not yet been investi
gated. 

Ths. 27 and 28, which determine the number of all possible systems, 

remain correct in the extended sentential calculus. 
In conclusion we should like to add that, as the simplest deductive 

discipline, the sentential calculus is particularly suitable for meta
mathematical investigations. It is to be regarded as a laboratory in 
which metamathematical methods can be discovered and metamathe
matical concepts constructed which can then be carried over to more 
complicated mathematical systems. 

PHILOSOPIDCAL REMARKS ON MANY-VALUED SYSTEMS 
OF PROPOSITIONAL LOGIC*) 

1. Modal propositions. -2. Theorems concerning modal propositions. -3. Conse
quences of the first two theorems concerning modal propositions. -4. Consequences 
of the third theorem on modal propositions. -5. Incompatibility of tlie Theorems 
on modal propositions in the two-valued propositional calculus. -6. Modal propo
sitions and the tlrree-valued propositional calculus. -7. Definition of the concept 
of possibility. -8. Consequences of the definition of the concept of possibility. 
-9. Philosophical significance of many-valued systems of propositional logic. 

Appendix. On the history of the law of bivalence. 
In the communication "Untersuchungen iiber den Aussagenkalkiil" 

(Investigations into the Sentential Calculus) which appeared in this issue 
under Tarski's and my name, Section 3 is devoted to the "many-valued" 
systems of propositional logic established by myself. Referring the 
reader to this communication as far as logical questions are concerned, 
I here propose to clarify the. origin and significance of those systems 
from a philosophical point of view. 

1. Modal propositions 

The three-valued system of propositional logic owes its ongm to 
certain inquiries I made into so-called "modal propositions" and the 
notions of possibility and necessity closely connected with them.1) 

1) I read a paper on these inquiries at the meeting on 5 June 1920 of the Polish 
Philosophical Society at Lw6w. The essential parts of this paper were published in 
the Polish periodical Ruch Filozoficzny 5 (1920), pp. 170-171. [The first English trans
lation of that text was published as paper 1 in the McCall edition and translated by 
H. Hit from the version published in Ruch Filozoficzny. In this book (pp. 87-88) 
the translation was made by 0. Wojtasiewicz from the text of the lecture itself, read 
by Lukasiewicz on 5 June, 1920.] 

*) [Editorial note from the McCall edition: This paper appeared originally under 
the title ''Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagen
kalkiils" in Comptes rendus des seances de la Sociite des Sciences et des Lettres de 
Varsovie 23 (1930), cl. iii, pp. 51-77. Translated by H. Weber], reprinted in the 1961 
edition Z zagadniefz log[ki i filozofii. 
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By modal propositions I mean propositions that have been formed 
after the pattern of one of the following four expressions: 

(1) It is possible that p · in symbols Mp. 

(2) It is not possible that p in symbols NMp. 

(3) It is possible that not-p in symbols MNp. 

( 4) It is not possible that not-p in symbols NMNp. 

The letter "p" designates here any proposition; "N" is the symbol 
of negation ("Np"= "not-p"); "M" corresponds to 1:he words "it is 
possible that". Illsteau-ohraying-"it-i:s-·n:ot-possible-that not-p", on~ 
can also use the phrase "it is necessary that p". 

The expressions listed here are not identical with Kant's "problem
atical" and "apodictic:' judgements. Rather they_ correspond to the 
modal propositions of medieval logic originating in Aristotle and 
formed from the four "modes": possibile (e.g. Socratem currere est 
possibile), impossibile, contingens, and necessari~. Besides these four 
modes, two more modes were cited by the logicians of the Middle 
Ages; namely, verwn and jalswn. However, these modes were given 
no further consideration, as the modal propositions corresponding 
to them, "it is true that p" and "it is false that p", were regarded as 
being equivalent to the propositions "p" and "Np". 2) 

The expres'sion "it is possible that" is not defined here; its sense is 
made clear by the theorems which hold for modal propositions. 

2. Theorems concerning modal propositions 

In the history of logic we meet with three groups of theorems con
cerning modal propositions. 

Among the first group I count those well-known theorems which 
have been handed down to us from classical logic and have been re-

-garded by it as truths evident without demonstration: 
(a) Ab oportere ad esse valet consequentia. 

~------· 

(b) Ab esse ad posse valet consequentia. 
By contraposition we get from (b) a third proposition: 

_ (c) Ab non posse ad non esse valet consequentia. 
2) Cf. Prantl, Geschichte derL;gik i~-Abe;dzande, vol. iii, p. 14, note 42; p. 117, 

note 542. 
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The latter proposition means: "The inference from not-being-possible 
to not-being is valid". For instance: It is not possible to divide a prime 
number by four; therefore no prime number is divisible by four. This 
example is plausible, and just as plausible is the following general the
orem which we shall keep in mind as representative of the first group: 

I. If it is not possible that p, then not-p. 

.. Less well known, but no less inti.lltive-;-see-m:s to be the followmg 
theorem of the· second group quoted by Leibniz in the Theodicee: 3) 

(d) Unwnquodque, quando est, oportet esse. 
"Whatever is, when it is, is necessary." This theorem dates bade to 
Aristotle, who, to be sure, holds that n:ot everything which is is neces
sary and not everything which is not is impossible, but when some
thing which is is, then it is also necessary; and when something which 
is not is not, then it is also impossible. 4) 

The theorems just quoted are not easily interpreted. First I shall 
give some examples. 

It is not necessary that I should be at home this evening. But when 
I am at home· this evening, then c;m this assumption it is necessary that 
I should be at home this evening. A .second example: It rarely happens 
that I have no money in my pocket, but if I have now (at a certain 
moment t) no money in my pocket, it is not possible, on this assumption, 
that I have money (at just the same moment t) in my pocket. 

Note has to be taken of two things about these examples, First, the 
propositions: "I am at home this evening" and ''I have (at the moment t) 
no money in my pocket" are supposed to be true, and on this supposition 
the necessity or impossibility respectively is inferred. Secondly, the 
word quando in ( d), and the corresponding 5"t"o.:v o~ Aristotle, is not 
a conditional, but a temporal particle. Yet the temporal merges into the 
conditional, if the determination of time in the temporally connected 
propositions is included in the content of the propositions. 

The examples given are, moreover, evident enough to establish the 
following general theorem, which we shall keep in mind as represent
ative of the second group: 

3
) Philos. Schriften (ed. Gerhardt), vol. 6, p. 131. 

4
) De interpr. 9. 19a23: To µ.E:v 00'1 El'IO:I "l;Q av lho:v 'ii, xo:l "1;0 µ.-lJ av µ.-lJ e:!vo:1, 

lhocv f.'-li '/i, &v&yx71· oo v.-Jiv oll-i;-e 1'0 llv &:rcrxv &v&y.<l] dvm oll-re: -i;-o v.-Ji llv v.-!i dvocL. 
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II. If it is supposed that not-p, then it is (on this supposition) not possible 
that p. 

The third group consists of only one theorem based on the Aristotelian 
concept of "two-sided" possibility. According to Aristotle there are 
some things which are possible in both directions, i.e. which can be, 
but need not be. It is possible, for instance, that this cloak should be cut; 
but it is also possible that it should not be cut. 5) 

Again, it is possible that the patient will die, but it is also possible 
that he will recover, and therefore not die. This concept of two-sided 
possibility is deeply rooted in everyday thinking and SJ2~_(!f_Q, _Ihe fol
lowing theorem, to which we will return, seems therefore to be just 
as evident as the two preceding ones: 

III. For some p; it is possible that p and it is possible that not-p. 

3". Consequences of the first two theorems concerning modal propositions 

We shall now draw some inferences from theorems I and II cited 
above. For this purpose we shall first represent those theorems in the 
symbolism of propositional logic. 

Let "Cpq" symbolize the implication: "if p, then q", ''p" and "q" 
denoting any proposition. It is evident that theorem I can be expressed 
in the form of an implication, which I call "thesis" 1 : 6) 

I CNMpNp. 

Meaning: ""'If it is not possible that p, then not-p." 
It is not equally evident, but can be proved, that theorem II can be 

represented as an implication which is the convers·e of 1. For if a propo
sition "fl" is valid on the assumption "cl', this means no more than that 
"fl" is true if "rx" is true. The implication "if rx, then fJ" therefore holds-, 
if "rx" is true. Since this implication must also hold if "rx" is false, it 
holds bf both cases. We thus arrive at the thesis: 

2 CNpNMp. 

") De interpr. 9. 19a9: of.co.; ~o--r•v b; -roI<; µ7] &et &vepyoucn -ro 13uvo:-rov dvo:t 
xo:t µ7) oµolro<;· ~" o!<; &µqiro b;l3E:xe-ro:t, xo:t -ro dvo:• xo:t -ro µ7) e!vo:t ... ofov 5n 
-rou-rt -ro lµoc-r•ov 13uvo:-r6v l:crn l3•o:-rµ"l]&;jvo:L .. oµolro<; 131; xo:t -ro µ.7] l3•o:-rµ7].&'ijvo:• 
13uvo:-r6v. 

~-----~!9--Following-Le8niewski,-L_understand_by _'.'theses" axioms as well as theorems 
of a deductive system. 
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This means: "If not-p, then it is not possible that p." Theorem II cannot 
be expressed in any other way in the two-valued propositional calculus. 

From these theses and using the usual propositional calculus, we shall 
prove several consequences. All the following demonstrations are 
strictly formalized and carried out by means of two rules of inference: 
substitution and detachment. These well-known rules of inference will 
noLbe_discussed:..:.here..__I_wo.nly_explain how formalized-p.JOuo:ii:o1+1fs'-A'ar""e\-----
recorded in the symbolism which I introduced. 

Before each thesis to be proved (to which consecutive numbers are. 
assigned for purposes of identification) is an unnumbered line, which -I 
call the "derivational line". Each derivational line consists of two parts 
separated by the sign " x ". The symbols before and after the separation 
sign denote the same expression, but in different ways. Before the sepa
ration sign, a substitution is indicated, which is to .be carried out on a 
thesis already proved. In the first derivational line, for example, the ex
pression "3q/Mp" means that "Mp" should be substituted for :'q" in 3. 
The resultant thesis, which is omitted in the proof for the sake of brevity, 
would be: 

3' CCNMpNpCpMp. 

The expression "Cl-7" after the separation sign refers to this thesis 
3' and indicates that the rule of detachment can be applied to 3'. Thesis 
3' is asserted as a substitution instance of thesis 3; but since it is an 
implication whose antecedent is thesis 1, its consequent may be detached 
and asserted as thesis 7. In the second derivational line the number "8" 
denotes .the thesis obtained from 7 by the substitution ''p/Np". In the 
derivational line of thesis 10, the rule of detachment is used twice. 
After these explanations, I believe the reader will have no difficulty 
in understanding the demonstration below. 

In addition to theses 1and2, which appear as axioms, four well-known 
auxiliary theses from the ordinary propositional calculus appear in the 
demonstration: three laws of transposition, numbered 3..:_5; and the 
principle of the hypothetical syllogism, thesis 6. All of these theses I 
place at the head of the demonstration· as premisses. 

1 

2 

3 

CNMpNp. 

CNpNMp. 

CCNqNpCpq. 
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
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CCNpqCNqp. 

CCpNqCqNp. 

CCpqCCqrCpr. 

* 
3q/MpXCl-7. 
CpMp. 

7p/Npx8. 
CNpMNp. 

4q/MNpXC8-9. 
CNMNpp. 

6 p/NMNp, q/p, r/Mp x C9 - <:;7 -10. 
CNMNpMp. 

4p/MNp, q/MpxCl0-11. 
CNMpMNp. 

* 
3 qjp,p/MpxCl-12. 
CM pp. 

12p/Npxl3. 
CMNpNp. 

5p/MNp, q/pX Cl3-14. 
CpNMNp. 

6p/Mp, qjp, r/NMNpx C12- Cl4-15. 
CMpNMNp. 

5p/Mp, q/MNpxC15-16. 

CMNpNMp. 

Theses 7-11 are consequences of 1; 12-16 result from 2. Thesis 7 
says: "if p, then it is possible that p". Thesis 9 says: "if it is not possible 
that not-p, thenp". The latter thesis corresponds to theorem (a) in clas
sical logic, cited above, the first to theorem (b ). Both are evident. 
In fact, all theses of the first group, 7-11, are evident. 

Not so evident are the theses of the second group, 12-16. Thesis 
12 reads: "if it is possible that p, then p". On the basis of this thesis 

------we-0an-infer-Ht-is-p0ssible-.that.the--patient will die; hence he will die. 
This inference will be admitted o~y by those making no distinction 

·--------------
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between possibility and being. Theses of the second group, 12-16, 
are the converses of theses of the first group, 7-11. Whoever admits 
both groups of theses must assume the following propositions to be 
equivalent: "p'', "it is possible. that p'', and "it is not possible that 
not-p'', or-"it is necessary thatp". Also the propositions ''not-p", "it is 
possible that not-p", and "it is not possible that p". But then the con-

m - cepfSOf poss1oility and necessity-become dispensable. Tiris unpleasant 
consequence results from the acceptance of our symbolic formulation 
of theorem II, which is evident in ordinary language and can be recog
nized as being true without reservation. Nevertheless it seems to me 
impossible to express proposition II in the symbolic language of the 
two-valued propositional calculus in any other way than by a simple 
implication which is the converse of thesis 1. 

4. Consequences of the third theorem on modal propositions 

The symbolic formulation of the third theorem leads to another 

unwelcome result. 
Theorem III can be expressed only by means of the symbolism of the 

extended propositional calculus. Let "};" be the existential quantifier, 

and let "l)p" denote the expression '"for some p". Let "Kpq" be the 
symbol of conjunction, "p and q", where ''p" and "q" denote any propo
sitions. Theorem III can then be expressed symbolically as follows: 

17 };pKMpMNp. 

This means verbally: "For some p: it is possible that p, and it is possible 

that not-p." 
The existential quantifier "2" can be expressed by means of the 

universal quantifier "n". If "np" says: "for every p'', and if "rx(p)" 
represents any expre:;;sion containing "p'', · the following definition is 

evident: 
DI 2prx(p) = NflpNrx(p). 

DI states that the expressions: "for some p, rx(p) (holds)" and "it is 
not true that for each p not-rx(p) (holds)" mean the same thing. Thesis 
17 then becomes the following thesis: 

18 NflpNKMpMNp. 
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There is, however, besides the extended propositional calculus, a still 
more general logical system created by Lesniewski, which he has termed 
"protothetic". 7) The main difference between protothetic and the extend
ed propositional calculus is the occurrence, in the latter of variable 
"functors" 8) as well as constants. 

Denoting a variable functor to which one proposition only is attached. 
as argument by "ef/', we can prove the following proposition in proto
thetic: 

CK<f>p<f>Np<f>q. 

~-----------In-words-:-"ff-¢-ef--p-and-<f>-0f-n0t-p,then-¢-of-q/L--

Since this proposition is valid for all functors with one argument, 
it is also valid for the functor "M". We thus obtain: 

19 CKMpMNpMq. 

Theses 18 and 19, as well as two auxiliary theses from the ordinary 
propositional calculus, viz. the principle of transposition 4 mentioned 
above, and another rule of transposition, thesis 20, are premisses of the 
formalized proof given below. Besides substitution and detachment, 
the rule for the introduction of a quantifier is used in the proof. This 
rule runs thus: If in the consequent of an implication which is a thesis 
there occurs a free propositional variable ''p" which does not occur 

in the antecedent of that implication, the symbol "[Jp" may be put 
before the cons~quent. This rµle of inference is denoted below by "+ []." 
Beginning with the premisses, our demonstration then reads thus: 

18 

19 

20 

21 

22 

N[JpNKMpMNp. 

CKMpMNpMq. 

CCpqCNqNp. 

20p/KMpMNp, q/MqXCl9-2l. 

CNMqNKMpMNp. 

21+[Jx22. 

CNMq[JpNKMpMNp. 

7) S. Le5niewski, "Grundztige eines neuen Systems der Grundlagen der Mathe
matik", introduction and§§ 1-11, Fund. Math. 14(1929). 

) In the function "Cpq'\-''C'riStlie"fuiiCtor'';--imd "p" and "q" the "arguments". 
The term "functor" was introduced by Kotarbiilsk:i. 

23 
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4p/Mp, qj[JpNKMpMNpxC22q/p-C18-23. 
Mp. 
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The result obtained, thesis 23, has to be admitted as being true. This 
thesis, which in words reads "it is possible that p'', holds for any p. 
We therefore have to admit as true the proposition "it is possible that 
2 is a prime number'', as well as· the proposition "it is possible that 
2 1s not a prime number". Freely -speakin~llave been led to admit 
everything as possible by reason of theorem III. Yet if everything is 
possible, then nothing is impossible and nothing necessary. For if the 
proposition "Mp" is admitted, we obtain from it by substitution the 
proposition "MNp", and the expressions "NMp" and "NMNp" have 
to be rejected as negations of those preceding. 

These are consequences running contrary to all of our intuitions. 
Yet I see no possibility of expressing theorem III, in the symbolism 
of the extended propositional calculus, in any other form than that 
of thesis 17 or 18. 

5. Incompatibility ofthe theorems on modal propositions in the two~valued 
propositional calculus 

The unpleasant consequences to which we were led by theorems II · 
and III considered separately become wholly unacceptable when we 
consider both theorems together. 

Indeed, when we combine thesis 12, resulting from the symbolic 
formulation of theorem II, with thesis 23 : 

12 CMpp 
23 Mp 

we immediately obtain: 

12xC23-24, 
24 . p. 

If therefore theses 12 and 23 are valid, any propositionp is valid too. 
Hence we arrive at the inconsistent system of all propositions. Theorems 
II and III are incompatible when symbolically represented as theses 2 
and 18. 

We can obtain the same result without employing thesis 19, which 
presupposes a proposition from protothetic. In the following demon-
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stration we use the theses 12, 13, and 20 alone, as well as certain auxiliary 
theses of the ordinary propositional calculus: 

25 

26 

27 

28 

CpCqp. 

NKpNp. 

CCpqCCrsCKprKqs. 

* 
21p/Mp, q/p, r/MNp, s/NpxC12-Cl3-28. 
CKMpMNpKpNp. 

-------'JO-pf-KMpMNp_,_qJK12NJLKC28 - C26-::29. 

29 

30 

31 

32 

NKMpMNp. 

25 p/NKMpMNpx C29 - 30. 
CqNKMpMNp. 

3o+n x31.. 
CqflpNKMpMNp. 

31 q/ CpCqp x C25 - 32. 

flpNKMpMNp. 

Theses 18 and 32 contradict each other. Therefore propositions II 
and III are incompatible. 

The demonstration given above could be made intuitively plausible 
in the following manner: If according to proposition III the e?'pressions 
"Mrx" and "MNrx" were jointly true for a certain proposition "rx'', 
then the propositions "rx" and "Nrx" would also have to be true accord
ing to theses 12 and 13. Yet this is impossible, because "rx" and "Nrx" 

contradict each other. 
In view of this fact the problem of modal propositions could be solved 

in two ways, taking the two-valued propositional calculus as a basis. 
Theorem I and those theses of the first group connected with it (viz. 
theses 1 and 7-11) have to be accepted unconditionally; they were 
actually never called in question. Of theorems II and III only one can 
be selected. If we decide in favour of theorem II and those theses of the 
second group connected with it (viz. theses 2 and 12-16), then all modal 
propositions become equivalent to non-modal ones. The consequence 

------of-this-is-that-it-is-net-worth-while .to-introduce modal propositions 
into logic.:.· Also, the extremely intuitive concept of tw~-sided possibility 
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must then be rejected as being inconsistent. If, on the other hand, we 
decide in favour of proposition III, we are compelled to admit the para
doxical consequence that everything is possible. On this condition 
again it is senseless to introduce modal propositions into logic; more
over, we would then have to do without the intuitively evident theorem 
II in order to avoid contradiction. None of these solutions can claim 
to-be-satisfacto . 

A different result was not to be expected. This becomes especially 
clear when the system of the two-valued propositional calculus is defined 

- by the so-called matrix method. On the basis of this method it is assUined 
that all propositional variables can take only two constant values, 
namely "O" or "the false" and "1" or "the true". It is further laid down 
that: 
C00=C0l=Cll=l, ClO=O, NO=l, and Nl=O. 

These equations are recorded in the following table, which is the 
"matrix" of the two-valued propositional calculus based on "C" and "N". 

C 0 1 N 
-----
0 1 1 
1 0 1 0 

In a two-valued system only four different functions of one argument 
can be formed. If "<//' denotes a functor of one argument, then the 
following cases are possible: (1) <f>O = 0 and <f>l = O; this function 
we denote by "Fp" ("falsum of p"). (2) <f>O = 0 and <f>l = l; <f>p is equiv
alent top. (3) <f>O = 1 and <f>l = 0; this is the negation of p, "Np". 
( 4) <f>O = 1 and </> 1 = 1; this function we denote by "Vp" ("verum of p")· 

"Mp" must be identical with one of these four cases. But each of theses 
1, 2, and 18 excludes certain cases. By direct verification with "O" and 
"1" it can be ascertained that: 

(A) l ~ 
18 

CNMpNp holds only for Mp = p or Mp = Vp. 
CNpNMp holds only for Mp = p or Mp = Fp. 
N fl pNKMpMNp holds only for Mp = Vp. 

Thesis 18 is verified by the statement: fl prx(p) = Ka(O)rx(l). One 
then obtains: 
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N flpNKMpMNp = NKNKMOMNONKMlMNl 
= NKNKMOMINKMIMO 
= NKNKMOMlNKMOMl 
= NNKMOMl = KMOMl. 

The last conjunction obtains only on the condition that 

MO=Ml = 1. 

The conditions (A) make it evident that theses 1 and 2 can be valid 
jointly only for Mp= p; just as theses 1 and 18 can be valid only for 
Mp = Vp. Theses 2 anO:--lS-are-incompatible;-a:s-there is no function 
for "Mp" which would simultaneously verify both theses. 

6. Modal propositions and the three-valued propositional calculus 

When I recognized the incompatibility of the traditional theorems 
on modal propositions in 1920, 9) I was occupied with establishing the 
system of the ordinary "two-valued" propositional calculus by means 
of the matrix method. 10) I satisfied myself at that time that all theses 
of the ordinary propositional calculus could be proved on the assumption 
that their propositional variables could assume only two values, "O" 
or "the false'', and "I" or "the true". 

To this assumption corresponds the basic theorem that every propo
sition is either true or false. For short I will term this the law of biva
lence. Although this is occasionally called the law of the excluded 

9) In the report cited in note 1 (p. 153) I had defined the concept of two-sided pos
sibility more strictly by assuming that the propositions "it is possible that p" and 
"it is possible that not-p" must always hold simultaneously, which in conjunction 
with propositions of the two first groups leads. to numerous contradictions. I had 
in mind here the Aristotelian concept of "pure" possibility. It seems that Aristotle 
distinguished between two essentially different :kinds of possibility: possibility in the 
proper sense or pure possibility, by which something is only possible if it is not nec
essary;' and possibility in the improper sense, which is connected with necessity 
and results from it according to our thesis 10. Cf. H. Maier, Die Syllogistik des Ari
stoteles, part i (Ti.ibingen, 1896), pp. 180, 181. 

10) The results of these inquiries have been published in my article ''Logika dwu
~------:wartoscim;£a'.'.-(T.v.i:o.:cv_alu~<J_gic),~gi£.J:i _~Pl'eared in. the Polish philosophical 

review Przeglq_d Filozoficzny (Studies in honour of Professor Twardowski) 23 (1921), 
pp. 189-205 [pp. 89-109 of this book]. 
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middle, I prefer to reserve this name for the familiar principle of classical 
logic that two contradictory propositions cannot be false simultaneously. 

The law of biva1ence is the basis of our entire logic, yet it was already 
much disputed by the ancients. Known to Aristotle, although contested 
for propositions referring to future contingencies; peremptorily rejected 
by the Epicureans, the law of bivalence makes its first full appearance 
with ChrysiJ;lpus and the Stoics as a principle of their dialectic, which 
represents the ancient propositional calculus.11) The -qua~~el about the 
law of bivalence has a metaphysical background, the advocates of the 
law being decided determinists, while its opponents tend towards an 
indeterministic Weltanschauung. 12) Thus we have re-entered the area 
of the concepts of possibility and necessity. 

The most fundamental law of logic seems after all to be not quite 
evident. Relying on venerable examples, which go back to Aristotle, 
I tried to refute the law of bivalence by pursuing the following line 
of thought.*) 

I can assume without contradiction that my presence in Warsaw 
at a certain moment of next year, e.g. at noon on 21 December, is at 
the present time determined neither positively nor negatively. Hence 
it is possible, but not necessary, that I shall be present in Warsaw at 
the given time. On this assumption the proposition "I shall be in War
saw at noon on 21 December of next year", can at the present time 
be neither true nor false. For if it were true now, my future presence in 
Warsaw would have to be necessary, which is contradictory to the 
assumption. If it were false now, on the other hand, my futtire presence 
in Warsaw would have to be impossible, which is also contradictory 
to the assumption. Therefore the proposition considered is at the mo
ment neither true nor false and must possess a third value, different 
from "O" or falsity and "1" or truth. This value we can designate by 

11) Cf. the appendix: "On the history of the law of bivalence", pp. 176 ff. 
'

2
) In the inaugural address which I delivered as Chancellor of the· University 

of Warsaw in. 1922, I tried to solve the problem of an indeterministic philosophy 
by three-valued logic. A revised version of this lecture will be published shortly in 
Polish. [ill fact, this text ("On Determinism") was published 16 years later by J. Slu
pecki in the 1961 edition Z zagadniefz logiki i filozofii, an'd next, in an English trans
lation in· the McCall edition as paper 2, reprinted in this book on pp. 110---128.] 

*) In the paper "On Determinism" mentioned above Lukasiewicz gives an example 
of the reasoning of the same kin?. 
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"f'. It represents "the possible", and joins "the true" and "the false" 
as a third value. . 

The three-valued system of propositional logic owes its origin to this 
line of thought. Next the matrix had to be given by which this new 
system of logic could be defined. Immediately it was clear to me that 
if the proposition concerning my future presence in Warsaw took 
the value t, its negation must take the same value t. Thus I obtained 
the equation Nt = t. For implication I still had to determine the 
five equations containing the value t, namely COt, CtO, cg, Ctl, 
and Cit. Equations not containing the value t, I took over from the 
two-valued system of proposmonaI1ogi.c, as well as the.values for "NO" 
and "Nl". The desired equations I obtained on the basis of detailed 
considerations, which were more or less plausible to me. In this way I 
finally arrived at the formulation of a three-valued propositional cal
culus, defined by the matrix below. The system originated in 1920.13) 

C 0 i 1 N 

0 I I 1 1 
i t 1 1 t 
1 0 t I 0 

7. Definition of the concept of possibility 

On the basis of this system I then tried to construct a definition of 
the concept of possibility which would allow me to establish all the 
intuitive traditional theorems for modal propositions without contra
diction. I did this with regard to the concept of "pure" possibility, 
and soon found a satisfactory definition. 14

) Later on, however, I became 
13) I reported on this system to the Polish Philosophical Society at Lw6w on 19 June, 

1920. The essential contents of this report have been published in Ruch Filozoficzny 5 
(1920), p. 170 [pp. 87-88 of this book]. 

14) The definition found was rather compli_cated and read thus: 

D*l Mp= AEpNpJiqNCpKqNq. 

· That is: The expression "it is possible that p" means "either p and not-p are equiva
lent to one another, or there is no pair of contradictozy propositions implied by p" • 
"A" is the sign of alternation; "E" the sign of equivalence. In three-valued logic the 
following definitions hold: 

~~--~-B*-2 :Apq-~GGpqq,-----········ 

D*3 Kpq = NANpNq. 

j 
I 

I 
1 

+ I 
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convinced that the wider concept of possibility in general was to be 
preferred to the more narrow concept of pure possibility. In what follows, 
therefore, I discuss a definition of the latter concept, which satisfies 
all the requirements of theorems I-ID. 

The definition in question was discovered by Tarski in 1921 when 
he attended my seminars as a student at the University of Warsaw. 

· TarsKi:'SClefiillt10n 1s as follows: 

D2 Mp= CNpp. 

Expressed verbally this says: "it is possible that p" means "if not-p 
thenp". 

One must grasp the intuitive meaning of this definition. The expres
sion "CNpp" is according to the three-valued matrix false if and only 
if "p" is false. Otherwise "CNpp" is true. Thus we obtain the equations: 

MO = 0, Mt = 1, Ml = 1. 

D*4 Epq = KCpqCqp. 

The definition of "impossibility" is more evident: 

D*5 NMp = KNEpNp~qCpKqNq. 

That is, the expression "it is not possible that p" means ''p and not-p are not equiva
lent to one another, and there is a pair of contradictory propositions implied by p". 

From D*l the following equations are obtained for "M": MO= 0, Mi= 1, 
Ml = l By means of these equations and the matrix of the three-viilued propositional 
calculus the following theses can be easily verified: 

(1) CpCpNMNp. 

(2) CNpCNpNMp. 

(3) CMpCMpMNp. 

(4) 

(5) 

(6) 

CMNpCMNpMp. 

CNMpCNMpNp. 

CNMNpCNMNpp. 

Thesis (5) allows us to obtain by .two detachments, in accordance with theorem I and 
on the basis of the admitted proposition "it is not possible that oc" ("NMoc"), the 
proposition "not-oc" ("Noc"). Conversely we get by two detachments the proposition 
"it is not possible that oc" ("NMoc"). from thesis (2), in accordance with theorem II, 
on the basis of the admitted proposition "not-o:" ("Noc'). Furthermore, if one of 
the propositions "it is possible that oc" ("Moc"), and "it is possible that not-oc" ("MNoc") 
is admitted, the other of these propositions has to be admitted too, by theses (3) 
and (4). From the admitted propositions "oc" and "it is necessary that oc" no inference 
can be made to the proposition "it is possible that oc", since we are dealing here with 
"pure" possibility, which is incompatible with necessity. Cf. note 9, page 164. 
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Hence, if any proposition "ct'' is false, the proposition "it is possible 
that a" is false too. And if "a" is true, or if it takes the third value, 
that of "possibility", then the proposition "it is possible that a" is true. 
This agrees very well with our intuitions. · 

In two-valued logic the expression "CNpp" is equivalent to the ex
pression ''p"; but not in three-valued logic. The thesis "CCNppp", 
valid in the two-valued calculus, and appearing as an axiom in my 
system of the ordinary propositional calculus,15

) is not valid for p = i 
in the three-valued system. Vailati has written an interesting mono
graph-<m--t.fte-thesis-::CCNpp~, 16)-in_which-iLis__shown. that Euclid 
made use of this thesis in demonstrating one of his theorems, without 
formulating it expressly. 17

) It was Oavius, a commentator on Euclid 
froin the second half of the sixteenth century, a Jesuit and the con
structor of the Gregorian calendar, who first paid attention to this 
thesis.18) Since that time it appears to have acquired a certain popularity 
among Jescit scholars under the name consequentia mirabilis. 19

) The 
notable Jesuit Gerolamo Saccheri in particular was so taken by the 

15) Cf. Elementy logiki matematycznej (Elements of mathematical logic), a litho
graphed edition of lectures given by me _at the University of Warsaw in the autUillll 
of 1928-1929, revis~d by M. Presburger (Warsaw, 1929), p. 45. [An English trans
lation made by 0. Wojtasiewicz and edited by J. Siupecki (Elements of Mathematical 
Logic) was published as co-edition by PWN. and Pergamon Press in 1963 and 
reprinted in 1966.] 

16) Scritti di G. Vailati, Leipzig-Firenze, 1911. CXV. A proposito d'un passo de! 
Teereto e di una dimostrazione di Euclide, pp. 516-527. 

17) Cf. Vailati, op. cit., pp. 518 ff. It seems to have escaped Vailati that the above
mentioned thesis was already known to the Stoics, although :not in its pure form. 
We read in Sextus E~piricus, Adv. math. viii. 292; d To 7tp&Tov, TO 7tp&Tov· d ou 

't'O np&-rov, 't'O 7tp&-rov· 1J't'o~ 't'O 1t'pci>'t'ov TJ oU "t'O 7tp&-rov· 't'O np&"t'OV &pct.. If in 
this schema the self-evident premisses d To 7tp&Tov, To 7tp&Tov and ~ToL To 

7tp&Tov 1) 06 i:o 7tp&Tov are omitted, we obtain the consequence d ou To 7tp&Tov, 

To 7tp&Tov· -t-o 7tp&Tov &pee, which corresponds to the thesis "CCNppp". 
18) Cf; Vailati, op. cit., p. 521. . 
19) I.find the name consequentia mirabilis for this thesis. in the writings of Polish 

Jesuits. Adam Krasnod~bski, in his Philosophia Aristotelis explicata (Warsaw, 
1676), ·Dicileciiciie Prolegomenon 21, writes, for instance, the following: Artifidum 
argumentandi per consequentiam mirabilem in hoc positum est (uti de re speculativa 

~-~----'optime-1n..Eolonia..metit~._R. P.~_Tft2~ MliJ_clgjqnows!ci Tr. I de Poenii. disp. 1. quae. 
1. difficul. 1 No. 20 refert), ut expropositione quam tuetur. respondens, ab argumentante 
eliciatur contradictoria. 

_J 

. i 
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thesis "CCNppp" that he attempted to demonstrate Euclid's par
allel postulate on: the basis of it. The attempt failed, but Sac
cheri gained the title of being a precursor of non-Euclidean geom-
etry. 20) -

The thesis "CCNppp" states that if for a certain proposition; say "a'', 
the implication "CNaa" holds, then "a" holds too. __ The implication 
''ifnur--cr,th~a"-dues-n:ot;--to··be-sure;·me:m-the-samecrs-tb:e-expressio,.,. ------
"a can be inferred from not-a'', yet the more general concept of impli-
cation covers the more special case of inference. If therefore from 
a proposition "not-a" the proposition "a" can be.inferred, then "a" 
is true. It would, however, not be correct. to assume with Saccheri 
that the fact "from not-a is inferred a" stamps the proposition "a" 
as a prima veritas. 21

) On the contrary, the thesis "CCNppp" strikes 
us as outrightly paradoxical, as is also indicated by . its name, conse-
quentia mirabilis. This alone is certain: if any proposition can be inferred 

·from its contradictory opposite, it is certainly not false, hence not 
impossible either. It is possible, as Tarski's definition states. This de~ 
:finition will perhaps be even more obvious, if it is applied to the concept 
of necessity. For we obtain in accordance with D2:· · 

.D3 NMNp = NCpNp, 

which says that "it is necessary that p" means "it is not true that if p, 
then not-p". Freely speaking, we can then assert that a certain propo
sition "a" is necessary, if and only if it does not contain its own ne
gation. 

Without stressing the intuitive character of the above definition, 
we have to admit in any case that this definition meets all .of the re
quirements of theorems I-ID. Indeed, as Tarski has shown, it is the 
only positive. definition in the three-valued system which meets these 
requirements. We will now proceed to demonstrate these last 
assertions. 

20) Cf. Vailati, op. cit. CIX. Di un'opera dimenticata de! P. Gerolamo Saccheri 
('Logica demonstrativa' 1697), pp. 477-484. 

21) Cf. Vailati, op. cit., p. 526, where the following words of Saccheri are quoted: 
"Nam hie maxime videtur esse cuiusque primae veritatis veluti character ut non nisi 
exquisita aliqua redargutione ex suo ipso contradictorio assumpto ut, vero ilia ipsi 
sibi tandem restitui possit" (Euclides ab omni naevc/ vindicatus, p. 99). 
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8. Consequences of the definition of the concept of possibility 

From definition D2 it follows that all thes·es of the first group are 
verified, i.e. thesis 1, corresponding to theorem I, and theses 7-11. For 
in three-valued propositional logic the thesis 

Tl CpCqp 

holds good. We thus obtain: 

Tlq/NpxT2. 

T2 CpCNRR~·-----
T2.D2xT3. 

T3 Gp Mp. 

In the derivational line belonging to thesis T3 a rule of inference has 
been used which permits us to replace the right side of a definition 
by its. left. Since all laws of transposition as well as· the principle of 
the syllogism hold true in the three-valued calculus, we obtain all of 
the remaining theses of the first group from T3. All these theses are 
perfectly evident. 

The theses of the second group are not valid. However, not all these 
th~ses are evident in any case. Two of them, of which one corresponds 
to theorem II, are in a certain sense valid, though not as simple impli
cations. To be exact, by definition D2 the following propositions hold 
true in the three-valued calculus: 

CpCpNMNp and CNpCNpNMp, 

although the expressions 

CpNMNp and CNpNMp 

a.re not valid. This is caused by the fact that in the three-valued calculus 
the thesis "CCpCpqCpq" does ncit hold, and because of this the expres
sions "CrxCrxfJ" and "CrxfJ" are not equivalent to each other as they 
are in the ordinary two-valued calculus. The above-mentioned propo
sitions can be demonstrated by means of the following auxiliary theses, 
which also hold true in three-valued propositional logic: 

T4 CpCCpqq. 

~~--~_....T_,5-----CpCCNN.p..q_q_. __ _ 

T6 CCpCqrCpCNrNq. 

T7 

- T8 
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CCpCqNrCpCrNq. 

* 
T6p/Np, q/CNpp, r/px CT4p/Np, q/p-T8. 
CNpCNpNCNpp. 

T8.D2XT9. 
T9----eNpeNp-NMyrr.,----

TlO 

T11 

T7q/CNNpNp, r/pxCT5q/Np-TlO. 
CpCpNCNNpNp. 

T10.p2p/NpXTll. 
CpCpNMNp. 
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If the proposi:tion "not-rx" is admitted, then by double detachment 
applied to thesis T9, the proposition "it is not possible that rx" is obtained. 
If the proposition "rx" is admitted, then, by Tll and double detachment, 
one arrives at the proposition: "it is not possible that not-a" which 
means the same as "it is necessary that rx". It can therefore be correctly 
inferred: "I have no money in my pocket; hence it is not possible that I 
have money in my pocket." Or again, "I am at home in the evening; 
hence it is necessary that I am at home in the evening". The intuitively 
evident theorem II has been shown to hold good, moreover, in such 
a way that. the Aristotelian maxime is maintained, according to which 
not everything which is is necessary and not everything which is not 
is impossible. For the expressions "rx" and "NMNrx" as well as "Nrx" 
and "NMrx" are not equivalent to each other. Nor can being be inferred 
from possibility, as long as "Mp" means the same as "CNpp", since 
neither "CMpp" nor "CMpCMpp" holds true in the three-valued prop
ositional calculus. 

Finally, theorem ill is verified in the form of the theses: 

T12 ~pKMpMNp 
or 

TB NllpNKMpMNp, 

in which the following definitions are assumed: 

D4 Apq = CCpqq. 

D5 Kpq = NANpNq. 

Theses T12 and T13 are easily verified with the help of the matrix of 
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the three-valued calculus and the equations given for "M" in the pre
ceding section. For p = i we obtain: 

KMtMNi = KIMi = Kll = 1. 

There is, therefore, a value for p for which the expression "KMpMNp" 

is. correct. 
As a resume of the above :findings we are now able to establish the 

following theorem: 
All the traditional theorems for modal propositions have been established 

---~fufLJR contradiction in the three-valued propositional calculus, on the 
basis of the definition "Mp= CNpp". - . 

This result seems to me highly significant. For it appears that those 
of our intuitions which are connected With the concepts of possibility 
and necessity point to a system of logic which is fundamentally differ
ent from ordinary logic based on the law of bivalence. 

It remains· to prove that the definition given by Tarski is the only 
one in the three-valued calculus which meets the requirements of the
orems-I-ill. This can be shown in the following manner. Since accord
ing to theorem I the proposition "Na" follows from the proposition 
"NMa", by the law of transposition "Ma" must follow from "a". 
Hence, if a= 1, then Ma= Ml= I. We thus obtain the equation 
Ml = 1. On the other hand, according to theorem II the proposition 
"NM a" follows from the proposition "Na". Hence if a= 0, or Na =l, 
then NM rx = NMO = 1. But NMO can equal 1 only under the condi
tion that MO= 0. We thus obtain the second equation: MO= 0. 

Finally also theorem ill, "2pKMpMNp'', must be true. But it is not 
true for p = 0 or p = l, for in both cases one term of the conjunction 
is false; hence the conjunction itself must be false too. We therefore 
have to assume that Mt = I, since only then does the conjunction 
"KMpMNp" equal I for p = l In this way the function "Mp" is fully 
determined. for the three-valued propositional calculus, and can be 
defined only by "CNpp" or by some other expression equivalent to it. 

9. Philosophical significance of many-valued systems of propositional logic 

________ weside_s_th_e three-valu<::§ system of propositional logic, I discovered 
an entire class of closely ~~latedsystems in- 1922, which r' defined by 
means of the matrix method in the following manner: 

PHILOSOPIDCAL REMARKS ON MANY-VALUED SYSTEMS 173 

When "p" and "q" denote certain numbers .of the interval (0, 1), then: 

Cpq = I for p ~ q, 
Cpq = 1-p+q for p > q, 
Np= 1-p. 

If only the limiting values 0 and 1 are chosen from the interval (0, 1), 
the_ab_Q~efuli~presents the_ matrix of the ordinary two-valued 
propositional calculus. If, in addition, the value f is included, we obtain 
the matrix of the three-valued system. In a similar manner 4, 5, ... 

... , n-valued systems can be fom;ied. 
It was clear to me from the outset_that among.all the many-valued 

systems only tw~ can claim any philosophical significance: the three
valued and the infinite-valued ones.*) For if values other than "O" 
and "1" are interpreted as "the possible", orily two cases can reasonably 
be distinguished: either one assumes that there are no variations in 
degree of the possible and consequently arrives ·at the tbfee-valued 
systeni; or one assumes the opposite, in which case it would. be most 
natural to suppose (as in the theory of probabilities) that there are 
infinitely many degrees of possibility, which leads to the infinite~valued 
propositional calculus~ I believe that the iatter system is preferable to 
all others. Unfortunately this system has _not yet been investigated 
sufficiently; in particular the relation of the infinite-valued system to 
the calculus of probabilities awaits further inquiry. 

22
) 

If the definition of possibility established by Tarski is assumed for 
the infinite-valued system, there result, as in the three-valued system, 
all theses mentioned in the preceding section. The intuitively evident 
theorems I-III are therefore also veriiied in the infinite-valued propo

sitional calculus. 
The three-valued system is a proper part of the two-valued, just as 

the infinite-valued system is a proper part of the three-valued one. 
This means that all theses of the three- and infinite-valued systems 
(without quantifiers) hold true for the two-valued system. There are, 
however, theses which are valid in the two-valued calculus but not 

22) My little book Die logischen Grundlagen der Wah:rscheinlichkeitsrechnung, 
Cracow, 1913, Akad. d_ Wiss., tries to base the notion of probability on quite a dif

ferent idea. 
*) In his "A System of Modal Logic" (pp_ 352-390 of this book) Lukasiewicz 

holds a clearly different opinion on this issue. 
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in the infinite-valued system. But when it is a question of the best 
known propositional theses-for instance thos-e lis-ted in Principia 
Mathematica 23)-the difference between the three-valued and the in
finite-valued propositional calculus is- minllnal. To be sure, I cannot 
find a single thesis- in this work that would be valid in the three-valued 
system without being also true in the infinite-valued one. 

The most important theses of the two-valued calculus which do not 
hold true for the three- and infinite-valued systems concern certain 
apagogic inference schemata that have been suspect from time imme-

-------m<7Fia1.-F-e-:r-e:xmnple,-the-follo:wing_fheses-do-not-hold -true in many
valued systems: "CCNppp", "CCpNpNp'', "CCpqCCpNqNp", "CCpKq 
NqNp'', "CCpEqNqNp". The :first of these theses has been discus-sed 
above; the second differs from the :first only by the introduction of the 
negation of p for p. The two other theses justify us in assuming a propo
sition "Nrx" to b,e true, when from its opposite "rx" two mutually contra
dictory propositions can be derived. The last thesis asserts that a prop
osition from which the equivalence of two contradictory propositions 
follows is incorrect. There are modes of inference in mathematics 
among others the so-called "diagonal method" in set theory,. which ar; 
founded on such theses not accepted in the three- and infinite-valued 
systems of propositional logic. It would be interesting to inquire wheth
er mathematical theorems based on the diagonal method could be dem
onstrated without propositional theses such as these. 

Although many-valued systems of propositional logic are merely 
fragments of the ordinary propositional calculus, the situation changes 
entirely when these systems are extended by the addition of the uni
versal quantifier. There are theses of the extended many-valued systems 
which are not valid in the two-valued system. T13 serves as an example 
of such a thesis. If the expression "Mp" in T13 is replaced in accordance 
with D.2 by "CNpp'', and "MNp" by "CNNpNp", we obtain the thesis: 

Tl4 N[JpNKCNppCNNpNp, 

which is false in the two-valued. calculus. The three-valued system of 
propositional logic with quantifiers, which owing to the research of 
Tarski and Wajs·berg can be represented axiomatically, is the simplest 

~------------- ·--·-······--·· 
"') Cf. A. N. Whitehead and B. Russell, Principia Mathematiea (Cambridge, 

1910), vol. i, pp. 94-131. 
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exam.pie of a consistent logical system which is as different from the 
ordinary two-valued system as any non-Euclidean geometry is- from 
the Euclidean. 

I think it may be said that the system mentioned is the first intuitively 
grounded system differing from the ordinary propositional calculus. 
It was the main purpose of this communication to prove that this in
tuitive-basis-J:ay-in-the-thee-re~hi<:lh are .intuiti.v.ely ev:id~ettatl'-71fo:'l1r-----
modal propositions, but which are not jointly tenable in ordinary logic. 
It is true that Post has ilivestigated many-valued systems of proposi-
tional logic· from a purely formal point of view, yet he has norbeen 
able to interpret them logically.24

) The well-known attempts of Brou-
wer,*) who rejects the universal validity of the law of the excluded 
middle and also repudiates several these.s of the ordinary propositional 
calculus, have so far not led to an intuitively based system. They are 
merely fragments of a system whose construction and significance are 
still entirely obscure. 25

) 

It would perhaps not be right to call the many-valued systems of prop
ositional logic established by me "non-Aristotelian" logic, as Aristotle 
was the :first to have thought that the law of bivalence could not be 
true for certain propositions. Our new-found logic might be rather 
termed "non-Chrysippean", since Chrysippus appears to have been 
the first logician to consciously set up and stubbornly defend the the
orem that every proposition is- either true or false. This Chrysippean 
theorem has to the present day formed the most basic foundation of 
our entire logic. ' 

It is not easy to foresee what influence the discovery of non-Chry-

24) See E. L. Post, "Introduction to a general theory of elementary propositions", 
Am. Journ. of Math. 43 (1921), p.182: " ... the highest dimensioned intuitional prop
osition space is two." 

25) Cf., e.g., L. E. J. Brouwer, "futuitionistische Zerlegung mathematischer Grund
begri:ffe'', Jahresber. d. Deutsch. Math.-Vereinigung 33 (1925), pp. 251 ff.; "Zur Be
grlindung der intuitionistischen Mathematik. I'', Math. Ann. 93 (1925), pp. 244 ff. 

*) In 1930, when this article appeared, the results obtained by A. Heyting and 
expressing Brouwer's intuitions in the form of a formalized logical system were not 
yet published. In his paper "On the Intuitionistic Theory of Deduction" (pp. 325-340 
of this book) Lukasiewicz says of that system: "It seems to me that among the hith
erto known many-valued systems of logic the intuitionistic theory is the most in
tuitive and elegant". 
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sippean systems of logic will exercise on philosophical speculation. 
However, it seems to me that the philosophical significance of the 
systems of logic treated here might be at least as great as the signifi
cance of non-Euclidean systems of geometry. 

APPENDIX 

On the history of the law of bivalence 

The law of bivalence, i.e. the law according to which ey:i;)ry proposition 
is either true or false, was familiar to Aristotle, who explicitly character
ized a proposition, &n6cpatvcrLc;, as discourse which is either true or 
false. We read in De interpr. 4. 17a2: &nocpo<:v't'rn.bc; oe (scil. J..6yoc;; 
).6yoc; anocpo<:v't'LX6c; = &n6cpatvcrLc;) oO nae;, &A/..' tv tji 't'b aA1J&e:Ue:Lv 'fl 
ljie:QIJe:cr&atL unifpxe:L. Aristotle, however, does not accept the Validity 
of this law for propositions dealing with contingent future events. 
The famous chapter 9 of De interpretatione is devoted to this matter. 
Aristotle believes that determinism would be the inevitable consequence 
of the law of bivalence, a consequence he is unable to accept. Hence 
he is forced to restrict the law. He does not, however, do this decisively 
enough, and for this reason his way of putting the matter is not quite 
clear. The most important passage reads as follows (De interpr. 9.19a36): 
't'OU't'WV yap ( scil. 't'WV µ~ &d ~V't'WV] µ~ &e:t µ~ ~V't'WV) &v&yx1J, [LEV &&'t'e:pov 
µ6pLov -r'fic; &v-rLcp&cri::wc; &f..1J&ec; dvatL ] ljii::ulloc;, oo µev't'oL "61Ji:: ] "61Ji:: 
&M' on6't'ep ~"uxi::, xo<:t µccf.f.ov µev &A1Jcp'i\ ~v &'t'epatv, oo µenoL 
1Jll1J &A1J&~ ] ljii::ull~. Another passage of De interpretatione, 
viz. 18b8: "b yap on6't'e:p' ~-ruxi::v o01Jev µi:CAJ.ov 01'.hwc; ] µ~ ofhwc; ~e:L] 
~~i::L, allowed the Stoics to maintain that Aristotle denied the law of 
bivalence. Thus we find in Boethius, Ad Arist_. de interpr., ed. secunda, 
rec. Meiser, p. 208 (ed. Bas., p. 364), the passage: "putaverll.nt autem 
quidam, quorum Stoici quoque sunt, Aristotelem dicere in future 
contingentes nee veras esse nee falsas". The Peripatetics attempted 
to defend Aristotle against this objection by puzzling out a "distinc
tion" between the definite verum and the indefinite verum, non-exist
ent in the Stagirite's works. Thus Boethius 8ays (Ad Arist. de interpr., 

~------·ed-;-prim~rec:-Meiser,-p,~1:2-5): ~i:manifestum esse non necesse esse om
nes ad:firmationes et negationes definite veras esse (sed deest 'definite' 
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atque ideo subaudiendum est)". The sentence in parentheses has been 
taken almost literally from Greek commentators. Cf. Ammonius, In 
lfbrum Arist. de interpr., ed. Busse, p. 141, 20: npocruno<:xouoµevou 
01JAOV6't'L 't'OU "&qiwptcrµsvwc;". 

There can be no doubt that the Epicureans, who embraced an in-
deterministic Weltanschauung, made Aristotle's idea their own. One 
-0f-tlle-n:10"s-r:rm.portant-passa:ges Ueating witness to this-has been--11'.f't'-ail4fil'l!3"'"------~ 
mitted to us by Cicero, De jato 37: "Necesse est enim in rebus con-
trariis duabus (contraria autem hoc loco ea dico, quorum alterum 
ait quid, alterum negat) ex his igitur necesse est, invito Epicuro, alterum 
verum esse, alterum falsum: at 'sauciabitur Pbilocteta', omnibus 
ante seculis verum fuit, 'non sauciabitur', falsum. Nisi forte .volumus 
Epicureorum opinionem sequi, qui tales enuntiationes nee veras nee 
falsas esse dicunt: aut, cum id pudet, illud tamen dicunt, quod est im-
pudentius, veras esse ex contrariis disiunctiones; sed, quae iri his enun-
tiata essent, eorum neutrum esse verum." .Cicero opposes this·opinion 
and then continues: "Tenebitur ergo id quod a Chrysippo defenditur: 
o:mnem eni:intiationem aut veram aut falsam esse". That not only the 
Epicureans shared the opinion of Aristotle, follows from a passage 
of Simplicius, In Arist. cat., ed. Kalbfleisch, p. 406 (f. l03A ed. Bas.): 
"o Ile N L x 6 O' 't' p Qt 't' 0 c; at1't'LC'i:'t'atL x&v't'atu&oc /..eywv µ~ 'lomv e!vo<:L 
't'WV XOC't'tt &n[cpMLV &v't'L'X.e:Lµevwv -rb l>Lmpdv 't'b &:A1J&ec; XOtL 't'b ljie:uilo.:;. 
. . . o<:t yap de; 't'bV [LE:MO'J't'Ot xp6vov tyxexf.Lµevo<:L npo't'ifcre:L<; 0 \) 't' e 
& ). 1J & i:: r: c; i:: l cr L v o \l " i:: Yi i:: u ll i:: r: c; l>Ltt ~v -roil tvoi::xoµevou 
cpucrw· o\l't'e yap -ro 'fo't'atL vatuµocxfo:' &:A1J&ec; o\l't'e 't'b 'o0x fo't'atL', 
&Al. on6-re:pov ~"uxe:v". The latter example is borrowed from Aristotle's· 
De interpr. 9. 19a30. For Nikostratos see Prantl, vol. i, pp. 618,-620. 

In conscious opposition to this, the Stoics, as outspoken determinists, 
and especially Chrysippus, established the law of bivalence as the 
fundamental principle of ·their dialectic. As evidence the following 
quotations, taken from J. v .. Arnim's Stoicorum veterum fragmenta, 
vol. ii, may be cited: (1) Page 62, fr. 193: Diocles Magnes apud Diog. 
Laert. vii. 65: &~£wµo<: oe tcr't'Lv i5 E:crw1 &f..1J&ec; ] ljii::ulloc;. (2) Page 63, 
fr. 196: Cicero, Acad. Pr. ii. 95: "Fundamentum dialecticae est, quid
quid enuntietur (id autem appellant &~[wµat-) aut verum esse aut 
falsum." (3) Page 275, fr. 952: Cicero, De Jato 20: "Concludit enim 
Chrysippus hoc modo: 'Si est motus sine causa, non omnis enuntiatio·, 
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quod &#wµ.ix dialectici appellant, aut vera aut falsa erit; causas enim 
efficientis quod non habebit, id nee verum nee falsum erit. Ornnis autem 
enuntiatio aut vera aut falsa est. Motus ergo sine causa nullus est. 21. 
Quod si ita est, omnia, quae fiunt, causis fiunt antegressis. Id si ita est, 
fato omnia fiunt E:fficitur igitur fato fieri, quaecunque fiant.' ... Itaque 
contendit omnis nervos Chrysippus ut persuadeat omne &~lwµ.ix aut 
verum esse aut falsum." 

I have compiled thus many quotations on purpose, for, although 
they illuminate one of the most important problems of logic, it never-

_____ theless.-appears_that .. man)'. of them were either unknown-to the historians 
of logic, or at least not sufficiently appreciated. The reason for this is 
in my opinion that the history of logic has thus far been treated by 
philosophers with insufficient· training in logic. The older authors 
cannot be blamed for this, as a scientific logic has existed only for 
a few decades. The history of logic must be written anew, and by an 
historian who has a thorough command of modern mathematical 
logic. Valuable as Prantl's work is as a compilation of sources and 
materials, from a logical point of view it is practically worthless. To 
give only one illustration of this, Prantl, as well as all the later authors 
who have written about the logic of the Stoa, such as Zeller and Bro
chard. have entirely misunderstood this logic. For anybody familiar 
with mathematical logic it is self-evident that the Stoic dialectic is the 
ancient form of modern propositi~nal logic.26

) • 

Propositional logic, which contains only propositional variables, is as 
distinct from the Aristotelian syllogistic, which operates only with name 
variables, as arithmetic is from geometry. The Stoic dialectic is not 
a devefopment or supplementation of Aristotelian logic, but an achieve
ment of equal rank with that of Aristotle. In view of this it seems only 
fair to demand of an historian of logic that he know something a~out 
logic. Nowadays it does not suffice to be merely a philosopher in order 
to voice one's opinion on logic. 

26) I have already expressed this idea, in 1923, in a paper read to the first congress 
of Polish p}jjl.osophers in Lw6w. A short summary of it ap12eared in Przeglqd Filozo
ficzny 30 (1927), p. 278. [Lukasiewicz developshls :historical analysis of Stoic logic 
in his article "On the History of the Logic of Propositions" (pp. 197-;-217 of this book).] 
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COMMENTS ON NICOD'S AXIOM AND ON "GENERALIZING 
DEDUCTION" *) 

In the present paper I use the following bibliographical abbreviations: 
"Ajdukiewicz" for "Gl6wne zasady metodologii nauk i logiki for

malnej (Fundamental principles of the methodology of science and of 
formal logic). Lectures delivered by Professor K. Ajdukiewicz at the 
University of Warsaw in the academic y~ar 1927/1928. Authorized lec
ture notes edited by M. Presburger. Publications of the Association of 
Students of Mathematics and PhysiCs of the University of Warsaw. 
Vol. XVI, 1928." 

"Kotarbiri.ski" for "Tadeusz Kotarbillski, Elementy teorii poznania, 
logiki formalnej i metodologii nauk (Elements of epistemology, formal 
logic, and the methodology of science). The Ossolineum Publishers, 
Lwow 1929."**) 

"Lesniewski" for "Dr. Phil. Stanislaw Lesniewski, a.o. Professor 
der Philosophie der Mathematik an der Universitat Warszawa, Grun
dziige eines neuen Systems der Grundlagen der Mathematik, Einleitung 
und §§ 1-11. Sonderabdruck (mit unveranderter Pagination) aus dem 
XIV. Bande der Fundamenta Mathematicae. Warsaw, 1929." 

"Lukasiewicz (1)" for "Jan Lukasiewicz, 0 znaczeniu i potrzebach 
logiki matematycznej (On the significance and requirements of mathe
matical logic). Nauka Polska, Vol. X, Wars-aw 1929." 

"Lukasiewicz (2)" for "Dr. Jan Lukasiewicz, Professor of the Uni
versity of Warsaw, Elementy logiki matematycznej (Elements of mathe
matical logic). Authorized lecture notes 'prepared by M. Presburger. 

*) First published as "Uwagi o aksjomacie Nicoda i 'dedukcji uog61niajiicej'" 
in Ksi12ga pamiqtkowa Polskiego Towarzystwa Filozoficznego, Lw6w, 1931. R 
in the 1961 edition Z zagadniefz logiki i filozofii. 

**)Available in English under the title Gnosiology (published jointly 
Zaklad Narodowy im. OssoliD.skich and Pergamon Press). ~ 
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Publications of the Association of Students of Mathematics and Physics 
of the University of Warsaw. Vol. XVIII, 1929. "*) 

The items "Ajdukiewicz" and ":tukasiewicz (2)" are lithographed. 

* 
* * 

At the beginning of his German-language treatise on the foundations 
of mathematics Dr. Le§niewski parenthetically mentions (with my 
approval) a certain "simplification" of Nicod's axiom, made by me in 
1925 and consisting in the reduction of the different variables that 
occur in this axiom from five to four. 1) Since I have not sofar-published 
this result of my research, I shall do it in this paper so that Dr. Lesniew
ski'.s reference, based only on a manuscript source, may have a founda
tion in a printed publication. 

.I do this the more willingly as I can at the same time settle another 
issue. In transforming Nicod's axiom I encountered for the first time 
a case of deductive inference in which the conclusion is more general 
than the pre!niss. The second part of the present paper is_ concerned 
with that "generalizing deduction", which may prove to be of interest 
not only to logicians, but to philosophers as well. 

I 

I.- Nicod's axiom can, with the use of parentheses, be written in the 

following way: 2) 

(K) {p/(q/r)}J[{t/(t/t)}/{ (s/q)/( (p/s)/(p/s))}]. 

In th~ parenthesis-free symbolism this becomes: 3) 

(N) DDpDqr DDtDttDDsqDDpsDps. 

The symbol "D"; which corresponds to the symbol "/", is the only 
constant occurring in this axiom; all other symbols, that is lower-case 

1) Cf. Lesniewski, p. 10. _ 
z) Cf. Kotarb:itiski, p. 247 (quoted after the English translation). . 
') I came upon the idea of a parenthesis-free notation in 1924. I used that notation 

for the :first time in my article Lukasiewicz (1), p. 610, footnote. See also Lukasiewicz (2) 
pp.-7 and 38,_ and Kotarbiliski, p. 244. 

*) An English translation entitled Elements of Mathematical Logic is available 
--------,n"'o""w~(p""u=bmd:-jointlrin-1963--by-the-·Polislr-Scientific Publishers and Pergamon 

Press). 

·-·_·-·1· 
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letters, are propositional variables. A function of the_ type "Da/3" 
means the same as "if a, then it is not true that /3", or "it is not true 
that (a and /3)". Thus "D" is a proposition-forming functor of two 
propositional arguments; this mean.s that in function.s of the type 
"Da/3" both "a" and "/3" are propositions, and "DafJ" is a proposition 
too. 4) Dr. Sheffer has demonstrated that a function of this type can be 

--used-to--define-a±l-other-ft:metions of the theory-ef-deduction. *) Nieefr!s>------
axiom, together with definitions, suffices to lay the foundations for the 
entire theory of deduction. 5) 

If we bear in mind that the functor "D" always precedes its arguments; 
and that its two arguments are proposition.s, we can easily analyse the 
structure of axiom (N). We only have to realize which propositions 
belong to the various occurrences of "JJ." as their arguments. For in
stance, the third "D" has the proposition "q" as its first argument, 
and the proposition "r" as its second argument. The second "D" has 
the proposition ''p" as its :first argument, and the proposition- "Dqr" 
as its second argument. Further analysis is made easier by the com
parison of expressions (K) and (N). 

Nicod's axiom is not self-evident. I shall not try to explain its con
tent. That it is a true proposition one can verify by the zero-one veri
fication method, assuming the following equations: 6) 

DJO = 1, 

DIO = 1, 

DJI = 1, 

Dll = 0. 

"O" here stands for a false proposition, while "l" stands for a true prop
osition. By substituting in (N) O's and l's for- the variables in any 
combinations we always obtain 1 after reduction.s performed in accord-

4) The term "functor" comes from Kotarbiiiski. Cf. Ajdukiewicz, p. 147. The 
term "proposition-forming" was, as far as I know, :first used by Ajdukiewicz. Cf. 
Ajdukiewicz, p .. 16. 

5) Historical and bibliographical information concerning the works of Sheffer 
and Nicod can be found in Le$niewski, pp. 9-10. Definitions of some functions, best 
known in propositional calculus, by means of the symbol "/" or "D" are given in 
Kotarbiiiski, p. 172, and Lukasiewicz (2), pp. 56-57. 

6) For the zero-one verification method see Kotarbillski, pp. 159-163 

*) Today, instead of "theory of deduction" we prefer the term "propositional 
calculus". 
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ance with the equations quoted above. For instance, if we put p/O, 

q/l, r/0, s/l, t/O, we obtain: 

DD0Dl0DD0D00DD11DD01D01 = DDOlDDOlDODll = DlDlDOO 
= DlDll = DlO = 1. 

In deducing consequences from his axiom Nicod uses the rule of 
substitution and the rule of detachment. 

The rule of substitution, which he does not formulate, 7) permits 
us to join to the system those theses which .are obtained from theses 
already belonging to the system by the substitution for variables of 
significant expressions of the system. In the system-in question, every 
lower-case letter is a significant expression, as is the expression "Drxf3" 
if both "rx" and "{3" are significant expressions. All significant expres
sions are propositions. 

The rule of detachment is adopted by Nicod in the form which is 
equivalent to the following formulation: if a thesis of the type "DrxD{Jy" 
belongs to the system, as does a thesis of the form of "rx'', then a th:sis 
of the form of "y" may be joined to the system. This rule becomes 
self-evident if we note that the expression "DrxD{Jy" means the same 
as "if rx, then it is not true that Df3y", and the expression "it is not 
true that D{Jy" means the same as "it is not true that [it is not true 
that ({3 and y)]", that is, "/3 and y". Hence the expression "DrxD/3y" 
means- the same as "if rx, then f3 and y". Hence if the whole of such an 
expression is asserted, and if "rx" is also asserted, we may assert both 
"{3" and "y". But Nicod's rule of detachment disregards the expression 
"/3" so that we may not assert that expression on the strength of that 
rule, nor is it necessary' for us to know that it has been asserted, if we 
want to apply that rule. 

2. The transformation which I made in Nicod's axiom consists in 
this, that I replaced the variable "t" by "s';, thus obtaining the follow
ing thesis: 

(L) DDpDqrDDsDssDDsqDDpsDps. 

The thesis (L) includes four different variables, "p", "q", "r", and "s'', 
whereas Nicod's axiom (N) includes five, that is the four enumerated 
above and also the variable "t". Nevertheless, the theses (N) and (L) 

~-~~--~=""'~-~=-==.:=_ 

7) Cf. Lesniewski, p. 10. 

------~-------·------·-------
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are equivalent, for it can be shown, by means of the rules of substitu
tion .and detachment accepted in the system, that (L) is a consequence 
of (N) and conversely (N) is a consequence of (L). 

The proof of the first theorem, stating that (L) is a consequence of (N), 
is very easy, for it suffices to substitute "s" for "t" in (N) to obtain (L). 
The proof of the other theOFem, stating that (N) is a consequence 

-of-('t): is not so simp1e-and- requires-repeated application of the rtiles 
of substitution and detachment. That proof is recorded below by a 
method which must first be explained. 

The starpng point of the proof is the thesis (L), which iri the proof 
is marked by the ordinal number "l". The terminal point of the proof 
is Nicod's axiom (N), which is marked by the ordinal number "11". 
All theses marked with ordinal numbers, except for the first, are those 
steps of the proof which are obtained on the strength of the rule of de
tachment. In the proof I note down only the theses obtained by de
tachment; I do not note down the theses obtained by substitution, 
but only mark the substitutions to be performed in order to obtain 
these theses. 
- Each thesis, except for the first, is preceded by a non-numbered line 
which is the "proof line" of the thesis that follows. Each proof line 
consists of two parts, separated from one another by a cross.*) In the 
first part, which precedes the cross, I mark the substitutions to be per
formed· in some earlier thesis, already recorded in the proof. In the 
second part, which follows the cross, I note down the structure of the 
thesis obtained by means of the substitution marked before the cross, 
and I do it in such a way as to make it clear that the rule of detachment 
may be applied to that thesis. For instance, in the first part of the 
proof line of Thesis 2: "lp/DpDqr, qjDsDss, r/DiJsqDDpsDps, s/t" 
I mark that a thesis is to be formed by substituting in 1 the expression 
"DpDqr" for "p'', the expression "DsDss" for "q", the expression 
"DDsqDDpsDps" for "r", and the expression "t" for "s". On perform
ing these substitutions we obtain Thesis (A), which is a step in the 
proof, but is not recorded in the proof in order fo ma'!.ce the proof 
shorter: 

*) In this paper, and in some others of his works, Lukasiewicz used an asterisk 
instead of a cross. For the sake of uniformity, in this volume the asterisk has been 
replaced everywhere by the cross. 
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(A) DDDpDqrDDsDssDDsqDDpsDpsDDtDttDDtDsDssDDDpDqrtDDp 
Dqrt. 

In the second part of this proof line: "DlD6-2", I mark what is the 
structure of Thesis (A) just formed. It begins with the letter "D'', fol
lowed by an expression of the form of Thesis l, next followed by an
other "D" and an expression of the form of Thesis 6, and ends with an 
expression of the form of Thesis 2. This shows that the rule of detach
ment may be applied to Thesis (A), for it is a thesis of the type "DaD{Jy'', 
belongs to the system as a substitution of Thesis 1, and the expression 

·-·---------whieh-oeeurs-in-plaGe-of__::cL:_also_helongs-to-the system as .it is of the 
form of Thesis 1. Thus the expression which occurs in place of "y" 
may be "detached" from Thesis (A) and joined to the system as The
sis 2. An expression of the form of Thesis 6, to be obtained later on, 
occurs in the place of "{3", but we know already that the expression "/3" 
does not intervene in the application of the rule of detachment. 

Now that the reader understands the method of writing down the 
proof, he can easily check all the proof lines. The best way is to take 
two sheets of paper, perform on one of them all the substitutions marked 
in the first part of a given proof line, and write out on the other the 
thesis occurring in the second part of that proof line. In this way the 
reader should obtain on both sheets identical expressions. Note that 
the sequence of symbols "qr/DDJ;Dqrt" indicates that the expression 
"DDpDqrt" is to be substituted for both "q" and "r". 

Here·is the proof of the theorem stating that (N) is a consequence 
of (L): 

1 

2 

3 

4 

5 

6 

DDpDqr DDsDssDDsqDDpsDps. 

lp/DpDqr, q/DsDss, r/DDsqDDpsDps, s/txD1D6-2. 
DDtDsDssDDDpDqrtDDpDqrt. 

1 p/DtDsDss, qr[ DDpDqrt, sfwx D2D6t/w- 3. 
DDwDDpDqrtDDDtDsDsswDDtDsDssw. 

3 w[DpDqr, pqr/s, t/DDsqDDpsDps, s/txDW4-4. 
DDDDsqDDpsDpsDtDttDpDqr. 

2 t/DDDstDDtsDtsDtDtt, s/tXD4qpr/tD5- 5. 
DDpDqrDDDstDDtsDtsDtDtt. 

--·---:ip{DWslJSIF;-qr/DDpDqrt xD2D7 - 6. 

DtDtt. 

(L} 

7 

8 

9 

10 

11 
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1pqr/txD6D6t/s-7. 
DDstDDtsDts. 

lp/Dst, qr/Dts, s/rxD7D6t/r- 8. 
DDrDtsDDD!itrDDstr. 

7 s/DDDsqDDpsDpsDtDtt, t/DpDqrxD4D9-9. 
DDpDqr DDDsqDDpsDpsDtDtt. 

8 r/DpDqr, t/DDsqDDpsDps, s{DtDttxD9DI0-10. 
DDDtDttDDsqDDpsDpsDpDqr. 

7 s/DDtDttDDsqDDpsDps, t/DpDqrxDIODll- II. 
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DDpDqrDDtDttDDsqDDpsDN. (N) 

In this proof the rule of detachment is used 10 times, and the rule 
of substitution 11 times, for we have to count not only those substi
tutions which are marked on the left side of each of the 10 proof lines, 
but also the 'substitution "4qpr/t'', marked in the second part of the 
proof line of Thesis 5. On the other hand, I do not count the substitu
tions "6t/w", "6t/s", "6t/r'', marked in the proof lines of Theses 3, 7, 
and 8, since they pertain to those expressions which are disregarded 
in the detachment. Thus, in order to pass from Nicod's axiom (N) to 
my axiom (L) it is necessary to perform 21 steps of proof. I do not 
know how to reduce that number. 8

) 

The proof is complete, although it is recorded in an abbreviated 
manner. Moreover, the proof is formalized, which means that any 
one who knows the rules of inference used in the proof can verify the 
correctness of the proof ·by referring exclusively to the form of the 
theses and disregarding their meanings. 

My axiom may be considered as- a simplification of Nicod's axiom if 
both are noted down not by means ofreal, i.e., free, variables, that is 
i!:" both axioms are preceded by universal quantifiers which bind the 
variables occurring in the axioms. On introducing an expression of 

the type "n rx"' which means "for every rx" and using the parenthesis
free notation of expressions with quantifiers, 9) we o]?tain the following 

') Le5niewski, p. 10, mentions 24 steps of fue proof. In fact, the proof in my man
uscript of 1925, which was the basis of Dr. LeSniewski's reference, had that many 
steps. Now, then preparing that proof for·publication I have succeeded in simpli
fying it by reducing the number of steps by three. 

9) Cf. Lukasiewicz (2), pp. 78 ff. 
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theses: 

(No) flpnqnr llsiltDDpDqrDDtDttDDsqDDpsDps. 

(Lo) llPllqllr ilsDDpDqrDDsDs~DDsqDDpsDps. 

In this form my axiom is shorter, and hence simpler, than Nicod's 
axiom. 10

) 

II 

3. The above considerations would, perhaps, have little significance 
______________ haci..the...)Lll.OJ_nwealed a certain logical fact which_~tfustseemed para

doxical to me. Let us compare once more the axioms (N) and (L): 

(N) 

(L) 

DDpDqr DDtDttDDsqDDpsDps. 

DDpDqr DDsDssDDsqDDp.sDps. 

Both axioms are valid for any values of the variables occurting in them. 
But whereas in axiom (N) we may substitute for the variables "s" and "t" 
any propositions, either the. same, i.e., of identical form, or different, 
in the corresponding places of axiom (L) we may substitute only the 
same propositions. This is so because only one variable "s" in axiom (L) 
corresponds to the different variables "s" and "t" in axiom (N). (L) 
can be obtained from (N) by the "identification" of the variables "s" 
and "t", that is, by the substitution of the variable "s" for the varia
ble "t", but (N) can in no way be obtained from (L) by substitution 
alone. Axiom (N) is more general than axiom (L), and axiom (L) is 
a special case of axiom (N). And yet there is a deductive proof which 
demonstrates. that the more general thesis (N) follows as a conclusion 
from the less general thesis (L) as its only premiss. I have thus encount
ered a previously unknown and unexpected case of generalizing de
duction. 

10
) Axiom (N) and (L). are not organic. We call "organic" .a thesis of a system, 

no part of which is a thesis of that system. The term "organic" was in that sense 
first used by Dr. Le8niewski, while the definition of an "organic" thesis comes from 
Mr. Wajsberg. Axioms (N) and (L) are not organic, since some of their parts, namely 
"DtDtt" or "DsDss", respectively, are .theses of the system. In 1927, when he knew 
the result of my research presented in this paper, Mr. Wajsberg demonstrated that 
Nicod's axiom can be equivalently replaced by the following organic thesis: 

(W) --DDpDqrDDDsrDDpsDpsDpDpq. 

This result forms part of Mr. Wajsberg's M. A. thesis, not pub~hed. 

~1 
i 

-----------------
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When I realized the significance of this fact I started a search for 
similar examples in the ordinary system of the theory of deduction. 
I soon found such examples among the theses which include implica
tion only. I shall discuss below the simplest of those examples. 

In the implicational system the sole primitive expression is a function 
of the type "Crx{J".11) By the expression "Crx{J" I mean the conditional 

------proposition,-i~e.,-the-implication, "if rx, then. ~his expfession "C" 
is a proposition-forming functor of two propositional arguments. 
Implicational theses are ·noted down without parentheses in a way 
similar to that used above with the theses with the functor "D"; 

The rule of substitution in this system is the same as in Nicod's 
system. Any expression that is significant in the system may be substi
tuted for a variable. Any lower-case letter and any expression of the 
type "Crx{J'', if "rx" and "{J" are significant expressions, is a significant 
expression. The rule of detachment is formulated as follows: if a thesis 
of the type "Crx{J" belongs to the system, and if the thesis of the form 
of "rx" _also belongs to the system, then the thesis of the form of "{J" 
may be joined to the system. 

By means of these rules we may demonstrate the equivalence of the 
following two theses: 12

) 

1 CqCqCrCsr, 

5 CpCqCrCsr. 

Thesis 5 includes four different variables, while Thesis 1 includes only 
three such variables. Thesis 1 can be deduced from Thesis 5 by substi
tuting in 5 the variable "q" for the variable "p". Thesis 5 can be inferred 
from Thesis 1 by substitution and detachment. 

Here is the complete proof, noted down in an abbreviated form 
in a manner analogous to the proof of thesis (N) on the strength of 
thesis (L): 
1 

2 

CqCqCrCsr. 

1 q/CqCqCrCsrx Cl-2. 
CCqCqCrCsrCrCsr. 

11
) On the meaning of this function cf. Lukasiewicz (2), pp. 28-31. On the axioms 

of the implicational system see Lukasiewicz (2), p. 47 [see also the end of the present 
article and footnote*), p. 196 of this article]. 

12
) CT. Lukasiewicz (2), pp. 44-45, where this example is given for the first time, 

· together with a mention about generalizing deduction. 
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3 

4 

5 
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2xCl-3. 
CrCsr. 

3r/CrCsr, s/qxC3-4. 
CqCrCsr. 

3r/CqCrCsr, sjp X C4- 5. 
CpCqCrCsr. 

Let me add for explanation's sake that in this proof, on the left side 
of the first proof line, there is an indication of the substitution 

_c_ __ ~! CqCqCrCsr ", the performance of which -yields the following thesis, 
not recorded in the proof: --------- - -----

(T) CCqCqCrCsrCCqCqCrCsrCrCsr. 

The structure of Thesis (T) is recorded on the right side of this proof 
line in the symbols "Cl-2". This thesis begins with the letter "C'', 
followed first by an expression of the form of Thesis 1, and next by an 
expression of the form of Thesis 2. This shows that the rule of detach
ment is applicable to Thesis (T). This is so because it is a thesis of the 
type "Crx{3", it belongs to the system as a substitution of Thesis 1, and 
the expression which occurs in it :ill place of "rx" also belongs to the 
system, since it is of the form of Thesis 1. Hence we may detach from 
Thesis (T) the expression which occurs in it in place of "{J" by joining 
to the system, as Thesis 2, an expression of the form of "{3". Further 
proof lines can easily be checked by the reader himself. The whole 
proof consists of seven steps, three substitutions and four detachments. 
I shall now analyse the proof in detail. 

4. My intention is to explain first the meanings of Theses 1 and 5 
and to convince -the reader that they are true and in con:firmity with 
intuition. 

, The proof given above shows that Thesis 3 is a consequence of Thesis 1, 
and Thesis 5 is a con~equence of Thesis 3. Since in turn Thesis 1 is; 
by substitution, a -consequence of Thesis 5, it follows that all three 
theses, 1, 3, and 5, are equivalent with one another. Let us now 
examine the meaning of the shortest of them, i.e., Thesis 3. 

This thesis reads: "if r, then ifs, then r". The terms "r" and "s" stand 
-------for--any-propositions.-'I'his-thesis-will not appear self~evident to everyone. 

And yet it can be deduced from the most self-evident theses. No one 
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' will deny that whatever propositions "r" and "s" we consider it is true 
that:· 

I. If r and s, then r. 
Nor will anyone deny that the two formulations: "if rands, then t" 
and "if r, then ifs, then t", are equivalent. For instance, the following 
formulations are equivalent: "if a number xis even and divisible by 3, 

- then it is divisible by O"allcr"ila ni.unber xis even, theti-iftt~1..,,s~a.,..1-VI_s...,1b .... Ie----~. 
by 3, it is divisible by 6". Hence it follows that if we consider any prop-
ositions "r", "s", and "t", then it is true that: 

I 
II 

II. If (if r and s, then t), then [if r, then (ifs, then t)]. 

These two theorems may be written in symbols as follows: 

CKrsr. 

CCKrstCrCst. 

The formula "Krs" stands ~or a conjunction of the propositions "r" 
and .''s" .13) By substituting in II the variable "r" for "t" an<l: by ·applying 
the rule of detachment we obtain our Thesis 3: 

II t/rx Cl-3. 
3 CrCsr. 

Thus Thesis 3 is a consequence of self-evident theses. Its meaning 
might by approximately formulated thus: if one asserts a proposition 
"r" unconditionally, then he is also authorized to assert_ it on a con
dition "s'', so that he has the right to state: "ifs, then r". 

Now Thesis 3 is asserted unconditionally; hence we have the right 
to assert it on a condition "q':, that is, we are authorized to state: "if q, 
then if r, then ifs, then r". This is Thesis 4 formulated verbally. 

Thesis 4 also is asserted unconditionally; hence we have the right 
to assert it on any condition, be it the old condition "q" or the new 
condition ''p". In this way we obtain verbal formulations of Theses 
1and5: 

1. If q, then if q, then if r, then ifs, then r. 
5. If p, ihen if q, then if r, then ifs, then r. 

Thus the meanings of these theses are established. The theses are 
true and in agreement with intuition. 

u) Cf. Lukasiewicz (2), p. 36. 
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My point now is to convince the reader beyond all doubt that the 
following theorems are true: 

(a) The proof demonstrating that Thesis 5 is a consequence of Thesis I 
is based on Thesis 1 as its only premiss. 

(b) The rules of inference used in that proof have long been known 
and accepted as rules of deductive inference. 

( c) Conclusion 5 is more general than premiss 1. 
As to (a): The c;ompleteness of the proof shows that Thesis 1 is the 

only premiss used in the proof. The proof has no gaps; every step 
of the proof is recorded or marked-and lS based on rUles of inference 
specified in advance. 

As to (b): The rules of inference used in the proof correspond to the 
rules of deductive inference already known in antiquity. All the theses 
considered are true for any propositions "p'', "q'', "r", and "s'', which 
occur in them. Hence they are also true for certain propositions, namely 
conditional propositions, which we substitute in the theses. For whatever 
is valid for any objects of a kind, is also valid for certain objects of that 
kind. In applying the rule of substitution we base ourselves on the 
principle dictum de omni, which was not explicitly formulated by Aristo
tle, but which has always been considered the foundation of this theory 
of the syllogism. And the theory of the Aristotelian syllogism to this 
day is believed to form the nucleus of deductive logic. 

In applying the rule of detachment we base our argument on the 
Stoic syllogism called modus ponens: 

If a, then f3, 
Now a, 

Hence f3. 
No one has ever denied that this is a mode of deductive inference. 

As to (c): Thesis 5 is more general than Thesis 1, since it covers all 
cases covered by Thesis 1 and also cases which Thesis 1 does not cover. 
This will become clear when we enumerate the types of these cases: 

The truth of both .theses in question, like all theses in the theory 
of deduction, depends not on the contents of the sentences ''p", "q", 

------~"r~and--"sTbut-only-on-their truth or falsehood. The zero-one veri
fication method is based precisely on that fact. If we .represent a false 
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proposition by "O", and a true proposition by "I", we obtain all the 
types of cases covered by Thesis 5, when in that thesis we substitute for 
the variables O's and l's in all possible combinations. The number 
of such combinations is 16 : 

COCOCOCOO ClCICOCOO 
COCOCOCIO 

--------etJeeeteo1 
COCOClCll 

COCICOCOO 
COCICOCIO 
COCICICOl 
COClCICll 

ClClCOCIO 
c1c1c1co1-----------
c1c1c1c11 
ClCOCOCOO 
CICOCOCIO 
CICOClCOI 
CICOCICll. 

All these combinations are covered by Thesis 5; on the other hand, 
Thesis I covers only the first 8 combinations written out in the upper 
half, that is only those in which the term that follows the fir~t "C" is 
equiform with the term that follows the second "C". Hence it is evident 
that Thesis I is a special case of Thesis 5. And yet Thesis 5, more general 
than Thesis· I, is a consequence of the latter on the strength of deductive 
inference. 

I realize that this is a very particular case of generalization, since it 
refers to only one class of objects, namely to propositions. We infer 
that something is true for any propositions "p" and "q", either the same 
or different, on the strength of the fact that something is true for the 
proposition "q". Nevertheless this case shows that at least in the sphere 
of these objects, generaliz4ig deduction is possible. 

5. In textbooks on logic we often encounter the view that deduction 
is an inference from the general to the particular. This opinion is erro
neous even in the field of traditional logic 14

) for that inference by which 
from the sentence "no even number is an odd number" we obtain 
the sentence "no odd number is an even number" is certainly deductive, 
since it is based on the law of conversion of general negative proposi
tions, accepted in Aristotelian logic. Yet it may not be asserted tha1: in 
that inference the relation between the premiss and the conclusion 
is the same as between the general and the particular. Now that we 
have demonstrated that in certain cases we can pass, in a deductive 

14) Cf. Kotarbillski, p. 233 
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manner, from the particular to the general, the incorrectness··of the 
above characterization of deductive inference becomes even more 
striking. 

Together with that erroneous characterization of deduction the view 
that deduction does not widen our knowledge is also definitively refuted. 
It seems that these two opinions had their source in the conviction 

. that the principle dictum de omni is the foundation of Aristotelian 
logic, and that Aristotelian logic exhausts deductive logic. But both 
these convictions are erroneous. Neither is Aristotle's theory of the 

________ s.yllogism.base_d exclusively on the idea contained,_although not precisely 
formulated, in the principle dictum de omni, nor does that theory cover 
the whole of deductive logic. 15

) Along with Aristotelian logic, which is 
a "logic of terms'', there has 'for ages been Stoic logic,*) which is a 
"logic of propositions" and which corresponds to the present-day theory 
of deduction. 16

) 

These two logical systems are essentially different, since they are 
concerned with different semantic categories. No Stoic syllogism, in
cluding the law of inference called modusponens, is deducible from Aris
totelian logic. 

As long as the principle dictum de omni was supposed to .be the foun
dation of all deductive logic it was possible to think that deduction is 
infere~ce from the general to the particular and that it does not widen 
our knowledge. But when the modem "theory of deduction" was formed, 
and when both the Aristotelian principle dictum de omni in the 
form of the rule of substi!Ution, and the Stoic syllogism modus ponens 
as the rule of detachment, were applied to it, it became clear that deduc
tive inference may be as "creative" as inductive inference, without 
thereby losing anything of its certainty. 

I disregard here further philosophical consequences connected with 
these results of research in order to conclude by reverting- to those prob
lems which can be handled on the basis of mathematical logic. 

15) Concerning the axioms on which Aristotle's theory of syllogism is based see 
Lukasiewicz (2), p. 87 ff. See also his Aristotle's Syllogistic from the Standpoint 
of Modern Formal Logic, Oxford, 1951. 

16
) Cf. Lukasiewicz (2), pp. 19 ff. 

*) Stoic logic was a:iScusseaoyLUkasiewicz in detail in his paper "On the History 
of the Logic of Propositions", (see pp. 197-2~9 of the present v<;>lume). 
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For brevity's sake, let us call "generalizing theses" those theses from 
which more general theses can be deduced by the rules of substitution 
and detachment. I am concerned here above all with the following 
problem, which so far I have been unable to solve: what, if any, charac
teristics are shared by all generalizing theses? For the sake of those 
who might wish to investigate this problem I quote here a number of 

· · factswillch!have e-sta:hl:i:shed. 
I have verified that the following theses are equivalent to one another: 

(Al) 

(A2) 

(A3) 

(A4) 

CsCCCpqrCqr. 

CCstCCCpqrCqr. 

CCptCCCpqrCqr. 

CCrtCCCpqrCqr. 

Of these, Thesis (Al) is the most general. Thesis (A2) is obtained frcm 
it by the substitution "s/Cst'', and Theses (A3) and (A4) are 9btained 
from (A2) by the respective substitutions "s/p" arid "s/r". Conversely, 
Theses (Al) and (A2) are obtained from both (A3) and (A4) by substi
tution and detachment, and moreover (Al) is obtained from (A2). 
Thus the generalizing theses here are Theses (A2), (A3), anci (A4). Note 
that all four of these theses are ·equivalent to the thesis "CCCpqrCqr". 

Further, I have verified that the following theses are equivalent to one 
another: 

(Bl) 

(B2) 

(B3) 

CtCCCpqrCCCsprr. 

CCutCCCpqrCCCsprr. 

CCrtCCCpqrCCCsprr. 

Here, too, Thesis (Bl) is the most general. Thesis (B2) is a consequence 
of (Bl) on the strength of the substitution "t/Cut", and (B3) is a conse
quence of (B2) on the strength of the substitution "u/r". Conversely, 
both (Bl) and (B2) are consequences of (B3) on the strength of substi
tution and detachment; in the same way (Bl) is a consequence of (B2). 
Thus, the generalizing theses here are (B2) and (B3). All three are 
equivalent to the thesis "CCCpqrCCCsprr". 

The above examples of generalizing theses have the property in com
mon that their consequences include a thesis of the form "CrCsr". This 
property is also shared by Thesis 1, given in Section 3 as an example 
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of a generalizing thesis But a conclusion stating that all generalizing 
theses share that propertY, would be erroneous. Here is an example 
to the contrary. The following theses are equivalent: 

(Fl) 

(F2) 

CpCqCrCsCtr. 

CqCqCrCsCtr. 

The generalizing thesis here is (F2). But that thesis does not have among 
its consequences any thesis of the form "CrCsr"; it has as a consequence 
only a thesis of the fornl "CrCsCtr". These two theses: "CrCsr" and 
"CrCsCtr", are independentof one another;-17Y-out nevertheless they 
have a property in common: they make it _possible to form, from any 
asserted thesis "C£.", a thesis of the type "Csa", where "s" is a variable 
that does not occur in "C£.". It is to be investigated whether this prop
erty is common to the generalizing theses. 

All the examples of generalizing theses adduced so far, not excluding 
Axiom (L), which is a transformation of Nicod's axiom, are non-or
ganic theses.18

) But it would be erroneous to conclude that all general
izing theses are non-organic. In 1926, Wajsberg demonstrated that 
every implicational thesis that does not include negation can be de
duced by substitution and detachment from the following organic 
thesis:*) 

(WI) CCCpqCCrstCCuCCrstCCpuCst, 

which can thus serve as the sole axiom of the implicational system.19
) 

I have ascertained that (Wl) has as a consequence the following more 
general thesis: 

(W2) CCCpqCCrstCCuCCwstCCpuCst. 

(WI) is obtained from (W2) by the substitution "w/r". Thesis (WI) 
is thus an example of an organic generalizing thesis. The consequences 
of this thesis include all implicational theses. 

17) For the method of proving the independence of theses of the propositional 
calculus, see ~ukasiewicz (2), pp. 109 ff. 

18
) .Cf. footnote 10 above. 

________ 19_,_)~Th~e~res~ul~t~o""b=t==· ed by_M_r_,__~aj_sbeqi,_as_~ive11 in the present paper, was part 
of his M. A. thesis. 

*) Cf. footnote *), p. 196 
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I also wish to point out that all the "sole" axioms of the implicational 
and the implicational-negational system known to me, whether organic 
or non-organic, share the property that they are either generalizing 
theses, like Wajsberg's axiom (WI), or are "generalized" theses, like 
Thesis (W2), .which means that they are equivalent to some of their 
special cases. But it would be premature to conclude that all the sole 
axioms-of--the-:i:mplicational or the~imj;>li:Ga-tienal-negational system: 
are either generalizing or generalized theses. I have the impression that 
Wajsberg's organic axiom with the primitive term "D" has neither of 
these two properties, though I have not been able to prove this fad 
beyond all doubt. Should it be confumed, then it could be expected 
that the implicational system also includes sole axioms that have neither 
of these two properties. 

It would be interesting to solve the problems raised above, since 
their solution might shed some light on generalizing deduction and 
thus explain on what those strange facts depend. 

Added while text was in proof: 

Since two years have elapsed from the completion of the present 
paper I wish to add here some comments and some results which I pave 
obtained in the meantime. 

As to Part I 

· a) Dr. Lesniewski noticed many years ago that Nicod's deduction 
of the thesis "DtDtt" from Axiom (N) contains an error. As far as I am 
aware, that error has not been corrected. I would not mention this 
fact even now were it not that 1931 saw the appearance of a compre
hensive three-volume treatise by JOrgen Jorgensen, Professor of the 
University of Copenhagen, A Treatise in Formal Logic (Copenhagen
London), which, following Nicod in that respect, repeats his mistakes 
(cf. vol. I, p. 258, and vol. II, p. 151); in particular, Theorem (17), 
from which the thesis "DtDtt" is directly deduced, is erroneous. In draw
ing attention to that error I also wish to state that the deduction of 
Thesis 6, i.e., "DtDtt", from Axiom (L), and hence, indirectly, from 
Axiom (N), as given in the present paper, seems to be the first correct 
proof of that thesis in Nicod's system. 

b) In connection with the concluding remark in the Addendum 
to Part I, I wish to add that in 1931 I found an organic thesis which is 



196 NICOD'S AXIOM Af<]) "GENERALIZING DEDUCTION" 

equivalent to Nicod's axiom and which differs from Wajsberg's thesis. 
The thesis in question is as follows: 

(Ml) DDpDqrDDpDrpDDsqDDpsDps. 

As to Part II 

c) The supposition is untenable that the generalizing theses of the 
implicational system all have the property that their consequences 
include a thesis that makes it possible to form, from any thesis "rx", 
a thesis of the type "Csrx", where "s" is a variable that does not occur 

----~---m''a''. Here is an-example-to-the-contrary:~----- --

(Gl) 

(G2) 

(G3) 

CsCCpCpqCrCpq. 

CCsCstCCpCpqCrCpq. 

CCpCpqCCpCpqCrCpq. 

All these theses are equivalent to one another, from which it follows 
that (G2) and (G3) are generalizing theses. Yet these theses do not 
have the property referred to above. 

d) In connection with Wajsberg's sole axiom (Wl) of the implica
tional system, I wish to add ·that in 1930 I found the following axiom 
of the implicational system, which is the shortest of all those known 
to me so far: 

(L2) CCCpqCrsCtCCspCrp. *) 

This axiom is equivalent to the following thesis that is a special case of it: 

(L3) CCCpqCrsCCtuCCspCrp. 

Wajsberg's axiom (Wl) of th~ implicational system was published 
in the article: J. Lukasiewicz und A. Tarski, "Untersuchungen iiber den 
Aussagenkalkiil, Comptes rendus des seances de la Societe des Sciences et 
des Lettres de Varsovie 23 (1930), cl. iii.**) 

*) In 1936, Lukasiewicz found a 13-letter axiom of the implicational propositional 
calculus. In this connection see his paper "In Defence of Logistic" in the present 
volume, pp. 236-249. He also discussed that axiom in a separate paper, "The Short
est Axiom of the Implicational Calculus of Propositions" (see pp. 295-305 of the 
present- volume) where he proved that there is no sole axiom of the implicational 
propositional calculus consisting of less than 13 letters. 

_______ _cc_._"'***')"S"'e~e''"''In=v=es=tiganonfintenne-sentefttfarcalcUius", pp. 131-152 of the present 
volume. 

ON THE ffiSTORY OF THE LOGIC OF PROPOSffiONS *) 

Modern mathematical logic has taught us to distinguish within 
formal logic two basic disciplines, no less different from one another 
than arithmetic and geometry. These are, the logic of propositions 
and the logtl:'<of terms. The difference between the two consists in the 
fact that in the logic of propositions there appear, besides logical con
stants, only propositional variables, while in the logic of terms term 
variables occur. 

The simplest way of making this difference clear is to examine the 
Stoic and the Peripatetic versions of the law of identity. To avoid mis
understanding let me at once say that, so far as our sources indicate, 
the two laws of identity were only incidentally formulated by the an
cients, and in no way belong to the basic principles of either logic. The 
Stoic law of identity reads "if the first, then the first", and is to be found 
as a premiss in one of the inference-schemata cited by Sextus Empi
ricus. 1

) The Peripatetic law of identity is "a belongs to all a'', and is not 
mentioned by Aristotle, but can be inferred from a passage in Alex
ander's commentary on the Prior Analytics. 2) Using variable letters 
we can write the Stoic law of identity in the form "if p then p"; the 
Peripatetic law can be recast in the form "all a is a". In the first law 
the expression "if ... then" is a logical constant, and "p" a propositional 

1
) Sextus, Adv. Math'. viii. 292 (missing in Arnim): d -.o 7tp&-.ov, 't'O 7tp&-.ov. 

Good as H. von Arnim's collection is (Stoicorum veterum fragmenta, vol. ii, Leipzig 
1903), it does not begin to serve as source material for Stoic dialectic. 

2
) Alexander, In anal. pr. comm., ed. Wallies, p. 34, 1. 19: ylve-.ocL .. 't'o A -.ivt -.ij) 

A µ~ 6mxpxov, o7tep ohorrnv. 
*) [Editorial note from the McCall edition: This paper originally appeared under 

the title "Z historii logiki zda.Il" in Przeglqd Filozoficzny 37 (1934), pp. 417-437. It is 
reprinted in a collection ofLukasiewicz's papers entitled Z zagadniefz logiki i filozofii, 
edited by J. Sl:upeck:i, Warsaw, 1961. A German translation by the author appeared 
as "Zur Geschichte der Aussagenlogik" in Erkenntnis 5 (1935), pp.111_:_131. Translated 
from the German version by S. McCall.] 
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variable; only propositions such as "it is day" can be meaningfully su~
stituted for ''p". This substitution yields a special cas·e of the Stmc 
law of identity: "if it is day, it is day". In the second law the expression 
"all ... is" .is a logical constant, and "a" a term variable; "a" can be 
meaningfolly replaced only by a term, and, in accordance with a tacit 
assumption of Aristotelian logic, only by a general term at that, such 
as "man". Upon substitution we get a special case of the Peripatetic 
law of identity: "all man is man". The Stoic law of identity is a thesis 
of the logic of propositions, whereas the Peripatetic law is a thesis of 

___________ __ _J,he..logi.c..of-term~s·~---------
This fundamental difference between the logic of propositions and 

the logic of terms was unknown to any of the older !Tistorians of logic. 
It explains why there has bee:ri, up to the present day, no history of the 
logic of propositions, and, consequently, no correct picture of the 
history of formal logic as a whole. Indispensable as Prantl's 3) work is, 
even today, as a collection of sources and material, it has scarcely ~ny 
value as an historical presentation of logical problems and theories. 
The history of logic must be written anew,. and by an historian who 
has fully mastered mathematical logic. I shall in this sho1: ~aper tou~h 
upon only three main points in the history of propositional lo~c. 
Firstly I wish to show that the Stoic dialectic, in contrast to the Aris
totelian syllogistic, is the ancient form of propositional logic; and, 
accordingly, that the hitherto wholly misunderstood and ~ongly 
judged accomplishments of the Stoics should be restored their due 
honour. Secondly I shall try to show, by means of several examples, th~t 
the Stoic propositional logic lived on and was further develope~ m 
medieval times, particularly in the theory of "consequences". Thirdly 
I think it important to establish something that does not seem to be 
commonly known even in Germany, namely that the founder of modern 
propositional logic is Gottlob Frege .. 

The Stoic law of identity mentioned above, which belongs to propo
sitional logic, bears witness that the Stoic dialectic is a logic of prop
ositions. However, an isolated theorem proves nothing. We shall 
accordingly take into consideration the well-known inference-schema 

3) K. Prantl, Geschichte der LogikTiii.Ahendlande, vols. i-iv, Leipzig, 1855-1870; 

vol ii, 2nd edition, Leipzig, 1885. 

·1··· ;_,.'. 

'I_' __ · ___ ,_ 
,:~ . 

. J~ 

·l 

~ 
-'~ . 

ON THE HISTORY OF THE LOGIC OF PROPOSITIONS 199 

which the Stoics placed at the head of their dialectic as the first "inde
monstrable" syllogism: 

If the first, then the second; 
but the first; 
therefore the second. 4) 

In this fm:mula_the_wocds....:'.the.Jirst" and "the second"-are Yett ittbles, 
for the Stoics denote variables not with letters, but with ordinal num
bers. 5) It is clear that here too only propositions may be meaningfully 
substituted for these variables; e.g. "it is day", and "it is light". When 
this substitution is made we get the ~erence which occurs again and 
again as a school example in Stoic texts: "If it is day, then it is light; 
but it is day; therefore it is light." That indeed propositions and not 
terms are to be substituted for the variables in the above formula is 
not only evident from its sense, but is clearly implied by the following 
example: "If Plato lives, then Plato breathes; but the first; therefore 
the second." ·Here "the first" plainly refers to the proposition "Plato 
lives", and "the second" to the proposition "Plato breathes". 6) 

The fundamental difference between Stoic and Aristotelian logic 
does not lie in the fact that hypothetical and disjunctive propositions 
occur in Stoic dialectic, while in Aristotelian syllogistic only categor
ical propositions _appear. Strictly speaking, hypothetical propositions 
can be found in Aristotle's syllogistic also, for each proper Aristotelian 
syllogism is an implication, and hence a hypothetical proposition. For 
example, "If a belongs to all b and c belongs to all a, then c belongs 
to all b" .1) The main difference between the two ancient systems of 
logic lies rather in the fact that in the Stoic syllogisms the variables 
are propositional variables, while in Aristotle's they are term variables. 

This crucial difference is completely obliterated, however, if we translate 
the above-mentioned Stoic syllogism as Prantl does (i, p. 473): 

4) Sextus, Adv. math. viii. 227 (Arnim, ii. 242, p. 81, 1. 22): d -ro 7tpw-rov, -ro 
lkunpov· -ro cs ye: 7tpw-rov· ~o O!poc oe:1he:pov. 

5) Apuleius, De interpr. 279 (Arnim, ii, p. 81 note): "Stoici porro pro litteris nu
meros usurpant, ut 'si primum, secundum; atqui primum; secundum igitur' ". 

6) Diogenes Laert. vii. 76 (quoted in Prantl, i, p. 471, note 177; missing in Arnim): 
id i::'/iID&.-rcuv, &vo::me:r IIM-rcuv· &:M.ii µ-l]v -ro rtpw-rov· 'l:o ocpo:: oe:1he:pov. , _ 

7) Aristotle, An. pr. ii. 11. 61h34; d y<Xp -ro A m:x:v-rl -r<j) B xod -ro r rcocv-ri -rep A, 
-ro r 7tt:>.:v-rl -rif> B [sc. fimxpxe:~]. 
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If the first is, the second is 
But the first is 

Therefore the second is. 

By adding to each variable the little word "is", ;which occurs nowhere 
in the ancient texts, Prantl, without knowing or wishing it, falsely 
converts Stoic propositional logic into a logic of terms. For in Prantl's 
schema only terms, not propositions, can be meaningfully substituted 
for "the first" and "the second". As far as we. can judge from the frag
ment;rry state of the Stoic dialectic that has come down to us, all Stoic 
inference-schemata contain, besides loii.cal constants, only propositional 
variables. Stoic logic is therefore a logic of propositions.8

) 

There is yet a second important difference between the Aristotelian 
and the Stoic syllogisms. Aristotelian syllogisms are logical theses, 
and a logical thesis is a proposition which contains, besides logical 
constants, only propositional or term variables, and which is true for 
all values of its variables. Stoic syllogisms are inference-schemata, in 
the sense of rules of inference, and a rule of inference is a prescription 
empowering the reasoner to derive new propositions from ones already 
admitted. We should examine this difference somewhat more closely. 

The Aristotelian syllogism quoted above, which can also be written 
"if all b is a and all a is c, then all b is c", is an implication of the form 
"if ct and {J, then y'', whose antecedent is a conjunction of the premis
ses ct and {J, and whose consequent is the conclusion y. As an impli
cation, this syllogism is a proposition which Aristotle recognizes as true; 
one that does_indeed hold for all values of its variables "a'', "b", and "c". 
If constant values are substituted for these variables, we get true prop
ositions. Inasmuch as the syllogism in question contains, besides 
variables, only the logical constants "if ... then'', "and'', and "all ... is", 
it is, like all other Aristotelian syllogisms, a logical thesis. 

It is otherwise in Stoic logic. The Stoic syllogism given above, which 

8
) I have defended this interpretation of the Stoic dialectic since 1923; see J. Lu

kasiewicz, "Philosopbische Bemerkungen zu mehrwertigen Systemen des Aussagen
kanctns", Comptes rendus des seances de la Societe des Sciences et des Lettres de Var
sovie 23 (1930), cl. iii, pp. 51-77. ["Philosophical Remarks on Many-Valued Systems 

~------ef---Prepositioruil-Logic'.'.,_pp._1~3=Ell .Pf. this. volume.] I rejoice in having found 
in H. Scholz, Geschichte der Logi!c (Berlin, 1931), p. 31, a supporter of this point 
of view. 

I -
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with the help. ofletters can be written "if p, then q; but p; therefore q", 
consists, as does the Aristotelian syllogism, of two premisses and a con
clusion. But here the premisses are not bound up together with the 
conclusion in a single unified proposition. This is plain from the word 
"therefore" which introduces the conclusion. The syllogism in ques
tion is consequently not a proposition. Since it is not a proposition, 
it-can-be-:trei:tlrertrne-mrr-false;-fm:it is....acknowledged that truth and 
falsehood belong to propositions alone. Hence the Stoic syllogism is 
not a logical thesis-: if constant values are substituted for its variables 
the result is not a proposition, but an inference. The syllogism is accord
ingly an infereuce-schema, having the force of a rule of inference 
which can be more accurately expressed in the following way: whoever 
accepts as true both the implication ''.if p, then q" and its antecedent 
"p", also has the right to accept as true the consequent "q" of this 
implication-i.e. to detach "q" from "p". This rule of inference, under 
the name of the "rule of detachment'', has become almost a .classic in 
modem logic. 

All Stoic syllogisms are formulated as rules of inference. In this way 
Stoic dialectic differs not only from Aristotelian syllogistic, but also 
from modern propositional logic, which is a system of logical theses. 

However, the Stoics were acquainted with a clear and simple method 
of converting all their rules of inference into theses. This involves 
a distinction betWeen binding and non-binding inferences. An inference 
with premisses ct and fJ and conclusion y they call binding [bilndig], 
if the implication, whose antecedent is the conjunction of the two prem
isses ct and fJ and whose consequent is the conclusion y, is valid. 
For example, the following inference is binding: "if it is day, then it 
is light; but it is d~y; tP,erefore it is light", for the corresp'bnding impli
cation is correct: "if it is day and if it is day then it is light, then it is 
light". 9) 

9
) Sextus, Hyp. pyrrh. ii. 137 (missing in Arnim, who nevertheless in ii. 239, p. 78, 

1. 15, quotes the parallel passage from Adv. math. viii. 415 (416)): ev '<OU'<'fl '<ii\ 
(A6ycp) "ei 71µ.epoc Ecr't'r., cp&~ Eo"nv· &AA~ µ-ljv -T)µe:pcx ~O"'t'r.v· cp&<; &poc FEo"'C'r.vH 

't'O µ.1:v. "qi&,,; &pa fowl'' cruµ.r.epacrµ.& ecr't'i, 't'tX 31: ).omtX ).~µµ.et:'<<X. '<WV Ile 
A6y©v ol µSv idcrr. O'UVIXX'tUCOt oL oe &crDvocX't'Or., O'UVC<X't'!.XOt µEv, 8-rav 't'0 
cruv-~µ.µ.evov '<O &px6µ.evov µ.1:v &r.o 't'Ou iliiX 't'&v 't'ou A6you /..'1]µ.µ.&'t'cuv cruµ.r.m:Aey
µkvou, A))yov 8E: z'Li:; "t'7jv E:1t'r.cpopQ:v a:O"t'oU, Uyr.E:i:; fl, o!ov 0 1tpoer.p11µb.ioi:; A6yoi:; 
cruvax't'tx6i; Scr"t'tv, BTid ~ S'r.cl "T65v A71µµ.&-rwv c<.1}roU cruµ~Aox:Yj 't'OCl>Tfl "~µE:poc 
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This just observation makes possible the conversion of inferences 
into propositions. When it is applied to the rule of inference "if p then q; 
but p; therefore q" we obtain the implication "if p and if p then q, 
then q", which is a thesis of propositional logic, since besides proposi
tional variables only the logical constants "if ... then" and "and" 
occur in it. 

It is not possible for me to go into all the details of Stoic logic here. 
I wish only to comment upon the most important points. The Stoic 
logic of propositions is a two-valued logic. In it the basic principle 
holds, that everr proposition is either true or false,_o_!_, __ as_ we say today, 
can take one of only two possible "truth-values'', "the true" or "the 
false". 10) This principle is laid down in conscious opposition to the 
view that there are propositions which are neither true nor false, namely 
those which treat of future contingent events. This view, which was 
particularly widespread among the Epicureans, was also ascribed 
by the Stoics to Aristotle. 11) -

In Stoic propositional logic the following functions occur: negation, 
implication, conjunction, and disjunction. The first three functions 
are defuied, as is normally said nowadays, as "truth-functions". By 
a truth-function is meant a function whose arguments are propositions, 
and whose truth-value depends only on the truth-value of its arfillments. 

According to the Stoics one obtains the negation or the contradictory 
of a proposition when the sign of negation is placed in front of the 
proposition.12} This theoretically correct and practically valuable rule 
C?ntinues to be operative in the Middle Ages. 13

) It is universally rec
ognized in modern logic. 

~cr-rr. xcd et ~µ.Sp~ ~cr'C'r., cp&i; ~a't'r:l' &xoAou-&ei "t'o· "cp&<; ~O''t'tv" bJ 't'o0-;cp 't'~ cruv
'.l]µµif~cp· "e:l 7jµifpoc ~<11:'~ _ xoc1. et 7jµifpoc fo·n, 9&~ fo-ii, qi&~ fo"t'IV". 

10
) Cicero, Acqd. pr. ii. 95 (Arnim, ii. 196, p. 63): "FundamentUm dialecticae est, 

quidquid enuntietur, id autem appellant &~luiµoc ... , aut verum esse aut falsum." 
11) Boethius, Ad Arist. de interpr. ed. secunda, Meiser, p. 208 (missing in Arnim): 

«Putaverunt autem quidam, quorum Stoici quoque sunt, Aristotelem dicere in future 
contingentes nee veras esse nee falsas." See on this matter my earlier paper cited 
above, pp. 75 ff. [This volume, pp. 176 ff.] 

12
) Apuleius, De interpr. 266 (Anrim, ii. 204a, p. 66): "Solum autem abdicativum 

vacant, cui negativa particula praeponitur." The word "ouxl" serves as the sign of 
propositional negation. --·------··----- ··-

13) See note 3, p. 198. 
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There are many disputes in ancient times over the meaning of the 
implication "if p then q". 14

) The argument seems to have been started 
by Philo the Megarian, who was the first to define implication as 
a truth-function in much the same way as is done today. According to 
Philo an implication is true if and only if it does not begin with truth 
and end with falsehood. An implication is accordingly true in three 
cases-:-fusrty;-'":rfi:t~ts conseeyaent--are-both ttae; secondly 
if its antecedent and its consequent are both false; and thirdly, if the 
antecedent is false and the consequent true. Only in one case is the 
implication false, namely when the antecedent is true and -the conse
quent false. 15

) Another Megarian, Diodorus Cronus, maintained on 
the other hand that an implication is true if and only if it neither was 
nor is possible for it to begin with truth and end with falsehood.16

) 

This ancient dispute concerning the concept ·of implication, immor
talized by Callimachus in an epigram ("Even the ravens on the roof 
tops are croaking about which conditionals are true"),17) is reminiscent 
of the polemic 'waged by one of the modern followers of Diodorus, 
C. I. Lewis, against the other advocates of mathematical logic.18) 

14) Cicero, Acad. pr. ii. 143 (Arnim, ii. 285, p. 93): "In hoc ipso, quod in elemen
tis dialectici docent, quo modo iudicare oporteat, verum falsumne sit; siquid ita co
nexum est, ut hoc: 'si dies est, lucet', quanta cm;ttentio est. Aliter Diodoro, aliter 
Pbiloni, Chrysippo aliter placet." 

15) Sextus, Adv. math. viii. 113: o µev qilfi.uiv ~fi.e;y~ &fi."l)&E:~ yl~r;;cr&oci 't'o 
C'UV"/)µµevov, (=implication), il't'<XV µ7) &px"IJ't'OCL &7t' &A"/)&Oi3~ xocl AYf('fi e7tl tjle;i3i)oc;, 
wcr't'E 't'p~x&c; µE:v ylvecreoc~ xoc't'' ocu't'ov &fi."1)&€<; cruv"l)µµifvov, xoc&' l!:voc ilE: 't'p67tov 
tjieuilo~. There follows the enumeration of all four cases with examples. 

1') Sextus, Adv. matlr: viii. 115: Ll~6i)uipoc; i)I; &fi.'.l)&E:~ e!vix~ <p"IJC'L cruv'.l)µµ~ov 

5m;;p µ~'t'<: eve3exe't'O µ~n: ev3ifx€'t'OC~ &px6µevov &rr' &P.'.1)-&ou<; A~ye~v errl tjieu3oc;. 
17) Sextus, Adv. math. i. 309: 't'O u7to 't'ou K1:<AA.iµ&xou de; Ll~6i)uipov 't'O'J Kp6vov 

cruyypocqi~ fsc. emypocµµ&'t'tov]· ij'Jl i),f xou x6pocX€<; 't'€'(EU>V ~m xo!oc mJV'ij7t't'<XL 
xpdi~oucr~ •••• 

18) Being of th_e opinion that the concept of "material implication", which comes 
from Philo, leads to paradoxes, such as "a false proposition implies any proposition", 
and "a true proposition is implied by any proposition" (compare the passage from 
Duns Scotus in note 44 of p. 214 below), Lewis wishes to replace "material implication" 
by "strict implication", the latter being defined in the following way. "p implies q" 
or "p strictly implies q" is to mean "it is false that it is possible that p should be true 
and q false". See C. I. Lewis and C.H. Langford, Symbolic Logic, New York and 

- London, 1932, pp. 122 and 124. 
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In the Stoic school, Philo's definition was accepted. At least, Sextus 

' ascribes this concept directly to the Stoics.19
) . 

The conjunction "p and q" is defined by the Stoics as a truth-function. 
It is true if and only if both its members are true; otherwise it is false.20) 

An analogous definition of the disjunction ''p or q" does not occur 
in the fragments of Stoic logic which have come down to us. We gather, 
from the rules of inference for disjunction laid down by Chrysippus, 
that he considered disjunction as an exclusive "either-or" connective. 
Thus according to Chrysippus the two members of a true disjunction 

-·· -------- ·-eann0t-beth-be-tr.ue___atJ;he same time. This_s_e_ems__to_haye been changed 
later. The conviction arises that the expression ''p or q" is synonymous 
with the implication "if not p then q". 21

) In this case we would no longer 
be dealing with exclusive disjuriction, but with non-exclusive alternation. 
In the Middle Ages, as we shall see later, the non-exclusive character 
of disjunction comes clearly to light. 

All the above-mentioned logical functions are to be found in the 
inference-schemata of Stoic dialectic. Of these infe~ence-schemata, 
some are considered to be "indemonstrable", that is to say accepted 
axiomatically as correct, while the others are reduced to the indemon
strable ones. It is Chrysippus who is supposed to have laid down the 
indemonstrable inference-schemata or syllogisms. These consist of the 
following five (in which I denote the variables not by ordinal numerals, 
but by letters) : 

I. If p then q; but p; therefore q. 

II. If p then q; but not-q; therefore not-p. 

ill. Not bothp and q; butp; therefore not-q. 

19
) Hyp. pyrrh. ii. 104, and Adv. math, viii. 245 (Arnim, ii. 221, p. 72, I. 32). Cf. also 

Diogenes Laert. vii. 81 (Arnim, ii. 243, p. 81). 
20) Sextus, Adv. math. viii. 125 (Arnim, ii. 211, p. 69): [Aeyoumv] oy•e~ e:Iva, 

cruµm:rcP.e:yµevov (=conjunction) -ro min' exov ev r:t.O-rij) &P.11-&'ij, ofov -ro "fiµepr:t. 
fo-r• xd qi&~ fo-rw", !fieuoo<; oe -ro lixov !fie:uoo~. 

21) Galen, Institutio Logica, ed. Kalbfleisch, p. 9, I. 13: -ro -ro•oti-rov e:Illo<; -r'ij<; 
Ait;e:ooi; '"'et µl] vU~ Scr"t"r.v, 1jµE:pix &:cr"t'Lv" Br.e:(;:e:uyµ.E:vov tcr·dv &;Lc.uµ.cx. Tjj q:iUaer. 't'&v 

_______ 71'~,e.Qf.ygci-rCilv r:t.u!'ij2 cruv11µfLevou os toer:t.v ltxe• T)j M~e:•. Exclusive disjunction is called 
"ll•el;euyµevov". For non-exclusive--iilfernation Galen uses the expression "7tapalli
e:l;euyµevov" (p. 35. I. 6). 

ON THE HISTORY OF THE LOG IC OF PROP08mONS 205 

IV. Either p or q; but p; therefore not-q. 
V. Either p or q; but not-q; therefore p. 22

) 

It is apparent from the fourth syllogism that disjunction is conceived 
of as an exclusive "either-or" connective. For non-exclusive alternation 
this syllogism is not valid.23

) 

The reduction of the derived inference-schemata to the indemon-
---stra:bles-is-a-maste:tt]:'}ieG©-of logical acumen._ The....s.ource of our infor

mation in this matter is Sextus, who thoroughly understands the dia
lectical technique of the Stoics and must be considered among the best 
sources of Stoic logic. With a clarity that leaves nothing to be desired 
he informs us, for example, how the Stoics reduced the inference-schema 
"if p and q, then r; not-r, but p; therefore not-q" to the second and 
third indemonstrable syllogisms. From the premisses "if p and q, then 
r" and "not-r" we get, using the second syllogism, the conclusion "not 
both p and q". This conclusion and the remaining premiss "p" yield, 
by the third syllogism, "not-q". 24

) 

22) Galen, Inst. log., ed. Kalbfleisch, p. 15 (Arnim, ii. 245, p. 82): 8v o Xpucmmo~ 
Ovoµ&~s:r. 7tp00't'ov &vocrc6S'z:r.x't'ov, 6 'i:'or.oU't'oi; 't'p61to<; Ecr't'lv. "ei 't'O rt..', 't'O ~, · "C'O 
ae a.'· 't'0 &poc ~'·'!I av 0 XpUat7t'7t'Ot; 8e:D'Tepov &vcc7t60er.X.'t'OV bvoµ&~e:L, 't'OWi3't'6t; 
&cr't'r.v· "et 't'0 cl', 't'O ~'~ oOxt ae 't'O ~'· oOx &prx 't'b rxn' ~-K&:itl 't'oU 't'pl't'ou 
xcx't'rX -roU't'ov ... 't'or.oU't'o<; 0 't'p6noc; Sa't'lv· "oUxt 't'6 't'S rx' xrxl 't'O ~J'· ('t'O s-e a.'· oUx 

Clpa 't'O ~')".-x&1d 't'OU 't'e:'t'&p-rou xa't'd: 't'Ov cd3't'6v~ .. 't'Or.oU-r6r; 't'?.~ 0 -rp6no~ tcr't'£V. 

''ij't'or. 't'0 r1..' ~ "t'0 ~'· 't'0 S'E: rx'· oUx &pa -rO ~'".-xcbd "t'OU 7te:µtc-rou ... 't'Or.oU't'6t; 

ecr·nv o -rp67to~. ~"7]-ro• -ro rt.' 7) -ro W· < ouxt oe -ro ~' • -ro &pr:t. rt.')". Cf. also 
Amim, ii. 241 and 242, pp. 79-81. 

23) Prantl, who actually hates Stoic logic, writes on this matter as follows (i, p. 474): 
"Here the enormous stupidity of the distinction between the moods IV and V does 
not have to be especially remarked upon." It is disgraceful to encounter such an 
assertion in a learned work, particularly as it rests upon ignorance of logic. Prantl 
further supposes that Chrysippus took the five syllogisms from Theophrastus, and 
"anyone who copies completely unfamiliar material thereby runs the risk of only 
displaying his own ignorance". Herein lies another historical error. It cannot be 
shown from our sources that Theophrastus constructed or even knew of the above
mentioned syllogisms. 

24) Sextus, Adv. math. viii. 235, 236 (missing in Arnim). The inference-schema reads 
"e:t 't'0 7tp&'l't'O\I x.al 't'0 S'stl't'ep"ov, -rO 't'pL-rov· o0xl as ye 't'0 Tp£'t'oV, &llti xal 't'0 7tp&'l't'ov· 

oux &pr:t. -ro od-repov." To the end of the reduction it runs: &cr-re ouo dv°'' 
~rx7t'oS'e:(x't'our;, Svec µ&v 't'O?.OiJ"t'Ov· "e:i 't'0 7tpW't'ov xctl 't'O 8e:U't'e:pov, 't'0 't'pL1:'ov· 
oUxL S'E: ye 't'O -rp(-rov· oUx. &pct 't'0 7rp&'t'ov xcd 't'O S'e:U't'epov':>, Or; ecr't'r. -0-eU't'e:por; 
&vaJr60e:ix.'t'ot;, €'t'e:pov OE 't'p('t'ov 't'Ov oU't'wc; ex_ov't'cc· "oUxl 't'O 7tp&Tov xcd -rO Oe:U
't'e:pov· &J .. Ac:Z µijv "t'0 7t'p&l't'ov· oU!< &po: 't'O 8"e:U't'e:pov''. 
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Another example given by Sextus, in which the first syllogism is 
used twice, remained unintelligible to Prantl. The example, in general 
form, reads·: "if p, then if p then q; but p; therefore q". The reduction 
proceeds as follows. From the premisses "if p, then if p then q" and 
''p" we get, by the first syllogism, the conclusion "if p then q". From 
this conclusion and the premiss ''p" we obtain, again by the first syllo
gism, "q". 25

) The inference-schema dealt with here is most interesting: 
it corresponds to a thesis of the propositional calculus that was recently 
raiseQ. to the rank of an axiom by Hilbert and Bernays.26:) 

--~····----The-nrnber:-of__derived inference-schemata_.is_supposed to have 
been very great.27

) Of those that have come down to us the following 
syllo~m, quoted by Origen, merits our attention: "If p then q; if p 
then not-q; therefore not-p." The example of it, given in addition, is 
also very interesting: "If you know that you are dead, then you are 
dead (for nothing false can be known); if you know that you are dead, 
then· you are -not dead (for the dead know nothing); therefore you 
do not know that you are dead. "28) The above passage from Origen 
is also important in that it gives us information about the meaning of 
a hitherto erroneously interpreted expression of Stoic dialectic. 29) 

25) Sextus, Adv. math. viii 230-3 (missing in Arnim). The text is corrupt, although 
unambiguously clear. It was corrected fust by E. Kochalsk:y in his dissertation De 
Sexti Empirici adversus logicos quaestiones criticae, Marbuig, 1911, pp. 83-85. Never
theless he finishes his corrections with an appeal to Zeller and Prantl in the following 
way: "Nimirum huiusmodi argumentum non simplex indemonstrabile per se est 
absurdissimum, sed Stoicos in syllogismis inveniendis incredibilia paene gessisse 
inter omnes constat." One sees from this how pernicious Prantl's influence was. 

26) Hilbert and Bernays, Grwullagen der Mathematik, vol. i, Berlin, 1934, p. 66. 
The thesis in questj.on is, in words, "if [if p, then (if p then q)] then (if p then q)". 

27
) Cicero, Topica 14, 57 (quoted by Zeller, Die Philosophie der Griechen, iii. 1, 

5th edition 1923, p. 114, note I; missing in Arnim): "ex iis modis conclusiones in
numerabiles nascuntur." 

28) Origen, Contra· Celsum, vii. 15 (Works, vol. ii, ed. Koetschau, 1899, p. 166, 
missinginArnim): O't"OCV oe ouci cruv"l')µµevoc "AfiY71 e:t~ 't"OC illfi"Aot~ &ntxdµe:voc 't"i{) 
xoc"Aouµevcp "otoc Mo 't"pomx&v" .&e:cupfiµoc't"t &voctpe:!'t"oct 't"o !v &µcpo't"epot~ 't"o!~ auv
"l')µµevot~ i)yo6µe:vov ..• xocl orc&ye:'t"ocl ye b A6yo~ 't"p6rccp 't"ot-oO't"<fl' "e:t 't"o rcpw't'ov, 
XOCL 't"O oe:tl't"e:pov· e:t 't"O rcp&'t"ov, OU 't"O oe:1he:pov· oux <'ipoc 't"O rcp&'t"ov". cpepouat oe 
xe<l !rct il"A"I)~ 't"OV -rp6rcov 't'O\i't'ov ol &rcb Tij~ l:'t"ooc~ "Aeyov't'e:~ ."6· '"e:t !rcla't'ocaoct 

~------O~'t'~t~'t'_e,&~n=JX=Cl~<;, (-r€,&\11JXOC~' d trc(cr't'OCO"OC~ O't't 't"e.3-V"l)XOC~), 00 't"e.&V1JXOC~". &xo"Aou,&~L 
T6· "oUx &poc ~7t£a1:'occrc.ct, 0T?.~~S:V~XOC~"·. ·~ 

29
) Neither Prantl nor Zeller knows the passage, although Fapricius had already 
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In connexion with the Stoic logic of propositions I would like to 
touch upon one or two questions of a general nature. The Stoics are 
constantly criticized for the fact that in their logic the most trivial 
empiricism as well as the most empty formalism appears. Thus Prantl 
(i, p. 457) says, in citing the examples given by the Stoics for implication, 
that these are "examples, from which it is sufficiently obvious both 
that-the-crudest-emp:iricai-eriterfrm is diJ;played, anG.-that tb:e1e is total 
lack of any understanding of the causal nexus between essences and 
inherences". Prantl's unfavourable judgement is not justified. If empir
ical examples are given for logical formulae, the criterion of truth 
for these examples must also be in some way empirical. However, 
the examples do not belong to logic, and in Stoic logic itself we do not 
find-the slightest trace of empiricism. When it is asserted that the Stoics 
lacked an understanding of the causal nexus, we may conclude only 
that Prantl fails to grasp the Philonian concept of implication accepted 
by the Stoic. In two-valued logic there can be no other concept of impli
cation than the Philonian. This has nothing to do with either empiri
cism or the causal nexus, for the expression "if p then q" does not mean 
the same as "q follows fromp". 

The accusation of formalism, which was often made even in ancient 
times, 30

) is quite justified, only in our eyes it is not an accusation at all. 
Formalism, or better formalization, means the ideal of exactitude that 
each deductive system strives to attain. We say that a deductive, axio
matically constructed system is formalized when the correctness of 
the deductions in the system can be verified without having to refer 
back to the meaning of the expressions and symbols used in the de
ductions. They may be verified, that is, by anyone who understands 
the rules of inference of.the system. In this sense the Stoics prepared the 
way for formalism, and they cannot be credited highly enough for 
that. They held strictly to words and not to their meanings, which is 

referred to it (Sexti Empirici Opera, 2nd edition 1840, vol. i, p. 112). The expression 
in question is "otoc ooo 't'pomxoov" ("-rpomxov" is a non-simple premiss, e.g. an 
implication). It is wrongly interPreted by Prantl (i, p. 480) and Zeller (iii. 1, pp. 114-
115 note 5); it means a syllogism in which two 't"porctx&, in this case two implications, 
occur as premisses. 

'
0

) Galen, Inst. log., ed. Kalbfleisch, p. 11, I. 6 (Arnim, ii. 208, p. 69, 1. 4): &I.A' 
oi rce:pl Xpuamn;ov xaV't"ClU.&Cl 't"7j "Ael;e:t µccP.).ov 7J -roi:~ rcpc£yfk<XO"t rcpo~~ov-.e~ -rbv 
VO\iV .... 
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the principal requirement of formalization, and they even did so in 
conscious opposition to the Peripatetics. -Alexander occasionally ex
presses the opinion that the essence of the syllogism lies not in words 
but in what the words mean.31) The Stoics would undoubtedly maintain 
the opposite. For in spite of the fact that, for example, they took the 
expressions "if p then q", and "q follows from p" t9 be synonymous 
(which is incorrect), they did not describe the inference-schema "q fol
lows from p; but p; therefore q" as a syllogism, although the following 
schema, which in their opinion is synonymous with it, is a syllogism: 

-------~-"if-p-then-q..;-.b.ut..p_;_.the.refore q~-----
In connexion with this controversy between the Stoic and the Peri

patetic schools, we are ultimately confronted with the question, whether 
the Stoics understood anything about the meaning in principle of their 
propositional logic, and, in particular, whether they were aware of 
having created a system of logic different from Aristotle's. Scholz 
believes that we must answer the first pai-t of this question in the neg
ative.33) For the second part of the question we have at our disposal 
two hitherto little-noticed accounts. 

In his commentary on Aristotle's Topics Alexander enumerates, 
under the heading "syncritical problems", certain controversial ques
tions discussed in ancient times-as, for example, whether the moon 
is bigger than the earth, or whether surgical treatment is to be preferred 
to medical. In ·so doing he also mentions the following comparable 
problems from logic: "whether induction is more convincing than the 
syllogism; and which syllogism is the first, the categorical or the hy
pothetical; and which syllogistic figure is the first or the better".34

) 

31) Alexander, In anal. pr. comm., ed. Wallies, p. 372, I. 29: oux ev 'l"Cltc; Ae~sow 
8 au'AAoyicrµoc; -.o s"(vaci exs' &'AA' ev -.otc; ITTJ[LGCtvqµevo,c;. 

32) Alexander, op. cit., p. 373, 1. 29 (A:rnim, ii. 253, p. 84): ol oE: vsc!l-.e:pm 't"Cl!<; 
AZ~smv ibtClXOAOU.&o\iv-.sc; OUXZ't"• oE: cr7J[LClivoµevmc;, OU '\"ClU'\"OV tpClcrt ylvscr&Clt E\I 
-.acre; s!c; -.cl:c; !croOUVCl[LOUcrCl<; M~e:ti;; [L€'t"GCA1j<j;e:at 't"WV opcvv· 't"GCU'tOV ycl:p cr7Jµac(vov-.oc; 
"t'0\3 "et 't'O A, 't'0 B!t' 't'c'j) "&xoAou,S.ef: 't'cf} A 't'O B"'' aulloyto-i:ixOv µSv A6yov cpctalv 
c:!vClt 'totClUTIJ<; A7JrpS-c:lcnic; 't'ij<;Az~c:cvc;· "d '\"o A, 'to B· 'to oE: A· 'to &pCl B", ouxen 
~~ cruMoyr.a"-cr.xOv &lltX nepccv't'r.xOv .,;b "&-... wAou,&e! T~ A 'TO B· TO 8E: A· 't'0 Cfpa B'"'. 

33) Geschichte der Logik, p. 32. 
34

) Alexander, In top. comm., ed. Wallies, p. 218: ~<HLV ~"'' xact lv "'TI Aoyox7j 
--------=-,-Y~X_P~"-"',-'x_ffi~c;~"-'-vac~<:.'l'l"OU[LE:VCl, &c; '\"o 11:6'te:pov 11:e:Lcr'ttX6''tc:pov, s11:Clycvr7J 7) crulloyicr

µ6c;, xcd noroc; 7tp&'t'oc; cru~~OYLO:ii:6~~·--·o·--xcct?jyopi.x0c; ~ 0 i5no&e't'!.X6c;, xoc1 "Ro!ov 
crx'ijµac 1tpW'tO\I 1) (3eA't"LO\I. 

------·-···--·-----·-
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It is the second question that intereslts us here: which syllogism is 
the first, the categorical or the hypothetical. Now the categorical syl
logism is the Aristotelian, the hypothetical, the Stoic. Our controversy 
accordingly concerns the relation of Aristotelian to Stoic logic, and 
aims at establishing which of these systems is the first, i.e., as I under
stand it, the logically prior. 

An answer 'f<)ffiJS questlollis-to be-feunG--m--the-highly interesting 
introduction to logic written by Galen. Galen reports that Boethius, 
who according to Ammonius was the eleventh head of the Peripatetic 
school after Aristotle, and who was reckoned one of the most acute 
logicians of his time, himself considered, although he was a Peripatetic, 
the hypothetical and not the categorical syllogisms to be the first. 
Against this Galen raises the objection that the categorical premisses, 
as simple propositions, are logically prior to the hypothetical ones con
structed out of them. However, he does not appear to attach any great 
importance either to this argument or to the whole controversy, for 
he thinks that there is not much to be gained or lost in the dispute. 
One should become as familiar with the one kind of syllogism as with 
the other, but in what order this should take. place, or which of them 
should be referred to as primary, may be left to one's own discretion.35) 

From these two fragments we may, in my opinion, conclude not only 
that the Stoics were aware of the difference between their own logical 
system and the Aristotelian, but also that they correctly judged the 
relation between the two systems. We know today that propositional 
logic is logically prior to the logic of terms. If we analyse the proofs 
that Aristotle uses in the Analytics to reduce syllogisms of the second and 
third figures to syllogisms of the first figure, we see clearly that theses 
of propositional logic must be employed throughout. The syllogism 

35) Galen, Inst. log., t<d. Kalbfleisch, p. 17; xcd µev'toi xacl 'tffiv ex -.ou Ilepm1hou 
't"Lveo<; &cr11:c:p xCll Bo'Y)S-o.; ou µ6vov dvac11:oodx'touc; 6voµ&<:oucriv -.ouc; lx 'tWV fiyc:
tJ.DVtx&v A"i)[L[L&'tCil\I au'AAoyicrµou<;, &AAOC XCll 1tpW'tOU<;" llaot oE: EX XCl't"/)"(OpLx&v 
11:po'l"&crc:cvv c:tcrtv &vCl11:6oc:tx'tot crulloyLcrµo(, 'tou'touc; oux hi 11:pro-.ou.; 6voµ&<:eo'1 
aUYXU>po\iO"t· xccl-ror. xcc8' e;'t'Ep6v ye 't'p67tov ot 't'OtoU-ro?. np6"t"epor. 'T:6:Jv 07to.&e:-rr.xWv 
dmv, c:\'.11:c:p ye: XClL Cll 11:po'l"&cre:t~ ClU'tWv f;~ CJ:,v cruyxc:tV'tClt 11:p6'l"spClt (3c:(3Cl(cv<; dcr(v· 
'OU8et~ yiXp &µipr.Of37Jtjcre:r. "t'O µ7J oU np6--repov s!vcx:r. 't'0 &:TC'/..oUv -i-oU cruv,&!f't'ou. &AAdc 
T<:e:pt µE:v -rffiv 'towu-.cov &µ9Lcrf37J't-ficreCilv oil'te: e:Ope:tv oil-.e: &yvo'ijcract µtyCl· XP'i 
l"cl:p &µrp6'tc:pCl 'tel: µep7J yLyvc!lcrxe:tv -.&v au'AAoy,crµwv, xact 't"O\i't' ecr't"i -.o XP'fimµov, 
.Ovop.&:~e:w SS: -roOc; &'t'fpouc; ~ 81.S&mcsr.v ~po"t"ifpouc; &<; bc.&.cr't'cp cplAov. 



210 ON THE HISTORY OF THE LOGIC OF PROPOSITIONS 

which later received the name "Baroco" cannot be formally reduced 
to "Barbara" without the propositional thesis "if (if p and q, then r ), 
then (if p and not-r, then not-q)." Now this thesis corresponds to an 
inference-schema which, as we saw above, was well known to the Stoics. 
It is highly probable that the application of this inference-schema to 
Aristotle's syllogisms did not escape the Stoics. We know also that the 
logic of propositions is of far greater importance than the meagre frag
ment of the logic of terms that is incorporated in Aristotle's syllogistic. 
The logic of propositions is the basis of all logical and mathematical 

--······-- ·-·--· sys.t.ems.~.JU.ust be· thankful to the Stoics for .hayi,ug_laid the founda
tions of this admirable theory. 

A great deal about how Stoic influences continue to be at work 
in the Middle Ages may be found in Prantl. That, however, the propo
sitional logic created by them undergoes a further development in that 
period seems to have been realized by no one up to now: Once again 
it is not possible for me to go into details here, especially since .the 
.sources for medieval logic are not easily accessible. I shall in what 
follows merely give a short account of what is to be found of proposi
tional logic in the Summulae logicales of Petrus Hispanus, that classic 
manual of medieval logic, together with the commentary on it by Ver
sorius; as well as what can be found in the writings of the subtl~ Duns 
Scotus. The Philonian criterion of a true implication, already disputed 
in ancient times, seems not to have been known to Petrus Hispanus. 
To make up for this there appears in his work, under the name of disjunc
tion and replacing Chrysippus' "either-or" connective, non-exclusive 
alternation as a truth-function.36

) We learn that a disjunction, ie. the 
joining together of two propositions by means of the connective 'vel', 
is false if and only if its two members are false. Otherwise it is true, 
even when both its members are true-though this was admitted with 
a certain reluctance. 37} 

• 
3
') Prantl (iii, p. 43) has nothing to report on this, for he is not aware of the differ

ence between disjunction and alternation. 
37) Summulae, tract. i, De disiwzctiva (quoted only in abridged form in Prantl iii, 

p. 43, note 158; I quote from a comparatively later edition, Petri Hispani Summulae 
Logicales cum Versorii Parisiensis clarissima expositione, Venetiis 1597 apud Matt
haeum Valentinum, which differs from the text quoted by Prantl in various places): 
"Disiunctiva est ilia, in qua comilngunfirr .. duae propositiones categoricae per hanc 
coniunctionem 'vel' aut aliam sibi aequivalentem, ut 'Socrates ~urrit vel Plato di-
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In the commentary the two following rules of inference are laid down 
for disjunction. Firstly, from a disjunction and the negation of one 
member the other member may be inferred; e.g. "Man is an animal or a 
horse is a stone; but a horse is not a stone; therefore man is an animal." 
This is precisely the :fi...f'fu indemonstrable syllogism of the Stoics; the 
fourth is, of course, missing, since it is valid only for exclusive disjunc-
tion. Secorrd:ly,frmrrt:b:e1::rnt:hme-member the-truth of the-1dis~·.,;J;,,un,,.,,.ci+tio"'n...------
may be inferred; e.g. "Man runs, therefore man is an ass or man runs". 38) 

The examples are grotesque, but none the less clear enough. The second 
rule is new, not occurring in _the Stoic texts. Moreover, it is correct 
only on condition that disjunction is taken as non-exclusive alternation. 

Conjunction, which here bears the name of copulative assertion, 
is defined by Petrus Hispanus as a truth-function, just as it was by the 
Stoics. The only rule of inference which see:IWi to be new is one which 
is added in the commentary: from a conjunction each of its members 
may be inferred; e.g. "Man is an animal and God exists, therefore man 
is an animal." 39

) 

In this connexion we find in the commentary on Petrus Hispanus 
the following beautiful remark: a conjunction and a disjunction with 
mutually contradictory members contradict one. another.40

) That is 
to say, the following propositions stand in contradiction to one another: 

sputat'. Ad veritatem disiunctivae sufficit, alteram partem esse veram, ut 'homo est 
animal vel equus est asinus', tamen permittitur, quod utraque pars eius sit vera, sed 
non ita proprie, ut 'homo est anii:nal vel equus est hinnibilis'. Ad falsitatem eius 
oportet, utramque partem eius esse falsam, ut 'homo est asinus vel equus est lapis'." 

38) Summulae, loc. cit.: "dupliciter arguitur a disiunctivis. Uno modo, a tota di
siunctiva cum destructione unius partis ad positionem alterius, ut 'homo est animal 
vel equus est lapis; sed equus non est lapis, igitur homo est animal'. Secundo modo, 
arguendo a veritate ·unius partis ad veritatem totius, et est bona consequentia, unde 
bene sequitur, haec est vera 'homo currit', igitur haec est vera 'homo est asinus vel 
homo currit'." 

39) Summulae. tract. i, De copulativa: "arguendo a tota copulativa ad veritatem 
cuiuslibet partis el.us seorsum, est bona consequentia. Ut bene sequitur 'homo est 
animal et Deus est, ergo homo est animal'." 

40) Summulae, Ioc. cit.: · "copulativa et disiunctiva de partibus contradicentibus 
contradicunt." The same thought, which is here stated somewhat too concisely, 
is expressed by Occam much more clearly: "Opposita contradictoria disiunctivae 
est una copulativa composita ex contradictoriis partium ipsius disiunctivae." (See 
Prantl, iii, p. 396, nqte 958.) , 
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"p and q" and "not-p or not-q", as well as ''p or q" and "not-p and 
not-q". In other words, "p and q" is equivalent to the negation of "not-p 
or not-q'', and "p or q" to the negation of "non-p and not-q". From 
which it follows that the so-called De Morgan's laws were known long 
before De Morgan. 

Finally we read, at the same place in the commentary, that the contra
dictory opposite of a proposition cannot be "more truly" formed than 
by prefixing the negation sign to the proposition. 41

) Here the Stoic 
influence, which we mentioned above, emerges particularly clearly. 

---·-----·------All-the-aboJLe...r.ules of inference,.JQg~th.....er...:with...the.last .remark, are also 
found in Duns Scotus. It seems therefore that they were generally recog
nized in the Middle Ages. 

The survival of Stoic propositional logic in the Middle Ages is par
ticularly evident in the theory of "consequences". By a consequence 
the medieval logicians understand not only an implication, but also an 
inference-schema of the type "p, therefore q'', in which "p" and "q" 
are propositions. As a rule, however, consequences are represented as 
inference-schemata. 42

) Consequences are divided into material and 
formal. A consequence is formal if it holds for all terms in the same 
arrangement and form; otherwise it is material. Formal consequences 
are, as laws of logic, always correct. A material consequence is correct 
or "good" (bona) only if it can be reduced to a forinal consequence 
through the assumption of a true proposition as premiss. If the assumed 
proposition is necessarily true, the consequence is called bona simpliciter; 
if it is only contingently true, the consequence is called bona ut nunc. 
The latter distinction . seems to me to be of no great significance. 43

) 

41) Summulae, loc. cit.: "non est verius dare contradictionem, quam toti propo
sitioni praeponere negationem." 

42) Duns Scotus, Quaestiones super anal. pr. i, 10 (Prantl, iii, p. i39 not~ 614): 
"Consequentia est propositio hypothetica composita ex. antecedente et consequente 
mediante coniunctione conditionali vel rationali." As a coniunctio conditionalis the 
word si is used; as a coniunctio rationalis either igitur or ergo. 

43) Loe. cit. (Prantl, iii, p. 139 note 615, p. 140 notes 617, 619): "Consequentia 
sic dividitur: quaedam est materialis, quaedam formalis. Consequentia formalis 
est ilia, quae tenet in omnibus terminis stante consimili dispositione et forma terini
norum." (There follows a precise setting-forth of what belongs to the form of a con
sequence.) "-Consequenfia rriateruilis-est ilia, quae non tenet in omnibus terininis 
retenta consimili .dispositione et forma. Et talis est duplex, quia quaedam est vera 

··-·--·----·--·-·-------------------~-· 
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Later medieval handbooks of logic, in chapters entitled De conse
·quentiis, introduced among various other formal consequences some 
which belong to propositional logic. Several of these consequences we 
have already become acquainted with above. It would be worth while 
for someone to take the trouble to assemble all of them, for then we 
would have a complete picture of the medieval logic of propositions. 

- -Tue-t-heory-of-eonseqt1~nces des.eaes....the_closest-attentien fm another 
reason, however. From the concept of material consequence des·cribed 
above, the Philonian concept of implication, forgotten in the Middle 
Ages, can be derived in a logical but quite unexpected·way:It·is wnrth 
going into this derivation more closely. 

The implication "if p then q" corresponds to the inference-schema 
"p, therefore q"; both forms are even characterized in the same way 
as consequences. A true implication corresponds to a good consequence, 
and vice versa. A material consequence is good if it can be transformed 
into a formal consequence by the assumption of a true premiss. It follows 
from this, first, that every implication whose consequent is true must 
itself be true. Thus if "q" is true, the material consequence ''p therefore 
q" is good for all p; for if the proposition "q", true by assumption, 
be added as a premiss, we obtain the inference-schema ''p and q, there
fore q", and this inference-schema is, as we have seen above, a formal 
consequence. Secondly it follows that every implication whose ante
cedent is false must also be true. Thus if ''p" is false, the material conse
quence ''p, therefore q" is good for all q; for if the true proposition 
"not-p" (i.e. the contradictory of the proposition p, false by assumption) 
be added as a premiss, we get the rule of inference ''p and not-p, there
fore q", and this rule of inference is a formal consequence, as we shall 
see below. In three cases therefore ("true-true", "false-true'', and "false
false") is an implication true; in the fourth case ("true-false") it is of 
course false. Implication is therefore strictly defined as a truth-function, 
according to the Philonian model. 

This conclusion seems to have escaped Duns Scotus. Still, he was 
clearly aware of all the assumptions_ that led up to it. He knows, that is, 

simpliciter, et alia est vera ut nunc. Consequentia vera simpliciter est ilia, quae potest 
reduci ad formalem per assumptionem unius propositionis necessariae.-Conse
quentia materialis bona ut nunc est ilia, quae potest reduci ad formalem per assum
ptionem alicuius propositionis contingentis verae." 
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that from any false proposition any other proposition follows in a good 
material consequence, and that any true proposition results from· any 
other proposition in a good material consequence. And :finally he proves 
that, from a proposition which contains a formal contradiction, any 
proposition at all can be obtained in a formal consequence.44

) The 
proof is given by means of an example and goes as follows. The conse
quence "~ocrates runs and Socrates does not run, therefore you are in 
Rome" is formally correct. From the conjunction "Socrates runs and 
Socrates does not run" the proposition "Socrates runs'', as well as the 

___________ proposition "Socrates does not run", follows in__form_al __ consequence. 
From the proposition "Socrates runs" there follows further, in formal 
consequence, the disjunction "Socrates runs or you are in Rome". 
Finally, from this disjunction and the negation of its first member we 
obtain, in formal consequence, the proposition "you are in Rome". 45

) 

With the collapse of medieval scholasticism all these fine investigations 
fell into total oblivion. 

The "philosophical" logic of modern times is infected ~hrough and 
through with psychology and epistemology. It has no understanding 
of nor interest in questions of formal logic. Aristotelian syllogistic is at 
best taken account of in its traditional dist;ortion, and we find scarcely 
a trace of propositional logic. In vain does one seek for problems that 
are new, precisely formulated, and _methodically solved. Everything dis
solves in vague philosophical speculations. 

Modern logic is reborn out of the spirit of mathematics. With "mathe- -
matical" logic or logistic a new logic arises and comes into full bloom 

44) Loe. cit. (Prantl, iii, p. 141 note 621): "Ad quamlibet propositionem falsam 
sequitur quaelibet alia propositio in consequentia bona materiali ut nup.c.- Ornnis 
propositio vera sequitur ad quamcunque aliam propositionem in bona consequentia 
materiali ut nunc.-Ad quamlibet propositionem implicantem contradictionem de 
forma sequitur quaelibet alia propositio in consequentia formali." 

45) Duns Scotus, Quaestiones super anal. pr. ii, 3 (not quoted by Prantl): "'Socrates 
currit et Socrates non currit; igitur tu es Romae.' Probatur, qui_a ad dictam copula
tivam sequitur quaelibet eius pars gratia formae. Tune reservata ista parte 'Socrates 
non currit', arguatur ex alia sic: "Socrates currit, igitur Socrates currit vel tu es Ro
mae', quia quaelibet propositio infert seipsam formaliter cum _ qualibet alia in una 
disiunctiva. Et ultra sequitur: 'Socrates currit vel tu es Romae; sed Socrates non 
currit (ut reservatum fuit); igitur tu es Romae'; quod fuit probatum per illam regu-

-------•iam=-c-: -ex-di""· s~iun-----cctiva cuni- contradictofia Unius ·partis ad reliquam partem est bona 

consequentia." 
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in the space of a few decades. With it the logic of propositions again 
comes into its own. And here we encounter all at once a phenomenon 
unique in the history of logic: suddenly, without any possible historical 
explanation, modern propositional logic springs with almost perfect 
completeness into the gifted mind of Gottlob Frege, the greatest logician 
of our time. In 1879 Frege published a·small but weighty treatise entitled 
B-egrijfsdrrijt;-eirrrdr?r--arithmeti-scherz__nachg.ebildete Formelsp1 ache des 
reinen Denkens ("Begriffschrift", a formalized language of pure thought 
modelled upon arithmetic). In this treatise the whole logic of proposi
tions is for the first time laid down as a deductive system in strict axio
matic form. 46) The Fregeau system of propositional logic is built upon 
two fundamental concepts, negation and :hnplication. Implication is de
fined as a truth-function 1n just the same way as was done by Philo more 
than· 2000 years before. Other functions are not introduced, although 
the expression "if not-p then q" can be read also as "p or q", and the 
expression "not-(if p then not-q)" as "p and q". With the help of the 
fundamental concepts six Kernsatze or axioms are laid down, from 
which all other theorems of propositional logic can be derived by means 
of rules of inference-the rule of detachment, which is explicitly formu
lated as a rule, and the rule of substitution, which is used without being 
formulated. Serving as the rule of detachment (the name does not 
originate with Frege) is the first indemonstrable syllogism of the Stoics: 
if the implication "if a then {3" together with the antecedent "a" of this 
implication are admitted as theses of the system, then the consequent 
"/3" may also be admitted and detached from the implication as a new 
thesis. As f~r the rule of substitution, it allows meaningful expressions 
only to be substituted for the variables. 1Yfeaningful expressions (this 
concept does not appear in the Begrijfschrift) include firstly variables, 
then negations of the type "not-a", where a is a meaningful expression, 
and finally implications of the type "if ex then {3", where ex and /3 are 
meaningful expressions. The theses of the system, i.e. the axioms and 
theorems, are expressed in a symbolism consisting of vertical and 
horizontal lines that take up an excessive amount of space. This symbol-

46) See on this matter Lukasiewicz and Tarski, "Untersuchungen i.iber den Aussa
genkalki.il", Comptes rendus des seances de la Socitfte des Sciences et des Lettres de Var
sovie 23 (1930), cl. iii, p. 35, note 9. ["Investigations into the Sentential Calculus", 
pp. 131-152 of this volume.] 
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ism of Frege's does, however, have the advantage of avoiding all punc
tuation marks, such as brackets, dots, and so on. I have succeeded in 
devising a simpler bracket-free symbolism, requiring the least possible 
space. Brackets are eliminated by placing the functions "if" and "not" 
before their arguments. The expression "if p then q" is represented in 
my symbolism by "Cpq", and "not-p" by "Np". Each "C" has as argu
ments the two meaningful expressions immediately following it, and 
each "N" has one such expression. Frege's axioms assume, in this sym-
bolism, the following form: -

--------- ---,----------~-cpeqp·-. ------ -I-V-:--cCpqCNqNp. 

II. CCpCqrCCpqCpr. V. CNNpp. 
III. CCpCqrCqCpr_. VI. CpNNp. 

This axiom system is complete: that is, all correct theses of proposi
tional logic can be derived from it by means of the two rules of infer
ence. It is deficient only in "elegance": the system is not independent, 
for the third axiom can be deduced from the first two. The deduction, 
which is performed below, gives one an idea of how a modern formalized 
system of propositional logic appears. To explain the deductive technique 
used I add the following notes. 47

) Before every thesis to be proved (each 
of which is provided with a consecutive number and can thereby be 
recognized as a thesis), there is an unnumbered line, which I shall call the 
"derivational line". Each derivational line consists of two parts, which 
are separated by the sign " X ". What stands before and after this sepa
ration designates the same formula, but in a different way. Before the 
separation sign is given the substitution which is to be performed on 
an already asserted thesis. For example, in the derivational line that 
belongs to thesis 1, the expression "Ip/CCpCqrCCpqCpr, q/Cqr" means 
that in I "CCpCqrCCpqCpr" is to be substituted for ''p" and "Cqr" 
for "q". The thesis resulting from this substitution is omitted from the 
proof for the sake of brevity-it looks like this: 

l' CCCpCqrCCpqCprCCqrCCpCqrCCpqCpr. 

The expression "CII - l" after the separation sign indicates the construe-

________ 
47~)Cf..,...._L_ukasiewicz, "Ein Vollstiindigkeitsbeweis des zweiwertigen Aussagen

kalkiils", Comptes rendus l:le!Tseiiii.ce!idii-la SoCiete des .Sciences et des Lettres de Var
sovie 24 (1931), cl. iii, p. 157. 
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tion of the same thesis I', and in such a way as to make it clear that 
the rule of detachment can be applied to 1 '. We see, ·that is, that the 
thesis I' is of the type "Ca(J'', where "a" denotes axiom II. Hence "/3", 
or 1, can be detached from it as a new thesis. Up to thesis 3 the deduction 
exactly follows Frege's train of thought. 

I ____ .....;;;C,cc;.p.;;;.C.:;LJqe_"-'.'----

II CCpCqrCCpqCpr. 

I 

2 

3 

4 

5 

6 

7 

8 

* 
Ip/CCpCqrCCpqCpr, q/Cqrx C-I. 
CCqrCCpCqrCCpqCpr .. 

llp/Cqr, q/CpCqr, r/CCpqCprX CI - 2. 
CCCqrCpCqrCCqrCCpqCpr. 

2xCip/Cqr, q/p-3. 
CCqrCCpqCpr. 

llp/Cqr, q/Cpq, r/CprxC3-4. 
CCCqrCpqCCqrCpr. 

Ip/CpCqp, q/rxCI-5. 
CrCpCqp. 

4q/Cpq, p/qX C5r/CCpqr,p/q, q/p-6. 
CCCpqrCqr. 

3 qjCCpqr, r}Cqr,pjsx C6-7. 
CCsCCpqrCsCqr. 

7 s}CpCqr, r/Cprx CII-8. 
CCpCqrCqCpr. (III) 

The two-valued logic of propositions, founded by the Stoics, carried 
on by the Scholastics, and axiomatized by Frege, stands now as a com
pleted system before us .. Scholarly research, however, knows no limits. 
With "many-valued" systems of propositional logic a new domain 
of investigation has, in recent years, come into being; a domain which 
opens up surprising and unsuspected vistas. History, however, need 
only report about this new logic in the future. 
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The direct impulse to write the present artictle is due to Father Augus
tyn Jakubisiak's book Od zakresu do tresci (From extension to inten
sion).1) His book, which is a collection of philosophical papers, is pre
ceded by his introduction in which he attacks those -philosophical 
currents which, in his opinion, are connected with logistic. I regret that 
Father Jakubisiak, who lives in Paris, did not take the trouble to become 
aquainted with the milieus and opinions that he criticizes. In that way 
he might have avoided certain formulations which discredit his attack. 
Here are some examples. 

Claiming that the philosophical currents connected with logistic 
have declared a merciless war on the philosophical doctrines of the 
past, Father Jakubisiak says on page 11 : "Such an attitude towards 
the philosophy of the past is found in Russell, in Whitehead, and in 
Kreis, Witgenstein, Schlick, Carnap, and many others, among whom 
a prominent place is held by Polish logicians of the notorious 'WaISaW 
school'." I have never heard of any philosopher whose name is Kreis 
and who might be mentioned in this connection, but I do know that 
Schlick and Carnap belong to a group of philosophers which in philo
sophical circles is known as "Wiener Kreis", i.e., "Vienna Circle". Has 
Father Jakubisiak mistaken th~ name of a group for the surname of 
an individual? 2

) · 

Father Jakubisiak further quotes extracts from my address at the 
Second Conference of Polish Philosophers in 1927, summarized in my 

1
) Augustyn Jak:ubisiak, Od zakresu do. tresci (From extension to intension), 

Warsaw, 1936, p. 301. 
, 

2
) For accuracy's sake let it be noted that "Wittgenstein" is spelled with a double 

"t" in the :first syllable. I also take the liberty to remark that the Warsaw school of 
logistic has already won some renown both in Poland and abroad, but the first time 
it has been called "notorious" is by Father Jak:ubisiak. 

--------.*"')"F;-;:ir::st~p=ub"'li"''s"'h=euas"Logisty1'Incfilozofia" · :iri. Przeglqd Filozoficzny 39 (1936), 
pp. 115-131. Reprinted in 1961 edition Z zagadniefz logiki i filo~ofii. 
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paper 0 metod~ w filozofii (Towards a method in philosophy), published 
in the Conference Book.3) On page 12 Father Jakubisiak repeats my 
words that "the logic created by mathematicians, which sets a new 
standard of scientific precision, much higher than all the previous 
standards of precision, has opened 4) our eyes to the uselessness of philo
sophical speculation. Hence, as at the time of Kant, the need arises 

- fora-refonn-of-phlfosophy~-Y et a reform-nei--m-fue name-ef.sl-fleffim'tte~·Vlv"a;J;Jg;!'!l:ltte~---:---~ 

criticism and in the spirit of a non-scientific theory of cognition, . but 
a reform in the name of science and in the spirit of mathematical logic." 
Less than two pages further, on page 14, Father Jakubisiak writes: 
"While the human mind, contrary to Kant's prohibitions, gains ever 
deeper insight into the surrounding reality, the defenders of the logistic 
reform of philosophy want to forbid to that same human mind all 
contact with reality and to make it concentrate on a sterile study of 
a priori forms without content, on idle talk." The reader who remembers 
the fragment of my address quoted above and also knows that "mathe
matical logic" means the same as "logistic" is fully entitled to suppose 
that exactly I, as a defender of a logistic reform of philosophy, and even, 
~s I :find on page J 1 of the book, as one of the "promoters" of that new 
philosophy, want to forbid to the· human mind all contact with reality 
and yet in my paper quoted above I wrote quite explicitly: "We must 
incessantly strive for contact with reality, so that we do not produce 
mythical entities iike Platonic ideas and Kantian things-in-themselves, 
but understand the essence arid structure of that real world in which 
we live and act and which we somehow wai+t to improve". Has, then, 
Father Jakubisiak failed to read to the end my paper which has only 
two pages? 

In one of his papers Professor Zawirski, of Poznan, is concerned with 
an argument of Heisenberg which might be summarized as follows.5

) 

In the principle of causality, which states: "if we know the present exact-

3) In Przeglqd Filozoficzny 21 (1928), pp. 3-5. Its Polish title is misquoted by 
Father Jak:ubisiak on p. 12 as "O metodzie w filozofii" (On a method :iri. philosophy). 

4) The author misquotes as "will open". 
5) Zygmunt Zawirski, "W sprawie indeterminimrn fizyki kwantowej" (Concerning 

· the indeterminism of quantum physics), :iri. Ksi~ga Pamiqtkowa Towarzystwa Filozo
ficzneg~ we Lwowie (Commemorative book of the Lw6w Philosophical Society), 
Lw6w, 1931, pp. 456--483. See in particular pp. 478--479. This paper, too, is misquoted 
by Father Jak.ubisiak as "W sprawie :iri.determinizmu". 
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ly, we can predict the future", the antecedent is false, for we are unable 
to know the present exactly. Hence the principle of causality is not 
valid. Professor Zawirski raises against this reasoning the following 
objection which is quoted verbatim by Father Jakubisiak in his 'footnote 
on page 17: "We may not speak of the falsehood of the principle of 
causality, even if we consider it in Heisenberg's formulation. It has the 
form of an implication; in that implication the antecedent is false, hence 
the principle is wrong, says Heisenberg. Now, Professor Zawirski writes, 
one may not reason so. It is precisely the property of an implication 

····--··--··--·-···-··--tbat-it-rnmainS-true-exenJf.Jt~edent is fal~~~ILHdsenberg's idea 
is rendered correctly, which is not questioned by Father Jakubisiak, 
then Professor Zawirski's objection is correct, for we know from the 
logic of propositions that an 'implication having a false antecedent is 
true. Nor can I say that Professor Zawirski overestimates the weight 
of his argument. He would agree, as Father Jakubisiak mentions, with 
Born's opinion that should it be impossible to ascertain the antececj.ent, 
the principle of causality would be "ein leeres Gerede" and would not be 
applicable. Why then does our author pile denunciations upon Professo! 
Zawirski's objection? He writes: "Mr. Zawirski accuses Heisenberg 
of ignorance of the rules of logic ( ... ) poor Heisenberg does not even 
guess the simple and profound critical operations with which Mr. 
Zawirski undermines his main thesis!; ... it is only to be regretted that 
Heisenberg does not, and probably never will, know what formidable 
opponents he has in Poznan University". Can Father Jakubisiak not 
know the rule of logic to which Professor Zawirski refers? 

In view of such formulations found in the book under discussion, 
Father Jakubisiak's attack on logistic and logistic philosophy could be 
passed over in silence. If I have decided otherwise, I have done so in 
order to avail myself of the opportunity provided by that attack to 
clarify some misunderstandings, which are not lacking when it comes 
to the relationship between logistic and philosophy, and to formulate 
precisely my own opinion on the matter. 

I 

Father Jakubisiak begins his attack with the-statement (p. 11): "The 
defence of the essential postulates of criticism is also undertaken, though 

~------...-in-a--,diffi"'· =e-r-en_t. way, oy 1lie.Iatest' philosophical currents, called either 

logical empiricism, or mathematical logic, or just logistic". This sentence 

-~ 
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contains two misunderstandings. The first is implied by the insinuation 
that the said philosophical "currents" undertake the defence of the 
essential principles of criticism, i.e., Kantian philosophy, which is 
entirely at variance with the truth. I shall refer to this point later on. 
The second misunderstanding consists in identifying logical empiricism 
with mathematical logic, or logistic. The misunderstanding consists in this, 
-rnat-oy-"'empiricism",-be-iHogieal-er-any-other empiricism=-, -\'¥.l'<'e~mmee:1:1ann:-----~ 
a philosophical current or trend, and "logistic" is not the name of a trend 
in philosophy, or even a trend in logic, but is the name of a discipline, 
like "arithmetic" or "psychology". In this connection let me ·repeat 
what I said at the . Eighth International Congress of Philosophers in 
Prague, 1934: 6) "Logistic, also called 'mathematical logic', still seems 
to some philosophers to be only a certain trend which exists within 
logic along with other equally legitimate trends, while to some mathe-
maticians it seems tO have only the value of an auxiliary discipline, 
initiated for the purpose of laying the foundations of mathematics. 
In view of this I wish to emphasize that I treat logistic as an autonomous 
discipline which embodies modern formal scientific logic, and that 
it would be impossible for me to accept the existence, o:utside logistic, 
of any 'trend' in logic that might pass for scientific logic. Historically 
and this point I would like to stress in particular, modern logic is a high-
er stage of development of ancient formal logic, which can develop 
fully only now owing to the fact that with the co-operation of mathe-
maticians it has succeeded in liberating itself from obscure philosophi-
cal speculations which for so long hindered its progress". Logistic, 
as I see it, and I do not doubt that all scientists who pursue this branch 
of research see it in the same way, is thus nothing· else than the con- . 
temporary form of formal logic and would be fully entitled to call 
itself just logic, since formal logic forms the nucleus of logic. 

Now, no one doubts that logic is neither a trend nor a current in 
philosophy but at the most is a branch of philosophy. Contemporary 
formal logic, or logistic, has, however, expanded so much and has 
grown so independent of philosophy that it is, like psychology, to be 
treated as a separate discipline. In view of its method and the precision 
of its results, and also in vie;v of the problems with which it is con-

") Jan Lukasiewicz, "Znaczenie analizy logicznej dla poznania" (the significance 
of logical analysis for cognition), in Przeglqd Filozoficzny 37 (1934), p. 369. 
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cerned, that discipline now comes closer to mathematics than to 
philosophy. 

Further, I wish to point out that logistic not only is not a philosoph
ical trend, but is not associate4 with any trend in philosophy. Let 
those philosophers who are not acquainted with logic and so cannot 
ascertain this for themselves just consider that logistic is something -
related to Aristotle's theory of the syllogism. Like Aristotelian syllo
gistic, it investigates·forms of reasoning and lays down the methods of 
correct inference and proof. Now, it is certainly obvious that a person 

- --------ma-Y"Ele-r~ea1:ch-w.ork on sYl!Qgistic, and analo.go_usly_on_pr_oofthebry, , 
while professing in philosophy indifferently e1J1piricism or rationalism, 
realism or idealism, or taking on these issues no standpoint at all. In 
logistic, as in arithmetic, no definite philosophical point of view is either 
explicitly assumed or clandestinely accepted. Logistic is not philosophy 
nor does_ it pretend to replace philosophy. 

It does not follow, of course, that in logistic there are no issues that 
have philosophical importance. Every discip1ine has such issues, and 
Father Jakubisiak knows this best, since in his collection of philosophi
cal essays he refers incessantly to mathematics or physics or biology 
or even history. Disregarding here the issue of many-valued logics, 
which in my opinion are of the greatest importance to philosophy, 
I wish to mention briefly a certain other problem of logistic, which 
is most closely associated with philosophy. 

Contemporary logic has a nominalistic guise. It refers not to concepts 
and judgements, but to terms and propositions, and treats those terms 
and propositions not as flatus vocis, but-having a visual approach
as inscriptions having certain forms. In accordance with that assump
tion, logistic strives to formalize all logical deductions, that is, to pre
sent them so that their agreement with the rules of inference, i.e., the 
rules of transforming inscriptions, can be checked without any refer
ence to the meanings of the inscriptions. This striving, which in anti
quity was initiated by the Stoics, who, in that respect, opposed the Peri
patetics, is intended to reduce all logical self-evidence to visual self-evi
dence with a disregard for all elusive elements of a conceptual nature.7) 

-~-------"7 Examples of formalized logical proofs can be found in my paper quoted in 
footnote 6 above (on p. 375), and also i:ii-i:hefollowing two items: Jan Lukasiewicz, 
"O znaczeniu i potrzebach logiki matematy=ej" (On the significance and require-
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While in practice they adopted the nominalistic standpoint, the lo
gicians, as far as I see, have not yet discussed nominalisni thoroughly 
enough as a philosophical doptrine. But I consider a future discussion 
of this matter most desirable for the following reason. 

If we treat propositions as inscriptions and inscriptions as products 
of human activity, then we must assume that the set of propositions 
is :fi:nite:-N--o-nne-rrm:rbts-t:ha-t-weare able to produce only a :finite nu:mbe1 
of inscriptions. On the other hand, in any logical -system we assume 
rules of inference which lead to an infinite set of theses, that is, propo
sitions which are asserted in that system. For instance, in the propo
sitional calculus from any thesis we can obtain a new, longer, thesis 
by substituting for a variable a formula that is a negation or an impli
cation. Hence there is no longest logical thesis, in the same way as there 
is-no ·greatest natural number. Hence it follows that the set of logical 
theses is infinite. That infinity manifests itself at every step even in such 
an elementary logical systeni as the two-valued propositional calculus. 
For we can very easily establish a one-to-one correspondence between 
the set of all theses of two-valued logic and a set of theses that is only 
a proper part of the former set, thus revea1ing, in the case of the logical 
theses, a property which according to Dedekind is typical of infinite 
sets.8

) 

How can we reconcile these facts with nominalism? We might simply 
disregard them and maintain that only those theses exist which have 
been written by someone. Then the set of theses would always be finite, 
and there would always exist a longest thesis. Such a point of view 

ments of mathematical logic), Nauka Polska IO (1929), p. 610, footnote; Jan Lukasie
wicz, "Z historii logiki zdan" (On the history of the logic of propositions), Przeglqd 
Filozofiezny 37 (1934), p. 437. The last-namedpaper also includes·(p. 428) quotations 
from Alexander which clarify the stand-point of the Stoics and the Peripatetics on 
this matter. [Of these three items only the last-quoted is included in the present vol
ume, pp. 197-217. Pages 437 and 428, referred to above, correspond to pp. 217 and 
208, respectively, of the present book.] 

-
8
) For that purpose it suffices, in the implicational-negational system, to associate 

with all implicational theses their equiform implicational theses, and with those 
theses which include negation to associate formulae that diifer from those theses only 
by having a formula "CrxNct." in place of the negation "Nct.". The latter set will also 
be a set of theses and will be equinumerous with, but only a proper part of the former. 
i.e., the set of all theses, since it undoubtedly will not include, for instance, the thesis 
"CpCNpq". 
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would be consistent, yet it seems that on such a basis it would be dif
ficult to engage in logistic, and in 'particular metalogistic, :i;esearch, 
in the same way as it would be difficult to build arithmetic on the basis 
of the assumption that the set of natural numbers is finite. In doing 
so we would make logic depend on certain empirical facts, that is, on 
the existence of certain inscriptions, which would be hardly acceptable. 
Further, following Dr, Tarski, we might consider as inscriptions not 
only products of human activity, but all physical bodies of definite size 
and shape, and assume that there are infinitely many such bodies.9) 

---------B-ut-then-we-wo.uld have to make logiLdep_end_on_a_hardly probable 
physical hypothesis, which is not desirable in any case. How, then, 
are we to avoid all these difficulties without abandoning nominalism? 

We have so far been little worried by these difficulties, and this is 
the strangest point. It was so probably because, while we use nominal
istic terminology, we are not true nominalists but incline toward some 
unanalysed conceptualism or even idealism. For instance, we believe 
that in the two-valued implicational-negational propositional calculus 
there exists a "sole" shortest axiom, although so far no one knows 
what that axiom looks like, and hence no one can write it down.10

) 

9
) Alfred Tarski, "Poj~e prawdy w j~zykach nauk dedukcyjnych" in Prace Towa

rzystwa Naukowego Warszawskiego (The Works of the Warsaw Scientific Society), 
Section III, Warsaw, 1933. An English version is now available as "The Concept 
of Truth in Formalized Languages" in Alfred Tarski, Logic, Semantics, Metamathe
matics, Oxford, 1956, pp. 152-278. For the problem raised here cf. footnote 2 on 
p. 174 of the text in English. . 

'
0
) Information on the sole axioms of the implicational-negational system can be 

found in Boleslaw Sobocmski, "Z badan nad teorif! dedukcji" (Some research on 
the theory of deduction), Przeglqd Filozoficzny 35 (1932), pp. 172-176, and footnote 
5 on pp. 187-190. The details given there should be augmented by the fact that on 
February 2, 1933, Mr Sobocmski found the following organic axiom consisting of 
27 letters: 

CCCpqCCCNpNrsCrtCuCCtpCvCrp, 

which I next reduced to 25 letters: 
.,~ 

CCCpqCCCNpNrsCrtCuCCtpCrp. 

This is one of the two shortest known axioms of the implicational-negational system. 
The other, found by me, has the foTI:n: 

CCCpqCCNrsCNtCrtCCtpCuCrp. 

It may be supposed ~th considerable-probability that neither of these two axioms 
is the desired shortest one. Such research is, however, so laboric;ms that it cannot be 
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It is as if that axiom existed as some ideal entity which we may discover 
some day. It would be wdrth while to analyse in detail all such beliefs, 
bearing in mind the principle, expounded by the Venerabilis Inceptor 
of nominalism, that entia non sunt multiplicanda praeter necessitatem. 11

) 

II 

-~J:he-·denia±-<:}f-m_~taphy.sics, so s:tLOJlgly emphasized by Jogjcians, 
is a bequest of the philosopher from Konigsberg", Father Jakubisiak 
continues on page 12 of his book.· This proposition includes two new 
mis-statements, one historical, one factual in nature. The latter con
sists in this: that the students of logistic are supposed to deny meta
physics. I have already said that logistic is not philosophy, hence it is 
riot concerned with metaphysics. Logistic neither denies not affirms 
metaphysics because it is not concerned with it. what is true is only 
that some philosophers, who along with philosophy also engage in 
logistic, deny metaphysics. They include, above all, the representatives 
of the Vienna Circle. I shall refer to this point later on. 

For the time being I wish to discuss the former, historical, mis-state
ment. I am, of course, not authorized to speak on behalf of the Vienna 
Circle, but I am sure that its representatives would protest most vig
orously against the supposition that the denial of metaphysics, which 
they propound, is a bequest of the philosopher from Konigsberg. I am 
convinced that Kant's transcendental 'philosophy, which assumes, 
on the one hand, the existence of things in themselves, unrecognizable 
to us, and on the other supposes the existence of the mind endowed 
with some a priori forms of cognition, must in the eyes of the members 
of the Vienna Circle pass for metaphysics of the worst kind. The denial 
'of metaphysics by the Vienna Circle is much more radical than Father 
Jakubisiak imagines and is a bequest not of Kant, but of Hume. It is 

said when, if ever, it will be. completed. At the moment of sending this paper to the 
printers I have found out that there is an axiom of the implicational-negational 
system which consists of 23 letters. Its form is as follows: 

. CCCpqCCCNrNstrCuCCrpCsp. 
[Cf. footnote*) on p. 138] 

11) -The need for a discussion of nominalism was pointed out by Father Jan Sala
mucha in his paper "Logika zdan u Wilhelma Ockhama" (Logic of propositions in 
the works of William Ockham), Przeglqd Filozoficzny 38 (1933), p. 210. Father 
Salamucha's mention induced me to 'include these remarks on this matter. 
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to Hume that Professor Carnap, a leading representative of the Vienna 
Circle, refers when quoting his well known w~rds: 

"It seems to me, that the only objects of abstract science or of 
demonstration are quantity and number ( ... ) All other enquiries of 
men regard only matter of fact and existence; and these are evidently 
incapable of demonstration ( ... ) When we run over libraries, per
suaded of these principles, what havoc must we make? If we take in 
our hand any volume; of divinity or school metaphysics, for instance; 
let us ask. Does it contain any abstract reasoning concerning quan-

··--· .. -· -tit.J-o:r~numher1-NQ.. Does it contain i:JJl)'_experimentaLreasoning con
cerning matter of fact or existence? No. Commit in them to the flames· 
for it can contain nothing but sophistry and illusion." 12) Carna; 
considers these words-though I doubt that he is right-to be 
the classical formulation of the view that only mathematical proposi
tions and propositions about facts are meaningful (sinnvoll), while 
metaphysical propositions are meaningless (sinnlos). This is the gist 
of Carnap's denial. of metaphysics; let it be added that, according to 
Carnap, mathematical propositions include logical propositions and 
propositions of the logical syntax of language which, in his opinion, 
is nothing else than the mathematics of language. 

I should like here to formulate my own opinion on this matter and 
to dissociate myself from the opinions of the Vienna Circle and from 
Carnap's opinion in particular. I have shifted my interests from philos
ophy to logistic, and the latter, not because of its content but because 
of its method, has greatly affected my opinion of philosophy. All this 
had happened even before the Vienna Circle was formed. I gave it 
a forceful expression in a now forgotten article, written in 1924 to 
mark the two"hundredth anniversary of Kant's birth:13

) "I realize", 
I wrote then, "that my critical opinion about the scientific value of 
Kant's philosophy and modern philosophy in general may be to'o 
subjective; but that opinion forces itself upon me the more strongly 
the further away I go from philosophy and look back at it from the 

12) Rudolf Carnap, "Die Aufgabe der Wissenschaftslogik", Einheitswissenschaft, 
No. 3, 1934, pp. 7 and 21. Hume's words, quoted by Carnap, are in the 12th Chapter 
of his work An Enquiry Concerning Human Understanding. 

13
) Jan Lukasiewicz, "Kant i :filozo:fia.D.owozytna'; (Kant and modern philosophy), 

Wiadomosci Literackie vol. I, No. 19, of May 11, 1924. 

I 
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distance that separates philosophical speculation from scientific 
method." And my opinion on Kant's philosophy, formulated in ·that 
article, was as follows: "That philosophy calls itself critical. But how 
far away it stays from true, scientific criticism! Even the very differen
tiation between analytic and synthetic judgements is not scientifically 
formulated by Kant. We are not entitled to as~ert that the space around 

-us-musf.-e&mpl-y-witll-rertain-geometrical truths, fol".--we--do not know 
whether that space is Euclidean or perhaps of some other kind. It is 
impossible to understand what are those allegedly pure ideas of space 
and time that are said to be inherent in us. The world of things in them
selves is a metaphysical fiction that can vie with Leibniz's monadology. 
When we apply to it the requirements of scientific criticism, Kantian 
philosophy collapses like a house of cards. At every step we find vague 
concepts, incomprehensible statements, unjustified assertions, con
tradictions, and logical errors. Nothing is left except a few perhaps 
inspired ideas, a raw material that awaits scientific elaboration. Th~t 
is why that philosophy has not performed its task, although its influence 
has been great. After Kant, people have not started to philosophlze 
more critically, more reasonably, more cautiously. Kant gave rise to 
German idealistic philosophy, whose flights of fancy and non-scientific 
character has surpassed all pre-Kantian systems. Metaphysical prob
lems have been left unsolved, though, I think, they are not unsolvable. 
But they must be approached with a scientific method, the same well
tested method which is used by a mathematician or a physicist. And 
above all people have to learn to think clearly, logically, and precisely. 
All modern philosophy has been incapacitated by the inability to think 
clearly, precisely, and in a scientific manner." 

Whoever reads carefully these words which now, twelve years later, 
I can ratify with equal conviction will probably understand both the 
origin and the intention of my coming out against philosophical specu
lation. Such comprehension may be improved by the following com
ments. My critical appraisal of philosophy as it has existed so far is 
the reaction of a man who, having studied philosophy and read various 
philosophical books to the full, finally came into contact with scientif
ic method not only in theory, but also in the direct practice of his own 
creative work. This is the reaction of a man who experienced personally 
that specific joy which is a result of a correct solution of a uniquely 
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formulated scientific problem, a solution which at any moment can be 
checked by a strictly defined method and about which one simply 
knows that it must be that and no other and that it will remain in science 
once and for all as a permanent result of methodical research. This is, 
it seems to me, the normal reaction of every scientist to philosophical 
speculation. Only a mathematician or a physicist. who is not versed 
in philosophy and comes into casual contact with, it usually lacks the 
courage to express aloud his opinion of philosophy. But he who has 
been a philosopher and has become a logician and has come to know 

___ -~-----the-mosLpre_cise methods of reasoning which we hav~ _ii.t_ our disposal 
today, has no such scruples. He knows what is the value of philosophical 
speculation as it has existed so far. And he knows what can be the 
value of reasoning carried out, as it usually happens, in inexact, am"'. 
biguous words of -everyday language and based neither on empirical 
data nor on the precise framework of a symbolic language. Such work 
can have no scientific value and is a waste of time and mental energy. 

But someone may say: "It seems to follow from these remarks that 
you only consider scientific those reasonings which are based on em
pirical data or on a precise symbolic language, which is the language 
of mathematics. Is that not exactly the standpoint of Hume? And 
does it not include a denial of metaphysics?" Not at all, I reply. My 
standpoint is quite different. Hume thought that the mathematical 
or "demonstrative" method can be applied only to magnitudes and 
numbers. Logistic has demonstrated that it has much wider application. 
It must be applied to metaphysical problems as well. In my article 
referred to above I wrote: "Metaphysical problems have been left 
unsolved, though, I think, they are not unsolvable. But they must be 
approached with a scientific method, the same well-tested method 
which is used by a mathematician or a physicist." I tried to outline 
such a method in my already mentioned paper "O meted~ w :filozo:fii." 
I also wrote that "a future scientific; philosophy must start its own 
construction from the very beginning, from the foundations. And to 
start from the foundations means to make :first a review of the philo
sophical problems and to select from among them only those problems 
that can be formulated in a comprehensible manner and to reject all 

--------t:Ireotlrers~"-When-referring--to·--the -problems that would have to be 
rejected, I meant :first of all the problems concerned with the essence 

-----·-·-·-----·----------~---
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of the world or things in themselves, for I did not, and do not now, 
know how to formulate these problems in a comprehensible manner. 
"Next," I continued, "the task would be to try to solve those philo-
so,phical problems that can be formulated in a comprehensible manner. 
The'most appropriate method for this purpose again seems to be the 
method of mathematical logic, the deductive, axiomatic, method. 
W:e-?teltld--have~t0-:base.:em-argumen:ts_on_p:ropositk>ns-~""1Y:Jhiti<. Co,ih±-.-i:a!fr~e-ia*!S!------~ 

clear and certain as possible from the intuitive point of ,view and to 
adopt such statements as axioms. AB the primitive or undefined terms 
we would have to select concepts whose meanings can be-explained 
from all sides by examples. We would have to strive for a reduction 
of the number of axioms and primitive concepts to a minimum and to 
count them all carefully. All other conqepts would have to be defined 
unconditionally by means of primitive terms, and all other theorems 
would have to be proved unconditionally by means of axioms and the 
rules of proof as adopted- in logic. The results obtained in this way 
would have to be checked incessantly against intuitive and empirical _ 
data and with the results obtained in other disciplines, in particular 
in the natural sciences. In case of disagreement the system would have 
to be improved by the formulation of new axioms and the choice of new 
primitive terms. I thought then, and today I do not think otherwise, 
that that method could be applied to the problems of the :finiteness or 
infinity of the world, to the problems of space, time, causality, teleology, 
and determinism. In particular, I have always been most interested in 
the issue of determinism and indeterminism; I have associated it with 
the problem of many-valued logics and thought that the method outlined 
above might serve as an approach to the solution of that issue." 

In the light of these considerations, the difference between my stand
point on metaphysics and that of the Vienna Circle, and Camap in 
particular, becomes clear. Carnap rejects metaphysical issues as meaning
less because, following Kant, he counts as metaphy~ical propositions 
only those which claim to represent knowledge about something which 
remains completely 'outside all experience, e.g., .the essence of things, 
things-in-themselves, .the absolute, etc.14

) With such an interpretation 

14
) Rudolf Carnap, "Philosophy and Logical Syntax", Psyche Miniatures, General 

Series No. 70, London, 1935, p. 15: "I will call metaphysical all those propositions 
which claim to represent knowledge about something which is over or beyond all 
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of metaphysics I can agree with Carnap's opinion. But in fact we are 
not concerned with such a concept of,metaphysics, which, as is commonly 
known, emerged from an erroneous interpretation of a title of Aristo
telian works .. There are problems, for instance .those .of the structure 
of the universe, which have always been included in philosophy, and in 
particular in metaphysics, regardless of whether or not one is inclined 
to call them metaphysical. For Carnap, all these questions are only 
problems of language or, more strictly, problems of the syntax of lan
guage. Now I fully approve of Carnap's precise studies in the syntax 

---··----------0f-language.;_re.s.earch in that field originated in Wars~w. where the 
:first impulse was given by Professor Lesniewski and systematic founda
tions were later laid by Dr Tarski, whose works were not without effect 
on Carnap's later research.15) But I can in no way agree with such a 
formulation by Carnap as: "Thus all questions about the structure of 
space and time are syntactical questions about the structure of the 
language, and especially the structure of the formation and transforma
tion rules concerning space- and time~coordinates." 16

) In the same 
place Carnap has a similar formulation about the problems of causality 
and determinism. A detailed refutation of such opinions would require 
a separate paper. Here I can only outline my view point on the issue. 

I reason quite simply, perhaps naively, -but no one has convinced 
me so far that I reason incorrectly. I would include among problems 
resolvable on the basis of language only such questions as whether all 
bodies are extensive, on the assumption that by a "body" I mean some
thing extensive and define the term in that way. These are analytic propo
sitions, and in my opinion only such propositions can be decided on the 
basis of language. On the other hand, I do not understand how we 
could decide on the basis of language whether the universe is spatially 
finite or infinite. For, by "the universe" I do not mean anything finite 

experience, e.g., about the real Essence of things, about Things in themselves, the 
Absolute and such like". 

15) Alfred Tarski, "Uber einige fundamentale Begriffe der Metamathematik'', 
Comptes rendus des seances de la Sociiti des Sciences et des Lettres de Varsovie 
23 (1930), cl. iii, pp.22-29. [An English translation is now available in Alfred Tarski, 
Logic, Semantics, Metamathematics, Oxford, 1956, pp. 30-37]. In this paper, Tarski 
introduced the concepts of "sentence" and "consequence'', fundamental for the 
syntax of language, on which Carnap later afao- based his ideas. 

'') Cf. the English text of Carnap's work quoted above, p. 86. 
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or infinite, and hence I have to do with a synthetic, and not an analytic, 
proposition. Further, I know that to. be :finite and to be infinite are two 
different things and that they are incompatible with one another,·but 
which one is in fact true does not in the least depend on us and our 
lmgmstic rules. The same applies to the issues of determinism and 
causality. In the world, causal necessity either is or is not the omnip-

--otent ruler and everytbillg either 1s or is not determinect,_,,m~a'"'dr-v"'a=n:-;::c"'"e,------

. but this again cannot depend on any of our rules of the syntax of Ian- -
guage. These problems are for me factual, real, and objective, and not 
pureiy :fomiat, lingillstlc-pronfoms: I raise far-reachirig objections 
against the way in which Carnap tries to reduce objective problems to 
lingmstic problems. In addition fo objective propositions which repro
duce facts; e.g~/"this rose: •is red'\ he distinguishes pseudo-objective 

--:Proi>6sTt1onswhlchare:foiiiied'\Vhen we speak,· as he pulK it/"conterit~ 
Wise": Each such content"wise mode of speech has its. couriterpart in the 
f orinal mode of speeGh, and according to Carnap the latter is· the only 
proper on:e. For insta:nce, the proposition "The fact that the body a now 
expands is a naturally necessary consequence of the fact that the body 
a is being heated" is such a pseudo-objective proposition, formulated 
content-wise. It has its counterpart in the following proposition formu
lated in the formal mode of speech: "The proposition 'a expands' is 
a consequence of the proposition 'a is being heated' and of physical 
laws (at present accepted by science)." Carnap adds that content-wise 
formUlated propositions result in the illusion that there exist some 
factual relationships-he uses here the rather obscure term "Objektbezo
genheit" - which in reality do not exist, so that these propositions easily 
lead to misunderstandings and even contradictions. That is why, at 
least in the decisive places, we ought to avoid the content-wise mode 
of speech and replace it by the formal mode of speech 17

). I could agree 
17) Cf. Carnap's work in German quoted in footnote 12 above. On p. 14 he writes: 

"Inhaltliche Redeweise: 2a. Der Umstand, dass der Kerper a sich jetzt ausdehnt, 
ist eine nat~otwendige Folge des Umstandes, dass a erwiirmt wird.-2b. Forniale 
Redeweise: Der Satz 'a dehnt sich aus' ist eine Folge aus dem Satz 'a wird erw.iirmt' 
und den (gegenwiirting wissenschaftlich anerkannten) physikalischen Gesetzen.
Die Siitze der inhaltlichen Redeweise tiiuschen Objektbezogenheit vor, wo keine 
vorhanden ist. Sie fiihren dadurch leicht zu Unklarheiten und Scheinproblemen, 
ja sogar zu Widerspriiche~ Daher ist es ratsam, die inhaltliche R~dewei~e an den 
entscheidenden Stellen nach Moglichkeit zu vermeiden und statt dessen die formale 
anzuwenden". 
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that in the example quoted above the formal mode of speech corre
sponds to the content-wise. But how does Carnap know, as it seems to 
result from his formulation that he knows, that there is no factual 
relationship between the expansion -of a body· and its being heated? 
Why does he think that in this case the content-wise mode of speech 
may mislead us? These are dogmatic assertions which lack all justi
fication. In the second example, to be found in Carnap's book in English, 
I do not even see the correspondence which is said to hold between the 
content-wise, or "material", as Carnaps calls it there, and the formal mode 

------o-.f~sp_e_e~-ch.- Carnap asserts--that-the-pse·u€le-ebjeetive--p:rol?osition, which 
in the material mode of speech is "the evening-star and the morning-star 
are identical", has its coun~erpart in the "syntactical" proposition 
formulated in the formal mode of speech: "the words 'evening-star' 
and 'morning-star' are synonymous." Here too reference is made 
to the deceptive character of the material mode of speech 18

). It seems 
to me that many empirical obs·ervations were needed to realize that the 
star which appears in the western section of the sky soon after sunset 
is the same planet that we see in the eastern section of the sky shortly 
before sunrise. The comprehension -of this fact is something entirely 
different from the statement of tile fact that two terms are synonymous. 
I can readily agree that the terms "bay horse" and "reddish-brown 
horse" are synonyms, since by a "bay horse" I mean exactly a reddish
brown horse. But that "evening star" and "morning star" denote the 
same object cannot be decided on the basis of language. 

I think that in. Carnap the attempt to reduce certain objective prob~ 
lems to linguistic ones results from his erroneous interpretation of the 
a priori sciences and their role in the study of refility. That erroneous 
opinion was taken over by Carnap from Wittgenstein, who considers 
all a priori propositions, that is, those belonging to logic and mathe
matics, to be tautologies. Carnap calls all such propositions analytic. 

18
) Cf. Carnap's work in English quoted in footnote 14 above. On p. 61 he writes: 

"Pseudo-object-sentences. Material mode of speech. 4b. The evening-star and the 
morning-star. are identical.-Syntactical sentences. Formal mode of speech. 4c. The 
words 'evening-star' and 'morning-star' are syno:iiymous." With reference to the 
same example he writes on p. 67: "Here ire find again that deceptive character of 

~--~~~-~tlre:trutrerfa:I-rrrad:e·-as--te-the-subject.matter-ofjts .. sentences. Most of the sentences 
_of philosophy deceive us in this way, because, as we shall see, most of these are for
·mulated in the material mode of speech." 

---------··-----------------------~--
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I have always opposed that terminology, since the associations it evokes 
may make it misleading. Moreover, Carnap believes, together with 
Wittgenstein, that a priori propositions do not convey anything about. 
reality .. For them the a priori disciplines are only instruments which 

"raCilitate the cognition of reality, but a scientific interpretation of the 
world could, if necessary, do without those a priori elements. Now my 
opinimroirthe-a--priori-discip:lmes-and their._role jn tbe srudy of reality 
is entirely different, We know today that not only do different systems 
of geometry exist; but different systems of logic as well, and they have, 
moreover, the property that one· cannot be translated into- another; 
I am convinc.ed that one and only one of these logical systems is valid 
in the real world, that is, is real, in the same way as one and only one 
systei;u of geometry _is real. To4ay, it is, true, we. do not yet know which 
~system:·that is:;-but 1-do ·notdoubt that. 'empirical research will sometime 
de:rnonstra.tie whether the space of the universe is ,Euclidean or non
Euclide3;1J;, and "".hether. re"4ttionships benyeen facts correspond to two
valued logic. or. to one of th~ many-valued logics. All a priori systems, 
as soon as they are applied to reality, become natural-science hypotheses 
which have to be verified by facts in a similar way as is done with physical 
hypotheses. My approach to the proble:qis of metaphysics is connected 
with this opinion. *) 

Carnap's analyses m this field I consider to be a risky philosophical 
speculation which will die away as all similar speculations have died 
away. I think that my standpoint is more cautious and more rational 
than the radical standpoint of Carnap and the Vienna Circle. Professor 
Ajdukiewicz was right when he wrote about the logistic anti-irration
alism in Poland that he did not know any Polish philosopher who 
would accept the material theses of the Vienna Circle as his own 19). 
We are, it seems, too sober to do so. 

19
) Kazimir Ajdukiewicz, "Der logistische Antiirrationalismus in Polen", Erkenn

tnis 5 (1935), pp. 151-161; "Direkte Anhiinger des Wiener Kreises haben wir in · 
Polen nicht, d.h. ich kenne keinen polnischen Philosophen, der die sachlichen Thesen 
des Wiener Kreises sich zu eigen gemacht hiitte." (First published in Polish in Prze
glqd Filozo-{iczny 37 (1934).) 

*) On the relationship between logic and reality cf. "In Defence of Logistic" in 
the present volume, pp. 236-249, where Lukasievr.icz's standpoint is somew t 
different. In "On the Intuitionistic Theory of Deduction", also in the prese · 
pp. 325-340 he refers to this matter once more (p. 333), but this time his po· 
is markedly different. {t' 
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m 
"This, then, is the ultimate goal of scientific philosophy. ·It begins 

with a denial of metaphysics, and ends in the denial of God." So wrote 
Father Jakubisiak in his book,·on page 23. 

I am truly grateful to Father Jakubisiak for not having written "logis
tic" in the place of "scientific philosophy", for I need not defend logistic 
against the blame of godlessness. But since Father Jakubisiak does 
not always distinguish between logistic on the one hand and logical 
empiricism and scientific philosophy on the other, it will do no harm 
if-I auchrfewwords--e-n-thls-matte·""'·---"-----

Logistic is an exact, mathematical, discipline and has nothing to say 
on the issues of religion and_ the existence of God. The logisticians, 
according to their personal convj.ctions, include both believers and non
believers. Father Jakubisiak mentions in his book the name of a pro
fessor at the University of Warsaw who is not a logistician but knows 
and values logistic and has a lively interest in it, and who is supposed, to 
use Father Jakubisiak's words, "to combat religion on behalf ofscience" 
(p. 22). Even if this were so, shoUld logistic be charged with godlessness? 
I_ could mention the name of another Warsaw philosopher, who also 
knows and values logistic and has a lively interest for it, and who would 
be willing. t6 apply that discipline to theological theories as well. 20

) 

And do we not now have priests who acknowledge the value of logistic? 
I have the feeling now that I am beating on an open door. It suffices 

to say that neither does logistic fu.clude, explicitly or implicitly, any 
definite philosophical doctrine, nor does it clandestinely patronize 
any antireligious tendency. 

The same applies to scientific philosophy, as I understand it here. 
Sci~ntific philosophy does not want to combat anyone, for it has a great 
positive task to carry out: it has to construct a new view of the world 
and of life, based on exact, methodical thinking. "The work that faces 
future scientific philosophers", I wrote in my paper "O metod~ w filo
zo:fii", "is immense as it is; it will be performed by minds much more 
powerful than those which have ever existed on our globe". I believe 
that a man who believes iri the existence of a good and wise Force that 

________ 2_,,0 ..... an....&an.ciszek Drewnowski, "Zarys )2!:.Qgr!illl.lJ. ;filozoficznego" (An outline 
of a philosophical programme), Przeglqd Filozoficzny 37 (1934). See in particular 
§§ 169-174. 
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rules this world, a man who believes in the existence of God, can view 
with confidence the future results of this work. . 

Logistic and scientific philosophy are, above all, products of the 
intellect. I ascribe to reason and to precise logical thinking much more 
importance than is usually done. History has shown us that methodical 
research, based on empirical data and strict reasoning, has a great 

----an~d· lastmg value rroronly in science, but-:irr--pra:ctical life as well. When 
discussing that problem I often used to refer to the example provided 
by the world war. All those human activities from: the period of the 
world war-which '"were based on discipliri.es gromi.deu'"on metnod-have 
proved effective. Technical installations, airplanes, telephones, radio 
apparatus worked effectively, for a good or a bad purpose, since they 
were based on mathematical aJ1d phy&ical laws. Medicines ·to combat 

· · ilisease-and-prevenr-ep~demics worked· effectively .;..::::._ these ·for a good 

l'>:mJ'?s~ :<?nl!,~. sD,i~e,tiiey ·>yere bas~d.on ·biological research. Only 
·those, . human . activities failed: which· had · no· support. in disciplines 
gro1Inded in method, 'since the humanities are not usually so grounded. 
People · failed to control effectively and to put into rational and pur
poseful order the economic and social phenomena, whether during the 
war or after the war. I believe that when the knowledge of 1ogistic, 
and hence the ability. to think in a precise manner, becomes common · 
among all research workers, we shall be able to overcome the methodol
ogical defects of those most difficult disciplines which are concerned 
with Man and with human society. 
. Although I am an intellectual - indeed, precisely because of this 
fact-I realize, perhaps better than other people do, the great truth 
that intellect is not everything. I know that reason has two limits, the 
upper and the lower. The upper limit is formed by the axioms on which 

. our scientific systems are based. we cannot go beyond that limit, and 
in the choice of axioms we must be guided not by reason but by what 
we usually call intuition. The lower limit is formed by individual un
repeatable facts which cannot be interpreted by any consequences 
deduced from general laws and from axioms. A direct observation 
of such facts and some kind of intuitive comprehension of them must 
replace reason for us. In those fields which lie outside the limits of 
reason there is room enough as well for religious sen~nts and con
victions, which also ought to permeate the whole of our rational activity. 
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In a discussion at the Roman Catholic Scientific Institute I delivered 
two speeches in defence of logistic. Following a suggestion by the 

---~EditoX-oL,tb .. e_present periodical I have expanded them_~!o !?-e article 
that follows. 

* 
* 

Logistic, created by mathematicians in the 19th century, did not 
appear to have deeper connections with traditional logic as pursued 
by philosophers. Boole's algebra of logic, being a theory of classes, 
referred, it is true, to Aristotelian logic, but the propositional calculus, 
originated by Frege in 1879 and placed at the forefront of logistic ~y 
Russell and Whitehead, the authors of Principia Mathematica, seemed 
to have nothing in common with philosophers' logic. It is not to be 
wondered then that logistic has "not enjoyed, and still does not enjoy, 
approval in philosophical circles. It is alien to them since it has not 
developed from the logical tradition which they know, and its strange
ness is intensified by its mathematical attire. 

As I had been long concerned with logistic, and with the proposi
tional calculus in particular, I became interested ·in the problem as to 
whether that fundamental section of mathematical logic had been known 
before the existence of logistic. For the purpose of informing myself 
on this matter I consulted textbooks on the history of logic and mono
graphs dealing with that discipline. But I soon realized that I would 
not learn much from those books, for they were written by philosophers 
who either underestimated formal logic and its problems or did not 
have a proper knowledge and understanding of the subject and either 
disregarded or misrepresented it. It was necessary to go to the sources. 

~~~---~'fltls-I-dicl.--antl-I-discocvered .. .in .. Sfoiclogic; so much disparaged by Prantl 

*First published as "W obronie logistyki" in Studia Gnesnen,sia 15 (1937). 
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and Zeller, the ancient prototype of modern propositional logic.1) 

Stoic logic had been known almost continuously from its creation, 
bu{ none realized that that logic, as propositional logic, differs essen
tially from Aristotle's syllogistic as the logic of terms. It was oruy lo
~stic which, by making us more sensitive to logical problems, made 
it possible for us to notice that difference. Today we know that the two 

--nrain-brarrches-of-modem-l0gisii.e,l0gie--0.f-propositions -an,ad,....!1£0»!gl'l<
0 

er-·BefI--------

terms, Stoic logic and Aristotelian logic, existed even in antiquity. 
Aristotle's logic always held a superior position since it was backed 
by the inifnefise authority of the-greatest ancient philosopher0 witfr 
whom no representative of the Stoic school, Chrysippus included, 
could vie in importance. But along with Aristotelian logic there e':Xisted 
throughout the centuries the weaker current of Stoic logic, well known 
in the-Middle Ages-to scholastic logicians-who pursued it in their com-
mentaries to Aristotle and treatises De consequentiis and contributed 
to it many a new tmth. 

In this way I have been able to reullite, in an important place; the 
broken thread of tradition between ancient logic and logistic. We could 
find more such threads connecting old formal logic with modern lo
gistic. I shall mention oruy the axiomatic method, so characteristic 
of logistic, which was already used by Aristotle when he constructed 
his theory of syllogism. Hµt that fact, like many other facts and opin-

. ions in the field of logic, fell into complete oblivion in the period of 
modern philosophy which, as a reaction to mediaeval scholastic philos
ophy, totally neglected formal logic, replacing it by what was called 
the theory of cognition. Formal logic, dominated by philosophers, 
suffered a decline, from which it was rescued by mathematicians, who 
imparted to it the form of logistic. 

Thus today's logistic is nothing more nor less than a continuation 
and expansion of ancient formal logic. It is not a trend in logic, along 
with which some other trends might exist, but it is precisely contem
porary scientific formal logic which bears a similar relation to ancient 
logic as, for instance, contemporary mathematics bears to Euclid's 
Elements. Now, it is obvious that whoever wants to learn mathematics 

') Jan Lukasiewicz, "Z historii logiki zdaii." (On the History of the Logic of Propo
sitions), Przeglqd Filozoficzn;y 37 (1934), pp. 97--117. [See the present volume, 
pp. 197--217.] 
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cannot today confine himself to Euclid; it is equally clear that whoever 
wants to become acquamted with formal logic cannot confine himself 
to Aristotle. Moreover, ill order to comprehend" properly Aristotle's 
syllogistic and to appreciate both its rigour and its. beauty, one :ll<l.s 
:first to stugy the contemporary propositional calculus, for in the proofs 
of syllogistic moods Aristotle intuitively used theses of that calculus. 

In the light of such an interpretation oflogistic, its relation to philos
ophy becomes clear. Although I have formulated my opinion on 
that . issue elsewhere, 2) in order to avoid reci.µ-ring misunderstandings 

-------khall-tcy-here_to_describe my standpoint with precision. Ng!'! I have 
to state :first of all that although logic used to pass for a branch of 
philosophy, contemporary formal logic, or logistic, has expanded so 
much and has grown so independent of philosophy that it is to be 
treated as a separate discipline. In view of its method and the precision -
of its res~lts, and also in view of the content of its problems, that disci
pline today comes closer to mathematics than to philosophy. I have 
to state further that not only is logistic not philosophy or any branch 
of philosophy, but it is also not associat1<d with any trend in philosophy. 
. The principal task of logistic is to establish methods of correct inference 
and proof. This is the same task which Aristotle set himself when he 
originated bis theory of the syllogism. Now, it is obvious that a person 
can pursue syllogistic and investigate proof theory as well, whether 
he accepts in philosophy empiricism or rationalism, realism or idealism, 
spiritualism or materialism, or does not adopt any viewpoint on those 
issues. In logistic, I emphasize once more, no definite philosophical 
doctrine is contained explicitly or implicitly. Logistic does not claim 
to replace philosophy; its only task is io provide philosophy, like any 
other discipline, with the best instruments to make research more 
efficient: .. 

These statements summarize the whole of my view on the relation 
between logistic and philosophy. And although these statements have 
been made in all sincerity and although their justification seems to be 
clear, I am not at all astonished that they fail to' convince everyone. 
To all these assurances an opponent of logistic might always say: 
"And yet I assert, for I feel it intuitively, that logistic grew out of quite 

2) Jan Lukasiewicz, "Log:fSfyleaa:fifozofia"··-(Logimc· ·arid Philosophy), Przeglqd 

Filozoficzny 39 (1936), pp. 115-131. [See the present volume, pp. 218-235.] 
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definite philosophical substratum-which fact may not even be realized 
by the founders of logistic-and that therefore it favours certain trends 
in philosophy and is hostile to others." I have in fact encountered such 
objections, raised from various quarters, that logistic professes or fa-
vours not one but a whole bunch of philosophical trends, with which 
not all agree, such as nominalism, fornialism, positivism, convention
alism,pr-agmai:i:s-m,--and-rclati-~. I shall deal with thes>ee-'Ob4h"ld""ec,;.i,ti1oto>!oln,i;.s -----
one by one. · 

I must admit frankly that had I been asked not very long ago whether 
as a logistician I profess nominalism, I would without hesitation have 
replied in the affirmative. I did not reflect more deeply on the nominal
ist doctrine itself, and I only paid attention to the actual practice of 
the logisticians. Now, logisticians strive for the greatest possible rigour, 
and that can be achieved by the construction of as precise a language 
as possible. Our own thought, when not formulated in words, is hard 
even for us to grasp, and another person's thought, when not clad in 
any sensory form, can be grasped only by clairVoyants.· Any thought, 
if it is to become a scientific truth that every man can learn and verify, 
must assume some perceivable form, must be given some linguistic 
formulation. All these are, I think, indisputable statements. It follows 
from them that precision of thou,ght can be guaranteed only by preci
sion of language. This was already known to the Stoics, who in that 
respect opposed the Peripatetics. That is also why logistic attaches 
most attention to the signs and inscriptions which it handles. Let me 
give at least one example, which will demonstrate better than all general 
formulations in what the supposed nominalism, and also formalism, 
of logistic consists. There is in logistic a rule of inference, called the rule 
of detachment, which states that whoever asserts the conditional prop
osition of the form "if o:, then {3", and also asserts· the antece.dent of 
that proposition, "o:", may assert the consequen~ of the proposition, 
"fl?'. In order to be able to apply this rule we must know that the propo
sition "o:", which we assert separately, expresses "the same" thought 
which in the conditional proposition is expressed by the antecedent, 
for it is only then that we may draw the inference. And that can be 
ascertamed only if both propositions represented by "o:" have the same 
outward appearance, i.e. are equiform. We cannot grasp the thoughts 
expressed by these propositions directly, and the equiformity of propo-



240 IN DEFENCE OF LOGISTIC 

sitions expressing certain thoughts is a necessary condition, though 
not a sufficient one for the idoo.tity of the thoughts. Should a person 
who asserts the proposition "if every man is fallible, then every logician 
is fallible" at the same time assert the proposition ''any-man is-fallible", 
we could not arrive at the conclusion "hence every logician is fallible", 
because there would be no guarantee that the proposition "any man is 
fallible" expresses the same thought ~s the proposition "every man is 
fallible", which is not equiform with the former. It would be necessary 
to state by definition that the word "any" means the same as "every", 

. h .. " . "lli .. hl"th d" "b th ----·------.,.,eplace-m-t- e--f}l'opos1tion...::.any man 1s ia _ e_ e_wor ___ any__ y e 
word "every" on the strength of the rule of replacement by definition, 
and only then, having asserted the proposition "every man is fallible", 
equiform with the antecedent of the asserted conditional proposition, 
may we arrive at the conclusion. In this way we try to formalize all 
logical deductions, that is, to interpret them as inscriptions constructed 
so that we can check the correctness of the reasoning without referring 
to the meanings of those inscriptions. We do so because we are ·unable 
to grasp the meanings, whereas the signs are visible and clear, and in 
comparing them we can rely entirely on visual obviousness. 

Is this concern for the precision of the language and the formaliza
tion of the proofs in themselves tantamount to nominalism? It would 
seem not. Logistic would adopt the nominalist standpoint if it treated 
terms and propositions exclusively as inscriptions of certains forms, 
without being concerned about whether they mean anything and what 
they mean. Logistic would then become a science of ornaments or fig
ures, which we draw and combine in accordance with certain r.ules, 
toying with them as if in a game of chess. Today, I could not accept 
such a standpoint, and that not only for the reason formulated by 
me not so long ago~ *)lhat the. set of ins-criptions is always finite, while 
the set of logical theses, in logic of propositions alone, is infinite: all 
my intuitions object to the ultimate consequences of nominalism. ·By 
difficult mental work, going on for years and surmounting enormous 
difficulties, we are step by step acquiring new logical truths. And with 
what are these truths to be concerned? With empty inscriptions and 
spatial ornaments? I am not a graphic artist or a calligrapher, and I am 

*) In the article "Logistfo and Phllosophy;\·1i~i~ded in the present voli=e. The 
remarks to which Lukasiewicz refers hete·are on p. 223. 
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not interested in ornaments a,nd inscriptions. The whole difference 
between logistic and a game of chess consists precisely in this, that 
chessmen do n\)t mean anything, while logical symbols have meaning. 
We are concerned with that meaning, with the thoughts and ideas 
e;.pressed by signs, even if we do not know what these meanings are, 
and not with the signs as such. Through the intermediary of these 
signs we want to grasp some htws-of thought that W('}IDd "f>,ee~atrp'1'pt11litccaabttfteec------~ 
to mathematics and philosophy and to all disciplines that make use 
of reasoning. That goal is worthy of the greatest effort. We formalize 
logical deduct;ions and we are right in doing so; but formalization is 
only a means of acquiring knowledge and certainty about something, 
and what is important for us is not the means but that of which we 
obtain cognition through those means. 

Today I can no longer adopt a nominalist standpoint in logistic. 
But I say that as a philosopher, and not as a logician. Logistic cannot 
settle the question, because it is not philosophy. A fortiori it cannot 
be blamed for nominalism. 

Other objections are being raised in cennection with formalism, 
not against logistic itself, but against the attempts to apply it to philos
ophy. It is said that logistic would like to axiomatjze. and formalize 
everythllig, but that is impossible to achieve, because reality is richer 
than its rationalized, logistic formalization. It can be grasped not only 
by discursive thinking, but also by thinking in terms of images, by 
concrete, emotional and intuitive thinking. I should like to reply briefly 
to this objection as well. 

I do not know what intuitive thinking is and I do not feel competent 
to explain it. But I am convinced that besides discursive thinking there 
may be some other way of arriving at the truth, because such facts 
are known to logisticians from their own experience. It does happen 
sometimes that either as a result of the subconscious work of the mind, 
or owing to a fortunate association of ideas, or thanks to an instinctive 
sense of truth, a creative and fertile idea, which removes our difficulties 
and shows new paths of research, appears in our consciousness quite 
unexpectedly, as it were by inspiration. 3) This happens in particular 

3
) In this connection cf. Jan Lukasiewicz, "O nauce" (On science), Biblioteczka 

Filozoficzna, 5, Polskie Towarzystwo Filozofi=e, Lw6w, 1934. [Included in the 
present volume as "Creative Elements in Science", pp. 1-15} 
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on the front lines of human thought, where we face territories not yet 
conquered by science, not illuminated by thought, dark and unknown. 
There intuition often replaces discursive thinking, which in such cases 
is usually helpless, and makes . the . first ·pioneer conquests .. in the new 
territories. But once the territory has been conquered, then it should 
be occupied by discursive thinking with the full apparatus of logistic, 
so that the spoils of intuition, which can easily prove fallible, may be 
checked, ordered, and rationalized. For in my opinion only such mental 
territory may be considered definitively won for science which has 
beeH:-tmleFefl-b-Y-methorls_apprnxe_cLb.yJugic-Ihis_is~ho.w_J: :imagine 
co-operation between intuitive and discursive thinking. 

To the objection of positivism I have replied comprehensively in 
my paper "Logistic and Philosophy", mentioned· above. There I have 
discussed, in particular, my attitude towards the views of the Vienna 
Circle. In this place I should only like to make a brief remark in con
nection with that objection. 

The concept of positivism is somewhat. elastic. A man who is guided 
by reason, without. succumbing to his emotions, and sticks to reality, 
without yielding to fantasy, is often considered a positivist. I have to 
admit that in this respect I am also a positivist. I firmly believe in rea
son, though I know its limitations, and I take reality into account, 
while frying to restrain my emotions and fantasy. Logistic could but 
intensify these inclinations. This explains my dislike of philosophical 
speculations. I do not reject metaphysics, I do not condemn philos
ophy, I am not biased in advance against any philosophical trend, 
but I disapprove of sloppy mental work. And it is probably neither . 
my fault, nor that of logistic, that it sharpens criticism and discloses 
many defects in philosophical speculation. I predict that any person 
who receives a good fogistical training Will view these problems in the 
same way I do. 

Further, contemporary logistic is blamed for being based on con
ventionalism. That this is so is supposed to be proved by the fact that 
present-day systems of logistic are not constrained in the structure 
of their axiomatic systems by any absolute rules or ideas, but are built 
in an arbitrary way. I should like to examine this objection in greater 

· detail. ---·-- -··-·-

Let us consider first what is called the two-valµed propositional 
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calculus. It is known that this calculus can be presented axiomatically 
in various ways, which depend above an on the primitive terms se
lected and the rules of inference adopted. But even with the same prim
itive terms, e.g., implication and negation, and with the same rules 
of inference, e.g., substitution and detachment, we can select the axioms 
of the propositional calculus in many ways. Does it follow that the 

· --propnsmonW:-caiettlus-is-eenstructed in an --arbitr-!lfj'-filanna:iA'fl:te~r"f?-1'Ntff'orl'-t-iinTt------
the least. We may not impart to just any theses the status of axioms, 
because in our calculus the axiomatic system must satisfy very rig-
orous conditions: it must be consistent, independent, and complete~ 
which means that it must potentially contain all the true theses of 
the system. Only such a system of axioms is good, but at the same time 
any such system of axioms is good, since an of them are equivalent 
to one another and all- of them generate the same system of the propo-
sitional calculus. In choosing this or that system of axioms out of all 
possible ones, we need not be constrained by any absolute principles, 
for we know in advance that such principles, e.g., the principle of con-
sistency, are satisfied by an systems of axioms, and we are guided only 
by practical or didactic considerations. I do not see in all this even 
a trace of conventionalism, which I have never favoured and do not 
favour now. To put it simply, the two-valued propositional calculus 
has the property that it can be constructed axiomatically in different 
ways, and that property is a logical fact which does not depend on our -
will and which we have to accept whether we like it or not. 

That property, by the way, is shared by the two-valued propositional 
calculus with other axiomatic systems, including Aristotle's theory 
of the syllogism. The Stagirite tried to axiomatize his theory of the syl
logism, but his system of axioms was insufficient. I have solved this 
problem in former papers by adopting as the primitive formulae of 
this syllogistic the propositions "all A is B" and "some A is B", and 
as axioms the theses "all A is A", "some A is A" and the syllogistic 
moods Barbara and Datisi.4) To these I joined the rules of substitution, 
detachment, and definitional replacement, and the propositional calcu
lus as an auxiliary system. I could, of course, have chosen other primi-

4) Jan Lukasiewicz, Elementy logiki matematycznej, Warsaw, 1939, pp. 86-96. 
[Cf. the English-language version, Elements of Mathematical Logic, Warsaw-Oxford 
1963, pp. 103-117.] 
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tive formulae, e.g., the propositions "all A is B" and "no A is B". 
I would then have had to adopt a different system of axioms. But even 
for the primitive formulae which I have chosen I could have selected 
different axioms, for instance; instead -of· the thesis ''some A -is .A" 
I could have used the law of conversion of universal affirmative propo
sitions, and instead of the mood Datisi I could have adopted the mood 
Dimatis of the fourth figure. Thus Aristotelian syllogistic, too, can 
be constructed axiomatically in many ways. There is no conventionalism 
behind this fact, since all these systems of axioms are equivalent to one 

·----~a~n~othera:rni-gener-ate-the-whole....oLAristotelian-logic_with~tlie same 
moods of syllogisms. · 

The underlying bias agai:O.st these allegedly arbitrary systems of 
axioms seems to consist subconsciously in a requirement of the theory 
of cognition which might be formulated thus: "In every deductive 
system there is oruy one directly self-evident principle on which all 
the theses of that system are to be based." The stress is laid both on 
"only one" and on "directly self-evident". It already pleased Kant 
to be able to deduce something, as he put it, according to his wish, 
nach Wunsch; from a single principle, aus einem einzigen Prinzip. How 
beautiful it would be if such a principle were the one and only in this 
sense, too, that the system could not be based on any other, and if 
it also were directly self-evident, and hence somehow necessary and 
absolute! But that would be too beautiful to be true. It is a fact that 
the two-valued implicational-negational propositional calculus which 
makes use of the rules of substitution and detachment can be based 
on a single axiom, but that, too, can be done in many ways. Hence 
in that calculus there are many "sole" axioms. Moreover, none of the 
axioms which we have come to know so far is directly self-evident, 
bacause all of them are too long to have their truth grasped intuitively. 
In what concerns the last-named point, the situation usually is such 
that self-evident theses are deductively weak, and those theses which 
are deductively strong-and only such can serve as axioms-are not self
evident. In the implicational propositional calculus, which includes 
only implications without negation, probably the most self-evident 
thesis is the law of identity "if p, then p", i.e., in symbolic notation, 
Cpp. But with the rules ofSiibstifutioiiand detachment that law enables 
only a deduction of its own substitutions and henc;;e is very weak de-
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ductively and of course cannot serve as the sole axiom of that calculus. 
On the other hand, the only axioms of the implicational calculus are 
not self-evident. Last year I succeeded in :finding the shortest axiom 
of that calculus. In the parenthesis-free notation which I have con
ceived it has only 13 letters and the following form: CCCpqrCCrpCsp. *) 
But this axiom, too, is not quite self-evident, and in any case it is less 
self.=evicient-than-the-law--e-f-hypothetical syllogism- CCpqCCqrCpr, 
or even than Frege's law (which is not shorter than my axiom) 
CCpCqrCCpqCpr, neither of which serves as a sole axiom of the system. 

I now pass to the final objections listed above, namely those which 
blame logistic for pragmatism and relativism. I am most concerned 
_with these objections since they have been raised in connection with the 
many-valued systems of propositional logic. That is why I should 
like to reply to them in· greater detail. 

First of all, as the founder of many-valued systems of propositional 
logic I state that historically those systems have not developed.on the 
basis of conventionalism or relativism, but have emerged from logical 
researches concerned with modal propositions and the related concepts 
of possibility and necessity. 5) In the construction of such systems I made 
use of the matrix method, invented by Peirce as early as 1885. My 
students, Messers Slupecki, Sobocillski, and Wajsberg continued my 
research and applied the axiomatic method to many-valued systems.6

) 

')Jan Lukasiewicz, "O poj~iu·mo:iliwosci" (On the concept of possibility), (report 
on a lecture), Ruch Filozoficzny 5 (1920), pp. 169a-170a; Jan Lukasiewicz, "O logice 
tr6jwartosciowej" (On three-valued logic), (report on a lecture); ibid., pp. 170a-171a; 
Jan Lukasiewicz, "Philosophische BemerkungeJ:! zu mebrwertigen Systemen des 
Aussagenkalkiils'', Comptes rendus des seances de la Societe des Sciences et des Let
tres de Varsovie, 23 (1930), cl. iii, pp. 51-77. [The first report is not included in the 
present publication, for the second see pp. 87-88 of this volume. For the third 
item, see "Philosophical Remarks on Many-Valued Systems of Propositional 
Logic", pp. 153-178 of this volume.] 

6) M. Wajsberg, "Aksjomatyzacja tr6jwartosciowego rachunku zdall" (Axiomati
zation of the three-valued propositional calculus), Sprawozdania z posiedzen Towa
rzystwa Naukowego Warszawskiego 24 (1931), Wydzial ill; J. Slupecki, "Der volle 
dreiwertige Aussagenkalkiil", Comptes rendus des seances de la Socil!te des Sciences 
et des Lettres de Varsovie, 29 (1936), cl. iii; B. Sobocinski, "Aksjomatyzacja pew
nych wielowartosciowych system6w teorii dedukcji" (Axiomatization of some 
many-valued systems of the theory of deduction), Roczniki prac naukowych Zrzeszenia 
Asystent6w Uniwersytetu J6zefa Pilsudskiego, vol. I, Warsaw, 1936. . 

*) Cf. footnote on p. 196. 
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Jn particular, owing to the work done by Slupecki we know today how 
to base what is called the full three-valued propositional calculus with 
one selected value on a system of axioms which is consistent, inde
pendent, and complete in the same sense as the axiomatic . systems of 
the two-valued calculus. I specify these facts in order to state on their 
basis that the existence of systems of many-valued logic is today to be 
taken into account in the same way as, e.g., the existence of systems 
of non-Euclidean geometry is to be taken into account. Those systems 
do not depend on any philosophical doctrine, for they would fall with 

·-----------c--ilie collapse-of-t-he-doct:rine,-buLare_as_much__an_o bj~ctive result of 
research as any established mathematical theory. Thus one cannot 
state: "I reject contemporary logistic, because it has resulted in many
valued logic, and I revert to traditional 1logic," just as he may not 
say: "I reject contemporary geometry, because it has resulted in non
Euclidean geometry, and I revert to Euclidean geometry." Such a stand
point would not only cancel the achievements of contemporary science, 
but would be, I dare say, an ostrich policy consisting in the belief that 
what is ignored does not exist. We cannot disregard the systems of 
many-valued logic once they have been constructed; we can only argue 
whether they can be interpreted intuitively as well as two-valued logic 
can, and whether they will find any application. I want to enlarge a 

little on this issues. 
The deepest foundation of all logic known so far, whether logic 

of propositions or logic of terms, whether Stoic or Aristotelian logic-, 
is the principle of bivalence which states that every proposition is either 
true of false, that is, has one, and only one, of these two logical values.*) 
Logic changes from its vezy foundations if we assume that in addi
tion to truth and falsehood there is also some third logical value or 
.sever~l such values. I made my assumption referring to the authority 
of Aristotle himself, for no one other than the Stagirite seemed to 
believe that propositions concerning future fortuitous events are today 
neither true nor false. This is how some formulations made by Aristotle 
in the ninth chapter of his Hermeneutics are to be interpreted and how 
they were interpreted by the Stoics, as testified by Boetius. In stating 

~------~--"*)-Fer--the.-de:t~ principle J?f..1Jivalence _see "Philosophical Remarks 
on Many-Valped Systems of Propositional Logic" in the present volume, pp. 

153-178. 
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this the Stagirite tried to avoid determinism, which to him seemed 
to be unavoidably connected _with the principle of bivalence. 

If that standpoint of Aristotle is correct, and if among propositions 
about events taking place in the universe there are propositions which 
at the present moment are still neither true nor false, then those propo
sitions must have some third logical value. But then the world of facts 

------- arounct us is ruletl-not--by a two-valued logic,~bm-by a three-valued 
or some other many-valued logic, if the number of those new values 
is greater. Then many-valued systems of logic would acquire both an 
intuitive justification and a vast field of application. 

I have often considered the problem of how to determine whether 
there do exist propositions about facts that have that third logical 
value. Here a logical problem becomes an ontological issue concerned 
with the structure of the universe. Has everything that happens in the 
universe· been determined for centuries, or are certain future facts not 
yet determined today? Does there exist in the universe a sphere of 
contingency, or is everything inevitably ruled by necessity? And is 
that sphere of contingency, if its exists, to be sought only in the future, 
or can it also be found in the past? These are questions which it is 
very difficult to answer. I have always believed that answers to these 
questions can be provided only by empirical data, in the same way 
that only empirical data can tell us whether the space in which we move 
about is Euclidean or non-Euclidean. Here is the origin of the impu
tations of pragrriatism to logistic, imputations that are unjustified as 
far as logistic is concerned, since these imputations might be addressed 
only to me personally. Nor can I accept such imputations. I do not 
accept pragmatism as a theory of truth, and I think that no reasonable 
person would accept that doctrine. Nor have I ever thought of veri
fying pragmatically the truth of logical systems. Those systems do not 
need such a verification. I well know that all logical systems which we 
construct are necessarily true under the assumptions made in their 
construction. The only point would be to verify the ontological assump
tions that underlie logic, and I think that I act in accordance with 
the methods universally adopted in natural science if I strive to verify 
the consequences of those assumptions in the light of facts.*) On this 
issue my opinion is contrary to that of the Vienna Circle positivists, 

*) Cf. footnote*) on p. 233. 
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for they deny that such questions are subject to empirical verification 
and claim that they belong exclusively to the syntax of language. That 
opinion of the members of the Vienna Circle, which I do not share, 

I would call conventionalism. 
I do not consider the problem of the interpretation of many-valued 

systems to be settled definitively. Our knowledge of those systems, 
which have been developed so recently, is still inadequate. They will 
have to be thoroughly examined, both from the formal and from the 
intuitive· point of view. But even today I can state one thing: relativism 
is not a consequence-e-f-th~rist€nGB--E>f-those-syst€ms.-It cannot be 
inferred from the possibility of different systems of logic, and hence 
of different concepts of truth, depending on what logical system is 
adopted, that there are no absolute truths. I adduce this argument 
here for there is a scientist ·who has drawn such conclusions from the 
existence of different systems of logic. Two years ago E.T. Bell, an 
American professor of mathematics, published a popular book entitled 
The Search for Truth.7) As the motto of his book he took the following 
words from St. John's Gospel (XVIII, 38): "Pilate saith unto him, 
What is truth?" That question, Professor Bell claims, ceased to have 
sense when systems of many-valued logic were made known in 1930. 

In view of this I state: that question has never ceased and will never 
cease to have sense. Absolute truths of thought did not collapse in 1930. 
Whatever discredit anyone may try to cast upon many-valued logics, 
he cannot deny that their existence has not invalidated- the principle 
of exclusive contradiction. This is an absolute truth which holds in 
all logical systems under· the penalty that should this principle be vio
lated then all logic and all scientific research would lose their purpose. 
Also valid remain the rules of inference, namely the rule of substitution, 
which corresponds to the Aristotelian dictum de omni, and the rule of 
detachment, analogous to the Stoic syllogism called modus ponens. 
Owing precisely to these rules we are building today not one but many 
logical systems, each of which is consistent and free of contradiction. 
It may be that other absolute principles, with which all logical systems 
~ust comply, also exist. I think that it is one of the main tasks of future 

-~-~----logistic_and philosophy to bring out all those principles. 
~---~-----~- --··--·- ·--· 

7) Eric Temple Bell, The Search for Truth, Allen and Unwin, London, 1934, in 

particular pp. 245-247. 

-~ 
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In concluding these remarks I should like to outline an image which 
is connected with the most profound intuitions which I always expe
rience in the face of logistic. That image will perhaps shed more. light 
on the true background of that discipline, at least in my case, than all 
discursive description could. Now, whenever I work even on the least 
significant logistic problem, for instance, when I search for the 'short

-ehst-~om-~thithe-imp.liea:tional p:i;~poo-itrona-1- calealus I always ha 9 e 
t e rmpress1on at I am facing a powerful, most coherent and most 
resistant structure. I sense that structure as if it were a concrete, tan
gible object, made of the hardest metal, a hundred times stronger than 
steel and concrete. I cannot change anything in it; I do not create 
anything of my own will, but by strenuous work t discover in it ever 
new details and arrive at unshakable ap_d eternal truths. Where is and 
what is that ideal structure? A believer would say that it is in God and 
is His thought. -
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1. Equivalence and the equivalential system.-2. On the history of the equivalential 
calculus.-3. Meaningful expressions and the rule of substitution.-4. The shortest 

_______ -~om.-5. The completeness-proof.-6. Examples for the completeness-proof.-7. 
Consistency of the equivalential system-8. Prooftliat ax!om-*1 iS the shortest. 
-9. "Creative" definitions. 

1. Equivalence and the equivalential system 

By an equivalence I mean an expression of the type "a if and only 
·if (3'', in symbols "Eaf3", where a and f3 are propositions or proposi
tional functions. The equivalence is ti:ue if a and f3 have the sa_me truth-

*) [Editorial note from the McCall edition: This paper was intended to appear, under 
the title "Der Aquival=enkalkiil", in vol. 1 of the Polish periodical Collectanea 
Logica, Warsaw, 1939, pp. 145-169. The following short history of this periodical is 
taken from the introduction to B. Sqbocinski's "An investigation of protothetic", 
published as No. 5 of the Ccihiers de l'Institut d'Etudes polonaises en Belgique, Brussels, 
1949. 

"In 1937, at the suggestion of Mr. Jan Lukasiewicz, we founded in Poland a period
ical devoted to Logic, its history and its applications, under the title Collectanea 
Logica. It was to be issued as one large volume each year, and would be international 
in character, containing different papers in Polish, English, French, German, Italian, 
and Latin. The editor of Collectanea Logica was Lukasiewicz, and its managing editor 
myself. . . . On the first of September 1939 the first part of the volume, which would 
have had 500 pages, was printed, the second part already collected and in proof. 
Moreover, the first :five papers from the prepared part were already published as 
offprints. At the siege of Warsaw in September 1939 the printing-house of the period
ical was completely burned, with all the prepared type, blocks, and offprints. The 
flnal proofs of the fust volume, most of the prepared offprints, and the archives of the 
publication escaped in my fiat, but all this was destroyed in August 1944 during 
the Warsaw Insurrection." Sobocillski follows this by giving a brief description of the 
contents of the first volume. 

Only one copy of "Der Aquivalenzenkalkill", sent as a review copy to Scholz 
lh---:Mttli:Ster;-is-known-to-have--survived- the war, and is now in Poland. [Translated 
by P. Woodruff.] Polish translation is included in the 1961 edition Z zagadniefz logiki 
ifilozofii. 
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value, i.e. either both are true or both are false; otherwise it is false. 
Ifwe denote the True by "l" and the False by "2", the following equa-
tions hold: · 

Ell= 1, El2=2, 

E2l =2, E22= 1. 

---'Fhese-equatiens-a:re--indicated-in-th~follo:w:ing matrix 

E 1 2 ---
1 1 2 
2 2 1 

which I shall call the normal matrix for equivalence. The first argument 
is written to the left of the vertical stroke, the second above the hori
zontal line. 

An equivalence Eaf3, in which besides propositional variables only 
functors of the propositional calculus appear, is called a.Ii. equivalence 
of propositional logic. For example EKpqKqp, in words ''p and q if 
and only if q and p", is an equivalence of propositional logic. If in an 
equivalence of propositional logic no functor of the propositional 
calculus .other than E appears, I shall call it a pure equivalence of propo
sitional logic. 

By the ordinary or two-valued equivalential system I mean the set 
of all pure equivalences of propositional logic which satisfy the normal 
matrix for equivalence. The matrix is said to be satisfied by a given 
equivalence, if all replacements of the propositional variables of the 
equivalence with the values 1 or 2 yield expressions which after reduction 
according to the matrix assume the value 1. For example, the equiva
lence Epp satisfies the matrix, for we get: 

for p/1 Ell= 1, 
for p/2 E22= 1. 

Likewise EEpqEqp satisfies the matrix, since the following equations 
hold: 

for p/l, q/l EElIEil = Ell = 1, 
for p/l, q/2 EEI2E21 = E22 = 1, 
for p/2, qfl EE2lEI2 = E22 = l, 
for p/2, q/2 EE22E22 = Ell = 1. 
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On the other hand, the matrix is not satisfied by EpEqp, for we have: 

for p/2, q/2 E2E22 = E21 = 2. 
The two-valued equivalential system is one of the simplest sub-systems 

of the propositional calculus. Numerous methodological questions can 
be. formulated with particular clarity and simplicity in this system, 
and can be easily solved. For this reason it is worth while to subject the 
system to a detailed examination, for we obtain thereby an easily grasped 
introduction to the problems and methodology of the propositional 

calculus. 

2. On the history of the equivalential calculus 

Two pure equivalences are to be found in Principia Mathematica, 
1
) 

namely 
p = p and p = q . = . q = p, 

to which correspond the following theses in my bracket-free symbolism: 

Epp and EEpqEqp. 

The first thesis says that equivalence is reflexive, the second, that it is 
commutative. Now, I long ago noted that equ_ivalence is also associative, 
and accordingly I established the following thesis in the symbolism 

of Principia: 

p = . q = r: = :p = q .. = r, 

This thesis, which in my symbolism can be expressed by 

EEpEqrEEpqr, 

is cited by Tarski 2) in his doctoral thesis of 1923. 
Lesniewski 3) was in. 1929 the first to recognize that the two-valued 

equivalential system can be axiomatized. In particular, this can be 

1) A. N. Whitehead and ·B. Russell, Principia Mathematica, vol. i, Cambridge, 

1910, p. 121, theorems ·*4.2 and *4.21. 
2) A. Tajtelbaum-Tarski, 0 wyrazie pierwotnym logistyki (On the primitive term 

of logistic), Doctoral thesis, Przeglqd Filozoficzny 26 (1923), p. 72 n. See also A. Taj
telbaum, "Sur le terme primitif de la logistique", Fundamenta Mathematicae 4 (1923), 

~------.PJ99 n. 
----·'·-·---~·---·-

') S. Leiiniewski, "Grundziige eines neuen Systems der Grundlagen der Mathema-
tik", Fundamenta Mathematicae 14 (1929), § 3, pp. 15-30. 

I 

·-------------
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done with the help of two rules of inference; the rule of substitution 
and the rule of detachment. The rule of detachment for equivalence is 
analogous to that for implication. Lesniewski characterizes this rule 
approximately thus: If an equivalence A belongs to the system whose 
right side is equiform with S, and if a theorem belongs to the system 
which is equiform with the left side of the equivalence A, then a theorem 

----·-equiforni-with-;S'-may-be added-tG-the-s-ystem;-ln other \'Vords, if the 
expressions "Erx{3" and "rx" belong to the system, then "{3" may also 
be added to it. Lesniewski shows that with the help of this rule of detach
ment and the rule of substitution all pure equivalences provable in the 
ordinary propositional calculus can be deduced from the following two 
axioms: 

Al. p = r . = . q = p : = . r = q, 

A2.p = . q ~ r: = :p = q. = r. 

The second axiom is the law of associativity for equivalence, discovered 
by myself. From these axioms, which in my symbolism read 

EEEprEqpErq and EEpEqrEEpqr, 

Lesniewski first derives seventy-nine theses in symbolic form, and then 
proves with the help of reasoning conducted in ordinary language that 
the abov~ axiomatic system is complete. Proofs of consistency and 
independence are not found in Lesniewski. 

After Lesniewski, Wajsberg 4) in 1932 published simpler axiom-systems 
for the equivalential system, at first without completeness-proofs. Two 
of these systems consist of two axioms each; two others of one axiom 
apiece. The four systems of Wajsberg, given by the writer in my sym
bolism, are 

(a) EEEpqrEpEqr and EEpqEqp, 

(b) EEpEqrErEqp and EEEpppp, 

(c) EEEpEqrEErssEpq, 

(d) EEEEpqrsEsEpEqr. 

Wajsberg gives completeness-proofs for these four axiom-systems in 

') M. Wajsberg, "Bin neues Axiom des Aussagenkalkiils in· der -Symbolik ~on 
Sheffer", Monatsheftefilr Mathematik und Physik 39 (l932), p. 262. 
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a later work5
) by reducing them in part directly and in part indirectly 

to that of Lesniewski. 
To Wajsberg belongs the credit of having first shown that the equiv

alential calculus can be based on a single axiom. The two single axioms 
of Wajsberg consist of :fifteen letters each. It soon turned out that there 
are other equivalences, each of fifteen letters, which can be postulated 
as single a:ripms of the system. In a paper of 1932 Sobocillski 6) gives 
the following six axioms, ·which were discovered by various authors: 

_____ . _________ (e) EEpEqrEEqEsrEsp discovered by Bryman. 

~ (f) EEpEqr EEqErsEsp discovered by Luk?siewicz. 

(g) EEsEpEqrEEpqErs discovered by Lukasiewicz. 

(h) EEpEqrEEpErsEsq discovered by Sobocmski. 

(i) EEpEqrEEpEsrEsq discovered by Sobocinski. 

(j) EEpEqrEEpErsEqs discovered by Sobocinski. 

Axiom (g) is obtained as a first detachment from Wajsberg's axiom ( d). 
Completeness-proofs are not given by Sobocmski. 

In 1937 the Rumanian. mathematical logician E. Gh. Mihailescu 
published a paper devoted specifically to the equihlential calculus.7) 
Mihailescu bases his work on the above-mentioned work of Lesniewski, 
and uses the bracket-free notation which I introduced. In metalogical 
investigations he makes use of Tarski's terminology. Wajsberg's work 
is apparently unknown to him. In his essay, the equivalential calculus 
is based on the two axioms EEpqEqp and EEEpqrEpEqr, discovered by 
Wajsberg. For this axiom-system he gives a new completeness-proof 
by reducing all meaningful expression to certain normal forms. For this 
purpose ninety-three theses are deduced from the axioms by substitution 

5) M. Wajsberg, "Metalogische Beitriige", Wiadomoici Matematyczne 43 (1936), 
pp. 132-133 and 163-166. Instead of axiom-system (a) the writer considers here 
the following axiom-system: 

(a') EEpEqrEEpqr and EEpqEqp, 

which is obviously deductively equivalent to (a). 
6) B. Sobociiiski, "Z badan natl teoriq, dedukcji" (Investigations into the theory 

________ .oLde.duc_ti.o_n),_EW?ff_[qd Filozoficzny 35 (1932), pp. 186-187 and 192-193, rm. 35-37. 

7) E. Gh. Mihaiiescu, "Rech~;:;;-:i;;~m un ~ous-systeme du calcul des propositions" 
Annales scientifiques de l'Universiti de Jassy 23 (1937), pp. 106-~24. 
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and detachment. The consistency and independence of the axiom-system 
is shown by the matrix method. 

The present work contains my results from the year 1933. Among 
the most important results I Wish to present are the discovery of the 
shortest axiom of the equivalential system as well as a new complete
ness-proof, which seems to me to be simpler than those of Lesniewski 
-and-Nfih"lr'u~sc~cr.~~~~~ 

3. Meaningful expressions and the rule of substitution 

All expressions of our system are formed by juxtaposition of capital 
E's, the sign of equivalence, and small Latin letters, the propositional 
variables. Not every expression thus formed is, however, meaningful; 
i.e. not every expressibn represents a proposition, or, more precisely, 
a propositional function. For example, ''pq", "E", "EE", ''pEq'', "Epqr" 
are not meaningful expressions, for they do not represent propositional 
functions. On the other hand, propositional variables such as ''p", "q", 
"r", etc., as well as equivalences both of whose members are meaningful 
expressions, such as "Epq", "EEpqr", "EpEqr", etc., are evidently 
meaningful. In the following I give a purely structural definition of 
"meaningful expression" for the equivalential system, by slightly modi
fying a definition found for the implication-negation system by Jaskow
ski: 8) 

An expression made up of the letter "E" and small Latin letters is 
meaningful if, and only if, it fulfils the following two conditions: 

1. The number of "E's" occurring in the expression must be one less 
than the number of small letters. 

2. In every segment, which begins at an arbitrary point in the expression 
and reaches to the end of the expression, the number of "E's" must be 
less then the number of small letters. 

The two conditions are independent, as examples readily show. 
Thus, "EpEqr" fulfils both conditions and is therefore meaningful. 
The expressions "EpqEr" fulfils the first condition but not the second, 

8
) See J. Lukasiewicz, "Bin Vollstiindigkeitsbeweis des zweiwertigen Aussagen

kalklils'', Comptes rendus des seances de la Societe des Sciences et des Lettres de 
Varsovie 24 (1931), cl. iii, p. 156, n. 5. 
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since in the segment beginning with the second "E" the number of "E's" 
is not less than the number of small letters. The expression "pEEqrs" 
satisfies the second condition but not the first, since the number of 
"E's" in the expression is not one but two less than the number of small 
letters. Finally, it is clear that the expression ''pqEErs" fulfils neither 
the first nor the second condition. The last three expressions are meaning
less. 

These conditions yield, among others, the following consequences : 

(a) Propositional variables are meaningful expressions, for they 
-----·-----satisfy--both-eonclitien . , 

(b) All composite meaningful expressions must begin with an "E". 

For if the second condition is to be fulfilled, then in the segment beginning 
with the second letter the number of "E's" must be at least one less than 
the number of small letters. If a small letter is now added at the begin
ning, then the number of "E's" in the whole expression must be less 
than that of the small letters by at least two letters, which contradicts 
the first condition. 

In connexion with this definition there is a simple practical rule 
which enables us to decide at once if a given expression, composed 
of the letter "E" and small letters, is meaningful or not. 9) One first 
assigns each "E" the number -1 and each small letter the number + 1. 
Then one adds these numbers sequentially, starting with the number 
assigned to the ·last letter on the right of the expression and proceeding 
by steps to the left, to the beginning of the expression. The following 
example illustrates this process : 

EEEpqErsEtu 
123 43 232121 

The "it' is assigned + l, also the "t"; 1 plus 1 is 2, "E" is -1, 2-1 = 1, 
etc. If the expression is meaningful, then the first condition says that the 
sum, which corresponds to the whole expression and stands at the very 
beginning, must be equal to 1 ; the second condition says that all partial 
sums, which correspond to single segments, must be positive, i.e. greater 
than 0. A glance at the number-series which belongs to the expression 
in the above example suffices to determine that this expression is mean-

~~-----------~ 
') The idea behind this rule--is-not mfue, but ~ather-as far as I know-that of a 

student of L. Chwistek. 

-----· -------·-·-
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ingful. If such a number-series does not begin with 1, if a 0 or even 
a negative number .appears, then the expression is meaningless; e.g. 

pE¥qrs 
212321 

EpqEr 
12101 

In the first example the sum which corresponds to the whole expression 
___ equals.-2.--w:hiclds.Jncmnpatible with the first condition. In the second 

example the partial sum which corresponds to the segment "Er" equals O, 
contrary to the second condition. 

Not all meaningful expressions belong to the system. Those which 
<lo I call theses. In our equivalential system the theses are distinguished 
by the fact that they satisfy the normal matrix for equivalence. 

Since we now have the concep,t of a meaningful ·expression at our 
disposal, we can formulate the rule of substitution_ precisely. On the 
basis of this rule one obtains a new thesis from a given thesis by re
placing one or more of the propositional variables of the given thesis by 
meaningfal expressions, where all equiform variables must be replaced 
by equiform expressions. For example, if in the thesis with which we 
are already familiar, 

EEpqEqp, 

the meaningful expression "Eqr" is substituted for "q" (wJrich transforma
tion I denote by "qf;Eqr") we obtain a new thesis: 

EEpEqr EEqrp ~ 

The other rule which is used to derive theses is the previously charac
terized rule of detachment: If Erxf3 and ex are theses, f3 is also a thesis 
and hence can be.detached from Ecxf3. For example, let the following 
two theses be given: 

1 

2 

EEpqEqp. 

EEpEqrEEpqr. 

If in 1 the substitution ''p/EpEqr, qjEEpqr" is made, one obtains 

l' E EEpEqrEEpqr EEEpqrEpEqr. 
2 3 

Thesis l' begins with an "E" followed by thesis 2 as its first member; 
consequently its second member, in accordance with the rule of detach-
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ment, can be de_tached as a new thesis: 

3 · EEEpqr EpEqr. 

This derivation I indicate briefly as follows: .. 

3 
lp}EpEqr, qjEEpqrXE2-3. 
EEEpqr EpEqr. 

In the derivational line which precedes thesis 3, the series of expressions. 
both before and after the separation sign " x " designates the thesis l ', 
which is omitted for the sake of brevity. 

·------·--·-·-····--------------

4. The shortest axiom 

The shortest axiom for the equival'ential system, which I discovered, 
consists of eleven letters and reads: EEpqEErqEpr. From this axiom 
I will first derive Lesniewski's two axioms, as well as those theses which 
are required for the completeness-proof to be given later. All .these 
theses are marked by an · ast".risk. I will then prove that no shorter 
axiom possesses the property of being a single axiom of the system. 
The following deductions, which are constructed with the sole use 
of the rules of substitution and detachment mentioned above, should be 
clear enough after what I have said above:10

) 

*l EEpqEErqEpr. 

lp/Epq, q/EErqEpr, r/sxEl-2. 
2 EEsEErqEprEEpqs. 

2s/EpqxE1-3. 
3 EEpqEpq. 

4 

5 

*6 

lp/Epq, q/EpqxE3- 4. 
EEr EpqEEpqr. 

4 r/Epq,p/Erq, q/EprxEl-5. 
EEErqEprEpq. 

5 r/p, q/pxE3 q/p-6. 
Epp. 

~-------'0_,_)~F_o_r _th_e_d __ e_riv..c.a,.,.,ti,;_on~al technique see p. 157 of my article cited in note 8 above, 
as well as my essay "Zur GeSChiclite-aerAussagenio-gik", Erkenntnis s (1935), p. 126. 
[p. 216 of this volume.] · 

(.,-'-
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lp/q, rfpxE6p/q-7. 
*7 EEpqEqy. 

lp/Epq, q/EqpxEJ-8. 
8 EErEqpEEpqr. 

7 p/ErEqp, q/EEpqrxE8-9. 
9 EEEpqrEr Eqy. 

2 s/EEpr Epq, r/p, p/r xE9 q/r, r/Epq-10. 
10 EErqEEprEpq. 

5 r/Epq,p/EpEpqxElO r/Epq-11. 
*11 EEpEpqq. 

7 p/EpEpqxEll -12. 
*12 EqEpEpq. 

1 p/EpEpqxEll -13. 
13 EErqEEpEpqr. 

2 s/EEpqr, rjq, q/EqrxE13 r/Epq, q/r,p/q-14. 
*14 EEpEqrEEpqr. 

7 p/EpEqr, q/EEpqrXE14-15. 
*15 EEEpqrEpEqr. 

9 p/Erq, q/p, r/EpEqrxE9 p/r, r/p- 16. 
*16 EEpEqrEpErq. 

16 p/EEprEqpxE5 r/p, qjr,p/q-17. 
*17 EEEprEqyErq. 

16p/EEpqr, q/r, r/EqyxE9-18 . 
. 18 EEEpqrEEqpr. 

10 r/EEqrs, q/EErqsxE18 p/q, q/r, r/s-19. 
*19 EEpEEqrsEpEErqs. 

10 r/EEqrs, q/EqErsxE15 p/q, qfr, r/s- 20. 
*20 EEpEEqrsEpEqErs. 

7 p/EpEEqrs, q/EpEqErsxE20-2l. 
*21 EEpEqErsEpEEqrs. 

Of the derived theses, *14 and *17 are Leiiniewski's axioms. Herewith 
the proof is given, indirectly, that our axiom comprehends all theses 
of the system. It is, moreover, not the only "shortest" axiom of the 
equivalential system; I have found two other theses of eleven letters 
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which can be likewise postulated as single axioms of the system. These 
are EEpqEEprErq, and EEpqEErpEqr. From each of these theses *l 
can be derived in the following manner: 

1 

2 

A 

EEpqEEpr Erq. 

lp/Epq, q/EEprErq, r/sxEI-2. 
EEEpqsEsEEpr Erq. 

·-----·----------------J;pfEpq,-qfs,s/EsEEprErqxE2=3;··· 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 . 

1 

2 

EEsEEprErqEEEpqrErs. 

3s/EpqxE1-4. 
EEEpqrErEpq. 

4 r/EEprErqxEl - 5. 
EEEprErqEpq. 

5 r/Epr, q/ErEprxEI q/Epr-6. 
EpErEpr. 

1 q/ErEpr, r/qxE6-7. 
EEpqEqErEpr. 

2 s/EqErEprxE7-8. 
EEqErEprEEprErq. 

8 q/pXE6-,-9. 
EEprErp. 

2s/EqpxE9 r/q-10. 
EEqpEEprErq. 

3 s/EqpxEl0-11. 
EEEpqrErEqp. 

11 p/Epr, q/Erq, r/EpqxES-12. 
EEpqEErqEpr. 

B 

EEpqEErpEqr. 

!p[Epq, <j/EErpEqr;-r/sXEl=2. 
EEsEpqEEErpEqrs. 

3 

4 

5 

6 

7 

8 

9 
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2s/Epq,p/Erp, q/Eqr, r/sxEI-3. 
EEEsErpEEqrsEpq. 

3 r/Eqr,p/q, q/Er!JqrxE2p/Eqr-4. 
EqErEqr. 

2 s/q,p/r, q/Eqr, r/sxE4-5. 
EEEsr EEqrsq. 

5 r/Eqq, q/EqqxE2p/q, r/q-6.
Eqq. 

IpfqxE6-7. 
EErqEqr. 

2s/Epfj;p/q, q/pxE?_r/p-8. 
EEErqEprEpq. 

7 rfEErqEpr, q/EpqxES-9. 
EEpqEErqEpr. 

5. The completeness-proof 

261 

The new completeness-proof, which I intend to give here, rests on 
a concept of completeness which is essentially due to the American 
mathematical logician Post.11) I intend to prove the following: 

Every meaningful expression in the equivalential system has either 
the property that it can be derived by the rules of inference from axiom 
*l or the property that, when it is added to axiom *l, every meaningful 
expression is derivable. 

The first property I call ; 1, the second ;2. 
The "either-or" in this case is non-exclusive. However, it will later 

tum out that the equivalential system constructed on the basis of our 
axiom is consistent, i.e. does not include all meaningful expressions of 
the system. Thus the properties ~1 and ~2 do in fact exclude each other. 

The proof is based essentially on the previously stressed fact that 
every meaningful expression either is a propositional variable or begins 

11) See in this connexion p. 161, n. 10 of my article cited in note 8 above, as well 
as the essay of H. Hermes and H. Scholz, "Bin neuer Vollstiindigkeitsbeweis flir 
das reduzierte Fregesche Axiomensystem des Aussagenkalkiils", Forschungen zur 
Logik und zur Grundlegung der exakten Wissenshaften, New Series, vol. 1 (1937), 
p. 6, n. 5 . 
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with an "E", thus is of the type "Erx{J", where "rx" and "(3" are under
stood to be meaningful expressions. In general, I will designate arbitrary 
meaningful expressions by the first few letters of the Greek alphabet, 
while designating propositional variables by "n". 

The proof divides into eight sections, (a) to (h). These exhaust all 
possible cases which can occur when any meaningful expression is 
given. 

(a) The given expression is a propositional variable,, Then it has the 
property g2 , for from a variable all meaningful expressions can be de-

-·-c-------rived-thJ:i:mgh-substitution. ______ _ __ _ 
(b) The given expression begins with more than one "E". Then on the 

basis of the theses 

*15 
*14 

EEEpqrEpEqr, 

EEpEqrEEpqr, 

which are derivable from axiom *I, it can be transformed into a deduc
tively equivalent and not longer expression which begins with only 
one "E". 

Proof Two expressions are called deductively equivalent12) with respect 
to axiom *I, if on the basis of this axiom either expression can be de
rived from the other by means of the established rules of inference. 
Expressions which begin with more than one "E'', i.e. have the form 
"EErx{Jy'', are deductively equivalent to expressions of the form ErxE{Jy, 
for in view of *15 and *14 we have: 

-I. EErx{Jy, IL ErxE(Jy, 
*15 p/rx, q/(3, r/yxEI-IT, *I4p/rx, q/(3, r/yxElI-I, 

II. ErxE(3y, I. EErx(3y. 

"ErxE{Jy" is no longer than "EErx(Jy" and has one "E" less at the 
beginning. If "rx" again begins with an "E'', the same transformation 
can be made and repeated until one obtains an expression which begins 
with one "E'', and is hence of the form "EnfJ". 

(c) The given expression begins with one "E" followed by a propo
sitional variable, i.e. is of the type "EnfJ", where in "()" no variable 
equiform with "n" occurs. Then the expression has the property g2, 

12) The term "uecmCfively-equ:ivalent" I owe to the' ab~ve-mentioned paper of 
Hermes and Scholz. · 

j 
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i.e. if it is taken together with the axiom, all meaningful expressions are 
derivable from it. -- -

Proof If "EnfJ" is conjoined to the axiom, one obtains on the basis 
of thesis 

*7 EEpqEqp 

tlie expression "EOn'~Om---other -hand;-we--can derive the expression 
"()" from "EnfJ" by the substitution n/EnfJ, since "(J" contains no 
variable of the same shape as "n" and hence is not changed by the 
substitution. From "EfJn" and "o" we get the variable "n" b}rdd:ach~ 
ment, and from "n" by substitution all meaningful expressions. The 
formal derivation has the form: · 

I EnfJ. 

*7p/n, q/fJxE-III. 
II Eon. 

In/EnfJxEI-m. 
III fJ. 

IIxEfil-IV 
IV n. 

- In the following it is assumed that in expressions of the type "Eno" 
the expression "()" always contains a variable equiform with "n". 
Furthermore, "o" is either a variable or an expression of the form 
"Erx(J". We examine first the latter case. 

( d) The given expression -has the form "EnErx{J'', where the equiva
lence beginning with the second "E", i.e. "Erx{J", contains a variable 
equiform with "n". If this variable is in the second but not in the first 
member of "ErxfJ", then the expression "EnErxfJ" can be transformed 
on the basis. of the thesis 

*16 EEpEqrEpErq 

into a deductively equivalent and not longer expression, namely 
"En E{Jrx", in which the variable equiform with "n" appears in the 
first member of the equivalence beginning with the second "E". 

Proof "EnEa(3" and "EnE/3.rx" are by *16 deductively equivalent, 
for we have: 
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I. EnErx,/3, 
·*16 pjn, qja., rf f3xEI-II, 

IL EnEf3a, 

II. EnE{Ja., 
*16pjn, qj{J, rfa.xEII-I, 

I. EnEa.fJ. 

If "n" does not occur in "a.'', it must be contained in "{3'', since ex hy
pothesi it occurs in "Ea.{3". 

On the basis of this section we may assume subsequently that in ex
pressions of the form "EnEa./3" the variable equiform with "n" occurs 
in the first member of the equivalence "Ea.{3", i.e. in "rx". Now "a." 
is either a variable or an expression of the form "Erx{J". We consider 
first the latter case. 

·-·--··-- -·--·--

(e) The given expression has the form "EnEErxf3y" where the equiva
lence beginning with the third "E", i.e. "Ea{J", contains a variable 
equiform with "n". If this variable occurs not in the first but in the 
second member of the equivalence beginning with the third "E", then 
the expression "EnEErxf3y" can be transformed, in virtue of thesis 

*19 EEpEEqrsEpEErqs, 

into a deductively eql.j.ivalent not longer expression, namely "EnEE{Jrxy'', 
in which the variable equiform with "n" appears in the first member 
of the equivalence beginning with the third "E". 

Proof "EnEEaf3y" and "EnEEfJa.y" are deductively equivalent 
by *19, for we have: 

I. EnEEa.{3y, 
*19pjn, qjrx, rj{J, sjyxEI-II, 

II. EnEE{J rxy, 

II. EnEEf3rxy, 
*19 pjn, q/{J, rja, sjyxEII-1, 

I. "EnEE<J.{Jy. 

If "n" does not appear in "a.", it must in "{J", since by assumption 
the equivalence "Erx{J" contains a variable equiform with "n". 

By reason of this section we may assume in what follows that, in 
expressions of the form "EnEErx{Jy'', the variable equiform with "n" 
is contained in "a.". 

(f) The given expression has the form "EnEErxf3y'', where "ll." con
tains a variable equiforrn. with "n". Then by the theses 

*20 EEpEEqrsEpEqErs, 

*21 EEpEqErsEpEEqrs 

the expression "EnEEci{Jy"-can be tl'~msformed into the deductively 
equivalent not longer expression "EnEa.EfJy". 
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Proof "EnEEa.{Jy" and "EnErxEf3y" are deductively equivalent, 
since by *20 and *21 we obtain: 

I. EnEErxfJy, 
*20 p/n, q/a., r/fJ, s/yxEI-II, 

II. EnErxE{Jy, . 

IL EnE<J.E{Jy, 
*21 pfn, q/a., r/{J, sfyxEIT-I, 

I. EnEEa.f3y. 

In-·the-e-:xpressi:en-'!:Bn:Ect-E~~contains a variable of~thrue~saa:mmee----
form as "n". If "rx" is an equivalence, the transformations described 
under (e) and (f) can again be carried out, and repeated until a propo-
sitional variable is obtained in place of "rx". Herewith we come back 
to the unresolved case mentioned at the end of section ( d): the given 
expres·sion has the form "EnErxfJ" where "ll." is a variable and also 
contains a variable equiform with "n". "ll." must then, of course, be 
equiform with "n", and we have the case: 

(g) The given expression has the form EnEnrx. Then on the basis 
of the theses --= 

*11 

*12 

EEpEpqq, 

EqEpEpq 

it can be transformed into the deductively equivalent and shorter ex
pression "rx". 

Proof "EnEnrx" and "rx" are deductively equivalent by reason of 
*11 and *12: 

I. EnEnrx, II. rx, 
*11 pjn, qja.xEI-II, *12 q/rx,p/nxEIT-I, 

II. rx, I. EnEn<J.. 

To this shorter expression we can again apply the transformation 
rules mentioned in (a) to (g). If sections (a) or (c) are applicable, then 
the investigation is finished, for it is clear that the given expression 
has the property f2. If this does not happen, one obtains progressively 
shorter expressions, until one reaches the shortest expression which 
possesses property f 1 • This is, of course, the expression "Enn". And 
therewith the final outstanding case is resolved which was mentioned 
at the end of section (c): the given expression has the form "Eno", 
where "o" is a variable and contains .a variable equiform with "n". 
"o" must then be equiform with "n",·and we obtain the case: 
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(h) The given expression has the form "Enn". Then it has property ~1 
as a substitution-instance of the thesis 

*6 Epp. 

With this the completeness-proof is :finished. The proof rests on ten 
- theses, all of which are deducible from our axiom *1: *6, *7, *11, *12, 

*14, *15, *16, *19, *20, *21. Thus the proof is effective; i.e. with the 
aid of the enumerato:d theses it can always be decided whether a given 
expression has property ~1 or properly ~1. and in each case the pro-

. ----------eedure-whiGh-G-ne-must__fo_llo_:w:_t_Q_exhibiLone _or the other property 
is exactly specified. This will be clarified subsequently by two examples, 
which are furthermore intended to make the conipleteness·-proof here 
presented more intelliiible. 

6. Examples for the completeness-proof 

As examples I choose two expressions, of which one exhibits prop
erty ~1 , the other property ~1. The examples are so chosen that all 
the transformation rules enumerated in sections (a) to (h) are used in 
one or the other. 

The first expression reads "EEEpEqpEqrr'', and thus begins with 
more than one "E". Hence it falls under section {b ). On the grounds 
of the schema: 

EEa{Jy "' EaE{Jy, 

where "a" is "EpEqp'', "{J" is "Eqr'', "y" is "r", and the sign",..," de
notes deductive equivalence, we have: 

EEEpEqpEqrr "' EEpEqpEEqrr [section (b), theses *15 and *14]. 

The expression on the-right obtained by the transformation still begins 
with more than one "E". So we apply rule (b) a second time: 

EEpEqpEEqrr "'EpEEqpEEqrr [section (b), theses *15 and *14]. 

Now we have obtained an expression of the form "EnEEa{Jy" where 
the variable equiform with "n" is contained in "{J". This comes under 

----------< ection-(e-),therefore-under--the- schema: 

EnEEa{Jy "' EnEE{Jay. 
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This schema yields the deductive equivalence: 

EpEEqpEEqrr "'EpEEpqEEqrr [section -(e), thesis *19]. 

The new expression is of the form "EnEEa{Jy", the variable equiform 
with "n" being con!ained in "a". Hence we must now apply section (f), 
i.e. the schema: 
------- _ EnEEa{Jy ,..,_EruiaEfi"f-,,___-

from which we get: 

EpEEpqEEqrr "' EpEpEqEEqrr [section (f), theses *20 and *21] . 

Now it is the turn of rule (g), since the new expression is of the type 
"EnEna" and according to the schema 

EnEna"' a 

can be transfor:med into the shorter expression "a". Thus we have: 

EpEpEqEEqrr"' EqEEqrr [section (g), theses *11 and*12]. 

This shorter expression yields after two transformations : 

EqEEqrr "' EqEqErr [section (f), theses *20 and *21], 
EqEqErr "' Err [section (g), theses *11 and *12], 

the shortest expression with the property ~1 , namely 

Err [section (h), thesis *6]. 

The analysis is ended. Now comes the synthesis, namely the deri
vation of the given expression, which has property ~1 , from the theses 
adduced in the analysis, and hence indirectly from our axiom *I. We 
begin with the last expression to which the analysis led and climb back 
up step by step. In this process we shall not, however, use all the theses 
mentioned, but in every case when two theses _are given in connexion 
with a deductive equivalence, we shall use only the second. Thus the 
derivation is based on theses *6, *12, *14, *19, and *21, which appear 
in this order: °"12, *6, *21, *12, *21, *19, *14, and *14. 

I 

II 

*12 q/Err, p/qxE*6p/r-I. 
EqEqErr. 

*2Ip/q, s/rxEI-II. 
EqEEqrr. 
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* 12 q/ EqEEqrr x Ell - III. 
m EpEpEqEEqrr. 

*21 q/p, r/q, s/EEqrrxEIII-IV. 
IV EpEEpqEEqrr. 

*19 q/p, r/q, s/EEqrrxEIV-V. 
v EpEEqpEEqrr. 

*14 q/Eqp, r/EEqrrxEV - VI. 
VI EEpEqpEEqrr. 

*14p/EpEqp, q/EqrxEVI-VII. 
VII EEEpEqpEqrr. 

This completes the proof that the given expression "EEEpEqpEqrr" 
possesses the property ~1 • 

As a second example I choose the expression "EEpEqrEps" which, 
as it will turn out, has the property ~1 • That is, added to the axioms, 
it entails the derivability of all meaningful expressions. After what I 
have said above, the following should be clear without further ado: 

EEpEqrEps "' EpEEqrEps [section (b), theses *15 and *14], 

EpEEqrEps"' EpEEpsEqr [section (d), thesis *16], 

EpEEpsEEqr"' EpEpEsEqr [section (f), theses *20 and *21], 

EpEpEsEqr"' EsEqr [section (g), theses *11 and *12], 

EsEqr "' EEqrs [section ( c ), thesis *7]. 

"EEqrs" yields in conjunction with "Eqr", which follows from "EsEqr", 
the variable "s", and hence by (a) all meaningful expressions. 

The synthetic construction begins with the given expression 
"EEpEqrEps" and descends to the variable "s". If, in the process, two 
theses are mentioned in a deductive equivalence, we use only the 
first. The deduction is thus based on theses *15, *16, *20, *11, and *7: 

I EEpEqr Eps. 

II 

III 

IV 

*I5q/Eqr, r/EpsxEI-IT. 
EpEEqrEps. 

*16 q/Eqr, rf.EpsxEIT-ITI. 
EpEEpsEqr. 

-*20q/p;··r/s;-s/EqrxEIII- TV. 
EpEpEsEqr. 

v 

VI 

VII 

VIII 
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, *11 q/EsEqrxEIV-V. 
EsEqr. 

*7p/s, q/EqrxEV-VI. 
EEqrs. 

V s/EsEqrxEV-VII. 
Eqr. 

VI x EVII - VIII. 
s. 
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This constitutes the proof that the given expression "EEpEqrEps" 
possesses the property ~2 • 

7. Consistency of the equivalential system 

As noted above, the equivalential system is consistent, i.e. not all 
meaningful expressions belong to the system, nor are they all~ accord
ingly, derivable from our axiom. A simple proof of consistency is 
provided by the normal matrix for equivalence. However, I will here 
give in addition a purely structural proof of the consistency of the 
system, using an idea of Lesniewski's. · 

Lesniewski was the first to note that in all theses of the equivalential 
system the number of equiform variables of each shape, e.g. the number 
of''.P" s, the number of "q"s, etc., is even. 13

) Let us designate this prop
erty by" "G". It can now easily be shown, as Lesniewski and Tarski 
long since realized, that the property G is hereditary with respect to 
the rules of substitution and detachment. This means that all expres
sions which are derived from given G-expressions by means of these 
rules of inference also have the property G. This is evident in the case 
of the iule of substitution. For if an arbitrary variable "n" appears an 
even number of times in an expression, and for "n" any meaningful 
expression "rx" is substituted, the number of equiform variables of any 
shape is changed by an even number. In the case of the rule of detach
ment, the assertion can be proved as follows. If the number of variables 
of each shape in "Ea{J" and "a" is even, two cases can be distinguished. 
First, "fJ" contains a variable "n" such that no variable in "rx" is equi-

13
) Cf. op. cit., p. 26, point 6 and p. 29, point 11. 
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form with "n". Then "n" must appear an even number of times in "{J", 
since the total number of equiform variables in "Erx.{J" is even. Second, 
"{J" contains a variable "n" equiform with some variables in "rx." .. 
Since in "Erx.{J" as well as "rx." all" equiform variables appear an even 
number of times, the number of variables "n" in "{J" must also be 
even; for evens subtracted from evens yield evens. Hence if the expres
sions "Erx.{J" and "rx." have property G, then "{J", which follows from 
them by detachment, also has property G. 

We now determine that in our axiom *l all equiform. variables of 
---·· --··--------any-shape,i~eo-all '~,-all...::q.':s,_and~t.'.'s.appear.exactly twice, hence 

an even number of times. Therefore axiom *l has the property G. 
Since this property is hereditary with respect to the rules of inference 
assumed in the system, it must belong to all consequences of the axioms, 
i.e. all theses of the equivalential system. From this it follows that not 
all meaningful expression~ of the system are derivable from our axiom. 
For expressions such as "p'', "Epq'', "EpEqp" and, in general, expres
sions in which at least one variable occurs an odd number of times, 
cannot be derived from the axiom. With this the consistenc~ of our 
system is proved. 

8. Proof that axiom *1 is the shortest 

The proof that EEpqEErqEpr is the shortest axiom of the equiva
lential system is divided into two parts. First I set down all theses which 
are shorter than axiom *l, i.e. number less than eleven letters; then 
I show that none of these theses can be the axiom. 

To obtain all theses which number less than eleven letters, we must 
:first remind ourselves of the following two points. Firstly we ascertained 
in 3 that in all meaningful expressions of our system, hence in all 
theses thereof, the number of "E"s is one less than the number of 
small letters. This yields the conclusion that every thesis of our system 
consists of an odd number of letters, hence must number 1, 3, 5, 7, or 9 
letters if it is to be shorter than our axiom. Secondly we know from 
the previous paragraph that in all theses of the equivalential system 
the number of variables is even. It follows that no thesis of our system 

~------=m::::a:-::cy=-c=-o,...,nc-cs~IS,.,.t-oCI~:),OT9-tetters; for in all such exp~essions the number 
·of vari~bles is odd, being respectively 1, 3, or 5 lettyrs. Thus we see 
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that theses which number less than 11 letters must consist of either 
3 or 7 letters. 

There is only one thesis of three letters, namely 

Epp. 

Theses of seven letters divide according to the order of the functors 
.. into-the-followmg-fi.V.e_grmlpS: 

I. EEExxxx. 
IL EExExxx. 

III. EExxExx. 
IV. ExEExxx. 
V. ExExExx. 

In each group the variables "p" and "q" (more than two different varia
bles cannot occur) can be ordered in three ways: ppqq, pqpq, and pqqp. 
The remil.i.ning three orderings, qppq, qpqp, and qqpp, result from the 
:first three by a change of variables. We thus obtain the followmg fifteen 
theses: 

It. EEEppqq. 
Iz. EEEpqpq. 
I3. EEEpqqp. 

Il1. EEpEpqq. 
II2. EEpEqpq. 
lI3. EEpEqqp. 

III1. EEppEqq. 
III2. EEpqEpq. 
Ill3. EEpqEqp. 

IV1. EpEEpqq. 
IV2. EpEEqpq. 
lV3. EpEEqqp. 

V1. EpEpEqq. 
Vz. EpEqEpq. 
V3. EpEqEqp, 

These are all the theses which come under consideration, for theses 
which result from the above by identification of variables are weaker 
and hence may be disregarded. 

Now we must show that none of these theses can be the axiom of our 
system. We do this in the following manner. For each thesis we give 
a matrix, preserving the property of deducibility, which is so constituted 
as to be satisfied by the given thesis but not by our axiom. This suffices 
to prove that from such a thesis our axiom cannot be derived. But if 
even one thesis of our system is not deducible from a given thesis, the 
latter can certainly not be the axiom of the system. 

In all the matrices below, the :first argument is written at the left, 
the second at the top. All contain only one designated value, denoted 
by "l". A matrix Mis satisfied by a given thesis, if this thesis, for all 
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assignments of values to its variables, yields an expression which, after 
reduction according to matrix M, yields the value I. The designated value 
1 appears only once in the one-line of the matrix, and always in the first 
position, so that only Ell = 1 while, for all f3 other than 1, El{J :;6 1. 
This suffices to en;ure that satisfaction of the matrix is preserved by 
deductions using the rule of detachment. For if the expressions "Erx{J" 
and "rx" equal 1, so must "{3". Satisfaction of all matrices is preserved 
in deductions using the rule of substitution. Thus if such a matrix is 
satisfied by a given thesis, it must be satisfied by all consequences of 

____________ tbiS-thesis.-Our_aXiom cannot be among_fues_e_consequences if it does 
not satisfy the matrix. 

To begin with, it is clear that our axiom 

EEpqEErqEpr 

does not satisfy the two-valued matrix Mi below-the normal matrix 
for implication. 

For pjl, qjl, r/2 we get: 

E l 2 

1 1 2 
2 1 1 

Mi 

EEl 1EE21El2 = ElEI2 = EI2 = 2. 

On the other hand this matrix is satisfied by Epp as well as the theses: 
I 1. EEppqq, III1. EEppEqq, III2. EEpqEpq, IV1. EpEEpqq, IV3. EpEEqqp, 
V1 • EpEpEqq, V2. EpEqEpq, V3. EpEqEqp. For one sees at once that 
all these theses retain their validity when E is interpreted as the sign 
of implication. From this it follows that none of these theses can be 
the axiom. 

------Forpj-J:;-:-q/3;-r/2-we-get-:----

E 1 2 3 4 

1 1 2 3 4 
2 4 1 1 3 
3 2 4 1 1 
4 3 1 2 1 

Mz 

EE13EE23El2 = E3El2 = E32 = 4. 

I 
I 
l 
l 
( 

1 
I 
I 
I 
J 
J 

l 
l 

,j 
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On the other hand it is satisfied by theses I2. EEEpqpq and II2. EEpEqpq, 
as may be seen from the following tables: 

p ~I 1 1 2 2 2 2 3 3 3 3 4 4 4 4 
q 1234123412341234 

Epq 1 2 3 4 4 1 1 3 2 4 1 1 3 1 2 1 
____ _ ____ _ EEpqp 1 4 2 3 1 2 2 4 1 2 3 3 1 4 3 4 

--,,.--:-::--:--:----------
EE E p q p q 1 1 1 1 1 CCI 1 1 1 1 1 1 1 1 

p 1111222233334444 
q 1234123412341234 

Eqp 1 4 2 3 2 1 4 1 3 1 1 2 4 3 1 1 
EpEqp 1 4 2 3 1 4 3 4 1 2 2 4 1 2 3 3 

EEpEqpq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

The three-valued matrix M3 
E 1 2 3 ----
1 1 2 3 
2 2 1 2 
3 3 3 1 

M3 

is not satisfied by the axiom for p/l, q/3, r/2; for we have: 

EE13EE23El2 = E3E22 = E31=3, 

but it is satisfied by thesis h. EEEpqqp. 

p 
q 

Epq 
EEpqq 

EEEpqqp 

1 1 1 2 2 2 3 3 3 
1 2 3 1 2 3 1 2 3 
1 2 3 2 1 2 3 3 1 
1 1 1 2 2 2 3 3 3 
1 1 1 1 1 1 1 1 1 

Likewise the axiom does not satisfy the three-valued matrix M4, 

~1~ 
1 1 2 3 
2 1, 2 1 3 
3 3 2 1 

M4 
since we have for p/l, q/3, r/2: 

EE13EE23El2 = E3E32 = E32 = 2, 
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while the matrix is satisfied by theses II1 . EEpEpqq and Il3 • EEpEqqp. 

p 1 1 1 2 2 2 3 3 3 p 1 2 3 
q 1 2 3 1 2 3 1 2 3 Eqq 1 1 1 

Epq 1 2 3 2 I 3 3 2 1 EpEqq 1 2 3 
EpEpq I 2 3 1 2 3 1 2 3 EEpEqqp I I 1 

EEpEpqq 1 1 1 1 1 I 1 1 1 

Furthermore, the three-valued matrix Ms is not satisfied by the axiom; 

E 1 2 3 
--·-· ---· 

1 1 2 3 
2 2 I 2 
3 3 2 1 

Ms 

for p/1, q/3, r/2 yields: 

EE13EE23E12 = E3E22 = E31 = 3. 

However, it is satisfied by thesis IlI3. EEpqEqp. 

p 
q 

Epq 
Eqp 

EEpqEqp 

I I 1 2 2 2 3 3 3 
1 2 3 1 2 3 1 2 3 
I 2 3 2 1 2 3 2 1 
1 2 3 2 I 2 3 2 1 
1 I I I I I 1 I 1 

Finally, the four-valued matrix M 6 is not satisfied by the axiom for 
p/I, q/3, r/2; 

for w~ have: 

~11234 
1142 4 
2 3 1 4 1 
3 3 I 1 2 
4 4 3 3 1 

M5 

-------------.D'.E.13EE2J.1Hf = E2E44 = E2l = 3, 

but is satisfied by thesis IV 2. EpEEqpq. 

·1· 

.· 
''.'1 

~I 

p 

q 
Eqp 

EEqpq 
EpEEqpq 
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1 1 I I 2 2 2 2 3 3 3 3 4 4 4 4 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
1 3 3 4 4 1 1 3 2 4 1 3 4 1 2 1 
1 1 1 1 4 4 2 2 3 3 2 2 4 4 4 4 
1 I I I I 1 I 1 1 1 1 1 1 I I I 
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From all this it follows that none of the sixteen shorter theses can be 
::::...=::~-=~~------

the axiom. Hence our axiom *1 is the shortest aXiom for the equiva-
lential system. 

9. "Creative" definitions 

In closing I ·would like to touch on an important methodological 
question which stands out with particular clarity in the context of the 
equivalential system. 

In mathematical logic definitions are normally introduced by. means 
of a special sign of definition. So, for example, one could introduce 
into the equivalential calculus the expression "Vp", read "verum of p", 
in accordance with the usage of Principia Mathematica 14

) as follows: 

I Vp=Epp Df. 

Here the identity-sign together with the following letters "Df." indicate 
that the definiendum "Vp" means the same as the "Epp". Thus one may 
always replace "Epp" by "Vp" and vice versa, and every substitution
instance of the one expression may be replaced by a corresponding 
substitution-instance of the other. 

There are, however, mathematical logicians who, in order to avoid 
a special definition-sign, introduce definitions as equivalences. This 
can happen in systems in which equivalence occurs as a primitive con
cept. In such systems the above definition of "Vp" can be written in the 
following manner: · 

II EVpEpp. 

Now, this definition is methodologically different from the first. 
For cases may occur in which the second definition yields more than the 
first, in that it can have-I can find no better term for it-"cre 

£. 
14) 0 . 11 ~7 p. cit., p. . · 
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effects. The following example makes clear what is to be understood 

by this. 

The expression 

Ill EEsEppEEsEppEEpqEErqEpr 

is easily verified to be a thesis of the equivalential system. This thesis 
has the peculiarity that its consequences can be obtained only by 
substitution, not by detachment. It is "undetachable", as can be shown 
by a method deriving from Tarski. If the above thesis is to yield a new 

--- -------- ---one-by-detachment, it must be poss!ble tg__9_Q!_ajn two substitution-in
stances of thesis· Ill, of which one is of the type "Erx{J" and the other 
of the type "rx". These conditions may be expressed as follows : 

(a) Erx{J~ EEyEoOEEyEooEEo EEEi;, EEoi;,, 

(b) rx ~ EEeEc1<1EEeEaaEE1rcEEv-cEav. 

The sign of congruence "~" means here that the left expression is equi
form with that on the right. Now in the first congruence the expression 
"EyEoo" corresponds to the letter "rx". Hence the following congru
ences must also hold: 

(c) rx~ EyEoo~ EEeEaaEEeEaaEEa-rEEvrEav. 

This yields the further result, that the following expressions must be 
equiform: 

(d) y ~ EeEaa, (e) o ~ EeEaa, (f) o ~ EEa-rEEvrEav. 

From ( e) and (f) finally we get the following congruences: 

(g) e ~ Ea-r, (h) a~ Evr, (i) a~ Eav. 

The last congrtience yields an absurdity; for it is impossible for a to be 
equiform with an expression which contains a as a proper part. From this 
we conclude that it is not impossible to find two substitution-instances 
of thesis ill of the forms "Erx{J" and "rx". Hence thesis III is undetachable. 
From this it follows immediately that no shorter thesis can be derived 
from thesis ill, in particular not our axiom EEpqEErqEpr. 
· If, however, definitions of the second sort are now introduced in the 

~------~eq_m_·_v_al_e_n_ti~al- system;·e.g:cuefinition II, then it is easily shown that thesis 

III can be postulated as the axiom of the system. For.we have: 

III 

II 

IV 
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EEsEppEEsEppEEpqEErqEpr. 

EVpEpp. 

III s/Vp x Ell- Ell - IV. 
EEpqEErqEpr. 
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Thesis IV is the axiom of our system. From III by itself it cannot be 
derived; it can be inferred only with the help of definition II. The new 
term "V", however, which was intr~duced by the definitio~n=,'--d-=o-ec:.s_::n::.::o..:.:t _____ _ 

appear in this thesis. Hence definition II leads to theses which cannot 
be derived from the thesis assumed as an axiom, although in these 
theses only primitive concepts of the system occlir. Such definitions I 
call "creative". It is clear that one cannot get thesis IV from III if one 
introduces "Vp" by a de:(inition of the first sort. 

In deductive systems the role of definitions would seem to consist 
mainly in allowing us to replace longer and more complicated expres~ 
sions by· shorter and simpler ones. Moreover, some definitions can 
bring with· them new, intuitively valuable insights. Under no circum
stances, however, do definitions seem to be intended to give new prop
erties to the undefined primitive concepts of the system. Primitive con
cepts should be characterized solely by axioms. If one takes this position, 
one should avoid the use of creative definitions whenever possible.*) 

*) Lukasiewicz discussed once more the problem of definitions in the propositional 
calculus in his article "On Variable Functors of Propositional Arguments" (pp. 
311-324 of this volume). 



LOGIC AND THE PROBLEM OF THE FOUNDATIONS OF 
MATHEMATICS *) 

l. The propositional calculus is the fundamental logical discipline. 
Other logical disciplines, in particular the functional calculus, are 
built on the pr9pos1t10nal ca!cUlus, ana--rn:ewliOJe-of fu.athematics is 
in tum based on logic. Thus the propositional calculus forms the deepest 
foundation of all deductive sciences. The present lecture is concerned 
with that fundamental calculus and its iniportance for mathematics. 

2. Propositional logic has always been neglected. It was not known 
to Aristotle and was originated only by the Stoics. Yet Stoic proposi
tional logic was, in antiquity as well as in the Middle Ages and modern 
times, always suppressed by Aristotelian syllogistic. The work of Frege, 
the brilliant German logician who in 1879 created the propositional 
calculus in an almost complete form, received at first almost no atten
tion. It was only after 1910, when Russell and Whitehead in their funda
mental work Principia Mathematica placed the propositional calculus 
at the forefront of mathematical logic, that it was realized what essential 
iniportance that discipline has within the science of mathematics. 

3. Yet even to this day most mathematicians seem to know little 
about the propositional calculus. As Aristotle did; they make use quite 
intuitively of some of the simplest rules of inference of that logic, without 
even suspecting how rich it is in theorems and what a wealth of pro bl ems 
it offers. To acquaint the readers with these problems I shall refer to 
two rules of hlere~ce from those which are most commonly used by 
mathematicians. 

4. If the following two premisses are given: "if p, then q" and "if q, 
then r", we may draw from them the conclusion: "if p, then r". In sym
bols (where C stands for "if ... , then ... "): 

*) First published as "Die Logik und das Grundlagenproblem", Les Entretiens 
---------;,e~Zlliich sur les]Ontletmntrerltnn:ithode des s'Ciences mathematiques 6--9, 12 (1938), 

Ziirich, 1941, pp. 82-100. 
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Cpq P1 

Cqr P2 
Cpr s 

If the first premiss is represented by P1, the second by P2 , and the 
conclusion by S, then obviously the following formula is valid: 

. ----1) CP1CE:§_;_ __ 

This means: "if Pi. then if P1 , then S". If in this formula the letters 
P1 , P2 and S are replaced by the expressions which they represent, we 
obtain the following thesis of the propositional c~culus: 

2) CCpqCCqrCpr. 

In words: "If (if p, then q), then (if (if q, then r), then (if p, then r))." 
This is. the law of the hypothetical syllogism, the best known form 
of direct inference. 

5. Another very comm.on rule of inference is indirect inference. 
A proposition p is proved indirectly by first taking its negation Np 
(where N stands for "not") as the starting point of the proof, and de
ducing from Np a proposition q, which is known to be false. Hence it is 
deduced that Np must be false and therefore.p must be true. Indirect 
inference thus has the form: 

CNpq 
Nq 

p 

If formula 1) is applied to this form of inference, another thesis of the 
propositional calculus is obtained: 

3) CCNpqCNqp. 

In words: "if (ifnot-p, then q), then (ifnot-q, thenp)"; this is a form 
of the law of transposition. 

6. The latter form of inference is contested by Professor Brouwer, 
the eminent mathematician, because it can be used to prove the existence 
of numbers which cannot be built effectively, that is by construction. 
For instance, the existence of even prime numbers is proved effectively 
on the strength of the following law of the functional calculus: 

4) CFa~xFx. 
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In words: "if F of a, then there is an x such that F of x". If, now, Fx 
stands for "x is an even prime number'', and if in 4) the number 2 is 
substituted for a, the following deduction process is obtained: 

In a free verbal rendering: 

(1) CF22xFx. 
(2) F2. 

(1) = C(2)(3). 
(3) 2xFx. 

1° If 2 is an even prime J?-UID.ber, then th~re a~~:V~~ Prime numbers. 
2° 2 is an even prime number. 

Hence by detachment: 

3° There are even prime numbers. 

7. The existential proposition 2xFx can also be proved indirectly. 
The negation of that proposition, i.e. N 2xFx, is taken as the starting 
point of the proof, a false proposition a is deduced f.:_om that negation, 
and on the strength of Thesis 3) the existential proposition is arrived at. 
The deduction process is as follows: 

. (1) CCNpqCNqp. 
(2) CN L,xFxa. 
(3) Na. 

(1) pf L,xFx, q/a = (4). 
(4) CCN2xFxaCNa2xFx. 

(4) = C(2)(5). 
(5) CNa'L,xFx. 

(5) = C(3)(6). 
(6) };xFx. 

It is assumed here that (2) and (3) are true premisses; (4) is obtained 
by a substitution in (1), and (4) yields the existential proposition (6) 
by double detachment. 

8. Followers of intuitionistic logic do not accept the validity of an 
existential proposition obtained in this way, that is, non-effectively. 
Accordingly, they are forced to reject the law of transposition 
CCNpqCNqp. There are also other theses in propositional logic which the 

------~mr~tui-..,.t~io-nists Uoliotconsider-universally valid. Among the prescribed 
theses is another form of the law of transposition CCNpNqCpq, the law 
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of double negation with the negations in the antecedent CNNpp, and in 
particular the law of the excluded middle ApNp ("A" is the symbol of 
alternation "or"; "ApNp" is read ''p or not-p"). On the other hand, 
valid are the two remaining laws of transposition, CCpqCNqNp and 
CCpNqCqNp, the law of double negation with the negations in the 
consequent CpNNp, and the law of excluded contradiction NKpNp 
("K''"ls the symOoIOf COilJUUCtion "arr~NKpNp"' is read "not both 
p and not-p"). The issue is serious: the controversy is within the simplest 
and the most fundamental logical discipline, it is a true controversy 
over the foundations. 

9. Now, the propositional calculus is not a heap of stones, which 
remains even if a few stones are removed from it. It is rather a mechanism 
of the greatest precision, which breaks down after the removal of a 
single cog-wheel and must then be reconstructed. That is why we must 
be most grateful to Mr Heyting. for undertaking, in 1930, to formalize 
the propositional calculus in the spirit of intuitionism. He succeeded 
in constructing a system of axioms for the intuitionistic propositional 
calculus. I shall not discuss these axioms here, but I shall present here 
a result I obtained in May of this year following a suggestion of my re
spected friend, Professor Scholz of Milnster, which will make it easier 
to compare ordinary and intuitionistic propositional logic. 

10. The following independent system of axioms, which consists of 
four groups of axioms, suffices to construct the ordinary propositional 
calculus: 

I 1 CpCqp. 
2 CCpCpqCpq. 
3 CCpqCCqrCpr. 

II 4 CKpqp. 
5 CKpqq. 
6 CCpqCCprCpKqr. 

III 7 CpApq. 
8 CqApq. 
9 CCprCCqrCApqr. 

IV 10 CCpNqCqNp. 
11 CNpCpq. 
12 CCCpNpqCCpqq. 
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The axioms of Group I contain only the implication symbol "C". 
They characterize what is called "positive logic" in the sense of Professor 
Bernays. The axioms of Group II also contain the conjunction :?ymbol 
"K", and those of Group ill, the alternation symbol "A", The axioms 
of the first three groups have been formulated by Professor Bernays. 
The axioms of Group IV pertain to the negation symbol "N". The 
system also includes two roles of inference: the rule of substitution, 
which permits us to ·substitute any significant expressions for the 
variables, and the rule of detachment, which states that from the 

---------------expressions-Gct,B-ani:l-G't--we-can_alwa.ys_deduce-,8. ----- .. -----· 

11. The above system of 12 axioms is valid, as has been said, for the 
ordinary,_ or classical, propositional calculus. If Axiom 12 is dropped, 
then we obtain an axiom system of intuitionistic logic, which is equiv
alent to the axiom system formiilated by Heyting with all the rules 
of inference belonging to it. If Axioms 11and12 are dropped, we obtain 
what is called the minimal calculus of Johannsson. The relationship 
between classical propositional logic and intuitionistic propositional 
logic is now clear: intuitionistic propositional logic. covers a proper 
part, strictly limited, of the theses of the classical propositional calculus 
and is consequently ,essentially weaker than the latter. It is up to mathe" 
maticians to find out what can be built on this weaker foundation of 
mathematics. Research already carried out and still to be done can be 
as fertile and important for the problem of the foundations of logic as 
research on Zermelo's axiom of choice and its role in set theory and 
analysis, initiated by my respected colleague from Warsaw, Professor 
Sierp:iliski. 

12. I shall not here go into the problem of whether it is jl;tsti:fied to 
reject certain forms of inference of classical propositional logic. One 
thing is clear to me: this controversy cannot be settled now, either 
in the sphere oflogic or in that of mathematics. Philosophical arguments, 
which are proposed from different quarters, are in my opinion not 
conclusive. The problem must first be studied more profoundly. I shall 
do so, although I realize how difficult it is to explore the depths. In this 
connection I might mention four points that may serve as road-signs: 
a) there are matrices m propositional-logic; b) an adequate matrix 
corresponds to each system of propositional logic; c) :q1.atrices of many-
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valued propositional logics can also be interpreted intuitively; d) in the 
case of intuitively interpreted matrices, all the logical functions which 
are possible with respect to a given matrix must be taken into account. 

13. The matrix method was devised in 1885 by the eminent American 
logician Charles Peirce. In propositional logic the truth of theses de
pends not on their content, but on their truth value. In the classical 
propositional caJ.cUius there are two trat:h-va~rutb: ·and falsehood. 
If truth is represented by "1", and falsehood by "2", the following 
equations can be formulated_: 

Negation Implication 
NI= 2 Cll = 1 
N2= L C12=2 

C21=1 
C22= 1 

Conjunction 
K.11=1 
K.12=2 
K.21 =2 
K.22=2 

Alternation · 
All= 1 
Al2= 1 
A21=1 
A22=2 

All these equations together can briefly be represented in the form 
of tables (in the case of functions of two arguments the first argument 
being written in the column of the left, and the second, in the row 
above): 

N 

1 2 
2 1 

c 1 2 
---
1 1 2 
2 1 1 

K 12 

1 1 2 
2 2 2 

A 1 2 ---
1 1 1 
2 1 2. 

They are called the matrix for N, C, K, and A. Each matrix has at least 
one selected value; here it is truth, hence 1. 

14. A verification method is associated with. each matrix. We say 
that an expression of the propositional calculus satisfies a matrix if, 
for all valuation of its variables by the values included in the given 
matrix, the expression takes on the selected value after reduction .. 
For instance, the thesis CCCpNpqCCpqq satisfies the matrix given 
above, "since we obtain: 

for p/l, q/l: CCClNllCClll.= CCC121Cll = CC211=Cll=1, 

for p/l, q/2: CCCIN12CC122 = CCCI22C22 = CC221=Cll=1, 

for p/2, q/I: CCC2N21CC211 = CCC211Cll = CClll = Cll = 1, 

for p/2, q/2: CCC2N22CC222 = CCC212C12 = CC122 = C22 = 1. 

All matrices are hereditary with respect to the rule of substitution, 
which means that if an expression satiSfies a given matrix, then that 
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matrix is also satisfied by all substitutions of that expression. For a 
matrix to be hereditary with respect to the rule of detachment, it is 
sufficient, though not necessary, that the function of two arguments 
Frx{J to which the rule of detachment is applied (usually itis implica
tion) has the selected value for the selected rx if f3 is also selected. Thus 
Cl{J equals 1 only if f3 also equals 1. Such a matrix is called normal 
by my War.saw colleague, Tarski. All normal matrices are hereditary 
with respect to the rule of detachment; hence, if a normal matrix is 
satisfied by Frx{J and rx, then it must also be satisfied by {3. 

--- ---------i-s-:-Tue-matrix-----meth0tl--was-tirst-used-for--the---verifieation of theses 
of the classical propositional calculus. But it soon turned out that this 
method must be credited with an incomparably greater importance. 
It makes it possible to carry ~ut proofs of independence in the sphere 
of propositional logic that were unknown to Frege and Russell. The 
'merit of demonstrating how the matrix method can be used in proofs 
of independence goes to Professor Bernays. The same method was 
also known to me even before it was published by Professor Bernays. 
The idea of these proofs of independence ca:a best be explained by an 
example. To prove, for the axiom system. given above, that Axiom 12 
is independent of the remaining axioms, it would obviously suffice 
to find a property which is hereditary' with respect to the rules of in
ference and is characteristic" of all the axioms with the exception of 
Axiom 12. If an axiom satisfies a normal matrix, there is accordingly 
a property of that axiom which is hereditary with respect to the rules 
of substitution and detachment. We construct the following three-
valued matrix for N, C, K, and A: 

N c 1 2 3 K 1 2 3 A 1 2 3 
- --- - --- - ---

1 3 1 1 2 3 1 1 2 3 1 1 1 1 
2 3 2 1 1 3 2 2 2 3 2 1 2 2 
3 1 3 1 1 1 3 3 3 3 3 1 2 3 

Again, 1 is the designated value. This matrix is normal, since Cl{J 
equals 1 only if {J also equals 1. It can easily be seen that the matrix 
is satisfied by the first eleven axioms; in fact for all value functions of 
the variables acquiring the values), 2, or 3, these axioms, according 

~------t-o-t~h-e-ma--tr~ix-,--yierclr,a:rter-reduction:-only Axiom 12 does not satisfy 
the matrix, since for p/2 and q/2 we obtain: 
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CCC2N22CC222 = CCC232Cl2 = CC322 = Cl2 = 2. 

16. This settles the first of the four problems raised above. There 
are matrices in propositional logic, and these play an important role 
in the propositional calculus. I now come to the second point; Tarski's 
metalogical researches make it possible for us to give a strict definition 
of the concept of a system of propositional logic. By a system of propo
sitional logic we mean a set of sigiililcant expressions of propositional 
logic which is closed under the given rules of inference. As rules of 
inference we consider primarily the rules of substitution and detachment. 
It follows that any significant expressions, e.g. 

CCppp and CCCpqqCCqpp, 

together with all their consequences derived by use of the specified 
rules of inference, constitute a system of propositional logic. It is 
now clear that each normal matrix defines a system of propositional 
logic. Strikingly enough, the converse statement is also valid:· Linden
baum, one of my Warsaw colleagues, has proved that for every system 
of propositional logic there is an adequate normal matrix with at most 
a denumerable set of values. A matrix is called adequate with respect 
to a system if it is satisfied by all the expressions of that system and 
by them only. This important theorem was published without' proof 
in 1930 in the paper "Untersuchungen iiber den Aussagenkalkiil", 
written by Tarski and me.*) 

17. I should now like to draw some consequences from that theorem. 
First of all, it is obvious that all axiomatic systems of the propositional 
calculus are systems of propositional logic in the sense of Tarski's de
finition. In accordance with Lindenbaum's theorem, every such system 
must have an adequate normal matrix. For the axiomatic classical 
propositional calculus the two-valued normal matrix given above 
is adequate,· as it has often been proved that that matrix is satisfied 
by all theses of the classical propositional calculus and by them only. 
This is why the classical propositional calculus is termed two-valued. 
For every weaker system, that is every system in which certain theses 
of the two-valued calculus are not valid, the adequate matrix is no 
longer two-valued, but many-valued. Heyting's axiomatic intuitionistic 

*) See pp. 131-152 of this volume. 
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propositional calculus is such a system. This calculus must accordingly 
have a many-valued adequate matrix. In fact, Godel has proved that 
for Heyting's system there is no adequate normal matrix with a finite 
number of values. The same result has been obtained, independently 
of Godel, by Ja8kowski, one of my former disciples in Warsaw, who 
has actually constructed for intuitionistic propositional logic the matrix 
with an infinite number of values. 

18. I cannot engage here in a more detailed discussion of the very 
complicated issue of the adequate matrix of· the intuitionistic propo-

------ ---~sitio:mdca:tcuhrr.Formy-purpose--it-s·ufiiees-to-ehoose· a-simpler example. 
I have given above a three-valued normal matrix which is satisfied by 
the first eleven axioms of the system of axioms I have constructed. 
These first eleven axioms represent intuitionistic propositional logic. 
But the said matrix, which, by the way, is due to Heyting, is not ade
quate for the intuitionistic calculus, because it is satisfied not only by. 
all the theses of that calculus, but also by other theses that do not 
belong to the intuitionistic calculus. Thus that matrix defines a stronger 
system. I have succeeded in axiomatizing that stronger system. 

'19. If ill the system of axioms quoted under 10 above, Axiom 12 is 
replaced by the following Axiom 12a: 

12a CCNpqCCCqpqq, 

then Axioms 1-11 and 12a form an independent system for which 
the three-valued normal matrix construct~d by Heyting and quoted 
in 15 is.adequate. On the one hand, Axiom 12a is not deducible from 
the axioms of the intuitionistic calculus, which can be proved by means 
of a four-valued matrix, and on the other hand, that axiom satisfies 
the three-valued matrix given by Heyting. Thus, if taken together with 
the remaining axioms, it does not suffice to form the .foundations of 
the two-valued calculus. We thus have a simple example of a system 
of propositional logic represented by axioms and weaker than the 
classical propositional calculus. Like that calculus, it has an adequate 
normal matrix, though it is not two-valued, but three-valued. For 
all systems that are weaker than the two-valued propositional calculus 

~~-~~--+'"here are acleqrurte;-nurm:al;--:m:any"valued-matrices. This is not inci
dental; this is a law. And this law imparts an essenti~l importance to 
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the matrix method. We have now exhausted the discussion of the se
cond of the four issues raised. 

20. The matrix for the two-valued propositional calculus was devel-
oped on an intuitive basis. The values of that matrix were interpreted 
as truth val~es: 1 as truth and 2 as falsehood. But later, when the ma-
trix method came to be used in proofs of independence and numerous 
many-valued matrices were mve:rited for that purpose, ffi"'=e~m""'fui=fi"=vc:-::e:-----

interpretation of matrix values became lost. It was simply not necessary 
to interpret these values in any intuitive way. The matiices served the 
purpose of finding properties for given theses that are hereditary With 
respect to the rules of inference. The matrix values were reduced to the 
status of meaningless constants, and the formation of matrices became 
a purely formal procedure. Yet, in many-valued matrices, too, it is pos-
sible to interpret the values intuitively. As the first example I shall 
quote the matrix introduced by Heyting and discussed above. 

21. In his fundamental work on the formal rules of intuitionistic 
logic Heyting states: "Group XII (that is the matrix now in question, 
o:rily with renamed values) can be interpreted as follows: let 2 stand 
for any correct proposition, which cannot be false, but whose correct
ness cannot be proved. Then we obtain the tables given above." It 
follows from this explanation by the author that, on the basis of certain 
sequences of ideas, he believed it was 0 bviously certain that he could 
construct the said matrix. We shall try to exa)lline these sequences 

of ideas more closely. 
22. Of the 30 equations which that matrix contains, 14 are taken 

from the two-valued calculus: 

Nl = 3. Cll = 1. 
N3 = 1. Cl3 = 3. 

C3I = 1. 
C33 = 1. 

Kll = 1. 
K13 = 3. 
K31=3. 
K33 = 3. 

All= 1. 
Al3 = 1. 
A31=1. 
A33 = 3. 

1 stands for truth, and 3 for falsehood. Another 10 equations, for 
conjunction and for alternation, are obtained on the basis of the follow
ing considerations: the new value 2 is the attribute of those proposi
tions which cannot be false, but are not proved. This value is obviously 
weaker than truth but stronger than falsehood. Now, obviously the 
value of conjunction follows the value of the weaker argument, and 
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the value of alternation, that of the stronger argument. For the same 
values of the arguments the value of either function equals the value 
of the arguments. We thus obviously obtain the equations: 

Kl2= 2. Al2 = 1. 
K21 =2. A21=1. 
K22=2. A22 = 2. 
K23 = 3. A23 = 2. 
K32= 3. A32 = 2. 

------·-Two otnere-quaii:ons,-namely-those-for--implicatiorr:--· 

C21 =I and C32 =I, 

are obtained on the strength of the rule valid in the two-valued calculus 
which states that implication with a true consequent or with a false -
antecedent must be true regardless of the value of the other argument. 

The third equation for implication: 

C22= I, 

results from the quite intuitive law of identity. There might be difficulty 
only with the determination of the value of the expressions Cl2, C23, 
and N2. Cl2 cannot be truth, since then 2 would have to be truth also. 
But it cannot be falsehood either, since it does not have a false con
sequent. Thus we arrive at: 

Cl2 = 2. 

On the other hand, C23 is evidently falsehood, since an antecedent 
that cannot be false cannot yield a false consequent. Thus follows: 

C23 = 3. 

As the last equation we have: 

N2= 3, 

since it is clear that the negation of a proposition that cannot be false 
is false. 

23. I grasped this sequence of ideas the more easily as years before 
I had been the first to construct an intuitive three-valued matrix, though 
I was then guided l5y differenridea;s;-Followrng the famous example 
of Aristotle, I came to the conclusion that proposition,s about possible 
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future events are neither true nor false at present. That I will be in 
Warsaw at noon on December 8, 1939, is a statement which t-oday 
cannot be properly said to be either true or false. Hence it must have 
a !bird truth value. That third truth value is in the same relation to pos
sibility as truth is to being and falsehood to no~-being. On the basis 
of this idea I constructed the following three-valued matrix as early 
as-192<:>": 

NJ_ 
1 3 
2 2 
3 1 

c 1 2 3 
----
1 1 2 3 
2 1 1 2 

1 1 1 

K I 2 3 
----

1 I 2 3 
2 2 2 3 
3 3 3 3 

A I 2 3 
----
1 1 1 1 
2 1 2 2 
3 1 2 3 

Here 1 is the designated value, i.e., truth, 3 stands for falsehood, and 2 
for the third value, "possibility". The matrix is normal. 

24. The comparison of this matrix With that of Heyting is extremely 
instructive. Since here, too, the third value, that is possibility, is weaker 
than truth and stronger than falsehood, the same equations must hold 
for conjunction and alternation. On the other hand, there is a dlfference 
in the equations for implication and negation, though in two points 
only: in the expressions C23 and N2. C23 = 2, and not 3 as with Hey
ting, since possibility can turn into either truth or falsehood. In the 
first case C23 becomes CI3, that is falsehood, in the second, it becomes 
C33, that is truth. Hence C23 is neither true nor false and thus must 
have the third value. N2 also must have the third value, since it is ob
vious that both the proposition "I will be in Warsaw at noon on De
cember 8, 1939" is today neither true nor false, but merely possible, 
and its negation, "I will not be in Warsaw at noon on December 8, 
1939" can be neither true nor false, but merely possible. Thus two 
examples settle the thitd issue of the four specified above: many-valued 
matrices can also be interpreted intuitively. 

25. There are partial systems of the two-valued propositional calculus, 
that is systems in which not all the functiollS" of that calculus can be 
defined. Thus the implicational system, which is based on implication 
as its only term and on the thesis CCCpqrCCrpCsp (the shortest thesis 
from which all true implicational theses_ follow) as its sole axiom, is 
a partial system. Partial systems are incomplete, and hence imperfect. 
Thus in the implicationai system' neither negation nor conjunction 
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is definable. If we want to have a complete k>gic that can be used on · .,. 
all @ccasions, we must strive to construct systems of propositional 
logic in which as many of the functions in the system as possible are 
definable. In the two-valued propositional calculus there are 22 = 4 
possible functions of one argument, and 222 = 16 possible functi~ns_ 
of two arguments. Even if not all of these functions can be used in 
practical inference and can be expressed by words of everyday language, 
they are nevertheless definable in the system based on ·implication and 
negation. That system is consequently complete. 

--- ---26-:-:roi:d-what-ahout-this-pF~bl@,m-in-many-valued-systems? ·As the 
number of matrix values increases, the number of possible functions 
increases, too. From elementary combinatory anaJysis we know that 
for n-valued matrices there are nn possible functions of one argument 
and nnn possible functions of two arguments. The nUID.bers increase 
rapidly. In three-valued systems the number of the possible functions 
of one argument amounts to 33 = 27, and that of the possible functions 
of two arguments to 332 = 39 = 19,683 ... In four-valued systems the 
analogous numbers 44 = 256 and 44-2 = 416 = 4,294,967,296, that 
is more than four thousand million. Iii matrices with denumerably 
many values the set of possible functions is not denumerable. 

27. Let us now revert to our examples. In a three-valued proposi
tional logic, especially one in which the truth values can be interpreted 
intuitively, we may demand, as in the case of the two-valued calculus, 
that all the f~ctions be 4efinable. But this is not the case in the three
valued systems described above. It can, for instance, easily be proved 
that the function "Tp" (to be read as "true third value of p"), whil(h 
takes on the constant value 2 (so that Tp = 2), cannot be defined in 
either system. Thus both systems are inco_mplete. Intuitionistic calcu
lus is incomplete, too; it is not even possible to see how the infinitely 
many values of its matrix can be interpreted intuitively. Let us try 
to make one of the two systems complete. Since work has not been 
'finished on the system based on Heyting's matrix, the three-valued 
system I have constructed must serve as the basis of the following 
analysis. 

r.1 WlSh fo state mst"thatirrmy-three-valued propositional calculus 
both conjunction and alternation are definable. Thes_e two definitions 
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are: 

Apq = CCpqq and Kpq = NANpNq. 

(I may add here that in Heyting's three-valued calculus alternation 
is definable, namely 

Apq = KCCpqqCCqpp, 

but conjunction 1s not; m the intuitionistic propos1t10naI calculus 
none of the four functions N, C, ](, and A is definable by means of the 
remaining ones.) It must also be mentfoned that in my calculus the 
set of theses which make use of the terms C and N and satisfy the matrix 
can be axiomatized. The proof is due to Wajsberg, one of my former 
disciples, who has constructed the following system of axioms for 
that calculus: 

(1) CpCqp. 
(2), CCpqCCqrCpr. 
(3) CCCpNppp. 
(4) CCNpNqCqp. 

The three-valued matrix I have constructed is adequate for this system 
of axioms. , 

29. The three-valued propositional calculus, which I defined by the 
matrix method and which Wajsberg axiomatized, is, as has been said, 
not complete, since not all of the 27 functions of one argument and 
the 19,683 functions of two arguments are definable in it. SJ:upecki, 
another of my disciples, has succeeded in making that system complete 
by adding a new function, and in axiomatizing the system thus made 
complete. SJ:upecki has proved that with the addition of the said func
tion Tp, all functions of the system can be defined, and he has formu
lated two new axioms for this new function. I shall once more submit 

. to the readers the complete system of axioms and also its adequate 
matrix: 

(1) CpCqp. 
(2) CCpqCCqrCpr. 
(3) CCCpNppp. 
(4) CCNpNqCqp. 
(5) CTpNTp. 
(6) CNTpTp. 
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N 

1 3 
2 2 

·3 1 

T 

1 2 
2 2 
3\2 

.£1'~ 1 1 2 3 

211 1 2 
3 1 1 1 

The rules of substitution and detachment are valid in this system. 
The system of axioms is independent, consistent, and complete in the 
sense that every significant expression in the system either is deducible 
from axioms or, if joined to the axioms, results in a contradiction, that 
is, yields all significant expressions. The system is also complete in the 
sense that all tnefunctions-pcssible-in-the-system-are-definable. Thus 
this system has all the propernes which are the attributes of the classi
cal two-valued propositional calculus. In this way the fourth of the 
issues mentioned above has been settled. 

30. We have made a difficult progress in depth. The progress has 
been difficult not only bacause the problems to be solved are techni
cally complicated (I have spared you the technicalities and presented 
the results), but especially because it involves entirely new ideas and 
methods. I can quite properly state that many fine brains have taken 
great pains to arrive at these results. To conclude this lecture I shall 
refer briefly to_ the significance of these results ;md their connection 
with the problem of the foundations of logic. 

31. At the begiDn.ing of this lecture I stated that intuitionistic propo
sitional logic, which rejects various theses of the two-valued proposi
tional calculus, is a weaker system than that calculus. This system can 
be made stronger in various ways; to do so we choose rejected theses 
of the two-valued calculus and join them one by one to the system, 
until we- obtain the strongest system, namely two-valued propositional 
logic. The complete system of three-valued propositional logic, formu
lated by me and axiomatized by Sl:upecki, which we may call the S-sys
tem in brief, is formed in quite a different way. If we join to it a thesis 
which is not deducible from its axioms but which is valid in the two
valued calculus, we obtain not a stronger system but a contradiction. 
This important fact can be explained by an example: 

(7) CCNppp. 
~-~------~--(.7) pJTr==C(0)(8):-·· 

(8) Tp. 

i 

I 

I 
I 

:1 
'I 

~ 
jll ~ 

J 
~l 
;l 

:I 

l;_._\ 

\ 
' i 

lj 
I 
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(5) = C(8)(9) . 
(9) NTp. 

(2) q/Cqp = C(l)(lO). 
(10) CCCqprCpr. 

(10) q/Np,p/Nq, r/Cqp = C(4)(11). 
(11) CNqCqp. . 
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I 

(11) q/Tp,,,,;; C(9)C(8)(IZ)-:-· .. ~-------

(12) p. 

32. The thesis CCNppp holds neither in the intuitionistic system nor 
in the S-system. If this thesis is joined to the intuitionistic system, we 
obtain the two-valued calculus, but if it is joined to the S-system, we 
obtain a contradiction. _This contradiction can be demonstrated as 
follows: 

CCNppp is joined to Sl:upecki's system of axioms as Thesis (7). From 
that fuesjs and from Axioms (6) and (5) we obtain, by subsj:itution 
and detachment, two· contradictory theses, Tp and NTp. This contra
diction can be made even stronger, since on the basis of the thesis 
CNqCqp, which is deducible in the system, (8) and (9) yield as a con
clusion the propositional variable p, from which any significant ex
pression can be obtained by substitution. 

33. This shows that the S-system is not weaker than the two-valued 
calculus, but is a different system. On the one hand, in the S-system 
there are theses, such as CTpNTp and CNTpTp, which cannot be in
terpreted in the two-valued calculus; on the other hand, we may indi
cate theses of the two-valued calculus, such as_ CCNppp, which in the 
S-system result in a contradiction. Quite a new logic has developed 
before our eyes-namely modal logic, which was the goal of Aristotle 
and the Scholastics. This is not the only possible form of thr~e-valued 
propositional logic; there are various types of three-valued systems, 
not reducible to one· another, and innumerable forms of higher many
valued systems. These various forms of many-valued propositional 
logic are more or less in the same relation to the classical two-val~ 
propositional calculus as the various systems of non-Euclidean geometry 
are to the Euclidean. There is, however, one difference: while the non
Euclidean geometries can be interpreted in the Euclidean, the inter: 
pretation of many-valued systems in the two-valued system seems out 
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of the question. Conversely, it is possible to interpret two-valued prop
ositional logic in the S-system in many ways, so that the three-valued 
calculus proves to be stronger and richer than the two-valued. 

34. We have thus come to the most essential issue of the problem 
of foundations that has been formulated in mathematics. The propo
sitional calculus is the fundamental logical discipline, on which the 
whole of logic is based, while mathematics is in turn based on logic. 
As there are different systems of propositional logic, not reducible to 
one another, so there must also be different systems of predicate logic, 

.. -. -·---- -and-0n-thes~logica.Ls_)'.Stems different S):Stems._oLseLtheory and arith
metic should depend. As yet no works eXist in this field. So far we 
have succeeded only in constructing many-valued systems of proposi
tional logic with the utmost .formal precision. Should these systems 
be applicable to mathematics, they would have to be worked out from 
the intuitive point of view as well. That this is possible has been dem
onstrated by the example of intuitionistic propositional logic. . This 
is why these all-important and fundamental researches shoUid be taken 
up by all logicians and mathematicians. 

* 
* * 

Discussion concentrated ali:nost entirely on the problem as to whether Lukasie
wicz's three-valued logic can be subject to an intuitive interpretation. 

Lukasiewicz stated in an additional· explanation that Tp is the most convenient · 
t= to use in the axiomatizing his logic, but another term, symbolized by Mp, could 
be used for the same purpose and would leave nothing to be desired from the point 
of view of its intuitive meaning, since it could be interpreted as "possible". The cor
responding system of axioms would then be as follows: 

1. CNMpCNMpNp . 
. .. 2 .. CNMNp,CNMNpp. 

3. CMpCMpMNp. 
4. CCpqCCNpqCCMpqq: 

This system can be interpreted intuitively. Yet it is not possible to interpret intui
tively all the functions definable in that calculus. Their number (39) is too large for 
everyday language to have expressions corresponding to each of those functions. 

This is, however, also the case of two-valued logic. This lack of representation 
for a part (or even an overwhelming majority) of possible functions is thus not an 

=-~~-~----'a"'lrgument-againsLtheJntuiJ:ille_ch<l.racter_QfJ:Ue_system __ ....... . 

THE SHORTEST AXIOM OF THE IMPLICATIONAL CALCULUS 
OF PROPOSITIONS *) 

1. Introductory remarks.-2. History of the problem.-3. Derivation of the Tarski
Bernays set of axioms from Axiom (1).-4. A certain theorem-concerning the law 
of syllogism.-5. Outline of a proof that Axiom (1) is the shortest possible. 

1. Introductory remarks 

--The Implicational Calculus of Propositions constitutes that part 
of the Complete Propositional Calculus in which implication occurs 
as the only functor. I denote this functor by the letter "C'' .and put 
it before its arguments, thus dispensing with brackets. So the expres
sion "Cpq" means "if p, then q." Two propositional expressions be
long to each "C" as its arguments and follow it immediately. By prop
ositional expressions I understand propositional variables denoted 
by the small letters of the Latin alphabet or expressions of the form 
"Ca{J" .in which· "a" and "/3" are already propositional expressions. 
Propositional expressions which are either axioms or theorems derived 
from the axioms will be called theses. In derivations I will make use 
of the rule of substitution, according to .which I can add to a set of 
theses a propositional expression derived from a thesis of the .set by 
substituting any propositional expressions for the variables of the 
thesis, and the rule of detachment which enables me to add to a set of 
theses a propositional expression "{J" provided expressions of the form 
"Ca{J" and "a'; are already members of the set. 

In this article I intend to prove that all theses of the Implicational 
Calculus of Propositions can be derived from the following axiom 

(1) CCCpqrCCrpCsp 

by applying the rule of substitution and the rule of detachment. 

*) The lecture read on 23 June, 1947, at a meeting of the Royal Irish Academy. 
First published in Proceedings of the Royal Irish Academy, vol. 52, Section A, No. 3 
(April 1948), pp. 25-33. 
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Axiom (1) consists of 13 letters, and is the shortest on the basis of 
which one can construct the Implicational Calculus of Propositions. 
I have mentioned this axiom twice in my previous articles, but on both 
occasions without proof. 1) The proof I am giving below will ·show 
that the following three theses can be derived from axiom (1): 

CpCqp, 
CCCpqpp, 
CCpqCCqrCpr. 

=··---·----···---T..._.....he.s_e three theses are known as the "Tarski-Bernays" set of axioms, 
and -:as A. Tarski has proved-form a sufficient basis ·:ror-fueimpli
cational Calculus of Propositions. 2) The first one is the so-called· law 
of simplification; I have called the second one Peirce's law; the third 
thesis is the law of hypothetical syllogism. As the derivation of the 
law of syllogism is particularly difficult, it may prove· useful to show 
how it can be done. The derivation of the law of syllogism will be 
followed by a certain theorem concerning this law. In the last para
graph. I wish to outline a proof that there is no shorter thesis which 
could function as a sole axiom of the Implicational Calculus of Prop
ositions. 

2. History of the problem 

The problem of how to construct the Complete Propositional Calcu
lus as well as the Implicational Calculus of Propositions on the basis 
of a single axiom was raised and solved in 1925 by Tarski, who gave 
a method of combining several axioms by applying the rule of substi
tution and the tule of detachment. 3) The first axioms arrived at, in 

1) For the first time in the article "W obronie logistyki'', Studia Gnesnensia XV, 
Poznrui, 1937, p. 11 of the reprint; for the second time in the lecture "Die Logik 
und das Grundlagenproblem'', Les Entrietiens de Ziirich sur les fondements et la 
methode des sciences mathimatiques (1938) Zfuich, 1941, p. 95. [See pp. 245 and 
289 of this volume.} 

2) J. Lukasiewicz und A. Tarski, "Untersuchungen uber den Aussagenkalkiil", 
Comptes rendus des seances de la Societe des Sciences et des Lettres de Varsovie 
23 (1930}, cl.iii, Satz 29. [Seep. 145 of this volume, Theorem 29.] 

3) Lukasiewicz-Tarski, I.e. Satz 8 ana15:-[seep:-13Tof this volume, Theorem 8, . 
and p. 143, Theorem 25.J 

i ·, 
i 
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accordance with this method, were very long. I tried to shorten them 
by modifying Tarski's method, and finally discovered the following 
axiom consisting of 25 letters: 

(2) CCCpCqpCCCCCrstuCCsuCruvv.4) 

This axiom is non-organic, as some constituents of it, namely: 

CpCqp and CCCCrsiuCCsiiCiii;-

are theses of the Calculus making the whole expression a conglomeration 
of two theses. Later I abandoned the idea of constructing shorter axioms 
in the way just mentioned, as in 1926 M. Wajsberg has shown that one 
could base the Implicational Calculus of Propositions on the following 
organic axiom, that is, on an axiom . no co_nstituent of which was 
a thesis of the Calculus.-.Wajsberg's axiom consisted too of 25 letters: 

(3) CCCpqCCrstCCuCCrstCCpuCst.5
) 

This discovery made me hope that there might exist shorter organic 
axioms, while, at the same time, I realized that the shortest axiom must 

4) Lukasiewicz-Tarski, I.e. Satz 30. [Seep. 146 of this volume, Theorem 30.] I am 
giving here the first derivational steps based on this axiom as they are not easy. To be 
brief I denote the thesis 

CCCCrstuCCsuCru 

contained in the axiom by the letter "oi:.'' This letter can denote any thesis in which 
the variables "p," "q" and "v" do not appear: It will be shown how thesis "oi:" can be 
derived from the axiom. As to the technique applied in derivational procedure see 
explanations given in § 3 of this article. 

1 CCCpCqpCoi:vv . • 

2 

3 

lp/Coi:Cqoi:, qlrz, v/CqrzXClp/rz, v/Coi:Cqoi:-i. 
Cqrz. 

2q/lxC1-3. 

"'· 
I think that further steps should not be hindered by any difficulty. 

5) Lukasiewicz-Tarski, I.e. Satz 30. [See Theorem 30, p. 146 of this volume.] As to 
the terms "organic'·' and "non-organic" see I.e. Satz 9. [See Theorem 9, p. 137 of this 
volume.] See also J. Lukasiewicz, "Uwagi o aksjomacie Nicoda i o 'dedukcji uog61-
niajitcej,"' Ksif2ga Pamiqtkowa Polskiego Towarzystwa Filozoficznego we Lwowie, 
Lw6w 1931, p. 15 of the reprint [p. 194 of this volume.] The proof that thesis (3) can 
be a sole axiom of the Implicational Calculus of Propositions, was given by M. Wajs
berg, in his article: "Bin Neues Axiom des Aussagenkalkiils in der Symbolik von 
Sheffer, Monatshefte f. Math:. u. Phys. 35 (1932). 
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be organic, as conglomerations of several axioms are naturally bound 
to be longer. In 1930 I found an organic axiom which was shorter than 
Wajsberg's thesis and consisted of 17 letters: 

(4) CCCpqCrsCtCCspCrp. 

In 1932 I found another such axiom: 

(5) CCCpqCrsCCspCtCrp.6
) 

Then in 1936 I discovered the shortf;St axiom (1), cited above, and thus 
-··-----··--~·--·--terminated-the-examination of the 12roblem. 

3. Derivation of Tarski-Bernays set of axioms from axiom (1) 

The proof which follows is fully formalized in accordance with the 
method adopted by me in my previous publications. 7) Every thesis 
which .is not the axiom-all theses have their numbers and thus are 
distinguished as theses-is preceded by a line without its number. 
I call this line a derivational line. Every derivational line consists of two 
parts separated from each other by the cross " x ". The cross is preceded 
by the substitution which has to be performed on a pr.eviously given 
thesis, and followed by detachment, which has to be performed on the 
thesis arrived at by the substitution. An example will clarify the methods: 
In the derivational line belonging to thesis 2 the expression "1 p/Cpq, 
q/r, r/CCrpCsp, s/r" means that in thesis 1 "Cpq" has to be substituted 
for ''p", "r" for "q", "CCrpCsp" for "r" and "r" for "s". The thesis 
generated by this substitution is omitted in the actual proof to save 
space. It would be of the following form: 

l' CCCCpqrCCrpCspCCCCrpCspCpqCrCpq. 

The expression following the cross "X", i.e. "Cl-2," shows how 
thesis l' is constructed, making obvious that the rule of detachment 
can .be applied to thesis 1'. Thesis 1' begins with "C", then follows 

6) See e.g. J. Lukasiewicz, "Uwagi o aksjonfucie Nicoda," p. 17 of the reprint, 
[p. 196 oftbis volume] and B. Sobocmski, "Z badaD. nad teori<l: dedukcji," Przeglqd 
Filozojiczny 35 (1932), pp. 7 and 8. 

-~~~~~--')'-See-e:g;-J;..l:tl:IB:asi1;wicZ;..:..'P-hilosopbische.Bemerkungen..zu.mehrwertigen Syste
men des Aussagenkalkiils," Comptes rendus des seances de la Societe des Sciences 
et des Lettres de Varsovie 23 (1930), cl. iii, p. 56 [p. 157 of this volume]. 
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axiom (1) as the antecedent and thesis 2 as the consequent. Thus 
thesis 1' is an expression of the form "Ca{J," and both' "CafJ" and 
"ix" are theses. One can therefore detach "{J," i.e.: 2 as a new thesis. 
In some derivational lines detachment is performed twice; as, for in
stance, in the derivational line preceding thesis 4. In the same line, 
instead of substituting the whole fast thesis I substitute only its num-
oef:-Tlie Stroke /" IS the Slgn of subst1tut10n and- the daslid··.c:_~,,.--------
is the sign of detachment. I think that after these explanatory remarks 
the reader will be able to understand and check the proof without any 
difficulty. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

CCCpqrCCrpCsp. 

1 p/Cpq, q/r, r/CCrpCsp, s/r x Cl - 2. 
CCCCrpCspCpqCrCpq. 

1 p/CCrpCsp, q/Cpq, r/CrCpq, s/t x C2- 3. 
CCCrCpqCCrpCspCtCCrpCsp. 

3 r/Cpq, t/l x Clr/Cpq- Cl -4. 
CCCpqpCsp. 

1 p/Cpq, q/p, rf Csp, s/r x C4 - 5. 
CCCspCpqCrCpq. 

lp/Csp, q/Cpq, r/CrCpq, s/t x C5.- 6. 
CCCrCpqCspCtCsp. 

Ip/CrCpq, q/Csp, r/CtCsp, s/u x C6- 7. 
CCCtCspCrCpqCuCrCpq. 

7 t/Cpq,p/q, r/CCsqp, q/p, u/1 X Cl r/Csq, s/q- Cl - 8. 
CCCsqpCqp. 

8s/Cpq, q/r,p/CCrpCsp x Cl-9. 
CrCCrpCsp. 

1 p/r, r/CCCrqpCsp, s/t x C9 r/Crq-10. 
CCCCCrqpCsprCtr. 

1 p/CCCrqpCsp, q/r, r/Ctr, sju x CI0-11. 
CCCtrCCCrqpCspCuCCCrqpCsp. 

1 pf Ctr, q/CCCrqpCsp, r/CuCCCrqpCsp, sfv x Cll -12. 
CCCuCCCrqpCspCtrCvCtr. 

1 p/CuCCCrqpCsp, q/Ctr, r/CvCtr, s/w x Cl2-13. 
CCCvCtrCuCCCrqpCspCwCuCCCrqpCsp. 
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13 v/CCspq, u/CCtrCsp, w/1 x CJp/Csp, r/Ctr, 

CCCtrCspCCCrqpCsp_. 

14 t/Cpq, s/Crp,p/Csp 'X Cl -15. 
CCCrqCspCCrpCsp. 

15 s/CCrqp,p/Csp X C9 r/Crq-16. 
CCrCspCCCrqpCsp. 

s/CCrqp- Cl-14. 

16 r/CCpqr, s/Crp,p/Csp, q/t X Cl -17. 

~----~---------";1~7 ___ ----'C,,,_C""-C=C-:::'.CpJ::__q:z.:r_::_:tC::.:s'.f'.p-=:C:.::C::..:rp~C=:s'.:":p_:__. ___ _ 

18 

19 

20 

21 

23 

24 

25 

26 

27 

28 

29 

1p/CCCpqrt, q/Csp, r/CCrCsp, s/u x C17-18. 
CCCCrpCspCCCpqrtCuCCCpqrt. 

18 r/Crp, p/Csp,s/CCpqr, t/CCCpqrCsp, u/18 x Cl8t/Csp, 
u/CCCspqCrp - Cl8 - 19. 

CCCCspqCrpCCCpqrCsp. 

14 t/CCspq, r/Crp, s/CCpqr,p/Csp, q/p X C19-20. 
CCCCrppCspCCCpqrCsp. 

20 r/q,p/Cpr, s/Cqr x CI5r/q, q/Cpr, s/p, p/r- 21. 
CCCCprqqCCqrCpr. 

5 s/Cpq, q/p, r/4 x C4s/p - C4- 22. 
Cpp. 

20s/Crp x C22p/CCrpp-23. 
CCCpqrCCrpp.-

8 s/Cpq, q/r,p/CCrpp x C23 - 24. 
CrCCrpp. 
15 r/p, q/r, s/CCprq,p/q x C24 r/Cpr,p/q-25. 
CCpqCCCprqq. 

25p/Cpq, q/CCCprqq, r/CCqrCpr- C25-26. 
CCCCpqCCqrCprCCCprqqCCCprqq. 

8 s/Csq, q/p,p/Cqp x C8-27. 
CpCqp. 

25 q/p, r/q x C22- 28. 
CCCpqpp. 

2ip{Cpq, r(CCqtCpr;-q/CCC-pn:[q x C26 '- C21 - 29. 

CCpqCCqrCpr. 

'l ·t 

·f 
_\ 
,-.~ 
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4. A certain theorem concerning the law of syllogism 

A formalized proof can be checked mechanically but cannot be meclian
ically discovered. I do not know of any other method of finding proofs 
in the Propositional Calculus than the method of "trial and error." 
In-the-abo.ve...p1:0.0£..tbe most difficult step was to find_ the h:YJ?othetical 
syllogism. The task was made easier, thanks to a certain theorem discov
ered by myself in 1933. This theorem is not without more general 
importance. 

I have derived the la.w of syllogism from two theses: 

25 CCpqCCCprqq, 
and 
21 CCCCprqqCCqrCpr. 

From thesis 25 follows thesis 26, and from theses 21 and 26 follows 
thesis 29, i.e. the law of syllo~in. It had been known to me before that 
if we have two expressions of the form: 

CCpqa and CaCCqrCpr, 

where "a" is so constructed that the two expressions are theses, we can 
always derive the law of syllogism by applying the rules of substitution 
and detachment to_ these theses. 

I write this theorem in the following symbols: 

(A) CCpqa, CaCCqrCpr ~ CCpqCCqrCpr. 

It is easy t~ see that -"a" must include both ''p" and "q". Because if, 
for instance, ''p" does not appear in "a," then by substituting "q" for 
''p" we can derive "CCqqa," and as "Cqq" is a thesis, "oc" must be a 
thesis ,also, and so must "CCqrCpr," which is not possible. The same 
reasoning applies to the variable "q." The variable "r" and other varia
bles, e.g.: "s," can be constituents of "a" or not, as it does not affect 
the proof. While performing substitution for ''p" and "q" we change 
"oc", but if the substitution is of the same kind "S'', "()(" changes always 
into the same expression, which I denote by "oc[SJ." The proof of the 
theorem (A) is based on this observation. 

1 CCpqa. 

2 CrxCCqrCpr. 

"------~--,~--... ......... -.-....-

' 
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lp/Cpq, q/a., r/CCqrCpr x Cl -3. 
a[p/Cpq, q/rt., r/CCqrCpr]. 

2p/Cpq, q/a., r/CCqrCpr x C3- C2-4. 
CCpqCCqrCpr. 

Let the premisses 1 and 2 be theses. I perform the same ·substitution on 
both of them: "lp/Cpq, qja., r/CCqrCpr." So in both cases "oc" changes 
into the following expression: "oc[p/Cpq, q/oc, -2r/CCqrCpr]," which is 
a thesis. In the proof given in Section 3 "oc" is of the form "CCCprqq." 
Here are other expressions which can function as "oc", the premisses 1 
and 2 remaining theses: "CpCpq," "CCCqspq," "CCCpqrr;;-; "CCrsCpq." 

5. Outline of a proof that axiom (1) is the shortest possible 

I proved that there exists no thesis, shorter than axiom (1), on which 
one could construct the Implicational Calculus of Propositions by ex
amining all shorter theses and not :finding one among them ·sufficient 
to be the sole axiom of the Calculus. I cannot give here the full proof 
as it would take too much space, but I wish to outline the way of reason
ing which led-me to arrive at the above result.8

) 

All propositional expressions of the Implicatlonal Calculus of Prop
ositions, therefore all its theses, consist of an odd number of letters, 
as in every propositional expression the number of variables is greater 
by one than the number of functors. The shortest implicational thesis 
is the law of identity "Cpp," which consists of 3 letters. The theses 
shorter than axiom (1 ), consisting itself of 13 letters, are theses consisting 
of 3, 5, 7, 9 or 11 letters. For our purpose it is enough to examine the 
theses consisting of 11 letters as if a shorter thesis "ci." were a sole axiom, 
then it is easy-to prove that the thesis "Cza,'' longer by two,letters 
than "oc" and in which "z" is a variable not appearing in "a.", would 
also have been a sole axiom. By substituting "Czrx" for "z" we derive 
"CCzococ" and then "a." by detachment. As "a." was supposed to be a 
sole axiom, "Czcx." must be a sole axiom also. 

After careful scrutiny I have come to the conclusion that there are 
92 theses consisting of 11 letters if one disregards theses derived from 

. ,.,_ .. 

') J. Stupecki has constructed a shorter proof based on certain general theorems. 
The proof as far as I know has not yet been published. 
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' shorter theses by applying the rule of substitution. Fer example, the thesis 
"CCCpCqCrspp" is derived from the thesis "CCCpqpp" by substituting 
the expression "CqCrs" for "q." One can also disregard theses derived 
from theses consisting of 11 letters by identifying some of their variables. 
The thesis "CCCpqqCCqpp" is derived, for instance, from the thesis 
"CCCpqrCCrpp" by identifying the variables "q" and "r." The set of 

· 92 theses can be divided into three groups:·The first grOu""p,...,""'w=fur..-c""'h--=1""s ____ _ 
most numerous, contains theses belonging to the so-called Positive 
Logic in the· meaning introduced by Bernays. These theses are generated 
by the following three axioms: 

CpCqp. 
(B) CCpCpqCpq. 

CCpqCCqrCpr. 

Theye are.64 such theses. None of them can function as the sole axiom, 
the Positive Logic being a fragment of the Implicational Ca).cuii:s of 
Propositions. Neither Peirce's law nor axiom. (1) can be derived from 
it. The strict proof is based on matrix I shown below: 

I 

c 1 2 3 

*1 1 2 3 
2 1 1 3 
3 1 1 1 

In this matrix values of the implication "Ccx.{3" are given with respect 
to "a." and ."/3" assuming values: 1, 2 and 3. The first argument is in 
the left column, the second one in the top line of the matrix. Thus in 
accordance with the matrix "C23" has the value "3". For every combi
nation made by substituting the figures l, 2 and 3 for the variables 
in the axioms of set (B), reduction having been done according to the 
matrix, we obtain "l," i.e. the selected value marked with the asterisk. 
For example, if on the third axiom we perform the following substi
tution: "p/l," "q/2," "r/3" we obtain: 

CC12CC23Cl3 = C2C33 = C21 = 1. 

A thesis is verified by a matrix if for every combination of substitutions 
of :figures for variables it generates the selected value provided the 
reduction has been done according to the matrix. The axioms of set (B) 
are verified by matrix I, which is hereditary with regard to the rule of 
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substitution and the rule of detachment, i.e. all co:dsequences of theses 
verified by it are also verified. All of the 64, theses that consist of 11 
letters and belong to the Positive Logic are verified by matrix I, whereas 
axiom (1) is not verified by this matrix;· if we perform the following 
substitution: ''p/2," "q/3," "r/3," "s/1," we obtain: 

CCC233CC32C12 = CC33C12 = C12 = 2. 

Thus axiom (1) cannot be a consequence of any of those 64 theses, neither 
can any of them be a sole axiom of the Implicational Calculus of Prop
ositions, as it is unable to generate all implicational theses. 

The same method _is applied to the remaining 28 theses which depend 
in one way or other on Peirce's law_. They can be divided into two 
groups: the first one contains· 24 theses, which can be deduced from 
the following set of axioms: 

(C) -
CpCqp. 
CpCCpqq. 
CCpqCCCprqq. 
CCpCqrCCCqrsCps. 

All the theses of this set are verified by the four-valued matrix given 
below, "l" being again the selected value. 

C' 1 2 3 4 

*1 1 2 3 3 
II 2 1133 

3 1 2 1 1 
4 1 1 1 1 

Axiom (1) cannot be a consequence either of set (C) or-of any of the 
24 theses verified by matrix II, because if we perform the following 
substitution, ''p/2," "qfl,''"r/4," "s/3," we obtain: . 

CCC214CC42C32 = CC14C12 = C32 = 2. 

The remaining 4 theses consisting of 11 letters, but not verified by 
either matrix I or II, are the following: 

CCCpqpCCprr. 
CCCpqrCCrpp. 

~~~~-~----~----t:CpqCCCjJrpc[. ___ _ 

CCpqCCCqrpq. 

•. 

-.,._, 

" 

:j 
;· 
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These theses are verified by matrix III, four-valued with "1" as the 
selected value. 

c 1 2 3 4 

*1 1 2 3 3 
m 2 1 1 3 3 

3/ 1 2 1 i 
411221 

Axiom (1) is not verified by matrix ill because, if we perform the 
following substitution, ''p/3," "q/2," "r/1," "s/4,'' we obtain: 

CCC321CC13C43 = CC21C32 = Cl2 = 2. 

It follows from the above considerations that every thesis shorter than 
axiom (1) is verified by atleast one of the matrices I, II, or III, whereas 
axiom (1) is not verified by any of them. Therefore, there does not exist 
a thesis shorter than one consisting of 13 letters, which could be used as 
the sole axiom of the Implicational Calculus of Propositions~ "Whether 
besides axiom (1) there are any other theses consisting of 13 letters 
which could function as sole axioms of the Calculus is not known. 
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ON THE SYSTEM OF AXIOMS OF THE IMPLICATIONAL 
PROPOSffiONAL CALCULUS*) 

Dedicated to the memory of M. Wajsberg 

Mordchaj Wajsberg has demonstrateUTuat m the -system of axioms 
of the implication.al propositional calculus, due to Tarski and Bernays, 

CpCqp, CCCpqpp, CCpqCCqrCpr, 

the first axiom may equally well be replaced by any of the following 
theses: 

CpCCpqq, CpCCqpp, CpCCqqp, CqCpp, CqCCCpppp, CqCCCpppCCppp, 
CqCCppCpp, CqCCppCCppCpp, CpCCppp, CpCpp.1

) 

He has also succeeded m partly generalizing these results by statmg 
that the axiom CpCqp may be replaced by any thesis of the form CpCrxp, 
if a is a consequence of that new system of axioms, or by any thesis 
of the form Cqrx, if rx does not con.tam variables equiform with q. He 
proved these generalizations by mduction. 2) 

In the present note I shall prove the following theorem, whichmcludes 
all the quoted results obtained by Wajsberg;both particular and general: 

If to Peirce's law CCCpqpp and the law of the syllogism CCqrCCqrCpr 
we join any thesis of the form CpCrxfJ, that is a thesis whose antecedent 

is a variable and whose consequent is an implication, then we. obtain the. 

1) M. Wajsberg, "Metalogische Beitrage," in Wiadomosci Matematyczne 43 (1936), 
pp. 131-168. "Metalogische Beitrage II," ibid., 47 (1939), pp. 119-139. In Part II see 
Theorems 2b, 2c and 2i, which repeat the results published in Part I, and Theorems 
11, 13, 15, 16, 17, 34, and 42. 

2
) "Metalogische Beitrage II", Theorems 37 and 38. Inlemmata 35 and 39 to these 

theorems M. Wajsberg makes use of inductive considerations. 
*)Published in VI Zjazd Matematyk6w Polskich, Warszawa20-23. IX.1948 (The 

Sixth Congress of Polish Mathematicians, Warsaw, SePtember 20 to 23, 1948), issued 
as a Supplement to vol. 22 of Rocznik Polskiego Towarzystwa Mate,matycznego (1950). 
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law of simplification CpCqp and hence a complete system of axioms 
of the implicational propositional calculus. 

Here is the proof of this theorem, carried out exclusively by means 
of the rules of substitution and detachment: 
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CpCCsrCCCsqsr. 

8 t/p,p/Crq, q/CCCrtrq, r/q X Cl4s/r, r/q, q/t-15. 
CCCCCrtrqsCpCCsqCCrqq. 

6 p/Crt, t/q, s/CpCCCCqrqqCCrqq K C15s/CCqrq~16. 
CCCrtqCpCCCCqrqqCCrqq. 

2p/CpCCCCqpqqCCpqqxC16r/p,t/CCCCqpqqCCpqq-11. 
CpCCCCqpqqCCpqq. 

11p/CCCpppp x C2q/p-C2p/q, qJCCCpppp-18. 
CCCCCppppqq. . 

lOp/CCppp, t/q, s/CCppp, q/p, r/p, u/Cqp x C16r/p, t/p, 
q/p, p/q- C18q/Cqp - 19. 

CCCpppCqp. 

9 s/CCppp, q/p, r/Cqp x C17q/]J- C19-20. 
CpCqp. 

If, in the foregoing proof, we replace the letters IX and {J, wherever 
they occur, that is both in the theses and in the proof lines, by signifi
cant formulae of the implicational propositional calculus, selected so 
that CpCIX{3 is a thesis, then we obtain the proof of the law CpCqp, 
based on that thesis, Peirce's law and the law of syllogism. For instance, 
if we replace IX by p and f3 by p, then CpC1X{3 becomes CpCpp, which 
thesis, together with Peirce's law and the law of the syllogism, yields the 
proof of the law CpCqp; we thus obtain the last ofWajsberg's particular 
results. Ifwe put IX= Cpq, f3 = q, we obtain the proof of the law CpCqp 
from the axioms CpCCpqq, CCCpqpp and CCpqCCqrCpr, that is, the 
first of Wajsberg's particular results. Or, :finally, if IX= CqCpr, f3 = Cqr 
then we have the proof of the law CpCqp from the theses CpCCqCprCqr, 
CCCpqpp and CCpqCCqrCpr, where, as is known, the :first of these 
theses is equivalent to tlie law of commutation. The letters IX and f3 
may be treated as abbreviations either of the formulae CqCpr.and Cqr, 
or· of any other formulae, provided that these are selected so that CpC1X{3 
is a thesis. If such abbreviations are introduced, the coherence of the; 
proof is not impaired, since in thos.e . theses which include these Greek 
letters - and they are only the theses 1, 11, 12 and 13-I do not perform 

~---~~~...,a...,n·y-substitutions;-but-1-use-the-theses-enly-as-premisses,· that is as ante
cedents of implications, from which I -detach cons7quents. Thus the 
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operation of substitution does not pertain to the meaning of the Greek 
letters and cannot change that meaning, nor can the operation of detach
ment. Thus the foregoing proof becomes a schema, according to which 
we can prove the law of simplification from any thesis of the form 
CpC1X{3 by making use of Peirce's law and the law of the syllogism. 

Let us consider, however, what will ·happen if the letters IX and f3 
are·gi:ven-values-such-that-Gpb'&,B does not.become a thesis:-Fer,..+>i:ns"'*'ta""n"'e""e-, ----
let IX = p and ,B = s, so that as the first axiom we adopt the formula 
CpCps, which is not a thesis. In this case, too, we obtain the law CpCqp, 
and hence we have a complete system of axioms of the·implicatioflal 
propositional calculus. It is known that if to such a system we join 
any formula that is not a thesis, we arrive at a contradiction in the 
sense that we obtain all significant formulae. This must also be true 
in our case. In fact, the very formula CpCps leads to a contradiction, 
for if we substitute for p the formula CpCps, then after two detachments 
we obtain the variables, and hence every significant formula. It is also 
worth while examining what happens to .the remaining parts of the 
proof which contain the Greek letters, i.e., the formulae 11, 12, and 13. 
In our example, formula 11 also results in a contradiction, for if we 
put IX = p, f3 = s, then from CpCCCsq1XCC{3sCCsqs we obtain the 
formula CpCCCsqpCCssCCsqs, which on the substitutions p/Cpp and 
q/s and after four detachments again yields the variable s, that is, a 
contradiction. On the c_ontrary, formula 13, which do<)s not contain IX 
but only {J, is a thesis regardless of the value given to {J. This.is explained 
by the fad that for any f3 we can select an IX such that CpCIX{3 becomes 
a thesis: for instance, if we put IX = · Cp{J. Since such a possibility exists, 
and in the case of such a possibility all parts of the proof are theses, 
hence formula 13 must, in this case, be a thesis, too, and that for any {3. 
Formula 12 is a thesis, too, although it contains both Greek letters, 
IX and {J. But in that formula IX occurs in the string ofletters, CCCsq1XCsq, 
and by Peirce's law and the law of simplification that string is equivalent 
to the formula Csq, which no longer contains the letter IX. Hence that 
formula, too, must be a thesis for the same reasons for which formula 
13 is. Hence, if IX and f3 are selected so that CpCIX,B leads to a contra-
diction, then of all the parts of the proof only formula 11 can still lead 
to a contradiction; it is to be stressed that it can, but need not, since, for 
IX = p and f3 = Csq, CpCIX{J becomes CpCpCsq, which yields a contra-
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diction. but CpCCCsqaCC{JsCCsqs becomes CpCCCsqpCCCsqsCCsqs, 

and hence a thesis. 
The formula CpCafJ cannot be replaced in the proof by the more 

general formula Cpct.; in other words, it is not true that if to Peirce's 
law and the law of the syllogism we join any thesis whose antecedent 
is a variable and whose consequent is arbitrary, i.e., any thesis of the 
form Cpa, then we obtain the law: CpCqp. For if a stands not for an 
implication but for a variable, then the thesis Cpa becomes Cpp, and 
CpCqp does not follow from the system of theses Cpp, CCCpqpp and 

__ --·· ________ _,CCJJ_qCCqrCpr; this is proved by the matrix ~~low. __ 

c 1 2 3 4 

1 1 2 4 4 
2 1 I 4 4 
3 2 2 1 2 
4 1 2 1 1 

This matrix, in which 1 is the selected value, verifies the law of identity 
Cpp, Peirce's Jaw, and the law of the syllogism, but it verifies neither the 
law CpCqp nor any thesis of the form CpCa{J. This is so because the 
formula Cqp, and also Ca{J; _being an implication, can, in accordance 
with the matrix, take on only the values 1, 2,.or 4, from which it follows 
that CpCqp, and also CpCa{J, for p = 3 always becomes 2. It is also 
worth mentioning that if to the forD?-ula C33 we give the value 2, ' 
and not 1, then the matrix modifi,ed in this way still verifies Peirce's 
law and the law of the syllogism, but no longer verifies the law .of_ identity 
or any implicational thesis in which the antecedent is a variable. 

.. '~ 

ON VARIABLE FUNCTORS OF PROPOSITIONAL 
ARGUMENTS*) 

-~-~---------

1. A statement of Aristotle disproved. -2. The meaning of the variable functor a. 
-3. Variable functors as applied to definitions. -4. The principle of bivalence. 
-5. Peirce's method of verification by 0 and 1. 

1. A statement of Aristotle disproved 

In his theory of modal syllogisms Aristotle accepts the statement: 
"If it is possible that A should belong to B, it is possible also that it 
should not belong to B." 1) Replacing in this statement the proposition 
"A belongs to B" .by the propositional variable ''p," and denoting the 
functor "it is possible that" by "M," we get the formula: 

1 CMpMNp 

which may be read: "If it is possible that p, it is possible that not-p." 2) 

Formula 1 leads to paradoxical consequences. This can be proved by 
means of the following thesis containing a variable functor of one 
propositional argument: 

2 CopCoNpoq, 

in words: "if o of p, then if o of Np, o of q." That means: if som.ething 
is true of a proposition.P,, and the same is true of the negation· of this 

1) Analytica Priora I 13, 32 a 37: e! evaexe't"etL 't"o A 't"ij) B Dnocpxew, eva~xe't"etL 

xett µ.~ unocpxew. (Oxford Translation). 
2) I am using throughout this paper my own symbolic notation without brackets, 

and my own arrangement of proofs. A full explanation of both these points is given 
in my paper "The Shortest Axiom of the Implicational Calculus of Propositions," 
these Proceedings, vol. 52 A 3, Dublin, 1948. [See pp. 295-'305 of this volume.] 

*)The lecture read on 30 November, 1949, at a meeting of the Royal Irish 
Academy. First published in Proceedings of the Royal Irish Academy, vol. 54, Section 
A, No. 2 (January 1951), pp. 24-35. Polish tram.lation is included in the 1961 
edition Z zagadnieft logiki i filozofii. 
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proposition Np, it is true of an arbitrary proposition q. The variable func
tor is <5. 

We need as an auxiliary thesis the so-called Frege's law: 

3 CCpCqrCCpqCpr. 

From 1, 2 and 3 we deduce the ~ollowing consequences: 

2fl/M x 4. 
4 CMpCMNpM9. 

3p/Mp, q/MNp, r/Mq x 5. 
--- ----------- -- -------5 GG-M-pCMNp.Mq.CCMpMNpCMpMq.-

5 x C4-Cl-6. 
6 CMpMq. 
Theses 4 and 5 are got by substitution ("/" is the sign ~f substitution), 
6 is got from 5 by two applications of the rule of detachment, i.e. the 
modus ponens of the Stoics: "if a, then fJ; but a; therefore {J" ("-" is 
the sign of detachment). 

It is obvious that there can be only two cases: Either 

something is possible, i.e. l)pMp 

in words: "for some p, it is possible that p," ot 

nothing is possible, i.e. N l)pMp, 

in words: "it is not true that for some p, it is possible thatp." _ 
We agree with Aristotle that the second case cannot occur. Therefore, 

we may add to our premisses 1-3 as a new premiss the thesis: 

7 })pMp. 

According to a rule of particular quantifiers we may put before the 
antecedent of the implication 6 the quantifier 2 binding the variable p, 
as this variable does not occur in the consequent as a free variable. 
We get thus the formula: 

8 CI,pMpMq. 

From 8 we deduce 9 by detachment and substitution: 

8 q/p x C7-9 
~~----------M-p, -------------

and by putting the universal quan~er before 9 we get 10: 

10 
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9flp x IO 

flpMp. 
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That means: "For allp, it is possible thatp," or all is possible. This con
sequence is not true, because we agree with Aristotle that something is 
not possible, e.g. that an even number should be equal to an odd number. 

__ ThesiS--2-containmg-a-¥ariable fum:tQ.Lh.a_s_heen usef:ul to d:isj:irove a bask 
principle of the Aristotelian theory of modal syllogisms. 3) 

2. The meaning of the variable functor c5 

Neither Frege, the founder of the modern propositional calculus, 
nor Russell, its propagator, have introduced variable functors into this 
calculus. The Polish logician Lesniewski (1886-1939) has added to the 
"theory of deduction" of the Principia Mathematica variable functors as 
well as quantifiers, calling the thus extended system of the propositional 
calculus "protothetic." 4) The above cited thesis 2 which I owe to Les
niewski's P!-'otothetic has first drawn my attention to the importance 
of theses with variable functors. My own ideas are as follows: 

A variable is a single letter considered with respect to a range of values 
that may be substituted for it. To substitute means practically to write in 

') Thesis 2 in its conjunctional form, CK</Jp</JNp</Jq, and with¢ instead of o, I have. 
used for the first time in my paper: "Philosophische Bermerkungen zu mehrwerti
gen Systemen des Aussagenkalkiils", Comptes rendus des seances de la Societe des 
Sciences et des Lettres de Varsovie 23 (1930), cl. iii, p. 59. The same thesis I have men
tioned again in 1947, in connection with the Aristotelian theory of modal syllogisms, 
in a letter from Dublin to Prof. I. M. Bochenski in Fribourg. The contents of this 
letter has been published in Bocbeiiski's work: "La Logique de Theophraste", Col
lectanea Friburgensia, Nouvelle Serie, Fasc. XXXII, Fribourg en Suisse, 1947, p. 99. 
I deduce here the conclusion Mp starting with the stronger premiss EMpMNp (E 
means equivalence). The weaker premiss," however, CMpMNp, is not only sufficient 
for this purpose, but it is at the same time in strict accordance with the .clearest state
ment of Aristotle in this matter. 

4
) S. Lesniewski, "Grundziige eines neuen Systems der Grundlagen der Mathe

matik," Fundamenta Mathematicae 14 (1929), pp. 1-81. About Le8niewski, see the pa, 
per of Z. Jordan, "The Development of Mathematical Logic and of Logical Positivism 
in Poland between the two Wars," Polish Science and Leaming 6 (1945), Oxford 
University Press, esp. pp. 24-26. [See also "Introductory Remarks to the Continua
tion of my Article: 'Grundziige eineis neuen Systems der Grundlagen der Ma
thematik'" by S. LeS:niewski, Polish Logic 1920-1939, ed. by Storrs McCall, Oxford 
1967.] 

----------------------~~--------~---~-~~------~-~---~----~~-·-~·-·-.. ------
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a formula instead of a variable one of its values, the same for the same 
variable. In the propositional calculus the range of values . of proposi
tional variables, as p or q, consists of all propositional expressions 
senseful in the calculus, besides this there may be two constants, 0 and 1, 
i.e. a constant false and a constant true proposition .. What is the range 
of values of the functorial.variable /5? 1 

It is obvious that for t5 in i5a, where a is a propositional expression, 
we may substitute ariy value which gives together with a a senseful 
expression of the propositional calculus. Such values are not only con-

- ·--· -·--- ··--·---stantfunctors-of-one-prop&sitif}nal-ai:gument,asN,negation, .for example, 
but also complex expressions working like a functor of one argument, 
as Cr or CCOO. By the su"{:>stitution /5/Cr we get from the thesis 2, 
C/5pC/5Np/5q, the expression CCrpCCrNpCrq, and by /5/CCOO the expres
sion CCCOOpCCCOONpCCOOq. It is evident, however, that this kind of 
substitutions does not cover all possible cases. We can get in this way 
from 2 neither CpCNpq, as it is impossible to blot the functors out of 
existence by means of a substitution, nor CCprCCNprCqr, because 
by no substitution for /5 in bp or /5q can the final p or q be removed from 
its place. There is, of course, no. doubt whatever that the last two expres
sions are as good consequences of C/5pC/5Np"bq, .as CNpCNNpNq or 
CCrpCCrNpCrq. 

There are two ways to meet this difficulty. One of them, which I shall. 
explain on an example, was chosen by Le8niewski. In order to get 
CCprCCNprCqr from C/5pCbNp/5q we must introduce by means of a 

· definition a new function, say Grp, that wmy.d mean the same as Cpr. 
By the substitution /5/Gr we can get the expression CGrpCGrNpGrq, 
and then we can transform this expression by help of the definition 
into the required thesis. This way, however, is artificial and awkward. 
I have found another way that leads ~trmght to our aim and is intniti'vely 
more convincing, than the roundabout way by means of a definition. 
It is a new kind of substitution. 

The symbol /5a, where a is a propositional expression, represents, as 
I understand it, all senseful expressions of the propositional calculus con
taining rx. E.g., /5p represents Crp as well as Cpr, Cpp as well as C/5pp, 
shortly, it represents all propositional expressions containing p including 
p and tip itself; similarly iJC1CilFrepresents··-a11 expressions containing 
COO, as COO, /5COO, 88COO, CCOOCpCOO, C8COOp, .and so on. A rule 
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of substitution for /5rx must be formulated in a manner that we might 
get by substitution any expression represented by 8rx. This seems to be 
intnitively clear. This new rule of substitution I shall again explain on 
examples. 

If I want to get by substitution from thesis 2 the expression 
CCprCCNprCqr, I denote the required substitution by lJ/C'r. That 
ineans: m form.Ula 2 mstead o-r-a·should·be-written an-expression begm
ning with C, ending with r, and the place marked by the apostrophe 
"'" should be everywhere filled up by the argument belonging to /5. 
Another example: when I want to get by substitution from thesis 2 the 
formula CpCNpq, I denote the substitution by 8j' (I owe this suggestion 
to Mr. C. A. Meredith). That means: instead of () should be written 
everywhere only the argument belonging to /5, in other words, b should 
be everywhere omitted. A third example: from the formula CoCOOC/50op 
I get by substitution o/C" the expression CCCOOCOOCCOOCpp, because 
from brx results by this substitution Caa. It is evident that in·this way 
we may get any expression represented by a formula containing /5's. 

The substitution with an apostrophe can be also applied to substitu
tions of the first kind. From thesis 2 we get by the substitution /5/Cr 
as well as by /5/Cr' the same formu1a: CCrpCCrNpCrq. We shall see 
shortly thaf the substitution with an apostrophe is one of the most 
powerful rules of inference known today in logic. 

3. Variable functors as applied to definitions 

There are two ways of introducing definitions into the propositional 
calculus. One adopted by the authors of the Principia Mathematica, 
consists of expressing definitions by means of a special symbol, another 
way, adopted by Lesniewski, considers definitions as equivalences. 
Each way has its merits and faults. 

In the Principia Mathematica, where the theory of deduction is based 
on two primitive terms, viz., negation(""' p") and disjunction (''p v q"), 
the definition of the implication (''p => p") is stated in the form: 

p :::i q. = . ,..., p v q Df. 5) 

") A. N. Whitehead and B. Russell, Principia Mathematicii, vol. I, Cambridge, 
1910, p. 11. 
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In words: "ifp, then q" means the same as "not-p or q.''The sign"=" 
and the letters "Df" are to be regarded as together forming one special 
symbol. This special symbol is connected with a special rule of inference 
allowing the replacement of the definiens by the definiendum and vice 
versa. This is the merit of this kind of definitions: the result is ·given 
immediately. But it has the defect of increasing the number of primitive 
terms which should be as small as possible. 

Lesniewski would write the same definition as an equivalence, thereby 
introducip.g into his system no new primitive term, because for this 

· · --· ------very-pmp0se-he-chose.....eguiv:alenc_e_as_a._primiti.v:e....ter:m_of_pr0Jqthetic. 
This is the merit of his standpoint. But on the other hand he cannot 
replace immediately the definiens by the definiendu:m or vice versa, 
because equivalence has its proper rules and does :aot allow for a rule 
of replacement. 

Now there exists among the theses of protothetic besides thesis 2 still 
another thesis of great importance, called sometimes the law of extension
ality. It runs thus: 

11 CEpqCopoq. 

In words: "If p then and only then when q, then if IJ of p, IJ of q." It 
means, roughly speaking: if p and q are equivalent, then whatever may 
be said ofp, may be said also of q. Let us denote by P and Q two propo
sitional expressions, where one of them, it does not matter which, is in 
a definition the definiens, and the other :the definiendum. It is supposed 
that neither of them contains o. As rightly constructed definitions may 
be regarded as true propositions, we accept the sentence: 

12 EPQ. 

From 11 and 12 we deduce by substitution and detachment 13: 

13 
llp/P,p/Q x C12-13. 
CoPOQ. 

This new proposition is equivalent to EPQ, because from 13 we get 
again 12 by the law of identity: 

and by two substitutions and one detachment: 

15 

12 
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14p/P x 15. 
EPP. 

13 o/EP' x Cl5 - 12. 
EPQ. 
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It follows from this consideration that instead of writing a definition 
_______ as an equivalence we may useforthis purjJose the implication 13 having 

a variable funct9r before the ci~:furiti(;ilS and the de:finiendum. TiiIS forn. 
has the merits of the two other forms of definitions mentioned above, 
without having their faults. As implication is the most convenient 
primitive term of any propositional calculus, the introduction of defini
tions by the formula 13 would not increase the number of primitive 
terms. On the other side, .the use of variable functors allows immediate 
transformation of the definiens into the definiendum and conversely. · 
Let us take an example. 

In the system of the propositional calculus, based on implication C 
and a constant false proposition 0 as primitive terms, we may define the 
negation of a proposition p, i.e. Np, in the following way: 

CIJNplJCpO. 

That means, roughly speaking, to say "it is not true that p" is to say 
"if p, then O." Applying this definition to thesis 2: 

2 CIJpCoNpoq, 

we get by substitution for IJ: 

17 
16 IJ/CopCIJ'oq x C2-17. 
CopCIJCpOIJq. 

.. 

The definiendu:m Np is here replaced by the definiens CpO. If we want 
to replace conversely the definiens by the definiendum, we ought to 
have the converse implication: 

18 CIJCpOIJNp. 

This converse implication is.given together with the first. That is to say, 
we get from 13, without a new thesis and using only substitution and 
detachment, the convei;se formula Cl!Ql!P in this way: 

13 caPoQ. 

19 
13 o/Co'oP x 19. 
CCoPIJPCIJQIJP. 
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20 

21 
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13 o/CCoPo'CoQoP x 20. 
CCCoPoPCoQoPCCoPoQCoQoP. 
20 x CI9- C13-21. 
CaQaP. 

This last deduction reveals the power of substitutions by apostrophe. 

4. The principle of bivalence 

In my paper of 1930 on multivalent systems of logic. I have mentioned 
-···--·· --------·-·--a-prirrciple-that-lies,-in--my-0pllri.0n,at-the---bottom-of-ourwhole logic. 

I have called it the "principle of bivalence." 6) A system of logic is called 
"bivalent," when it is based on the principle that every proposition is 
either true or false, i.e. when it takes for granted that there are only 
two possible values in logic, truth and falsity. This principle is different 
from the law of the excluded middle, according to which of two contra~ 
dictory propositions one must be true. 

At the time I formulated this principle -of bivalence, I did not know 
that a thesis which embodied this principle might be taken as a single 
axiom of the whole propositional calculus. I learnt thls as late as 1947.7) 

Let us look at such a thesis. 
from 17 we get by substitution: 

17 p/O, q/p x 22. 
. 22 CoOCoCOOop. 

In words: "If a of 0, thenif o of COO, a ofp." Now 0 is the symbol of a 
constant false proposition, and COO ("if 0, then O") can be regarded as 
a symbol of a constant true proposition, for COO does not contain 
variables and is a true proposition. Thesjs 22 means therefore: if some-

6) See my paper cited in note 3, where I say, p. 63: "Der Zweiwertigkeitssatz ( = the 
principle of bivalence) ist die tiefste, jedoch sch on im Altertum heftig ilmstrittene 
Grundlage unserer gesamten Logik". [Seep. 165 of this volume.) In an appenillx to 
this paper, pp. 75-77, I give a short hlstory of thls principle in the antiquity. [See p'p. 
176-178 of this volume.) · 

') It is Dr. B. Sobocillski, before the war of 1939 assistant and collaborator of 
Prof. Lesniewski, who has made the supposition (during his visit to Dublin in 1947) 
_that thesis 22 or ·24 might be sufficient as an axiom of the propositional calculus. 
His supposition was based on some· results of TarSkf°quo~d· by .LeSniewski, op .. cit. 
p. 50. 
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thing is valid of a constant false proposition, and the same is. valid of a 
constant true proposition, it is valid of any proposition. It follows from 
this statement that, in accordance with the principle of bivalence, only 
two kinds of propositions are supposed to exist, false and true ones. 

From 22 we get by help of the law of co;mmutation: 

23 CCpCqrCqCpr 

another thesis of the same kind, viz. : 

24 
23p/o0, q/oCOO, r/op x C22-24. 
CoCOOCoOop. 

Here the constant true proposition is in the first piace, and the constant 
false proposition in the second. My present purpose is to show that all 
theses of the theory of deduction in c and 0, i.e. theses without o's and 
quantifiers, may be deduced from thesis 24 as a sirigle .axiom by means 
of the rules of substitution and detachment, I give first some conse
quences of this axiom needed for the proof in the subsequent chapter. 

24 C~COOCoOop. 

24p/q x 25. 
25 CoCOOCoOoq. 

240/C" x 26. 
26 cccoocooccoocpp. 

24 af''X 21 . 
27 CCOOCOp. 

26p/O x 28. 
28 cccoocooccoocoo. 

27 pf COO x 29. 
29 ccoococoo. 

• 
240/CC"C'COO x C28-C29-30.' 

30 CCppCpCOO. 

27 p/0 x 31. 
31 ccoocoo. 

30p/CCOOCOO x C28- C31-32. 
32 coo. 

26 x C31- C32-33. 
33 Cpp. 
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27 x C32-34. 

34 COp. 

34p/Cq0 x 35. 
35 COCqO. 

26p/COO x C31- 36. 
36 ccooccoocoo. 

25 o/CCOOC'COO x C36 - C29 - 37. 
37 CCOOCqCOO. 

240/C'Cq' x C37 - C35 - 38. 
~-,··.-···---------

38 CpCqp. 
---------·-

38p/Cpp x C33 - 39. 
39 CqCpp. 

33p/CCOOCCOOO x 40. 
40 cccooccoooccooccooo. 

39q/COCCOOO,p/C00 x 41. 
41 ccoccoooccoocoo. 

240/CC'CCOOOCCOOC'O x C40 - C41 - 42. 
42 CCpCCOOOCCOOCpO. 

33p/CCOOO x 43. 
43 cccoooccooo. 

42p/CCOOO x C43- C32-44. 
44 cccoooo. 

39q/CCOOO,p/O ?< 45. 
45 cccooocoo. 

240/CCCOOO' x C45 - C44 - 46. 
46 CCCOOOp. 

46p/CeCOOoO x 47. 
47 CCCOOOCoCOOoO. 

39q/COO,p/o0 x 48. 
48 CCOOCoOoO. 

240/CC'OCo'oO x C47-C48-49. 
49 CCpOCopoO. 

49pfeeeoo-x-e44=-·50;--·-·- · ·· 
50 CoCCOOOoO. 
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34p/CoOoCOO x 51. 
51 COCoOoCOO. 

39q/COO,p/oCOO x 52. 
52 CCOOCoCOOoCOO. 

240/C'Co'oCOO x C52-C51-53. 
53 CpCopoCOO. 

· 53p/CCOOCOO x C31- 54. 
54 CoCCOOCOOoCOO. 

35q/O x 55. 
55 cocoo. 

53p/COCOO x C55 - 56. 
56 CoCOCOOoCOO. 

It 5eems to me that aUsteps of this deduction are perfectly clear and do 
not need an explanation. Theses 50, 54 and 56 required by the next 
chapter could be derived also from 1;hesis 22 which is equivalent to 24. 
This other way, however, would be longer and more difficult. 

5. Peirce's method of verification by 0 and 1 • 

It is not my intention to explain here this method, as it should be 
known to all students of symbolic logic, but to describe its theoretical 
foundations in connexion with axiom 24. For this purpose we must 
introduce the definition of a constant true proposition, which may be 
done by taking the implication "if 0, then 0" as the meaning of "1". 

Dfl x 57. 
57 CoCOOol. 57.1 COioCOO. 

With the implication 57 is given together the converse implication 57.1 
according to our argument exhibited in Chapter 3. The same argument 
may be applied not only to definitions, but to any true implication of 
the form CoPoQ provided neither P nor Q contains o. With the help 
of 57 we may transform the axiom 24 and the theses 50, 54 and 56 into 
formulae having everywhere 1 instead of COO. 

57 o/CoCO'o' x C56- 58. 
58 CoCOIOI, 58.1 COioCOl. 
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57 NCbC'Ooo x C5o- 59. 
59 CbCIObO. 59.1 CbObCIO. 

57 b/CbC"b' x C54- 60. 
60 CbCilbl. 60.1 CblbCll. 

57 b/Cb'CoOop x C24- 61. 
6I CoICoObp. 

6Ip/q x 62. 
62 COlCoOoq. 

From the law of identity Cpp we get not only_f'QQ, __ wbich was already 
proved as thesis 32, but also CI I : 

33p/I x 63. 
63 Cll. 

Let us now see how these theses work as a theoretical foundation for 
Peirce's method of verification. If we want to verify by this method 
a senseful expression of the theory of deduction in C and 0, we have 
to substitute instead of the variables occurring in this expression the 
symbols 0 and-1 in all possible combinations, reducing the thus obtained 
formulae on the ground of equalities: COO= 1, COl = 1, CIO = 0, and 
Cll = 1. If after the reduction all formulae give I as the final result, 
the expression is true or a thesis, if even one of them gives 0 as the 
final result, the expression is false. Let us take as an example ·of the 
first kind the law of Peirce CCCpqpp. We get by substitution four 
formulae ea:ch of them giving 1 as the final result: 

p/O, q/O: CCCOOOO = CCIOO = COO= l, 

p/O, q/l: CCCOIOO = CClOO = COO = 1, 

p/I, q/O: CCCIOll = econ = Cll = 1, 

p/1, q/l: CCCllll = CClll = C11=1. 

Hence Peirce's law is verified as a thesis. 
This purely practical method can be replaced by our inferential method 

in the following way: 

59.1 o/C'O x C32- 64. 
64 CCIOO. 

65 
57~I-b1-e'C"GO--x-e64---"'-6X--- - - -- - -
cccoooo. 

l : 
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58.1 o/CC'OO x C64- 66. 
CCCOIOO. 

620/CCCO'OO x C66-C65-67. 
CCCOqOO. 

58.1 o/C'I x C63 - 68. 
CCOll. 

59.1 o/CC'll x C68=-'o9--:- -
CCClOil. 

60.I o/C'l x C63 - 70. 
cciu. 
60.1 b/CC'll X C70- 71. 
CCCilll. 

62 b/CCCl'li x C71- C69-72. 
CCCiqll. 

- 61 b/CCC'q" x C72- C67 - 73. 
CCCpqpp. 
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This way is longer than the practical procedure of verification, but it 
establishes the practical method on a solid theoretical basis. It is evident 
that any other thesis, the law of syllogism CCpqCCqrCpr for instance, 
could be proved in the s~e manner. Now it has been stated that the law 
of simplification CpCqp (thesis 38), Peirce's law CCCpqpp (thesis 73) 
and the law-of syllogism CCpqCCqrCpr give together with COp (thesis 
34) a complete system of axioms for the theory of deduction in C and 0. 

Let us now consider an example of the second kind, when an expression 
is not verified, as ill case of CqCqp. We get: 

p/O, q/1: CICIO= CIO = 0. 

From this one case we argue that CqCqp is false. In our axiomatical 
system we can always prove that false expressions are not only not 
deducible from the axiom, but yield any expression whatever when 
added to the system. In our example the proof proceeds as follows: 

I 

II 

CqCqp. 

Ip/O, q/I x II. 
CICIO. 
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III 

IV 

v 
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59 of Cl' x en -m. 
ClO. 

59 oj' x CID-IV. 
0. 

34 x CIV-V. 
p. 

From p we may get by substitution any senseful expression we like. It is 
evident that the same procedure may be applied to any other false 
expression senseful in the system. 

* * 
The results I have described in the chapters above are only a beginning. 

Their continuation is due to Mr. C. A. Mer~dith who has attended my 
lectures on Mathematical Logic at the Royal Irish Academy since 1946. 
Meredith 8) has shoWn. that from axiom 24 or 22 can be deduced not 
only all theses of the theory of deduction, but also all theses.with variable 
functors and quantifiers of propositional as well as functorial variables. 
Moreover, Meredith has found the shortest axiom of the thus e~tended 
system of the propositional calculus. It is a thesis which was already 
known as a curiosity to Lesniewski, and was brought to Dublin by 
Soboci.Ilski in 1947. It runs CooOop and contains only six letters. To 
deduce from this thesis the whole calcµlus of propositions by means 
of the rule of substitution, the· rule of detachment, and the rules of 
quantifiers, must be regarded as a masterpiece of deductive power. 
However important these results may be, the most important effect 
of this development is, in my opinion, the fact that a new and vast 
field of logical problems has been opened which deserves the attention 
of all students of logic. 

8) See his paper: "On an Exteiii:leifSysteriiofllie Propositional Calculus", these 
Proceedings, vol. 54. 
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Introduction 

The purpose of this paper is to prove that the intuitionistic theory of 
deduction contains as its proper part the classical theory of deduction. 
K. Godel observed in 1932 that all the theses of the classical theory, in 
which no other functions occur except conjunction and negation, are 
also provable in the intuitionistic theory, but he did not prove that they 
form an axiomatized system. 1) B. Sobocillski axiomatized in 1939 the 
conjunctive-negative system of the classical theory, but he did not show 
that this system can be established on an intuitionistic basis. 2) The 
present paper is independent of the results of Godel and Sobocmsk:i. -

1) See K. Godel, "Zur intuitionistischen Arithmetik und Zahlentheorie", Ergebnisse 
eines mathematischen Kolloquiums (ed. by Menger), Heft 4 (Wien 1931/2), pp. 34-38. 
I owe this reference to the courtesy of Mr Johan J. deJongh in Amsterdam, as the 
paper of Godel was not accessible_ to me in Dublin. 

2) The paper of B. Soboci:Dski, "Aksjomatyzacja konjunkcyjno-negacyjnej teorij 
dedukcji", was printed in Collectanea Logica, (Warszawa, 1939), pp. 179-195. The 
volume of which I was the editor was almost ready for publication, when all its copies 
have been destroyed by bombs in the printers' office during the siege of Warsaw in 
September 1939. Soboci:Dski's paper can be known -by a detailed review of Prof. 
H. Scholz in the Jahrbuch fiir mathematische Forschung, 65 I (1939), pp. 24-25. See 
also B. Sobocmski, "An Investigation of Protothetic", Cahiers de l'Institut d'Etudes 
Polonaises en Belgique, 5, 7 foll. (Bruxelles, 1949). 

*) First publiShed in Konik!. Nederl. Akademie van Wetenschappen, Proceedings, 
Series A (1952), No. 3, pp. 202-212. Polish translation is included in the 1961 edi 
Z zagadnieft logiki i filozofii. 
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1. Axioms and rules of the intuitionistic theory of deduction 

I am using throughout this paper my own symbolic notation without 
brackets, denoting the functor of the classical implication by C, of the 
intuitionistic implication by F, of the classical conjunction by K, of the 
intuitionistic conjunction by T, of the classical alternative by A, of the 
intuitionistic alternative by 0. The functor of negation is denoted in 
both systems by N. 

_ I assert as axioms of the intuitionistic theory of deduction the following 
ten formiilae: 

1 FqFpq. 6 FpOpq. 
2 FFpFqrFFpqFpr. 7 FqOpq. 
3 FTpqp. 8 FFprFFqrFOpqr. 
4 FTpqq. 9 FFpNqFqNp. 
5 FpFqTpq. 10 FpFNpq. 

All the other asserted expressions I derive from these ten by means of 
two iulesofinference: ·-

(a) The iule. of substitUtion: If a is asserted, and f3 is a substitution 
of a, then fl must be asserted. , 

(b) The rule of detachment: If Fa/3 is asserted, and a is asserted, 
· then f3 must be asserted. 

Any significant expression may be substituted for a propositional 
variable, the same for the same variable. Sigpificant expressions of the 
intuitionistic system are propositional variables p, q, r, s, .. ., function 
Na provided a is a significant expression, and functions Fa{3, Ta{3, Orx/3 
provided a and f3 are significant expressions. Derivative functions intro• 
duced ·on:· the basis of-the· primitive ones by abbreviative definitions also 
are significant expressions of the system. Asserted expressions I call 
"theses". 

The axioms 1-10 and the rules (a) and (b) are deductively equivalent 
to the well-known set of axioms and rules given by A. Heyting for the 
intuitionistic theory ·of deduction. 3) 

3) See A._H~yti:a,g. "Die formalen Regeln der intuitionistischen Logik", Sitzungs
berichte der Preussischen Akademie der Wissenschaftelt;-Phys.~Mai:h. KI. (Berlin, 
1932), pp. 42-56. 

ii 
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2. A partial T -N-system 

An axiomatized set of theses in which no other primitive functors 
occur except T and N I call a "T-N-system". As rules of inference for 
a T-N-system I accept the rule of substitution (a) restricted to significant 
expressions of the system, and the rule of detachment running thus: 

-(.c}-lf-N.;J:a.NP...is-a~rted.,-aruLCLis asserted~_then fl must,..._,l;i.,.e~asS!lS;afili>te<llldot;.,...----

From the arioms 1-5 and 9 of the intuitionistic system there can be 
deduced the following three T-N-theses: 4

) 

58 NTNTNpNpNp. 

59 NTpNNTNpN_q. 

60 NTNTpNqNNTNTqNrNNTpNr. 

These theses taken as axioms form together with the rules (a) and 
(c) a partial T-N-system. The proof that they are not sufficient to 
build up the whole T-N-system is given by the matJ;ixM1 • 

rl123IN 
*1 1 1 3 3 
2 2 2 3 1 
3 3 3 3 1 

Mi 
The first argument of T and the argument of N is in the column on 
the left (under T), the second argument of Tis in the line on the top; 
figure 1 marked by an asterisk is the selected value. Matrix M1 fulfils 
the rule of detachment ( c) and verifie~ the formulae 58-60, but does 
not verify the T-N-thesis: 

61 NTNpp, 

because we get for p/2: NTN22 = NTl2 =NI = 3. 
This partial T-N-system contajns as its proper part the classical 

theory of deduction. 

3. Definition of Cpq and axioms of the C-N-system 

The functor of the classical implication C can be introduced into the 
intuitionistic system by an abbreviative definition on the basis of the 

4) All deductions are given in the Appendix. 

:, 
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functors T and N. The definition is formulated as an F-implication by 
help of a variable functor d: 5) 

63 FdNTpNqdCpq, 

and means; NTpNq can be replaced everywhere by Cpq and conversely, 
and any substitution of NTpNq can be replaced by the same substitution 
of Cpq and conversely. I do not introduce d into the system, I use it 
only in definitions as a more convenient symbol, than the sign"= Df." 
employed by the authors of Principia Mathematica. A special rule of 

----~ubstitutio.n. . .for.._d_is_exJ;)lained in the Ap_~ndix. ___________ _ 
Now I shall prove on the ground of the intuitionistic system that the 

functor introduced by definition 63 has all the properties of the classi
cal C. We get by this definition from the theses 58-60 the following 
formulae: 

65 

67 

72 

CCNppp. 

CpCNpq. 

CCpqCCqrCpr. 

Formula 65 represents the pnnciple of Clavius, formula 67 the principle 
of Duns Scotus, and formula 72 the principle of the syllogism. These 
three principles, as I have stated many years ago, 6) are sufficient to 
establish the . whole classical theory of deduction, provided the rule of 
detachment can be applied to them. This rule would run thus: 

( d) If C1Xfl is asserted, and IX is asserted, then fl must be asserted. 

4. The rule of detachment for C 

Rule (d) is not valid, if we admit that IX and fl may be any significant 
expression . of. ilie. iiifiiitfomsiic theory. of deduction. This can be shown 
by an example. The following formulae: 

87 CNNOpNpOpNp 

5) See J. Lukasiewicz, "On Variable Functors of Propositional Arguments", 
Pro'ceedingS of the Royal Irish Academy, vol. 54, Sect. A, No. 52, pp. 28-30, Dublin, 
1951. [See pp. 311-324 of this volume.] The method of expressing definitions described 

~~~-~~~~ffi.thl&1mper~is-¥ali<Lw.:ith..any_implicational.functm: ___________ ---
6) See J. Lukasiewicz, "O znaczeniu i potrzebach logiki matematycznej", Nauka 

Polska 10 (1929), pp. 610--612. 
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and 
86.. NNOpNp 

which are of the form C1Xfl and IX, are provable in the intuitionistic system, 
but fl, i.e. OpNp, is not provable. Heyting's three-valued matrix M 2 

which verifies the rule of detachment (b) and all the axioms 1-10 does 

:F-j-+-1-3-~N-·--. -P-/-1-2 3 -Of 12 3 

*l 1 2 3 3 111 2 3 1 1 1 1 
2 1 1 3 3 2 2 2 3 2 1 2 2 
3 1 1 1 1 3 I 3 3 3 3 1 2 3 

M2 

not verify OpNp, because we get for p/2: 02N2 = 023 = 2. 
For our purpose, however, it is not necessary to prove that rule (d) is 

generally valid; it suffices to show that it is valid for the partial system 
·c-N. In other words, it is sufficient to prove that rule (d) is vajid, when 

IX and fl are significant expressions in which no other primitive functors 
occur except C and N. This can be proved by means of the following 
three theses derived from the axioms 1-5 and 9 by help of the defini
tion 63: 
73 

75 

77 

FCpqFpNNq. 

FCpNqFpNq. 

FCpCqrFpCqr. 

Now, every significant expression of the C-N-system is either a var
iable, or a negation beginning with N, or an expression beginning with 
C. If C1Xfl and IX are asserted, and fJ is Ny, i.e. begins with N, we get 
from 75 by two detachments Ny; and if fJ is Cye, i.e. begins with C, 
we get from 77 by two detachments Cye. In both cases rule (d) is satis
fied. If fJ is a variable, we can always assume without loss of generality 
that fl is q. But Caq and IX cannot be asserted both, becauseiftheywere, 
we would get from 73 the asserted consequence NN q, therefore by substi
tution NNN q, and from the thesis: 

FNNqFNNNqq, 

which follows from axiom 10 by the substitution p/NNq, there would 
result by two detachments the variable q. Rule (d) would be satisfied 
again, but it is clear that it could not be applied in this case. The validity 
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of the rule of detachment for C is thus proved for all significant expres
sions of the system C-N, and this completes the proof that the IDtui
tionistic theory of deduction contains as its proper part the classical 
theory of deduction .. 

It should be observed that the role of axiom 10 ID the last argument 
is essential. If this axiom is dropped, as ID the "Minimalcalculus" of 
I. Johannsen, the rule of detachment for C could not be proved. 

5. Intuitionistic and classical functors 

The classical theory of deduction is included. in the intuitionistic 
theory as the C-N-system. We can enrich this latter system by intro
ducing ·into it the usual definitions of conjunction and alternative, 
denoted' respectively by Kand A: 

93 FoNCpNqoKpq, 

90 FoCNpqoApq, 

getting thus all the classical theses in K and A. Between the classical 
functors C, K and _A, and the correspondllig IDtuitiouistic functors F, T 
and 0 there exists a simple logical relation: all those classical functors 
.are weaker than the corresponding IDtuitionistic ones. C is weaker than F, 
because the implication: 

78 FFpqCpq. 

:holds ID the intuitionistic system, but its converse FCpqFpq is not 
provable ID it. Similarly the conjunctive functor K is weaker than T, 
because the imp~cation · 

94 FTpqKpq 

is provable ID tlie IDtiiitionistic system, whereas its converse FKpqTpq 
is not provable. For the same reason A is weaker than 0, as we can 
prove the thesis 

91 FOpqApq, 

but not its converse FApqOpq. 
All these converse expressions can be disproved, if we add to the 

==-~--~~Mrthe-matFix--M"~fo!'.-G,-K-and--A,-·eonstructed on- the basis of 
the matrix Mz according to the definitions 63, 93 and 90 respectively. 

,.:;.>l. 

:,j 
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c1 1 2 3 Kj 1 2 3 A j 1 2 3 

*;I 1 1 3 1 1 1 3 ' I ' I I 1 1 3 ·2 1 1 3 2 1 1 1 
3 J 1 1 1 3 3 3 3 3 1 1 3 

M3 

-··---It-folle-ws--f:Fe-m-M-z-a;nd-M3.that FCpqFpq is-n&t-¥erified; because we get 
for p/l, q/2: FCI2Fl2 = FI2 = 2; similarly neither FKpqTpq nor 
FApOqpq is verified, as we get forp/2, q/2 ID the first case: FK2iT22 
==Fl2 = 2, in the second case: FA22022 = FI2 = 2:- ··-·-········· 

All the theses in F, T or 0 remain true, if we replace these stronger 
functors by the corresponding weaker ones. On the contrary, it is not 
always the case that a thesis in C, K or A remallis true, if we replace 
these weaker functors by the corresponding stronger ones. The "strong" 
principle of Clavius FFNppp, the "strong" principle of double negation 
with negations in the antecedent FNNpp, the "strong" principle of 
excluded middle OpNp, are not accepted by the· intuitionist§.· Never
theless the· corresponding weaker theses: 

65 

80 

92 

CCNppp, 

CNNpp, 

ApNp, 

are provable in the intuitionistic system, and must be consequently 
accepted by the intuitionists. 

6. The controversy about the principle of ~xcluded middle 

The most famous thesis not accepted by the intmtionists is the prin
ciple of excluded middle. This principle is very evident, if it is applied 
to such examples as: "Either it rains here and now, or it does not rain 
here and now". Its general formula, however, i.e. the principle "either 
p or not-p", canl1ot be based on examples; it must be either accepted 
as an axiom or proved on the ground of some other principles. In both 
cases it cannot be taken ID isolation, but"must belong to a logical system. 
Let us describe a system in which the principle of excluded middle is true. 

Two functions, the alternative and the negation, occur in this principle, 
and two evident statements are connected with them: 
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(r) An alternative "either p or q" is true, lf at least one of its com
ponents is true. 

This is essential for the alternative and is accepted by the intuitionists 
as well as by the followers of the. classical logic. 

(s) The negation of a false proposition is true. 

This also is accepted by all logicians, as it is the very essence of the 
negation. Ifwe add to (r) and (s) the principle ofbivalence: 

(t) Every proposition is either true or false, 

we can establish the principle of excluded middle in its general form. 
For either p is true, and then the pnnciPJ.e''either p- or not~p" is. true 
according to (r), or pis false, and then the principle is true according 
to (r), because not-pis true according to (s). 

The principle of bivalence has been stated by myself in 1921 as the 
fundamental of all hitherto known systems of logic. 7) This fundamental, 
however, is not so evident as the statements (r) and (s): it has been 
denied for future contingent events by Aristotle and the Epicureans, 8

) 

and rejected in modern times by the systems of the so called "many
valued logic". 9) Such a many-vfilued system is the intuitionistic theory 
of deduction the adequate mattjx of which is infinite according to 
Godel. 10

) The principle of bivalence cannot be applied to this system. 
Nevertheless the principle of excluded middle can be proved in the 

intuitionistic theozy of deduction, because the whole classical theory of 
deduction is contained in it. No real controversy results from this fact. -
The meaning of this principle depends on the meaning of two functions, 
the alternative and the negation. The essential properties of these func-

7) See J. Lukasiewicz, "Logika dwuwartosciowa", Przeglqd Filozoficzny, 23 (War
szawa, 1921). [See pp. 89-109 of this volume.] The passage concerning the principle 
of bi~aj(:nce has been literally translated into French by W. SierpiD.ski, "Algebre des 
en:Sembles", Mono!f7ajl(a·lfiitematyczne23,-Wirszawa-:-Wrodaw, 1951, .P. 2. 

8
) .See J. Lukasiewicz, "Philosophische Bemerkungen zu mehrwertigen Systemen 

des Aussageukalkiils'', Comptes rendus des-seances de la Societe des Sciences et des 
Lettres de Varsovie 23 (1930), cl. iii, pp. 75-77: Zm Geschichte des Zweiwertig
keitssatzes. [See pp. 176-178 of this volume.] 

_
9

) Ttie first system of this. kind, a tlp:ee-valued modal theory of deduction defined 
by a matrix, ha8 been consinicted by myself :in 1920. See Ruch Fiiozoficzny, 5 (1920), 
p. 170. [See pp. 87-88 of this volume.] 

~~~~~~....,._~· -~--•""rse'e"'K-:"crodel;-'~Zum-intuitienistiseherr-Aussa:gen:kalkiil";·Anzeiger der Akademie 
der Wissenschaften in Wien, Math.-Nat. Kl. 69 (Wien, 1932), p. 85. 
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tions, expressed by the statements (r) and (s), are satisfied by the intui
tionistic theozy as well as by the classical, so that we are entitled 
to call them in both systems "alternative" and "negation". But not all 
properties of the alternative are the same in both systems. I was therefore 
anxious to denote the intuitionistic alternative by another symbol than 
the classical one. The controversy disappears, for there cannot be a 

- --eentl'e-veFs-y-bei;ween-t-w0-different formulae..such-as.-OpNP--atl~d~.""'4.p,,.,_7'cv,Tpir..,-----
OpNp may be rejected; ApNp must be accepted. 

7. Conclusion 

We have no means to decide which of then-valued systems of logic, 
n ~ 2, is true. Logic is not a science of the laws of thought or of any 
other real object; it is, in my opinion, only an instrument which enables 
us to draw asserted conclusions from asserted premisses. The classical 
theory of deduction which is verified by a two-valued matrjx is the 
oldest and simplest logical system, and therefore the best known and 
widely used. But for some purposes, for instance in modal logic, an n
valued system, n > 2, might be more suitable and useful. The more 
useful and richer a logical system is, the more valuable it is. 

At the first "Entretiens de Zurich" in 1938 I set forth the opinion that 
the intuitionistic calculus of propositions is only a part of the· classical 
calculus, and the~efore essentially weaker than the latter. 11

) I see today 
that just the contrary is the fact. The intuitionistic theozy is richer and 
consequently more powerful than the classical one. All the applications 
of the classical theory to mathematics are also. valid in the. intuitionistic 
theozy, but besides many subtle mathematical problems can be dealt 
with in the intuitionistic theozy which cannot be formulated in the . 
classical system. It seems to me that among the hitherto known many
valued systems of logic the intuitionistic theozy is the most intuitive and 
elegant. · 

Godel observed that in the intuitionistic system an alternative can 
be asserted only when one of its components is asserted;' In my recently 
published work on Aristotle's Syllogistic I gave reasons for introducing 
"rejection" into the classical theozy of deduction as a complement of 

11) See J. Lukasiewicz, "Die Logik und das Grundlagenproblem", Les entretiens 
de Zurich 1938, publies par F. Gonseth, 1941, p. 86. [See pp. 278-294 of this volume.] 
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"assertion". u) I reject axiomatically the propositional variable p, ~d 
I state the following two rules of rejection: 

(e) If a if! rejected, and a is a substitution of fl, then fl must be rejected. 

(f) If Cafl, in our case Fafl, is asserted, and fl is rejected, than a must 
be rejected. 

If we add to these general rules a special rule of rejection which is 
valid according to Godel in the intuitionistic system: 

(g) If a and fl are rejected, then Oafl must be rejected, 

we get, as far as I see, a categorical system in which all the classical 
theses not accepted by the mroitionists can easilylJe-disproved. 

APPENDIX 

Every derived thesis is preceded by a "proof-line" consisting of two 
parts separated from each other by a cross. Various kinds of proof are 
explained by examples. 

I. Proofs by substitution only. Proof-line belonging to thesis 13: 
"l q/Fqr x 13". Put in 1 Fqr for q ("/"is the symbol of substitution); 
the result is thesis 13. 

II. Proofs by substitution and detachment. Proof-line 14: "12 s/Fqr X 

FB-14". Perform the substitution as in I; the thesis obtained by this 
substitution: FFFqrFpFqrFFqrFFpqFpr is omitted to save space. It 
begins with an F and has as its antecedent thesis 13, as its consequent 
thesis 14. By detachment (".:..." is the symbol of detachment) we get 14. 
In some cases (see for instance proof-line 18) the rule of detachment is 
applied tWice. 

ill. Proofs by o-substitution. (a) Proof-line 73: "63 o/F'FpNNqx 
F46 - 7?/'. Drop m 63 the o's and write instead F'FpNN q :filling up the 
gaps marked 'by the apostrophe by the arguments of o. You get 
FFNTpNqFpNNqFCpqFpNNq, i.e. F46-73. (b) Proof-line 64: "63 
o/NT'Np, p/Np, q/pxF58-64". Perform first the substitutions for the 
propositional variables, p/Np and q/p, getting FONTNplfpoCNpp, and 
then proceed as ill III (a). 

)See J. LUkas1eWICZ, 'ltti'Sf'otle'-rSyllolffsttr;fromlhe-Stiiiidpbihf of Modem Formal 
Logic, Oxford, 1951, p. 109. 

---···----------··-
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The numbers in brackets refer to theses to which a given thesis is 
applied. For instance, thesis 3 is applied to theses 32, 42, 56. 

Axioms 

1 FqFpq (11, 13, 17, 19, 44). 

2 FFpFqrFFpqFpr (11, 12, l 6, 18, 32). 
·-~3~~~~F~Tp~qp___,(~32~,.....,.,42,5~; 

4 FTpqq (31, 55). 

5 FpFqTpq (20, 38). 

6 FpOpq (82). 

7 FqOpq (83). 

8 FFprFFqrFOpqr (88). 

9 FFpNqFqNp (24, 26, 29, 33, 43, 81). 

IO FpFNpq. 

11 

12 

13 

14 

15 

16 

17 

18 

19 

F-theses 

1 q/FFpFqrFFpqFpr, p/s x F2 -11. 
FsFFpFqrFFpqFpr (12). 

2p/s, q/FpFqr, r/FFpqFpr x Fll - 12. 
FFsFpFqrFsFFpqFpr (14, 21). 

1q/Fqrx13. 
FFqrFpFqr (14). 

12s/Fqr x Fl3-14. 
FFqrFFpqFpr (15, 20, 25, 26, 28, 31, 34, 35, 37, 52, 75). 

14 q/Fqr, r/FFpqFpr, p/s x C14-15. 
FFsFqrFsFFpqFpr (16, 50). 

15 s/FpFqr, q/Fpq, r/Fpr, p/q x F2 -16. 
FFpFqrFFqFpqFqFpr (18). 

1 q/FqFpq,p/FpFqr x Fl -17. 
FFpFqrFqFpq (18). 

2p/FpFqr, q/FqFpq, r/FqFpr x Fl6-Fl7 -18. 
FFpFqrFqFpr (19, 29, 39, 51). 

18p/q, q/p, r/q x Fl -19. 
FpFqq (22). 
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F-T-theses ',~' 
14 q/FrFpNq, r/FrNTpq,p/s x F34- 35. 

14 q/p, r/FqTpq, p/r x F5 - 20. 

f 

35 FFsFrFpNqFsFrNTpq (53). 
20 FFrpFrFqTpq (21). 

•• 

34 r/Fpq, q/Nq x F25 - 36 . 
12s/Frp,p/r, r/Tpq X F20-21. 36 FFpqNTpNq (37, 59, 60, 78). 

21 FFrpFFrqFrTpq (40, 56, 84). 14 q/Fpq, r/NTpNq,p/r x F36 - 37. 

F-N-theses ... -31 FFrFp_qFrN'[pj'{q (44L?~1'~·-

19 p/FpFqq, q/Np X Fl9- 22. 28 r/p,p/q, q/Tpq x F5 - 38. 
22 FNpNp (23, 40, 61, 79). 38 FpFNTpqNq (39). 

22-pjq ... :x-23_ -----·-·- ----- 18 q/NTpq, r/Nq x F38 - 39. 
23 FNqNq (24). 39 FNTpqFpNq (46, 75). 

9 p/Nq x F23 ~ 24. 21 r/Np,p/Np, q/Np x F22-F22 - 40. 
24 FqNNq (25). 40 FNpTNpNp (41). 

14r/NNq X F24-25. 27 p/Np, q/TNpNp x F40- 41. 
25 FFpqFpNNq (27, 36, 55). 41 FNTNpNpNNp (58). 

14q/FpNq,r/FqNp,p/r X F9-26. 3p/Np, q/Nq x 42. 
26 FFrFpNqFrFqNp (27, 30, 47). 42 FTNpNqNp (43). 

26r/Fpq, q/Nq x F25-27. 9 p/TNpNq, q/p x F42 - 43. 
27 FFpqFNqNp (28, 41, 57, 82, 83, 85). 43 FpNTNpNq (59, 88). 

14q/Fpq, r/FNqNp,p/r x F27--'28. 37 r/q x Fl -44. 
28 FFrFpqFrFNqNp (38, 49). 44 FqNTpNq (45). 

18p/FpNq, r/Np X F9-29. 44p/Np X 45. 
29 FqFFpNqNp (30). 45 FqNTNpNq (88). 

26r/q,p/FpNq,q/p x F29-30. 39q/Nq x 46. 
30 FqFpNFpNq (31). 46 FNTpNqFpNNq (47, 52, 73). 

26r/NTpNq, q/Nq x F46-47. 
F-T-N-theses 

47 FNTpNqFNqNp (48). 
14r/FpNFpNq,p/Tpq X F30-F4-3l. 47 p/q, q/r x 48. 

31 FTpqFpNFpNq (32). 48 FNTqNrFNrNq (49). 
2p/Tpq, q/p, r/NFpNq x F31-F3- 32. 28 r/NTqNr,p/Nr, q/Nq x F48-49. 

32 FTpqNFpNq (33). 49 FNTqNrFNNqNNr (50). 
9 p/Tpq, q/FpNq x F32 - 33. 15 s.!NTqNr, q/NNq, r/NNr x F49 - 50. 

33 FFpNqNTpq (34, 58, 61). 50 FNTqNrFFp}lNqFpNNr (51). 
14.qj.BpNq, ... r.jNTpq, ... p/r.-x-FJ3--?A.-· -- -· 18 p/NTqNr, q/FpNNq, r/FpNNr x FSO- 51. 

34 FFrFpNqFrNTpq (35, 36). 
51 FFpNNqFNTqNrFpNNr (52). 

' ' . ·~ ._' 
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52 

53 

54 

55 
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14q/FpNNq,r/FNTqNrFpNNr,p/NTpNqxF51-F46-52. 
FNTpNqFNTqNrFpNNr (53). 

35 s/NTpNq, r/NTqNr, q/Nr x F52- 53. 
l:NTpNqFNTqNrNTpNr·(54). 

37 r/NTpNq,p/NTqNr, q/NTpNr x F53 - 54. 
FNTpNqNTNTqNrNNTpNr (60). 

25p/Tpq x F4-55. 
FTpqNNq (56). 

·--~---:~---,2~1~r/..,..,Tp;..q~,,;;q:;.fN~Ni,_;;q x F3- F55 - 56. 
56 FTpqTpNNq (57. 

57 

58 

59 

60 

61 

62 

63 

64 

65 

27 p/Tpq, q/TpNNq x F56- 57. 
FNTpNNqNTpq (74). 

T-N-theses 

33 p/NTNpNp, q/Np X F41 - 58. 
NTNTNpNpNp (64). 

36 q/NTNpNq x F43 - 59. 
NTpNNTNpNq (66). 

36p/NTpNq, q/NTNTqNrNNTpNr x F54- 60. 
. NTNTpNqNNTNTqNrNNTpNr (68). 

33p/Np, q/p x F22-61. 
NTNpp (62). 

61p/Np x 62. 
NTNNpNp (80, 86). 

Theses with C 

DfCpq x 6:3. 
FoNTpNqoCpq (64 - 74, 77, 78, 80, 89). 

63 o/NT'Np,p/Np, q/p x F58-64. 
NTCNppNp (65). 

63 oj',p/CNpp, q/p x F64- 65. 
CCNppp. 

~~·~-· ~--~-~· ~-~··~---~-~· ~-~~ff3-0-/N.:rpJVL,pfNp-X-F.f>9---66;-·---····· 

66 NTpNCNpq (67). 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

. 82 
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. 63 of', q/CNpq x F66- 67. 
CpCNpq. 

63 o/NT'NNTNTqNrNNTpNr x F60 - 68. 
NTCpqNNTNTqNrNNTpNr (69). 

63 o/NTCpqNNT'NNTpNr,p/q, q/r x F68 - 69. 
NTCpqNNTCqrNNTpNr (70). 
63 o/NTCpqNNTCqrN', q-/r_x_Fi_69-::_ 70. 

NTCpqNNTCqrNCpr (71). 

63 o/NTCpqN',p/Cqr, q/Cpr x F70-71. 
NTCpqNCCqrCpr (72). 

63 o/',p/Cpq, q/CCqrCpr x F71-72. 
CCpqCCqrCpr. 

63 o/F'FpNNq X F46- 73. 
FCpqFpNNq. 

63 o/FNTpq, q/Nq x F57 - 74. 
. FCpNqNTpq (75, 81). 

14q/NTpq,r/FpNq,p/CpNq x F39-"'F74-75. 
FCpNqFpNq (76). 

75p/TqNr x 76. 
FCpNTqNrFpNTqNr (77). 

63 o/FCp'Fp',p/q, q/r x F76- 77. 
FCpCqrFpCqr. 

63 O/FFpq' x F36 - 78. 
FFpqCpq (79). . 

78p/Np, q/Np x F22-79. 
CNpNp (92). 

63 of', p/NNp, q/p x F62 - 80. 
CNNpp (87). 

9 p/CpNq, q/Tpq x F74- 81. 
FTpqNCpNq (94). 

Theses with 0 

27 q/Opq x F6 - 82. 
FNOpqNp (84). 
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83 

84 

85 

I 86 I 
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~r- 87 

88 

89 

90 

91 

92 

93 

94 
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27 pf q, q/ Opq x F7 - 83. 
FNOpqNq (84). 

21 r/NOpq, p/Nq, q/Np x F83 - F82 - 84. 
FNOpqTNqNp (85). · 

27 p/NOpq, q/TNqNp x F84- 85. 
FNTNqNpNNOpq (86). 

85 q/Np x F62 - 86. 
NNOpNp. 

80p/OpNp x 87. 
CNNOpNpOpNp. 

8 r/NTNpNq x F43 - F45 - 88. 
FOpqNTNpNq (89). 

63 o/FOpq',p/Np x F88- 89. 
FOpqCNpq (91). 

Theses with A 

DfApq x 90. 
FoCNpqMpq (~l, 92). 

90 o/FOpq' x F89 - 91. 
FOpqApq: . 

90 of', q/Np x F79 - 92. 
ApNp. 

Theses with K 

DfKpq x 93. 
FoNCpNqoKpq (94). 

9.3 o/FTpq' x F81-:- 94. 
FTpqKpq. 

J 
' 
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FO~ZATION OF MATHEMATICAL 
THEORIES*) 

1. The stl;l.rting point for my research on the formalization of mathe
matical theories is a tentative application to such theories of many~ 
valued logics. I have chosen for that purpose a non-modal three-valued 
logical system and I have succeeded in basing on ·it a part ofthe theory 
of natural numbers. Since many formulae of the logical system I em
ployed differ from two-valued logic, it was necessary to be very careful 
in handling them correctly, and :(ormalization was the best way, if 
not the only one, of avoiding mistakes. In order to compare the results 
thus obtained with the ordinary theory it was also necessary to formal
ize the theory of natural numbers on the basis of two-valued logic. 
I soon realized that the latter theory is very interesting in itself and 
that it reveals not only many new proofs of known theorems, but also 
many new theorems. 

I have chosen the theory of natural numbers as the object of my 
logical investigations because I noticed that this theory, elementary 
as it is, is also very much neglected. In any textbook on the theory of 
numbers we find a number of elementary theorems 9n natural numbers, 
which are not proved correctly. Since it is known that these theorems 
are true, no ~me bothers to prove them in a precise manner. Take, for 
instance, Euclid's theorem stating that there is no greatest prime number. 
To prove this theorem the product of all prime numbers up top is 
formed and the formula: 1

) 

.q=2·3·5· ... ·p+l 

is discussed. Since q is not divisible by any prime number up top, it 

1) Cf. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 
Oxford, 1938, p. 12. 

*) First published in: Colloques internationaux du Centre national de la recherche 
scientifique, XXXVI, Les methodes formelles en axiomatique, Paris 1953. 
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342 FORMALIZATION OF MATHEMATICAL THEORIES 

follows that it is either itself a prime number greater than p, or that 
it is divisible by a prime number greater than p. Everyop.e seems to fail 
to notice that this. proof, which is intuitively convincing, is not a real 
proof, since the gap marked by the dots between 5 . and p cannot be 
filled in, as there is no general formula for a product of prime numbers. 
Hence the expression "2 · 3 · 5 · ... · p" lacks any definite meaning 
and must not occur in an exact proof. In many other proofs of theorems 
concerned exclusively with natural numbers, algebraic, rational, irra
tional, and even complex numbers are introduced, in spite of the method
ological requirement that everything concerned with_ n.ll_tural numbers 
should be proved by means of an axiomatic system constructed specifi
cally for natural numbers and without introduction of numbers of 
any other kind. 

2. Before illustrating these remarks with examples I ought to explain 
the parenthesis-free symbolism I have adopted in the formalization 
of theses and proofs. In the text that follows the letter C stands for the 
functor "if ... then", K for the functor "and", N for the negation "not"; 
O is a constant false proposition; p, q, r, ... are propositional variables; 
o is a variable proposition-forming functor of one propositional argu
ment. n ("for all") is the universal quantifier, 2 ("for at least one" 
or "there is ... such that ... ") is the existential quantifier. C ("plus") 
is a functor of two numerical arguments forming a number; e ("equal 
to") and ct ("less than") are proposition-forming f~ctors of two nu
merical arguments; a, b, c, d, ... are numerical variables; <p is a variable 
proposition-forming functor of one numerical argument. In the proof 
lines the stroke / is the symbol of substitution, the dash - is the symbol of 
detachment, and the cross x is a punctuation mark. All the functors 
are written before their arguments in order to avoid the use of paren
theses. 

Two logical theories, the propositional calculus and the functional 
calculus, are necessary.and sufficient to form~lize axiomatic mathemat
ical theories, in particular the theory of natural numbers. The propo
sitional calculus can be based on the principle of bivalence as its sole 
axiom: 2) 

2) CT. J. Lukasiewicz, "On Variable Functors of Propositional Arguments", Pro
"F-~--~-~-c;;;· e;;;edriim>;;g;:;sc-o;;ii]c-;,ilir;;;e'".L<.e;;;;oyat'-1ttslr-:;4:cademy;-voI;-54;··sect: A, 2, Dublin, 1951. [See 

pp. 311-324 of this volume.] C. A. Meredith has found an even shorter axiom, 
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(1) CoOCoCOOop. 

. Thls formula is read: "If 0 satisfies o, then if COO (a constant true prop
osition) satisfies o, then any proposition p satisfies o". All the theses 
of the theory of deduction, which is the most elementary part of the 
propositional calculus, follow from this axiom by two rules of inference: 
the rule of substitution ·and the rule of detachmen_t_·--~---------

Quanti:fication theory does not require any- axioms, since it can be 
based on four rules of inference (the arrow-+ indicates that the impli
q1tion on the left, provided that it is true, implies the jmplication _.on 
the right): 

(2) CrpafJ-+ cflarpafJ (symbolized by fl la), 

(3) Cflrpa-+ CJJ};arpa (symbolized by };2a), 
(4) . CrpafJ-+ C};arpafJ (symbolized by };la), 

(5) Cflrpa-+ Cflflarpa (symbolized by IJ2a). 
'Rules (2) and (3) are unconditionally valid, while rules (4} and (5) 
are valid only on the condition that fl (any propositional expression) 
does not contain a as a free variable. 

3. The formalized fragment of the theory of natural numbers which 
I intend to outline now is based on two primitive terms, two definitions, 
and three axioms. The primitive terms are ("plus") and 1 ("one", the 
least natural number). The relations e ("equal to") and ct ("less than") 
are defined. The definitions are noted down as implications by means 
of the variable functor o: 3

) 

(6) CoflrpCrparpboeab, 

(7) Co };deCdaboctab. 

Definition (6) states that the expression [JrpCrparpb ("for all <p, if a sat
isfies <p, then b satisfies rp") may be replaced by the expression eab 
("a is equal to b"), and, conversely. Definition (7) ~tates that the expres-

sion };deCdab ("there is a d such that d plus a equals b") may be re
placed by the expression ctab ("a is less than b"), and conv~rsely. 

The following three theses are adopted as axioms : . 

namely 05o0op. Cf. his article "On an Extended System of the Propositional Cal
culus." Ibid., 54, A, 3, Dublin, 1951. 

3
) Definitions which make use of the symbol 15 are explained in my article quoted 

above, pp. 28-30 [pp. 311-324 of this volume]. 
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(8) ei;i;abci;bi;ac principle of associativity, 
(9) CNcdasla principle of dichotomy, 

(10) C fl aC fl bCo:bacpbcpacpa principle of ascent. 

Axiom (8) expresses, in my notation, the formula (a+b)+c = b+ 
(a+c). Axiom (9) states: "If it is not true that 1 is less than a, then 1 is 
equal to a'~. The last axiom is, so far as I know, a.new one and requires 
a more detailed explanation. To understand it, it is necessary to begin 

with the expression [JbCo:bacpb, which states: "For 'all b, if b is less 
than a, then b satisfies cp", or, more briefly, "All. numbers less than 
a satisfy cp". This expression is the antecedent of aiiotlier imp~cation, 

C[J bCo:bacpbcpa, which can be read: "If all numbers less than a satisfy <p, 

then a satisfies cp". If this second implication is true fo~ all a, i.e., if 

the expression [JaC[JbCo:bacpbcpa is true, then cpa is true: all numbers 
satisfy cp. The last a is a free variable and may be replaced by another 
letter, for instance c, and preceded by the universal quantifier~ The 
idea underlying this principle of ascent may be formulated as follows: 
"If a natural number satisfies <p on the assumption that all the preced
ing numbers satisfy <p, then all the natural numbers satisfy <p." 4

) 

4. All the properties of the relations e and iz, including the following 
theorems, can be deduced from these definitions and axioms by means 
of logical theses and rules: 

(11) Nizaa 

(12) CaabNabd 

principle of irrefiexivity of a, 

principle of asymmetry of a, 

{13) CaabCabcaac principle of transitivity of a, 

(14) CNaabCNabasab principle of trichotomy. 

We niay then derive the laws of addition, such as the commutative law: 

(15) ei;abi;ba, 
4) A principle of this kind was formulated by P. Bernays in bis article "Sur les 

questions methodologiques actuelles. de la theorie hilbertienne de la· demonstration", 
Les Entretiens de Zurich, 1941. Mr. Bernays writes (p. 149) that it is necessary to 
justify the following reasoning: "If a property B(rz) pertaining to an ordinal number rz 
holds for 0 (the least of all the rx's) and if it holds for rz provided that it also holds 
for the preceding ordinal numbers, then it holds for all rz". Mr. Bernays adds that 
this principle is a generalization of mathematical induction. Mr. Bernays's formula
tion, while not incorrect, is not qmte exai;:t: tlieconilition that B should hold for 
the least rz may be dropped. 
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the associative law in its ordinary form: · 

(16) si;i;abci;ai;bc, 

and the monotonic law: 

(17) Caabai;aci;bc. 

Of those theorems which are little known I quote the following: 
(18) CKaai;blabC~i~~:- - ·- -o-~~-,~-~-"··----------

which states: "If a is less than b plus l, and bis less than a plus 1, then a 
equals b". 

The two prillciples of mathematical induction, the strong and the 
weak, are also among the consequences of the system. The strong 
principle has the form: 

(19) C[JaCcpacpi;a1Ccp1cpa, 

and states: "If, for all a, if a satisfies <p then a plus 1 satisfie& <p, then, 
if 1 satisfies <p every number satisfies cp". The weak principle is a con
sequence of the strong and is written: 

(20) c[Jacpi;a1Ccp1cpa. 

Formula (20) states: "If, for all a, a plus 1 satisfies <p, then, if 1 satisfies <p 

every number satisfies cp". This principle, little known by mathema
ticians, is very useful in many proofs. I shall quote just one very simple 
example: 

As logical premisses we adopt the principle of simplification 

(21) CpCqp, 

and the principle of Duns Scotus-

(22). CpCNpq'. 

and as mathematical premisses we adopt the following two theses: 

(23) . ell (1 equals 1), 

(24) ali;al (1 is less than a plus 1). 

From these four premisses we can derive the principle of dichotomy 
by means of the weak principle of mathematical induction: 

(22)p/a1Cal, q/sli;al X C(24)- (25) 
(25) CNali;alslCal. 
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(26) 

(27) 

(28) 

(29) 
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(21) p/CNrxUaleICal x C(25)- (26). 
CqCNrxICaleICal. 

(26) n 2a x (27). 

Cq fl aCNrxICalelCal. 

(27) q/CpCqp x C(21)- (28). 

fl aCNciICalelCal. 

(21)p/e 11, q/Ncill x C(23)-(29). 
CNocllell. 

·-----tJ,O}q;fGN-<1-1'-e'--x.-ct28-}-Gfl9}-E30), ·· 
(30) CNoclaela. 

. . I hope that this derivation does not present any difficulty to the 
reader. The last transformation is the molt difficult: to carry out the 
substitution cp/CNocl' el' it is necessary to replace cp by the expression 
CNocl'el' andatthe same time to replace the apostrophes by the argu
ment ofcp. This yields the formula: 

(31) CflaCNcdCaleICaICCNocllellCNrxlaela, 

from which thesis (30) can be obtained by two detachments. 
Yet the most interesting are. the consequences of the principle of 

ascent. That _principle can be transformed, by purely logical means, 
into two other principles that are already known: the principle of the 
least number and Fermat'.s principle of descent. The principle of the 
least number has the following form: 

(32) Ccpa 2aKcpa fl bCocbaNcpb, 

. and states: "If a satisfies cp then there is a number a that satisfies cp, and 
for all b, if bis less than a, then b does not satisfy cp". This states simply, 
that if there is a natural number that satisfies cp, then there is always 
a least number satisfying cp. Fermat's principle of descent has a posi
tive and a negative form: 

(33) _CflaCNcp.a2bKocbaNcpbcpa positive form, 

(34). CflaO:pa2bKrxbacpbNcpa negative form. 

The positive form has the following meaning: "If for any number 
that does not satisfy a certain condifiOilthereiS'a smaller number which 
has the 'Same property, then every number satisfies that condition." 
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Analogously, the negative form means: "If for any number that sat
isfies a certain condition there is a smaller number which has the same 
property, then no number satisfies that condition." Principles (33) 
and (34) were used by Fermat in the proofs of several theorems in 
number theory. 5

) 

5. To give a sample of a formalized mathematical theory, I shall 
·-now prove that the principle of the least nunioer and the principle of 

descent are deductively equivalent to the principle of ascent. Then 
I shall derive from the last-named principle the law of irreflexivity 
of the relation cc. All the proofs will be based on the two-valued prop~~ 
sitional calculus and the functional calculus, and do not require any 
other mathematical thesis except for the principle of ascent. 

Axioms 

1 Cfl aCfl bCocbacpbcpacpa principle of ascent. 

Auxiliary theses of deduction theory: 

2 Cpp. 

3 CpCqp. 

4 CCqrCCpqCpr. 

5 CNNpp. 

6 CCpNqCqNp. 

7 CCNpqCNqp. 

8 CCpCqNqCpNq. 

9 CCpqCCqNrCrNp. 

10 CCNpqCCqrCNrp. 

11 CCNpqCCqNrCrp. 

12 CCpNqNKpq. 

13 CNCpqKpNq. 

14 CNCpNqKqp. 

5) W. W. Rouse Ball in A Short Account of the History of Mathematics, London, 
1940, pp. 296--298, quotes a letter by Fermat, kept in the Leyden University Li
brary, which proves beyond doubt that Fermat discovered both forms of the prin
ciple of descent mentioned above. 
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A. From the principle of ascent to the principle of the least number. 

14 pf IIbCabaNrpb, q/<pa x 15. 

CNC II bCabaNrpbN<paK<pa II bCabaN<pb. 

15 };2a x 16. 

:j 16 CNCJibCabaNrpbNrpa};aK<paIIbCrxbaN<pb. 

•::,•I' 7 p/CIIbCabaNrpbNrpa, q/};aKrpaIIbCabaN<pb 
x C16-17. ,

1
1 _ -------1-1-----·CN-ktzKrpa_[lbCabaNcpbS:,.[Lb_C~baNcpbNcpa. 

17 II2a x 18. 

I 18 CN,2aKipaJibCrxbaN<pbIIacIIbCabaNipbN<pa. 
'I 
'' 1 <p/N<p x 19. 

19 

20 

21 

22 

23 

24 

25 

C II aCII bCrxbaN<pbN<paN<pa. 

llpj};aK<paIIbCrxbaN<pb, q/JiaCIIbCrxbaNipbN<pa, 
r/<pa x C18 - Cl9 - C20. 

Crpa,2aKrpaJibCabaN<pb, the principle of the least 
number. 

B. From the principle of the least number to the principle of descent. 

12p/rxba, q/<pbX21. 
CCrxbaN<pbNKrxba<pb. 

21 IIlb x 22. 

cJibCrxbaNipbNKrxbaipb. 

6p/JibCrxbaN<pb, q/Krxba<pb x C22-:--23. 

CKabaipbNJibCrxbaN<pb. 

23 ,21bx24. 

C})bKabaipbNIIbCrxbaNipb. 

4 q/};bKaba<pb, r/NJibCrxbaN<pb,p/cpa x C24-25. 

CCipa};bKabaipbC<paNJibCrxbaN<pb, 

~~----------F.2-pfcpa,-qf-[Jb-CabaN<pb-X--26 .... 

26 CC<paNJibCabaNrpbNKipaJibCabaN<pb: 
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4 q/CcpaNIIbCrxbaN<pb, r/NKcpaIIbCabaN<pb, -

p/Crpai,bKrxba<pb x C26- C25 - 27. 

27 CCrpa};bKabarpbNKrpaJibCabaNipb. 

27 JIIa X 28. 

28 · - CUaCpa};bKab'!.<pbNKrpa[IbCrxb(lU_~<p"'"""b_. _________ _ 

6p/JiaCipa,2bKabarpb,q/K<paIIbCabaN<pb X C28-29. 

29 CKipaJibCabaN<pbNJiaCipa_2bKaba<pb. 

29 _21a x 30. 

30 C,2aKipaJibCabaN<pbNJiaCipa,2bKrxba<pb. 

9 p/<pa, q/,2aK<paJibCabaN<pb;r/JiaCcpa,2bKrxba<pb x 
. . x C20- C30- 31. 

31 _ CJiaCipa};bKabacpbNcpa, the principle of descent, 
- negative form. 

31 <p/N<p' x 32. 

32 CJiaCNipa};bKabaN<phNN<pa. 

5 p/<pa x 33. 
33 CNN<pacpa. 

4q/NN<pa, r/rpa,p/JiaCNcpa,2bKabaNipb x C33-
C32- 34. 

34 cJiaCNcpa,2bkabaN<pbcpa, the principle of descent, 
positive .form. 

C. From the principle of descent to the principle of ascent. 

13 p/rxba, q/<pb X 35. 
35 CNCabacpbKrxbqNcpb. 

35 };2b x 36. 

36 CNCabacpb };bKabaNrpb. 

7 p/Caba<pb, qf};bKabaNcpb x C36-37. 

37 CN };bKrxbaNrpbCabarpb. 

---------------------------~- -·-~--·-,-----------------· ___ , _______ _ 
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39 

40 
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37 n2b x 38. 

CN°2,bKabaNcpbllbCabacpb. 

IOp/°2,bKabaNcpb, qfllbCabacpb, rfcpa x C38-39. 

CCllbCabacpbcpaCNcp°2,bKabaNcpb. 

39 n1a, n2a x 40. 

C ll aC bCabacpbcpa ll aCNcpa °2,bKabaNcpb. 

4 q/ TiaCNcpa°2,bKabaNcpb, r/cpa,pfllaCllbCabacpbcpax 
--- -e34 - C40-l. 

C ll aC ll bC abacpbcpacpa, the principle of ascent. 

Since the principle of the· least number results from the principle 
of ascent, the principle of descent results from the principle of the 
least number, and the principle of ascent results from· the principle 
of descent, these three principles are deductively equivalent to one 
another. 

41 

42 

43 

44 

45 

46 

D. From the principle. of ascent to the irreflexivity of a. 

2p/CabaNabb x 41. 

CCabaNabbCabaNabb. 

41 lllb x 42. 

CllbCabaNabbCabaNabb. 

42 b/a x 43. 

CllbCabaNabbCaaaNaaa. 

8p/llbCabaNabb, q/aaa x C43-44. 

C llbCabaNabbaa~. 

3 p/CllbCabaNabbNaaa x C44- 45. 

CqC ll bCabaNabbN r.iaa. 

45 ll2a x 46. 

CqllaCllbCabaNabbNaaa. 

~~~~-~~----·46-q/Cpc;;qp-x-~--41-.-·----··--· 

47 [JaCllbCabaNabbNaaa. 

48 

49 
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1 cp/Na x 48. 

C ll aC llbCabaNabbNaaaN aaa. 

48 x C47-49. 
Nrxaa, the principle of irrefle.Xivity of rx.6) 

·-------··------
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I do not think that it would be possible to derive the theorems proved 
in this contribut10n williout the powerful fastrument of symbolic 1trgic 
and without the formalization of proofs. 

") C. A. Meredith has proved that the principle of ascent can be derived from the 
principle of asymmetry of ri:, that is, a principle stronger than that of irrefiexivity. 
His proof has not been published so far. 
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A SYSTEM OF MODAL LOGIC*) 

The present essay consists of two parts: the fust contains general remarks on systems 
of modal logic, the second is an exposition of a new modal system. · · 

I 
I 

1. What is modal logic. A logical system is usually called "modal 
logic", if there occur in it modal expressions such as "possible" or 
"necessary". Instead of this rather vague characterization I shall try 
to give a precise definition of modal logic according to the tradition · 
initiated by Aristotle. 

First I shall explain what I understand by "basic modal logic". I am 
calling thus a system containing the expressions: 

"It is possible that p" denoted by "Lip", 
and 

"It is necessary that p" denoted by "I'p", 

if and only if they satisfy the following eight conditions: 

I. The implication "If p, then it is possible that p" is asserted, in 
symbols: 

1.1 · f-CpLlp. 

"C" means "if - then", ''p" is a propositional variable, and "f-" is the 
sign of assertion. 1) 

II. The implication "If it is possible that p, then p" is rejected, in 
symbols: 

1
) The idea of assertion and its sign "I-" were introduced into logic by Frege 

I in 1879, and afterwards accepted by the authors of the f'rincipia Mathematica. In my 
I pre~ous papers I always omitted this sign, but here I am bringing it in because, 

.! . besides assertion, I introduce rejection. 

..... ~~~~----,"'):First puofiS'iieaillt:re Joumaliif ComputTng Systems, i (1953), pp. 111-149. 
Polish translation is included in the 1961 edition Z zagadniefz logiki i filozo/ii. 
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1.2 -jCLlpp. 

"-j" is the sign of rejection. 2) 

Ill. The propos~tion "It is possible that p" is rejected, in symbols: 

1.3 -jLlp. 

IV. The implication ''If it is necessary that p, then p~ is asserted, 

insymbohr-. ---------
1.4 f-CI'pp. 

V. The implication "If p, then it is necessary that p" is rejected, in 
symbols: 
1.5 -jCpI'p. 

VI. The proposition "It is not necessary that p" is rejected, iu symbols: 

1.6 -iNI'p. 
"N" means "not". 

VII. The equivalence "It is possible that p - if and only !-f :___ it is 
not necessary that not p" is asserted, in symbols: 

1.7 f-EIJpNI'Np. 

"E" means "if and only if". In my symbolic notation the functors are 
always put before their arguments. 

VIIl. The equivalence "It is necessary that p - if and only if - it 
is not possible that not p" is as_serted, in symbols: 

1.8 f-EI'pNiJ.Np. 

The first condition corresponds to the principle: Ab esse ad posse 
valet consequentia. 

The second condition corresponds to the saying: A posse ad esse 
non valet consequentia. 

The third condition states that not all formulae beginning with iJ. 
are asserted, because otherwise iJ.p would be equivalent to the function 
"verum of p" which is not a modal function. 

The fourth condition corresponds to the principle·: Ab oportere ad 

esse valet consequentia: 
2) The idea of rejection was tD.troduced into logic by myself in 1951. See J. Luka

siewicz, Aristotle's Syllogistic from the Standpoint of Modern Formal Logic, Oxford, 
1951, p. 109. I denote rejectfon by an inverted sign of assertion following a suggestion 
of Iva Thomas. · 
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The fifth condition corresponds to the saying: Ab esse ad oportere 
non valet consequentia. 

The sixth condition states that not all formulae beginning with NI' 
are asserted, because otherwise I'p would be equivalent to the function 
"falsum of p" which is not a modal function. 

The last two conditions are evident relations between possibility 
and necessity. 

The above conditions, except perhaps the third and the sixth, which 
seem to be unknown to the traditional logicians, are embodied in the 
following "square of modalities". 

NLJNp=lp NLJp=INp 
contrarietas 

LJp = NrNp 
subcontrarietas 

LJ.Np =Nip 

I call a system "modal logic" if and only if it includes the basic 
modal logic as its part. 

I accept throughout the paper that both LI and I' are proposition
forming functors of one propositional argument, and that both Lip 
and I'p are truth-functions, i.e., their truth-values depend only on the 
truth-values- of tlfeir arguments. As there exists in the two-valued logic 
no functor of one argument which would satisfy;. the formulae 1.1, 1.2, 
and 1.3, or 1.4, 1.5, and 1.6, it is plain that the basic modal logic, and, 
consequently, every system of modal logic' is a many-valued system. 

F""~~~~---..... ~AcxifJmatization-of-the-basie-modal-logia.· The- next step to throw 
some light upon the modal logic is to axiomatize the basic modal logic 

i 

·---~-~---,·-~·--~,·~·~-~~~-H·---,_~,-----

A SYSTEM OF MODAL LOGIC 355 

on the groUD.d of the classical calculus of propositions.· It can be easily 
seen that of the tw.o modal functors, Lip and I'p, one may be taken as 
the primitive term, and the ·other can be defined. Let us t;:i.ke LI as the 
primitive term. It would seem that, accepting the first three LI-formulae 
as axioms, we could deduce from them the remaining four I'-formulae. 
This is, however, not the case: formula 1.7, which contains besides LI 
the-defined-functor-E,-eannot-he-gotin. this way, .and-m11St-be-a.1;1GG;i;efB:fJttt€l*'dr-----
axiomatically. It is not elegant to use defined terms in axioms; we take, 
therefore, as the fourth axiom, instead of 1.7, the formula ELlpLlNNp, 
which is equivalent to ELlpNI'Np. We get thus the following set ·of 
axioms: 

2.1 f-CpLlp (= 1.1), 

2.2 -jCLlpp (= 1.2), 

2.3 -jLlp (= 1.3), 

2.4 f-ELlpLINNp. 

I'p is defined by the equivalence: 

2.5 
DfI'p x 2.5. 
rEI'pNLlNp. (= 1.8). 

I accept the usual rules of substitution and detachment for the assert
edJormulae. The analogous rules for the rejected expressions run thus: 

(a) Rule of substitution: If a is rejected, and a is a substitution of /3, 
then f3 must be rejected. 

(b) Rule of detachment: If Caf3 is asserted, and f3 is rejected, then a 
must be rejected. 

Both rules are evident. Rule (a) is applied below to prove 2.11 and 
2.14, rule (b}to proye 2.10 and 2.13. 

The deduction. 3) 

Auxiliary formulae of the propositional calculus: 

Tl 
T2 
T3 

f-CEpNqEErNpErq. 
f-CEpqCqp. 
f-CEpNqCCNrqCpr. 

3) For an explanation of the symbolism used in the deduction see my book on 
Aristotle's Syllogistic, pp. 81 and 96. ISee also p. 342 of this volume.] 
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Derived formulae of the basic modal logic: 

2.6 

2.7 

2.8 

2.9 

2.10 

2.11 

2.12 

2.13 

2.14 

Tlp/I'Np, q/ilNNp, r/ilp x C2.5p/Np- 2.6. 
f-EEilpNI'NpEilpilNNp. 

T2p/ELJpNI'Np, q/EilpilNNp x C2.6-C2.4-2.7. 
'r-EilpNI'Np (= 1.7). 

T3 p/I'p, q/ilNp, r/p x C2.5 - C2.lp/Np -2.8. 
f-CI'pp (= 1.4). 

T3p/ilp,q/I'Np,r/p x C2.7-2.9. 
f-CCNpI'NpCilpp. 

2.9 x C2.I0-2.2. 
-jCNpI'Np. 

2.10 X 2.llp/Np. 
-j CpI'p ( = 1.5). 

T2p/iJp, q/NI'Np x C2.7-2.12. 
f-CNI'Npilp. . 

2.12 x C2.13-2.3. 
-l,NI'Np. 

2.13 x 2.l4p/Np. 
-jNI'p ( = 1.6). 

Any of the four iJ-axioms is. independent of the remaining three. 
This is easy to prove for the :first three axioms. We take for C and N 
the normal two-valued matrix M 1, and show the independence of 2.1, 

cf 1 2 [N 

*1 11 212 
2 1 1 I 

M1 
2.2 and 2.3 by interpreting ilp as Np, p and· Vp respectively. I shall 
explain the last proof. Vp, i.e., "verum of p'', has for all truth-values 
of p the asserted truth-value of 1. If i1p = Vp, then ilp = 1, 
since Vp = 1. i1p, therefore, is asserted, i.e., axiom 2.3 is n0t verified. 
Axiom 2.I is ·verified, because Cpi1p = Cpl = I; similarly, 2.4 is 
verified, because Ei1pi1NNp =Ell = 1. From Ci1pp we get for p/2: 

~~~~~---GA-2-2--~GI~~--2,a:nd-as-2-is-i:ejected, Gi1pp ·is rejected too. All our 
axioms are verified by the matrix M1 and the int~rpretation i1p = Vp 

' ,~ .. ·-· _,._ 

-~· 

.i! ,.. 

l 
1· 

. .f 
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except 2.3 which, theryfore, is independent of the ~emaining axioms. 
The other proofs are of a similar kind. 

The proof of independence of the fourth axiom requires a three
valued matrix, Af2•

4
) M2 verifies the C-N-axioms of the classical cal-

C[l23/N/i1/I' 
1- ·1 2 3 3 I 1 
2 I 1 I 1 1 3 
3 1 1 I I 3 3 

Mz 

culus of propositions, il is defined independently, and I' is got from N 
and il according to the definition 2.5. 1 is the asserted truth-value, the 
other. truth-values are rejected. It can be easily seen that Cpilp is 
asserted. Ci1pp is rejected, because we have for p/2: Ci122 = C12 = 2. 
Similarly, ilp is rejected, because for p/3 we have iJ3 = 3. The. axioms .,,,. 
2.1, 2.2 and 2.3 are thus verified, but axiom 2.4 is not verified, because 
its consequence CtJpANNp is rejected for p/2: CL12ilNN2 = CIANI = 
CIA3 = C13 = 3. Since 2.4, i.e., ELlpANNp, is equivalent to ELlpNI'Np, 
this last formula is not verified too. Formula CpI'p is also not verified, 
since it must be asserted according to the matrix, whereas it should be 
rejected._ It is clear, therefore, that axiom 2.4 is indispensable for the 
axiomatization of the basic modal logic. 

We get a corresponding set of axioms of the basic modal logic, if 
we take I' as the primitive term and accept as axioms the following 
four I'-formulae: 

2.15 

2.16 

2.17 

2.18 

f-CI'pp (= 1.4), 

-jCpI'p (= 1.5), 

-jNI'p (= 1.6), 

f-EI'pI'NNp. 

L1 is introduced by the definition: 

Df ilp x 2.19. 
2.19 f-,-ELlpNI'Np (= 1.7). 

Formula EI'pI'NNp is equivalent to EI'pNi1Np. This can be proved 
by Tl in the same way as the equivalence of EilpiJNNp and ELlpNI'Np, 

4
) I owe this matrix to C. A. Meredith. 

_ ____ ......__, ... ---. ---· 
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by interchanging in 2.6 the Li's and I''s. 2.18 is independent of the 
remaining axioms. The proof is given by the matrix M3 with two asserted 
truth-values, which veriiies the C-N-axioros of the classical calculus 

cl 1 2 3 IN\r 
*1 1 2 3 3 1 
*2 1 1 3 3 3 

3 121 1 3 
M3 

of propositions and the-axi:omr2:15=2:t7;---but-uoes not verify 2.18, 
as the consequence of 2.18, CI'NNpI'p, is rejected for p/2: CI'NN2I'2 
=CI'N33 = CI'13 = Cl3 =.3. 

3. Aristotle's theorems of the propositional modal logic. It is a pity 
that the formulae of the modal square never were correctly axiomatized 
on the basis of the classical calculus of propositions, and that even . 

"the problem of such an axiomatization never was clearly seen.5
) Nobody, 

therefore, could observe that two odd formulae are hidden in the square, 

viz.: 
ELlpLINNp and EI'pI'NNp 

which are indispensable for a correct axiomatization. These formulae 
throw a light on the modal logic just because of their similar shape: 
they suggest the idea that there roust be a general principle independe~t 
of the modal square from which. they may be deduced. There are still 
other reasons to suppose that the basic modal logic is not complete 
and requires the addition of some new principles. So, for instance, we 
believe that if a conjunction is possible, each of its factors should be 

possible, in symbols: 

3.1 · f--CLIKpqLlp, 

3.2 f--CLIKpqLlq; 

and if a conjunction is necessary, each of its factors should be necessary, 

in symbols: 
") The only logician, so far as I know, who saw this proble°:1 and tried ~o solve 

it, was I. M. Bochenski. His solution, however, is not correct, ~m~e ;:ie eqm~alence 
"'"'---~~--~NpN:i!Nris-J:J.et-deducible..from..his_~oros ... See_LM. Bochenski, La logique de f' Thfophraste", Collectanea Friburgensia, Fasc. 32, Fribourg en Suisse 1947, P· 92 

i: Sect. 31. . 
i' 

3.3 

3.4 
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f-- CI'KpqI'p, 

f-- CI'KpqI'q. 

j 
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None of these formulae can be deduced from the modal square, i.e., 
from the basic modal ·system. 

It is strange enough that the only two theorems -of the modal logic 
whiGh-Afl~tt>tle-expressly-states-with --pi:~nal variables can be 
interpreted so as to give us the general principle we are looking for. 
Referring to his syllogisms, Aristotle writes in the Prior Analytics: 
!'If one should denote the premisses by a, and the conclusion-tiY-,B;Tf 
would not only result that if a is necessary, then fJ is necessary, but 
also if a is possible, then {J is possible."6

) There are two different ways 
of interpreting these theorems as formulae of modal logic, although 
it is highly improbable that Aristotle was aware of their difference. 
Let us explain these two interpretations. 

All the Aristotelian syllogisms are implications of the form Ca{J 
where a is :the conjunction of the two premises and {J the conclusion. 
E.g., "If all a is b and all bis c, then all a is c", in symbols: 

CKAabAbc Aac. 1) 

'T 
According to the above quotation, we get two modal theorems taking 
Cafr as the antecedent, and CLlaLlfJ or CI'aI'{J as the consequent, 
in symbols: 

3.5 f--CCa{JCLlaLl{J 
and 
3.6 f--CCa{JCI'aI'{J. 

The letters a and {J stand here for -the premisses and the ·conclusion 
of an Aristotelian syllogism. We may treat these theorems as special 
examples of general principles which we get. by replacing the Greek 
letters by propositional variables: 

3.7 
and 

f--CCpqCLlpLlq 

6) An. pr., A 15, 34az2: et -rt<; .&e:l'l) -ro µev A -rd<<; 7tpo-r&cm<;;, -ro 81: B -ro 
auµTCepotcrµoc, auµ~oc(vot &v ou µ6vov &vocr-lou -rou A llv-ro<;; &µot ~Clt i:o B e!vott 
iXVCl"'(XCli:\)V, <iMcX l<:<Xt auvcxTOU auvcx-r6v. • 

') See my book on Aristotle's Syllogistic, pp. 20 ff. 
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3.8 'r-CCpqCI'pI'q. 

This is the first interpretation. The principle for LI. seems to be con
firmed lJY AristotJ,e himself in a second passage which reads quite gen
erally: "It has been proved that if (if a: is, fJ is), <then (if a: is possible, 
pis possible). " 8) Formula 3.7 is accepted as Aristotelian by A. Becker 

· and I.M. Bochenski. 9) 

we get a second interpretation if we draw attention to the fact that 
according to Aristotle the co:nµection between the premisses rx of a syllo
gism and its conclusion f3 is necessary. This gives us the special theorems: 

3.9 

and 

3.10 

'r-CI'Ca:f3CLI a:Ll{l 

'r-CI'Crxf3CI'a:I'f3, 

which we may extend into the principles: 

3.11 

and 

3.12 

'r-CI'CpqCLlpLlq 

'r-CI'CpqCI'pI'q. 

The principle 3.11 for LI seems to be corroborated by Aristotle himself, 
as we read at the beginning of the same chapter where the other modal 
theorems .occur: "First it has to be said that if (if a: is, f3 must be), then 
(if a is possible, f3 must be possible too)."10

) The second "must" evi
dently refers to the necessary connection between the antecedent and 
the consequent, but the first "must" seems to state a necessary con
nection between rJ. and f3 in the antecedent. There is no reference to 
a syllogism. 

The fo~ulae got by ili,e first interpre,tation are stronger than those 
got by the s_econd, as it is shown by the following deduction:_ 

8) Ibid. 34a29: 8s8e:tX't"IXL O't"t el 't"OU A OV't"O<; 't"O B fo't"t, xo:t 8uvO:'t"OU ono<; 't"OU 
A ifo't"a;t -i:o B ouvo:-i:6v. 

9) See A. Becker, Die Aristotelische Theorie der Moglichkeitsschlusse, Berlin, 1933, 
p. 42 note, and I. M. Bochenski, "Ancient Formal Logic," Studies in Logic and the 
Foundations of Mathematics, Amsterdam, 1951, p. 71. Both authors refer to the 

~---~---1passage-341!5~quotecLin..no.te-LQ-~q,ther...supports.the .. second interpretation. 
10) Ibid. 34a5; 7tpw't"oV oE: :Ae:x't"fov 5,., d 't"OU A ilv,.o.; &v&yx7J, -i:o B e:~vooi, xoot 

ouvoo't"oU llv,.o.; -i:oD A ouvoo't"ov ""'"°'" xc:d ,./, B ~1; &v&yx7J<;. . 

T4 

1.4 

3.11 
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'r- CCpqCCqrCpr. 

'r-CI'pp. 
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T4p/I'Cpq, q/Cpq, r/CLlpLlq x Cl.4p/Cpq- C3.7 -3.IL 
'r- CI'CpqCtlpLlq. 

T4p/I'Cpq, q/Cpq, r/CI'pI'q x Cl.4p/Cpq-C3.8-3.12. 
3-:Tz---~F-'CI'CpqCrpI'q. 

We see that 3.11 follows from 3,7 and 3.12 from 3.8 by means of 1.4 
and the principle of the hypothetical syllogism T4. The converse . de-. 
duction is not valid. This can be proved by the matrix M4 which results 
for C and N from the multiplication of M 1 by itself, verifies the C_;_N
axioms, the basic modal system, and the formulae 3.11 and 3.12, but 
does not verify 3.7 and. 3.8, as we have for p/4, .q/2: CC42CLl4Ll2 

= CIC32 = CI2 = 2, and for p/3, q/I: CC31CI'3I'l = CIC32 
= CI2=2. 

cj 12 3 4 iN!r!LI 
*1 1 2 3 4 4 2 1 
2 1 1 3 3 3 2 2 

3 1 2 1 2 2 3 3 

4 1 I 1 1 1 4 3 

M4 

4. Possible extensions of the basic modal logic. All the four newly 
introduced principles, the stronger 3.7 and 3.8 as well as the weaker 
3 .11 and 3 .12, are independent of the basic modal system on the ground 
of the classical calculus ·of propositions. It suffices to prove this for 
the weaker principles, because if these are shown to be independent, 
the stronger must be independent too. The proof is given by the eight
valued matrix M 5 which results for C and N from the multiplication 
of the matrix M 1 by the matrix M 4 • M 5 verifies the C-N-axioms and 
the basic modal logic, but does not verify 3.11 and 3.12, as we get for 

p/5, q/6: 
CI'C56CLl5Ll6 = CI'2CI6 = C26 = 5 

anci for p/3, q/4: 
CI'C34CI'3I'4 = CI'2C38 = C26 = 5 
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cl12345678jNlrlL1 

*1 1 2 3 4 5 6 7 8 8 1 1 
2 1 1·3 3 5 5 7 7 7 2 1 
3 1 2 1 2 5 6 5 6 6 3 1 
4 l 1 1 1 5 5 5 5 5 8 1 
5 1 2 3 4 1 2 3 4 4 8 1 
6 1 1 3 3 1 1 3 3 3 8 6 
7 1 2 1 2 1 2 1 2 2 I 8 7 
8 1 1 1 1 1 1 1 1 1 8 8 

M,----:------- ... 

The new principles are not only independent of, but also consistent 
wi:th the basic modal logic on the ground of the C-N-system. The proof 
of consistency is given by the matrix M 6 which is identical with M 4 

cj 123 4 jNJrlLI 

*1 1 2 3 4 4 2 1 
2 1 1 3 3 3 2 1 
3 1 2 1 2 2 4 3 
4 1 11 1 1 4 3 

M6 ,I 
JI for C and N, but different for I' and LI. M 6 verifies the C-N-axioms, 
!I the basic modal logic, and all the ;four principles got by interpretation 
j! Df Aristotle's modal theorems. Any such principle, when added to the 
:1 basic modal logic, will expand this system into a fuller one. 
rr 
11 The formula CEpqC</Jp</Jq is called in logic ''the principle of exten-

sionality for </J". In a wider sense we may also thus call the formulae 

II
: CCpqC</Jp</Jq and CCpqC<fJq</Jp, because we get from them by CEpqCpq 

or CEpqCqp and the hypothetical syllogism the principle CEpqC<fJp</Jq. 
ill For instance, the principle of transposition CCpqCNqNp is in a wider 
ii sense a principle of extensionality for N, because we get from it the 
j! formula CEpqCNpNq. The principles CCpqCLlpLlq and CCpqCI'pI'q 
11 are in a wider sense principles of extensionality for LI and I'. 

1

,11 h . T ese two pnnciples are equivalent to each other on the ground 

1

1 of the C-N-system and the basic modal logic. Starting from 3.7 
'i/Fi1i=~~~-~~CCC12-q.Cb!~q~et 3.8..Qy means of tl!~.91Jl'.IJ.Vi;l,e: 

Ill T5 ~- CCNqNpCrsCCpqCNsNr. 

1: 

i 
l 

T6 

2.5 

4.1 

3.8 
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f-- CEsqCEtrCCpCqrCpCst. 

f-- EI'pNLINp. 

T5 r/LlNq, s/LlNp X C3.1p/Nq, q/Np'-4.1. 
f-- CCpqCNLlNpNLlNq. 

T6 s/I'p, q/NLlNp, t/I'q, r/NLJ.Nq,p/Cpq x C2.5-
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. C2.5p/q-C4.1:-3.8. 

f-- CCpqCTpI'q. 

The converse deduction from 3.8 to 3.7 can be performed in the same 
way by interchanging L1 and I'. 

If we add_3.7 to the LI-axioms of the basic modal logic we get by the 
laws of the C-N-system the formula ELlpLINNp: 

T7 

T8 

T9 

4.2 

4.3 

2.4 

f-- CpNNp. 

}- CNNpp. 

f-- CCpqCCqpEpq. 

3.7 q/NNp X CTI - 4.2. 
f-- CLJ.pLlNNp. 

3.7 p/NNp, q/p x CT8 - 4.3. 
f-- CLlNNpLlp .. 
T9 p/Llp, q/LINNp x C4.2- C4.3 -2.4. 
f-- ELlpLINNp. 

In the same way we can prove EI'pI'NNp starting from 3.8. 
Owing to the stronger interpretation of the Aristotelian theorems 

we have found in the principle of extensionality .for modal functors 
the general law from whic::h the formulae ELlpLINNp and EI'pI'NNp of 
the modal square can be deduced. 

The extended modal system which arises by the addition of 
CCpqCLlpLlq to the basic modal logic and is expounded in the second 
part of this article is the simplest complete modal logic with an adequate 
four-valued matrix. It is, in my opinion, both logicaUy and philosophi
cally of the highest importance. Nevertheless, it is wholly unknown. All 
the existing systems of modal logic, as far as I see, extend the basic 
modal logic by weaker principles, assuming either such formulae as 
CI'CpqCI'pI'q or CI'CpqCLlpLlq which correspond to the weaker inter
pretation of the Aristotelian theorems or rules of extensioriality instead 
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of principles. The principles of extensionality for modal functors 
are not accepted. In Von Wright's system, for instance, formula 
CCpqCNAqNAp, which is equivalent to CCpqCApAq, is expressly 
disproved.11

) All these modal systems are possible extensions of the basic 
modal logic and may have their own nieniS; perhaps we shall be able 
to decide some day which of them is the best. 

part presupposes the classlcfilcaJ.Ciilus of propositions, accepts A as 
I , the only primitive modal term, and is built up on the basic modal logic 

',II with the addition of only one new modal principle, viz., the strict prin-
ciple of extensionality for A. 

II I The general principle of extensionality, taken sensu stricto, has the 
11 form: 
! 5.1 1- CEpqCtJp(Jq 

ii' >Yhere o is a variable functor.12) This piinciple I extend to the modal 
l

11

l.li

1 

functor A getting thus the formula: 
~ 5.1 (JjiJ' x 5.2, 
I~ 5.2 I- CEpqCApAq. 
ji Formula 5.1 seems to be intuitively evident. We say that if p and q are 
1! equivalent to each other, then "If p is true, q is true", and "If p is false, 
: i q is false"; so we may also say that under the same condition "If p is 
',,I, possible, q is possible". Von Wright accepts in his system the rule of 

extensionality: 
I 5.3 I- Er£(3---+ I- EAr£Ll(3, 

/ in words: "rf. if and only if (3; therefore, r£ is possible, if and only if f3 
ii is possible."13

) The arrow is the sign of "therefore". Rule 5.3 follows 
1

1

;1

11

1 from the formula 5.2. 
11

) See G. H. Von Wright, "An Essay in Modal Logic," Studies in Logic and the 
111 Fowulations of Mathematics, Amsterdam, 1951, p. 22/23. 

l
'i 12

) A short explanation of a-substitution and a-definition is given in the Appendix. 
fl For a detailed explanation see J. Lukasiewicz, "On Variable Filnctors ·of Proposi-
11 tional Arguments,'' Proceedings of the Royal Irish Academy, vol. 54 A 2, Dublin, 

#-j~ -----~--~..._19....,5L.[See..pp...3.U=324-o:Lthis~wlume.J-----·----· ........ , .. . 
1
j H) See Von Wright, I. c,, p. 85. The s~bolism and wording is mine. 
' ',1 

II 
'i 
!1 
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The general principle of extensionality 5.1 must be accepted in the 
L-modal system, as- it is valid for all functors of one argument of the 
classical calculus of propositions, and is admitted for the modal functor 
A. This leads ti:ra simplification of the axiom-set of the system. From 
5.1 by means of the formulae of the classical C-N-system: 

TIO 
Tll 

T12 

TB 

1- CCpqCpCrq, 

f- CCpCqrCpCqCsr, 

f- CCprCCqrCApqr, 

I- AEpqENpq, 

we get the following consequences: 

5.4 
TlOp/ENpq, q/CtJNpoq, r/tJp x C5.lp/Np-5.4. 
1- CE}[pqCtJpCtJNptJq, 

5.5 
Tllp/Epq, q/tJp, r/tJq, s/tJNp x C5.l -5.5; 
~ CEpqCtJpCdNptJq. 

T12 p/Epq, r/CtJpCtJNpdq, q/ENpq x ·C5.5 - C5.4-
CT13 - 5.6. 

5.6 ~ CtJpCtJNptJq. 

It was shown by C. A. Meredith-in an unpublished paper-that 
formula 5.6 may be taken as the sole axfom of the ciassical C-N-tJ-p
calculus, i.e., the classical C-N-calculus of propositions extended by the 
addition of variable functors. I accept, therefore, as the first axiom of 
the L-modal system the formula: 

1 I- CtJpCtJNptJq. 

From this axiom I derive by substitution and detachment the three 
axioms of the C-N-system:14) 

22 /- CCpqCCqrCpr, 

20 1- CCNppp, 

10 ·~ CpCNpq, 

the principle of extensionality: 

73 I- CEpqCtJptJq, 

14
) Formulae marked with numbers without the decimal point are given in 

Appendix. 
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and the fourth axiom of the basic modal logic, 2.4: 

89 f- EiJpiJNNp. 

The other three axioms of the basic modal logic are independent of 
axiom 1, and must be taken axiomatically: 

2 

3 

4 

f- CpiJp, 

-1 CiJpp, 

-1 iJp, 

so that our modal system is based on four axioms: 1, 2, 3 and 4. As rules 
of inference I accept the rules of substitution andaefaclllnent for asserted 
and rejected formulae. 

The proofs of independence are the same as in the basic modal logic. 
The independence of axiom 1 is proved by the matrix M 2, because we 
have for b/iJ' and p/2, q/3: CiJ2C1N2iJ3 ·= C1C113 = C1Cl3 
= C13 = 3. 

The Aristotelian principle: 

3.7 f- CCpqCiJpiJq 

which is a principle of extensionality in a wider sense, is stronger than 
th~ strict princip~e of extensionality 5.2. Nevertheless, it is deducible 
in our system by means of the law 

30 f- dCpqCbpbq, 

a consequence of the axiom 1. We get from this law by substitution 
b/LJ' the formula": 

77 f- CiJCpqCiJpiJq, 

and_ as CCpqiJ Cpq is true according to our axiom 2, we get 

78 f-CCpqCiJpiJq 

by the help of the syllogism. We may say, therefore, that our system 
, arises from the bask: modal logic by the addition of an Aristotelian 
,, 

l principle. 

I 6. Matrix of the L-modal system. We get an adequate matrix of the 
l 
:'l! • L-modal system by "multiplying" the matrices M 7 and M8, both iden-
r,_! ~--~~~--itjh-·"·ca:l-witlrthe·-adequa-te-matm-MrGf-the-twe-valued calculus, but with 
fl • different figures as elements in order to avoid misunderstandings. The 
·1 

:1 
I, 

I 
!/ 
II 
II .. ___ . 

_, __________ ·-----
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figures 5 and 7 marked by an asterisk_ are the selected elements, i.e., the 
asserted values, 6 and 8 are rejected. 

C[ 5 6 jN cl 1 8 IN 
*515 616 
6 5 5 5 

M1 

The process of multiplication can be described as follows: 
First, we form ordered pairs of elements of both matrices by combin

ing an element of M 7 with an element of Ms; we get thus four combi
nations: 

*(5, 7); (5, 8), (6, 7), (6, 8). 

These combinations are the elements of the new matrix. The selected 
element is (5, 7), as 5 and 7 are the, selected elements of the original 
matrices. 

Secondly, we determine the truth-values of the functions C, N and iJ 
by means of the following equalities (a, b, d represent the elements 
of M7, x, y, z the elements of Ms): · 

6.1 C(a, x) (b, y) = (Cab, Cxy), 

6.2 N(a, x) = (Na, Nx), 

6.3 LJ(a, x) = (a, Cxx). 

Substituting for a and b the values 5 and 6, for x and y the values . 
7 and 8, and evaluating the functions on the right according to the 
p:J.atrices M 7 and Ms, e.g.: C(6, 7) (6, 8) = (C66, C78) = (5, 8), we get 
from these equalities the following matrix Mg: 

c I (5, 1) (5, 8) (6, 1) (6, 8) 

*(5, 7) (5, 7) (5, 8) (6, 7) (6, 8) 
(5, 8) (5, 7) (5, 7) (6, 7) (6, 7) 
(6, 7) (5, 7) (5, 8) (5, 7) (5, 8) 
(6, 8) (5, 7) (5, 7) (5, 7) (5, 7) 

Mg 

N 

(6, 8) 
(6, 7) 
(5, 8) 
(5, 7) 

(5, 7) 
(5, 7) 
(6, 7) 
(6, 7) 

Mg is an adequate matrix of the system, i.e., it verifies all its formulae 
and no other formulae besides. This can be seen bythe following consid
eration. 

First, M 9 verifies the axioms of the C-N•calculus, CCpqCCqrCpr, 
CCNppp, and CpCNpq. Putting in these axioms for the variables arbi-



\ 
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trary elements of the matrix, (a, x), (b, y), and (d, z), we get by means 
of 6.1 and 6.2 the following equalities: 

6.4 CC(a, x)(b, y)CC(b, y)(d, z)C(a, x)(d, z) 
= C(Cab, Cxy)C(Cbd, Cyz)(Cad, Cxz) -
= C(Cab, Cxy) = (CCbdCad, CCyzCxz) 

6.5 

6.6 

= (CCabCCbdCad, CCxyCCyzCxz) = (5, 7). 

CCN(a, x)(a, x)(a, x) = CC(Na, Nx)(a, x)(a, x) 
= C(CNaa, CNxx)(a, x)(CCNaaa, CCNxxx) = (5, 7). 

C(a, x)CN(a, x)(b, y) = C(a, x)C(Na, Nx)(b, y) 
------~-------=-=-C(a:;x){eNrib-,eNxy){eaeNab-;CxCNxy)= (5, 7). 

The final result in all cases is the selected element (5, 7) of M 9, as 
CCabCCbdCad, for instance, -always gives 5 according to M 1, and 
CCxyCCyzCxz always gives 7 according to M8• _ 

Secondly, M 9 verifies the axioms 2, 3, and 4. We have by 6.land 6.3: 

6.7 C(a,x)Ll(a,x)= C(a,x)(a,Cxx)= (Caa, CxCxx)= (5, 7). 

6.8 CLl(a, x)(a, x) = C(a, Cxx)(~, x) = (Caa, CCxxx), 

which gives (5, 8) for x/8, a rejected eiement of M 9 • 

6.9 Ll(a, Cxx), 

which gives (6, 7) for a/6, again a rejected element of M9. 
Thirdly,. in order to prove that CopCoNpoq is verified by M 9, it 

suffices to show that the principle of extensionality CEpqCopoq or 
CCpqCCqpCopoq is verified by Mg for all functors of one argument 
definable by M 9• There are 16 such functors, as we can combine in 16 
ways the four functions of M 1, V (verum), S (assertion), N (negation), 
and F (falsum) with the analogous four functions of M8, e.g., (Va, Nx), 
(Sa, Fx), and so on. All these functions, however, are reducible to 
C-N-formulae, because Va.= Caa, Sa= a, Fa= NCaa, and likewise 
Vx = Cxx, Sx = x and Fx = NCxx. By substituting, therefore, the 
new functors for o we get C-N-formulae, and all such formulae are 
verified by Mg. Take, for example, the principle of extensionality for LI : 

6.10 CC(a, x) (b, y)CC(b, y) (a, x)CLl(a, x)Ll(b, y) 
= C(Cab, Cxy)C(Cba, Cyx)C(a, Cxx) (b, Cyy) 
= C(Cab, Cxy)C(Cba., Cyx) (Cab, CCxxCyy) 

~---~------~= ef:_&b-;-G-x-i)-{GGbaGab,-CGyxCC-xxCyy) · 
= (CCabCCbaCab, CCxyCCyxCCxxCyy) = (5, 7). 

. 
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It follows from this consideration that all the formulae of our modal 
logic based on the axioms 1-4 are verified by the matrix M 9• It also 
follows that no other formulae besides can be verified by Mg; this 
results from the fact that the classical C~N-propositional calculus, to 
which all the formulae of our modal logic are matrically reducible, is 
"saturated'', i.e., any formula must be either asserted on the ground 
of its-assertea axioms, or rejecreU-0-trthe gro-ttncl:--t>f--the axiom of rejec
tion -1 p, which easily follows by substitution from our axiom 3 or 4. 
M 9, therefore, is an adequate matrix of the L-modal logic. 

Let us now write, for the sake of abbreviati.~:m, 1 for (5~ 7), 2 for 
(5, 8) 3 for (6, 7), and 4 for (6, '8); we get from M9 the matrix M6 which 
is the adequate matrix of our modal system in its simplest form. 

Ci 1 2 3 4IN ~ -1 

*1 1 2 3 414 1 
2 1 1 3 3 3 1 
3 1 2 1 2 2 3 
4 1 1 1 1 1 3 

M6 

7. The twin possibilities. A curious logical fact is connected with the 
definition of LI, which, as far as I know, has not yet been observed. The 
formulae with LI are obviously a product of formulae verified by S 
(assertion) and V (verum). CpLlp is asserted because it is asserted for 
LI =Sand LI = V. CLlpp and Lip are.rejected because the :first formula is 
rejected for LI= V, and the second for LI= S. Now we can obtain 
a product· of S and V by multiplying S by V, getting thus the function 
Ll(a, x) =(Sa, Vx) =(a, Cxx), or by multiplying V by S getting 
(Va, Sx) = (Caa, x). Let us denote this latter function by an inverted LI: 
7.1 17(a, x) = (Caa, x). 

From 6.1, 6.2, and 7 .1 there results the following matrix: 

c (5, 7) (5, 8) (6, 7) (6, 8) N 17 

*(5, 7) (5, 7) (5, 8) (6, 7) (6, 8) (6, 8) (5, 7) 
(5, 8) (5, 7) (5, 7) (6, 7) (6, 7) (6, 7) (5, 8) 
(6, 7) (5, 7) (5, 8) (5, 7) (5, 8) (5, 8) (5, 7) 
(6,.8) (5, 7) (5, 7) (5, 7) (5, 7) (5, 7) I (5, 8) 

Mio· 

·I 
I 

=--·-··--,·---~---.._,_ ........ __ 
' 
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I shall now abbreviate this matrix by replacing the pairs of elements 
by single :figures. As it does not matter which figures we choose, let us 
write 1 for (5, 7), 2 for (6, 7), 3 for (5, 8), and 4 for (6, 8). We get the 
matrix M6a which is identical with M5, as we can easily see by inter-

c 1 3 ~,2 4 N 17 
- -·----- -
*1 1 3 2 4 4 1 
3 1 1 2 2 2 3 
2 1 3 1 3 3 1 
4 1 1 1 1 1 3 

---·--····-·-

6a 

changing the middle lines and columns. Consequently, Mio is identical 
with M 9, and the functor 17 defined in this way is identical with the 
functor LI. 

We encounter here a logical paradox: although LI and 17 can be defined 
by the same matrix, they are not identical. Let us apply to 17 in Mio 
the abbreviation of M 9 : 1 for (5, 7), 2 for (5, 8), 3 for. (6, 7), and 4 for 
(6, 8): we get for C, N, and LI the matrix M6' and for 17 the matrix M 11, 

17 

1 1 
2 2 
3 1 
4 2 

Mu 

which is different from LI. LI and, 17 are undistinguishable when they 
occur separately, but their difference appears at once when they occur 
in the same formula. They are like twins who cannot be distinguished 
when met separately, but are instantly recognized as two when seen 
together. Take, for instance, the formulae LlLlp, 1717p, LI J7p and 17 Lip. 
LILlp fa equivalent to Lip which is rejected, and likewise 1717p jg equiva
lent to 17p, which is rejected too. But 17Llp and Ll17p must be asserted 
according to M 6 and Mu- We cannot, therefore, replace in the two 
last formulae LI by 17, or vice versa, ·although both functors can be 
defined by the same matrix. 

~~---~-· m-thetwo=vah1ea.-1ogit:-thnrS'S'erted·va:lue~--den:otedby l, ·is call~d 
"truth", the rejected value, denoted usually by 0, "falsity". When I 
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had discovered in 1920 a three-valued system of .logic, I called the 
third value, which I denoted by .1/ 2 , "possibility".i5) Later on, after 
having found my n-valued modal systems, I thought that only two of 
them may be of philosophical importance, viz., the 3-valued and the· 
N0-valued system. For we can assume, I argued, that either possibility 
has no degrees at all, getting thus the 3-valued system, or that it has 
infinitely many tlegrees, as in the theory of probabilities, and then we 
have· the No-valued system.15) This opinion, as I see it today, was wrong. 
The L-modal lo~c is a 4-valµed system with two values, 2 ~g~L3, .. d.e
noting possibility, but nevertheless, both. values represent one and the 
same possibility in two different shapes. The values 2 and 3 are playing 
in the system exactly the same role which can be seen by the following 
table of the 16 functions of one argument: 

(A) I (B) I (D) I (G) I (H) 

(a, x) 1(5, 7) (5, 8) (6, 7) (6, 8) 1234 p p 1234 
(a,Nx)(5, 8) (5, 7) (6, 8) (6, 7)2143 CLINpNCLlpp Cl7pNCl7NpNp3412 
(a, Vx) (5, 7) (5, 7) (6, 7) (6, 7) 1133 Lip Cl7pp 1212 
(a, Fx)(5, 8) (5, 8) (6, 8) (6, 8)2244NLINp NCl7NpNp3434 

(Na, x) (6, 7) (6, 8) (5, 7) (5, 8)3412 CLlpNCLINpNp Cl7NpNCl7pp2l43 
(Na, Nx) (6, 8) (6, 7) (5, 8) (5, 7)4321 Np . Np 4321 
(Na, Vx) (6, 7) (6, 7) (5, 7) (5, 7)33111LlNp Cl7NpNp212l 
(Na, Fx) (6, 8) (6, 8) (5, 8) (5, 8)4422NLlp NCVpp4343 
(Va, x) (5, 7) (5, 8) (5, 7) (5, 8) 1212 CLlpp 17p 1133 
(Va,Nx) (5, 8) (5, 7) (5, 8) (5, 7)2121 CLINpNp 17Np33ll 
(Va, Vx) (5, 7) (5, 7) (5, 7) (5, 7)1111 Cpp Cppllll 
(Va, Fx) (5, 8) (5, 8) (5, 8) (5, 8)2222 NLINCpp 17NCpp3333 
(Fa, x) (6, 7) (6, 8) (6, 7) (6, 8)3434NCLINpNp NJ7Np 2244 
(Fa, Nx) (6, 8) (6, 7) (6, 8) (6, 7)4343 NCLlpp NJ7p4422 
(Fa, Vx) (6, 7) (6, 7) (6, 7) (6, 7)3333LINCpp NJ7NCpp2222 
(Fa, Fx) (6, 8) (6, 8) (6, 8) (6, 8)4444NCpp NCpp4444 

The :first c~lurnn (A) represents the 16 functions, the second (B) 
contains their matrices for a/5, x/7; a/5, x/8; a/6, x/7; a/6, x/8, the 

15) See J. Lukasiewicz, "Philosophische Bemerkungen zu mebrwertigen Systemen 
des Aussagenkalki.ils," Comptes rendus des seances de la Societe des Sciences et des 
Lettres de Varsovie 23 (1930), cl. iii, fjp. 65 ff. and 72 [pp. 165 ff. and 171 of this 
volume]. · 
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third (D) is the translation of these matrices according to the equalities: 
(5, 7) = 1, (5, 8) = 2, (6, 7) = 3, (6, 8) = 4, the fourth column (G) 
gives the formulae corresponding to (D) for p = 1, 2, 3, 4 according to 
the matrices M 6 and M 1i (e.g., C.tJ.NpNCtJpp in the second line has the 
value 2 for p/1, 1 for p/2, 4 for p/3 and 3 for p/4), and the last column 
(H) is the translation of the matrices (B) according to the equalities: 
(5; 7) = 1, (5, 8) = 3, (6, 7) = 2 and (6, 8) = 4, ordered for p = 1, 2, 
3, 4. We get the figures of the last column from the column (D) by 
writing 3 for 2 and 2 for 3, and then by interchanging the middle figures, 

----e,.g-;-;-fre-m-214-3-we.-g©t-:fu:st-3-1-42,-ancLthen...34-12.---------·-~. -· 
It can be easily seen that the figures of the last column are matrices 

of the corresponding formulae with 17 and, if we define .tJ.p as Cl7pp, 
also of the formulae with .tJ.. Assuming 1133 as the matrix of J?p we get, 
e.g., for CJ7pp the matrix 1212, because CJ711 = Cll = 1, CV22 
= Cl2 = 2, CJ733 = C33 = 1, CJ744 = C34 = 2, and defining .tJ.p as 
CJ7pp we have for C.tJ.pp the matrix 1133, because C.tJ.11 = Cll ~ l, 
C.tJ.22 = C22 = 1, C.tJ.33 = C13 = 3, and. C.tJ.44 = C24 = 3. Now, the 
formulae with V and their corresponding matrices of column (H) are 
identical with the formulae with .tJ. and their corresponding ~atrices 
of column (D), as V and .tJ. are identical functors. We see, therefore, tliat 
we get the same formulae by interchanging 2, and 3, and that these twin 
values of possibility play in the system the same role. 

It also follows from the table that although an those 16 functions are 
reducible to the C-N-system bythe matrices (B), the functions correspond
ing to the abbreviated matrices (D) and (H) cannot be defined in this 
way. The modal functor .tJ. or its twin V is necessary and sufficient to 
represent them together with C and N. 

8. Some formulae of the L-modal logic. The classical system of the 
propositional calculus extended bf the addition of variable functors is 
not yet universally known. This system, inspired by Lesniewski's "Pro
tothetic", was modified by myself by introduction of the rule of b-sub
stitution. Owing to this rule, we get easy and elegant proofs. By means 
of them I . deduce in the Appendix from axiom 1 :first the three 
axioms of the C-N-calculus, viz.: 
10 f- CpCNpq 
20 f- CCNppp · 
22 f- CCpqCCqrCpr 

the principle of Duns Scotus, 
--th~ prillciple of CfaVius, 

the principle of the.syllogism, 

A SYSTEM OF MODAL LOGIC 373 

and then some other formulae without and with b needed for the modal 
logic. Among the latter formulae the most important are the following 

~r, Tho_p_rin_:::.,.....:_:_:q_ty_.__ ----------.t 
the principles of b-distribution with respect to C and A, ' 

30 

and 

71 

f- CbCpqCbpbq 

f- CbApqAbpbq, 

and a principle of conjunction, 

60 f-- CbpCbqbKpq. 

From these auxiliary theses a considerable number of LI- and I'
formulae are derived in the Appendix. Here is an account of the most 
important of them. 

(a) The basic modal logic is a part of our system. Three formulae of 
this system: 

2 f- CpLlp, 

3 -1 C.tJ.pp 

and 

4 -jLlp, 

are taken as axioms, and the remaining five: 

129 ~- CI'pp, 

156 -1 CpI'p, 

157 -1 NI'p, 

124 f- EI'pNLINp 

and 

128 ·f- ELlpNI'Np, 

are proved as consequences. 
(b) There. are only four modal functors of one argument in the system, 

viz., Lip(= NI'Np), NLlp (= I'Np), LINp (= NI'p), and NLINp (= I'p). 

I 

1· 
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This easily resultsSrom two principles of reduction for LI : 

94 t- ELIL'.lpLlp 
and 
98. [- BLIN'LlpLINp. 

The corresponding pririciples for I' run: 

136 
and 
141 

[-EI'I'pI'p 

[- EI'NI'pI'Np. 

It slioUld be stressed""that--according-to-thes-e-principles a· problematic 
proposition is equivalent to a problematic one, and an apodeictic propo
sition to an apodeictic one. _ 

(c) There are three principles of lJ-distribution for C, K, and A (a 
fourth one, for E, is easily deducible from the first): 

84 [- ELICpqClJplJq, 
109 [- ElJKpqKilplJq, 
114 f-- ElJApqAlJplJq; 

and two principles of I' -distribution for Kand A: 

149 
and 
154 

[- EI'KpqKI'pI'q 

[- EI' ApqAI'pI'q. 

The principle of I'-distribution for C is not valid, because the formula: 

162 --\ CCI'pI'qI'Cpq 
is rejected. 

(d) No apodeictic proposition, i.e., no proposition beginning with I' 
or with N lJ, can be asserted in the system. This follows from the formulae: 

1-·crqcprp 

Ii [- CNilqCilpp. 

l
'i Both formulae are asserted, but their consequents CpI'p and C{lpp are 

134 
and 
101 

,

11

f. rejected; their antecedents, therefore, I'q and NL'.lq; must be rejected too. 

11
, Now, from the rejected formulaeI'qor NlJq nothing can be got by substi-
t!bi1:1~..,....~~-~--i;tu1:i0n;-nt}t-even-the-formula:-------·-·---·· ' 

1

1, 160 --\ I'Cpp; 

11'1 

Ii! 
I' 
11 

II,;: 

·-------------- ·-----
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on the contrary, from 160 there results by substitution -I I'q. On the 
other-side, it is obvious.that in the asserted fori:nulae 134 and 101 any 
expression whatever may be pµt for q, and all formulae got in this 
way from I'q and Nllq must be rejected. In order to express the fact 
that any proposition beginning with I' or N lJ should be rejected, I employ 
Greek variables, calling them "interpretation-variables" in opposition 

-- - ---~'str!Jstttutro1t=vmiables" ·denoted by~f::afu-tettexs. we have, 
therefore: 

-j I'IX and -j Nila, 
-- --- -· -·------------------------

where IX may be any formula, i.e., any significant expression of the 
system. 

(e) On the contrary, our system contajns many asserted problematic 
propositions. It follows from axiom 2 that if IX is an asserted. proposition 
then-tb.e-.Prop~sitioil-"ids possible that IX" must be asserted 1:oo. we have, 
for instance: 
102 [- lJ Cpp. 

There are besides L'.1-form.Ulae whose argument is rejected, e.g.: 
I .·,; ; ' •' -' • 

92 

This problematic proposition is asserted, although its argument ClJpp 
is rejected. Another interesting example is given by the 

163 f- iJVp . . 

It is most difficult to express this formula in the ordinary language. 
Both LI and V may be rendered by the phrase "it is possible that", as 
both have exactly the same meaning. Nevertheless, they are different, 
and we cannot· say "It is possible that it-is possible that p", because this 
may have the meairitig LllJp, and lJlJp cannot be asserted being equiv
alent to lJp. 

The list of modal formulae given in the Appendix should be completed 
by m,odal formulae With o. So, for instance, it can be proved that. the 
following formulae are asserted: 

LJCOilpop, LJCopMp, LJCopoI'p, LJCoI'pop, LIEopOilp, ilEopoI'p. 

All such formulae ·are put off to a further investigation. 
9. Some c;ntroversial problems. Hitherto, the· best known systems 

of modal logic are originated by C. I. Lewis. It is difficult to compare 
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my own modal logic with them, as they are based on the so-called 
"strict implication" which is strong~r than.the.~'material implication". 
employed by myself. I shall compare, therefore, my system with the 
systems of. G.H •. :Von . .Wright, ... which .are also .. basecL.on .the~material 
implication and are equivalent, according to its author, to some systems 
of Lewis. 

There are three modal systems presented by Von Wright in axiomatic 
form, and called by him M, M', and M".16

) All are based on the classical 
calculus of propositions and on two additional rules of transformation: 

-----9.h---111e-~ule-0Uxtensionalit;y.:.:.......::IL.t;_..±;:±.fa._is~p.rn.vable, .. then 
Mfi ~ Mh. is also provable." That means in my symbolism: 

f"-Ert/3 4 1--ELb1{3 ("M" = "iJ"). 

9 .2 The ''Rule of Tautology". "If f is provable, then NJ is provable". 
That means: 

f- rt -+ 1--I'rt ("N" = "I'"). 
System Mis established on two modal axioms: 

9.3 a~ Ma the "Axiom of Possibility", 

which corresponds to our asserted formUla 2 Cpilp, and 

9.4 M(avb)H Mav Mb the "Axiom of Distribution'', 

which corresponds to our asserted formula 114 EiJApqAL1pilq. 
System M' arises from M by addition of the "First Axiom of Re

duction": 

9.5 MMa _,,Ma, 

which corresponds to. our. asserted formula 93 CiJL'.lpiJp, and M" is 
got. by addition of_ the "Second Axiom of Reduction": 

9.6 M ,.;··Ma.:..+. ;c.; Ma; 

which corresponds to our rejectedJormula 121 CiJNllpNL'.lp. 
This last axiom gives, together with its converse formula CNL'.lpiJNilp 

(which results from Cpilp by the substitution p/Nilp)~ the equivalence 
EiJNilpNilp .. Here. a .. problematic p.i:oposition iJNiJp appears to be 
equivalent to an apodeictic proposition Nilp, which is against our 

--==~~---..1o.gicaLintuitions...Ihe...:.autaoLllit:!l.s..eJf s~ems toJ21u;l9µbtful about this 

16) Seel. c. p. 84, 85. 
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axiom. I think that it should be rejected; and the system M" is not 
acceptable. 

The systems M and M' are clearly incomplete, as 9.6, not being 
inconsistent with them, does not follow from them. The consistency 
of 9.6 with the rest of the system results from the one fact, among 
others, that for the interpretation Ma= a all the axioms. and rules re-
main valid-:-rt may 15e added that m tlllScase-tb:e-system-ceas~e-s"""'t,..,o-.-6-e------~ 
a modal logic. As Von Wright does not accept rejection, I do not know 
how he can disprove the fromula Ma_,, a(= Cilpp) on the ground of 
his axiomatic system. 

All his other afiloms and rules, i.e., 9.1, 9.3, 9.4, and 9.5 are valid 
in my L-mo.dal logic, except rule 9.2. This controversial rule, first stated 
by Aristotle, but not exactly enough, was the cause of many philosoph
ical and theological discussioris.17) After a long, but'-'-in my opinion"'-'
unconvincing argumentation Von Wright says: " .. ; the .proposition 
that a tautology is nec\!ssary and a contradiction impossible are truths· 
of logic .. This certainly agrees with · otir fogical intuitions. "1~) I am not 
certain that it does agree. I thillk, roughly speaking, that true propo
sitions are simply true without being necessary, and false propositions 
are simply false without being impossible. This certainly does not hurt 
our logical intuitions, and may settle many controversies. 

It may be asked, however: Why should we introduce necessity and 
impossibility into logic ff true apodeictic propositions do not exist? 
I reply to this objection that we are primarily interested in problematic 
propositions of the form LI a and LIN a, which may be true and useful, 
although their arguments are rejected, and introducing problematic 
propositions. we cannot ·omit their negations, i.e., apodeictic proposi
tions, as both are ·inextricably connected with each other. 

The .second controversial problem · concerns the formula · 10s 

l-CKilpiJqilKpq. In some of his systems Lewis accepts the formula 106 
1-CiJKpqKilpilq, butiejects its converse 108 by the following argu
ment: "If it is possible thatp and q be both true, then p is possible an,d q 

17) In an essay on Aristotle's Modal Logic, which will be published elsewhere, 
I am expoundllg at length the Aristotelian opinions on this subject. [See J. Luka
siewicz, "On ControverSial Problem of Aristotle's Modal Syllogistic", Dominican 
Studies 7 (1954), pp. 114-128.] . 

18
) See I. c., pp. 14, 15. 
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is possible. This implication is not reversible. For example: it is possible 
that the reader will see this at once. It is ;tlso possible that-he-will not 
see it at once. But it is not possible that he.will both see it at once and 

-not··see. it-at-once.~~-1-llj--As-this-argument-is-statedjn-"words,-and-not in 
symbols, it is equally applicable to the strict as to the material implica
tion. But its evidence is illusive. What is meant by "the reader"? If.an 
individual reader, say R, is meant, then R either will see. this at once; 
or R will not see this at once. In the :first case, the proposition, "It is 
possible that R will see this at once,'' is true; but how can it .be proved 

'--------'that--R~will-possiblJ..-not.se.e_this_at once? In the second case,A_he._propo.:: 
sitlon,-.':It is .possible that R,will _not see this at once'', is true; but how 
can.it be proved thatR will posSibly see this at once? .The two premisses 
of the formula 108 are not both provable, and the fomula cannot 
be refuted in this way. 

Take another. example. Let n be a positive inte~er. I contend that the 
following implication is true for all values of n: "If it is possible that n 
is even, and it is possible that n is not even, then .it is possible that n 
is even and n is not ·even." If n = 4, it is true that n is .possibly even, 
but it is not. true _that n is possibly-:npt ~ven; if n is.5, it is true that n 
is "P~'ssibly not ev~n; 1'111:-it is-n6t trae .:that n is • possibly even. The 
both premisses are.· never. true together, . and • the forriiula cannot ·be 
refuted. 
If again by "the reader(' some; reader is meant, then the propositions, 

"It is possible that some reader will-see this at once'', and "It is possible 
that some reader will not see this at once"; may be both true, but in this 
case the conseque~t, "It is possible that '·some reader will see ~ at 
once anµ sonie reader- will not see this at once'', is obviously also true. 
It is, of course,- not the same reader who will possible see this and pos-

- -sibly riof see-this-ex once::cr-ca:titibt fintl an·example·:which would refute 
formula 108; on the.contrary,: all seem to support its correctness. 

I ~in JUllyaware that other· syste~ of modal logic are possible based 
on different concepts of necessity and possibility. r·:firn:tly believe that 
we sh!111 never be able to decide which of them is true. Systems of logic 

:~-:~trJ!~~f~i~~t~~¥j?[~_%:£~:!~~1~~~~::1 e;;~~~4!~ 
19

) See c. I. Lewis and c. H. Langford, Symbolic Logic, N~w-York !i:ri_cf London, 
1932, p. 161. 

. ( 
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above will be a useful instrument, and deserves a further investigation 
and development. 

APPENDIX 

Examples of a-substitution and a-definitions. 
(a) Proofdine .. 0LfoJ.Jrmw.u11""'Ja'-"'¥i'-'-·----

l a/ CpC'p x Cl5q/p-C10q/p-16. 

Write CpC'p insteactof the o's fiDjpg_up the gaps marked by the_E.p_6s_".'._ __ 
trophe with the arguments of a. You get thus from 

copCoNpoq 
the formula 

CCpCppCCpCNppCpCqp, 

from which there follows by two detachments CpCqp. 

(b) Proof-line of formula 10: 

Io/' x 10. 
Cancel simply _the o's in I. 

(c) Proof-line of formula 13: 

lo/C",p/CpCNpNq, q/p x Cll-C12-l3. 

Perform first the substitutions for the propositional variables 

CoCpCNpNqCoNCpCNpNqop, 

and write instead of the o's their arguments IX ill form of Caa: 

CCCpCNpNqCpCNpNqCCNCpCNpNqNCpCNpNqCpp 
_.. - ----..-------

which is Cll-Cl2-13. 

(d) AU a-definitions have the form CoPOQ, where P and Q are the 
definiens and the definiendum. P may be replaced everywhere by Q. 
Take as an example the proof-line of formula 55: 

. ,, 5 o/C'p x C52-55. 

By replacing NCpNq by Kpq according to example (a) we get from 
52 formula 55. 

The numbers in brackets after a formula F refer to formulae to which F 
is applied. For instance, 3 is applied to 118. 

'" 
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Axioms 

1r-CopCoNpoq (10, 11, 13, 15, 16, 18, 19, 22, 23, 25, 21, 
29, 30, 38, 44, 48, 50, 60, 70). 

1r- cpL1p (74, 1s;1s:·c;o~·94, 102). 

-jCLlpp (ll8). 

-jLlp (115). 

Definitions 
~-~--------'~--"""'"T~r.::-:-~~-~-'---~~-----------·.o···-·--.. DfKpqX.5. 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1r- CoNCpNqoKpq (55, 56, 57) .. 

DfApqx6. 
f-- CoCNpqoApq (66, 67, 68, 69, 71). 

DfEpqx7. 
1r- CoKCpqCqpoEpq (72, 73). 

DfI'px8. 
f- CoNLlNpoI'p (123: 124, 126, 129, 131, 132). 

Df 17px9. 
1r-. CoCLlppo VP (163). 

Consequences of Axiom 1 

1 o/'x 10. 
1r- CpCNpq (11, 12, 14, 16, 17, 28, 35, 66, 139). 

1 o/CpCNp',p/q, q/Nqx Cl0-11. 
1r- CCpCNpNqCpCNpNq (13). 

10 p/CpCNpNq;q/NCpGNpNqx ClO q/Nq-12. 
1r- CNCpCNpNqNCpCNpNq (13)~ 

1 o/C'', pf CpCNpNq, q/p x Cll '- Cl2 - 13 .. 
1r- Cpp (14, 15, 18, 19, 20, 23, 32, 34, 45, 102, 123, 135, 155). 

10p/CppxCI3.-:l4._ 
f- CNC:ppq (15). 

=~~~~.:.-----'l-offHJpr,pfGpp-Y::-Gl-3-p/epp=-eM-q/Cpp-"' 15. 
15 f- CqCpp (16, 23, 26, 30, 38, 47}. 

' { 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
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1 o/CpC'p x C15 q/p- ClO q/p-16. 
1r- CpCqp (17;21, 22, 24, 26, 49, 53, 59, 67, 79, 91, 133). 

16 p/CqCNqr, q/CNqCqrx CIO p/q, q/r-17. 
1r- CCNqCqrCqCNqr (18). 

1 o/CC'CqrCqC'r,p/q, q/px C13 p/CqCqr-Cl7-18. 
---+--eepCqreqt:pr{2fY; 32,-33,-34,-35-;Sl, 63;-1"'0~0,-::lc::-34-:-:c)-. ------

1 o/C'pxC13-19. -
1- CCNppCqp_ (~Q, 21). 

18p/CNpp, q/Cpp, r/pXC19 q/Cpp- Cl3-20. 
1- CCNppp (24, 28, 36). 

16 p/CCNrrCpr, q/CpNrx C19 p/r, q/p-21. 
1r- CCpNrCCNrrCpr (22). 

1 o/CCp'CC'rCpr,p/rxC16p/Cpr, q/Crr;_C2I-22 .. 

1r- CCpqCCqrCpr (33, 36, 50, 62, 64, 75, 78, 81, 85, 86, 

90, 99, 101, 133, 139, 142). 

1 o/CCpNpC'NpxCI3p/CpNp-C15 q/CpNp,p/Np-23. 
1- CCpNpCqNp (25, 34). 

I6p/CCNpppx C20-24. 

1r- CqCCNppp (25). 

1 o/CCpNpCCNpp'xC24q(CpNp-C23 q/CNpp-25. 
1r- CCpNpCCNppq (27). 

16p/CCppC:op6p, q/CppXCl5 q/Cpp,p/op-26. 
1r- CCppCCppCopop (27). ·. . 

1 o/CCp'CC'pCopo' x C26 - C25 q/CopoNp-27. 
t- CCpqCCqpCopoq (28, 40, 58, 65). 

27 q/CNppx'.ClO q/p-C20-28. 
f-- CopoCNpp (29, 45, 47, 49). 

28 o/Co'CoNqoq,p/qx Clp/q-29. 
I- CoCNqqCoNqoq (30). 

1 o/CoC'qCo'oq, p/q, q/px c15 q/oCqq, p/oq
c29-30. 

1- CocpqCopoq (31, 11, 130). 

·----------------------·-·-...,-"-··~----
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31 

32 

33 

34 
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30 ()/Cp',p/q, qfrx3l. 
1- CCpCqrCCpqCpr (63, 135) ... ·~ 

18 p/Cpq, qfp, r/qx Cl3 p/Cpq-32. 
j- CpCCpqq (103;-155);---· ·- -- ---- ~ · 

18p/Cpq, q/Cqr, r/CprxC22-33. 
j- CCqrCCpqCpr (37, 143). · 

18p/CpNp, q/Cpp, r/NpxC23 q/Cpp-C13-34. 
1- CCpNpNp (54). 

~~~~~~~-~1~Np,~~lQ.-.-..P-~~.·~.~-~~---,. 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

f- CNpCpq (36, 52, 80, 90, 99). 

22p/NNp; q/CNpp,r/pxC35p/Np, q/p-C20-36. 
1- CNNpp (37, 39, 40, 88, 117). 

33 q/NNp, r/p,p/qx C36-37. 
1- CCqNNpCqp (38). 

1 ()jCCNpN'C'pxC15 q/CNpNp-C37 q/Np-38. 
1- CCNpNqCqp (39, 41, 42, 50, 101, 158). 

38p/NNp, qfpxC36p/Np~39. 
1- CpNNp ( 40, 87). .. 

27 p/NNp, q/p x C36 - C39 - 40. 
f- C()NNp()p (fll, 42, 43, 76; 83, 128). 

40 ()/CCNp'CNqp,p/qx C38 q/Nq-41. 
1- CCNpqCNqp (43, 52, 53, 126). 

. 40 ()/CC'NqCqNpxC38p/Np-42 .. 
1- CCpNqCqNp (54, 121, 125). 

40 ()/CC"qCNqNpxE41·pfNp~43: -· 
1- CCpqCNqNp (74, 85, 86, 96, 137). 

1 ()/C'q, q/rx44. 
1- CCpqCCNpqCrq (46, 48). 

28 ()jC()'/)pXC13p/op~45. 
45 1- CoCNpp()p (46). 

==~~~~-~~z1r5-()fefyqeeNpq';-pf'J*-G'44r/Nq~-46~·--

46 I- CCpqCCNpqq (92, 140).. . 

:,. ( 

47 

48 
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28 o/CCprCCprC'rx Cl5q/Cpr,p/Cpr-47. 
1- CCprCCprCCNppr (48). 

1 ()/CCprCC'rCCNp'rx C47- C44q/r, r/CNpNp-48. 
1- CCprCCqrCCNpqr (68, 82). 

3.83 

28 ()/Ca'CNopopx CI6p/op, q/Nop-49. 
49--'---'r=-cacN.ppCN.G.ftop (69). . _ 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

22 p/N op, q/CN aNpN oq, r/CoqoNp x Clo/No' - C38p/ ()Np, 
q//jq-50. 

f- CNopCoqaNp (51, 140). 

18p/Nop, q/oq, rfoNpXC50-51. 
I- CoqCNapoNp (70). 

41 q/ CpNit>< C35q/N q- 52. 
1- CNCpNqp (55) .. 

4lp/q, q/CpNqxCfop/Nq, q/p-53. 
1- CNCpNqq (56). 

42p/CpNp, q/pxC34-54. 
1- CpNCpNp (57). 

5 o/C'pxC52-55. 
j- CKpqp (58, 62, 104, 144). 

5 ()jC'qxC53-56. 
1- CKpqq (63, 105, 145). 

5 o/Cp', q/pxC54-57 . 
1- CpKpp (58). 

27 q/Kppx C57 -C55q/p-58. 
1- CopoKpp, (59). 

I6p/CopoKpp, q/opxC58-59. 
I- CopC/)poKpp (60). 

1 a/CopC/)'aKp'xC59-Clq/KpNp-60. 
1- CopCaqoKpq (61, n, 101, 147). 

60 ()/Cp', p/q, q/rx 61. 
1- CCpqCCprCpKqr (106, 146). 
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62 

63 

64 

65 
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22 pf Kpq, q/p x C55 - 62. 
!- CCprCKpqr (64). p . 

18p/CKpqCqr, q/Cl,{pqq, r/CKpqrx C3lp/Kp-qcS6-63. 
f--:CCKpqCqrGKpqr (64}~ ··· - · · · · · 

22p/CpCqr, q/CKpqCqr, r/CKpqrx C62 r/Cqr-C63-64. 
!- CCpCqrCKpqr (65, 108, 148). 

64 p/Cpq, q(Cqp,r/Copoqx C27-65. 
!- CKCpqCqpCopoq (73). 

~~~~~~~~~-~MGp!-x.Gl°=-661~~~~~~~ 

66 

67 

68 

69 

70 

71 

72. 

73 

74 

!- CpApq (110, 150). 

6 o/Cq' x C16 p/q, q/Np- 67. 
!- CqApq (111, 151), 

6 ojCCprCCqrC'rx C48- 68. 
!- CCprCCqrCApqr (112, 152). 

6 o/Co'CNopop, q/pxC49-69. 
!- COAppCNopop (70). 

1 o/CoAp'CNopo'xC69-C51 q/ApNp-70. 
!- 'COApqCNopoq (71). 

6 o/COApq',p/op, q/oqx c10-1i. 
!- CoApqAopoq (113, 153). 

7 o/CCpqCCqp'xC600j',p/Cpq, q/Cqp-72. 
f.- CCpqCCqpEpq (84, 89, 94, 98, 109, 114, 124, 127, 136, 

141, 149, 151). 

7 o/C'CopoqxC65-73. 
!- CEpqCopM .. -. ~-·· 

11-Formulae 

43 q/ilpxC2-74. 
r--: CNLJpNp (15, 76, 95). 

~~~--~-~---<-.2.p.fNJJl,__q/,N]].,L{tlN.R x CJ4 -=-.C2p/Np.~_75. 
75 !- CNilpilNp (81). 

87 

88 

89 

90 
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40 o/CNllNp' x C74p/Np-76. 
!- CNiJNpp (129). 

30 a/iJ'x77. 
!- CilCpqCilpilq (78, 84, 93, 97). 

22p/Cpq, q/iJCpq, r/Cilpilqx C2p/Cpq-C77-78. 

385 

!- CCpqCilpilq (79, 80, 85, 87, 88, 91, 95, 96, 104, 105, 
110, 111). 

78p/q, q/CpqxC16p/q, q/p-79. 
!-. C4q4CR.tLrni\ 
78 p/Np, q/ Cpq x C35 - 80. 
!- CilNpiJCpq (81). 

22p/Nilp, q/iJNp, r/l1CpqXC75-C80-81. 
!- CNilpiJCpq (82). . 

48 p/Nllp, r/iJCpq, q/ilqx C81- C79-82. 
f-- CCNNilpilqiJCpq (83). 

40 O!CC'llqilCpq,p/ilpxC82-83. 
!- CCilpilqiJCpq (84). 

72p/l1Cpq, q/Cilpilqx C77-C83-84. 
!- EilCCpqCilpilq. 

22 p/Cpq, q/Cilpilq, r/CNilqNilpx C78 - C43p/ilp, 
q/llq-85. 

!- CCpqCNilqNilp (86, 99). 

22p/Cpq, q/CNqNp, r/CNilNpNiJNqx C43 - C85p/Nq, 

!- CCpqCNilNpNilNq (131). 

78 q/NNp x C39 - 87. 
!-. CilpiJNNp (89). 

78 p/NNp, q/p x C36 - 88. 
!- CiJNNpilp (89, 115). 

72 p/ilp, q/iJNNp x C87 - C88- 89. 
!- EilpiJNNp. 

. q/Np-86. 

22 p/Nilp, q/Cilpp, r/ilCilppX C35p/ilp, q/p-
C2p/Cilpp - 90. 

!- CNilpiJCilpp (92). 

· 1 

-------------·---------.. -· --· 
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91 

92 

93 

94 
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78 q/CLlppX Cl6q/Llp-91. 
f- CLlpLlCLlpp (92). 

46 p!Llp, q/LlCLlppX C91- C90-92. 
f- LlCLlpp (93;96,-163}:-- -- ··-- --- -·· ·· 

77 p/Llp, q/pX C92-93. 
f- CLlLlpLlp (94). 

72p/L1Ap, q/LlpxC93..,.C2p/Llp-94. 
· f- ELlLlpLlp, 

=---;,,.;.,_.~~~-~~~---~,TS--p-/NAp-,-~NJJ*G-1~~.----~-~-~-

95 

96 

97 

98 

99 

f- CLlNLlpLlNp (98). 

7Sp/CLlpp:q;cNpNLlpxC43p/Llp, q/p- C92-96. 
f- iJCNpNiJp (97). 

77 p/Np, q/NtJpxC96-97. 
f- CLlNpLlNLlp (98). 

72p/iJNiJp, q/LlNpx C95- C97 -98. 
f- ELlNiJpiJNp. . 

22p/Np, q/Cpq,~/CNLlqNiJpx C35-C85-99. 
f- CNpCNiJqNLlp (100). 

18p/Np, q/NiJq, r'Nilpx C99-100. 
100 - f- CNilqCNpNilp (101). 

22p/Nilq,'.'q1CNpNilp, r/CilppX C100-C38q/ilp-101. 
101 f- CNiJqCLlpp (118). 

2p/Cppx C13-102. 
102 f- iJCpp (103). 

·32p/11CppxC102-=-103.~ 

103 f- CCiJCppqq (119). 

78p/Kpq, q/px C55-104. 
104 f- CiJKpqiJp (106). 

78 p/KpqX C56-105. 
105 f- CLlKpqLlq (106). 

~--~~~~---'frl--pfH;Pq;-q-ji!-_p;.,,.µ1.q..*G-104--G'.-10--5---106.- ---
106 f- CiJKpqKLlpLlq (109). 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 
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60 Pf Ll' x 107; 
f- CiJpCL1qL1Kpq (108). 

64 p/Llp, q/Llq, r/LlKpqX C107 -108. 
. f- CKLlpiJq_LlKpq (109). 

72p/;jK~q, q/KLlpiJqx C106- C108-109. 

387 

. E ~z~;~~;i'" --- -------~~~~~~------,---1-t-IH!!i 

78 pfq; q/Apq·x C67 - llL -
p- CiJqLlApq (112). 

68 p/Llp, r/LlApq, q/iJqx Cl_lO - Clll -112. 
f- CALlpilqiJApq (114). 

n o/A'xl13: 
f- CLlApqALlpilq (114). 

72p/L1Apq, q/ALlpLlqx Cll3 :-C112-114. 

f- ELlApqALlpLlq. 

* 
* * 

88x Cl15-4. 
-1 iJNNp (116). " 
115x l16p/Np. 
-1 LlNp (117); 

36 p/LlNpx C117 -116. 
-1 NNiJNp (157). 

101 q/NL1CppxCll8-3. 
-i NLlNLlCpJJ (119). 

103 q/NLlNLlCppX C119-118 .. 
-j CL1CppNL1NL1Cpp (120). 

119xl20p/Cpp. _ - . _ 
-1 CLlpNiJNLlp (121, 122). 

42p/i1NL1p; q/Llpx 6121-120~ 
-1 CiJNLlpNilp. 

120x 122p/Llp. 
-j CpNiJNp (156). 
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123 

124 
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I'-Formulae 

8 o/Co'6NL1NpxC13p/oNL1Np-123. 
't-CoI'poNLlNp (124, 125, 156, 157). 

. -·~- ---~~-~-.- - ----~- "-·~·- ····- ·--·· 
72p/I'p, q/NL1Npx Cl23o/'- C8o/'-124. 
'r EI'pNLlNp. 

. ' 

138 

139 
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132p/Np, q/NI'px CI37 -138. -
'r CI'NpI'NI'p (141). 

22p/I'p, q/CNI'pNp, r/CI'NI'pI'Npx ClOp/I'p, 
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q/Np- C132p/NI'p, q/Np-139: 
II 

'r CI'pCI'NI'pI'Np (140). 

·- -----46-pf Pp;-qfe-FNFpI'Np x C139 - C50o/I''--', ~q7H1c'J.iflI'p'=. -_-r14..,.o.-_______ ...,.di 
42p/I'Np, q/4NNpx C123o/',p/Np-125. 
'r CLlNNpNI'Np (127). 125 

140 'r CI'NI'pI'Np (141, 142). 

41p/LllfNp, qfI'Npx C80/',p/Np-126. 
-::-12:::-:6~--~'r--·~c'=-='N.7iTN.""" . .;,,,ji:-..2J.N~· N:=p,...;.~(1~2=7)-. ~:!::.J_:_~-==.::..:__ ____ .. ___ ··---.. -· 

72p/I'NI'p~ q/I'Npx C140- Cl38-141. ----·-·-·· --·----· ~--.-·-· . --~-· 
141 'r EI'NI'pI'Np. 

72p/L1NNp, q{NI'Npx C125-C126-127. 
127 . 'r ELlNNpNI'Np.(128). ·· 

22 p/I'NI'p, q/I'Np, r/Np x Cl40 - C129p/Np- l42. 
142 'r CINI'pNp (143). 

40 o/ELl'NI'Np x C127 -128. 
128 'r ELlpNI'Np. 

33 q/I'NI'p, r/Np, p/NI'p x Cl42-143. 
143 'r CCNI'pINI'pCNTpNp (IS9). 

8 o/C'pxC76-129. 132 p/Kpq, q/p x C55 -144. 

129 'r CI'pp (136, 137, 142). L,44 'r CI'KpqI'p (146). 

30o/I''x130~ 132p/KpqxC56-145. 
130 f- CI'CpqCI'pI'q. 145 'r CI'KpqI'q (146). 

,;8 o/CCpqC'NL1Nqx C86-131. 
131 'r CCpqCI'pNLlNq (132). 

61 p/I'Kpq, q/I'p, r/I'qx Cl44- C145-146. 
146 f- CI'KpqKI'pI'q (149). 

8 o/CCpqCI'p',pf qx C13l- i32. 60o/I''x147. 
132 'r CCpqCI'pI'q (133, 138, 139, 144, 145, 150, 151). 147 'r CI'pCI'qI'Kpq (148). 

22p/q, q/Cpq, r/CI'pI'qxC16p/q, qfp :._ C132-133. 64 p/I'p, q/I'q, r/I'Kpqx Cl47 -148. 
133 p CqCI'pI'q (134, 135). 148 i- CKI'pI'qI'Kpq (149). 

·18 q/I'q, r./I'pxC133q/p,p/q-·134. 72p/I'Kpq, q/KI'pI'qx C146-C148-149. 
134 'r CI'qCpI'p(160). 149 'r EI'KpqKI'pI'q. 

31 p/I'p, q/I'p, r/I'I'p X C133q/I'p- C13p/I'p-135. 132 q/ApqX C66- l50. 
135 i- CI'pI'I'p (136). 150 f- CI'pI'Apq (152). 

72 p/I'I'p, q/I'p >.< C129p/I'p- C13S-136. 132 p/q, q/ApqX C67 -151. 
··136 f- EI'I'pI'p. 151 'r CI'qI' Apq (152). 

'4'?>JYfr'p:-q/rx·e-129"=-l-3'r.--~----"--· 68 p/I'p, r/I' Apq, q/I'qx C150 - C151 - 152. 
137 . 'r CNpNI'p {138). : 152 'r CAI'pI'qI' Apq (154). 

------------------------~·· ·-· ····-·' ,,,,_ .. _,,_., ____ ··-·--1 ··----

' 
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153 

154 

155 
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71 tJ/I''x i53. 
f- er ApqAI'pI'q (154). 

T}.p/I'Apq, qjAI'pI'qxCI53.-Cl52-l54. 
f- EI'ApqAI'pI'q. - ·····--·------ ... 

32p/CI'pI'p, q/I'CppxC13pjI'p-l55. 
f- CCCI'pI'pI'CppI'Cpp (161). 

*· 
* * 

---~ .. ~. ··~-~~~~~-~--'-"tlf_Cp'_ x C156-:-122. 
156 

157 

158 

159 

160 

161 

162 

163 

-l CpJ'p (1?8, 160). 
123 tJ/N' x Cl 5J -' 117. 
-1NI'p. 

38p/I'p, q/pXC158-156. 
-l CNI'pNjJ (159). . 

143 x Cl59-158, 
-J CNI'pI'NI'p. -

134 q/Cppx C160-1_56. 
-j I'Cpp (161). 

155xC161-160. 
-l CGrpTpI'Cpp (162). 

161x162 q/p. 
-l CCI'pI'qI'Cpq. 

* 
* -

9 tJ/Ll'xC92-163. 
* 

·f-·--L1Vp ... ·~--·--·····~~-~"~~.-·.·~· ----~-- -···~· 

ARITHMETIC AND MODAL LOGIC*} 

1. It is well known that the theory ·of equality can be based on the 
followiilg two axioms: 
1.1 f- Baa, i.e. "a is equal to a'', 

1.2 'I C8abC¢a¢b, i.e. "Ifa is equal to b, then if <f;ia, ¢b." 
¢ is a variable proposition-forming functor of one numerical argument, 
and we are allowed to substitute for ¢ any expression which gives 
together with the argument of_¢ a signi:ficant arithiletical formula.1) 

If we introduce into arithmetic the modal functor I' ("it is necessary 
that") or j ("it is possible that"), then expressions as: I'Bab, i.e. "It_is 
necessary that a should be equal to b'', or L1N8ab, i.e. "It is possible 
that a is not equal to b", will be significant arithmetical formulae. 
We have therefore: 

1.2 ¢/I'Ba' x 1.3, 
1.3 f- C€JabCI'8aaI'8ab, 

in words: "If a is equal to b, then if it is necessary that a should be equal 
to a, it is necessary that a should be equal to b". From 1.3 we get by 
the law of commutation 

1.4 f- CCpCqrCqCpr 
the formula 1.5: 

1.4 p/<9ab, q/I'<9aa, r/I'Bab x Cl.3 -1.5, 
1.5 f- CI'<9aaC€JabI'8ab. 

Most logicians would assert the antecedent of 1. 5 :2) 

1) For the explanation of mY symbolic notation in arithmetic see: J. Lukasiewicz, 
"Sur Ia formalisation des theories mathematiques", Colloques internationaux du Centre 
national de la recherche scientifique, XXXVI Les mhhodes formelles en axiomatique, 
Paris, 1953, pp. 11-19. [Seep. 342 of this volume.] 

2) W. V. Quine, "Three' Grades of Modal Involvement", Proceedings of the Xlth 
International Congress of Philosophy, vol. XIV, Brussels, 1953, p. 80: " ... surely 
'nee (x = x)' is true for all x.'·' -'nee' means in our-notation "I'". 

*)First published in The Journal of Computing Systems 1 (1954), pp. 213-219. 

391 

I 



392 ARITHMETIC AND MODAL LOGIC 

(a) reaa, 

in words: "It is necessary that a should be equal to a." Hence they must 
accept the consequent: 

(b) Cf9abI'f9ab. 

That means: Equality holds necessarily if it holds at all. 
From (b) there follows by means of the modal theorem 

1.6 f- CI'pNiJNp, 

and the principle of the syllogism 
____ ,.,, ______ ,,_, ___ , __ ---~--------------~------

1.7 f- CCpqCCqrCpr 

the consequence ( c): 

(c) 
1.7p/f9ab, q/I'f9ab, r/NiJNf9ab x C(b)-Cl.6p/@ab- (c), 
C@abNiJN@ab, 

and from (c) we get by the law of transposition 

1.8 f- CCpNqCqNp 

the formula ( d): 
1.8 p/@ab, q/iJNf9ab x C( c) ~ ( d), 

(d) CiJNf9abN@ab. 

That means: "If it is (only) possible that a is not equal to b, then a is 
(factually) not equal to b." 

2. I have not prefixed the sign of assertion "f-" to the formulae (a) 
(b), (c), and (d), as these formulae are in my opinion wrong and should 
be rejected. In particular formulae (b) and (d) are obviously false. QUine 
gives an example for the falsity of (b): Let a denote "the number of 
planets", and b the number "9". It is a factual truth that the number 
of (major) planets is equal to 9, but ii is by no means necessary that it 
should be equal to 9. Quine tries to meet this difficulty by raising objec
tions to the substitution of such singular terms for the variables. "Such 
instantiation-he writes-is allowable, certainly, in extensional logic; 
but it is a question of good behaviour of constant singular terms, and ... 
such behaviour is not to be counted on when there is a 'nee' in the 
wood-pile."2)-Qum:e does not_ explain, however, how this "naughty" 

-~~-~~~ .. -m1raviour of-sif:rgula'rterms;-should-be-eorrected;·Hisremark is a desider
atum rather than a solution of the problem. 
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For the falsity of formula ( d), not mentioned by Quine, take the follow
ing example: Let us suppose that the number a has been thrown with 
a die. It is possible that the number b next thrown with the ,die will be 
different from a. But if it is only possible that a will be different from b, 
i.e. not equal to b, then according to (d) a will factually be different 
from b. This consequence is obviously wrong, as it is possible to throw 
the same number-twice. -

3. The L-modal system expounded by myself in this Journal'") gives 
a satisfactory solution of the above difficulties. This system is based 
on two asserted axioms: - ' -...... . 

3.1 

3.2 

f- capCaNpaq, 

f- CpiJp. 

The first axiom which means: "Ifp satisfies the·condition o, then if Np 
satisfies o, any proposition q satisfies o", yields the whole two-valued 
classical calculus of propositions and all the asserted a-formulae. The 
second is a well-known modal theorem which gives together with the 
axiom 3.1 a complete system of modal logiC. Both axioms are.perfectly 
evident. Two axioms of rejection (" -1" is the sign of rejection): 

3.3 -j CiJpp, 

3.4 -1 iJp, 

are needed to characterize the system as a modal logic._ 
The rules of inference are the rule of substitution and detachment for 

the asserted and rejected formulae. 
The system has the following adequate four-valued matrix Mi: 

c 1 2 3 4 IN ~£1I'. 
*I 1234 4 1 1 2 
2 1. 1 3 3 3 1 2 2 
3 1 2 1 2 2 3 1 4 
4 1 1 1 1 113 2 4_ 

Mi 

I'p is defined by NiJNp, 17 by CiJpp. 

3) J. Lukasiewicz, "A System of Modal Logic", The Journal of Computing Systems, 
1 (1953), pp. 111-159. [See pp. 352-390 of this volume.] 

I _.r 
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A consequence of the system is the. as&erted formula: 

3.5 f- CI'qCpI'p. 

The consequent of this formula is rejected: 

3.6 -1 CpI'p. 

. We have therefore for any proposition a: 

3.5 q/a x C3.7-3.6, 
3.7 -i I'a. 

That means that no apodeictic proposition can be asserted in the L-~odal 
__ , ______ __s~Jll..Mserted ]2rOpositions are merely true Without being ne~es~aty. 

. From 3.7 we get by interpreting a as @aa: .. . - -c--- - -

3.8 -1 reaa,_ 

i.e. formula (a) is rejected; From 

3:9 -f- CpCCpqq 
and 
3.10 f- eaa 

there follows the consequence 3.11: . 

3.9 pj@aa, q/I'@aa x C3.10_:,3.11, 
3.11 f- cceaaI'@aaI'@aa. 

Applying to 3.11 the rule of detachment for rejected formulae we get 3.12 

3.11 x C3.12-3.8, 
3.12 -1 ceaareaa, 

and by the rule of substifution for rejected formulae we have: 

3.12 x 3.13 b/a, 
3.13 -1 C@abI'@ab. 

That means that formula (b) is rejected. In a s~ar. way we can 
prove that formulae--(~)"--and-(d) must be rejected too. Here are the 
respective deductions: 

3.14 

3.15 

3.16 

f- CNiJNpI'p (follows from the definition of I'p). 

f- CCqrCCpqCpr. 

3.15 qjlfiJN@al:J, r/I'@ab,pj@abx C3.I4p/6ab-3.16. 
}- CC@abNiJN6abC@abI'8ab. 

~--~~~~~~~~--+-.16--x-G3-;-~7--3d--3,~~-

3.17 -1 C8abNiJN8ab, i.e., formula (c) is r.ejected. 

~~--------------~~···-----~-·-----.,,,, .... ____ _ 

3.18 

3.19 

3.20 
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f- CCpNqCqNp. 

3.18 p/iJN@ab, q/@ab x 3.19. 
f- CCiJN@abN@abC@abNilN@ab. 

3.19 x C3.20-3.17. 
-1 CLJN8abN8ab, i.e., formula (d) is rejected . 
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---On-the-ofuerside;-th:e-asserted formula C8abe-P@"a-af'&aiJ;wbj_cjj:jfns-----
correctly deduced from the axiom C@abC<faa<f>b,is easily verified by the 
matrix M 1• As Baa is asserted and _has the value 1, I'@aa = I'l = 2. 
We have therefore to verify the formula 

ceabC2I'@ab 

for all possible value of @ab. We get: 

For @ab= 1: CIC2I'l = C1C22 = C11 =I; 
For €Jab= 2: C2C2I'2 = C2C22 = C21~1; 
For €Jab = 3: C3C2I'3 = C3C24 = C33 = 1 i 
For @ab= 4: C4C2I'4 = C4C24 == C43 = 1. 

4. Propositions,as "a is equal to q..; are called "analytic". The well
known doctrine that'all analytic propositions are necessary goes back 
to Aristotle. who distinguishes. between essential and accidental proper
ties and asserts that essential properties belong to" the things with 
necessity. 4) 

Essential· properties are based on definitions, i.e. on the meaning of 
words. So for instance, "Man is necessarily an animal" 5), because ·~man" 
is defined as an "animal". In view of the formulae f- CI'pp and -1 CpI'p 
it is co=only held that apodeictic propo;,itions have a higher dignity 
and are more reliable man correspondjng · assertoric ones. This conse
quence is for me by no means evident. I cannot understand why the true 
proposition based on the meaning of words "I am an animal" should 
be more reliable than the factual truth based on experience "I have 

. brown eyes". Another Aristotle's argument connected with the subject 
and sometimes called "the Aristotelian paradox" is still less evident. 
Aristotle asserts: "If it is true to say that something is white or not 

4
) An. post. A 6, 74 b 6: "t"tX 1l~ xci:.&' ooJ"t"CI: uit&pxov...ix; &vci:yxci:'ici: "t"oi~ itp&y

µcxow. 

5) An. pr. A 9, 30 a 30: l;ij\o'.I µ~" yc'Lp 6 0<'.l&plilrro~ &l; &'.1cty><1)~ fo"'C 
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white, it is necessary that it should be white or not white." 6) As it is 
impossible to translate this statement by the false formula CpI'p, some 
logicians accept as a rule that it is allowed to infer froi;n an asserted 
(analytic) proposition ix the asserted apodeicfic pi:oposition Tix. This 
again leads to asserted apodeictic propositions, and if we accept such 
propositions at all, we are bound fo assert the necessity of the principle 
"a is equal to a". In view of the difficulties which would result from 
¢is fact, I am inclined to think that all systems of modal logic which 
accept asserted apodeictic propositions are wrong. 

A system of this kind is my three-valued modal logic constructed by 
the matrix M 2 in 1920, and developed in 1930. 7) - -

C 1 2 3 IN 
*1 1.23 3 
2 112,2 
3 111[1 

Mz 

C is here a kind of implication different from the ordinary one, and N 
a kind of negation. The system for C and N was· axiomatized by M. Wajs
berg, 8) and extended to a ·complete system by the addition of a new 
function by J. Slupecki. 9) In my paper ·of 1930 I accepted the definition 
of ~ossibility suggested by A. Tarski: 

(t) Lip = CNpp 

which is equivalent to the definiti_on of necessity: 

(u) I'p=NCpNp. 

6) De int. 9,18 a 39: d yocp· &:A.11.&e<; dn:Erv 5-n A.Euxov -!] 5·n oOA.Eux6v fo-riv, 
&v&yx1) dvo:L A€uxov -!] oo A€ux6v'. . . . . . . . . . • 

7) J. Lukasiewicz, '.'O -io~ce tr6jwarto~Ciowej'', ·Ruch Filozoficzny 5 (1920). [See 
pp. 87.,..88 of this volume.]-J. Lukasiewicz, "Pbilosophische Bermedrungen zu 
mehrwertigen Systemen des Aussagenkalkiis';, Comptes rendus des sriances de la 
Societe des Sciences et des· Lettres de Varsovie 23 (1930), cLiii [See pp. 153-178 of 
this volume.] 

8
) M. Wajsberg, "Aksjomatyzacja tr6jwartosciowego rachunku zdafi", Comptes 

rendus des seances de la Sociite des Sciences et des Lettres de Varsovie 24 (1931), 
cl iii. 

~~~-~-~-"-)J;-Slupecki;-«pefuy-tr6jwartosciowy-rachunek:-·· zdafi", · Annales Universitatis 
Mariae durie-Sklodowska, vol. I, Nr 3, Sectio F, Lubliri 1946. 
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It is easy to see on the ground of the matrix M 2 that in this system the 
formula 

(v) CpCpI'p = CpCpNCpNp 

is verified, and yields not only I'Cppfor p/Cpp, but also the Aristotelian 
paradoxical rule. I think therefore that my three-valued modal logic 
cannot be-regardetl-as-an-adequate-systerrruf modal logic. ·----------

The same remark should be made about the Lewis's systems of "strict 
implication". The function "p strictly implies q" is defined by Lewis by 
the expression "It is not possible that p and not q". 10) From this de:fuli:: 
ti on we can easily deduce that the formula "p strictly implies 4' is an 
asserted apodeictic proposition. The systems of Lewis are certainly very 
interesting and may have their own merits; I think, however, that they 
cannot be regarded as adequate systems of modal logic. 

5. Modal logic is important a&. a theory of possibility. There exist true 
problematic propositions which would not be true as assertoric propo
sitions. There are other true propositions which cannot be proved 
without introducing possibility. Both kinds of proposition extend our 
knowledge beyond the stock of truths which can be got by the non
modal logic. 

I shall explain here an application of my L-modal system to arithmetic 
which throws a singi.tlar light on the meaning of the so called "existential 
quantifier". From the principle of identity 

5.1 f- Cpp 

we get by substitution 
5.1 pf ¢a x 5.2. 

5.2 f- C¢a¢a, 

and, by the rule of quantifiers denoted by 1;2, formula 5.3: 

5.2 2;2a x 5.3. 
5.3 f- C</Ja l;a¢a. 

In words: "if ¢ of a, then for some a ¢ of a'', or "if ¢ of a, then there • 
exists such an a that¢ of a". "a" denotes any positive integer, i.e . .any 
number of the sequence 1, 2, 3, .. ., in inf. 

10
) C. i. Lewis and C.H. Langford, Symbolic Logic, New York and London, 

1932, p. 124. 
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By means of the functors LI and 17 (see above section 3) it is possible to 
construct true expressions of the form 2 a¢a, though there exists no 
positive integer a that would verify ¢a. The simplest expression of this 
kind is the following one: 

5.4 !- 2 aKLl8la VLia, 

where "Lia" means "I is less than a". For a= I, 8Iais true andLiais 
false, or @Ia= I and Lla = 4; for a > 1, @Ia is false and Lla is 
true, or 8l_a_ = 4 and Lla = 1. We have therefore: 

- If a === 1, then-.KZl&ra-VL-ra = MW4 = K12;-------
if a > 1, then KLl8la VLla = KLl4171 = K31. 

Now according to the matrix for Kpq = NCJ?Nq: 

] -~ ~ ~ : 
2 2 4 4 
3 4 3 4 
4 4 4 4 

the conjunction K12 = 2, and K31 = 3, ie. none of them is equal to 1. 
Hence it appears that no positive integer verifies the conjunction 
KLl@laVLla. Nevertheless the quantified expression };aKLl8laVLla 
is trU:e. I give here a full proof of this theorem based on asserted for
mulae of the L-modal systemand on three elementary arithmetical theses. 

I 

2 

3 

4 

5 

6 

7 

8 

10 

The premises 

f- Cpp (14). 

f-CCpqCCqrCpr (17, 22, 23). 

f- CNpCpq (20). - · 

f- CpCqKpq (16). 

f- CpCqKqp (19). 

f- CCprCCqrCApqr (24). 

r- CpLlp (15). 

r CpVp (18). 
F CCpqC-LlpLlv-(1-I-):----------:·---

f- ALlpVp (24). 

11 

12 

13 

14 

15 

16 

17 

I8_ 

19 

20 

21 

22 

23 

24 
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f- eaa (15) (a = a). 

f- NLaa (20) (a < a). 

f- LaEal (18) (a< a+l). 

The deduction 

1 p/KLl8laVLla, };2a x l4. 
~- CKLl81al7Lla}; aKLl@la VLla (17, 23). . 
7 p/@11 x Clla/l -15. 
!- Ll@ll (16). 

4 p/Ll811, qfVLll x ClS-16. -
r Cl7L11KLl811VL11 (17). 

2p/17Lll, qjKLl@llVLll, r/}; a.KL1f91a17Lla x C16-

399 

- C14a/1-17. 

!- CVLll 2 aKLl81aVLla (24). 

8 pf LIEll x Cl3a/I - IS. 
f-- 17LIE11 (19). 

5 pfVLlEll, q/Ll8181l x C18 -19. 
!- CLl@IE1I.KLlf91EllVL1811 (22). 

3p/Lll,q/81Ell x C12a/l-20. 
!- CL118I811 (21). . 

9 p/Lll, q/81811 x C20-21. 
f-- CLIL11Llt91Ell (22). 

2p/LIL11, q/Ll81Ell, r/.KL1f91E11VL1Ell x C2I -
- C19-22. 

!- CLIL11.KLl@1Ell17Ll811 (23). 

2p/LIL11, q/.KLl81El1VL1811, r/}; a.KLl8la17Llax C22-
- Cl4a/811-23. 

f-- CLILll }; a.KLl8la17Lla (24). 

6p/LIL11, q/VLll, r}; a.KLl@la17Llax C23-C17 -
-CIOp/Lll-24. 

!- L;aKLl@laVLla. 

-· 
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If follows from this consideration that it would be wrong to translate 
the expression }; a by the phrase "for some a" or "there exists such an 
a that". In order to express in words a formula of the shape }; a¢a, we 
must first transform it into the equivalent N fl aN¢a, and then say accord
ingly: "It is not the case that for all a not¢ of a." It seems to me that the 
philosophical implications of this logical fact may be of some impor
tance. 
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