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in Polish in 1961.") The present publication differs considerably from

the Polish edition, On the one hand, several of the articles in the Polish

T ? A édiﬁon are not iricluded here because they are now mainly of historical

; interest. On the other hand, the English-language version includes ten

; " papers on mathematical logic, certainly the most valuable part of f.uka-

siewicz’s gqntxibgﬁggtb science, which do not form part of the 1961

book. These papers have been selected 50 as to bring out the problem

- in ‘which Eukasiewicz was most interested almost all his life and which

g he strove to solve with extraordinary effort and passion, namely the

_ problem of determinism. It inspired him with his most brilliant idea,

that of many-valued logics. _

1; ' Fukasiewicz’s scholarly activity may be divided into three periods,
separated from one another by two world wars.?)

Before World War I, Lukasiewicz's attention was most strongly

attracted to.problems in the methodology of the empirical sciences.

He discussed those questions in two comprehensive papers: “On Induc-

Yy Jan Eukasiewicz, Z zagadnier logiki i filozofii. Pisma wybrane (Problems of
logic and philosophy. Selected writings). Polish Scientific Publishers, Warsaw, 1961.
" ?) Jan Lukasiewicz was born in Lwéw on December 21, 1878. He took his Ph.D.
degree at the University of Lwéw in 1902, and in 1906 became a docent (roughly
equivalent to an assistant professor). From 1915 to 1939 he was a professor at the
University of Warsaw, of which he was also Rector in 1922/3 and 1931/2. After
o World War II he was Professor of Mathematical Logic at the Royal Irish Academy
in Dublin, which conferred an honorary doctor’s degree on him in 1955. (Before
the war ¥ukasiewicz became an honorary doctor of Miinster University.) He died
on February 13, 1956. Fukasiewicz was undoubtedly one of the most eminent lo-
gicians of the first half of the 20th century. The study of many-valued logics and the
methodological researches he initiated have developed into separate disciplines.
The logical systems constructed by him are masterpieces of simplicity and formal

elegance. He was also one of the best historians of logic, even though he wrote very

* Translated from the Polish by O. Wojtasiewicz. little on that subject.
vii




viii FOREWORD

tion as the Imversion of Deduction” (1903) and “Analysis and Con-
struction of the Concept of Cause” (1906).%) Neither paper has been
included in the present English-language edition, because in the passage
of sixty years from the date of their original appearance both papers
have lost much of their scientific value. Eukasiewicz’s research on the
methodology of the empirical sciences is represented by only one brief
paper: “Creative Elements in Science” (1912). It includes Lukasiewicz’s
views on the tasks and value of science and also an extremely simple
classification of methods of reasoning. His interest in the methodology
of the-empirical-seiences is reflected in the. paper.“The Loglcal Founda-
tions of Probability Theory™ (1913), which is certainly one of Euka-
siewicz’s most valuable works. His ideas contained therein were many
years later repeated by the most eminent founders of contemporary
probability theory. '

Even before World War I Lukasiewicz had become concerned with
mathematical logic, which in his earliest papers he termed “algebraic
logic”. His first comprehensive and valuable work connected with the
issues of formal logic was the article <“On the Concept of Magnitude”
(1916), reprinted here with the omission of those parts which are no
longer of any interest, especially for the foreign reader (Lukasiewicz’s
criticism of Zaremba’s book). The present publication also includes
“The Farewell Lecture” delivered in the Warsaw University Lecture
Hall on March 7, 1918. That lecture makes the earliest reference to
three-valued logic.

After World War I mathematical logic came to dominate ¥.ukasie-
wicz’s research. The principal subject matter of his research was the
propositional calculus and Aristotle’s syllogistic. The results obtained
by Lukasiewicz concerning the methodology of these systems are among
the earliest works in this field.

His papers on mathematical logic, published between the two world
wars and included in the present publication are: “On Three-Valued

Logic” (1920), “Two-Valued Logic” (1921), “A Numerical Interpre-
tation of the Theory of Propositions” (1922/3), “Investigations into
the Sentential Calculus” (1930), “Comments on Nicod’s Axiom and

3) A bibliography of Xukasiewicz’s works is included in this publication (see p. 401).

e
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The paper “On Three-Valued Logic” for the first time formulates
the formal foundations of logical calculus other than classical logic.
Some comments on non-classical logic were formulated by Eukasiewicz
in his earlier works, for instance in the monograph The Principle of
Contradiction in Aristotle’s Works (1910), but they were rather intuitive
than formal in nature.

tions” contains Eukasiewicz’s earliest remarks on many-valued logics
and on the applications they may have in the proofs of the independence
of theses ‘'of the propositional calculus.

The paper “Two-Valued Logic” was intended by FLukasiewicz to be

part of a more comprehensive study of three-valued logic, which, how-

ever, has never been pﬁblished Neither did f.ukasiewicz ever revert
to the miéthod ofconstructing a system of propositional calculus which
he used in that paper. The paper, however, has visibly influenced the
works of other logicians. It -is interesting to note that in “Two-Valued
Logic” Yukasiewicz first used the concept of rejected proposition,
a concept which later came to play an important role in his research
on Aristotle’s syllogistic.

“Investigations into the Sentential Calculus” was written jointly
by Lukasiewicz and Alfred Tarski, and in addition to the results obtained
by its anthors it also includes results obtained by their disciples. This
paper is to this day a classic and is probably the most important work
on the methodology of the propositional calculus.

“Comments on Nicod’s Axiom and on ‘Generalizing Deduction™
discusses in detail Eukasiewicz’s parenthesis-free notation and offers
simple and elegant methods of proving logical theses and writing down
such proofs. It also discusses a philosophically important property
of some kinds of logical reasoning, which ¥ukasiewicz termed “gen-
eralizing deduction”.

“The Equivalential Calculus” was to appear in Vol. 1 of Collectanéa
Logica, a periodical initiated by Lukasiewicz, but the publication was
destroyed during the hostilities in 1939. Only a few off-prints, including
¥.ukasiewicz’s paper, have been saved.

- The present publication includes the following five philosophical
articles, published between the two world wars or during World War
II: “On Determinism”, “Philosophical Remarks on Many-Valued

The-paper—“A—-Numerical Interpretation_of -the-Theory-of Proposi-———



X FOREWORD

Systems of Propositional Logic” (1930), “Logistic and Philosophy”
(1936), “In Defence of Logistics” (1937), “Logic and the Problem
of the Foundations of Mathematics” (1941). -

The first of these is a revised vérsion of the speech delivered by Luka-
siewicz as Rector of the University of Warsaw at the opening of the
academic year 1922/1923. This paper discusses the intuitions which
contributed to the formulation of three-valued logic as well as the
significance of that logic in the analysis of the problem of determinism.

The second proves the thesis that modal logic cannot be based on

two-valued logic but can be baséd on three-valued logic:

The third is the text of the paper read by Lukasiewicz in 1938 at the
Zurich conference on the foundations and methods of the mathematical
sciences. Tt outlines a modal three-valued propositional calculus dif-
ferent from the system discussed in “Philosophical Remarks on Many-
Valued Systems of Propositional Logic”.

The remaining two of these five papers are concerned with Lukasie-
wicz’s defence of mathematical logic, which he sees as the modern
form of the formal logic originated by Aristotle, against the objections
of nominalism, formalism, conventionalism and relativism. This paper
provides a very fine example of Fukasiewicz’s polemic talent.

“On the History of the Logic of Propositions” (1934), concerned
exclusively with the history of logic, is, according to H. Scholz, the most
interesting thirty pages ever written on the history of logic. It demon-
strates that Stoic dialectic, contrary to K. Prantl’s opinion, is propo-
sitional logic, and not term logic. Many historical remarks are also
included in “Philosophical Remarks on Many-Valued Systems of the
Propositional Logic”. One of Fukasiewicz’s most important works is
the monograph Aristotle’s Syllogistic from the Standpoint of Modern
Formal Logic (1951), which is largely a historical study.

After World War IT Eukasiewicz published twelve works, all of them
on logic, seven of which have been included in the present publication:
“The Shortest Axiom of the Implicational Calculus of Propositions”
(1948), “On the System of Axioms of the Implicational Propositional
Calculus” (1950), “On Variable Functors of Propositional Arguments”

(1951), “On the Intuitionistic Theory of Deduction” (1952), “Formal-
ization of Mathematical; Theories” (1953, in French), “A System of

FOREWORD xi

Modal TLogic” (1953), and “Arithmetic and Modal Logic” (1954).
- The subject matter of the first two is explained by their titles. The
third is concerned with a part of a system originating with Stanistaw
Lesniewski (eminent Polish “logician, 1886-1939) and termed pro-
tothetics by him. The method of writing a definition as a single impli-
cation, which is made possible by the introduction into the proposi-

tional calCuliis of functor-variables;-is-particularly-interestine—“On-the—————

Intuitionistic Theory of Deduction” formulates the rather unexpected
conclusion that the classical propositional calculus is a proper part
of the intuitionistic calculiis enriched by definitions of the terms of the
classical propositional calculus. “Formalization of Mathematical
Theories” is concerned with the arithmetic of natural numbers. In the
sixth paper of those specified above Xukasiewicz constructed a four-

‘valued modal calculus, thus reverting to the problems in which he was

most interested for many years. He now offered a new solution of
those problems, which both formally and intuitively differed essentially
from his earlier solutions. That paper is to a certain extent supplemented
by his “Arithmetic and Modal Logic”.

The present publication does not include any of Lukasiewicz’s works
on Aristotle’s syllogistic, in spite of the fact that research on syllogistics
was for many years one of the principal subject matter of his studies.

" This is due to the fact that in his monograph on Aristotle’s syllogistic,

referred to above and easily accessible to English-speaking readers,
Yukasiewicz formulated, in a fuller and more satisfactory form, all his
results included in his earlier works.

*

* *

Yukasiewicz’s papers are here arranged in chronological order,
which makes it easier for the reader to follow the evolution of ukasie-
wicz’s views on many philosophical and logical issues. This ig impor-
tant because in some cases (cf. the problem of the relationship between
logic and reality) Eukasiewicz changed his opinions completely.

The terminology used in this publication is based mainly, though
not without some exceptions, on that wsed in Zukasiewicz’s works
published originally in English during his lifetime. All editorial notes
are marked by asterisks or included in brackets.
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The notation used here had not been unified as no consistent proce-
dure could be used with reference to the various notations used by Lu-
kasiewicz over a period of more than forty years.

The terminology used in the text reprinted from Polish Logic®) and
Logic, Semantics, Metamathematics ®) has remained unchanged.

JErRzY SL.UPECKI

4) Polish Logic 1920-1939, ed. by Storrs McCall, Oxford, Clarendon Press, 1967.
These texts are: “On Determinism”, “Philosophical Remarks on Many-Valued
Systems of Propositional Logic”, “On the History of the Logic of Propositions”
and “The Equivalential Calculus™.

5y Fogic-Semantics,-Metamathematics, Papers from 1923 to 1938 by Alfred Tarski,
Oxford, Clarendon Press, 1956. The text in question is *’Investigations into the
Sentential Calculus” by Lukasiewicz and Tarski.

CREATIVE ELEMENTS IN SCIENCE *)

Both scientists and those who are remote from science often deem
that the goal of science is truth, and they understand fruth as agreement

between thoﬁght and existence. Hence they think that the scientist’s

work -consists in reproducing facts in true judgements, similarly as
a photographic plate reproduces light and shadow and a phonograph
reproduces sound. The poet, the painter, and the composer work

"creatively; the scientist does not create anything, but merely discovers

the truth.)

This knot of ideas makes many a scientist feel undue pride and makes
many an artist treat science lightly. Such opinions have dug a chasm
between science and art, and that chasm has engulfed the comprehension
of the priceless quality that is the creative element in science.

Let us cut this knot of ideas with the sword of logical criticism.

#*

1. Not all true judgements are scientific truths. There are truths that
are too trifling for science. Aristophanes says in The Clouds:?)

1) After writing the introduction to the present paper I found the following formu-
lations: “La science n’est pas une création de notre esprit, dans le genre de l'art
Elle n’est que 1a reproduction intellectuelle de I'univers”, in a- work by Xénopol,
a well-known methodologist of the historical sciences (cf. La théorie de Ihistoire,
Paris, 1908, p. 30).

2} Aristophanes, The Clouds, Loeb Classical lerary, London and Cambndge,
1960, p. 275. .

*) First published as “O tworczosei w nauce” in Ksigga pamiqtkowa ku uczczeniu
250 rocznicy zalozenia Uniwersytetu Lwowskiego, Lwow, 1912, pp. 1-15. Also pub-
lished by the Philosophical Library, Lwow, 1934, and reprinted, in an abridged ver- -
sion, as “O nauce” (On science), in Poradnik dla samoukdéw, Vol. 1, Warsaw, 1915.
Republished in the 1961 edition Z zagadnier: logiki i filozofii.

1




2 CREATIVE ELEMENTS IN SCIENCE

“Twas Socrates was asking Chaerephon,

How many feet of its own 2 flea could jump.
For one first bit the brow of Chaerephon,
Then bounded off to Socrates’s head P

Socrates caught the flea a.nd immersed its feet in molten wax;.in this
way he made shoes and took them off the flea’s feet, then used them
to measure the distance. There is a truth about a flea’s jump which
disturbed Socrates, but the proper place for such truths is in a comedy,
not science.

The human mind, wheén producing science, does not strive for ommnis-
cience. If it were so, we would be concerned with even the most trifling
truths. In fact, omniscience seems to be a religious, rather than scientific,
ideal. God knows all the facts, for He is the Maker and the Providence
of the world, and the Judge of human intentions and deeds. As the
psalmist puts it,

“The LORD looketh from heaven; he beholdeth all the sons of men.

From the place of his habitation he looketh upon all the inhabitanis of the earth.
He fashioneth their hearts alike; he considere_th all their works.”?)

How different is Aristotle’s idea of perfect knowledge! He, too, thinks
that a sage knows everything; yet he does not know detailed facts, and
has only a knowledge of the gemeral. And as he knows the general,
in a way he knows all the details falling under the general. Thus poten-
tially he knows everything that can be known. Butf potentially only:
actual omniscience is not the Stagirite’s ideal. %)

2. Since it is not so that all true judgements belong to science, then
besides their truth there must be some other value which gives some
Judgements the rank.of scientific truths.

Even Socrates and his great followers considered generality to be
that additional value. Aristotle said that scientific knowledge is concerned
not with incidental events (like the flea’s jump from Chaerephon’s
brow), but with facts which recur constantly or at least offen. Such

%) Psalm 33, Exunltate iusti in Domino, verse 29~30. Cf. also Psalm 139.
*) Metaphysics A 2,982 a 8 ff, 21 ff: SmohapBdvopey 83) wpdrov udv éntotao-

Hor wdvre: Oy copdy S¢ EVOENETHL, (B #EY Biadtev Exovra EmoThuny adtéy [...]
70 W&y mdvte EntoTxodor TH pdiio? éxowu Ty naddrov smc&qpnv Gvoryxotov
drdpyew: obtog Yop ol weg mdvta td Smoxetyeve,

CREATIVE ELEMENTS IN SCIENCE 3

facts are reflected in gemeral judgements, and only such judgements
belong to science ).

Yet generality is meither a necessary nor a sufficient characteristic
of scientific truths. It is not necessary, for we may not eliminate singular

- judgements from science. The singular proposition “Wiadystaw Jagielto
——was-the-victor-in-the battle of Grunwald” refers to an important histor-

ical event; the singular judgement which, on the basis of computations,
foresaw the existence of Néptune was one of the greatest triumphs of

'astronomy Wlthout singular judgements, history would cease to. exist

qua science, and natural science would be reduced to shreds of theory.
Generahty is mot a- suﬁczent characteristic of scientific truths. The
fo]lowmg four-lme stanza by MlelerCZ
BREN “Na “kazdyid mmigjscu 1 o kazdeJ doble,
gdziem z'toba plakat, gdziem si¢ z toba bawil,
wszedzie i zawsze bede ja przy tobie,
~ bom wszedzie czastke mej duszy zostawit.”¥)
can be the subject-matter of the fo]lowing general judgements:
" “Every line includes the letter s,”
“In every line which includes the letter m that letter occurs twice,”
“In every line the number of occurrences of the letter m is a function
of the number of the occurrences of the Ietter s expressed by the formula:
m = s*—551+6.” %)
Such general truths can be turned out endlessly; shall we include
them in science?

3. Aristotle, when adopting generahty as the characteristic of scien-
tific truth, was succumbing to the charm of metaphysical value. Behind

5)Metaphyszcs E 2, 1027 a 20, 21, 26: 8w & EmiotAun odx Eott <ol cup-

. Beﬂnxérog pavepdv- srr.cf'i]y.n udv yap maos § wol et H ToU dg émh T wuld [.. -1

76 3t ouuBeBnnds ot mwopd Taltx, B 6, 1003 a 15: xafdArov yap «l Emotiipe
TRVT®Y,

%) These four lines form the third stanza in the poem Do M*** (To M**¥), which
begins with the words Precz z moich oczu, Adam Mickiewicz, Dziela (Works). The

Adam Mickiewicz Literary Society, Lwéw, 1896, Vol. I, p. 179). It follows from the
formula that m = 2 for s = 1 (lines one and two), m = 0 for s = 2 (line three), and

m = 2 for s = 4 (line four).
¥) The original example is left untranslated, since reference is made by the author
not to the meaning of the poem, but to the occurrence of certain letters. .




4 CREATIVE ELEMENTS IN SCIENCE

the constantly recurring facts he sensed a permanent existence differ-
ent from the vanishing phenomena of the world of the senses. Today,
scientists are more inclined. to see in generality a practical value.

General judgements, by defining the conditions under which phe-
nomena occur, make it possible to forecast the future, to bri-ng about
useful phenomena, and to prevent detrimental ones from tz?kmg place.
Hence the view that scientific truths are practically valuable judgements,
rules of effective action.”) ’

But pracﬁcai value-too;-ig-neither-a-necessary-nor.a sufficient prop- .

erty of scientific truths. Gauss’s theorem stating that every prime
number of the form 4n+1 is a product of two conjugate numbe.rs has
no practical value. %) On the other hand, the information sup%)hed l?y
the police that stolen things have been recovered from thieves is,
for all practical purposes, Very valuable for the owners of the stolen
property. And how many phemomena can be foreseen, and how
many accidents can effectively be averted, on the strengt‘h of the law
in the formulation unknown to Galileo: “A7l pencils produced
by Majewski & Co., 1td.,, Warsaw, Wwhen neither susp;.ended nor
supported, fall with a velocity that increases in proportion to the
period of fall!” :

Those who would like to turn science into a servant of everyday
needs hold a low opinion of science. More exalted, though not better,
was Tolstoy’s idea of condemning the experimental sciences. and of

7y A. Comte (cf. Cours de philosophie, 2nd ed., Paris, 1864, Vol. I, p 5%) defined
as follows the relationship between science and action: “Science, d’ou .prevoy_an‘ce;
prévoyance, d’olt action.” But Comte did not yet see the goal of science in .predlcjt%on
or action (cf. footnote 3 on p. 6). Today, pragmatism idanﬁﬁes truth with utility,
and H. Bergson, by replacing, in L’évolution créatrice (5th ed., Paris, 1909, p. 151)
the term homo sapiens by homo faber (which was done before him by Carlyle: Man
is a tool-using animal, Sarfor Resarius, Book 1, Chap. 5) wants the whole of man’s
mind to serve the purpose of practical activity. . Poincaré in his book La valeur
de la science (Paris, 1911, p. 218) quotes the following statement by Le Roy, one
of Bergson’s followers: “La science nlest quiune régle daction.” .

%) Gauss, Theoria residuorum biquadraticorum, commentatio secunda, § '33. Ex.am-
ples:-5.= (1+2D(1—2i), 13 = (2+3i)_(2__—3i), etc. Gauss’s theorem is equival-

ent to Fermat’s theorem stating that every prime number of the forn:; 4n+1
can be represented as a sum- of two square numbers'; e.g., 5=12422, 13 =
22432, etc. :

CREATIVE ELEMENTS IN SCIENCE 5

demanding of science instruction in ethical issues only.®) Science has
immense importance in practical matters, it can elevate man ethically,
and it happens to be a source of aesthetic satisfaction; but the essence
of its value rests elsewhere. '

4. Aristotle saw the origin of science in astonishment. The Greeks
were astonished when they found out that the side and the diagonal

of a square have no common measure. *) Astonishment is a psycholog-
ical state which is both intellectnal and emotional. There are other
such states, such as curiosity, fear of the unknown, incredulity, uncer-
tainty. They have not been thoroughly studied so far, but even a cursory
analysis shows that they all include, along with emotional factors, an

- intellectual element which is a desire for knowledge. 1y

This desire is concerned with facts'which are important for individ-
nals or for all men. A man who is in Jove and who is tortured by déubts
as to whether his beloved responds, would like to know the fact that
is important to himself. But every man views death with fear and
curiosity while he tries in vain to fathom its mystery. Science is
not concerned with the desires of individuals; it investigates that which
may arouse desire for knowledge in every man.

If the above statement is true, then the additional value besides truth
which every judgement ought to have in order to belong to science might
be defined as the ability to arouse, or to satisfy, directly or indirectly,
intellectual needs common to humanity, i.e., which may be felt by any
man who has a certain level of mental development.

5. The truth about the flea’s jump from Chaerephon’s brow does

9) L. Tolstoy included his remarks on the goals of science in the conclusion of his
book against modern art. (I know that book only in a German translation: Gegern
die moderne Kunst, deutsch von Wilhelm Thal, Berlin, 1898, pp. 171 ff.) Tolstoy
is quoted by H. Poincaré in his article “Le choix des faits”, included in his book
Science et méthode (Paris, 1908, p. 7). )

19y Metaphysiecs A 2, 982 b 11 ff: 8id yop 76 Sovudlewv of dvdpwmor ol
viv ol 76 wpdvov Hegavro grhocopeiv [...] 983 a 16: Havpaotdy yop elvor Soxel
ndow, sl (scil. § Sudustpod) ©H Baylord pd perpsicar. Comte (loc. cit))
says that the cognition of the laws governing phenomena satisfies that urgent need
of the human mind which is expressed in astonishmeﬁt, étonnement.

11) States of uncertainty, as far as they occur in desires, have been analysed by
W. Witwicki in Analiza psychologiczna objawdw woli (A. psychological analysis of
the manifestations of will), Lwow, 1904, pp. 99 fI. :




6 CREATIVE ELEMENTS IN SCIENCE

not belong to science, since it neither arouses nor satisfies any one’s
jntellectual neéds. The information supplied by the police about the
recovery of stolen property may be of interest at the most to the per.sons
concerned. Likewise, no one is interested in knowing how many tlmf:s
the letters m and s occur in a given poem, of what is the rela_tionsh‘lp
between these two numbers. Even the judgement about the fall of pencils.
produced by Majewski & Co..will not find its way into a textbook of
physics, since our desire for knowledge is satisfied by a general law about
the fall of bodies.

Gauss’s theorem 011 the factoring of prime numbers-of the form 4n-+1

into complex numbers is known only to a few scientists. Yet it belongs |

to science because it reveals a strange regularity in the laws gove}*mJ}g
numbers, which, being powerful instrument of research, arouse curiosity
in every thinking man. Not everyone need be concerned al?out the
existence of Neptune, but that fact confirms Newton’s synthetic theory
about the structure of the solar system, and thus ind.irecﬂy helps. to
satisfy the intellectual need which mankind has felt '?mce the earliest
imes. The victory of Jagiefto as such may be of lLittle mter-est to a Jap-
anese, but that event was an important element in the history of the
relations between two nations, and the history of a mation may not
be a matter of indifference to any Acultured individual.

While art developed from a longing for beauty, scienc§ was shap'ed
by a striving for knowledge. To look for the goals of s.c:1ence outside
the sphere of intellect is as grossly erroneous as to r'estnct art bZ con-
siderations of utility. The slogans “science for science’s sake and
“art for art’s sake” are equally legitimate. _ ‘ '

6. Bvery intellectual need that camnot be immedlajtely sat}sﬁed in
an empirical manner gives rise t0 reasoning. Whoever 15 astogshed by
the incommensurability of the side and the diagonal of a squdre wants
to find an explanation of that fact; hence he looks for the reasons of
which the judgement about incommensurability would be a conseq'uenr.:e.
Whoever is afraid of the Earth’s passing through a comet’s ta-ﬂ tries
to infer, on the strength of the known laws of N'a’fure, Wha.t might be
the consequences of such an event. A mathematician who is not sure

whether-the equation x"--y" = 7" has no solution in positive integers
for n > 2 looks for a proof, ie., reliable judgemer.}ts Whlc'h would
justify Fermat’s. well-known theorem. A person who is suffering from
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hallucinations and at a gTVen moment does not believe what he perceives,
wants to verify the objective nature of what he perceives; hence he
looks for the consequence of the assumption that he does not suffer
from hallucinations. For instance, he asks others whether they see
the same things he does. Explanation, inference, proof, and verification
are kinds of reasoning. 1)

Every reasomug inctudes-at-least two-judgements-between whichthe————

relation..of . consequence holds. A set of judgements connected by such
relations might be called a synthesis. Since any intellectual need com-

" "mon to humanity can bé satisfied by reasoniig only, and not by expe-

ﬁeﬂéc,‘ W]:uch by its very nature is individual only, then science includes
not iso ted jz;dgemenis; but only syntheses of judgements.

7. Every ‘synthesis of judgements includes the formal relation of
" consequence ds a necessary factor. The syllogism: “If every S is M, and

every M is P, then every S is P,” is the most common, though not the
only, example of judgements connected by such a logical relation. The
relation of consequence which holds between the premisses of a syl-
logism and its conclusion is called formal, because it holds regardless
of the meanings of the terms S, M, and P, which form the “matter”
of the syllogism.

The formal relation of consequence is nom-symmetrical, ie., it has
the property that while the relation of consequence holds between
a judgement or a set of judgements 4 and B, the same relation may,
but.need not, hold between B and 4. The judgement 4, of which B is
a consequence, is the reason, and B is the consequence.®) The transition
from reason to consequénce determines the direction of the relation of
consequence.

Reasoning which starts from reasons and looks for consequences
is called deduction; that which starts from consequences and looks for
reasons is called reduction. In the case of deduction the direction of

12) Professor K. Twardowski was the first to use the term “reasoning” as a general
term covering “inference” and “proof” in Zasadnicze pojecia dydalktyki i logiki (The
fundamental concepts of teaching methods and logic), Lwéw, 1901, p. 19, para. 97.
As a continuation of his views I introduce the theory of reasoning outlined under 7
in the present paper.

*Unpfortunately, two Polish terms have to be rendered by oune English term “con-
sequence” (the relation of consequence, and consequence as opposed to reason).
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reasoning is in agreement with that of the relation of consequence; in
reduction the two are contrary to one another.

Deductive reasoning can be either inference or verification, and re-
ductive reasoning can be either explanation -or proof. If from given
reliable judgements we deduce a consequence, We infer; if we look for
reasons for given reliable judgements, wWe explain. If we look for reliable
judgements which are consequences of given umreliahle judgements,
we verify; if we look for reliable judgements of which given unreliable
judgements are COnsequences, we prove.

8. There is a creatﬁ»ﬁrementin—every'reasoning; this is most strongly
manifested in explanation.

Tncomplete induction is one kind of explanation. Itis a way of reason-
ing which for given reliable singular judgements: “S; is P, S,is P, Sy is
P, ...” looks for a reason in the form of a general judgement: “every
Sis P”.

Like all reductive reasoning, incomplete induction does not justify
the result of reasoning by its starting point. For §;, S,, S5 do not ex-
haust the extension of the concept S, and inferring a general judgement
from a few singular judgements is not formally permissible. That is
why the result of an argument by incomplete induction as such is not
a reliable judgement, but only 2 probable one.*)

The generalization “every S is P” may be interpreted either as a set
of singular descriptions or as the relationship “if something is S, then
it is P”. If a generalization is a set of singular judgemerits, it covers
not only those cases which have been investigated, but unknown
cases as well. By assuming that the unknown cases behave like the
known ones we do not reproduce facts that are empirically given, but

we create new judgements on the model of judgements about known
cases.
" If a generalization expresses 2 relationship, it introduces a factor
that is alien to experience. Since Hume’s time we have been permitted
to say only that we perceive a coincidence or a sequence of events, but

1%) This view on the essence of inductive inference is in agreement with what is
called the inge_:rsion theory of induction, formulated by Jevons and Sigwart (cf. my

paper “O indukcfi jako Twersji dedukeii” (On induction as the inversion of de-
duction), in Przeglqd Filozoficzny 6 (1903), p. 9.
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not a relationship between them.’) Thus a judgement about a relation-
ship does not reproduce facts that are empirically given, but again is
a manifestation of man’s creative thought.

This is still insignificant creative activity; we shall come to know
a fuller one.

9. Consider Galileo’s generalization: “All heavy bodies, if neither

——suspended nor Supported; fall-with-a—velocity-that—inereases—in—pro

portion to the time of fall.” This generalization includes a law that
?X_I_ff?fsf_ﬁfhe functional relationship between the velocity v and the time
of fall 7, given by the fofmula: v = gt. )

The quantity # may take on values that are expressed by integers,
fracﬁggs, irrational numbers, and transcendental numbers. This yields
an infinite number of judgements about cases which no one has ever

observed or will &ver be able to observe. This is one element of creative

thought which. was already mentioned above.

The other is inherent in the form of the relationship. No measurement
is exact. Hence it is impossible to state that the Velocity is exactly pro-
portional to the time of fall. Thus neither does the form of the relation-
ship reproduce facts that are empirically given: the entire relationship
is a product of the creative activity of the human mind.

Indeed, we know that the law governing the fall of heavy bodies
can be true only in approximation, since it supposes such non-existent
conditions as a constant gravitational acceleration or a lack of resistance
offered by the air. Thus it does not reproduce reality, but only refers
to a fiction. : o

That is why history tells us that the law did not emerge from the
ob.servation of phenomena, but was born g priori in Galileo’s creative
mind. It was only after formulating his law that Galileo verified its
consequences with facts.'®) Such is the role of experiénce in every theory
of natural science: zo be a stimulus for creative ideas and to provide
subjects for their verification.

10. Another kind of explanation consists in the formulation of hypo-
theses. To formulate a hypothesis means to assume the existence of

] 1:‘) Cf. .David Hume, Enguiry Concerning Human Understanding, Leipzig, 1913
Felix Meisner, p. 64: “... we are never able, in a single instance, to discover any
power of necessary connection.” .

15) Cf. B. Mach, Die Mechanik in ihrer Entwickelung, 6th ed., Leipzig, 1908, pp. 129 ff.
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a fact, not confirmed empirically, in order to deduce from a judgement
about such a fact as its partial reason a given reliable judgement as
a consequence. For instance, a person knows that some S is P, but does
not known why. As he wants to find an’ explaiation he assumes that
the same S is M, although he does not verify it. empirically. But he
knows that all M are P; so if he assumes that S is M, then from these
two judgements he may conclude that S is P.. .

The judgement about the existence of Neptume was a hypothesis
before the fact was confirmed empirically. The judgement about the

existence of Vulcan, a plamet situated>closér-to-the-Sun than Mercury,
isstill a hypothésis. The views stating that atoms, electrons, and asther
exist will always be hypotheses.’) All palacontology is based on hypo-
theses; for instance, the statement that certain gray lumps of limestone
found in Podolia are traces of the Brachiopoda which lived in the Silo-
rian and the Lower Devonian periods pertains to phenomena which
are not accessible to observation. History is an immense network of
hypotheses which, by means of general judgements, in most cases drawn
from experience, empirically explain given data, such as historical
monuments, documents, institutions and customs that exist now.

All hypotheses are products of the human mind, for a person who
assumes a fact that is not empirically confirmed creates something new.
Hypotheses are permanent elements of knowledge and not temporary
ideas that by verification can be changed into established truths. A judge-
ment about a fact ceases to be a hypothesis only if that fact can be
confirmed by direct experience. This happens only exceptionally. And
to demonstrate that the consequences of a hypothesis are in agreement

‘with facts does not mean turning a hypothesis into a truth, for the

truth of the reason:does not follow from the truth of the consequence.

_16) Many examples pointing to creative elements in physics are quoted by Dr. Bro-
nistaw Biegeleisen in his paper “O twérczosci w naukach Scistych” (On creative ele-
ments in the exact sciences), Przeglgd Filozoficzny 13 (1910), pp. 263, 387. Dr Bie-
geleisen draws attention to the visualization of physical theories by mechanical
models (pp. 389 ff). Between a model that explains a theory and an invention, which

certainly is a creative work, there is only a difference in the goals and the applica- -

tions of two such objects. There are also models in logic: for instance, Jevons’s lo-

gical-abacus-(see-the-drawing in his book The Principles of Science, London, 1883)
or Marquand’s logical machines (cf. Studies in Logic by Members of the John Hop-
kins University, Boston, 1883, pp. 12 f). , .
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11. Gther kinds of reasoming do not contain primary creative ele-
ments, as explanation does. This is so because proving consists in look-
ing for known reasons, and inference and verification develop the
consequences already comtained in the premisses in question. Yet in
all reasoning there is inherent formal creative reasoning: a logical
principle of reasoning.

A principle—of-reasoning—is—a. judgement. stating—that—the—rela=——

tion of consequence holds between certain forms of judgements. The
syllogism “if S is M, and M is P, then S is P” is a principle of
Tedsoming, 7y~ . o

Principles of reasoning do mot reproduce facts that are empirically

. given; for mneither is the non-symmetrical relation of consequence

a subject-matter of experience, nor do the forms of judgements, such

|85 S I8P, ekpiess phenotiend.

Non-symmetrical relations never link real objects with one another.
For we call non-symmetrical a relation which may, but need not, hold
between B and 4 if holds between 4 and B. And if 4 and B really exist,
then every relation either holds between them or does noz hold. Actual-
ity excludes possibility.

Possibﬂjty is inherent in the forms of judgements, too. The terms S
and P are variables which do not denote anything definite, but which
may denote anything. The element of possibility suffices to make us
consider the principles of Teasoning as creations of the human mind,
and not as reproductions of real facts.

Logic is an @ priori science. Its theorems are true on the strength of
definitions and axjoms derived from reason and not from experience.
This science is a sphere of pure mental activity.

12. Logic gives rise to mathematics. Mathematics, according to Rus-
sell, is a set of judgements of the form “p implies ¢”, where the judge-
ments p and ¢ may, in addition to the same variables, contain only
logical constants.'®y The logical constants include such concepts as the
relation of consequence, the relation of membership that holds between

) For the concept of the “principle of reasoning” I am indebted to Professor
K. Twardowski (cf. Zasadnicze Dojecia dydaktyki i logiki (The fundamental con-
cepts of teaching methods and logic)), Lwéw, 1901, p. 30, para. 64).

% B. Russell, The Principles of Mathematics, Cambridge, 1903, p. 3.
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an individual and a class, etc.™) If all mathematics is reducible to logic,
then it is also a pure mental product. : :

An analysis of the various mathematical disciplines leads to the same
conclusion. The point, the straight line, the triangle,- the .cube, all the
objects investigated by geometry have only an ideal existenqe; they
are not empirically given. How much less are non-Euclidean figures
and many-dimensional solids given.empirically! Npr are there, m the
world of phenomena, integral, irrational, imaginary, or conjugate
mumbers. Dedekind called numbers “free products of the human spirit”.*)

And nomrbers-are-the-foundation of all analysis. . . o

Logic, with mathematics, might be compared to a fine net which is
cast into the immense abyss of phenomena in order to catch the pearls
that are scientific syntheses'. 1t is a powerful instrument of research,
but an instrument only. Logical aad mathematical judgements are

" truths only in the world of ideal entities. We shall probably never know

Ll

whether these entities have counterparts in any real objects.??)

The a priori mental constructions, which are contained in every Syn-
thesis, imbue the whole science with the ideal and creative element:

13. The time has come now to consider the question: which scientific
judgements are pure reproductions of facts? For if generaliz'ations,‘laws,
and hypotheses, and hence all the theories of the empirical sciences
and the entire sphere of the a priori sciences are a result of the creative
work of the human mind, then there are probably few judgements in
science that are purely reproductive.

The answer to this question appears to be easy. Only a singular state-
ment about a fact which is directly given in experience can be a purely
reproductive judgement, for instance: “a pine grows here”, “this magnetic
needle now deviates (from its previous position)”, “in this room there
are two chairs”. But whoever investigates these judgements more closely

*) It would seem that Lukasiewicz means here the symbol of implication and 'the
symbol “¢” which denotes the membership relation that holds between an object
and a set of which that object is an element.

1) R, Dedekind, Was sind und was sollen die Zahlen, Braunschweig, 1888, p. V1L:
“die Zahlen sind freie Schopfungen des menschlichen Geistes.”

20y Tn my book O zasadzie sprzecznosci u Arystotelesa (On the principle of con-
tradiction.in_Aristotle’s works‘)H, Cracow, 1910, pp. 133 ff, I tried to demonstrate

that we cannot even be sure that real objects are subject to the prix;gciple of contra-
diction.
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will perhaps find creative elements even in them. The words “pine”,
“magnetic needle”, and “two” stand for concepts, and hence concealed
labour of the spirit works through them. All the facts formulated in
words are, primitively it may be, interpreted by man. A “crude fact”,
untouched by the human mind, seems to be a limiting concept.
Whatever the actual situation may be, we feel that the creative ability

of-the-human-sind-is.not unlimited. Idealistic systems-of epistemology —

fail to eliminate the fecling that some reality exists independent of man
and that it is to be sought in the objects of observation, in experience.
It has long since been the great task of philosophy to investigate which
elements in that reality come from the human mind.?")

14, Two kinds of judgements must be distinguished in science: some
are supposed to reproduce facts given in experience, the others are pro-
duced by the human mind. The judgements of the first category are true,
because truth consists in agreement between thought and existence.
Are the judgements of the second category true as well?

We cannot state categorically that they are false. That which the
human mind has produced need not necessarily be a fantasy. But neither
are we entitled to consider them as zrue, for we usually do not know
whether they have counterparts in real existence. Nevertheless we
include them in science if they are linked by relations of consequence
with judgements of the first category and if they do not lead to conse-
quences that are at variance with the facts.

Hence it is erroneous to think that zrush is the goal of science. The
human mind does not work creatively for the sake of truth. The goal
of science is to conmstruct syntheses that satisfy the intellectual needs
common to humanity.

Such syntheses include true judgements about facts; they are the ones
which mainly arouse intellectual needs. They are reconstructive ele-
ments. But these syntheses also include creative judgements ; they are
the ones which satisfy intellectual needs. They are constructive elements.

21 The Cop§mican idea of Kant, who tried to prove that objects follow cogni-
‘tion rather than cognition follows objects, includes views that favour the thesis
of creative elements in science. But I have tried to demonstrate that thesis not on the
basis of any special theory of cognition, but on the basis of common realism, by
. means of logical research. For the same reason I have not taken into consideration
James’s pragmatism and Schiller’s humanism. '
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Elements of the former and the latter combine into a whole by the
logical relations of consequence. It is these relations which impart to
the syntheses of judgements their scientific character.

Poetic creativity does not differ-from scientific creativity by a greater
amount of fantasy. Anyone who, like Copernicus, has moved the Earth
from its position and sent it revolving around the Sun, or, like Darwin,
has perceived in the mists of -the past the genetic transformations of
species, may vie with the greatest poet. But the scientist differs from the
poet in that he reasons at all times and places. He need not and cannot

—————justify-everything,but-whatever he states he must link with ties of logic

into a coherent whole. The foundation of that whole consists of judge-

ments about facts, and it supports the theory, which explains, orders

and predicts facts. :
This is how the poem of science is created.?)

*
*® ®

We are living in a period of a busy collecting of facts. We set up
natural science museums and make herbaria. We list stars and draw
maps of the Moon. We organize expeditions to the Poles of our globe
and to the towering mountains of Tibet. We measure, we compute,
and we collect statistical data. We accumulate artifacts from prehis-
toric civilizations and specimens of folk art. We search ancient tombs

in quest of new papyri. We publish historical sources and list biblio- -

graphies. We would like to preserve from destruction every scrap of
print-covered paper. All this is valuable and necessary work.

But a collection of facts is not yet science. He is a true scientist who
knows how to link facts into syntheses. To do so it does not suffice
to acquire the knowledge of facts; it is also necessary to contribute
creative theught.

The more a person trains both his mind and his heart, and the closer
he associates with the great creative minds of mankind, the more crea-

22) Jgnacy Matuszewski in his paper “Cele sztuki” (The goals of arf), included
in the book Twdrczosé i tworcy (Creation and creators), Warsaw, 1904, offers similar
views on creative elements in.science. His studies, undertaken with different ends

in view and from a different standpoint, have led him to thé same results to which
logical considerations have led me.
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tive ideas he can form in his rich soul. And perhaps in a happy moment
he will be illuminated by a spark of inspiration which will beget some-
thing great. For, as Adam Mickiewicz has said, ?®) “all great things in
the world—mnations, legislation, age-old imstitutions, all creeds before
the coming of Christ, all sciences, inventions, discoveries, all master-
pieces of poetry and art—have taken their origin from the inspiration

of prophets;sages;-heroes,-and-poets.” .

23%) This formulation, drawn from Odyniec’s letters, is quoted by W. Bieganski
in his paper “O filozofii Mickiewicza” (On Mickiewicz’s philosophy), in Przeglgd
Filozoficzny 10 (1907), p. 205. '
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I

THE THEORY OF TRUTH VALUES

T, Tndefimite propositions—2—Frath-values-—3-Implication.—4. Theorem on the
truth value of reason.—35. The calculus of truth values.—6. Principles of the calculus.
—17. Theorems.—8. The law of addition.—9. Conclusions determined numeric-
ally.—10. Relative truth valugs.—11. Independence of indefinite propositions.—
12. The law of multiplication.—13. A special theorem.

1. Indefinite propositions

I call indefinite those propositions which contain a variable. For instance,
“x is an Englishman”, “x is greater than 4.

I shall consider hereafter only those indefinite propositions in which
the values of the variables range over a well-defined, finite class of
individuals. For instance, it may be assumed that in the statement
“x is greater than 4” x will stand only for integers from 1 to 6.

If in an indefinite proposition we substitute for the variable one of
its values, we obtain a definite singular judgement which is either true
or false. For instance, “5 is greater than 47, “3 is greater than 4”.

Indefinite propositions are true if they yield true judgements for all
the values of the variables. For instance, “x is greater than 0” for
x=1,2,...,6.

Indefinite propositions are false if they yield false judgements for
all the values of the variables. For instance, “x is greater than 6” for
x=1,2,...,6.

1) T undertook the study of the subject described in this paper in Graz in 1909,
where I studied as a fellow of the W. Ostawski, Foundatlon, administered by the
__Cracow Academy of Learning.

*) First pubhshed in Cracow, 1913, as Die logische Grundlagen der. Wahrschein-
lichkeitsrechnung, reprinted in the 1961 edition Z zagadnier: logiki i filozofii.

- 16

LOGICAL FOUNDATIONS OF PROBABILITY THEORY 17

Indefinite propositions which yield true judgements for some values
of the variables and false judgements for other values of the variables
are neither true nor false. For instance, “x is greater than 4” for x =
1,2, ...,6.

2. Truth values

By the truth value of an indefinite propositionI mean the vatio between
the number of values of the variables for which the proposition yields
true judgements and the total wumber of values of the variables. For
instance, the truth value of the proposition “x is greater than 4”, for
x=1,2,...,6,is ?/s = 1/, since out of the 6 values of x only 2 values,
when substituted for the variable, yield a true judgement, i.e., “verify” it.

The truth value of a #rue indefinite proposition is 1, since that propo-
sition yields true judgements for all the value of its variables.

The truth value of a false indefinite proposition is 0, since no value

".of its variables can verify such a proposition.

The truth values of indefinite propositions which are neither true nor
false-are proper fractions.

3. Implication

The relation of implication, or the relation between reason and con-
sequence, holds between two indefinite propositions a and b if for every
pair of values of the variables occurring in a and in b either the reason a
yields a false judgement or the consequence b yields a true judgement.

The three following cases may be distinguished:

1. The reason a yields false judgements for all the values of its variables,
ie., a is a false indefinite proposition. Then the consequence may be
arbitrary, since of the two conditions for the occurrence of implication
formulated above, each of which is sufficient, the first is satisfied.

2. The consequence b yields true judgements for all the value of its
variables, i.e., b is a true indefinite proposition. Then the reason may
be arbitrary, since of the two conditions of the occurrence of implica-
tion the second is satisfied.

3. Neither the reason @ yields false judgements for all values of its

‘variables, nor the consequence b yields true judgements for all values
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of its variables. Then the statements a and b must contain the same vari-
uble x, and all values of x which verify the reason a must verify the
consequence b. For if i is a value of the variable occurring in g, then
for that value the statement & yields either a false or a true judgement.
In the former case, the first condition of the occurrence of implication
is satisfied. In the latter case, which by assumption must take place for
some value of the variable occurring in a, the first condition is not
satisfied, hence the second must be. Now, if b contains a variable other
than that contained in &, and if the assumption that & does not yield
true judgements for all values of its variable is valid, then we can always

select a value j of the variable b for which 5 yields a false judgement.
But then the relation of implication cannot hold between g and 5,
since for the pair (i, j) of values of the variables neither @ yields a false
judgement, nor b yields a true one. Therefore a and b must contain
the same variable, and the same value { which yields a true judgement
when substituted for the variable in ¢, must also yield a true judgement
when substituted in 5.

Examples. The teason: “x is greater than 47, the consequence: “x is
greater than 3”. The range of the values of x is arbitrary. All values
of x which verify the reasom, also verify the consequence, since as x
is greater than 4, it must also be greater than 3. But it is obvious that
for any value of x either the reason yields a false judgement or the
consequence yields a true one, ie., x must either be not greater than 4
or be greater than 3. On the other hand, the relation of implication
does not hold between the following statements: “x is greater than 47
(2) and “x is greater than 5” (b), for x = 1,2, ..., 6, becanse for x =5
a yields a true judgement, and b yields 2 false one. Or: “x is greater
than 4” (@) and “y is greater than3” (b)), forx = 1,2, ...,6;y = 1,2, ..., 6.

" Since the variables x and y are different, we may substitute the value 5
for x and the value 2 for y, whereby a will yield a true judgement and
b a false one. :

Usuélly only the cases falling winder 3 are classified as instances of
the relation betwéen reason and consequence, but in formal logic it
has proved useful to extend that concept to 1 and 2 as well. The defini-
tion given at the beginning of this section covers all these cases.
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' 4. Theorem on the tiuth value of reason

- The following theorem holds: The truth value of a reason cannot be
greater than the truth value of the consequence. For, if the reason is
false, it has the Jeast truth value 0; if the consequence is true, it has the
greatest truth value 1; if neither the reason is false nor the conseguence

__is true, then both the reason and the consequence must contain the same

variable, and all values of the variable which verify the reason also
verify the consequence. If their denominators are the same, the numer-
ator of the fraction representing. the truth value of the reason cannot
be greater than the numerator of the fraction which represents the
truth value of the comsequence.

Here are examples of the third case: x =1, 2, ..., 6.

Truth values of the

Reason: Consequences:
consequences:
x is greater than 5 e
x is greater than 4 26
x=6 x is greater than 3. 36
- x is greater than 2 s
x is greater than 1 : /s

The truth value of the reason is Y/s.

It can be seen that in the third case the numerator of the *) difference -
between the truth value of the consequence and that of the reason
equals the number of values of the variable which verify the consequence
but not the reason. For instance: Reason: “x = 6”; consequence:
“x is greater than 3”, for x = 1, 2, ..., 6. The fruth value of the reason
is /s, and that of the consequence is 3/4; hence the difference is 2/s.
In fact, there are only two values of the Vaﬁable, 4 and 5, which verify
the consequence but not the reason and thus change the proposition
consisting of the negation of the reason and of the consequence: “x is
different from 6 and greater than 3” into a true judgement. In algebraic
logic, such propositions, connected by the word “and”, aré called

*) The words “the numerator of” are added in translation; they are omitted in
the original, but it follows from the rest of the sentence that the numerator of the
difference is meant, and not the diﬂerenc’@ itself, (Ed.)
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logical products. Hence for the third case of implication we may formulate
the following “theorem on the truth value of a reason”:

The truth value of a reason, augmented by the truth value of the logical
product of the negation of the reason and of the consequence, equals the
truth value of the consequence. :

The same theorem is also valid for the first two cases of implication.
For, if the reason has the truth value 0, then the negation of the reason
is true and the truth value of the product of the negation of the reason
and of the consequence depends solely on the truth value of the conse-

—

quence;-and hence-equals the truth value.of _the. consequence. If, on the
other hand, the consequence has the truth value 1, then the truth value
of the product of the negation of the reason and of the consequence
equals the truth value of the negation of the reason. But then it is obvious
that the truth value of any indefinite proposition plus the truth value
of its negation, equals 1, and hence in our case also equals the truth
value of the consequence. Hence the theorem on the truth value of
a reason, as formulated above, is universally valid. ‘

5. The calculus of truth values

A special calculus, which abounds in formulae, can now be construct-
ed on the basis of the foregoing explanations and the theorem formu-
lated above, with the help of the algebra of logic.

Indefinite propositions are denoted by a, b, ¢, ..., and their truth
values by w(@), w(®), w(c), --- The logical product ab denotes “a and b”,
while the logical sum a+b denotes “a or b” (the word “or” being taken
in its inclusive sense); a’ is the negation {contradictory opposite) of a;
a < b stands for the relation of implication: “from a follows 5”; the
equivalence a = b is identical with the logical product of (¢ < b) (b <a)
and means: “from « follows b and from b follows a”. '

Most formmulae of the calculus consist of a logical and a mathemati-
cal part each. The logical part of a formula represents a relation between
indefinite propositions, and the mathematical part is a numerical equa-
tion between the truth values of such propositions. The whole of a for-

~~—-mula;~expresses.a_relationship,between a logical relation and a numerical

equation. In some cases the formulae are reduced to pure mumerical

-
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equations; this occurs whenever a numerical equation is a conseqﬁence
of a universally valid logical relation.

In the text that follows it is assumed that the elementary and obvious
rules of the algebra of logic are known to the reader.?)

Note: The formulae of the calculus contain both logical and mathe-
matical operations and equations which are denoted by the same sym-

Misunderstandings, however, are excluded, since mathematical opera-
tions and equations occur only between expressions which stand for
numbers, and such expressions can easily be recognized as they begin
with w, for instance, w(a); w(a+5), etc.

6. Principles of the calculus

- The calculus of truth values is based on the following three principles: -

I (a=0)=[w(@)=0].
O (a=1) =[we=1].
Il (2 < b) < [w(@+w(a'b) = w(b)].

The first two pn'n_ciples state: “If an indefinite proposition « is false
(= 0) or true (= 1), then its truth value equals 0 or 1 respectively, and
conversely, if the truth value of a proposition a equals 0 or 1, then ¢ is
false or true respectively”. The figures 0-and 1 in these equivalences
are not numbers but convenient symbols for false and true statements
borrowed from. the algebra of logic. .

The third principle is that of the truth value of a reason: “If g is the
reason for b, then the truth value of @, augmented by the truth value
of the logical product @', equals the truth value of 5.”

In the first two principles the logical part is equivalent to the mathe-
matical, and the third principle as a whole is only an implication.

These principles are based on the analyses carried out in the first
four sections where they are explained by examples. Within the calculus
of truth values they play the role of axioms.

2) Couturat’s concise work L’algbre de la logigue (The Scientia series, division

of mathematics and physics, No. 24, Paris, 1905) can serve as the best introduction
to the algebra of logic. ’

bols-{-sjuxtaposition of the symbols in the case of multiplication; —)————
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7. Theorems
ey : w(0) = 0.
“The truth value of a false proposition is 0.”
) Cw@) =1.

“The truth value of a true proposition is L.”

Proof: The theorems result from I and II following the substitution
for a in T of the symbol of a false proposition, and, inI1, of the symbol

ofa-trae-proposition. Thus the equivalences:...
Lz = 0 and a=1
yield universally valid identities:
0=0 and 1=1,

so that their equivalent equalities:
w(0)=0 and w(l)=1
are proved. ,
©)) (@ =b) <Tw(@ = wO)l.

<If the propositions ¢ and b are equivalent, then their truth values
are equal.”

Proof: a=b means the same as (z < b) (b <a). By 1, (@< b
yields: :

() w(@)+w(a'd) = w(b).
On the other hand, :
b<a=(@b=0),

which by I yields:
® > w(a'b) = 0.
From the assumption that @ = b we obtain, by («) and ®:

w(a) = w(b).

Theorem (3) is not reversible, i.e., it may not be asserted that proposi-

tions—-which-have.the .same. truth values are equivalent. For instance,

for x = 1,2, ..., 6, the statements “x = 4” and “x = 57 have the same
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truth value, namely /s, yet not only are they zot equivalent, they are
even mutually exclusive.

@ w@+wl(a)=1.

“The sum of the truth values of two contradictory propositions
equals 1.”

Proof: If 1, the symbol of a true proposition, is substituted for b in

I1T, this yields:
(@ < 1) < [w@+w(@'l) = w(l].
Now since
al=d,
hence by (3)
w(a'l) = w(a').
Further, by (2)
wl)=1.
This yields
(a < 1) <[w@+wl@)=11.

.In this formula the antecedent a < 1 is a logical law of universal valid-
ity; hence the consequent, i.e., the thesis, also has universal validity.

8. The law of addition

Some auxiliary théorems will be proved first. -
®) w(ab)+w(@s) = w().
Proof: If the logical product ab is substituted for a in ITI, this yields
(ab < Bb) < {w(ab)+w[(ab)'b] = w(b)}.
The following equivalences are valid in the algebra of logic:
(@b)'b = (&’+b")b = a'b-+b'b = a’'b.
By (3) we obtain:

wl(ab)'bl = w(a'b)
and :

(@b < B) < [w(ab)+w(a'b) = w(b)].
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Now, the antecedent ab < b is a logical law of universal validity; hence
the consequent, i.e., the thesis, is proved. i .
©) w(a)+w(a'b) = w(a--b). -

Proof: If the logical sum a-+b is substituted for & in III, this yields:

(a < a+b) < {w(@+wle (a+b)} = w(a+b)}-
The following equivalences hold:
a'(a+b) = da+a'h = a'b.

By (3), this yields

wla'(a+b)] = w(a'b)
and ‘
(@ < a+b) < [w(@)+w(a'b) = wa+Db).

Now, since the antecedent a < atb is a logical law of universal
validity, the consequent, i.e., the thesis, is proved.
@) w(a-+b) = w(@)+w(d)—w(ab).

Formula (7) is obtained by subtracting equation (5) from equation (6).

The law of addition:
®) (ab = 0) < [wla+b) = w(a)+w(d)].

“If the propositions a and b are mutually exclusive, then the truth
value of their sum equals the sum of their truth values”.

Proof: Formula (8) results from (7), since, by I, the assumption
ab=20

yields
w(ab) = 0.

Example. Let a stand for “x = 4", and b, for “x is less than 3”. For

x=1,2,..., 6, w@ =" and w) = ?/,. The propositions a and b
are mutually exclusive. The truth value of the logical sum: “x =4
or x is less than 3” is 3/s, hence w(a-+b) = w(@)+w(b)-

The law of addition can, on the strength of mathematical induction,
be extended so as to cover more than two propositions. The following
holds:

G o (Shae;=0) < (X)) = 2w(@)];
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“If n propositions are pairwise mutually exclusive, then the truth
value of their sum equals the sum of their truth values”.

9. Conclusions determined numerically

The law of addition is reversible:

(10) ety ="wla+wb)] < (ab=0). -

“If 1.:he truth value of the sum of two propositions equals the sum
of their truth values, then the propositions are mutually exclusive.”

Proof: By (7), the equation

w(a+b) = w(a)-+w(b)—w(ab)
is universally valid. If now
w(a+b) = w@+w(),
then
w(ab) = 0.
But then, by 1, also
ab=0.

Consequently, the law of addition may be formulated as an equiv-
alence: )

(1) (@b = 0) = [w(a+b) = w(@)+w(®)].
If in (10) we put &’ for b, we obtain
(o) . w(a+b") = w(@+w®)] < (@b’ =0).

But now, on the one hand,

(@' =0)= (2 < b),

and on the other, by (4)

w(a+b) = 1—w[(a+b)] = 1—w(a'b) o
- = w(b)+wd)—w(a'd).
When these results are substituted in («), then after easy transforma-
tions we obtain:

(12) w(@)+w(@'b) = wb)] < (a < b).

Theorem (12) is a reversion of Axiom III, i.e., the law of




26 LOGICAL FOUNDATIONS OF PROBABILITY THEORY

value of reason. Hence that axiom, too, may be formulated as an equi-
valence:

13) (a < b) = [w(@)+w(@'b) = w(b)].

Theorems (10) and (12) are most interesting from the logical point
"of view. They make it possible, on the strength of mumerical equations
holding between the truth values of certain propositions, to determine the
logical relationships between those propositions. For instance, let us

denote the indefinite proposition “x is 4” by a, and the indefinite pro-.

position “x_is B” by b, and assume that computations yield the follow-

ing numbers:

Cw(a) =—
W) ="
w(a'b) = % .

Since the following equation holds between the truth values of the pro-

positions in question:
w(a@)+w(a'b) = w(b),

we may conclude that from the proposition “x is 4” follows the propo-
sition “x is B”. Such conclusions may be called numerically determmed
since they can be presented in the following manner:

m individuals out of a given n are 4,

m-+r individuals out of the same # are B,

r individuals out of the same » are B, but not 4.
Conclusion: All 4 out of the given » individuals are B.

10. Relative truth values
. Define:

e w(@)

DET) | a@ @) | ’

it being assumed that w{a) # 0.
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This definition introduces an abbreviated notation, which is important
since it points to @ new concept, namely that of relative truth value.

w(ab)

w(@)
values of the variable which verify the proposition a also verify the
proposition b, and hence also the product ab. In other words, if indicates
how-great-is-the-truth-value of b, assuming that ais true If this assumption

The quotient ——=-, symbolized by w,(b), indicates how many of those

is satisfied, so that ¢ = 1, then the relative value of b equals its absolute
value, since the following theorem can easily be proved:

) C m®=wo).
Proof:
m(e) =28 = 20 _ ),

Example. Let a stand for “x is divisible by 27, and b*for “x is divisible

- by 3”. For x=1,2,...,9 the absolute truth value of b is %/, = 1/;,
so that w() =Y. The relative truth value of b with respect to g is only
/,, so that w,(b) = /4. This is so because, assuming that g is true, for

- four values of x which verify the proposition a: “x is divisible by 2”
there is only one value, namely 6, which also verifies the proposition b:
“x is divisible by 3”. The same result is obtained by the computation
of the truth values for @ and ab: w(a) = */s; w(ab) = Y/s; the quotient

2O — walt) = s
a) ‘ '
Df(1) yields immediately:
(13) w(ab) = w(@)w,(b) = W(b)wb(a)

The truth value of a (logical) product equals the product of the (abso-
lute) truth value of one factor and the relative value of the other factor
with respect to the first factor.

11. Independence of indefinite propositions

Define:

Df(2) aUb = [w,(b) = w,.(b)].

While Df(1) introduces a new mathematical concept, or a concept
from the theory of truth values, Df(2) introduces a new logical concept.
aUb denotes a relation between the propositions ¢ and 5 which holds
if and only if the relative truth value of b with respect to a equals the
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relative truth value of b with respect to a’. Note that @ can be neither
true nor false, since for @ = 0, w,(b) is meaningless, and for a =1,
w,(B) is meaningless. Before the logical sense of aUb is clarified, certain
formulae must first be proved.

wab) _ w@h) |
16 "sz[w(a) = w(a')]

Theorem (16) follows from Df(2) on the strength of Df(1).

b ‘D) -
an o = [ = = W(”?]'

Proof: By (16), aUb is equivalent to the equation
w(ab)  w(a'd)
w@ — w(d)
On the strength of a well-known theorem from the theory of propor-
tions we obtain: -
- w(ab)  w(a'h) _ w(ab)+w(a'd)
w@ — wia) w(@)+w(a)
Now, by (4) and (5)
w(ab)+w(a@'by  w(b) — (B

w(a)+w(a’) 1

(18) aUb = [w,(b) = wa.(b) = w(b)].
Theorem (18) follows from (17) on the strength of Df(1).
__{wab)  wlab) ]
a9 =35 =3
Proof: By (17) aUb is equivalent to the equation
w(ab)
W = W(b).
This yields:
(ab B
(@ ’:fé)) = w(a).

Further, by (4) and (5) it follows that
(@b’ . W(@)—w(ab)

w®)  1—w(®)
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If in this equation the product w(@)w(d), obtained from (), is substi-
tuted for w(ab), we obtain

w(ab) _ w(gj—w(@w®) 1—w(®)
® W@ TG @15, =@
(«) and (8) yield: :

wiah) . w(ab)
ORI
(20) aUb = bUa.
Proof: If a and b are exchanged in (19), we obtain

w(ab) w(a'b)
i “[w(a) ‘W] = atb.

On the basis of the formulae proved above the meaning of the relation
U can now be defined.

U is a symmetrical relation (Theorem 20) which holds between two
propositions a and b if and only if both propositions are neither true nor
Jfalse (Df(1), Df(2)) and the relative truth value of one proposition with
respect to the other or with respect to its negation equals its absolute
truth value (Theorem 18).

If the relation U holds between the propositions g and b, then it is
immaterial for the truth value of b whether we take it with respect
to a or @, i.e., whether we assume that a is, or is not, verified; likewise,
it is immaterial for the truth value of ¢ whether we assume that b is,
or is not, verified. We say that the propositions a and b are independent
of one another.

Example. Let a stand for “x is divisible by 27, and let b stand for
“x is divisible by 3”. For x = 1, 2, ..., 6, the absolute value of a is ¥/,,
and the absolute value of b is /5. The relative value of » with respect
toais

w@b) 1, .1y _ 1.
Wa(d) = ) =e:th="1s;

likewise,
v ®) = 2 — v =

The propositions a and b are independent of one another.
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Now, it is obvious that propositions which are neither true nor false
and contain different variables are always independent of one another.

The concept of independence of indefinite propositions, as formulated
above, is narrower than the usual concept of logical independence.
Usually, propositions are treated as logically independent if neither
implication nor exclusion holds between them or their negations. That
characteristic does not suffice for our concept of independence, which
in addition requires satisfaction of a certain numerical relationship
formulated in Df(2).

12. The law of multiplication
1 aUb = [w(ab) = w(@)w(d)].

“If the propositions @ and b are independent of one another, then the
truth value of their product equals the product of their truth values;
and conversely, if the truth value of the product of two propositions
equals the product of their truth values, then these proposﬂ:lons are
independent of one another.”

Theorem (21) follows directly from (17)

Example. Let a stand for “x is divisible by 27, and b for “x is divis-
ible by 3”. For x = 1,2, ..., 6, aand b are independent of one anoth-
er. The truth value of ¢is Y/, and that of b is */;. The truth value of the
product equals Y/s, hence w(ab) = w{@)w ().

The propositions which are neither true nor false and contain different
variables are always independent of one amother, so that the law of
multiplication is always valid for them. For instance, let a stand for
“x = 47, and b for “y =4, where x and y can take on the values of
the integers from 1 to 6. The truth value of both a and b is Y/, and the

truth value of the logical product ab is equal to the arithmetic product -

YsxYs = 3. Now out of the 36 pairs of values for which the inde-
finite propositions “x =4” and “y=4" yicld definite judgements,
only one pair of values, namely (4, 4), yields a true judgement.

Like the law of addition, the law of multiplication is reversible. Hence,
if the product of the truth values of any propositions is compared with

———-the-truth-value-of-their-product, it can always be decided whether the

propositions in question are independent of one another, or not.
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The law of multiplication can also be expanded so as to cover more
than two propositions, but the formula

W(Hiai):niw(ai)s i= 172:---,71:

depends on fairly complicated conditions, and it would take us too far
to lay them down here One point, however can be em‘phasized if a]l n

holds

13. A special theorem

=

Finally, the fo]lowiﬁg theorem can be proved:

_ W@ .
@) (Son=1)(Syron = o><[wa<xm - "——‘ziw@awxi@ |

i#j, i=1,2,..,n, j=1,2,
The first assumption means that the sum of the propositions x; 4+ ..

. -+x, is true, while the second indicates that all the propos1t10ns x
are pairwise mutually exclusive. The consequent states that under these
assumptions the relative truth value of any proposition x, for instance
Xm, With Tespect to any proposition g equals the quotient, the numerator
of which is the product of the absolute truth value of x,, and the relative
truth value of a with Tespect to ¥, and the denominator of which is the
sum of all the expressions formed for all x in the same way as the nu-

merator is formed. . -
Proof: It follows from Df(1) that

(“) . Wa(xm) - W(a)
By (15), the numerator of the quotient on the right yields
® : W(a%X) = W)W, ().

By (4), the denominator yields
w(@) = wlax;)+w(ax)).
Now, on the strength of the first assumption stating that 2 o =1:

_Zx,
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—j
where 2 1x; means the sum of all the propositions x with the exception
of x;. Hence

w(@) = w(ax,-)—}-w(aiixi) =w(ax)+w( g’iaxi).

But in view of the second assumption, all the propositions x are pairwise
mutually exclusive; consequently, all ax; must also be mutually exclu-
sive, and on the strength of the law of addition (9) we obtain

- S
o w@=w (@xy)y+2wlax) = Diw(axy).

Now by (15)

w(ax;) = wx)wy, (@),
hence:
69) w(@) = 2 w(x)wx,(a).

Now if we substitute the results obtained by (8) and (y) for the nume-
rator and the denominator of (), we obtain the thesis.

o
THE CONCEPT OF PROBABILITY

14. The calculus of truth values versus the calculus of probability.—15. Two prin-
cipal difficulties in probability theory.—16. Objective and subjective probability
theory—17. Indefinite propositions and probabilistic propositions.—18. The prin-
ciples of necessary. and insufficient reason—19. Truth values and probability
fractions.—20. Interpretation of probabilistic propositions.—21. The listing of results.

14. The calculus of truth values versus the calculus of probability

The calculus of truth values outlined in the foregoing Chapter has the
property that, without in any way assuming the concept of probability,
without even mentioning it, its theorems are in agreement with the
principles of probability theory. If the expressions w(a), w(b), etc., are
interpreted not as fruth values of statements but as probabilities of
“events”, then the theory of truth values becomes the theory of proba-

bility. In particular, the law of addition then becomes the rule of complete
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probability; the law of multiplication, the rule of compound probability; .
the concept of relative truth value, the concept of relative probability;
and the theorem proved in the preceding Section becomes a general
interpretation of Bayes® theorem.

This remarkable agreement suggests that probability propositions are
nothing else than indefinite propositions, while probability fractions are

their_truth values. This supposition becomes a certainty when we find

that all the difficulties thus far attending the laying of the logical founda-
tions of probability theory can be removed only on the basis of the
interpretation of probability offered in this paper. The following Sec-
tions will be concerned with proving this claim.

15. Two principal difficulties in probability theory

According to Laplace, “the probability of an event is the ratio of the
number of the cases favourable to that event to the number of all possible
cases, if there is no reason for believing that one of the cases is more
likely to occur than another, so that for us they are all equally possible™ %)
This definition, which abounds in errors, is best suited to expose all the
difficuities of probability theory.

If we at first disregard minor errors, for instance, that the definition
refers only to the probability of evenss, future events at that, the principal
shortcoming of Laplace’s formulation seems to be that it is not a definition
of probability, but at most only a definition of the probability fraction.
It does not explain what probability is, but only tells us how to compute
probabilities, in doing which it dentifies probability with a numerical
ratio. But probability is no more a numerical ratio than time, for example,
although time is also measured in terms of a numerical ratio. Since
Laplace’s formulation is basically not an explanation of the concept of
probability, it would not, perhaps, be correct to raise against it the
objection that it is a vicious circle by pointing out that it explains prob-
ability by referring to “equally possible” cases, which cannot mean
anything but “equiprobable” cases.) The principal error of the defini-
tion is the more strongly brought into relief: it explains an obscure

%) Théorie analytique des probabilités, 3rd ed., Paris, 1820, p. 179.
) This objection has been raised, among others, by Poincaré (cf. Calcul des pro-
babilités, Paris, 1896, pp. 5-6). . ’
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concept by means of another concept which is wrapped in a similar
obscurity.

The mysterious essence! of probability has not been fathomed by
the great founders of probability calculus. Hence the first basic dif-
ficulty and the first basic problem of probability theory is: whar is
probability? '

But even if we assume that Laplace’s definition is not in any way
intended as an explanation of the concept of probability, but merely
indicates how to compute probability fractions, it still may not be
absolved of error. According to Laplace, the computation of a proba-

probable™, cases. But then the question arises: under what conditions
can we consider two possibilities or two probabilities to be equal? Since
Laplace answers this question by a reference to the subjective element
of belief, he does so in a way which does not agree with the objective

nature of the probability calculus and is the object of a coniroversy

which has continued till the present day. Here lies the second basic
difficulty and the second basic problem of probability theory: how are
probabilities computed?

I shall now try to demonstrate that both difficulties vanish only when
“probabilistic” propositions are interpreted as indefinite propositions.

16. Objective and subjective probability theory

The predicate “probable” is usually conmected with “events”, and
future events at that. Without, for the time being, going into the problem
as to whether it is at all possible to speak of a probability of events,
we must state that in the same way in which we speak (falsely, as will
be seen later) about the probability of future events, present and past
events can also be probable; moreover, this refers not only to events,
but also to many other states of things which do not fall under the
-concept of “event”. It may be asked: what is the probability that a two-
digit integer is divisible by 3; but divisibility of a number by 3 is not
an event. Hence another subject must be sought for the predicate “pro-
bable”. Now, it is quite certain that all states of things which are referred
to_as_probable can be represented in the form of propositions. That

is why it would be advisable to speak about the probability of pro-
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positions, the more so as in this way nothing is prejudged about
the nature of probability.%)

Propositions can express subjective conditions, on the one hand, and
objective facts, on the other. When I am looking at a game of dice and
state: “6 has turned up”, then this proposition, on the one hand, expres-
ses my subjective conviction, and on the other, denotes an objective

state of affairs. Now,-it is_possible that propositions either are-called—

probable because the subjective conditions which they express are not
convictions but mere suppositions, or that they are considered probable
because the objective facts which they denote are not realities but pos-
sibilities. A theory of probability which adopted the former standpoint
might be called subjective, while the other could be called objective.

As far as I know, a purely objective theory of probability has not
yet been formulated by anyone. This is so because it seems to be irrec-
oncilable with two universally accepted principles: the principle of
causality, and the principle of the excluded middle. By the former
principle, we assume that everything in the world occurs of necessity,
so that no room is left for possibility. Even such an insignificant event
as a delicate movement of the hand which sets the dice rolling has been
predetermined in all its details. The causes work in such a way that six
either must turn up, or cannot turn up. In the former case, the propo-
sition “6 has turned up” is necessarily true; in the latter, it is necessarily
false; in neither case is it objectively probable.

‘However, should anyone believe that the principle of causality is
not evidently true and that there are events which are not subject to
the coercion of necessity, another principle can be teferred to, namely
the principle of the excluded middle, which, like the former, excludes
all possibility. On the strength of that principle, of two contradictory
propositions which pertain to definite individual objects, one must
be true. Hence even under the assumption that an event, for instance,
the drawing of a black ball out of an wrn containing black and white
balls, does not occur of necessity, one of the two must be true: a black
ball either is drawn or is not drawn. If the former proposition is true,

%) Cf, pertinent remarks by Stumpf in “Uber den Begriff der mathematischen
‘Wahrscheinlichkeit”, Sizzungsberichte der philosophisch-philologischen und histo-
rischen Klasse der bayerischen Akademie der Wissenschaften, No. 1, Munich, 1892,
pp- 43 and 46. :
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then it is true at every time, hence also before the drawing of the ball;
a black ball will be drawn, even if that event be not predetermined. If
the latter proposition is true, then it is also true at every time, hence
also before the drawing of the ball; a black ball will not be drawn, even
if that event be not predetermined. In both cases we have to do with
realities, even though not with necessities; again there is no room for
objective possibility. .

It follows from these considerations that it would be useless to try
to explain the essence of probability by the study of objective facts.
This was sensed by the founders of the probability calculus, such as

TJacob Bernoulli or Laplace, and hence, more or less explicitly, they tried

to solve the puzzle of probability by reference to subjective elements.
" There is no consistent subjective theory of probability; it can immne-
diately be seen that ary such theory would be unsatisfactory. Endeav-
ours to formulate such a theory are to be found, for instance, in the
works of Jacob Bernoulli, who defined probability as a degree or part
of certainty. If, says he, complete certainty, which is assumed to equal 1,
consists of 5 parts or probabilities of which 3 favour a certain event
and the rest oppose it, then the probability of that event is ¥/s. %)

It is not difficult to uncover the shortcomings of such a formulation.
Should probability be a part of certainty then, like certainty, it would
have to be a property of psychic processes, namely convictions and
suppositions. Now, first, so far no one has succeeded in measuring
beliefs and suppositions and their properties. The computation of prob-
ability fractions would then be impossible, which is at variance with
evident facts. Secondly, in the probability calculus we assume that under
given objective conditions the probability of a proposition has only one,
definite value. Now, should probability be a degree of certainty, then
it would have to vary according to the psychic states of various indi-
viduals. The hope of winning and the fear of losing in gambling have
a strong effect on the degree of certainty with which events are expected.
Finally, there is no doubt that the probability calculus has nothing to
do with the measurement of degrees of certainty and with psychic
phenomena. Should the essence of probability consist in subjective
processes, then the entire theory of probability would have to be rele-

) Ars conjectands, Basel, 1713; p- 211.

i
5

__a third must.-be.songht.

LOGICAL FOUNDATIONS OF PROBABILITY THEORY 37

gated to a psychological laboratory and would then be an empirical
discipline, like Fechner’s psychophysics, but not an a priori branch
of pure mathematics. The argument last adduced has a general validity
and precludes any attempt to lay a subjective foundation for probabil-
ity theory. , ‘

Both paths, the objective and the subjective, are thus blocked; hence

17. Indefinite propositions and probabilistic propositions

Although probability does not exist objectively, the probability cal-
culus is not a science. of subjective processes and has a thoroughly
objective nature. Hence the essence of probability must be sought not
in a relationship between propositions and psychic states, but in a re-
lationship between propositions and objective facts. Now, such a re-
lationship is not purely positive, but also negafive. What is meant by
this formulation can best be explained by reference to the concept
of falsehood.

Falsehood, like truth, is a property of propositions which results
from the relationship between the latter and objective facts. But while
true propositions always have counterparts in certain facts, false pro-
positions have no objective correlates. Thus falsehood is characterized
by a megative relation to facts. Yet, although falsehood does not
exist objectively, the concept of falsehood is free from subjective
elements.

The same holds for probability, which also does not exist objectively
and is only a property of propositions. A negative relation to facts is
also included in the concept of probability as one of its characteristics.
Probability lies midway between truth and falsehood, in the same way
as a proper fraction lies between 0 and 1, and gray between black and
white. But it is not possible to mix truth with falsehood in order to
obtain probability as it is possible to obtain a gray colour from 2 mix-
ture of white and black paint. No proposition can be both true
and false. Something intermediate between truth and falsehood can
be obtained only by forming a group consisting of true and false
statements. This condition is satisfied precisely by indefinite pro-
positions. :
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In my opinion, probability is a property of those indefinite proposi-

tions which are neither true nor false. Thus each probable proposition -

has its counterpart in a group of true and false judgements. The propo-
sition “x is A” is probable if at least one value of the variable x verifies
that proposition,. i.e.; yields ‘a trué judgement, and at least one other
value does not verify that statement, ie., yields a false judgement.
This shows that falsehood, and with it the negative relation to facts,
is necessarily contained in each probable proposition. If man were not
in a position to formulate false propositions, then he would not know
the concept of probability. This is not a subjective, but a purely Auman

elemient; which-should-not-astonish-us; sinceit is"man who is the creator
of the concept of probability.

The interpretation of the essence of probability presented here might
be called the logical theory of probability. According to this viewpoint,
probability is only a property of propositions, i.e., of logical entities,
and its explanation requires neither psychic processes nor the assump-
tion of objective possibility. Probability, as a purely logical concept,
is a creative comstruction of the human mind, an instrument invented
Jor the purpose of mastering those facts which cannot be interpreted by
universally true judgements (laws of nature).

The logical theory of probability seems to me to be only way.out
which avoids the reefs of both the objective and the subjective theory.
In the Hght of that theory, the interpretation of those propositions
which in probability calculus are considered probable must be subjected
to a thorough criticism. It can no longer be asserted that such events
or propositions as “this die will now turn up 6” or “the next drawing
from this urn will y1e1d a black ball” are probable. Such propositions,
being definite judgements, are either true or false, even if before the
event we can never know which of them are true and which are false.
The fact that such judgements are to this day considered probable,
although neither the objective nor the subjective theory of probability
is tenable, and hence no real sense may be associated with the proba-
bility of such judgements, is, in my opinion, to be explained by the fact
that people have so far been unable to cope with the concept of proba-
bility. Only those propositions which contain a variable can be prob-
able, for instance: “the x-th throw of the die yields 6” or “the x-th

drawing from the urn yields a black ball”. But if a proposition has
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once been probable, it remains so forever; it can never become either
true or false, and even an omniscient and omnipotent mmd could not
in the least change its degree of probability.

18. The principles-of necessary and insufficient reason

—————ﬂBeth«basm—pyeblems-of_probabﬂlty theory: What is probability?—

and How is probability computed?, are so closely intertwined that the
latter cannot be solved if the former has not been solved. But since
there are reasons to-claim that there has been so far no-satisfactory
solution of the former problem, we cannot expect to find, in the exist-
ing liferature on the subJect a definitive clarification of the latter
problem.

All the attempts made so far to compute probabilities have been

. based on the concept of “equally possible” or “equiprobable” cases.

There are two interpretations of this concept: an objective and a sub-
jective one. The most eminent representatives of these two theories
in modern times are von Kries and Stumpf.

As the basis of Kriess theory we have to consider the theorem that
assumptions pertaining to equal and “indifferent” original ranges are
equiprobable.”) On the contrary, according to Stumpf, those cases are
equally possible, and hence also equiprobable, with respect to which
we are equally ignorant; two cases of ignorance can be held to be equal

" only if we know absolutely nothing as to which of the cases will occur.?)

The contrast between the two theories can best be explained by an
example.

The probabilities that a geometrically and physically regular die will
yield 1, or 2, or ... or 6, are assumed to be equal. According to Kries,
they are equal because “here the geometrical and physical regularity
of the die necessarily results in the fact that a definite interconnected
complex of possible movements, which yields 6, is always accompanied
by other complexes, which in every respect differ very little from the
former, are contained within almost the same reach, and yield 1, 2, 3,
4, 5, and that these six kinds of movements, repeated regularly in turn,

7) Die Prinzipien der Wahrscheinlichkeitsrech

g, Freiburg and Br., 1886, p. 157.
8) Stumpf, op. cit., p. 41. .
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fill the entire range of possible movements.”®) The complexes of pos-
sible movements mentioned in the quotation are called ranges by
Kries. Thus, in a game of dice the ranges of all throws are approximately
equal; further, they are also primary, i.e., not deducible from any other
ranges, and finally theéy are “indifferent”, i.., there is no reason to
think that one of them is more probable than any other.*®) These three
conditions — equality, primacy, and indifference of ranges — are_neces-
sary but also sufficient to justify the equal probability of all throws of
the dice.

Thus while Kries, as can be seen from the above example, requires

the existence of objective equality, which would necessarily lead to the
listing of equally possible cases, Stumpf holds that it is possible to
disregard objective equality and, like Laplace, bases equal possibility
or probability on subjective elements, namely on a lack of knowledge.
According to Stumpf we could thus assume that the possibilities of a die
turning up 1, or 2, ... or 6 are equal even if the die is geometrically or
physically irregular, but we know nothing about it. The contrast between
the two theories is now clear. Special terms have been coined to express
that contrast tellingly: the assumptions underlying both theories are
set in opposition to one another as.the principles of necessary reason
and of insufficient reason.

It is, however, clear that both principles must fail if, as is usuval,
they are applied to the computation of the probabilities of definite
individual events. Definite events cannot be probable at all, since they
are either necessary or impossible, either real or unreal. When, in a game
of dice, we mean a definite individual throw of a die, then there is only
one strictly defined “complex of possible movements”, which necessarily
yields a given number. It is true that a quite small change in the original
position of the die would result in another complex of possible move-
ments, which in every respect would differ very little from the pre-
vious one and would effect another throw, but such a change in fact
does not take place. We cannot here compare any ranges at all, since
only one range is given, which necessarily exists, and all others are
excluded. Comparable ranges exist only when we consider not a de-

?).Kries,.op. cit., p. 55

RLNES 252 UV ———

19) Jpid., p. 25.
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finite throw, but any arbitrary throw. Then with each complex of pos-
sible movements which yields 6, we can compare other complexes,
which differ very lLittle from the former and which effect the throws
of 1,2, 3,4, 5; but in this case we have to do with an indefinite propo-
sition, and to compute the probabilities of such propositions we must
follow another path.

THUs we can see anew that a purely objective theory of probability,
based on the concept of objective possibility, cannot be realized. Kries
seems to have sensed this, for he remarked that the totality of condi-
tions which constitute the known range of a probable event does not
suffice to predetermine the result. There is a remainder which evades
our knowledge, but we should not have any reason to assume that
that remainder favours any definite range.!') By introducing in this
way the concept of indifferenceé of range into his considerations
Kries actually abandoned his original, purely objective, standpoint
and came closer to those favouring the principle of insufficient
reasomn.

The followers of that principle are in a still worse position when
exposed to criticism than are the defenders of the principle of necessary
reason. It is a subtle but untenable paradox to make lack of knowledge
the basis of knowledge, be it only probable. Nothing results for the
probability of an event from the fact that we know little or nothing
about that event or have no reason to assume one event to be more
probable than another. The probability of drawing just the whize ball
out of an urn which contains 999 black balls and one white ball is
objectively very small, but it cannot be increased by the fact that a per-
son does not know the ratio of the balls. If the principle of insufficient
reason were true, then the computation of the probability would have
to depend on subjective factors and would be different for different

‘individuals, but the probability calculus as an objective discipline is

not concerned with stating how probable an event is for an insufficiently
informed observer, and strives to determine the probabilities of events
or propositions without regard to any subjective factors.

Thus both principles have proved unable to solve the second basic
problem of probability theory; hence a third principle must be sought.

) Ibid., p. 61.
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19. Truth valnes and probability fractions

The principles of necessary and insufficient reason cannof be correct
since they assume no correct concept, or rather no concept at all, of
probablhty But the probability fractzon, if it is not to be a purely ex-
ternal and arbitrary appendage of the concept of probability, must
find its justification and its legitimation in the essence of probability.
" Now, if it is assumed that probability is a property of every inde-
~ finite proposition which is neither true nor false, then the probability
fraction is in fact based on the essence of the concept of probability.

The element of plurality and number is immediately confained in that
concept. An indefinite proposition can be probable only if the variable
which occurs in it can take on values, both which verify and which do
not verify the proposition. The greater the number of the verifying
values in proportion to all values, the greater the probability of a pro-
position, which in a limiting case can reach the degree of truth. It is
thus self-evident that the probability fractzon is identical with the truth
value of an indefinite proposition.

If this assumption is made, then all the dlfﬁculues assoc1ated with
the concept of “equally possible” or “equiprobable” cases vanish im-
mediately. That concept, so obscure and so hotly disputed, is no longer
needed as a basis for the computation of probabilities. Probabilities will
be computed not by being compared, but by having thé verifying and
the non-verifying values of the variables counted. If the range of the
values of the variables involved is well defined and finite, no difficulties
can arise. There may also be cases in which the degree of probability
of an indefinite proposition can be found without counting. Only when

probability fractions have been computed in this way can they be com- - -

pared-with one-another,. and -such-a comparison immediately reveals
which propositions are to be considered “equiprobable”.

Now is perhaps the time to make use of the most important argument
which the logical theory of probability has at its disposal and which
forms the content of the entire first part of the present paper: if prob-
abilistic propositions - are interpreted as indefinite propositions and
probability fractions are interpreted as truth values, then all the principles

of the-probability-caleuhus-can be-obtained from this assumption in a strict-
Iy deductive manner by means of the algebra of logic. Moreover, new
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principles can be formulated and old concepts can be made more precise
The theorem on the truth value of a reason, which can be considered
an analogue of the law of addition, has, as far as I know, been unknown
before; the relationship between the probability calculus and rumerically
defined conclusions also seems not to have been noticed previously; the
important concept of independence of “events” or propositions has

: —first-been—given—a-strictly-scientific formulation in Section—-H—of this——

paper. The logical theory. of probability has thereby stood its test.
It has proved workable from the very outset and, when supported
by the algebra of logic, promises to remain a fertile working-theory.:

20. Interpretation of probabilistic propositions

Tt cannot be denied that the probability calculus, for all the previous
uncertainty of its logical foundations, in its wider mathematical expan-
sion has yielded numerous results that are in agreement with empirical
data. Theoretically interesting and practically important disciplines,
such as the theory of games of chance on the one hand, and mathematical
statistics, insurance theory, descriptive statistics (Kollektionmasslehre)
on the other, are based on the principles of the probability calculus.
Now in all these disciplines reference usually is made to the probability
of definite individual events. For instance, the question may be: what
is-the probability of throwing a given number with a given regular
die at a given moment, or of drawing a ball of a given colour from
a given urn; or else the problem may be how to compute the proba-
bility of the death within one year of a given person 40 years old. But
in the light of the logical theory of probability, all such problem formu-
lations and computations must be waived aside as meaningless. Jndi-
vidual events can never be probable, since probability is exclusively
a property of indefinite propositions. Hence the problem arises hows
in the light of the new theory as presented in this paper, we should in-
terpret the propositions which in the probability calculus are inter-
preted as probable.

The question is not difficult to answer when it comes to statistical
probability, that is, probability which is determined a posteriori; The
following example will suffice: on the basis of the tables of survival
of 23 German insurance companies it has been computed that out of
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the 85 020.5 insured persons who were 40 years old, 940 died before
becoming 41. This yields the following empirical value of the probability
-of death of a German who is 40 years 0ld:'?)

940
P =350203

The probability fraction thus obtained by the statistical method, does
not in the least mean that a given person who is 40 years old has to
expect death with the probability of about eleven thousandths. It mere-
ly indicates that so far, on the average, out of 1000 persons 40 years

= 0.01106.

of age; I have died-before~turning 41Tt is sapposed that this number
of deaths depends on certain conditions, which are expected to continue
to exist in their essentials in the near future and to have similar effects.
Hence it is expected that also in the future out of 1000 persons who
are 40 years old, on the average 11 persons will die before becoming
41 years old. But this means nothing else than that the indefinite pro-
position: “x, who is now 40 years old, will die before becoming 41 years
old”, has on the average the truth value of 11 thousandths. This means
in turn that if we substitute individual values for x, we obtain on the
average 11 true propositions out of 1000 definite propositions.

If the above probability fraction is interpreted in this way, then all
the difficulties which inevitably accompany the usual interpretation
disappear. Tn the light of the ordinary formulation, one had to assume
that the probability of death within one year would be the same for
a strong and healthy man of forty as for a seriously ill man of forty
who may even be breathing his last. Such an assumption, however,
is not admissible. But the new interpretation explains how it happens
that an insurance company, which bases its calculations on the princi-
ples of probability theory, does not need to fear losses. It need not be
concerned which of its customers are doomed to death in a given year
if it can only hope that the number of deaths will correspond to the
statistically obtained truth value of a given indefinite proposition.

All empirically determined probabilistic propositions can be inter-
preted in the same way without any difficulty. The analogous interpre-
tation seems, however, to encounter greater difficulties when it comes

~yCi B Czuber;Wahrscheinlichkeitsrechmumng; Vol I, Leipzig and Berlin, 1910,
p. 154,
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to a priori probability. Probability values obtained a priori usually

. occur in the theory of games of chance, that is, in that field of science

which gave rise to the probability calculus. We again select an example,
namely the oldest one, which led to the computation of proba-
bilities. .

Galileo Galilel was once asked by a careful observer of a game of dice

(passe=aixy, inwiiclr the-point is to obtain morethan10-to-three throws;
why the sum of 11 occurred more often than the sum of 12, although
in the opinion of the person who asked the question both sums could
be obtained by the safie number of combinations. Galiléo solved the
problem by proving that the sum of 11 could be obtained by 27 combi-
nations, whereas that of 12 by only 25 combinations.'®) The calculation
made by Galileo can be very well presented as the computation of truth
values of indéfinite propositions. The task reduces to finding the truth
values of the following propositions with three variables each: “x-+y+
+z=11" and “x+y+z=12", for x=1,2,..,6; y=1,2,...,6;
z=1,2,...,6. It can easily be seen that out of the 6° = 216 combina-
tions of values, 27 verify the former proposition, while 25 verify the
latter.

So far so good. But it cannot be asserted that in the interpretation of
the probability of obtaining the sum of 11 by three throws the definite
judgement: “the throw of these three dice will now yield 11”7 may be
replaced by the indefinite proposition: “x+y-+z = 11”. It is true that
the judgement referred to above cannot be probable as it is a definite
proposition, so that in its place we must look for something else, which
would in fact be probable; yet the above indefinite proposition cannot
be what we seek since it pertains to something else than the demand
to obtain the sum of 11 in three throws. This becomes clear as soon as
we assume that the dice in question are not regular. In this case the
probability of throwing 11 cannot be assumed to be 27/,;4, while the
truth value of the indefinite proposition “x+y-+z = 117 is /516 83
before, if it is assumed that the variables x, y and z can take on the
values from 1 to 6, which corresponds to the condition that every die
has six sides. Hence we must seek another interpretation of the proba-
bility in question. :

13y Cf. Czuber, op. cit., Vol. I, p. 27.
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In my opinion, the probable proposition which we seek in this case

must be formulated as follows: “the x-th throw of three dice yields -

the sum of 11”. To give the truth value of this proposition we would
have to know the total number of throws and to_count those of them
which yielded 11. But it is impossible to make such a count in any
empirical way. We must therefore resort to an a priori determination
by assuming that in view of the geometrical and physical regularity
of the dice, the frequency of the various sums which can be obtained
by throwing the dice depends only on the mumber of ways in which they
can be obtained. That is, for each die.it is assumed that all the throws

which can be made with it must be equally distributed over the six num-
bers. Should that not be the case, we would have to suppose a cause
that would favour the throw of a given number, for instance 6, and such
a cause would have to find its explanation in the irregularity of the
die, which would contradict the assumption. It can thus be seen how
the equality of the range, required by Kries in the computation of pro-

babilities, finds its application here. It serves the purpose of determining -

the ratio of the verifying values of a variable to all its values on the basis
of an a priori fiction, without counting the individual values and even
without knowing their number.

This interpretation of a priori probabilistic propositions is not only
in full agreement with the logical theory of probability, but also sheds
light on the a priori element of probability. It can now be understood
that here, as in all cases involving empirical data, a priori propositions
have only the values of hyporheses which must later be checked in the
light of the facts. It may be that the probability calculus, by becoming
a sober logical theory, loses the charm of the mysterious, which has
attracted so many eminent minds. But in exchange, it rises now as a
clearly -and sharply outlined structure to which we may not refuse
a certain logical elegance.

21. The listing of results

To conclude let me list the most important results of the present
paper, concisely and clearly, in the form of theses.

/
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I. The concept of probability

1. Propositions are indefinite if they contain variables.

2. Indefinite propositions are zrue if they are verified by all the values
of the variables.

3. Indefinite propositions are false if they are not verified by any

values of the variables. e

4. Indefinite propositions are neither true nor false if they are verified
by some, but not by all, values of the variables.

5. Probability is a property of indefinite propositions which are neither
true nor false.

L
6. Definite propositions can never be probable, but are either true
or false. -

7. Probable propositions can be neither true nor false, but are always
probable.

8. Propositions which in the probability calculus are considered
probable must be formulated not for any definite case, but for amy
arbitrary case x.

9. A purely objective theory of probabﬂlty is impossible, since there
is no objective possibility.

10. A subjective theory of probability is impossible, since the proba-
bility calculus has nothing to do with subjective processes.

11. The logical theory of probability, as presented here, is objective
in so far as it interprets probability as a property of propositions which
is characterized by its relationship to the objective world.

12. Nevertheless, probability is a concept invented by the Auman
mind for the purpose of scientific treatment of those facts which cannot
be interpreted by general judgements.

II. The principles of the probability calculus

13. The truth value of an indefinite proposition is the ratio of the
number of those values of the variables which verify that proposition
to the number of all the values of the variables.
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14. The degree of probability of an indefinite proposition is identical

with its truth value. :

15. The relation of implication, or the relation between reason and
consequence, holds between two indefinite propositions ¢ and 5 if for
each pair of the values of the variables occurring in a and b either
the reason a yields a false judgement, -or the consequence & yields
a true one.

16. Theorem on the truth value of the reason: The truth value of the
reason, augmented by the truth value of the logical product of the

niegation of the reason and of thie consequencs equals the truth value
of the consequence.

17. All the principles of the probability calculus can be obtained from
the foregoing explanations and theorems by means of the algebra of
logic in a strictly deductive manner.

In particular:

a) the law of addition, or the rule of complete probability;

b) the law of multiplication, or the rule of compound probability;

c) Bayes’s theorem.- . '

18. The theorem on the truth value of the reason, the law of addition,
and the law of multiplication are conversible, i.e., they make it possible,
on the basis of the numerical equalities between the truth values of
given propositions, to infer the logical relations between such propo-
sitions. ]

19. The relative truth value of a proposition b with respect to another
proposition ¢ is the ratio between the truth value of the logical product
of both propositions and the truth value of the proposition a.

20. Relative truth values are identical with relative degrees of proba-
bility.

21. The concept of independence, as used in the probability calculus,
denotes a symmetrical relation which holds between two probable
propositions if and only if the relative truth value of one proposition
~ with respect to the other proposition equals the absolute truth value
of the former.
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HISTORICAL AND CRITICAL REMARXS

22, The history of the emergence of the present theory.—23. Russell’s proposi-
tional functions.—24. Bolzano’s concept of validity.—25. Grelling’s probability
theory.

. 22. The history of the emergence of the present theory

It is to the study of algebraic logic that I owe the first inspiration to
treat probabilistic propositions as indefinite propositions. In that
discipline, the concept of indefinite proposition plays a very important
role, and eminent mathematicians and logicians, such as G. Frege,
G. Peano, and B. Russell, have tecently contributed much to its clari-
fication.™) To Frege I am moreover indebted for the term “truth value”,
which, however, I use in a different sense, since I denote by it not only
truth and falsehood, as Frege does, but also all degrees of probability.
The idea of using the rules of algebraic logic as foundations for the
principles of the probability calculus was first suggested to me by the
form of the formulae in the principal work on the probability calculus
by the Polish mathematician Gosiewski.™)

The ideas, as developed in the present paper, were for the first time
outlined by me at Professor Meinong’s philosophical seminar in Graz
in the summer semester of 1909. I treated the same subject more compre-
hensively in my lectures on probability theory which I gave in Lwow
University in the winter semester of 1910/11. At the same time, the
principal theses of my probability theory were presented in two public
lectures at the meetings of the Polish Philosophical Society in Lwéw,
namely at the 100th meeting, held on November 4, 1910, in honour

%) Cf. Frege, Funktion und Begriff, Jena, 1891; Frege, Grundgesetze der Arithmerik,
Jena, Vol. 1, 1893, Vol. T, 1903 ; Peano, Formulaire mathématique, ed. 1902/3, Turin;
Russell, The Principles of Mathematics, Cambridge, 1903.

1%). Zasady rachunku prawdopodobiefistwa (The principles of the probability calcu-
Tus), Warsaw, 1906. The introduction ‘to this work, which was of particular int
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of Professor Twardowski, the founder of the Society, and at the 101st
meeting, held on November 12 of the same year.'%)

This brief history of the emergence of the probability theory presented
in this paper would not be complete if I did not raise two issues. First,
I wish to point to certain difficulties inherent in the concept of indefinite
propositions as it is usually formulated by mathematical logicians,
which for a long time disturbed my comprehending that concept, and,
second, 1 should like to discuss two outstanding works which reveal
tendencies similar to mine and which I came to know only at a later
date.

These critical analyses, which will add more clarity to the problem
of probability, will form the content of the following Sections.

23. Russell’s propositional functions

Many authors, and Russell ¥7) among them, divide those propositions
which T call “indefinite” into two categories: sentences which contain
a variable but are neither true nor false, for instance “x is a man”,
are called by Russell “propositional functions” and are not treated by
him as propositions, since by “propositions” he means only #rue or

Jfalse sentences. Accordingly Russell calls sentences which contain a -

variable but are true or false, for instance “x is a man implies that x
is mortal”, “genuine propositions”, and following Peano **) he denotes
the variables which they contain as “apparent variables” in opposition
to “real variables”, which occur in propositional functions.

It might be supposed that it is purely a matter of terminology
whether indefinite sentences which are neither true nor false be called
propositions or propositional functions. Yet it is otherwise: Russell’s
terminology artificially divides entities which by their very nature belong
to the same category. There is only a quantitative difference between
propositional functions and propositions which contain apparent
variables. Propositions with apparent variables yield true or false judge-
ments for all values of their variables, whereas propositional functions

19) A brief cormmuniqué appeared in the philosophical periodical Ruch Filozoficzny,
edited in Lwéw by Prof. Twardowski (¢f. 1 (1911), p. 52).

D-Cf-Russell;-op«6its-pp.12=13.and-Chap,-VIL- - -

18y Cf. Peano, op. cit., p. 5.
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are true only for some values of the variables and false for the others.
For instance, the proposition “x is not a prime number” yields, for
x=190,91,...,96, 7 true and 0 false judgements; the propositional
function “x is not divisible by 7 yields, for the same range of the values
of the variables, 6 true and 1 false judgements. The difference between
these two indefinite sentences finds its only expression in the ratios 7

107 and-6to-7-Although it is true that sentences with-apparent-variables

can take on only the limiting values 0 and 1 out of the whole range
of all truth values, yet these limiting values do not differ essentially
from the remaining truth-values. That is why I came to-the conclusion
that no essential difference can be drawn between propositional functions
and propositions. with apparent variables, and I accordingly covered
these two categories of sentences by one concept, namely that of “indefi-
nite proposition™. Moreover, it seems to me that the terminology adopt-
ed by Peano and Russell can easily prove misleading. The variable
which is contained in true or false proposition cannot be called apparent;
since it is as real, i.e., actual a variable, as those which occur in Ppropo-
sitional functions. There is no difference in the nature of the variables
in the two cases. '

The sharp demarcation between propositional functions and propo-
sitions perhaps contributed most to the fact that the idea of applying
indefinite propositions to probability calculus could not develop easily.
Probability is a property of propositions. But even now, after that idea
has developed, the opposition to calling propositional functions, i.e.,
sentences which are neither true nor false, propositions or judgements
and to treating them as probable does not easily vanish in view of its
underlying venerable and widespread prejudice. :

Aristotle was the first to formulate the fateful assertion that all pro-
rositions must be either true or false.’) He wanted thereby to charac-
terize propositions as opposed to other kinds of sentences, which express
requests, questions, and commands. He gave no other motive, much
less proof of his assertion. But where there is no proof, there are also
no counter-proofs, and thus the Aristotelian assertion has been uncriti-
cally repeated until the present day, although formal logic since Aristotle
has always demonstrated its theorems by means of indefinite propositions

19 De interpretatione, c.4, 17 a 1-3.




52 ’ LOGICAL FOUNDATIONS OF PROBABILITY THEORY

such as “all S are P”, and has always considered the latter as judgements
or propositions, although they can be neither true nor false.

An end must-be put to this prejudice once and for all. In order to
characterize propositions as opposed.to other: categories of sentences
it is not necessary to squeeze them into two drawers, those of truth

and falsehood, but it suffices to accept that which is self-evident and to .

admit that propositions are just sentences which predicate something
about something and hence assert something, i.e., state that something
is or is not, that it is so or not so. Hence the question: “is x a man?”
cannot be a proposition since it does not assert anything, but the inde-

finite proposition “x is a man” must be called a proposition in the same
way as the definite judgement “Socrates is a man”, because both sen-
tences assert something. This not only leads to a better comprehension
of probability, but also protects formal logic against inconsistencies.

Russell could not overcome the Aristotelian prejudice. Perhaps that
was why it was impossible for him, as for the other inspired founders
and promoters of mathematical logic, to interpret probabilistic statements
as indefinite propositions, in spite of the fact that most of them well
knew the concept of indefinite proposition.

24. Bolzano’s concept of validity

The Aristotelian prejudice also influenced an earlier author whose
works have at present acquired great importance, as they well deserve,
and who developed opinions.that come quite close to mine.?) In the
second volume of his Wissenschaftslehre®') Bolzano introduced a new
logical concept, which he called the “validity” of a proposition. The
starting point of his analysis is Aristotle’s claim, quoted above, which
Bolzano ‘often repeated ?%), that every sentence (i.e., every proposition)
is either frue, and then it is always true, or false, and then it is always
false, unless, he adds, we change something in it, so that we have to

20) For the reference to Bolzano I am indébted to Professor Twardowski; although
Bolzano’s principal work was long known to me, I had previously paid no attention
to his remarks on the concept of the “validity” of a sentence.

24 Sulzbach, 1837, Vol. II, Ssc. 147, p. 77 f.

2y-Ef-IhidVol1-Sec.-125,-p. 7,-and-Vok-1,-Sec.-23, p. 93, Para. 2, where the
well-known quotations from Aristotle, mentioned in foregoing sections, are cited.
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consider not that proposition, but some other proposition in its place.
For instance, we say that the proposition: “this flower smells nice”
can be both true and false, according as “this™ refers to a rose or to
a stapelia (a cactoid plant with fleshy leaves that smells of decayed
meat). This, however, does not in the least contradict the principle
formulated above, since here we no longer have to do with a single

—-preposition—but-have-to-consider two_essentially dlﬁéfeﬁ%—pfeﬁﬁsiﬁeﬁ?-—————

which are obtained by changing the idea demoted by the word “this”.
But when we, often without clearly realizing this fact, assume certain
concepts in a proposition to be variable and then observe the relation=
ship between the proposition and truth, then, Bolzano says, it pays
to take the pains of doing so with full consciousness and with the defi-
nite purpose of acquiring the knowledge about the nature of a given
sentence by observing its relationship to truth.

Bolzano’s consideration can best be explained by examples. If in
the proposition “the man Caius is mortal” the idea “Caius” is treated
as one that can be changed at will and replaced by ever new ideas,
e.g., “Sempronius”, “Titus”, “rose”, “triangle”, etc., then all the pro-
positions obtained in this way are usually true, provided only that the
subject of the proposition, and consequently the proposition itself,
makes sense. But if the same idea is changed in the proposition “the
man Caius is omniscient”, only false propositions are obtained. Finally,
from the proposition “the entity Caius is mortal”, by changing the idea
“Caius” we obtain propositions some of which are true, and some
false, since in addition to mortal entities there are also immortal entities.

The quantity of the true and the false propositions obtained by
changing an idea in a given proposition can in certain cases be com-
puted. For instance, if in the proposition “the ball marked by the number
8 is among those which will be obtained in the next drawing” the idea
8 be taken as changeable and replaced, consecutively, by integers from
1 to 90, then under the assumption of the usual principles of a lottery
(5 numbers are drawn out of 90 in each case) we obtain 5 true and 85
false propositions. Now the ratio of the number of the true propositions
obtainable from a given proposition by exchanging certain ideas, con-
sidered changeable, with other ideas in accordance with a given rule,
to the number of all propositions obtainable in this way, was called
by Bolzano the “validity” of a proposition. The dégree of validity is
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represented by a fraction whose numerator is in the same ratio toits
denominator as the number of the true propositions to the number of
all propositions. Thus, for instance, the degree of validity of the
proposition discussed above is ?/g = /3. ) o

It can be seen that Bolzano defined the concept of validity of a pro-
position in a manner quite similar to that in which I have formed the
concept of zruth value. There is, however, an essential difference between
the two concepts: Bolzano’s validity is a property of definite sentences
or propositions, whereas truth values can- be characteristic traits of

indefinite propositions only. This primary difference, which is explained
by the fact that Bolzano did not know the concept of indefinite proposition
and could not accept it as long as he was influenced by the Aristotelian
prejudice, leads to numerous secondary differences. One of the most
important is expressed by the following remark by Bolzano: “It is self-
evident that the validity of a sentence must depend on which ideas
and how many are considered changeable”.?®) Bolzano clarifies this
remark by the example: if in the prdposition: “this triangle has three
sides” only the jdea “this” is changed and changed so that the propo-
sition always is meaningful, then we always obtain true propositions
and the degree of validity of this proposition is 1. But if, along with the
idea “this” also the idea “triangle”, or instead of those two the idea
“side™, is taken as changeable, then the degree of validity of the propo-
sition turns out to be quite different, since in addition to true propo-
sitions we also obtain false ones.

The differencé pointed up by this remark, between the concept of
validity and that of truth value, is strongly borne out if we select examples
constructed by analogy to those which I have used in the “theory of
truth values”. According to Bolzano, the true definite proposition:
“6 is divisible by 3” (and likewise the false proposition: “5 is divisible
by 3”) must have a degree of validity of 2/, if the term “6” (or “5”)
changes and is replaced by integers from 1 to 6 (of these numbers only
two, namely 3 and 6, are divisible by 3). But the degree of validity of the

) Ibid, Vol. T, p. 81, A misprint seems to have crept into the text, which should

read “mehrere” (many) instead of “wahre” (true). Bolzano, like Aristotle, considers
truth and falsehood as exclusive properties of sentences, but not of ideas. (Cf. Vol. I,

See55; P 238) (T translation;-Bolzano’s-text has ‘been corrected as suggested by
Fukasiewicz. (Bd.))
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same true proposition “6 is divisible by 3” (and also of the false one:
“6 is divisible by 57) is 4/ if the term “3” (or “5”) takes on the range
of integers from 1 to 6 (since 6 is divisible by 1, 2, 3, 6). In my opinion,
in all these cases the concept of truth value is not applicable, since truth
values are attributes of indefinite propositions only. Consequently,
it can only by asserted that in the former case the truth value of the

—indefinite-propesition-“x-is divisible by 3” is %/¢, and in the latter case—

the truth value of the indefinite proposition “6 is divisible by x” is ¥/s,
under the assumption that in both cases x stands only for integers from
1 to 6. The two propositions are differeat from one another, and hence
it is not surprising that they have different truth values.

For all this, Bolzano’s considerations so far are certainly free of
error. Should it be possible to formulate and to solve problems occur-
ring in the theory of truth values without the concept of varigble and
of indefinite proposition, then such a procedure would even have to be
given methodological priority. Entia non sunt multiplicanda praeter
necessitatem. It does seem to me, however, that in our case the formation
of new logical concepts is advisable for many reasons. '

" The concept of indefinite proposition, and with it the concept of log-
ical variable, play an important role not only in probability theory
but also in logic in general. All the laws of formal logic are formulated
and proved with the help of indefinite propositions. For instance, the
law of the conversion of general negative propositions is: from the
truth of the proposition “no A4 is B” follows the truth of the proposition
“no B is 4”, and conversely. In these propositions occur the logical
varigbles A and B, which may denote all possible objects; hence the
propositions themselves are indefinite and can be neither true nor
false, even though they have no truth values, which can be calculated,
since the ranges of the values of 4 and B are not strictly outlined. If the
same law of conversion were to be formulated without using variables,
we would have to select an example like this: “no man is an angel”
and hence “no angel is a man”, and to add the following rule: if in
these propositions “man” and “angel” are replaced by any other terms,
then the propositions obtained in this way are always either both true
or both false. It can thus be seen that it would be possible, though in
a complicated form, to formulate logical laws without using variables,
but 1 cannot conceive any way in which it would be possible to prove
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such laws in a general way without variables. If we refuse to accept
variables, then we always have to do with examples, and instead of
constructing strictly deductive proofs we must be satisfied with uncer-
tain inductive generalizations. Mathematics has developed only when
indefinite letters, that is variables, have been. introduced instead of
definite numbers, and the foundations of algebra have been laid in this
way. It need not be mentioned that at present mathematics would not
be possible without the concept of variable; but the concept of mathemaz-
ical variable falls under that of logical variable. Hence at least in mathe-
matics it is impossible to do without the concept of variable and that

of indefinite propositions (all mathematical equations, such as “2x-+
+1 = x{2”, must be treated as indefinite propositions). Bolzano’s
procedure can be used as a striking testimony of the fact that the same
is also valid in logic: without realizing the lack of consistency in his
procedure, which he thus accepts, Bolzano formulates all logical laws
with the help of indefinite propositions, which he denotes sometimes
by single lettérs 4, B, C, ..., M, and sometimes by the words “4 has 37,
etc. '

If the concepts of variable and of indefinite proposition even for
these reasons can be eliminated neither from logic nor from science
in general, they prove even more necessary when it comes to the expla-
nation of possibility and probability. In my opinion, the essence of pos-
sibility cannot be grasped if it-is not reduced to the concept of vari-
able. Bolzano failed to fathom the essence of possibility, although
to explain that concept he chose the path which could have led him
to his goal. According to him, the existence of an object is called possible
if it is not impossible. But an object A is impossible if the sentence
“4 does not exist” is a pure conceptual truth. For instance, we say
that an almighty creature is impossible, since the sentence that there
is no such being is a pure conceptual truth. On the other hand, it is
possible that a man errs, since there is no conceptual truth which denies
the existence of an erring man.?*) These are the most essential explana-
tions to be found in Bolzano concerning the concept of possibility. Had
he advanced his analysis of this concept somewhat further, he would
undoubtedly have come across the concepts of variable and of indefinite

24) Ibid., Vol. II, Sec. 182, p. 230.
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proposition. That the conceptual truth, e.g., “4 does not exist” does
not hold, can be asserted a priori, i.e., without recourse to facts or
examples, only if the proposition “4 exists”, which contradicts the
former, can be proved conceptually. But then the existence of the
object 4 is not only possible, but also necessary. Hence if we want
to define pure possibility, which would be confused neither with neces-

“A exists”, is also not a conceptual truth. But it can never be proved
a priori that out of the two contradictory propositions: “4 exists”
and “A4 does not exist” neither the former nor the latter is a ¢onceptual
truth; examples or cases must be found which show that among the

" objects falling under the concept 4 some verify the one proposition

and some the other. If a person wants to prove, for instance, that neither
of the two propositions: “man errs” and “man does not err” is a pure
conceptual truth, he must find both human individuals who err and
who do not. But then the existence of erring and non-erring men is not
only possible, but also real. If we want to sort pure possibility out of
that reality, we must select as the subject of such possibility not an indi-
vidual erring man, but any man, the man x. It is possible, and only
possible, that “the man x errs”, but it is neither necessary nor real,
since there are erring and non-erring men. It is obvious that Bolzano’s
definition of the concept of possibility does not lose its validity, since
if ‘there are men who err then the sentence “there are no erring men”
is certainly not conceptual truth. But in addition to Bolzano’s negative
condition other, positive, conditions are necessary too in order to ex-
plain the.concept of pure possibility. These positive conditions consist
in the acceptance of logical variables and the assumption that there are
indefinite propositions, which need not be either true or false.

‘What has been said concerning the concept of pure possibility is alse
valid for the concept of probability. Bolzano sensed clearly that there
is close relationship between the concept of the validity of a proposition
and that of probability. Since, however, the concepts of logical variable
and of indefinite proposition were not known to him, he did not find
the correct solution. Bolzano defined the concept of probability as
follows: “We consider ... in a single proposition 4 or in several prop-
ositions 4, B, C, D, ... certain ideas i, j, ... as changeable, although
always agreeing among the propositions 4, B, C, D, ... then it is ex-

sity-nor-with-actuality,—we-must assume that the second—proposition; ———
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ceptionally important to establish the ratio of the number of those '

cases in which the propositions 4, B, C, D, ... are all trae to the number
of those cases in which also another proposition M is true... T take
the liberty ... to call this ratio between the given numbers the compara-
tive -validity of the proposition M with respect to the propositions
4,B,C, D, ..., or the probability of the proposition‘ M resulting from
the assumptions 4, B, C, D, ...” ?) I shall try to explain this definition
of probability by an example selectﬂd by myself, since Bo]zano s defi-
nition is not followed by an example.

Although Bolzano_denotes the changeable ideas occurring in the

propositions 4, B, C, D, ... with the letters 7,7, yet to be consistent
he must mean by them not variables but only definite ideas, which are
replaced by others in accordance with a certain rule. Let 4 and B stand
for the following definite propositions: “18 is divisible by 2” and “18 is
divisible by 3”. The proposition M might be: “18 is divisible by 5”.
In all these propositions the idea “18 is treated as changeable, and
we replace it in turn by two-digit integers. The comparative validity,
or probability, of the proposition M with respect to the propositions 4
and B is 3,5 = /s, since out of 15 two-digit numbers for which the
propositions 4 and B are true (they are the numbers of the arithmetical
progression: 12, 18,24, ..., 96), there are only three numbers, namely
30, 60, 90, for which the proposition M is true too.?) In this way we
come to the conclusion that the probability of a false proposition:
“18 is divisible by 5 has the value /5. Obviously, under the same
assumptions, if the number 18 is replaced by the number 10, the com-
parative validity, or probability, of the zrue proposition: “10 is divis-
ible by 5, also is 3/1s = Ys.

The example I have selected and the problem resulting therefrom
have sense when the definite numbers 18 or 10 are replaced by the var-

iable x. Then the problem is: to find the relative truth value of the
" indefinite proposition “x is divisible by 57 with respect to the indefinite
propositions: “x is divisible by 2” and “x is divisible by 37, under the
assumption that x ranges over all two-digit integers. This problem can

25) Ipid,, Vol. 11, Sec. 161, p. 171 {f.
26 As a result of an inexact formulation or just by mistake, in this quotation

Bolzano mentions in the first place thaf quantity which occurs in the denominator,

and in the second that which occurs in the numerator.
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be solved very easily on the basis of the explanations given in Section 10.
But in Bolzano we obtain something nounsensical, not only because
absolute probability is confused with relative probability, but also
because propositions must be treated as probable which can never be
probable, since they are either true or false. It might be objected that
perhaps the examples I have chosen do not comply with Bolzano’s

reasening-and-intentions—-To-this T can only answer thatthese-examples————

have been selected with the strictest consistency with Bolzano’s analysis.
He asserts that 1) all propositions must be either true or false; 2) the
degree of validity of ome and the same proposition varies-according

. to which idea occurring in the proposition is treated as changeable.

These two assertions are incompatible with the assumption of the
existence of indefinite propositions. Consequently, definite propositions
must be treated as examples of probabilistic propositions. Moreover,
1 am convinced that Bolzano would have changed his mind in view
of this consequence, if he had thought of the examples I have given.
In his further considerations he makes use of non self-evident judge-
ments such as “Caius draws a black ball from the urn”, as examples of
probabilistic propositions, without noticing the error inherent in his
reasoning from the very outset.

Bolzano had sensed in the “validity” of a proposiﬁon an important
concept and was moving toward the formulation of a new and original
probability theory. But the force of the Aristotelian prejudice that every
proposition must be either true or false nipped his ideas in the bud
and resulted in an abortive concept which, not noticed by anyone
before, can now claim only a historical importance.

25. Grelling’s probability theory

More or less at the same time that I first presented my probability
theory at the meetings of the Polish Philosophical Society in Lwdw,
the very interesting and valuable paper by Kurt Grelling was published
under the title Die philosophischen Grundlagen der Wahrscheinlich-
keitsrechnung.*”) The author starts from the assumption that the logical

27y Abhandlungen der Fries’schern Schule, New Series, Vol. I, Gottingen, 1912,
pp. 439-478, Grelling’s work appeared in the third part of that volume at the end
of 1910, _
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and philosophical foundations of probability theory as seen by philos-
ophers and mathematicians are still controversial and obscure and
endeavours to scrutinize the solutions of the problem obtained so far,
especially those announced in recent decades in the German literature
on the subject. For this purpose he selects three works which seem to
him to exceed all others in importance: the works of von Kries and
Stumpf, which I have quoted above, and A. Fick’s Philosophischer
Versuch iiber die Wahrscheinlichkeiten.*®) We must now focus our
attention for a while on the last-named item.

According to Fick, mathematical probability is a property of incom-

pletely formulated hypothetlcal Judgements for instance, “when a coin
falls upon a table, it turns heads up”. Fick calls this sentence incom-
plete, because in a complete and hence universally valid judgement
the consequent would have to be: “it turns heads wup or tails up”, or
else the antecendent would have to be: “when a coin falls upon a table
and its tail-side forms an angle of less than 90 degrees with the surface
of the table™. ) »

Grelling’s comment on this presentation of Fick’s fundamental idea
is that Fick in fact by incompletely formulated hypothetical judge-
ments means indefinite judgements, but since he did not have at his
disposal the concepts of modern mathematical logic, which only later
were formulated and examined mainly by Frege and Russell, his analy-
ses are handicapped by a certain obscurity and helplessness. In Grel-
ling’s opinion, Aristotelian terminology is very poorly suited to de-
scribe the concepts mentioned above.

Without engaging in a discussion of whether Fick in fact did know
the concept of indefinite proposition but was unable to formulate it
clearly, or whether terminological helplessness was in his case combined
with a lack of knowledge of comncepts, I shall now outline Grelling’s
opinions.

He recognizes with great clanty all the difficulties which mark both
the objective and the subjective theory of probability. Grelling thinks
that we could come to terms with the subjective interpretation if the on-
ly point were to justify probabilistic propositions which are concerned
with every-day life and in fact are usually nothing but expressions

28) Wiirzburg, 1883.
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of our defective knowledge. Yet the probabilistic propositions in science,
for instance in statistical mechanics, theory of games of chance, theory
of mass phenomena, also require an explanation. They are propositions
which have been well confirmed by experience so that objfective validity
must be their property. Yet the judgements of the calculus of proba-
bility cannot be referred to objective definite events; hence they must

Grelling notices the resolution of this difficulty in the comcept of
indefinite judgement. He seems to understand by an indefinite judgement
a sentence which contains a variable and is neither true-nor false, for
instance “x = 8”. Sentences which contain variables but are either
true or false, such-as “(x4-1)> = x +-2x+41" are treated by Grelling
as definite judgements. He presents the relationship which should hold
between indefinite judgements and probabilistic propositions in a way
which points to a lack of clarity of his basic idea. He states: “We may
say that the state of things formulated in an indefinite judgement is
certain if it can be confirmed, and is impossible if it can be denied.
This is not far from saying that in all other cases it is more or less
probable”.?) Now, I find it difficult to understand how the state of
things formulated in an indefinite judgement can be certain or
impossible if it is assumed that indefinite judgements can be neither
true nor false.

That this obscure point is not due to styhstlc clumsiness, but has
deeper reasons, can be seen quite clearly from the way in which Grelling
tries to define mathematical probability. We find the following formu-
lation: “The question is about the probability of the indefinite judge-
ment: ‘If the assumption 4 is satisfied, then the event B occurs’. Let
the following definite judgements be given: ‘If 4 occurs, then there
occurs one and only one of N equiprobable cases, among which there
are n such that if one of them occurs, then B occurs, too’. Then n/N
is the measure of the probability sought.” %)

In this definition it is, first, unclear to me why Grelling calls the
former judgement indefinite and the latter definite. In the former occur
two indefinite terms, 4 and B, but the same terms reappear in the latter

2%) Ibid., p. 454.
) Ipid., p. 463.
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judgement, which is to be treated as definite. Now if 4 and B are vari-
ables in the first judgement, they must also be so in the second. Or is,
perhaps, the second judgement to be interpreted like an 1dent1ty which
contains variables but must nevertheless be true?

This obscure point is, however, far less important than the way in
which Grelling defines the measure of probability. Although he is correct
in noticing ‘that probabilistic judgements must be interpreted as indefi-
nite judgements, and although he does not hesitate to treat as judge-
ments those indefinite sentences which are neither true nor false, he
does not bring his idea to a conclusion. He remains ignorant of the

concept of truth value, a concept which in a more penetrating analysis
of indefinite propositions proves inevitable and which forms the natu-
ral measure of probability. Since Grelling does not possess that concept,
he must revert to the old, obscure concept of “equiprobable cases”,
a concept that is ridden with difficulties. Finally, there is for him
no other way out than to accept Kries’s theory.

*
* *

The history of the formation of those concepts which have served
as the building material of probability theory as presented in this paper
is instructive and interesting. Two concepts are the corner-stones of
that theory: the concept of indefinite proposition and that of truth

value. Both concepts had been known previously, but they have not

always been interpreted clearly, and never associated with one another.
Representatives of modern mathematical logic, such as Frege and
Russell, knew the concept of indefinite proposition, even if they did not

always treat it as a judgement; yet none of them has tried to apply .

that concept to probabilistic propositions. Bolzano formulated the
concept of validity, which corresponds to the concept of truth value,
and used it in his own way, though not quite satisfactorily, to explain
the concept of probability; but he did not know the concept of indefinite
proposition. On the other hand, Grelling knew the last-named concept
and applied it to probabilistic propositions, but the concept of truth
value escaped his notice. It seems as if fate interfered enviously to pre-
vent the lifting of the veil of mystery that surrounded the concept of

probability.
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Every correct scientific theory has its forerunners. It is only gradually
that the human mind forces its way through to a clear comprehension
of a difficult problem. The fact that the logical theory of probability
also has its own forerunners, and such eminent ones at that, allows™
us to hope that the path toward the resolution of the problem of prob-
ability has ultimately been found.
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(In connection with Stanistaw Zaremba’s Theoretical Arithmetic)

1. Introduction.—2. Professor Zaremba’s definition of magnitude.—3. On the formu-
lation of the principles defining the formal properties of the relations “equal to”,
“less—than”and—“greater-than” —4. On_some logical-relationships between those
principles.—5. On theorems “devoid of content”.—6. On the principle: “the inequal-
ities 4 << B and B > A must hold simultaneously”.—7. Other logical relationships
between the properties defining the formal properties of the relations “equal to”,
“less than” and “greater than”.—8. How the formal properties of those relationships
are to be defined.—9. A criticism of Professor Zaremba’s definition of magnitude.—
10. How the concept of magnitude is to be defined.—11. How to present the theory
of magnitude to make it easily comprehensible and precise.—12. The importance
and the tasks of contemporary formal logic.

Stanislaw Zaremba, Professor of the Jagellonian University, has
written a comprehensive work of 859 pages, entitled Arytmeryka teore-
tyczna (Theoretical Arithmetic). His work, published in Cracow in 1912
by the Academy of Learning, met with the fullest approval from mathema-
ticians.?) I have no doubt that approval is justified; as I am not
a mathematician, I cannot appraise the book from the standpoint
of mathematics and 1 rely completely on the opinion of the experts.
But I can appraise that work from the standpoint of logic, the more
so as some of the problems it raises are closely connected with logic.

The author himself, when referring, on page XV, to advances in the-
oretical arithmetic, says: “These advances consist partly in the intro-

1) Cf. the review by A. Hoborski, docent of the Jagellonian University, published
in Wektor (Vector), Vol. III, No. 9, Warsaw, April 1914, pp. 418-431.

¥) First published in Przeglgd Filozoficzny 19(1916) as O pojeciu wielkosci. Tt is
included here in a largely abbreviated form, which retains only those parts which
are of general theoretical importance. The sections concerned purely with the criticism
of Zaremba’s book have been left out as being now of merely historical interest for
the Polish reader, who can read Zaremba’s book in the Polish original. The table of

—-contents-that-follows-the-title of the article is quoted in full in order to give an idea
about the full text.
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duction of new concepts and new kinds of numbers, but the development -
of theoretical arithmetic in recent times is primarily marked by the

fact that certain quite elementary concepts that have existed in science

for centuries have become well founded and interconnected in a way

more satisfactory from the viewpoint of logic.”

I fully agree with the statement. In fact, both theoretical arithmetic
and mathematics 1o general have recently gained mruch i Togical preci-
sion. This logical improvement of mathematics is, in my opinion, to be
ascribed first of all to the unprecedented development of formal logic.
That development has been due to research by logicians who were
also mathematicians. In 1854 Boole laid the foundations for the algebra
of logic; he was followed by De Morgan, Peirce, and Schréder, who
improved that algebra and formulated the theory of relations; finally,
in recent years Russell, Frege, and Peano and his school applied the
algebra of logic to mathematics and improved it considerably. Owing
to the work of these scientists, traditional formal logic, which has had
practically no effect on contemporary research, has been replaced by
a new logic that will undoubtedly become a powerful but subtle instru-
ment of cognition in all fields of knowledge.

This new logic, which is now flourishing, is as yet very little known.
Only some of its concepts, often distorted, are penetrating the circles
of those scientists who are not professional logicians. Much time will
be needed before these new logical concepts and methods overcome
all the obstacles of prejudice and become the property of all scientists.
That is why I was not astonished when, in a book written by a learned
professor of the Jagellonian University, I found none of the names
mentioned above, but did find in many places opinions and methods
which, from the standpoint of contemporary logic, are inexact or even
erroneous.

To justify my last statement I shall analyse critically in the present
paper the definition of the concept of magnitude as formulated by
Professor Zaremba, discuss some logical and methodological issues
connected with that subject, and offer my own tentative definition of
that concept. [...] '

Logic tells us that every deductive theory, hence also theoretical
arithmetic, includes two kinds of propositions: some, called principles,
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are assumed in a given theory without proof, while the others, called
theorems, are proved on the strength of the principles. All the principles
must be in agreement with one another, and none may be a conseguence
of others; in other words, it may not be derivable from others. Should
a principle be derivable from others, it could be proved on their basis,
and as such would be not a principle, but a theorem. Every theorem
is derivable either from all the principles taken together or from -only
some of them. It is always necessary to investigate most carefully which
principles are necessary to the proof of a given theorem and which are
not. It is also necessary to-investigate which logical relations hold

between the various theorems. For a loose set of propositions becomes
a systematic scientific theory only when the logical relations between
principles and theorems and' between one theorem and another are
established. '

This interpretation of the essence of deductive theory, -as outlined
above, results in a number of methodological rules, which are not
explicitly formulated in logic, but which are observed in the construc-
tion of logical theories. For instance, a combination of several propo-
sitions, which do nét result from one another, into a single principle
is avoided, because the formulation of such “compound” principles
prevents us from establishing exactly the logical relations holding
between principles and theorems, since it may happen that a given
theorem is derivable from only one part of a principle and is not deriv-
able from the other parts of that principle. That is why each logical
proposition should be formulated as one principle in one grammatical
sentence. [...]"

When we speak about consequence in logic, we usually mean formal
consequence. The expression: a proposition is “a formal consequence”
of another proposition, is used to denote a certain relation which holds
between indefinite propositions or propositional functions. These two
terms are used with reference to propositions which contain some
variables; for instance, “x is divisible by y” or “4 is equal to B”.
Hence, if we want to examine whether certain definite propositions
are, or are not, formal consequences of other propositions, we must first
transform all these propositions into indefinite propositions, that
iss-we—must-replace--definiteterms - by- variables represented by cer-

tain letters.
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The indefinite proposition Z is a consequence of the indefinite propo-
sitions P, R, S, ..., if there exist no values of the variables contained
in the propositions P, R, S, ..., Z which verify the propositicns P, R

., but do not verify the propesition Z. In other words, all the values
of the variables which verify the propositions P, R, S, ..., must also "
verify the proposition Z. For instance, the proposition “A4 is equal

-to-Gis-a-consequence-of-the-propositions“4 is equal-te-B*amt*Bis

equal to C”, for if we assume that the variables 4, B, C range over
the class of natural numbers, there are no values of these variables
which verify the last two propositions without also verifying the first
proposition, so that all the values of the variables 4, B, C which Venfy
the Iast two propositions also verify the first.

The indefinite proposition -Z is not a consequence of the propositions
P, R, S, ..., if there do exist values of the variables contained in the
propositions P, R, S, ..., Z which verify the propositions P, R, S, ...,
but do not verify the proposition Z. For instance, the proposition
“A is not equal to C” is not a consequence of the propositions “4 is
not equal to B” and “B is not equal to C™, for if we assume that the
range of the variables A4, B, C is the class of naturdl numbers, there
exist values of these variables which verify the last two propositions
without verifying the first, for instance 4 =2, B=3, C=2.1]...]

As we know, every deductive theory includes certain propositions
which are accepted without proof; they are principles. Such propo-
sitions must exist, because we cannot prove everything. With concepts
it is the same as with propositions. Every deductive theory includes
certain concepts which are adopted without definition; they are prim-
itive concepts. Such concepts must exist, because we cannot define
everything. We may formulate the following methodological rule,
which pertains to both principles and primitive concepts: the principles
and’ the primitive concepts of a given deductive theory should be se-
Iected so as to reduce their number as far as possible. In adopting this
rule we are guided by two considerations: first, we want to have as few”
unproved propositions and undefined concepts as possible, because
we treat both as a malum necessarium. Secondly, the fewer primitive
concepts and principles we need to present a deductive theory, the
more fundamental are the concepts and principles we have chosen,
and the simpler is the theory. [...]
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Both straight line segments and real numbers are called magnitudes.
But there is one essential difference between these two kinds of magni-
tudes, which is revealed in the fact that two different straight line seg-
ments can be equal to one another, whereas two_different real numbers
cannot be equal to one another.

On the basis of this fact T make a distinction between those ‘objects
which only have magnitude, and those which are magnitudes. I say
that objects belonging to a set are magnitudes if any two different,
that is, not identical, ones among them cannot be equal to one another,
but are not magnitudes and only have magnitude if two different ones

among them can be equal to one another.

"Thus straight line segments are not magnitudes, but only have magni-
tude, since two different straight line segments, e.g., two sides of a trian-
gle, can be equal to one another. The magnitnde which straight line
segments have is called their “length”. The lengths of straight line
segments are magnitudes, because two different, that is, not identical,
lengths cannot be equal to one -another. Hence straight line segments
which have different lengths cannot be equal to one another. Likewise,
real numbers are magnitudes, for two different real numbers cannot
be equal to one another. That is why there is a perfect correspondence
between lengths of straight line segments and real numbers which does
not exist between real numbers and straight line segments.

The difference between objects which only Aave magnitude and those
which are magnitudes is very common. A man is not & magnitude; but
he has magnitude, for he has height, age, and body weight. The height
of a man, his age, the weight of his body are magnitudes; this is why
those properties can be expressed, whereas it is impossible to express
man in terms of numbers.?)

2) The distinction between those objects which only have magnitude and those
which are magnitudes occurred to me under the influence of a paper by B. Russell,
L’idée d’ordre et la position absolue dans Iespace et le temps (Bibliothéque du Congrés

* international de Philosophie. ITT. Logique et Histoire des Sciences. Paris, 1901, pp.
241-277). In that paper Russell (on p. 242) makes a distinetion between those series
which are positions and those which have positions. It will soon be seen that
the concept of magnitude is closely associated with those of series and order.
I regret that at the time of writing the present paper I did not have at my disposal

————""""Russell’s principal Woik; The Principlesof Muathématics, published in Cambridge

in 1903.
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‘When we want to define the concept of magnitude, we have to take
into account not objects which merely have magnitude, but objects
which are magnitudes. [...] In this Section I intend to present the results
of my analysis in the fullest detail, by following the path of deduction
from the final definition to its ultimate consequences, and I intend to
present them in a way that is comprehensible even to those readers

~Who do 1ot grasp the precedinig partsof mry paper:

1. Real numbers are typical magnitudes. These numbers form an
ordered set, that is, form a series, in which each number has its own
unique and determined place. This is possible because of the three prop-
erties characteristic of the relation “less than” in the domain of real
numbers: o . _

First, if of any two real numbérs, A and B, 4 is less than B, then B
is not less than 4; second, if of any three real numbers, 4, B, and C,
A is less than B and B is less than C, then 4 is less than C; third, if any
two real numbers, 4 and B, are different from one another, then either
Aisless than B, or B less than 4.

These three properties are necessary, and also sufficient, for real
numbers to form an ordered set. For let us assume that 4, B, and C
are any real numbers different from one another. By the #hird property,
either 4 is less than B, or B is less than 4, and likewise either B is less
than C, or C is less than B. Assume that A4 is less than B and B is less
than C. By the first property, B is not less than 4, nor is C less than B.
Further, by the second property and the assumption that A4 is less than B
and B is less than C, A isless than C and thus C is not less than A4.
Thus the relation “less than” connects the numbers A, B, C only in the
direction from 4 to B, from B to C, and from 4 to C. Thus we can
arrange these numbers in a series so that each of them bears the relation
“less than” to every following ome, but does not bear that relation to
any preceding one. These conditions are satisfied only by the series:
A-B-C, but they are not satisfied, for instance, by the series: B-C-A4.
Hence, with respect to the relation “less than”, each number has a
uniquely determined place in the series: 4 comes first, C comes last,
and B comes between A and C. Likewise, any other real number has
some uniquely determined place in a series arranged on the basis of the
relation “less than”, and all of them taken together form an ordered set.
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Assume that 4, B, C are any elements of a certain set. Every relation
which has the property that if it holds between 4 and B then it does
not hold in the opposite direction, between B and 4, is called asymmetric.
Every relation which has the property that if it holds between 4 and B
and B and C, then it holds between 4 and C, is called transitive. The
relation “less than” is asymmetric and transitive. The third property
has no special name of its own. *) It can only be said that any two different
real numbers, 4 and B, must be connected by the relation “less than™
in a definite direction, hence cither in the direction from A to B, or in
the opposite_direction from B to 4. The same three properties are
characteristic of the relation “greater than”, which, being comverse
to the relation “less than”, co-exists with it in the opposite direction,
so that real numbers, which are ordered by the relation “less than”,
are ordered in the opposite direction by the relation “greater than”.

2. By generalizing the foregoing considerations we may formulate
the following definitions: '

If every two different elements of a set are connected in a definite
direction by an asymmetric and transitive relation », then the set is
termed ordered. The elements of an ordered set are termed magnitudes.

Thus the following principles are true for any magnitudes 4, B, C
that are members of a set:

I.If A4 bears the relation r to B, then B does not bear the relation
rto A.

IL. If 4 bears the relation 7 to B and B bears the relation » to C, then
A bears-the relation r to C.

I0I. If 4 is different from B, then either 4 bears the relatmn r to B,
or B bears the relation r to 4.

3, All properties of the relation r expressed by these principles are
necessary for a set to be ordered and for its elements to be magmtudes
This will be seen from the following considerations:

Assume that the set of straight-line segments is given, and let the
relation “less than™ be represented by r. In the domain of straight-line
segments, the relation “less than™ satisfies the first two principles,

*) This property of telations is” denotéd by the terms “conmexive” or “‘con-
nected”. The Polish term (“spdjny™) for this property was coined later.
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but does not satisfy the third, for of two different straight-line segments
one need not be less than the other, since they can be equal, as in the
case of two sides of an equilateral triangle. Thus the set of straight-line
segmeits is not ordered. In fact, the set of such segments also includes
segments equal to one another, and equal segments cannot be arranged
in a series so that each one has its uniquely determined place in the

§€ries. IT the elements A, B, Crare-equal to one another, then there is

no reason that they should be arranged in the order “A4-B-C” rather

than “B-C-4”. Likewise, brothers cannot be umquely placed in series
according to the relation of brotherhood, while they can be so arranged
on the basis of their age or height, if they differ in age and height.

Since straight-line segments do not form an ordered set, they are not
magnitudes. This may seem strange, and yet it is true, because straight
line ‘segments are not magnitudes, but only hagve magnitudes, in the
same way as a man is not a magnitude, but only kas a magnitude, be it
age or height. The length of a straight-line segment is its magnitude,
and lengths are magnitudes, because of two different lengths one must
be less than the other. Hence we must make a distinction between those
objects which are magnitudes, and those objects which are not magni-
tudes but have magnitudes.

This shows that the first two properties of the relation r do not suffice
for the elements of a set between which the relation 7 holds, to be
magnitudes. Likewise, the last two properties do not suffice. This is
proved by the following example drawn from the field of logic.

Those propositions which contain only definite terms are called

definite, as opposed to indefinite propositions, which contain variables.
For instance, the proposition “10 is divisible by 5” is definite, while
the proposition “10 is divisible by x™ is indefinite. Every definite prop-
osition is either true or false. Assume that the set of definite proposi-
tions is given, and let » stand for the relation of material consequence,
defined as follows: the relation of material consequence holds between
two definite propositions, 4 and B, when either 4 is false or B is true.
Since every definite proposition is either true or false, the relation of
material consequence holds between every two such propositions in
some direction. For if A is false, then every definite proposition B
follows from it; if 4 is true, then, too, from 4 follows B, if B is true;
and if B is false, then again from B follows 4. Thus the third principle
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is satisfied. The second principle is satisfied as well, for if from 4 follows
B and from B follows C, then from A4 follows C. On the other hand,
the first principle is not satisfied, for if 4 and B are both true or both
false; then-both from A follows B and from B follows A.-This'is why
the set of definite propositions is not ordered with respect to the relation
of material consequence, and its elements are not magnitudes.

It can also be demonstrated that the first and third properties of the
relation r do not suffice for a set to be ordered and for its elements to
be magnitudes. Assume that the set of the following three months: “Janu-

—ary; May, September>-isgiven,—and-let-r-stand-for-the- relation: the
Jfourth month following a given month. Since May is the fourth month
following January, and September- is the fourth month following May,
and January is the fourth month following September, then the third
principle is satisfied under these assumptions. For let any of these
months be symbolized by 4 or B: if A4 is other than B, then either the
fourth month following 4 is B or the fourth month following B is 4.
The first principle is satisfied too, for if B is the fourth month following
A, then A cannot be the fourth month following B. On the other hand,
the second principle is not satisfied, for if out of these three months B
is the fourth month following 4, and C is the fourth month following B,
then C is not the fourth month following 4. For instance, the relation r
holds between January and May, and between May and September,

~ but is doés not hold between January and September, but conversely,
it holds between September and Januvary. That is why these three ele-
ments cannot be ordered in a unique manner, because with respect
to the relation r the series “January-May-September” and “May-Sep-
tember-January” and “September-January-May” are equally possible.

These elements form not an ordered series, but a ¢cycle. Accordingly they

may not be treated as magnitudes.

This proves that all three properties of the relation r, formulated in
principles-I, II and III, are necessary for a set of elements to be
ordered and for its elements to be magnitudes. It can also be seen
that none of these principles follows from the remaining ones.

4. If a set of elements satisfies all three principles defining the formal

“propettiesof the-relation-7,-then-that relation, depending on certain
other factual factors which are of no logical importance, may be called

Ky
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either the relation “less than” or the relation “greater than”. By using
the former of these terms we may present the general principles I, IT,
and III as principles pertaining to the relation “less than™ and give
them first place in the theory of magnitude.

For any magnitudes 4, B, C, belonging to a set of magnitudes, the
following principles are true:

PITIF A is less than B, then B isnot-less-thanA. -
P2. If A is less than B and B is less than C, then A is less than C.

P3. If A is different from B, then either A is less than B or B is less

than A. »

These principles make it possible to formulate the following defi-
nitions: . ‘

Df. 1. “4 is greater than B” means “B is less than A”.

Df. 2. “A is eqal to B” means “A is not less than B and B is not less

than A”. - . .

The relation “greater than” is comverse to the relation “less than”.
Thus these relations are two aspects of one and the same connection.
This is revealed even in the symbolism used in mathematics. The expres-
sion “4d < B”, when read from left to right méans “A4 is less than B”,
and when read from right to left means “B is greater than A”.

The relation of equality holds only between identical magnitudes.
This follows from Pl and P3. If 4 is less than B or B is less than 4,
then A is different from B, for should 4 and B be identical, then, by
P1 4 would be both less and not less than itself. And if 4 is different
from B, then, by P3, either 4 is less than B or B is less than 4. Hence
there is equivalence between the propositions “4 is different from B”
and “A is less than B or B is less than 4. Likewise, there is equivalence
between the negations of these propositions: “4 is not different from B”
or “A4 is identical with B”, and “4 is not less than B and B is'not less
than A7 or “4 is equal to B”. Thus the relation of equality may be inter-
preted as the relation of identity. This is why we say that equal straight-
line segments have the same length and that people who are equal
to one another in heighfor age are of the same height or age.

5. The above principles and definitions yield a number of theorems,
the most important of which are listed below together with their proofs
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and with explicit references to the principles and definitions on which

they are based.
The following theorems are true for any magnitudes 4, B, and C,
belonging to. a certain set of magnitudes:

Th. 1. If A is less than B, then B is greater than A.
Th. 2. If A is greater than B, then B is less than 4.
These theorems follow immediately from Df. 1.
Th. 3. If A is equal to B, then A is not less than B.
This theorem follows immediately from Df. 2.

Th. 4. If A is equal to B, then A is not greater than B.

Proof: Tt follows from Df. 2 that if 4 is equal to B then B is not less
than 4. And from the proposition: B is not less than A4, we obtain,
by contraposition of Th. 2, the proposition: 4 is not greater than B.

Th. 5. If A is less than B, then A is not greater than B.

Proof: It follows from P1 that when 4 is less than B, then B is not
less than A. And from the proposition: B is not less than 4, we obtain,
by contraposition of Th. 2, the proposition: 4 is not greater than B.

Theorems 3, 4, and 5, taken together, state that only one of the rela~
tionships: A4 is equal to B, A is less than B, A4 is greater than B, holds
between any two magnitudes 4 and B.

Th. 6. If A is not less than B and A is not greater than B, then A is
equal to B.

Proof: From the proposition: 4 is not greater than B, we obtain,
by the contraposition of Th. 1 and with a simultaneous exchange of
the letters 4 and B, the proposition: B is not less than 4. And from the
propositions: 4 is not less than B, and B is not less than 4, by Df. 2
follows the proposition; 4 is equal to B. It must be borne in mind
that all the propositions of the present theory, and hence all the prin-

ciples, definitions, and theorems, are valid for any magnitudes 4, B, C,.

and hence the letters contained in those propositions may be replaced

by other letters, provided only that the places occupied by like letters

must, after the replacement, also be occupied by like letters.
Theorem 6 states that one of the relationships: A4 is equal to B, 4 is

oo less than.B, A is greater than B, always holds between any two magni-

tudes 4 and B. -
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Th. 7. If A is not Zess than B and B is not less than C, then A is not
less than C.

Proof: Suppose that with the assumptions: 4 is not less than B, and
B is not less than C, the proposition: A4 is less than C, is true. Then
one of the following propositions must hold: either C is less than B,
or Cis not less than B. If Cis less than B, then that proposition, together

with-the-sapposition—that-4-is-less than C, yields, by-P2;—the—propo————

sition: A is less than B. But this proposition is in contradiction to the
assumption that A4 is not less than B. Hence, if we suppose that 4 is
less than C, we must assume that C is not less than B.-But from the
proposition: C is not less than B, and the assumption: B is not less

than C, taken together, it follows that B and C must be identical. For

should they not be identical, but different from one another, then by
P3 it would follow that either B is less than C or C is less than B.
Hence, when assuming that A4 is less than C, we must assume that B
is identical with C. But then the assumption: 4 is not less than B, is
equivalent to the proposition: A4 is not less than C, and thus is in contra-
diction to the supposition that A4 is less than C. Consequently, we must
assume that if 4 is not less than B and B is not less than C, then 4 is
not less than C.

Theorem 7 shows that not only is the relation “less than” transitive,
but that its negation, that is the relation “not less than”, is transitive,
too. It is worth while noticing that this theorem is based on P2 and P3.

Th. 8. A is equal to A.

Proof: By substituting 4 for B in P1 we obtain: If 4 is less than A4,
then A4 is not less than 4. This is an example of a logical relationship
in which a proposition implies its own negation. Hence the antecedent:
Aisless than 4, must be false, for should it be true, then a contradiction
would result, and the consequent: 4 is not less than 4, must be true.
Hence it follows, by the contraposition of Th. 2, that the proposition:
4 is not greater than A, must be true, too. By substituting in Th. 6
A for B we obtain: If 4 is not less than 4 and 4 is not greater than 4,
then 4 is equal to 4. Since the propositions which together form the
antecedent in this conditional proposition are true, the consequent
must be true too. Hence: A4 is equal to 4.

Every relation which has the property that it holds between any
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element of a set and that clement itself is called reflexive. Theorem 8
states that the relation of equality is reflexive.

Th. 9. If A is equal to B, then B is equal to A.

Proof; By Df. 2 the proposition: 4 is equal to B, means: 4 is not
Iess than B and B is not less than 4; and the proposition: B is equal
to 4, means: B is not less than 4 and 4 is not less than B. Both propo-
sitions mean the same and one follows from the other,

Every relation which has the property that when it holds between
any two elements of a set, 4 and B, then it also holds in the opposite

direction—between—B-and-Ais-called-symmetric. -Theorem 9 states that
the relation of equality is symmetnc

Th. 10. If A is equal to B and B is equal to C, then A is equal to C.

Proof: By Df. 2 this theorem can be expressed in the following words: -

If 4 is not less than B and B is not less than 4, and B is not less than
C and C is not less than B, then A4 is not less than C and C is not less

than 4. The consequent in this theorem consists of two propositions: -

The.first: 4 is not less than C, follows by Th. 7 from the propositions:
A is not less than B and B is not less than C, contained in the antecedent.
The second: C is not less than 4, follows in the same way by Th. 7
from the propositions: C is not less than B and B is not less than 4,
contained in the antecedent. In this way Th. 10 is based on Th. 7, and
hence also on P2 and P3.

Theorem 10 states that the relation of equality is transitive. Theorems
8, 9, and 10 can also be proved in a shorter way, by making use of the
proof included in Section 4, based on P1 and P3 and demonstratmg
that elements equal to one another are identical.

Th. 11. If A is equal to B, and B is less than C, then A is less than C.

Proof: If A is equal to B, then 4 is identical with B by P1 and P3.
Hence the proposition: B is less than C, implies the proposition: A is
less than C. '

Th. 12. If A is less than B and B is equal to C, then A is less than C.

Proof: If Bis equal to C, then B is identical with C by P1 and P3.
Henee-the-proposition:-4.is less than B, implies the proposition: 4 is

less than C.
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Many other theorems could be proved in a similar way. It could be
demonstrated, for instance, that both the relation “greater than” and
its negation, that is, the relation “not greater than”, are transitive.
Likewise, we could prove theorems analogous to Th. 11 and Th. 12
and differing from them only in that the word “greater” replaces the
word “less”. Those proofs, like all the preceding ones, except perhaps

for the proof.of Th. 7 are quite easy.

“6.In this way the foregoing principles, deﬁnmons and theorems
give rise to a deductive theory of magnitude. This theory combines
in a logical whole all the laws defining the formal properties of ‘the
relations “equal to”, “less than”, and “greater than”, by deducing
these laws from three simple principles and two definitions. Its logical
significance is, accordingly, quite considerable. It turns out, for instance,
that the proposition “two magnitudes, equal to a third one, are equal
to one another”, which so far has been considered as axiom, is a logical
consequence of more general principles. This is so because that propo-
sition is equivalent to Th. 10 or to the theorem: if 4 is equal to B and C
is equal to B, then A4 is equal to C, which can easily be proved on the
basis of Th. 9 and Th. 10. .

But the practical significance of this theory is quite considerable,
too. If we want to make sure whether a set of elements is a set of magni-
tudes, it suffices to examine whether there is a relation » which holds
between those elements and which is asymmetrical and transitive and
such that it holds in a definite direction between any two elements
of that set. Of course, in each particular case the relation » must be
defined precisely so that we can see whether it in fact has the three
properties speciﬁed above. We shall consider a number of examples
for that purpose. ’ :

In the domain of natural numbers, the relation 7 is the relation “less
than” interpreted in the ordinary way. It is obviously asymmetrical and
transitive, and it also has the third property, since of any two dif-
ferent natural numbers one is always less than the other. This is why
natural numbers form an ordered set, which we can call the series of
natural numbers, and are magnitudes.

In the domain of the lengths of straight-line segments, the relation
r can be defined as that holding between a part and the whole. Assume
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that a straight line is given, and let a point on that line be marked 0.’

On that line we measure the lengths of straight-line segments by making
a given segment coincide with some part of the straight line to the right
of the fixed point O. It is obvious that of two such different lengths
one is always a part of the other, and that the relation holdmg between
a part and the whole is asymmetric and transitive. Hence, in view of
the relation holding between a part and the whole, which may be called
the relation “less than”, the lengths of straight-line segments form an
ordered set and are magnitudes. Since we assume that there is a perfect
correspondence between the lengths of straight-line segments and real

numbers, real numbers also form an ordered set and are magnitudes.

There are also sets of elements for which we can define several relations
r satisfying the thiee principles of the theory of magnitude. For instance,
the set of proper fractions is an ordered set with respect to the relation
“less than” defined in the ordinary way. In the domain of proper frac-
tions that relation satisfies principles P1, P2, and P3 and accounts for
the fact that proper fractions are magnitudes. But set theory tells us that
there is a perfect correspondence between the set of all proper fractions
and the set of all natural numbers, so that all proper fractions can be
numbered. When that is done, they are ordered on the basis of another
relation, but one which satisfies principles P1, P2, and P3 in the same
way as does the relation “less than”. Thus, proper fractions can also
be magnitudes in a sense different from the usual.

Finally, there are sets of elements for which we have not thus far
succeeded in finding or defining any relation r that satisfies principles
Pl1, P2, and P3, although we suspect that such a relation exists. We sup-
pose, namely, that the infinite sets have magnitude as have the finite
sets and that the “powers” of the infinite sets are magnitudes like finite
numbers. But we cannot prove this, because so far we have failed to
demonstrate the existence of an appropriate relation r. By adopting
the mnon-self-evident “postulate of choice” formulated by Zermelo, we
can prove that all infinite sets can be “well ordered”, and from that we
could deduce the statement that their powers form an ordered set.
Hence, if Zermelo’s postulate is correct, then infinite sets have the
nature of magnitudes, and their powers are magnitudes.?) Nevertheless I

9)-Cf~Artur~Sehoenflies,-Entwickelung-der. Mengenlehre und ihrer Anwendungen,

Leipzig and Berlin, 1913, Chap. IIT and Chap. X.
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think that the proofs of those theorems will be truly precise only Wwhen
we can demonstrate that any two different powers of infinite sets are
connected in a definite direction by an asymmetric and transitive relation
r, that is, that the set of those powers satisfies all the principles of the
theory of magnitude, as formulated in this paper. [...]

The way in which Professor Zaremba uses the term “convention”

~J-consider-to-bemot-a-Hnguistic ercor,-but-a-lack-ef~verbal-precistonr———

which may result in grave logical errors. That term is very often en-
countered on the pages of Professor Zaremba’s book. For instance, when
ke adopts the phrase “quantitative comparability” in order to implify’
formulations, he says that he “adopts a convention”. When referring
to the principles defining the formal properties of the relations “equal
to”, “less than”, and “greater than”, he says that “no logical necessity
forces us to accept these principles unconditionally, but these principles
have the nature of conventions adopted of free will but certamly not
incidentally™.

In view of the above we have to say that the term “convention”
always means the mutual agreement of at least zwo persons. The author
who writes a book does not make an agreement with the reader, whom
he does not meet and whom he does not know, but only expresses
his ideas, of which the reader later takes cognizance and either approves
or not. With whom then does the author make an agreement?

Further, it seems to me that in science only terminological issues may
be the subject of a convention. Scientists representing a given discipline,
having met at a scientific conference, may agree that they will use a
certain term or sign always with a given definite meaning. But no con-
ference may adopt conventions as to which concepts or propositions
are to be accepted and which are to be rejected. For in science we accept
noncontradictory concepts and true propositions, and we reject contra~
dictory concepts and false propositions. We also accept propositions
about which we do not know whether they are true or false, but only
if such propositions imply other propositions that help us to explain,
foresee, or order certain facts. Now the contradictoriness and mon-
contradictoriness of concepts, the truth and falsehood of propositions,
and the following or non-following of some propositions from others
do not depend on any conventions. That is why Professor Zaremba is
inexact in his formulation when he says that the acceptance of the
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principles that define the properties of the relations “equal to”, “less
than”, and “greater than” is not forced upon us by any logical necessity,
and that those principles have the nature of conventions. No principle
can have the nature of a convention, since mone is accepted on the
strength of a convention. Two or more scientists can only agree that
they will use a ferm to denote objects that have properties formmulated
as certain principles. For instance, they may agree to use the term
“equality” to denote a relation which satisfies the principles that express
the properties of reflexivity, symmetry, and transitivity.

The fashion of using the term “convention”, which has recently

become widespread among mathematicians — perhaps under the
influence of Poincaré, a great mathematician, but not a logician —is
not satisfactory for another reason as well. It leads to the view that
mathematics is largely based on “conventions” and hence is conventional
in nature. Such an opinion is erroneous. This is why I think that it is
better to avoid the term “conmvention” in mathematical works, or to
use it only in such phrases as: “in accordamce with the convention
of such-and-such a scientific conference I use such-and-such a term
in such-and-such a meaning.” [...]

Contemporary formal log1c, which is based on the algebra of propo-
sitions and relations, is as much superior to Aristotle’s traditional
logic as contemporary geometry is to Euclid’s Elements. We may say
without hesitation that today there is no form of reasoning in science
that has not been analysed by contemporary logic, whereas traditional
logic knew practically no forms of reasoning other than direct reasoning
based on the square of contradiction and syllogistic. For instance, the
form of reasoning stating that if from a proposition follows its own

contradition, then that proposition is false — which reasoning has been

used- above -in the. demonstration that every magnitude is equal to
itself — was not known in traditional logic. That logic also did not
know the ‘concepts of indefinite proposition or propositional function,
the concept of logical variable, and formal and material consequence.
Today, owing to these new concepts and forms of reasoning, we can
check and appraise all methods of reasoning and find errors where
they could not be found by traditional logic.

Moreover,—contemporary logic formulates .a number of methodol-

ogical rules about which former logic knew nothing. We have become
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acquainted with some of those rules, as far as they are concerned with
deductive theories. We know that every such theory includes some
principles and theorems, that all the principles ought to be in agreement
with one another and ought not to follow from one another, that their
number ought to be the least possible, and that it is to be investigated
whlch principles yield given theorems and “which do not yield them.

CTtEMPOTary 108ic says-that-it does—not-suffice to-be-satisfred-with-a——

proof of a theorem; it is also necessary to find out all the logical relation-
ships which hold between that theorem and the principles and even
between various theorems. Former logic did not formulate such Tules
because, not knowing the concepts of indefinite proposition and logical
variable, it could not éven state what it means for a proposition not
to be a formal consequence of another proposition.

If ve realize all this, we can easily understand why present-day logic
exceeds former logic in its requirements of scientific precision. Mathe-
métics, which so far has been considersd the most precise discipline,
turns out to be full of defects and errors when gauged by this new
standard of precision. And if mathematics cannot pass the test, what
shall we say about other disciplineé, which always have been less precise
and less perfect than mathematics? What a fine target for logical criti-
cism are such natural sciences as physics and chemistry, astronomy and
crysta]lography How much more imprecision must be inherent in those
natural sciences which do not make use of mathematics, such as biology
or geology. And how can contemporary philology, psychology, sociology
and philosophy defend themiselves against precise logical criticism?

Contemporary logic is faced with great and important tasks: to
subject all scientific theories to criticism from the point of view of the
new standard of logical precision, and to systematize those theories
in accordance with the new methodological rules. The implementation
of these tasks seems to me to be exceptlonally 1mportant mainly for three
reasons.

Firstly, it will facilitate the understanding of scientific theories. Because
of the lack of logical precision, many scientific theorems have been
obscure and not properly understood even by experts in a given disci-
pline. We easily grasp any idea which is formulated precisely, even
if it is false. Tt is equally clear to us that the proposition “two times
two makes four” is true and that the proposition “two times two makes
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five” is false. But if a scientific theorem is formulated without adequate
precision, then along with truth it always includes an.admixture .of
falschood. We do not realize the existence of that falschood if a given
theorem is accepted -in that discipline, for_ we think that.it.is true in
foto. And nothing is so obscure and difficult to understand as a propo-
sition which includes falsehood and in which we want by all means
to see only truth. For centuries differential calculus was inaccessible
even to very gifted minds. When the student complained about the dif-
ficulties he encountered in the study of that calculus, he was answered

in the words of d’Alembert: “Allez, Monsieur, allez, et la foi vous '

viendra.” A person can:become accustomed to inexact theorems and
become used to them as something known, but he cannot understand
them. Today we know what errors and inexactitudes underlay the
foundations of differential calculus, and no one now believes in the
existence of differentials as infinitesimally small quantities.

Secondly, compliance with these logical requirements will facilitate
the remembering of scientific theories. The results of contemporary
science are extremely rich. Although we accumulate them and st
them in textbooks and encyclopaedias, scientific theories seem to be
loose collections - of propositions rather than systematized wholes.
They are only scientific data which increase every day with terrifying
speed, and which even today, even within the scope of a single discipline,
cannot be grasped by the human mind and memory. If all the propo-
sitions combining to form a scientific theory are arranged according
to the logical relationships between them, and if at the head of those
propositions we place a few simple principles, of which the other prop-
ositions are consequences, a clear and coherent whole will be formed,
which can more easily be grasped by memory than the loose collections
of propositions in today’s textbooks. This is so because we remember
better a well constructed poem than a loose series of words, and we
remember better a fune than the chaos of loose sounds. It is easier,
I think, to remember that magnitudes are elements of an ordered set
than to learn Professor Zaremba’s definition of magnitude and to
assimilate eight logically unanalysed principles joined to that definition.

Thirdly, the carrying out of these logical tasks will help to

distingrish;—in scientific-theories;-between-those things which are really
important and subordinate details. If a proposition contains other pro-
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positions as its consequences, then it is more important than those
consequences. In science, a law of nature is more important than singu-
lar propositions about facts which are subsumed under that law. It is
more important because whoever knows the law can deduce the con-
sequences and knows more than he who knows only detailed facts.
Hence, whoever has assimilated the principles of a scientific theory

knows potentially thewhole theory. “Fhe-arrangement ~of the propo-
sitions belonging to a theory according to logical relationships between
them and a study of such relationships will show which propositions
ought to be adopted as principles, and which as theorems, and will
also permit one to judge which theorems have more comsequences
than the others. In this way, the role of each proposition in a given
scientific theory is strictly defined. It turns out then that the number
of scientific laws which really deserve to be known is small in every
discipline, and the rest are subordinate details which proliferate in
science, merely covering it with weeds. Science must be cleared -of such
weeds, so that they should not stifle great scientific truths and great
creative ideas developed by brilliant minds. )

My desire is that in evéry discipline there should be scientists versed
in contemporary formal logic, for they can most effectively improve
the discipline in which they work in accordance with the requirements
of logic. And above all, my desire is that such scientists be found in
our nation. Science in the hands of man is a weapon not only against
elemental forces, but also against man. Nations struggle with other
nations for existence. The nation which is better equipped with the
power of science has a greater chance of victory. To strive to improve
and systematize science and thus to facilitate its assimilation means to
work not only for the progress of human knowledge, but also for the
good of one’s own nation.




FAREWELL LECTURE BY PROFESSOR JAN LUKASIEWICZ,
DELIVERED IN THE WARSAW UNIVERSITY LECTURE HALL
ON MARCH 7, 1918

In this farewell lecture I wish to offer a synthesis of my research,
based on autobiographical confessions. I wish to describe the emotional

background againist which my views have developed.

I have declared a spiritual war upon all coercion that restricts man’s
free creative activity.

There are two kinds of coercion. One of them is physical, which
occurs either as an external force that fetters the freedom of movement,
or as inner impotence that incapacitates all action.

We can free ourselves from that coercion. By straining our muscles -

we can break the fetters, and by exerting our will we can overcome
the inertia of the body. And when all measures fail, there is still death
as the great liberator.

The other kind of coercion is logical. We must accept self-evident
principles and the theorems resulting therefrom. That coercion is much
stronger than the physical; there is no hope for liberation. No physical
or intellectual force can overcome the principles of logic and mathe-
matics. _

That coercion originated with the rise of Aristotelian logic and Eu-
clidean geometry. The concept was born of science as a system of prin-
ciples and theorems connected by logical relationships. The concept
came from Greece and has reigned supreme. The universe was. con-
ceived after the pattern of a scientific system: all events and phenomena
are interconnected by causal links and follow from one another as theo-
rems in a scientific theory. All that exists is subject to necessary laws.

In the universe conceived in this way there is no place for a creative
act resulting not from a law but from a spontaneous impulse. Impulses,
too, are subject to laws, originate from necessity, and could be fore-
seen-by-an-eomniscient-being. Before I came into this world, my actions

had been predetermined in the minutest. details.
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This idea pervaded even practical life. It turned out that action sub-
ject to laws, both natural and social, and hence orderly and purposive,
is always effective. If the whole nation can become a mechanism whose
structure reproduces the scientific system, it gains such enormous
strength that it can strive to become the master of the world.

The creative mind revolts against this concept of science, the

universe;—and—tife—A—brave—individual, conscious of-his—value;—does
not want to be just a link in the chain of cause and effect, but wants him-
self to affect the course of events.

This has- always been - the ‘background of the opposition -between
science and art. But artists are remote from scientific issues and do not
feel logical coercion. And what does a scientist to do?

He has two paths to choose from: either to submerge himself in
scepticism and abandon research, or fo come fo grips with the concept
of science based on Aristotelian logic.

I have chosen that second path. Slowly and gradually I have come
to realize the final objective of the campaign I am conducting now.
Yet even all my previous works also unconsciously served the same
purpose.

In my striving to transform the concept of science.based on Aristo-
telian logic I had to forge weapons stronger than that logic. It was
symbolic logic that became such a weapon for me.

T examined the great philosophical systems, proclaiming the universal
causality of phenomena, in the light of that logic. I made sure that
all of them, Kant’s criticism not excluded, fall into nothingness when
subjected to logical criticism. They become a collection of loose ideas,.
sometimes brilliant, but devoid of scientific value. They are no threat
to freedom at all.

The empirical sciences arrive at general laws by inductive reasoning.
I examined the logical structure of inductive conclusions. I started
from the research done by Jevons and Sigwart and strove to demon-
strate that induction is a reductive reasoming that secks reasons for
given conSequences. Such a reasoning never yields reliable results,
but only yields hypotheses. Thus here, too, logical coercion ceases to
work:

The laws and theories of natural science, by being hypotheses are
not reproductions of facts, but creative products of human thought.
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They should be compared not to a photograph, but to a picture painted
by an artist. The same landscape can be interpreted in different ways
in works by different artists; by analogy, different theories may serve
to explain the same phenomena. In this I saw for the first time a proxi-
mity between scientific and artistic work.

Logical coercion is most strongly manifested in a priori sciences.
Here the contest was to the strongest. In 1910 T published a book on
the principle of contradiction in Aristotle’s work, in which I strove to
demonstrate that that principle is not so self-evident as it is believed to
be. Even then I strove to construct non-Aristotelian logic, but in vain.

Now I believe to have succeeded in this. My path was indicated to
me by antinomies, which prove that there is a gap in Aristotle’s logic.
Filling that gap led me to a transformation of the traditional principles
of logic.

Examination of that issue Was the subject-matter of my last lectures.
I have proved that in addition to true and false propositions there are
possible propositions, to which objective possibility corresponds as
_ a third in addition to being and non-bemg

This gave rise to a system of three-valued logic, which I worked out -

in detail last summer. That system is as coherent and self-consistent
as Aristotle’s logic, and is much richer in laws and formulae.

That new logic, by introducing the concept of objective possibility,
destroys the former concept of science, based on necessity. Possible
phenomena have no causes, although they themselveg can be the be-
ginping of a causal sequence. An act of a creative individual can be
free and at the same fact affect the course of the world.

The possibility of constructing different logical systems shows that
logic is not restricted to reproduction of facts but is a free product
of man, like a work of art. Logical coercion vanishes at its very source.

Such was my research, its emotional background, and the objective
by which it was guided.

And now I have to lay my work aside for some time and to subject
myself to coercion and to observe laws and regulations and even become
their guardian. I shall not be free, although I decided that of my own
will. But when I feel free again, I shall revert to science. I shall revert

to-it~and-shalt-perhaps-face-you-or your successors to continue that
ideal struggle for the Iiberation of the human spirit.
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ON THREE-VALUED LOGIC *)

Aristotelian logic, by asstming that every proposition is either true
or false, distinguishes only two kinds of logical values, truth and
falsehood. If truth is symbolized by 1, falsehood by 0, identity by

=, and Jmphcatlon by <, we can deduce all the laws of "Aristotelian
logic from the following principles. and definitions:

I. The principles of the identity of falsehood, identity of truth, and
non-identity of truth and falsehood: 0 =0)=1,(1=1)=1, 0= 1)
={1=0)y=0. ,

II. The principles of implication: 0 <=0 <=0 <D =1,
(1<0)=0. _

JII. The definitions of mnegation, addition and multiplication:

=(a<0),atb=1[(a<b) <b], ab= (d+b).

In these definitions, ¢ and b are variables which may take on only
two values, 0 or 1. All logical laws, expressed by means of variables,
can be verified by the substitution of 0 and 1 for the letters; e.g.,
(a=1=aistrue, for 0=1)=0and 1= =1

Three-valued logic is a system of non-Aristotelian logic, since it
assumes that in addition to true and false propositions there also are
propositions that are neither true nor false, and hence, that there exists
a third logical value. That third logical value may be interpreted as
“possibility” and may be symbolized by $.** If we want to formulate
a system of three-valued logic, we have to supplement the principles
concerning 0 and 1 by the principles concerning 1. This can be done
in various ways; the system adopted by the present author in the pres-
ent stage of research, and which deviates least from “two-valued”
logic, is as follows: '

*) First published as “O logice tréjwartosciowej” in Ruch Filozoficzny 5 (1920),
pp. 170-171.

#*) In this paper fukasiewicz used the symbol 27 to denote a third logical
iialue in his later papers he always used the symbol *°}”” in that sense.
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I. The principles of identity: 0=1%) = (3L O=(101=yP=3G=1
—LG=P=1 -

II. The principles of mphcatlon 0 < 1) =G <D=3¢<dH=1,
G<0)=010<P=1

The principles specified above concerning 0 and 1, and the defini-
tions of negation, addition and multiplication remain the same in three-
valued logic, with the only difference that the variables ¢ and b may
take on three values, 0,1, and %

_The laws of three-valued logic differ partly from those of two-valued
10 c. Some laws of Aristotelian logic are omly “possible” in three-
valued logic, for instance, the principle of the - syllogism in the ordinary
formulation: (@ < B)(b < ¢) < (@ < ¢) {but the principle of the
syllogism in the formulation: (@ < b) <[(d < ¢) < (a < ¢)] is true},
the principle of contradiction aa’ = 0, the principle of the excluded
middle a+a’ = 1, etc. Some laws of two-valued logic are false in three-
valued logic, among them the law: (@ = &') =0, since for a = 1 the
sentence ¢ = ¢ is true. This accounts for the fact that in three—valued
logic there are no antinomies.

The present author is of the opinion that three-valued logic has above
all theoretical importance as an endeavour to construct a system of
non-Aristotelian logic. Whether that new system of logic has any prac-
tical importance will be seen only when logical phenomena, especially
those in the -deductive sciences, are thoroughly examined, and when
the consequences of the indeterministic philosophy, which is the meta-

physical substratum of the new logic, can be compared with empir-

ical data.

TWO-VALUED LOGIC %)

The text that follows is an excerpt ITom a more comprehensive work -
on three-valued logic, which I am preparing for publication. I intend
here to interpret two-valued logic in such a way that three-valued
logic will prove a natural extension of it.

The present paper is a listing of truths and opinions already known.
Let me mention briefly from which authors I have drawn most. The
concepts of “truth”, “falsehood”, and “assertion” I owe to Frege.
In adding “rejection” to “assertion” I have followed Brentano. The
idea of deducing logical laws from the principles pertaining to 0 and 1
I have drawn from Schréder. For practical reasons I have adopted
the symbolism developed by Boole and Schréder, as simplified by
Couturat; from the symbolism used by Peano and Russell T have only
taken the use of dots after the symbol of assertion or rejection and after
quantifiers. The term and the symbols for “quantifiers” are due to Peirce.
In accepting only apparent variables I have followed Professor Le$niewski.

The principles of three-valued logic have been summarized by me
in a report published in Ruch Filozoficzny 5-(1920), p. 170.

Contents

1. Truth and falsehood.—2. Two-valued logic.—3. Assertion and rejection.—4. Cor-
rect and erroneous procedure.—5. Abstention and indifferent procedure.—6. The
pririciples of implication.—7. Logical variables and quantifiers.—8. An example of
an expression containing a variable.—9. Dual interpretation of logical variables.—
10, The laws of implication.—11. Definitions.—12. Negation.—13. Addition.—14.
Multiplication.—15. Equivalence.—16. Verbal rules.—17. Examples of deducing
principles from definitions.—18. The principles of logical operations and equivalence.—
19. The meaning of the quantifiers.—20. Theorems and laws.—21. Examples of veri-
fication of laws.—22. An axiomatic system of two-valued logic.—23. The list of axioms
and definitions of two-valued logic.—24. The most important laws of two-valued Iogic.

*) First published as “Logika dwuwarto$ciowa” in Przeglad Filozoficzny 13(1921),
pp. 189-205.
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1. Truth and falsehood

These terms are not defined; and by truth I mean not a true propo-
sition, but the object denoted by a true proposition, and by falsehood
I mean not a false proposition, but the object denoted by a false prop-
osition. 1 say that “2 times 2 is 4” is a truth, because the proposition
“2 times 2 is 4” denotes the same object as does the term “truth”, in the
same way as 2 times 2 is four, because the expression “2 times 2 de-
notes the same object as does the term “four”.

Two_different true propositions, for instance 2 times 2 is 4” and

“Warsaw lies on the Vistula” differ only by their confents, but they
denote the same object, that is truth, in the same way as the expres-
sions “2 times 2” and “3 plus 17 differ only by their contents, but
denote the same object, that is the number 4. All true propositions
denote one and the same object, namely truth, and all false propo-
sitions denote one and the same object, namely falsshood. I consider
truth and falsehood to be singular objects in the same sense as the
number 2 or 4 is. There are as many different names of the one and
only truth as there are true propositions, and as many different names
of the one and only falsshood as there are false propositions. Ontolo-
gically, truth has its analogue in being, and falsehood, in non-being.

The objects denoted by propositions are called logical values. Truth
is the positive, and falsehood is the negative logical value. Truth is
represented by 1, falsehood by 0. These symbols are also read as propo-
sitions “truth is”, “falsehood is”

~N 2. Two-valued logic -

By logic I mean the science of logical values. Conceived in this way,

logic has its own subject-matter of research, with which no other disci-"

pline is concerned. Logic is not a science of propositions, since that
belongs to grammar; it is not a science of judgements or convictions,
since that belongs to psychology; it is not a science of contents ex-
pressed by propositions, since that, according to the content involved, is
the concern of the various detailed disciplines; it is not a science of

“objeets-in-general”, since that belongs to ontology. Logic is the science

of objects of a specific kind, namely a science.of logical values.

-
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|
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All systems of logic known so far, both Aristotelian logic and Stoic
logic, both traditional formal logic and modern symbolic logic, have
been based on the principle that every proposition is either true or
false. That principle, which has served so far as the foundation of all
logic, will be called the principle of bivalence, and the logic which

assumes that there are two and only two logical values will be called
Jr1o.

£14
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3. Assertion and rejection

1 do not define these terms, and by assertion and rejection I mean
the ways of behaviour with respect to the logical values, the ways known
to everyone from his own experience. I wish to assert truth and only
truth, and to reject falsehood and only falsehood. The words “I assert™
are denoted by U, and the words “I reject” by N. I consider the sen-
tences: -

U:1, N:O,
which are read: “1 assert truth” and “I r'eject falsehood”, respectively,
to be the fundamental principles of two-valued logic, although I do not

" quote them anywhere. These propositions are also read: “I assert that

truth is” and “I rejeét that falsehood is”.

- ‘When 1 say and write: “T assert that something is” and “I reject that
something is” I mean that 1 assert or reject the object denoted by the
that-clause, that is, that I assert or reject some logical value. Likewise,
when saying or writing “I assert the proposition p” or “I reject the
proposition r” 1 mean that I assert or reject the object demoted by
the proposition p or the proposition r. I assert that the proposition
“truth is” denotes truth, and the proposition “falsehood is™ denotes
falsehood.

4. Correct and errcnecus procedure

Although I wish to assert truth and only truth and to reject falsshood
and only falsehood, it may nevertheless happen that as a result of
ignorance or carelessness 1 may assert falsehood or reject truth. Then
I commit an error. I say that I proceed correctly when 1 assert truth
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or reject falsehood, and that I proceed erroncously when I assert false-
hood or reject truth. An error is, obviously, something different from
a falsehood.

If before an expression denoting truth, that is, before a true propo-
sition or the symbol 1, I write U to indicate that I assert the object denoted
by that expression, then I proceed correctly. I also proceed correctly
if I write N before an expression which denotes falsehood. Should I
write N in the former case or U in the latter, I would proceed erro-
neously. :

In the _present paper I write U and N only before symbolic expres-

sioms, that is expressions consisting exclusively of symbols, and not of
words.

5. Abstention and indifferent procedure

If I do not know whether something is a truth or a falsehood, I usually
neither assert nor reject it, but abstain. This is the third way of pro-
ceeding with respect to the logical values. For instance I do not know
whether “the beginning of Cicero’s work De faro will be found some-
time” or “the beginning of Cicero’s work De fato will never be found”.
I cannot write U or N before either of these two propositions, because
neither proposition is asserted or rejected by me. By proceeding in this
way I do not commit an error, but neither do I proceed correctly. I say
that in such cases I proceed indifferently.

I also assume that I would proceed indifferently by asserting or re-
jecting something which is not any logical value at all.

Abstention resulting from igndrance has no logical, objective, justi-
fication, but is justified only psychologically, subjectively. For that
reason this third way of proceeding with respect to the logical values
has no significance in logic.

6. The principles of implication

The relation of implication is one of the 16 relations which can be
distinguished in analysing the relationships between truth and falsehood.

Fhat-relation-F-symbolize. by < and-read-“implies”, and an expression
of the form “p < r” I read: “p implies r” o “if p is, then r is”. I do not
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define the relation of implication, but I assume that it satisfies the
following principles:

Z, U: 0<0,
Z, U: 0<1,
Zs N: 1<0,
Zy U: 1<1.

These expressions are read, respectively: “] assert that falsehood
implies falsehood”, “I assert that falseshood implies truth”, “I reject
that truth implies falsehood™, “I assert that truth implies truth”. They
are also read: “I assert that if falsehood is, then falsehood is”, “I assert
that if falsehood is, then truth is”, “I reject that if truth is, then falsehood
is”, “I assert that if truth is, then truth is”. .

I do.not prove the principles of implication; they are in agreement
with the meaning which in logic is ascribed to what is called the relation
of material in1pﬁcation.

7. Logical variables and quantifiers

I introduce the symbols p,r,s, which I call variables, and which
range over the logical values. Thus they are variables which may stand
for any logical value, but only for a logical value. Such variables are
called logical variables. Tn two-valued logic, logical variables range
over two objects only, truth and falsehood. The symbols for these
objects, 0 and 1, are the values of the logical variables and may replace
them. In contradistinction to the variables, the symbols 0 and 1 are
called logical constants.

Further, T introduce two kinds of other symbols, consisting of the
Greek leiters [ ] or 2 and the subscripts p, r, or s, for instance, Hp, Z o+
These symbols are called guantifiers, [ [, being the universal, and P
the existential quantifier. [ [, is read: “for any p”, and >, is read: “for
some p”. For the time being I make no use of the existential quantifier.

A quantifier is inseparably connected with the expression that con-
tains the variable indicated by the subscript. I place a quantifier before
every expression that contains a variable. When a variable is replaced
by one of its values, the quantifier is omitted. For the sake of brevity
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I write [ ], instead of [[,]],, which is read “for any p andr”, and in-

stead of J] » ILI 1 Writenp,s, which is read “for any p, r and s”.
In contemporary logic the variables preceded by quantifiers are
called apparent variables. I make use of apparent variables only.

8. An example of an expression containing a variable

An example will best show the meaning of the symbolic expressions
containing variables preceded by universal quantifiers. I formulate
the proposition:

T; v: J] p P <Dp.

This proposition is read: “I assert that for any p, p implies p”; I also
read it: “I assert that for any p, if p is, then p is”. [] » followed by a dot
pertains to the entire expression that comes after it. Since p may stand
for any logical value, but only for a logical value, hence the sentence T;
means the same as “every logical value implies itself”. Hence falsehood
implies falsehood and truth implies truth, in agreement with the princi-
ples of implication, accepted above:

Zi . U: 0<0,
and
Z4 U: 1<1.

If we compare these principles with the proposition T3, we see that
they are obtained from Ts by replacing the variable p by its logical
values O and 1. The principles Z, and Z, are thus contained in the prop-
osition Ts, and the proposition T; is based on them as their general-
ization.

Ogne of the important functions of the logical variables and quanti-

fiers is that they make it poss1b1e to generalize principles. #

9. Dual interpretation of logical variables

1 have defined the logical variables as sym‘bols which range over the
logical values. In two-valued logic there are only two logical values,
which _are the objects truth and falsehood. Falsehood is symbolized

by 0 and truth by 1, so that the logical variables can take on only two
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values, 0 and 1. This is the first interpretation of the logical variables,
which I term objective. However, a second interpretation is also possible,
which T term propositional. According to the latter, the logical variables
can take on not two, but infinitely many values, all of which are propo-
sitions. The latter interpretation is based on thé former. v
1 have assumed that all true propositions denote one and the same

same object, namely falschood. Hence every true proposition, for
instance, “2 times 2 is 4”, is a name of truth, which is only more compli-
cated than the symbol 1, and every false proposition, for instance,
“2 times 2 is 57, is a name of falsehood, which is only more complicated
than the symbol 0.

In the objective. interpretation I do not comsider different names
of truth (and the same applies to falsehood) to be different values of
the variable, in the same way as I do not consider “2X2” and “3+41”
to be two different toots of the equation x—4 = 0. But in the propo-
sitional interpretation I do consider different names ‘of truth (and the
same applies to falsehood) to be different values of the variable, and
hence they are infinitely many, although each of them denotes one
of the two objects over which the variable ranges. Such an interpreta-
tion does not change the logical value of the theorems thus interpreted,
since that value depends on the objects denoted by those names, and
not on the names themselves.

In the objective interpretation the proposition:
Ts U: [rp<p
states that every logical value implies itself, and in the propositional
interpretation, that every proposition implies itself.

10. The laws -of implication

The following three laws of implication are based on the principles
of implication:

" u: [[,-0<p,
T, ) U: HF'P <1
T U: ”p'p <p.

object; mamely trutl;—and-all false propositions—denote—one—and the —
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The first law states: “I assert that, for any p, falsehood implies p”;
the second states: “T assert that, for any p, p implies truth”. The first
law generalizes the principles Z; and Z,, while the second generalizes
Z, and Z,. The third law has been discussed previously; it generalizes
the principles Z; and Z, and expresses the reflexivity of the relation of
implication. ’

In the propositional interpretation, the laws T; and T, may be ex-
pressed thus: “falsehood implies any proposition” and “truth is implied
by any proposition”.

Thus, since “2 times 2 is 5” is a falsehood, hence “if 2 times 2 is 5,

then London lies on the Thames” and “if 2 times 2 is 5, then Paris lies
on the Thames”, etc., are truths. And since “2 times 2 is 4” is a truth,
hence “if London lies on the Thames, then 2 times 2 is 4” and “if Paris
lies on the Thames, then 2 times 2 is 47, etc., are truths.

Any two laws of implication, together with the principle Z;, can,
in an axiomatic presentation of the principles of two-valued logic,
replace the principles Z, to Z,.

~

11. Definitions

I use the principles of implication, logical variables, and universal
quantifiers to define certain logical operations and relations. At the
beginning of every definition, after the symbol of assertion, I place the
universal quantifier, which pertains to the entire definition, after it
1 write the expression to be defined. Next I place the symbol =, which I
read “means the same as”, and finally on the other side of the symbol =
I place the defining expression, which in addition to variables contains
either symbols already known, such as 0.and <, or symbols defined
previously. I adopt the following four definitions: ‘

D, _ U: [[-p=(p<0),

*D, ' U: [-ptr= @ <p),

D; U: [[p-pr=@+r7,

D, U: [l (0 =1) = (p < <.

These-are-the- definitions of negation, logical sum, logical product,

and equivalence.
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12. Negation

The first definition defines the expression p’, which I term the nega-
tion of p and read “not-p” or “p is not”. The definition states: “I assert
that, for any p, ‘not-p’ means the same as ‘p implies falsehood”’; or:"
“I assert that, for any p, °p is not’ means the same as ‘if p is, then

—falsehood-1s**The-idea—eontained-in_this definition-is-this—p-is—not>

is a truth if and omly if it is truth that p implies falsehood. Now
p implies falsehood if and only if p is a falseshood. Hence we may
say that “p is not” means the same as “p is a falsehood”. With
such an interpretation the definition agrees with the intuitive mean-
ing of the word “not” and with Sigwart’s and Bergson’s views on
negation. v . .

The operation transforming the expression p into its negation by
adding the apostrophe or the word “not” is also called denying. Denying,
as opposed to other logical operations, is an operation of one argument,
which means that one expression suffices for the performance of
negation. If p is a proposition, for instance, “Peter is honest”, then p’
means: “Peter is not honest”. The propositions p and p’ are con-
tradictory. )

13. Addition

The second definition defines the expression p-+r, which I term Jog-
ical sum and read “p or r” or else “p'is or r is”. This definition states:
“ assert that, for any p and r, ‘p or 7’ means the same as ‘not-p implies 7*”;
or “I assert that, for any p and r, ‘p is or r is’ means the same as “f p
is not, then r is””. This definition; especially in the second verbal formu-
lation, is in agreement with the intuitive meaning of the word “or”.
Let it be added that, in conformity with the usage adopted in contem-
porary symbolic logic, I interpret the word “or” in its nom-exclusive
meaning, that is, when I say “p or »” I do not mean that p excludes 7.

The operation which connects two symbols p and r by the symbol+
or the word “or” is termed addition. If p and r are propositions, for
instance, “Peter is honest” and “Paul is honest”, then the saum p-r
means: “Peter is honest or Paul is honest”.
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14. Multiplication

The third definition defines the expression pr, which is termed logical
product, and is read “p and r” or “p is and r is”. This definition contains
the expression (p'-r')' ,which, if read literally, would be clumsy: “not-
(not-p or not-r)” or “(p is not or r is not) is not”. On the strength of
the explanation of negation I say instead: “it is a falsehood that not-p
or not-+” and “it is a falsehood that p is not or r is not”. Thus this de-
finition states: “I assert that, for any p and 7, ‘p and r* means the same

________ __as‘it is_a falsehood that not-p or not-r’”; or “I agsert that, for any p

and r, ‘p is and r is’ means the same as ‘it is a falsehood that p is not
or r is not’”. This definition, especially in its second verbal formulation,
is in agreement with the intuitive meaning of the word “and”.

The operation which connects two symbols p and r by their simple
juxtaposition or, by the word “and” is termed multiplication. If p and r
are propositions, for instance, “Peter is honest” and “Paul is honest”,
then pr means: “Peter is honest and Paul is honest”.

15. Equivalence

The fourth definition defines the expression p = r, which denotes
the relation of equivalence, and which is read “p is equivalent to 7.
The simplest way of formulating this definjtion verbally is: “I assert
that, for any p and r, ‘p is equivalent to r’ means the same as ‘p implies r
and r implies p’”. Hence equivalence is bilateral implication. This de-
finition, too, is in agreement with the intuitive meaning of equivalence
and with the opinions prevailing in logic.

Equivalence is often interpreted as idensizy. The principles of equiv-
alence, which I deduce - below from -the definition of equivalence,
show that no objection is to be raised against such an interpretation.

. 16. Verbal rules

From the definitions I deduce, by inference, the principles of nega-
tion, addition, multiplication, and equivalence. In deducing principles.

~frerm-definitions;-and-later-in-verifying laws on the strength of princi-
. ples, T make use of certain rules which I cannot formulate in symbols.

Zs U: 0.
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Accordingly, I term them verbal rules. I adopt four such verbal rules;
the first two are needed for deducing principles from definitions, -the
fourth for verifying laws, and the third in both cases. These rules are
as follows:

(a) I assert any expression which is obtained from an asserted expres-
sion containing variables with universal quantifiers by the replacement

of the variables by the vatues O orI—

(b) I assert any expression -which means the same as some asserted
expression; I reject amy expression which means the same as some
rejected expression. ' '

(o) I assert any expression which becomes an asserted expression on
the substitution of the symbol 1 for an asserted expression or the sym-
bol 0 for a rejected expression; I reject any expression which becomes
a rejected expression upon such substitutions.

(d) I assert any expression containing variables with universal quan-
tifiers which yields only asserted expressions on the replacement of
the variables by the values 0 and 1.

I consider all these rules to be obvious.

17. Examples of deducing principles from definitions

Example 1: The expression
[, =<0
is asserted on the strength of Definition D;; hence on the strength of

the verbal rule (2) I assert the expression obtained from D, by the
replacement of the variable p by the value 0:

U:0 = (0 <0).

Thus 0" means the same as (0 < 0). The expression (0 < 0) is asserted
on the strength of principle Z;; hence, on the strength of the verbal
rule (b), I assert 0. In this way 1 obtain the principle of negation:

Example 2: The expression
i Upr~p—§—r = <r)

is asserted on the strength of Definition *D,; hence, on the
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of the verbal rule (a), I assert the expression obtained from *D, by the
replacement of the variables p and r by the value 0:
U: 040 = (0" <0).
In the expression (0’ < 0) I substitute 1 for the assérted 0'; I may
do so, because I assert truth and only truth, unless T commit an error.

The expression (0' < 0) by the substitution of 1 for 0’ becomes the

rejected expression (1 < 0). Hence, on the strength of the verbal rule (c)
I reject (0’ < 0). Thus the expression 040 means the same as a certain
rejected expression, and accordingly I reject it on the strength of the

verbal Tule (b). Tuthis-way-Fobtain-the-principle-of -addition:
z, N: 0-+0.

The examples suffice to explain how 1 have inférred from definitions
the principles listed below. -

18. The principles of logical operations and equivalence

The principles of negation:

Zs U:. 0,

Zs _ N: 1.
The principles of addition:

Z ' N: 040,

Zs U: 041,

Zs U: 140,

Zyp U: 1+1.
The principles of multiplcation:

» le .Z_V: 00,
Zyz N: 01,
Zys N: 10,
Z, U: 11.

The principles of equivalence:
le U: 0 == O,
ZIG N: 0 = 4,
Zu N: =.0,
Zig U: 1=1.
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I assert the negation of falsehood and I reject the negation of truth,
which means that I assert that falsehood is not, and I reject that truth
is not.

I assert the sum when at least one of its elements is a truth, and T re-
ject it only when every element of it is a falsehood.

1 reject the product when at least one its factor is a falsehood, and 1

assert it only when every factor of it is a truth. )

I assert the equivalence of falsehood to falsehood and truth to truth,
and I reject the equivalence of falsehood to truth and truth to falsehood.

19. The meaning of quantifiers

The universal quantifier is closely conbected with multiplication, and
the existential, with addition. When I place before an expression that
contains the variable p, the universal quantifier [ ],, I understand that
in that expression I have to replace the variable p by the values 0 and 1
and to multiply the expressions obtained in this way. When I place
before an expression that contains the variable p, the existential quan-
tifier >',, I understand that in that expression I have to replace the
variable p by the values 0 and 1 and to add the expressions obtained
in this way. I proceed in an analogous way with expressions containing
mofe variables. Thus all the expressions containing variables with
quantifiers could be defined as products or sums containing only logical
constants, for instance:

U: [[I;'p<pl=0<01 <1,

U: [lrp < @<p)l .
=0<O<O0< (I <0l <O<DIl < <.1)],

U: (D, pp') = 00'+11', ete.

Since on the strength of the principles of multiplication I assert the
product only if each of its factors is a truth, hence it is obvious that I
assert the expressions preceded by universal quantifiers if and only
if T assert all the expressions obtained from them by the replacement
of the variables by the values 0 and 1. The foregoing sentence contains
the verbal rules (a) and (d).
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20. rI.‘heorems and laws

I term theorems those propositions, other than principles, which I
can deduce from principles by means of the.verbal rules. I divide the
theorems of two-valued logic into theorems of the first kind, which
do not contain variables, e.g.:

U: 0=1)=0,

and theorems of the second kind, which contain variables with quan-
tifiers, e.g.: v

U: HI, p<p.

A'mo‘ng-the theorems of the second kind I consider those in which
the symbol of assertion is followed by the universal quantifier to be
particularly important and term them laws. The laws generalize either
principles or theorems of the first kind, and in the propositional inter-
pretation of the variables they present the principles of reasoning.
Three such laws, generalizations of the principles of implication, were
quoted in Section 10. The most important laws are listed in the last
Section. o .

One of the merits of the logical system as presented in this paper
is the ease of proving theorems. Theorems of the first kind are deduced
from principles by means of the verbal rule (c). The proving of laws
consists in verifying them. To verify a law it suffices to demonstrate
that, in accordance with the verbal rule (d), the law yields only
asserted expressions when the variables are replaced by the values 0
and 1. This procedure is explained by the examples given below.

21. Examples of verification of laws

- Example 1: Verify the law:

Ts U: I, -(p=1=p.

- I verify it by demonstrating that, in accordance with the verbal rule (d),
the law yields only asserted expressions when the variable p is replaced
by the values 0 and 1, namely:

- U: (0=1)=0, - .
) . U: I=1)=1
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After 0 is substituted for (0 = 1), expression (1) yields the asserted
expression 0 = 0, and, after 1 is substituted for (1 = 1), expression (2)
yields the asserted expression 1= 1. Thus both (1) and (2) must be
asserted on the strength of the verbal rule (c). The law has been veri-
fied.

Example 2: Verify the law:

Ty U: [lnp<C<p.

.It turns out that, after the values 0 and 1 are substituted for the
variables p and 7, this Iaw yields asserted expressions only, namely:

@ U: 0<(0<0),
- ’ U: 0< (<0,
3) Ui 1<(©<1),
@ U: 1<(<1).)

‘When 1 is substituted for (0 < 0), expression (1) yields the asserted
expression 0 < 1; the substitution of 0 for (I < 0) in expression (2)
yields the asserted expression 0 < 0; the substitution of 1 for (0 < 1)
and (1 < 1) in expressions (3) and (4), respectively, yields the asserted
expression 1 < 1. The law has been verified.

With some practice such verifications can be performed automati-

cally.

22. An axiomatic system of two-valued logic

T base all the theorems of two-valued logic on the principles Z; to Z;s
and the verbal rules (c) and (d). Hence, to construct an axiomatic
system of that logic it suffices to give a set of axioms from which the
principles Z; to Z;3 can be deduced.

I construct such a system out of three axioms, namely the laws of
implication T; and T, and the principle of implication Z;, quoted
in Section 10. To these axioms I join the definitions of negation, sum,
product and equivalence, as well as the verbal rules (2), (b) and (c).
The previous sections have provided proofs that all the principles
can be deduced from the whole consisting of these axioms, definitions,
and verbal rules. .
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23. The list of axioms and definitions of two-valued logic

In view of three-valued logic, instead of the definition of logical
sum *D,, given in Section 11, I adopt the following definition in the
list below:

D;, . U: npr'P+rE[(P<")<f‘]-
This definition states: “I assert that, for any p and r, ‘p is or r is’

means the same as ‘if p implies r, then r is””. This definition is less
simple and obvious than *D,, but it results in the same principles of

addition. Since p’ means the same as (p < 0), Definition *D, can also
be formulated as follows:

*D, U]y pr=Ip <0) <rl
The difference between *D, and D,, thus consists only in the replace-

ment of the symbol 0 in *D, by the variable r in D,,. The expressions
[(p <0)<r] and [(p <r) <r] are equivalent in two-valued logic:

Uinr'[(P<0)<7']=[(P<")<r]-

‘When r 1s 0, both expressions become [(p < 0) < 0], and when r
is 1, both are true.
Here is the list of axioms and definitions:

T U: [1,-0<p,

T, U: Hp'P <1,

Z; N: 1<0,

D, U: [0 = (<0,

Dz, U: [Tp-p+r =l <r) <7,
D, U: [l-pr= @417,

D, U: [In-o=1= @< <p).

24. The most important laws of two-valued logic

Out of the unlimited number of logical laws I specify here 40 which
for-various-reasons-seem-to-me important.-Every-law is accompanied
with a short explanation. The asterisks which mark some laws are con-
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nected with three-valued logic: one asterisk means that the expression
which follows the symbol of assertion is-not true in three-valued logic,
but is not false either; two asterisks mean that the expression which
follows the symbol of assertion is false in three-valued logic.

T: ) U: HP-O <p.
T, N U JL-p <.
Ts . U: [I,-p<p.

These are the already known laws of implication; I have chosen T, and
T, as axioms, and Tj; states that the relation of implication is reflexive.
T4 ' U: [I,-p=p.

T, is the law of identity, if equivalence is inferpreted as identity. This
law also states that the relation of equivalence is reflexive.

Ts U: [, (e=1)=p.

In L’Algébre de la logique Couturat calls the law Ts the principle
of assertion. The proposition “p = 1, i.e., “p is equivalent to truth”
I read briefly “p is a truth”; likewise, the proposition “p = 07, ie.,
“p is equivalent to falsehood” I read briefly “p is a falsehood”. Ts
states that the proposition “p is a truth” is, for any p, equivalent to
the proposition “p is”.

Ts U: [I,-=0=p"
T states that the proposition “p is a falseshood” is, for any p, equiv-

alent to the proposition “p is not”. On the strength of this law p’ might
be defined by (p = 0).

T U: [, " =p.
By T, the expressions “not-(not-p)” and “p” are equivalent for any p.
This is the law of double negation.
*Ty U: [[,-p’ =0.
*Ts .U Hp-p—i—p':l.
*T, is the law of conmfradiction, and *T,, the law of the excluded

middle. Since aproduct is a falschood only if at least one of its factors
is a falsehood, and the sum is a truth only if at least one of its elements
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is a truth, it follows from these laws that of two contradictory propo-
sitions one is false *T,, and that of two contradictory propositions
one is true *Tp.

**Tig . U: Hp - (p =pl) =0, -

For any p, the equivalence of the contra;iictory propositions p and
P’ is a falsehood. If the equivalence of contradictory propositions is

called absurdity, it may be said that **Ty, states the falsehood of ab-

surdity.
* T U [ <pr<p

If a propositionis implied by its own negation, then it is true. This is
‘a form of apagogic proof. Vailati has written 2 monograph on the history
of this form of reasoning (cf. article CXV_in Seritti di G. Vailati, Leip-
zig-Florence, 1911).

T12 U: Hp'p‘l—p‘———p.
T - U Lw=0p-
Ty, and Ty; are the laws of zautology. The expressions “p or p” and

6633

“p and p” are, for any p, equivalent to “p”.

Tue U: [l -ptr=rtp.
Tis U: Hp,-pr=rp.
T U: Hpr'(p;‘_r)z(r:p)'

Ty, is the law of comwnutarivity of addition, Tys
tativity of multiplication, and Tys states that the relation of equivalence
is symmetrical. Symmetry of relations corresponds to commutativity
of operations.

Ti7 U: Hm'-p(r+S) = pr-ps.
Ty is the law of distributivity. |

Tis ' U: Hpr c(p+r) =pT.

Tie U: Hp,s s (pr) =p'+r.

These are De Morgan’s laws. By Ty, the negation of a sum is equiv-

dlent 16 the prodict of the-negated-elements, and by Tis, the negation
of a product is equivalent to the sum of the negated factors.
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Tso U: [ly-pr<p.
To U: [Ip-p <ptr.
T, and Ty, are called the laws of simplification. A product may be
simplified in the consequent by deducing from it any factor as a conse-
quence, and a sum may be simplified in the antecedent by deducing
it from any element as a reason.

Tys U: [[ps (@ <9)F <5)= (p+r <5).
Tas ' U: Hprs'(s<p)(s<r)=(s<pr)-

Ta and T,; are called the laws of combination. The proposition “p
implies s and r implies s* is, for any p, r and s, equivalent to the propo-
sition “p or r implies 57, and the proposition “s implies p and 5 implies #”
is, for any p, r and s, equivalent to the proposition “s implies p and r”.
T4 U: nprv'P < (r <p). ]

T,, is a law of implication that has no special name. Its content
resembles Axiom T;. :

Tss U: [[r-(p <7y < <p).
T,s states that, for any p and r, if p does not imply r, then r implies p.

On the strength of this law the relation of implication might be termed

anti-asymmetric, that is such that its negation is an asymmetric relation.

Tas U: [ (p <r)=(p=pr).
*Tyy . U: [[n-(p<r)=(pr'=0).

T,s and *T,; give the methods of transforming implication -into
equivalence. The latter method was known even to Chrysippus (cf.
Cicero, De Fato 15, and Diog. Laert. VII 73).

g ) U: [l 0 <r)=p'+r.

The proposition “if p is, then 7 is” is, for any p and r, equivalent
to the proposition “p is not or r is”. By *T, the relation of implication
could be defined in terms of sum and negation.

Ta U. Hp,-'(p<r)=(r'<p').
*Ta U: [Ips (pr <) = (s’ <p).
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These are the laws of ¢ransposition for two and three propositions.
By T the proposition “if p is, then r is” is, for any p and r, equivalent
to the proposition “if r is not, then p is not”. *Ts, becomes T, following
the substitution of 1 for r and of 7 for s. *Tj, serves as the foundation
of what is termed reductio syllogismi, i.e., the form of reasoning which
traditional logic used in reducing the moods Baroco and Bocardo to
the mood Barbara. ' :

*Tyy U: [[ps-(or<s)=[p <@ <9
*T32 U: Upr'(P<r)=[P<(P<r)L ...... -

 *Ty, is called the law of importation and exportation. I export p when
T reason: if p and r imply s, then, if p is, r implies 5. I import p when I
reason in the reverse direction: if, if p is, » implies s, then p and r imply s.
*T,, is a special case of *Ty, from which it is obtained by the substi-
tution of p for r and of r for s.

*T3 U: s (@ <0 <5) <(p <9).
T Ut [Ips- (0 <) <[r <) < (@ <)

*T,, is the law of the syllogism: it is true, for any p, r and s, that if p
implies » and r implies s, then p implies s. This law also states that the
relation of implication is tramsitive. T3, is another form of the law of
the syllogism, obtained from *Tj; by the application of the law of
exportation.

*T3s Ui [[ps-(p=0)r=29) < (p=5).
T3 Ut [[os-(p=1) <=5 <@=1)]

The laws *Tss and Fss are analogues of the laws *Ts; and T4 for the
relation of equivalence. *Tss states that the relation of equivalence is
fransitive.

Ty U: [[p-(@<rp<r.
*Tsg U: [T (p <) <p.

These are the laws of reasoning known as modus ponens and modus

tollens—+Tsrstates-that,forany p and r,if p implies r and p is, then r is.
*T3, states that, for any p and r, if p imples » and r is not, then p is not.
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*T1o U: vnpr'(pl<rrl)<p-
**T40 U. npr‘[P'<("=r')]<P-

*Tse and **T,, are certain forms of apagogic proofs, used especially
in mathematics. On their basis we prove that if the negation of p, i.e.,
p’, implies a kontradiction *Ts or an absurdity **T., then p is true.
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This article is a revision of an address which I delivered as Rector
- of Warsaw University at the Imaunguration of the academic year
1922/ 1923. As was my habit, I spoke without notes. I wrote down my

addresstater—on;—but-never published-it.

In the course of the ‘next twenty-four years I frequenﬂy returned
to the editing of my lecture, improving its form and content. The main
ideas, and in particular the critical examination of the arguments in
favour of determinism, remained, however, unchanged.

At the time when I gave my address those facts and theories in the

" field of atomic physics which subsequently led to the undermining of
determinism were still unknown. In order not to deviate too much
from, and not to interfere with, the original content of the address,
I have not amplified my article with arguments drawn from this branch
of knowledge.

Dublin, November 1946

% *

1. It is an old academic custom that the Rector should open a new
session with an inaugural address. In such a lecture he should state
his scientific creed and give a synthesis of his investigations.

A synthesis of philosophical investigations is expressed in a philo-
sophical system, in a comprehensive view of the world and life. I am
unable to give such a system, for I do not believe that today one can
establish a philosophical system satisfying the requirements of sc1ent1ﬁc
method.

*) [Editorial note from Polish Logic 1920-1939, ed. by Storrs McCall, Oxford,
1967, The Clarendon Press: This paper, entitled “O Determinizmie”, was published

1Ot the fitst e 1 Z Zagadniern logiki i filozofit;an anthology of Eukasiewicz’s works
edited by J. Stupecki, Warsaw, 1961. Translated by Z. Jordan.]
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I belong, with a few fellow workers, to a still tiny group of philos-
ophers and mathematicians who have chosen mathematical logic
as the subject or the basis of their investigations. This discipline was .
initiated by Leibniz, the great mathematician and philosopher, but
his efforts had fallen into oblivion when, about the middle of the nine-
teenth century, George Boole became its second founder. Gottlob

Frege in~Germary; CharlesPeirce in the United-States;-and-Bertrand———————————-

Russell in England have béen the most prominent representatrves of
mathematical logic in our own times.

In Poland the cultivation of mathematical logic has produced more
plentiful and froitful results than in many other countries. We have
constructed logical systems which greatly surpass not only traditional
logic but also the systems of mathematical logic formulated until now.
We have understood, perhaps better than others, what a deductive system
is and how such systems should be built. We have been the first to
grasp the connexion of mathematical logic with the ancient- systems
of formal logic. Above all, we have achieved standards of scientific
precision that are much superior to the requirements accepted so far.

Compared with these new standards of precision, the exactness of
mathematics, previously regarded as an unequalled model, has not
held its own. The degree of precision sufficient for the mathematician
does not satisfy us any longer. We require that every branch of mathe-
matics should be a correctly constructed deductive system. We want
to know the axioms om which each system i based, and the rules of
inference of which it makes use. We demand that proofs should be
carried out in accordance with these rules of inference, that they should
be complete and capable of being mechanically checked. We are no-
longer satisfied with ordinary mathematical deductions, which usually
start somewhere “in the middle”, reveal frequent gaps, and constantly
appeal to intuition. If mathematics has not withstood the test of the
new standard of precision, how are other disciplines, less exact than
mathematics, to stand up to it? How is philosophy, in which fantastic
speculations often stifle systematic investigations, to survive?

‘When we approach the great philosophical systems of Plato or Ari-
stotle, Descartes or Spinoza, Kant or Hegel, with the criteria of preci-
sion set up by mathematical logic, these systems fall to pieces as if
they were houses of cards. Their basic concepts are not clear, their
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most important theses are incomprehensible, their reasoning and proofs
are inexact, and the logical theories which often underlie them are
practically all erroneous. Philosophy must be reconstructed from its
very foundations; it should take its inspiration .from scientific method
and be based on the new logic. No single individual can dream of accom-
plishing this task. This is a work for generations and for intellects
much more powerful than those yet born.

2. This is my scientific creed. Since I cannot give a philosophical
system, today I shall try to discuss a certain problem which no philo-
sophical synthesis can ignore and which is ¢losely connected with my

logical investigations. I should like to confess in advance that I am
unable to examine this problem, in all its details, with the scientific
precision that I demand from myself. What I give is only a very imper-
fect essay, of which perhaps somebody will one day take advantage
to establish, on the basis of these preliminary examinations, a more
exact and mature synthesis.

I want to speak of determinism. 1 understand by determinism some-
thing more than that belief which rejects the freedom of the will
T shall first explain what I mean by an example.

John met Paul in the Old Town Square in Warsaw yesterday noon.
The fact of yesterday’s meeting no longer exists today. Yet that fact
of yesterday is not a mere illusion today, but some part of the reality
which both John and Paul have to take into account. They both re-
member their yesterday’s meeting. The effects or traces of that meeting
somehow exist in them today. Each of them could take an oath in
a court of law that he saw the other in the Old Town Square in Warsaw
yesterday noon.

On the basis of these data I say, “it is true at every instant of today
that Johd met Paul in the Old Town Square in Warsaw yesterday noon™.
I do not intend to maintain by this that the senfence “John met. Paul
in the Old Town Square in Warsaw yesterday noon” is true at every
instant of today, for such a sentence, if nobody utters it or thinks of it,
may not exist at all. T make nse of the expression “it is true at instant
t that p”—in which “instant” means an unextended time point and “p”
any statement of fact—as equivalent to “it is the case at instant ¢ that p .

Forthe present I amunable—togivea further dnalysis of the latter
expression. ‘

et it
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We believe that what has happened cannot be undone, facta infecta
fieri non possunt. What once was true remains true for ever. All truth
is eternal. These sentences seem to be intuitively certain. We believe,
therefore, that if an object 4 is b at instant ¢, it is true at any instant
later than ¢ that 4 is' b at instant z. If John met Paul in the Old Town
Square in Warsaw yesterday noon, it is true at any instant later than

yesterday-noon-that-Fohn-met-Paul in the Old Town Square-in-Warsaw————

yesterday noon.

The question occurs whether it was also true at any instant carlier
than yesterday noon that John would meet Paul in the Old Town
Square in Warsaw yesterday noon? Was it true the day before yesterday -
and one year ago, at the moment of John’s birth and at any instant
preceding his birth? Is everything ‘which will happen and be true at
some future time true already today, and has it been true from all
eternity? Is every truth eternal?

Intuition fails us in this case and the problem becomes controversial.
The determinist answers the question in the affirmative and the inde-
terminist in the negative. By determinism I understand the belief that
if A is b at instant ¢ it is true at any instant earlier than ¢ that 4 is b at
instant 7.

Nobody who adopts this belief can treat the future differently from
the past. If everything that is to occur and become true at some future
time is true already today, and has been true from all eternity, the future
is as much determined as the past and differs from the past only in so
far as it has not yet come to pass. The determinist looks at the events
taking place in the world as if they were a film drama produced in some
cinematographic studio in the universe. We are in the middle of the
performance and do not know its ending, although each of us is not
only a spectator but also an actor in the drama. But the ending is there,
it exists from the. begianing of the performance, for the whole picture
is completed from eternity. In it all our parts, all our adventures and
vicissitudes of life, all our decisions and deeds, both good and bad,
are fixed in advance. Even the moment of our death, of. yours and
tmine, is laid down beforehand. We are only puppets in the universal
drama. There remains for us nothing else to do but watch the spectacle
and patiently await its end.
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This is a strange view and by no means obvious. However, there aré
two arguments of considerable persuasive power which have been
known for a long time and which seem to support determinism. One
of them, originating with Aristotle, is based on the logical principle
of the excluded middle, and the other, which was known to the Stoics,
on the physical principle of causality. I shall iry to present these two
arguments, however difficult and abstract they are, in a way as easy
to understand as possible. '

3. Two sentences of which one is the denial of the other are called

contradictory. 1 shall illustrate this notion by an example taken from
Aristotle. “There will be a sea battle tomorrow™ and “There will not
be a sea battle tomorrow™ are contradictory sentences. Two famous
priﬂciples derived from Aristotle, the principle of the excluded con-
tradiction and the principle of the excluded middle, are concerned
with ¢ontradictory sentences. The first of these states that two contra-
dictory sentences are not true together, that is, that one of them must
be false. In my subsequent inquiry I shall not deal with this important
principle, which Aristotle and, following ]iim, numerous .other thinkers
regarded as the deepest mainstay of our thinking. T am concerned here
with the principle of the excluded middle. It lays down that two con-
tradictory sentences are not false together, that is, that one of them
must be true. Fither there will be or there will not be a sea battle to-
morrow. Tertium non datur. There is- nothing in between the argu-
ments of this alternative, no third thing that,"being true;, would inval-
idate both its arguments. It may sometimes happen that two dispu-
tants, of -whom one regards as white what the other comnsiders black,
are both mistaken, and the, truth lies somewhere in between these two
assertions. There is no contradiction, however, between regarding
something as white-and considering the same thing as black. Only the
sentences stating that the same thing is and is not white would be con-
tradictory. In such cases truth cannot lie in between or outside of these
sentences, but must inhere in one of them. )

To return to our everyday example, if the principle of the excluded
middle holds, and if Peter says today “John will be at home tomorrow
noon” and Paul denies it by saying “John will not be at home tomorrow

nioon™; thenone-of-them-speaks—the-truth-~We may not know today
which one of them does so, but we shall learn by visiting John tomorrow
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noon. If we find John at home, Peter made a true statement, and if -
John is away, Paul spoke the truth today.

Therefore, cither it is already true today that John will be at home
tomorrow noon or it is true today that Jobhn will not be at home to-

morrow noon. If someone utters the sentence “p”, and someone else
utters its denial, “not-p”, then one of them makes a true statement

not-only-today-but-at-any-instant#;for-either “p”.or “not-pZ-is-true:

It does not matter at all whether anyone actually expresses these sen-

tences or even thinks of them; it seems to be in the very nature of the .
case that either it is true at instant ¢ that “p™ or it is true at instant ¢
that “not-p”. This alternative seems to be intuitively true. As applied

to our example, it takes the following form: '

() Either it is true at instant t that John will be at home tomorrow
nooH or it is true at instant t that John will not be at home tomiorrow
nooH. ‘

Let us keep in mind this sentence as the first premiss of our reasoning.

The second premiss is not based on any logical principle and can be
expressed in general form as the conditional “if it is true at instant ¢
that p, then p”. In this conditional, “p” stands for any sentence, either
affirmative or megative. If we substitute for “p” the negative sentence
“John will not be at home tomorrow noon” we obtain

(b) If it is true at instant t that John will not be at home tomorrow
noon, then John will not be at home tomorrow noon. .
This premiss also seems to be intuitively true. If it is true at an arbitrary
instant, ¢, e.g. now, that John will not be at home tomorrow noon—
for we know that he has just left for a distant destination and for a long
time—there is no use calling upon John tomorrow noon. We are certain
that we shall not find him at home. »

We accept both premisses without proof as intuitively certain. The
thesis of determinism is based upon these premisses. Its proof will be
carried out rigorously in accordance with the so-called theory of de~
duction.

4. Thanks to mathematical logic we know today that the basic sys-
tem of logic is mot the small fragment of the logic of terms known
as Aristotle’s syllogistic, but the logic of propositions, incomparably

" more important than syllogistic. Aristotle made intuitive use of the
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logic of propositions, and only the Stoics, with Chrysippus at their
head, formulated it systematically. In our own times the logic of prop-
ositions was constructed in™an almost perfect axiomatic form by
Gottlob Frege in 1879; it was discovered independently of Frege and
enriched with new methods and theorems by Charles Peirce in 1895;
and under the name of “the theory of deduction” it was made the basis
of mathematics and logic by Bertrand Russell in 1910. Tt was also
Bertrand Russell who extended knowledge of it to the scientific com-
munity at large.

The theory of deduction should become as umiversally well known

as elementary arithmetic, for it comprises the most important rules
of inference used in science and life. It teaches us how to use correctly
such common words as “not”, “and”, “or”, “if-then”. In the course
of the present exposition, which I begin with our second premiss, we
shall become acquainted with three rules of inference included in the
theory of deduction.

The second premiss is a conditional of the form “if «, then not ﬁ”
in which “¢” stands for the sentence “it is true at instant ¢ that John
will not be at home tomorrow noon” and “f” for the sentence “John
will be at home tomorrow noon”. In the consequent of premiss (b)
there occurs the denial of the sentence “f”, that is, the sentence “not-g”,
“John will not be at home tomorrow moon”. In accordance with
the theory of deduction the premiss “if «, then not-§” implies the
conclusion “if B, then mnot-«”. For if “¢” implies “not-§” then
“o” and “f” exclude each other, and therefore “g” implies “not-o”
According to, this rule of inference, premiss (b) is transformed into
the sentence A

(¢) If John will be at home tomorrow noon, then it is_not true at instant
t that John will not be at home tomorrow noon.

Let us now pass to the first premiss, to the alternation of the form
“y or a”, in which “y” signifies the sentence “it is true at instant ¢ that
John Wﬂl be at home tomorrow noon”,and “o” the same sentence
as before, “it is true at instant 7 that John will not be at home tomorrow
noon”. It follows from the theory of deduction that the premiss “y or «”
implies-the-conclusion-if not-«, then-47. For an alternative is true
(if and only if at least one of its arguments is true, If the second argu-
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ment is false, the first one must be true. In accordance with this rule
of inference premiss (a) is transformed into the sentence

(d) If it is not true at instant t that John will not be at home tomorrow
noon, then it is true at instant t that John will be at home tomorrow
noon. - :

Let us now compare sentences (c) and (d). They are both condi-

tlonals, and ihe consequent i (c) is-equiform—with—the antecedent
in (d); these two sentences have the form “if §, then not-o” and “if
not-o, then 9”. According to the theory of deduction two such pre-
misses imply the conclusion “if B, then 3. For if it is true that “if the
first, then the second” and “if the second, then the third”, then it is
also true that “if the first, then the third”. This is the law of the hypo-

thetical syllogism, as known by Aristotle. If we remember that “f”

stands for the sentence “Johi will be at home tomorrow noon”, and
“y” for the sentence “it is true at instant ¢ that John will be at home to-
morrow noon”, we obtain the conclusion
(e) If John will be at home tomorrow noon, then it is true at instant t
that John will be at home tomorrow noon. '

Instant ¢ is an arbitrary instant; therefore, it is either earlier than or -

simultaneous with or later than tomorrow noon. It follows that if John
will be at home tomorrow noon, then it is true at an arbitrary or at any
instant that John will be at home tomorrow noon. To put it in general
form, it has been proved on the basis of a particular example that
if A is b at instant z, then it.is true at any instant, and therefore at any

instant earlier than #, that 4 is b at instant ¢, The thesis of determinism

has been proved by deducing it from the principle of the excluded
middle.

5. The second argument in favour of determinism is based on the
principle of causality. It is not easy to present this argument in a com-
prehensible way, for neither the word “cause’” nor the proposition known
as the principle of causality have acquired an established meaning in
science. They are only associated with a certain intuitive meaning
which I should like to make explicit by giving a few explanations.

I say that the ringing of the bell at the entrance door to my apart-
ment at this moment is a fact taking place now. T regard John's pres-
ence at home at instant ¢ as a fact occurring at instant ¢. Every fact
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takes place somewhere at some time. Statements of fact are singular
and include an indication of time and place.

Fact F occurring at instant s is called the cause of fact G occurrmg
at instant 7, and fact G the effect of fact F, if instant s is earlier than
instant ¢, and if facts F and G are so connected w1th each other that
by means of known laws obtaining between the respectlve states of
affairs it is possible to infer the statement of fact G from the statement
of fact F.*) For instance, I consider the pressing of the button of an
electric bell the cause. of its ringing, because the bell is pressed at an
instant earlier than the instant of its ringing, and I can deduce the

statement of the secomd fact from the statement of the first one by
means of the known laws of physics on which the construction of an
electric bell is based. , -

The definition of cause implies that the causal relation is transitive.
This means that for any facts F, G, and H, if F is the cause of G and G
is the cause of H, then F is the cause of H.

I understand by the principle of causality the proposition that ex}ery
fact G occurring at instant ¢ has its cause in some fact F occurring at
instant 5 earlier than ¢, and that at every instant later than s and earlier
than ¢ there occur facts which are both effects of fact Fand causes of
fact G.

These explanations are intended to make explicit the following in-
tuitions. The fact which is the cause takes place earlier than the fact
which is the effect. I first press the button of the bell and the bell rings
later, even if it appears to us that both facts happen simultaneously.
If there occurs a fact which is the cause of some other fact, then the
latter fact, which is the effect of the former, follows the cause inevitably.
Thus if I press the button, then the bell rings. It is possible to infer the
effect from the cause. As the conclusion is true provided that its pre-
misses are true, in a similar way the effect has to occur provided that
its causes exist. Nothing happens without cause. The bell does not

*) This definition of the concept of cause differs from the-definition accepted in
Lukasiewicz’s paper “Aunaliza i konstrukcja pojecia przyczyny” (The analysis and
construction of the concept of cause), Przeglad Filozoficzny 9 (1906), pp. 105-179,
reprinted in the 1961 edition Z zagadnie# logiki i filozofti. Both definitions lay down,

however; thatthe relation-of-causality-is-transitive, and this point is of paramount
importance in Tukasiewicz’s subsequent investigations.
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ring of itself; this only happens because of some earlier facts. In the
set of facts succeeding each other, ordered by the causal relation, there
are neither gaps nor jumps. From the instant when the button is pressed
to the instant when the bell rings there constantly occur facts each of
which is simultancously an effect of the pressing of the button and
a cause of the rmgmg of the bell. Moreover, everyone of these facts

- occurring-carlier-is-the cause of everyone occurring later

6. The argument deducing the thesis of determinism from the prin-
ciple of causahty may become more intelligible after these explanations.
Let us assume that a certain fact F occurs at instant ¢; for instance;
that John is at home tomorrow noon. Fact F bhas its cause in some
fact F;, taking place at instant #; earlier than ¢. Again, fact F; has its
cause in some fact F,, taking place at instant £, earlier than #,. Since
according to the principle of causality every fact has its cause in some
earlier fact, this procedure can be repeated over and over again. There-
fore, we obtain an infinite sequence of facts which extends back in-
definitely

wFy, Frolyy e, By, Fy L, F,

because the facts take place at ever earlier instants
. tn: tn—1$ s By tl: (3

In this sequence every earlier fact is the cause of every later fact, for
the causal relation is transitive. Moreover, if fact F, occurring at in-
stant z, is the cause of fact F occurring at instant ¢, then, in accordance
with the principle of causality, at every instant later than 1, and earlier
than ¢ there occur facts which are simultaneously effects of fact F,
and causes of fact F. Since these facts are infinitely many, we are unable
to order all of them in the sequence and can designate only some, for
instance F,_, F», or Fy.

‘While everything seems to be in order 80 far, the most important
step in the determinist’s argument comes only now. His reasoning
would probably take the following course.

As the sequence of facts which occur earlier than and which are the
causes of fact F is infinite, at every instant earlier than ¢, and therefore
at every present and past instant, there occurs some fact that is the
cause of F. If it is the case that John will be at home tomorrow noon,
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then the cause of this fact exists already today and also at every instant
earlier than tomorrow noon. If the cause exists or existed, all the effects
-of this cause must inevitably exist. Therefore it is already true today
and has been true from all eternity that John would be at home tomor-
row noon. In general, if 4 is b at instant ¢, it is true at every instant
earlier than r that 4 is b at instant z; for at every instant earlier than ¢
there exist the causes of this fact. Thus the thesis of determinism may
be proved by means of the principle of causality.

These are the two strongest arguments which can be used in support
of determinism. Should we give up and accept them? Should we believe

that everything in the world takes place of necessity and that every

free and creative act is only an illusion? Or, on the contrary, should

we reject the principle of causality along with the principle of the ex-
cluded middle?

7. Leibniz writes that there are two famous labyrinths in which our
reason is often lost. One of them is the problem of freedom and necessity,
and the other is concerned with continuity and infinity. While writing
this Leibniz did not think it plausible that these two labyrinths should
constitute one single whole and that freedom, if it exists at all, could
be concealed in some nook of infinity. ’

Should the causes of all facts which could ever occur exist at every
instant, there would be no freedom. Fortunately, the principle of caus-
ality does not compel us to accept this consequence. Infinity and
continuity come to our rescue.

There is an error in the argument which derives the the51s of deter-
minism from the principle of causality. For it is not the case that if
John is at home tomorrow noon, then the infinite sequence of causes
of this fact must reach the present and every past instant. This sequence
may have its lower limit at an instant later than the present instant:
one which, therefore, has not yet come to pass. This is clearly implied
by the following considerations.

Let us consider time as a straight line and let us estabhsh a one-to-one
correspondence between a certain interval of time and the segment (0, 1)
of that line." Let us assume that the present instant corresponds to
point 0, that a certain future fact occurs at instant (corresponding to

- ——npoint-1);-and-that-the-causes-of this-fact -occur at instants determined

by real numbers greater than 4. This sequence of causes is infinite and
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has no beginning, that is, no first cause. For this first cause Would have
to take place at the instant corresponding to the smallest real number
greater than £, and no such real number exists; not even the smallest
rational number greater than % exists. In the set of real numbers, and
similarly in the ordered set of rational numbers, there are no two num-
bers succeeding each other immediately, that is, being the immediate

~predecessor and successor. of “each GthEry betweeti HAy TWO DUMDbErs

there is always another one, and consequently there are infinitely many

numbers between any two of them. Similarly there are no two mstants

succeeding each other immediately, that is, being the immediate pre-
decessor and successor of each other; between any two- instants there
is another ome, and consequently there are infinitely many instants
between any two of them. In accordance with the principle of causality,

‘every fact of the sequence under comsideration has its cause in some

earlier fact. Although it has 4 lower limit at instant 1, which is later
than the present instant 0 and has not yet been attained, the sequence
is infinite. Furthermore, this sequence cannot exceed its lower limit
and therefore cannot reach back to the present instant.

This reasoning shows that there might exist infinite causal sequences
which have not yet begun and which belong entirely to the future.
This view is not only logically possible but also seems to be more prudent

_ than the belief that each, even the smallest, future event has its causes

acting from the beginning of the universe. I do not doubt at all that
some future facts have their causes already in existence today and
have had them from eternity. By means of observations and the laws
of motion of the heavenly bodies astronomers predict eclipses of the
moon and sun with great precision many years in advance. But nobody
is able to predict today that a fly which does not yet exist will buzz
into my ear at noon on 7 September of next year. The belief that this
future behaviour of that future fly has its causes already today and has
had them from all eternity seems to be a fantasy rather than.a propo-
sition supported by even a shadow of scientific validation.

Therefore the argument based on the principle of causality falls to
the ground. One can be strongly convinced that nothing happens with-
out cause, and that every fact has its cause in some earlier fact, with-
out being a determinist. There remains to be considered the argument
based on the principle of the excluded middle.
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8. Although the argument based on the principle of the excluded
middle is independent of that derived from the principle of causality,
the former indeed becomes fully intelligible if every fact has its causes
existing from all eternity. I shall explain what I mean by an example
taken from ordinary life.¥) Let us assume that John will be at home
tomorrow noon. If the causes of all facts exist from all eternity, we

‘should recognize that at the present instant there exists the cause of

John's presence at bome tomorrow noon. Therefore it is true, i.e. it is
the case at the present instant, that John will be at home tomorrow
noon.—The-somewhat_confused expression “it is the case at instant
that p”, in which “p” stands for sentences about future events, which
I have previously been unable to elucidate, now becomes perfectly
intelligible. It is the case at the present instant that “John will be at
home tomorrow noon” implies first that at the present instant there
exists a fact which is the cause of John’s presence at home tomorrow
noon, and secondly that this future effect is as much comprehended
in that cause as a conclusion is included in its premisses. The cause of the
future fact, which the sentence “p” states and which exists at instant ¢,
is an actual correlate of the sentence “it is the case at instant ¢ that p”.

Should we assume that John will not be at home tomorrow moon,

we can follow the same course of reasoning. If we recognize that the
causes of every fact exist from all eternity, we must also accept the
fact that the cause of John’s absence from home tomorrow noon exists
already at the present instant. Therefore the sentence “it is true, i.e.
it is the case at the present instant, that John will not be at home tomor-
row noon” has its actual correlate in the cause of the stated fact, and
this cause exists at present.

As John will or will not be at home tomorrow noon, there exists
either the cause of his presence at or of his'absence from home tomorrow
noon, provided that the causes of all facts exist from all eternity. There-
fore, either it is true at the present instant that John will be at home
tomorrow noon or it is true at the “present instant that John will not
be at home tomorrow noon. The argument based on the principle of the
excluded middle has additienal support in the argument derived from
the principle of causality.

#) Lukasiewicz repeais This Teasoming i Ki§ paper “Philosophical Remarks on
Many-Valued Systems of Propositional Logic” (pp. 153—178 of this book).
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9. However, the second of these arguments has proved itself to be
invalid. In accordance with the preceding investigations, we may assume
that at the present instant there exists as yet neither the cause of John’s
presence nor the cause of John’s absence from home tomorrow noon.
Thus it might happen that the infinite sequence of causes, which bring
about John’s presence or absence from home tomorrow noon, has

not-yet-begun—and-tes—entirely-in—the-future. To put-it—cottoquiaily;
we can say that the question whether John will or will not be at home
tomorrow noon is not yet decided either way. How should we argue
in this case? - - C

We might adopt the following course. The sentence “it is true at the
present instant ¢ that John will be at home tomorrow noon” has no
actual correlate, for the cause of this fact does not exist at instant #;
therefore nothing compels us to recognize this sentence as true. Thus
it might happen that John would not be at home tomorrow mnoon.
In the same way the sentence “it is true at the present instant ¢ that
John will not be at home tomorrow noon™ has no real correlate, for the
cause of this fact does not exist at instant #; again, nothing compels
us to recognize this sentence as true. Thus it might happen that John
would be at home tomorrow noon. We may, therefore, reject both these
sentences as false and accept their denials “it is not true at instant ¢
that John will be at home tomorrow noon”, and “it is not true at instant ¢
that John will not be at home tomorrow noon”. The previously estab-
lished conditional (e), “if John will be at home tomorrow noon, then
it is true at instant ¢ that John will be at home tomorrow noon” becomes
invalid. For its antecedent turns out to be true if John is at home tomor-
10w noon, and its consequent becomes false if we choose an instant ¢,
earlier than tomorrow noon, at which the cause of John’s presence at
home tomorrow noon does not yet exist. But with conditional (¢) the
thesis of determinism, “if 4 is b-at instant 7, it is true at every instant
earlier than ¢ that A is b at instant £ also becomes invalid; for we can
substitute values for variables 4, b, and ¢ such that the antecedent of
this thesis becomes true and the consequent false.

If on. the assumption that a certain future fact is not yet decided
either way the thesis of determinism becomes false, the deduction
of this thesis from the principle of the excluded middle must involve
an error. Indeed, if we reject as false the sentence “it is true at instant
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¢ that John will be at home tomorrow noon” as well as the sentence
“it is true at instant ¢ that John will not be at home tomorrow noon”,
we must also reject alternative (a) which is composed of these sentences
as its arguments and which has been the starting-point of the deduction.
An alternative both of whose arguments are false is itself false. So also
conditional (d), obtained by transforming premiss (a), “if it is not true
at instant ¢ that John will not be at home tomorrow noon, then it is
true at instant ¢ that John will be at home tomorrow noon”, turns
out to be false, for we accept its antecedent and reject its consequent,
Tt-is-no-wender that the inference produces. a false conclusion if one of

its premisses and one of its intervening theorems are false.

It should be pointed out that the rejection of alternative (a) is not
a transgression of the principle of the excluded middle; for its arguments
do not contradict each other. Only the sentences “John will be at home
tomorrow noon” and “John will not be at home tomorrow noon”
are contradictory, and. the alternative composed of these sentences,
“either John will be at home tomorrow noon or John will not be at
home tomorrow noon”, must be true in accordance with the principle
of the excluded middle. But the sentences “it is true at instant # that
John will be at home tomorrow noon” and “it is true at instant ¢ that
John will not be at home tomorrow noon” are not contradictory, for
the one is not the denial of the other, and their presentation as alterna-
tives need not be true. Premiss (2) has been deduced from the principle
of the excluded middle on the basis of purely intuitive investigations
and not by applying a logical principle. However, intuitive investigations
may be fallacious, and they seem to have deceived us in this case.

10. Although this solution appears to be logically valid, I do not
regard it as entirely satisfactory, for it does not satisfy.all my intuitions.
I believe that there is a difference bétween the non-acceptance of the
sentence “it is true at the present instant that John will be at home
tomorrow noon” because John’s presence at or absence from home
tomorirow is not yet decided, and the non-acceptance of this sentence
because the cause of his absence tomorrow already exists at the present
instant. I think that solely in the latter case have we the right to reject
the sentence in question and say, “it is not true at the present instant

that John will be at home tomorrow ioon”. In the former case we can
neither accept nor reject the sentence but should suspend our judgement. .
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This attitude finds its justification both in life and in colloquial speech.
If John’s presence at or absence from home tomorrow noon is not
yet decided, we say, “it is possible that John will be at home tomorrow
noon, but also it is possible that John will not be at home tomorrow
noon”. On the other hand, if the cause of John’s absence from home
tomorrow noon exists already at the present instant, we say, provided

- that-we-know-this-cause;—“it-is-not-possible that John--will-be-at-home———-

tomorrow noon”. On the assumption of John’s presence at or ab-
sence from home tomorrow noon not yet being decided, the sentence
“it is true at the present instant that John will be at home tomorrow
noon” can be neither accepted nor rejected, that is, we cannot consider
it either true or false. Consequently also the denial of this sentence,
“it is not true at the present instant that John will be at home tomorrow
noon”, can -be neither accepted nor rejected, i.e. we cannot conmsider
it as either true or false. The previous reasoning, which consisted in the
rejection of the sentence under discussion and in the acceptanee of its
denial, is now inapplicable. In particular. conditional (d), which was
previously rejected, for its antecedent was accepted and its consequent
rejected, need not now be rejected, for it is not true any longer that its
antecedent is accepted and its consequent rejected. Furthermore, since
conditional (d) together with premiss (c), which does not seem to involve
any doubts whatsoever, suffice to validate the thesis of determinism,
it appears as though Aristotle’s argument regains its persuasive power.

11. However, this is not the case. I think that only now do we achieve
a solution which is in agreement both with our intuitions and with
the views of Aristotle himself. For Aristotle formulated his argument
in support of determinism solely for the purpose of its subsequent
rejection as invalid. In the famous chapter 9 of De Interpretatione
Aristotle seems to have reached the conclusion that the alternative
“either there will be a sea battle tomorrow or there will not be a sea
battle tomorrow” is already true and necessary today, but it is neither
true today that “there will be a sea battle tomorrow” nor that “there
will not be a sca battle tomorrow™”. These sentences concern future
contingent events and as such they are neither true nor false today.
This was the interpretation of Aristotle given by the Stoics, who, being
determinists, disputed his view, and by the Epicureans, who defended
indeterminism and Aristotle. .
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Aristotle’s reasoning does not undermine so much the principle of the
excluded middle as one of the basic principles of our entire logic, which
he himself was the first to state, namely, that every proposition is either
true or false. That is, it.can assume one and only.one.of-two truth-
values: truth or falsity. I call this principle the principle of bivalence.
In ancient times this principle was emphatically defended by the Stoics

and opposed by the Epicureans, both parties being fully aware of the

issues involved. Because it lies at the very foundations of logic, the
principle under discussion cannot be proved. One can only believe it,
and he alone who considers it self-evident believes it. To me, personally,

the principle of bivalence does not appear to be self-evident. Therefore
I am entitled not to recognize it, and to accept the view that besides
truth and falsehood there exist other truth-values, mcludmg at least
one more, the third truth-value.

What is this third truth-value? I have no suitable name for it.*).
But after the preceding explanations it should not be difficult to under-
stand what I have in mind. I.maintain that there are propositions which
are nieither true nor false but indeterminate. All sentences about future
facts which are not yet decided belong to this category. Such sentences
are neither true at the present moment, for they have no real correlate,
nor are they false, for their denials too have no real correlate. If we make
use of philosophical terminology which is not particularly clear, we
could say that ontologically there corresponds to these sentences neither
being nor non-being but possibility. Indeterminate sentences, which
ontologically have possibility as their correlate, take the third truth-
value.

If this third value is introduced into logic we change its very founda-
tions. A trivalent system of logic, whose first outline I was able to give
in 1920%*%¥), differs from ordinary bivalent Iogic, the only one known
so far, as much as non-Euclidean systems of geometry differ from Eucli-
dean geometry. In spite of this, trivalent logic is as consistent and free
from contradictions as is bivalent logic. Whatever form, when worked
out in detail, this new logic assumes, the thesis of determinism will
be no part of jit. For in the conditional in terms of which this thesis is

*) In “Philosophical Remarks...” Fukasiewicz uses the term “possibility”.

*%) The first mention of the three-valued logic was made earlier, in the “Farewell
Lecture...” of 1918 (pp. 84-86 of this book).
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expressed, “if 4 is b at instant #, then it is true at every instant earlier
than ¢ that 4 is b at instant #”, we can assign such values to variables
“A”, “b”, and “¢” that its antecedent changes into a true sentence and
its consequent into an indeterminate one, that is, into a sentence having
the third truth-value. This always bappens when the cause of the fact
that 4 is b at a future instant ¢ does not yet exist today. A conditional

whose-antecedent-is-trite-and-consequent indeterminate cannot-be—acs
cepted as true; for truth can imply only truth. The logical argument
which seems to support determinism falls decisively.

12. T am near the end of my investigations. In my view, the agé-old
arguments in support of determinism do mnot withstand the test of
critical examination. This does not at all imply that determinism is a
false view; the falsehood of the arguments does not demonstrate the
falsehood of the thesis. Taking advantage of my preceding critical
examination, I should like to state only one thing, namely that determin-
ism is not a view better justified than indeterminism.

Therefore, without exposing myself to the charge of thoughtlessness
I may declare myself for indeterminism. I may assume that not the
whole future is determiined in advance. If there are causal chains com-
mencing only in the future, then only some future facts and events, those
nearest to the present time, are causally determined at the present
instant. On the basis of present knowledge even an ommiscient mind
could predict fewer and fewer facts the deeper into the future it tried
to reach: the only thing actvally determined in the ever broader frame-
work within which facts occur, and within which there is more and
more room for possibility. The universal drama is not a picture com-
pleted from eternity; the further away we move from the parts of the
film which are being shown just now, the more gaps and blanks the
picture includes. It is well that it should be so. We may believe that
we are not merely passive spectators of the drama but also its active

* participants. Among the contingencies that await us we can choose

the better course and avoid the worse. We can ourselves somehow
shape the future of the world in accordance with our designs. I do not
know how this is possible, but I believe that it is.

We should not treat the past differently from the future. If the only
part of the future that is now réal is that which is causally determined
by the present instant, and if causal chains commencing in the future
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belong to the realm of possibility, then only those parts of the past
are at present real which still continue to act by their effects. today.
Facts whose effects have disappeared altogether, and which even an
omniscient mind. could not infer from those now occurring,- belong

to the realm of possibility. One cannot say about them that they took

place, but only that they were possible. It is well that it should be so.
There are hard moments of suffering and still harder ones of guilt in
everyone’s life. We should be glad to be able to erase them not only
from our memory but also from existence. We may believe that when

all the effects of those fateful moments are exhausted, even should

that happen only after our death, then their causes too will be effaced
from the world of actuality and pass into the realm of poss1b1]1ty Time
calms our cares and brings us forgiveness.

A NUM:ERICAL INTERPRETATION OF THE THEORY OF
PROPOSITIONS *)

Refers to Chapters *1 to *5, Vol. 1. of Principia Mathematica. The
authors of that work, Whitehead and Russell, present there the “theory
of deduction”; they do so by introducing variables connected by sym-
bols of operations and logical relations, and by using that notation
to formulate 192 logical laws (axioms and theorems) marked with the
symbol of assertion. Professor Lukasiewicz .offered a numerical inter-
pretation of those variables and their combinations, and of logical laws.
The principles of that interpretation are as follows:

I. The variables p, g, 7, s, stand for any real numbers in the interval
0-1, including the limiting values of that interval.

II. The formula “p > ¢” equals the number 1if p< g, i.e,
_p:,q.=.1. for p<gq.

l1—p+q forp=4.

Thus the formula “p o ¢” always denotes a number in the interval
0-1. Further the following definitions are adopted

M. pog.=

D1 ~p.=.p > 0 (where 0 is a number).
D2 PpPVYg.=.p>q.>D4q.

D3 D.g.=.~{(~pV ~g.

D4 P=Eg.=.p>g.q>p.

It can easily be proved, on the strength of these definitions and the
principles I-IIT above, that the number ~p equals the number 1—p,
and that the logical sum of two different numbers always equals the
greater number of the two, and that the logical product of two different
numbers always equals the lesser of the two. Thus every logical function

*) Report on Prof. Jan Fukasiewicz’s lecture delivered at the 232nd meeting of the
Polish Philosophical Society in Lwéw on October 14, 1922. The report was published
in Ruch Filozoficzny 7 (1923), pp. 92-93.

129




130 . A NUMERICAL INTERPRETATION OF THE THEORY OF PROPOSITIONS

is a number in the interval 0-1. The logical laws marked by the symbol of
assertion also are numbers in that interval on the strength of the follow-
ing principle:

IV. Every logical law is equal to the least of the numbers obtained
by substituting numerical values for the variables occurring in that law.

Professor Lukasiewicz stated that in this numerical interpretation out
of the 192 laws included in the part of Principia Mathematica under
consideration 60 laws take on the numerical value !/,, three take on the
numerical value 0, and the rest take on the numerical value 1. The

e ————application—of-this-interpretation is_twofold:-1)-It-can-be- demonstrated

that if those verbal ruies, or directives, which are accepted by the
authors of Principia Mathemnatica (the rule of deduction and the rule
of substitution) are adopted, then no set of the logical laws that have
the numerical value 1 can yield any law that would have a lesser numer-
ical value. This would show that some logical laws are independent of
the others. 2) If O is interpreted as falsehood, 1 as truth, and other
numbers in the interval 0-1 as the degrees .of probability c_orresponding
to various possibilities, a many-valued logic is obtained, which is an
expansion of three-valued logic and differs from the latter in certain
details,

Speakers in the discussion were Messrs Ajdukiewicz, Bad, Ingarden,
Kleiner, Lomnicki, Steinhaus, Weyberg and Fukasiewicz.

INVESTIGATIONS INTO. THE SENTENTIAL CALCULUS®)

~Imthecourse of the years 1920=1930 investigatiots weis carried out in
Warsaw belonging to that part of metamathematics—or betier metalogic—
which has as its field of study the simplest deductive discipline, namely
the sentential calculus. These investigations were initiated by Zuka-
siewicz; the first results originated both with him and with Tarski. In the
seminar for mathematical logic which was conducted by F.ukasiewicz
in the University of Warsaw beginning: in 1926, most of the resuits
stated below of Lindenbaum, Sobociniski, and Wajsberg ‘were found
and discussed. The systematization of all the results and the clanﬁcatlon
of the concepts concerned was the work of Tarski.

In the present communicdtion the most important results of these
investigations—for the most part not prewously published—are collected
together.**)

1. General concepts
It is our intention to refer our considerations to the conceptual ap-
paratus which was developed in the preceding article (see “On Some
Fundamental Concepts of Mathematics” published as paper III in
A. Tarski, op. cit., pp. 30-37). For this purpose we wish first to define

*) Note from A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923
to 1938, Oxford, 1956, The Clarendon Press : Bibliographical Note. This joint com-
munication of J. Lukasiewicz and A. Tarski was presented (by ukasiewicz) to the
‘Warsaw Scientific Society on 27 March 1930; it was published under the title “Un~
tersuchungen iiber den Aussagenkalkiil” in Comptes rendus des séances de la Société
des Sciences et des Lettres de Varsovie 23 (1930), cl. iii, pp. 39-50]. The following text
has been reprinted in the 1961 edition Z zagadnier: logiki i filozofii; in this book it is
published as a reprint from its first English version included in the. above mentioned
edition of Tarski’s papers (some bibliographical references, however, have been
expanded to become comprehensible to the reader deprived of the larger context
of Tarski’s book).

*#) To avoid misunderstandirfgs it should be stated that the present article does
not contain results discovered by both the authors jointly, but is a compilation of
theorems and concepts belonging to five different persons. Each theorem and concept
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the notion of a (meaningful) sentence and that of a cdnsequence of a set
of sentences with respect to the sentential calculus.

DEFINITION 1. The set S of all sentences is the intersection of all

- those sets which contain all sentential variables (elementary sentences)

and are closed under the operations of forming implications and negations.*)

The concepts of semtential variable, of implication and of negation
cannot be explained further; they must rather be regarded as primitive
concepts of the metatheory of sentential calculus (i.e. of that part of
inetamathematics in which sentential calculus is investigated). The funda-

méntal prope'rties—of—these—eoncapts,—whieh‘suﬂice—foz-»theh,construction
of the part of metamathematics with which we are here concerned,
can be expressed in a series of simple sentences (axioms) which need
not now be stated. Usually the letters “p”, “g”, “r”, etc., are used as
sentential variables. In order to express in symbols the sentences “p im-
plies ¢g” (or “if p, then ¢”) and “it is not the case that p”, Eukasiewicz
employs the formulas “Cpg” and “Np” respectively. ?) With this nota-
tion the use of such technical signs as parentheses, dots, etc., is ren-
dered unnecessary. We shall encounter several examples of sentences

written in this symbolism in subsequent sections. In addition to the-

formation of implications and negations other similar operations are
commmonly used in the sentential calculus. But as these are all definable
by means of the two mentioned above they will not be considered here.

is ascribed to its respective originator. Theorem 3, for instance, is not a theorem of
¥ ukasiewicz and Tarski, but a theorem of Lindenbaum. Nevertheless, some scholars
mistakenly referred to both authors, ¥ukasiewicz and Tarski, the many-valued
systems of logic ascribed in the article to Lukasiewicz alone. In spite of a correction
which appeared in 1933 in the Journal of Philosophy, vol. 30, p. 364, this mistake
persists till today. It clearly follows from § 3 and notes of this article that the idea
of a logic different from the ordinary system called by Eukasiewicz the two-valued
logic, and the construction of many-valued systems of logic described here, are en-
tirely due to Eukasiewicz alone and should not be referred to Lukasiewicz and Tarski.

1) A set—according to the usual terminology of abstract set theory—is said to be
closed under given operations if as the result of carrying out these operations on ele-
ments of the set in question one always obtains elements of this same set.

2) Cf. J. Rukasiewicz, “O znaczeniu i potrzebach logiki matematycznej” (On the
significance and needs of mathematical logic), Nawka Polska 10(1929), pp. 604-620,
p._610 note, and Eukasiewicz Elementy logiki matematycznej, p. 40, 1st edition,

Warsaw, 1929. [An English transiation—Elements of Mathematical Logic—was
published in 1963 and reprinted in 1966.]
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The symbol “Cpg”, which in the sentential calculus expresses the impli-
cation between “p” and “q”, is to be clearly distinguished from the
metamathematical symbol “c(x, y)”, which denotes the implication with

the antecedent x and the consequent y. The expression “Cpgq” is a

" sentence (in the sentential calculus) whilst the expression “c(x,y)” is

the name of a sentence (in the metasentential calculus). An analogous

remark-applies-to-the-symbeolic expressions “Np” and-“n{x)™
The consequences of a set of sentences are formed with the help of
two operations, that of substitution and that of detachment (the modus

ponens scheme of inference). The intuitive meaning of the first operas’

tion is clear; we shall not, therefore, discuss its character more closely.
The second operation consists in obtaining the sentence y from the
sentences x and z = ¢(x, y). _

We are now in a position to explain the concept of consequence:

. DEFNITION 2. The set of consequences Cn(X) of the set X of sentences
is the intersection of all those sets which include the set X = S and are
closed under the operations of substitution and detachment.

From this we obtain:

" THEOREM 1. The.concepts. S and Cn(X) satisfy the axioms 1-5 given

in article T11. %)

We are especially interested in those parts X of the set S which form
deductive systems, i.e. which satisfy the formula Cn(X) = X. Two meth-
ods of constructing such systems are available to us. In the first, the
so-called axiomatic method, an arbitrary, usually finite, set X of sen-
tences—an axiom system—is given, and the set Cn(X), i.e. the smallest
deductive system over X, is formed. The second method, which can
best be called the matrix method, depends upon the following definitions
of Tarski: %)

%) See article I, p. 31, in A. Tarski, op. cir.

4) The origin of this method is to be sought in the well-known verification pro-
cedure for the usual two-valued sentential calculus (see below Def. 5), which was
used by Peirce (“On the Algebra of Logic™, 4m. Journ. of Math. 7(1885):p. 191) and
Schroder. This was thoroughly treated in J. Eukasiewicz, [“Two-Valued Logic”,

pp. 89-109 of this book]. Lukasiewicz was also the first to define by means of a ma-

trix a system of the sentential calculus different from the usual one, namely his three-
valued system (see below, p. 126, note *¥), This he did in the year 1920, Many-valued
systems, defined by matrices, were also known to Post (see E. L. Post, “Introduction
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DermNiTION 3. A (logical) matrix is an ordered quadruple M

= [4, B, f, g] which consists of two disjoint sets (with elements of any

kind whatever) A and B, a function f of two variables and a function g of
one variable, where the two functions are defined for all elements of the
set A+ B and take as values elements of A--B exclusively.

The matrix M = [4, B, f, gl is called normal if the formulas x € B
and y € A always imply f(x,y) e A.

DermtioN 4. The function h is called a value function of the matrix
M = [4, B, f, gl if it satisfies the following conditions: (1) the function

Iris defined—for-every—-c-S5(2)—if-x—is—a-sentential-variable; then h(x)
cA+B; 3 ifxeSandyeS. then

h(e(x, 3)) = f(R(x), (¥)) 5

@ if x € S then h(n(x)) = g(h(x)).

The sentence x is satisfied (or verified) by the matrix M = [4, B, f, gl,
in symbols x e €M), if the formula h(x) e B holds for every value
Junction h of this matrix.

The elements of the set B are, followmg Bernays, °) called designated
elements.

In order to construct a system of the senten’mal calculus with the help
of the matrix method a matrix SN (usually normal) is set up and the
set €(M) of all those sentences which are satisfied by this matrix is
considered. This procedure rests upon the following easily provable
theorem: )

THEOREM 2. If M is @ normal matrix, then G € ©.

- If the set € (1) forms a system (as it always will, according to Th. 2,
if the matrix M is normal), it is called the system generated by the
matrix M. ‘ ' ‘

to a General Theory of Elementary Propositions™, dm. Journ. of Math. 43(1921),
pp. 180 ff). The method used by P. Bernays (“Axiomatische Untersuchung des
Aussagenkalkiils “der Principia Mathematica”, Math. Z. 25 (1926), pp. 305-320)
for the proof of his theorems on independence also rests on matrix formation. The
view of matrix formation as a gemeral method of constructing systems is due
to, Tarsk1

~5-See-P—Bernay ,—-‘iA;xiomatische»Untersuchung des ‘Aussagenkalkisls der Prin-
cipia Mathematica”, Math. Z. 25(1926), p. 316.

SRR
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The following converse of Th. 2, which was proved by Lindenbaum,
makes evident the generality of the matrix method described here:

THEOREM 3. For every system X €& there exists a normal matrix
WM =4, B, f, gl, with an at most denumerable set A+ B, which satisfies
the formula X = S(MN). *)

Each of the two methods has its advantages and disadvantages.

" Systems constructed by means of the axiomatic method are easier to

investigate regarding their axiomatizability, but systems generated by
matrices are easier to test for completeness and consmtency In part1cu1ar
the following evident theorem holds: .

TrEOREM 4. If M

=[A4, B, f, gl is a normal matrix and A # 0, then
COHeB® :

2. The ordinary (two-valued) system of the
sentential calculus

In the first place we consider the most important of the systems of
the sentential calculus, namely the well-known ordinary system (also
called by Lukasiewicz %) the two-valued system), which is here denoted
by é‘?i’

Using the matrix method the system L may be defined in the follow-
ing way:

DEFINITION 5. The ordinary syste;n L of the sentential calculus. is the
set of all sentences which are satisfied by the matrix I = [4, B, f, g]
where A = {0}, B = {1}7) and the functions f and g are defined by the
Sormulas: f(0,0) = f(0, ) =f(1, D=1, f(1,0) =0,8(0) =1, g(D=0.

From this definition it follows easily that the system L is consistent
and complete: '

THEOREM 5. L &€ ©.98.8

% See note 4, p. 133.
") Thé set having a as its only element is denoted by {a}.
*) A proof of this theorem has recently been published in J. Lo$, “O matrycach
logicznych” (*On logical matrices”, in Polish), Travaux de la Société des Scieacts
2o

H. Hermes, “Zur Theorie der aussagenloglschen Matrizen”, Math. Z. 5_
pp. 414-418.
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The system L can also be defined by means of the axiomatic method.
The first axiom system of the sentential calculus was given by C. Frege.%)
Other axiom systems have been given by Whitehead and Russell®) and
by Hilbert.!%) Of the systems- at present known the simplest is that of
Tukasiewicz; he also has proved in an elementary manner the equiva-
lence of the two definitions of L) His result may be stated thus:

THEOREM 6. Let X be the set consisting of the three sentences:
“CCngquCpr” “CCNppp” “CpCprq”;

Accordmg to a method for investigating the mdependence ofasetX
of sentences.developed by Bernays and Zukasiewicz,'?) a normal matrix
M, is-constructed for every sentence y € X which verifies all sentences
of the set X with the exception of y.

%) Begriffsschrift, Halle a/S (1879), pp. 25-30. Frege’s system is based upon the fol-
lowing six axioms: “CpCqgp”, “CCpCqrCCpgCpr”, “CCpCqrCqCpr™, “CCquNqu”
“CNNpp™”, “CpNNp”. Lukasiewicz has shown that in this system the “third axiom
is superfluous since it can bederived from the preceding two azioms, and that the
last three axioms can be replaced by the single sentence “CCNpNgCpg™.

9) Principia Mathematica, 1 (1925), p. 91.

19) See D. Hilbert, “Die loglschen Grundlagen der Mathematik”, Math. Ann,
88 (1923), p. 153.

1Y Cf. J. Lukasiewicz, Elements of Mathemaz‘zcal Logic, pp. 45 and 121 ff. The proof
of the equivalence of the two definitions of L amounts to the same thing as proving
the completeness of the system I when defined by means of the axiomatic method.
The first proof of completeness of this kind is found in Post, op. cit.. -

12) Bernays has published, in his article (note 5), which dates from the year 1926 (but
according to the anthor’s statement contains results from his unpublished Heabilita-
tionsschrift presented in the year 1918), a method based upon matrix formations,
" which enables us fo investigate the independence of given sets of sentences. The
method given by Bernays was known before its publication to Lukasiewicz who,
independently of Bernays, and following a suggestion of Tarski (¢f. “On the Primitive
Term of Logistic”, published as paper I in A. Tarski, op. cit., pp. 8-14), first applied
his many-valued systems, defined by means of matrices, to the proofs of independence,
and subsequently discovered the general method. On the basis of this method Luka-
siewicz had already in 1924 investigated the independence of the axiom systems given
by Whitchead and Russell and by Hilbert, and had shown that neither of them is
independent. These results (without proof) are contained in the following note by

FEikasiewicz: “Démonstration—de-Ta—compatibilité ' des axiomes de la théorie de
1a déduction”, 4dnn. Soc. Pol. Math. 3 (1925), p. 149.
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With the help of this. method Eukasiewicz proved that in contrast
to the previously mentioned axiom system the following theorem holds:

TEEOREM 7. The set X of sentences given in Th. 6 is independent; conse-
quently X is a basis of L, X € B(L).

Tarski developed another structural method for the study of inde-
pendence. Although less general than the method of matrix formation,

this can be successfully in some cases.
The following general theorem is due to Tarski:¥)

THEOREM 8. The system L, as well as every axiomatizable -system of
the sentential calculus which contains the sentences: “CpCqp” and
“CpCqCCpCqrr” (or “CpCqCCpCqrCsr™), possesses a basis consisting.
of a single sentence. ) _

The proof of this theorem enables us in particular to.give effectively
a basis of the system L which contains a single element.%)**) Bukasie-
wicz has simplified Tarski’s proof and, with the help of previous work
of B. Sobociriski, has established the following:

TaEOREM 9. Ihe set which consists of the single sentence z:
“CCCpCqpCCCNrCsNtCCrCsuCCtsCtuvCwo™
is a basis of the system L, i.e. {z} € B(L).

13) An analogous, but quite trivial, theorem applies to all axiomatizable systems
of those deductive disciplines which already presuppose the sentential calculus and
satisfy not only Axs. 1-5, but also Axs. 6*-10* of “On Some Fundamental Concepts
of Mathematics” in A. Tarski, op. ciz. '

14) This result was obtained by Tarski in the year 1925; cf. S. Ledniewski, “Grund-
ziige eines neuen Systems der Grundlagen der Mathematik”, Fund. Math. 14 (1929),
p. 58. An axiom system of the -ordinary sentential calculus consisting of a single
axiom was set up by Nicod in the year 1917 (see J. Nicod, “A Reduction in the Number
of the Primitive Propositions of Logic”, Proc. Cambridge Phil. Soc. 19 (1917), pp.
32-41). The axiom of Nicod is constructed with the Sheffer disjunction “p|g” as the
only primitive term, and the rule of detachment formulated by Nicod in connexion
with this term is stronger than the rule of detachment for implication. This facilitated
the solution of the problem.

¥y Compare in this connexion a recent paper of K. Schroter “Deduktive abgeschlos-
sene Mengen ohne Basis”, Mathematische Nachrichten 7 (1952), in particular pp.
294 fi.

*¥) The axiom originally found by Tarski is explicitly formulated in the article
by B. Sobocinski,“Z badaf nad teoria dedukcji” (Some investigations upon the
theory of deduction), Przeglgd Filozoficzny 35 (1932) pp. 172-193, in particular
p. 189. It consists of 53 letters.
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This sentence z which has 33 letters, is the shortest sentence known
at the present time which suffices as the only axiom for developing the
system L. The sentence z is not organic with respect to the system L.
- For a sentence y € X is said to be organic with respect to a system X
if no (meaningful) part of y is an element of X (the term “organic”
comes from S. Le$niewski, and we owe the definition of organic sentence
to M. Wajsberg). The sentence z is not organic with respect to L because
it contains parts, e.g. “CpCqp”, which are elements of L. Sobocifiski
has given an organic axiom for the system L which contains 47 letters.*)

The-following theorem is a_generalization of Th. 8:....

TaeoreM 10. The system L, as well as every axiomatizable system of
the sentential calculus which contains the sentences “CpCqp” and
“CpCgCCpCqrr”, possesses for every natural number m a basis containing
exactly m elements.

For the system L Sobocifiski has effectively proved this theorem;
the generalization to other systems is due to Tarski.**)
Tn contrast to this property of the systém L, Tarski has effectively

shown that:

THEOREM 11. For every natural number m, systems of the sentential
caleulus exist every basis of which contains exactly m elements.

The following considerations of Tarski concern the special case of
this theorem when m = 1 (Def. 6 and Ths. 12-14).

DEFINITION 6. The sentence x is called indecomposable if x € S and if
every basis of the system Cn({x}) cousists of only one sentence (i.e. if no

*) The results discussed in the last paragraph of the text were improved after the
original publication of this article. In fact ¥ukasiewicz found in 1932 a single non-
organic axiom consisting of 29 letters: see. Sobocifiski “Z badan nad teorig dedukcii”
{Some researches on the theory of deduction), Przeglad Filozoficzny 35 (1932), pp.
171-193, especially pp. 181 ff. In 1936 on the ground of a result of Sobocitski he
published without proof a single organic axiom of 23 letters in J. Lukasiewicz “Logistic
and Philosophy”, pp. 218-235 of this book, p. 224, note 10. The shortest hitherto
known single organic axiom consisting of 21 letters was found in 1952 by C. A. Mered-
ith; see his article, “Single axioms for the systems (C, N), {(C, 0), and (4, N) of the
two-valued propositional calculus”, The Journal of Computing Systems 1 (1953),
pp. 155-164.

**) See B. Sobocifiski, “Z badan mad teoria dedukcji” (“Some researches on the
theory of deduction™), Przeglad Filozoficzny 35 (1932), pp. 178 i,
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independent set of sentences bontaining more than one element is equivalent
to the set {x}).

If this condition is not satisfied then the sentence x is said to be decom-.
posable.

It is found that almost all known sentences of the system L are in-
decomposable; in particular:

‘"THEOREM 12. The sentences

“Cpp”, “CpCCpqq”, “CCCpqpp”, “CCCpgqCCqpp”,
“CCpqCCqrCpr”, “CCqrCCpgCpr”

are indecomposable.
ToeEOREM 13. If x€S, ye S, and z€ S then the sentences n(x),
e(n(x), »), C(C(n(x), ), z), c(x, c(n(»), z)) are indecomposable; in partic-

“ular, this holds for the sentences:

(<3 CNNpp’ﬂ’ ;‘CPNNP”’ &€ CNpCpq99’ ‘ECPCNpq”’
“CCNppp”, “CCpNpNp”.

From Ths. 12 and 13 it results that the set of sentences given in Th. 6
consists exclusively of indecomposable sentences.
On the other hand the following theorem has been proved:

TrEOREM 14. The sentences
“CpCqp™, “CCCpgrCqr”, and “CCpCqrCqCpr”

are decomposable.®)

*) The following remarks may help the readér to reconstruct the proofs of Ths.
12-14:

(D Let x = “Cpp”. It can easily be shown that the system Cn{{x}) consists of all
those and only those sentences which can be obtained from x by substitution; more
generally, if ¥ is any subset of Cn({x}), then Cn(Y) cousists of those and only those
sentences which are obtainable from sentences of ¥ by substitution. Hence we conclude
without difficulty that every independent set of sentences which is equivalent to {x}
consists of just one sentence, in fact, of a sentence c¢(v, v), where v is an arbitrary
variable.

By means of a similar argument many of the sentences mentioned in Ths. 12 and 13
can be proved to be indecomposable. ‘

() Let x = “CpCqp”, y = “CCpCqpCpCqp” and z = e(y, x). Clearly the set
{x} is equivalent to the set {y, z}. Also it can easily be shown that the set {y, z} is
independent. Hence the sentence x is decomposable.
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A noteworthy theorem on axiom systems of L has been proved by
‘Wajsberg:

TueoreM 15. In every basis (and in general in every axiom system)
of the system L, as well as of every sub-system of L which contains
the sentence “CpCqCrp”, at least three distinct sentential variables
occurt®) In other words, if X is the set of all those sentences of the
system L in which at most two distinct variables occur, then L—Cn(X)
# 0] in particular)) the sentence “CpCqCrp” belongs to L but not to

Cn(X).%)

3. Many-valned systeins of the sentential calculus

In addition to the ordinary system of the sentential calculus there
are many other systems of this calculus which are worthy of investiga-
tion. This was first pointed out by Lukasiewicz who has also singled
out a specially important class of such systems.'®) The systems founded
by Lukasiewicz are here called n-valued systems of the sentential cal-
culus and denoted by the symbol “L,” (where either » is a natural

15) Tt is not necessary to explain any further the meaning of the expression “in the
sentence x two or three distinct variables occur “since it is intuitively clear. “Distinct”
.here means the same as “not equiform” (cf. I, p. 31, note 3 in Tarski, op. cit.).

19 What is called the three-valued system of the sentential calculus was constructed
by Pukasiewicz in the year 1920 and described in a lecture given to the Polish Philo-
sophical Society in Lwow. A report by the author, giving the content of that lecture
fairly throughly was published in the journal Ruch Filozoficzny 5 (1920), p. 170 (in
Polish). A short account of the n-valued systems, the discovery of which belongs to
the year 1922, is given in J. ZLukasiewicz, Elementy logiki matematycznej, pp. 115 ff.
The philosophical implications of n-valued systems of sentential calculus are discussed
in the article of Lukasiewicz, “Philosophical Remarks on Many-Valued Systems of
Propositional Logic”, pp. 153178 of this book. )

*) Wajsberg’s proof of Th. 15 is given at the end of his paper “Aksjomatyzacja
trojwarto$ciowego rachunku zdan” (Axiomatization of the three-valued sentential
calculus), Comptes rendus des séances de la, Société des Sciences et des Letires de
Varsovie 24 (1931), cl. iii. Another proof of the result discussed can be obtained
by the use of the method developed in the note of A. H. Diamond and J. C. C. McKin-
sey, “Algebras and their subalgebras”, Bulletin of the American Mathematical Society
53 (1947), pp. 959-962. For another proof of that part of Th. 15 which concerns the
whole system. L, see also S. Jaskowski, “Trois contributions au calcul des proposi-

tions bivalent”, Studia Societatis Scientiarum Torunensis, section A, 1 (1948), pp. 3-15,
in particular pp. 9 ff. )
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‘number or 7 = Ro). These systems can be defined by means of the
matrix method in the following way:

DernvitioN 7. The n-valied system L, of the sentential calculus
(where n is a natural number or n = R,) is the set of all sentences which
are satisfied by the matrix M= [A4, B, f, g} where, in the case n =1 the
set A is null, in the case 1<<n <R, A consists of all fractions of the

form kj(n—1) for 0\ k < n—1, and in the case n = R, it consists of
all fractions kJl for 0\ k < I; further the set B is equal to {1} and
the functions f and g are defimed by ‘the formulas: f(x,y)
= min (1, 1—x+y), g{x) = 1—x.

As Lindenbaum has shown, the system Ly, is not changed if, in the
definition of this system, the set 4 of all proper fractions is replaced
by another infinite sub-set of the interval (0, I>:

TeeEOREM 16. Let M = [4, B, f, g] be a matrix whefe B = {1},

the functions f and g satisfy the formulas
f(x: y) = mjn(ls 1——x+y)= g(x) = 1_x5

and A be an arbitrary infinite set of numbers which satisfies the condi-
tion: 0<< x < 1 for every x e A, and is closed under the two operations f
and g; then € (M) = Ly,.1) , .

From Def. 7 the following facts established by Lukasiewicz are easily
obtained:

TeEOREM 17. @) Ly = S, L, = L;

®) if 2<m<R, 2<n<R and n—1 is a divisor of m—1,

then Ly, S Ly;
(C) LRo = H L-‘l'
I<n<ii,

TaEOREM 18. All systems L, for 3< n< R, are conmsistent but not
complete: L, ¢ ©. W—N.

The converse of Th. 17(b) was proved by Lindenbaum:

17) Lindenbaum gave a lecture at the first congress of the Polish mathematicians
ALwow, 1927) on mathematical methods of investigating the sentential calculus in
which, among other things, he formulated the above-mentioned theorem. Cf. his note
“Méthodes mathématiques dans les recherches sur le systéme de la théorie de déduc-
tion”, Ksigga Pamigtkowa Pierwszego Polskiego Zjozdu Matemarycznego, Krakow,
1929, p. 36.
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THEOREM 19. For 2<m <R, and 2<n < Ry, we have L, = L,
if and only if n—1 is a divisor of m—1.

Th. 17(c) was improved by Tarski by means of Th. 16:

THEOREM 20. Ly, = T] L. for every increasing 'sequence n; of

1<i< Ry .
natural numbers.

Concerning the problem of the degree of completeness for systems L,
the following partial result has been obtained.

TreoreM 21. If n—1 is a prime number (in particular if n = 3), then
there-are-only-two-systemssnamely-S_and-Lywhich-contain-L; as a-proper
part; in other words, every sentence x € S—1IL, satisfies one of the for-
mulas: Cn(Ly+{x}) = S or Cn(L,+{x}) = L; y(L,) = 3.

This theorem was proved for n = 3 by Lindenbaum; the generali-
zation to all prime numbers given in the theorem is due to Tarski.*)
" Regarding the axiomatizability of the system L, we have the follow-
ing theorem which was first proved by Wajsberg for n =3 and for
all » for which n—1 ig a prime number, and was later extended to all
natural numbers by Lindenbaum: :

THEOREM 22. For every n, 1< n << &y, we have L, e 9.

The effective proof of Th. 22 enables us to give a basis for every
system L, where 1 <X 1 < 8. In particular Wajsberg has established;

THEOREM 23. The set X consisting of the sentences
“CpCqp”, “CCpgqCCqrCpr”, “CCNpNgCqp”, “CCCpNppp”
Jorms a basis of Ls,ie XeB(Ls).

The following theorem of Wajsberg is one of the generalizations
of Th. 22 at present known:

*) In May 1930 while the original printing of this article was in progress, Th. 21
was improved and the problem of the degree of completeness was solved for systems
L, with an arbitrary natural #; this was a joint result of members of a proseminar
conducted by Lukasiewicz and Tarski in the University of Warsaw. A proof of Th. 21
and its generalizations appeared in print récently; see A. Rose, “The degree of com-
pleteness of m-valued ¥.ykasiewicz propositional calculus”, The Journal of the London
Mathematical Society 27 (1952), pp. 92-102. The solution of the same problem for
Ly, has been given in A. Rose, “The degree of completeness of the ®,-valued Euka-

28 (1953), pp. 176-184.
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TueOREM 24. Let M = [A4, B, f, gl be a normal matrix in which the
set A-+-B is finite. If the sentences -

“CCpgCCqrCpr”, “CCqrCCpgCpr”, “CCarCpp”,
“CCpgCNgNp”, “CNgCCpgNp”

are satisfied by this matrix, then € (ON) € A.%)

- The Ths. 8, 10, and 15 of § 2 can be applied t6 the systéms L,. Accord-
ingly we have: :

THEOREM 25. Every system Ly, where 2K n < Ry, possesses, for
every natwral number m (and in particular for m = 1), a basis which
has exactly m elements. ’

THEOREM 26. In every basis (and in general in every axiom system)
of the system L, at least three distinct sentential variables occur.

As regards the problem of extending Th. 22 to the case n= X,
Lukasiewicz has formulated the bypothesis that the systeni Ly, is

*) There is a comprehensive literature related to Ths. 2224 and, more generally,
concerning the axiomatizability of various systems of sentential calculus. We list a few
papers on this subject in which further bibliographical references can also be found:
M. Wajsberg, “Aksjomatyzacja tréjwartosciowego rachunku zdad” (“Axiomatization
of the three-valued sentential calculus®, in Polish), Compres rendus des séances de la
Société des Sciences et des Lettres de Varsovie 24 (1931), cl. iii, pp. 126-148. A further
relevant paper by the same author: “Beitriige zum Metagussagenkalkiil I”, Monats-
kefte fiir Mathematik und Physik 42 (1935), pp. 221-242. B. Sobocifiski, “Aksjomaty-
zacja pewnych wielowartoéciowych systemoéw teorii dedukeji” (“Axiomatization of
certain many-valued systems of the theory of deduction”, in Polish), Roczniki prac
naukowych Zrzeszenia Asystentéw Uniwersytetu Jozefa Pilsudskiego w Warszawie,
1 (1936), Wydziat Matematyczno Przyrodniczy Nr. 1, pp. 399-419. J. Shupecki,
“Dowdd aksjomatyzowalnodci petnych systeméw wielowartosciowych rachunku zdan”
(“A proof of the axiomatizability of functionally complete systems of many-valued
sentential calculus”, in Polish), Comptes rendus des séances de la Société des Sciences

et des Lettres de Varsovie 32 (1939), cl. iii, pp. 110-128; and by the same-

author: “Pelny tréjwartosciowy rachunek zdatt” (“The full three-valued sentential
calculus”, in Polish), Annales Universitatis Mariae Curie-Sklodowska 1 (1946),
pp. 193-209. J. B. Rosser and A. R. Turquette, “Axiom schemes for m-~valued propo-
sitional caleuli”, Journal of Symbolic Logic 10 (1945), pp. 61-82, and “A mote on
the deductive completeness of m-valued propositional calculi”, ibid., 14 (1949), pp.
219125,

Tn the first paper of Wajsberg lisied above we find a proof of Th. 23, in the second
a proof of Th. 24.
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axiomatizable and that the set consisting of the following five sentences
“CpCqp”, “CCpqgCCqrCpr”, “CCCpggCCqpp”,
“CCCPququp”, “CCNpNgCqp”
Sorms anaxiom system for Ly,.™)

It must be emphamzed that, as defined here, the systems L forn > 2
have a fragmentary character, since they are incomplete and are only
sub-systems of the ordinary system L. The problem of supplementing
these systems to form complete and consistent systems which are at
the-same-time-distinct from I can be positively solved, but.only in one
way, namely by widening the concept of meaningful sentence of the
sentential calculus, and by introducing, beside the operations of forming

implications and negations, other analogous operations Wthh cannot
be reduced to these two (cf. also § 5).

Finally we may add that the number of all possible systems of the
sentential calculus was determined by Lindenbaum.

TeroreM 27. & = 2%, but B9 = %o.*¥)
This result was improved by Tarski as follows:
THEOREM 28. ©. I8, B =2, but ©. I8, B. I = Ky ***)

*) This hypothesis has proved to be correct; see M. Wajsberg, “Beitrdge zum
Metaaussagenkalkiil I°, Monatshefte fir Mathematik und Physik 42 (1935), pp.

© 221-242, in particular p. 240. As far as we know, however, Wajsberg’s proof has not

appeared in print.

The axiom-system above is not independent: C. A. Merechth has shown that
“CCCpqCqpCqp” is deducible from the remaining axioms.

**) A proof of the first part of Th. 27 (and in fact of a somewhat stronger result)
can be found in the paper of K. Schréter, op. cit., pp. 301 ff. The proof of the second
part of Th. 27 is almost obvious.

#%+) The proof of Th. 28 can be outlined as follows: For any given natural number
rn=1,2,3,... let x, be the sentence which is formed by » symbols “C” followed
by rn+1 variables “p”. Given any set N of natural numbers, let Xy be the set consisting
of all sentences x;, Where # belongs to N and of all sentences x;,,., where z does not
belong to N. It can easily be shown that the set Cn(Xy) coincides with the set of all
those sentences which can be obtained from sentences of Xy by substitution. Hence the

-set Xy is consistent and can therefore be extended to form a complete and consistent

system Xx. On the other hand, if M and N are two different sets of natural numbers,

then the sum of X3y and Xy is clearly inconsistent, and hence the systems X3 and
X# cannot be identical. The remaining part of the proof is obvions.

e bt e e e
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4, The restricted sentential calculus

‘In investigations into the sentential calculus attention is sometimes
restricted to those sentences in which no negation sign occurs. This
part of the sentential calculus can be treated as an independent de-
ductive discipline, one which is still simpler than the ordinary sentential

“calculus and will be called here the 7esiFicied sentential calculus.

For this purpose we must first of all modify the concept of meaningful
sentence by omitting the operation of forming negations from Def. 1,
In a corresponding way the concept of substitution is also simplified,
and this brings with it a change in the concept of consequence. After
these modifications Th. 1 remains valid.

For the construction of closed systems of the restricted sententlal
caleulus both of the methods described in § 1 are used: the axiomatic
and the matrix method. But a logical matrix is now defined as an or-
dered triple [4, B, f] and not as an ordered quadruple (Def. 3); con-
sequently condition (4) in Def. 4 of a value function disappears.
Ths. 2-4 remain valid.

The definition of the ordinary system L+ of the restricted sententlal
calculus is completely analogous to Def. 5, with one obvious difference
which is called for by the modification in the concept of matrix. This
system has been investigated by Tarski. From the definition of the
system ifs consistency and completeness are easily derivable; hence
Th. § holds also in the restricted sentential caleulus. The axiomatizability
of the system is established in the following theorem:

THEOREM 29. The set X consisting of the three sentences “CpCqp”,
“CCpqCCqrCpr”, “CCCpgpp” forms a basis of the system L*t; con-
sequently L+ ¢ ¥.

This theorem originates with Tarski; it contains, however, a simpli-
fication communicated to the authors by P. Bernays. In fact the original

" axiom system of Tarski included, instead of the sentence “CCCpgpp”,

a more complicated sentence, “CCCpqrCCprr”.*) The independence of
both axiom systems was established by Lukasiewicz.
*) The original proof of Th. 29 has not been published. But a proof of this result

can easily be obtained by means of a method developed in M. Wajsberg, “Metalo-
gische Beitrige”, Wiadomosci Matematyczne 18 (1936), pp. 131-168, in particular
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Ths. 8,10, 11, 12, 14, and 15 from § 2 have been extended to the re-
stricted sentential calculus by their originators. Tarski, in particular,
has succeeded in setting up a basis of the system L* consisting of only
a single sentence. Two simple examples of such sentences, each con-
taining 25 lefters, are given in the next theorem. The first is an organic

.sentence and was found by Wajsberg, the second is not organic and
is due to Lukasiewicz: '

TeeorREM 30. The set of sentences consisting either of the single sentence
"CCC’pqCCrstCCuCCrstCCpqut ?

or of the single sentence
“CCCpCqpCCCCCrstuCCsuCruvv”

forms a basis of the system L*.%)

Def. 7 of the n-valued system L, can be applied at once to the restricted
sentential calculus provided only that the concept of matrix is suitably
modified. Ths. 16-22 as well as 24-26, which describe the mutual rela-
tions among the various systems L;, determine the degree of complete-
ness of the systems and establish their axiomatizability, kave been
extended to the restricted semtential calculus by their originators. (In

" the case of Th. 21 this was done by Tarski; for Th. 22 by Wajsberg.
In Th. 24 the sentences with negation signs are to be omitted.) The
problem’ of the axiomatizability of the system L{ is left open.

Finally, the number of all possible systems of the sentential calculus,
which was determined by Lindenbaum and Tarski in Ths. 27 and 28,
also remains unchanged in the restricted sentential calculus.™*)

pp. 154-157; the derivations which are nesded for applying Wajsberg’s method can be
found, for example, in: W.V. Quins, System of Logistic, Cambridge, Mass. 1934,
pp. 60 ff.

*) More receutly Lukaswmcz has shown that the sentence “CCCpquCrpCsp”
can also serve a single axiom for system L+ and that there is no shorter sentence
with this property. See J. Eukasiewicz, “The Shortest Axiom of the Implicational
Calculus of Propositions”, p. 295-305 of this book.

*¥) The footnote concerning Th. 27 on p. 144 applies to the resiricted sentential
calculus as well.
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5. The extended sentential calculus

By the extended sentential calculus we understand a deductive disci-
pline in the sentences of which there occur what are called universal

quantifiers in addition to sentential variables and the implication sign.!®)
35 ou £1]

~For-theuniversal-quantifier Lukasiewicz uses-the—signJf*which-was

introduced by Peirce.'?) With this notation the formula “[]pg” is the
symbohc expression of the sentence “for all p, g (holds)”. The operation
which consists in putting the universal quantifier ¢ ‘I with a sentential
variable x in front of a given sentence y is called universal quantification
of the sentence y with respect to the sentential variable x, and is denoted

\18) In his article “Grundziige eines neuen Systemis der Grundlagen der Mathe-
matik” Les$niewski has described the outlines of a deductive system, called by him
Protothetic, which, compared with the extended sentential calculus, goes still further
beyond the ordinary sentential calculus in the respect that, in addition to quantifiers,
variable functors are introduced. (In the sentence “Cpg” the expression “C” is called
a functor, and “p” and “g” are called the arguments. The word functor we owe to
Kotarbinski. In both the ordinary and the extended sentential calculus only constant
functors are used.) In addition to this principal distinction, there are yet other dif-
ferences between the extended sentential calculus and the protothetic as it is described
by LesSniewski. In contrast to the extended sentential calculus, in the protothetic
only those expressions atre regarded as meaningful sentences in which no free, but
only bound (apparent) variables occur. Some new operations (rules of inference or
directives) are also introduced by means of which consequences are derived from
given sentences, such, for example, as the operation of distributing quantifiers, which is
superfluous in the extended sentential calculus, Finally it must be emphasized that Les-
niewski has formulated with the utmost precision the conditions which a sentence must
satisfy if it is to be admitted as a definition in the system of the protothetic, whereas
in the present work the problem of definitions has been left untouched. Article T
belongs to protothetic. A sketch of the extended sentential calculus is given in J. Luka-
siewicz, Flements of Mathematical Logic, pp. 154-169; this sketch rests in great part
on results of Tarski (cf. A. Tarski, op. cit. Preface, p. vii). The two-valued logic of
Eukasiewicz (“The Shortest Axiom....”, pp. 295-305 of this book) has many points
of contact with the extended sentential calculus. Finally, there are many analogies
between the extended sentential calculus and the functional calculus of Hilbert and
Ackermann (see Hilbert, D., and Ackermann, W., Grundziige der theoretischen Logik,
Berlin, 1928, especially pp. 84-85).

1) The expression “quantifier” occurs in the work of Peirce (notg 4), p. 197,
although with a somewhat different meaning,.
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by “m.(y)” in metamathematical discussions. This concept it to be
regarded as a primitive concept of the metasentential calculus. 20

DEFNITION 8. The set S* of all meaningful sentences (of the extended
sentential calculus) is the intersection of all those sets which contain
all sentential variables and are closed under the two operations of forming
implications and of universal quantification (with respect to an arbitrary
sentential variable).*)

The operations of forming negations and of existential quantification
(which consists in prefixing to a given sentence y the existential quan-

tifier “ 3™ with a sentential variable x), are not considered hefe because,

in the system of the extended sentential calculus in which we are inter-
ested, they can be defined with the help of the two operations previously
mentioned. For example, we can use the formula “Cp[lag” as de-
finiens for “Np™. *
In deriving consequences from an arbitrary set of sentences Fuka-
siewicz and Tarski make use of the operations of insertion and deletion
of quantifiers, in addition to those of substitution”) and detachment.
The first of these operations consists in obtaining a sentence y = oz, ()
from a sentence of the form x — c(z, #), where z € ¥ and u e 5%
under the assumption that ¢ is a sentential variable which is not free
in 2.2%) The second operation is the inverse of the first and consists in
deriving the sentence x = c¢(z,#) from the sentence y g c(z, n,(u))
(in this case without any restriction concerning the variable £).2%)

20) Cf. the remarks following Def. 1in § 1.
21) Tn contrast to the above mentioned book of Hilbert and Ackermann, p. 52, as
well as to the standpoint taken in Lukasiewicz, Elements of Mathematical Logie,
p. 155, the expression 7.(y) is also regarded as meaningful when x either occurs as
~abound variable in y or does not occur in y at all.

- 22) The operation of substitution undefgoes certain restrictions in the extended
sentential calculus (cf. J. ¥ukasiewicz, Elements ... p. 160, and Hilbert and Acker-
mann, op. cit. p. 54.)

23) We do not need to discuss the meaning of the expression “x occurs in the
sentence y as a free (or bound) variable” since it is sufficiently clear (cf. J. Lukasie-
wicz, Elements ..., p. 156, and Hilbert and Ackermann, op. cit., p. 54).

24y In the restricted functional calculus only the first operation is used. Imstead
of the second an axiom is set up. (cf. Hilbert and Ackermann, op. ciz., PD- 53-54).

An analogous procedure would 1ot be possible iii otir calculus; for iff we drop the
.second operation the system L* to be discussed _below would not have a finite basis.
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DErFINITION 9. The set Cn*(X) of consequences of the set X of sentences
(in the sense of the extended semtential calculus) is the intersection of
all those sets which include the given set X < S¥ and are closed under
the operations of substitution and detachment, as well as insertion and
deletion of guantifiers.

With this interpretation of the concepts §¥ and Cn*¥(X).Th1 from—

§ 1 remains valid.

As before, two methods are available for the construction of deductive
systems: the axiomatic and the matrix methods. The second-method
has not yet received a sufficiently clear general formulation, and in fact
the problem of a simple and useful definition of the concept of matrix
still presents many difficulties. Nevertheless this method has been suc-
cessfully applied by Eukasiewicz in special cases, namely for the con-~
struction of the n-valued systems L3 (for n < X,) and in' particular
for the construction of the ordinary system L* of the extended sentential
calculus. The construction of the systems ¥ is precisely described in
the following ) ’

DEervITION 10. First let us introduce the following auxiliary notation:
b="p”, g=m(b) (falsehood), n(x) = c(x,g) for every x e S* (the
negation of the sentence x), a(x,y)= c(c(x,y),y) and k(x,y)=
n(a(n(x), n(y))) Jor every xeS% and every y € X (the disjunction or
rather alternation, and the conjunction of the sentences x and »); %) further-
more KiLi(x)=x' for m=1 and KL ()= k(KI=}(xs), %m) for
every arbitrary natural number m > 1, where x; € SX for 1< i< m
(;he conjunction of the sentences xi, Xz, ..., Xn). Further we put by =5
Sor m =1, by, = c(n(b), bn_,) for every natural mumber m > 1, and
Jinally an, = my(c(bw, b)) for every natural mumber m.)

) 2%) The logical expressions “dpg” (“p or g”) and “Kpg” (“p and ¢”) correspond,
in the symbolism introduced by Eukasiewiez, to the metalogical expressions “a(x, ¥)”
and “k(x, )" respectively. Of the two possible definitions of the alternation, Whic:h in
the two-valued, but not in the n-valued, system are equivalent: a(x, ) = e(e(x, ), ¥)
.and_cf(x, ¥) = ¢(n(x), y), the first was chosen by Eukasiewicz for various, pa;tly
intuitive, reasons (cf. J. Eukasiewicz, “Two-Valued Logic”, p. 89-109 of this book)

2%) For example, )
) . by ="p”, by = “CCp[Tppp”, bs = “CCp[IppCCpIIrpr”,
and @ = “IIpCpp”, a = “[[pCCCp]Ipppp”,

a3 = “[[pCCCp[TppCCp] popp”.
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Now let n be a definite natural number > 1. We choose 7 sentences
called basic sentences, and denote them by the symbols “g,”, “g,”,...,
“g». in fact we put g1 =g, & = @y_1, and gn = c(n(g2), gm—) for
every m, 2 < m< n?’) Let G be the smallest set of sentences which
contains all sentential variables and basic sentences and is closed with
respect to the operation of forming implications. '

A function % is called a value function (of the n-th degree) if it sat-

isfies the following conditions: (1) the funmction h is defined for

every sentence x € G; (2) if x is a sentential variable, then A(x) is a

fraction of the form—@n—L/(n—1), where-m-is-a-natoral number and
1<m<n; (3) for every natural number m, 1< m<n, we have
h(gn) = (m—1)/ (n—1); @ i xeG and yeG, then h(c(x, )
= min(1, 1— h(x)—l—h(y)) 2

With every sentence x € S* a sentence f(x) € G is correlated by re-
cursion in the following way: (1) if x is a sentential variable or a basic
sentence, then f(x) = x; (2) if x € $%, y € %, and c(x, y) is not a basic
sentence, we put f{c(x, »)) = ¢(f(x), f)); (3) if x is a sentential variable
which is not free in the sentence y € S%, then f(=(3)) = f(»); (4) but
if the sentential variable x is free in the sentence y € S* and z,(y) is
not a basic sentence, then we put f(m:(y)) = kii(f(3;)) where the
sentence y; for every i, 1<X i< n, arises from y by the substitution
of the basic sentence g; for the free variable x.

The n-valued system L} of the extended semtential calculus, where
2< n < Rg, is now defined as the set of all those sentences x € S*f
which satisfy the formula h(f(x)) = 1 for every value function A (of
the nth degree); in addition L* is set equal to S*. The system LY = L*
is also called the ordinary system of the extended sentential calculus.®)

‘27) For example, for n = 3:
&= “IIpr”, &, = “IIpCCCp[Ipprp”,
g = “CCITpCCCpTppppITppITpCCCpIIpEPD”.

2%) Cf. Defs. 4'and 7 above.

29y In the definition adopted by Eukasiewicz, instead of the basic sentences g,,
£31 +vv» &, thers occur what are called sentential constants, ¢, ¢;, ..., ¢, i.6. special
signs distinct from sentential variables. The concept of meaningful sentence is thereby
temporarily extended. The rest of the definition rusis quite analogously to the definition
in the text. In the final definition of the systems L3 all expressions which contain
sentential constants are eliminated, and the concept of meaningful sentences is reduced
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From this definition of the systems I} the following facts easily
result (they are partly in opposition to Ths. 18 and 19 of § 3):

TueOREM 31. Lye ©@.98.B for every natural n, 2<n < X,.

TBEOREM 32. For 2sm < Ry and 2\ n << 8, we have IX < LY if
and only if m = n (no system of the sequence L ¥, where 2K n << Ry, is

included-in-another-system_of this Sequence).

THEOREM 33. The set of all sentences of the system L% (where 1<

n <8} in which no bound variables occur is identical with the corre-
sponding system Ly of the restricted sentential calculus.

Regarding the axiomatizability of these systems Tarski has shown -
that Ths. 8, 10, 22, 29, and 30 also hold in the extended sentential calculus.
In this connexion Tarski has also proved the following:

TeEOREM 34. Every axiom system of the system L¥ = Lt in the
restricted sentential calculus is at the same time an axiom system of
the system L¥ = L* in the extended sentential calculus. 30

On the other hand, not every basis of the system L* in the restricted
sentential calculus is at the same time a basis in the extended calculus
(and not every set of sentences which is independent in the restricted
sentential calculus remains independent in the extended calculus).

‘THEOREM 35. For 3 <X n << 8, universal quantifiers and bound variables
occur in at least one sentence of every basis (and in general of every
axiom system) of the system LY.

It is worthy of note that the proof given by Tarski of Th. 22 in the
extended sentential calculus makes it possible to construct effectively

to the original expressions. By means of the modification introduced in the text,
which is due to Tarski, the definition of the systems L} certainly takes on a simpler
form from the metalogical standpoint, but at the same time it becomes less perspic-
uous. In order to establish the equivalence of the two definitions it suffices to point

‘out that the expressions chosen as basic sentences satisfy the following condition:

for every value function h (in the sense of the original definition of L.ukasiewicz),

K(fgm)) = hlem) = Eill , where 1 < m< n.

39 Thc completeness and axiomatizability of the system L¥ was proved by Tarskx
in the year 1927. His proof was subsequently simplified by S. ]aékowskl
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an axiom system for every system L¥ (3 <X n <C Rp). Relatively simple
axiom systems of this kind were constructed by Wajsberg; in the case
n = 3 his result is as follows:

THEOREM 36. Let X be the set counsisting of the jfollowing sentences:
“CCCpqCrgCCqpCrp”, “CpCqp”, “CCCpCpgpp”,
“C[TpCCCp[TpropC[[pCCCp] [prRP] PP,
“cClIpccCpllprpr[1rplIPCCCP] [rppp™;

then X e Yx(LY).

An exact dehinition of 1 the ~denumerably-valied system LY of the
extended sentential calculus prefents much greater difficnities than
that of the finite-valued systems. This system has not yet been inyesti-
gated.

Ths. 27 and 28, which determine the number of a]l possible systems,
remain correct in the extended sentential calculus. .

Tn conclusion we should like to add that, as the simplest deductive
discipline, the sentential calculus is particularly suitable for meta-
mathematical investigations. It is to be regarded as a laboratory in
which metamathematical methods can be discovered and metamathe-
matical concepts constructed which can then be carried over to more
complicated mathematical systems.

PHILOSOPHICAL REMARKS ON MANY-VALUED SYSTEMS

OF PROPOSITIONAL LOGIC*)

1. Modal propositions. —2. Theorems concerning modal propositions. —3. Conse-
quences of the first two theorems coneerning modal propositions. —4. Consequences
of the third theorem on modal propositions. —5. Incompatibility of ths theorems
on modal propositions in the two-valued propositional calculus. —6. Modal propo-
sitions and the three-valued propositional calculus. —7. Definition of the concept
of possibility. —8. Consequences of the definition of the concept of possibility.
—39. Philosophical significance of many-valued systems of propositional logic.

Appendix. On the history of the law of bivalence.

In the communication “Untersuchungen iiber den Aussagenkalkiil”
(Tnvestigations into the Sentential Calculus) which appeared in this issue
under Tarski’s and my name, Section 3 is devoted to the “many-valued”
systems of propositional logic established by myself. Referring the
reader to this communication as far as logical questions are concerned,
I here propose to clarify the origin and significance of those systems
from a philosophical point of view.

1. Modal propositions

The three-valued system of propositional logic owes its origin to
certain inquiries I made into so-called “modal propositions” and the
notions of possibility and necessity closely connected with them.!)

)1 read a paper on these inquiries at the meeting on 5 June 1920 of the Polish
Philosophical Society at Lwow. The essential parts of this paper were published in
the Polish periodical Ruch Filozoficzny 5 (1920}, pp. 170-171. [The first English trans-
lation of that text was published as paper 1 in the McCall edition and translated by
H. Hiz from the version published in Ruch Filozoficzny. Tn this book (pp. 87-88)
the translation was made by O. Wojtasiewicz from the text of the lecture itself, read
by Lukasiewicz on 5 June, 1920.]

*) [Editorial note from the McCall edition: This paper appeared originally under
the title “Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagen-
kalkiils” in Comptes rendus des séances de la Socidté des Sciences et des Lettres de
Varsovie 23 (1930), cl. iii, pp. 51-77. Translated by H. Weber], reprinted in the 1961
edition Z zagadnier: logiki i filozafii.
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By modal propositions I mean propositions that have been formed
after the pattern of one of the following four expressions:

(1) It is possible that p - in symbols Mp.

(2) It is not possible that p

(3) It is possible that not-p

(4) It is not poss1b1e that not-p  in symbols NMNp

The letter “p” designates here any proposition; “N” is the symbol
of negation (“Np “not-p™); » corresponds to the words “it is

in symbols NMp.A
in symbols MNp.

possible that”. Instead of sayingit- 1s-not*poss1bk that ‘not-p”,
can also use the phrase “it is necessary that p™. s

The expressions listed here are not identical with Kant’s “problem-
atical” and “apodictic” judgements. Rather they correspond to the
modal propositions of medieval logic originating in Aristotle and
formed from the four “modes™: possibile (e.g. Socratem currere est
possibile), impossibile, contingens, and necessarium. Besides these four
modes, two more modes were cited by the logicians of the Middle
Ages; namely, verum and falsum. However, these modes were given
no further consideration, as the modal propositions corresponding
to them, “it is true that p” and “it is false that p”, were regarded as
being equivalent to the propositions “p” and “Np”. 3

The expression “it is possible that” is not defined here; its sense is
_ made clear by the theorems which hold for modal propositions.

2. Theorems concerning modal propositions

In the history of logic we meet with three groups of theorems con-
cerning modal propositions. ' .

Among the first group 1 count those well-known theorems which
have been handed down to us from classical logic and have been re-
"garded by it as truths evident without demonstration:

(2) Ab oportere ad esse valet consequentia.

(b) Ab esse ad posse valet consequentia.

By contraposition we get from (b) a third proposition:

_(c) Ab non posse ad non esse valet consequentia.

2) Cf. Pl‘antl Geschichte der Loglk im Abendlande, vol. iii, p. 14, note 42; p. 117,
note 542.
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The latter proposition means: “The inference from not-being-possible
to not-being is valid”. For instance: It is not possible to divide a prime
number by four; therefore no prime number is divisible by four. This
example is plausible, and just as plausible is the following general the-
orem which we shall keep in mind as representative of the first group:

1. If it is not possible that p, then not-p.

" Less well known, but no less intuitive, seems 16 be the following
theorem of the second group quoted by Leibniz in the Théodicée:*)
(d) Unumquodque, quando est, oportet esse.
“Whatever is, when it is, is necessary.” This theorem dates back to
Aristotle, who, to be sure, holds that mot everything which is is neces-
sary and not everything which is not is impossible, but when some-
thing which is is, then it is also necessary; and when something which
is not is not, then it is also impossible. %)
The theorems just quoted are not easily interpreted. FJIst I shall

- give some examples.

It is not necessary that I should be at home this evening. But when
1 am at home this evening, then on this assamption it is necessary that
I should be at home this evening. A second example: It rarely happens
that I have no money in my pocket, but if I have now (at a certain
moment 7) no money in my pocket, it is nof possible, on this assumption,
that T have money (at just the same moment ¢) in my pocket.

Note has to be taken of two things about these examples, First, the
propositions: “I am at home this evening” and “I have (at the moment #)
10 money in my pocket” are supposed to be zrue, and on this supposition
the necessity or impossibility respectively is inferred. Secondly, the
word quando in (d), and the corresponding &tav of Aristotle, is not
a conditional, but a temporal particle. Vet the temporal merges into the
conditional, if the determination of time in the temporally connected
propositions is included in the content of the propositions. :

The examples given are, moreover, evident enough to establish the
following general theorem, which we shall keep in mind as represent-
ative of the second group:

%) Philos. Schriften (ed. Gerhardt), vol. 6, p. 131.
*) De interpr. 9. 19223: T& p&v oBv clvon © dv Srav §, xod 1o uh dv p.'q ai’vou.
Stav pd fi, dvaynn: ob pdy ofite T4 Bv dmay dvdysey slvon ofize 6 i v uh elveu.
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1. If it is supposed that not-p, then it is (on this supposition) not possible
that p.

The third group consists of only one theorem based on the Aristotelian
concept of “two-sided” possibility. According to Aristotle there are
some things which are possible in both directions, i.e. which can be,
but need not be. It is possible, for instance, that this cloak should be cut;
but it is also possible that it should not be cut. %)

Again, it is possible that the patient will die, but it is also possible

that he will recover, and therefore not die. This concept of two-sided -

possibility is deeply rooted in everyday thinking and speech. The fol-

lowing theorem, to which we will return, seems therefore to be just
as evidernt as the two preceding ones:

TIL. For some p: it is possible that p and it is possible that not-p.

3. Consequences of the first two theorems concerming modal propositions

We shall now draw some inferences from theorems I and IT cited
above. For this purpose we shall first represent those theorems in the
symbolism of propositional logic.

Let “Cpg” symbolize the implication: “if p, then g7, “p” and “g”
denoting any proposition. It is evident that theorem I can be expressed
in the form of an implication, which I call “thesis” 1:°)

1 CNMpNp.
Meaning: *If it is not possible that p, then not-p.”

It is not equally evident, but can be proved, that theorem II can be
represented as an implication which is the converse of 1. For if a propo-
sition “f” is valid on the assumption “«”, this means no more than that
“B* is true if “«” is true. The implication “if o, then B” therefore holds,
if “e” is true. Since this implication must also hold if “«” is false, it
holds in both cases. We thus arrive at the thesis:

2 CNpNMp.

%} De interpr. 9. 1929: 8hwq ZoTw &v Tolg pi del dvepyolor 76 Suvartdv slven
xod pd) Spoleg: &v olg dupe Evdéyetm, xal o clvon nod 76 i) elvon...olov &mu
Toutl 1O iudTiov Suvatéy éott SreTundRven...duotwg 3 xol Td wd Srwrpndijve

Suvatév,
%) Following-TLesniewski,- I understand by “theses” axioms as well as theorems

@

of a deductive system.
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This means: “If not-p, then it is not possible that p.” Theorem II cannot
be expressed in any other way in the two-valued propositional calculus.

From these theses and using the usual propositional calculus, we shall
prove several consequences. All the following demonstrations are
strictly formalized and carried out by means of two rules of inference:
substitution and detachment. These well-known rules of inference will
not_be discussed_here. T will only_explain how.formalized-proofs—aze

recorded in the symbolism which I introduced.

Before each thesis to be proved (to which consecutive numbers are
assigned for purposes of identification) is an unnumbered line; - which T~
call the “derivational line”. Each derivational line consists of two parts
separated by the sign “Xx”. The symbols before and after the separation
sign denote the same expression, but in different ways. Before the sepa-
ration sign, a substitution is indicated, which is to be carried.out on a
thesis already proved. In the first derivational line, for example, the ex-
pression “3g/Mp” means that “Mp” should be substituted for “¢” in 3.
The resultant thesis, which is omitted in the proof for the sake of brevity,
would be:

3 CCNMpNpCpMp.

The expression “C1-7” after the separation sign refers to this thesis
3’ and indicates that the rule of detachment can be applied to 3. Thesis
3’ is asserted as a substitution instance of thesis 3; but since it is an
implication whose antecedent is thesis 1, its consequent may be detached
and asserted as thesis 7. In the second derivational line the number “8”
denotes .the thesis obtained from 7 by the substitution “p/Np”. In the
derivational line of thesis 10, the rule of ‘detachment is used twice.
After these explanations, I believe the reader will have no difficulty
in vnderstanding the demonstration below. }

In addition to theses 1 and 2, which appear as axioms, four well-known
auxiliary theses from the ordinary propositional calculus appear in the
demonstration: three laws of transposition, numbered 3—5; and the
principle of the hypothetical syllogism, thesis 6. All of these theses I
place at the head of the demonstration as premisses.

1 CNMpNp.
2 CNpNMp.
3 CCNgNpCpgq.
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CCNpqCNgp.
5 CCpNgCqNp.
6 CCpgCCqrCpr.
-3g/MpxCl1-T7.
7 CpMp.
' 7 p/NpX8.
8 CNpMNp.
4 g/MNpx C8-9.
9 CNMNpp. —
6 p/NMNp, g/p, r/Mpx C9-C7-10.
10 CNMNpMp.
4 p/MNp, g/Mpx C10-11.
11 CNMpMNp.

%

: 3q/p, p/Mpx C2-12.
12 CMpp.

12 p/Np x 13.
13 CMNpNp.
5 p/MNp, g/px C13-14.
14 CpNMNp.
-6 p/Mp, q/p, INMNpx C12-C14-15.
15 CMpNMNp.
5p/Mp, q/MNp X C15-16.
16 _ CMNpNMp.

Theses 7-11 are consequences of 1; 12-16 result from 2. Thesis 7
says: “if p, then it is possible that p”. Thesis 9 says: “if it is not possible
that not-p, then p”. The latter thesis corresponds to theorem (a) in clas-
sical logic, cited above, the first to theorem (b). Both are evident.
In fact, all theses of the first group, 7-11, are evident.

Not so evident are the theses of the second group, 12-16. Thesis
12 reads: “if it is possible that p, then p”. On the basis of this thesis

we-can-infers-Tt-is-possible.that.the patient will die; hence he will die.
This inference will be admitted only by those making mo distinction

o e et et e
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between possibility and being. Theses of the second group, 12-16,
are the converses of theses of the first group, 7-11. Whoever admits
both groups of theses must assume the following propositions to be
equivalent: “p”, “it is possible that p”, and “it is not possible that
not-p”, or-“it is necessary that p”. Also the propositions “not-p”, “it is

possible that not-p”, and “it is not possible that p”. But then the con-

CEpts of possibility ammd mecessity -become dispensable—This—unpleasant——

consequence results from the acceptance of our symbolic formulation
of theorem II, which is evident in ordinary language and can be recog-
nized as being true without reservation. Nevertheless it ‘seems to me
impossible to express proposition II in the symbolic language of the
two-valued propositional calculus in any other way than by a simple
implication which is the converse of thesis 1.

4. Consequences of the third theorem on modal propositions

The symbolic formulation of the third theorem leads to another

unwelcome result.
Theorem III can be expressed only by means of the symbolism of the

extended propositional calculus. Let )7 be the existential quantifier,
and let “Dp” denote the expression “for some p” Let “Kpg” be the

symbol of conjunction, “p and g”, where “p” and “g” denote any propo-
sitions. Theorem IIT can then be expressed symbohcally as follows:
17 D'pKMpMNp.

This means verbally: “For some p: it is possible that p,and it is possible
that not-p.”
The existential quantlﬁer “>'” can be expressed by means of the

universal quantifier «[]". If “[]p” says: “for every p”, and if “a(p)”
represents any expression containing “p”, the following definition is
evident:
D1 2pa(p) = N][pNe(p).

D1 states that the expressions: “for some p, a(p) (holds)” and “it is
not true that for each p not-a(p) (holds)” mean the same thing. Thesis
17 then becomes the following thesis:

18 NJ[pNEMpMNp.
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There is, however, besides the extended propositional calculus, a still
more general logical system created by Ledniewski, which he has termed
“protothetic”. ”) The main difference between protothetic and the extend-
ed propositional calculus is the occurrence in the latter of variable
“functors” ®) as well as constants.

Denoting a variable functor to which one proposition only is attached
as argument by “$”, we can prove the following proposition in proto-
thetic:

CK¢pdNpeq.

1 WOI‘dS “If ¢-of p-and-¢-of not-p,- then-¢p-of-g.>-

Since this proposition is valid for all functors with one argument
it is also valid for the functor “M”. We thus obtain:

19 CKMpMNpMgq.

Theses 18 and 19, as well as two auxiliary theses from the ordinary
propositional calculus, viz. the principle of transposition 4 mentioned
above, and another rule of transposition, thesis 20, are premisses of the
formalized proof given below. Besides substitution and detachment,
the rule for the introduction of a guantifier is used in the proof. This
rule runs thus: If in the consequent of an implication which is a thesis
there occurs a free propositional variable “p” which does not occur

in the antecedent of that implication, the symbol “[]p” may be put
before the consequent. This rule of inference is denoted below by “+ I
Beginning with the premisses, our demonstration then reads thus:

18 NJ]pNEMpMNp.

19 CKMpMNpMg.

20 CCpqCNgNp.
20p/KMpMNp, q/Mgx C19-21.

21 CNMqNKMpMNp. .
214-][x 22.

22 CNMg[ | pNEMpMNp.

7) S. Le$niewski, “Grundziige eines neuen Systems der Grundlagen der Mathe-
matik”, introduction and §§ 1~11, Fund. Marh. 14(1929).

%) In the function “Cpg™, “C*"i§the “fufictor”, and “p” and “g” the “arguments”.
The term “functor™ was introduced by Kotarbiriski.

e o i e o i .
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dp/Mp, q/[ [ PNKMpMNp x C22q/p—~ C18 - 23.
23 Mp. :

The result obtained, thesis 23, has to be admitted as being true. This
thesis, which in words reads “it is possible that p”, holds for any p.
We therefore have to admit as true the proposition “it is possible that
2 is a prime number”, as weil as the proposition “it is possible that

27is not a prime number”. Freely speakimg, we havé been led to admit
everything as possible by reason of theorem IIT. Yet if everything is
possible, then nothing is impossible and nothing necessary. For if the
proposition “Mp” is admitted, we obtain from it by substitution the
proposition “MNp”, and the expressions “NMp” and “NMNp” have
to be rejected as negations of those preceding. :

These are consequences running contrary to all of our intuitions.
Yet I see no possibility of expressing theorem III, in the symbolism
of the extended propositional calculus, in any other form than that
of thesis 17 or 18.

5. Incompatibility of the theorems on modal propositions in the two-valued
propositional calculus

The unpleasant consequences to which we were led by theorems II°
and III considered separately become wholly unacceptable when we

" consider both theorems together.

Indeed, when we combine thesis 12, resulting from the symbolic
formulation of theorem II, with thesis 23:

12 CMpp
23 Mp
we immediately obtain:
12 C23-24,
24 " p.

If therefore theses 12 and 23 are valid, any proposition p is valid too.
Hence we arrive at the inconsistent system of all propositions. Theorems
II and III are incompatible when symbolically represented as theses 2
and 18.

‘We can obtain the same result W1thout employing thesis 19, which
presupposes a proposition from protothetic. In the following demon-
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stration we use the theses 12, 13, and 20 alone, as well as certain aﬁxiliary
theses of the ordinary propositional calculus:

25 CpCqp.
26 NKpNp.
27 CCpqgCCrsCKprKgs.

*

27p/Mp, glp, ¥/ MNp, s/prClZ C13-28.

28 CKMpMNpKpNp.

20p/KMpMNp, q/KpNpX C28 ~ C26=29. ..
29 NKMpMNp.

25p/NKMpMNp.x C29 - 30.
30 CqNKMpMNp.

304+J]x31.
31 CquNKMpMNp.

' 31g/CpCqpx C25~32.

32 [1pNKMpMNp.

Theses 18 and 32 contradict each other. Therefore proposmons II
-and III are incompatible.

The demonstration given above could be made intuitively plausible
in the following manner: If according to proposition III the expressions
“Mo” and “MNe” were jointly true for a certain proposition “a”,
then the propositions “«” and “No” would also have to be true accord-
ing to theses 12 and 13. Yet this is impossible, because “«” and “Na”
contradict each other.

In view of this fact the problem of modal propositions could be solved
in two ways, taking the two-valued propositional calculus as a basis.
Theorem I and those theses of thé first group conmected with it (viz.
theses 1 and 7-11) have to be accepted unconditionally; they were
actually never called in question. Of theorems IT and III only one can
be selected. If we decide in favour of theorem II and those theses of the
second group connected with it (viz. theses 2 and 12-16), then all modal
propositions become equivalent to non-modal ones. The consequence
ofthis—is—that-it-is-not-worth-while -to-introduce modal propositions
into logic.' Also, the extremely intuitive concept of two-sided possibility

‘to-be-satisfactory: - — e
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must then be rejected as being inconsistent. If, on the other hand, we
decide in favour of proposition III, we are compelled to admit the para-
doxical consequence that everything is possible. On this condition
again it is senseless to introduce modal propositions into logic; more-
over, we would then have to do without the intuitively evident theorem
IT in order to avoid contradiction. None of these solutions can claim

A different result was not to be expected. This becomes especially
clear when the system of the two-valued propositional calculus is defined

- by the so-called matrix method. On the basis of this method it i§ assumed

that all propositional variables can take only two constant values,
namely “0” or “the false” and “1” or “the true”. It is further laid down

- that:

CO0—=COl=Cll=1, Cl0=0, NO—1, and NI=0.
These equations are recorded in the following table, which is the
“matrix” of the two-valued propositional calculus based on “C” and “N™.

Cl0 1|N
ol1 11
11010

In a two-valued system only four different functions of one argument
can be formed. If “¢” denotes a functor of one argument, then the
following cases are possible: (1) ¢0 =0 and ¢1 = 0; this function
we denote by “Fp” (“falsum of p”). (2) $0 =0 and ¢1=1; ¢p is equiv-
alent to p. (3) ¢0 =1 and ¢1 = 0; this is the negation of p, “Np”.
(4) 0 = 1 and @1 = 1; this function we denote by “Vp” (“verum of p*)-

“Mp” must be identical with one of these four cases. But each of theses
1, 2, and 18 excludes certain cases. By direct verification with “0” and

““1” it can be ascertained that:

1 CNMpNp holds only for Mp = p or Mp = Vp.
Ayt 2 - CNpNMp holds only for Mp = p or Mp = Fp.
18 N]]pNEMpMNp holds only for Mp = Vp.

Thesis 18 is verified by the statement: II po(p) = Ka(0)a(l). One
then obtains: '
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N[]pNEMpMNp = NKNKMOMNONKM1MNT
: = NKNKMOMINKM1MO
= NENKMOMINKMOM1
— NNKMOM1 = KMOMT.

The last conjunction obtains only on the condition that
MO=M1=1.

The conditions (A) make it evident that theses 1 and 2 can be valid
jointly only for Mp = p; just.as theses 1 and 18 can be valid only for

Mp = Vp. Theses 2 and 18 are incompatible;-as-there is no function
for “Mp” which would simultaneously verify both theses.

~

6. Modal propositions and the three-valued propositional calculus

When I recognized the incompatibility of the traditional theorems
on modal propositions in 1920, I was occupied with establishing the
system of the ordinary “two-valued” propositional calculus by means
of the matrix method. %) I satisfied myself at that time that all theses
of the ordinary propositional calculus could be proved on the assumption
that their propositional variables could assume only two values, “0”
or “the false”, and “1” or “the true”.

To this assumption corresponds the basic theorem that every propo-
sition is either true or false. For short I will term this the law of biva-
lence. Although this is occasionally called the law of the excluded

%) In the report cited in note 1 (p. 153) I had defined the concept of two-sided pos-
sibility more strictly by assuming that the propositions “it is possible that p” and
“it is possible that not-p” must always hold simultaneously, which in conjunction
with propositions of the two first groups leads to numerous contradictions. I had
in mind here the Aristotelian concept of “pure” possibility. It scems that Aristotle
distinguished between two essentially different kinds of possibility: possibility in the
proper sense or pure possibility, by which something is only possible if it is not nec-

essary; *and possibility in the improper sense, which is connected with necessity -

and results from it according to our thesis 10. Cf. H. Maier, Die Syllogistik des Ari-
stoteles, part i (Tiibingen, 1896), pp. 180, 181.

10) The results of these inquiries have been published in my article “Logika dwu-
wartosciowa”. _(Two-valued ILogic), which appeared in the Polish philosophical

review Przeglad Filozoficzny (Studies in honour of Professor Twardowski) 23 (1921),
pp. 189-205 [pp. 89109 of this book]. _

3
A
!

1

|
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middle, I prefer to reserve this name for the familiar principle of classical
logic that two contradictory propositions cannot be false simultaneously.

The law of bivalence is the basis of our entire logic, yet it was already
much disputed by the ancients. Known to Aristotle, although contested
for propositions referring to future contingencies; peremptorily rejected
by the Epicureans, the law of bivalence makes its first full appearance
with Chrysippus and the Stoics as a principle of their dialectic, which

represents the ancient propositional calculus. 1) The quarrel about the
law of bivalence has a metaphysical background, the advocates of the

law being decided determinists, while its opponents tend towards.an.

indeterministic Weltanschauung.*?) Thus we have re-entered the area
of the concepts of possibility and necessity.

The most fundamental law of logic seems after all to be not quite
evident. Relying on venerable examples, which gogback to Aristotle,
I tried to refute the law of bivalence by pursuing the following line
of thought.*)

T can assume without contradiction that my presence in Warsaw
at a certain moment of next year, e.g. at noon on 21 December, is at
the present time determined meither positively nor negatively. Hence
it is possible, but not necessary, that I shall be present in Warsaw at
the given time. On this assumption the proposition “I shall be in War-
saw at noon on 21 December of next year”, can at the present time
be neither trué nor false. For if it were true now, my future presence in
Warsaw would have to be necessary, which is contradictory to the
assumption. If it were false now, on the other hand, my future presence
in Warsaw would have to be impossible, which is also contradictory
to the assumption. Therefore the proposition considered is at the mo-
ment neither true nor false and must possess a third value, different
from “0” or falsity and “1” ‘or truth. This value we can designate by

1) Cf. the appendix: “On the history of the law of bivalence”, pp. 176 ff.

2) In the inaugural address which I delivered as Chancellor of the University
of Warsaw in 1922, I tried to solve the problem of an indeterministic philosophy
by three-valued logic. A revised version of this lecture will be published shortly in
Polish. [In fact, this text (“On Determinism”) was published 16 years later by J. Sku-
pecki in the 1961 edition Z zagadnies logiki i filozofii, an'd pext, in an English trans-
lation in-the McCall edition as paper 2, reprinted in this bock on pp. 110-128.]

*) In the paper “On Determinism” mentioned above Lukasiewicz gives an example
of the reasoning of the same kind.
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“1» Tt represents “the possible”, and joins “the true” and “the false”
as a third value. )

The three-valued system of propositional logic owes its origin to this
line of thought. Next the matrix had to be given by which this new
system of logic could be defined. Fmmediately it was clear to me that
if the proposition concerning my future presence in Warsaw: took
the value %, its negation must take the same value 1. Thus I obtained
the equation N4 = 3. For implication I still had to determine the
five equations containing the value %, namely C0%, C10, Cii, C%l,
and Cl%. Equations not containing the value 4, I took over from the

- two-valued system of propositional Jogic, as well as the values for “N0O”
and “N1”. The desired equations I obtained on the basis of detailed
considerations, which were more or less plausible to me. In this way I
finally arrived at the formulation of a three-valued propositional cal-
culus, defined by the matrix below. The system originated in 1920.%)

clo % 1|N
ol1 1 11
BlEo113
11032 1]o0

7. Definition of the concept of possibility

On the basis of this system I then tried to construct a definition of
the concept of possibility which would allow me. to establish all the
intwitive traditional theorems for modal propositions without contra-
diction. T did this with regard to the concept of “pure” possibility,
and soon found a satisfactory definition. %) Later on, however, I became

1%) Ireported on this system to the Polish Philosophical Society at Lwow on 19 June,
1920, The essential contents of this report have been published in Ruch Filozoficzny 5
(1920), p. 170 [pp. 87-88 of this book].

14) The definition found was rather complicated and read thus:

D*1 Mp = AFpNpJJgNCpKgNg. .

" That is: The expression “it is possible that p” means “cither p and not-p are equiva-
lent to one another, or there i$ no pair of contradictory propositions implied by p”.
“4” is the sign of alternation; “E” the sign of equivalence. In. three-valued logic the
following definitions hold:

D2 Apg-—=-ECpag:

D*3 Kpg = NANpNg.

~Tarski’s definition 1S as follows:
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convinced that the wider concept of possibility in general was to.be
preferred to the more narrow concept of pure possibility. In what follows,
therefore, I discuss a definition of the latter concept, which satisfies
all the requirements of theorems I-111.

The definition in question was discovered by Tarski in 1921 when
he attended my seminars as a student at the University of Warsaw.

D2 Mp = CNpp.
Expressed verbally this says: “it is possible that p”. means-“if not—p- :
then p”.

One must grasp the intuitive meaning of this definition. The expres-
sion “CNpp” is according to. the three-valued matrix false if and only
if “p” is false. Otherwise “CNpp” is true. Thus we obtain the equations:

MO0=0, Mi=1 Ml=1.

D*4 Epg = KCpgCyp.
The definition of “impossibility” is more evident:
D*5 NMp = KNEpNp 3 qCpKqNg.

That is, the expression “it is not possible that p” means “p and not-p are not equiva-
lent to one another, and there is a pair of contradictory propositions implied by p”.
. From D*1 the following equations are obtained for “M™: M0 =0, M} =1,
M1 = }. By means of these equations and the matrix of the three-valued propositional
calculus the following theses can be easily verified:

(6} CpCpNMNp.

(#3)] CNpCNpNMp.

€)) CMpCMpMNp.
@ CMNpCMNpMp.
(&) CNMpCNMpNp.
©®) CNMNpCNMNpp.

Thesis (5) allows us to obtain by two detachments, in accordance with theorem I and
on the basis of the admitted proposition “it is not possible that «” (“NMe«”), the
proposition “not-o” (“Ne”). Conversely we get by two detachments the proposition
“it is not possible that «” (“NMe”) from thesis (2), in accordance with theorem II,
on the basis of the admitted proposition “not-«” (“N«). Furthermore, if one of
the propositions “it is possible that & (“M«”), and “it is possible that not-«” (“MN«™)
is admitted, the other of these propositions has to be admitted too, by theses (3)
and (4). From the admitted propositions “e” and “it is necessary that «” no inference
can be made to the proposition “it is possible that «”, since we are dealing here with
“pure” possibility, which is incompatible with necessity. Cf. note 9, page 164.
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Hence, if any proposition “o” is false, the proposition “it is possible
that o is false too. And if “« is true, or if it takes the third value,
that of “possibility”, then the proposition “it is possfble that «” is true.
This agrees very well with our intuitions.- - -

In two-valued logic the expression “CNpp” is eqmvalent to the ex-
' pression “p”; but not in three-valued logic. The thesis “CCNppp”,
valid in the two-valued calculus, and appearing as an axiom in my
system of the ordinary propositional calculus,*) is not valid for p = %
in the three-valued system. Vailati has written an interesting mono-

——graph—on—the—thesis “CCNppp”,2%) in_which it is shown that Euclid

made use of this thesis in demonstratmg one of his theorems, without
formulating it expressly.’) Tt was Clavius, a commentator on Euclid
from the second half of the sixteenth century, a Jesuit and the con-
structor of the Gregorian calendar, who first paid attention to this
thesis.'®) Since that time it appears to have acquired a certain popularity
among Jesuit scholars under the name consequentia mirabilis. 1) The
notable Jesuit Gerolamo Saccheri in particular was so taken by the

15) Cf. Elementy logiki matematycznej (Elements of mathematical logic), a litho-
graphed edition of lectures given by me at the University of Warsaw in the autumn
of 1928-1929, revised by M.. Presburger (Warsaw, 1929), p. 45. [An English trans-

lation madé by O. Wojtasiewicz and edited by J. Stupecki (Elements of Mathematical -

Logic) was published as co-edition by PWN and Pergamon Press in 1963 and
reprinted in 1966.]

16y Seristi di G. Vailati, Leipzig-Firenze, 1911. CXV. 4 proposito d’un passo del
Teereto e di una dimostrazione di Euclide, pp. 516-5271.

17y Cf, Vailati, op. cit., pp. 518 ff. Tt seems to have escaped Vailati that the above-
mentioned thesis was already known to the Stoics, although not in its pure form.
We read in Sextus Empmcus, Ady. math. viil. 292; el 16 wpdTov, TO -rcpcrov el od
T4 medloy, TO mpdTov Hror TO TedToy H ob T mpdrov: 6 medTov &px. If in
this schema the sclfievident premisses el <& wpéTov, 70 me‘mv and #ror <o
mpdToy ) od T mpdtov are omitted, we obtain the consequence st od Td TpdTOY,
T mHdTov- T medvov dpu, which corresponds to the thesxs “CCNppp

18 Cf.: Vailati, op. cit., p. 521.

1) I.find the name consequentia mirabilis for this thesis in the writings of Polish

Jesuits. Adam Krasnodebski, in his Philosophia Aristotelis explicata (Warsaw, .

1676), Dialecticae Prolegomenon 21, writes, for instance, the following: Artificium
argumentandz per consequentmm mzrabzlem in hoc pasztum est (utt de re speculatzva

1 difficul. 1 No. 20 refert), ut ex proposztwne quam tuetur respondens, ab argumentante
eliciatur contradictoria. : : e
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thesis “CCNppp” that he attempted fo demonstrate Euclid’s par-
allel postulate on the basis of it. The attempt failed, but Sac-
cheri gained the nﬂe of being a precursor of non—Euchdean geon-
etIy 20)

The thesis “CCNppp” states that if for a certain proposmon, say “a”,
the implication “CNaa” holds, then “«” holds too. The implication

“if noteo;therru™does not-to-be-stre; meamthe-same-as-the-expression
“q can be inferred from not-o”, yet the more general conéept of impli-
cation covers the more special case of inference. If therefore from
a proposition “not-¢” the proposition “¢” can be inferred, then “a”
is true. It would, however, not be correct to assume with Saccheri
that the fact “from not-« is inferred «” stamps the proposition “&”
as a prima veritas.®) On the contrary, the -thesis “CCNppp” strikes
us as outrightly paradoxical; as is also indicated by its name, conse-
quentia mirabilis. This alone is certain: if any proposition can be inferred

from its contradictory opposite, it is certainly not false, hence not

impossible either. It is possible, as Tarski’s definition states. This de-
finition will perhaps be even more obvious, if it is applied to the concept
of nece551ty For we obtain in accordance with D2:

D3 NMNp = N Cpr,

which says that “it is necessary that p” means “it is not true that if p,
then not-p”. Freely speaking, we can then assert that a certain propo-
sition “o” is necessary, if and only if it does not contain its own ne-
gation.

Without stressing the intuitive character of the above definition,
we have to admit in any case that this definition meets all .of the re-
quirements of theorems I-ITI. Indeed, as Tarski has shown, it is the
only positive. definition in the three-valued system which meets these
requirements. We will now proceed to demonstrate these last
assertions.

20 Cf. Vailati, op. cit. CIX. Di un’opera dimenticata del P. Gerolamo Saccheri
(‘Logica demonstrativa’ 1697), pp. 477-484.

21y Cf. Vailati, op. cit., p. 526, where the following words of Saccheri are quoted:
“Nam hic maxime videtur esse cuiusque primae veritatis veluti character ut non nisi
exquisita aliqua redargutione ex suo ipso contradictorio assumpto ut, vero illa ipsi
sibi tandem restitui possit” (Euclides ab omni naevo vindicatus; p. 99).
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8. Consequences of the definition of the concept of possibility

From definition D2 it follows that all theses of the first group are
verified, i.e. thesis 1, corresponding t6 theorem I, and theses 7-11. For
in three-valued propositional logic the thesis

T1 - CpCqp
holds good. We thus obtain:
Tlg/NpXT2.
__ T2 CpCNpp. B
T2.D2XT3.
T3 CpMp.

In the derivational line belonging to thesis T3 a rule of inference has
been used which permits us to replace the right side of a definition
by its left. Since all laws of transposition as well as the principle of
the syllogism hold true in the three-valued calculus, we obtain all’ of
the remaining theses of the first group from T3. All these theses are
perfectly evident.

The theses of the second group are not valid. However, not all these
theses are evident in any case. Two of them, of which one corresponds
to theorem IT, are in a certain sense valid, though not as simple impli-
cations. To be exact, by definition D2 the followmg proposmons hold
trie in the three-valued calculus:

CpCpNMNp and CNpCNpNMp,
although the expressions
CpNMNp and CN, pNM i

are not valid. This is caused by the fact that in the three-valued calculus

- the thesis “CCpCpqCpg” does not hold, and because of this the expres-
sions “CaCaf” and “Cuaf” are not equivalent to each other as they
are in the ordinary two-valued calculus. The above-mentioned propo-
sitions can be demonstrated by means of the following auxiliary theses,
which also hold true in three-valued propositional logic:

T4 - CpCCpqq.
_T5 CpCCNNpgg.. oo
T6 CCpCqgrCpCNrNg.
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T7 CCpCqNrCpCriNg.

Lok

Tép/Np, q/CNpp, r[px CT4p/Np, q/p-T8.

. T8 CNpCNpNCNpp.
T8.D2xT9.
T9 CNpENTNMp- - ——
T7q/CNNpNp, rlp X CT5g/Np-T10.
T10 CpCpNCNNpr.
) T10.D2p/Npx T11.
Til CpCpNMNp.

If the proposition “not-«” is admitted, then by double detachment
applied to thesis T9, the propesition “it is not possible that o is obtained.
If the proposition “a” is admitted, then, by T11 and double detachment,
one arrives at the proposition: “it is not possible that not-¢” which
means the same as “it is necessary that «”. It can therefore be correctly
inferred: “I have no money in my pocket; hence it is not possible that I
have money in my pocket.” Or again, “I am at home in the evening;
hence it is necessary that I am at home in the evening”. The intuitively
evident theorem II has been shown to hold good, moreover, in such
a way that-the Aristotelian maxime is maintained, according to which
not everything which is is necessary and not everything which is not
is impossible. For the expressions “o” and “NMNo” as well as “No”
and “NMe” are not equivalent to each other. Nor can being be inferred
from possibility, as long as “Mp” means the same as “CNpp”, since
neither “CMpp” nor “CMpCMpp” holds true in the three-valued prop-
ositional calculus.

Finally, theorem IIT is verified in the form of the theses:

Ti2 > PKMpMNp

or

Ti3 " N]|[pNEMpMNp,

in which the following definitions are assumed:
D4 Apg = CCpqq.

D35 Kpg = NANpNg.

Theses T12 and T13 are easily verified with the help of the matrix of
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the three-valued calculus and the equations given for “M” in the pre-
ceding section. For p = § we obtain:
KMiMN} = KiM{= K11 =1.

There is, therefore, a value for p for which the expression “KMpMNp”
is. correct.

As a résumé of the above findings we are now able to establish the
following theorem:

All the traditional theorems for modal propositions have been established

free of contradiction in the three-valued propositional calculus, on the

basis of the definition “Mp = CNpp”. } . .

This result seems to me highly significant. For it appears that those
of our intuitions which are connected with the concepts of possibility
and necessity point to a system of logic which is fundamentally differ-
ent from ordinary logic based on the law of bivalence.

It rerhains to prove that the definition given by Tarski is the only
one in the three-valued calculus which meets the requirements of the-
orems.I-IIT. This can be shown in the following manner. Since accord-
ing to theorem I the proposition “No” follows from the proposition
“NMea”, by the law of tramsposition “Me” must follow from “o”.
Hence, if o = 1, then M« = M1 ='1. We thus obtain the equation
M1 = 1. On the other hand, according to theorem II the proposition
" «NMa” follows from the proposition “No”. Hence if o = 0, or Nt =1,
then NMa = NMO = 1. But NMO can equal 1 only under the condi-
tion that MO =— 0. We thus obtain the second equation: M0 = 0.

‘Finally also theorem III, * E pKMpMNp”, must be true. But it is not
true for p = 0 or p = 1, for in both cases one term of the conjunction
is false; hence the conjunction itself must be false too. We therefore
have to assume that-M% = 1, since only then does the conjunction
“KMpMNp” equal 1 for p = }. In this way the function “Mp” is fully
determined  for the three-valued propositional calculus, and can be
defined only by “CNpp” or by some other expression equivalent to it.

9. Philosophical significance of many-valued systems of propositionsﬂ logiC'

Besides_the three-valued éystem of propositional logic, I discovered

an entire class of closely related systeliis in 1922, which I defined by
means of the matrix method in the following manner:
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When “p” and “g” denoté certain numbers of the interval (0, 1), then:.

Cpg=1 for p< g,
Cpg =1—p+q forp>g,
Np=1—p.

If only the limiting values 0 and 1 are chosen from the interval (0, 1),
the abave definition_represents the matrix of the ordinary two-valued

propositional calculus. If, in addition, the valie { is included, we obtain
the matrix of the three-valued system. In a similar manner 4,5, ...
n-valued systems can be formed. -

essy R s

systems only two can claim ‘any philosophical significance: the three-
valued and the infinite-valued ones*) For if values other than “0”
and “17 are interpreted as “the possible”, only two cases can reasonably
be distinguished: either one assumes that there are no variations in
degree of the possible and consequently arrives ‘at the three-valued
system; or one assumes the opposite, in which case it would be most
natural to suppose (as in the theory of probabilities) that there are
infinitely many degrees of possibility, which leads to the infinite-valued
propositiohal calculus. T believe that the latter system is preferable to
all others. Unfortunately this system has mot yet been investigated
sufficiently; in particular the relation of the infinite-valued system to
the calculus of probabilities awaits further inquiry. 2y

If the definition of possibility established by Tarski is assumed for
the infinite-valued system, there result, as in the three-valued system,
all theses mentioned in the preceding section. The intuitively evident
theorems I-III are therefore also verified in the infinite-valued propo-
sitional calculus.

The three-valued system is a proper part of the two-valued, just as
the infinite-valued system is a proper part of the three-valued one.
This means that all theses of the three- and infinite-valued systems
(without quantifiers) hold true for the two-valued system. There are,
however, theses which are valid in the two-valued calculus but not

22y My little book Die logischen Grundlagen der ‘Wahrscheinlichkeitsrechnung,
Cracow, 1913, Akad. d. Wiss., tries to base the notion of probability on quite a dif-
ferent idea.

*)In his “A System of Modal Logic” (pp. 352390 of this book) Lukasiewicz
Lolds a clearly different opinion on this issue.

Tt was clear to me from the outset that among aJl the mény-valued"
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in the infinite-valued system. But when it is a question of the best
known propositional theses—for instance those listed in Principia
Mathematica®)—the difference between the three-valued and the in-
finite-valued propositional calculus is minimal. To be sure, I cannot
find a single thesis in this work that would be valid in the three-valued
system without being also true in the infinite-valued one.

The most important theses of the two-valued calculus which do not
hold true for the three- and infinite-valued systems concern certain
apagogic inference schemata that have been suspect from time imme-

morial—For-example,—the following theses do_not-hold true in many-
valued ‘systems: “CCNppp”, “CCpNpNp”, “CCpgCCpNgNp”, “CCpKq
NgNp”, “CCpEgNqNp”. The first of these theses has been discussed
above; the second differs from the first only by the introduction of the
negation of p for p. The two other theses justify us in assuming a propo-
sition “Nu” to be true, when from its opposite “o” two mutually contra-
dictory propositions can be derived. The last thesis asserts that a prop-
osition from which the equivalence of two contradictory propositions
follows is incorrect. There are modes of inference im mathematics,
among others the so-called “diagonal method” in set theory, which are
founded on such theses not accepted in the three- and infinite-valued
systems of propositional logic. It would be interesting to inquire wheth-
er mathematical theorems based on the diagonal method could be dem-
onstrated without propositional theses such as these.

Although many-valued systems of propositional logic are merely
fragments of the ordinary propositional calculus, the sitnation changes
entirely when these systems are extended by the addition of the uni-
versal quantifier. There are theses of the extended many-valued systems
which are not valid in the two-valued system. T13 serves as an example
of such a thesis. If the expréssion “Mp™ in T13 is replaced in accordance
with D2 by “CNpp”, and “MNp” by “CNNpNp”, we obtain the thesis:

T14 N[ pNKCNppCNNpNp,
which is false in the two-valued calculus. The three-valued system of

propositional -logic with quantifiers, which owing to the research of
Tarski and Wajsberg can be represented axiomatically, is the simplest

2% Cf. A.N. Whitehead and B. Russegl.]v,“}"rinczpia Mathematica (Cambridge,
1910), vol. i, pp. 94-131. .
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example of a consistent logical system which is as different from the
ordinary two-valued system as any non-Euclidean geometry is from
the FEuclidean.

I think it may be said that the system mentioned is the firsz intuitively
grounded system differing from the ordinary propositional calculus.
Tt was the main purpose of this communication to prove that this in-

tuitive-basis-lay-trthe-theoremsI-TH;-which are -intuitively evidentfor
modal propositions, but which are not jointly tenable in ordinary logic.
Tt is true that Post has investigated many-valued systems of proposi-
tional logic from a purely formal point of view, yet he has not~been’
able to interpret them logically.*) The well-known attempts of Brou-
wer,*) who rejects the universal validity of the law of the excluded
middle and also repudiates several theses of the ordinary propositional
calculus, have so far not led to an intuitively based system. They are
merely fragments of a system whose construction and significance are
still entirely obscure. >%)

Tt would perhaps not be right to call the many-valued systems of prop-
ositional logic established by me “non-Aristotelian™ logic, as Aristotle
was the first to have thought that the law of bivalence could not be
true for certain propositions. Our new-found logic might be rather
termed “non-Chrysippean”, since Chrysippus appears to have been
the first logician to consciously set up and stubbornly defend the the-
orem that every proposition is either true or false. This Chrysippean
theorem has to the present day formed the most basic foundation of
our entire logic. )

It is not easy to foresee what influence the discovery of non-Chry-

24} See E. L. Post, “Introduction to a general theory of elementary propositions”,
Am. Journ. of Math. 43 (1921), p. 182: “... the highest dimensioned intuitional prop-
osition space is two.”

' 2%) Cf., e.g., L. E. J. Brouwer, “Intuitionistische Zerlegung mathematischer Grund-
begriffe”, Jahresber. d. Deutsch. Math.-Vereinigung 33 (1925), pp. 251 ff.; “Zur Be-
eriindung der intuitionistischen Mathematik. 17, Math. Ann. 93 (1925), pp. 244 .

#*) In 1930, when this article appeared, the results obtained by A. Heyting and
expressing Brouwer’s intuitions in the form of a formalized logical system were not
yet published. In his paper “On the Intuitionistic Theory of Deduction” (pp. 325-340
of this book) Lukasiewicz says of that system: “It scems to me that among the hith-
erto known many-valued systems of logic the intuitiomistic theory is the most in-
tuitive and elegant”.
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sippean systems of logic will exercise on philosophical speculation.
However, it seems to me that the philosophical significance of the
systems of logic treated here might be at least as great as the signifi-
cance of non-Euclidean systems of geometry.

APPENDIX _
On the history of the law of bivalence

The law of bivalence, i.c. the law according to which every proposition

is either true or false, was familiar to Aristotle, who explicitly character-
ized a proposition, dnbgavsig, as discourse which is either true or
false. We read in De interpr. 4.1722: dmogovtinde 3¢ (scil. Aéyoc;
Myog dmopavrinbég = drbpavolg) od wie, AN &v § TO dndedewv P
Yebdectan Gmdpyst. Aristotle, however, does not accept the validity
of this law for propositions dealing with contingent future events.
The famous chapter 9 of De interpretatione is devoted to this matter.
Aristotle believes that determinism would be the inevitable consequence
of the Jaw of bivalence, a consequence he is unable to accept. Hence
he is forced to restrict the law. He does not, however, do this decisively
enough, and for this reason his way of putting the matter is not quite
clear. The most important passage reads as follows (De interpr. 9.19236):
Todrey yap (scil. Tév p) det Svrwv §) un detl ) Svrav) dvdyen usv Sdrepov
pbproy g dvripdoswe dAndes elvan §) $eldoc, od pévror T63e §) 743
G bmbrep  Eruxs, wal pEAlov pév ¥ Ty érépay, ob wévro
%8 dnd% 3 (eudh. Another passage of ‘De interpretatione,
viz. 18P8: b ydp 6mbrep’ Evuyev 008ty pdalov obrwg §) wi) olrwg et )
gter, allowed the Stoics to maintain that Aristotle denied the law of
bivalence. Thus we find in Boethius, 4d Arist. de interpr., ed. secunda,
rec. Meiser, p. 208 (ed. Bas., p. 364), the pa:ssage: “putaverunt autem
quidam, quorum Stoici quoque sunt, Aristotelem dicere in futuro
contingentes nec veras esse nec falsas”. The Peripatetics attempted
to defend Aristotle against this objection by puzzling out a “distinc-
tion” between the definite verum and the indefinite verum, non-exist-
ent in the Stagirite’s works. Thus Boethius says (Ad Arist. de interpr.,

edprima;rec-Meiser;p-125):-“*manifestum esse non necesse esse om-
nes adfirmationes et negationes definite veras esse (sed deest ‘defimite’

e oot i
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atque ideo subaudiendum est)”. The sentence in parentheses has been
taken almost literally from Greek commentators. Cf. Ammonius, In
librum Arist. de interpr., ed. Busse, p. 141, 20: mpooumaxovopévon
SnhovoTy ol “hosplowives”.

There can be no doubt that the Epicureans, who embraced an in-
deterministic Weltanschauung, made Aristotle’s idea their. own. One

of ’ﬂfmt‘ﬁﬁpwtant—pzsszges—bearmg—wﬁness to this-has been-trans<
mitted to us by Cicero, De fato 37: “Necesse est enim in rebus con-
trariis duabus (contraria autem hoc loco ea dico, quorum alterum

ait quid, alterum negat) ex his igitur necesse est, invito Epicuro, alterum

verum esse, alterum falsum: at ‘sauciabitur Philocteta’, omnibus

- ante seculis verum fuit, ‘non sauciabitur’, falsum. Nisi forte volumus

Epicureorum opinionem sequi, qui tales enuntiationes nec veras mec
falsas esse dicunt: aut, cum id pudet, illud tamen dicunt, quod est im-~
pudentius, veras esse ex contrariis disiunctiones; sed, quae in his enun-
tiata essent, eorum neutrum esse verum.” Cicero opposes this-opinion
and then continues: “Tenebitur ergo id quod a Chrysippo defenditur:
omnem enuntiationem aut veram aut falsam esse”. That not only the
Epicureans shared the opinion of Aristotle, follows from a passage
of Simplicius, In Arist. cat., ed. Kalbfleisch, p. 406 (f. 103A ed. Bas.):
“5 82 Nuixborpatog cimra wxdvradde Mywv pi (Sov elvor
T8V xord dvilouow dvrixeévey T Soupsiv Td dAndis xeld o Pelidoc.

. of ykp ele Tdv peNovra ypbvov Eywedupévon wpotdoery ofTe
GAndeic clowy ofve $eudeic Nd Ty 7o¥ Evdeyxopévov

[$7%

gbow ofite yap T ‘Forew vavpeyle &inSEc ofre 1 ‘odx Eoral,

&\ mbrepov Eruyev”. The latter example is borrowed from Aristotle’s-

De interpr. 9. 19230. For Nikostratos see Prantl, vol. i, pp. 618-620.
In conscious opposition to this, the Stoics, as outspoken determinists,
and especially Chrysippus, established the law of bivalence as the
fundamenta] principle of their dialectic.. As evidence the following
quotations, taken from J. v. Arnim’s Stoicorum veterum fragmenta,
vol. ii, may be cited: (1) Page 62, fr. 193: Diccles-Magnes apud Diog.
Laert. vii. 65: éElopa 3¢ domwv & &omwv dAndic §) eldoc. (2) Page 63,
fr. 196: Cicero, Acad. Pr. ii. 95: “Fundamentum dialecticae est, quid-
quid enuntietur (id autem appellant dflope—) aut verum esse aut
falsum.” (3) Page 275, fr. 952: Cicero, De fato 20: “Concludit enim
Chrysippus hoc modo: “Si est motus sine causa, non omnis enuntiatio,

|
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quod &flwye dialectici appellant, aut vera aut falsa erit; causas enim
efficientis quod non habebit, id nec verum nec falsum erit. Omnis atutem
enuntiatio aut vera aut falsa est. Motus ergo sine causa nullus est. 21.
Quod si ita est, omnia, quae fiunt, causis fiunt antegressis. Id si ita est,
fato ommnia fiunt Efficitur igitur fato fieri, quaecunque fiant.” ... Itaque
contendit omnis nervos Chrysippus ut persuadeat omne &flmuo aut
verum esse aut falsum.”

I have compiled thus many quotations on purpose, for, although
they illuminate one of the most important problems of logic, it never-
theless-appears that many of them were either unknown. to.the historians

of logic, or at least not sufficiently appreciated. The reason for this is
in my opinion that the history of logic has thus far been treated by
philosophers with insufficient training in logic. The older authors
cannot be blamed for this, as a scientific logic has existed only for
a few decades. The history of logic must be written anew, and by an
historian who has a thorough command of modern mathematical
logic. Valuable as Pranitl’s work is as a compilation of sources and
materials, from a logical point of view it is practically worthless. To
give only one illustration of this, Prantl, as well as all the later authors
who have written about the logic of the Stoa, such as Zeller and Bro-
chard, have entirely misunderstood this logic. For anybody familiar
with mathematical logic it is self-evident that the Stoic dialectic is the
ancient form of modern propositional logic2®) )

Propositional logic, which contains only propositional variables, is as
distinct from the Aristotelian syllogistic, which operates only with name
variables, as arithmetic is from geometry. The Stoic dialectic is not
a develepment or supplementation of Aristotelian logic, but an achieve-
ment of equal rank with that of Aristotle. In view of this it scems only
fair to demiand of an historian of logic that he know something about
logic. Nowadays it does not suffice to be merely a philosopher in order
to voice one’s opinion on logic.

26) T have already expressed this idea, in 1923, in a paper read to the first congress
of Polish philosophers in Lwéw. A short summary of it appeared in Przeglad Filozo-

fiezny 30 (1927), p. 278. [f.ukasiewicz develops his ‘historical analysis of Stoic logic
in his article “On the History of the Logic of Propositions” (pp. 197-217 of this book).]

COMMENTS ON NICOD’S AXIOM AND ON “GENERALIZING
DEDUCTION” *)

In the present paper I use the following bibliographical abbreviations:
“Ajdukiewicz” for-“Gléwne--zasady metodologii nauk i logiki for-
malnej (Fundamental principles of the methodology of science and of

formal logic). Lectures delivered by Professor XK. Ajdukiewicz at the

University of Warsaw in the academic year 1927/1928. Authorized lec-
ture notes edited by M. Presburger. Publications of the Association of
Students of Mathematics and Physics of the University of Warsaw.
Vol. XVI, 1928.”

“Kotarbinski” for “Tadeusz Kotarbidski, Elementy teorii poznania,
logiki formalnej i metodologii nauk (Elements of epistemology, formal
logic, and the methodology of science). The Ossolineum Publishers,
Lwéw 1929.7%%) »

“Le$niewski” for “Dr. Phil. Stanistaw Le$niewski, a.o. Professor
der Philosophie der Mathematik an der Universitit Warszawa, Grun-
dziige eines neuen Systems der Grundlagen der Mathematik, Einleitung
und §§ 1-11. Sonderabdruck (mit unverfinderter Pagination) aus dem
XIV. Bande der Fundamenta Mathematicae. Warsaw, 1929.”

“Fukasiewicz (1)” for “Jan FEukasiewicz, O znaczeniu i potrzebach
logiki matematycznej (On the significance and requirements of mathe-
matical logic). Nauka Polska, Vol. X, Warsaw 1929.”

“Eukasiewicz (2)” for “Dr. Jan Lukasiewicz, Professor of the Uni-
versity of Warsaw, Elementy logiki matematycznej (Elements of mathe-
matical logic). Authorized lecture notes ‘prepared by M. Presburger.

*) First published as “Uwagi o aksjomacie Nicoda i *dedukcji uogdlniajacej’ >
in Ksigga pamigtkowa Polskiego Towarzystwa Filozoficznego, Lwow, 1931, ,’»—' iate
in the 1961 edition Z zagadnier: logiki i filozofii. E

#¥) Ava.xlable in English under the title Grosiology (published jointlyg p)
Zaktad Narodowy im. Ossolifiskich and Pergamon Press).
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Publications of the Association of Students of Mathematics and Physics
of the University of Warsaw. Vol. XVIII, 1929.7%)
The items “Ajdukiewicz” and “Lukasiewicz (2)” are lithographed.
£

* ¥

At the beginning of his German-language treatise on the foundations
of mathematics Dr. Leéniewski parenthetically mentions (with my
approval) a certain “simplification” of Nicod’s axiom, made by me in
1925 and consisting in the reduction of the different variables that

occur in this axiom from Bve to four. ) Since I have not so fat published
this result of my research, I shall do it in this paper so that Dr. Leéniew-
ski’s reference, based only on a manuscript source, may have a founda-
tion in a printed publication.

T do this the more willingly as I can at the same time settle another
issue. In transforming Nicod’s axiom I encountered for the first time
a case of deductive inference in which the conclusion is more gemeral
than the premiss. The second part of the present paper is. concerned
with that “generalizing deduction”, which may prove to be of inferest
not only to logicians, but to philosophers as well.

1

1.~ Nicod’s axiom can, with the use of parentheses, be written in the
following way: %)

X) _ (oY GO} s/DI((2/9) ()]
In the parenthesis-free symbolism this becomes: )
™) DDpDgrDDtDttDDsqDDpsDps.

The symbol “D”; which corresponds to the symbol “/”, is the only
constant occuiting in this axiom; all other symbols, that is lower-case

H Cf. Leémewskl p. 10.

2) Cf. Kotarbifiski, p. 247 (quoted after the English translation).

%) I came upon the idea of a parenthesis-free notation in 1924. I used that notation
for the first time in my article ¥.ukasiewicz (1), p. 610, footnote. See also Y.ukasiewicz (2)
pp.-7 and-38,-and Kotarbiaski, p. 244.

#) An Enghsh trapslation entitled Elements of Mathematical Logic is available

6w (PUblishe: djomtlrm“1963“brthe' Polish—Scientific Publishers and Pergamon
Press) . . )
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letters, are propositional variables. A function of the tj;pe “Daf”
means the same as “if «, then it is not true that 8, or “it is not true
that (o and ). Thus “D” is a proposition-forming functor of two
propositional arguments; this means that in functions of the type
“Daf” both “«” and “f” are propositions, and “Duf” is a proposition
too. %) Dr. Sheffer has demonstrated that a function of this type can be

—used-to-define-all-other-fanetions of the theory-of-deduetion®-Pieod’ s
axiom, together with definitions, suffices to lay the foundations for the

entire theory of deduction. %)

If we bear in mind that the functor “D” always precedes its arguments,
and that its two arguments are propositions, we can easily analyse the
structure of axiom (N). We only have to realize which propositions
belong to the various occurrences of “D” as their arguments. For in-
stance, the third “D” has the proposition “g” as its first argument,
and the proposition “r” as its second argument. The second “D” has
the proposition “p” as its first argument, and the proposition. “Dgr”
as its second argument. Further analysis is inade easier by the com-
parison of expressions (K) and (N).

Nicod’s axiom is not self-evident. I shall not fry to explain ifs con-
tent. That it is a true proposition one can verify by the zero-one veri-
fication method, assuming the following equations: )

DY =1, D=1,
D10 =1, D11 =0.

“0” here stands for a false proposition, while “1” stands for a true prop-
osition. By substituting in - (N) O’s and 1’s for the variables in any
combinations we always obtain 1 after reductions performed in accord-

4) The term “functor” comes from Kotarbifiski. Cf. Ajdukiewicz, p. 147. The
term “proposition-forming” was, as far as I know, first used by Ajdukiewicz. Cf.
Ajdukiewicz, p. 16.

5 H.istorical and bibliographical information concerning the works of Sheffer
and Nicod can be found in Ledniewski, pp. 9-10. Definitions of some functions, best
known in propositional calculus, by means of the symbol /> or “D” are given in
Kotarbifiski, p. 172, and Euvkasiewicz (2), pp. 56-57.

%) For the zero-one verification method see Kotarbinski, pp. 159-163

*) Today, instead of “theory of deduction” we prefer the term “propositional
calculus™.
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ance with the equations quoted above. For imstance, if we put p/0,
g/1, r/0, s/1, £/0, we obtain:

DDOD10DDODO0DD11DD01 D01 = DD01.DD01DOD11 = D1D1DO0
= DIDI1l = DI0= 1. '

In deducing comsequences from his axiom Nicod uses the rule of
substitution and the rule of detachment.

The rule of substitution, which he does not formulate,”) permits
us to join to the system those theses which are obtained from theses
already belonging to the system by the substltuuon for variables of

significant expressions of the system. In the system in guestion, every

lower-case letter is a significant expression, as is the expression “Daf”

if both “a” and “f” are significant expressions. All significant expres-
" sions are propositions.

The rule of detachment is adopted by Nicod in the form which is
equivalent to the following formulation: if a thesis of the type “DaDfy”
belongs to the system, as does a thesis of the form of “«”, then a thesis
of the form of “y” may be joined to the system. This rule becomes
self-evident if we note that the expression “DoDfy” means the same
as “if o, then it is not true that DBy”, and the expression “it is not
true that DBy” means the same as “it is not true that [it is not true
that (8 and y)]”, that is, “f and »”. Hence the expression “DoDfy”
means the same as “if «, then § and y”. Hence if the whole of such an
expression is asserted, and if “o” is also asserted, we may assert both
“g” and “y”. But Nicod’s rule of detachment disregards the expression
“B” so that we may not assert that expression on the strength of that
rule, nor is it necessary:' for us to know that it has been asserted, if we
want to apply that rule.

2. The transformation which I made in Nicod’s axiom consists in
this, that T replaced the variable “z” by “s”, thus obtaining the follow-
ing thesis:

®) ‘ DDpDgrDDsDssDDsqDDpsDps.
The thesis () includes four different variables, “p”, “g”, “r”, and “s”

whereas Nicod’s axiom (N) includes five, that is the four enumerated
above and also @Mlﬁ_fj’/’:vNeV‘eﬂ;hEICS,S’ the theses (N) and (&)

7) Cf. Leéniewski, p. 10.
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are equivalent, for it can be shown, by means of the rules of substitu-
tion and detachment accepted in the system, that (£) is a consequence
of (N) and conversely (N) is a consequence of (£).

The proof of the first theorem, stating that (£) is a consequence of (N),
is very easy, for it suffices to substitute “s” for “#” in (N) to obtain (E).
The proof of the other theorem, stating that (N) is a comsequence

of (L), is ot so simipleand- requires—repeated application of the rules
of substitution and detachment. That proof is recorded below by a
method which must first be explained.

The starting point of the proof is the thesis (L), which in the proof
is marked by the ordinal number “1”. The terminal point of the proof
is Nicod’s axiom (N), which is marked by the ordinal number “11”.
All theses marked with ordinal numbers, except for the first, are those
steps of the proof which are obtained on the strength of the rule of de-
tachment. In the proof I note down only the theses obtained by de-
tachment; I do not note down the theses obtained by substitution,
but only mark the substitutions to be performed in order to obtain
these theses.

" Each thesis, except for the first, is preceded by a non-numbered line

which is the “proof line” of the thesis that follows. Each proof line
consists of two parts, separated from one another by a cross.*) In the
first part, which precedes the cross, I mark the substitutions to be per-
formed in some earlier thesis, already recorded in the proof. In the
second part, which follows the cross, I note down the structure of the
thesis obtained by means of the substitution marked before the cross,
and I do it in such a way as to make it clear that the rule of detachment
may be applied to that thesis. For instance, in the first part of the
proof line of Thesis 2: “1p/DpDgr, q/DsDss, r/DDsqDDpsDps, s/t”
I mark that a thesis is to be formed by substituting in 1 the expression
“DpDgr” for “p”, the expression *“DsDss” for “g”, the expression
“DDquDpsts” for “p», and the expression “¢” for “s”. On perform-
ing these substitutions we obtain Thesis (A), which is a step in the
proof, but is not recorded in the proof in order to make the proof
shorter: )

*) In this paper, and in some others of his works, Lukasiewicz used an asterisk
instead of a cross. For the sake of umformlty, in this volume the asterisk has been
replaced everywhere by the cross.




184 NICOD’S AXIOM AND “GENERALIZING DEDUCTION™

A) DDDpDquDstsDDquDpstsDDtDttDDtDsDSSDDDqurtDDp
Dagrt.

In the second part of this proof line: “D1D6-2”, T mark what is the
structure of Thesis (A) just formed. It begins with the letter “D”, fol-
lowed by an expression of the form of Thesis 1, next followed by an-
other “D”’ and an expression of the form of Thesis 6, and ends with an
expression of the form of Thesis 2. This shows that the rule of detach-
ment may be applied to Thesis (A), for it is a thesis of the type “DaDgy™,
belongs to the system as a substitution of Thesis 1, and the expression
which-occurs-in-place-of “o” also belongs-to-the-system as.it is of the
form of Thesis 1. Thus the expression which occurs in place of “yp”
may be “detached” from Thesis (A) and joined to the system as The-
sis 2. An expression of the form of Thesis 6, to be obtained later on,
occurs in the place of “§”, but we know already that the expression “f”
does not intervene in the application of the rule of detachment.

Now that the reader understands the method of writing down the
proof, he can easily check all the proof lines. The best way is to take
two sheets of paper, perform on one of them all the substitutions marked
in the first part of a given proof line, and write out on the other the
thesis occurring in the second part of that proof line. In this way the
reader should obtain on both sheets identical expressions. Note that
the sequence of symbols “gr/DDpDgrt” indicates that the expression
“DDpDgqrt” is to be substituted for both “g” and “r”.

Here is the proof of the theorem statmg that (N) is a consequence
of (L):

1 DDpDqgrDDsDssDDsqDDpsDps. t9)
1p/DpDgr, q/DsDss, r[DDsqDDpsDps, s/tx D1D6-2.
2 DDtDsDssDDDpDgrtDDpDqrt.
1 p/DtDsDss, gr/DDpDgrt, s/Wx D2D6;f/ w-3.
3 DDwDDpDqrtDDDtDsDsswDDtDsDssw. '
3 w/Dp_DQr, par/s, t/{DDsqDDpsDps, s[tX D1D4~4,
4 DDDDsgDDpsDpsDtDttDpDgr.
' 24/DDDstDDisDisDtD1t, stx DAgprtD5-5.
5 DDpDgrDDDstDDtsDisDtDit.
55/ DIDsDssqr/DDpDgrt X D2D7 6.
6 DtDtt.
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1pgr/t x D6D6t/s —
7 DDstDDisDis. )
- 1p/Dst, gr/Dts, s/rx D1D6tjr— 8.
8 DDrDtsDDDgtrDDstr.
7 s/DDDsqDDpsDpsDtDtt, z‘/Dqur X D4D9 -9,
9 DDpDqrDDDsqDDpsDpsDtDtt.
. 8 #/DpDgr, t/DDsqDDpsDps, s/DiDttx DID10 - 10.
10 DDDtDttDDsqDDpsDpsDpDagr.
7s/DDtDttDDsgDDpsDps, t/DpDgrx D10D11~11.
11 DDpDqgrDDtDttDDsqDDpsDps. o)

In this proof the rule of detachment is used 10 times, and the rule
of substitution 11 times, for we have to count not only those substi-
tutions which are marked on the left side of each of the 10 proof lines,
but also the ‘substitution “4gpr/t”, marked in the second part of the
proof Line of Thesis 5. On the other hand, I do not count the substitu-
tions “6t/w”, “6t/s”, “6t/r”, marked in the proof lines of Theses 3, 7,
and 8, since they pertain to those expressions which are disregarded
in the detachment. Thus, in order to pass from Nicod’s axiom (N) to
my axiom (£) it is necessary to perform 21 steps of proof. I do not
know how to reduce that number. %)

The proof is complete, although it is recorded in an abbrewated
manner. Moreover, the proof is formalized, which means that any
one who knows the rules of inference used in the ‘proof can verify the
correctness of the proof by referring exclusively to the form of the
theses and disregarding their meanings.

My axiom may be considered as a simplification of Nlcod’s axiom if
both are noted down not by means of real, i.e., free, variables, that is
if both axioms are preceded by universal quantifiers which bind the
variables occurring in the axioms. On introducing an expression of
the type “] [0, which means “for every «” and using the parenthesis-
free notation of expressions with quantifiers, ®) we obtain the following

%) Les$niewskd, p. 10, mentions 24 steps of the proof. In fact, the proof in my man-
uscript of 1925, which was the basis of Dr. Lesniewski’s reference, had that many
steps. Now, then preparing that proof for-publication I have succeeded in simpli-
fying it by reducing the number. of steps by three.

%) Cf. Lukasiewicz (2), pp. 78 ff.
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theses:
| (No) TpllqlIrI1s1tDDpDgrDDtDtt DDsqDDpsDps.
*®0) [1p[14IIr [1sDDpDgrDDsDssDDsqDDpsDps.
In this form my axiom is shorter, and hence simpler, than Nicod’s
axiom. 19) _
i

3. The above considerations would, perhaps, have little significance

had they not _revealed a certain logical fact which at first seemed para-

doxical to me. Let us compare once more the axioms (N) and (L):
™ DDpDgrDDtDttDDsqDDpsDps.
@) DDpDgrDDsDssDDsqDDpsDps.

Both axioms are valid for any values of the variables occutring in them.
But whereas in axiom (N) we may substitute for the variables “s” and ¢”
any propositions, either the.same, ie., of identical form, or different,
in the corresponding places of axiom (E) we may substitute only the
same propositions. This is so because only one variable “s” in axiom (£)
corresponds to the different variables “s” and “z” in axiom (N). (£)
can be obtained from (N) by the “identification” of the variables “s”
and “¢”, that is, by the substitution of the variable “s” for the varia-
ble “”, but (N) can in no way be obtained from (L) by substitution
alone. Axiom (N) is more general than axiom (L), and axiom (L) is
a special case of axiom (N). And yet there is a deductive proof which
demonstrates that the more general thesis (N) follows as a conclusion
from the less general thesis (L) as its only premiss. I have thus encount-
ered a previously unknown and unexpected case of generalizing de-
duction.-

1% Axiom (N) and (1) are not organic. We call “organic” a thesis of a system:,
no part of which is a thesis of that system. The term “organic” was in that sense
first used by Dr. LeSniewski, while the definition of an “organic” thesis comes from
Mz, Wajsberg. Axioms (N) and (&) are not organic, since some of their parts, namely
“DtDit” or “DsDss”, respectively, are theses of the system. In 1927, when he knew

the result of my research presented in this paper, Mr, Wajsberg demonstrated that
Nicod’s axiom can be equivalently replaced by the following organic thesis:

(\\)) "DDpDgrDDDsrDDpsDpsDp Dpg.
This result forms part of Mr. Wajsberg’s M. A. thesis, not published.
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When 1 realized the significance of this fact I started a search for
similar examples in the ordinary system of the theory of deduction.
I soon found such examples among the theses which include implica-
tion only. I shall discuss below the simplest of those examples.

In the implicational system the sole primitive expression is a function
of the type “Cuf™.'!) By the expression “Cxf” I mean the conditional

proposition;-i-es-the-implication, “if «, then A2-In-this-expression“C2
is a proposition-forming functor of two propositional arguments.
Implicational theses are noted down without parentheses in a way
similar to that used above with the theses with the functor “D™; -

The rule of substitution in this system is the same as in Nicod’s
system. Any expression that is significant in the system may be substi-
tuted for a variable. Any lower-case letter and any expression of the
type “Cap”, if “a” and “B” are significant expressions, is a significant
expression. The rule of detachment is formulated as follows: if a thesis
of the type “Cuf” belongs to the system, and if the thesis of the form
of “«” also belongs to the system, then the thesis of the form of “g”
may be joined to the system.

By means of these rules we may demonstrate the equivalence of the
following two theses:'?)
1 CqCqCrCsr,
5 N CpCqCrCsr.
Thesis 5 includes four different variables, while Thesis 1 includes only
three such variables. Thesis 1 can be deduced from Thesis 5 by substi-
tuting in 5 the variable “g” for the variable “p”. Thesis 5 can be inferred
from Thesis 1 by substitution and detachment.

Here is the complete proof, noted down in an abbreviated form
in: a manner analogous to the proof of thesis (N) on the strength of

thesis (£):

1 CgCqCrCsr.
1g/CqCqCrCsrx Cl1-2,

2 CCqCqCrCisrCrCsr.

1) On the meaning of this function cf. Lukasiewicz (2), pp. 28-31. On the agioms
of the implicational system see Lukasiewicz (2), p. 47 [see also the end of the present
article and footnote*), p. 196 of this article]. '

12) Cf. Lukasiewicz (2), pp. 44-45, where this example is given for the first time,

" together with a mention about generalizing deduction.
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2xC1-3.

3 CrCsr.
3r/CrCsr, sjgx C3~4.

4 CqCrCsr.
3r/CqCrCsr, s[pX C4-35.

5 CpCqCrCsr.

Let me add for explanation’s sake that in this proof, on the left side
of the first proof line, there is an indication of the substitution
“1 g/CqCqCrCsr *, the performance of which yields the following thesis,

not recorded in the proof:
(D) ‘ CCquCrC’_srCCquCrC’srCrCsr.

The structure of Thesis (T) is recorded on the right side of this proof
line in the symbols “C1-2”. This thesis begins with the letter “C”,
followed first by an expression of the form of Thesis 1, and next by an

expression of the form of Thesis 2. This shows that the rule of detach-

ment is applicable to Thesis (T). This is so because it is a thesis of the
type “Caf”, it belongs to the system as a substitution of Thesis 1, and
the expression which ogcurs in it i place of “«” also belongs to the
system, since it is of the form of Thesis 1. Hence we may detach from
Thesis (T) the expression which occurs in it in place of “f” by joining
to the system, as Thesis 2, an expression of the form of “$”. Further
proof lines can easily be checked by the reader himself. The whole
proof consists of seven steps, three substitutions and four detachments.
I shall now analyse the proof in detail.

4. My intention is to explain first the meanings of Theses 1 and 5
and to convince the reader that they are true and in confirmity with
intuition. ' '

- The proof given above shows that Thesis 3 is a consequence of Thesis 1,
and Thesis 5 is a consequence of Thesis 3. Since in turn Thesis 1 is;
by substitution, a -consequence of Thesis 5, it follows that all three
theses, 1, 3, and 5, are equivalent with one arother. Let us now
examine the meaning of the shortest of them, i.e., Thesis 3.

This thesis reads: “if r, then if s, then r”. The térms “7” and “s” stand

for-any-propositions-Thisthesis-will not appear self-evident to everyore.
And yet it can be deduced from the most self-evident theses. No one
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" will deny that whatever propositions “r” and “s” we consider it is true

that:-
I. If  and s, then 7.

Nor will anyone deny that the two formulations: “if r and s, then #”
and “if r, then if s, then #”, are equivalent. For instance, the following
formulations are equivalent: “if a number xis even and divisible by 3,

“then it is divisible by 6~ and “if @ fiufiber x is even, thenif 115 divisible

by 3, it is divisible by 6”. Hence it follows that if we consider any prop-
ositions “r”, “s”, and “¢”, then it is true that:

II. If (if r and s, then #), then [if 7, then (if 5, then 7)]. '

These two theorems may be written in symbols as follows:

I CKrsr.
II - CCKrstCrCst.

The formula “Krs” stands for a conjunction of the propositions “r
and “5”.1%) By substituting in II the variable “r” for “t” and by applying
the rule of detachment we obtain our Thesis 3:

11 ¢/rx C1-3.
3 CrCsr.

Thus Thesis 3 is a comsequence of self-evident theses. Its meaning
might by approximately formulated thus: if one asserts a proposition
“¢” unconditionally, then he is also authorized to assert it on a con-
dition “s”, so that he has the right to state: “if s, then r”.

Now Thesis 3 is asserted unconditionally; hence we have the right
to assert it on a condition “g”, that is, we are authorized to state: “if g,
then if r, then if s, then r”. This is Thesis 4 formulated verbally.

Thesis 4 also is asserted unconditionally; hence we have the right
to assert it on any condition, be it the old condition “g” or the new
condition “p”. In this way we obtain verbal formulations of Theses
1 and 5: :

1. If g, then if g, then if #, then if s, then 7.

5. If p, then if ¢, then if r, then if s, then r.

Thus the meanings of these theses are established. The theses are
true and in agreemeﬁt with intuition.

13 Cf. Lukasiewicz (2), p. 36.
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My point now is to convince the reader beyond all doubt that the
following theorems are true:

(a) The proof demonstrating that Thesis Sisa consequence of Thes1s 1
is based on Thesis 1 as its only premiss.

(b) The rules of inference used in that proof have long been known
and accepted as rules of deductive inference.

(c) Conclusion 5 is more general than premiss 1.

As to (2): The completeness of the proof shows that Thesis 1 is the
only premiss used in the proof. The proof has no gaps; every step

of the proof is recorded or marked and is based on rules of inference
specified in advance.

As to (b): The rules of inference used in the proof correspond to the
rules of deductive inference already known in antiquity. All the theses
considered are true for any propositions “p”, “¢”, “¢”, and “s”, which
occur in them. Hence they are also true for certain propositions, namely
conditional propositions, which we substitute in the theses. For whatever
is valid for any objects of a kind, is also valid for certain objects of that
kind. In applying the rule of substitution we base ourselves on the
principle dictum de omni, which was not explicitly formulated by Aristo-
tle, but which has always been considered the foundation of this theory
of the syllogism. And the theory of the Aristotelian syllogism to this
day is believed to form the nucleus of deductive logic.

In applying the rule of detachment we base our argument on the
Stoic syllogism called modus ponens:

If «, then S,
Now «,

v Hence £. .
No one has ever denied that this is a mode of deductive inference.

As to (c): Thesis 5 is more general than Thesis 1, since it covers all
cases covered by Thesis 1 and also cases which Thesis 1 does not cover.
This will become clear when we enumerate the types of these cases:

The truth of both theses in question, like all theses in the theory

3 I

of deduction, depends not on the contents of the sentences “p”, “g”,

“p2 —and-“s®—but-only-on-their truth or falsehood. The zero-one veri-
fication method is based precisely on that fact. If we represent a false

L U U
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proposition by “0”, and a true proposition by “1”, we obtain all the
types of cases covered by Thesis 5, when in that thesis we substitute for
the variables 0’s and 1’s in all possible combinations. The number
of such combinations is 16:

CoC0C0CH0  C1C1C0CC0
CoCOCoC10  Cl1C1C0C10
COCeETE0t-- C1CIC1CO01~
COCOCIC11  CI1CICICIl
COCLCOC00  C1C0C0C00
COCI1COCI0  C1COC0CI0
COCIC1C0l  C1C0C1Co1
CoC1C1CIl  C1COCIClL.

All these combinations are covered by Thesis 5; on the other hand,
Thesis 1 covers only the first 8 combinations written out in the upper
half, that is only those in which the term that follows the first “C” is
equiform with the term that follows the second “C”. Hence it is evident
that Thesis 1 is a special case of Thesis 5. And yet Thesis 5, more general
than Thesis 1, is a consequence of the latter on the strength of deductive
inference. ‘ v

T realize that this is a very particular case of generalization, since it
refers to only one class of objects, namely to propositions. We infer
that something is true for any propositions “p” and “g”, cither the same
or different, on the strength of the fact that somethmg is true for the
proposition “g” . Nevertheless this case shows that at least in the sphere
of these objects, generalizing deduction is possible.

5. In textbooks on logic we often encounter the view that deduction
is an inference from the general to the particular. This opinion is erro-
neous even in the field of traditional logic %) for that inference by which
from the sentence “no even number is an odd number” we obtain
the sentence “no odd number is an even number” is certainly deductive,
since it is based on the law of conversion of general negative proposi-
tions, accepted in Aristotelian logic. Yet it may not be asserted that in
that inference the relation between the premiss and the conclusion
is the same as between the general and the particular. Now that we
have demonstrated that in certain cases we can pass, in a deductive

19 Cf. Kotarbinski, p. 233
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manner, from the particular to the general, the incorrectness-of the
above characterization of deductive inference becomes even more
striking.

Together with that erroncous characterization of deduction the view

that deduction does not widen our knowledge is also definitively refuted. .

It seems that these two opinions had their source in the conviction
_that the principle dictum de ommi is the foundation of Aristotelian
logic, and that Aristotelian logic exhausts deductive logic. But both
these convictions are erroneous. Neither is Aristotle’s theory of the
syllogism based exclusively on the idea contained, although not precisely

formulated, in the principle dictum de omni, nor does that theory cover
the whole of deductive logic. %) Along with Aristotelian logic, which is
a “logic of terms”, there has for ages been Stoic logic,*) which is a
“logic of propositions” and which corresponds to the present-day theory
of deduction. %)

These two logical systems are essentially different, since they are
concerned with different semantic categories. No Stoic syllogism, in-
cluding the law of inference called modus ponens, is deducible from Aris-
totelian logic.

As long as the principle dictum de omni was supposed to be the foun-
dation of all deductive logic it was possible to think that deduction is
inference from the general to the particular and that it does not widen
our knowledge. But when the modern “theory of deduction” was formed,
and when both the Aristotelian principle dicrum de omni in the
form of the rule of substitution, and the Stoic syllogism modus ponens
as the rule of detachment, were applied to it, it became clear that deduc-
tive inference may be as “creative” as inductive inference, without
thereby losihg anything of its certainty.

I disregard here further philosophical consequences connected with

these results of research in order to conclude by reverting to those prob-
lems which can be handled on the basis of mathematical logic.

**) Concerning the axioms on which Aristoile’s theory of syllogism is based see
Euokasiewicz (2), p. 87 ff. See also his Aristotle’s Syllogistic from the Standpoint
of Modern Formal Logic, Oxford, 1951. .

16) Cf. Eukasiewicz (2), pp. 19 f.

#) Stoic logic was discussed By Fikdsiswics in detail in his paper “On the History
of the Logic of Propositions”, (see pp. 197-219 of the present volumse).

~facts which T have established.
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For brevity’s sake, let us call “generalizing theses” those theses from
which more general theses can be deduced by the rules of substitution
and detachment. I am concerned here above all with the following
problem, which so far I have been unable to solve: what, if any, charac-
teristics are shared by all generalizing theses? For the sake of those
who might wish to investigate this problem I quote here a number of

T have verified that the following theses are equivalent to one another:

(A1) ‘ CsCCCpqrCyr.

(A2) CCstCCCpgqrCyr.
(A3) CCptCCCpqrCyr.
(Ad) ) CCrtCCCpgrCqr.

Of these, Thesis (A1) is the most general. Thesis (A2) is obtained frcm
it by the substitution “s/Cst”, and Theses (A3) and (A4) are obtained
from (A2) by the respective substitutions “s/p” and “s/r”. Conversely,
Theses (Al) and (A2) are obtained from both (A3) and (A4) by substi-
tution and detachment, and moreover (Al) is obtained from (A2).
Thus the generalizing theses here are Theses (A2), (A3), and (A4). Note
that all four of these theses are -equivalent to the thesis “CCCpqrCgr”.

Further, I have verified that the following theses are equivalent to one

another: )
(B1) CtCCCpgrCCCsprr.

(B2 CCutCCCpgrCCCsprr.
(B3) CCrtCCCpgrCCCsprr.

Here, too, Thesis (B1) is the most general. Thesis (B2) is a consequence
of (B1) on the strength of the substitution “#/Cut”, and (B3) is a conse-
quence of (B2) on the strength of the substitution “u/r”. Conversely,
both (B1) and (B2) are consequences of (B3) on the sirength of substi-
tution and detachment; in the same way (B1) is a consequence of (B2).
Thus, the generalizing theses here are (B2) and (B3). All three are
equivalent to the thesis “CCCpgrCCCsprr”. .

The above examples of generalizing theses have the property in com-
mon that their consequences include a thesis of the form “CrCsr”. This
property is also shared by Thesis 1, given in Section 3 as an example




194 NICOD’S AXIOM AND “GENERALIZING DEDUCTION”

of a generalizing thesis But a conclusion stéting that all generalizing
theses share that property, would be erronecous. Here is an example
to the contrary. The following theses are equivalernt:

F1) ‘ CpCqCrCsCtr.
(F2) : CqCqCrCsCtr.
The generalizing thesis here is (F2). But that thesis does not have among

its consequences any thesis of the form “CrCs#”; it has as a consequence
only a thesis of the form “CrCsCer”. These two theses: “CrCsr” and

“CrCsCtr”, are independeiit of “one another,'’) but nevertheless they
have a property in common: they make it possible to form, from any
asserted thesis “«”, a thesis of the type “Csa”, where “s” is a variable
that does not occur in “a”. It is to be mvesugated whether this prop-
erty is common to the generalizing theses.

ATl the examples of generalizing theses adduced so far, not excluding
Axiom (%), which is a transformation of Nicod’s axiom, are non-or-
ganic theses.'®) But it would be erroneous to conclude that all general-
izing theses are non-orgamic. In 1926, Wajsberg demonstrated that
every implicational thesis that does not include negation can be de-
duced by substitution and detachment from the following organic
thesis: *)

W1 ] CCCpgCCrstCCuCCrstCCpuCst,

which can thus serve as the sole axiom of the implicational system.'®)
I have ascertained that (W1) has as a consequence the following more
general thesis: :

w2 CCCpqCCrstCCuCCwstCCpuCst.

(W1) is obtained from (W2) byv the substitution “w/r”. Thesis (W1)
is thus an example of an organic generalizing thesis. The consequences
of this thesis include all implicational theses.

17) For the method of proving the independence of theses of the propositional
calculus, see Lukasiewicz (2), pp. 109 ff.
18) Cf. footnote 10 above.

19) The result obtained by Mr, Wajsherg, as given in the present paper, was part
of his M. A. thesis. :
*) Cf, footnote *), p. 196
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I also wish to point out that all the “sole” axioms of the implicational

and the implicational-negational system known to me, whether organic
or non-organic, share the property that they are either generalizing
theses, like Wajsberg’s axiom (W1), or are “generalized” theses, like
Thesis (W2), which means that they are equivalent to some of their
special cases. But it would be premature to conclude that all the sole

axioms—of—-the—implicationat—or- the—implicational-negatiomal Systen
are either generalizing or generalized theses. I have the impression that
Wajsberg’s organic axiom with the primitive term “D” has neither of
these two properties, though I have not been able to prove this fact
beyond all doubt. Should it be confirmed, then it could be expected
that the implicational system also includes sole axioms that have neither
of these two properties.

It would be interesting to solve the problems raised above, since
their solution might shed some light on generalizing deduction and
thus explain on what those strange facts depend.

Added while text was in proof:

Since two years have elapsed from the completion of the present
paper I wish to add here some comments and some results which I have
obtained in the meantime.

As to Part I

" a) Dr. LeSnjewski noticed many years ago that Nicod’s deduction
of the thesis “D¢Dst” from Axiom (N) contains an error. As far as T am
aware, that error has not been corrected. I would not mention this
fact even now were it not that 1931 saw the appearance of a compre-
hensive three-volume treatise by Jdrgen Jérgensen, Professor of the
University of Copenhagen, 4 Treatise in Formal Logic (Copenhagen—
London), which, following Nicod in that respect, repeats his mistakes
(cf. vol. I, p. 258, and vol. I, p. 151); in particular, Theorem (17),
from which the thesis “DzDr” is directly deduced, is erroneous. In draw-
ing attention to that error I also wish to state that the deduction of
Thesis 6, i.e., “DtDtt”, from Axiom (%), and hence, indirectly, from
Axiom (N), as given in the present paper, seems to be the first correct
proof of that thesis in Nicod’s system.

b) In connection with the concluding remark in the Addendum
to Part I, T wish to add that in 1931 I found an organic thesis whichis
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equivalent to Nicod’s axiom and which differs from Wajsberg’s thesis.
The thesis in question is as follows:

(M1) DDpDgrDDpDrpDDsqDDpsDps.

As to Part IT
c¢) The supposition is untenable that the generalizing theses of the
implicational system all have the property that their consequences

include a thesis that makes it possible to form, from any thesis “o”,
a thesis of the type “Csa”, where “s” is a vanable that does not occur

in & Here is an“example—t&the contrary:™ -

(G1) CsCCpCpgCrCpy.
(G2 CCsCstCCpCpqCrCpg.
(G3) ‘ CCpCpqCCpCpqCrCpg.

All these theses are equivalent to one another, from which it follows
that (G2) and (G3) are generalizing theses. Yet these theses do not
have the property referred to above.

d) In connection with Wajsberg’s sole axiom (W1) of the implica-
tional system, I wish to add ‘that in 1930 I found the following axiom
of the implicational system, which is the shortest of all those known
to me so far: '

%2 CCCpgCrsCtCCspCrp. *)
This axiom is equivalent to the following thésisf that is a special case of it:
@x3) CCCpgCrsCCtuCCspCrp.

Wajsberg’s axiom (W1) of the implicational system was published
in the article: J. Lukasiewicz und A. Tarski, “Untersuchungen iiber den
Aussagenkalkiil, Comptes rendus des séances de la Société des Sciences et
des Lettres de Varsovie 23 (1930), cl. iii. *¥)

*) In 1936, Fukasiewicz found a 13-letter axiom of the implicational propositional
calculus. In this connection see his paper “In Defence of Logistic” in the present
volume, pp. 236-249. He also discussed that axiom in a separate paper, “The Short-
est Axiom of the Implicational Calculus of Propositions” (see pp. 295-305 of the
present volume) where he proved that there is no sole axiom of the implicational
propositional calculus consisting of less than 13 letters.

**) See “Investigations into the Sentential Calculus”, pp 131-152 of the present
volume.-

N ERTLT R

ON THE HISTORY OF THE LOGIC OF PROPOSITIONS *)

Modem mathematlcal logm has taught us to distinguish within
formal logic two basic disciplines, no less different from one another
than arithmeti¢ and geometry. These are, the logic of propositions
and the logie=of terms. The difference between the two consists in the
fact that in the logic of propositions there appear, besides logical con-
stants, only propositional variables, while in the logic of terms term
variables occur.

The simplest way of making this difference clear is to examine the
Stoic and the Peripatetic versions of the law of identity. To avoid mis-
understanding let me at once say that, so far as our sources indicate,
the two laws of identity were only incidentally formulated by the an-
cients, and in no way belong to the basic principles of either logic. The
Stoic law of identity reads “if the first, then the first”, and is to be found
as a premiss in one of the inference-schemata cited by Sextus Empi-
ricus. ?) The Peripatetic law of identity is “a belongs to all ”, and is not
mentioned by Aristotle, but can be inferred from a passage in Alex-
ander’s commentary on the Prior Analytics.?) Using variable letters
we can write the Stoic law of identity in the form “if p then p”; the
Peripatetic law can be recast in the form “all @ is a”. In the first law
the expression “if ... then” is a logical constant, and “p” a propositional

') Sextus, Adv. Math. viii. 292 (missing in Arnim): ei 6 wp&Tov, T TpdTov,
Good as H. von Arnim’s collection is (Stoicorum veterum fragmenta, vol. ii, Leipzig
1903), it does not begin to serve as source material for Stoic dialectic.

%) Alexander, In anal. pr. comm., ed. Wallies, p. 34, 1. 19: ylverar...70 A 7t 76
A pl) Smdpyoy, Smep HTomov.

*) [Editorial note from the McCall edition: Th15 paper originally appeared under
the title “Z historii logiki zdan™ in Przeglad Filozoficzny 37 (1934), pp. 417-437. 1t is
reprinted in a collection of L ukasiewicz’s papers entitled Z zagadnieri logiki i filozofii,
edited by J. Stapecki, Warsaw, 1961. A German translation by the author appeared

as “Zur Geschichte der Aussagenlogik” in Erkenntnis 5 (1935), pp. 111-131. Translated
from the German version by S. McCall.]
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vatiable; only propositions such as “it is day” can be meaningfully sub-
stituted for “p”. This substitution yields a special case of the Stoic
law of identlty. “1f it is day, it is day”. In the second law the expression
“g]l ... is” .is a logical constant, and “¢” a term variable; “a” can be
meaningfully replaced only by a term, and, in accordance with a tacit
assumption of Aristotelian logic, only by a general term at that, such
as “man”. Upon substitution we get a special case of the Peripatetic
law of idéntity: “all man is man”. The Stoic law of identity is a thesis
of the logic of propositions, whereas the Peripatetic law is a thesis of

____thelogicofterms. ..

This fundamental difference between the 10g1<: of proposmons and
the logic of terms was unknown to any of the older historians of logic.
Tt explains why there has been, up to the present day, no history of the
logic of propositions, and, consequently, no correct picture of the
history of formal logic as a whole. Indispensable as Prantl’s %) work is,
even today, as a collection of sources and material, it has scarcely any
value as an historical presentation of logical problems and theories.
The history of logic must be written anew,.and by an historian who
has fully mastered mathematical logic. I shall in this short paper touch
upon only three main points in the history of propositional logic.
Firstly I wish to show that the Stoic dialectic, in contrast to the Aris-
totelian syllogistic, is the ancient form of propositional logic; and,
accordingly, that the hitherto wholly misunderstood and wrongly
judged accomplishments of the Stoics should be restored their due
honour. Secondly I shall try to show, by means of several examples, that
the Stoic propositional logic lived on and was further developed in
medieval times, particularly in the theory of ¢ ‘consequences”. Thirdly
I think it important to establish something that does not seem to be
commonly known even in Germany, namely that the founder of modern
propositional logic is Gottlob Frege. .

The Stoic law of identity mentioned above, which belongs to propo-
sitional logic, bears witness that the Stoic dialectic is a logic of prop-
ositions. However, an isolated theorem proves nothing. We shall
accordingly take into consideration the well-known inference-schema

) K. Prantl, Geschichte der Logik im Abendlande, vols. 1—1v, Leipzig, 1855-1870;
vol. ii, 2nd edition, Leipzig, 1885.
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which the Stoics placed at the head of their dialectic as the first “inde-
monstrable” syllogism:

If the first, then the second;

but the ﬁr_st ;
therefore the second. 4)
Inimsioxmula_the_wozds_thc;ﬁrst” and “the segml are-—yariables;

for the Stoics denoté variables not with letters, but with ordinal num-
bers.®) It is clear that here too only propositions may be meaningfully
substituted for these variables; e.g. “it is day”, and “it is light”. When
this substitution is made we get the inference which occurs again and
again as a school example in Stoic texts: “If it is day, then it is light;
but it is day; thérefore it is light.,” That indeed propositions and not
terms are to be substituted for the variables in the above formula is
not only evident from its sense, but is clearly implied by the following
example: “If Plato lives, then Plato breathes; but the first; therefore
the second.” Here “the first” plainly refers to the proposition “Plato -
lives”, and “the second” to the proposition “Plato breathes™. %)

The fundamental difference between Stoic and Aristotelian logic
does not lie in the fact that hypothetical and disjunctive propositions
occur in Stoic dialectic, while in Aristotelian syllogistic only categor-
ical propositions appear. Strictly speaking, hypothetical propositions
can be found in Aristotle’s syllogistic also, for each proper Aristotelian
syllogism is an implication, and hence a hypothetical proposition. For
example, “If a belongs to all b and ¢ belongs to all a, then ¢ belongs
to all #”.7) The main difference between the two ancient systems of -
logic Hes rather in the fact that in the Stoic syllogisms the variables
are propositional variables, while in Aristotle’s they are term variables.

This crucial difference is completely obliterated, however, if we translate
the - above-mentioned Stoic syllogism as Praotl does (i, p. 473):

%) Sextus, Adv. math, viii. 227 (Arnim, ii. 242, p. 81, 1. 22): &l 70 wpdrov, o
debrepovs 6 8¢ ye mpdTov- To dpa Sebrepov,

5) Apuleius, De interpr. 279 (Arnim, ii, p. 81 note): “Stoici porro pro litteris nu-
meros usurpant, ut ‘si primum, secundum; atqui primum; secundum igitur® ™.

%) Diogenes Laert. vii. 76 (quoted in Prantl, i, p. 471, note 177; missing in Arnim):

€l (RIIATOVY, dvamvel TTAdTove dAAE piy 10 'cpm'rov 7o Hpa SelTepov.

7) Aristotle, An. pr. ii, 11, 61634; et yvdp 76 A movil ©6 B wod 70 I' wavel ©@ A,
70 I mavil ©§ B [sc. Smdpyetl.
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If the first is, the second is
But the first is

Therefore the second is.

L)

By adding to each variable the little word “is”, which occurs nowhere
in the ancient texts, Prantl, without knowing or wishing it, falsely
converts Stoic propositional logic into a logic of terms. For in Prantl’s
schema only terms, not propositions, can be meaningfully substituted
for “the first” and “the second”. As far as we.can judge from the frag-
mentary state of the Stoic dialectic that has come down to us, all Stoic

inference-schemata contain, besides logical constants, only propositional
variables. Stoic logic is therefore a logic of propositions.?)

There is yet a second important difference between the Aristotelian
and the Stoic syllogisms. Aristotelian syllogisms are logical theses,
and a logical thesis is a proposition which contains, besides logical
constants, only propositional or term variables, and which is true for
all values of its variables. Stoic syllogisms are inference-schemata, in
the sense of rules of inference, and a rule of inference is a prescription
empowering the reasoner to derive new propositions from ones already
admitted. We should examine this difference somewhat more closely.

The Aristotelian syllogism quoted above, which can also be written
“if all bis ¢ and all a is ¢, then all & is ¢”, is an implication of the form
“if « and §, then »”, whose antecedent is a conjunction of the premis-
ses o and B, and whose consequent is the conclusion y. As an impli-
cation, this syllogism is a proposition which Aristotle recognizes as true;
one that does indeed hold for all values of its variables “a”, “b”, and “c”.
If constant values are substituted for these variables, we get true prop-
ositions. Inasmuch as the syHogism in question contains, besides
variables, only the logical constants “if ... then”, “and”, and “all ... is”,
it is, like all other Aristotelian syllogisms, a logical thesis.

It is otherwise in Stoic logic. The Stoic syllogism given above, which

) I have defended this interpretation of the Stoic dialectic since 1923; see J. ELu-
kasiewicz, “Philosdphische Bemerkungen zu mehrwertigen Systemen des Aussagen-
kalkiils”, Comptes réendus des séances de la Société des Sciences et des Lettres de Var-
sovie 23 (1930), cl. iii, pp. 51-77. [“Philosophical Remarks on Many-Valued Systems
of Propositional-Logic”, pp._153-178 _of_this volume.] I rejoice in having found
. in H. Scholz, Geschichte der Logik (Berlin, 1931), p. 31, a supporter of this point
of view. .
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with the help of letters can be written “if p, then g; but p; therefore g7,
consists, as does the Aristotelian syllogism, of two premisses and a con-
clusion. But here the premisses are nof bound up together with the
conclusion in a single unified proposition. This is plain from the word
“therefore” which introduces the conclusion. The syllogism in ques-
tion is consequently not a proposition. Since it is not a proposition,

-it-can~be meither truenor-false ;fd:.it.is.aclmowledged—th&t—tmﬂa%
falsehood belong to propositions alone. Hence the Stoic syllogism is

not a logical thesis: if constant values are substituted for its variables
the result is not a proposition, but an inference. The syllogism is accord-
ingly an inference-schema, having the force of a rule of inference
which can be more accurately expressed in the following way: whoever
accepts as true both the implication “if p, then ¢” and its antecedent
“p”, also has the right to accept as true the comsequent “g” of this
implication—i.e. to detach “4” from “p”. This rule of inference, under
the name of the “rule of detachment”, has become almost a -classic in
modern logic. ' -

All Stoic syllogisms are formulated as rules of inference. In this way
Stoic dialectic differs not only from Aristotelian syllogistic, but also
from modern propositional logic, which is a system of Jogical theses.

However, the Stoics were acquainted with a clear and simple method
of converting all their rules of inference into theses. This involves
a distinction between binding and non-binding inferences. An inference
with premisses « and f§ and conclusion y they call binding [bindig],
if the implication, whose antecedent is the conjunction of the two prem-
isses « and B and whose consequent is the conclusion v, is valid.
For example, the following inference is binding: “if it is day, then it
is light; but it is day; therefore it is light”, for the corresponding impli-
cation is correct: “if it is day and if it is day then it is light, then it is
light™.9) ' ) .

) Sextus, Hyp. pyrrh. ii. 137 (missiﬁg in Arnim, who nevertheless in ii. 239, p. 78,
1. 15, quotes the parallel passage from Adv. math. viii. 415 (416)): & <olre 16
Aéyey ‘el fuépn Eomi, @idg ZoTuv dMg piv Huépo Eomive odc Fpa oty
70 udv “pdg dpx Zotw” ocuumépxoud Zom, T 5% Aowmk Mppota. TEV S
Aywv ol pév elor ouvaxmxol ol 8% dodvartor, cuvaxTivol pév, 8tav O
SUYTLEEVOY TS Gpxduevoy pdv &md Tob Sidk AV Tod Adyou Anuudrey cugmemAey-
pévou, Ajyov 8t =lg Ty Zmpopdv «dvol, Syt §, ofov & mpostpmuévos Adyog
cuvaxtinds €oty, Emel Tff Sid TAV Anuudtev adtod cvumioxd Tadtn “‘fuéen
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" This just observation makes possible the conversion of inferences
into propositions. When it is applied to the rule of inference “if p then g;
but p; therefore ¢ we obtain the implication “if p and if p then g,
then g”, which is a thesis of propositional logic, since besides proposi-
tional variables only the logical constants “if...then” and “and”
oceur in it. - , o

It is not possible for me to go into all the details of Stoic logic here.
I wish only to comment upon the most important points. The Stoic
logic of propositions is a two-valued logic. In it the basic principle
holds, that every proposition is either true or false, or, as we say today,

can take one of only two possible “truth-values”, “the true” or “the
false”. 1) This principle is laid down in conscious opposition to the
view that there are propositions which are neither true nor fulse, namely
‘those which treat of future contingent events. This view, which was
particularly widespread among the Epicureans, was also ascribed
by the Stoics to Aristotle.!)

In Stoic propositional logic the following functions occur: negation,
implication, conjunction, and disjunction. The first three functions
are defined, as is normally said nowadays, as “truth-functions”. By
a truth-function is meant a function whose arguments are propositions,
and whose truth-value depends only on the truth-value of its arguments.

According to the Stoics one obtains the negation or the contradictory
of a proposition when the sign of negation is placed in front of the
proposition.?) This theoretically correct and practically valuable rule
continues to be operative in the Middle Ages.™) It is universally rec-
ognized in modern logic.

Eomu ual €l fubpo Eom, g Eomy” dxoloudel O “oddc EFoTwv” &v Tolte TH cuv-
yupdve- el fubor Eom xol el fuben Fom, odc fomi, odg EoTw™.

19) Cicero, Acgd. pr. 1i. 95 (Arnim, ii. 196, p. 63): “Fundamentum dialecticae est,
quidquid enuntietur, id autem appellant &Eicpe ..., aut verum esse aut falsum.”

1) Boethius, Ad Arist. de interpr. ed. secunda, Meiser, p. 208 (missing in Arnim):
“Putaverunt autem quidam, quorum Stoici quoque sunt, Aristotelem dicere in futaro
contingentes nec veras esse nec falsas.” See on this matter my earlier paper cited
above, pp. 75 ff. [This volume, pp. 176 ff.]

*2) Apuleius, De interpr. 266 (Arnim, #i. 204a, p. 66): “Solum autem abdicativum

733

vocant, cui negativa particula praeponitur.” The word “odxi” serves as the sign of

propositional negation. A
13) See note 3, p. 198.
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There are many disputes in ancient times over the meaning of the
inplication “if p then g”.*) The argument seems to have been started
by Philo the Megarian, who was the first to define implication as
a truth-function in much the same way as is done today. According to
Philo an implication is true if and only if it does not begin with truth
and end with falsechood. An implication is accordingly true in three

casesfirstly;ifitsamtecedent and-its consequent-are-both—true; SECoOnAly
if its antecedent and its consequent are both false; and thirdly, if the
antecedent is false and the consequent true. Only in one case is the
implication false, namely when the antecedent is true and the conse-
quent false.™) Another Megarian, Diodorus Cronus, maintained on
the other hand that an implication is true if and only if it neither was
nor is possible for it to begin with truth and end with falsehood.')
This ancient "dispute concerning the concept of implication, immor-
talized by Callimachus in an epigram (“Even the ravens on the roof
tops are croaking about which conditionals are true”),'”) is reminiscent
of the polemic ‘waged by one of the modern followers of Diodorus,
C.I. Lewis, against the other advocates of mathematical logic.'®)

149y Cicero, Acad. pr. ii. 143 (Arnim, ii. 285, p. 93): “In hoc ipso, quod in elemen-
tis dialectici docent, quo modo iudicare oporteat, verum falsumne sit, siquid ita co-
nexum est, ut hoc: ‘si dies est, lucet’, quanta contentio est. Aliter Diodoro, aliter
Philoni, Chrysippo aliter placet.” » i

15) Sextus, Adv. math. vii. 113: & pdv ofhwv Eleysv dAnddc yivesHur To
cuvnupévoy, (= implication), 8vay pl &pynrar & &AnSols xal MYy &l $ebdog,
&dove Tpryde pdv yivesbuw watr’ adtdv ddnSic cuvnuuévoy, xad’ Eva d¢ Tpdmwov
debSog. There follows the enumeration of all four cases with examples.

19 Sextus, Adv. marh: viil. 115: AwbSapog 8% dxnHic elvon gnol cuvnupévoy
8mep phre dvedéyero uhite dvdéyeron dpybupevoy &’ GAnSole Myyew éml Yebdoc,

17} Sextus, Adv. math. i. 309: 75 Omd 7ol Kedhwpdyov el AtdSwpov tov Kgdvoy
cuyypapéy [sc, Emypapupdriovls vl 84 xov xdpuxes veyéwv Em xola cuyfimTet
xpdlovat. . . . : ‘

18) Being of the opinion that the concept of “material implication”, which comes
from Philo, leads to paradoxes, such as “a false proposition implies any proposition”,
and “a true proposition is implied by any proposition” (compare the passage from
Duns Scotus in note 44 of p. 214 below), Lewis wishes to replace “material implication”
by “strict implication”, the latter being defined in the following way. “p implies g”
or “p strictly implies ¢” is to mean “it is false that it is possible that p should be true
and g false”. See C. 1. Lewis and C. H. Langford, Symbolic Logic, New York and

" London, 1932, pp. 122 and 124,
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Tn the Stoic school, Philo’s definition was accepted. At least, Sextus
ascribes this concept directly to the Stoics.'®)

The conjunction “p and g” is defined by the Stoics as a truth-function.
1t is true if and only if both its members are true; otherwise it is false.?%)

An analogous definition of the disjunction “p or g” does not occur
in the fragments of Stoic logic which have come down to us. We gather,
from the rules of inference for disjunction laid down by Chrysippus,
that he comsidered disjunction as an exclusive “‘either-or” conmnective.
Thus according to Chrysippus the two members of a true disjunction

— e gROt-both-be true at the same time. This seems to have been changed

later. The conviction arises that the expression “p or ¢”is synonymous
with the implication “if not p then ¢”.2') In this case we would no longer
be dealing with exclusive disjunction, but with non-exclusive alternation.
In the Middle Ages, as we shall see later, the non-exclusive character
of disjunction comes clearly to light.

All the above-mentioned logical functions are to be found in the

inference-schemata of Stoic dialectic. Of these inference-schemata,
some are considered to be “indemonstrable”, that is to say accepted
axiomatically as correct, while the others are reduced to the indemon-
strable ones. It is Chrysippus who is supposed to have laid down the
indemonstrable inference-schemata or syllogisms, These consist of the
following five (in which I denote the variables not by ordinal numerals,
but by letters):

I. If p then g; but p; therefore g.
II. If p then g; but not-g; therefore not-p.
II1. Not both p and g¢; but p; therefore not-g.

1%y Hyp. pyrrh. ii. 104, and Ady. math, viii. 245 (Arnim, i, 221 p 72, 1 32). Cf. also
Diogenes Laert. vii. 81 (Arnim, ii. 243, p. 81).

2% Sextus, Adv. math. viii. 125 (Arnim, fi. 211, p. 69): [Aéyovow] dyiég elvar
cuumendeypévoy (= conjunction) 6 wdvt Exov év adrd &andF, ofov 70 “Huépn
Eomu nal @idc Fotw”, eblog 3¢ 76 Eyxov $eldoc.

2 Galen, Inmstitutio Logica, ed. Kalbfleisch, p. 9, 1. 13: <6 Totolirov £i80g =¥g
Mg ‘el pily vOE &omv, fipbpo Eotly’ Suslevypévov Eotiy dflope Tf gdoe. TEY
-:pocyucrow abi, wvou 3¢ i8éav Eyer T AéEer. Exclusive disjunction is called

“8teleuypévov”, For non-exclusive alfernation Galen uses the expression ‘““mopodi-
elevyudvov” (p. 35.1. 6).
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IV. Either p or ¢; but p; therefore not-q.
V. Either p or ¢; but not-g; therefore p.%)

It is apparent from the fourth syllogism that disjunction is conceived
of as an exclusive ““either-or’”” connective. For non-exclusive alternation
this syllogism is not valid.®)

The reduction of the derived inference-schemata to the indemon-

——strables-is—a~masterpiece-of logical acumen.. The source—of our infor-

. mation in this matter is Sextus, who thoroughly understands the dia-

i lectical technique of the Stoics and must be considered among the best

| sources of Stoic logic. With a clarity that leaves nothing to be desired -
he informs us, for example, how the Stoics reduced the inference-schema
“f p and ¢, then r; not-r, but p; therefore not-¢g” to the second and
third indemonstrable syllogisms. From the premisses “if p and g, then
» and “not-r” we get, using the second syllogism, the conclusion “not
both p and ¢”. This conclusion and the remaining premiss “p” yield,

by the third syllogism, “not-g”.%%)

22) Galen, Inst. log., ed. Kalbfleisch, p. 15 (Arnim, ii. 245, p. 82): &v 6 Xpdoinrog

t’wop.o’cCsv. wp&rrov o’womé&m—rov, 6 wotolitog tpémog E€oviv, ‘el 6 o, Td B’ <
3¢ o+ 70 poc B’ &v 6 Xplotwrmog Ss:ﬁrepov Gvamédetntov dvopdler, Towolitée
ot ‘et 10 o, T B’- oyl 38 7o B’ odn ocpoc 70 o' —Kéwl tof Tpitou
*oTk TOUTOV... TolobTog & Tpbdmog Eotive “odyl 16 Te & xad 0 B’ (7 3t «’- odxn .
dpae Td B .—nédml 1ol rerdpTov xaTd TOv aiTév... Tololtde Tig & Tpdmog Eotiy,
“Hror 70 o ) 70 P'- 5 3% of odw &pa b B —xdwi Tol weumwTou... ToLOBTEG
goTv & Tpémog, “Hvor 10 o H td B odyl I wd B T dpa o). Cf. also
Arnim, ii. 241 and 242, pp. 79-81.

23) Prantl, who actually hates Stoic logic, writes on this matter as follows (i, p. 474):
“Here the enormous stupidity of the distinction between the moods IV and V does
not have to be especially remarked upon.” It is disgraceful to encounter such an
assertion in a learned work, particularly as it rests upon ignorance of logic. Prantl
further supposes that Chrysippus took the five syllogisms from Theophrastus, and
“anyone who copies completsly unfamiliar material thereby runs the tisk of only
displaying his own ignorance”. Herein lies another historical error. It cannot be
shown from our sources that Theophrastus constructed or even knew of the above-
mentioned syllogisms.

24) Sextus, Adv. math. viii. 235, 236 (missing in Arnim). The inference-schema reads

“gl 7b mpdTov xal TO SEUTspov 70 Tplrov- obyl 8 ye 7o Tpltoy, AL xal ©d mpdiTov
oy &po T4 debrepov.” To the end of the reduction it runs: dote Sbo elvan
dvamodeintovg, &ver pdv Towobrov: el vo wpdTov wal T4 Sedrepov, 10 Tpivov-
odyil 3¢ ye TO TpiTov- odx Epa T4 TpdTov ok O dedrepov”’, 8¢ Eomt Jebrepog
dvamddsintog, Erepov 8% Tpitov TOV olrwg Eyovtar Fodyl TO mpdtov xal vd del-

" repovs AN udy T mpdwove odx dpa To Sedrepov’.
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Another example given by Sextus, in which the first syllogism is
used twice, remained unintelligible to Prantl. The example, in general
form, reads: “if p, then if p then ¢; but p; therefore ¢”. The reduction
proceeds as follows. From the premisses “if p,.then if p then ¢” and
“p” we get, by the first syllogism, the conclusion “if p then ¢”. From
this conclusion and the premiss “p” we obtain, again by the first syllo-
gism, “g”.%) The inference-schema dealt with here is most interesting:
it corresponds to a thesis of the propositional calculus that was recently
raised to the rank of an axiom by Hilbert and Bernays.*)
Thenumber—of derived inference-schemata is supposed to have
been very great.?’) Of those that have come down to us the following
‘sy]loéism, quoted by Origen, merits our attention: “If p then ¢; if p
then not-q; therefore not-p.” The example of it, given in addition, is
also very interesting: “If you know that you are dead, then you are
dead (for nothing false can be known); if you know that you are dead,
then- you are not dead (for the dead know nothing); therefore you
do not know that you are dead.”®) The above passage from Origen
is also important in that it gives us information about the meaning of
a hitherto erroneously interpreted expression of Stoic dialectic.’)

25) Sextus, Adv. math. viil. 230-3 (missing in Arnim). The text is corrupt, although
unambiguously clear. It was corrected first by E. Kochalsky in his dissertation De
Sexti Empirici adversus logicos quaestiones criticae, Marburg, 1911, pp. 83-85. Never-
theless he finishes his corrections with an appeal to Zeller and Prantl in the following
way: “Nimirum huiusmodi argumentum non simplex indemonstrabile per se est
absurdissimum, sed Stoicos in syllogismis inveniendis incredibilia paene gessisse
inter omnes constat.” One sees from this how pemicious Prantl’s influence was.

%) Hilbert and Bernays, Grundlagen der Muathematik, vol. i, Berlin, 1934, p. 66.
The thesis in question is, in words, “if [if p, then (if p then gq)] then Gf p then g)”.

27 Cicero, Topica 14, 57 (quoted by Zeller, Die Philosophie der Griechen, iii. 1,
5th edition 1923, p. 114, note I; missing in Arnim): “ex iis modis conclusiones in-
numerabiles nascuntur.”

2%) Origen, Contra Celsum, vii. 15 (Works, vol. ii, ed. Koetschau, 1899, p. 166,
missing in Arnim): 8vav 3% 300 cuwmuuéve My elg Td AAAAotg dvtixelyeva TEH
xoAovpévey “S1d 8bo TpomndY” GewphpaTt dvoupeitar 70 &v dupotépolg Tolg ouv-
nupévors fyoduevoy ... nal Srmdyeral ve 6 Aéyoc Tpéme TowolTe: ‘el Td wpdvov,
xol 76 Sedrepoy- gl T8 wpdTov, od T Ssérspov' obx &po T np_o’i‘rov”. pépovot B¢
xol &m 8Ang v tpdmov ToBtov of dmd THg Xrodic Aéyovreg TH- “el EmioTacal
871 TEQvnuag, {TESvuac: <l & smc‘mcm 5TL ’L'E&V“I]AOCQ), ob TEdvirag”. dnoloudel

wb- “obn Hpo Emicrasam, 8T TEBVIKES .
%) Neither Prantl nor Zeller knows the passage, although Fabricius had afready

L A—
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In connexion with the Stoic logic of propositions I would like to
touch upon one or two questions of a general nature. The Stoics are
constantly criticized for the fact that in their logic the most trivial
empiricism as well as the most empty formalismi appears. Thus Prantl
@, p. 457) says, in citing the examples given by the Stoics for implication,
that these are “examples, from which it is sufficiently obvious both

that-the-crudest-enpiricat-criterion is -displayed,-and-that-thereis totat
lack of any understanding of the causal nexus between essences and
inherences”. Prantl’s unfavourable judgement is not justified. If empir-
ical examples are given for logical formulae, the criterion of truth
for these examples must also be in some way empirical. However,
the examples do not belong to logic, and in Stoic logic itself we do not
find-the slightest trace of empiricism. When it is asserted that the Stoics
lacked an understanding: of the causal nexus, we may conclude only
that Prantl fails to grasp the Philonian concept of implication accepted
by the Stoic. In two-valued logic there can be no other concept of impli-
cation than the Philonian. This has nothing to do with either empiri-
cism or the causal nexus, for the expression “if p then ¢” does not mean
the same as “g follows from p”.

The accusation of formalism, which was often made even in ancient
times, 3%) is quite justified, only in our eyes it is not an accusation at all.
Formalism, or better formalization, means the ideal of exactitude that
each deductive system strives to attain. We say that a deductive, axio-
matically constructed system is formalized when the correctness of
the deductions in the system can be verified without having to refer
back to the meaning of the expressions and symbols used in the de-
ductions. They may be verified, that is, by anyone who understands
the rules of inference of the system. In this sense the Stoics prepared the
way for formalism, and they cannot be credited highly enough for
that. They held strictly to words and not to their meanings, which is
referred to it (Sexti Empirici Opera, 2nd edition 1840, vol. i, p. 112). The expression
in question is “Sue %o Tpomkdy” (“rpomdv” is & non-simple premiss, e.g. an
implication). It is wrongly interpreted by Prantl (i, p. 480) and Zeller (iil. 1, pp. 114-
115 note 5); it means a syllogism in which two rpomned, in this case two implications,
occur as premlsses

%) Galen, Inst. log., ed. Kalbfleisch, p. 11,1. 6 (Am]m, i. 208, p. 69, L 4): @’
of mepl Xplowrnov ndvraddu ff AéEer udadov #) Tols wpdypact Teoodyovres ToY
vo(iv. ...
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the principal requirement of formalization, and they even did so in
conscious opposition to the Peripatetics.- Alexander occasionally ex-
presses the opinion that the essence of the syllogism lies not in words
but in what the words mean.?') The Stoics would undoubtedly maintain
the opposite. For in spite of the fact that, for example, they took the
expressions “if p then 47, and “g follows from p” to be synonymous
(which is incorrect), they did nmot describe the inference-schema “g fol-

lows from p; but p; therefore ¢” as a syllogism, although the following |

schema, which in their opinion is synonymous with it, is a syllogism:

“if p-then ¢; but p; therefore ¢”.%%)

In connexion with this controversy between the Stoic and the Peri-
patetic schools, we are ultimately confronted with the gquestion, whether
the Stoics understood anything about the meaning in principle of their
propositional logic, and, in particular, whether they were aware of
having created a system of logic different from Aristotle’s. Scholz
believes that we must answer the first part of this question in the neg-
ative.3®) For the second part of the question we have at our disposal
two hitherto little-noticed accounts.

In his commentary on Aristotle’s Topics Alexander enumerates,
under the heading “syncritical problems”, certain controversial ques-
tions discussed in ancient times—as, for example, whether the moon
is bigger than the earth, or whether surgical treatment is to be preferred
to medical. In 'so doing he also mentions the following comparable
problems from logic: “whether induction is more convincing than the
syllogism; and which syllogism is the first, the categorical or the hy-
pothetical; and which syllogistic figure is the first or the better”.>¥)

2

31) Alexander, In anal. pr. comm., ed. Wallies, p. 372, 1. 29: odx & ~walc AéEeowy
& ovlhoyiopds TO elvan Exer G &v Tolg onuovouévos,

32y Alexander, ©p. cit., p. 373, 1. 29 (Axnim, ii. 253, p. 84): ol 3¢ vedrspor Taig
MEeowy EmoxorovSobyvree odxétt 3% onpavopdvolg, o0 Tadtéy oot yivesHal év
Tocic sle T looduvapolons MEelg peTahfifect TdY Spwye Tadtdy Yap onuaivovtog
7o el w0 A, & B 1§ “drolov§el 16 A 0 B culhoytortindy pdv Adyov gaciy
elvar TowdTe Aedeiong Tis AMEewe: el 10 A, 70 B- 70 8¢ A- 18 &pu B, odném
3% suloyioTindy dAAG TegavTidy T “‘duorovSel v6 A vb B- 16 8t A- 16 dpa BT

3%} Geschichte der Logik, p. 32.

3%) Alexander, In top. comm., ed. Wallies, p. 218: Zowwv &wv xal &v <f Royuxf

SUYXOLTIXGE T {nrodueve, &¢ 10 moTepoy TELGTLHMTEROY, ETaynYT) A SvAkoyLG~

At

uds, nol mwolog wpdTog cLAROYIGRES, § KaThYoewds F & Smofetinds, xxl wolov
oxfue wpdtov B BéATiov.
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It is the second question that interests us here: which syllogism is
the first, the categorical or the hypothetical. Now the categorical syl-
logism is the Aristotelian, the hypothetical, the Stoic. Our controversy
accordingly concerns the relation of Aristotelian to Stoic logic, and
aims at establishing which of these systems is the first, i.e., as I under-
stand it, the logically prior.

AT Answer to this question i-to be-feundinthe- highly-mmteresting ——————

introduction to logic written by Galen. Galen reports that Boethius,
who according to Ammonius was the eleventh head of the Peripatetic
school after Aristotle, and who was reckoned one of the most acute
logicians of his time, himself considered, although he was a Peripatetic,
the hypothetical and not the categorical syllogisms to be the first.
Against this Galen raises the objection that the categorical premisses,
as simple propositions, afe logically prior to the hypothetical ones con-
structed out of them. However, he does not appear to attach any great
importance either to this argument or to the whole controversy, for
he thinks that there is not much to be gained or lost in the dispute.
One should become as familiar with the one kind of syllogism as with
the other, but in what order this should take place, or which of them
should be referred to as primary, may be left to one’s own discretion.’)

From these two fragments we may, in my opinion, conclude not only
that the Stoics were aware of the difference between their own logical
system and the Aristotelian, but also that they correctly judged the
relation -between the two systems. We know today that propositional
logic is logically prior to the logic of terms. If we analyse the proofs
that Aristotle uses in the 4ralytics to reduce syllogisms of the second and
third figures to syllogisms of the first figure, we see clearly that theses
of propositional-logic must be employed throughout. The syllogism

3%) Galen, Inst. log., ed. Kalbfleisch, p. 17; ot pévror xol tév & vol Ilepimdrov
wwic dHomep xod Boyddc od pévov dvamoeSeixvouvg dvopdlovoty Tods Ex wév fye-
poviedY Appdtev cuiloyiopods, GAAG xal mpdroucr Soor 8% &k xaTyyopudy
TpoTdoswy elolv dvaméSeicTor ouAhoyouol, TobToug odx Ew mpdrToug dvopdlew
suygopodar walbvror xad’ Etépdy vye Tpdmov of rorolror mpbrepor THY drofeTinddy
glow, einep ye xal al wpordoetg adtdy € dv odyxewvra wpdtepal Befalag sioty:
od3sic Yop duptofythoet T i od mpdtepoy elvan To &mAoGy Tol cuvSérou, dMha:
Tepl pdv 1AV Toodrev duotsByricenv ofte edpelv ofite dyvofjoan ufywr xeh
Yo dupbTepe T& wépn YiYvOOHEW TEY GUAoYLoREY, ol ToBT EoTl TO Yehoutoy,
dvopdfew 3t wodg Erépoug ¥ SiSdousv mpotépovg dg Exdare pilov.
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which later received the name “Baroco” cannot be formally reduced
to “Barbara” without the propositional thesis “if .(if p and g, then r),
then (if p and not-r, then not-g).” Now this thesis corresponds to an
inference-schema which, as we saw above, was well known to the Stoics.
It is highly probable that the application of this inference-schema to
Aristotle’s syllogisms did not escape the Stoics. We know also that the
logic of propositions is of far greater importance than the meagre frag-
ment of the logic of terms that is incorporated in Aristotle’s syllogistic.
The logic of propositions is the basis of all logical and mathematical

. _systems. We must be thankful to the Stoics for having laid the founda-

tions of this admirable theory.

A great deal about how Stoic influences continue to be at work
in the Middle Ages may be found in Prantl. That, however, the propo-
sitional logic created by them undergoes a further development in that
period seems to have been realized by no one up to now. Once again
it is not possible for me to go into details here, especially since the
sources for medieval logic are not easily accessible. I shall in what
follows merely give a short account of what is to be found of proposi-
tional logic in the Summulae logicales of Petrus Hispanus, that classic
manual of medieval logic, together with the commentary on it by Ver-
sorius; as well as what can be found in the writings of the subtle Duns
Scotus. The Philonian criterion of a true implication, already disputed
in ancient times, seems not to have been known to Petrus Hispanus.
To make up for this there appears in his work, under the name of disjunc-
tion and replacing Chrysippus’® “either-or”™ connective, non-exclusive
alternation as a truth-function.3®) We learn that a disjunction, i.e. the
joining together. of two propositions by means of the connective ‘vel’,
is false if and only if its two members are false. Otherwise it is true,
even when both its members are true—though this was admitted with
a certain reluctance. 37y

- 3¢) Prant] (ifi, p. 43) has nothing to report on this, for he is not aware of the differ-
ence between disjunction and alternation.

%7) Summulae, tract. i, De disiunctiva (quoted only in abridged form in Prantl iii,
D. 43, note 158; I quote from a comparatively later edition, Petri Hispani Summulae
Logicales cum Versorii Parisiensis clarissima expositione, Venetiis 1597 apud Matt-
haeum Valentinum, which differs from the text quoted by Prantl in various places):

“Disiunctiva est illa, in qua coniunguntur duae propositiones categoricas per hanc
confunctionem ‘vel’ aut aliam sibi aequivalentem, ut ‘Socrates currit vel Plato di-

Lk o
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In the commentary the two following rules of inference are laid down
for disjunction. Firstly, from a disjunction and the negation of one
member the other member may be inferred; e.g. “Man is an animal or a
horse is a stone; but a horse is not a stone; therefore man is an animal.”
This is precisely the fifth indemonstrable syllogism of the Stoics; the
fourth is, of course, missing, since it is valid only for exclusive disjunc-

tion. Secondly; fronrthetruthrof-one-member the-truth- of the-disjunction
may be inferred; e.g. “Man runs, therefore man is an ass or man runs”.®)
The examples are grotesque, but none the less clear enough. The second
rule is new, not occurring in the Stoic texts. Moreover, it i§ ¢otrect
only on condition that disjunction is taken as non-exclusive alternation.

Conjunction, which here bears the name of copulative assertion,
is defined by Petrus Hispanus as a truth-function, just as it was by the
Stoics. The only rule of inference which seems to be new is one which
is added in the commentary: from a conjunction each of its members
may be inferred; e.g. “Man is an animal and God exists, therefore man
is an animal.”3®)

In this connexion we find in the commentary on Petrus Hispanus
the following beautiful remark: a conjunction and a disjunction with
mutually contradictory members contradict one another.*) That is
to say, the following propositions stand in contradiction to one another:

sputat’. Ad veritatem disiunctivae sufficit, alteram partem esse veram, ut *homo est
animal vel equus est asinus’, tamen permittitur, quod utraque pars eius sit vera, sed
non ita proprie, ut ‘homo est animal vel equus est hinnibilis’. Ad falsitatem eius
oportet, utramque partem eius esse falsam, ut ‘homo est asinus vel equms est lapis”.”

3%) Summulae, loc, cit.: “dupliciter arguitur a disiunctivis. Uno modo, a tota di-
siunctiva cum destructione unius partis ad positionem alterius, ut homo est animal
vel equus est lapis; sed equus non est lapis, igitur homo est animal’. Secundo modo,
arguendo a veritate unius partis ad veritatem totius, et est bona consequentia, unde
bene sequitur, haec est vera ‘homo currit’, igitur haec est vera ‘homo est asinus vel
homo currit’.”

) Sﬁmmulae. tract. i, De copulativa: “arguendo a tota copulativa ad veritatem
cuiuslibet partis eius seorsum, est bona consequentia. Ut bene sequitur homo est
animal et Deus est, ergo homo est animal’.” .

40 Summmulae, loc. cit.: “copulativa et disiunctiva de partibus contradicentibus
contradicunt.” The same thought, which is here stated somewhat too concisely,
is expressed by Occam much more clearly: “Opposita contradictoria disiunctivae
est una copulativa composita ex contradictoriis partium ipsius disiunctivae.” (See
Prantl, iii, p. 396, note 958.) . :
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“p and ¢” and “not-p or not-g”, as well as “p or ¢” and “not-p and
not-¢”. In other words, “p and ¢” is equivalent to the negation of “not-p
or not-g”, and “p or ¢” to the negation of “non-p and not-¢”. From
which it follows that the so-called De Morgan’s laws were known long
before De Morgan. v

Finally we read, at the same place in the commentary, that the contra-
dictory opposite of a proposition cannot be “more truly” formed than
by prefixing the negation sign to the proposition.*') Here the Stoic
influence, which we mentioned above, emerges particularly clearly.
All the above rules_of inference, together with the last remark, are also

found in Duns Scotus. It seems therefore that they were generally recog-
nized in the Middle Ages. :

The survival of Stoic propositional logic in the Middle Ages is par-
ticularly evident in the theory of “consequences”. By a consequence
the medieval logicians understand not only an implication, but also an
inference-schema of the type “p, therefore ¢”, in which “p” and “g”
are propositions. As a rule, however, consequences are represented as
inference-schemata.*) Consequences are divided into material and
formal. A consequence is formal if it holds for all terms in the same
arrangement and form; otherwise it is material. Formal consequences
are, as laws of logic, always correct. A material consequence is correct
or “good” (bdna) only if it can be reduced to a formal consequence
through the assumption of a true proposition as premiss. If the assumed
proposition is necessarily true, the consequence is called bona simpliciter;
if it is only contingently true, the consequence is called borna ut nunc.
The latter distinction seems to me to be of no great significance.*)

) Summulae, loc. cit.: “non est verius dare contradictionem, quam tioti propo-
sitioni praeponere negationem.”

“?) Duns Scotus, Quaestiones super anal. pr. i, 10 (Prantl, iii, p. 139 note 614):
“Consequentia est propositio hypothetica composita ¢x antecedente et consequente
mediante coniunctione conditionali vel rationali.” As a coniunctio conditionalis the
word si is used; as a coniunctio rarionalis either igitur or ergo.

%) Loc. cit. (Prantl, iii, p. 139 note 615, p. 140 notes 617, 619): “Consequentia
sic dividitur: quaedam est materialis, quaedam formalis. Consequentia formalis
est illa, quae tenet in omnibus terminis stante consimili dispositione et forma termi-
norum.” (There follows a precise setting-forth of what belongs to the form of a con-

sequence.) “—Consequentia materialis est illa, quae non tenet in ommibus terminis
retenta consimili dispositione et forma. Et talis est duplex, quia quaedam est vera
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Later medieval handbooks of logic, in chapters entitled De comse-
quentiis, introduced among various other formal consequences some
which belong to propositional logic. Several of these consequences we
have already become acquainted with above. It would be worth while
for someone to take the trouble to assemble all of them, for then we
would have a complete picture of the medieval logic of propositions.

-—TFhe-theory-of-consequences deserves the closest-attention—for-another
reason, however. From the concept of material consequence described
above, the Philonian concept of implication, forgotten in the Middle
Ages, can be derived in a logical but quite unexpected way. Tt is' worth
going into this derjvation more closely.

The implication “if p then ¢” corresponds to the inference-schema
“p, therefore g”; both forms are even, characterized in the same way
as consequences. A true implication corresponds to a good consequence,
and vice versa. A material consequence is good if it can be transformed
into a formal consequence by the assumption of a true premiss. It follows
from this, first, that every implication whose consequent is true must
itself be true. Thus if “g” is true, the material consequence “p therefore
g” is good for all p; for if the proposition “g”, true by assumption,
be added as a premiss, we obtain the inference-schema “p and g, there-
fore ¢, and this inference-schema is, as we have seen above, a formal
consequence. Secondly it follows that every implication whose ante-
cedent is false must also be true. Thus if “p” is false, the material conse-
quence “p, therefore g” is good for all g; for if the true proposition
“not-p” (i.e. the contradictory of the proposition p, false by assumption)
be added as a premiss, we get the rule of inference “p and not-p, there-
fore ¢”, and this rule of inference is a formal consequence, as we shall
see below. In three cases therefore (“irue-true”, “false-true”, and “false-
false™) is an implication true; in the fourth case (“true-false™) it is of
course false. Implication is therefore strictly defined as a truth-function,
according to the Philonian model. ‘

This conclusion seems to have escaped Duns Scotus. Still, he was
clearly aware of all the assumptions that led up to it. He knows, that is,

simpliciter, et alia est vera ut nunc. Consequentia vera simpliciter est illa, quae potest
reduci ad formalem per assumptionem unius propositionis necessariae.—Conse-
quentia materialis bona ut nunc est illa, quae potest reduci ad formalem per assum-
ptionem alicuius propositionis contingentis verae.”
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that from any false proposition any other proposition follows in a good
material consequence, and that any true proposition results from any
other proposition in a good material consequence. And finally he proves
that, from & proposition which contains a formal contradiction, any
proposition at all can be obtained in a formal consequence.**) The
proof is given by means of an example and goes as follows. The conse-
quence “Socrates runs and Socrates does not run, therefore you are in
Rome” is formally correct. From the conjunction “Socrates runs and
Socrates does not run” the proposition “Socrates runs”, as well as the

D p@,position “Socrates does not run”, follows in formal consequence.

From the proposition “Socrates runs” there follows further, in formal
consequence, the disjunction “Socrates runs or you are in Rome”.
Finally, from this disjunction and the negation of its first member we
obtain, in formal consequence, the proposition “you are in Rome”.*)

With the collapse of medieval scholasticism all these fine investigations

fell into total oblivion.

The “philosophical” logic of modem times is infected through and
through with psychology and epistemology. It has no understanding
of nor interest in questions of formal logic. Aristotelian syllogistic is at
best taken account of in its traditional distortion, and we find scarcely
a trace of propositional logic. In vain does one seek for problems that
are new, precisely formulated, and methodically solved. Everything dis-
solves in vague philosophical speculations.

Modern logic is reborn out of the spirit of mathemancs With “mathe--

matical” logic or logistic a new logic arises and comes into full bloom

+) Loc, cit. (Prantl, iii, p. 141 note 621): “Ad guamlibet propositionem falsam
sequitur quaelibet alia propositio in consequentia bona materiali ut nupe.-— Omnis
propositio vera sequitur ad quamcunque aliam propositionem in bona consequentia
materiali ut nunc.—Ad quamlibet propositionem implicantem contradictionem de
forma sequitur quaclibet alia propositio in consequentia formali.”

%) Duns Scotus, Quaestiones super anal. pr. ii, 3 (not quoted by Prantl): “‘Socrates
currit et. Socrates non currit; igitur tu es Romae.” Probatur, quia ad dictam copula-
tivam sequitur quaclibet eius pars gratia formae. Tunc reservata ista parte ‘Socrates
non currit’, arguatur ex alia sic: “Socrates currit, igitur Socrates currit vel tu es Ro-
mae’, quia gquaelibet propositio infert seipsam formaliter cum gualibet alia inuna
disiunctiva. Et ultra sequitur: “Socrates currit vel tu es Romae; sed Socrates non
currit (ut reservatum fuit); igitur tu es Romae’;, quod fuit probatum per illam regu-

lam: ex disiunctiva cum contradictoria iniu§ partis ad reliquam partem est bona
consequentia.”
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in the space of a few decades. With it the logic of propositions again

_comes into its own. And here we encounter all at once a phenomenon

unique in the history of logic: suddenly, without any possible historical

_ explanation, modern propositional logic springs with almost perfect

completeness into the gifted mind of Gottlob Frege, the greatest logician
of our time. In 1879 Frege published a‘small but weighty treatise entitled

Begriffschrift,eine—der—arithmetischen_nachgebildete Formelsproche—des——————

reinen Denkens (“Begriffschrift”, a formalized language of pure thought
modelled upon arithmetic). In this treatise the whole logic of proposi-
tions is for the first time laid down as a deductive system in strict axio-
matic form.*) The Fregean system of propositional logic is built upon
two fundamental concepts, negation and iﬁlp]ication. Implication is de-
fined as a truth-function in just the same way as was done by Philo more
than 2000 years before. Other functions are not introduced, although
the expression “if not-p then g” can be read also as “p or ¢”, and the
expression “not-(if p then not-q)” as “p and ¢”. With the help of the
fundamental concepts six Kernsatze or axioms sre laid down, from
which all other theorems of propositional logic can be derived by means
of rules of inference—the rule of detachment, which is explicitly formu-
lated as a rule, and the rule of substitution, which is used without being
formulated. Serving as the rule of detachment (the name does mnot
originate with Frege) is the first indemonstrable syllogism of the Stoics:

if the implication “if « then §” together with the antecedent “o” of this

implication are admitted as theses of the system, then the consequent
“f” may also be admitted and detached from the implication as a new
thesis. As for the rule of substitution, it allows meaningful expressions
only to be substituted for the variables. Meaningful expressions (this
concept does not appear in the Begriffschrift) include firstly variables,
then negations of the type “not-«”, where o is a meaningful expression,
and finally implications of the type “if « then 8”, where « and 8 are
meaningful expressions. The theses of the system, i.e. the axioms and
theorems, are expressed in a symbolism consisting of vertical and
horizontal lines that take up an excessive amount of space. This symbol-

45) See on this matter f.ukasiewicz and Tarski, “Untersuchungen iiber den Aussa-
genkalkiill”®, Comptes rendus des séances de la Société des Sciences et des Lettres de Var-
sovie 23 (1930), cl. iii, p. 35, note 9. [“Investigations into the Sentential Calculus”,
pp. 131-152 of this volume.]
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ism of Frege’s does, however, have the advantage of avoiding all punc-
tnation marks, such as brackets, dots, and so ofi. I have succeeded in
devising a simpler bracket-free symbolism, requiring the least possible
space. Brackets are eliminated by placing the functions “if” and “not”
before their arguments. The expression “if p then ¢” is represented in
- my symbolism by “Cpg”, and “not-p” by “Np”. Each “C” has as argu-
ments the two meaningful expressions immediately following it, and
each “N” has one such expression. Frege’s axioms assume, in this sym-
bolism, the following form: : i

I CpCyp- : TV—CCpgCNgNp.
. CCpCqrCCpgCpr. V. CNNpp.
III. CCpCqrCqCpr. VI. CpNNp.

This axiom system is complete: that is, all correct theses of proposi~
tional logic can be derived from it by means of the two rules of infer-
ence. It is deficient only in “elegance”: the system is not independent,
for the third axiom can be deduced from the first two. The deduction,
which is performed below, gives one an idea of how a modern formalized
system of propositional logic appears. To explain the deductive technique
used I add the following notes. *’) Before every thesis to be proved (each
of which is provided with a consecutive number and can thereby be
recognized as a thesis), there is an vanumbered line, which I shall call the
“derivational line”. Each derivational line consists of two parts, which
are separated by the sign “x”. What stands before and after this sepa-
ration designates the same formula, but in a different way. Before the
separation sign is given the substitution which is to be performed on
an already asserted thesis. For example, in the derivational line that
belongs to thesis 1, the expression “I p/CCpCqrCCpgCpr, g/Cgr” means
that in I “CCpCqrCCpqCpr” is to be substituted for “p” and “Cgr”
for “g”. The thesis resulting from this substitution is omitted from the
proof for the sake of brevity—it looks like this:

I CCCpCqrCCpqCprCCqrCCpCqrCCpgCor.

The expression “CII—1” after the separation sign indicates the construc-

‘) Cf. Lukasiewicz, “Ein Vollst?a'ndigkeitsbeweis des zweiwertigen Aussagen-

kalkiils®, Comptes rendus des §8ances de la So¢iété des Sciences et des Lettres de Var-
sovie 24 (1931), cl. iii, p. 157.

“
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tion of the same thesis 1’, and in such a way as to make it clear that
the rule of detachment can be applied to 1. We see, that is, that the
thesis 1’ is of the type “Cuf”, where “o”” denotes axiom IT. Hence “8”,
or 1, can be detached from it as a new thesis. Up to thesis 3 the deduction
exactly follows Frege’s train of thought.

1 CpCap. _ ‘
II CCpCqrCCpgqCpr.
*
‘ - Ip/CCpCqrCCpgCpr, q/Cqrx C—1.
1° CCqrCCpCqrCCpqCpr.
Hp/Cqr, q/CpCqr, ¥r/CCpqgCpr<x Cl1-2.
2 CCCqrCpCqrCCqrCCpqCpr.
2% Clp/Cqr, qlp=3.
3 CCqrCCpgCpr.
II p/Cqr, g/Cpq, r[Cpr x C3 - 4.
4 CCCqrCpqCCqrCpr.
Ip/CpCyp, g/rx CI-5."
5 CrCpCqp.
44/Cpq, p/qx C5r/CCpyqr,plq, q/p-6.

6 CCCpgrCyr.
: 3q/CCpgr, r/Cqr, p/sx C6-1.

7 A CCsCCpgrCsCqr.

7s/CpCqr, r[/Cprx CII-8.
8 CCpCyqrCqCpr. (1I11)

The two-valued logic of propositions, founded by the Stoics, carried
on by the Scholastics, and axiomatized by Frege, stands now as a com-
pleted system before us.. Scholarly research, however, knows no limits.
With “many-valued” systems of propositional logic a new domain
of investigation has, in recent years, come into being; a domain which
opens up surprising and unsuspected vistas. History, however, need
only report about this new logic in the future. :
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The direct impulse to write the present artictle is due to Father Augus-
tyn Jakubisiak’s book .Od zakresu do tresci (From extension to inten-
sion).") His book, which is a collection of philosophical papers, is pre-
ceded by his introduction in which he attacks those philosophical
currents which, in his opinion, are connected with logistic. I regret that
Father Jakubisiak, who lives in: Paris, did not take the trouble to become
aguainted with the milieus and opinions that he criticizes. In that way
he might have avoided certain formulations which discredit his attack.
Here are some examples.

Claiming that the philosophical currents connected with logistic
have declared a merciless war on the phllosophlcal doctrines of the
past, Father Jakubisiak says on page 11: “Such an attitude towards
the philosophy of the past is found in Russell, in Whitehead, and in
Kreis, Witgenstein, Schlick, Carnap, and many others, among whom
a prominent place is held by Polish logicians of the notoricus “Warsaw
school’.” T have never heard of any philosopher whose name is Kreis
and who might be mentioned in this connection, but I do know that
Schlick and Carnap belong to a group of philosophers which in philo-
sophical circles is known as “Wiener Kreis”, i.e., “Vienna Circle”. Has
Father Jakubisiak mistaken the name of a group for the surname of
an individual??) .

Father Jakubisiak further quotes extracts from my address at the
Second Conference of Polish Philosophers in 1927, summarized in my

1) Augustyn Jakubisiak, Od zakresu do tresci (From extension to intension),
‘Warsaw, 1936, p. 301.

2) For accuracy’s sake let it be noted that “Wittgenstein” is spelled with a double
“t” in the first syllable. I also take the liberty to remark that the Warsaw school of
logistic has already won some renown both in Poland and abroad, but the first time
it has been called “notorious” is by Father Jakubisiak.

*) First published as “Logistyka a fil6zofia” in Przeglad Filozoficzny 39 (1936),
pp. 115-131. Reprinted in 1961 edition Z zagadnier logiki i filozofii.
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paper O metode w filozofii (Towards a method in philosophy), published
in the Conference Book.®) On page 12 Father Jakubisiak repeats my
words that “the logic created by mathematicians, which sets a new
standard of scientific precision, much higher than all the previous
standards of precision, has opened %) our eyes to the uselessness of philo-
sophical speculation. Hence, as at the time of Kant, the need arises

forz-reform-of phitosophy—Yet a reformnotin-the name-of some-vagge—————

criticism and in the spirit of a non-scientific theory of cognition,.but
a reform in the name of science and in the spirit of mathematical logic.”
Less than two pages further, on page 14, Father Jakubisiak writes:
“While the human mind, contrary to Kant’s prohibitions, gains ever
deeper insight into the surrounding reality, the defenders of the logistic
reform of philosophy want to forbid to that same human mind all
contact with reality and to make it concenirate on a sterile study of
a priori forms without content, on idle talk.” The reader who remembers
the fragment of my address quoted above and also knows that “mathe-
matical logic” means the same as “logistic” is fully entitled to suppose
that exactly 1, as a defender of a logistic reform. of philosophy, and even,
as I find on page 11 of the book, as one of the “promoters” of that new
philosophy, want to forbid to the human mind all contact with reality
and yet in my paper quoted above I wrote quite explicitly: “We must
incessantly strive for contact with reality, so that we do not produce
mythical entities like Platonic ideas and Kantian things-in-themselves,
but understand the essence and structure of that real world in which
we live and act and which we somehow want to improve”. Has, then,
Father Jakubisiak failed to read to the end my paper which has only
two pages?

In one of his papers Professor Zawirski, of Poznad, is concerned with
an argument of Heisenberg which might be summarized as follows.%)
In the principle of causality, which states: “if we know the present exact-

%) In Przeglgd Filozoficzmy 21 (1928), pp. 3-5. Its Polish title is misquoted by
Father Jakubisiak on p. 12 as “O metodzie w filozofii” (On a method in philosophy).

%) The author misquotes as “will open”.
%), Zygmunt Zawirski, “W sprawie indeterminizmu fizyki kwantowej” (Concerning

" the indeterminism of quantum physics), in Ksiega Pamigtkowa Towarzystwa Filozo-

ficznego we Lwowie (Commemorative book of the Lwéw Philosophical Society),
Lwow, 1931, pp. 456-483. See in particular pp. 478-479. This paper, too, is m1squoted
by Father Jakubisiak as “W sprawqe indeterminizmu”.
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1y, we can predict the future”, the antecedent is false, for we are unable
to know the present exactly. Hence the principle of causality is not
valid. Professor Zawirski raises against this reasoning the following
objection which is quoted verbatim by Father Jakubisiak in his footnote
on page 17: “We may not speak of the falsehood of the principle of
causality, even if we consider it in Heisenberg’s formulation. Tt has the
form of an implication ; in that implication the antecedent is false, hence
the principle is wrong, says Heisenberg. Now, Professor Zawirski writes,
one may not reason so. It is precisely the property of an implication

that it-remains true even if its antecedent is false”. If Heisenberg’s idea
is rendered correctly, which is not questioned by Father Jakubisiak,
then Professor Zawirski’s objection is correct, for we know from the
logic of propositions that an implication having a false antecedent is
true. Nor can I say that Professor Zawirski overestimates the weight
of his argument. He would agree, as Father Jakubisiak mentions, with
Born’s opinion that should it be impossible to ascertain the antecedent,
the principle of causality would be “ein leeres Gerede” and would not be
applicable. Why then does our author pile denunciations upon Professor
Zawirski’s objection? He writes: “Mr. Zawirski accuses Heisenberg
of ignorance of the rules of logic (...) poor Heisenberg does not even
guess the simple and profound critical operations with which Mr.
Zawirski undermines his main thesis!; ... it is only to be regretted that
Heisenberg does not, and probably never will, know what formidable
opponents he has in Poznad University”. Can’ Father Jakubisiak not
know the rule of logic to which Professor Zawirski refers?
In view of such formulations found in the book under discussion,
Father Jakubisiak’s attack on logistic and logistic philosophy could be
- passed over in silence. If T have decided otherwise, I have done so in
order to avail myself of the opportunity provided by that attack to
clarify some misunderstandings, which are not lacking when it comes
to the relationship between logistic and philosophy, and to formulate
precisely my own opinion on the matter.
I
Father Jakubisiak begins his attack with the statement (p. 11): “The
defence of the essential postulates of criticism is also undertaken, though

in a different way, by thé Tatést philosophical currents, called either
logical empiricism, or mathematical logic, or just logistic”. This sentence

ot
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contains two misunderstandings. The first is implied by the insinuation
that the said philosophical “currents” undertake the defence of the
essential principles of criticism, ie., Kantian philosophy, which is
entirely at variance with the truth. I shall refer to this point later on.
The second misunderstanding consists in identifying logical empiricisi-
with mathematical logic, or logistic. The misunderstanding consists in this,

'fﬁat_by-“empﬁicism’—’;‘_be_it‘}cgical_oi‘_aﬂ‘Y'other empiriciam, we-mean

a philosophical current or trend, and “logistic” is not the name of a trend
in philosophy, or even a trend in logic, but is the name of a discipline,
like “arithmetic” or “psychology”. In this connection let me-repeat
what I said at the Bighth International Congress of Philosophers in
Prague, 1934:% “Logistic, also called ‘mathematical logic’, still seems
to some philosophers to be only a certain trend which exists within
logic dlotig with other equally legitimate trends, while to some mathe-
maticians it seems to have only the value of an auxiliary discipline,
initiated for the purpose of laying the foundations of mathematics.
In view of this I wish to emphasize that I treat logistic as an autonomous
discipline which embodies modern formal scientific logic, and that
it would be impossible for me to accept the existence, outside logistic,
of any ‘trend’ in logic that might pass for scientific logic. Historically
and this point I would like to stress in particular, modern logic is a high-
er stage of development of ancient formal logic, which can develop
fully only now owing to the fact that with the co-operation of mathe-
maticians it has succeeded in liberating itself from obscure philosophi-
cal speculations which for so long hindered its progress”. Logistic,
as I see it, and I do not doubt that all scientists who pursue this branch
of research see it in the same way, is thus nothing else than the con- .
temporary form of formal logic and would be fully entitled to call
itself just logic, since formal logic forms the nucleus of logic.

Now, no one doubts that logic is neither a trend nor a current in
philosophy but at the most is a branch of philosophy. Contemporary
formal logic, or logistic, has, however, expanded so much and has
grown so. independent of philosophy that it is, like psychology, to be
treated as a separate discipline. In view of its method and the precision
of its results, and also in view of the problems with which it is con-

6) Jan Lukasiewicz, “Znaczenie analizy logicznej dla poznania” (The significance
of logical analysis for cognition), in Przegled Filozoficzny 37 (1934), p. 369.
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cerned, that discipline now comes closer to mathematics than to
philosophy.

Further, I wish to pomt out that logistic not only is not a philosoph-
ical trend, but is not associated with any trend in philosophy. Let
those philosophers who are not acquainted with logic and so cannot

ascertain this for themselves just consider that logistic is something’

related to Aristotle’s theory of the syllogism. Like Aristotelian syllo-
gistic, it investigates forms of reasoning and lays down the methods of
correct inference and proof. Now, it is certainly obvious that a person

———may-do-research work on syllogistic, and analogously on proof theory, -

while professing in philosophy indifferently empiricism or rationalism,
realism or idealism, or taking on these issues no standpoint at all. In
logistic, as in arithmetic, no definite philosophical point of view is either
explicitly assumed or clandestinely accepted. Logistic is not philosophy
nor does it pretend to replace philosophy. ‘

It does not foliow, of course, that in logistic there are no issues that
have philosophical importance. Every discipline has such issues, and
Father Jakubisiak knows this best, since in his collection of philosophi-
cal essays he refers incessantly to mathematics or physics or biology
or even history. Disregarding here the issue of many-valued logics,
which in my opinion are of the greatest importance to philosophy,
1 wish to mention briefly a certain other problem of logistic, which
is most closely associated with philosophy. ‘

Contemporary logic has a nominalistic guise. It refers not to concepts
and judgements, but to terms and propositions, and treats those terms
and propositions not as flatus vocis, but—having a visual approach—
as inscriptions having certain forms. In accordance with that assump-
tion, logistic strives to formalize all logical deductions, that is, to pre-
sent them so that their -agreement with the rules of inference, i.e., the
rules of transforming inscriptions, can be checked without any refer-
ence to the meanings of the inscriptions. This striving, which in anti-
quity was initiated by the Stoics, who, in that respect, opposed the Peri-
patetics, is intended to reduce all logical self-evidence to visual self-evi-
dence witha disregard for all elusive elements of a conceptual nature.”)

7y Examples of formalized logu:al proofs can be found in my paper quoted in

footnote 6 above (on p. 375), and also io the | followmg two items: Jan Fukasiewicz, °

“Q znaczeniu i potrzebach logiki matematycznej” (On the significance and require-
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While in practice they adopted the nominalistic standpoint, the lo-
gicians, as far as I see, have not yet discussed nominalism thoroughly
enough as a philosophical doctrine. But I consider a future discussion
of this matter most desirable for the following reason.

If we treat propositions as inscriptions and inscriptions as produets
of human activity, then we must assnme that the set of propositions

is-finiter Noone doubtsthat-we-are able to produce only—a—ﬁmtrnmber%ﬁ—s—

of inscriptions. On the other hand, in any logical system we assume
rules of inference which lead to an infinite set of theses, that is, propo-
sitions which are asserted in that system. For instance, in the propo-
sitional calculus from any thesis we can obtain a new, longer, thesis
by substituting for a variable a formula that is a negation or an impli-
cation. Hence there is no longest logical thesis, in the same way as there
is-no-greatest natural number. Hence it follows that the set of logical
theses is infinite. That infinity manifests itself at every step even in such
an elementary logical system as the two-valued propositional calculus.
For we can very easily establish a one-to-one correspondence between
the set of all theses of two-valued logic and a set of theses that is only
a proper part of the former set, thus revealing, in the case of the logical
theses, a property which according to Dedekind is typical of infinite
sets.?)

How can we reconcile these facts with nominalism? We might simply
disregard them and maintain that only those theses exist which have
been written by someone. Then the set of theses would always be finite,
and there would always exist a longest thesis. Such a point of view

ments of mathematical logic), Nauka Polska 10 (1929), p. 610, footnote; Jan Lukasie-

" wicz, “Z historii logiki zda®i” (On the history of the logic of propositions), Przeglad

Filozoficzny 37 (1934), p. 437. The last-named paper also includes (p. 428) quotations
from Alexander which clarify the stand-point of the Stoics and the Peripatetics on
this matter, [Of these three items only the last-quoted is included in the present vol-
ume, pp. 197-217. Pages 437 and 428, referred to above, correspond to pp. 217 and
208, respectively, of the present book.]

%) For that purpose it suffices, in the implicational-negational system, to associate
with all implicational theses their equiform implicational theses, and with those
theses which include negation to associate formulae that differ from those theses only
by having a formula “CeNe” in place of the negation “No”. The latter set will also
be a set of theses and will be eguinumerous with, but only a proper part of the former.
Le., the set of all theses, since it undoubtedly will not include, for instance, the thesis
“CpCNpq”.
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would be consistent, yet it seems that on such a basis it would be dif-
ficult to engage in logistic, and in particular metalogistic, research,
in the same way as it would be difficult to build arithmetic on the basis
of the assumption that the set of natural numbers is finite. In doing
so we would make logic depend on certain empirical facts, that is, on
the existence of certain inscriptions, which would be hardly acceptable.
Further, following Dr. Tarski, we might consider as inscriptions not
only products of human activity, but all physical bodies of definite size
and shape, and assume that there are infinitely many such bodies.?)

— But-then-we would_have to make logic depend on a hardly probable

physical hypothesis, which is not desirable in any case. How, then,
are we to avoid all these difficulties without abandoning nominalism?

‘We have so far been little worried by these difficulties, and this is
the strangest point. It was so probably because, while we use nominal-
istic terminology, we are not true nominalists but incline toward some
unanalysed conceptualism or even idealism. For instance, we believe
that in the two-valued implicational-negational propositional calculus
there exists a “sole” shortest axiom, although so far no one knows
what that axiom looks like, and hence no omne can write it down.!%)

) Alfred Tarski, “Pojecie prawdy w jezykach nauk dedukcyjnych®” in Prace Towa-
rzystwa Naukowego Warszawskiego (The Works of the Warsaw Scientific Society),
Section II, Warsaw, 1933. An English version is now available as “The Concept
of Truth in Formalized Languages” in Alfred Tarski, Logic, Semantics, Metamathe-
matics, Oxford, 1956, pp. 152-278. For the problem raised here cf. footnote 2 on
p. 174 of the text in English.

10) Information on the sole axioms of the implicational-negational system can be
found in Bolestaw Sobocifiski, “Z badan nad teoria dedukcji” (Some research on
the theory of deduction), Przeglgd Filozoficzny 35 (1932), pp. 172176, and footnote
5 on pp. 187-190. The details given there should be augmented by the fact that on
February 2, 1933, Mr Sobocinski. found the following organic axiom consisting of
27 letters:

CCCquCCNersC’rtCuCCtpCvCrp,
which I next reduced to 25 letters: N
CCCpgCCCNpNrsCrtCuCCtpCrp.

This is one of the two shortest known axzioms of the implicational-negational system.
The other, found by me, has the form:

CCCpgCCNrsCNtCrtCCetpCuCrp.

It may be supposed with considerable probability that neither of these two axioms
is the desired shortest one. Such research is, however, so laborious that it capnot be

s
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Tt is as if that axiom existed as some ideal entity which we may discover
some day. It would be worth while to analyse in detail all such beliefs,
bearing in mind the principle, expounded by the Venerabilis Inceptor
of nominalism, that entia non sunt multiplicanda praeter necessitatem. ')

it

——“The-denial-of-metaphysics, so_strongly emphasized by logicians

is a bequest of the philosopher from Konigsberg”, Father Jakubisiak
continues on page 12 of his book.  This proposition includes two new
mis-statements, one historical, one factual in nature. The-latter-con-
sists in this: that the students of logistic are supposed to deny meta-
physics. T have already said that logistic is not philosophy, hence it is
ot concerned with metaphysics. Logistic neither denies not affirms
metaphysics: becatse it is not concerned with it. What is true is only
that some philosophers, who along with philosophy also engage in
logistic, deny metaphysics. They include, above all, the representatives
of the Vienna Circle. I shall refer to this point later on.

For the time being I wish to discuss the former, historical, mis-state-
ment. I am, of course, not authorized to speak on behalf of the Vienna
Circle, but I am sure that its representatives would protest most vig-
orously against the supposition that the denial of metaphysics, which
they propound, is a bequest of the philosopher from Konigsberg. I am
convinced that Kant’s transcendental 'philosophy, which assumes,
on the one hand, the existence of things in themselves, unrecognizable
to us, and on the other supposes the existence of the mind endowed
with some a priori forms of cognition, must in the eyes of the members
of the Vienna Circle pass for metaphysics of the worst kind. The denial

‘of metaphysics by the Vienna Circle is much more radical than Father

Ji akubisiak imagines and is a bequest not of Kant, but of Hume. It is

said when, if ever, it will be completed. At the moment of sending this paper to the
printers I have found out that there is an aziom of the implicational-negational
system which consists of 23 letters. Its form is as follows:

. CCCpgCCCNrNstrCuCCrpCsp.
[Cf. footnote *) on p. 138]
11y The need for a discussion of nominalism was pointed out by Father Jan Sala-
mucha in his paper “Logika zdan u Wilhelma Ockhama” (Logic of propositions in
the works of William Ockham), Przeglad Filozoficzny 38 (1933), p. 210. Father
Salamucha’s mention induced me to include these remarks on this matter.
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to Hume that Professor Carnap, a leading representative of the Vienna
Circle, refers when guoting his well known words:

“It seems to me, that the only objects of abstract science or of
demonstration are quantity and number (...) All other enquiries of
men regard only matter of fact and existence; and these are evidently
incapable of demonstration (...) When we run over libraries, per-
suaded of these principles, what havoc must we make? If we take in
our hand any volume; of divinity or school metaphysics, for instance;
let us ask. Does it contain any abstract reasoning concerning quan-

e —tity-or number? No. Doees it contain any experimental reasoning con-

cerning matter of fact or existence? No. Commit in them to the flames;
for it can contain nothing but sophistry and illusion.”?) Carnap
considers these words—though I doubt that he is right—to be
the classical formulation of the view that only mathematical proposi-
tions and propositions about facts are meaningful (sinnvoll), while
metaphysical propositions are meaningless (sinnlos). This is the. gist
of Carnap’s denial of metaphysics; let it be added that, according to
Carnap, mathematical propositions include logical propositions and
propositions of the logical syntax of language which, in hls opinion,
is nothing else than the mathematics of language.

I should Iike here to formulate my own opinion on this matter and
to dissociate myself from the opinions of the Vienna Circle and from
Carnap’s opinion in particular. I have shifted my interests from philos-~
ophy to logistic, and the latter, not because of its content but because
of its method, has greatly affected my opinion of philosophy. All this
had happened even before the Vienna Circle was formed. I gave it
a forceful expression in a now forgotten article, written in 1924 to
mark the two-hundredth anniversary of Kant’s birth:**) “I realize”,
I'wrote then, “that my -Critical opinion about the scientific value of
Kant’s philosophy and modern philosophy in general may be too
subjective; but that opinion forces itself upon me the more strongly
the further away I go from philosophy and look back at it from the

12) Rudolf ‘Carnap, “Die Aufgabe der Wissenschaftslogik™, Einheitswissenschaft,
No. 3, 1934, pp. 7 and 21. Hume’s words, quoted by Carnap, are in the 12th Chapter
of his work An Enquiry Concerning Human Understanding.

3

13) Jan Fukasiewicz, “Kant 1 fillozoha nowosyina” (Kant and modern philosophy),

Wiadomosci Literackie vol. I, No. 19, of May 11, 1924,
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distance that separates philosophical speculation from scientific
method.” And my opinion on Kant’s philosophy, formulated in that
article, was as follows: “That philosophy calls itself critical. But how
far away it stays from true, scientific criticism! Even the very differen-
tiation between amalytic and synthetic judgements is not scientifically
formulated by Kant. We are not entitled to assert that the space around

—us-must-comply-with-certain.geometrical tru’&hs, for.we-donotknew—3 ——

whether that space is Euclidean or perhaps of some other kind. It is
impossible to understand what are those allegedly pure ideas of space
and time that are said to be inherent in us. The world of things in them-

_ selves is a metaphysical fiction that can vie with Leibniz’s monadology.

When we ‘apply to it the requirements of scientific criticism, Kantian
philosophy collapses like a house of cards. At every step we find vague

" concepts, ~incomprehensible -statements, unjustified assertions, con-

tradictions, and logical errors. Nothing is left except a few perhaps
inspired ideas, a raw material that awaits scientific elaboration. That
is why that philosophy has not performed its task, although its influence
has been great. After Kant, people have not started to philosophize
more critically, more reasonably, more cautiously. Kant gave rise to
German idealistic philosophy, whose flights of fancy and non-scientific
character has surpassed all pre-Kantian Systems. Metaphysical prob-
lems have been left unsolved, though, I think, they are not unsolvable.
But they must be approached with a scientific method, the same well-
tested method which is used by a mathematician or a physicist. And
above all people have to learn to think clearly, logically, and precisely.
All modern philosophy has been incapacitated by the inability to think
clearly, precisely, and in a scientific manner.’

Whoever reads carefully these words which now, twelve years later,
T can ratify with equal conviction will probably understand both the
origin and the intention of my coming out against philosophical specu-
lation. Such comprehension may be improved by the following com-
ments. My critical appraisal of philosophy as it has existed so far is
the reaction of a man who, having studied philosophy and read various
philosophical books to the full, finally came into contact with scientif-
ic method not only in theory, but also in the direct practice of his own
creative work. This is the reaction of 2 man who experienced personally
that specific joy which is a result of a correct solution of a uniquely
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formulated scientific problem, a solution Whi¢h at any moment can be
checked by a strictly defined method and about which one simply
knows that it must be that and no other and that it will remain in science
once and for all as a permanent result of methodical research. This is,
it seems to me, the normal reaction of every scientist to philosophical
speculation. Only a mathematician or a phys1c1st who is not versed
in philosophy and comes into casual contact with it usually lacks the
courage to express aloud his opinion of philosophy. But he who has
been a philosopher and has become a logician and has come to know

N .__#Jhe_mostpmcwm have at our disposal

today, has no such scruples. He knows what is the value of phﬂosophlcal

speculation as it has existed so far. And he knows what can be the .
value of reasoning carried out, as it usually happens, in inexact, am-

biguous words of everyday language and based neither on empirical
data nor on the precise framework of a symbolic language. Such work
can have no scientific value and is a waste of time and mental energy.

But someone may say: “It seems to follow from these remarks that
you only consider scientific those reasonings which are based on em-
pirical data or on a precise symbolic language, which is the language
of mathematics. Is that not exactly the standpoint of Hume? And
does it not include a denial of metaphysics?” Not at all, I reply. My
standpoint is quite different. Hume thought that the mathematical
or “demonstrative” method can be applied only to magnitudes and
numbers. Logistic has demonstrated that it has much wider application.
It must be applied to metaphysical problems as well. In my article
referred to above I wrote: “Metaphysical problems have been left
unsolved, though, I think, they are not unsolvable. But they must be
approached with a scientific method, the same well-tested method
which is used by a mathematician or a physicist.” I tried to outline
such a method in my already mentioned paper “O metode w filozofii.”
I also wrote that “a future scientific philosophy must start its own
construction from the very beginning, from the foundations. And to
start from the foundations means to make first a review of the philo-
sophical problems and to select from among them only those problems
that can be formulated in a comprehensible manner and to reject all

the others:™~When-referring-to-the -problems that would have to be
rejected, I meant first of all the problems concerned with the essence
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of the world or things in themselves, for I did not, and do not now, °
know how to formulate these problems in a comprehensible manner.

-“Next,” I continued, “the task would be to try to solve those philo-

sophical problems that can be formulated in a comprehensible manner.
The’most appropriate method for this purpose again seems to be the
method of mathematical logic, the deductive, axiomatic, method.

We-wouldwhave"tmbas&e%rr—argumenis_on_pxopos:»tlons—wh&ch—afe—as———*w

clear and certain as possible from the intuitive point of view and to

‘adopt such statements as axioms. As the primitive or undefined terms

we would have to select concepts whose meanings can-be-explained—
from all sides by examples. We would have to strive for a reduction
of the number of axioms and primitive concepts to a minimum and to
count them all carefully. All other concepts would have to be defined
uncondltlona]ly by means- of primitive terms, and all other theorems
would have to be proved unconditionally by means of axioms and the
rules of proof as adopted in logic, The results obtained in this way
would have to be checked incessantly against intuitive and empirical
data and with the results obtained in other disciplines, in particular
in the natural sciences. In case of disagreement the system would have

.to be improved by the formulation of new axioms and the choice of new

primitive terms. I thought then, and today I do not think otherwise,
that that method could be applied to the problems of the finiteness or
infinity of the world, to the problems of space, time, causality, teleology,
and determinism. In particular, I have always been most interested in
the issue of determinism and indeterminism; I have associated it with
the problem of many-valued logics and thought that the method outlined
above might serve as an approach to the solution of that issue.”

In the light of these considerations, the difference between my stand-
point on metaphysics and that of the Vienna Circle, and Carnap in
particular, becomes clear. Carnap rejects metaphysical issues as meaning-
less because, following Kant, he counts as metaphyéical propositions
only those which claim to represent knowledge about something which
remains completely outside all experience, e.g., the essence of things,
things-in-themselves, the absolute, etc.') With such an inferpretation

%) Rudolf Carnap, “Philosophy and Logical Syntax”, Psyche Miniatures, General

Series No. 70, London, 1935, p. 15: “I will call metaphysical all those propositions
which claim to represent knowledge about something which is over or beyond all
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of metaphysics I can agree with Carnap’s opinion. But in fact we are

not concerned with such a concept of metaphysics, which, as is commonly
known, emerged from an erroneous interpretation of a title of Aristo-
telian ‘works. -There are problems, for instance those.of the structure
of the universe, which have always been included in philosophy, and in
particnlar in metaphysics, regardless of whether or not one is inclined
to call them metaphysical. For Carnap, all these questions are only
problems of language or, more strictly, problems of the syntax of lan-
guage. Now I fully approve of Carnap’s precise studies in the syntax
of language; research in that field originated in Warsaw, where the

first impulse was given by Professor Lesniewski and systematic founda-
tions were later laid by Dr Tarski, whose works were not without effect
on Carnap’s later research.'®) But I can in no way agree with such a
formulation by Carnap as: “Thus all questions about the structure of
space and time are syntactical questions about the structure of the
language, and especially the structure of the formation and transforma-
_ tion rules concerning space- and time-coordinates.”*®) In the same
place Carnap has a similar formulation about the problems of causality
and determinism. A detailed refutation of such opinions would require
a separaté paper. Here I can only outline my view point on the issue.

I reason quite simply, perhaps naively, -but no one has convinced
me so far that I reason incorrectly. I would include among problems
resolvable on the basis of language only such questions as whether all
bodies are extensive, on the assumption that by a “body” I mean some-
thing extensive and define the term in that way. These are analytic propo-
sitions, and in my opinion only such propositions can be decided on the
basis of language. On the other hand, I do not understand how we
could decide on the basis of language whether the universe is spatially
finite or infiniite. For, by “the universe” I do not mean anything finite
experience, e.g., about the real Essence of things, about Things in themselves, the
Absolute and such like”.

1%) Alfred Tarski, “Uber einige fundamentale Begriffe der Metamathemati
Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovze
23 (1930), cl. iii, pp.22-29. [An English translation is now available in Alfred Tarski,

Logic, Semantics, Metamathematics, Oxford, 1956, pp. 30-37]. In this paper, Tarski
introduced the concepts of “sentence” and “consequence”, fundamental for the

syntax of language, on which Carnap later also based his ideas.
19 Cf, the English text of Carnap’s work quoted above, p. 86.
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or infinite, and hence I have to do with a synthetic, and not an analytic,
proposition. Further, I know that to be finite and to be infinite are two
different things and that they are incompatible with one another, but
which one is in fact true does not in the least depend on us and our
hngmstlc rules. The same applies to the issues of determinism and
causality. In the world, causal necessity either is or is not the ommnip-

otent ruler and everything eithef i§ or is not determinéd il advance,
but this again cannot depend on any of our rules of the syntax of lan- -

_guage. These problems are 1 for me factual, real and objec’uve and not

~against the way in which Cdrnap trles to reduce objective problems to

linguistic problems In addition to objective propositions which repro-
dute: facts, "¢.g., “this rose is" Ted”; he' distinguishes- pseudo ob]ecuve

_ proposmons Which are formed Whem we ‘speak, as he puits it; “content-

wise: Each such’ content-w1se mode. of speech has its counterpart in the
formal mode of speech -and:according o Carnap the latter is the ‘only
proper one: For instance, the proposition “The fact that the body @ now

- expands is &' naturally necessary conséquence of the fact that the body

a is being heated” is such a pseudo-objective proposition, formulated
content-wise. It has its counterpart in the following proposition formu-
lated in the formal mode of speech: “The proposition ‘a expands’ is
a consequence of the proposition ‘g is being heated’ and of physical

. laws (at present accepted by science).” Carnap adds that content-wise

formulated propositions result in the illusion that there exist some
factual relationships—he uses here the rather obscure term “Objektbezo-
genheit” — which in reality do not exist, so that these propositions easily
lead to misunderstandings and even contradictions. That is why, at
least in the decisive places, we ought to avoid the content-wise mode
of speech and replace it by the formal mode of speech *"). I could agree

17y Cf. Carnap’s work in German quoted in footnote 12 above. On p. 14 he writes:
“Inhaltliche Redeweise: 2a. Der Umstand, dass der K&rper a sich jetzt ausdehnt,
ist eine naturnotwendige Folge des Umstandes, dass a erwirmt wird.—2b, Formale
Redeweise: Der Satz ‘a dehnt sich aus’ ist eine Folge aus dém Satz ‘@ wird erwarmt’
und den (gegenwérting wissenschaftlich anerkannten) physikalischen Gesetzen.—
Die Sidtze der inhaltlichen Redeweise tduschen Objektbezogenheit vor, wo keine
vorhanden ist. Sie fithren dadurch leicht zu Unklarheiten und Scheinproblemen,
ja sogar zu Widerspriichen. Daher ist es ratsam, die inhaltliche Redeweise an den
entscheldenden Stellen nach Moglichkeit zu vermeiden und statt dessen d1e ‘formale
anzuwenden” .
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that in the example quoted above the formal mode of speech ,corre-b

sponds to the content-wise. But how does Carnap know, as it seems to
result from his formulation that he knows, that there is no factual
relationship between the expansion-of a~body-and-its being heated?
Why does he think that in this case the content-wise mode of speech
may mislead us? These are dogmatic assertions which lack all justi-
fication. In the second example, to be found in Carnap’s book in English,

I do not even see the correspondence which is said to hold between the

content-wise, or “material”, as Carnaps calls it there, and the formal mode

of speech. Carfiap ssserts-that-the-pseudo-objective-propesition, which
in the material mode of speech is “the evening-star and the morning-star
are identical”, has its counterpart in the “syntactical” proposition
formulated in the formal mode of speech: “the words °‘evening-star’
and ‘morning-star’ are synomymous.” Here too reference is made
to the deceptive character of the material mode of speech'®). It seems
to me that many empirical observations were needed to realize that the
star which appears in the western section of the sky soon after sunset
is the same planet that we see in the eastern section of the sky shortly
before sunrise. The comprehension of this fact is something entirely
different from the statement of the fact that two terms are synonymous.
I can readily agree that the terms “bay horse” and “reddish-brown
horse” are synonyms, since by a “bay horse” I mean exactly a reddish-
brown horse. But that “evening star” and “morning star” denote the
same object cannot be decided on the basis of language.

I think that in Carnap the attempt to reduce certain objective prob-
lems to linguistic ones results from his erroneous interpretation of the
a priori sciences and their role in the study of reality. That erroneous
opinion. was. taken over by Camap from Wittgenstein, who considers
all @ priori propositions, that is, those belonging to logic and mathe-
matics, to be tautologies. Carnap calls all such propositions analytic.

1%). Cf. Carnap’s work in English quoted in footnote 14 above. On p. 61 he writes:
“Pseudo-object-sentences. Material mode of speech. 4b. The evening-star and the
morning-star are identical.—Syntactical sentences. Formal mode of speech. 4c, The

words evemng—star and “‘morning-star’ are synonymous » With reference to the
same example he writes on p. 67: “Here Wwe find again that deceptive character of

mé‘“ﬁiﬁt“e‘rfa"l’"mo“de"‘ayto—t-he*subjectematter,of.its..sentences. Most of the sentences
of phiIbsophy deceive us in this way, because, as we shall see, most of these are for-
'ml_llated in the material mode of speech.” .
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I have always opposed that terminology, since the associations it evokes'
may make it misleading. Moreover, Carnap believes, together with
Wittgenstein, that a priori propositions do not convey anything about -
reality.. For them the @ priori disciplines are only instruments which
fadilitate the cognition of reality, but a scientific interpretation of the
world could, if necessary, do without those a priori elements. Now my

opinforron-the-a priori-disciplines-and their role in the study-of-reality——

is entirely different. We know today that not only do different systems
of geometry exist, but different systems of logic as well, and they have,
moreover, the property that one cannot be-translated into—amother:
I am convinced that one and only one of these logical systems is valid

.in the real world, that is, is real, in the same way as one and only one

system of geometry is real. Today, it is true, we. do not yet know which

“systetn that is; but T 'donot doubt that empmcal research will sometime

demonstrate Whether the space of the universe is Fuclidean or. non-

" Euclidean, and Whether relationships between facts correspond to two-
valued loglc ot to one of the many-valued logics. All & priori systems,
. as soon as they are applied to reality, become natural-science hypotheses

which have to be verified by facts in a similar way as is done with physical
hypotheses. My approach to the problems of metaphysics is connected
with this opinion. *)

Carnap’s analyses 1n this field I cons1der to be a risky phﬂosophlcal
speculation which will die away as all similar speculations have died
away. I think that my standpoint is more cautious and more rational
than the radical standpoint of Carnap and the Vienna Circle. Professor
Ajdukiewicz was right when he wrote about the logistic anti—irfation—
alism in Poland that he did not know any Polish philosopher who
would accept the material theses of the Vienna Circle as hls own 19)
We are, it seems, too sober to do so.

%) Kazimir Ajdukiewicz, “Der logistische Antiirrationalismus in Polen”, Erkenn-
tnis 5 (1935), pp. 151-161; “Direkte Anhinger des Wiener Kreises haben wir in '
Polen nicht, d.h. ich kenne keinen polnischen Philosophen, der die sachlichen Thesen
des Wiener Kreises sich zu eigen gemacht hitte.” (Fu-st published in Polish in Prze-
glad Filoroficzny 37 (1934),)

*) On the relationship between logic and reality cf, “In Defence of Loglstlc” in
the present volume; pp. 236-249, where Lukasiewiczs standpoint is somet
different. In “On the Intuitionistic Theory of Deduction”, also in the present v

pp. 325-340 he refers to this matter once more (p. 333), but this time his po' it
is markedly different.
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“This, then, is the ultimate goal of scientific philosophy. It -begins
with a denial of metaphysics, and ends in the demal of God ” So wrote
Father Jakubisiak in his book,-on page 23.~ S -

I am truly grateful to Father Jakubisiak for not havmg written “logls-
tic” in the place of “scientific philosophy™, for I need not defend logistic
against the blame of godlessness. But since Father Jakubisiak does
not always distinguish between logistic on the one hand and logical
empiricism and scientific philosophy on the other, it will do no harm

if Tadd afew words-on-this matter: - —
Logistic is an exact, mathematical, dlsc1phne and has nothmg to say

on the issues of religion and the existence of God. The logisticians,
according to their personal convictions, include both believers and non- -

believers. Father Jakubisiak mentions in his book the namé of a pro-
fessor at the University of Warsaw who is not a logistician but knows
and values logistic and has a lively interest in it, and who is supposed, to
use Father Jakubisiak’s words, “to combat religion on behalf of science”
(p. 22). Even if this were so, should logistic be charged with godlessness?
I could mention the name of another Warsaw philosopher, who also
knows and values logistic and has a lively interest for it, and who would
be willing to apply that discipline to theological theories as well. )
And do we not now have priests who acknowledge the value of logistic?

I have the feeling now that I am beating on an open door. It suffices
to say that neither does logistic include, explicitly or implicitly, any
. definite philosophical doctrine, nor does it clandestinely patronize
any antireligious tendency.

The same applies to scientific p]:ulosophy, as I understand it here
Scientific philosophy does not want to combat anyone, for it has a great
positive task to carry out: it has to construct a new view of the world
and of life, based on exact, methodical thinking. “The work that faces
future scientific philosophers™, I wrote in my paper “O metode w filo-
zofii”?, “is immense as it is; it will be performed by minds much more
powerful than those which have ever existed on our globe”. I believe
that a- man who believes in the existence of a good and wise Force that

20 Jan Franciszek Drewnowski, “Zarys programu filozoficznego” (An outline

of a philosophical programme), Przeglad Filozoficzny 37 (1934) See in partlcular
§8 169174, .
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rules this world, a man who believes in the existenice of God, can view
with confidence the future resulis of this work. _
Logistic and scientific philosophy are, above all, products of the
mtellect T ascribe to reason and to precise logical thinking much more
importance than is usually done. History has shown us that methodical
research, based on empirical data and strict reasoning, has a great

and 1astifg value not-only in science, but-inpracticat-lifeaswell-When

discussing -that problem I often used to refer to the example provided
by the world war. All those human activities from the period of the

world war which Were based on disciplifies grounded on method have

proved effective. Technical installations, airplanes, telephomnes, radio
apparatus worked eﬁ'e'ctively? for a good or a bad purpose, since they
were based on mathematical and physical laws. Medicines to combat

B dlsease nd prevent ep1denncs ‘worked- eﬁ“ectlvely—these for a good

Ethey Were based on blologlcal research. Only
~those hnI_nan act1v1t1es falled wlnch had no support in d1501p1mes
groun ed in method smce the ‘humanities are not usually so grounded.

. People failed to control eﬂ'ecnvely and to put into rational and pur-

poseful order the economic and social phenomena, whether during the
war or after the war. I believe that when the knowledge of 10g15t1c,
and hence the ability to think in a precise manner, becomes common
among all research workers, we shall be able to overcome the methodol-
ogical defects of those most difficult disciplines which are concerned
with Man and with human society.

Although I am an intellectual — indeed, precisely because of this

fact—T realize, perhaps better than other people do, the great truth

that intellect is not everything. I know that reason has two limits, the
upper and the lower. The upper limit is formed by the axiomis on which

our scientific systems are based. We cannot go beyond that limit, and

in the choice of axioms we must be guided not by reason but by what
we usually call intuition. The lower limit is formed by individual un-
repeatable facts which cannot be interpreted by any consequences
deduced from general laws and from axioms. A direct observation
of such facts and some kind of intuitive comprehension of them must
replace reason for us. In those fields which lie outside the limits of
reason there is room enough as well for religious sentiments and con-
victions, which also ought to permeate the whole of our rational activity.
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Ina diséﬁssion at the Roman Catholic Scientific Institute I delivered
two speeches in defence of logistic. Following a suggestion by the

Editor of_the present periodical T have expanded them in_‘Eo the article
that follows. )

£ £

Logistic, creatéed by mathematicians in the 19th century, did not
appear to have deeper connections with traditional logic as pursued
by philosophers. Boole’s algebra of logic, being a theory of classes,
referred, it is true, to Aristotelian logic, but the propositional calculus,
originated by Frege in 1879 and placed at the forefront of logistic by
Russell and Whitehead, the authors of Principia Mathematica, seemed
to have nothing in common with philosophers’ logic. It is not to be
wondered then that logistic has not enjoyed, and still does not enjoy,
approval in phﬂosophlcal circles. It is alién to them since it has not
developed from the logical tradition which they know, and its strange-
ness is intensified by its mathematical attire.

As T had been long concerned with logistic, and with the proposi-
tional calculus in particular, I became interested in the problem as to
whether that fundamental section of mathematical logic had been known
before the existence of logistic. For the purpose of informing myself
on this matter I consulted textbooks on the history of logic and mono-
_graphs dealing with that discipline. But I soon realized that I would
* not learn much from those books, for they were written by philosophers
who either underestimated formal logic and its problems or did not
have a proper knowledge and understanding of the subject and either
disregarded or misrepresented it. It was necessary to go to the sources.

Fhis-F-did-and-I-discovered-in-Stoic. logic, so much disparaged by Prantl

* First published as “W obronie logistyki” in Studia Gnesnensia 15 (1937).
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and Zeller, the ancient prototype of modern propositional logic.Y)
Stoic logic had begn known almost continnously from its creation,
but none realized that that logic, as propositional logic, differs essen-
tially from Aristotle’s syllogistic as the logic of terms. It was only lo- .
gistic which, by making us more sensitive to logical problems, made
it possible for us to notice that difference. Today we know that the two

—main-branches—of-modern-logistie; logie—ofpropositions -and-logieof —

terms, St01c logic and Aristotelian logic, existed even in antiquity.
Aristotle’s logic always. held a superior position since it was backed

by the iminefise authority of the—-greatest ancient philosopher;—with- -

whom no representative of the Stoic school, Chrysippus included,
could vie in importance. But along with Aristotelian logic there existed
throughout the centuries the weaker current of Stoic logic; well known

‘in the"Middle-Ages-to scholastic-logicians-who pursued it in their com-

mentaries to Aristotle and treatises De consequentzzs and contnbuted
to it many a new truth. : : ‘

In this way I have been able to reunite, in an important’ place the
broken thread of tradition between ancient logic and logistic. We could
find more such threads connecting old formal logic with modern lo-
gistic. I shall mention only the axiomatic method, so characteristic
of logistic, which was already used by Aristotle when he constructed
his theory of syllogism. But that fact, like many other facts and opin-

--ions in the field of logic, fell into complete oblivion in the period of

modern philosophy which, as a reaction to mediaeval scholastic philos-
ophy, totally neglected formal logic, replacing it by what was called
the theory of cognition. Formal logic, dominated by phjlosophers,
suffered a decline, from which it was rescued by mathema‘umans, who
imparted to it the form of logistic.

Thus today’s logistic is nothing more nor less than a continuation
and expansion of ancient formal logic. Tt is not a trend in logic, along
with which some other trends might exist, but it is precisely contem-
porary scientific formal logic which bears a similar relation to ancient
logic as, for instance, contemporary mathematics bears to Euclid’s
Elements. Now, it is obvious that whoever wants to learn mathematics

?) Jan Lukasiewicz, “Z historii logiki zdaft” (On the History of the Logic of Propo-
sitions), Przeglad leozoﬁczny 37 (1934), pp. 97—1 17. [See the present volume,

pp. 197-217.]
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cannot today confine himself to Euclid; it is equally clear that whoever
wants to become acquainted with formal logic cannot confing himself
to Aristotle. Moreover, in order to comprehend:properly Aristotle’s
syllogistic and to-appreciate both ifs rigour.and its.beauty, one has
first to study the contemporary propositional calculus, for in the proofs
of syllogistic moods Aristotle intuitively used theses of that calculus.

In the light of such an interpretation of logistic, its relation to philos-
ophy becomes clear. Although I have formulated my opinion on
that -issue elsewhere,?) in order to avoid recurring misunderstandings
I-shall try here to describe my standpoint with precision. Now I have

to state first of all that although logic used to pass for a branch of
philosophy, contemporary formal logic, or logistic, has expanded so
much and has grown so independent of philosophy that it is to be
treated as a separate discipline. In view of its method and the precision
of its results, and also in view of the content of its problems, that disci-
pline today comes closer to mathematics than to philosophy. I have
to state further that not only is logistic not philosophy or any branch
‘of philosophy, but it is also not associated with any trend in philosophy.
‘The principal task of logistic is to establish methods of correct inference
and proof. This is the same task which Aristotle set himself when he
originated his theory of the syllogism. Now, it is obvious that a person
can pursue syllogistic and investigate proof theory as well, whether
he accepts in philosophy empiricism or rationalism, realism or idealism,

spiritualism or materialism, or does not adopt any viewpoint on those -

issues. In logistic, I emphasize once more, no definite philosophical
doctrine is contained explicitly or implicitly. Logistic does not claim
to replace philosophy; its only task is to provide philosophy, like any

other discipline, with the best instruments to make research more

efficiant. T e S o

These statements summarize the whole of my view on the relation
between logistic and philosophy. And although these statements have
been made in all sincerity and although their justification seems to be
clear, I am not at all astonished that they fail to convince everyone.
To all the§s assurances an opponent of logistic might always say:
“And yet I assert, for I feel it intuitively, that logistic grew out of quite

2) Jan Rukasiewicz, “Logistyka a filozofia” (Logistic ‘and Philosophy), Przeglad

" Filozoficzny 39 (1936), pp. 115-131. [See the present volume, pp. 218-235.]
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definite philosophical substratum-—which fact may not even be realized :
by the founders of logistic—and that therefore it favours certain trends
in philosophy and is hostile to others.” I have in fact encountered such
objections, raised from various quarters, that logistic professes or fa-
vours not one but a whole bunch of philosophical trends, with which
not all agree, such as nominalism, formalism, positivism, convention-
alism—pragmatism;~and-relativism.. T shall deal with these objections

" ome by one.

I must admit frankly that had I been asked not very long agé whether
as a logistician I profess nominalism, I would without hesitation-have
replied in the affirmative. I did not reflect more deeply on the nominal-
ist doctrine itself, and I only paid attention to the actual practice of
the logisticians. Now, logisticians strive for the greatest possible rigour,
and-that can be achieved-by the construction of as precise.a language

- as possible. Our own thought, when not formulated in words, is hard

even for us to grasp, and another person’s thought, when not clad in
any sensory form, can be grasped only by clairvoyants. Any thought,
if it is to become a scientific truth that every man can learn and verify,
must assume some perceivable form, must be given some linguistic
formulation. All these are, I think, indisputable statements. It follows
from them that precision of thought can be guaranteed only by preci-
sion of language. This was-aiready known to the Stoics, who in that
respect opposed -the Peripatetics. That is also why logistic attaches
most attention to the signs and inscriptions which it handles. Let me
give at least one example, which will demonstrate better than all general
formulations in what the supposed nominalism, and also formalism,
of logistic consists. There is in logistic a rule of inference, called the rule
of detachment, which states that whoever asserts the conditional prop-
osition of the form. “if «, then §”, and also asserts the antecedent of
that proposition, “«”, may assert the consequent of the proposition,
“B”, Ini order to be able to apply this rule we must know that the propo-
sition “«”, which we assert separately, expresses “the same” thought
which in the conditional proposition is expressed by the antecedent,
for it is only then that we may draw the inference. And that can be
ascertained only if both propositions represented by “o” have the same
outward appearance, i.e. are equiform. We cannot grasp the thoughts
expressed by these propositions directly, and the equiformity of propo-
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sitions expressing certain thoughts is a necessary condition, though
not a sufficient one for the identity of the thoughts. Should a.-person
who asserts the proposition “if every man is fallible, then every logician
is fallible” at the same-time assert the proposition. “any.man is-fallible”,
we could not arrive at the conclusion “hence every logician is fallible”,
because there would be no guarantee that the proposition “any man is
fallible” expresses the same thought as the proposition “every man is

fallible”, which is not equiform with the former. It would be necessary

to state by definition that the word “any” means the same as “every”,

replace-in-the-proposition “any man is fallible” the word “any” by the
word “every” on the strength of the rule of replacement by definition,
and only then, having asserted the proposition “every man is fallible”,
equiform with the antecedent of the asserted conditional proposition,
may we arrive at the conclusion. In this way we try to formalize all
logical deductions, that is, to interpret them as insctiptions constructed
so that we can check the correctness of the reasoning without referring
to the meanings of those inscriptions. We do so because we are unable
to grasp the meanings, whereas the signs are visible and clear, and in
comparing them we can, rely entirely on visual obviousness.

Is this concern for the precision of the language and the formaliza-
tion of the proofs in themselves tantamount to nominalism? It would
seem not. Logistic would adopt the nominalist standpoint if it treated
terms and propositions exclusively as inscriptions of certains forms,
without being concerned about whether they mean anything and what
they mean. Logistic would then become a science of ornaments or fig-
ures, which we draw and combine in accordance with certain rules,
toying with them as if in a game of chess. Today, I could not accept
such a standpoint, and that not only for the reason formulated by

‘me not so long age, *)that the set of inscriptions is always finite, while

the set of logical theses, in logic of propositions alone, is infinite: all
my intuitions object to the ultimate consequences of nominalism. By
difficult mental work, going on for years and surmounting enormous
difficulties, We are step by step acquiring new logical truths. And with
what are these truths to be concerned? With emipty inscriptions and
spatial ornaments? I am not a graphic artist or a calligrapher, and I am

*) In the article “Logistic and Philosophy”, included in fﬁe-bresent volume. The

remarks to which ¥.ukasiewicz refers hefe are on p. 223.
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not interested in ornaments and mscnptlons The whole difference
between -logistic and a game of chess consists precisely in this, that
chessmen do not mean anything, while logical symbols have meaning.
We are concerned with that meaning, with the thoughts and ideas
expressed by signs; even if we do not know what these meanings are,
and not with the signs as such. Through the intermediary of these

~ sighis We Want 0 grasp sonie | Faws-of thought that would-be-apphcable

to mathematics and philosophy and to all disciplines that make use
of reasoning. That goal is worthy of the greatest effort. We formalize
logical deductjons and we are right in doing so;-but formalization is
only a means of acquiring knowledge and certainty about something,
and what is important for us is not the means but that of which we
obtain cognition through those means..

Today I can no longer adopt a nommahst standpoint in log1st10

. But I say that as a philosopher, and not as a logician. Logistic cannot

settle the question, because it is not ph]losophy A fortzorz it cannot
be blamed for nominalism. .

Other objections are being raised in cennection with formalism,
not against logistic itself, but against the attempts to apply it to philos-
ophy. It is said that logistic would like to axiomatize. and formalize
everything, but that is impossible to achieve, because reality is richer
than its rationalized, logistic formalization. It can be grasped not only
by discursive thinking, but also by thinking in terms of images, by
concrete, emotional and intuitive thmkmg 1 should like to reply briefly
to this objection as well.

I do not know what intuitive thmkmg is and T do not feel competent
to explain it. But I am convinced that besides discursive thinking there
may be some other way of arriving at the truth, because such facts
are known to logisticians from their own experience. It does happen
sometimes that either as a result of the subconscious work of the mind,
or owing to a fortunate association of ideas, or thanks to an instinctive
sense of truth, a creative and fertile idea, which removes our difficulties
and shows new paths of research, appears in our consciousness quite
unexpectedly, as it were by inspiration.®) This happens in particular

3) In this connection cf. Jan Lukasiewicz, “O nauce” (On science), Biblioteczka

Filozoficzna, 5, Polskie Towarzystwo Filozoficzne, Lwéw, 1934. [Included in the
present volume as “Creative Elements in Science”, pp. 1-15]
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on the front lines of human thought, where we face territories not yet

conquered by science, not illuminated by thought, dark and unknown.
" There intuition often replaces discursive thinking, which in such cases
is vsually helpless, and makes-the first-pioneer-conquests-in the new
territories. But once the territory has been conguered, then it should
be occupied by discursive thinking with the full apparatus of logistic,
so that the spoils of intuition, which can easily prove fallible, may be
checked, ordered, and rationalized. For in my opinion only such mental

territory may be considered definitively won for science which has .

been-ordered-by-methods approved by logic. This is how I:imagine

co-operation between intuitive and discursive thinking.

To the objection of positivism I have replied comprehensively in
my paper “Logistic and Philosophy”, mentioned above. There I have
discussed, in particular, my attitude towards the views of the Vienna
Circle. In this place I should only like to make a brief remark in con-
nection with that objection.

The concept of positivism is somewhat elastic. A man who is gmded
by reason, without. succumbing to his emotions, and sticks to reality,
without yielding to fantasy, is often comsidered a positivist. I have to
admit that in this respect I am also a positivist. I firmly believe in rea-
son, though I know its limitations, and I take reality info account,
while frying to resirain my emotions and fantasy. Logistic could but
intensify these inclinations. This explains my dislike of philosophical
speculations. I do not reject metaphysics, I do not condemn philos-
ophy, T am not biased in advance against any philosophical trend,

but I disapprove of sloppy mental work. And it is probably neither .

my fault, nor that of logistic, that it sharpens criticism and discloses
many defects in philosophical speculation. I predict that any person
who receives a good logistical training will view these problems in the
same way I do.

Further, contemporary logistic is blamed for being based on con-
ventionalism. That this is so is supposed to be proved by the fact that
present-day systems of logistic are not constrained in the structure
of their axiomatic systems by any absolute rules or ideas, but are built
in an arbitrary way. I should like to examine thls objectwn in greater

" detail.
Let us consider ﬁrst what is called the two-valued propositional
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calculus. Tt is known that this calculus can be presented axiomatically

in various ways, which depend above all on the primitive terms se-

lected and the rules of inference adopted. But even with the same prim-
itive terms, e.g.,. implication and negation, and with the same rules
of inference, e.g., substitution and detachment, we can select the axioms
of the propositional calculus in many ways. Does it follow that the

--——propositional-calculus-is—eonstructed in an-arbitrary-manner?-Net-ir——————

the least. We may not impart to just any theses the status of axioms,
because in our calculus the axiomatic system must satisfy very rig-
orous conditions: it must be comnsistent, independent, and complete;
which means that it must potentially contain all the true theses of
the system. Only such a system of axioms is good, but at the same time
any such system of axioms is good, since all of them are equivalent
to one another and all of them generate the same system of the propo-
sitional calculus. In choosing this or that system of axioms out of all
possible ones, we need not be constrained by any absolute principles,
for we know in advance that such principles, e.g., the principle of con-
sistency, are satisfied by all systems of axioms, and we are guided only
by practical or didactic considerations. I do not see in all this even
a trace of conventionalism, which I have never favoured and do not
favour now. To put it simply, the two-valued propositional calculus
has the property that it can be constructed axiomatically in different
ways, and that property is a logical fact which does not depend on our -
will. and which we have to accept whether we like it or not.

That property, by the way, is shared by the two-valued propositional
calculus with other axiomatic systems, including Aristotle’s theory
of the syllogism. The Stagirite tried to axiomatize his theory of the syl-
logism, but his system of axioms was insufficient. T have solved this
problem in former papers by adopting as the primitive formulae of
this syllogistic the propositions “all 4 is B” and “some A is B”, and
as axioms the theses “all 4 is 4”, “some A4 is 4” and the syllogistic
moods Barbara and Datisi.*) To these I joined the rules of substitution,
detachment, and definitional replacement, and the propositional calcu-~
lus as an auxiliary system. I could, of course, have chosen other primi-

4) Jan Eukasiewicz, Elementy logiki matematycznej, Warsaw, 1939, pp. 86-96.
[CE. the English-language version, Elements of Mathematical Logic, Warsaw—Oxford
1963, pp. 103-117.]
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tive formulae, e.g., the propositions “all 4 is B” and “no 4 is B”.
I would then have had to adopt a different system of axioms. But even
for the primitive formulae which I have chosen 1 could have selected
different axioms, for -instance,-instead -of -the -thesis-“some O I
1 could have used the law of conversion of universal affirmative propo-

sitions, and instead of the mood Datisi I could have adopted the mood -

Dirnatis of the fourth figure. Thus Aristotelian syllogistic, too, can
be constructed axiomatically in many ways. There is no conventionalism
behind this fact, since all these systems of axioms are equivalent to one

another and—generate-the-whole of Aristotelian logic with_the same
moods of syllogisms. ' ‘

The underlying bias against these allegedly arbitrary systems of
axioms seems to consist subconsciously in a requirement of the theory
of cognition which might be formulated thus: “In every deductive
system there is only one directly self-evident principle on which all
the theses of that system are to be based.” The stress is laid both on

“only one” and on “directly self-evident”. It already pleased Kant

to be able to deduce something, as he put it, according to his wish,
nach Wunsch; from a single principle, aus einem einzigen Prinzip. How
beautiful it would be if such a principle were the one and only in this
sense, too, that the system could not be based on any other, and if
it also were directly self-evident, and hence somehow necessary and
absolute! But that would be too beautiful to be true. It is a fact that
the two-valued implicational-negational propositional calculus which
makes use of the rules of substitution and detachment can be based
on a single axiom, but that, too, can be done in many ways. Hence
in that calculus there are many “sole” axioms. Moreover, none of the
axioms which we have come to know so far is directly self-evident,
‘bacause all of them are too long to have their truth grasped intuitively.
In what concerns the last-named point, the sitvation usually is such
that self-evident theses are deductively weak, and those theses which
are deductively strong—and only such can serve as asioms—are not self-
evident. In the implicational propositional calculus, which includes
only implications without negation, probably the most self-evident
thesis is the law of identity “if p, then p”, ie., in symbolic notation,

Cpp. But with the rules of substitution and detachment that law enables
only a deduction of its own substitutions and henge is very weak de-
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ductively and of course cannot serve as the sole axiom of that calculus.
On the other hand, the only axioms of the implicational calculus are
not self-evident. Last year I succeeded in finding the shortest axiom
of that calculus. In the parenthesis-free notation which I have con-
ceived it has only 13 letters and the following form: CCCpgrCCrpCsp. ¥)
But this axiom, too, is not quite self-evident, and in any case it is less

selfevident—than—the—law—ef—hypothetical syllogism -CCpeCCeoCpr— .

or even than Frege’s law (which is not shorter than my axiom)
CCpCqrCCpqCpr, neither of which serves as a sole axiom of the system.

I now pass to the final objections listed above, namely those which
blame logistic for pragmatism and relativism. I am most concerned
with these objections since they have been raised in connection with the
many-valued systems of propositional logic. That is Why 1 should

like to reply to them in-greater detail.

First of all, as the founder of many-valued systems of proposmonal
logic I state that historically those systems have not developed.on the
basis of conventionalism or relativism, but have emerged from logical
researches concerned with modal propositions and the related concepts
of possibility and necessity.?) In the construction of such systems I made
use of the matrix method, invented by Peirce as early as 1885. My
students, Messers Shipecki, Sobociniski, and Wajsberg continued my
research and applied the axiomatic method to many-valued systems.®)

%) Jan Lukasiewicz, ““O pojeciu mozliwosci” (On the concept of possibility), (report
on a lecture), Ruch Filozoficzny 5 (1920), pp. 169a-170a; Jan ELukasiewicz, “O logice
trdjwartosciowe]” (On three-valued logic), (report on a lecture), ibid., pp. 170a~-171a;
Jan Eukasiewicz, “Philosophische Bemerkungen zu mehrwertigen Systemen des
Aussagenkalkiils”, Comptes rendus des séances de la Seciété des Sciences et des Let-
tres de Varsovie, 23 (1930), cl. iii, pp. 51-77. [The first report is not included in the
present publication, for the second see pp. 87-88 of this volume. For the third
item, see “Philosophical Remarks on Many-Valued Systems of Propositional
Logic”, pp. 153-178 of this volume.]

6 M Wajsberg, “Aksjomatyzacja tréjwartodciowego rachunku zdad” (Axiomati-
zation of the three-valued propositional calculus), Sprawozdania z posiedzeri Towa-
rzysiwa Naukowego Warszawskiego 24 (1931), Wydziat XI1; J. Stupecki, “Der volle
dreiwertige Aussagenkalkiil”, Comptes rendus des séances de la Société des Sciences
et des Lettres de Varsovie, 29 (1936), cl. iii; B. Sobocifiski, “Aksjomatyzacja pew-
nych wiclowartoSciowych systeméw teorii dedukcji” (Axiomatization of some
many-valued systems of the theory of deduction), Roczriki prac naukowych Zrzeszenia
Asystentow Uniwersytetu Jozefa Pilsudskiego, vol. I, Warsaw, 1936, -

*) CI. footnote on p. 196.
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In particular, owing to the work done by Stupecki we know today how
to base what is called the full three-valued propositional calculus with
one selected value on a system of axioms which is consistent, inde-
pendent, and compiete in-the same sense as the axiomatic.systems of
the two-valued ealculus. T specify these facts in order to state on their
basis that the existence of systems of many-valued logic is today to be
taken into account in the same way as, €.g., the existence of systems
of non-Euclidean geometry is to be taken into account. Those systems
do not depend on any philosophical doctrine, for they would fall with
thTEd]l‘apserof—the—doctﬁnerbut_are_asAmuch_an_ij_@cgivq _result of
research as any established mathematical theory. Thus one cannot
state: “I reject contemporary logistic, because it has resulted in many-
valued logic, and I revert to traditional ‘logic,” just as he may not
say: “I reject contemporary geometry, because it has resulted in non-
Euclidean geometry, and I revert to Euclidean geometry.” Such a stand-
point would not only cancel the achievements of contemporary science,
but would be, I dare say, an ostrich policy consisting in the belief that
what is ignored does not exist. We cannot disregard the systems of
many-valued logic once they have been constructed; we can only argue
whether they can be interpreted intuitively as well as two-valued logic
can, and whether they will find any application. I want to enlarge a
little on this issues.

The deepest foundation of all logic known so far, whether logic
of propositions or logic of terms, whether Stoic or Aristotelian logic,
is the principle of bivalence which states that every proposition is either
true of false, that is, has one, and only one, of these two logical values.*)
Logic changes from its very foundations if we assume that in addi-
tion to truth and falsehood there is also some third logical value or
‘several such values. I made my assumption referring to the authority
of Aristotle himself, for no one other than the Stagirite seemed to
believe that propositions concerning future fortuitous events are today
Zeither true nor false. This is how some formulations made by Aristotle
in the ninth chapter of his Hermeneutics ate to be interpreted and how
they were interpreted by the Stoics, as testified by Boetius. In stating

%) For the details of the principle of bivalence see “Philosophical Remarks
on Many-Valped Systems of Propositional Logic” in the present volume, pp-
153-178.
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this the Stagirite tried -to avoid determinism, which to him seemed
to be unavoidably connected with the principle of bivalence. ‘

If that standpoint of Aristotle is correct, and if among propositions
about events taking place in the universe there are propositions which
at the present moment are still neither true nor false, then those propo-
sitions must have some third logical value. But then the world of facts

—arouad us i Tuled mot-by a two-valued logic;-but-bywthree-vatued——

or some other many-valued logic, if the number of those new values
is greater. Then many-valued systems of logic would acquire -both an
intuitive justification and a vast field of application. ' o

I have often considered the problem of how to determine whether
there do exist propositions about facts that have that third logical
value. Here a logical problem becomes an ontological issue concerned
with the structure of the universe. Has everything that happens in the
universe been determined for centuries, or are certain future facts not
yet determined today? Does there exist in the universe a sphere of
contingency, or is everything inevitably ruled by necessity? And is
that sphere of contingency, if its ezists, to be sought only in the future,
or can it also be found in the past? These are questions which it is
very difficult to answer. I have always believed that answers to these
questions can be provided only by empirical data, in the same way
that only empirical data can tell us whether the space in which we move
about is Euclidean or non-Euclidean. Here is the origin of the impu-
tations of pragmiatism to logistic, imputations that are unjustified as
far as logistic is concerned, since these imputations might be addressed
only to me personally. Nor can I accept such imputations. I do not
accept pragmatism as a theory of truth, and I think that no reasonable
person would accept that doctrine. Nor have I ever thought of veri-
fying pragmatically the truth of logical systems. Those systems do not
need such a verification. I well know that all logical systems which we
construct are necessarily true under the assumptions made in their
construction. The only point would be to verify the ontological assump-
tions that underlie logic, and I think that I act in accordance with
the methods universally adopted in natural science if I strive to verify
the consequences of those assumptions in the light of facts.*) On this
issue my opinion is conirary to that of the Vienna Circle positivists,

#) Cf. footnote *) on p. 233,
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for they deny that such questions are subject to empirical verification
and claim that they belong exclusively to the syntax of language. That
opinion of the members of the Vienna Circle, which I do not share,
I would call conventionalism. - - e

I do not consider the problem of the interpretation of many-valued
systems to be settled definitively. Our knowledge of those systems,
which have been developed so recently, is still inadequate. They will
have to be thoroughly examined, both from the formal and from the
intuitive: point of view. But even today I can state one thing: relativism

mncroﬁthwxistenee—of—t—hese~s—ystems.‘I.t .cannot be

inferred from the possibility of different systems of logic, and hence
of different concepts of truth, depending on what logical system is
adopted, that there are no absolute truths. I adduce this argument
here for there is a scientist who has drawn such conclusions from the
existence of different systems of logic. Two years ago E.T. Bell, an
American professor of mathematics, published a popular book entitled
The Search for Truth.) As the motto of his book he took the following
words from St. Johw's Gospel (XVIII, 38): “Pilate saith unto him,
What is truth?” That question, Professor Bell claims, ceased to have
sense when systems of many-valued logic were made known in 1930.

In view of this I state: that question has never ceased and will never
cease to have sense. Absolute truths of thought did not collapse in 1930.
Whatever discredit anyone may try to cast upon many-valued logics,
he cannot deny that their existence has not invalidated the principle
of exclusive contradiction. This is an absolute truth which holds in
all logical systems under the penalty that should ‘this principle be vio-
lated then all logic and all scientific research would lose their purpose.
Also valid remain the rules of inference, namely the rule of substitution,
which corresponds to the Aristotelian dictum de omni, and the rule of
detachment, analogous to the Stoic syllogism called modus ponens.
Owing precisely to these rules we are building today not one but many
Togical systems, each of which is consistent and free of contradiction.

Tt may be that other absolute principles, with which all logical systems

must comply, also exist. I think that it is one of the main tasks of future
logistic and philosophy to bring out all those principles.

7y Eric Temple Bell, The Search for Truth, Allen and Unwin, London, 1934, in
particular pp. 245-247. .
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) In concluding these remarks I should like to outline an image which
is connected with the most profound intuitions which I always expe-
rience in the face of logistic. That image will perhaps shed more light
on the true background of that discipline, at least in my case, than all

~ discursive description could. Now, whenever I work even on the least

significant logistic problem, for instance, when I search for the short-

est-axioni— g ..
axiont—of the—implicational propositional- calenhus—Talways—have

the. impression that I am facing a powerful, most coherent and most
resistant structure. I sense that structure as if it were a concrete, tan-
gible object, made of the hardest metal, a hundred times stronger, than
steel and concrete. I cannot change anything in it; I do not create
anything of my own will, but by strenuous work I discover in it ever
new details and arrive at unshakable and eternal truths. Where is and

?vhat is that ideal structure? A believer would say that it is in God and
is His thought. : .




THE EQUIVALENTIAL CALCULUS %)

1. Equivalence and the equivalential system.—2. On the history of the equivalential
calculus.—3. Meaningful expressions and the rule of substitution.—4. The shortest
axiom.—5. The completeness-proof.—6. Examples for the completeness-proof.—7.

Consistency of the"equivalenﬁal system—38. Proof that axiom *1 'is" thé shortest.
—9. “Creative” definitions. ’

1. Equivalence aﬁd the equivalential system

~ By an equivalence T mean an expression of the type “a if and only
if B, in symbols “Eof”, where o and § are propositions or proposi-
tional functions. The equivalence is true if « and § have the same truth-

*) [Editorial note from the McCall edition: This paper was intended to appear, under
the title “Der Aquivalenzenkalkill”, in vol. 1 of the Polish periodical Collectanea
Logica, Warsaw, 1939, pp. 145-169. The following short history of this periodical is
taken from the introduction to B. Sobocifski’s “An investigation of protothetic”,
published as No. 5 of the Cahiers de I'Institut d°Etudes polonaises en Belgique, Brussels,
1949.

“In 1937, at the suggestion of Mr. Jan Lukasiewicz, we founded in Poland a period-
ical devoted to Logic, its history and its applications, under the title Collectanea
Logica. Tt was to be issued as one large volume each year, and would be international
in character, containing different papers in Polish, English, French, German, Italian,
and Latin. The editor of Collectanea Logica was Lukasiewicz, and its managing editor
myself. ... On the first of September 1939 the first part of the volume, which would
have had 500 pages, was printed, the second patt already collected and in proof.
Moreover, the first five papers from the prepared part were already published as
offprints. At the siege of Warsaw in September 1939 the printing-house of the period-
ical was completely burned, with all the prepared type, blocks, and offprints. The
final proofs of the first volume, most of the prepared offprints, and the archives of the
publication escaped in my flat, but all this was destroyed in August 1944 during
the Warsaw Insurrection.” Sobociniski follows this by glvmg a brief description of the
contents of the first volume.

Only one copy of “Der Aquivalenzenkalkiil®, sent as a review copy to Scholz

i NIUnster; is“known-to-have-survived-the -war, and is now in Poland. [Translated
by P. Woodruff.] Polish translation is included in the 1961 edition Z zagadnier logiki
iLfilozofii.
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value, ie. either both are true or both are false; otherwise it is false.
If we denote the True by “1” and the False by “2”, the following equa-
tions hold:

Ell=1, El2=2,

E21=2, E22=1.

E[1 2
111 2
212 1

which I shall call the normal matrix for equivalence. The first argument
is written to the left of the vertical stroke, the second above the hori-
zontal line. »

An equivalence Eof, in which besides propositional variables only
functors of the propositional calculus appear, is called an equivalence
of propositional Zogzc For example EKpgKqgp, in words “p and ¢ if
and only if g and p”, is an equivalence of propositional logic. If in an
equivalence of propositional logic no functor of the propositional
calculus other than E appears, I shall call it a pure equivalence of propo-
sitional logic.

By the ordinary or two-valued equivalential system I mean the set
of all pure equivalences of propositional logic which satisfy the normal
matrix for equivalence. The matrix is said to be satisfied by a given
equivalence, if all replacements of the propositional variables of the
equivalence with the values 1 or 2 yield expressions which after reduction
according to the matrix assume the value 1. For example, the equiva-
lence Epp satisfies the matrix, for we get:

for p/l1 Ell=1,
for pf2 E2=1.
Likewise EEpgEqp satisfies the matrix, since the following equations
hold: :
for pfl,q/l EEI1EIl=Ell=1,
for p/1,q/2 EEI2E21=E2 =1,
for pf2,g/1 EE21E12=E2=1,
for p[2,q/2 [EE22E22—=Ell =1.
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On the other hand, the matrix is not satisfied by EpEgp, for we have:
for p/2,q/2 E2E22=E2l=2. =

The two-valued equivalential system is one of the simplest sub-systems
of the propositional calculus. Numerous methodological questions can
be, formulated with particular clarity and simplicity in this system,
and can be easily solved. For this reason it is worth while to subject the
system to a detailed examination, for we obtain thereby an easily gfa%sped
introduction to the problems and methodology of the propositional
calculus.

2. On the history of the equivalential calculus

Two pure equivalences are to be found in Principia Mathematica, *)
namely
p=p ad p=gqg.=.g=p, ‘
to which correspond the following theses m my bracket-free symbolism:
Epp and EEpqEqp.

The first thesis says that equivalence is reflexive, the second, that it is
commutative. Now, I long ago noted that equivalence is also associative,
and accordingly I established the following thesis in the symbolism
of Principia: _

p=E.g=r=:p=gq.=T,
This thesis, which in my symb;)Iism can be express:ed by
' EEpEqrEEpqr,
is cited by Tarski?) in his doctoral thesis of 1923.

Lesniewski ) was in 1929 the first to recognize that the two-valued
equivalential system can be axiomatized. In particolar, this can be

1) A. N. Whitehead and ‘B. Russell, Principia Mathematica, vol. i, Cambridge,
1910, p. 121, theorems *4.2 and *4.21. .

2y A. Tajtelbaum-Tarski, O wyrazie pierwotnym logistyki (On the primitive tenfl
of logistic), Doctoral thesis, Przeglad Filozoficzny 26 (1923), p. 72 n. See also A. Taj-
telbaum, “Sur le terme primitif de la logistique”, Fundamenta Mathematicae 4 (1923),
p..199 n.

%) S. Leéniewski, “Grundziige eines neuen Sifstéﬁﬁs der Grundlagen der Mathema-
tik”, Fundamenta Mathematicae 14 (1929), § 3, pp. 15-30.
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done with the help of two rules of inference; the rule of substitution
and the rule of detachment. The rule of detachment for equivalence is
analogous to that for implication. Leéniewski characterizes this rule
approximately thus: If an equivalence 4 belongs to the system whose
right side is equiform with S, and if a theorem belongs to the system
which is equiform with the left side of the equivalence 4, then a theorem

—eqyuiforil withS—may-be added-to-the-system—In-other—words;-if the ——————

expressions “Fof” and “o” belong to the system, then “f” may also
be added to it. LeSniewski shows that with the help of this rule of detach-
ment and the rule of substitution all pure equivalences provable in the
ordinary propositional calculus can be deduced from the following two
axioms:

Al.p=r.
Adp=.gq

~
I

.g=p:=.r=gq,

rr=:p=g.=r.

Ie

The second axiom is the law of associativity for equivalence, discovered

by myself. From these axiorns, which in my symbolism read
EEEprEqpErq and EEpEgrEEpgr,

Lesniewski first derives seventy-nine theses in symbolic form, and then

proves with the help of reasoning conducted in ordinary langiage that

the above axiomatic system is complete. Proofs of consistency and

independence are not found in Le$njewski.

After Les$niewski, Wajsberg *) in 1932 published simpler axiom-systems
for the equivalential system, at first without completeness-proofs. Two
of these systems consist of two axioms each, two others of one axiom
apiece. The four systems of Wajsberg, given by the writer in my sym-
bolism, are

(a) EEEpqrEpEgr and EFEpqgFqp,

(b) EEpEgrErEqp and EEEpppp,

(c) EEEpEqrEErssEpq,

(d) EEEEpqrsEsEpEqr.

Wajsberg gives completeness-proofs for these four axiom-systems in

4 M. Wajsberg, “Ein neues Axiom des Aussagenkalkiils in “der -Symbolik von
Sheffer”, Monatshefte fiir Mathematik und Physik 39 (1932), p. 262.
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a later work®) by reducing them in part directly and in part mdlrecﬂy
to that of Leéniewski.

To Wajsberg belongs the credit of having first shown that the equiv-
alential calculus can be based on a single axiom. The two single axioms

of Wajsberg consist of fifteen letters each. It soon turned out that there .

are other equivalences, each of fifteen letters, which can be posfulated
as single axioms of the system. In a paper of 1932 Sobociniski ®) gives
the following six axioms, which were discovered by various authors:

(e) EEpEqrEEqEsrEsp discovered by Bryman

(f) EEpEqrEEqgErsEsp discovered by Lukaswwmz
(8) EEsEpEqrEEpqErs discovered by Lukasiewicz.
(h) EEpEqrEEpErsEsq discovered by Sobocifiski.
() EEpEqrEEpEsrEsq discovered by Sobocifiski,
(5) EEpEqrEEpFErsEqs discovered by Sobocifiski.

Axiom (g) is obtained as a first detachment from Wajsberg’s axiom (d).
Completeness-proofs are not given by Sobociniski.

In 1937 the Rumanian mathematical logician E. Gh. Mihailescu
published a paper devoted specifically to the equivalential calculus.”)
Mihailescu bases his work on the above-mentioned work of Lesniewski,
and uses the bracket-free notation which I introduced. In meta.logical
investigations he makes use of Tarski’s terminology. Wajsberg’s work
is apparently unknown to him. In his essay, the equivalential calculus
is based on the two axioms EEpgFgp and EEEpqrEpEqr, discovered by
Wajsberg. For this axiom-system he gives a new completeness-proof
by reducing all meaningful expression to certain normal forms. For this
purpose ninety-three theses are deduced from the axioms by substitution

5) M. Wajsberg, “Metalogische Beitriige”, Wiadomosci Matematyczne 43 (1936),
pp. 132-133 and 163-166. Instead of axiom-system (a.) the writer considers here
the following axiom-system:
(&) EEpEqrEEpgr and EEpgFqp,
which is obviously deductively equivalent to (2).
% B. Sobocitiski, “Z badaf nad teorig dedukcji” (Investigations into the theory
of _dednetion). P@l@aﬁgfjﬁ@j§_ (1932), pp. 186-187 and 192-193, nn. 35-37.

7 E. Gh. Mihailescu, “Recherches sur un sous-systéme du calcul des propositions”
Annales scientifiques de I’ Université de Jassy 23 (1937), pp. 106-124.
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and detachment. The consistency and independence of the axiom-system
is shown by the matrix method.

The present work contains my results from the year 1933, Among
the most important resulis I wish to present are the discovery of the
shortest axiom of the equivalential system as well as a new complete-
ness-proof, which seems to me to be simpler than those of Lesmewskl

-and-Mihaiteser———————

3. Meaningful expressions and the rule of substitution

All expressions of our system are formed by juxtaposition of capital
E’s, the sign of equivalence, and small Latin letters, the propositional
variables. Not every expression thus formed is, however, meaningful;
Le. not every expression represents a proposition, or, more precisely,
a propositional function. For example, “pg”, “E”, “EE”, © ‘PEq”, “Epgr”
are not meaningful expressions, for they do not represent propositional
functions. On the other hand, propositional variables such as “p”, “q”,
“r”, etc., as well as equivalences both of whose members are mcanmgful
expressions, such as “Epq”, “EEpgr”, “EpEqr”, etc., are evidently
meaningful. In the following I give a purely structural definition of
“meaningful expression” for the equivalential system, by slightly modi-
fying a definition found for the mehcatlon-negatlon system by Jaskow-
ski: %)

An expression made up of the letter “E” and small Latin letters is
meaningful if, and only if, it fulfils the following two conditions:

1. The number of “E’s” occurring in the expression must be one less
than the number of small letters.

2. In every segment, which begins at an arbitrary point in the expression
and reaches to the end of the expression, the number of “E’s” must be
Iess then the number of small letters.

The two conditions are independent, as examples readily show.
Thus, “EpEqr” fulfils both conditions and is therefore meaningful.
The expressions “EpgEr™ fulfils the first condition but not the second,

%) See J. Lukasiewicz, “Bin Vollstindigkeitsbeweis des zweiwertigen Aussagen-
kalkiils”, Comptes rendus des séances de la Société des Sciences et des Lettres de
Varsovie 24 (1931), cl. iii, p. 156, n. 5.
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since in the segment beginning with the second “E” the number of “E’s”
is not less than the number of small letters. The expression “pEEgrs”
satisfies the second condition but not the first, since the number of
“E’s” in the expression is not one but two less than the number of small
letters. Finally, it is clear that the expression “pgEErs” fulfils neither

the first nor the second condition. The last three expressions are meaning--

less.
These conditions yield, among others, the following consequences:

(2) .Propositional - variables are meaningful expressions for they

(b) All composite meaningful exnressmns must begm w1th an “E”,

For if the second condition is to be fulfilled, then in the segment beginning
with the second letter the number of “E’s” must be at least one less than
the number of small letters. If a small letter is now added at the begin-
ning, then the number of “E’s” in the whole expression must be less
than that of the small letters by at least two letters, which contradlcts
the first condition.

In connexion with this definition there is a simple practical rule
which enables us to decide at once if a given expression, composed
of the letter “E” and small letters, is meaningful or not.®) One first
assigns each “E” the number —1 and each small letter the number +1.
Then one adds these numbers sequentially, starting with the number
assigned to the-last letter on the right of the expression and proceeding
by steps to the left, to the beginning of the expression. The following
example illustrates this process:

EEEpgErsEtu -
12343232121

The “u” is assigned +1, also the “¢”; 1 plus 1is 2, “E”is —1,2—1 = 1,
etc. If the expression is meaningful, then the first condition says that the
Sum, which corresponds to the whole expression and stands at the very
beginning, must be equal to 1; the second condition says that all partial
sums, which correspond to single segments, must be positive, i.e. greater
than 0. A glance at the number-series which belongs to the expression
in the above example suffices to determine that this expression is mean-

%) The idea behind this rule is not ‘mine, “but rather—as far as I know—that of a
student of L. Chwistek.
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ingful. If such a number-series does not begin with 1, if a 0 or even
a megative number appears, then the expression is meaningless; e.g.

pE/Eqrs‘ EpgFEr
212321 12101

In the first example the sum which corresponds to the whole expression

—equals-2,.which is.incompatible with the first condition. In the second

example the partial sum which corresponds to the segment “Er” equals 0,
contrary to the second condition.

Not all meaningful expressions belong to the system. Those wlnch
do I call theses. In our equivalential system the theses are distinguished
by the fact that they satisfy the normal matrix for equivalence.

Since we now have the concept of a meaningful expression at our
disposal, we can formulate the rule of substitution precisely. On the
basis of this rule one obtains a new thesis from a given thesis by re-
placing one or more of the propositional variables of the given thesis by
meaningful expressions, where all equiform variables must be replaced
by equiform expressions. For example, if in the thesis with which we
are already familiar,

EEpqgEqp,

the meaningful expression “Egr” is substituted for “g” (which transforma-
tion I denote by “g/Eqgr™) we obtain a new thesis:

EEpEgrEEgrp.

The other rule which is used to derive theses is the previously charac-
terized rule of detachment: If Exf and « are theses, § is also a thesis
and hence can be detached from E«f. For example, let the following
two theses be given:

1 EEpgEqgp.
2 EEpEqrEEpgr.
If in 1 the substitution “p/EpEqr, q/EEpgr” is made, one obtains
i E EEpEqEEpqr EEEpqrEpEgr.
2 3

Thesis 1’ begigs with an “£” followed by thesis 2 as its first member;
consequently its second member, in accordance with the rule of detach-
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ment, can be detached as a new thesis:
3- EEEpqrEpEgr.
This derivation I indicate briefly as follows:

1 p/EpEqr, g/ EEpgr X E2 - 3.
3  EEEpqrEpEqr.

In the derivational line which precedes thesis 3, the series of expressions

both before and after the separation sign “x” designates the thesis 1’,
which is omitted for the sake of brevity.

4, The shortest axiom

_The shortest axiom for the equivalential system, which I discovered,
consists of eleven letters and reads: EEpgEErgEpr. From this axiom
I will first derive Le$niewski’s two axioms, as well as those theses which
are required for the completeness-proof to be given later. All these
theses are marked by an asterisk. I will then prove that no shorter
axiom possesses the property of being a single axiom of the system.
The following deductions, which are constructed with the sole use
of the rules of substitution and detachment mentioned above, should be
clear enough after what I have said above.'%)

*1 EEpqEErqEpr.
. 1p/Epq, g/EErgEpr, r[sX E1-2.
2 . EEsEErqEprEEpgs.
2 s/Epgx E1-13.
3 EEpqEpq. v
1 p/Epq, 9/Epgx E3 - 4.
4 EErEpqEEpqgr. :
4 v/Epq, p|Erq, q/Epr X E1 -5.
5 EEErqEprEpq. '
S5r[p, q[pX E3 q/p-6.
*6 Epp.

%) For the derivational technique see p. 157 of my article cited in note 8 above,

as well as my essay “Zur Geschichtd dér Aussagenlogik™, Erkenntnis 5 (1935), p. 126.
Ip. 216 of this volume.] o
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1p/q, r[p X E6plq—T.

*7 EEpgEqgp.
1p/Epq, g/Eqp < ET~-38.
8 EErEqpEEpqr.
7 p/ErEqp, g/ EEpgrX E8—9.
9 EEEpqrErEqp.
) 2 s|EEprEpq, r[p, p/r X EY g7, r[Epg — 10.
10 EErgEEprEpq.
5r/Epq, p/EpEpg X E10 r[Epg — 11,
*11 EEpEpqq.
7 p/EpEpgx E11-12.
*12 EqEpEpq.
" 1p/EpEpqx E11-13.
13 EErgqEEpEpgr.
2 s/|EEpgr, r[q, q/Eqr X E13 r[Epq, qlr, p/q - 14.
*14 . EEpEqrEEpqr.
7 p|EpEqr, g/ EEpgr X E14—15.
. *15 EEEpqrEpEqr.
9 p/Erq, q/p, r[EpEqr X E9 plr, r[p— 16.
*16 EEpEqrEpErg.
16 p/EEprEqp X E5 r[p, g/r, p/q—117.
*17 EEEprEqpErq.
16 p/EEpgr, q/r, r/Eqp X ES - 18.
18 EEEpqrEEqpr.
10 #/EEqgrs, q/EErgs x E18 p/q, gfr, rls—19.
*19 EEpEEqrsEpEErgs.
10 #/EEgrs, q/EqErs X E15 plq, g/r, r[s—20.
*20 EEpEEqrsEpEqErs. ‘
: 7 p/|EpEEqgrs, q/ EpEqErs X E20~21.
*21 EEpEqErsEpEEqrs.

Of the derived theses, *14 and *17 are Leéniewski’s axioms. Herewith
the proof is given, indirectly, that our axiom comprehends all theses
of the system. It is, moreover, not the only “shortest” axiom of the
equivalential system; I have found two other theses of eleven letters
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which can be likewise postulated as single axioms of the system. These
are EEpgEEprErq, and EEpgEErpEqgr. From each of these theses *1
can be derived in the following manner:

A
1 EEpqEEprErq.
1 p/Epq, g/ EEprErq, r[sxX E1~2.
2 EEFEpqsEsEEprErg. -
2 Epg;qfsssIESEEprErg < E2=3 -
3 EEsEEprErgEEEpqrErs.
3s/Epgx E1—4.
4 EEEpgrErEpq.
4 r/EEprErgx E1-5.
5 EEEprErgEpq.
5 r/Epr, q/ErEprx E1 g[Epr-6.
6 EpErEpr. )
1 g/ErEpr, r/gx E6-T.
7 EEpqEqErEpr.
: 2 s/[EqErEpr X ET-38.
8 EEqErEprEEprErq.
8 g/p X E5-9.
9 EFEprErp.
2 s/Eqp X E9 r[g—10.
10 EEqpEEprErg.
"~ 3s/EgpxE10-11.
11 EEEpgrErEgp.
11 p/Epr, q/Erq, r|Epg X E5 - 12,
12 . EFEpqFEFErqEpr.
B
1 EEpgEErpEqr.

IB/EPT, gEEPEG, PIsXEI=2.
2 EEsEpgqEEErpEgrs.
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2 5/Epq, p/Erp, q/Eqr, r/sX E1-3.

3 EEEsErpEEqrsEpq.
3 r/Eqr, p|q, 9/ErEqr X E2 p|Egr - 4.
4 EgErEqgr.
2 s/q, plr, g/ Eqr, r[s X EA~5.
5 . EBEESEEGsq.
5r/Eqq, 9/Eq9X E2 p[q, r[q—6.
6 Eqq. |
1p/gx E6~1. ‘
7 EErgEgr.
2 s/Epq, p/q, 9/[p X} ETr[p—8.
8 EEErqEprEpq.
7 r/EErqEpr, q|Epg X E8 9.
9 EEpqEErqEpr.

5. The completeness-proof

The new completeness-proof, which I intend to give here, rests on
a concept of completeness which is essentially due to the American
mathematical logician Post.!) I intend to prove the following: *

Every meaningful expression in the equivalential system has either
the property that it can be derived by the rules of inference from axiom
*1 or the property that, when it is added to axiom *1, every meaningful
expression. is derivable.

The first property I call &, the second &,.

The “either-or” in this case is non-exclusive. However, it will later
turn out that the equivalential system constructed on the basis of our
axiom is conmsistent, i.e. does not include all meaningful expressions of
the system. Thus the properties & and & do in fact exclude each other.

The proof is based essentially on the previously stressed fact that
every meaningful expression either is a propositional variable or beging

1) See in this connexion p. 161, n. 10 of my article cited in note 8 above, as well
as the essay of H. Hermes and H. Scholz, “Ein neuer Vollstdndigkeitsbeweis fiir
das reduzierte Fregesche Axiomensystem des Aussagenkalkiils”, Forschungen zur
Logik und zur Grundlegung der exakten Wissenshaften, New Series, vol. 1 (1937),
p.6,n.5 .
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with an “E”, thus is of the type “E«f”, where “a” and “f” are under-
stood to be meaningful expressions. In general, I will designate arbitrary

meaningful expressions by the first few letters of the Greek alphabet,

6,93

while designating propositional variables by “n
The proof divides into eight sections, (a) to (h). These exhaust all
possible cases which can occur when any meamngful expression. is
given,
(2) The given expréssion is a proposmonal variable, Then it has the
property &, for from a variable all meaningful expressions can be de-

(b) The given expression begins with more than one “E” Then on the
basis of the theses
*15 EEEpgrEpEgr,

*14 EEpEqrEEpqgr,

which are derivable from axiom *1, it can be transformed into a deduc-
tively equivalent and not longer expression which begins with only
one “E”. '

Proof. Two expressions are called deductively equivalent'®) with respect
to axiom *1, if on the basis of this axiom either expression can be de-
rived from the other by means of the established rules of inference.
Expressions which begin with more than one “E”, i.e. have the form
“EE«fy”, are deductively equivalent to expressions of the form ExEfy,
for in view of *15 and *14 we have:

‘1. EEufy, . 11. ExEfy,
*15pla, q/B, r/y X EI-11, *14 p/a, g/, rfy X EI1 -1,
II. EcEfy, 1. EEafy.

“ExEfy” is no longer than “EExfy” and has one “E” less at the
beginning. If “a” again begins with an “E”, the same transformation
can be made and repeated until one obtains an expression which begins
with one “E”, and is hence of the form “Exé”.

() The given expression begins with one “E” followed by a propo-
sitional variable, i.e. is of the type “Ené”, where in “8” no variable
equiform with “sz” occurs. Then the expression has the property &,

2) The term ~deductively equivalent” T owe to the' above-mennoned paper of
Hermes and Scholz,

%\
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i.e. if it is taken together Wlth the axiom, all meaningful expressmns are
derivable from it.

Proof. If “End” is conjoined to the axiom, one obtains on the basis
of thesis

7 EEpqEqp

“the expression “Edx”. On the other-hand;-we-can detive the expiession

“§” from “Emd” by the substitution m/End, since “4” contains no
variable of the same shape as “z” and hence is not changed by the
substitution. From “Edn” and “0” we get the variable “z” by detach-
ment, and from “m” by substitution all meaningful expressions. The

formal derivation has the form:

I End.
*7p/n, g/6X E—TIL.
II Eém.
. 17/Enéx E1I-1OI.
I é.
IIxEOL-IV ‘
v ] T,

" In the following it is assumed that in expressions of the type “Ewnd”
the expression “3” always contains a variable equiform with “n”
Furthermore, “4” is either a variable or an expression of the form
“Exff”. We examine first the latter case.

(d) The given expression has the form “ExE«f”, where the equiva-

‘lence beginning with the second “E”, ie. “Eaf”, contains a variable

equiform with “z”. If this variable is in the second but not in the first
member of “Exf8”, then the expression “EnFEaf” can be transformed
on the basis of the thesis

*16 . EEpEqrEpErq

into a deductively equivalent and not longer expression, namely
“En Ef«”, in which the variable equiform with “z” appears in the
first member of the equivalence beginning with the second “E™.

Proof. “EnEof” and “EnEBw«” are by *16 deductively equivalent,
for we have:



264 THE EQUIVALENTIAL CALCULUS
1. EnEaf, I1. EnEfa,
~*16p/77:,q/oc,r/,3><EI—H, *1617/73’ q/ﬁ,r/ocXEII—-I,

1. ExEfa, 1. EnEuf.

If “7” does not occur in “«”, it must be contained in “f”, since ex hy-
pothesi it occurs in “Euf”.
On the basis of this section we may assume subsequently that in ex-

[

pressions of the form “EnE«f” the variable equiform with “z” occurs

in the first member of the equivalence “Eef”, ie. in “a”. Now “o”
is either a variable or an expression of the form “E«f”. We consider

first the latter case.

(e) The given expression has the form “EmEEafy” where the equiva-
lence beginning with the third “E”, ie. “Eaf”, contains a variable
equiform with “z”. If this variable occurs not in the first but in the
second member of the equivalence beginning with the third “E”, then
the expression “EmxEEcxfy” can be transformed, in virtue of thesis

*19 EEpEEqrsEpEFErgs,
into a deductively equivalent not longer expression, namely “ExEEfay”,
" in which the variable equiform with “m” appears in the first member
of the equivalence beginning with the third “E”.

Proof. “EnEEafy” and “EnEE,Bocy are deductively equivalent
by *19, for we have:

1. EnEEafy, II. EnEEfuy,
*19p/x, gfo, ¥/B, sfy x E1-1I, *19 p/m, q/B, r{a, s/fy X EIL -1,
1. EnEEfoy, : 1.“EnEE«fy.

If “z” does mot appear in “a”, it must in “f”, since by assumption
the equivalence “Ewf” contains a variable equiform with “z”.

By reason of this section we may assume in what follows that, in
expressions of the form “EnFFE«fy”, the variable equiform with “m”
is contained in “a”.

(f) The given expression has the form “ErEEafy”, where “o” con-
tains a variable equiform with “z”, Then by the theses
*20 EEpEEqgrsEpEqErs,

*21 EEpEqErsEpEEqrs .

the éxpression “EnEFapy” can be fignsformed into the deductively
equivalent not longer expression “EnE«Efy”.
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Proof. “EnEEafy” and “EnEaEfy” are deductively equivalent,
since by *20 and *21 we obtain:

1. EREEafy, II. ErEaEBy,
*20 p/m, qfe, r]B, s/y X E1-1I, *21 plm, qla, 1/, s/y x EII-1,
II. ErEcEfy, 1. ExEEafy.

In-the-expression—~EnEaFEfy o2 contains a variable of-thesame——

form as “a”. If “a” is an equivalence, the transformations described
under (&) and (f) can again be carried out, and repeated until a propo-
sitional variable is obtained in place of “«”. Herewith we come back
to the unresolved case mentioned at the end of section (d): the given

expression has the form “EmFaf” where “o” is a variable and also
contains a variable equiform with “x”. “«” must then, of course, be

equiform with “n”, and we have the case:
(g) The given expression has the form EmEmoa. Then on the basis
of the theses =
*11 EEpEpqq,
*12 EqEpEpq

it can be transformed into the deductively equivalent and shorter ex-

€« ’?

pression “o

Proof. “EnEn«” and “o” are deductively equivalent by reason of
*11 and *12:

1. EnEna, II. «,
*11 pjm, g/axX E1-1I, *12 gfo, plex EIL -1,
1I. «, 1. EnEma.

To this shorter expression we can again apply the transformation
rules mentioned in (a) to (g). If sections (2) or (¢) are applicable, then
the investigation is finished, for it is clear that the given expression
has the property &,. If this does not happen, one obtains progressively
shorter expressions, until one reaches the shortest expression which

 possesses property &;. This is, of course, the expression “Ers”. And

therewith the final outstanding case is resolved which was mentioned
at the end of section (c): the given expression has the form “End”,
where “6” is a variable and contains a variable equiform with “z”
“0” must then be equiform with “%”, and we obtain the case:
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(h) The given expression has the form “Ens”. Then it has property &
as a substitution-instance of the thesis

*6 Epp.

With this the completeness-proof is finished. The proof rests on ten
" theses, all of which are deducible from our axiom *1: *6, *7, *11, *12,
#14, *15, *16, *19, *20, *21. Thus the proof is effective; ie. with the
aid of the enumerated theses it can always be decided whether a given
expression has property & or property &, and in each case the pro-

e —cedure—which—one musi_follow to exhibit_one or the other property

is exactly specified. This will be clarified subsequently by two examples,
which are furthermore intended to make the comipleteness-proof here
presented more intelligible.

6. Examples for the completeness-proof

As examples I choose two expressions, of which one exhibits prop-
erty £, the other property &. The examples are so chosen that all
the transformation rules enumerated in sections (a) to (h) are used in
one or the other.

The first expression reads “EEEpEgpEqrr”, and thus begins with
more than one “E”. Hence it falls under section (b). On the groundh
of the schema:

-

EEafy ~ EaEfy,

Whel'e “a” 1S “Equp” s 3 15 “Eqr” scy” 1s “r” aﬂd the Sign L de_

notes deductive equivalence, we have:

EEEpEgpEqrr ~ EEpEQpEEqrr [section (b), theses *15 and *14].
The expres‘sion on the.right obtained by the transformation still begins
with more than one “E”. So we apply rule (b) a second time:

EEpEqpEFEqrr ~ EpEEqpEEqgrr [section (b), theses *15 and *14].

Now we have obtained an expression of the form “EmEEcfy” where
the variable equiform with “z” is contained in “g”. This comes under

o ———————gection—(e);-therefore-under-the. schema:

EnEEufiy ~ EnEEfRuxy.
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This schema yields the deductive equivalence:
EpEEgpEEqrr ~ EpEEpqEEqrr [section (), thesis *19].

The new expression is of the form “EnEFafy”, the variable equiform
with “z” being contained in “«”. Hence we must now apply section (f),
i.e. the schema:

ETC_EEOC,B‘)/ ~ EnEaERy,

from which we get:

EpEEpqEEqrr ~ EpEpEqEEqgrr [section (f), theses *20 and *21].
Now it is the turn of rule (g), since the new expression is of the type
“EnEns” and according to the schema

EnEma ~ o
can bg transformed into the shorter expression “o”. Thus we have:
EpEpEqEEqrr ~ EqEEqrr [section (g), theses *11 and*12].
This shorter expression yields after two transformations:

EqEEqgrr ~ EqEqErr [section (f), theses *20 and *21],
EgqEqErr ~ FErr [section (g), theses *11 and *12],

the shortest expression with the property &, namely
Err [section (h), thesis *6].

The analysis is ended. Now comes the synthesis, namely the deri-
vation of the given expression, which has property &, from the theses
adduced in the analysis, and hence indirectly from our axiom *1. We
begin with the last expression to which the analysis led and climb back
up step by step. In this process we shall not, however, use all the theses
mentioned, but in every case when two theses are given in connexion
with a deductive equivalence, we shall use only the second. Thus the
derivation is based on theses *6, *12, *14, *19, and *21, which appear
in this order: ¥12, *6, *21, *12, *21, *19, *14, and *14.

*12 g/Err, plgxX E*6p|r—
I EqEqErr.
*21p/q, s/rx E1-1L
o - EgEEqgrr.
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*12 g/EqEEqrr X EII - I11.

I EpEpEqEEqrr.
*21 g/p, r/q, s|EEqrr x EIII -1V.
v EpEEpqEEqrr.
*19 g/p, r/q, s/|EEqrr X EIV-V.
A\ EpEEqpEEqrt.
*14 g/Eqp, r|EEqrr X EV - V1.
VI EEpEqpEEqgrr.
*14p/EpEqp, q/Eqr X EVI—VIIL.
via EEEpEqpEqrr.

This completes the proof that the given expression “EEEpEgpEqrr”
possesses the property &,.

As a second example I choose the expression “EEpEqrEps” which,
as it will turn out, has the property & . That is, added to the axioms,
it entails the derivability of all meaningful expressions. After what I
have said above, the following should be clear without further ado:

EEpEqrEps ~ EpEEqgrEps - [section (b), theses *15 and *14],
EpEEqrEps ~ EpEEpsEqr  [section (d), thesis *16],
EpEEpsEEqr ~ EpFpFEsEqr [section (f), theses *20 and *21],
EpEpEsEqr ~ EsEqr [section (g), theses *11 and *12],
EsEqr ~ EEgrs [section (c), thesis *7].

“EEqrs” yields in conjunction with “Egr”, which follows from “EsEqr”,

the variable “s”, and hence by (a) all meaningful expressions.

The synthetic construction beging with the given expression
“EEpEqgrEps” and descends to the variable “s”. If, in the process, two

theses are mentioned in a deductive equivalence, we use only the
first. The deduction is thus based on theses *15, *16, *20, *11, and *7:

I EEpEqrEps.
*15g/Eqr, r/Epsx EI-11.
I EpEEqrEps.
*16 q/Eqgr, r[Epsx E11 - IIL.
11 EpEEpsEgr.

R0y rfs s Eqr < ETI - TV.
v EpEpEsEqr. '

i
¥
i
5
g
'

S
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" %11 g/EsEqr X EIV-V,

A\ EsEqr.
*T pls, g/Eqr X EV - VL
\'2! EEqgrs.
V s/EsEqr x EV - VII.
VII Egr.
VIXEVII- VIIL
VIIT s.

This constitutes the proof that the given expression “EEpEgrEps”
possesses the property ..

7. Consistency of the equivalential system

As noted above, the equivalential system is consistent, i.e. not all
meaningful expressions belong to the system, nor are they all, accord-
ingly, derivable from our axiom. A simple proof of consistency is
provided by the normal matrix for equivalence. However, I will here
give in addition a purely structural proof of the consistency of the
system, using an idea of Leéniewski’s. '

Les$niewski was the first to note that in all theses of the equivalential
system the number of equiform variables of each shape, e.g. the number
of “p” s, the number of “g”s, etc., is even. **) Let us designate this prop-
erty by “G”. It can now easily be shown, as Leéniewski and Tarski
long since realized, that the property G is hereditary with respect to
the rules of substitution and detachment. This means that all expres-
sions which are derived from given G-expressions by means of these
rules of inference also have the property G. This is evident in the case
of the rule of substitution. For if an arbitrary variable “z” appears an
even number of times in an expression, and for “m” any meaningful
expression “«” is substituted, the number of equiform variables of any
shape is changed by an even number. In the case of the rule of detach-
ment, the assertion can be proved as follows. If the number of variables
of each shape in “Eaf” and “«” is even, two cases can be distinguished.

&, [

First, “” contains a variable “x” such that no variable in “«” is equi-

13} Cf. op. cit., p. 26, point 6 and p. 29, point 11.
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form with “z”. Then “z” must appear an even number of times in “§”,

since the total number of equiform variables in “Eaf” is even. Second,

¢, PPN

“g” contains a variable “7” equiform with some variables in “a”..
Since in “Exf” as well as “a” all equiform variables appear an even
number of times, the number of variables “m” in “§” must also be
even; for evens subtracted from evens yield evens. Hence if the éxpres—
sions “Eaf” and “«” have property G, then “f”, which follows from
them by detachment, also has property G.

We now determine that in our axiom *1 all equiform variables of

t13

i —-—gny-shape; e—all “p”s, all “g”’s, and all “r”s-appear exactly.twice, hence

an even number of times. Therefore axiom *1 has the property G.
Since this property is hereditary with respect to the rules of inference
assumed in the system, it must belong to all consequences of the axioms,
i.e. all theses of the equivalential system. From this it follows that not
all meaningful expressions of the system are derivable from our axiom.
For expressions such as “p”, “Epq”, “EpEqp” and, in general, expres-
sions in which at least one variable occurs an odd number of times,
cannot be derived from the axiom. With this the consistency of our
system is proved. ' '

8. Proof that axiom *1 is the shortest

The proof that EEpgEErgEpr is the shortest axiom of the equiVa-
lential system is divided into two parts. First I set down all theses which
are shorter than axiom *1, i.e. number less than eleven letters; then
I show that none of these theses can be the axiom.

To obtain all theses which number less than eleven letters, we must
first remind ourselves of the following two points. Firstly we ascertained
in 3 that in all meaningful expressions of our system, hence in all
theses thereof, the number of “E”s is one less than the mumber of
small letters. This yields the conclusion that every thesis of our system
consists of an odd number of letters, hence must number 1, 3, 5, 7, or 9
. letters if it is to be shorter than our axiom. Secondly we know from
the previous paragraph that in all theses of the equivalential system
the number of variables is even. It follows that no thesis of our system

may consist of 1,75, or 9 letters; forin all sich expiessions the number
-of variables is odd, being respectively 1, 3, or 5 letters. Thus we see

_into-the-following-five groups:
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that theses which number less than 11 letters rmust consist of either

3 or 7 letters.
There is only one thesis of three letters, namely

. Epp.
Theses of seven letters divide according to the order of the functors

1. EEExxxx.
11. EExExxx.
1. EExxExx.
IV. ExEExxx.
V. ExExExx.

In each group the variables “p>” and “g” (more than two different varia-
bles cannot occur) can be ordered in three ways: ppqg, pgpq, and pggp.
The remaining three orderings, gppg, gpgp, and ggpp, result from the
first three by a change of variables. We thus obtain the following fifteen
theses:
1,. EEEppgq. 1I:. EEpEpqqg. I11,. EEppEqq.
I,. EEEpgpq. 11,. EEpEqpg. II1,. EEpqEpq.
1;. EEEpqqp. I1s. EEpEqqp. 111;. EEpgEqp.
V.. EpEEpqq. V.. EpEpEqq.
1V.. EpEEqgpq. V.. EpEgEpq.
IV,. EpEEqqp. Vs. EpEgEqp.

These are all the theses which come under consideration, for theses
which result from the above by identification of variables are weaker
and hence may be disregarded.

Now we must show that none of these theses can be the axiom of our
system. We do this in the following manner. For each thesis we give
a matrix, preserving the property of deducibility, which is so constituted
as to be satisfied by the given thesis but not by our axiom. This suffices
to prove that from such a thesis our axiom cannot be derived. But if
even one thesis of our system is not deducible from a given thesis, the
latter can certainly not be the axiom of the system.

In all the matrices below, the first argument is written at the left,
the second at the top. All contain only one designated value, denoted
by “17. A matrix M is satisfied by a given thesis, if this thesis, for all
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assignments of values to its variables, yields an expression which, after
reduction according to matrix M, yields the value 1. The designated value

1 appears only once in the one-line of the matrix, and always in the first '

position, so that only E11 =1 while, for all 8 other than 1, E18 # 1.
This suffices to ensure that satisfaction of the matrix is preserved by
deductions using the rule of detachment. For if the expressions “Euf”
and “o” equal 1, so must “f”. Satisfaction of all matrices is preserved
in deductions using the rule of substitution. Thus if such a matrix is
satisfied by a given thesis, it must be satisfied by all consequences of

.. this thesis. Our axiom cannot be among these consequences if it does

not satisfy the matrix.
To begin with, it is clear that our axiom

EquEErqur

does not satisfy: the two-valued matrix M; below—the normal matrix
for implication.

For p/1, q/1, 7/2 we get:
EEV1EE21E12 = E1E12 = E12 = 2.

On the other hand this matrix is satisfied by Epp as well as the theses:
1,. EEppqq, 111, . EEppEqq, 111,. EEpgEpq,IV1. EpEEpqq,1Vsi. EpEEqqp,
V.. EpEpEqq, V.. EpEqEpq, Vi. EpEqEqp. For one sees at once that
all these theses retain their validity when E is interpreted as the sign
of implication. From this it follows that none of these theses can be
the axiom.

E|[1234

111234

214113

312411

413121

M,

—Forp/l,q/3;r/2-we-get+ s :
EE13EE23FE12 = E3E12 = E32

I
»
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On the other hand it is satisfied by theses I,. EEEpgpq and II,. EEpEqpq,
as may be seen from the following tables:

p|1111222233334444
g11234123412341234
Epgi1234411324113121
. EEpgp | 1423122412331434
) EEEpqpq [T1111TT111711111
pl1111222233334444
q11234123412341234
Eqgp|1423214131124311
EpEgp |1 1423143412241233
EEpEgpg | 1111111111111111
The three-valued matrix Ms

E|123

11123

21212

31331

M;

is not satisfied by the axiom for p/1, ¢/3, 7/2; for we have:
EE13EE23E12 = E3E22 = E31 =3,
but it is satisfied by thesis Is. EEEpgqp.

p|111222333

g 1123123123

Epg 1123212331

EEpgg | 111222333

EEEpggp 1111111111

Likewise the axiom does not satisfy the three-valued matrix My,
E]123
11123
21213
3[321
My

since we have for p/l, g/3, r/2:
EEI13EE23E12 = E3E32 = E32 =2,
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while the matrix is satisfied by theses II;. EEpEpgq and Il;. EEpEqqp.

p 1111222333 pl123

g 1123123123 Egg | 111

Epg 1123213321 EpEgg |12 3

EpEpg 1123123123 EFEpFgqp | 111
EEpEpgg {111111111

Furthermore, the three-valued matrix M is not satisfied by the axiom;

E] 123
11123
21212
31321

M;
for p/1, g/3, r/2 yields: ’
EEI13EE23E12 = E3E22 = E31 = 3.
However, it is satisfied By thesis ITIs. EEpgEqp.

p1111222333
g1123123123

Epg|123212321
Egp 1123212321
EEpgkqp | 111111111

Finally, the four-valued matrix M is not satisfied by the axiom for
p/1, q/3, r[2;

E|1234
111424
203141
313112
414331

M

for we have:
EE13EFE23E12 == E2F44 = E21 =3,

but is satisfied by thesis IV,. EpEEgpq.
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p|1111222233334444
q[1234123412341234

Egp| 1334411324134121
EFgpg | 1111442233224444
EpEEgpg | 1111111111111111

From all this it follows that none of the sixteen shorter theses can be

the axiom. Hence our axiom *1 is the shortest axiom for the equiva-
lential system.

9, “Creative” definitions

In closing I would like to touch on an important methodological
question which stands out with particular clarity in the context of the
equivalential system.

In mathematical logic definitions are normally introduced by means
of a special sign of definition. So, for example, one could introduce
into the equivalential calculus the expression “Vp”, read “verum of p”,
in accordance with the usage of Principia Mathematica®) as follows:

I Vp = Epp Df.
Here the identity-sign together with the following letters “Df.” indicate
that the definiendum “Vp” means the same as the “Epp”. Thus one may
always replace “Epp” by “Vp” and vice versa, and every substitution-
instance of the one expression may be replaced by a corresponding
substitution-instance of the other.

There are, however, mathematical logicians who, in order to avoid
a special definition-sign, introduce definitions as equivalences. This
can happen in systems in which equivalence occurs as a primitive con-
cept. In such systems the above definition of “¥p” can be written in the
following manner: ’

I EVpEpp.

Now, this definition is methodologically different from the first.
For cases may occur in which the second definition yields more than the
first, in that it can have—I can find no better term for it—“cre%%? r\

4y Op. cit., p. 11.
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effects. The following example makes clear what is to be understood
by this.

The expression
juil EEsEppEEsEppEEpgEErqEpr

is easily verified to be a thesis of the equivalential system. This thesis
has the peculiarity that its consequences can be obtained only by
substitution, not by detachment. It is “nndetachable”, as can be shown
by a method deriving from Tarski. If the above thesis is to yield a new

o one-bydetachment, it must be possible to obtain two substitution-in-

stances of thesis ITI, of which one is of the type “EnfS” and the other
of the type “a”. These conditions may be expressed as follows:

(2) Eap= EEyESSEEyESSEES € EEL € EOL,

(b) a~ EEoEccEE9EcocEEsTEEVTEDY.
The sign of congruence “=” means here that the left expression is equi-
form with that on the right. Now in the first congruence the expression
“EyE$6” corresponds to the letter “o”. Hence the following congru-
ences must also hold:

(¢) a= EyEdd = EEpEcoEEQEsGEEcTEEYTESY.
This yields the further result, that the following expressions must be
equiform:

(d) y = EoEoo, () 0 = EgEoo, (f) 6 = EEocvEEvtEov.
From (€) and (f) finally we get the following congruences:

(g) o = Eov, ) o = Evt, (i) o = Eov.

The last congriience yields an absurdity; for it is impossible for o to be
equiform with an expression which contains ¢ as a proper part. From this
we conclude that it is not impossible to find two substitution-instances
of thesis IIT of the forms “E«f” and “«”. Hence thesis 111 is undetachable.
From this it follows immediately that no shorter thesis can be derived
from thesis IT1, in particular not our axiom EEpgEErqEpr.

" If, however, definitions of the second sort are now introduced in the

équivalential System, &.g. definition II; then it is easily shown that thesis
1II can be postulated as the axiom of the system. For we have:
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yuii EEsEppEEsEppEEpqEErqEpr.
ii EVpEpp. :

I 5/¥p x ETl - EIL - IV.
v EEpqEErgEpr.

Thesis IV is the axiom of our system. From III by itself it cannot be
derived; it can be inferred only with the help of definition II. The new

term “V*, however, which was introduced by the definition, does not
appear in this thesis. Hence definition II leads to theses which cannot
be derived from the thesis assumed as an axiom, although in these
theses only primitive concepts of the system occur. Such definitions I
call “creative”. It is clear that one cannot get thesis IV from III if one
introduces “Vp” by a definition of the first sort.

In deductive systems the role of definitions would seem to consist
mainly in allowing us to replace longer and more complicated expres-
sions by- shorter and simpler ones. Moreover, some definitions can
bring with -them new, intuitively valuable insights. Under no circumi-
stances, however, do definitions seem to be intended to give new prop-
erties to the undefined primitive concepts of the system. Primitive con-
cepts should be characterized solely by axioms. If one takes this position,
one should avoid the use of creative definitions whenever possible.*)

*) Luké.sicwicz discussed once more the problem of definitions in the propositional
calculus in his article “On Variable Functors of Propositional Argaments” (pp.
311-324 of this volume).




LOGIC AND THE PROBLEM OF THE FOUNDATIONS OoF
' MATHEMATICS *) ' '

1. The propositional calculus is the fundamental logical discipline.
Other logical disciplines, in particular the functional calculus, are

built on the proposifional calculis, and the whole of ‘athematics is
in turn based on logic. Thus the propositional calculus forms the deepest
. foundation of all deductive sciences. The present lecture is concerned
with that fundamental caleulus and its importance for mathematics.

2. Propositional logic has always been neglected. It was not known
to Aristotle and was originated only by the Stoics. Yet Stoic proposi-
tional logic was, in antiquity as well as in the Middle Ages and modern
times, always suppressed by Aristotelian syllogistic. The work of Frege,
the briliant German logician who in 1879 created the propositional
calculus in an almost complete form, received at first almost no atten-
tion. It was only after 1910, when Russell and Whitehead in their funda-
mental work Principia Mathematica placed the propositional calculus
at the forefront of mathematical logic, that it was realized what essential
importance that discipline has within the science of mathematics.

3. Yet even to this day most mathematicians seem to know little
about the propositional calculus. As Aristotle did, they make use quite
intuitively of some of the simplest rules of inference of that logic, without
even suspecting how rich it is in theorems and what a wealth of problems
it offers. To acquaint the readers with these problems I shall refer to
two rules of inference from those which are most commonly used by
mathematicians.

4. If the following two premisses are given: “if p, then ¢” and “if g,
then r”, we may draw from them the conclusion: “if p, then r”. In sym-
bols (where C stands for “if ..., then...”):

*) First published as “Die Logik und das Grundlagenproblem”, Les Entretiens

de ZTrich sur les foridemernts et la méthode des sciences mathématiques 6-9, 12 (1938),
Zirich, 1941, pp. 82-100.
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¥ B

Cpg Py
Cgr P,
Cpr S

If the first premiss is represented by P;, the second by P,, and the
conclusion by S, then obviously the following formula is valid:

1) CP 1,C£2§:_._ -

This means: “if Py, then if P,, then S”. If in this formula the letters
Py, P, and S are replaced by the expressions which they represent, we
obtain the following thesis of the propositional calculus:

2) : CCpgCCqrCpr.

In words: “If (if p, then g), then (if (if g, then r), then (if p, then r)).”
This is the law of the hypothetical syllogism, the best known form
of direct inference. _

5. Another very common rule of inference is indirect inference.
A proposition p is proved indirectly by first taking its negation Np
(where N stands for “not”) as the starting point of the proof, and de-
ducing from Np a proposition ¢, which is known to be false. Hence it is
deduced that Np must be false and therefore p must be true. Indirect
inference thus has the form:

CNpg B
N q . P 2
p S

If formula 1) is applied to this form of inference, another thesis of the
propositional calculus is obtained: ,

3 CCNpqCNyp.

In words: “if (if not-p, then g), then (if not-g, then p)”; this is a form
of the law of transposition. ,

6. The latter form of inference is contested by Professor Brouwer,
the eminent mathematician, because it can be used to prove the existence
of numbers which cannot be built effectively, that is by construction.
For instance, the existence of even prime numbers is proved effectively
on the strength of the following law of the functional calculus:

4) - CFaD xFx.
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In words: “if F of @, then there is an x such that F of x”. If, now, Fx
stands for “x is an even prime number”, and if in 4) the number 2 is
substituted for g, the following deduction process is obtained:

(1) CF2) 'xFx.

) F2.

(1) = CO).

(3) DxFx.

In a free verbal rendering: ' )
1°_If 2 is an even prime number, then there are even prime numbers.

2° 2 is an even prime number. T
Hence by detachment:
3° There are even prime numbers.

. The existential proposmon D/ xFx can also be proved mdn'eotly
The negation of that proposition, i.e. N, Zxe, is taken as the starting
point of the proof, a false proposition a is deduced from that negation,
and on the strength of Thesis 3) the existential proposition is arrived at.
The deduction process is as follows:

(1)’ CCNpgCNgp.

(2) CNDxFxa.

3 Na
(1) p 2 xFx, gla = (.

“@ CCN >'xFxaCNa D, xFx.
@ = CO®-

(5) CNa D xFx.
(5) = C(3)(6).

6) xFx.

Tt is assumed here that (2) and (3) are true premisses; (4) is obtained
by a substitution in (1), and (4) yields the existential proposition ®)
by double detachment.

8. Followers of intuitionistic logic do not accept the validity of an
existential proposition obtained in this way, that is, non-effectively.
Accordingly, they are forced to reject the law of transposition
CCNpgCNgp. There are also other theses in propositional logic which the

intuitionists do not consider—universally valid. Among the prescribed
theses is another form of the law of transposition CCNpNgCpg, the law
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of double negation with the negations in the antecedent CNNpp, and in
particular the law of the excluded middle ApNp (“4” is the symbol of
alternation “or”; “ApNp” is read “p or not-p”). On the other hand,
valid are the two remaining laws of transposition, CCpgCNgNp and
CCpNqCyNp, the law of double negation with the negations in the
consequent CpNNp, and the law of excluded contradiction NKpNp

(“Ki5the symbol of comjumiction “and™;-*NEKpNp~ s Tead ~not both
p and not-p™). The issue is serious: the controversy is within the simplest
and the most fundamental logical discipline, it is a true controversy
over the foundations. T

9. Now, the propositional calculus is not a heap of stones, which
remains even if a few stones are removed from it. It is rather a mechanism
of the greatest precision, which breaks down after the removal of a
single cog-wheel and must then be reconstructed. That is why we must
be most grateful to Mr Heyting for undertaking, in 1930, to formalize
the propositional calculus in the spirit of intuitionism. He succeeded
in comstructing a system of axioms for the intuitionistic propositional
caleulus. T shall not discuss these axioms here, but I shall present here
a result I obtained in May of this year following a suggestion of my re-
spected friend, Professor Scholz of Miinster, which will make it easier
to compare ordinary and intuitionistic propositionajl logic.

10. The following independent system of axioms, which consists of
four groups of axioms, suffices to construct the ordinary propositional
calculus:

CpCqp.
CCpCpgqCpq.
CCpgCCqrCpr.
CKpgp.
CKpyqq.
CCpqgCCprCpKyr.
CpApg.
CqApq.
CCprCCqrCApagr.
IV 10 CCpNgCyNp.

11 CNpCpg.

12 CCCpNpgCCpygq.

11T

=]
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The axioms of Group I contain only the implication symbol “C”. ’
They characterize what is called “positive logic” in the sense of Professor

Bernays. The axioms of Group II also contain the conjunction symbol
“K”, and those of Group II, the alternation symbol “4”. The axioms
of the first three groups have been formulated by Professor Bernays.
The axioms of Group IV pértain to the negation symbol “N”. The

system also includes two rules of inference: the rule of substitution,

which permits us to substitute any significant expressions for the
variables, and the rule of detachment, which states that from the

expressions—Cof-and-o-we can always deduce.f —

11. The above system of 12 axioms is valid, as has been said, for the
ordinary, or classical, propositional calculus. If Axiom 12 is dropped,
then we obtain an axiom system of intuitionistic logic, which is equiv-
alent to the axiom system formulated by Heyting with all the rules
of inference belonging to it. If Axioms 11 and 12 are dropped, we obtain
what is called the minimal calculus of Johannsson. The relationship
between classical propositional logic and intuitionistic propositional
logic is now clear: intuitionistic propositional logic covers a proper
part, strictly limited, of the theses of the classical propositional calculus
and is consequently essentially weaker than the latter. It is up to mathe-
maticians to find out what can be built on this weaker foundation of
mathematics. Research already carried out and still to be done can be
ag fertile and important for the problem of the foundations of logic as
research on Zermelo’s axiom of choice and its role in set theory and

analysis, initiated by my respected colleague from Warsaw, Professor -

Sierpidski.

12. 1 shall not here go into the problem of whether it is justified to
reject certain forms of inference of classical propositional logic. One
thing is clear to me: this controversy cannot be settled now, either
in the sphere of logic or in that of mathematics. Philosophical arguments,
which are proposed from different quarters, are in my opinion not
conclusive. The problem must first be studied more profoundly. I shall
do so, although I realize how difficult it is to explore the depths. In this
connection I might mention four points that may serve as road-signs:

a) there are matrices in propositiondl logic; b) an adequate matrix
corresponds to each system of propositional logic; c) matrices of many-
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valued propositional logics can also ‘be interpreted intuitively; d) in the
case of intuitively interpreted matrices, all the logical functions which
are possible with respect to 2 given matrix must be taken into account.

13. The matrix method was devised in 18385 by the eminent American
logician Charles Peirce. In propositional logic the truth of theses de-
pends not on their content, but on their truth value. In the classical

propositional calculus there are two truthvatuestruth 3nd falsehood,
If truth is represented by “1”, and falsshood by “2”, the following
equations can be formulated: )

Negation Implcation Conjunction Alternation -

N1i=2 Cil=1 Kll=1 All =1

N2=1. Cl2=2 K12 =2 Al2 =1
C2l=1 K21=2 A2l =1
c22=1 K22 =2 A22 =2

All these equations together can briefly be represented in the form
of tables (in the case of functions of two arguments the first argument
being written in the column of the left, and the second, in the row
above):

| cj12 K12 4|12
12 112 1]12 1|11
21 2011 2022 2|12.

They are called the matrix for N, C, K, and 4. Each matrix has at least
one selected value; here it is truth, hence 1.

14. A verification method is associated with each matrix. We say
that an expression of the propositional calculus satisfies a matrix if,
for all valuation of its variables by the values included in the given
matrix, the expression takes on the selected value after reduction..
For instance, the thesis CCCpNpgCCpqq satisfies the matrix given
above, since we obtain:

for p/1, g/1: CCCIN11CCl111 = CCCI121Cl11 = CC211 = Cll =1,

for p/1, g/2: CCCIN12CC122 = CCC122C22 = CC21 = Cl1l =1,

for p/2, ¢/1: CCC2N21CC211 = CCC211C11 = CC111 = Cll =1,

for pj2, g/2: CCC2N22CC222 = CCC212C12 = CCl122 = C22 = 1.
All matrices are hereditary with réspect to the rule of substitution,
which means that if an expression satisfies a given matrix, then that



284 LOGIC AND THE PROBLEM OF FOUNDATIONS OF MATHEMATICS

matrix is also satisfied by all substitutions of that expression. For a -

matrix to be hereditary with respect to the rule of detachment, it is
sufficient, though not necessary, that the function of two arguments
Faf to which the rule of detachment is applied -(usually it-is-implica-
tion) has. the selected value for the selected « if § is also selected. Thus
C1p equals 1 only if § also equals 1. Such a matrix is called normal
by my Warsaw colleague, Tarski. All normal matrices are hereditary
with respect to the rule of detachment; hence, if a normal matrix is
satisfied by Fuf and «, then it must also be satisfied by g.

15 The matrix-method-was-first used—for-the-verification - of - theses
of the classical propositional calculus. But it soon turned out that this
method must be credited with an incomparably greater importance.
It makes it possible to carry out proofs of independence in the sphere
of propositional logic that were unknown to Frege and Russell. The
‘merit of demonstrating how the matrix method can be used in proofs
of independence goes to Professor Bernays. The same method was
also known to me even before it was published by Professor Bernays.
The idea of these proofs of independence can best be explained by an
example. To prove, for the axiom system.given above, that Axiom 12
is independent of the remaining axioms, it would obviously suffice
to find a property which is hereditary’ with respect to the rules of in-
ference and is characteristic' of all the axioms with the exception of
Axiom 12. If an axiom satisfies a normal matrix, there is accordingly
a property of that axiom which is hereditary with respect to the rules
of substitution and detachment. We construct the following three-
valued matrix for N, C, K, and 4: :

N| Cc|123 K[123 4)123
13 1/123 11123 1111
213 21113 21223 21122
3|1 3/111 31333 3123

Again, 1 is the designated value. This matrix is norial, since C18
equals 1 only if § also equals 1. It can easily be seen that the matrix
is satisfied by the first eleven axioms; in fact for all value functions of
the variables acquiring the values 1, 2, or 3, these axioms, according

to the matrix, yield 1, aftar teduction. Only Axiom 12 does not satisfy
the matrix, since for p/2 and g/2 we obtain:
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CCC2N22CC222 = CCC232C12 = CC322 = C12 = 2.

16. This settles the first of the four problems raised above. There
are matrices in propositional logic, and these play an important role
in the propositional calculus. I now come to the second point: Tarski’s
metalogical researches make it possible for us to give a strict definition
of the concept of a system of propositional logic. By a system. of propo-

sitional logic we mean a set of sighificant expressions of propositional
logic which is closed under the given rules of inference. As rules of
inference we consider primarily the rules of substitution and detachment.
It follows that any significant expressions, e.g. ~ '

CCppp and CCCpgqCCqpp,

together with all their consequences derived by use of the specified
rules of inference, comstitute & system of propositional logic. It is
now clear that each normal matrix defines a system of propositional
logic. Strikingly enough, the converse statement is also valid: Linden-
baum, one of my Warsaw colleagunes, has proved that for every system
of propositional logic there is an adequate normal matrix with at most
a denumerable set of values. A matrix is called adeguate with respect
to a system if it is satisfied by all the expressions of that system and
by them only. This important theorem was published without proof
in 1930 in the paper “Untersuchungen iiber den Aussagenkalkiil”,
written by Tarski and me.*)

17. I should now like to draw some consequences from that theorem.
First of all, it is obvious that all axiomatic systems of the propositional
calculus are systems of propositional logic in the sense of Tarski’s de-
finition. In accordance with Lindenbaum’s theorem, every such system
must have an adequate normal matrix. For the axiomatic classical
propositional calculus the ' two-valued normal matrix given above
is adequate,’ as it has often been proved that that matrix is satisfied
by all theses of the classical propositional calculus and by them only.
This is why the classical propositional calculus is termed two-valued.
For every weaker system, that is every system in which certain theses
of the two-valued calculus are not valid, the adequate matrix is no
longer two-valued, but many-valued. Heyting’s axiomatic intuitionistic

*} See pp. 131-152 of this volume.
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propositional calculus is such a system. This calculus must accordingly
have a many-valued adequate matrix. In fact, G6del has proved that

~ for Heyting’s system there is no adequate normal matrix with a finite

number of values. The same result has been obtained, independently
of Gddel, by Jaskowski, one of my former disciples in Warsaw, who
has actually constructed for intuitionistic propositiohal logic the matrix
with an infinite number of values. V

18. 1 cannot engage here in a more detailed discussion of the very
complicated issue of the adequate matrix of the intuitionistic propo-

——————gjticual calculus: Formy purpese-it-suffices-to-choose a-simpler example.

I have given above a three-valued normal matrix which is satisfied by
the first eleven axioms of the system of axioms I have constructed.
These first eleven axioms represent intuitionistic propositional logic.
But the said matrix, which, by the way, is due to Heyting, is not ade-
quate for the intuitionistic calculus, because it is satisfied not only by
all the theses of that calculus, but also by other theses that do not
belong to the intuitionistic calculus. Thus that matrix defines a stronger
system. I have succeeded in axiomatizing that stronger system.

“19. If in the system of axioms quoted under 10 above, Axiom 12 is
replaced by the following Axiom 12a

12a CCNpgCCCqpyqq,

then Axioms 1-11 and 12a form an independent system for which
the three-valued normal matrix constructed by Heyting and quoted
in 15 is adequate. On the one hand, Axiom 12a is not deducible from
the axioms of the intuitionistic calculus, which can be proved by means
of a four-valued matrix, and on the other hand, that axiom satisfies
the three-valued matrix given by Heyting. Thus, if taken together with
the remaining axjoms, it does not suffice to form the foundations of

the two-valued calculus. We thus have a simple example of a system .

of propositional logic represented by axioms and weaker than the
classical propositional calculus. Like that calculus, it has an adequate
normal matrix, though it is not two-valued, but three-valued. For
all systems that are weaker than the two-valued propositional calculus

thére die adequats;normak—many=valued -matrices.” This is not inci-
dental; this is a law. And this law imparts an essential importance to

P S
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the matrix method. We have now exhausted the discussion of the se-
cond of the four issues raised.

20. The matrix for the two-valued propositional calculus was devel-
oped on an intuitive basis. The values of that matrix were interpreted
as truth values: 1 as truth and 2 as falsehood. But later, when the ma-
trix method came to be used in proofs of independence and numerous

‘many-valued matrices were invented for that purpose; the imtuitive

interpretation of matrix values became lost. It was simply not necessary
to interpret these values in any intuitive way. The matrices served the
purpose of finding properties for given theses that are hereditary with

respect to the rules of inference. The matrix values were reduced to the
status of meaningless constants, and the formation of matrices became
a purely formal procedure. Yet, in many-valued matrices, too, it is pos-
sible to interpret the values intuitively. As the first example I shall
quote the matrix introduced by Heyting and discussed above.

21.Tn his fundamental work on the formal rules of intuitionistic
logic Heyting states: “Group XII (that is the matrix now in question,
only with renamed values) can be interpreted as follows: let 2 stand
for any correct proposition, which cannot be false, but whose correct-
ness cannot be proved. Then we obtain the tables given above.” It
follows from this explanation by the author that, on the basis of certain
sequences of ideas, he believed it was obviously certain that he could
construct the said matrix. We shall try to examine these sequences
of ideas more closely.

22. Of the 30 equations which that matrix contains, 14 are taken
from the two-valued calcalus:

N1=3. Cll =1. Kil=1. All = 1.
N3=1. C13=3." KI3=3. A13 = 1.
C3l=1. K31 =3. A3l =1.
C33=1 K33 = 3. A33 = 3.

1 stands for truth, and 3 for falsehood Another 10 equations, for
conjunction and for alternation, are obtained on the basis of the follow-
ing considerations: the new value 2 is the attribute of those proposi-
tions which canmnot be false, but are not proved. This value is obviously
weaker than truth but stronger than falsehood. Now, obviously the
value of conjunction follows the value of the weaker argument, and
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the value of alternation, that of the stronger argument. For the same
values of the arguments the value of either function equals the value

of the arguments. We thus obviously obtain the equations:

K12=2. A12 = 1.
K21 =2. A2l =1. "
K2 =2. A22 =2,
K23 =3. A23 =2,
K32 =3. A32 =12

Two other equations; namely-these—for-implication s~

‘ ‘ C21=1 and C32=1,
are obtained on the strength of the rule valid in the two-valued calculus

which states that implication with a true consequent or with a false

antecedent must be true regardless of the value of the other argument.
The third equation for implication:

c22 =1,

results from the quite intuitive law of identity. There might be difficulty
only with the determination of the value of the expressions C12, C23,
and N2. C12 cannot be truth, since then 2 would have to be truth also.
But it cannot be falsehood either, since it does not have a false con-
sequent. Thus we arrive at:

Cl12 =2.

On the other hand, C23 is evidenily falsehood, since an antecedent
that cannot be false cannot yield a false consequent. Thus follows:

C23 = 3.

As the last equation we have:

since it is clear that the negétion of a proposition that cannot be false
is false.

23. I grasped this sequence of ideas the more easily as years before
I had been the first to construct an intuitive three-valued matrix, though

T was then guided by differentideas. Following the famous example
of Auistotle, I came to the conclusion that propositions about possible
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future events are neither true nor false at present. That I will be in
Warsaw at noon on December 8, 1939, is a statement which teday
cannot be properly said to be either true or false. Hence it must have
a third truth value, That third truth value is in the same relation to pos-
sibility as truth is to being and falsehood to non-being. On the basis
of this idea I constructed the followmg three-valued matrix as early

3519207

N| Ci123 5123 A 123
113 11123 11123 11111
202 21112 21223 21122
311 0 . 3[111 3333 3{123

Here 1 is the designated value, i.e., truth, 3 stands for falsehood, and 2
for the third value, “possibility”. The matrix is normal. '

24. The comparison of this matrix with that of Heyting is extremely
instructive. Since here, too, the third value, that is possibility, is weaker
than truth and stronger than falsehood, the same equations must hold
for conjunction and alternation. On the other hand, there is a difference
in the equations for implication and negation, though in two points
only: in the expressions €23 and N2. C23 = 2, and not 3 as with Hey-
ting, since possibility can turn into either truth or falsehood. In the
first case C23 becomes C13, that is falsshood, in the second, it becomes
C33, that is truth. Hence €23 is neither true nor false and thus must
have the third value. N2 also must have the third value, since it is ob-
vious that both the proposition “I will be in Warsaw at noon on De-
cember 8, 1939 is today neither true nor false, but merely possible,
and its negation, “I will not be in Warsaw at noon on December 8,
1939~ can be neither true nor false, but merely possible. Thus two
examples settle the thitd issue of the four specified above: many-valued
matrices can also be interpreted intuitively.

25. There are partial systems of the two-valued propositional calculus,
that is systems in which not all the functions of that calculus can be
defined. Thus the implicational system, which is based on implication
as its only term and on the thesis CCCpgrCCrpCsp (the shortest thesis
from which all true implicational theses follow) as its sole axiom, is
a partial system. Partial systems are mcomplete and hence imperfect.
Thus in the mphcaﬁonal system’ meither megation nor comjunction
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is definable. If we want to have a complete logic that can be used on -

all eccasions, we must strive to construct systems of propositional
logic in which as many of the functions in the system as possible are
definable. In the two-valued proposmonal calculus there are 2% =4
possible functions of one argument, and 2** = 16 possible functlons
of two arguments. Even if not all of these functions can be used in
practical inference and can be expressed by words of everyday language,

they are nevertheless definable in the system based on implication and

negation. That system is consequently complete.

et 6 —Amd—whatabout-this-problem in-many-valued-systems?-As the

number of matrix values increases, the number of possible functions
increases, too. From elementary combinatory analysis we kmow that
for n-valued matrices there are »* possible functions of one argument
and »™ possible functions of two arguments. The numbers increase
rapidly. In three-valued systems the number of the possible functions
of one argument amounts to 3% = 27, and that of the possible functions
of two arguments to ¥ =3= 19,683..In four-valued systems the
analogous numbers 4*=256 and 4% — 418 — 494,967,296, that
is more than four thousand million. In matrices with denumerably
many values the set of possible functions is not denumerable.

27. Let us now revert to our examples In a three-valued proposi-
tional logic, espec1a]ly one in which the truth values can be interpreted
intuitively, we may demand, as in the case of the two-valued calculus,
that all the functions be definable. But this is not the case. in the three-
valued systems described above. It can, for instance, easily be proved
that the function “Tp” (to be read as “true third value of p”), which
takes on the constant value 2 (so that Tp = 2), cannot be defined in
either system. Thus both systems are incomplete. Intuitionistic calcu-
lus is incomplete, too; it is not even possible to see how the infinitely
many values of its matrix can be interpreted intuitively. Let us try
to make one of the two systems complete. Since work has not been
‘finished on the system based on Heyting’s matrix, the three-valued
system I have constructed must serve as the basis of the fo]lpwing
analysis.

28T wish to state fitst-that-in-my-three=valued propositional calculus
both conjunction and alternation are definable. These two definitions

Sl A
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Apg = CCpgq and Kpg= NANpNg.

(I may add here that in Heyting’s three-valued calculus altematxon
is definable, namely

Apg = KCCpqqCCqpp,

but conjuncton is not; in the imtuitiomistic propositional calculis
none of the four functions N, C, K, and 4 is definable by means of the
remaining ones.) It must also be mentioned that in my calculus the
set of theses which make use of the terms C and N and satisfy the matrix
can be axiomatized. The proof is due to Wajsberg, one of my former
disciples, who has constructed the following system of azioms for
that calculus: ‘

(1) CpCyp.

(2), CCpgCCqrCpr.

- () CCCpNppp.
(4) CCNpNgCyp.

The three-valued matrix I have constructed is adequate for this system
- of axioms.

29. The three-valued propositional calculus which I defined by the
matrix method and which Wajsberg axiomatized, is, as has been said,
not complete, since not all of the 27 functions of one argument and
the 19,683 functions of two arguments are definable in it. Shipecki,
another of my disciples, has succeeded in making that system complete
by adding a new function, and in axiomatizing the system thus made
complete. Stupecki has proved that with the addition of the said func-
tion Tp, all functions of the system can be defined, and he has formu-
lated two new axioms for this new function. I shall once more submit

-to the readers the complete system of axioms and also its adequate

matrix:

(1) CpCyp.

(2) CCpgCCqrCpr.

(3 CCCpNppp.

(4 CCNpNgCyp.
- (5) CTpNTp.

(6) CNTpIp.
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N T Ci123
13 12 123
212 212 2,112
31 32 3/111

The rules of sibstitution and detachment are valid in this system.
The system of axioms is independent,. consistent, and complete in the

sense that every significant expression in the system either is deducible -

from axioms or, if joined to the axioms, results in a contradiction, that
is, yields all significant expressions. The system is also complete in the

senise that all the functions—possible—in-the-system-are-definable. Thus
this system has all the properties which are the attributes of the classi-

cal two-valued propositional, calculus. In this way the fourth of the

jssues mentioned above has been settled.

30. We have made a difficult progress in depth. The progress has
been difficult not only bacause the problems to be solved are techni-
cally complicated (I have spared you the technicalities and presented
the results), but especially because it involves entirely new ideas and
methods. I can quite properly state that many fine brains have taken
great pains to arrive at these results. To conclude this lecture T shall
refer briefly to the significance of these results and their connection
with the problem of the foundations of logic.

31. At the beginning of this lecture I stated that intuitionistic propo-
sitional logic, which rejects various theses of the two-valued proposi-
tional calculus, is a weaker system than that calculus. This system can
be made stronger in various ways; to do so we choose rejected theses
of the two-valued calculus and join them one by one to the system,
until we obtain the strongest system, namely two-valued propositional
logic. The complete system .of three-valued propositional logic, formu-
lated by me and axiomatized by Stupecki, which we may call the S-sys-
tem in brief, is formed in quite a different way. If we jointoita thesis
which is not deducible from its axioms but which is valid in the two-

valued calculus, we obtain not a stronger system but a contradiction.-

This important fact can be explained by an example:

(7) CCNppp.

(Y BITr=CE)®)
® TIp.
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(5 =CE®O.
®) NIp.
() 9/Cqp = C()Q10).
.(10) CCCqprCpr.
(10) g/Np, p/Ng, r/Cgp = C(#)(11).
(11) CNgCqgp.

- (11) g/Tp = COICE)(12).
(12) p.

32. The thesis CCNppp holds neither in the intuitionistic system. nor-
in the S-system. If this thesis is joined to the intuitionistic system, we
obtain the two-valued calculus, but if it is joined to the S-system, we
obtain a contradiction. This contradmtlon can be demonstrated as
follows:

CCNppp is joined to Shlpeckl’s system of axioms as Thes1s (7) From
that thesis and from Axioms (6) and (5) we obtain, by substitution
and detachment, two contradmtory theses, Tp and NTp. This contra-
diction can be made even stronger, since on the basis of the thesis
CNgCyqp, which is deducible in the system, (8) and (9) yield as a con-
clusion the propositional variable p, from which any signiﬁcant €x-~
pression can be obtained by substitution.

33. This shows that the S-system is not weaker than the two-valued

'_ calculus, but is a different system. On the one hand, in the S-system
there are theses, such as CTpNTp and CNTpIp, which cannot be in-

terpreted in the two-valued calculus; on the other-hand, we may indi-
cate theses of the two-valued calculus, such as CCNppp, which in the
S-system result in a contradiction. Quité a new logic has developed
before our eyes—namely modal logic, which was the goal of Aristotle
and the Scholastics. This is not the only possible form of three-valued
propositional logic; there are various types of three-valued systems,
not reducible to one another, and innumerable forms of higher many-
valued systems. These various forms of many-valued propositional
logic are more or less in the same relation to. the classical two-valued
propositional calculus as the various systems of non-Euclidean geometry
are to the Euclidean. There is, however, one difference: while the non-
Euclidean geometries can be interpreted in the Euclidean, the inter-
pretation of many-valued systems in the two-valued system séems out




294 LOGIC AND THE PROBLEM OF FOUNDATIONS OF MATHEMATICS

of the question. Conversely, it is possible to interpret two-valued prop-

ositional logic in the S-system in many ways, so that the three-valued
calculus proves to be stronger and richer than the two-valued.

34. We have thus come to the most essential issue of the problem
of foundations that has been formulated in mathematics. The propo-
sitional calculus is the fundamental logical discipline, on which the
whole of logic is based, while mathematics is in turn based on logic.
As there are different systems of propositional logic, not reducible to
one another, so there must also be different systems of predicate logic,

oA en—thesehloglca]_sysicems different systems. of set theory. and arith-

metic should depend. As yet no works exist in this field. So far we
have succeeded only in constructing many-valued systems of proposi-
tional logic with the utmost formal precision. Should these systems
be applicable to mathematics, they would have to be worked out from
the intuitive point of view as well. That this is possible has been dem-
onstrated by the example of intuitionistic propositional logic. This
is why these allimportant and fundamental researches should be taken
up by all logicians and mathematicians.
*

* ®

Discussion concentrated almost entirely on the problem as to whether Lukasie-
wicz’s three-valued logic can be subject to an intuitive interpretation.

Eukasiewicz stated in an additional explanation that 7p is the most convenient -

term to use in the axiomatizing his logic, but another term, symbolized by Mp, could
be used for the same purpose and would leave nothing to be desired from the point
of view of its intuitive meaning, since it could be interpreted as “possible”. The cor-
responding system of axioms would then be as follows:

1. CNMpCNMpNp.
..2. CNMNpCNMNpp.
3. CMpCMpMNp.
4, CCpgCCNpgCCMpqq.

This system can be interpreted intuitively. Yet it is not possible to interpret intui-
tively all the functions definable in that calculus. Their number (3°%) is too large for
everyday language to have expressions corresponding to each of those functions.

This is, however, also the case of two-valued logic. This lack of representation
for a part (or even an overwhelming majority) of possible functions is thus not an

_atgumentuagamsLthe.Jntultme cha-.tggt_uhc;f_the,system...‘v_‘ S
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THE SHORTEST AXIOM OF THE IMPLICATIONAL CALCULUS
OF PROFPOSITIONS %)

1. Introductory remarks.—2, History of the problem.—3. Derivation of the Tarski—
Bernays set of axioms from Axiom (1).—4. A certain theorem-concerning the law
of syllogism.—>5. Outline of a proof that Axiom (1) is the shortest possible.

1. Introductory remarks

—The-Tmplicational- Calculus of Propositions - constitutes that - part
of the Complete Propositional Calculus in which implication occurs
as the only functor. I denote this functor by the letter “C” .and put
it before its arguments, thus“dispénsing with brackets. So the expres-
sion “Cpg” means “if p, then ¢.” Two propositional expressions be-
long to each “C” as its arguments and follow it immediately. By prop-
ositional expressions I understand propositional variables denoted
by the small letters of the Latin alphabet or expressions of the form
“Caff” in which “«” and “f” are already propositional expressions.
Propositional expressions which are either axioms or theorems derived
from the axioms will be called theses. In derivations I will make use
of the rule of substitution, according to which I can add to a set of
theses a propositional expression derived from a thesis of the set by
substituting any propositional expressions for the variables of the
thesis, and the rule of detachment which enables me to add to a set of
theses a propositional expression “f” provided expressions of the form
“Caf” and “a” are already members of the set.

In this article I intend to prove that all theses of the Implicational
Calculus of Propositions can be derived from the following axiom

1) CCCpgrCCrpCsp
by applying the rule of substitution and the rule of detachment.

*) The lecture read on 23 June, 1947, at a mesting of the Royal Irish Academy.
First published in Proceedings of the Royal Irish Academy, vol. 52, Section A, No. 3
(April 1948), pp. 25-33.
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Axiom (1) consists of 13 letters, and is the shortest on the basis of -

which one can construct the Implicational Calculus of Propositions.
1 have mentioned this axiom twice in my previous articles, but on both
occasions without proof.’) The proof I am giving below will -show
that the following three theses can be derived from axiom (1):

CpCqp,
CCCpgpp,
CCpgCCqrCpr.

These three theses are known as the “Tarsk:L—Bernays set of axioms,

and —as A. Tarski has proved—form a sufficient basis for the Tmphi-
cational Calculus of Propositions.?) The first one is the so-called-law
" of simplification; I have called the second one Peirce’s law; the third
thesis is the law of hypothetical syllogism. As the derivation of the
law of syllogism is particularly. difficult, it may prove useful to show
how it can be done. The derivation of the law of syllogism will be
followed by a certain theorem concerning this law. In the last para-
graph. I wish to outline a proof that there is no shorter thesis which
could function as a sole axiom of the Imphcatlonal Calculus of Prop-
ositions. - .

. 2 I—Ilstory of the problem

The problem of how to construct the Complete Propositional Calcu-
Tus as well as the Implicational Calculus of Propositions on the basis
of a single axiom was raised and solved in 1925 by Tarski, who gave
a method of combining several axioms by applying the rule of substi-
tution and the rule of .detachment.®) The first axioms arrived at, in

1) For the first time in the article “W obronie _quistyki”, Studia Gnesneﬁsia XV,
Poznan, 1937, p. 11 of the reprint; for the second fime in the lecture “Die Logik
und das Grundlagenproblem™, Les Entrietiens de Ziirich sur les fondements et la
méthode des sciences mathématigues (1938) Ziirich, 1941, p. 95. [See pp. 245 and
289 of this volume.]

2y 1. Lukasiewicz und A. Tarski, “Untersuchungen {iber den Aussagenkalkul”
Comptes rendus des séances de la Société des Sciences et des Lettrés de Varsovie
23 (1930), cl. iii, Satz 29, [See p. 145 of this volume, Theorem 29.]

3) Fukasiewicz-Larski, Lo, Satz 8 and 25. [See p. 137 of this Volume, Theorem 8, '

and p. 143, Theorem 25.]
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accordance with this method, were very long. I tried to shorten them
by modifying Tarski’s method, and finally discovered the following
axiom consisting of 25 letters:

() CCCpCypCCCCCrstuCCsuCruvv.*)

This axiom is non-organic, as some constituents of it, namely:

are theses of the Calculus makmg the whole expression a conglomeration
of two theses. Later I abandoned the idea of constructing shorter axioms
in the way just mentioned, as in 1926 M. Wajsberg has shown that one
could base the Implicational Calculus of Propositions on the following
organic axiom, that is, on an axiom 1no constituent of which was
a thesis of the Calculus. Wajsberg s agiom con51sted too of 25 letters:

(€)) C’CCquC’rstC’CuC’CrstCCpqut %)

This discovery made me hope that there might exist shorter orgamc
axioms, while, at the same time, I realized that the shortest axiom must

4) Lukasiewicz—Tarski, L.c. Satz 30. [See p. 146 of this volume, Theorem 30.] I am
giving here the first derivational steps based on. this axiom as they are not easy. To be
brief I denote the thesis .

. CCCCrstuCCsuCru

s: 7

contained in the axiom by the letter This letter can denote any thesis in which
the variables “p,” “g” and “z” do not appear' It will be shown how thesis “«” can be
derived from the axiom. As to the technique apphed in derivational procedure see
explanations given in § 3 of this article.

1 . CCCpCqgpCavv. °

1p/CuCye, qle, v/ Cqee X Clp/e, v/ CaCqo — 2.
2 Cga. . ‘

2g/1xC1-3.
3 o,

I think that further steps should not be hindered by any difficulty. -

%) Eukasiewicz-Tarski, 1.c. Satz 30. [See Theorem 30, p. 146 of this volume.] As to
the terms “organic” and “non-organic” see l.c. Satz 9. [See Theorem 9, p. 137 of this
volume.] See also J. Eukasiewicz, “Uwagi o aksjomacie Nicoda i o ‘dedukcji uogbl-
niajacej,”” Ksigga Pamigtkowa Polskiego Towarzystwa Filozoficznego we Lwowie,

Lwéw 1931, p. 15 of the reprint [p. 194 of this volume.] The proof that thesis (3) can
be a sole axiom of the Implicational Calculus of Propositions, was given by M. Wajs-
berg, in his article: “Bin Neues Axiom des Aussagenkalkiils in der Symbolik von
Sheffer, Monatshefte f. Math. u. Phys. 35 (1932).
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be organic, as conglomerations of several axioms are naturally bound
to be longer. In 1930 I found an organic axiom which was shorter than
WaJsberg s thesis and consisted of 17 letters:

(4) . CCCqursCtCCspCrp -
In 1932 I found another such axiom:
®) : - CCCpqCrsCCspCtCrp.%)

Then in 1936 1 discovered the shortest axiom (1), cited above, and thus 4

terminated-the examination of the problem. e

3. Derivation of Tarski—Bernays set of axioms from axiom (1)

The proof which follows is fully formalized in accordance with the
method adopted by me in my previous publications.”) Every thesis

which is not the axiom—all theses have their numbers and thus are .

~ distinguished as theses—is preceded by a line without its number.

I call this line a derivational line. Every derivational line consists of two
parts separated from each other by the cross “X”. The cross is preceded
by the substitution which has to be performed on a previously given
thesis, and followed by detachment, which has to be performed on the
thesis arrived at by the substitution. An example will clarify the methods:
In the derivational line belonging to thesis 2 the expression “1 p/Cpg,
g/r, r/CCrpCsp, s/r” means that in thesis 1 “Cpg” has to be substituted
for “p”, “r” for “q”, “CCrpCsp” for “r” and “r” for “s”. The thesis
generated by this subsutunon is omitted in the actual proof to save
space. It would be of the following form:

1 CCCCpquCrpCIS'pCCCC)pCspCquGCq.

The expression following the cross “X”, ie. “C1-2,” shows how
thesis 1’ is constructed, making obvious that the rule of detachment
can .be applied to thesis 1'. Thesis 1’ begins with “C”, then follows

) See e.g. J. Lukasiewicz, “Uwagi o aksjomacw Nicoda,” p. 17 of the reprint,
Ip. 196 of this volume] and B. Sobocitdski, “Z badan nad teoria dedukc;l,” Przeglad
leozoﬁczny 35 (1932), pp. 7 and 8.

Y-See-e:gF Eukasiewicz,-“Philosophische. Bemerkungen zu mehrwertigen Syste-
men des Aussagenkalkiils,” Comptes rendus des séances de la Société des Sciences
et des Lettres de Varsovie 23 (1930), cl. iii, p. 56 [p. 157 of this volume].
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axiom (1) as'the antecedent and thesis 2 as the consequent. Thus
thesis 1’ is an expression of the form “CeB,” and both. “Cof” and
“&” are theses. One can therefore detach “$,” i.e.: 2 as a new thesis.
In some derivational lines detachment is performed twice; as, for in-
stance, in the derivational line preceding thesis 4. In the same line,

instead of substituting the whole frst thesis I substitute only its num-

“'ber. The sttoke /7 is the sign of substtution and the dash <~

is the sign of detachment. I think that after these explanatory remarks
the reader will be able to understand and check the proof without any

difficulty. , .
1 CCCpqrCCrpCsp. :
1p/Cpq, gfr, ¥]CCrpCsp, slr x C1-2.
2 CCCCrpCspCpqCrCpg.
- 1p/CCrpCsp, q/Cpgq, r/CrCpq, s/t X C2-3.
3 CCCrCpgCCrpCspCtCCrpCsp. :
37/Cpg, t/1 X Clr/Cpg—Cl —4.
4 CCCpgpCsp.
1p/Cpq, qlp. r[Csp, s/r X C4-5.
5 CCCspCpgCrCpq.
1p/Csp, g/Cpq, /CrCpg, st X C5-6.
6 ' CCCrCpqCspCtCsp.
1 p/CrCpq, q/Csp, ¥/CtCsp, sfu x C6 1.
7 CCCtCspCrCpgCuCrCpg.

7t/Cpg, plq, r/CCsqp, q[p, u/1 x Cl¥/Csq, s/_q Cl-8.
8 CCCsqpCqp.

8 5/Cpq, q/r, p/|CCrpCsp x C1-9.

9 | CrCCrpCsp.
" 1 p/r,r/CCCrqpCsp, sft x C9 r/er 10.
10 CCCCCrgpCsprCtr.
1 p/CCCrgpCsp, gJr, r/Ctr, sju x C10—-11.
11 CCCtrCCCrgpCspCuCCCrqpCsp.
1 p/Ctr, g/ CCCrgpCsp, r/CuCCCrgpCsp, s[v x C11-12.
12 CCCuCCCrqpCspCtrCuCtr.
N 1 p/CuCCCrgpCsp, g/Ctr, r/CoCtr, sjw X C12-13.
13 CCCoCtrCuCCCrqpCspCwCuCCCrqpCsp.
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13 9/CCspq, u/CCtrCsp, wil x Clp/Csp, r[Ctr, :
s/CCrqp— C1-14. ,
14 CCCrCspCCCrapCsp. : !
14 t/Cpg, s/Crp, p/Csp '} C1-15." -
15 CCCrqCspCCrpCsp. :
15 s/CCrgp, p/Csp X C9 r/er 16.
16 CCrCspCCCrqpCsp. .
16 r/CCpgr, s/Crp, p|Csp, g/t x C1-17.
17 CCCCCpqrtCspCCrpCisp.
T 1 p/CCCpgrt, q/Csp, /CCrCsp, sju % C1T~18.
18 . CCCCrpCspCCCpgriCuCCCpyrt.
18 #/Crp, p[Csp,s|CCpgr, t/CCCpgrCsp, u[18 X C18t/Csp,
u/CCCspgCrp - C18 - 19.
19 CCCCspqCrpCCCpgrCsp.
14 t/CCspq, r/Crp, s/CCpqr, p/Csp, a/p X C19 20.
20 CCCCrppCspCCCpgrCsp.
20 r/gq, p/Cpr, s/Cqr x Cl5r]q, 4/Cpr, s/p, p/r 21.
21 CCCCprgqCCqrCpr.
5s/Cpg, g/p, 1/4 X C4S/_p - C4-22.
22 Cpp. ' .
20 s/Crp X C22p/CCrpp - 23.
23 CCCpgrCCrpp- :
8 s/Cpq, qfr, p]CCrpp X C23 - 24.
24 CrCCrpp.
15 r/p, g/r, s|CCprg, plqg X C24 r[Cpr, p/q—25.
25 CCpqCCCpryqgq.
' 25 p/Cpyq, g/CCCpraq, r/CCqrCpr — C25 - 26.
26 CCCCpqCCqrCprCCCprggCCCpraq.
8 s/Csq, q/p, p/Cqp X C8-21.
27 CpCqp. .
25 g/p, vlq x C22-28.
28 CCCpgpp.
] 215/ Chg, FICCarCrr;y gl CCCprgy < C26= C21 - 29.
29 CCpgCCqrCpr. ’
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4. A certain theorem concerning the law of syllogism

A formalized proof can be checked mechanically but cannot be mechan-
ically discovered. I do not know of any other method of finding proofs
in the Propositional Calculus than the method of “trial and error.”
In.the_above-proof-the.most difficult step was to find the hypothetical

syllogism. The task was made easier, thanks to a certain theorem discov-
ered by mysélf in 1933. This theorem is not without more general

importance.
1 have derived the law of sy]log15m from two theses:
25 7 CCpqCCCprqq,
and
21 CCCCprqqCCqrCpr.

From thesis 25 follows thesis 26, and from theses 21 and 26 follows
thesis 29, i.e. the law of sylloglsm It had been known to me before that
if we have two expressions of the form:

CCpge. and  CaCCqrCpr,

where “a” is so constructed that the two expressions are theses, we can
always derive the law of syllogism by applying the rules of substitution
and detachment to these theses.

I -write this theorem in the following symbols:

A) ‘ CCpge., CaCCqrCpr — CCququCpr.

Tt is easy to see that o must include both “p” and “g”. Because if,
for instance, “p” does not appear in “«,” then by substituting “g” for
“p” we can denve “CCqqe,” and as “Cqgq” is a thesis, “«” must be a
thesis also, and so must “CCqgrCpr,” which is not possible. The same
reasoning applies to the variable “q.” The variable “r” and othef varia-
bles, e.g.: “s,” can be consutuents of “«a” or not, as it does not affect
the proof. Whﬂe performing substitution for “p™ and “g” we change
“o”, but if the substitution is of the same kind “S” “o” changes always
into the same expression; which I denote by “«[S].” The proof of the
theorem (A) is based on this observation. '

1 CCpge.
2 CoCCqrCpr.
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1p/Cpg, g/, r/CCqrCpr x C1-3.

3 e[p/Cpg, g/«, r/CCqrCpr].
2p/Cpq, gfe, ¥/ CCqrCpr x C3 — C2 4,
4 CCpqCCqrCpr.

Let the premisses 1 and 2 be theses. I perform the same substitution on
both of them: “1 p/Cpg, gfex, r/CCqrCpr.” So in both cases “x” changes
into the following expression: “a[p/Cpq, q/a, -2r/CCqrCpr],” which is
a thesis. In the proof given in Section 3 “«” is of the form “CCCprgqq.”
_Here are other expressions which can function as “«”, the premisses 1
and 2 remaining theses: “CpCpgq,” “CCCqspg,” “CCCpqrr,” “CCrsCpq.”

5. Qutline of a proof that axiom (1) is the shortest possible

I proved that there exists no thesis, shorter than axiom (1), on which
one could construct the Implicational Calculus of Propositions by ex-
amining all shorter theses and not finding one among them ‘sufficient
to be the sole axiom of the Calculus. I cannot give here the full proof
as it would take too much space, but I wish to outline the way of reason-
ing which led-me to arrive at the above result.®)

All propositional expressions of the Implicational Caleulus of Prop-
ositions, therefore all its theses, consist of an odd number of letters,
as in every propositional expression the number of variables is greater
by one than the number of functors. The shortest implicational thesis
is the law of identity “Cpp,” which consists of 3 letiers. The theses
shorter than axiom (1), consisting itself of 13 letters, are theses consisting
of 3, 5,7, 9 or 11 letters. For our purpose it is enough to examine the
theses consisting of 11 letters as if a shorter thesis “a” were a sole axiom,
then it is easy-to prove that -the thesis “Cza,”- longer by two- letters
than “«” and in which “z” is a varjable not appearing in “x”, would
also have been a sole axiom. By substituting “Czx” for “z” we derive
“CCzo«” and then “a” by detachment. As “«” was supposed to be a
sole axiom, “Cza” must be a sole axiom also.

After careful scrutiny I have come to the conclusion that there are
92 theses consisting of 11 letters if one disregards theses derived from

%) 3. Stupecki has constructed é. shorter proof ba.scdonee;tam general theorems.
The proof as far as I know has not yet been published.
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shorter thesés by applying the rule of substitution. For example, the thesis
“CCCpCyqCrspp” is derived from the thesis “CCCpgpp” by substituting
the expression “CgCrs” for “g.” One can also disregard theses derived
from theses consisting of 11 letters by identifying some of their variables.
The thesis “CCCpqqCCqpp” is derived, for instance, from the thesis
“CCCpqrCCrpp” by identifying the variables “4” and “r.” The set of

92 theses can be divided into three groups. The first grolip, which is
most numerous, contains theses belonging to the so-called Positive
Logic in the meaning mtroduced by Bernays. These theses are generated
by the fo]lowmg three axioms:

, CpCap.
® CCpCpqCpq.
' CCpgCCyqrCpr.
There are. 64 such theses. None of them can function as the sole axiom,
the Positive Logic being a fragment of the Implicational Calculus of
Propositions. Neither Peirce’s law nor axiom. (1) can be derived from
it. The strict proof is based on matrix I shown below:

'C|123

*1,123
21113
3j111

In this matrix values of the implication “Cef” are given with respect
to “«” and “f” assuming values: 1, 2 and 3. The first argument is in
the left column, the second one in the top line of the matrix. Thus in
accordance with the matrix “C23” has the value “3”. For every combi-
nation made by substituting the figures 1, 2 and 3 for the variables
in the axioms of set (B), reduction having been done according to the
matrix, we obtain “1,” ie. the selected value marked with the asterisk.
For example, if on the third axiom we perform the following substi-
tution: “p/1,” “q/2,” “r[3” we obtain: - '

CC12CC23C13 = C2C33 = C21 = 1.

A thesis is verified by a matrix if for every combination of substitutions
of figures for variables it generates the selected value provided the
reduction has been done according to the matrix. The axioms of set (B)
are verified by matrix I, which is hereditary with regard to the rule of




304 ‘THE SHORTEST AXIOM OF IMPLICATIONAL CALCULUS. OF PROPOSITIONS

substitution and the rule of detachment, i.e. all consequences of theses
verified by it are also verified. All of the 64 theses that consist of 11
letters and belong to the Positive Logic are verified by matrix I, whereas
axiom (1) is not verified by this matrix;-if we perform the following
substitution: “p/2,” “g/3,” “r/3,” “s/1,” we obtain:

CCC233CC32C12 = CC33C12 = C12 =2

Thus axiom (1) cannot be a consequence of any of those 64 theses, neither
can any of them be a sole axiom of the Implicational Calculus of Prop-
___ositions, as it is unable to generate all implicational theses. ‘

The same method is applied to the remaining 28 theses which depend
in one way or other on Peirce’s law. They can be divided into two
groups: the first one contains 24 theses, which can be deduced from
the following set of axioms:

CpCiyp.
© - CpCCpqq.

CCpgCCCpryggq..

C’CqurC’Cqusts
All the theses of this set are verified by the four-valued matnx given
below, “1” being again the selected value.

C|1234
- %1/ 1233
o 2/1133
301211
41111

Axiom (1) cannot be a consequence 'either of set (C) or of any of the
24 theses verified by matrix II, because if we perform the following
substitution, “p/2,” “g/1,” “r/4,” “s/3,” we obtain:

CCC214CC42C32 = CC14C12 = C32 =

The rema:lmng 4 theses consisting of 11 letters, but not verified by -

either matrix I or II, are the following:

CCCpgpCCprr.
CCCpgrCCrpp.

CCpqCCCprpg.
CCpqCCCqrpg.

-
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These theses are verified by matrix ITI, four-valued with “1” as the
selected value.
Cl1234

*111233
m  2{1133

[1211
41221

Axiom (1) is not'verified by matrix III because, if we perform the
following substitution, “p/3,” “g/2,” “r/1,” “s/4,” we obtain:. -

CCC321CCI3C43 = CC21C32 = C12 = 2.

1t follows from the above considerations that every thesis shorter than
axiom (1) is verified by at least one of the matrices I, I, or III, whereas
axiom (1) is not verified by any of them. Therefore, there does not exist
a thesis shorter than one consisting of 13 letters, which could be used as
the sole axiom of the Implicational Calculus of Propositions. Whether
besides axiom (1) there are any other theses consisting of 13 letters
which could function as sole axioms of the Calculus is not knowa.




ON THE SYSTEM OF AXIOMS OF THE IMPLICATIONAL
PROPOSITIONAL CALCULUS *) '

Dedicated to the memory of M. Wajsberg

Mordchaj Wajsberg has demonstrated that in the system of axioms
of the implicational propositional calculus, due to Tarski and Bernays,

CpCap, CCCpgpp, CCpqCCqrCor,

the first axiom may equally well be replaced by any of the following
theses:

CpCCpaq, CpCCapp, CpCCqqp, CqCpp, CaCCCpppp, CgCCCpppCCppp,
CqCCppCpp, CqCCppCCppCpp, CpCCrpp, CpCpp.')

He has also succeeded in partly generalizing these results by stating
‘that the axiom CpCgp may be replaced by any thesis of the form CpCup,
if « is a consequence of that new system of axioms, or by any thesis
of the form- Cyge, if o does not contain variables equiform with g. He
proved these generalizations by induction. %)

In the present note I shall prove the following theorem, whichincludes
all the quoted results obtained by Wajsberg, both particular and general:

If to Peirce’s ldw CCCpqpp and the law of the syllbgism CCqrCCqrCpr
we join any thesis of the form CpCaf, that is a thesis whose antecedent

. is a variable and whose consequent is an implication, then we. obtain the

) M. Wajsberg, “Metalogische Beitrige,” in Wiadomosci Matematyczne 43 (1936),
pp. 131-168. “Metalogische Beitrdge I1,” ibid., 47 (1939), pp. 119-139. In Part M see
Theorems 2b, 2¢ and 2i, which repeat the results published in Part I, and Theorems
11, 13, 15, 16, 17, 34, and 42.

%) “Metalogische Beitrage IT”, Theorems 37 and 38. In lemmata 35 and 39 to these
theorems M. Wajsberg makes use of inductive considerations.

_ *) Published in VI Zjazd Matematyk6w Polskich, Warszawa 20-23. IX. 1948 (The

Sixth Congress of Polish Mathematicians, Warsaw, September 20 to 23, 1948), issued
. as a Supplement to vol. 22 of Roeznik Polskiego Towarzystwa Matematyeznego (1950).
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law of simplification CpCqp and hence a complete system of axioms
of the implicational propositional caleulus. ’

Here is the proof of this theorem, carried out exclusively by means
of the rules of substitution and detachment:

1 CpCap.
2 CCCpgpp i -
3 CCpqCCqrCpr. - ‘
"3 p/Cpg, q/CCqrCpr, rls X C3— 4.
4 CCCCqrCprsCCpgs.
4 g/Cqr, r[Csr, s|CCsqCpCsr x Cdp/s, s|CpCsr — 5.
5 CCpCqrCCsqCpCsr. _
5p/ CCCCprtCquts, q/CCqrCpr, /s, s/|Cpg x C4q/Cpr,r/t,
| _ p/Cqr-C3—6.
6 CCCCCprtCCqrtsCCpgs. -
6 p/q, t/Cpr, /s, s/CCpqCCsrCpr x C4s/CCsrC’pr‘— 7.
7 CCqsCCpgCCsrCpr.
5p/Cqs, q/Cpq, ¥/CCsrCpr, st X C7-8.
8 CCtCpgCCyqsCtCCsrCpr.
7 9/{CCsqs x C2pjs—9.
9 CCpCCsqsCCsrCpr.
' 7 g/CtCCsgs, s{CCsrCtr, rfu X C9 pjt - 10.
10 CCpCtCCsqsCCCCsrCeruCpu.
3 g/Caf, r/[CCCsqaCCPsCCsqs X Cl—-CT g/, s/B, p/Csq,
' ris—11.
11 CpCCCsqasCCsys.

3 g/CCCsquCCPsCCsgs, r] CCCCﬁsCqusCC CisquCsg X
X C11~C3p/CCsqe, q/ CCAsCCsgs, r/Csq —12.

12 CpCCCCPsCCsgsCsqgCCCsquChy.

10 1/CCCPsCCCsqsCsq, s[Csq, q/«, /g, :
u/CCsCCCPRsCCsqsCsqCCCsqqCsq X C12 - C5p/CCsqq,
q/CCCBsCCsqsCsq, r/g —13.
13 CpCCsCCCPsCCsqsCsqCCCsqqCsg.
10 t/CsCCCPsCCsqsCsq, s/Csq, /s, ufCCsrCCCsgsr X
X C13 - Cgp/CCsgs, g/ CCCBsCCsqsCsq — 14.
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14 . CpCCsrCCCsgsr.

. 8 t/p, p[Crq, q/CCCrtrq, g X Clds|r,r[q, qt—15.
15 . CCCCCrtrgsCpCCsqgCCrqq.
6 p/Crt, t/q, s/CpCCCCqrqggCCrqg < C15 5/CCqrq — 16.
16 CCCrtgCpCCCCgrqgCCrqq.
2p/Cp CCCCqpgqCCpaqx C16r/p,1/CCCCqpgqCCpqq-11.
17 . CpCCCCqpgqCCpqq.

17 p/CCCpppp % C2q/p~ C2plq, /CCCpppp —18.

18 CCCCCppppqq.

10 p/CCppp, t|g, s/ C’C'ppp, q/p, r]p, u/Cqp x Cl6r/p, t/p,
q/p, plg— C18q/qu 15.

19 CCCpppCyp.
9 s/CCppp, q/p, r/Cqp X Cllg[p - C19-20.
20 CpCyp.

If, in the foregoing proof, we replace the letters o and §, wherever
they occur, that is both in the theses and in the proof lines, by signifi-
cant formulae of the implicational propositional calculus, selected so
that CpCap is a thesis, then we obtain the proof of the law CpCqp,
based on that thesis, Peirce’s Iaw and the law of syllogism. For instance,
if we teplace « by p and § by p, then CpCuf becomes CpCpp, which
thesis, together with Peirce’s law and the law of the syllogism, yields the
proof of the law Cqup; we thus obtain the last of Wajsberg’s particular
results. If we put & = Cpg, § = g, we obtain the proof of the law CpCqp
from the axioms CpCCpqq, CCCpgpp and CCpgCCqrCpr, that is, the
first of Wajsberg’s particular results. Or, finally, if & = CqCpr, 8 = qu
then we have the proof of the law CpCgp from the theses CpCCqCprCqr,
CCCpypp and CCpgGCqgi-Cpr, where, as is known, the first of these
theses is equivalent to the law of commutation. The letters o and B
may be treated as abbreviations either of the formulae CgCpr and Cqr,
or-of any other formulae, provided that these are selected so that CpCafl

is a thesis. If such abbreviations are introduced, the coherence of the-

proof is not impaired, since in those theses which include these Greek
letters — and they are only the theses 1, 11, 12 and 13—1I do not perform

~any substitutions; but-F-use-the-theses-only-as-premisses, that is as ante-
cedents of implications, from which I detach consequents. Thus the
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operation of substitution does not pertain to the meaning of the Greek
letters and cannot change that meaning, nor can the operation of detach-
ment. Thus the foregoing proof becomes a schema, according to which
we can prove the law of simplification from any thesis of the form
CpCuap by making use of Peirce’s law and the law of the syllogism.

Let us consider, however, what will happen if the letters « and B

are-given-values-such-that-GpCef does not become a- theﬁs%r-mstance———m

let « = p and f = s, so that as the first axiom we adopt the formula
CpCps, which is nota thesis. In this case, too, we obtain the law CpCqp,
and hence we have a complete system of axioms of the implicatiomal
propositional calculus. It is known that if to such a system we join
any formula that is not a thesis, we arrive at a contradiction in the
sense that we obtain all significant formulae. This must also be true
in our case. In fact, the very formula CpCps leads to a contradiction,
for if we substitute for p the formula CpCps, then after two detachments
we obtain the variable s, and hence every significant formula. It is also
worth while examining what happens to the remaining parts of the
proof which contain the Greek letters, i.e., the formulae 11, 12, and 13.
In our example, formula 11 also results in a contradiction, for if we
put a =p, =y, then from CpCCCsqaCCfsCCsqs we obtain the
formula CpCCqupCCssCqus, which on the substitutions p/Cpp and
g/s and after four detachments again yields the variable s, that is, a

" contradiction. On the contrary, formula 13, which does not contain «

but only g, is a thesis regardless of the value given to §. This is explained
by the fact that for any § we can select an « such that CpCeuf becomes
a thesis: for instance, if we put « = Cpf. Since such a possibility exists,
and in the case of such a possibility all parts of the proof are theses,
hence formula 13 must, in this case, be a thesis, too, and that for any £.
Formula 12 is a thesis, too, although it contains both Greek letters,
o and f. But in that formula « occurs in the string of letters, CCCsqaCsq,
and by Peirce’s law and the law of simplification that string is equivalent
to the formula Csg, which no longer contains the letter . Hence that
formula, too, must be a thesis for the same reasons for which formula
13 is. Hence, if « and f§ are selected so that CpCup leads to a contra-
diction, then of all the parts of the proof only formula 11 can still lead
to a contradiction; it is fo be stressed that it can, but need not, since, for
o= p and § = Csq, CpCup becomes CpCpCsq, which yields a contra-
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diction, but CpCCCsquCCPsCCsgs becomes CpCCCsqpCCCsqsCCsgs,
and bence a thesis.

The formula CpCuf cannot be replaced in the proof by the more
general formula Cpe; in other words, it is not true that if to Peirce’s
law and the law of the syllogism we join any thesis whose antecedent
is a variable and whose consequent is arbitrary, i.c., any thesis of the
form Cpa, then we obtain the law CpCqp. For if « stands not for an
implication but for a variable, then the thesis Cpa becomes Cpp, and
CpCqp does not follow from the system of theses Cpp, CCCpgpp and
CCvaCCaGCr, this is proved by the matrix below.

C€|1234

11244
201144
312212
4{1211

This matrix, in which 1 is the selected value, verifies the law of identity
Cpp, Peirce’s law, and the law of the syllogism, but it verifies neither the
law CpCqp mor any thesis of the form CpCof. This is so because the
formula Cgp, and also Cuf; being an implication, can, in accordance
with the matrix, take on only the values 1, 2,.or 4, from which it follows
that CpCqp, and also CpCaf, for p = 3 always becomes 2. It is also
worth mentioning that if to the formula C33 we give the value 2,
and not 1, then the matrix modified in this way still verifies Peirce’s

law and the law of the syllogism, but no longer verifies the law of identity _

or any implicational thesis in which the antecedent is a variable.

ON VARIABLE FUNCTORS OF PROPOSITIONAL
ARGUMZENTS *)

1. A statement of Aristotle disproved. —2. The meaning of the variable functor 4.
—3. Variable functors as applied to definitions. —4. The principle of bivalence.
—35. Peirce’s method of verification by 0 and 1.

1. A statement of Aristotle disproved

In his theor§ of modal syllogisms Aristotle accepts the statement:
“If it is possible that 4 should belong to B, it is possible also that it
should not belong to B.” ') Replacing in this statement the proposition
“4 belongs to B”.by the propositional variable “p,” and denoting the
functor “it is possible that” by “M,” we get the formula.

1 CMpMNp

which may be read: “If it is possible that p, it is possible that not-p.” %)

Formula 1 leads to paradoxical consequences. This can be proved by
means of the following thesis containing a variable functor of one
propositional argument: -

2 CépCéNpdyq,

in words: “if J of p, then if § of Np, § of ¢.” That means: if something
is true of a proposition p, and the same is true of the negation of this

1) Analytica Prioval 13, 32 a 37: &l évdéyerar 70 A 7§ B uroszsw &vdéyeTat
ol pd) Smapyew. (Oxford Translation).

2 I am using throughout this paper my own symbolic notation without brackets,
and my own arrangement of proofs. A full explanation of both these points is given
in my paper “The Shortest Axiom of the Implicational Calculus of Propositions,”
these Proceedings, vol. 52 A 3, Dublin, 1948. [See pp. 295-305 of this volume.]

*) The lecture read on 30 November, 1949, at a mesting of the Royal Irish
Academy. Firsi published in Proceedings of the Royal Irish Academy, vol. 54, Section
A, No. 2 (January 1951), pp. 24-35. Polish tramslation is included in the 1961
edition Z zagadnier; logik: i filozofii.

T3
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proposition Np, it is true of an arbifrary proposition ¢. The variable func-
tor is d.
‘We need as an auxiliary thesis the so-called Frege’s law:

3 CCpCqrCCpgCpr. ;
From 1, 2 and 3 we deduce the following consequences: J
26/M x 4. :

4 .. CMpCMNpMy.

3p/Mp, g/ MNp, r[Mg X 5.

n

CEMpCMNpMaCCMpMNpCMpMyg..

5x C4-Cl1-6.

6 CMpMg. _

Theses 4 and 5 are got by substitution (“/” is the sign of substltutlon)
6 is got from 5 by two applications of the rule of detachment, i.e. the
modus ponens of the Stoics: “if «, then f; but «; therefore g” (“ ? is

the sign of detachment). .
It is obvious that there can be only two cases: E1the7c

something is possible, i.e. >'pMp
in words: “for some p, it is possible that p,” or
ﬁoth]'ng is pOSSible, ie. N2 pMp,
in words: “it is not true that for some p, it is possible that p.”

‘We agree with Aristotle that the second case cannot occur. Therefore,
we may add to our premisses 1-3 as a new premiss the thesis:

7 Z pMp.

According to a rule of particular quantifiers we may put before the
antecedent of the implication 6 the quantifiel D binding the variable p,
as this variable does not occur in the consequent as a free variable.
‘We get thus the formula:

8 C> pMpMy.
From 8 we deduce 9 by detachment and substitution:
8¢q/p X C7T-9
(¢] AL
Mps-

and by putting the universal quantlﬁer before 9 we get 10:
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o 9]Ip x 10
10 [IpMp.
That means: “For all p, it is possible that p,” or all is possible. This con-
sequence is not true, because we agree with Aristotle that something is
not possible, e.g. that an even number should be equal to an odd number.

Thesis-2-containing-a-variable furictor has been userI—te-éispW
principle of the Aristotelian theory of modal syllogisms. 3

2. The meaning of the variable functor 8

Neither Frege, the founder of the modern propositional calculus,
nor Russell, its propagator, have introduced variable functors into this
calculus. The Polish logician Ledniewski (1886-1939) has added to the
“theory of deduction” of the Principia Mathematica variable functors as
well as quantifiers, calling the thus extended system of the propositional
calculus “protothetic.” %) The above cited thesis 2 which I owé to Les-
niewski’s protothetic has first drawn my attention to the importance
of theses with variable functors. My own ideas are as follows:

A variable is a single letter considered with respect to a range of values
that may be substituted for it. To substitute means practically to write in

?) Thesis 2 in its conjunctional form, CKpdNpdg, and with ¢ instead of J, I have.
used for the first time in my paper: ‘“‘Philosophische Bermerkungen zu mehrwerti-
gen Systemen des Aussagenkalkiils”, Comptes rendus des séances de la Société des
Sciences et des Lettres de Varsovie 23 (1930), cl. iii, p. 59. The same thesis I have men-
tioned again in 1947, in connection with the Aristotelian theory of modal syllogisms,
in a letter from Dublin to Prof. I. M. Bochefiski in Fribourg. The contents of this
letter has been published in Bocheriski’s work: “La Logique de Théophraste”, Col-
lectanea Friburgensia, Nowvelle Série, Fasc. XXXII, Fribourg en Suisse, 1947, p. 99.
1 deduce here the conclusion Mp starting with the stronger premiss EMpMNp (E
means equivalence). The weaker premiss, however, CMpMNp, is not only sufficient
for this purpose, but it is at the same time in strict accordance with the clearest state-
ment of Aristotle in this matter.

4 S. Leéniewski, “Grundziige eines neuen Systems der Grundlagen der Mathe-
matik,” Fundamenta Mathematicae 14 (1929), pp. 1-81. About Lesniewski, see the pa-
per of Z. Jordan, “The Development of Mathematical Logic and of Logical Positivism
in Poland between the two Wars,” Polish Science and Learning 6 (1945), Oxford
University Press, esp. pp. 24-26. [See also “Introductory Remarks to the Continua-
tion of my Article: “‘Grundziige eineis neuen Systems der Grundlagen der Ma-
thematik’” by S. Leéniewski, Polisk Logic 19201939, ed. by Storrs McCall, Oxford
1967.]
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a formula instead of a variable one of its values, the same for the same
variable. In the propositional calculus the range of values of proposi-
tional variables, as p or g, consists of all propositional expressions
senseful in the caléulus, besides this there may be two constants, 0 and 1,
ie. a constant false and a constant true proposition. What is the range
of values of the functorial variable 87

It is obvious that for 8 in d«, where « is a propositional expression,
we may substitute any value which gives together with « a senseful
expression of the propositional calculus. Such values are not only con-

ot functors-of one-propesitional-argument; as Ny negation, for example,

but also complex expressions working like a functor of one argument,
as Cr or CC00. By the substitution 6/Cr we get from the thesis 2,
CépCANpdg, the expression CCrpCCrNpCrg, and by 6/CCO00 the expres-
sion CCCO0pCCCOONpCCQ0gq. It is evident, however, that this kind of
substitutions does not cover all possible cases. We can get in this way
from 2 neither CpCNpy, as it is impossible to blot the functors out of
existence by means of a substitution, nor CCprCCNprCqgr, because
by no substitution for é in dp or g can the final p or g be removed from
its place. There is, of course, no doubt whatever that the last two expres-
sions are as good consequences of CdpCdNpdg, .as CNpCNNqu or
CCrpCCrNpCrq.

There are two ways to meet this difficuity. One of them, Wh1ch I shall’

explain on an example, was chosen by Leéniewski. In order to get
' CCprCCNprCqr from C3pCdoNpdg we must introduce by means of a
" definition a néw function, say Grp, that would mean the same as Cpr.

By the substitution 8/Gr we can get the expression CGrpCGrNpGrg, -

and then we can transform this- expression by help of the definition
into the required thesis. This way, however, is artificial and awkward.
1 have found another way that leads straight to our aim and is intuitively
more convincing, than the roundabout way by means of a definition.
It is a new kind of substitution. -

. The symbol da, where « is a propositional expression, represents, as
I understand it, all senseful expressiosis of the propositional calculus con-
taining «. E.g., dp represents Crp as well as Cpr, Cpp as well as Cdpp,
shortly, it represents all propositional expressions containing  including

p and &p itself; similarly SCO0 represenfs all expressions containing
€00, as €00, 6C00, §6C00, CCOOCPC0O, CEC00p, and so on. A rule
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of substitution for do must be formulated in a manner that we might
get by substitution any expression represented by da. This seems to be
intuitively clear. This new rule of substitution I shall again explain on
examples.

If T want to get by substitution from thesis 2 the expression
CCprCCNprCqr, 1 denote the required substitution by 8/C’». That

ficans: ifl formula 2 mstead of § should-be-written an€Xpression begin-
ning with C, ending with r, and the place marked by the apostrophe
“?* should be everywhere filled up by the argument belonging to 8.
Another example: when I want to get by substitution from thesis 2 the
formula CpCNpg, 1 denote the substitution by d/” (I owe this suggestion
to Mr. C. A. Meredith). That means: instead of § should be written
everywhere only the argument belonging to §, in other words, & should
be everywhere omitted. A third example: from the formula C6C00CE08p
I get by substitution §/C” the expression CCCO0CO0CCO0Cpp, because
from da results by this substitution Cuw. It is evident that in-this way
we may get any expression represented by a formula containing §7s.

The substitution with an apostrophe can be also applied to substitu-~
tions of the first kind. From thesis 2 we get by the substitution §/Cr
as well as by 6/Cr’ the same formula: CCrpCCrNpCrq. We shall see
shortly that the substitution with an apostrophe is one of the most
powerful rules of inference known today in logic.

3. Variable functors as applied fo definitions

There are two ways of introducing definitions into the propositional
calculus. One adopted by the authors of the Principia Mathematica,
consists of expressing definitions by means of a special symbol, another
way, adopted by Le$niewski, considers deﬁmtmns as equivalences.
Each way has its merits and faults.

In the Principia Mathematica, where the theory of deduction is based
on two primitive terms, viz., negation (“~ p”)and disjunction Cp v g,
the definition of the implication (“p o p”) is stated in the form:

p::q—.~quDf5)

JA N, Whltehead and B. Russell, Principia Mathematzca, vol, I, Cambridge,
1910, p. 11.
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In words: “if p, then ¢” means the same as “not-p or ¢.”* The sign “=
and the letters “Df” are to be regarded as together forming one special
symbol. This special symbol is connected with a special rule of inference
allowing the replacement of the definiens by the definiendum and vice
versa. This is the merit of this kind of definitions: the result is-given
immediately. But it has the defect of increasing the number of primitive
terms which should be as small as possible.

Leéniewski would write the same definition as an equivalence, thereby
introducing into his system no new primitive term, because for this

e ~~--»f—very—pu1=pesé~he—chose_equivaleng,eﬁas_a_pﬁmitiventermhoprrp_to_thetic.

This is the merit of his standpoint. But on the other hand he cannot
replace immediately the definiens by the definiendum or vice versa,
because equivalence has its proper rules and does not allow for a rule
of replacement. .

Now there exists among the theses of protothetxc besides thesis 2 still
another thesis of great importance, called sometimes the law of extension-
ality. It runs thus:

11 CEpqCdpdg.

In words: “If p then and only then when g, then if 8 of p, § of ¢.” It
means, roughly speaking: if p and g are equivalent, then whatever may
be said of p, may be said also of ¢. Let us denote by P and Q two propo-
sitional expressions, where one of them, it does not matter which, is in
a definition the definiens, and the other the definiendum. It is supposed
that neither of them contains §. As rightly constructed definitions may
be regarded as true propositions, we accept the sentence:

12 EPQ.
From 11 and 12 we deduce by substitution and detachment 13:

11 p/P, p/Q X C12-13.
13 C8PQ.

This new proposition is equivalent to EPQ, because from 13 we get
again 12 by the law of identity:

14 —Epp;
and by two substitutions and one detachment:
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14p/P x 15.

15 EPP.
13 §/EP* x C15-12.

12 EPQ.

It follows from this consideration that instead of writing a definition
as an equivalence we may use for this purpose the implication 13 having

a variable functor before the definitions and the definiendum. This form
has the merits of the two other forms of definitions mentioned above,
without having their faults. As implication is the most convenient
primitive term of any propositional calculus, the introduction of defini-
tions by the formula 13 would not increase the number of primitive
terms. On the other side, the use of variable functors allows immediate
transformation of the definiens into the ‘definiendum and conversely. -
Let us take an example.

In the system of the propositional calculus, based on implication C
and a constant false proposition 0 as primitive terms, we may define the
negation of a proposmon P, i.e. Np, in the following way:

CONpSCpO.

That means, roughly speaking, to say “it is not true that p” is to say
“if p, then 0.” Applying this definition to thesis 2:
2 CdpCONpdyq,
we get by substitution for §:

16 6/CopCé¢ g x C2-117.

17 CdpCdCp0dg.
The definiendum Np is here replaced by the definiens Cp0. If we want
to teplace conversely the definiens by the definiendum, we ought to
have the converse implication:
18 C4ACpOSNp.
This converse implication is given together with the first. That is to say,
we get from 13, without a new thesis and using only substitution and
detachment, the convegse formula CSQSP in this way:
13 C3OPéQ.

. 13 6/C& 6P x 19.
19 CCOPOPCOQOP.

A
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13 §/CC3P&CEQ P x 20.

20 CCC8PSPCSQSPCCSPSQCSQSP.
20 x C19-C13-21.
21 C80Q5P.

This last deduction reveals the power of substitutions by apostrophe.

4. The principle of bivalence -

In my paper of 1930 on multivalent systems of logic I have mentioned

a-principle-that-ties;-in-my-epinion;-at-the-bottom-of-our-whole logic.
T have called it the “principle of bivalence.” %) A system of logic is called
“bivalent,” when it is based on the principle that every proposition is
either true or false, i.e. when it takes for granted that there are only
two possible values in logic, truth and falsity. This principle is different
from the law of the excluded middle, according to which of two contra-
dictory propositions one must be true. )

At the time I formulated-this principle of bivalence, I did not know
that a thesis which embodied this principle might be taken as a single
axiom of the whole propositional calculus. I learnt this as late as 1947.7)
Let us look at such a thesis.

From 17 we get by substitution:

17 p/0, g/p x 22.
22 C30C8C00dp.

In words: “If & of 0, then if § of C00, & of p.” Now 0 is the symbol of a
constant false proposition, and C00 (“if 0, then 0™) can be regarded as
a symbol of a constant true proposition, for C00 does not contain
variables and is a true proposition. Thesis 22 means therefore: if some-

6) See my paper cited in note 3, where Isay, p. 63: “Der Zweiwertigkeitssatz (= the
principle of bivalence) ist die tiefste, jedoch schon im Altertum heftig umstrittene
Gru.ndlage unserer gesamten Logik™. [See p. 165 of this volume ] In an appendix to
this paper, pp. 75-77, I give a short history of this principle in the antiquity. [See pp.
176-178 of this volume.]’

7)1t is Dr. B. Sobociniski, before the war of 1939 assistant and collaborator of
Prof, Lesniewski, who has made the supposition (during his visit to Dublin in 1947)
that thesis 22 or 24 might be sufficient as an axiom of the propositional calculus.

His supposition was based on some results of Tarski quoted by Leéniewski, op. cit.
p. 50,
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thing is valid of a constant false proposition, and the same is valid of a

constant true proposition, it is valid of any proposition. It follows from

this statement that, in accordance with the principle of bivalence, only

two kinds of propositions are supposed to exist, false and true ones.
From 22 we get by help of the law of commutation:

23 . CCpCqrCqCpr

another thesis of the same kind, viz.:

23 p/80, g/8C00, r/dp X C22-24.

24 C3C00C506p.

Here the constant true proposition is in the first place, and the constant
false proposition in the second. My present purpose is to show that all
theses of the theory of deduction in C and 0, i.e. theses without &’s and
quantifiers, may be deduced from thesis 24 as a single axiom by means
of the rules of substitution and detachment. I give first some conse-
quences of this axiom needed for the proof in the subsequent chapter.

24 C8C00C508p.

24plq X 25.
25 C8C00C304g.

24 8]C” x 26.
26 CCCO0CO0CCO0Cpp.

24 8/« 27.
27 CCO0COp.

26 p[0 x 28.
28 CCCO0C00CC00C00.

. 27p]C0O0 X 29
29 CCOOCOCQO.
. 24 8]CC”C°C00 x C28-C29-30. 7
30 CCppCpC00.
: 27pj0 x 31.
31 CC00C00.
. 30 p/CCOOCO0 x C28 — C31 -32.

32 C00.

26 x C31-(C32-133.
33 Cpp.
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27 x C32-34.
34 COp. )
34 p/Cq0 x 35.
35 C0Cy0.
26 p/CO0 x C31-36.
36 CCO0CC00C00.
25 §/CCROC°CO0 x C36— C29—37.
37 C'C00CqC00. )
246/C°Cq” x C37-~C35-38.
38 CpCqp.
38p/Cpp X C33-39.
39 CqCpp. C
. 33p/CCO0CC000 x 40.
40 CCC00CC000CC00CC000.
39¢/COCCO000, p/CO0 X 41.
41 CCOCC000CC00C00.
248]/CC’CCO00CCO0C0 x C40— C41 — 42,
42 CCpCCO00CCO0CYO.
33p/CC000 x 43.
43 CCC000CC000.
42p/CCO00 x C43 - C32-44.
44 CCC0000.
394/CC000, p/0 X 45,
45 CCC000C00.
248/CCCO00° x CA45— C44 — 46,
46 CCCO000p.
46p/CAC0080 x 47.
47 CCC000C8C0060.
39g/C00, p/60 X 48.
48 CC00C6060.
246/CC°0CH 80 x C4T7 — C48 — 49,
49 CCp0Cdpd0.
49pfCCO00-x-Cdd=-50—— =
50 C8CC00080.
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34p/C306C00 X 51.

51 COC03C00.
~ 39/C00, p/3C0O0 X 52.

52 CCO0CEC005C00.

248/C°CE8C00 x €52~ C51 - 53,
53 CpCdopdC00.

© 53p/CCO0C00 x C31-54.

54 C8CCO0CO03C00.

35¢/0 X 55.
55 C0C00.

53p/COCO0 X C55 - 56.
56 C8COCO08C00.

Tt seems to me that all steps of this deduction are perfectly clear and do
not need an explanatibn. Theses 50, 54 and 56 required by the next
chapter could be derived also from thesis 22 which is equivalent to 24.
This other way, however, would be longer and more difficult.

5. Peirce’s method of verification by 0 and 1 |

Tt is not my intention to explain here this method, as it should be
known to all students of symbolic logic, but to describe its theoretical
foundations in connexion with axiom 24. For -this purpose we must
introduce the definition .of a constant true proposition, which may be
done by taking the implication “if 0, then 0” as the meaning of “1”.

Df1 x 57. :
57 C8C00481. 57.1 C813C00.

With the implication 57 is given together the converse implication 57.1
according to our argument exhibited in Chapter 3. The same argument
may be applied not only to definitions, but to any true implication of
the form COPSQ provided neither P nor Q contains d. With the help
of 57 we may transform the axiom 24 and the theses 50, 54 and 56 into
formulae having everywhere 1 instead of C00.

57 §/CSCO°H x €56 — 58.
58 C46C01461. 58.1 C4816C01.
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57 §/C8C°060 X C50 - 59.

59 C8C1060. 59.1 €806C10.
57 8/C8C”8 x C54 - 60.

60 T C8Cl1181. - 60.1 C818C11.
57 8/C8C03p x C24 - 61.

61 C81C806p.
61p/g X 62.

62 C81C300g.

From the law of identity Cpp we get not pyj_§992___wmch was already

proved as thesis 32, but also C11:

33p/1 x 63.
63 C11.

Let us now see how these theses work as a theoretical foundation for
Peirce’s method of verification. If we want to verify by this method
a senseful expression of the theory of deduction in C and 0, we have
to substitute instead of the variables occurring in this expression the
symbols 0 and 1 in all possible combinations, reducing the thus obtained
formulae on the ground of equalities: C00 = 1, C01 = 1, C10 = 0, and
C11 = 1. If ‘after the reduction all formulae give 1 as the final result,
the expression is true or a thesis, if even one of them gives O as the
final result, the expression is false. Let us take as an example of the
first kind the law of Peirce CCCpgpp. We get by substitution four
formulae each of them giving 1 as the final result:

2/0, gf0: CCCO000 = CC100 = C00 =1,
p[0,g/1: CCC0100 = CC100 = C00 = 1,
p/1,4/0: CCC1011 = CC011 = Cl1 =1,
p/l,g/t: CCC1111 = CCl111 = Cl1l = 1.
Hence Peirce’s law is verified as a thesis.
This purely practical method can be replaced by our inferential method
in the following way: '
, 59.18/C°0 x C32-64.
64 CC100.

ST B CE00-X~C64=65— """
65 CCC0000.
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58.16/CC*00 x C64 - 66.

66 €CCo100, A

62 /CCCO°00 X C66— C65—67.-
67 CCC0400.

58.15/C°1 x C63—68.
63 CCoI11.

' 59.16/CC’11 x C68=69.

69 CCC1011.

60.18/C°1 x C63-170.
70 CC111.

60.18/CC*11 x CT70-171.
71 cccliil. ‘

62 8/CCCI’'11 X CT1 - C69-—T2.
72 CCClqll. '

. 618/CCC°g” x CT2-C61—1T3.

73 ' CCCpgpp.

This way is longer than the practical procedure of verification, but it
establishes the practical method on a solid theoretical basis. It is evident
that any other thesis, the law of syllogism CCpgCCqrCpr for instance,
could be proved in the same manner. Now it has been stated that the Jaw
of simplification CpCqp (thesis 38), Peirce’s law CCCpgpp (thesis 73)
and the law-of syllogism CCpgCCqrCpr give together with COp (thesis
34) a complete system of axioms for the theory of deduction in C and 0.

Let us now consider an example of the second kind, when an expression
is not verified, as in case of CqCqp. We get:

pl0, g/1: C1C10 = C10 = 0.

From this one case we argue that CqCqp is false. In our axiomatical
system we can always prove that false expressions are not only not
deducible from the axiom, but yield any expression whatever when
added to the system. In our example the proof proceeds as follows:

I CqCqp.
1p/0, g/1 x 1I.
I C1C10.
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59 6/C1’ x CII-TIL

I C10.

59 6/’ x CIIL-1V.
v 0.

34 x CIV-V.
v D. N

From p v.ve may get by substitution any senseful expression we like. It is
evident that the same procedure may be applied to any other false
expression senseful in the system.

* *

The results I have described in the chapters above are only a beginning.
Their continuation is due to Mr. C. A. Mergdith who has attended my
lectures on Mathematical Logic at the Royal Irish Academy since 1946.
Meredith ®) has shown that from axiom 24 or 22 can be deduced not
only all theses of the theory of deduction, but also all theses with variable
functors and quantifiers of propositional as well as functorial variables.
Moreover, Meredith has found the shortest axiom of the thus extended
system of the propositional calculus. It is a ‘thesis which was already
known as a curiosity to Leéniewski, and was brought to Dublin by
Sobocifiski in 1947. It runs C8606p and contains only six letters. To
deduce from this thesis the whole calculus of propositions by means
of the rule of substitution, the rule of detachment, and the rules of
quantifiers, must be regarded as a masterpiece of deductive power.
However important these results may be, the most important effect
of this development is, in my opinion, the fact that a new and vast

field of logical problems has been opened which deserves the attention

of all students of logic.

%) See his paper: “On an Extended Systemi of the Propositional Caleulus™, these
Proceedings, vol. 54.
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Introduction. —1. Axioms and rules of the intuitionistic theory of deduction.
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—4. The rule of detachment for €. ~—5. Infuitionistic and classical funétors. —6. The
controversy about the principle of excluded middle, —7. Conclusion. —Appendix.

Introductiqn

_ The purpose of this paper is to prove that the intuitionistic theory of
deduction contains as its proper part the classical theory of déduction.
K. Godel observed in 1932 that all the theses of the classical theory, in
which no other functions oceur except conjunction and negation, are
also provable in the intuitionistic theory, but he did not prove that they
form an axiomatized system.?) B. Sobocifiski axiomatized in 1939 the
conjunctive-negative system of the classical theory, but he did not show
that this system can be established on an intuitionistic basis.?) The
present paper is independent of the results of Godel and Sobocinski.

1) See K. Godel, “Zur intuitionistischen Arithmetik und Zahlentheorie™, Ergebnisse
eines mathematischer Kolloguiums (ed. by Menger), Heft 4 (Wien 1931/2), pp. 34-38.
I owe this referénce to the courtesy of Mr Johan J. de Jongh in Amsterdam, as the
paper of G6del was not accessible to me in Dublin.

2} The paper of B. Sobocifiski, “Aksjomatyzacja konjunkcyjno-negacy]nej teorii
dedukcji”, was printed in Collectanea Logica, (Warszawa, 1939), pp. 179-195. The
volume of which I was the editor was almost ready for publication, when all its copies
have been destroyed by bombs in the printers’ office during the siege of Warsaw in
September 1939. Sobocifiski’s paper can be known by a detailed review of Prof.
H. Scholz in the Jahrbuch fiir mathematische Forschung, 65 I (1939), pp. 24-25. See
also B. Sobocifiski, “An Investigation of Protothetic”, Cahiers de Plnstitut d’Erudes
Polonaises en Belgigue, 5, 7 foll. (Bruxelles, 1949).

*) First published in Kamkl Nederl. Akademze van Wez‘enschappen Proceedmgs
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1. Axioms and rules of the intnitionistic theory of deduction

I am using throughout this paper my own symbolic notation without
brackets, denoting the functor of the classical implication By C, of the
intuitionistic implication by F, of the classical conjunction by X, of the
intuitionistic conjunction by T, of the classical alternative by 4, of the

intuitionistic alternative by O. The functor of negatmn is denoted in -

both systems by N.
Tassertas amoms of the mtmtlomsuc theory of deduction the followmg

ten formulae

1 FgFpq. A 6  FpOpq.

2 FFpFgrFFpqFpr.. 7 FqOpg.

3 FIpgp. 8 FFprFFqrFOpgr.
4 FIpygq. 9 FFpNqFgNp.

5 FpFqTpg. 10 FpFNpgq.

All the other asserted expressions I derive from these ten by means of
two rules of inferenice: )

(a) The rule of subshtutlon If «is asserted and B is a substitution
of a, then B must be asserted. _ ‘
 (b) The rule of detachment: If Focﬂ is asserted and « is asserted,

" then B must be asserted.

' Any significant expression may be substltuted for a propositional
variable, the same for the same variable. Sigpificant expressions of the
intuitionistic system are propositional variables p, 4,7, s, ..., function
No provided « is a significant expression, and functions Faf, Taf, Oaf
provided « and B are significant expressions. Derivative functions intro-
duced ‘o the basis of the primitive ones by abbreviative definitions also
are significant expressmns of the system. Asserted expressions I call
“theses”.

The axioms 1-10 and the rules (a) and (b) are deductively equivalent
to the well-known set of axioms and rules given by A. Heytmg for the
intuitionistic theory of deduction. .

) See A. Heyting. “Die formalen Regeln der mtmtlomshschen Log1k” Sitzungs-

berichte der Pr ischen Akademie der Wi mﬁen, “Phys.-Math. KI. (Berlin,
1932), pp. 42-56.
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2. A partial T-N-system

An axiomatized set of theses in which no other pﬁmitive functors

. occur except T'and N I call a “T-N-system”. As rules of inference for

a T-N-system I accept the rule of substitution (a) restricted to significant
expressions of the system, and the rule of detachment running thus:

() TE-N-LoNB-is-asserted,~and ois asserted, then f must be-asserted
From. the axioms 1-5 and 9 of the intuitionistic system there can be
-deduced the following three T-N-theses: %)

58 ’ NITNTNpNpNp.
59 ‘ NTpNNTNpNg.
60 NINTpNgNNINTgNrNNIpNr.

These theses taken as axioms form together with the rules (a) and
(c) a partial T--N-system. The proof that they are not sufficient to
build up the whole T-N-system is given by the matrix Mj.

T|123|N§

*1[113]3

212231

313331
M

The first argument of 7" and the argument of N is in the column on
the left (under T), the second argument of T is in the line on the top;
figure 1 marked by an asterisk is the seleoted value. Matrix M; fulfils
the rule of detachment (c) and venﬁes the formulae 58-60, but does
not verify the 7-N-thesis:

61 NTNpp,

because we get for p/2: NTN22 = NTIZ N1=3.
This partial T-N-system comtains as its proper part the classical
theory of deduction.

3. Definition of Cpg and axioms of the C-N-system

The functor of the classical implication C can be introduced into the
intuitionistic system by an abbreviative definition on the basis of the

4) All deductions are given in the Appendix,
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functors 7" and N. The definition is formmlated as an F-implication by :

help of a variable functor &: %)

63 FéNIZ})Nq&Cpq,

and means: NTpNg can be replaced everywhere by C_pq and conversely,
and any substitution of NTpNg can be replaced by the same substitution
of Cpq and conversely. I do not introduce 4 into the system, I use it
only in definitions as a more convenient symbol, than the sign “= DL, ”
employed by the authors of Principia Mathematica. A spec1a1 rule of
substitution for 8 is explained in the Appendix. =~

—in-this-paper-is-valid-with any.implicational. functor.

Now I shall prove on the ground of the intuitionistic system that the
functor introduced by definition 63 has all the properties of the classi-
cal C. We get by this definition from the theses 58-60 the following
formulae:

65 CCNppp.
67 CpCNpgq.
72 CCpgCCqrCpr.

Formula 65 represents the principle of Clavius, formula 67 the principle
of Duns Scotus, and formula 72 the principle of the syllogism. These
three principles, as. I have stated many years ago, % are sufficient to

establish the whole classical theory of deduction, provided the rule of ‘

detachment can be applied to them. This rule would run thus:
@ If chﬂ is asserted, and o is asserted, then B must be asserted.

4. The rule of detachment for C

Rule (d) is not valid, if we admit that o and B may be any significant
expression of the intnitionistic theory of deduction. This can be showr
by an example. The following formulae:

87 CNNOpNpOpNp
3 See J. Lukasiewicz, “On Variable Functors -of Propositional Arguments”,

Prébéedings'of thé Royal Irish Academy, vol. 54, Sect. A, No. 52, pp. 28~30, Dublin,
1951. [See pp. 311-324 of this volume.] The method of expressing definitions described

%) See J. Lukasiewicz, “O znaczeniu i potrzebach logxkl matematycznej , Navka
Polska 10 (1929), pp. 610-612. '
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and

86... ... .. NNOpNp

which are of the form Cuf and «, are provable in the intuitionistic system, -
but §, ie. OpNp, is not provable. Heyting’s three-valued matrix M,
which verifies the rule of detachment (b) and all the axioms 1-10 does

Fli1o3- I 7123 ol123

111233 1/123 1111

211133 20223 20122

3/1111 31333 3/123
. V)

not verify OpNp, because we get for p/2: O2N2 = 023 = 2.

For our purpose, however, it is not necessary to prove that rule (d) is
generally valid; it suffices to show that it is valid for the partial system
'C-N. In other words, it is sufficient to prove that rule (d) is valid, when
o and § are significant expressions in which no other primitive functors
occur except C and N. This can be proved by means of the following
three theses derived from the axioms 1-5and 9 by help of the defini-
tion 63:

73 FCpgqFpNNg.
75 FCpNgFpNg.
77 FCpCyqrEpCayr.

Now, every significant expression of the C-N-system is either a var-
iable, or a negation beginning with N, or an expression beginning with
C. If Cap and « are asserted, and B is Ny, ie. begins with N, we get
from 75 by two detachments Ny; and if 8 is Cye, i.e. begins with C,
we get from 77 by two detachments Cye. In both cases rule (d) is satis-
fied. If § is a variable, we can always assume without loss of generality
that § is ¢. But Cag and « cannot be asserted both, because if they were,
we would get from 73 the asserted consequence NNg, therefore by substi-
tution NNNyg, and from the thesis:

FNNgqFNNNyg,

which follows from axiom 10 by the substitution p/NNg, there would
result by two detachments the variable g. Rule (d) would be satisfied
again, but it is clear that it could not be applied in this case. The validity
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of the rule of detachment for C is thus proved for all significant expres-

sions of the syétem C-N, and this completes the proof that the intui-

tionistic theory of deduction contains as its proper part the classical
theory of deduction...

It should be observed that the role of axiom 10 in the last argument ‘

is essential. If this axiom is dropped, as in the “Minimalcalculus” of
I. Johannsen, the rule of detachment for C could not be proved.

5. Intuitionistic and classical functors

The classical theory of deduction is included.in the intuitionistic
theory as the C—N-system. We can enrich this latter system by intro-
ducing ‘into it the usual definitions of ‘conjunction and alternative,
denoted respectively by K and A:

93 FSNCpNg 6qu, ,

90 F8CNpqdApq,

-getting thus all the classical theses in X and 4. Between the classical
functors C, K and A4, and the corresponding intuitionistic functors F, T
and O there exists a simple logical relation: all those classical functors
.are weaker than the corresponding intuitionistic ones. Cis weaker than F,
because the implication: e

78 -FFpgCpq . _ ‘

holds in the intuitiomistic system, but its converse FCpgFpg is not
provable in it. Similarly the conjunctive functor K is weaker than T,
because the implication

94 . FIpgKpgq _

is provable in the infuitionistic system, whereas its converse FKpqTpg
is not provable. For the same reason A4 is weaker than O, as we can
prove the thesis -

91 FOpgApg,

but not its converse FApqOpyg.
All these converse expressions can be dlsproved if we add to the
matrix-Mz-the-matrix-Ms-for-C,.K-and-4;-constracted on the basis of

the matrix M» according to the definitions 63, 93 and 90 respectively.

ON THE INTUITIONISTIC THEORY OF DEDUCTION 331

cl123 k|l123 4|123

*11113  1{113 1l111

2/113 2113 111

3111 3/333 113
M;

for p/1, g/2: FCI12F12 = F12 = 2; similarly neither FKpqTpg mor
FApOqpq is verified, as we get for p/2, g/2 in the first case: FK22722
=F12 =2, in the second case: FA22022 = F12 =9

All the theses in F, T or O remain true, if we replace these stronger
functors by the corresponding weaker omes. On the contrary, it is not
always the case that a thesis in C, K or 4 remains true, if we replace
these weaker functors by the corresponding stronger ones.-The “strong”
principle of Clavius FFNppp, the “strong” principle of double negation
with negations in the antecedent FNNpp, the “strong” principle of
excluded middle OpNp, are not accépted by thé intuiticnists. Never-
theless the corresponding weaker theses: :

65 CCNppp,
80 CNNpp,
92 ApNp,

are provable in the intuitionistic system, and must be consequently
accepted by the intuitionists.

6. The controversy about the principle of excluded middle

The most famous thesis not accepted by the intuitionists is the prin-
ciple of excluded middle. This principle is very evident, if it is applied
to such examples as: “Either it rains here and now, or it does not rain
here and now”. Its general formula, however, i.e. the principle “either
p or not-p”, cannot be based on examples; it must be either accepted
as an axiom or proved on the ground of some other principles. In both
cases it cannot be taken in isolation, but-must belong to a logical system.
Let us describe a system in which the principle of excluded middle is true.

Two functions, the alternative and the negation, occur in this principle,
and two evident statements are connected with them:

It-follows-from-Ms-and M that FCpgFpg is-not-verified; because-weget—
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(r) An alternative “either p or ¢” is true, if at least one of its com-
ponents is true.

This is essential for the alternative and is accepted by the mtmtlomsts
as well as by the followers of the classical logic.

(s) The negation of a false proposition is true.
This also is accepted by all logicians, as it is the very essence of the
negation. If we add to (r) and (s) the principle of bivalence:

(t) Every proposition is either true or false,
we can establish the principle of excluded middle in its genefal form.

For either p is true, and then the principle “either p or not-p” is true
according to (r), or p is false, and then the principle is true according
to (1), because not-p is true according to (s).

The principle of bivalence has been stated by myself in 1921 as the
fundamental of all hitherto known systems of logic. 7) This fundamental,
however, is not so evident as the statements (r) and (s): it has been
denied for future contingent events by Aristotle and the Epicureans, ¥)
and rejected in modern times by the systems of the so called “many-
valued logic”. 9) Such a many-vdlued system is the intuitionistic theory
of deduction the adequate matrix of which is infinite according to
Gddel. ') The principle of bivalence cannot be applied to this system.

Nevertheless the principle of excluded middle can be proved in the
intuitionistic theory of deduction, because the whole classical theory of
deduction is contained in it. No real controversy results from this fact.
The meaning of this principle depends on the meaning of two functions,
the alternative and the negation. The essential properties of these func-

7} See J. Lukasiewicz, “Logika dwuwartosciowa™, Przeglad Filozoficzny, 23 (War-

szawa, 1921). [See pp. 89-109 of this volume.] The passage concerning the principle
of ‘b_xyalence has been literally translated into French by W. Slerpmsk: “Algebre des
ensembles”, Monografie Matematycone 23, Waxszawa«WroclaW, 1951, p. 2. 7T

8).See J. Eukasiewicz, “Philosophische Bemerkungen zu mehrwertigen Systemen
des Aussagenkalkiils”, Comptes rendus des-séances de la Société des Sciences et des
Letires de Varsovie 23 (1930), cl. iii, pp. 75-77: Zur Geschichte des Zweiwertig-
keitssatzes. [See pp. 176-178 of this volume.] '

5) The first system of this kind, a three—valued modal theory of deduction defined
by a matrix, has been consiracied by myself in 1920. See Ruch leozoﬁczny, 5 (1920),

p. 170. [See pp. 87-88 of this volume.]

) See K Godel“Zum-intuitionistischen-Anssagenkalkiil™ 4Anzeiger der Akademie
der Wissenschaften in Wien, Math.-Nat. K1. 69 (Wien, 1932), p. 85.
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tions, expressed by the statements (r) and (s), are satisfied by the intui- -
tionistic theory as well as by the classical, so that we are entitled
to call them in both systems ‘alternative” and “negation”. But not all
properties of the alternative are the same in both systeras. I was therefore
anxious to denote the intuitionistic alternative by another symbol than
the classical one. The controversy disappears, for there cannot be a

- - ——gontroversy-between-two-different formulae-such.as-OpNp-and-ApNpr—— ..

OpNp may be rejected; ApNp must be accepted.

7. Conclusion

We have no means to decide which of the n-valued systems of logic,
n=> 2, is true. Logic is not a science of the laws of thought or of any
other real object; it is, in my opinion, only an instrument which enables
us to draw asserted conclusions from asserted premisses. The classical
theory of deduction which is verified by a two-valued matrix is the
oldest and simplest logical system, and therefore the best known-and
widely used. But for some purposes, for instance in modal logic, an n-
valued system, n > 2, might be more suitable and useful. The more
useful and richer a logical system is, the more valuable it is,

At the first “Entretiens de Zurich” in 1938 I set forth the opinion that
the intuitionistic‘éalculus of propositions is only a part of the classical
caleulus, and therefore essentially weaker than the latter.'®) I see today
that just the contrary is the fact. The intuitionistic theory is richer and
consequently more powerful than the classical one. All the applications
of the classical theory to mathematics are also valid in the_mtumomsuc
theory, but besides many subtle mathematical problems can be dealt
with in the intuitionistic theory which cannot be formulated in the
classical system. It seems to me that among the hitherto known many-
valued systems of logic the intuitionistic theory is the most intuitive and
elegant.

Godel observed that in the intuitionistic system an alternative can
be asserted only when one of its components is asserted. In my recently
published work on Aristotle’s Syllogistic I gave reasons for introducing
“rejection” into the classical theory of deduction as a complement of

1y See J. Eukasiewicz, “Die Logik und das Grundlagenproblem™, Les enfretiens
de Ziirick 1938, publiés par F. Gonseth, 1941, p. 86. [See pp. 278-294 of this volume.]
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“assertion”.'?) T reject axiomatically the propositional variable’ D and
1 state the following two rules of rejection:

(&) If o is rejected, and o ig a substitution of §, then f must be rejected.

(f) If Caf, in our case Fuf; is asserted, and'f is rejected, than & must
be rejected.

If we add to these gemeral rules a special rule of rejection Whlch is
valid according to Godel in the intuitionistic system:

(9) If « and B are rejected, then Oof must be rejected,

we get, as far as I see, a categorical system in which all the classical

theses not accepted by the imtuitiomists can easily be disproved.’

- APPENDIX

Every derived thesis is preceded by a “proof-line” consisting of two
parts separated from each other by a cross. Various kinds of proof are
explained by examples. !

1. Proofs by substitution only. Proof-line belongmg to thesis 13:
“1 g/Fgr x 13”. Put in 1 qu for ¢ (“/” is the symbol of subsutuuon),
the result is thesis 13. :

I1. Proofs by substitution and detachment. Proof-line 14: “12 s/Fgr X
F13-14”. Perform the substitution as in I; the thesis obtained by this
substitution: FFFqrFpFqrFFqrFFpqFpr is omitted to save space. It
begins with an F and has as its antecedent thesis 13, as its consequent
thesis 14. By detachment (*~” is the symbol of detachment) we get 14.
In some cases (see for instance proof “line 18) the rule of detachment is
applied twice.

IIL. Proofs by 6-substztutzon (a) Proof-line 73: “634/F FpNNgx
Fd6 73", Drop in 63 the 8’s and write instead F'FpNNyg filling up the
gaps marked by the apostrophe by the arguments of 8. You get
FFNTpNqFpNNqFCpqFpNNy, ie. F46-73. (b) Proofsline 64: “63
0/NT’Np, p/Np, q/p X F38 —64”. Perform first the substitutions for the
propositional variables, p/Np and ¢/p, gettmg FéNTNprcSCNpp, and
then proceed as in 1T (a).

12y SeE T, FUKAsiewics; /ﬁzsmﬂe*s“Syllugrsmfﬁom the Stardpoint of Modern Formal
Logic, Oxford, 1951, p. 109,

ON THE INTUITIONISTIC THEORY OF DEDUCTION ; 335

The numbers in brackets refer to theses to which a given thesis is
applied. For instance, thesis 3 is applied to theses 32, 42, 56. :

Axioms
FgFpq (11, 13,17, 19, 44). .
FFpFqrFFpgFpr (11, 12, ]_6, 18, 32).

O 0 9 N AW N

jvey
(=

11
12
13
14
15
16
17
18

19

Fivgp 3%, 42556, 77
FIpgq (31, 55).

FpFqTpq (20, 38).

FpOpyq (82).

FqOpgq (83).

" FFprFFgrFOpgr (88).

FFpNgFgNp (24, 26, 29, 33, 43, 81).
FpFNpgq.

~ F-theses
1 g/FFpFgrFFpqFpr, p[s X F2-11.
FsFFpFqrFEpgFpr (12).
2 p/s, q/Fqur,_r/FquFpr x F11-12.
FFEsFpFqrFsFFpgFpr (14, 21).
1g/Fgr X 13.
FFgrFpFqr (14).
12 s/Fgr X F13-14.
FFqrFFpqFpr (15, 20, 25, 26, 28, 31 34, 35, 37, 52, 75).
14 g/Fqr, v|FEpgFpr, pls x C14-15.
FFsFqrFsFFpgFpr (16, 50).
15 s/EpFgr, g/Fpg, r[Fpr, plqg X F2-16.
FFpFqrFFqFpqFqFpr (18). '
1g/FqFpq, p[FpFqr x F1-17.
FFpFgqrFqFpq (18).
2 p/FpFyr, q/Equq, r/FgFpr X F16 - F17 - 18.
FFpFgrFqFpr (19, 29, 39, 51).

FpFqq (22).
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20

2]

22

23
24
25
26
27
28
29

30

31
32

33
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F-T-theses

14 g/p, r/FqTpq, p/r x F5-20. ; .

FFrpFrFqTpg (21). ' -
12 s/Frp, p|r, r[Tpg X F20 - 21. : :
FFrpFFrqFrTpg (40, 56, 84).

F-N-theses
19 p/FpFqq, q/Np X F19 - 22.
FNpNp (23, 40, 61, 79).
22 plg x 23. e
FNgNg (24).
9p/Ng x F23-24.
FgNNg (25).
147[NNg x F24-25.
FFpqFpNNq (27, 36, 55).
14 g/FpNg, r/[FgNp, pjr X F9 - 26.
FFrFpNgFrFgNp (27, 30, 47).
26r/Fpg, g/Ng x F25-21.
FFpgFNgNp (28, 41, 57, 82, 83, 85).
14 g/Fpq, r[FNgNp, p[r x F27 = 28.
FFrFpgFrFNgNp (38, 49). -
18 p/FpNy, r/Np % F9—29.
FgqFFpNgNp (30).
26r/q, p/FpNg, g/p X F29 - 30.
FgFpNFpNq (31).

F-T-N-theses
14r/FpNFpNg, p/Tpq X F30—F4—31.
FTpqFpNFpNg (32).
2p/Tpq, q/p, ¥/NFpNg X F31 - F3- 32,
FTpgNFpNyg (33).

9 p/Tpq, q/FpNg x F32-33.
FFpNgNTpg (34, 58, 61).

34

14
14-g/FpNg,r|NTpq,p[r-X-F33—34.

FFrFpNgFrNTpg (35, 36).
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14 g/FrFpNg, ¥|FrNTpg, p/s X F34-35.
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35 FEsFrFpNgFsFrNTpg (53).

34 r/{Fpg, q/Ng X F25-36.
36 FFpgNTpNg (37, 59, 60, 78).

14 g/Fpg, ¥/[NTpNq,p[r X F36-37.
37 EFrFpgFrNTpNg (44, 34).

281/p, plq, q/Tpg X F5-38.
38 FpFNTpgNg (39).

18 g/NTpq, ¥[Ng X F38-39.
39 FNTpgFpNq (46, 75).

21 r/Np, p/Np, g/Np X F22 - F22 - 40.
40 FNpTNpNp (41).

27 p/Np, q/TNpNp X F40 - 41.
41 FNTNpNpNNp (58)-

3 p/Np, g/Ng x 42.
42 FINpNgNp (43).

: 9p/TNpNyg, qfp X F42-43.

43 FpNTNpNg (59, 88).

37r/qg X F1-44.
44 FgNTpNg (45).

44 p[Np % 45.
45 FgNTNpNg (88).

39 g/Ng x 46.
46 FNTpNgFpNNg (47, 52, 73).

26 r/[NTpNq, giNg X F46 —47.
47 FNTpNgFNgNp (48).

47 plq, qg/r X 48.
48 FNTgNrFNrNg (49).

28 r/NTqNr, p[Nr, g/Ng X F48 —49.
49 FNTgNrENNgNNr (50).

155!NTqNr, g/NNgq, r[NNr X FA49 — 50,
50 FNTgNrFFpNNgFpNNr (51).

18 p/[NTgqNr, q/ FpNNg, r[FpNNr X F50 - 51.
51 FFpNNgENTqNrFoNNr (52).
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14 g/FpNNqg, r/[FNTqNrFpNNr, p/N Tqu X F51 — F46 - 52,

52 FNTpNgFNTqNrEpNNr (53). - »
35s/NTpNg, r/NTqNr, g/Nr x F52-53.
53 ENTpNgENTgNrNTpNr-(54).-
37r/[NTpNg, p/NTqNr, g/NTpNr X F53 — 54,
54 FNTpNgNTNTgNrNNIpNr (60). -
25p/Tpg X FA-55.
55 FTpgNNq (56).
21r/Tpg, g/NNg-X F3—F55— 56 o
56 FTpgTpNNyg (57). ]
27p/Tpq, g/ TpNNg X F56 - 57.
57 ENTpNNgNTpg (74).
T-N-theses
33 p/NTNpNp, q/Np X F41 - 58.
58 NTNTNpNpNp (64).
36 g/NTNpNg X F43 - 59.
59 NTpNNTNpNg (66).
36 p/NTpNg, q/NTNTquNNTer % F54 - 60
60 . NINTpNgNNTNTgNrNNIpNr (68).
33p/Np, glp x F22—-61.
61 NTNpp (62).
61 p/Np X 62.
62 NTNNpNp (80, 86).
Theses with C
Df Cpg x 63. ' ,
63 FSNTpNgdCpg (64 -174, 77, 78, R0, 89).
63 6/NT’Np, p/Np, q/p x F58 — 64.
64 NTCNppNp (65).
63 6/, p/CNpp, g/p X F64 65.
65 CCNppp. _
630 NFpN25p[Np-4-F59-—66.———""""
66 NTpNCNpg (67).

67

68

69
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636/, g/CNpg x F66—61.

CpCNpy.

63 §/NT'NNTNTgNrNNTpNr x F60 — 68.
NTCpgNNTNTgNrNNTpNr (69).

63 8/NTCpgNNT’NNTpNr, plq, glr X F68 — 69.
NTCpgNNTCqrNNIpNr (70).

70

71

72

73

74

75

76

77

78

79

80

81

82

63 8/NTCpgNNTCqrN’, gfr X F69 — 70.
NTCpgNNTCgrNCpr (71).

63 8/NTCpgN>, p/Cqgr, q/Cpr X F10-T1.
NTCpgNCCqrCpr (72).

63 6/, p/Cpgq, g/ CCqrCor X FT1—T2.
CCpqCCqrCpr.

63 8/F"FpNNgq X FA6 — 73.

FCpgFpNNg.

63 8/F’NTpq, q/Ng x F57-74.

FCpNgNTpq (75, 81).

14 ¢/NTpgq, r/[FpNy, p/CpNq X F39 = F74-"75.
FCpNqFpNg (76).

75p/TqNr X 76.
FCpNTqNrFpNTqNr (717).

63 8/FCp’Fp’, p/q, q/r x F16—11.
FCpCqrFpCayr.

63 6/FFpg’ X F36-118.

FFpqCpq (79).

78 p/Np, g/Np X F22-179.

CNpNp (92).

63 6/, p/NNp, g[p X F62-80.
CNNpp (87).

9p/CpNg, q/Tpq X F14-81.
FTpgNCpNg (94).

Theses with O

27 q/Opg X F6—82.
FNOpgNp (84).
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! 27 p/q, g/Opg X FT-83.
| 83 FNOpgNg (84).
21r[NOpg, pING, q/Np X F83 - F82 - 84.
! 84 FNOpgTNgNp (85)." S
‘; 27 p/NOpgq, g/ TNgNp x F84 - 85.
| 85 FNTNgNpNNOpq (86).
| 85 g/Np x F62 - 86.
86 NNOpNp.
4 80 p/OpNp x 87.
% 87 CNNOpNpOpNp.
' 8 7/NTNpNg X FA3 — F45—88.
88 FOpgNTNpNg (89).
63 8/FOpq’, p/Np X F88 —89.
89 FOpgCNpg (91).
Theses with A
Df Apg x 90.
90 F3CNpqddpg (91, 92).
90 6/FOpq’ x F89 - 91.
91 FOpqApq.
904/, g/Np X F79 - 92
92 ApNp.
Theses with K
Df Kpg x 93.
93 FSNCpNqbéKpq (94).
93.6/FIpg’ x F81~94.
94 FTpqKpq.

1. The starting point for my research-on the formalization of mathe-
matical theories i a tentative application to such theories of matiy~
valued logics. I have chosen for that purpose a non-modal three-valued
logical system and I have succeeded in basing on-it a part of the theory
of natural numbers. Since many formulae of the logical system I em-
ployed differ from two-valued logic, it was necessary to be very careful
in handling them correctly, and formalization was the best way, if
not the only one, of avoiding mistakes. In order to compare the resulis
thus obtained with the ordinary theory it was also necessary to formal-
ize the theory of natural numbers on the basis of two-valued logic.
I soon realized that the latter theory is véry interesting in itself and
that it reveals not only many new proofs of known theorems, but also
many new theorems. .

I have chosen the theory of natural numbers as the object of my
logical investigations because I noticed that this theory, elementary .
as it is, is also very much neglected. In any textbook on the theory of
numbers we find a number of elementary theorems on natural numbers,
which are not proved correctly. Sincé it is known that these theorems
are true, no one bothers to prove them in a precise manner. Take, for
instance, Euclid’s theorem stating that there is no greatest prime number.
To prove this theorem the product of all pnme numbers up to p is
formed and the formula:?)

=2-3-5-..-p+1
is discussed. Since g is not divisible by any prime number up to p, it

1) Cf. G. M. Hardy and BE. M. Wright, An Infroduction to the Theory of Numbers,
Oxzford, 1938, p. 12.

*) First published in: Collogues internationaux du Centre national de la recherche
scientifigue, XXXVI, Les méthodes formelles en axiomatique, Paris 1953.
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follows that it is either itself a prime number greater than p, or that

it is divisible by a prime number greater than p. Everyone seems to fail

to notice that this. proof, which is intuitively comvincing, is not a real
proof, since the gap marked by the dots between 5 and p canmot be
filled in, as there is no general formula for a product of prime numbers.
Hence the expression “2:3:5-...-p” lacks any definite meaning
and must not occur in an exact proof. In many other proofs of theorems
concerned exclusively with natural numbers, algebraic, rational, irra-
tional, and even complex numbers are introduced, in spite of the method-
ological requirement that everything concerned with natural numbers

should be proved by means of an axiomatic system constructed specifi-
cally for natural numbers and without introduction of numbers of
any other kind.

2. Before illustrating these remarks with examples I ought to explam
the parenthesis-free symbolism I have adopted in the formalization

of theses and proofs. In the text that follows the letter C stands for the

functor “if ... then™, K for the functor “and”, N for the negation “not”;
0 is a constant false proposition; p, g, 7, ... AT propositional variables;
8 is a variable proposition-forming functor of one propositional argu-
ment. [] (“for all”) is the universal quantifier, > .(“for at least one”
or “there is ... such that...”) is the existential quantifier. { (“plus”)
is a functor of two numerical arguments forming a number; ¢ (“equal
t0™) and o (“less than”) are proposition-forming functors of two nu-
merical arguments; q, b, ¢, d, ... are numerical variables; ¢ is a variable
proposition-forming functor of one numerical argument. In the proof
lines the stroke /is the symbol of substitution, the dash —is the symbol of
detachment, and the cross X is a punctuation mark. All the functors
are written before their arglments in order to avoid the use of paren-
theses.” —~ T . - ‘

Two logical theories, the proposmonal calculus and the functional
calculus, are necessary.and sufficient to formalize axiomatic mathemat-
ical theories, in particular the theory of natural numbers. The propo-
sitional calculus can be based on the principle of bivalence as its sole
axiom: %)

?) Cf. J. Tuukasiewicz, “On Variable Functors of Propositional Arguments”, Pro-

ceedings of the Royal TrishAcademy;—vol:—54;Sect: A, 2,” Dublin, 1951. [See
pp. 311-324 of this volume.] C. A. Meredith has found an even shorter axiom,
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16 C80CSC005p.

- This formula is read: “If O satisfies 4, then if C00 (a constant true prop-
osition) satisfies J, then any proposition p satisfies 6”. All the theses
of the theory of deduction, which is the most elementary part of the
propositional calculus, follow from this axiom by two rules of inference:
the rule of substitution and the rule of detachment

based on four rules of inference (the arrow— mdlcates that the impli-

" cation on the left, provided that it is true, implies the implication on

the right):

@ Cyaf — ClJagaf  (symbolized by [[1a),
?3) ' CBpa — CBYaga (symbolized by 2,24),
@ Cyaf - CYapafl  (symbolized by J1a),
®) CBya — CB]Japa (symbolized by []24).

'Rules (2) and (3) are unconditionally valid, while rules (4) and (5)
are valid only on the condition that § (any propositional expression)
does not contain a as a free variable. )
3. The formalized fragment of the theory of natural numbers which
I intend to outline now is based on two primitive terms, two definitions,
and three axioms. The primitive terms are (“plus™) and 1 (“one™, the
least natural number). The relations ¢ (“equal to™) and « (“less than™)
are defined. The definitions are noted down as implications by means
of the variable functor 6:%)
®) Co] JoCpapbdeab,
Q)  C8D,deldabdoab.

Definition (6) states that the expression | JpCpapb (“for all ¢, if a sat-
isfies @, then b satisfies ¢”) may be replaced by the expression eab
(“a is equal to ™), and conversely. Definition (7) states that the expres-
sion Y dstdab (“there is a d such that 4 plus a equals 5”) may be re-
placed by the expression oab (“a is less than 5”), and conversely.

The following three theses are adopted as axioms: '

namely C€880dp. Cf. his article “On an Extended System of the Propositional Cal-
culus,” Ibid., 54, A, 3, Dublin, 1951,

%) Definitions which make use of the symbol § are explained in my article quoted
above, pp. 28-30 [pp. 311-324 of this volume].
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® - ellabelblac principle of associativity,
® . CNoalaela principle of dichotomy,
(10) ~ c[]ac]]bCubagbpapa  principle of ascent.

Axiom (8) expresses, in my notation, the formula (a4-b)+c= b+
(a+c). Axiom (9) states: “If it is not true that 1 is less than g, then 1 is
equal to ¢”. The last axiom is, so far as I know, a new one and requires
a more detailed explanation. To understand it, it is necessary to begin
with the expression | [bCabaph, which states: “For all b, if b is less
than g, then b satisfies ¢”, or, more briefly, “All numbers less than

a satisfy ¢”. This expression is the antecedent of another implication,

C[ IbCabapbga, which can be read: “If all numbers less than a satisfy ¢,
then a satisfies ¢”. If this second implication is true fox: all a, ie., if
the expression | [aC] [bCubapbga is true, then ga is true: all numbers
satisfy ¢. The last a is a free variable and may be replaced by another
letter, for instance ¢, and preceded by the universal quantifier, The
idea underlying this principle of ascent may be formulated as follows:
“If a natural number satisfies ¢ on the assumption that all the preced-
ing numbers satisfy ¢, then all the natural numbers satisfy ¢.” B

4. A1l the properties of the relations ¢ and &, including the following
theorems, can be deduced from these definitions and axioms by means
of logical theses and rules: »

(11) Noaa principle of irreflexivity of ¢,
12 CoabNabd principle of asymmetry of «,
13) CaabCabcaac principle of transitivity of «,
{14) CNeaabCNobacab  principle of trichotomy.

‘We may then derive the laws of addltlon, such as the commutative law:
13 &lablba,

4) A principle of this kind was formulated by P. Bernays in his article “Sur les ~

questions méthodologiques actuelles de la théorie hilbertienne de la- démonstration”,
Les Entretiens de Ziirich, 1941. Mr. Bernays writes (p. 149) that it is necessary to
Jjustify the following reasoning: “If a property B(x) pertaining to an ordinal numbera
holds for O (the least of all the &’s) and if it holds for « provided that it also holds
for the preceding ordinal numbers, then it holds for all «”. Mr. Bernays adds that
this principle is a generalization of mathematical induction. Mr. Bernays’s formula-

" tion, while not Incorrect, 1§ Ot quite exact: the condition that B should hold for
the least o may be dropped. :
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the associative law in its ordinary form:

(16) ellabelalbe,

and the monotonic law: *
a7 Cuabalactbe.

Of those theorems which are htﬂe known I quote the following:

(18) CKocaCblozbé‘alsab

which states: “If a is less than & plus 1, and 5 is less than a plus 1 then a
equals b”.

The two principles of mathematical induction, the strong and the
weak, are also among the consequences of the system The strong
principle has the form:

19) C[laCyaptal Cplya,
and states: “If, for all g, if @ satisfies ¢ then @ plus 1 satisfies @, then,

if 1 satisfies ¢ every number satisfies ¢”. The weak principle is a con-
sequence of the strong and is written:

(20) c[lagzal Cploa.

Formula (20) states: “If, for all g, @ plus 1 satisfies @, then, if 1 satisfies ¢
every number satisfies ¢”. This principle, litile known by mathema-
ticians, is very useful in many proofs. I shall quote just one very simple
example:

CAs loglcal premisses we adopt the principle of smlphﬁcatlon

@D CrCqp,
and the principle of Duns Scotus
22 CpCNpy.

and as mathematical premissés we adopt the following two theses:
3) . el (1 equals 1), -

24 - alZal (1 is less than a plus 1).

From these four premisses we can derive the principle of dichotomy
by means of the weak principle of mathematical induction:

_ (22) pj«llal, g/ellal x C(24)- (25)
(25) CNallalellal., . .
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(21) p/CNallalellial x C(25) - (26).
(26) CyCNullalellal.
- @6) [ ] 2a x 27).
@7 Cq [] aCNalialellal.
: , (27) g/CpCqp x C(21)—(28).
28 [ aCNalzalelZal.

Qlpfe 11, g/Nall x C(23)~-(29).

(29) CNallell.

NN

20)pENal’ s> x-CR-)y—E€@29)—(B0):~
(30) CNalacgla.
I hope that this derivation does not present any dlfﬁculty to the

‘reader. The last transformation is the most difficult: to carry out the

substitution p/CN«l’el’ it is necessary to replace ¢ by the expression
CNul’e]l’ and at the same time to replace the apostrophes by the argu-
ment of ¢. This yields the formula:

3D CT[aCN«lZaleltal CCNallell CNalaela,

from which thesis' (30) can be obtained by two detdchments.

Yet the most interesting are the consequences of the principle of
ascent. That _principle can be transformed by purely logical means,
into two other principles that are already known: the principle of the
least number and Fermat’s principle of descent. The principle of the
least number has the following form:

(32) CpaSlaKpa][bCabaNgh,

“and states: “If a satisfies ¢ then there is a number g that satisfies ¢, and

for all b, if b is less than a, then b does not satisfy ¢”. This states simply,
that if there is a natural number that satisfies ¢, thén there is always
a least number satisfying @. Fermat’s principle of descent has a posi-
tive and a negative form:

(33 CTTaCNga Y bKabaNgbga positive form,

G4. CllaCga >'bKabaphNoa negative form.

The positive form has the following meanmg “If for any number

that does not satisfy a certain condition there is a smaller number which
has the same property, then every number satisfies that condition.”
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Analogously, the negative form means: “If for any number that sat-
isfies a certain condition there is a smaller number which has the same
property, then no number satisfies that condition.” Principles (33)
and (34) were used by Fermat in the proofs of several theorems in
number theory. )

5. To give a sample of a formalized mathematical theory, I shall

now prove that the principle of the least number and the principle of
descent are deductively equivalent to the principle of ascent. Then
I shall derive from the last-named principle the law of 1rreﬂex1v1ty
of the relation «. All the proofs will be based on the two-valued propo-

" sitional calculus and the functional calculus, and do not require any

other mathematical thesis except for the principle of ascent.

Axioms
1 CllaC] [6Cabagbpapa  principle of ascent.
Auxiliary theses of deduction theory:
2 Cpp.
3 CpCyp.
4 CCqrCCpqCpr.
5 CNNpp.
6 CCpNgCqNp.
7 CCNpgCNgp.
8 CCpCqNgCpNg.
9 CCpgCCqNrCrNp.
10 CCNpgCCqrCNrp.
11 CCNqu’CquCrp.
12 CCpNgNKpq.
13 CNCpgKpNqg.
14 CNCpNgKgp.

%) W. W. Rouse Ball in 4 Short Account of the History of Mathematics, London,
1940, pp. 296-298, quotes a letter by Fermat, kept in the Leyden University Li-
brary, which proves beyond doubt that Fermat discovered both forms of the prin-
ciple of descent mentioned above,
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A. From the principle of ascent to the principle of the least number.

14 p/[ [bCabaNgh, glpa % 15.

15 " CNC[]bCabaNgbNpaKpa] [bCabaNgh.
‘ 15 32a x 16.
16 CNC] [pCabaNpbNpa YaKga] | bCabaszb
7 p/C[]bCabaNpbNga, g > aKpa] [bCabaNgh _
) o x C16-17.
17— CNYaKpa] [bCabaNgbC] [bCabaNgbNya...
v 17 []2a x 18.
18" CN Y aKgpa[ [bCabaNgb] [aC[ [bCabaNpbNya.
» 1 @/Np x 19.
19 c[[aC][bCabaNpbNpaNga.
11 p/ YlaKpa] [bCabaN b, q/HaCHbCocbaNqaquaa
) rlga x C18 — C19 - C20.
20 Cya D aKpa] [bCabaNgh, the principle of the least
number.

B. From the principle of the least number to the principle of descent.

12 p/aba, g/ebx21.

21 CCubaNgbNKabagb.

21 []15 x 22.
2 C[[pCabaNgbNKabapb.

6 p/[[pCabaNeh, g/Kabagb x C22-23.
23 CKabapbN] [bCabaNgh.

23 D1bx24. ’
24 C 2 bKabapbN | [bCabaNgb.

4 g/ >'bKabagpb, r/N| [bCabaNgb, pjpa x C24 -25.
25 CCga ) bKabapbCoaN | [bCabaNgh,

. 12-p/pa,-g/[[bCubaNpb X.26...

26 . CCoaN ][ [bCabaNgbNKgpa HbCo:baqub:

.28

27
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4 g/CypaN| [bCabaNgb, r/NKgpa I bCocbaNgob, :

p|Coa X bRabapb x €26 - C25-27.
CCypa ) bKabapbNKya] [bCoabaNgph.

27 []1a x 28.

. CJlaCypa > bKabapbNKga] [bCabalgb.

29

30

31.

32
33

34

35
36

37

6 p/[1aCpa S bKabagh, g/ Kpa] [bCabaNgb x €28 - 29.
CKoa] [bCabaNgbN] [aCpa 3 bKabagb.
29 >'la % 30.
C>laKoa] [bCabaN@bN. TlaCpa > bKabagh.
9 ploa, g/ Y aKpa H bCubaNgb, r| [TaCopa 3 bRabagh x
. x C20-C30-31..
C[]aCyad bKobapbNypa, the principle of descent,
- negative form.
31 ¢/Ng' x 32.
c[laCNga > bKabaNgbNNga.
5 plpa x 33.
CNNgaga.
4q/NNga, r[pa, p/[ [aCNpa Y bKabaNeb x C33 -
C32-34.

c[laCNgpa); bkocbaNgobgaa, the principle of descent,
positive form

C. From the principle of descent to the principle of ascent.

13 pfaba, g/pb X 33.
CNCubapbKobaNgb.

35 X2b x 36.

CNCoabapb D, bKabaNgb.

7 p/Cabagb, qf > bKabaNgb x C36 - 37.
CN 3 bKabaNgbCobagb.
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37 []2b x 38. ‘ i 1 ¢/Na x 48.
38 CNDYbKabaNeb] [bCabagphb. ' ' i E 48 c[lac[]bCobaNabbNaaaNvaa.

10 p/ SbKabaNgb, ¢/ [[6Cebagb, riga x €38 —39. 48 x C47-49. o of irveflegivits of .t
39 C’CHbCabacpbtpaCN(prKabaNq)b. ‘ . 49 Nuaa, the principle of irreflexivity of «.°)

39 [[1a, []2a x 40. I do not think that it would be possible to derive the theorems proved

o this contribution without the powerful iASTument of symbolic Togic

40 C[aC bCubagbya] [aCNpa X bKobaNeb. . and without the formalization of proofs.
4 g/ [1aCNgpa 3 bKabaNgb, rjga, p/[ [aC[] bCubapbpa X
: €34 - C40-1. : o

1 ~ C[]aC] [6Cubapbpaga, the principle of ascent.

Since the principle of the least number results from the principle

. of ascent, the principle of descent results from the principle of the
least number, and the principle of ascent results from the principle
of descent, these three principles are deductively equivalent to one
anothet.

D. From the principle of ascent to the irreflexivity of a.

2 p/CabaNebb x 41..

41 CCabaNabbCubaNobb.

41 JT1b x 42.
42 C[[6CabaNabbCabaNabb.

42 bla x 43.
43 c[[pCabaNabbCaaaNaaa.

' 8 p/[[bCubaNabb, glaaa x C43 —44.

44 C [ [ bCabaNabboaa.

3 p/CI[bCobaNubbNaaa X C44 - 45.
45 CyC][ [6CubaNabbNaaa.

45 [ 24 x 46. i
46 Cql [aC[[bCabaNubbNuaa.

) C. A. Meredith has proved that the principle of ascent can be derived from the

4 =i -4 o O3 T K, P A ¢ ot
469flplapx-C3 A3 principle of asymmetry of «, that is, a principle stronger than that of irreflexivity.

47 [IaC[]bCabaNabbNaaa. , ‘ His proof has not been published so far.
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A SYSTEM OF MODAL LOGIC¥%)

The present essay consists of two parts: the first contains general remarks on systems
of modal logic, the second is an exposition of a new modal system.

_ . I

1. What is modal logic. A logical system is usually called “modal

logic”, if there occur in it modal expressions such as “possible” or
“necessary”. Instead of this rather vague characterization 1 shall try

to give a precise definition of modal logic according to the tradltlon
initiated by Auristotle,

First I shall explain what I understand by “basic modal logic”. I am
calling thus a system containing the expressions:

“It is possible that p” denoted by “4p”,
and

“It is necessary that p” denoted by “I'p”,
if and only if they satisfy the following eight conditions:

I. The implication “If p, then it is possible that p” is asserted, in
symbols:

1.1 - —=CpAp.

“C” means “if - then”, “p” is a propositional variable, and “/—~ is the
sign of assertion.')

II. The implication “If it is possible that p, then p” is rejected, in
symbols;

) The idea of assertion and its-sign ““** were introduced into logic by Frege
in 1879, and afterwards accepted by the authors of the Principia Mathematica. In my
previous papers I always omitted this sign, but here I am bringing it in because,
besides assertion, I introduce rejection.

*y Fitst published in Tk Jowrnal of Compiting Systems, 1 (1953), pp. 111-149.
Polish translation is included in the 1961 edition Z zagadnier: logiki i filozofii.
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12 " —{CApp.
“_” is the sign of rejection. %)
III. The proposition “It is possible that p” is rejected, in symbols:

1.3 —{4p.

1V. The implication “If it is necessary that p, then p” is asserted,

J.Ll b_ymuum

14 - CI'pp.

V. The implication “If p, then it is necessary that p” is rejg_qtéd, m
symbols:
1.3 —Cplp.

V1. The proposition “It is not necessary that p” is rejected, in symbols:
1.6 —|NIp. .

“N” means “not”.

VII The equivalence “It is possible that p —if and only if —it is
not necessary that not p” is asserted, in symbols:
1.7 |~ EApNI'Np. )
“E” means “if and only if”. In my symbolic notation the functors are
always put before their arguments.

VIII. The equivalence “It is mecessary that p —if and only if —it
is not possible that not p” is asserted in symbols:

1.8 —ETpNANp. .

The first condition corresponds to the principle: 4b esse ad posse
valet consequentia.

The second condition corresponds to the saying: 4 posse ad esse
non valet consequentia. o )

The third condition states that not all formulae beginning w1th' A
are asserted, because otherwise 4p would be equivalent to the function
“verum of p” which is not a modal function.’ _

The fourth condition corresponds to the principle: 4b oportere ad
esse valet consequentia.

2) The idea of rejection was introduced into logic by myself in 1951. See J. Luka-
siewicz, Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford,
1951, p. 109. I denote rejection by an mverted sign of assertion following a suggestion
of Ivo Thomas.
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The fifth condition corresponds to the saying: 4b esse ad oportere
non valet consequentia.
The sixth condition states that not all formulae begmmng with NI

are asserted, because otherwise I’p would be equivalent to the function

“falsum of p” which is not a modal function.

The last two conditions are evident relations between possiblhty ‘

and necessity. -
The above conditions, except perhaps the third and the sixth, which
seem to be unknown to the traditional logicians, are embodied in the

following “square of modalities”.

NANp=/p NAp=TNp

contrarietas .

subalternatio
subalternatio

>
o Qéé,
P 6"'0
subcontfarietas
A/J:N/'/Vp o A/V,o =N/7)

I call a system “modal logic” if and only if it includes the basic
modal logic as its part.

I accept throughout the paper that both 4 and I’ are proposition-
formmg functors of one propositional argument, and that both Ap
and I'p are truth-functions, ie., their truth-values depend only on the
troth-values of their arguments. As there exists in the two-valued logic
no functor of one argument which would satisfy, the formulae 1.1, 1.2,
and 1.3, or 1.4, 1.5, and 1.6, it is plain that the basic modal logic, and,
consequently, every system of modal logicris a many-valued system.

~2.-4 YmW’”l‘zzat—zon—-of-‘the-_ba.s‘lc—modal*logze; The-next step to throw

some light upon the modal Iogic is to axiomatize the basic modal logic
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on the ground of the classical calculus of propositions. It can be easily
seen that of the two medal functors, 4dp and I'p, one may be taken as
the primitive term, and the other can be defined. Let us take 4 as the
primitive term. It would seem that, accepting the first three 4-formulae
as axioms, we could deduce from them the remaining four I-formulae.
This is, however, not the case: formula 1.7, which contains besides 4
the-defined functor I, cannot be got.in this way, and-must-be-aceepted

axiomatically. It is not elegant to use defined terms in axioms; we take,
therefore, as the fourth axiom, instead of 1.7, the formula EApANND,
which is equivalent to EApNI'Np. We get thus the following set -of-
axioms:

i

2.1 FCpdp (= L1),
22 ACApp (= 12), )
2.3 —1dp (= 1.3),
2.4 L EApANNp.
I’p is defined by the equivalence:
DfI'p x 2.5.
2.5 FEI'pNANp. (= 1.8).

I accept the usual rules of substitution and detachment for the assert-
ed formulae. The analogous rules for the rejected expressions run thus:

(a) Rule of substitution: If « is rejected, and « is a substitution of £,
then § must be rejected.

(b) Rule of detachment: If Coc,B is asserted, and § is rejected, then «
must be rejected.

Both rules are evident. Rule (a) is applied below to prove 2.11 and
2.14, rule (b)to prove 2.10 and 2.13. .

The deduction.?)

Auxiliary formulae of the propositional calculus:

T1 = CEpN qEErNpErg.
T2 - CEpqCqp.
T3 - CEpNgCCNrgCpr.

%) For an explanation of the symbolism used in the deduction ses my book on
Aristotle’s Syllogistic, pp. 81 and 96. [See also p. 342 of this volume.}
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Derived formulae of the basic modal logic:
T1 p/I'Np, g/ANNp, r/Ap X C2.5p/Np - 2.6.

2.6 — EEApNI'NpEApANNp.
. T2p/EApNI'Np, g/EApANNp X C2.6 - C2.4-2.1.
2.7 —EApNINp (= 1.7).
T3 p/I'p, g/ANp, r/p X C2.5~C2.1p/Np-2.8.
2.8 -Clop (=14).
T3 p/4p, gl Np, r[p X C2.7-2.9.
29 - —CCNpI'NpCApp.
29 x C2.10-22.
2.10 - —|CNpINp.
2.10 X 2.11 p/Np.
2.11 Iy (= 1.5)
T2p/Ap, g/NINp X C2.7-2.12.
2.12 - CNTNpAp. '
- 2.12 x C2.13-2.3.
2.13 — NTNp.
2.13 x 2.14p/Np.
2.14 NIy (=1 6)

Any of the four A-axioms is independent of the remaining three.
This is easy to prove for the first three axioms. We take for C and N
the normal two-valued matrix M;, and show the mdependence of 2. 1,

cl12]|n
*1]12]2
20111

M, .
2.2 and 2.3 by interpreting Ap as Np, p and- Vp respectively. I shall
explain the last proof. Vp, i.e., “verum of p”, has for all truth-values
of p the asserted truth-value of 1. If Ap ="Vp, then dp=1,
since Vp = 1. Ap, therefore, is asserted, ie., axiom 2.3 is net verified.
Axiom 2.1 is verified, because Cpdp = Cpl = 1; similarly, 2.4 is
verified, because EApANNp = E11 = 1. From CApp we get for p/2:
EA22-—-C12-—2;-and-as 2.is-rejected - GApp-is-rejected too. All our
axioms are verified by the matrix M; and the intefrpretation Ap=T"Vp

R

i S
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except 2.3 which, therefore, is independent of the femaining axioms.
The other proofs are of a similar kind.

The proof of independence of the fourth axiom requires a three-
valued matrix, M,.*) M, verifies the C-N-axioms of the classical cal-

cl123|N|alr

T 123311

2/111|1;1/3

311111133
M,

culus of propositions, 4 is defined independently, and I'is got from N
and 4 according to the definition 2.5. 1 is the asserted truth-value, the
other. truth-values are rejected. It can be easily seen.that Cpdp is
asserted. C/App is rejected, because we have for p/2: CA22 = C12 = 2.
Similarly, Ap is rejected, because for p/3 we have 43 = 3. The. axioms -
2.1, 2.2 and 2.3 are thus verified, but axiom 2.4 is not verified, because
its consequence CApANNp is rejected for p/2: CA2ANN2 = C1AN1 =
C143 = C13 = 3. Since 2.4, i.e., EApANNp, is equivalent to EApNI'Np,
this last formula is not verified too. Formula CpI'p is also not verified,
since it must be asserted according to the matrix, whereas it should be
rejected. It is clear, therefore, that axiom 2.4 is indispensable for the -
axiomatization of the basic modal logic.

‘We get a corresponding set of axioms of the basic modal logic, if
we take I" as the primitive term and accept as axioms the followmg
four Iformulae:

215 —CIpp (= 1.4,

2.16 —{Cplp (= 1.5),

217 —INITp (= 1.6),

2.18 —~EI'pI'NNp.

4 is introduced by the definition:
Dfdp x 2.19.

2.19 ~EApNI'Np (= 1.7). .

Formula EI'pI'NNp is equivalent to EIpNANp. This can be proved
by T1 in the same way as the equivalence of E4pANNp and EApNINp,

%) I owe this matrix to C. A. Meredith.
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by interchanging in 2.6 the A’s and Is, 2.18 is independent of the

remaining axioms. The proof is given by the matrix M; with two asserted
truth-values, which verifies the C-N-axioms of the classical calculus v

cli123|nNlr
#1l123]3]1
#2113 (33
3]121]1¢3
S

of propositions and the axioms~2-15=2:17; but does not verify 2.18, -

as the consequence of 2.18, CI'NNpI'p, is rejected for p/2: CINN2I72
=CIN33 = CI'13 = C13 =3,

3. Aristotle’s theorems of the propositional modal logic. Tt is a pity
that the formulae of the modal square never were correctly axiomatized

_on the basis of the classical calculus of propositions, and that even
‘the problem of such an axiomatization never was clearly seen.’) Nobody,

therefore, could observe that two odd formulae are hidden in the square,
viz.: ' N

EApANNp and EIpINNp
which are indispensable for a correct axiomatization. These formulae
throw a light on the modal logic just because of their similar shape:
they suggest the idea that there must be a general principle independent
of the modal square from which they may be deduced. There are still
other reasons to suppose that the basic modal logic is not complete
and requires the addition of some new principles. So, for instance, we
believe that if a conjunction is possible, each of its factors should be
possible, in symbols: ’
3.1 - |- CAKpgAp,
3.2 —CAKpgAg;
and if a conjunction is necessary, each of its factors should be necessary,.
in symbols:

5) The only logician, so far as I know, who saw this problem and tried Fo solve
it, was I M. Bochenski. His solution, however, is not correct, since the equivalence

—FEEpNANp-is-not-deducible from his axioms. See I. M. Bochefiski, “La logique de

Théophraste”, Collectanea Friburgensia, Fasc. 32, Fribourg en Suisse 1947, p. 92
Sect. 31. . .
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3.3 —CI'Kpglp, -
-3.4 [ Cprqu.
None of these formmilae can be deduced from the modal square, i.e.;
from the basic modal system. i :
It is strange enough that the only two theorems of the modal logic

which—Asistotle—expressty—states—with -propositional - variables—carm—be
interpreted so as to give us the general principle we are looking for.
Referring to his syllogisms, Aristotle writes in the Prior Analytics:
“If one should denotc the premisses by «, and the cbnclusiﬁﬁ"BTﬂ,“ff ’
would not only result that if « is necessary, then § is mecessary, but
also if « is possible, then f is possible.”) There are two different ways
of interpreting these theorems as formulae of modal logic, although
it is highly improbable that Aristotle was aware of their difference.
Let us explain these two interpretations. ,

All the Aristotelian syllogisms are implications of the form Cuf

- where ¢ is the conjunction of the two premises and § the conclusion.

E.g., “If all ¢ is b and all b is ¢, then all g is ¢”, in symbols:
CKAabAbc Aac.™)

N —  —

o p _
According to the above quotation, ‘we get two modal theorems taking
Cofr as the antecedent, and CAadf or CI'alf as the consequent,
in symbols: :

3.5 - CCaBCAadB
and o
3.6 - CCafCIals.

The letters o and § stand here for the premisses and the conclusion
of an Aristotelian syllogism. We may treat these theorems as special
examples of general principles which we get by replacing the Greek
letters by propositional variables:

3.7 - CCpgCApAg

and

&) An. pr., A 15, 34222: el mc fein 75 piv A Tdc Trpo'ro'ccagq, 75 3 B 7d
ovunépaope, oupBalvor &v od pévov dvaysmiov o8 A dvrog dua xod Td B elvan
dvoryratoy, dAAE xol Suvatob Suvatdy,

7) See my book on Aristotle’s Syllogistic, pp. 20 f£.
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3.8 L CCpgCIply.

This is the first interpretation. The principle for A seems to be con-
firmed by Aristotle himself in a second passage which reads quite gen-

erally: “Tt has been proved that if (if « is, B is),\then (if « is possible,

B is possible). »#) Formula 3.7 is accepted as Aristotelian by A. Becker

and I.M. Bochefiski. ®)

We get a second interpretation if we draw attention to the fact that
accordmg to Aristotle the connection between the premisses o of a syllo-
gism and its conclusion B is necessary. This gives us the spec1a1 theorems

39 CTCapCAadp
g S
3.10 . CI'CuCIalp,
Which we may extend into the principles:
3.11 - CI'CpgCApAg
and : .
3.12 —CI'CpgCIply.

The principle 3.11 for A seems to be corroborated by Aristotle himself,
as we read at the beginning of the same chapter where the other modal
theorems occur: “First it has to be said that if (f e'is, § must be), then
(f & is possible, B must be possible t00).”!%) The second “must” evi-
dently refers to the necessary connection between the antecedent and
the comsequent, but the first “must” seems to state a necessary con-
nection between o and ,B in the antecedent. There is no reference to
a syllogism.

The formulae got by the first mterpretat:on are stronger than those
got by the second, as it is shown by the following deduction:

%) Thid. 34229: $E&detserar 87t el 10D A 8wrog ©d B Zott, wol SuvareD dvrog ToD
A Zovow t0 B Suvatdy, ) ‘
9) See A. Becker, Die Aristotelische Theorie der Moglichkeitsschliisse, Berlin, 1933,
p. 42 note, and I. M. Bochefiski, “*Ancient Formal Logic,” Studies in Logic and the
Foundations of Mathematz‘cs, Amsterdam, 1951, p. 71. Both authors refer to the

3435 guoted in.note 10, which sather supports the. second interpretation.

19) Tbid, 3485; mp@Tov 8¢ Aewtéov §vu &l 70D A Bvrog dvdywn 10 B elvar, 0ok
Suvetod dvrog Toh A Suvartdv Zoton xal v B EE dvdywns.

312 CT'CpgCTply.
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T4 . L CCpqCCqrCpr.
14 I CTpp. ,

T4 p/T"Cpq, q/Cpg, ¥/CApdg % Cl.4p/Cpg- C3.7-3.11.
3.11 L CI'CpgCApAg.

T4 p/I’C'pq, q/Cpg, r/CI'plg X Cl 4p/Cpg —~C3.8 -3. 12

We see that 3.11 follows from 3,7 and 3.12 from 3.8 by means of 1.4

and the principle of the hypothetical syllogism T4. The converse.de- .. -

duction is not valid. This can be proved by the matrix M, which results
for C and N from the multiplication of M, by itself, verifies the C-N-
axioms, the basic modal system, and the formulae 3.11 and 3.12, but
does not verify 3.7 and 3.8, as we have for p/4, g/2: CC42CA442
=ClC32=C12=2, and for p/3, g/l: CC31CI3I'l = C1C32
= Cl12 = 2. : ’ ,

cl1234|n|I|4
*1]1234]4|2]1
2/1133(3[2]2
3/1212/2 3|3
4l1111(1]4(3
. M,

4. Possible extensions of the basic modal logic. All the four newly
introduced principles, the stronger 3.7 and 3.8 as well as the weaker
3.11 and 3.12, are independent of the basic modal system on the ground
of the classical calculus of propositions. It suffices to prove this for
the weaker principles, because if these are shown to be independent,
the stronger must be independent too. The proof is given by the eight-
valued matrix M, which results for C and N from the multiplication
of the matrix M, by the matrix M,. M verifies the C-N-axioms and
the basic modal logic, but does not venfy 3.11 and 3.12, as we get for
p/5 q/6

CI'C56CA546 = CI'2C16 = C26 =5
and for p/3, g/4:
CI'C34CI3I' = CI'2C38 = C26 = 5
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cl12345678|N|I|4
*1[12345678 8|1
2011335577

1
70211
3/12125656]6[3]|1
4i11115555(5!8]1
5/12341234|4|8|1
6/11331133[3/8!/6
7112121212287
8|11111111(1/8]|8
AA- R

Mz ,

The new principles are not only independent of, but also consistent

with the basic modal logic on the ground of the C-N-system. The proof -

of consistency is given by the matrix M, which is identical with M,
~cl1234|N|I"'|4

*111234]|4]2

211133]3]2

31121212|4

411111414

oy

W W

‘ Ms
for C and N, but different for I" and A. M verifies the C-N-axioms,
the basic modal logic, and all the four principles got by interpretation
of Aristotle’s modal theorems. Any such principle, when added to- the
basic modal logic, will expand this system into a fuller one.

The formula CEpgCopdg is called in logic “the principle of exten-
sionality for ¢”. In a wider sense we may also thus call the formulae
CCpqCodpdg and CCpqChqdp, because we get from them by CEpgCpg
or CEpgCygp and the hypothetical syllogism the principle CEpgCopdq.
For instance, the principle of transposition CCpgCNgNp is in a wider
sense a principle of extensionality for N, because we get from it the
formula CEpgCNpNg. The principles CCpgCApAg and CCpgCIlply
are in a wider sense principles of extensionality for 4 and I

These two principles are equivalent to each other on the .ground
of the C-N-system and the basic modal logic. Starting from 3.7
(CCpgCApAg) we get 3.8 by means of the formulae:

T5 - CCNgNpCrsCCpgCNsNr.
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T6 I CEsqCEtrCCpCyqrCpCst.
2.5 |~ EI'pNANpD.

T5 r{ANg, s/ANp X C3.7p[Ng, giNp—4.1.
4.1 - CCpqCNANpNANg.

T6 s/Tp, q[NANp, t/T'q, r/NANg, p/|Cpq X C2.5-
C2.5p[g—C4.1-3.8.

3.8 - CCpgClpIly.
The converse deduction from 3.8 to 3.7 can be performed in the same

way by interchanging-4 and I'.. .
If we add 3.7 to the A-axioms of the basic modal logic we get by the
laws of the C-N-system the formula EApANNp:

T7 L CpNNp.
T8 |~ CNNpp.
9 - CCpgCCqpEpyg.
3.7g/NNp X CT7-4.2.
4.2 b CApANNp.
3.7 p/NNp, g/p X CT8—-4.3.
4.3 - CANNpdp.

T9 p/Ap, g/ ANNp X C4.2-CA3-24.

24 - EApANNp.

In the same way we can prove ETpI'NNp starting from 3.3.

Owing to the stronger interpretation of the Aristotelian theorems
we have found in the principle of extensionality for modal functors
the general law from which the formulae EApANNp and EI'pI'NNp of
the modal square can be deduced.

The extended modal system which arises by the addition of
CCpqCApAq to the basic modal logic and is expounded in the second
part of this article is the simplest complete modal logic with an adequate
four-valued matrix. It is, in my opinion, both logically and philosophi-

cally of the highest importance. Nevertheless, it is wholly unknown. All

the existing systems of modal logic, as far as I see, extend the basic
modal logic by weaker principles, assuming either such formulae as
CI'CpgCIpI'q or CI'CpgCApAq which correspond to the weaker inter-
pretation of the Aristotelian theorems or rules of extensionality instead
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of principles. The principles of extensionality for modal functors
are not accepted. In Von Wright’'s system, for instance, formula
CCpqCNAgNAp, which is equivalent to CCpgCdpAg, is expressly
disproved.’*) All these modal systems are possible extensions of the basic
modal logic and may have their own merits; perhaps we shall be able
to dec1de some day which of them is the best. :

n

5. Axioms of the E~modal system. The modél system expounded in this

‘part presupposes the classical calculus of propositions, accepts 4 as

the only primitive modal term, and is built up on the basic modal logic

with the addition of only one new modal principle, viz., the strict prin-
ciple of extensionality for A. .

The general principle of extensmnahty, taken sensu stricto, has the
form:
5.1 —~ CEpgCdpdg
where & is a variable functor.’?) This principle 1 extend to the modal
functor 4 getting thus the formula:

51 6/4'x 5.2, . .

5.2 . CEpgCApAdg.
Formula 5.2 seems to be intuitively evident. We say that if p and q are
equivalent to each other, then “If p is true, g is true”, and “If p is false,
g is false”; so we may also say that under the same condition “If p is
possible, g is possible”, Von Wright accepts in hlS system the rule of
extensionality:
53  Eup —» | EAxAB,

in words: “a if and only if B; therefore, a is possible, if and only if ﬁ
is possible.”) The arrow is the sign of “therefore”. Rule 5.3 follows
from the formula 5.2.

') See G. H. Von Wright, “An Essay in Modal Logic,” Studies in Logic and the
Foundations of Mathematics, Amsterdam, 1951, p. 22/23.

12) A short explanation of S-substitution and d-definition is given in the Appendix.
For a detailed ¢xplaniation see J. £ukasiéwicz, “On Variable Functors of Proposi-
tional Arguments,” Proceedings of the Royal Irish Academy, Vol 54 A 2, Dublin,
1951...[See.pp.-311=324.of this.volume.]

1%) See Von anht L ¢, p. 85. The symbohsm and word.mg is mine,
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The general principle of extensionality 5.1 must be accepted in the
f-modal system, as it is valid for all functors of one argument of the
classical calculus of propositions, and is admitted for the modal functor
A. This leads to-a simplification of the axiom-set of the system. From
5.1 by means of the formulae of the classical C-N-system:

T10 I~ CCpgCpCryg,
T1 — CCpCqrCpCyqCsr,
T12 = CCprCCqrCApgr,
T3 . — AEpgENpq, - e

we 'get the following consequences:
T10 p/ENpg, q/C&Npéq, r[ép X C5. lp/Np 5. 4

54 -+ C’ENquﬁpCéNpéq, ‘
T11 p/Epg, 4/dp, r/8q, s/6Np X C5.1-5.5.
5.5 "+ CEpqCoépCdSNpdq.
T12 p/Epq, r/CSpCONpdq, q/ ENpg X -C5.5 - C5. 4— '
CTI3-5.6.
5.6 L C'épCoNpdq.

It was shown by C.A. Meredith—in an unpublished paper—that
formula 5.6 may be taken as the sole axiom of the classical C-N-6—p-
calculus, i.e., the classical C~N-calculus of propositions extended by the
addition of variable functors. I accept, therefore, as the first axiom of
the ¥-modal system the formula:

1 L CopCeNpdg.

From this axiom I derive by substitution and detachment the three
axioms of the C-N-system:'4)

22 b CCpqCCqrCor,
20  CCNppp,

10 = CpChpg,

the principle of extensionality:
73 — CEpgCédpdq,

) Formulae marked with numbers without the decimal point
Appendix.
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and the fourth axiom of the basic modal logic, 2.4:

89 - EApANNp.

The other three axioms of the basic modal logic are independent of
axiom 1, and must be taken axiomatically:

2 - Cpdp,
| 3 ~{ C4pp,
4 - 4p,

so that our modal system is based on four axioms: 1, 2, 3 and 4. As rules
of inference T accept the rules of substitation and detachment for asserted
and rejected formulae,

The proofs of independence are the same as in the basic modal logic.
The independence of axiom 1 is proved by the matrix M,, because we
bhave for ¢&/4’° and p[2, ¢f3: CA2CAN243= C1CA13 = C1C13
= Cl13 =3.

The Aristotelian principle:

3.7 L CCpgCApAq

which is a principle of extensionality in a wider sense, is stronger than

the strict principle of extensionality 5.2. Nevertheless, it is deducible

in our system by means of the law :

30 | C8CpgCopdy,

a consequence of the axiom 1. We get from this law by substitution

6/A" the formuld”
7 - CACquApAq,

and as CCpgACpq is true according to our axiom 2 we get

78 |- CCpgCApdq

by the help of the syllogism. We may say, therefore, that our system

arises from the basic modal logic by the addition of an Aristotelian

principle.

6. Matrix of the E-modal system. We get an adequate matrix of the

‘ ¥-modal system by “multiplying” the matrices M, and M,, both iden-
e —tical-withthe-adequate-matrix-M; - of the-two-valued -calculus, but with
different figures as elements in order to avoid misunderstandings. The

=
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ﬁg;lxes 5 and 7 marked by an asterisk are the selected elements, i.e., the

asserted values, 6 and 8 are rejected.

cls 6|N c|7 8|V

%5| 5 6|6 , 7 8|8

6|5 5|5 87 717
M;

The process of multiplication can be descnbed as follovvs.

First, we form ordered pairs of elemerits of both matricés by combin-
ing an element of M5 with an element of My; we get thus four. combi-
nations:

*G.7, 5.9, (6, 7, (6, 8).
These combinations are the elements of the new matrix. The selected
element is (5,7), as 5 and 7 are thé selected elements of the original
matrices.

Secondly, we determine the truth-values of the functions C, N and 4
by means of the following equalities (a, b, d represent the elements
of M, x, , z the elements of Mp): ’

6.1 C(a, x) (b, y) = (Cab, Cxyp),
6.2 N{a, x) = (Na, Nx),
6.3 A(a, x) = (a, Cxx).

Substituting for a and b the values 5 and 6, for x and y the values )
7 and 8, and evaluating the functions on the right according to the
matrices M7 and M, e.g.: C(6, 7) (6, 8) = (C66, C78) = (5, 8), we get
from these equalities the following matrix Mp: .

c |len 69 61 68| N | 4
*570 | 6D 65,8 67D 68 | 6.8 | 57
&8 | 6 67D 6D 6D | 6D | 6D
6D | GGD 68 61D G® | 68 | 6D
6®» | ¢ &7 67 6D GD | 6D
My .

M, is an adequate matrix of the system, i.e:, it verifies all its formulae
and no other formulae besides. This can be seeni by the following consid-
eration.

First, M, verifies the axioms of the C-N-calculus, CCpqCCqrCpr,
CCNppp, and CpCNpq. Putting in these axioms for the variables arbi-
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trary elements of the matrix, (g, x), (b, ), and (d z), we get by means
of 6.1 and 6.2 the following equalities:
6.4 CC(a, x)(b, y)CC(, y)(d, 2)C(a, x)(d, z)

= C(Cab, Cxy)C(Cbd, Cyz)(Cad, Cxz) -

= C(Cab, Cxy) = (CCbdCad, CCyzCxz)

= (CCabCChdCad, CCxyCCyzCxz) = (5, 7).

6.5 CCN(a, x)(a, x)(a@, x) = CC(Na, Nx)(a, x)(a, %) . .
) = C(CNaa, CNxx)(a, x)(CCNaaa, CCNxxx) = (5, 7).
‘ 6.6 . Cla, x)CN(a, x)(b, y) = C(a, x)C(Na Nx)(b, y)

= Cl(a; X)(CNab; CNxy)CaCNab; CxCNxy)Y = (5; 7).
The final result in all cases is the selected element (5,7) of M,, as
CCabCCbdCad, for instance, -always gives 5 according to M, and
CCxyCCyzCxz always gives 7 according to M.
Secondly, M, verifies the axioms 2, 3, and 4. We have by 6 1 and 6.3:

6.7 Cla,x)4 (a x) = C(a, x)(a, Cxx) = (Caa, CxCxx) = (5, 7).
6.8 CA(a, x)(a, x) = C(a, C’xx)(a, x) = - (Caa, CCxxx),
which gives (5, 8) for x/8, a rejected element of M.

6.9 A(a, Cxx), v

which gives (6 7) for a/6, again a reJected element of Mg
Thirdly, in order to prove that CopCONpdg is verified by M, it

suffices to show that the principle of extensionality CEpgCdpdg or
CCpqgCCqpCopdq is verified by M, for all functors of one argument
definable by M,. There are 16 such functors, as we can combine in 16
ways the four functions of M, ¥V (verum), S (assertion), N (negation),
and F (falsum) with the analogous four functions of M, e.g., (Va, Nx),
(Sa, Fx), and so on. All these functions, however, are reducible to
C-N-formulae, because Va.— Caa, Sa = a, Fa = NCaa, and likewise
Vx = Cxx, Sx = x and Fx = NCxx. By substituting, therefore, the
new functors for ¢ we get C-N-formulae, and all such formulae are
verified by M,. Take, for example, the principle of extensionality for A:
6.10 CCla, x) (b, y)CC(b, ) (a, x)CA(a, x)A(b, y)

= C(Cab, Cxy)C(Cba, Cyx)C{a, Cxx) (b, Cyy)

= C(Cab, Cxy)C(Cba, Cyx) (Cab, CCxxCyy)

=C{Cab;-Cxy)-(EECbaCab; €EyxCCxxCyy)
= (CCabCChaCab, CCxyCCyxCCxxCyy) = (5, 7).
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It follows from this consideration that all the formulae of our modal
logic based on the axioms 1-4 are verified by the matrix M,. It also
follows that no other formulae besides can be verified by M,; this
results from the fact that the classical C-N-propositional calculus, to
which all the formulae of our modal logic are matrically reducible, is
“saturated”, i.e., any formula must be either asserted on the ground

of its asserted axioms, of rejected ot the ground-of-the axiom of Tejec-
tion —| p, which easily follows by substitution from our axiom 3 or 4.
M, therefore, is an adequate matrix of the £-modal logic.

Let us now write, for the sake of abbreviation, 1 for (5,7), 2 for
(5, 8) 3 for (6, 7), and 4 for (6,'8); we get from M, the matrix M which
is the adequate matrix of our modal system in its simplest form.

Cl|1 23 4|N|4

*11‘234]41

201 1 3 3731

311 2 1 2|23,

40111 1|13
Ms

7. The twin possibilities. A curious logical fact is connected with the
definition of A, which, as far as I know, has not yet been observed. The
formulae with A are obviously a product of formulae verified by S
(assertion) and ¥ (verum). Cpdp is asserted because it is asserted for
A = Sand A = V. CApp and Ap are rejected because the first formula is
rejected for A = V, and the second for 4 = S. Now we can obtain
a product of S and ¥V by multiplying § by V, getting thus the function
A(a, x) = (Sa, Vx) = (a, Cxx), or by multiplying ¥ by S getting
(Va, Sx) = (Caa, x). Let us denote this latter function by an inverted 4:
7.1 V(a, x) = (Caa, x).

" From 6.1, 6.2, and 7.1 there results the following matrix:
C | 61D (5.8 (6,7 (68 ] N |V
*G,D L 6D Gy 67D 68 | 6.8 | 57
G&® | 6D 6N 6D 67D 6D | 58
6n | & &y 67D 68 | 6Y | 6D

€68 | 6D 6D EH 6GD | GD G
S My
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1 shall now abbreviate this matrix by replacing the pairs of elements
by single figures. As it does not matter which figures we choose, let us
write 1 for (5, 7), 2 for (6,7), 3 for (5, 8), and 4 for (6, 8). We get the
matrix Me, which is identical with Mg, as we can easily see by inter-

C|1 3~2 4|N |V
111 3 2 4]4(1

3;j1 1 2 21213

211 31 3131

411 1 1 11113
- Ms,

changing the middle lines and columns. Consequently, M;, is identical

with M,, and the functor V défined in this way is identical with the
functor A. : :

‘We encounter here a logical paradox: although A4 and I can be defined
by the same matrix, they are not identical. Let us apply to ¥ in My,
the abbreviation of My: 1 for (5, 7), 2 for (5, 8), 3 for. (6, 7), and 4 for
(6, 8): we get for C, N, and 4 the mairix My, and for IV the matrix My,

¥
141
2 12
301
4 |2
My

which is different from A. A4 and I are undistingiishable when they
occur separately, but their difference appears at once when they occur
in the same formula. They are like twins who cannot be distinguished

when" met separately, but-are instantly recognized as two when seen

together. Take, for instance, the formulae AAp, VPp, AVp and PAp.
Adp is equivalent to Ap which is rejected, and likewise VVp is equiva-
lent to Vp which is rejected too. But FAp and AVp must be asserted
according to My and My, We cannot, therefore, replace in the two
last formulae 4 by V, or vice versa, “although both functors can be
defined by the same matrix.

~ T the two-valued Togic theasserted value; "denotéd by 1, is called
“truth”, the rejected value, denoted usually by 0, “falsity”. When I
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had discovered in 1920 a three-valued system of logic, I called the
third value, which I denoted by '/;, “possibility”.’’) Later on, after
having found my n-valued modal systems, I thought that only two of
them may be of philosophical importance, viz.; the 3-valued and the
®y-valued system. For we can assume, I argued, that either possibility
has no degrees at all, getting thus the 3-valued system, or that it has

infinitely many Yegrees, as in the theory of probabilities, and then we
have the gp-valued system.'®) This opinion, as I'see it today, was wrong.
The ¥.-modal logic is a 4-valued system with two values, 2 and 3, de- .
noting possibility, but nevertheless, both. values represent one and the
same possibility in two different shapes. The values 2 and 3 are playing
in the system exactly the same role which can be seen by the following
table of the 16 functions of one argument:

A ® - | @] (C) I | (BD)

@ % (5,7 (5, 8) (6,7 (6,8)[1234p 21234
(@, N®)\(5, 8) (5, T) (6, 8) (6, )2143|CANpNCApp CVpNCVNpNp3412
(@, VOI5,7) (5, T) (6, T) (6, DI1133|dp - CVpp1212
(@, Fx)|(5,8) (5, 8) (6, 8) (6, 8)2244|NANp NCVNpNp3434
(Na, %) |(6,T) (6, 8) (5, 7) (5, 8)3412|CApNCANpNp CVNpNCVpp143
(Na, Nx)|(6,8) (6,7) (5, 8) (5, D321 Np Np K321
(Na, Vx) |6, 7) (6,7) (5, T) (5, T\331114Np CVNpNpi2121
(Na, Fx) |(6, 8) (6, 8) (5, 8) (5, 8)4422/NAp NCVppi4343
Wa,x) (5,7 5,8) (5,7 (5, 8)1212/CApp Vpl1133
(Va, Nx) (5, 8) (5, 7) (5, 8) (5, T\2121|CANpNp VNpi3311
Va, VX (5,7 (5, T) (5, T) (5, T1111|Cpp Cppll111
(Va, Fx%) (5, 8) (5, 8) (5, 8) (5, 8)2222|NANCpp v VNCppi3333
(Fa, %) |(6,7) (6,8) (6,7) (6, 8)3434NCANpNp NVNp 2244
(Fa, Nx) [(6, 8) (6, 7) (6, 8) (6, T)4343|NCApp NVpl4422
(Fa, Vx) [(6,7) (6, 7) (6, T) (6, T)3333|ANCpp NVNCpp2222
(Fa, Fx) |(6, 8) (6, 8) (6, 8) (6, 8)4444|NCpp NCppiddd4

The first column (A) represents the 16 functions, the second (B)
contains their matrices for a/5, x/7; af5, x/8; a6, x[7; al6, x/8, the

15) See J. Eukasiewicz, “Philosophische Bemerkungen zu mehrwertigen Sysiemen
des Aussagenkalkiils,” Comptes rendus des séances de la Société des Sciences et des
Lettres de Varsovie23 (1930), cl. iii, Pp. 65 ff. and 72 [pp. 165 ff. and 171 of this
volume]. ' :
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third (D) is the translation of these matrices according to the equalities:
G, D=1, (5,8 =2, (6,7)=3, (6,8) =4, the fourth' column (G)
gives the formulae corresponding to (D) for p = 1, 2, 3, 4 according to
the matrices My and My (e.g:; CANpNCApp-in the second line has the
value 2 for p/1, 1 for p/2, 4 for p/3 and 3 for p/4), and the last column
(H) is the translation of the matrices (B) according to the equalities:

;s =1, (5,8 =3, (6,7) =2 and (6,8) = 4, ordered for p = 1,2,

3,4. We get the figures of the last column from the column (D) by
writing 3 for 2 and 2 for 3, and then by interchanging the middle ﬁgures,
e:gFrom-2143-we-get-first 3142 and then 3412

It can be easily seen that the figures of the last column are matrices
of the corresponding formulae with V' and, if we define Ap as CVpp,

also of the formulae with A. Assuming 1133 as the matrix of Vp we get,

e.g., for CVpp the matrix 1212, because CV1l = Cll =1, CF22
=Cl2=2, CPV33 = C33 =1, CV44 = C34 = 2, and defining dp as
CVpp we have for CApp the matrix 1133, because CA11l = C11 = 1,
CA22 = C22 =1, CA33 = C13 = 3, and. C444 = C24 = 3. Now, the
formulae with I and their corresponding mairices of column (H) are
identical with the formulae with A and their corresponding matrices
of column (D), as I and A are identical functors. We see, therefore, that
we get the same formulae by interchanging 2 and 3, and that these twin
values of possibility play in the system the same role.

It also follows from the table that although all those 16 functions are
reducible to the C-N-system by the matrices (B), the functions correspond-
ing to the abbreviated matrices (D) and (H) cannot be defined in this
way. The modal functor A or its twin I is necessary and sufficient to
represent them together with C and N.

8. Some formulae of the E-modal logic. The classical system of the
propositional calculus extended by the addition of variable functors is
not yet universally known. This system, inspired by Lesniewski’s “P:ﬁo-
tothetic”, was modified by myself by introduction of the rule of d-sub-
stitution. Owing to this rule, we get easy and elegant proofs. By means
of them I . deduce in the Appendix from axiom 1 first the three
axioms of the C-N-calculus, viz.:

10 . — CpCNpg the principle of Duns Séofus,

20 | CCNppp the principle of Clavius,

22 b CCpgCCqrCpr the principle of the.syllogism,
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and then some other formulae without and with & needed for the modal
logic. Among the latter formulae the most important are the followmg
ones; The principle of extensionality,

27 — CCpqCCqpCopdg
or
73 I~ CEpgCopogs L —

the principles of d-distribution with respect to C and A,

30 — C8CpgCdpdg
and A
71 — CéApgAdpdq,

and a principle of conjunction,

60 = CépCdqdéKpg.

From these auxiliary theses a considerable number of 4- and I™-
formulae are derived in the Appendix. Here is an account of the miost
important of them.

(a) The bas1c modal logic is a part of our system. Three formulae of
this system:

£y

2  Cpdp,

3 — CApp

and

4 — 4p,

are taken as axioms, and the remaining five:
129 i CTpp,

156 © i CpIp,

157 - I NIp,

124 \— El'pNANp
and : )
128 - EApNI'Np,

are proved as consequences.

(b) There are only four modal functors of one argument in the system,
viz., Ap (= NI'Np), NAp (= I'Np), ANp (= NIp), and NANp (= I'p).




374 A SYSTEM OF MODAL LOGIC

This easily results.from two principles of reduction for A:

94 i EAApAp
and . )
98 —"EANApANp.
The corresponding principles for I” run: )
136 ‘- EITpI'p
“and '
141 — EI'NI'pI'Np.

Tt should be stressedthat—accordingto—these principles a-problematic
proposition is equivalent to a problematic one, and an apodeictic propo-
sition to an apodeictic one.

(c) There are three principles of A-distribution for C, K, and 4 (a -

fourth one, for E, is easily deducible from the first):

84 - EACpgCApAq,

109 ' — EAKpgKApAg,

114 .+ EAdApqAApAg;

and two principles of I-distribution for K and A4:

149 a - EI'KpqKIpl'g

and :

154 — EI’quA_l"pI'q. :

The principle of I-distribution for C is not valid, because the forinula:
162 : | ccrprqfc‘pq ' '

is rejected. :
(d) No apedeictic proposition, i. e., 110 propos1t10n begmmng with I"
or w1th N4, can be asserted in the system Thls follows from the formulae:

134 s crqcprp o s
and ‘ :
101 [ CNAqCApp.

Both formulae are asserted, but their consequents Cplp and CApp are

rejected; their antecedents, therefore, I'g and NAg, must be rejected too.

+ H_H-\p Fnrﬂ'uﬂ.q

\.uuuu, not-evel

160 - A ICpp;

Now, from the rejected formmulae I'y or NAg nothing can be got by substi-
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on the contrary, from 160 there results by substitution ~ I'y. On the
other side, it is obvious that in the asserted formulae 134 and 101 any -
expression whatever may be put for g, and all formulae got in this
way. from I'y and NAg must be rejected. In order to express the fact
that any proposition beginning with I” or NA should be rejected, I employ
Greek variables, calling them “interpretation-variables” in opposition.

Lo the—“substitution=variables®~ denoted by-TatimTletters—Wehave;

therefore: . . ,
’ ~{I'e and —{ NAa,

' where may be any formula, ie., any 51gmﬁcant expressron of the

system.

(¢) On the contrary, our system contains many asserted problematic
propositions. It follows from axiom 2 that if « is an asserted proposition
then the propos1t10n “Ttis poss1b1e that o” must be asserted t00. We have,
for instance: o : o o
102 - ACpp. - L SNSRI SN

There are besides A-formulae Whose argument is rejected e. g
92 : - A CA pp.

This problematic proposmon is asserted although its argument CA pp
is rejected. Another interesting example is given by the

163 - A4vp.

It is most difficult to express this formula in the ordmary language
Both 4 and V may be réndered by the phrase “it is possible that”, as
both have exactly the same meaning. Nevertheless, they are - d1ﬁ‘erent,
and we cannot say “It is poss1b1e that it is possible that p”; because this

‘may have the meahitig ‘A4 p, and AAp cannot be dsserted being equiv-

alent to 4dp.

The list of modal formulae given in n the Appendix should be completed
by modal formulae with 6. So, for mstance, it can be proved that, the
followmg formulae are asserted ‘

ACéApdp, ACdpddp, AC@péI_’p, AC(‘)‘Z’pép, AEépéAp, AEépzSI'p

ATl such formulag are put off to a further investigation. .
9. Some controversial problems. Hitherto, the' best known systéms
of modal logic are originated by C. 1. Lewis. It is difficult to compare
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my own modal logic with them, as they are based on the so-called
“strict implication” which is stronger than the “material implication”.
employed by myself. I shall compare, therefore, my system with the
systems- of -G.-H.-Von-Wright, .which are also .based..on .the material

implication and are equivalent, according to its author, to some systems

of Lewis. -

There are three modal systems presented by Von anht in axiomatic -
form, and called by him M, M’, and M".1%) All are based on the classical -

calculus of propositions and on two additional rules of transformation:
9.1.—The—*Rule—of Extensionality”: “If fi «»f, is _provable, then

Mfy <——>Mf2 is.also provable.” That means in my symbolism:
i Eep S REAudf (M7= A7),

9.2 The “Rule of Tautology”. “If f is provable, then Nf is provable”

That means:
I_a - }__I‘la (“N” — “I'Ts:,)'
System M is established on two modal axioms:

9.3 a> Ma the “Axiom 'of Possibility”,
which corresponds to our asserted foriula 2 CpAp, and
9.4 M (a \/b)<—> Ma \/Mb the “Amom of Dlstrlbutmn

which corresponds to our asserted formula 114 EAApgAdpAg.
System M~ arises from M by addition of the “First Amom of Re-
duction”:

95 ) MMa—>Ma

whlch corresponds to_our asserted formula 93 CAApAp, and M" is
got by addition of the “Second Axiom of Reducnon”

9.6 M~ er—>~Moc

which corresponds to our rejected formula 121 CANApNAp

This last axiom gives, together with its converse forraula CNApANAp

(which results from CpAp by the substitution p/N/Ap), the equivalence
EANApNAp. Here a ._problematic_ proposition ANAp, appears. to be
equivalént to an apodeictic proposition NAp, which is against our
logical intuitions.The aithor himself seems to be doubtful about this

16) Seel. ¢. p. 84, 85.
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axiom. I think that it should be rejected and the system M" >1s not

acceptable. oo :
The systems M and M’ are clea.rly mcomplete, as 9. 6 not bemg
inconsistent with them, does not follow from them. The consistency
of 9.6 with the rest of the system resulis from the one fact, among
others, that for the interpretation Ma = ¢ all the axioms and rules re-

main valid- Tt May be added that in this case thesystemrceddds to be
amodal logic. As Von Wright does not accept rejection, I do not know

how he can dlsprove the fromula Maz —a (— C.App) on the ground of

his axjomatic system.

All his other axioms and rules, ie., 91 9.3, 9.4, and 9.5 are Vahd
in my %~-modal logic, except rule 9.2. This controversial rule, first stated
by Anstotle, but not exactly enough, was the cause of many philosoph-
ical and theological discussions.!") Aftér 4 long, but-—in-my opinicns
unconvincing argumentation: Von Wright« says:. ... the ‘proposition

that a tauntology is necessary and-a contradlc’aon nnposs1b1e are truths

of logic. This certainly agrees: with- otir logical intuitions.”*¥) T am not
certain that it does agree. I think, roughly speakmg, that true propo-
sitions are simply true without beinig hecessary, and false propositions
areé simply false without being 1mp0331b1e This certainly does not hurt
our logical intuitions, and may settle many controversies.

It may be asked, however: Why should we introduce necessity and
1mp0581b1]rty into logic if - true apode1ctrc propositions do not exist?
X reply to this objection ‘that ‘we are primarily intérested in-problematic
propositions' of the form A and ANw, which may be triie and useful,
although their arguments are rejected;: ‘and mtroducmg ‘problematic
propositions: we- ¢annot” omit . their negations; i.e., apodelctlc proposi-
tions, as bothare inextricably connected with each-other.. -

The - second - controversial- problem concerns the. formula 108
- - CRApAgAKpg. In some of hlS systems Lewis accepts the formula 106

ment: “If it is p0351b1e that p and g be both true, then p is poss1b1e and ¢

17) In an essay on Anstotle S Moda.l Loglc, Whlch W'J]l be pubhshed e]sewhere
T am expounding at length the Aristotelian opinions on this subject. [See J. Fuka-
siéwicz, “On Controversial Problem of Aristotle’s Moda.l Syllogrstlc”, Dommzcan
Studies T (1954), pp. 114-128.} .- 3

) See 1. ¢., pp. 14, 15; h
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is possible. This implication is not reversible. For example: it is possible
- that the reader will sec this at once. It is also. possible that-he-will not
see it at once. But it is not possible that he will both see it at once and

-not-see it-at-once: ”—19) As-this-argument is.stated .in-words,-and-not in. -

symbols, it is equally ar_)phcable to the strict as to the material implica-
tion. But its evidence is illusive. What is meant by “the reader”? If an

md1v1dua1 reader, say R, is meant, then R either will see this at tfice;

or R will not see this at once. In-the first case, the proposition, “It is
possible that R will see this dt once,” is true; but how can it be proved

-that-R-will possibly.not see this at once? In the second case, the propo-

. sition, Tt is possible that R will not see this at once™; is true; but how
can.it-be proved that. R will possibly see this at once? The.two premisses

of the formula 108 are not both provable and the formula cannot

be refuted in this way. .

Take another example. Let n be a positive mteger i contend that the
followmg implication is true for all values of n: “If it is possible that n
is ‘even, and it is possible that z is not even, then it is possible that =
is‘even and 7 is not even.” If = 4,-it is true that n is possibly even,
but it is-not true that » is possibly-not even; if 7.is 5, itis true that n
is possrbly not éven; but‘lt s nottrire that 7 is possrbly ¢ven. The
both premrsses are never frue. together and the formula cannot ‘be
refuted Sl T i sk I . : - .

If agam by “the. reader some; reader is meant then the propos1t10ns
“It is possible that some reader will see this at once”, and “It is possible
that some reader will not see this at once”; may be both true, but in this

case the comsequent,-“Tt is possible that some reader will see this at

once ‘and some reader will not se& this at once”, is obviously also true.
It is, of course; not. the same ‘reader who will possible see this and pos-

" “$ibly not sée this &t ‘once: T catimot find an-examplerwhich would refute -

- formula 108; on the contrary; all: seem to support its correctness. .
~Tam fully aware that other systems of modal logic are ‘possible based
on different concepts of necessrty and poss1b111ty I ﬁrmly believe that
we shall never be able to decide which of them is true. Systems of logic
' ; sefuI 2 10g10a1 system is,
' expounded

1") See C I Lewrs and C H. Lang.ford Symbohc Lagzc, New York a.nd Londom
1932, p. 167 . :
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above will be a useful instruraent, and deser.ves a further investigation
and development. .

- APPENDIX

Examples of d-substitution and d-definitions.
(a) Proof-line_of formula 16:

18/CpC’p X ClSq/p Cqu/p 16.

Write CpC’p instead of the §’s filling up the gaps marked by the apos-
trophe with the arguments of J. You get thus from

‘ . CépCSNpdg
the formula
CCpCppCCpCNppCqup, }

from which there follows by two detachments Cqup
(b) Proof-line of formula 10: ‘
_ 16/ % 10.
Cancel simply the §’s in 1.
(c) Proof-line of formula 13:
' 18/C”, pJCrCNpNg, glp X Cl1-Cl12-13.
Perform first the substitutions for the propositional variables
C6CpCNpNgCON CpCNquép,
and write 1nstead of the ¢’s their arguments «in form of Cua:
CCC’pCNquCpCNquCCNCpCNquN C’pC’NquC’pp

which is C11-C12-13.

(d) All -definitions have the form C8PSQ, where P and Q are the
definiens and the definiendum. P may be replaced . everywhere by O.
Take as an example the proof-line of formula 55:

"~ 55/Cp x C52-55.

By replacing N Cqu by Kpg according to example (a) we get from
52 formula 55.

The numbers in brackets after a formula F refer to formulae to which F
is applied. For instance, 3 is applied to 118.
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Axioms

- C8pC3Npdg (10,11, 13, 15, 16, 18, 19, 22, 23, 25, 27,

29, 30 38 44, 48, 50, 60, 70).

2 = Cpdp (74, 75,778, 56, 94, 102).
—{Cdpp (118).
4 —{d4p (115).
' Deﬁnitz'ons :
Df qux 3. V T
5 |- CoNCpNgdKpq (55, 56, 57)
Df qux 6.
6 - COCNpgdApq (66, 67 68 69, 71).
Df Epgx 7.
7 - C’éKCquqpéqu (72 73)
' Df I'p 8. ‘
8 — CONANpéIp (123 124, 126, 129, 131 132)
o Df Vpx9. ‘ ' ‘
9 L= C8CAppSpp (163).
: CdnSequeﬁces of AJ&iom 1
16/%10.
10 = CpCNpq (11, 12, 14, 16,17, 28, 35 66, 139)
1 8/CpCND’, p/q, g/Ngx C10-11.
11 ' CCpCNpN4qCpCNpNyq (13).
- 10 p/ CpENpNg;-g/NCpCNpNgx C10 q/Ng = 12.
12 [— CNCpCNquNCpCNqu (13) ‘
16/C”, p/CpCNpNyg, q/p* C11=C12~13. ‘
13 — Cpp (14,15, 18,19, 20, 23, 32, 34, 45, 102 123,135, 155)
e 10p/Crpx C13 14, .
14 - [~ CNCppg (15) s
o 1-8/€Epp;p} Epp><-C13-p|Cpp— €14 Q/CPP “15.
15 I CqCop (16, 23, 26, 30, 38, 47).

16

17

18 -

19

20

21

22

23

24

25

26

27

28

29

30
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1 6/CpC’px C15 g/p—C10 g[p—16. -
I CpCqp (17,21,22, 24, 26, 49, 53, 59, 67,79, 91, 133). A

16 p/CqCNgr, g/CNqCqrx C10 p/q, g/r - 17.
[~ CCNgCqrCqCNgr (18).

1 6/CC°*CqrCqCrr, plq, 4lpx C13 p/CqCqr - C17 - 18.

———-—“'ri“'GC“C“— FCTCPr(20;32,33;:34735;751, 63, 100, 134)

18/C’px€C13-19.
— CCNppCyp (20, 21)

18 p/CNpp, q/Cpp, ¥/p X C19 q/Cpp - C13 - 20.
|- CCNppp (24, 28, 36).

16 p/CCNrrCpr, q/CpNr x Cl9p/r q/p 21.
— CCpNrCCNriCpr(22).

1 8/CCpCCrCpr, pjrx C16 p/Cpr, g/Crr ”"c21 2.

- CCququCpr (33,36, 50,62, 64,75, 718, 81, 85 86,
90,-99, 101, 133,139, 142).

1 6/CC’prC’Np>< Cl13 p/CpNp~C15 q/Cpr, p[Np-23.

= CCpNpCqNp (25, 34).

16 p/CCNppp = C20 ~24.

- CqCCNppp (25).

1 6/CCpNpCCNpp® ><C24 q/Cpr C23 g/CNpp -25.
I~ CCpNpCCNppy (27).

16 p/CCppCopdp, 4/Cppx C15 q/Cpp, pldp-26.

t= CCppCCppCopdp (27). - '

1 8/CCp CCpCopd x €26~ C25 q/CapaNp 27.

= CCpgCCqpCapdq (28, 40, 58, 65).

27 g/CNpp X C10 gfp — C20 - 28.

b~ CSp3CNpp (29, 45, 47, 49).

28 6/C6 C6Nq6q,p/q>< Clplg- 29
- COCNgyCSNgdq (30).

1 8/C8C°4CS b, 2lg,  gfpxC1s 9/3Cqq, plSg—
C29 -30.
— CéCqudpéq (31, 77, 130)
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30 6/Cp’, plg, q/rx31. ‘
b CCpCqrCCpqCpr (63, 135).. ... -

31
18 p/Cpgq, q/p, /g x C13 p/Cpq - 32.
32 '
. 18 p/Cpq, q/Cqr, r|Cprx C22-33.
33 = CCqrCCpqCpr (37, 143). - ..
18 p/CpNp, q/Cpp, r/[Npx C23 q/C’pp C13-34.
34 |— CCpNpNp (54).
35 — CNpCpg (36, 52,80, 90, 99)
. 22 p/NNp, q/CNpp, [p >< C35 p[Np, q/p— C20 - 36.
36 L CNNpp (37, 39, 40, 88, 117)
‘ 33 g/NNp, rlp, plgx C36-3T.
37 = CCgNNpCqp (38).
"1 8/CCNpN’C’px C15 q/CNpNp — C37 g/Np - 38.
38 - CCNpNgCyp (39, 41, 42, 50, 101, 158).
38p/NNp, q/px C36p/Np 39,
39 — CpNNp (40, 87). :
27 p/NNp, q/px C36 — C39 - 40.
40 |- CONNpép (41, 42, 43, 76, 83, 128).
40 8/CCNp’CNyp, plgx C38 g[Ng-41.
41 I+ CCNpgCNgp (43, 52, 53, 126).
. " 40 6/CC*NgCqNp % C38p[Np-42.
4 b~ CCpNgCaNp (54, 121, 125).
e A0 8JCCTYCNgNp X AT pINp =43
43 - CCpgCNgNp (74 85, 86, 96, 137)
168/C°q, qrx44. e
44 }— C’Cqu’C’Nqurq (46,.48).
28 6/C&0pX C13 p/dp =45,
45 | C6CNpp6p (46)
45 0/CEpgCENDE's Plg* C44r[Ng—46—
46 I- CCpgCCNpgq (92, 140). -

47.

48

49

50
51
52
53
54
55
56
57
8
59

60

-
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28 8/CCprCCprC’r x C15g/Cpr; p|Cpr —47.
|~ CCprCCprCCNppr (48). :

1 6/CCprCC'rCCNp’r X CAT — Cddg]r, r/CNpNp —48.
b CCprCCqrCCNpgr (68, 82).

28 6/C6°CNpdpx Cl6p/dp, g/[Nép - 49

~-C8CNppCNpdp. (69). .
22 p/Nép, g/ CNSNpNdq, r/CéqéNp X C1g/N& - C38p/6Np,
q/8g-50.

I CNépCgdNp (51, 140).

18 p/Ndp, q/8q, r/SNpx C50—51.
i C8gCNdpdNp (70).

41 g/CoNGX cssq/Nq 52.

- CNCpNgp (55).

41 p/q, q/CquX Cle/Nq, q/p 53
- CNCpNgq (56)

42 p/CpNp, g[px C’34 54.
— CoNCpNp (57).

568/Cpx C52-55.
= CKpgp (38, 62, 104, 144).

5 8/C°gx C53—-56.

|- CKpyq (63, 105, 145).

5 8/Cp’, glpx C54—57.

— CpKpp (58).

27 g/Kpp x C57 - C55g/p - 58.

I CépdKpp (59).

16 p/CpSKpp, q/dpx C58 - 59.

- CopCdpdKpp (60).

1 8/CopCH 8Kp’ x C59 — Clg/KpNp — 60.
- C8pCégdKpg (61, 72, 107, 147).

60 6/Cp’, plq, qfrx 61.
= CCpgCCprCpKgr (106, 146).

it
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22 p/Kpg, g/p < C55-62.

141, 149, 151).

62 [~ CCprCKpgr (64). . :
18 p/Cququ q/Cquq, r/CqurX C31p/Kp qC56 63.
63 b=-€CCKpgCqrCKpgr-(64): -
22 p/{CpCaqr, g/CRpqCqr, r/{CKpgr x C62 ¥/Cqr - C63 — 64.
64 L CCpCqrCRpgr (65, 108, 148). .
; 64 p/Cpq, q/Cqp, r{Copdgx C27-65... -
65 }— CKCpgCqpCopdq (73).
6-8/Cp> % C10~ 66,
66 - CpApq (110, 150).
: 6 6/Cq’ < C16 p/q, g/Np-67.
67  Cgdpg (111, 151).
6 8/CCprCCqrC’rx C48 — 68.
68 — C’C’prCquCqur (112, 152).
6 é/Cé’CN(SpcSp, q/px C49 - 69.
69 t- CoAppCNapdp (70).
. 1 8/C8Ap’CNps>x C69 — C51 g/ ApNp —70.
70 - "CoApgCNdpdq (71).
6 6/CoApq’, p/dp, q/dgx CT0O~T1.
71 [ C84pgAdpdq (113, 153).
7 6/CCpgCCqp> X C608[’, p/Cpy, q/Cqp —T2.
72 b~ CCpgCCqpEpq (84 89 94, 98, 109, 114, 124, 127, 136,
7 8/C°Cépdgx C65 7.
73 = CEpgCopdq......imein
A-Formulae
439/Apx C2-T74. . .
,,,,,, 74 — CNApNp (75, 76, 95).
22.p{NAp, q/Np, r/ANp X CT4 - C2p[Np =T5.
75 L CNApANp (81).
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40 8/CNANp’ x C14p/Np —T6. -

-76 I CNANpp (129).
30 6/4°x77.
77 - CACpgCApAq (78, 84, 93, 97).
22 p/Cpq, q/ACpq, r/CApAgqx C2p/Cpg— CT77-T8.
78 - CCpgCApdgq (79, 80, 85, 87, 88, 91, 95, 96, 104, 103,
| 110, 111).
78 plq, q/Cpg x Clép/q, q/p—T9.
79 [~ C4g4Cpq (32).
‘ 78 p/Np, q/Cpgx C35=80.
80 - CANpACpq (81).
22 p/NAp, q/ANp, r/A CpgxC75~C30~-31.
81  CNApACpg (82). :
48 p/NAp, r]4Cpq, q/4gx C81 - C79 ~82.
82 F- CCNNApAqA Cpq (83).
40 6/CC’AqACpq, p/Apx C82—83.
83 - CCApAgACpq (84).
72 p/ACpg, q/CApAgx CT7 - C83~84.
84 b EACCpgCApAq.
22 p/Cpq, 9/CApAq, r/CNAqNApX C78 - C43p/Ap,
, _ q/4q-85.
85 - C’C'quNAqNAp (86, 99).
22 p/Cpg, q/ CNgNp, r/CNANpNANqX C43 - CSSp/Nq,
-q/Np- |
86 - C’Cpq’C’NANpNANq (131).
78 g/NNp X C39 -87. o ‘
87 {— CApANNp (89).
78 p/NNp, q/px C36-88. |
88 I CANNpAp (89, 115). .
72 p/Ap, q/ANNpx C87 — C88 - 89.
89 |— EAp/ANNp. _",[
22 p/NAp, q/CApp, r/A CApr C35p/APa alp~ |
C2p/CApp — 90. i
920 b CNApACApp (92). :
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.78 q/CAppx Cl6q/Ap —91.
91 - CdApACApp (92).
46 pidp, q/ACApp X C91 ~ C90 - 92.
92 b= ACApp (93,7965 163 ) -r-rrmmmmos oo
| 77 p)Ap, qlpx C92-93.
93 . - CA4pAp (94).
o 72 p|A4p, g/Apx C93 - C2p/Ap - %4.
94 '\ EAdpdp:
T T lo_y/ivuy, 1/1.[5/ C74 95. e
95 - CANApANp (98). :
78 p/CApp, G CNpNAp x C43p/Ap, q/p - C92 - 96.
) . b 4CNpNAp (97). ' ‘
77 p/Np, q/NApx C96-97.
97 |- CANpANAP (98).
72 p/ANAp, q/ANpX C95 - C'97 98.
98 = EANApANp ‘
22 p/Np, /C’pq, r/CNAqNApX C35-C85-99.
99 - CNpCNAgNAp (100). :
18 p/Np, q[NAg, v ’NApX €99 -100.
100 " CNAqCNpNAp (101).
: : 22 p/NAg, q/C’NpNAp, r/CApp X CIOO C38q/4p - 101.
101 [~ CNA¢CApp (118).
2 p/Cppx C13-102..
S 102 — 4Cpp (103).
- : 32P/ACPP§—<610277_,103:7~. S
103 - CCACppqq (119).
78 p/Kpg, qfp X C55~104.
- 104 b CAKpgAp (106). -
78 p{Kpgx €56 = 105.
105 - C4KpgAq (106).
‘ Gl y/.l.xyq, L_UAF, "IA" ﬂ1n/1 CIOS 106.
106 b CARpqKRApAq (109).

107

108

109

110

ur

112

113

114

115
116
117
118

119

120

121

122

- EAKpgKApAq.

‘ A SYSTEMOI-‘MODAL LOGIC
60 37K 107
I CApCA qAqu (108).
64 pjAp, qlAg, r/AKpgx C107~108.

T CKApAQAqu (109).

72 5/ AKpq, g/ KApAqx C106 - C108 - 109.

387

78 gf/Apg < C66—110.
I CApAdA4pg (112).7

78 plg; qfApgx 6T — 111, - oemmoor e

i CAgAApg (112).

68 p/Ap, r[AApg, g/Agx C110 - C111 -112.

[ CAApAqAqu (114)

718/ X113

— CAquAApAq (114). ‘

72 p/AApq, g/ AApAgX. C113 C112 114
- EAApgAdpAqg..

* %
88x Cl115-4. :
— ANNp (116). o e
115% 116p/Np.
— ANp (117):- -
36 p/ANpx C117 - 116.
— NNANp (157). =
101 g/NACpp % C118=3.

~| NANACpp (119).

103 q/NANACprC119 118.
— 4 CppNANA Cpp (120)
119% 120p/Cpp
~ CApNANAp (121, 122).
42p/ANAp, gldpx C121~-120.
— CANApNAp.
120% 122p/4p:
—| CpNANp (156).
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I-Formuloe
8 8/C8 SNANp X C13p/SNANp - 123.

137

123 |- COIpSNANp (124, 125, 156, 157). -
' 72 p/Tp, g/NANpx C1235/° - C84/ - 124.
124 . - EFpNANp , .
" 42 p/I'Np, q/ANpr C1236/’ p/Np 125,
125 |- CANNpNTNp (127). |
7 41 p/ANNp, q/Fpr C86/’ p/Np 126.
126 ~ CNINpANNp (127) R
72 p|ANNp, q/NINpXC’IZS C126-127.
127 . - EANNpNI'Np (128).
40 8/EA'NI'Np x C127 - 128.
128 - EApNINp. -~ .-
8 §/Cpx C16-129.
129 | CIpp (136, 137, 142).
30 /7" x 130,
130 — CPCquPqu
v 8 8/CCpgC’NANgx C86 - 131.
o131 = CC’quI'pNANq (132)
' 8 8/CCpgCTp’, plgx C131—132.
132 |- CCpqCTpIg (133, 138, 139, 144, 145, 150,7151).
22 p/q, 4/Crg, r/CTpI'gx Cl6p/q, q/p - C132-133.
133 k- CqCIply (134,135). -
- -18 g/Lq, t/Tpx. C133q/p, p/q 134,
134 - CI'qCpI’p (160).
© 31p/Tp, g/Tp, r/ITpx C133¢/Tp ~ C13p/Tn ~ 135.
135 i CIpITp (136).
L 72 p/T'Tp, q/prclz9p/Fp C135-136,
--136 " ElTplp. - :
43 PPyl €129=137:

© |- CNpNIp(138). "

138.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

68 p/I'p, r/T'4pq, q/Tqx C150 — C151 — 152,
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132 p/Np; g/NITpx C137 ~138.
|— CI'NpFNIp (141).
22 p/T'p, / CNIpNp, r/CINIpI'Npx C10p/Ip,

q/Np- C132p/NIp, q/N_p 139:
= CFpCIWFpIWp (140).

46 pFprqt€EFNFpI'Np X €139~ C508/F* /N5 =T140:

- CI'NIpI'Np (141, 142).
“72 p/TNT'p, g/I'Np x C140 - C138 - 141,

& ETNTpI'Np.

22 p/I'NIp, q/T'Np, r/Np X C1 40— C129p/Np - 142.
t CINI'pNp (143).

© 33 g/I'NIp, ¥/Np, p/NTpx C142 - 143,

I CCNTpINTpCNIpNp (159).

132 p/Kpq, g/p x C55 - 144.
- CTRpalp (146). .

132 p/Rpg < C56—145.
= CI'Kpql'g (146).

61 p/T'Kpq, a/Ip, r/Tgx C144 — C145 - 146.
— CI'KpgKIpI'q (149).

60 8/ x 147.
= CI'pCI'qI'Kpg (148).

64 p/T'p, g/T'q, ¥/TKpgx C147 — 148.
— CKIpI'gI'Kpq (149).

72 p/I'Kpq, g/RTplgx C146 — C148 — 149,
~ EFquﬂ’qu.

132 g/Apgx C66 —150.
= CI'pI'Apg (152).

132 p/g, g/ Apgx C67 - 151.
|- CI'qI'dApq (152).

= CATpI'gl 4dpq (154).

ity
;
5
i
fire)
=
=
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153

154

155

. 12p/[I'4pg, q/AZ"qux C153-C152-154. ‘ At

2123 6/C’n ><C'156 122
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71 8/ x 153. A :

b CTApgATpI'q (154). - .. -

— EI’quAZ'pI'q e — S 4_,_ﬁ
32 p/CTpI'p, g/T'CppX C 13p/I’ p-155. . a
- CCCTpI'pI"CppI'Cpp (161).

PR

* *®

156 

157
158
159
160
161

162

163 -

—| Cplp (158 160)
123 §/N* % C’157 -117.
‘pr ‘
38p/Tp, q/pXC’158 156.
—| CNTpNp (159).
143 C159-158. ,
— CNIpINIp, ~ = )
134 g/Cpp x C160-156. S
— I'Cpp (161).
155% C161~160.
— CCTpIpI'Cpp (162).
161162 glp.
— CCIpIqI"'Cpg.

98/4xC92-163."
edlpin i

,

ARITHMETIC AND MODAL LOGIC *)

1. It is well known that the theory of equahty can be based on the
following two axioms:
1.1 - Gaa, ie. “aisequal to a”,
1.2 - COabChaghb, ie. “If ais equal to b, then if ¢a, $5.”
¢ is a variable proposition-forming functor of one numerical argument,
and we are allowed to substitute for ¢ any expression which gives
together with the argument of ¢ a significant arithmetical formula.!)

If we introduce into arithmetic the modal functor I" (“it is necessary
that”) or 4 (“it is possible that”), then expressions as: 1'©ab, ie. “Ttis
necessary that a should be equal to 5”, or AN@gb, i.e. “Tt is possible
that a is not equal to b7, will be significant anthme’ucal formulae.
‘We have therefore:

12¢/I'0a X 1.3,"

1.3 = COabCI'Oaal @ab,

in words: “If a is equal to b, then if it is necessary that a should be equal

to a, it is necessary that a should be equal to b”. From 1 3 we get by

the law of commutation
1.4 — CCququCpr
the formula 1.5:
: 1 4 p/@ab, q/I'Oaa, r/T@ab x Cl.3-1.5,
1.5  CI'©aaCOabl ©Oab.

Most logicians would assert. the antecedent of 1.5 ?)

) For the explanation of my symbolic notation in arithmetic see: J. Eukasiewicz,
“Sur la formalisation des théories mathematiques”, Colloques internationaux du Centie
national de la recherche scientifique, XXXVI Les méthodes formelles en axiomatigue,
Paris, 1953, pp. 11-19. [See p. 342 of this volume.]

2) W. V. Quine, “Three Grades of Modal Involvement” Proceedmgs of the XIth
International Congress of Philosophy, vol. XIV, Brussels, 1953, p. 80: «... surely
‘nec (x = x)’ is true for all x.” —°nec’ means in our-notation “I"™.

*) First published in The Journal of Computing Systems 1 (1954), pp. 213-219.
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392 ARITHMETIC AND MODAL LOGIC ‘ : |

() I'®aa,

in words: “It is necessary that a should be equal to a.” Hence they must
accept the consequent:

®)  COabIOab.

That means: Equality holds necessatily if it holds at all.
From (b) there follows by means of the modal theorem

16 " L~ CI'pNANp,
and the prmc1p1e of the syllogism
17 - C'CququCpr

the consequence (c):

1. 7p/@ab q/T@ab r/[NANOab x C(b) - Cl.6p/@ab - (c),

©  COabNANGOab,
and from (c) we get by the law of transposition
1.8 - |~ CCpNgCqNp

the formula (d):
‘ 1.8 p/@ab, g/ANOab x C(c)- (d),
@ - CAN@abN@ab.

That means: “If it is (only) possible that a is not equal to b, then a is
(factually) not equal to 5.” .
- 2.1 have not prefixed the sign of assertion “}-" to the formulae (a) i
(b), (¢), and (d), as these formulae are in my opinion wrong and should .
be rejected. In particular formulae (b) and (d) are obviously false. Quine
gives an example for the falsity of (b): Let a denote “the number of
planets”, and b the number “9”. It is a factual truth that the number
of (major) planets is equal to 9;-but it-is by fio means necessary that it
should be equal to 9. Quine tries to meet this difficulty by raising objec-
tions to the substitution of such singular terms for the variables. “Such
instantiation—he writes—is allowable, certainly, in extensional logic;

but it is a question of good behaviour of constant singular terms, and ..
such behaviour is not to be-counted  on when there is a ‘nec’ in the :
wood-pile. ”2) Qume does not explain, however, how this “naiighty”

tehaviour of sitigutar-terms-should-be-corrected-His remark is a desider-
atum rather than a solution of the problem.
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For the falsity of formula (d), not mentioned by Quine, take the follow- -

ing example: Let us suppose that the number ¢ has been thrown with
a die. It is possible that the¢ number b next thrown with the die will be
different from a. Butif it is only possible that a will be different from 5,
ie. not equal to b, then according to (d) ¢ will factually be different

- from b. This consequence is obviously Wrong, as it is p0531ble to throw

the same: number-twice:

3. The E~modal system expounded by myself in this Journal®) gives

a satisfactory solution of the above dlﬂiculues This system is based
on two asserted axioms:

3.1 - CépCéNpdy,
3.2 - Cpdp.

The first axiom which means: “If p satisfiés the-condition 8, then if Np
satisfies §, any proposition g satisfies §”, yields the whole two-valued
classical calculus of propositions and all the asserted d-formmlae. The
second is a well-known modal theorem which gwes together with the
axiom 3.1 a complete system of modal logic. Both ‘axioms are. perfectly

- evident. Two axioms of rejection (“—{” is the 51gn of rejection):

3.3 —| CApp,
3.4 —| 4p,
are needed to characterize the system as a modal logic.
The rules of inference are the rule of substltutlon and detachment for

the asserted and rejected formulae:
The system has the following adequate four-valued matrix Mi:

c 1234]N|A|l7[]’
*1) 1234 [4]11,2

20 1133 (3/1]2]2

3] 1212 (23|14

4] 1111 (1{3[2]|4
M,

I'p is defined by NANp, V by CApp.

?) J. Lukasiewicz, “A System of Modal Logic”, The Journal of Computing Systems,
1(1953), pp. 111-159. [See pp. 352-390 of this volume.]
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394 ARTTHMETIC AND MODAL LOGIC

-~ A comnsequence of the system is the asserted formula:

35 - = CI'qCpIlp.
The consequent of this formula is rejected
3.6 . — CpIp.

i W@ have therefore for any proposition a:

3.5¢g/a x C3.7-3.6,
37 — Ia.

That means that no apodeictic proposition can be asserted in the F.-modal

From 3.7 we get by interpreting a as @aa:

3.8, — I'Bqa,.

ie. formula (2) is rejected. From -
39 - " -}~ CpCCpgq
and - -

310 ° . @aa

thére follows the consequence 3.11:
3.9 p/Baa, q/T@aa X C3.] 10- -3,11,
3.11 — CCOdal'@aal Gaa.
Applyiﬁg to 3.11 the rule of detachment for rejec;ted formulae we get 3.12
‘ 3.11 x C3.12-3.8,

-3.12 — COaalBaa,

and by the rule of substitution for rejecfed formulae we have: '
3.12 x 3.13 b/a, o
3.13 — COabI'Oab.
That means that formula (b) is rejected. In a similar. way we can

prove that formulae- (c) and -(d) must be rejected -too. Here are the
respective deductions:

3.14 - I CNANpIp (follows from the definition of I'p).
3.15. }— CCqrCCpgCpr.
3.15 g/ NANGab, r/I@ab, p]@abx C3. 14p/@ab 3.16.
3.16 = C’C’@abNAN@abC@abI' @ab :
; 316 €3:17—3:13;

| 3.17 -1 C@abNAN@ab ie., formula (©) is re_]ccted

system. Asserted m'oposmons are merely true without being necessary} _

T BAS iy
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3.18 - |- CCpNgCqNp.
: 3.8 p/AN@ab, ¢/@ab x 3.19.
3.19 |~ CCAN®abNBabCOabNANOab.
: 3.19 x €3.20-3.17.
3.20 — CAN®abNBab, i.e., formula (d) is rejected.

~—On-theother-side;-theasserted formula COabCFOunl@ab, whichis
correctly deduced from the axiom COabCpadb, is easily verified by the
matrix M;. As Gaa is asserted and has the value 1 I’@aa = Tl =2.
‘We have therefore to verify the formula

C6abC2I'Gab
for all possible value of @gb. We get:
" “For @ab = 1: CIC2I' = C1C22 = C11 = 1;
For @ab = 2: CZC’ZI'Z =C2C22=C21=1;

For @ab = 3: C3C2I'3 = C3C24 = C33 = 1;
For Oab = 4: CAC2I'4 = C4C24 = C43 = 1.

4, Proposmons as “qi is equal to a” are ca]led “analyuc” The well-
known doctrine that all analytic proposmons are necessary goes back
to Aristotle who dlstmgmshes between essential and ac01denta1 proper—
ties and asserts that essential properties belong to the things w1th
necessity. %)

Essential properties are based on definitions, i.e. on the meaning of
words. So for instance, “Man is necessarily an animal” %), because “man”
is defined as an “animal”. In view of the formulae |- CIpp and - CpI'p
it is commonly held that apodeictic propositions have a higher dignity
and are more reliable than corresponding assertoric ones. This conse-
quence is for me by no means evident. I cannot understand why the true
proposition based on the meaning of words “I am an animal” should
be more reliable than the factnal fruth based on experience “I have

_brown eyes”. Another Aristotle’s argument connected with the subject
and sometimes called “the Aristotelian paradox™ is still less evident.
Aristoﬂe asserts: “If it is true to say that something is white or not

9 An post. A6,74b 6: & 3 xa®’ adra Smdpyovre Gvayxaix Tolg mwedy-
LAOLY,

5) An.pr. A 9, 30 a 30: CGov [.st yap & éw&po)ﬂ:oq =3 cwcc«{wqg gorl.”
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white, it is necessary that it should be white or not white.” ) As it is
impossible to translate this statement by the false formula CpI'p, some
logicians accept as a rule that it is allowed to infer from an asserted
(analytic) proposition « the asserted apodeictic proposition I'«. This
again leads to asserted apodeictic prdiaositions, and if we accept such
propositions at all, we are bound to assert the necessity of the pririciple
“a is equal to 4”. In view of the difficulties which would result from
this fact, I am inclined to think that all systems of modal logic which
accept asserted apodeictic propositions are wrong.

A system of this kind is my three-valued modal logic constructed by
the matrix M in 1920, and developed in 1930.7) .

C123
*1 123 3
211122
31111
. v M,

C is here a kind of implication different from the ordinary one, and N
a kind of negation. The system for C and N was axiomatized by M. Wajs-
berg, ¥) and extended to a complete system by the addition of a new
function by J. Stupecki. %) In my paper of 1930 I accepted the definition
of %ossibi]i’ty suggested by A. Tarski:

® .. 4dp=Chpp.
which is equivalent to the definition of necessity:
® Ip = NCpNp.

¥

) De int. 9,18 2 39: el vig &7\1]33:; elnely 87 Aevwdy ¥ 81 oddeundv Eotw,
dvdynn elvay Asuxdy ] od heviedy. : .
- N 1. Eukasiewicz, “O Iog1ce tro;wartoscwwej”, Ruch leozaﬁczny 5 (1920) [See
pp. 87-88 of this volume]—J. Lukasiewicz, *“‘Philosophische Berme;kungen zu
mehrwertigen Systemen des Aussagenkalkiis”; Comptes rendus des séances de la
Sotiété des Sciences et des Lettres de Varsowe 23 (1930), cl. #i [See pp. 153178 of
this volume.]

&) M. Wajsberg, “AkSJomatyzac;[a tréjwartosciowego rachunku zdan”, Compies

rendus des séances de la Société des Sciences et des Lettres de Varsovie 24 (1930, -

cl. iii.

55T Stupecki, —“Pely —tréjwartodciowy—rachunek—zdat™, - Annales Universiz‘atis
Mariae Curie-Skiodowska, vol.' I, Nr 3, Sectio F, Lublin 1946,
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It is easy to see on the ground of the matrix M, that in this system the
formula :
™  CpCpI'p = CpCpNCpNp

is verified, and yields not only I"Cpp for p/Cpp, but also the Aristotelian
paradoxical rule. I think therefore that my three-valued modal logic

cannot be-regarded-as-an-adequate-system-of modal logic.

The same remark should be made about the Lewis’s systems of “strict
implication”. The function “p strictly implies ¢” is defined by Lewis by
the expression “It is not possible that p and not g”. %) From this defini-
tion we can easily deduce that the formula “p strictly implies.¢” is an
asserted apodeictic proposition. The systems of Lewis are certainly very
interesting and may have their own merits; T think, however, that they
cannot be regarded as adequate systems of modal logic.

5. Modal logic is important as a theory of possibility. There exist true
problematic propositions which would not be true as assertoric propo-
sitions. There are other true propositions which cannot be proved
without introducing possibility. Both kiads of proposition extend our
knowledge beyond the stock of truths which can be got by the non-
modal logic.

I shall explain here an application of my £.-modal system to arithmetic
which throws a singular light on the meaning of the so caIled “existential
quantifier”. From the principle of identity

5.1 b Cpp
we get by substitution
5.1p/pa x 52.
5.2 . Céaga,
and, by the rule of quantifiers denoted by 2, formula 5.3:
5.2 D2a x 5.3.
53 - I~ Cpa Yada.
In words: “if ¢ of a, then for some a ¢ of a”, or “if ¢ of a, then there
exists such an a that ¢ of a”. “a” denotes any positive integer, i.e. any

number of the sequence 1, 2, 3, ..., in inf,

1 C. I. Lewis and C. H. Langford, Symbolic Logic, New York and Lom‘lon
1932, p. 124.
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By means of the functors 4 and [ (see above section 3) it is possible to
construct true expressions of the form ) aga, though there exists mo
positive integer a that would verify q.')a The simplest expression of this
kind is the followmg one:

5.4 b X aKA@laVLla,

where “L14” means “1 is less than @”. For a =1, @lais true and Llgis
false, or Ola =1 and Lla=4; for a > 1, Ola is false and Lla is
true, or @la = 4 and L_léz = 1. We have therefore:

o= — KMPh=K12,——
ifa> 1 then KAOlaVLla = KA471 = K31.

Now according to the matrix for Kpg = NCpNg:

K| 1234
1123 4
202 2 4 4
3] 343 4
4] 4 4 4 4

the conjunction K12 = 2, and K31 = 3, j.e. none of them is equal to 1.

Hence it appears that mo positive integer verifies the conjunction
KA@laVLla Nevertheless the quantified expression Y aKA@laPLla
is true. 1 give here a full proof of this theorem based on asserted for-
mulae of the ¥-modal system and on three elementary arithmetical theses.

The premises
 Cpp (149).
—CCpqCCqrCpr (17, 22, 23).
~ CNpCpg Q0): ==
[~ CpCqKpg (16).
I~ CpCqKgp (19).
|~ CCprCCqrCApgr (24).
— Cpdp.(15).
 Cpp (18).

="CCpgCripy(21):
- AApPp (24).
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= @aa (15)  (a=a).
F="NLaa 20y (a < a).
|- LaZal (18) (2 < at+1).

The deduction

1p/KA®1aVLia, X2a x 14.

- CKA@laVLla ) akAOlaVLla (17, 23).
7p/011 x Clla/l-15.

- 4611 (16).

4p/4O11, g/VL11 x C15-16. -

— CVLIIKA®IIZLIL (7).

2p/VL11, g/KABIIVLI1L, v/} aKA®laVLla x C16—
—Cl4af1-17.

- CVL11 Y aRAOlaFLla (24).

8p/L1EI1 X Cl3a/1-18.

I PL1Z11 (19).
5p/VL1E11, g/AO1E11 x C18-19.
- CA@1E11KAO1E11FLIELL (22).
3p/L11, g/@1511 x C12af1-20.

- CL1101511 (21).

9p/L11, g/@1511 X C20-21.

- CAL11401511 (22).

2p/AL11, g/A@1E11, r/KAG1E11FLIE1l X C21 -

-C19-22.

|~ CAL11KA®1Z11V L1511 (23).

2p/AL11, g/RAGIEIIVLIELL, r/ D] aRAO1af Llax C22 —
—~Cl4a/E11-23.

— CAL11 ) aKAB@1aF L1a (24).

6p/AL11, g[VL11,r Y aKAOLafLlax C23-C17~
—C10p/L11 - 24,

[~ DakA@1lavLla.
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If follows from this consideration that it would be wrong to translate ;5
the expression ), a by the phrase “for some a” or “there exists such an ,
a that”. In order to express in words a formula of the shape >, aga, we
must first transform it into the equivalent N [ | aNoa, and then say accord- |
ingly: “It is not the case that for all @ not ¢ of a.” It seems to me that the
philosophical implications of this logical fact may be of some impor-
tance.
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