

gnuplot Cookbook

Over 80 recipes to visually explore the full range of features
of the world's preeminent open source graphing system

Lee Phillips

BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

gnuplot Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1170212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-724-9

www.packtpub.com

Cover Image by Aaron Grove (aaron@blowfishstudios.com)

Credits

Author
Lee Phillips

Reviewers
Andreas Bernauer

David Millán Escrivá

Acquisition Editor
Usha Iyer

Lead Technical Editor
Dayan Hyames

Technical Editors
Sonali Tharwani

Vishal D’souza

Copy Editor
Laxmi Subramanian

Project Coordinator
Kushal Bhardwaj

Proofreader
Joanna McMahon

Indexers
Tejal Daruwale

Hemangini Bari

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Lee Phillips grew up on the 17th floor of a public housing project on the Lower East Side of
Manhattan. He attended Stuyvesant High School and Hampshire College, where he studied
Physics, Mathematics, and Music. He received a Ph.D. in 1987 from Dartmouth in theoretical
and computational physics for research in fluid dynamics. After completing postdoctoral work
in plasma physics, Dr. Phillips was hired by the Naval Research Laboratory in Washington, DC,
where he worked on various problems, including the NIKE laser fusion project. Dr. Phillips is
now the Chief Scientist of the Alogus Research Corporation, which conducts research in the
physical sciences and provides technology assessment for investors.

I am grateful to the users of my gnuplot web pages for their interest,
questions, and suggestions over the years, and to my family for their
patience and support.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

About the Reviewers

Andreas Bernauer is a Software Engineer at Active Group in Germany. He graduated at
Eberhard Karls Universität Tübingen, Germany, with a Degree in Bioinformatics and received
a Master of Science degree in Genetics from the University of Connecticut, USA. In 2011, he
earned a doctorate in Computer Engineering from Eberhard Karls Universität Tübingen.

Andreas has more than 10 years of professional experience in software engineering.
He implemented the server-side scripting engine in the scheme-based SUnet web server,
hosted the Learning-Classifier-System workshops in Tübingen. He has been the reviewer
for numerous scientific articles, research proposals, and books, and has been a judge in the
German Federal Competition in Computer Science on several occasions. His main interests
are functional programming and machine-learning algorithms.

David Millán Escrivá was 8 years old when he wrote his first program on 8086 PC with
Basic language. He has more than 10 years of experience in IT. He has worked on computer
vision, computer graphics, and pattern recognition. Currently he is working on different
projects about computer vision and AR.

I would like to thank Izanskun and my daughter Eider.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Plotting Curves, Boxes, Points, and more 7

Introduction 8
Plotting a function 8
Plotting multiple curves 10
Using two different y-axes 11
Making a scatterplot 13
Plotting boxes 14
Plotting circles 16
Drawing filled curves 17
Handling financial data 20
Making a basic histogram plot 21
Stacking histograms 22
Plotting multiple histograms 24
Dealing with errors 25
Making a statistical whisker plot 27
Making an impulse plot 29
Graphing parametric curves 31
Plotting with polar coordinates 32

Chapter 2: Annotating with Labels and Legends 35
Introduction 35
Labeling the axes 36
Setting the label size 38
Adding a legend 40
Putting a box around the legend 43
Adding a label with an arrow 44
Using Unicode characters [new] 46
Putting equations in your labels 47

ii

Table of Contents

Chapter 3: Applying Colors and Styles 51
Introduction 51
Coloring your curves 52
Styling your curves 54
Applying transparency [new] 56
Plotting points with curves 57
Changing the point style 58
Changing the plot size 60
Positioning graphs on the page [new] 61
Plotting with objects [new] 62

Chapter 4: Controlling your Tics 65
Introduction 65
Adding minor tics 66
Placing tics on the second y-axis 67
Adjusting the tic size 68
Removing all tics 69
Defining the tic values 71
Making the tics stick out 72
Setting manual tics 73
Plotting with dates and times 76
Changing the language used for labels [new] 78
Using European-style decimals [new] 79
Formatting tic labels 80

Chapter 5: Combining Multiple Plots 83
Introduction 83
Arranging an array of plots 84
Positioning plots manually 85
Creating an inset plot 87
Multiplotting with labels and arrows 89

Chapter 6: Including Plots in Documents 93
Introduction 93
Introducing gnuplot's high-quality graphics formats [new] 94
Adding a plot to a paper using LaTeX 97
Assembling a document using TikZ and LaTeX [new] 99
Assembling a document using epslatex 103
Using gnuplot within LaTeX 106
Creating presentation slides with incrementally displayed graphs 108
Including a plot in a web page 112
Making an interactive plot for the Web [new] 114

iii

Table of Contents

Chapter 7: Programming gnuplot and Dealing with Data 117
Introduction 118
Scripting gnuplot with its own language 118
Plotting on subintervals 121
Smoothing your data 123
Fitting functions to your data 124
Using kdensity smoothing to improve on histograms [new] 126
Creating a cumulative distribution [new] 127
Talking to gnuplot with C 128
Scripting gnuplot with Python 129
Plotting with Clojure 131
Handling volatile data [new] 132

Chapter 8: The Third Dimension 135
Introduction 135
Making a surface plot 136
Using coordinate mappings 139
Coloring the surface 141
Making a contour plot 144
Making a vector plot 147
Making an image plot or heat map 149
Combining contours and images 152
Combining surfaces with images 153
Plotting a path in 3D 157
Drawing parametric surfaces 158

Chapter 9: Using and Making Graphical User Interfaces 161
Introduction 161
Using the Java gnuplot GUI JGP 162
Using the Emacs GUI 164
Sharing with Plotshare 166
Writing a web GUI for gnuplot 168

Chapter 10: Surveying Special Topics 175
Introduction 175
Avoiding overlapping labels 176
Plotting labels from files 178
Mapping the Earth 180
Making a labeled contour plot 183
Softening the axes 184
Putting arrows on the axes 186
Plotting with pictures 187
Breaking an axis 189

iv

Table of Contents

Fitting the grid to the data 192
Coloring the axes 193

Appendix: Finding Help and Information 197
Index 199

Preface

Why gnuplot?
gnuplot is a free, open source plotting program that has been in wide use since 1986.
It's used as the graphics backend by many other programs, so plenty of people use gnuplot
without knowing it. If you've used Octave, Maxima, statist, gretl, or the Emacs graphing
calculator, you've already used gnuplot.

gnuplot was originally designed to visualize scientific data, but its use has expanded to
encompass every domain where sophisticated and accurate plotting is required. gnuplot
is used in science, engineering, sociology, mapping, business, finance, and computer
systems and network monitoring.

gnuplot excels at complex 3D graphing with hidden-line removal and at the rendering
of surfaces and contours. It can produce almost any type of graph imaginable (except for
pie-charts—but it can be convinced to do this, too, as we'll show later!) for a dizzying array
of output devices, and can save plots in almost any type of common file format (and some
uncommon ones). It can be installed on any type of computer system you are likely to
encounter; there are binaries available for Windows and the sources can be compiled on
most reasonably modern machines. I have compiled the latest version (4.4) of gnuplot on
both Linux and Macintosh (OS X) computers and verified that all of its advanced features are
fully available on both of these architectures. The recipes in this book that illustrate features
newly appearing in version 4.4 are marked with [new].

gnuplot can easily be automated. It has its own scripting language and can be controlled from
many general-purpose programming languages. gnuplot can also be incorporated into various
publishing and document creation workflows to help create professional books, papers, and
online documents.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface

2

Why this book?
Because of gnuplot's many years of deployment and sophisticated community of expert users,
help is usually easy to find in some form. If you are trying to solve a tricky plotting problem,
there is a reasonable chance that someone online has either figured it out or is willing to
share some ideas about how it might be done.

However, there is little available in the form of a convenient reference with the structure of a
cookbook, where you can look for an example of the type of plot you are trying to create and
see instantly how it can be done, with a runnable example.

This book is designed to be that combination of reference and tutorial. It goes beyond
plotting recipes, however, and will show you how to incorporate your graphs into documents,
how to create interactivity, how to program and automate gnuplot, and more. Each example
is in the form of a recipe with immediately runnable code in electronic form, and with clear
explanations that will show you how to modify the recipe to solve your particular problem.
Each recipe is illustrated with the plot created by the procedure, so you can use the book
as a visual index that will allow you to quickly find the solution you are looking for.

One of our goals is to show you the major new features in the latest release version of gnuplot,
version 4.4.3. Even experienced users of gnuplot are likely to find these sections useful, as we
include an illustrative recipe for each new feature; these are specially marked so that features
making their first appearance in gnuplot 4.4 can be located quickly. These new features include
the use of Unicode characters, transparency, new graph positioning commands, plotting objects,
internationalization, circle plots, interactive HTML5 canvas plotting, iteration in scripts, lua/tikz/
LaTeX integration, cairo and SVG terminal drivers, and volatile data.

What this book covers
Chapter 1, Plotting Curves, Boxes, Points, and more, covers the basic usage of Gnuplot:
how to make all kinds of 2D plots for statistics, modeling, finance, science, and more.

Chapter 2, Annotating with Labels and Legends, explains how to add labels, arrows, and
mathematical text to our plots.

Chapter 3, Applying Colors and Styles, covers the basics of colors and styles in gnuplot,
plus transparency, and plotting with points and objects.

Chapter 4, Controlling Your Tics, will show you how to get your tic marks and labels just right,
along with gnuplot's new internationalization features.

Chapter 5, Combining Multiple Plots, shows how to arrange a set of graphs on the page, and
make inset plots.

Chapter 6, Including Plots in Documents, delves into incorporating your plots into technical
documents, presentations, and web pages.

Preface

3

Chapter 7, Programming gnuplot and dealing with data, covers how to use gnuplot's built-in
programming constructs as well as its ability to be used from any programming language, and
how to use the new volatile data features.

Chapter 8, The Third Dimension, shows how to plot surfaces, vectors, heat maps, and lines in
a 3D space.

Chapter 9, Using and Making Graphical User Interfaces, introduces several GUIs for gnuplot
and includes writing a web application with gnuplot on the backend.

Chapter 10, Surveying Special Topics, covers several special techniques and applications:
mapping; labeled contours; colored and broken axes; pictures; and more.

Appendix, Finding help and information, provides a brief list of sources of gnuplot information
and education.

What you need for this book
The prerequisites for this book are that you have an installation of gnuplot available for your
use and that you are familiar with elementary gnuplot operation (starting gnuplot on the
command line and entering a plot command). You should be able to create plots on one of the
screen terminals and to save a plot file, as well. Other than that, no specialized knowledge is
required to make use of this guide; although we may take examples from various specialized
fields, they are incidental to the recipes, which are focused on creating particular types
of graphs. The examples of controlling gnuplot from programming languages use simple
examples that can be understood even if you don't have experience with the languages
used in the recipes.

Who this book is for
Whether you are an old hand at gnuplot or have just started using it, this book is a convenient
visual reference that covers the full range of gnuplot's capabilities, including its latest
features. This volume is ideal for the gnuplot user who needs complete, runnable scripts
to solve specialized graphing problems and clear explanations that will allow him or her to
immediately modify them for the tasks at hand.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "To make a file with data that forms a parabola
flipped upside down, tell gnuplot to set table 'parabola.text'"

Preface

4

A block of code is set as follows:

set y2tics -100, 10
set ytics nomirror
plot sin(1/x) axis x1y1,100*cos(x) axis x1y2

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

set samples 1000
set parametric
plot sin(7*t), cos(11*t) notitle

Any command-line input or output is written as follows:

plot 'randomnormal.text' volatile

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "We clicked on the tab Add
plot commands to get the window."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Plotting Curves,

Boxes, Points,
and more

This chapter contains the following recipes:

 f Plotting a function

 f Plotting multiple curves

 f Using two different y-axes

 f Making a scatterplot

 f Plotting boxes

 f Plotting circles

 f Drawing filled curves

 f Handling financial data

 f Making a basic histogram plot

 f Stacking histograms

 f Plotting multiple histograms

 f Dealing with errors

 f Making a statistical whisker plot

 f Making an impulse plot

 f Graphing parametric curves

 f Plotting with polar coordinates

Plotting Curves, Boxes, Points, and more

8

Introduction
We begin the book with a set of recipes that cover gnuplot's one-dimensional graph styles.
A 1D graph refers to the plotting of data or mathematical functions where the values plotted
depend on a single variable. Examples are simple mathematical functions, such as y = sin(x),
or 1D data, such as the temperature in a particular location versus time. The plotting of
quantities that depend on two variables is covered starting in Chapter 8, The Third Dimension,
where we show how to make surface, contour, and image plots.

Gnuplot can create a vast array of 1D plot types in a large number of styles. The recipes
in this chapter survey all of the major types of 1D graph, with an example that can be run
immediately to produce the result in the illustration. For each example, we have provided
enough explanation in the There's more... section for you to extend and adapt the recipe for
your particular problem. We assume that you have gnuplot up and running and are able to
create plots on one of the terminals; the recipes in this chapter work on every terminal or
output file type.

Plotting a function
gnuplot can be used as a tool to interactively explore the structure of mathematical functions,
as well as to create illustrations for publication or education. It has built-in knowledge of
both elementary functions, such as sine and cosine, and some special functions, such
as Bessel functions and elliptic integrals. The following figure shows the plotting of the
besj0(x) function:

Chapter 1

9

Getting ready
Start up an interactive gnuplot session and make sure that your graphic terminal of choice is
selected, and working, using the set term command (for example, at the console you simply
type gnuplot, and, to change the default terminal to X Windows, type set term x11).

How to do it…
Type plot besj0(x) at the console. The plot in the figure should pop up immediately.

There's more…
Gnuplot understands a big handful of mathematical functions, listed in Section 13.1 of
the official manual (the official gnuplot documentation can be found at gnuplot's home,
http://gnuplot.info/). It also understands all the basic mathematical operators,
with a syntax similar to Fortran or C, so you can combine functions into expressions,
as shown in the following command:

plot [-5:5] (sin(1/x) - cos(x))*erfc(x)

In the previous command, we have also shown how to use the [a:b] notation to limit the
plot to a specified range on the x-axis.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Plotting Curves, Boxes, Points, and more

10

Plotting multiple curves
You will often want to plot more than one curve on a single graph, all sharing the same axes.
This is simple in gnuplot: just separate the functions or datafiles by commas, and gnuplot will
plot them in a sequence of colors or curve styles, with a legend so you can identify them. The
following figure shows the plotting of multiple curves:

Getting ready
It will be useful to have some datafiles on your disk for use with some of the plotting recipes.
You could make them by hand with a text editor or write a program in your favorite language
to generate them, but gnuplot can do this itself. To make a file with data that forms a parabola
flipped upside down, tell gnuplot to set table 'parabola.text'. Make sure to include
the quotes around the filename. Then say plot -x**2. This writes a table out to the file
parabola.text rather than making a picture. Now, say unset table. You should have a
file called parabola.text in the directory in which you started gnuplot. Keep it around so
we can use it later.

Chapter 1

11

How to do it…
After setting your terminal back to the graphics device you want to use at the gnuplot console,
type the following command:

plot [-1:1] 'parabola.text', -x, -x**3

How it works…
Gnuplot plots the curves using three different colors, dash styles, or line thicknesses,
depending on the terminal in use, with a legend so you can tell them apart. The functions are
plotted as smooth curves, as we did earlier, and the data from the file is plotted as a series of
points, by default; one for each point in the range. This can all be adjusted, as we shall see in
Chapter 3, Applying Colors and Styles.

Take a look at the datafile that gnuplot created to see the format it understands. After several
comment lines beginning with the "#" character, we find a series of x coordinates and y values.
The last character on each of these lines is a letter: "i" if the point is in the active range, "o" if
it is out of range, or "u" if it is undefined.

Using two different y-axes
Sometimes our curves can or should not share the same y-axis. Gnuplot handles this with
its tics commands, which we cover in greater detail in Chapter 4, Controlling your Tics. The
following figure is a plot of two functions covering very different ranges; if the two curves were
plotted against the same y-axis, one would be too small to see:

Plotting Curves, Boxes, Points, and more

12

How to do it…
The following simple three-line script will create the previous figure:

set y2tics -100, 10
set ytics nomirror
plot sin(1/x) axis x1y1,100*cos(x) axis x1y2

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works…
Gnuplot can have two different y-axes and two different x-axes. In order to define a second
y-axis, use the y2tics command; the first parameter is the starting value at the bottom of
the graph, and the second is the interval between tics on the axis. The command set ytics
nomirror tells gnuplot to use a different axis on the right-hand side, rather than simply
mirroring the left-hand y-axis. The final plot command is similar to the ones we've seen
before, with the addition of the "axis" commands; these tell gnuplot which set of axes to
use for which curve.

There's more…
One of our functions, sin(1/x), oscillates infinitely quickly near x = 0. Experiment
with issuing the command set samples N before the plot command to see how
more information is plotted near the singularity at the origin if you use larger values
of N.

You can have two x-axes as well (but be careful, this can often lead to plots that are difficult
to understand). The following script is used to set the ranges of the two x axes to be different:

set x2tics -20 2
set xtics nomirror
set xrange [-10:10]
set x2range [-20:0]
plot sin(1/x) axis x1y1, 100*cos(x-1) axis x2y2

The previous script creates a plot that sets different scales on the top and bottom axes as
well as on left and right axes; it uses the axis command in the last line to specify against
which axes the curves are plotted.

Chapter 1

13

One problem with the graphs in this recipe is that, although there is a legend generated
automatically to show which curve is a plot of which function, there is nothing to show us
which curve is plotted against which axis. In Chapter 2, Annotating with Labels and Legends,
you will see how to put informative labels and arrows on your plots to address this.

Making a scatterplot
If you are in possession of a collection of measurements that, as is usually the case, is subject
to random errors, an attempt to simply plot a curve through the measurements may result
in a chaotic graph that will be difficult to interpret. In these cases, one usually begins with a
scatterplot, which is simply a plot of a dot or small symbol at each data point. An examination
of such a plot often leads to the discovery of correlations or patterns.

Getting ready
To make this recipe interesting, we need some slightly random-looking data. You may have
some available, in which case you merely need to ensure that it is in a format that gnuplot
can read. Simply arrange the data so that each line of the file contains one data point with
space-separated x and y values:

x1 y1
x2 y2
...

Then name the file scatter.dat.

Plotting Curves, Boxes, Points, and more

14

If you don't have such a file of your own handy, use the one called scatter.dat that we
have provided. Make sure that the file is in the directory in which you have started gnuplot,
so that the program can find it.

How to do it…

Some of the recipes in this book will not work as intended if entered in the
same interactive session unless you give the reset command first. This is
because these scripts make settings that change gnuplot's default behavior.

Now simply tell gnuplot:

plot 'scatter.dat' with points pt 7

If you are using the file we provided, you will get a plot similar to the one shown in the
previous figure.

There's more…
You can plot the points using different symbols. Try plot 'scatter.dat' with dots to get
the smallest dot available to your terminal. For use with scatterplots of very large datasets, try
the following command:

plot 'scatter.dat' with points pt n

With different integers for n. pt stands for pointtype, and the different pointtypes available
are dependent on your terminal. Simply type test in gnuplot to see a demonstration of all the
pointtypes available for the currently selected terminal. You can find more about point and line
styles in Chapter 3, Applying Colors and Styles.

Plotting boxes
Gnuplot's box style is similar to a bar chart, with each value plotted as a box extending up
from the axis. You can have the boxes filled with patterns, solid colors, or leave them empty.

This style is commonly used either as a type of histogram (covered later in this chapter)
or as a way to compare a set of disparate items. The following figure plots boxes using
the fill pattern:

Chapter 1

15

How to do it…
It just takes the following script to get the previous figure:

set style fill pattern
plot [-6:6] besj0(x) with boxes, sin(x) with boxes

How it works…
The first command tells gnuplot to fill the boxes with a fill pattern, cycling through the patterns
available on the selected output device for each plot on the graph. The second command
plots the two specified functions using the boxes style, which draws a box from the x-axis to
the y value for each point.

There's more…
You can specify empty boxes with set style fill empty or a solid color with set style
fill solid, and of course you can select the fill style explicitly with set style fill
pattern n, where n is any integer associated with a fill style in the selected terminal.

Plotting Curves, Boxes, Points, and more

16

Plotting circles
This recipe will introduce gnuplot's ability to place objects at locations specified in a datafile
or by mathematical functions, and to define their properties dynamically to convey information
about the data. The following figure shows how gnuplot plots circles:

Getting ready
We have provided a datafile called parabolaCircles.text, which is similar to the
parabola.text file that we created previously with gnuplot's help, but with a third column
that consists of some random numbers. Make sure this file is in your current directory so that
gnuplot can find it. Alternatively, use any datafile you like with three columns.

How to do it…
Enter the following script to make a circle plot:

set key off
plot "parabolaCircles.text" with circles

How it works…
For each point in the datafile, we get a circle with a radius determined by the number in
the third column. Here the radii are random, but in practice you can encode some value of
interest in the radii, in effect providing a way to plot two values for each point on the x-axis.

Chapter 1

17

For example, the y coordinate can represent a measurement and the radii can indicate the
uncertainty in the measurement; or we can get meteorological data and can plot temperature
versus time, with the circle radius representing humidity.

The first line in the script turns off the legend that otherwise gnuplot adds by default.

Drawing filled curves
When you want to highlight the difference between two curves or datasets, or show when your
data values exceed some reference value, the filled curve style, with some encouragement,
can be made to serve. The following figure shows an example of filled curves:

Getting ready
For the main recipe, you should be ready to go. If you want to try the commands for creating
the second plot in this section, as shown in the next figure, you need another datafile
intersection, which we have provided. This consists of the numerical output of a program
that simply calculated the coordinates of a straight line and a parabola. You can substitute
your own data, as long as it is the format described in the following There's more... section.

Plotting Curves, Boxes, Points, and more

18

How to do it…
The following command creates the previous figure:

plot [0:50] besy0(x) with filledcurves above y1=0.07

How it works…
This simple use of the filledcurves style colors in the area showing when the plotted Bessel
function exceeds 0.07. We let gnuplot use the default color and shading style.

There's more…
You can change the color (to blue, for example) by appending lt rgb blue to the plotting
command. If you want to change the fill style to use a pattern rather than a solid color,
precede the plotting command with the following command:

set style fill pattern n

In this command n is an integer that specifies the fill style from those available in your
terminal. To see a list of these, just issue the command test.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

19

Suppose you are plotting data from a file, and the data is arranged in a table in the
following format:

x1 y1 z1
x2 y2 z2
x3 y3 z3
...

You can fill in the difference between the two curves y versus x and z versus x with the
following command:

plot <'file'> using 1:2:3 with filledcurves

Following is the complete script for creating the plot shown in the previous figure:

set style fill pattern 5
plot 'intersection' using 1:2:3 with filledcurves,\
 '' using 1:2 lw 3 notitle, '' using 1:3 lw 3 notitle

This plot shows the difference between a parabola and a straight line.

The fill pattern is similar to what you will get with the X11, Postscript, and some other
terminals, but, as with all patterns and styles selected by an index number, this is dependent
on the terminal. On the Macintosh using the Aquaterm terminal, for example, all the fill
patterns are solid colors, and selecting an index merely changes the color.

The plot command used here exploits some features that we have not covered before.
The using keyword selects the column from the datafile; using 1:2:3 means to plot all
columns, and the filledcurves style knows how to fill in the difference between the curves
in this case. After this, we plot the parabola and line separately, using a blank filename to
select the previous name. The purpose of the last two plot components of the command is to
plot the thick lines that delimit the filled area; the lw 3 chooses the line thickness, and the
notitle tells gnuplot not to add an entry into the legend for these plot components, which
would be redundant.

But what if you want to make something similar to the previous figure without making an
intermediate datafile? You can make a plot that fills the area between two functions by using
gnuplot's special filenames. This is a facility that allows you to do things that normally can
only be done with datafiles right on the command line or in a script, without having to make
a datafile.

Following is another way to get the previous figure:

set style fill pattern 5
plot [0:1] '+' using 1:(-$1):(-$1**2) with filledcurves,\
 -x lw 3 notitle, -x**2 lw 3 notitle

The + refers to a fictitious datafile where the first column consists of the automatically
calculated sample points.

Plotting Curves, Boxes, Points, and more

20

We've already encountered another of gnuplot's special files, the file called '' (an empty
string), which refers to the previously named datafile, and we used it to avoid having to type
its name multiple times.

Handling financial data
Although gnuplot was originally envisioned as a scientist's companion, it has proven to be a
worthy and reliable friend to financial analysts. Financial plotting comes with its own set of
complex problems, some of which we'll have to defer to later chapters; in the following figure,
we illustrate the basic financial plotting style:

This type of plot will be familiar to you if you follow the stock market.

Getting ready
Sample financial data is essential for illustrating financial plotting. Fortunately, the gnuplot
distribution comes with an appropriate sample datafile. In case you don't have it, we have
provided a copy called finance.dat. Make sure it's in your current directory so that gnuplot
can find it. You are welcome, of course, to use your own data, but it must be in the correct
format. Each line of the file represents a separate data point, and consists of (at least) five
numbers, separated by spaces: date open low high close.

Chapter 1

21

An example of a line from such a datafile would look similar to the following:

3/11/2011 76.15 76.63 75.2 75.35

How to do it…
Enter the following commands while you are in the directory containing the datafile:

set bars 2
plot [0:100] 'finance.dat' using 0:2:3:4:5 notitle with financebars

How it works…
This makes the conventional financial graph showing the high, low, open, and close prices
for a stock. If you are reading this recipe, you no doubt already know why you want this type
of plot.

The default size of the tics for the opening and closing prices is quite small; the first
command makes it longer. The second command sets the range, chooses the file,
and specifies the columns to use for the finance plot.

Making a basic histogram plot
This recipe shows you how to make the simplest step-type histogram. Later, we will build
histogram and statistical plots on this, but sometimes this is all you need. The following
figure shows a simple step-type histogram:

Plotting Curves, Boxes, Points, and more

22

Getting ready
We're going to plot a part of our file parabola.text, so make sure that's still available.
Of course, if you have your own sorted statistical data that will probably be more interesting.

How to do it…
Type the following command to make a histogram plot:

plot [-2:2] 'parabola.text' with histeps

How it works…
As we can see, rather than drawing a line through a series of x-y points, the histeps style
draws a staircase composed of horizontal and vertical line segments. The vertical lines
are drawn not at the actual x-coordinates given in the data, but at the average values of
neighboring x-coordinates. This is the usual way to construct a histogram, where each box
represents "how much" is contained in each interval between two x-values.

Stacking histograms
A more interesting type of histogram plot shows the distribution of some quantity with
a second distribution stacked on top. This provides a quick way to visually compare two
distributions. The values of the second distribution are measured not from the axis,
but from the top of the box showing the first distribution. The following figure shows
a stacking histogram:

Chapter 1

23

You might have noticed that the information printed in the legend on the upper-right corner is
not very descriptive. This is the default; in the next chapter, you will learn how to change it to
whatever you want.

Getting ready
We are going to reuse our datafile parabolaCircles.text.

How to do it…
The script that produced the stacked histogram is as follows:

set style fill solid 1.0 border lt -1
set style data histograms
set style histogram rowstacked
plot [0:40] 'parabolaCircles.text' using (-$2),\
 '' using (20*$3) notitle

How it works…
The first line requests histogram bars filled with a solid color, and with a black border.
Without this, the bars are plotted unfilled, which makes the plot more difficult to interpret.

The next two lines specify that data from files should be plotted using histograms; the
rowstacked style means that data from each row in the file will be plotted together in one
vertical stack.

In the last line, we have chosen to illustrate how to do simple calculations on data columns;
the expression is enclosed in parentheses, the column number is preceded with a dollar sign,
and the familiar Fortran or C type syntax works just the way you would expect. So we have
flipped our parabola back "right side up" with a negative sign, and increased the magnitude
of our random numbers by multiplying by 20. (This file was used to plot circles with random
diameters in the Plotting circles recipe in this chapter. The random numbers were scaled to
give appropriately sized circles, but are too small to give a good illustration of the stacked
histogram here. Rather than generating new data, some simple arithmetic allows us to reuse
the file.)

Plotting Curves, Boxes, Points, and more

24

Plotting multiple histograms
Rather than stacking the histograms, you can plot them side by side. The following figure
shows the same data as in the previous plot, but has two separate sets of histograms plotted
beside each other:

To make room, the histogram boxes are automatically drawn thinner. The different data sets
are distinguished by different fill colors or patterns, depending on terminal, and/or different
styles for the lines delineating the histogram boxes.

Getting ready
We are going to continue to wear out our datafile parabolaCircles.text.

How to do it…
Following are the commands used to produce a multiple histogram plot:

set style fill solid 1.0 border lt -1
set style data histograms
plot [0:40] 'parabolaCircles.text' using (-$2),\
 '' using (20*$3) notitle

Chapter 1

25

How it works…
The shrewd reader will have noticed that this is the same recipe as the previous one, with
the line set style histogram rowstacked removed. Here, we see the default multiple
histogram style.

Dealing with errors
Along with data often comes error, uncertainty, or the general concept of a range of values
associated with each plotted value. To express this in a plot, various conventions can be used;
one of these is the "error bar", for which gnuplot has some special styles. The following figure
shows an example of an error bar:

The previous figure has the same data that we used in our previous recipe, Plotting circles,
plotted over a restricted range, and using the random number column to supply "errors",
which are depicted here as vertical lines with small horizontal caps.

Getting ready
Keep the datafile parabolaCircles.text ready again.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Plotting Curves, Boxes, Points, and more

26

How to do it…
Following is the script for producing a basic data set plot with errorbars:

set pointsize 3
set bars 3
plot [1:3] 'parabolaCircles.text' using 1:(-$2):3 with errorbars,\
 '' using 1:(-$2):3 pt 7 notitle

How it works…
We are using our trusty parabola plus the random number file again; here the random
numbers will stand in for errors.

The default point size in gnuplot is quite small; the first line in the recipe increases this. This
is especially important for presentations, where increasing the size of various plot elements
will make your projected slides far easier to see. The second line increases the size of the
small horizontal bars on the ends of the error bars; the default is rather small and hard to see.
The third line selects the range, flips the parabola as before, and selects the error bars style.
If we omit the portion after the comma, the error bars alone are plotted, with another small
horizontal bar indicating the data values. This is OK, but the graph is easier to interpret if we
plot a more distinct symbol at each data point; that's what the component after the comma
does. We use the special file designator '' to mean the file already mentioned; pt is short
for point type, and pt 7 gives a solid circle on most terminals. Finally, notitle prevents a
second, redundant entry in the legend.

There's more…
Error bars can be combined with some of the other plot styles. To create the following
figure, which combines a box plot with error bars, change the last line in the recipe to
the following commands:

set style fill pattern 2 border lt -1
plot [1:3] 'parabolaCircles.text' using 1:(-$2):3 with boxerrorbars

We've just changed errorbars to boxerrorbars, but first we set the fill pattern to a fine
hatching pattern, (this will depend on your output device, try the command test to see them)
and asked for a black border to be drawn around the boxes.

Chapter 1

27

This is the same data plotted in the previous figure, in a different style.

Making a statistical whisker plot
Also known in the statistics world as a "box and whisker plot" or simply as a boxplot, the
statistical whisker plot is a series of symbols, each one showing the mean value of a set of
measurements, the extent of the central part of the measurements' or population's distribution,
and the extent of the remainder of the distribution excluding the "outliers" (the outliers
themselves are sometimes shown as dots, but we won't use that style here). This type of plot is
also sometimes used for financial price data rather than the finance plot that was the subject
of the Handling financial data recipe in this chapter. We will avoid the specialized language
of statistics and further discussion of the uses of these plots, but the statisticians among our
readers know why they're here. The following figure shows the depiction of a statistical whisker
plot using gnuplot:

Plotting Curves, Boxes, Points, and more

28

In the previous plot, typically, the boxes show the range of the central part of the data
distribution; the short horizontal line within the boxes shows the value of the mean; and
the vertical lines extending above and below the boxes show the range of the bulk of the
distribution excluding the outliers.

Getting ready
We've borrowed the demo file candlesticks.dat that comes with the gnuplot distribution;
make sure it's in your current directory. If you want to use your own data instead, each line of
the file must be in the following format:

x whisker_min box_min mean box_high whisker_high

How to do it…
Feed the following script to gnuplot to get the whisker plot:

set xrange [0:11]
set yrange [0:10]
set boxwidth 0.2
plot 'candlesticks.dat' using 1:3:2:6:5 with candlesticks lt -1 lw 2
whiskerbars,\
 '' using 1:4:4:4:4 with candlesticks lt -1 lw 2 notitle

How it works…
The first two lines set the x and y ranges of the axes; they are set to give a little room around
the data. The next line sets the boxwidth—the width of the rectangle showing the extent of
the central part of the distribution (the default is very skinny). Next comes the plot command,
split here over two lines. The order of the fields expected by the candlestick style is x box_min
whisker_min whisker_high box_high, which is not in the same order as our datafile,
so we need to use the using command to put the columns in the right order for plotting. The
first plot command also specifies the line type lt to be -1 for solid black and a line width is
set to 2; whiskerbars means put the little caps on the end of the whiskers. The second plot
command—starting on the last line—plots from the same datafile, but employs a trick to use the
4th column—containing the mean value—repeatedly, effectively collapsing the box ends and
whiskers down to the mean, all just to plot the little horizontal line in the middle of the boxes.
This may seem like a convoluted method, but it ensures that the lines indicating the mean
values are in the right places and have exactly the correct width to lie within the boxes.

Chapter 1

29

There's more…
Some people prefer their whisker plot boxes to be filled in with a solid color or pattern.
To get this, before issuing the plot command try the following command:

set style fill solid

or

set style fill pattern n

Making an impulse plot
Impulse or stick plots are another way to represent discrete points. If the line thickness is
made large, the impulse plot can be made to look like a bar chart.

Plotting Curves, Boxes, Points, and more

30

How to do it…
The following script illustrates the use of the impulses style:

set samples 30
plot [0:2*pi] sin(x) with impulses lw 2

How it works…
The first command set the number of points used to sample or plot the function. The plot
command tells gnuplot to use the impulse style, which draws a line from the x-axis to each
y value; the thickness of the line is given by lw 2.

There's more…
A "stem plot" is sometimes used in electrical engineering. It is similar to the impulse plot, but
with a mark at the end of each stick; this allows the eye to more easily follow the trend of
the data; conversely, the sticks make it easier to read the graph, especially when the data is
sparse, compared with a simple point plot. Use the following recipe to create a stem plot of a
decaying sine wave, illustrated in the following figure:

set samples 50
plot [0:4*pi] exp(-x/4.)*sin(x) with impulses lw 2 notitle,\
 exp(-x/4.)*sin(x) with points pt 7

Chapter 1

31

As you can see, we have plotted the same function twice. The first time through plot the
impulses, as in the previous script, and the second time we plot the function again with
points to draw the dots.

The previous plot shows a typical exponentially damped sine wave; it represents, for example,
the motion of a pendulum with friction.

Graphing parametric curves
Gnuplot can graph functions whose x and y values depend on a third variable, called a
parameter. In this way, more complicated curves can be drawn. The following plot resembles
a lissajous figure, which can be seen on an oscilloscope when sine waves of different
frequencies are controlling the x and y axes:

How to do it…
The following script creates the previous figure:

set samples 1000
set parametric

plot sin(7*t), cos(11*t) notitle

Plotting Curves, Boxes, Points, and more

32

How it works…
We want more samples than the default 100 for a smoother plot, hence the first line. The
second line (highlighted) changes the way gnuplot interprets plot commands; now the two
functions (in the third line) are understood to provide x and y coordinates in the plane as the
parameter t is varied. Once we say set parametric, then we can say plot x(t), y(t),
and the plot will trace out a curve given by x and y as t is varied between the limits given
in trange.

There's more…
The range of values that t varies through to draw the plot defaults to [-5:5]. Try out different
ranges to see what happens by setting the trange. For example, you can say set trange
[0:2] and then replot to see the effect.

Plotting with polar coordinates
All the plots in this chapter up to now have implicitly used rectangular coordinates, usually
denoted as x and y. For certain types of information, however, polar geometry is the natural
coordinate system. In polar coordinates we have a radius, r, measured from the origin, usually
at the center of the graph, and an angle, θ, usually measured counter-clockwise from the
horizontal. On the gnuplot command line, the angular coordinate is called t by default. The
following is an example of a spiral illustration:

Chapter 1

33

Using polar coordinates we can plot spirals and closed curves that are impossible to define
explicitly using rectangular coordinates.

How to do it…
Following is an example of how to use polar coordinates to get the spiral shown in the
previous illustration:

set xtics axis nomirror
set ytics axis nomirror
set zeroaxis
unset border
set samples 500
set polar
plot [0:12*pi] t

How it works…
The first three lines create a pair of axes that intersect at the origin in the center of the
graph. This works for polar plots too, where we are measuring the radius from the center.
The unset border line removes the frame that has served up to now as axes for our
rectangular coordinate plots. Next, we increase the number of samples for a smooth plot.
The crucial, highlighted line set polar changes to polar (r-θ) coordinates from the default
rectangular (x-y). In the plot command, t is now a dummy variable that passes through the
given angular range (default [0:2*pi], changed to [0:12*pi] here), and the provided function
(r) is a function of t, in this case the identity, that yields a circular spiral.

2
Annotating with

Labels and Legends

This chapter contains the following recipes:

 f Labeling the axes

 f Setting the label size

 f Adding a legend

 f Putting a box around the legend

 f Adding a label with an arrow

 f Using Unicode characters [new]

 f Putting equations in your labels

Introduction
The graphs we created in the previous chapter served the purpose of illustrating the various
2D plot styles, but they were all missing a few things. For a graph to be useful in the real
world, it must be endowed with a title and various labels that explain what it is about and
how to interpret its assorted plot elements.

In this chapter, we revisit the 2D graph, creating one with a few curves, two different y-axes,
and shaded areas, and in each recipe, we add an additional informative decoration to the
plot. The graph remains the same, but in each recipe it will acquire more detailed annotation.
This chapter is all about how to make these annotations, not about the plotting itself.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Annotating with Labels and Legends

36

Labeling the axes
In this recipe, we add labels to our axes to explain what is being plotted and the significance
of the tics and numerical scales. We also add an overall title that will appear at the top of
the graph.

Getting ready
Make sure the supplied datafile ch2.dat is in your current directory. It is the result of adding
the first three terms in the Fourier series approximation to the square wave. It is not important
to understand what that means to follow the gnuplot recipes; we are using this file because it
leads to a good graph for the purpose of illustrating annotations and labeling.

How to do it…
Following is the script that produces the previous annotated graph:

set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]
set style fill pattern 5
set xlabel "Time (sec.)"

Chapter 2

37

Labeling the axes
In this recipe, we add labels to our axes to explain what is being plotted and the significance
of the tics and numerical scales. We also add an overall title that will appear at the top of
the graph.

Getting ready
Make sure the supplied datafile ch2.dat is in your current directory. It is the result of adding
the first three terms in the Fourier series approximation to the square wave. It is not important
to understand what that means to follow the gnuplot recipes; we are using this file because it
leads to a good graph for the purpose of illustrating annotations and labeling.

How to do it…
Following is the script that produces the previous annotated graph:

set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]
set style fill pattern 5
set xlabel "Time (sec.)"

set ylabel "Amplitude"

set y2label "Error Magnitude"

set title "Fourier Approximation to Square Wave"

plot 'ch2.dat' using 1:2:(sgn($2)) with filledcurves,\
 '' using 1:2 with lines lw 2 notitle,\
 '' using 1:(sgn($2)) with lines notitle,\
 '' using 1:(abs(sgn($2)-$2)) with lines axis x1y2

How it works…
The highlighted lines in the code are the labeling commands being introduced in this
recipe. The other commands are variations of code used in the recipes in the previous
chapter. The xlabel and ylabel commands place the specified strings near the axes
and should explain what the values on the axes mean, including units. The y2label
command labels the right-hand "second" y-axis, if there is one. The set title command
creates a title at the top of the graph.

There's more…
If you have a very long title (or label), gnuplot will not break it up into lines. It will just spill over
into the margins of your graph and get truncated. You need to insert the line breaks manually
by using the code \n, and make sure to surround your title string by double quotation marks.
If you use single quotation marks, the \ns will be printed literally rather than being interpreted
as the escape codes for a line break. For example, you can say set title "Line One of a
Very Long Title\nLine Two of the Title".

gnuplot centers the lines over the graph. If you find yourself constructing
very long titles, however, you might consider moving some of that
information into a caption or into the main text of your slide or document.

Annotating with Labels and Legends

38

Setting the label size
The default font size for labels and titles in gnuplot looks a little small with most terminals.
For example, the labels can be hard to read from the back rows of an auditorium during a
presentation. We now show how to adjust the font size, and how to select the font for labels
and titles.

How to do it…
Most terminals accept a font and size specification in the set terminal command. To find
out about the terminal you are using, just type help set term terminal, substituting
the name of the terminal. For example, if you are using the PostScript terminal, typing help
set term postscript provides a wealth of information on all the options accepted by the
PostScript terminal, including the syntax for the font and size specifications. The following
commands show how to produce the plot with all labels set in Courier at 18 pt:

set term postscript landscape "Courier, 18"

set output 'squarewave.ps'

set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]

Chapter 2

39

set style fill pattern 5
set xlabel "Time (sec.)
set ylabel "Amplitude"
set y2label "Error Magnitude"
set title "Fourier Approximation to Square Wave"
plot 'ch2.dat' using 1:2:(sgn($2)) with filledcurves,\
 '' using 1:2 with lines lw 2 notitle,\
 '' using 1:(sgn($2)) with lines notitle,\
 '' using 1:(abs(sgn($2)-$2)) with lines axis x1y2

How it works…
We've highlighted the new commands, which select the PostScript terminal and define
a filename for the output. The first line chooses landscape orientation, which is usually
desirable for single graphs standing on their own, and selects the Courier font at the
somewhat larger-than-default 18 pt size. Note that this selects the font and size for the title,
all labels, legend, and numbers labeling the tick marks. The second line says to put the output
in the file squarewave.ps. You can choose any filename you like, as long as you place it
within quotation marks. If you neglect to define an output, gnuplot will merrily spit out the
PostScript code onto the terminal, which is probably not what you want.

There's more…
A few typographical changes to the graph make it easier on the eyes:

Annotating with Labels and Legends

40

Having everything in the same style and size is neither very attractive nor optimally readable.
Fortunately, we can select different fonts and sizes for every label and annotation on the graph:

set term postscript landscape
set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]
set style fill pattern 5
set key font "Helvetica, 14"

set xlabel "Time (sec.)" font "Courier, 12"

set ylabel "Amplitude" font "Courier, 12"

set y2label "Error Magnitude" font "Courier, 12"

set title "Fourier Approximation to Square Wave" font "Times-Roman,
 32"

plot 'ch2.dat' using 1:2:(sgn($2)) with filledcurves,\
 '' using 1:2 with lines lw 2 notitle,\
 '' using 1:(sgn($2)) with lines notitle,\
 '' using 1:(abs(sgn($2)-$2)) with lines axis x1y2

In the previous script, the font commands are highlighted. The fonts you request must be
available on your computer; usually it is safe to use the familiar PostScript fonts, from which
collection we have selected three typefaces in the example. The new set key command sets
the style of the legend, which is the subject of the next recipe.

Adding a legend
The legend refers to the block of information printed on the graph (or occasionally outside
it) that explains which curve or symbol is associated with which quantity. It is called a key in
gnuplot. A legend or some device that conveys the equivalent information is essential when
the graph displays more than one curve.

You've probably noticed that all of our example graphs already contain a key; this is done by
gnuplot by default. This recipe will show you how to take complete control of your graph's legend.

Chapter 2

41

How to do it…
Following is a gnuplot script showing the extra commands that produce the legend in the
previous plot:

set term postscript landscape
set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]
set style fill pattern 5
set key at graph .9, .9 spacing 3 font "Helvetica, 14"

set xlabel "Time (sec.) font "Courier, 12"
set ylabel "Amplitude" font "Courier, 12"
set y2label "Error Magnitude" font "Courier, 12"
set title "Fourier Approximation to Square Wave" font "Times-Roman,
 4"
plot 'ch2.dat' using 1:2:(sgn($2)) with filledcurves notitle,\
 '' using 1:(sgn($2)) with lines title "Square Wave",\
 '' using 1:2 with lines lw 2 title "Fourier approximation",\
 '' using 1:(abs(sgn($2)-$2)) with lines axis x1y2 title "Error
 magnitude"

Annotating with Labels and Legends

42

How it works…
The highlighted command defines some attributes for the key that result in an attractive and
legible legend for our graph. The phrase at graph .9, .9 positions the key at location x = y
= 0.9 in graph coordinates, which is a coordinate system where (0,0) is at the bottom left of the
actual graph (not the screen on which the graph is drawn). Ask gnuplot for help coordinate
to get a rundown of the five coordinate systems available to you. The phrase spacing 3
increases the vertical space between the lines over the default of 1.25. The spacing and
positioning commands are set to be different from the defaults because we have some extra
room in part of the graph that we can take advantage of to make our legend more attractive.

The other changes in the recipe are in the plot commands. Now, each component of the
plot command ends with either a title phrase or with the keyword notitle. These phrases
are used in the legend, and allow you to define more descriptive tags for your curves rather
than the usually useless ones used by default, which, as you've seen, are derived by gnuplot
automatically from the using clauses and the names of the datafiles.

There's more…
When there is no room inside the graph for the legend, or when you prefer this style for other
reasons, you can put the key outside the graph:

The previous little graph was made with the following commands:

set term postscript landscape size 5,2 "Helvetica, 9"
set key outside
plot sin(x) title "sine", cos(x) title "cosine"

When you are setting the size of the PostScript terminal, you often have
to reset the overall font size, as it does not scale with the graph size.

Chapter 2

43

Putting a box around the legend
This recipe is a simple modification of the previous one, but gets its own section because the
legend in the box is such a popular style (for better or worse).

How to do it…
Replace the highlighted set key command in the previous recipe with the following
two commands:

set key spacing 3 font "Helvetica, 14"
set key box lt -1 lw 2

How it works…
The new command is in the second line. set key box tells gnuplot to draw a box around the
legend; this is followed by two specifications for the type of line from which the box will be
drawn. In the previous command, we have used abbreviations: lt stands for linetype, and a
linetype of -1 yields a solid black line in the PostScript terminal. lw stands for linewidth; lw 2
is one step up from the default lw 1, and makes the box more prominent.

Annotating with Labels and Legends

44

Adding a label with an arrow
Complex graphs can often benefit from information in addition to what can be provided in
a title, in the axis labels, and a legend. Sometimes we need to explain the meaning of a
particular feature on the graph. This can be done with labels and arrows.

How to do it…
Following is the complete script that you can feed to gnuplot to create the graph:

set term postscript landscape
set out 'fourier.ps'
set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]
set style fill pattern 5
set key at graph .9, .9 spacing 3 font "Helvetica, 14"
set xlabel "Time (sec.)" font "Courier, 12"
set ylabel "Amplitude" font "Courier, 12"
set y2label "Error Magnitude" font "Courier, 12"
set title "Fourier Approximation to Square Wave" font "Times-Roman,
 24"
set label "Approximation error" right at 2.4, 0.45 offset -.5, 0

Chapter 2

45

set arrow 1 from first 2.4, 0.45 to 3, 0.93 lt 1 lw 2 front size .3,
 15

plot 'ch2.dat' using 1:2:(sgn($2)) with filledcurves notitle,\
 '' using 1:(sgn($2)) with lines title "Square Wave",\
 '' using 1:2 with lines lw 2 title "Fourier approximation",\
 '' using 1:(abs(sgn($2)-$2)) with lines axis x1y2 title "Error
 magnitude"

How it works…
We have highlighted two new commands that together supply some additional annotation to
our graph. The first highlighted command places a label with text given in quotation marks
immediately following the words set label. The phrase right at 2.4, 0.45 places
the label right justified at x = 2.4 and y = 0.45 using the first coordinate system. The use
of this coordinate system is the default and is convenient, because the point can be read
directly from the graph axis. first means that we are using the left-hand y-axis; the
second coordinate system is also available, which uses the right and bottom axes. The offset
parameters shift the label by the amount given in the x and y directions using the character
coordinate system. The values used in the script shift the label to the left by half a character
width, creating a small space between the end of the label and the beginning of the shaft of
the arrow. Finally, we set the font and type size for the label. (In place of the keyword right,
we also have center and left available, which create their respective justifications.)

The second new command draws an arrow, which we have given a tag of 1, from a starting
point at x = 2.4, y = 0.45 in the first coordinate system (the same point at which our text
label was right justified to) to an ending point in the hatched region at x = 3, y = 0.93. The
rest of the arrow specifications set its line type (lt) and line width (lw), tell gnuplot to plot the
arrow on top of the graph data (front), and give the size of the arrowhead: the first number,
.3, is the length of the sides of the head in graph units; the second, 15, is the number of
degrees of angle from the shaft of the arrow to the head.

It is usually impossible to get the positioning of the labels and arrows correct on the first try.
One usually resorts to repeatedly making plots while adjusting the positioning coordinates
until everything looks right. The tag in the set arrow command allows you to change the
details of the existing arrow, simply by issuing another set arrow 1. Without this tag, gnuplot
would simply create a new arrow. If you want to adjust the positioning of your labels, say
unset label, and repeat the labeling commands with new parameters, or use tags for your
labels as we did for the arrow and simply redefine them. In this way, you can iterate, issuing a
replot command after each arrow and label definition, until the plot looks the way you like
it. Then, if you want to save your plot, use the set output command to open a file for output,
and reissue your plot command.

Annotating with Labels and Legends

46

Using Unicode characters [new]
A new feature in gnuplot 4.4 allows you to use the Unicode character set in your graph's title
and labels. This is a vast improvement over more cumbersome methods of entering special
characters, but it does not work on all terminals. For example, PostScript does not support
Unicode directly, but some implementations of the pdf and png terminals, and others, will work.
The following example was created using the pngcairo version of the png terminal. Which
versions you have available will depend on the details of your operating system and gnuplot
installation. A more general method for creating complex labels is given in the next recipe.

Getting ready
You will need some method of inputting Unicode characters. There are myriad ways of doing
this, depending on your operating system, terminal program, text editor, and so on, and
the details are beyond the scope of this book. In order to create the title for this example,
incorporating the name of a famous Viking scientist, we merely copied the name from a web
page and pasted it into the command line; this may or may not work, depending on the details
of your setup.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

47

How to do it…
One extra command lets us use Unicode. Following is the script that gets us the previous plot:

set term png
set samples 500
set encoding utf8
set title "Favorite Graph of Ǫrnólfr Þórðr" font "Helvetica, 24"
plot [0:10] sin(1/x)

How it works…
First, you need to set the terminal to something that supports Unicode. You may need to
simply try some of the terminals available in your gnuplot compilation; if the title in the final
graph looks similar to the input, it worked. If Unicode is not properly supported, gnuplot may
not complain, but there will be gibberish on your graph. It may very well be that there is no
terminal available in your gnuplot installation that supports Unicode input. But, in a later
chapter, we will learn far more flexible and sophisticated methods for including text of arbitrary
complexity in the graph, and in the next recipe we shall see how to use special codes to input
some symbols, Greek letters, and so on—so there are several alternatives. Terminals that are
known by me to support Unicode are the Cairo png, svg, and Aquaterm terminals; PostScript
does not work. The highlighted line is the essential command that tells gnuplot to handle
Unicode input. Then simply enter the Unicode strings directly.

Putting equations in your labels
Certain terminals support enhanced text, which means that they accept a markup language
specific to gnuplot that can be used to include characters from various fonts, set subscripts,
superscripts, overprint characters, and generally manipulate text with sufficient flexibility to
create simple equations to serve as annotations for your graphs. This recipe shows how to
make such an equation, but you will see that the markup is cumbersome, and attaining the
desired result requires some amount of trial and error. Frankly, a better way to create all but
the simplest mathematical text is to use the LaTeX techniques covered in a later chapter,
which also leads to a much more attractive output.

Annotating with Labels and Legends

48

However, the enhanced text mode can be useful for quickly placing some mathematical
text on your plot, in situations where you are not too picky about the typographical quality
of the result.

How to do it…
The following script is similar to the script in the Adding a label with an arrow recipe in
this chapter; only the set term command and the label commands have been changed:

set term x11 enhanced
set yrange [-1.5:1.5]
set xrange [0:6.3]
set ytics nomirror
set y2tics 0,.1
set y2range [0:1.2]
set style fill pattern 5
set key at graph .9, .9 spacing 3 font "Helvetica, 14"
set xlabel "Time (sec.)" font "Courier, 18"
set ylabel "Amplitude" font "Courier, 18"
set y2label "Error Magnitude" font "Courier, 18"
set title "Fourier Approximation to Square Wave" font "Times-Roman,
 24"
set label \
 "sgn(x) = 4/{/Symbol p}&{x}~{~@{/Symbol=24 S}{-
 .5/*.7n=1,3,5,...}}{.9/Symbol=18 \245}&
 {xx}1/n sin(n{/Symbol p}x)" \font "Times-Roman, 18"

Chapter 2

49

 at graph .04, .65
plot 'ch2.dat' using 1:2:(sgn($2)) with filledcurves notitle,\
 '' using 1:(sgn($2)) with lines title "Square Wave",\
 '' using 1:2 with lines lw 2 title "Fourier approximation",\
 '' using 1:(abs(sgn($2)-$2)) with lines axis x1y2 title "Error
 magnitude"

How it works…
For a full rundown on the markup syntax for enhanced text, type help enhanced at the
interactive gnuplot prompt. We'll explain the subset of the syntax we used to create this
equation, which gives the Fourier series for a square wave. The /Symbol tags select the
Symbol font; p in this font is the Greek letter pi, and S is the capital Greek sigma, meaning
sum. The &{xx} notation means to insert a space equal to two "x"s. The notation @X means
that the character "X" is to be counted as taking up no space. The notation ~a{.7b} means
to overprint a with b raised .7 times the line height; we use it with a construction in curly
brackets rather than a single character. The infinity symbol is selected with /Symbol=18
\245, which means select character number 245 from the Symbol font at size 18 pt.

If you find that the markup codes have been copied as written to the
graph, rather than interpreted similarly to the figure, then you might have
forgotten to say "enhanced" as part of your set term command.

We created this graph with the X11 terminal; experiments with other terminals reveal that the
spacing might change, and more trial and error will be needed. This is another reason why
the LaTeX methods explained later in the book are preferable, as they create exactly the same
output under all conditions.

3
Applying Colors and

Styles

This chapter contains the following recipes:

 f Coloring your curves

 f Styling your curves

 f Applying transparency [new]

 f Plotting points with curves

 f Changing the point style

 f Changing the plot size

 f Positioning graphs on the page [new]

 f Plotting with objects [new]

Introduction
This chapter is mostly concerned with ways to tell the different curves apart when multiple
functions and/or datasets are plotted on a single graph. The three chief methods of
accomplishing this are to plot the curves with different colors, different styles (thin, thick,
dashed, dotted, and so on), or by using different types of symbols (or what gnuplot calls
points). We saw examples of different line styles in the preceding chapters, and gnuplot
will automatically render a series of curves in a succession of styles or colors in order to
distinguish them. But now we will learn the details of how to take charge of our line styles,
colors, and point styles. The printed version of this book will not let you see the full effect of
manipulating color, but the electronically available versions of the graphs contain all the color
and transparency information resulting from the recipes.

Applying Colors and Styles

52

In addition to colors and styles, this chapter discusses setting the size of your plot, and
introduces three new features of gnuplot 4.4: transparency, new semantics for graph
positioning, and plotting with objects.

Coloring your curves
The following figure is a simple graph of different powers of x, color-coded. The colors, which
can be seen in the electronic version of the graph, appear here as different shades of gray:

How to do it…
To produce the previous figure, enter the following sequence of commands at the gnuplot
interactive prompt. Alternatively, save them in a file and use the command gnuplot
--persist <file>, substituting your filename for <file>. The --persist flag tells
gnuplot to keep the plot window open after executing the script. (This script, as well as
all the others, are provided with this book as a file named after the recipe.)

set term x11 solid lw 4
set border lw .25
set key top left
plot [0:1] x**0.5 lc rgb 'orange', x lc rgb 'steelblue',\
 x**2 lc rgb 'bisque', x**3 lc rgb 'seagreen'

Chapter 3

53

How it works…
In the first line we have chosen the X11 terminal and specified some terminal options. The
interactive X11 terminal is usually available on Linux and other Unix-like systems, including
the Macintosh if X11 is installed, which it likely will be for scientific or engineering work.
However, this example will work on most gnuplot terminals.

Setting terminal defaults at the beginning will save us the trouble of
repeatedly specifying the same things in every subsequent plot command.

The words solid lw 4 specify that solid lines are to be used, rather than a sequence of line
types with different dash and dot patterns, and that the linewidth, abbreviated here as lw,
is set to 4. What this linewidth actually translates to on the screen or paper depends on the
terminal. The gnuplot command test, which must be entered before any terminal options
are set, will help us here. The reason you must execute the test command without any other
styling options is that certain aspects of the test command output are shown relative to the
options in force. So if you use the options we mentioned, the display of linewidths will all be
approximately four times thicker than normal.

Setting the default linewidth affects all the lines in the plot, so we need to undo this where
we don't want it. We want extra thick curves, but normal axis borders and tic marks. So, in
the second line we set the border linewidth to 1/4, to undo the effect of setting the overall
linewidth to 4.

The plot commands contain the new phrases lc rgb 'orange', and so on. As you might
have guessed, lc is an abbreviation for linecolor. These phrases set the colors for the curves,
using gnuplot's color names. To see a list of these names, just type show colors at the
gnuplot command prompt. The rgb keyword means that what follows is a red-green-blue
color specification.

There's more…
If you tried out the show colors command, you might have noticed some additional columns
after the column of workaday and fanciful color names. These are the numerical rgb values
corresponding to the color names, first in a special hexadecimal format, then in decimal,
where each color (red, green, or blue) can range in value from 0 to 255. So, for example,
seagreen has the values red = 193, green = 255, blue = 193. The hexadecimal coding
uses pairs of hexadecimal digits to represent the red, green, and blue values, in that order.
Using the seagreen example for illustration, c1 = 193 in hex, ff = 255, and c1 = 193. This is
exactly the same convention used in web design for the specification of colors in stylesheets
and elsewhere, including the leading "#" as a signal that a hexadecimal color value follows.
For serious work, it is probably a better idea to use numerical rgb color specifications rather
than the color names.

Applying Colors and Styles

54

This is because it provides you with more control, allows you to choose from the entire gamut
of over 16 million colors, and lends itself to automation, where color values can be chosen
algorithmically to maintain a relationship to the data plotted. Remember that the numerical
code must be quoted, just as the color names are. plot sin(x) lc rgb '#cc00cc' is the
correct form for a purple sine wave.

Styling your curves
This recipe delves into more detail about the linetypes we've seen before and introduces the
powerful concept of linestyles.

How to do it…
Following is the script that makes the previous figure:

set key top left
set style line 1 lt 3 lw 4 lc rgb '#990042'
set style line 2 lt 7 lw 3 lc rgb '#31f120'
set style line 3 lt 2 lw 3 lc rgb '#0044a5'
set style line 4 lt 9 lw 4 lc rgb '#888888'
plot [0:1] x**0.5 ls 1, x ls 2, x**2 ls 3, x**3 ls 4

Chapter 3

55

How it works…
In this recipe, we have introduced userstyles. With the invocation set style line n you
can define a set of properties that will be associated with the index n in subsequent plot
commands. In order to call up these properties, simply append the phrase ls n, substituting
the desired index for n, to the plot command. ls is an abbreviation for linestyle.

The advantages of linestyles are that they can be reused repeatedly, can save considerable
typing or space in gnuplot scripts, and can help to organize your scripts while making them
easier to read.

In the recipe, we have selected a linetype (lt), linewidth (lw), and linecolor for each
user-defined linestyle. The linewidths and linecolors are terminal independent, but the
particular dash and dot pattern, if any, corresponding to each linetype depends entirely
on the terminal in use, and the options selected in the set terminal command. The
illustration for this recipe used the PostScript terminal (translated eventually into a PNG file
for printing in this book), which has a good selection of dash and dot styles. Some terminals,
such as Aquaterm for the Macintosh, offer only solid lines; the X11 terminal— commonly used
for interactive work with Linux—only offers line patterns if the X Window system is specially
configured, and they are not rendered as well as they are by PostScript.

There's more…
We have seen many times how gnuplot automatically uses a sequence of line types (which
may appear as different dash-dot patterns or merely as different colors, depending on the
terminal in use and the default options passed to it) when plotting more than one thing, in
order to distinguish the various functions or data sets plotted on the graph. Now that we know
how to define our own styles for curves, we may want to use our user styles in an automatic
sequence rather than the choices gnuplot makes by default, and without having to specify the
linestyle manually for each curve. To do this, enter set style increment userstyles
before the plotting commands, and gnuplot will cycle through your defined linestyles
rather than the terminal's default linetypes. To return to the default behavior, enter set
style increment default.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Applying Colors and Styles

56

Applying transparency [new]
As of version 4.4, gnuplot supports transparency, which allows us to create attractive and
sophisticated effects by setting the opacity of colors in various contexts. This technique is
most useful when drawing with styles such as filledcurves using areas of solid color:

How to do it…
The following script will produce the previous figure:

set term svg
set out 'file.svg'
set style fill transparent solid 0.3
plot [0:pi] sin(x)**2 with filledcurves above y1=0 lc rgb '#00ffff',\
 0.75*cos(2*x)**2 with filledcurves above y1=0 lc rgb '#aa00aa'

Chapter 3

57

How it works…
We have included an explicit set term command in this recipe because transparency effects
are only supported so far by a limited number of terminals. The SVG terminal is a recent
addition to the gnuplot repertoire and is the new standard for resolution independent graphics
on the Web; it has full support for transparency and produces high quality renderings that
scale to any size without pixelation. Also, an SVG graph is an XML file that can be edited in a
pinch and included inline in xhtml webpages.

You must remember that the file is not completely written out (the final SVG closing tag is
missing) until either gnuplot is quit or another set out command is issued, as gnuplot does
not know whether additional plotting commands are coming.

The highlighted line sets the fill style to be solid (rather than a pattern) and selects
transparency with an opacity of 0.3, where an opacity of 0 is invisible and an opacity of
1 is opaque. The subsequent plotting commands should be familiar; we have used the
filledcurves style from Chapter 1, Plotting Curves, Boxes, Points, and more and specified
colors as explained in the earlier recipe Color your curves.

There's more…
Patterns can be transparent, too. Instead of saying set style fill transparent solid
0.3 we can say set style fill transparency pattern n, where the desired fill pattern
is substituted for n. This will allow plot elements to appear behind fill patterns, showing
through the "spaces" in the patterns. If used with care this can be useful, but can easily lead
to a confusing or busy graph compared with the clean effect of transparent solid colors. Also,
this is only supported by certain terminals, and not the same set that supports transparent
colors. For example, the PostScript terminal supports transparent patterns, but not colors;
the svg terminal does not support transparent patterns.

Plotting points with curves
In addition to the two main styles we have encountered for the plotting of 2D data or
functions—namely a curve or a series of markers—gnuplot offers a third style consisting of
a curve overlaid with markers. This style is useful in plotting tabulated data, where different
marker styles can be used to distinguish between different data sets and the smooth line
connecting them serves to guide the eye. The linespoints style is also favored by some even
when plotting mathematical functions, where different marker styles are used to indicate the
function being plotted rather than different line types (dot and dash patterns).

Applying Colors and Styles

58

The next recipe shows in detail how to select these various marker styles; here we introduce
the use of the linespoints plotting style.

How to do it…
The following command creates the previous figure:

plot sin(x)/x with linespoints ps 2 pt 6

How it works…
We select the linespoints style with the phrase with linespoints. The expression ps
2 selects a pointsize approximately twice as large as the default, and the expression pt 6
selects the pointtype index 6. What this looks like depends entirely on the terminal in use;
the open circle shown here is what you get with the PostScript terminal.

Changing the point style
In this section, we extend the use of user styles introduced in the earlier recipe Styling
your curves to defining user styles for markers for use with the linespoints type of plots
introduced in the previous recipe.

Chapter 3

59

How to do it…
There are some more style choices that can be made part of the user-defined linestyles when
you are plotting using the linespoints style, which draws a series of markers, or "points",
along the line. This works best with solid lines, as shown in the figure following the commands:

set term postscript landscape color solid

set out 'file.ps'

set key top left

set style function linespoints

set style line 1 lw 4 lc rgb '#990042' ps 2 pt 6 pi 5

set style line 2 lw 3 lc rgb '#31f120' ps 2 pt 12 pi 3

set style line 3 lw 3 lc rgb '#0044a5' ps 2 pt 9 pi 5

set style line 4 lw 4 lc rgb '#888888' ps 2 pt 7 pi 4

plot [0:1] x**0.5 ls 1, x ls 2, x**2 ls 3, x**3 ls 4

How it works…
The abbreviation ps stands for pointsize, which sets the size of the marker; pt refers to
pointtype, which selects from the set of marker styles that you can see when you type test,
and pi stands for pointinterval, which tells the program how often to place a marker along
the line. The default pointinterval of 1 draws a marker at each calculated point, which can
make for a crowded graph, or even a solid mass if the samples parameter is set to a
large number.

Applying Colors and Styles

60

Changing the plot size
The size of the graph is specified as a size option to the set term command. The exact
interpretation of this option may vary between terminals, and has changed in recent versions
of gnuplot. We'll give an example of its most recent usage in gnuplot 4.4. The following figure
illustrates the use of the size option in gnuplot:

How to do it…
The figure consists of three separate files created by gnuplot using the following recipe:

unset key
set term postscript size 6,2
set out 'p1.ps'
plot sin(x)
set term postscript size 5,5
set out 'p2.ps'
plot sin(x)
set term postscript size 3,6
set out 'p3.ps'
plot sin(x)

Chapter 3

61

How it works…
First we turn off the legend, which gets in the way of the plots in this example. The set term
commands each have a single size option, which sets the horizontal and vertical extents of
the graphs in inches. Each plot is saved to a separate file with a set out command; the files
were assembled in a graphics program into the figure. In general, especially when working
with resolution independent files such as PostScript, the absolute size of the graph has little
meaning, and the main use of the size option is to define the aspect ratio of the graph. We
have illustrated that in this recipe by creating the same plot using three different aspect ratios.

Positioning graphs on the page [new]
A new feature of gnuplot 4.4 is the more consistent handling of the concepts of graph
and canvas sizes. This allows more predictable positioning of graphs on the output page,
or canvas.

Applying Colors and Styles

62

How to do it…
The two pages shown in the previous figure were made with the following script:

unset key
set size .75,.75
set out 'file1'
plot sin(x)
set size .25,.25
set out 'file2'
plot sin(x)

How it works…
Here, in the highlighted code lines, we have set the sizes of the plots. The size runs from 0
to 1, where 1 is the usual default that fills the entire canvas with the graph. The figure shows
the results as they would appear if printed out, on an actual piece of paper, in most terminals.
A thick border is drawn to indicate the paper boundaries; we see that the plot is anchored to
the lower left-hand side. The graph sizes are distinct from the size option given to the set
term command that we discussed in the previous recipe, which generally determines the size
of the canvas. Note that the precise effects of the terminal size option and the set size
command, and their interaction, may vary somewhat between terminals. In particular, the
behavior of the PostScript terminal is in flux in recent patch levels of gnuplot 4.4.

Plotting with objects [new]
The latest version of gnuplot has some new commands for plotting with objects, which are
geometrical shapes including rectangles, circles, ellipses, and polygons. In order to show off
the flexibility of gnuplot's new object plotting commands, we have abused them in order to
create something that is not part of gnuplot's normal repertoire: a pie chart. The following
is a pie chart made using objects in gnuplot:

Chapter 3

63

How to do it…
Following is the dark magic that can coerce gnuplot to render the previous figure:

unset key
unset tics
set object 1 circle at graph .5,.5 size graph .25 fillcolor rgb 'blue'
fillstyle solid \
 arc [0:30] front
set object 2 circle at graph .5,.5 size graph .25 fillcolor rgb 'red'
fillstyle solid \
 arc [30:80] front
set object 3 circle at graph .5,.5 size graph .25 fillcolor rgb
'orange' fillstyle solid \
 arc [80:180] front
set object 4 circle at graph .5,.5 size graph .25 fillcolor rgb
'green' fillstyle solid \
 arc [180:240] front
set object 5 circle at graph .5,.5 size graph .25 fillcolor rgb
'sandybrown' fillstyle solid \
 arc [240:360] front
plot [0:1][0:1] -1

How it works…
First we have instructed gnuplot to leave out the legend, the tics and tic labels. The next set of
commands defines five objects, each with a unique index number that allows us to redefine
or undefine it later. We want the objects to be circles, and set their sizes and positions using the
graph coordinate system. Each circle is centered in the middle of the graph and has a radius
equal to a quarter of the graph's extent. Each circle is given a different color using gnuplot's
color names, and we have asked the circles to be filled in with solid colors. Finally, each circle
is given an arc specification that runs in degrees clockwise from the positive x direction. This
makes each circle into a wedge, and we've made the starting angle of each circle equal to the
ending angle of the previous one, so that there are no gaps between them. The final keyword
front forces the objects to be plotted on top of any other plot elements. In order to actually
draw these objects, we need to issue a plot command; since we want nothing else on the graph
we've constructed one that won't produce anything visible. The final line in the script does this
by plotting a number outside of the range specified in the square brackets. Of course, a real pie
chart would have labels explaining each wedge, which we can add using the techniques from
the previous chapter.

4
Controlling your Tics

This chapter contains the following recipes:

 f Adding minor tics

 f Placing tics on the second y-axis

 f Adjusting the tic size

 f Removing all tics

 f Defining the tic values

 f Making the tics stick out

 f Setting manual tics

 f Plotting with dates and times

 f Changing the language used for labels [new]

 f Using European-style decimals [new]

 f Formatting tic labels

Introduction
The recipes in this chapter deal with a notoriously tricky subject: how to get your tic
marks and labels just right. Along the way, we learn about some of gnuplot's new
internationalization features.

The tic labels we refer to here are the ones intimately associated with tic marks on the axes.
What gnuplot calls "labels" are the annotations that we covered in the previous chapter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Controlling your Tics

66

Adding minor tics
Here is a simple plot with some extra elements that we haven't seen before. There are smaller
tic marks between the major, labeled tic marks. These are referred to as minor tics. There is also
a grid of dotted lines covering the graph, with the grid lines aligned with the major tic marks.

How to do it…
The following script will create the previous figure:

set grid
set mxtics 4
set mytics 2
plot [0:2*pi] sin(12*x)*exp(-x/4)

How it works…
The new commands are in the highlighted lines. set grid causes the light grid lines to appear
when we finally issue the plot command. The second and third lines create minor tics on the
axes. mxtics sets the minor tics on the x-axis and mytics creates minor tics on the y-axis.
The number following the keyword (mxtics or mytics) sets the number of spaces between
tics rather than the actual number of minor tics. Examining the figure should make it clear how
this works. The purpose of minor tics is to make it easier for the reader to extract quantitative
information from the graph by making it easier to interpolate between the numerically labeled
values associated with the major tic marks.

Chapter 4

67

Placing tics on the second y-axis
In this recipe, we revisit the technique introduced in Chapter 1, Plotting Curves, Boxes,
Points, and more for plotting two curves on one graph, each with its own independent
y-axis. The following figure provides an example for this recipe:

How to do it…
Run the following script through gnuplot to produce the previous figure:

set ytics nomirror
set y2tics 0.4
set my2tics 4
set xtics pi/4.
set mxtics 4
set grid
plot [0:2*pi] sin(x) axis x1y1, 2*cos(8*x)*exp(-x) axis x1y2

Controlling your Tics

68

How it works…
As we saw in Chapter 1, Plotting Curves, Boxes, Points, and more, the command set ytics
nomirror tells gnuplot to not duplicate the tics on the left (y1) axis with the tics on the
right (y2) axis. This allows us to use two independent scales so we can plot two curves with
different ranges on the same graph. However, we must explicitly tell gnuplot what tic interval
to use on the y2 axis, or it will simply omit the tics there. This is the purpose of the second
code line, which sets the tic spacing to 0.4. The third, highlighted, line, sets the minor tics for
the y2 axis. Note that we have set the major tic interval on the x-axis to be based on pi, this
aligns the tics with the peaks in the circular function plotted, and is more meaningful here
than using a rational interval.

Adjusting the tic size
The default length gnuplot uses for tics is a little small, and makes the minor tics all but
disappear on small plots. Naturally, the tic size can be adjusted at will. The following figure
employs longer tic marks than we have seen so far:

Chapter 4

69

How to do it…
Following is an example showing how to specify the length of the tic marks. The output of this
script is the previous figure:

set tics scale 3
set mxtics 4
set mytics 4
plot [0:4*pi] sin(x)/x

How it works…
The first (highlighted) code line sets the length of the tic marks to be three times the
default length. The actual length may vary somewhat between terminals, so you may
need to experiment to get the exact effect that you desire.

There's more…
By default, gnuplot assigns a length to the minor tics that is one-half the length of the major
tics, so in this case the minor tics have a scale of 1.5. If you want to set a different scale for
the minor tics, the command becomes set tics scale a, b, where a is the scale for the
major tics and b is the scale for the minor tics. You may even make the minor tics longer than
the major tics if, for some reason, you want to.

Removing all tics
Here is one way to remove the tics entirely from the plot. This gives a clean and simple
appearance for applications where you need an illustration and the reader is not expected
to glean quantitative information from the graph.

Controlling your Tics

70

How to do it…
A ticless graph is accomplished very simply. The following script produces the figure
following it:

unset tics
plot [0:2*pi] x**2*sin(x)

How it works…
The highlighted line simply tells gnuplot to not draw tics; we still get a border around the plot,
but no tic marks, and consequently, no numerical labels on the axes.

Chapter 4

71

Defining the tic values
This recipe will show you how to take a little more control over where the tics appear on your
axes. The following figure illustrates one use of manually specified tic marks:

The previous figure is similar to the one towards the end of Chapter 1, Plotting Curves, Boxes,
Points, and more, where we introduced polar coordinates. The difference here is that we have
placed our tic marks only in a certain area—that you can imagine is a region of interest—and
added grid lines so the reader can more easily extract quantitative information from the graph
in the region.

How to do it…
Following is the script that produced the previous figure:

set xtics axis nomirror
set ytics axis nomirror
set zeroaxis
unset border
set polar
set samples 500
set grid
set xtics 15,2,30
set ytics 10,2,20
plot [0:12*pi] t

Controlling your Tics

72

How it works…
The lines in the previous script until the highlighted lines are the same as in the Plotting with
polar coordinates recipe towards the end of Chapter 1, Plotting Curves, Boxes, Points, and
more. The new commands here set the beginning, interval, and ending values for the tics on
the x and y axes. The x-axis will only have tic marks, and associated numerical labels, starting
at x=15 and ending at x=30, and marks will be drawn at intervals of 2 on the x-axis (so the
highest valued tic mark is actually at x=29). The y-axis will have tic marks going from 10 to 20
at intervals of 2.

Making the tics stick out
The following figure illustrates another tic style available in gnuplot, where the tics stick out
of the plot rather than intrude on the interior of the graph:

This style is useful when inner tic marks might obscure your plot elements, for example,
when part of the curve lies close to an axis.

Chapter 4

73

How to do it…
Following is the script used to obtain the previous figure:

set tics out
set grid
plot [-3:3] tanh(x)

How it works…
The new command here is the first line, which leaves everything else the same while drawing
the tics so that they stick out of the borders.

Setting manual tics
Sometimes gnuplot's various automatic tic generation routines are not flexible enough and you
need to take complete control of the position of every tic mark, or you need to place custom
labels on the tics rather than rely on the automatically generated numerical labels provided by
the program. gnuplot is extremely flexible in this regard; the following figure illustrates our first
example of manual tic placement:

Notice the tic labels and positions along the x-axis. The tics are aligned with the peaks and
zero crossings of the sine wave, and are labeled using pi rather than an approximate decimal.
This is more meaningful mathematically and is the natural way to label the axis when plotting
this circular function. gnuplot's automatically chosen tic positions and numerical labels would
be placed at the positions 1, 2, 3, and so on. These tic positions would have no particular
relation to the function we are plotting. In order to get the result in the figure, we need to
specify each tic and associated label manually.

Controlling your Tics

74

How to do it…
The following script illustrates the creation of manual tic marks. This script produced the
previous figure:

set xtics \
 ("pi" pi, "pi/2" pi/2, "2pi" 2*pi, "3pi/2" 3*pi/2, "0" 0)
plot [0:2*pi] sin(x)

How it works…
The highlighted line shows the syntax for setting manual tics and labels. Here, we're setting the
tics on the x-axis; the list of manual tic positions is enclosed in parentheses. The label for each
tic is the string in double quotation marks. Following the label is the position for the tic on the
axis, which is given in units of pi. Since gnuplot knows what pi means, we can use the constant
directly rather than needing to spell it out as a decimal approximation. Note that the tics can be
given in any order. The textual labels can be omitted, allowing you to specify an arbitrary set of
tics, which will automatically be given numerical labels.

There's more…
The following figure is almost the same as the previous one, except for the labels on the x-axis
tic marks:

Chapter 4

75

Note the appearance of Greek letters in the tic labels, where before we spelled out pi. We
constructed these labels using the enhanced text syntax that was introduced in Chapter 2,
Annotating with Labels and Legends as shown in the following script:

set term wxt enhanced
set xtics ("{/Symbol p}" pi, "{/Symbol p}/2" pi/2,\
 "2{/Symbol p}" 2*pi, "3{/Symbol p}/2" 3*pi/2, "0" 0)
plot [0:2*pi] sin(x)

For this to work, we must use a terminal that supports enhanced text, and turn on the option
in the set term line. If you are using a terminal that supports Unicode text, you may be
able to use Unicode characters directly in the tic specifications rather than the relatively
cumbersome enhanced text syntax.

You can combine a regular, automatically generated set of tics with another set that you
specify manually, as mentioned earlier, by using the keyword add. Instead of the set xtics
line in the previous script, you can use the following command:

set xtics add ("{/Symbol p}" pi, "2{/Symbol p}" 2*pi)

You get the automatic tics that gnuplot would provide in any case, with the addition of the
extra tics that you specify manually. This is useful to call attention to a small number of salient
coordinate positions; here we have shown the locations of π and 2π on the axis, where the
sine wave crosses y = 0. The following figure shows the use of add with xtics:

Controlling your Tics

76

Plotting with dates and times
gnuplot is capable of handling data plotted along a date/time axis and can understand and
display dates and times in a variety of formats.

Getting ready
If you are plotting data versus time, you are almost certainly dealing with data tabulated in
a file. We have supplied a small file for this recipe called timedat.dat; it consists of a few
lines of data, each line containing a date, time, and a number to be plotted. The dates are in
the form day/month/2-digit-year, and the times are in the form hour:minute. Following is the
first line:

1/1/11 19:00 72.01

The following figure shows plotting with dates using gnuplot:

Note that the tics along the bottom axis are labeled as dates.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

77

How to do it…
Following is the script that we used to get the previous figure:

set xdata time
set timefmt "%d/%m/%y %H:%M"
set format x "%d/%m/%y"
plot 'timedat.dat' using 1:3 with linespoints

How it works…
When dealing with date/time data, you must always alert gnuplot to this with set xdata
time. Then you need to tell the program in what format the date and time data will be
found; this is the purpose of the set timefmt command. The format string uses %d to
stand for the numerical day, %H to stand for the numerical hour using a 24-hour clock,
and so on. For a rundown of all the formats that gnuplot understands, type help timefmt
at the interactive prompt.

The third line sets the format for the tic labels on the x-axis (which is now a date/time axis).
The final line plots the file; the using keyword is mandatory when plotting temporal data.

If you want you can put the time of day in the tic labels as well (and you must if your data lies
within one day, for example). Try using the following command:

set format x "%d/%m/%y\n%H:%M"

This will get you the date as formatted in the previous figure with the time set below each
date. The escape code \n in the format specification produces a new line in the label, which
puts the time of day below the date.

The use of dates and times in tic labels can take up a lot of horizontal space. gnuplot does
a poor job of accounting for space used in tic labels. So, in such situations, we often need
to take measures to keep the labels from running into each other. The use of a linebreak
embedded in the tic format is one remedy. It may also help to change the font.

Controlling your Tics

78

Changing the language used for labels [new]
The most recent version of gnuplot provides several new internationalization features.
If you are plotting date/time data and set the format to display the month abbreviation
rather than the number of the month, gnuplot can use the abbreviations appropriate to
any language installed on your system. The following figure repeats the previous plot using
month abbreviations and the Spanish language:

Note that the month names are not capitalized, which is the convention in Spanish.

How to do it…
In the following script, the addition of one line translates our plot to Spanish:

set xdata time
set locale "es_ES.utf8"
set timefmt "%d/%m/%y %H:%M"
set format x "%b %Y"
plot 'timedat.dat' using 1:3 with linespoints

Chapter 4

79

How it works…
In order to use the new internationalization features, you must have the locale program
installed on your system; how this is handled is highly system dependent. In Linux, you install
the desired language packages, and get a list of the available locales at the system command
line with locale -a. You can switch languages in gnuplot with the set locale command
highlighted in the previous script, substituting a locale name from the available list. gnuplot
should be able to detect the default language of your system, so if you want to create labels
using your computer's native language, you will most likely need to do nothing. In the set
format x line in the previous script we've used the symbols for the month abbreviation (%b)
and for the full, four-digit year (%Y).

Using European-style decimals [new]
Another new internationalization feature in gnuplot 4.4 is the ability to set the character used
for the decimal point to be correct for the locale in use. In most European countries the
comma is used, whereas in the U.S. the period is conventional.

How to do it…
The following script produces the graph that follows it:

set decimalsign locale "es_ES.utf8"
plot [0:1] x**3

Controlling your Tics

80

Note that the periods used for decimal points that we've seen in all the examples until now
have become commas, because gnuplot knows that that is the convention when using the
Spanish language.

How it works…
The new command set decimalsign selects the correct decimal separator for the locale
specified. We can also select any symbol here explicitly. If we would like a vertical bar to
stand in for the decimal point, for example, we can say set decimalsign "|". These
customizations only affect the output on the graph.

Changing the decimalsign does not change what gnuplot will be expecting
when it reads your input data.

Formatting tic labels
gnuplot provides a great deal of flexibility in the formatting of numbers in tic labels and allows
us to freely intermix text with its automatically generated numbers. This is illustrated in the
following figure:

Chapter 4

81

How to do it…
The following script introduces the formatting commands that we used to produce the
previous figure:

set ylabel "Output power"
set format y "P = %.2f Watts"
set format x "%.3f%%"
set rmargin 6
plot [0:100] x**2

How it works…
The new commands are in the highlighted lines. set format y and set format x define
the formats to be used for the tic labels on the y and x-axes, respectively. For a complete
rundown of all the options, you can type help set format at the gnuplot interactive prompt.
Here, we shall describe the subset of the formatting language that we used in the script.
The codes are very similar to those used in many programming languages for the output
formatting of numbers.

A formatting specification is introduced by the character %. It contains a letter that determines
in what general form the number should be represented. We use f, which means "floating
point", which is a simple number with a decimal point. Other options include exponential
("scientific") notation. The notation between the % and f that has the form .n means to
use n places after the decimal point.

Everything before the initial % and after the format specifier (f) is a string that is copied
verbatim. Since % has a special meaning, it is escaped by doubling it to express a percentage
in the tic labels.

As mentioned earlier, gnuplot does not generally do a good job of accounting for the horizontal
space used by big tic labels, as in the example, where the use of three places after the
decimal point makes our labels fairly long. The problem this leads to in the previous figure
is that the last tic label on the x-axis will be cut off on the right. This is fixed by the line after
the two highlighted format lines, where the rmargin setting increases the size of the right
margin, using character coordinates.

Controlling your Tics

82

There's more...
What if we want tics with no labels on them at all? The following figure has tic marks but
no labels:

All we need to do in this case is to specify empty formats for the tic labels, as follows:

set format y ""
set format x ""
unset key
set grid
plot x, -x

5
Combining Multiple

Plots

This chapter contains the following recipes:

 f Arranging an array of plots

 f Positioning plots manually

 f Creating an inset plot

 f Multiplotting with labels and arrows

Introduction
This chapter will show you how to combine several plots into a larger visualization using
gnuplot's multiplot mode. This is a flexible facility that allows you to place a set of plots
anywhere on the page, in a regular array, or one inside the other.

Combining Multiple Plots

84

Arranging an array of plots
The simplest use of the multiplot mode creates a rectangular array of plots with regular
spacing. The following figure is an example of this type of multiple plot:

In the previous figure, we have made a table of graphs showing the four kinds of Bessel
function that gnuplot has built in.

How to do it…
Run this script through gnuplot to get the array of plots shown in the previous figure:

set multiplot layout 2, 2
plot besj0(x)
plot besj1(x)
plot besy0(x)
plot besy1(x)
unset multiplot

Chapter 5

85

How it works…
The new command is in the first line of the recipe. The commands following that are
simple plot statements, until we reach the final line. The initial command puts gnuplot into
multiplot mode. If you are working interactively, you will see that the prompt, which is usually
gnuplot>, has become multiplot> to remind you that you are in a special mode.

The layout 2, 2 part of the command sets up a regular array of plots with two columns
and two rows; of course you can use any numbers here. The subsequent plot commands
will fill the places in this array from left to right and top to bottom.

The final unset multiplot command returns to normal gnuplot mode. In some terminals,
nothing is displayed or written to a file until this command is issued; in others, the page is
built up as you enter the plot commands.

Positioning plots manually
If you need an arrangement of figures other than a regular rectangular array, you must specify
the origin and size for each plot manually. The following figure provides an example:

The happy face shown in the previous figure is a simple example of what you can achieve
with manual plot positioning; using these commands, figures of frightening complexity can
be built up.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Combining Multiple Plots

86

How to do it…
The following script shows how to use gnuplot's manual positioning commands:

set multiplot
unset key
unset tics
set polar
set size 1, .5
plot [pi:2*pi] 1 lw 5
set origin 0, .5
set size .5, .5
plot 1 lw 2, .2 with filledcurves
set origin .5, .5
plot 1 lw 2, .2 with filledcurves
unset multiplot

How it works…
Arbitrary sizing and positioning of individual plots is accomplished using the two new
commands that we have highlighted in the previous script. After entering multiplot mode,
the set origin command can be used to set the position of the lower-left corner of the
next plot. The set size command sets the size of the plot. Both commands use screen
coordinates (since there are no coordinate axes to define any other coordinate system) and
are passed the x and y coordinates separated by a comma. Unlike the situation when we are
using the automatic graph positioning facility introduced in the previous recipe, the order in
which we draw the individual plots does not matter, since the absolute position of each one is
specified separately. The other commands in the script are familiar from previous recipes; the
key and tics were done away with to create a simple, clean figure, and polar coordinates were
used to allow us to easily draw circles.

There's more…
Note that, although we have selected origins and sizes that place the plots touching each
other, there seems to be some space between them. This is because gnuplot by default
places a margin around each plot, and the command set origin establishes the location of
the lower-left corner of the plot including the invisible margin. If we want our plots to be closer
together, farther apart, or we would like to adjust the spacing differently in different directions,
we must turn to the commands that set the individual margins. These are set bmargin for
the bottom margin, set lmargin for the left margin, and so on. (All four margin commands
make an appearance in the next recipe.) The coordinate system used in setting these lengths
is neither the screen system nor an axis system, but yet another gnuplot coordinate system,
the character coordinate system. This is based on the size of a character in the currently
chosen font. The use of this coordinate system for margins is rather convenient, as it allows
us to relate the thickness of a margin to the size of the tic labels by counting characters.

Chapter 5

87

Creating an inset plot
A common pattern is a graph enclosing another smaller graph that reveals a detail in the
larger graph by plotting it using a magnified scale. Following is an example:

In the previous figure, the smaller plot is usually called an inset. We can create this figure
with the script given in the following How to do it... section.

How to do it…
The following script produces the previous figure:

set multiplot
set object ellipse center .13, 0 size .4, 4
set arrow from .1, 2.1 to screen .22, .4 front lt 3
set samples 1000
set grid
set xtics .4
set ytics 4
plot [0:2*pi] exp(x)*sin(1/x)
set origin .2, .4
set size .25,.25

Combining Multiple Plots

88

clear
unset key
unset grid
unset object
unset arrow
set xtics .1
set ytics .5
set bmargin 1
set tmargin 1
set lmargin 3
set rmargin 1
plot [0:.2] exp(x)*sin(1/x)
unset multiplot

How it works…
There are few new commands here. We have simply combined several things covered earlier
in order to create an illustration consisting of a large graph, an inset, and a device consisting
of an oval surrounding a region of interest and an arrow pointing to the inset, indicating that
the latter is a magnification of the region.

After entering multiplot mode, we define an ellipse object (see Chapter 3, Applying Colors and
Styles for an introduction to the use of objects, where we used circle objects in order to construct
a pie chart). The ellipse's center and size are given as (x,y) pairs in the default axis coordinates.
This defines a shape that will not be drawn immediately but deferred to the next plot command.
The next line defines the arrow. This is a good example of when it can be convenient to mix axis
and screen coordinates, and illustrates the utility of gnuplot's several coordinate systems. We
want the origin of the arrow to touch the ellipse; the required (x,y) location is most easily read
directly from the graph, suggesting the use of the axis ("first") coordinate system. This is the
default, so it need not be specified explicitly. We want the destination of the arrow to point at
where we will eventually place our inset, and that is specified in screen coordinates, which are
useful for eyeballing the illustration and estimating where a pleasing location for the inset graph
might be. The keyword front in the arrow specification tells gnuplot to draw the arrow on top of
any other graph elements that it might intersect.

The first plot command in the script uses the entire screen by default. After that we issue
origin and size commands for the inset. The next command, clear, erases anything on
the plot in the area defined by the most recent origin and size commands. The purpose
of this is to erase the grid lines in the area that will be used for the inset, as they will not align
with the latter's tic marks and would be confusing.

Chapter 5

89

Before drawing the inset graph, we unset the grid and key in order to make the smaller graph
less busy. We also unset the ellipse object and the arrow so that they are not drawn again with
the next plot command, and reduce the frequency of tic marks. In addition, we adjust the size
of the margins (see the There's more... section of the Positioning plots manually recipe in this
chapter); in particular, the bottom margin is reduced so that the arrowhead lies closer to the
inset graph axes.

Finally, we create our inset graph by plotting the same function over a smaller interval.

Multiplotting with labels and arrows
In this recipe, we show how to create a complete illustration that might be useful in a calculus
textbook, using arrows and the screen coordinate system to lead the eye around a cycle of
graphs. The following figure shows what happens when we take successive derivatives of a
sine wave:

Combining Multiple Plots

90

How to do it…
The following script will give you the previous figure:

set xrange [-pi:pi]
unset key
set multiplot layout 2,2 title "Derivatives of Sin(x)" font "Times-
Roman, 22"
set style arrow 1 head filled size screen 0.03,15,135 lt 2 lw 2
set arrow 1 from screen .45, .84 to screen .65, .84 arrowstyle 1
set arrow 2 from screen .87, .64 to screen .87, .3 arrowstyle 1
set arrow 3 from screen .7, .15 to screen .4, .15 arrowstyle 1
set arrow 4 from screen .35, .35 to screen .35, .7 arrowstyle 1
set title "sin(x)"
plot sin(x)
set title "sin\'(x) = cos(x)"
plot cos(x)
set title "sin\'\'\'(x) = cos\'\'(x) = -sin\'(x) = -cos(x)"
plot -cos(x)
set title "sin\'\'(x) = cos\'(x) = -sin(x)"
plot -sin(x)
unset multiplot

How it works…
Since we want each plot in the set to have the same range on the x-axis, we'll save typing by
defining the xrange first. The highlighted set multiplot line has some features we've not
covered earlier. The title here will be the overall title for the entire illustration, rather than
for any individual plot. We would like it to be more prominent than the rest of the text on the
page, so we use a font specifier here as well.

The next command (the second highlighted line) defines a user style for an arrow, similar
to the user-defined linestyles we covered in Chapter 3, Applying Colors and Styles. As we'll
use this same style for the four arrows pointing between the graphs, it's more economical to
define a user style rather than repeating the style information for each arrow command. head
filled means to draw a solid arrowhead; the numbers following the screen coordinate
selector define the length of the arrowhead, the angle its front sides make with the shaft, and
the angle of its back sides. gnuplot provides maximum flexibility in the drawing of arrowheads.
Once the style is defined, we use it in the next four set arrow commands, selecting the
style with the invocation arrowstyle 1 (which, like most gnuplot keywords, can be severely
abbreviated, in this case to as).

Chapter 5

91

Now, each set title command defines the title for the individual plot that follows it, and
the four plots with their titles are arranged in a 2 x 2 array that was defined in the set
multiplot command.

6
Including Plots in

Documents

This chapter contains the following recipes:

 f Introducing gnuplot's high-quality graphics formats [new]

 f Adding a plot to a paper using LaTeX

 f Assembling a document using TikZ and LaTeX [new]

 f Assembling a document using epslatex

 f Using gnuplot within LaTeX

 f Creating presentation slides with incrementally displayed graphs

 f Including a plot in a web page

 f Making an interactive plot for the Web [new]

Introduction
The previous chapters have all dealt with the creation of graphs, or of illustrations made up
of sets of graphs, as isolated files or images on the screen. But in the real world, graphs and
charts are often not content to stand on their own. The lucky ones become part of something
larger. In this chapter, you will learn various techniques that will allow you to include your plots
in technical documents, presentations, and web pages. The emphasis throughout will be on
using the special capabilities of gnuplot, including some of its most recently added features,
that allow it to work in close cooperation with document creation software for the production
of the highest quality typeset or interactive documents.

Including Plots in Documents

94

The nature of what we shall be learning in this chapter means that there is an important
difference between it and the previous ones. Up to now all you needed to follow the recipes
in this book was a working installation of gnuplot and perhaps some auxiliary programs such
as text editors and viewers for graphical files. But for some of the recipes in this chapter you
will need to have installed some additional non-trivial software and have some knowledge of
how to use it. This cannot be avoided, because we are concerned here with the creation of
documents, and this is something that gnuplot does not do by itself. For the recipes where
we show you how to create documents for the Web, however, all you will need besides a text
editor is a modern graphical web browser.

Introducing gnuplot's high-quality
graphics formats [new]

The pdf and png terminal drivers have been supplemented (or perhaps replaced, depending
on the details of how your version of gnuplot was compiled) by higher quality versions that use
the cairo graphics library.

As the emphasis in this chapter is on achieving the highest possible quality for publication
in electronic documents or on paper, we are devoting the first recipe to showing you how to
select and use gnuplot's new high-quality terminal drivers.

In the previous figure, we can clearly see the increase in quality when using the new
pngcairo terminal driver rather than the older, libgd-based terminal. Text and anti-aliasing
is handled better, and the drawing of curves in plots is vastly improved. The curve in the older
version is clearly more jagged, while the cairo library smoothly interpolates the curve between
sample points.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

95

Getting ready
To reproduce this recipe, your version of gnuplot needs to have the pngcairo terminal
compiled in. You can check this by typing set term at the gnuplot prompt to get a list of all
the available output devices. The terminals you can use depend not merely on the version of
gnuplot that you have, but on the details of how it was compiled. If by chance you have the
pdfcairo terminal but not pngcairo, you can use the former and create a PNG file using,
for example, Ghostscript.

How to do it…
Try the following script to produce the right-hand side of the figure:

set term pngcairo
set title 'Pngcairo terminal'
set out 'file.png'
unset key
set grid
set size .4,1
plot [0:1] sin(pi*x)

If you run this script at the system command line with gnuplot scriptname, then
file.png should appear in your current directory. If you enter or load it at gnuplot's
interactive prompt, the file will not be complete until you exit gnuplot normally or enter
a new set out command.

How it works…
In the highlighted code line, we have selected the pngcairo terminal driver.

We've set the size to be thinner than normal, so that we could conveniently display the
output of this script next to the output of the same script when replacing the first line with set
term png, which selects the older version of the png terminal. The difference in quality is so
great that there is no reason to use the latter any more if you have the cairo terminal drivers
installed. If you need to create a bitmapped graphics file (for subsequent editing or because
of the needs of your workflow) then the pngcairo terminal is probably the best choice.
PNG is also a great choice for use on web pages, as it is supported in the recent versions
of all graphical browsers and gives far better results than jpeg for the type of graphics that
we create with gnuplot. Yet another advantage of the new pngcairo terminal is that it fully
supports the new gnuplot features transparency (covered in Chapter 3, Applying Colors and
Styles) and Unicode (covered in Chapter 2, Annotating with Labels and Legends), neither of
which are handled by the libgd-based png terminal.

Including Plots in Documents

96

There's more…
There are some other recent additions to gnuplot's collection of output devices, which include
the following terminals:

The wxt terminal
Another addition to the gnuplot stable is the wxt terminal, which is an interactive bitmapped
display similar in use to the venerable X11 terminal. The improvements here are that the
wxt terminal uses the cairo graphics library, and thus also features sophisticated font
handling, including Unicode, smooth curve drawing, and anti-aliasing. The wxt terminal
supports transparency as well, which the X11 terminal does not. The wxt driver also puts
several interactive widgets on the screen that allow you to turn the grid on or off, set some
basic configuration, flip through your zoom levels, and copy the image to the clipboard. All
of these except the last are also available as keyboard shortcuts (type h while the graphics
window is in focus to get a list of these shortcuts printed on the console), as they are in the
X11 terminal as well. The copy-to-clipboard function is especially useful here, as it allows you
to conveniently transfer a high-quality bitmapped image to a graphics program for further
editing after adjusting it interactively. This can also be a convenient way to insert graphs in
word processor documents, although better quality will be obtained by saving your graph in a
vector format (see the next paragraph) and inserting the external file (many widely used word
processors can include PDF or SVG files, either built-in or through plugins), and for the best
quality and convenience of automation you will want to use the LaTeX methods described
later. In short, there is little reason to use the old X11 terminal if the wxt driver is available on
your installation, and in fact it has replaced the former as the default starting terminal out of
the box. There is one reason why you might want to switch to using the X11 terminal in some
situations, however, and that is because interactive scaling and rotation can be a bit slower in
wxt for complex 3D graphs, depending on your hardware. To invoke the wxt terminal, just use
the command set term wxt.

The pdfcairo terminal
If you do not need to produce a bitmapped file, you will get superior results by saving your
graphs in a vector format. These graphical formats are resolution-independent, meaning
that they can be scaled up arbitrarily without loss of quality. They consist of drawing and
character-placement instructions rather than the list of colored dots comprising a
bitmapped format.

New in version 4.4 of gnuplot is the pdfcairo terminal. As the name suggests, this driver
produces a PDF file that uses the cairo graphics library. The results are superior to the older
driver based on the PDFLib library, and pdfcairo supports gnuplot's new transparency and
Unicode features as well. This is important because PostScript supports neither transparency,
nor, generally, Unicode, so a PDF made by transforming a PostScript file (a common workflow)
cannot have these features. The pdfcairo terminal should probably be your first choice for
producing high-quality, standalone files for printing or inclusion in typeset documents.
To set the terminal type set term pdfcairo on the gnuplot command prompt.

Chapter 6

97

The svg terminal
Another relatively recent addition to gnuplot's device lineup is the SVG terminal. This is
another high-quality vector format that also supports transparency and Unicode; it produces
very attractive plots. The chief value of SVG is that it is a vector format that can be included
directly in web pages; indeed it was developed by the W3C for this purpose. If you are
producing graphs for use on the Web, the SVG terminal is your best choice, unless you
need to support very old browsers. It will probably come as no surprise that to select this
driver you type set term svg.

Adding a plot to a paper using LaTeX
As promised in the Introduction to this chapter, here is a recipe where you will need more
than gnuplot to carry it out. This example assumes that you have a working LaTeX installation,
including several common packages. For most people using gnuplot in the production of
scientific or technical documents, this is a fairly safe assumption, as LaTeX is the preeminent
platform for demanding technical typesetting. If you do not have LaTeX available or are
unfamiliar with its workings, then this section might serve as an advertisement and, along
with the next several recipes, provide a survey of what you can do when you get LaTeX and
gnuplot working together. In the following figure, we have a section of what might be a gnuplot
tutorial, showing a paragraph of text and a graph:

The graph was produced by gnuplot and saved in its own file. Then a LaTeX document was
created that referenced this file and put it together with the typeset paragraph. Therefore,
we have two code samples: the usual gnuplot script, which we list first, and the LaTeX source
document, which we list after that in its entirety.

Getting ready
Make sure that you have a working installation of LaTeX, that the pdflatex command works,
and that you can view the resulting pdf files.

Including Plots in Documents

98

On Linux, the simplest way to install the LaTeX system will be to use your package manager:
look for a package called texlive. On other systems you can visit the official web page at
http://www.tug.org/texlive/acquire-netinstall.html.

How to do it…
Following are the steps to produce the previous figure:

Creating the figure
First, enter the following script and create your figure with gnuplot:

set term pdfcairo font "Arial,12"
set out 'r2fig.pdf'
unset key
plot [0:.5] sin(1/x) lw 2

The TeX document
Next, create a document with the following content and save it with the filename r2.tex:

\documentclass[12pt]{article}
\usepackage[rflt]{floatflt}
\usepackage{graphicx}
\pagestyle{empty}
\begin{document}
\openup.5em
\begin{floatingfigure}{2.25in}
\includegraphics[width=2in]{r2fig}

\end{floatingfigure}
It can be difficult to plot functions like $\sin(\frac{1}{x})$ that
vary infinitely quickly as x approaches a particular value, in this
case $x=0$. Unless the function is sampled more frequently than it
oscillates, you will produce plotting artifacts, as can be seen in
the figure to the right. In
these cases a better result can be obtained by increasing the sample
frequency; in gnuplot the command is {\tt set samples 1000}, for
example.
\end{document}

Running LaTeX
Now, after making sure that you are in a directory with both the r2.tex file and the r2fig.
pdf file, issue the command pdflatex r2 in the terminal (the console, or wherever you issue
commands in your shell). If you are using a graphical interface to LaTeX, such as TeXshop on
the Macintosh, that should work just as well and produce identical results, as these programs
simply call the command given here behind the scenes. If all goes well, after LaTeX finishes

Chapter 6

99

digesting your file you should have a new file called r2.pdf in your directory (as well as
r2.aux and others that we can ignore for now). This file should be essentially identical
to the previous figure.

How it works…
The gnuplot part of the recipe should all be pretty familiar. We have chosen to save our graph
in the form of a PDF because our final document will also be a PDF, and we want all of its
components to be resolution independent and able to be printed or displayed at the highest
quality. Since the default font size for this terminal is quite small, we've selected a larger size
so that the tic labels will be more visible and will more closely match the document text.

In the plot command, we have specified a line width larger than the default (lw 2). This is a
good idea for plots that may be reduced in size for publication or inclusion in a document, as
this one is, because the default thin lines usually produced by gnuplot may become almost
invisible when the entire plot is reduced.

After we run the gnuplot script and have the graph stored on disc, we process the LaTeX file,
which will look for the graph when pdflatex hits the highlighted \includegraphics line.
Note that we just include the base name of the graphics file, without the .pdf extension;
LaTeX knows how to look for graphics files that it can handle, and tries the extensions that it
knows about until it finds an appropriate file. This is generally better practice than specifying
the full filename, as it makes it convenient to substitute a different format later if you change
your mind.

The line \usepackage[rflt]{floatflt} loads a package that defines the
floatingfigure environment, within which we have inserted our \includegraphics
command. This environment floats the figure to the side (the right side in this case, because
of the [rflt] option) and the nearby text flows around it.

Assembling a document using TikZ
and LaTeX [new]

The previous recipe showed how to add a gnuplot graph to a LaTeX document by saving the
graph in a file and including it with an \includegraphics command. There is nothing in
this method that requires the illustration to be a graph produced with gnuplot; any graphics
format that is understood by the version of LaTeX (pdflatex, regular LaTeX, or something else)
that you are running can be used. That makes this method particularly useful when you need
to save a bitmapped version of your graph so that you can edit it to produce a final version in
an image editing program (Gimp, Photoshop, and so on).

Including Plots in Documents

100

However, there are drawbacks to this approach. Ideally, you would like the fonts used in
your graph, in the tic labels, title, and elsewhere, to match the fonts used in the rest of your
document. This produces a unified, sophisticated appearance, and increases overall legibility.
It is quite difficult to do this entirely within gnuplot, or in an image editor. Even if you could
get these programs to find and use the fonts that will be used by LaTeX in typesetting your
document, there would be no way to match the typographic detail incorporated by LaTeX in
the main text: the kerning, linebreaking, ligatures, and so on. And when you need to include
an equation in your graph, you would not have access to TeX's mathematical syntax nor any
way to produce results comparable to TeX's math output. Your best alternative would be to
use the enhanced text markup we covered in Chapter 2, Annotating with Labels and Legends,
which is cumbersome, unpredictable, and usually leads to unattractive results (but can be
convenient in simple cases).

This recipe shows how to use a new feature in gnuplot version 4.4 to overcome all these
problems and get LaTeX to produce all of the text on your graph. You have full access to the
entire power of LaTeX for mathematical typesetting and all the features of gnuplot at the same
time. The result is a vector drawing seamlessly incorporated into your document, as can be
seen in the following figure:

In the previous figure, we have what might be an extract from an elementary calculus
textbook. You might notice three things: the typefaces used in the graph, including the
numbers used as tic labels, are identical with those used in the text; the kerning used in
the title reflects the same high-quality typesetting seen elsewhere on the page; and the
mathematical material looks like real math. The overall effect is that of a professionally
typeset book. This is surprisingly easy to achieve, thanks to gnuplot's built-in mechanisms
for working with LaTeX.

Chapter 6

101

Getting ready
As in the previous recipe, you need to have a relatively recent installation of LaTeX. Also,
the tikz terminal needs to have been compiled into your version of gnuplot.

How to do it…
Follow these steps to create the previous figure:

Making the plot
As in the previous recipe, there are two pieces of code required. First, the gnuplot script:

set terminal tikz
set out 'r3.tex'
unset key
set label '\Large$\displaystyle \lim_{x\Longrightarrow0}\frac{\sin(x)}
{x}=1$' at graph .55, .75
set title '\Large Illustrating L'H\^opital's Rule: $\frac{\sin(x)}
{x}$'
plot [0:15] sin(x)/x lw 2

The first (highlighted) line invokes the tikz terminal, which is new in gnuplot version 4.4.
The final result of running this through gnuplot will not be a graphics file, such as a PDF
or PNG image, but a tex file, consisting of a set of instructions for LaTeX that you can (but
need not) read and edit in a text editor. The file is named in the second line; you can call it
anything, but it will be convenient to name it with the tex extension. The set label and set
title commands are familiar from previous chapters, but here we have used LaTeX syntax
in the strings. You can use almost anything that you can use in the main part of your LaTeX
document here, with one big exception: the display math delimiters or environment do not
work. That is why, in the label definition, we've used the \displaystyle command; this
makes the rest of the equation typeset as if it were in a displayed equation environment.

You cannot use displayed math environments directly
with the tikz terminal.

The LaTeX document
After running the previous script through gnuplot, if you have the tikz terminal installed, you
should have the new file r3.tex ready to be included in your main document. The following
listing shows the LaTeX file that produced the previous figure:

\documentclass{article}
\usepackage{graphicx}
\usepackage[rflt]{floatflt}

Including Plots in Documents

102

\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage[utf8x]{inputenc}

\usepackage{gnuplot-lua-tikz}

\pagestyle{empty}
\begin{document}
\openup.5em
\begin{floatingfigure}{2.9in}
\resizebox{2.5in}{!}{\input{r3}}

\end{floatingfigure}
\noindent The figure to the right provides an illustration of
L'H\^o\-pi\-tal's Rule. Recall that this rule can be applied when
taking the limit as $x\longrightarrow x_a$ of a ratio of two
functions where the ratio approaches the indeterminate form
$\frac{0}{0}$; in the case where both functions are
differentiable at x_a, the ratio approaches the ratio of their
derivatives. In the case illustrated both $\sin(x)$ and $x
\longrightarrow0$ as we approach the origin, but the ratio of their
derivatives, $\frac{\cos(x)}{1} \longrightarrow 1$. L'H\^opital's
Rule also applies in the case of the
indeterminate form $\frac{\infty}{\infty}$.
\end{document}

This file can be called anything. Now just process the file normally with pdflatex to produce
the final result.

If you don't have the tikz terminal available, you can almost definitely use the alternative
method described in the next recipe, which introduces the epslatex terminal.

How it works…
The tikz terminal translates the plotting data into a list of drawing instructions in the TikZ
language, which is a graphics language invented for use in LaTeX documents that is an interface
to the lower-level PGF graphics language. It is installed in most modern LaTeX installations,
and the tikz terminal is available starting with gnuplot version 4.4. (Nevertheless, some
compilations of this version of gnuplot do not include this terminal, as it has some unusual
dependencies.) You can draw "by hand" directly in the TikZ language; this can be a convenient
way to create diagrams from within a LaTeX document. But for the charts and graphs that you
might want to use gnuplot for, gnuplot can do this drawing for you.

The resulting file is a fragment of a LaTeX document consisting of the TikZ picture. It is meant
to be included in your final document with the LaTeX \input command. Since the TikZ
instructions are processed by LaTeX to produce the final picture, complicated graphs with many
segments, such as large 3D plots, can take some time for LaTeX to chew through; far longer
than gnuplot would take when creating such plots with one of the "normal" terminal drivers.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

103

Since the text of labels, titles, and so on will be included directly in the LaTeX file, you can use
almost any LaTeX construct in these strings (although, as mentioned in the previous recipe,
the displayed math style needs to be invoked by using \displaystyle).

In your LaTeX document, you will need the line that is highlighted in the previous document
fragment that loads the gnuplot-lua-tikz package. This package defines some
commands that gnuplot uses in the TikZ picture. The lua part refers to a scripting language
that gnuplot calls out to perform the processing that produces the TikZ instructions. Then
simply \input the TikZ picture file where you would normally place an \includegraphics
command for a normal picture, placing it inside a figure, floatingfigure, or other
environment, if desired.

In order to scale the picture, you can use the \resizebox command as we did in the second
highlighted line in the previous code snippet, but you can avoid this by making the picture
the desired final size in gnuplot to begin with. Using the "!" in the arguments to \resizebox
allows us to specify one of the dimensions, in this case the width, while retaining the figure's
aspect ratio.

Remember that if you have used Unicode characters in any of your labels, you must include
the inputenc package or some other package that allows LaTeX to deal with Unicode
(fourth line in the previous example); but this has become standard practice lately, as it
is very convenient to be able to use Unicode from within LaTeX.

Assembling a document using epslatex
If you have the tikz terminal available, you will most likely want to use it in situations
such as those in the previous recipe, where you want to incorporate the results of the TeX
typographical engine into your plots.

If tikz support happens not to be compiled into your version of gnuplot, you can achieve the
same results using the older epslatex terminal. This is almost always available; you can
check by typing set term and perusing the resulting long list of output devices that gnuplot
knows about.

Using the tikz terminal for these purposes may lead to a simpler workflow, as it produces
a TeX file that can be processed with pdflatex to produce a PDF file directly. This is what
most people want to do most of the time, now that PDF has become the de facto standard
for technical and scientific documents.

The epslatex terminal was designed for an earlier age when the only graphics format that
could be included in LaTeX documents was encapsulated PostScript, and the final result of
running TeX or LaTeX over your document was a DVI (device independent) file. Support for
viewing these files is not widespread.

Including Plots in Documents

104

Fortunately, with one additional processing step, we can use the epslatex terminal to get
exactly the same results, and in a PDF file too. In this recipe, we show how to generate the
previous figure using a different method (there may be slight differences in spacing, as the
generated figure may have a very slightly different size or margins).

How to do it…
The following steps are required to use the epslatex terminal:

Making the plot
Following is the gnuplot script for creating the graph:

set terminal epslatex
set out 'r4.tex'
unset key
set label '\Large$\displaystyle \lim_{x\Longrightarrow0}\frac{\sin(x)}
{x}=1$' at graph .55, .75
set title '\Large Illustrating Ls Rule: $\frac{\sin(x)}{x}$'
plot [0:15] sin(x)/x lw 2

The only change from the previous recipe is in the first line, where we have selected the
epslatex terminal.

When this script is fed to gnuplot, it will create two files: a LaTeX document called r4.tex
and an encapsulated PostScript file, containing the graph, called r4.eps.

The LaTeX document
Include the generated LaTeX file in your LaTeX document, as shown in the following listing:

\documentclass{article}
\usepackage{graphicx}
\usepackage[rflt]{floatflt}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage[utf8x]{inputenc}
\usepackage{gnuplot-lua-tikz}
\pagestyle{empty}
\begin{document}
\openup.5em
\begin{floatingfigure}{2.9in}
\resizebox{2.5in}{!}{\input{r4}}

\end{floatingfigure}
\noindent The figure to the right provides an illustration of L'H\^o\-
pi\-tal's Rule. Recall that this rule can be applied when taking the
limit as $x\longrightarrow x_a$ of a ratio of two functions where the

Chapter 6

105

ratio approaches the indeterminate form $\frac{0}{0}$; in the case
where both functions are differentiable at x_a, the ratio approaches
the ratio of their derivatives. In the case illustrated both $\sin(x)$
and $x \longrightarrow0$ as we approach the origin, but the ratio of
their derivatives, $\frac{\cos(x)}{1} \longrightarrow 1$. L'H\^o\-pi\-
tal's Rule also applies in the case of the indeterminate form $\frac{\
infty}{\infty}$.
\end{document}

The only difference from the previous recipe is the name of the included file.

Producing the PDF
Assuming our final desired result is a PDF document, we must first transform the
encapsulated PostScript file r4.eps into a PDF file. It doesn't matter how we do this, but one
convenient method available on Linux is to use the command-line tool epstopdf, which does
just what it says. On the Macintosh, if epstopdf is not installed, we need to merely open the
EPS figure in Preview and then save it. Preview converts the file to PDF for display.

Once this is done, we need to simply run pdflatex on the file to get our final document.

Another workflow is to process our main document with the latex command, producing
a DVI file. This can be converted, if desired, to a PDF file with the command-line tool dvipdfm
or friends.

How it works…
When using the epslatex terminal, gnuplot will create two output files rather than the single
file that we usually get. We will have our graph in the form of an encapsulated PostScript file
with an eps extension. We will also have a LaTeX file with the name that we specify in the
set out command. We should pick a filename with the extension .tex to make subsequent
processing more convenient. The EPS file will have the same base name (name aside from the
extension) as the one given in the set out command.

The LaTeX file generated by gnuplot need not normally be edited or looked at. Its job is to
overlay all the text, including the tic and axis labels, title, and so on, onto the plot in the EPS
file. If you look at the graph file itself (r4.eps in the example, or r4.pdf after conversion),
you will see a bare plot with no labels or text.

Finally, our main document includes the LaTeX file created by gnuplot, which will in turn
include the graph. We can include this file any way we wish, but usually we will put it in
some sort of figure environment.

For most of the other details of how this recipe works, refer to the previous recipe.

Including Plots in Documents

106

Using gnuplot within LaTeX
In a previous recipe, we learned how to generate TikZ drawing commands from within gnuplot
for inclusion in a LaTeX file. This recipe is, in a way, the reverse. We are going to learn how to
generate gnuplot commands from within a LaTeX document.

The method introduced in this recipe is most useful when we want to enfold graphical
elements into our typeset text rather than include them in floating figure environments. It also
has the advantage of encompassing all the typesetting and drawing commands into a single
file that is processed with one command, with no need to keep track of plot files and separate
gnuplot scripts. This makes it simpler for your document source to become self-documenting
and easily modifiable.

This is a flexible and powerful technique that allows us to combine plots generated by gnuplot
with TikZ drawing commands. If we become proficient in TikZ, we will be able to arrange
gnuplot graphs and PGF graphics in arbitrary ways on the page. As we don't have space here
for a TikZ tutorial, we shall limit ourselves to the following simple example:

In the previous figure, we have a sentence typeset by LaTeX with some illustrations integrated
into the line. The graphics were drawn by gnuplot and inserted back into the document by
LaTeX, all automatically.

Getting ready
The technique we are going to learn now requires LaTeX, PGF, and gnuplot to work together
to create a document with integrated text and graphics (PGF is the Portable Graphics Format,
the actual drawing engine for which TikZ is a higher-level language). Unfortunately, there is
an incompatibility between recent versions of gnuplot and all but the latest version of PGF.
And, equally unfortunately, this latest version is not yet widely distributed. If, when trying this
recipe, you see errors that complain about gnuplot not understanding "set term table" or
something similar, then you need to upgrade your PGF installation. You can go to the official
website at http://pgf.sourceforge.net/ and download version 2.10, and follow the
install instructions. After the files are copied to the correct places in the TeX tree, you will need
to run texhash as root (or administrator).

Chapter 6

107

How to do it…
The following single LaTeX file creates the illustration shown in the previous figure:

\documentclass{article}

\usepackage{tikz}
\usepackage{pgfplots}
\usepackage[T1]{fontenc}
\usepackage[utf8x]{inputenc}
\pagestyle{empty}
\begin{document}

A sinewave looks like \tikz\draw[domain=0:18.84, scale=.1] plot func
tion{sin(x)};

and a spiral looks like \tikz\draw[parametric, domain=0:18.84,
scale=.1]

 plot function{.2*t*cos(t),.2*t*sin(t)};.

\end{document}

This file must be processed with an extra argument to the pdflatex command that gives
permission for the document to invoke an external program (in our case, gnuplot). This is for
security; the concern is that malicious TeX documents might run programs without the user's
knowledge, so you must turn on this ability manually. Usually, the command is pdflatex
--shell-escape file, but on some systems it is pdflatex --write18 file (where,
in both cases, you substitute the name of your TeX file for file, leaving off the .tex file
extension).

How it works…
This will work in any LaTeX document, but we must be sure to include the tikz and
pgfplots packages. The highlighted lines create the sentence shown in the previous
illustration. When it's time to insert our pictures, we start the \tikz command, followed by
\draw with the options in square brackets. The domain option serves the same purpose
as the [a:b] plot notation within gnuplot; the scale option scales the final figure by the
multiplicative factor supplied; and the parametric option means that the following plot
command is a parametric function, with t as the parameter and the x and y coordinates
separated by a comma (we covered parametric plotting in Chapter 1, Plotting Curves, Boxes,
Points, and more).

A single command on our part is all that is required. LaTeX calls out to gnuplot automatically
to create tables that are subsequently read in by PGF to create the illustrations, which are
inserted into the page by the TeX typesetting engine. There will be a few auxiliary files left
on the disc, which you can safely delete, but they may speed up subsequent passes through
LaTeX if you are actively editing the file.

Including Plots in Documents

108

TikZ/PGF can produce any type of diagram, and TikZ pictures can be put inside of a floating
figure environment, as we saw in the previous recipe. But where TikZ excels is the ease with
which it can place small illustrations in line with the text. This can be done with the extensive
graphical capabilities built into TikZ/PGF, which actually include the ability to make simple
plots directly. As this is not a book about TikZ but about gnuplot, we've chosen to demonstrate
how TikZ can use gnuplot as an external program. This is invoked with the function keyword in
the highlighted line. If you want a full-blown graph with axes, tic marks, and so on, you can use
other TikZ commands to create these, including LaTeX-typeset labels; but in this case you may
be better off using the techniques of the previous two recipes.

Creating presentation slides with
incrementally displayed graphs

Some explanation of the title of this recipe is in order. In ancient times, we gave presentations by
putting sheets of plastic on "overhead projectors". We tended to put a great deal of information
on each slide, as it was cumbersome to change them. Now that we plug computers into
projectors and effortlessly flip back and forth through our slides, it is easier on the eyes
to keep each slide relatively uncluttered and focused on a single idea.

One technique that aids this style of presentation is to create a kind of animation by having
a series of slides where most of the content remains the same while one or two elements
vary, focusing attention on the information conveyed by the changing elements. It gives the
impression of an animation because the changing pieces can appear to move relative to the
static content if the slides are changed quickly. This type of presentation is easy to create with
gnuplot and the LaTeX beamer package, as shown in the following figure:

Chapter 6

109

After running the code presented in the following How to do it... section you will have
a five-page PDF file. If you set your PDF reader to display full-screen, or to display whole
pages, and flip back and forth through the pages, you will see the effect that we are after.

The previous figure shows the five pages of the presentation with the page margins stripped
out to save space.

Getting ready
As before, you will need a not-too-ancient installation of LaTeX. You will need the beamer
package installed; this is included in most recent versions of the large LaTeX bundles,
including TeXLive.

How to do it…
The following instructions will lead you to the presentation in the previous figure:

Including Plots in Documents

110

Making the plots
As was the case in several of the previous recipes in this chapter, we have two code
samples. The first is our gnuplot script. After executing this with gnuplot, you should
have five PDF pictures on your disc.

set term pdfcairo font "Times, 14" enhanced
unset key
set out 'p0.pdf'
set label 1 'x' at first .5, .5 + .1
plot [0:1] x
set out 'p1.pdf'
set label 1 'x^2' at first .5, .5**2 + .1
plot [0:1] x**2
set out 'p2.pdf'
set label 1 'x^3' at first .5, .5**3 + .1
plot [0:1] x**3
set out 'p3.pdf'
set label 1 'x^4' at first .5, .5**4 + .1
plot [0:1] x**4
set out 'p4.pdf'
set label 1 'x^5' at first .5, .5**4 + .1
plot [0:1] x**5

This script may appear to gnuplot experts to be unnecessarily verbose, but as we have not yet
covered looping or other gnuplot programming constructs, we present the manual version. The
next chapter will explain how to write scripts similar to the previous script with far fewer lines.

The LaTeX document
The following is the LaTeX file. Just run this once through pdflatex and in a couple of
seconds you will have your final PDF presentation.

\documentclass{beamer}
\beamertemplatenavigationsymbolsempty
\usepackage[utf8]{inputenc}
\begin{document}
 \begin{frame}
 \begin{columns}[c,totalwidth=\textwidth]
 \column{.49\textwidth}
 On the right you can see a plot of x^n for various values of
 n.
 \column{.51\textwidth}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

111

 \includegraphics<1>[width=\textwidth]{p0.pdf}
 \includegraphics<2>[width=\textwidth]{p1.pdf}
 \includegraphics<3>[width=\textwidth]{p2.pdf}
 \includegraphics<4>[width=\textwidth]{p3.pdf}
 \includegraphics<5>[width=\textwidth]{p4.pdf}
 \end{columns}
 \end{frame}
\end{document}

How it works…
We'll explain the gnuplot script and the LaTeX document in the following sections:

The gnuplot script
There should be nothing unfamiliar in the gnuplot script. We've chosen the pdfcairo
terminal because we want a vector graphics format: when projected on a large screen,
bitmapped graphics are likely to reveal their pixellated nature. The font specification is
really necessary, as the default is too small to be legible from the back rows. We also want
enhanced text, so we can use a superscript when labeling the curves. After turning off
the legend, we have a repeated set of three commands; each set opens a new output file,
redefines a label that is tagged with the number 1, and draws the plot. The label commands
use the first coordinate system, so we can easily make the labels stick with their curves
as the curves change.

The LaTeX document
The LaTeX script is merely a skeleton, containing a minimal working example to illustrate
the technique, and obviously not a complete presentation. In a real presentation, you will
have a title, authors, and other information that will appear on each slide, and we hope
the content would be more interesting. The beamer class is one of several available
classes for making presentations with LaTeX; I have tried several and feel that this is the
best one. By default, beamer places navigation widgets on each slide, which we can turn
off with the second line in the example document. The presentation is divided into frames,
which may in turn be divided into subframes using the angle bracket notation. The command
\includegraphics<1>[width=\textwidth]{p0.pdf}, for example, means that the
file p0.pdf is to be included only in subframe 1 of the current frame. The textwidth here
actually refers to the width of the column, which is 0.51 times the textwidth of the
entire frame.

Since gnuplot is exceptionally good for automating the creation of sequences of plots, either
using its built-in scripting language or other programming languages (as we are soon to see in
the next chapter), its combination with the LaTeX beamer package forms a powerful system
for creating the highest quality technical presentations. Since PDF is an open format for
which free readers exist on every platform, this is also an excellent way to create educational
material that can be distributed through the Web as well as projected for an audience.

Including Plots in Documents

112

Including a plot in a web page
Gnuplot can produce graphs in several formats that can be included in web pages. The chief
purpose of this recipe is to give complete examples of current best practices for assembling
web pages with graphics. Following is a screenshot from the display area of a web browser:

The text and figure are the same as in the previous recipe, Adding a plot to a paper
using LaTeX.

How to do it…
The following sections will help you in including a plot in a web page as shown in the
previous figure:

The gnuplot script
We'll modify our previous gnuplot script a little to produce an SVG file rather than a PDF file:

set term svg font "Arial,12"
set out 'r6fig.svg'
unset key
plot [0:.5] sin(1/x) lw 2

The HTML source
Following is a minimal HTML5 web page, showing the first method for including an SVG image:

<!DOCTYPE HTML>
<html>
 <head>
 <meta content="text/html;charset=utf-8" http-equiv="Content-Type"
 />
 <title>Gnuplot on the Web</title></head>

Chapter 6

113

 <body>
 <h1>Gnuplot on the Web</h1>
 <img src = "r6fig.svg" style = "float:right;" width = "300" alt =
 ""/>
 <p>
 It can be difficult to plot functions like sin(1/x) that vary
 infinitely quickly as x approaches a particular value, in this
 case x = 0. Unless the function is sampled more frequently than
 it oscillates, you will produce plotting artifacts, as can be
 seen in the figure to the right. In these cases a better result
 can be obtained by increasing the sample frequency;in gnuplot
 the command is "set samples 1000", for example.
 </p>
 </body>
</html>

After making sure that the file r6fig.svg is in the same directory as the HTML file, open
the file in any modern, graphical web browser; you should see a page displayed similar to
the previous figure (the typeface and some other details may be different depending on the
preferences set in your browser).

How it works…
The first line in the HTML code sample tells the browser that this is an HTML5 document.
This is the current standard for web pages and is supported in all modern browsers; since
it is backward compatible, there is no reason not to use it. Nevertheless, the example should
work for older HTML standards as well, with their more verbose DOCTYPEs.

The img tag selects the SVG file that we created with our gnuplot script in the src attribute;
the float:right style does the same thing as the floatingfigure environment in the
previous LaTeX recipe.

SVG is the only vector graphics format that can be
viewed on the Web without a plugin.

Other choices for image formats that we might have used include PNG and JPEG; but as SVG
files are now well supported in all recent browser versions, we want to use this high quality
vector format whenever possible. If you are compelled to use one of the bitmapped formats in
your web page, the HTML syntax for their inclusion is precisely the same as in the example code.

Including Plots in Documents

114

There's more…
You can open the SVG file in an editor and change it, or write one by hand: the format is XML
text. You can also include this file (more precisely, the parts between the SVG tags, excluding
the header lines before the opening tag) directly within your HTML page, rather than by
reference. This allows you to do other things, such as make the image interactive and modify
it with JavaScript. However, support for inline SVG is still not quite as widespread as support
for including SVG images by reference in img tags or others. Also, there is another problem.
I have discovered that the SVG files created by gnuplot, although they seem to work, are
not strictly valid. The reader can verify this by using the validator at http://validator.
w3.org/. This means that if they are included directly in your HTML pages, they will render
your pages invalid as well.

Making an interactive plot for the Web [new]
gnuplot's new canvas terminal allows us to include a graph in a web page with some
interactive widgets:

Getting ready
As before, in order to see the results of this recipe, you will need a decently modern graphical
web browser, in this case with JavaScript enabled (which it will most likely be by default, if you
have not disabled it or installed a script-blocking extension). This recipe depends on gnuplot
at least at version 4.4; the canvas terminal that we'll be using in this recipe is a new feature
in gnuplot.

The HTML file created by the use of this recipe will refer to three JavaScript files and one CSS
(Cascading Style Sheet) file that were installed on your machine when gnuplot was installed.
These are called gnuplot_common.js, gnuplot_mouse.js, canvastext.js, and
gnuplot_mouse.css. Usually, especially on a Unix-type operating system, you will find these

Chapter 6

115

files in /usr/local/share/gnuplot/4.4/js. It is probably most convenient for you to copy
these files now into the directory where you will be running the scripts and developing your page;
but for deployment, you will need to copy these to a public URL and point to their location using
an option to the canvas terminal (explained in the following There's more... section).

How to do it…
Run the following script through gnuplot:

set term canvas size 400,300 standalone mousing
set out 'Making_an_interactive_plot_for_the_web.html'
unset key
set grid
plot [0:.5] sin(1/x) lw 2

You will find a new file on your disc with the title given in the set out command. If you view
this HTML file in a web browser that supports the canvas element, you will see a familiar plot
along with some mouseable widgets. The previous figure shows how this page should appear,
but you will have to run the script and open the page in your browser to see the interactive plot
in operation. You can toggle the grid on and off, zoom with the middle (right in some browsers)
mouse button, and flip back and forth through the zoom levels, just as you can do in the
X11 or wxt interactive terminals when using gnuplot on your computer. There is also a table
that displays the x and y coordinates or your pointer position as you move the mouse pointer
around the graph.

How it works…
The highlighted line selects the canvas terminal, which, in standalone mode, assembles
a web page (with a missing DOCTYPE) containing a canvas element and an embedded
JavaScript program that draws the graph into the canvas, as well as constructs the interactive
widgets and connects them to functions that perform zooming and toggling the grid. This is
a convenient starting point to which you can add the rest of your web page text, which would
probably include something explaining what the graph is about.

There's more…
If you examine the generated HTML file, you will see references to the JavaScript libraries
where they live in your gnuplot installation. This is fine for use on your own computer, but
if you want to deploy these pages on the public Web, you will need to make these libraries
accessible. We can do this by passing the jsdir parameter to the set term canvas
command, for example, set term canvas jsdir 'http://example.com/gnuplot/
javascript/' size This will change these file references to point to this directory,
where presumably we have put the gnuplot_common.js files.

Including Plots in Documents

116

The ability of gnuplot to create interactive graphs in web pages continues to develop in recent
builds that have not yet been released as official gnuplot versions. One exciting capability that
appeared recently allows the creation of interactive SVG plots, where different plot elements
can be toggled on and off with the mouse, while retaining all the transparency and other
capabilities of the SVG terminal. If you are interested in creating interactive plots for the
Web, then you should follow gnuplot development progress closely.

The Appendix lists sources of information about gnuplot
and its ongoing development.

7
Programming gnuplot
and Dealing with Data

This chapter contains the following recipes:

 f Scripting gnuplot with its own language

 f Plotting on subintervals

 f Smoothing your data

 f Fitting functions to your data

 f Using kdensity smoothing to improve on histograms [new]

 f Creating a cumulative distribution [new]

 f Talking to gnuplot with C

 f Scripting gnuplot with Python

 f Plotting with Clojure

 f Handling volatile data [new]

Programming gnuplot and Dealing with Data

118

Introduction
Up to now our style of interacting with gnuplot has mainly been to have an interactive
conversation at the terminal, or to create a linear sequence of commands that can be read
in and executed by typing gnuplot file. We went beyond this a bit in the previous chapter,
where we learned how to arrange for a document preparation system to invoke gnuplot
automatically. In this chapter, we shall learn how to leverage the full power of gnuplot as a
programmable graphing engine. This is made possible by gnuplot's design as a program that can
be completely controlled by textual commands, rather than by a limited graphical user interface.
This means that any programming language that can send text to a process or socket can
send commands to gnuplot. The result is that there are libraries for interfacing with gnuplot in
almost every high-level programming or scripting language, and even in cases where no library
is available it is straightforward to communicate manually from within your program, as we
shall see. In addition, gnuplot's own built-in scripting language contains enough programming
constructs to allow significant automation without the use of another language.

Another set of topics we visit in this chapter are gnuplot's built-in smoothing algorithms,
including two immensely useful types of statistical plots that are new in version 4.4. We end
the chapter with a recipe introducing gnuplot's new ability to deal gracefully with data that
may be changing under your feet as you try to work with it.

Scripting gnuplot with its own language
We have learned how to use a large number of gnuplot commands and assembled them into
scripts, included with this book as code samples, that can be executed from the command line
or read in from the gnuplot's interactive plot with the load command. Up to now, however, these
scripts have taken the form of a simple sequence of commands, each one to be executed once;
the same result is obtained whether we enter the commands one at a time at the prompt or
load the script as a whole, in batch mode.

There are many tasks that are much more convenient, and others that are only possible, if we
can apply some sort of automation to the generation of commands. Fortunately, gnuplot, as
part of its command language, includes a simple facility for applying some basic programming
constructs. There is a basic looping control, a way to iterate over a set of commands, and an
if—then—else statement. With these few borrowings from procedural languages, we can
do a great deal; and, as we shall see later on in the chapter, if we need more, we can control
gnuplot from within almost any general-purpose programming language. In the following
figure, the Bessel function is plotted five times, each time with its argument scaled differently,
with a different linetype for each curve, and with a curve title for the legend constructed
individually for each plot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

119

How to do it…
The previous graph could have been made by issuing five individual plot commands,
but in fact was produced with a single line highlighted in the following gnuplot script:

set term pngcairo mono dashed enhanced
set out "file.png"
set rmargin at screen .8
set key at screen 1,.7
plot [0 : 3] for [n = 1 : 10 : 2] besj0(n*x) title "J_0(".n."x)" lt n

How it works…
The selection of terminal type and output file in the first two lines may be familiar from
previous chapters. This recipe will work for any terminal type, so these details are not crucial;
however, we want to select enhanced text handling so we can use subscripts in the legend,
and we've also specified dashed monochrome plot curves so the different lines can be
distinguished in black and white output, as in the printed version of this book.

Programming gnuplot and Dealing with Data

120

The highlighted line contains the new concept for this recipe: within the plot command is
embedded a new construct. The for keyword introduces a loop iteration similar to the for
loop in C and similar languages. The loop variable (in this case n) is introduced within the
square brackets; the notation here means that n goes from 1 to 10 in steps of 2: 1, 3, 5, 7, 9.
The plot command is repeated for each value of n, and wherever n appears in the command
its value is substituted. The result is that this one compact line, highlighted in the script, is
equivalent to the long, compound plot command:

plot [0 : 3] besj0(1*x) title "J_0(1x)" lt 1, \
 besj0(2*x) title "J_0(2x)" lt 2, \
...

When constructing our curve titles, we've used the string catenation operator, which is a dot;
when integers are joined with strings in gnuplot, the integers (the variable n here) are first
typecast to strings.

We have enlarged the right margin with the set rmargin command, and specified a location
for the legend with the set key command, using screen coordinates, to place the key outside
the plot on the right. This is helpful when there are many curves in a plot that might collide
with the legend.

There's more…
The for loop is available in the plot command, as demonstrated in the previous script, and
also in the set command, where it can be used, for example, to define a whole series of user
linestyles (see Chapter 3, Applying Colors and Styles) all at once.

But gnuplot has a more flexible style of iteration that we can turn to when its simple for loop
is not sufficient. This is accomplished with the use of the reread keyword in conjunction with
an if statement, as shown in the following script:

plot sin(0.1*n*x)
n = n + 1
if (n ‹ 100) reread

In order to use this code block, we must first save it in a file (the code has been included as
a supplemental sample for this recipe). Start up gnuplot and get the interactive prompt. Then
set the variable n to 1 by simply saying n = 1. If we wish, we can now set terminal and other
options; let's set the terminal to one of the onscreen terminals such as X11 or wxt, and say
set samples 1000 for a smooth plot. Now, if we say load file, substituting the name of
the file where we saved the previous code sample, we should see a nice animation of a sine
wave sweeping from a low to a high frequency.

This happens because of the final (highlighted) line. The last word on that line, reread, is a
special keyword that tells gnuplot to go back to the beginning of the file and execute it again. But
each time the file is loaded, the value of n is incremented by the second line, and it is retained.
This could continue forever, but is terminated by the if clause, which only executes the reread

Chapter 7

121

when n is less than 100. Instead of displaying an animation on the screen, we could have
saved each plot to a separate file by incorporating the n variable into a filename using the
string catenation operator (set out "file".n."png" would do it). Then, we could use any
of a number of programs to stitch the files together into a movie. In this way, gnuplot's simple
iteration facilities can be used to create animations for presentations or teaching. The recipe
Creating presentation slides with incrementally displayed graphs in Chapter 6, Including Plots in
Documents contained a script that produced a series of graphs for inclusion into a presentation.
Using the looping technique introduced in this recipe, we can now see how this script could be
written more concisely, and with less chance for typos to creep in.

Plotting on subintervals
gnuplot has built-in a respectable collection of special functions and mathematical operators
that allow us to perform significant calculations and massaging of data before plotting. A
complete survey of gnuplot's math brain is beyond the scope of this book; interested readers
should start with Chapter 13 of the official reference manual distributed with the program and
available at http://gnuplot.info/documentation.html.

Here, we shall merely give an example of one very useful technique for plotting functions
that have different definitions over different domains; this technique works equally well for
functions that are continuous or discontinuous over the entire plotting domain. The example
will demonstrate several of gnuplot's mathematical facilities that have not been covered up to
now. Following figure is a plot of two functions, a simple sine wave that turns into a decaying
sine wave when we cross x = 0:

Programming gnuplot and Dealing with Data

122

How to do it…
The following script will produce the previous plot:

set samples 2000
f(x) = x ‹ 0 ? sin(x) : NaN

g(x) = x ›= 0 ? exp(-x/5.)*sin(x) : NaN

plot [-20 : 20] f(x), g(x)

How it works…
The highlighted lines contain the new features for this recipe. gnuplot allows us to define
our own functions, which can save typing later. The first highlighted line defines a function
f(x). Its definition employs the ternary operator, which works in gnuplot similar to the way it
works in C and some other programming languages. The structure is C ? A : B, where C is a
condition, in this case that x is less than 0. If the condition is true, then A is read and the rest
of the structure is skipped; if B is true, then C is read and A is ignored. In the example, f(x)
is defined to be sin(x) for negative x and NaN otherwise. NaN stands for Not A Number.
gnuplot will not plot anything for NaN, so this is a way to make part of a graph blank; this
does what we want, since f(x) is undefined for positive or zero x and we don't want anything
plotted there. (Another way to construct an undefined value that will cause gnuplot to not plot
anything is to use 1/0 instead of NaN.)

By now it should be clear what the second highlighted line does. It creates a function g(x),
which is only defined for nonnegative x, where it is defined as an expression that may be
taken to represent a frictionally damped oscillator.

The final line is a familiar plot command that refers to our two user-defined functions. Notice
that we have set the number of samples to a fairly large number. This is to avoid having a gap
between the two different functions, which do in fact have the same value at x = 0.

Note on division:
Although we said that we're not going to give a complete course on math in
gnuplot, we would like to mention one issue that tends to trip up newcomers,
and even some experienced users. In the gnuplot interactive prompt, type
print 1/2 and print 5/2. If the results are what you expected, read
no farther. If you are surprised, here's what's going on. In the expressions
you typed, the numbers were integers, since they had no decimal points.
In common with many programming languages, gnuplot returns an integer
result when you ask it to do a mathematical operation on integers—and the
way it casts a number to an integer is to discard the noninteger component,
which has the effect of rounding down. If you want a floating-point result, you
need to write at least one of the numbers with a decimal point. For example,
1.0/2 will yield 0.5.

Chapter 7

123

Smoothing your data
As an option to the plot command, gnuplot offers several smoothing functions. The name
smooth is a bit misleading. Included in the options for the smooth plotstyle are several
ways to process your data that would not most naturally be described as smoothing. We give
examples of some of these in the following recipes. In the current recipe we show how to use
the smoothing option that seems to be most immediately useful if you have some noisy data
and want to draw a qualitatively smooth curve through it, to, as they say, guide the eye.

Getting ready
This recipe uses the datafile rs.dat; make sure that it is in your current directory. This file
contains two columns that are the x and y coordinates of a simple sine wave of frequency
and amplitude 1 to which normally distributed random data centered on 0 is added; that
is, a sine curve plus the type of noise that might arise from actual measurements. In the
following figure, we have a plot of the noisy sine wave, plotted with a thin line, overlaid with
a thick curve showing the bezier smoothed approximation to the data, computed by gnuplot:

How to do it…
Use the following script to obtain the previous figure:

plot 'rs.dat' with lines lw 0.5 notitle, \
 '' smooth bezier lw 4 title "Bezier Smoothed"

Programming gnuplot and Dealing with Data

124

How it works…
The plot command is broken over two lines to make it easier to read; we've used one of
gnuplot's special filenames, namely the empty string, which stands for the datafile previously
read in, to avoid typing its name twice. The first part of the plot command is straightforward;
we've asked for a thin line so that the smoothed overlay will be easier to see, and decided
that we don't want a name for this curve to appear in the legend. The second part of the plot
command contains the new feature smooth bezier; this tells gnuplot to compute a bezier
curve to fit the data and plot that rather than the data itself. We see that the smoothed curve
does a nice job of graphically summarizing the trend in the data, although it is a little bumpy.
This is considered a simple smoothing option, and there are no adjustments for it.

Fitting functions to your data
If we want to get serious about fitting functions to our data, we can turn to gnuplot's
sophisticated fit command.

Getting ready
You need the same datafile used in the previous recipe, rs.dat. The following figure shows
the same noisy sine wave, but this time the overlaid curve seems to be perfectly smooth:

Chapter 7

125

How to do it…
The following script will produce the previous figure:

f(x) = a*sin(b*x)
fit f(x) 'rs.dat' via a, b

plot 'rs.dat' with lines lw 0.5 notitle, f(x) lw 4 title "Fit by
gnuplot"

How it works…
gnuplot's fit command takes a function defined by the user containing several parameters
and attempts to find the set of values for these parameters that result in the best fit of the
resulting function to the data specified. Best fit is in a nonlinear least-squares sense that is
thoroughly discussed in the official gnuplot manual. After entering the fit command, gnuplot
will iterate, displaying intermediate results on the console, until it finds an acceptable fit. At
that point, the parameters have been assigned the optimum values and, if desired, the fitting
function can be plotted, as we did in this recipe.

First, we define f(x) to be our fitting function. We can choose any function or expression
that returns a floating-point value; our choice is informed by the fact that we happen to know
that our data is based on a sine wave. We are pretending that we don't know its frequency or
amplitude, letting these be represented by the fitting parameters b and a.

The second (highlighted) line tells gnuplot to calculate the fit by varying the parameters
following the keyword via. After it's done, these parameters hold the resulting values. In the
last line, we plot the original data and our fitting function. We see that gnuplot calculated the
frequency and amplitude correctly, which is apparent from the plot and from the output on
the console.

Programming gnuplot and Dealing with Data

126

Using kdensity smoothing to improve on
histograms [new]

In Chapter 1, Plotting Curves, Boxes, Points, and more, we saw how to plot histograms, which
are a type of statistical plot that show how a set of data is distributed: how many samples lie
within each range of values, or bin. There are problems with histograms, venerable as they
are, however. For example, the apparent shape of the distribution depends in part on how big
we make our bins. Histogram plots can be misleading, and do not always serve the statistical
purpose for which they were intended.

For these reasons and others, statisticians have invented other ways to calculate and
display information about the distribution of a collection of data. One of these is called the
kernel density estimate, which may be thought of as a kind of smoothed, bin-independent
histogram. This is built into gnuplot as a plotting style—an option to the smooth style.
This is a new feature in gnuplot version 4.4.

Getting ready
Make sure you are in a directory with the supplied datafile called randomnormal.text.
This is a single column of numbers generated with a random number generator that claims
to produce random data with a normal (Gaussian, or bell curve) distribution. Parameters
were chosen so that the underlying distribution is supposed to be centered on 0 and have
a standard deviation of 1.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

127

How to do it…
The previous figure is the output of the following script:

plot 'randomnormal.text' using 1:(.001) smooth kdensity \
 title "Frequency distribution

How it works…
The highlighted words in the previous script choose the smoothing option that calculates the
kernel density estimate. This calculation uses the second column to weight the individual data
points. Since we want each point to have equal weight, we substitute an expression equal to
the reciprocal of the number of data points; this will lead to a normalized distribution curve,
where the area under the curve should be equal to 1, and the area between two x values
equals the probability of getting a random number that lies between those two values.

We see in the previous figure that the distribution appears to be approximately Gaussian in
shape and that its maximum and standard deviation seem to be about right, so our random
number generator is working as advertised.

Creating a cumulative distribution [new]
In this recipe, we show how to use another useful statistical plot hiding away in the smoothing
options, and also new to gnuplot in version 4.4. The curve plotted in the next figure is closely
related to the one plotted in the previous recipe. To get the following figure, just integrate the
frequency distribution curve:

Programming gnuplot and Dealing with Data

128

Getting ready
Make sure you are in a directory with the supplied datafile called randomnormal.text.

How to do it…
The following script will get you the previous figure:

set key top left
plot 'randomnormal.text' using 1:(.001) smooth cumul \
 title "Cumulative distribution"

How it works…
The normalization issues are the same as the kdensity discussion in the previous recipe.
The only difference here is the choice of smooth cumul—an abbreviation for cumulative.
We can verify that we have a properly normalized curve because it approaches 1 as we
approach the endpoint on the right. This is what we should expect, because this curve gives
the integral, or area, under the normalized distribution curve plotted in the previous recipe.
This cumulative distribution curve tells us the probability of choosing, for any x value, a
random number equal to or less than x.

Talking to gnuplot with C
In this and the next few recipes, we are going to demonstrate how to use gnuplot from within
different programming languages. There are no illustrations for these recipes, as we are not
giving examples of particular types of plots. We provide samples of code for several languages
that you can modify to get started immediately incorporating gnuplot's plotting facilities into
your programs.

The first example was chosen to demonstrate that we can use gnuplot from within almost
any programming language, even if no specialized library exists for that purpose.

Getting ready
You need to have a C compiler installed to follow along here. Just about any Unix-type
operating system, including Linux and Macintosh (if the Developer Tools have been
installed) comes with one, and it is usually called gcc.

Chapter 7

129

How to do it…
Compile the following program with gcc file.c, where file.c is the name of the file in
which it is saved (the example distributed with this book that is named after this recipe is
Talking_to_gnuplot_with_C.c):

#include <stdio.h>
void main()
{
 FILE* gnuplot;
 gnuplot = popen("gnuplot -persist", "w");
 if (gnuplot != NULL)
 fprintf(gnuplot, "plot sin(1/x)\n");
}

You should now have a file called a.out, which you can execute by typing ./a.out.
The plot should appear instantly. (These instructions will work for Linux, Macintosh,
or any normal Unix-derived operating system.)

How it works…
The key to this technique is the popen function, which allows us to talk to a process as if it we
were writing to a file. The gnuplot process is started with -persist so that when the program
is run, the plot stays up on the screen; otherwise it would vanish as soon as the program exits.
After opening the pipe to gnuplot, we can send a series of commands just as if we were sitting
at the interactive prompt, using print statements. The code sample is a minimal working
skeleton of code to demonstrate the technique; in a real program you can read data, perform
any desired calculations, and save plots to files. And this technique will work in almost any
programming language that contains facilities for starting external processes and sending
strings to them.

Scripting gnuplot with Python
In this recipe, we turn to the scripting language Python. This high-level language is well suited
to the interactive exploration of data and the rapid development of programs for its analysis.
This facility is made even stronger by its extension library numpy, which adds a rich set of
efficient, C-coded routines for manipulating numerical arrays. In addition, there are several
ways to make plots directly from Python. In this recipe we introduce Python's gnuplot interface,
gnuplot.py.

Programming gnuplot and Dealing with Data

130

Getting ready
You will need an installation of Python and its numerical library numpy, which comes with
several popular scientific Python packages. You also need gnuplot.py, which you also may
already have if you are doing scientific work with Python. If not, you can download it from its
official Sourceforge site at http://gnuplot-py.sourceforge.net/.

How to do it…
Run the following code by typing python file.py, substituting the name of the Python
script for file (the included sample is called Scripting_gnuplot_with_Python.py):

from numpy import *
import Gnuplot
g = Gnuplot.Gnuplot()
g.title('My Favorite Plot')
g.xlabel('x')
g.ylabel('sin(1/x)')
g('set term pngcairo')
g('set out "GnuplotFromPython.png"')
g('plot sin(1/x)')

You should then have a PNG file with your plot in your current directory.

How it works…
After importing the Gnuplot package and setting a variable equal to the function
Gnuplot.Gnuplot(), we can issue commands directly to gnuplot just by passing
strings to g. The details of starting the process and opening the pipe, that we did manually
in the previous recipe, are taken care of for us automatically by the gnuplot.py package.
The package also contains many abstracted gnuplot commands, such as the g.title()
function shown in the example. Read the demo files and documentation that come with the
gnuplot.py download to find out everything else it can do.

There's more…
The previous example is a bit contrived; if all you could do with the Python-gnuplot interface
was to send commands that you could just as easily issue directly from the gnuplot interactive
prompt, it would be of limited utility. The real value of this package is its ability to plot arrays
calculated from within our Python program. The following program is included as the file
Scripting_gnuplot_with_Python_2.py:

from numpy import *
import Gnuplot
g = Gnuplot.Gnuplot()

Chapter 7

131

g.title('Normally Distributed Random Data')
g.xlabel('x')
g.ylabel('y')
g('set term pngcairo')
g('set out "GnuplotFromPython2.png"')
x = arange(1, 1000)
y = [random.normal() for i in x]
g.plot(Gnuplot.Data(x, y))

In the last line, we've used another abstraction provided by the gnuplot.py package,
Gnuplot.Gnuplot().plot(), combined with the Gnuplot.Data() object, to plot one
python numpy array (or list cast to an array) versus another. In fact, the array stored in y uses
the random number generator that we probed in the previous recipes introducing the smooth
kdensity and smooth cumulative plot commands.

Plotting with Clojure
Clojure is a dialect of lisp that is implemented on the Java Virtual Machine, so it is easy to
install and run almost anywhere. The details can be found at http://clojure.org/. As
this book is being prepared Clojure is rapidly becoming popular, as it is gaining recognition as
perhaps the most practical implementation of an early high-level language that many consider
to be the most powerful ever devised. Although Clojure is still in a somewhat early stage of
adoption, it is quite mature, used in large projects and by big companies, and you can use
gnuplot from it.

Getting ready
You need, naturally, an installation of the Clojure language. You may be able to install it using
your package manager if you are using a Linux distribution (it is available in Ubuntu, for
example); otherwise, you can download it from its official page at http://clojure.org/
downloads. We are using the program clojure-gnuplot by Vadim Shender, so you should get
that from https://bitbucket.org/vshender/clojure-gnuplot. After unzipping the
clojure-gnuplot download, copy the directory tree org/shender, which is under src
and contains the single file clojure_gnuplot.clj, to the place on your machine where
you keep your Java classfiles and where you will likely find clojure.jar itself. On Linux this
is typically /usr/share/java. Now, you can start Clojure by typing CLASSPATH=/usr/
share/java clojure and the require statement in the first line of the script will work.

How to do it…
Execute the following code in the Clojure REPL (the interactive prompt, also known as the
'Reval-Eval-Print-Loop'):

(require '[org.shender.clojure-gnuplot :as gnuplot])
(def gp (gnuplot/start))

Programming gnuplot and Dealing with Data

132

(gnuplot/exec gp
 (unset key)
 (set xrange (range -5 5))
 (plot (sin (/ 1 x)) with dots))
(gnuplot/stop gp)

If you execute all but the last line of this code sample in the Clojure REPL, you will see your
plot on the screen. The final line stops the gnuplot process and destroys the plot.

How it works…
The first line imports the symbols from clojure-gnuplot. This interface code, which fits
on half a page, defines a macro and several functions that rearrange the Clojure syntax into
the conventional infix syntax understood by gnuplot. The result is that you can enter gnuplot
commands in your program using a lispy syntax.

Handling volatile data [new]
Older versions of gnuplot ran into a problem when dealing, for example, with datafiles whose
content is subject to change. When using gnuplot to examine such volatile data interactively,
we might want to zoom in or out, or add a title to the plot to prepare it for saving. The problem
is that each of these operations either requires an explicit call to replot or, in the case of
mouse operations, calls it implicitly. And when the replot command is issued, the datafile is
read anew, and the new data is plotted. What if we want to manipulate the plot while retaining
the data already read in?

The new features in gnuplot version 4.4 for dealing with volatile data were added with these
issues in mind.

How to do it…

The volatile data source
In order to play with this feature, it is convenient to have some volatile data available. If you run
the following Python program, supplied as the code sample randomnormalIntervals.py,
in the background, it will make a datafile and replace it with new data every three seconds.
This is the normally distributed random number data familiar from previous recipes. Don't
forget to kill the program when you are finished, because otherwise it will run forever. The
following is a listing of the program for producing the volatile data stream:

from numpy import *
import time
def makeit():
 f = open('randomnormal.text', 'w')

Chapter 7

133

 a = [f.write("%g\n" % (random.normal())) for v in range(0, 1000)]
 f.close()
while True:
 makeit()
 time.sleep(3)

On most Unix-type systems, you can just type python randomnormalIntervals.py & to run
the program in the background.

Handling the data with gnuplot
Now start gnuplot and type the following command:

plot 'randomnormal.text' volatile

The volatile keyword tells gnuplot that the file contains data that might change, and the
values read in should be retained until a replot is issued.

Now try zooming in and out, and adding some features to the plot:

set title "Volatile Data"

When you want to see your changes, type:

refresh

Note that your title and other things are added, but the actual plot has not changed; although
by now the data on disc is different, the previously read data is still being used. You are in
control, and can see the new data when you want with the following command:

replot

Now you see a plot of fresh data along with any changes to the plotting parameters that
you've specified.

Now type the following command without the volatile keyword:

plot 'randomnormal.text'

You will see that every time you use the mouse to zoom in or out, new data is read in
and plotted; you cannot manipulate the plot while retaining previously read data.

Programming gnuplot and Dealing with Data

134

How it works…
The new command refresh is activated when you tell gnuplot that it is plotting volatile
data. This command will replot using the previously read-in data, which is retained in memory,
rather than the data as it currently exists. The interactive zooming and mouse controls will
implicitly issue a refresh rather than a replot when the data is marked as volatile.
To read in the current data and plot it, use the replot command. gnuplot will automatically
treat piped-in or inline data as volatile.

8
The Third Dimension

This chapter contains the following recipes:

 f Making a surface plot

 f Using coordinate mappings

 f Coloring the surface

 f Making a contour plot

 f Making a vector plot

 f Making an image plot or heat map

 f Combining contours and images

 f Combining surfaces with images

 f Plotting a path in 3D

 f Drawing parametric surfaces

Introduction
Every graph we have seen so far in this book has been a plot of one quantity versus another
quantity, or in the case of parametric plots, two coordinates that depend on a single third
parameter. These are called two dimensional (2D) plots. In this chapter, we break into
the third dimension. The graphs here are visualizations of quantities that depend on
two variables; they are expressed as surfaces, contours, fields of arrows, paths in space,
or as a combination of these elements.

The Third Dimension

136

Making a surface plot
A surface plot represents the dependent quantity z, which depends on the two independent
variables x and y, as a surface whose height indicates the value of z.

The previous figure is a perspective drawing of a surface representing the Bessel function
J0(r), where r is the distance from (x=0, y=0). The height of the surface shows the value
of J0, given on the vertical axis (unlabeled in this figure, but usually called z). The other two
(unlabeled) axes defining the plane above which the surface is drawn are the x and y axes.

How to do it…
The following code listing is the script that coaxed gnuplot into making the previous figure:

set isosamples 40
unset key
set title "J_0(r^2)"
set xrange [-4:4]
set yrange [-4:4]
set ztics 1
splot besj0(x**2+y**2)
set view 29,53 #Done implicitly by mousing.
set term pngcairo mono enhanced
set out 'bessel.png'
replot

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

137

How it works…
There are several new commands in this recipe. The set isosamples command sets the
isoline density. This is analogous to the set samples command when making 2D plots, but
it sets the number of lines used in forming the surface. The number of isosamples can be set
independently in each direction; if one number is specified, it is used for both directions. The
default of 10 usually creates surfaces that are far too coarse to be useful.

Turning to the second of the highlighted commands, the splot command is the 3D version of
our old friend the plot command (it probably initially stood for "surface plot", but now can do
several things besides plot surfaces, as we shall see in the rest of this chapter). It expects a
function of x and y rather than x alone. Although we are interested in plotting something that
has the type of symmetry that would be most conveniently expressed in polar (spherical or
cylindrical) coordinates, these geometries are not available for function plots in 3D in gnuplot.
(They are available through the set mapping command for data plots, as we shall see later
in this chapter.) Therefore in such cases, we are required to convert our expressions to the
rectangular coordinate system. Instead of what we would call r in a cylindrical coordinate
system, here we use the equivalent x**2 + y**2.

In this recipe, we would like to illustrate, as far as possible, the interactive approach to
creating a final 3D plot. The next highlighted line, beginning with set view, can be entered
on the command line or included in a script. The view is the orientation in degrees of the
perspective drawing of the 3D plot. Naturally, it does arise in 2D. It is difficult to determine
what is the most useful view for a particular plot without looking at it and experimenting with
it; therefore, even if our final product is intended to be a file, a common workflow is to first
create the plot using an interactive terminal (x11 or wxt). Then we rotate the plot with the
mouse, and possibly scale and zoom it using the middle mouse button, until we arrive at the
desired appearance. This is what we mean by the comment in the set view command. Now
we can reset the terminal to the final output device that we need, specify the output file, and
simply say replot. The view and scaling at which we left the interactive plot is retained as
a set of global settings and will be reflected in our final output file. These settings are also
displayed at the bottom of the interactive plot window, so we can record them if we are going
to make similar plots in the future, or want a set of plots to be drawn with the same settings.
Note that we also redefined the ztics value. This is because when the plot is tilted to the
final view angle that we chose, the perspective causes the tic labels on the vertical axis to be
crowded together; this is a common problem with 3D plots, and taking manual control of the
tics on the z-axis is the solution.

The Third Dimension

138

There's more…
Following is the same plot with one setting changed (aside from a slight adjustment
in view angle):

While the first plot was essentially a wireframe that we could see through, this version has
the appearance of a solid, opaque surface. All we need to do is to say set hidden3d. This,
which only works when lines or linespoints are being used, makes the surface appear
opaque by removing from the plot any part of the surface, other surfaces, and other plot
elements such as the axes and tic labels, that are behind the surface from our point of view.
The underside of the surface is shown in a contrasting color with a color output device, but
the two sides of the surface are not distinguished in monochrome. The name of the setting
refers to the technique of hidden line removal; gnuplot is justly famed for the quality of its
hidden line removal algorithm, and is one reason this program is so well regarded for its 3D
plotting ability.

Chapter 8

139

Using coordinate mappings
It is possible, when making 3D plots from data files, for the data to be interpreted in spherical
or cylindrical coordinates rather than the default Cartesian system. For details, type help set
mapping. We will give an example of using the cylindrical mapping to conveniently draw a
shape with cylindrical symmetry.

The previous figure is a perspective view of a surface that somewhat resembles a Christmas
tree ornament. The relevant feature of this surface is that it has rotational symmetry around
the z (vertical) axis, which means that it is most naturally expressed in cylindrical coordinates.

How to do it…
Try the following script:

set mapping cylindrical

unset tics
unset border
set hidden
set xrange [-pi : pi]
set yrange [-pi : pi]
set zrange [0 : pi]
set iso 60
unset key
splot '++' using 1:2:(sin($2)) with lines

The Third Dimension

140

How it works…
There are several new ideas used in this recipe. Breaking it down, these are:

The set mapping command
The first, highlighted line contains the new command that is the subject of this recipe. When
the default Cartesian (x-y-z) coordinate system is changed to cylindrical then the columns
of data read in during a data plot are interpreted as θ-z-r, where θ is the angular coordinate,
z is the vertical coordinate, and r is the radius. A spherical mapping is also available and
explained in the gnuplot online help (help set mapping). If the data file only has two
columns, then the plot is drawn with r = 1.

In our example we don't want to plot from a data file, however. We want to plot a
function given directly in the script. This presents us with a problem, as gnuplot does
not support cylindrical or spherical plots of functions in 3D. The solution is to use one
of gnuplot's pseudofiles.

The ++ pseudofile
These special files were introduced in Chapter 1, Plotting Curves, Boxes, Points, and more,
where we learned how to use the "+" pseudofile for plotting functions in 2D using styles that
are only available for data plots.

Here we turn to the 3D version. The "++" pseudofile creates rows of imaginary data with three
columns x-y-z unless we change the coordinate mapping, which of course in this example
we have. Setting the mapping to cylindrical means that the fictitious data columns will be
interpreted as θ-z-r.

Now to plot a function, we use the using notation applied to the imaginary columns of data.
We've done this in the final line of the script, where we plot the sine of the second column (z).

To clarify the use of "++" when plotting surfaces, note that, in Cartesian coordinates, the
two commands

splot sin(x)+cos(y)

and
splot '++' using 1:2:(sin($1)+cos($2)) with lines

produce exactly the same plot.

Coordinate ranges
We have also established ranges for all variables in the set xrange and two other
commands following it. The ranges for the polar coordinates are taken from the corresponding
Cartesian coordinates, that is, when we set the xrange, we are setting both the range of
the x-axis displayed on the plot and the range of the variable θ in the cylindrical coordinate
system. It is mandatory to set xrange and yrange when using the "++" filename.

Chapter 8

141

This mixing of the coordinate system in which the function is calculated and the Cartesian
system in which it is displayed can be confusing, but the example shows a strategy, which
should make it possible to get predictable results. Setting the xrange and yrange as we've
done puts the r = 0 point in the middle of the graph and prevents part of the plot from being
cut off. It also sets up a full rotation of the angular coordinate over a range of 2 π.

If we wanted to plot, say, our shape with half of it sliced off by a vertical plane, the easiest way
to do this is not to fiddle with the coordinate ranges, but to apply a transformation to one of
the fictitious data columns: splot '++' using ($1/2):2:(sin($2)) with lines, will do
the trick without any surprising side effects. In this example the underlying angular coordinate
(column 1) still passes through a full rotation, but we've divided it in half without changing
the way the figure is projected onto the Cartesian display. Note that the 60 isolines will still be
used in our reduced angular range, so we might want to set iso to a smaller value.

Completing the picture
We've eliminated all of the graph adornments (unset tics, unset border, unset key) so
we will be left with only the surface. The isosamples are set to give a sufficiently smooth
surface drawing that is nevertheless not too crowded with isosurface lines (see the previous
recipe). set hidden ensures that we shall see only the outer surface of the shape.

Coloring the surface
The wireframe splot with hidden line removal that we covered in the first recipe of this
chapter, Making a surface plot, gives the visual impression of a solid surface. The numerical
value encoded into the surface's height can be visually estimated, roughly, by the perspective
provided by the isolines in conjunction with the tics on the vertical axis. But gnuplot also has
a way to draw real solid surfaces whose height is indicated by color or shade.

The Third Dimension

142

The previous figure shows the same mathematical function plotted in the first recipe in this
chapter (Making a surface plot). Now the numerical value of the function at any point is
indicated by both the height of the surface and its shade; the surface is now drawn as an
opaque membrane rather than as a network of curves.

How to do it…
To produce the previous figure, run the following in gnuplot:

set isosamples 100
set samples 100
unset key
set title "J_0(r^2)"
set xrange [-4:4]
set yrange [-4:4]
set ztics 1
unset surface
set pm3d

splot besj0(x**2+y**2)

The surface will be drawn with a palette of colors when a color output device is being used
and with a grayscale palette when using a monochrome terminal.

How it works…
If you compare the previous script with the one in the Making a surface plot recipe at the
beginning of this chapter, you will see that the only significant difference is the highlighted
line. The pm3d mode colors the imaginary surface being plotted according to its height
or z-value at every point, with the mapping between the height and the color or shade
determined by the palette, which we shall discuss in some more detail shortly.

The other modifications are to increase the number of isolines, in order to get a smoother
surface, and to turn off the drawing of the individual isolines themselves with the command
unset surface. We also need to set the sample frequency; generally we want this to be
equal to the isosample frequency. In pm3d mode, the two orthogonal sets of isolines are
drawn with two different spacings given by the two parameters. Although the gnuplot manual
claims that the global hidden3d setting does not affect pm3d surface plots, it in fact seems
to, and should not be turned on, as it appears to slightly degrade the drawing quality.

Chapter 8

143

There's more…
Sometimes we want both a colored surface and a set of isolines; in fact, this can often be
the clearest type of quantitative 3D plot. The way to achieve the highest quality in this type
of graph is to use the hidden3d linestyle option to pm3d, as we do in the following script:

set iso 30
set samp 30
unset key
set title "J_0(r^2)"
set xrange [-4:4]
set yrange [-4:4]
set ztics 1
unset surf
set style line 1 lt 4 lw .5
set pm3d at s hidden3d 1
splot besj0(x**2+y**2)

This requires us to define a user linestyle, something we covered in Chapter 3, Applying Colors
and Styles. Then the linestyle is referred to in an option to the set pm3d command. This will
cause the isolines to be drawn using lines in this style, which allows us to have them in any
color, thickness, or pattern supported by our terminal. Further, the isolines will be drawn with
hidden line removal, so they will appear to be embedded in the opaque surface. As before, the
global hidden3d option should not be turned on.

The Third Dimension

144

Note that we've also reduced the sample and isoline frequency, to keep our plot from
being too crowded with isolines. (The at s component of the set pm3d command means
at surface; this will become clearer later in the chapter.)

Making a contour plot
A contour plot is a set of isolines, or curves where the function or data has a constant value,
drawn in the plane of the independent variables (x and y in Cartesian coordinates). It is
simpler than the surface plots covered in the previous recipes in that it doesn't require the
interpretation of perspective or hidden line removal. As there is no z axis for reference, the
value that each isoline represents is represented by an individual label or by giving each line
its own dash pattern or color.

Certain types of patterns are better represented as surfaces, while for others, contours bring
out more of the relevant characteristics. The rotationally invariant function that we plotted in
the previous recipes in this chapter would yield a set of uninteresting circular contours; its
structure is better conveyed by a surface plot. Here, we've plotted a function whose contour
plot shows a pattern of nodal lines.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

145

How to do it…
The following code sample will get you a contour plot:

set cntrparam levels 10

set contour base

unset sur
set view map

set xrange [-4:4]
set yrange [-4:4]
set iso 100
set samp 100
set key rmargin
splot sin(x)+cos(2*y)

How it works…
The number of contour lines drawn and which levels they follow are set with the set
cntrparam command. The first command in the script asks for 10 automatically spaced
levels; the number of levels we specify will actually be used by the program as an estimate
of the number of levels it should actually use, not an exact number. We can also specify
exactly which contour levels to use, rather than letting gnuplot calculate a set of automatic
levels; see the online help for an exhaustive description of your options.

The second highlighted command tells gnuplot that our next splot command should draw
a contour plot, and that the contour lines should be drawn on the base of the axis system,
which is the x-y plane. As we want a contour plot only, without a surface plot as well, we need
to say unset sur[face], because the default behavior of the splot command is to draw
a surface, as in the previous recipes.

The set view map command is a special option to the set view command that we
saw previously. It rotates the coordinate system so that we are looking straight down from
above, and is generally what we want for basic contour or image plots that shouldn't also
incorporate surfaces.

As before, we need to set both the isosamples and the samples to get the desired number
of contour lines in each direction. We place the legend, which will contain a key mapping each
contour level to a color or dash pattern, on the right margin.

The Third Dimension

146

While many output terminals will produce a nice colored contour
plot, if you need to create a monochrome plot using dash patterns
to distinguish the contour levels, as shown in the paper version
of this book, then you need to use the postscript terminal. The
output file can then be easily converted to PNG or any other
desired graphics format. But the other terminals, such as
pngcairo, generally are not capable of producing high-quality (or
any) dashed contours directly.

There's more…
Although we should be cautious about putting too much information on a plot, lest our graph
become an indecipherable jumble of lines and curves, it is possible, with care, to combine
contour and surface grid plots to produce a reasonable illustration such as the following:

This is a plot of the same function as shown previously, with a contour plot on the base,
a surface, and another set of contours drawn on the surface. Here is the script:

set iso 50
set samp 50
set yrange [-4:4]
set xrange [-4:4]
set ztics 1

Chapter 8

147

unset key
set style line 1 linecolor rgb '#cccccc'
set contour both

set cntrparam levels 10
set hidd
splot sin(x)+cos(2*y) with lines linestyle 1

We've defined a line style having a light gray color and used it in the splot command. This is
so that the grid lines forming the surface will be easily distinguishable from the contour lines.
The latter will be drawn in various colors or, as shown, where a monochrome output terminal
was used, as dark lines. The view angle was adjusted interactively for this plot.

Making a vector plot
When the quantity that depends on x and y has both magnitude and a direction it can be
represented by an arrow whose length is proportional to the magnitude. The x-y plane can
be broken into a regular grid and an arrow drawn in the plane, representing the direction
and magnitude associated with each point on the grid—a vector plot. As we are associating
two quantities, the magnitude and direction, or, equivalently, Δx and Δy, for each x-y pair, we
can think of this type of plot as a 4D plot.

The previous figure is a vector field of a rotating flow. The exact appearance of the arrows will
vary with the output terminal.

The Third Dimension

148

How to do it…
The following script draws the vector plot in the previous figure:

set xrange [0:pi]
set yrange [0:pi]
set iso 20
set samp 20
unset key
a = .2
plot '++' using 1:2:(-a*sin($1)*cos($2)):(a*cos($1)*sin($2))\
 w vec size .06, 15 filled

How it works…
Vector plots require a data file or equivalent pseudofile. Four columns are used for x, y, Δx,
and Δy. Our plot command uses a variable that we defined in the line above it, defines the
four columns using gnuplot's using math syntax for manipulating column data and, in the
highlighted section, asks for a vector plot. The size specification sets the arrowstyle.
The first number is the length of the arrowhead and the second is the angle of the sides of
the arrowhead in degrees. filled means to draw solid arrowheads. For all the details of
how you can specify exactly how you want your vector arrows to look, say help arrowstyle
at the gnuplot interactive prompt.

There's more…
gnuplot has the ability to plot a vector field on a surface, similarly to how it can plot contours
on a surface, as we saw in the previous section.

Chapter 8

149

The vectors are plotted on an imaginary surface that is not depicted explicitly. Experimentation
shows that the arrowstyle cannot be changed by the user, despite the documentation, but
depends only on the terminal. This type of plot can be used, for instance, to describe a fluid
flow in 3D; the contrived example shown was chosen to make the script easy to understand:

set xrange [-pi:pi]
set yrange [-pi:pi]
set zrange [-pi:pi]
unset key
set iso 20
set samp 20
set ztics 1.5
set view 37,300
a = .9
splot '++' using 1:2:(2*a*cos($2)*sin($1)):\
 (-a*sin($1)*cos($2)):(a*cos($1)*sin($2)):(a*cos($1)) w vec

The difference is the use of the splot command to create the vector plot rather than the
plot command used previously for the planar vector plot. This requires six columns of data
(or pseudo data): x, y, z, Δx, Δy, and Δz.

Making an image plot or heat map
The information that is presented in a planar contour plot can also be conveyed by coloring or
shading the x-y plane, rather than by drawing contours on it. The resulting graph is called an
image plot, or sometimes, a heat map:

The Third Dimension

150

Depending on the character of the data to be plotted and the features one wants to call
attention to, and to some extent the physical characteristics of the output device, either
a contour plot or an image plot might be preferred.

How to do it…
The previous figure was created using the following script:

set xrange [-4:4]
set yrange [-4:4]
set iso 100
set samp 100
unset key
unset sur
set view map
set pm3d at b

splot sin(y**2+x**2) - cos(x**2)

How it works…
Let's look at the highlighted code line first. This set pm3d line, which we used at the
beginning of the chapter to plot surfaces, here has the additional clause at b, which means
at bottom. This says to draw the data color map on the x-y plane rather than on the surface
itself. The line above it, which we also used before when learning how to make a contour
plot, sets the view so that we are facing the x-y plane. With these preparations, the splot
command creates an image plot using the default color palette. This palette is what defines
the mapping from data value to color (or to gray value for monochrome terminals, as in the
figure prepared for the printed version of this book). Note also that we've bumped up the
isoline and sample frequency (we must do both again, one for each direction) for a smooth
image plot. The line unset sur[face] is required to tell splot not to draw the surface
itself, which would put a distracting grid of lines on top of our image plot.

There's more…
If we are using a color output device we may want to use something other than the default
rainbow palette. gnuplot provides several different mechanisms for setting the palette,
providing enough flexibility to specify any mapping we might require.

If we decide not to display the palette scale, the legend that shows the mapping from data
values to colors, we need to use the following command:

unset colorbox

Chapter 8

151

gnuplot allows us to read color tables from files or to define them with arbitrary mathematical
functions that map from data value to each of the components of several available
color spaces (RGB, and so on). There is even a library of predefined mathematical functions
to choose from. But all this is fairly arcane and, in practice, we almost always want a linear
interpolation between two or three specified colors in order to define a simple spectrum.
Fortunately, gnuplot makes it very easy to do this. A few examples should make the
method clear:

To get a spectrum that goes from black to gold, just give the command:

set palette defined (0 'black', 1 'gold')

The colors themselves can be specified using named colors, as we did here (try typing show
colornames at the interactive prompt to see the list of over 100 names and their RGB
values) or with the familiar #RRGGBB syntax, or in any other gnuplot-approved way.

If we decide we would like another color in the middle of the spectrum, we can try:

set palette defined (0 'black', 1 'aquamarine', 2 'gold')

Note that the actual numbers are not important; gnuplot rescales them to the interval [0,1]
and interpolates between them, where 0 would be black and 1 would be white if we were
plotting in grayscale.

Sometimes we want a sharp break somewhere in the palette to highlight a particular
data value; this has the effect of combining a contour with the image map. To do this,
we repeat a value:

set palette defined (0 'black', 1 'aquamarine', 1 'red', 2 'gold')

This will create a sharp transition in the palette between aquamarine and red, exactly in the
middle of the range. The lower half of the palette will be a smooth transition from black to
aquamarine, and the upper half will go smoothly from red to gold. We can define any number
of these transitions, and create palettes of limitless complexity with this syntax.

Two more notes on mapping data to colors: If the data is better visualized with a logarithmic
mapping rather than the default linear one, enter the set logscale cb command. To
change the limits of the mapping, analogous to setting the z range, do set cbrange [a : b].

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The Third Dimension

152

Combining contours and images
Sometimes we would like to plot two related but different sets of data on the same graph.
In the case of 2D plots, it's simple: we just plot any number of curves and identify them with
labels or a legend. But with 3D plots, trying to interpret a graph containing two different
surfaces or sets of contours would be difficult, and plotting two heat maps simultaneously
would not make any sense.

The previous figure shows one way to do this: plot contours and an image map together.

How to do it…
Feed this code to gnuplot to get the previous figure:

set xrange [0:pi]
set yrange [0:pi]
set iso 100
set samp 100
set cntrparam levels 10
unset key
unset surface
set view map
set contour base
set pm3d at b
splot '++' using 1:2:($1**2-$2**2):(sin($1**2+$2**2))\
 with lines lw 2

Chapter 8

153

How it works…
We set everything up as in the previous contour plot example, but we also put in a set pm3d
at base, so we are asking for both a contour plot and a colored surface plot. How do we
make the surface, which will appear as an image plot here, and the contours to represent
distinct sets of data? The splot command, when plotting data from a file or the "++"
pseudofile, can take an optional fourth column. When this is present, it will be used to color
the surface, which itself, as before, will be defined by the third column. This can be used to
draw a surface in 3D perspective view, which is colored to represent some related quantity,
rather than to redundantly indicate its height. Or, as here, it can be used to draw contours
over a "surface" that is rendered as an image map. The function for the contours is given in
the third column, which, using coordinate variables rather than the columns' index's, is x**2
- y**2, and the fourth column defines the image map: sin(x**2 + y**2).

Combining surfaces with images
It is possible to plot a surface and its projection as a color image on the x-y plane on the same
graph. The two simultaneous views of the same data or function can be useful to bring out the
topography of a complex surface.

The previous figure shows a simple trigonometric function of two variables displayed as a
surface with its values simultaneously encoded into colors (or gray values) at the base of
the plot.

The Third Dimension

154

How to do it…
The following script produces the previous figure as its output:

set iso 40
set samp 40
unset key
set xrange [-pi:pi]
set yrange [-pi:pi]
f(x,y) = sin(x)*cos(y)
set hidden front

set xyplane at -1

splot f(x,y) with pm3d at b, f(x,y) with lines

How it works…
The new features we are combining to produce this graph are in the highlighted lines in the
code sample. Let's look at the last command first. The first part of the splot command plots
the function f(), which is defined three lines above, as a colored surface at the base of the
plot; this is what pm3d at b does. The second part, after the comma, plots the function again,
without pm3d but with lines. This plots the wireframe surface.

The function varies from -1 to 1, but we want it to lie completely above the base upon which
the surface is drawn, so we need to change the z value at which we place the base. This is the
purpose of the second to last line.

Finally, we would like the surface to appear solid. But when combining surfaces with pm3d
color plots, we need to add an extra option to the set hidden3d command, because the
hidden line removal does not apply to the pm3d part of the graph. The command set hidden
front tells gnuplot to draw the parts of the graph involving the hidden line removal procedure
after the other parts, so they appear to be "in front" of the colored base, giving the effect
we want.

Chapter 8

155

There's more…
We can make the image intersect the surface, as shown in the following:

This is a simple 2D Gaussian surface cut through by the x-y plane, upon which the function's
values are shown as colors or in grayscale. The code follows:

set samp 40
set iso 40
set yrange [-1.5:1.5]
set xrange [-1.5:1.5]
unset ytics
unset xtics
unset key
unset colorbox
set hidden3d front
a = .5
set xyplane at a
f(x,y) = exp(-x**2-y**2)
splot f(x,y) with pm3d at b, f(x,y) with lines, a with lines lt -100

The Third Dimension

156

We've taken advantage of the fact that we can place the base wherever we want to make
it intersect the surface at a, which we've set to 0.5. But it's not quite so simple, as a little
trick is required to make the color projection on the base to appear to be opaque; otherwise,
we would be able to see the surface through it, which would make the graph confusing.
Remember that hidden line removal does not work on the pm3d surface, so we need to add
something else to the x-y plane to make it appear to be opaque. This is the purpose of the last
part of the splot command, where we have asked for a plot of the constant value a using the
linetype (lt) -100. As the global hidden3d option is turned on, this plot will be made using
hidden line removal; and as we have specified a linetype that happens not to exist, the lines
themselves will be invisible. The net result is a surface, invisible except for its ability to hide
what is beneath it, having the constant value a, which will exactly coincide with the base of
the plot.

We can also plot two different sets of data or functions, one used for the surface and the
other for the image:

The previous plot retains the 2D Gaussian surface from before but plots a simple 2D
trigonometric function in an image. For good measure, we've thrown in a contour plot
as well. The plot was made with the following script:

set samp 40
set iso 40
set yrange [-1.5:1.5]
set xrange [-1.5:1.5]
set zrange [0:1]
unset ytics
unset xtics
unset key
unset colorbox

Chapter 8

157

set hidden3d front
a = .5
set xyplane at a
set contour base
f(x,y) = exp(-x**2-y**2)
splot '++' using 1:2:(a):(sin($1)*cos($2)) with pm3d at b,\
 '++' using 1:2:(f($1,$2)) with lines, a with lines lt -100

By now, this should all be familiar, except for the last command. We've combined our previous
tricks with the use of the "++" pseudofile in order to get different data used for the surface
(and contours) and the image. This is the technique used earlier in this chapter in the
Combining contours and images recipe.

Plotting a path in 3D
Back in Chapter 1, Plotting Curves, Boxes, Points, and more, we used parametric plotting to
make graphs of complicated 2D paths. We can do the same thing in 3D to draw a complex
curve in space.

This might be thought of as a 3D Lissajous figure. The path intersects itself at several places.

How to do it…
Following is the code for the previous figure:

set samp 100
set xtics .4
set ytics .4
set parametric

The Third Dimension

158

set urange [-pi:pi]
set ztics 1
splot cos(u),sin(3*u),cos(5*u) lw 2

Note that the appearance of the plot will change radically depending on the viewpoint.

How it works…
In exploring parametric plotting in 2D in Chapter 1, Plotting Curves, Boxes, Points, and more,
we learned that the x and y independent variables were replaced by the single parameter t,
and we had to specify two functions separated by commas; the first gave the x coordinate and
the second gave the y coordinate that were plotted simultaneously as t was varied between
the limits defined in the trange.

To plot a parametric curve in 3D, it may not come as a surprise that we need to specify three
functions (or data columns) separated by commas. This can be seen in the last command
of the previous script. When we give the command set parametric in 3D, two new
independent variables u and v are established, which act as the parameters. We need to
set their ranges, which we do here with the set urange command (we don't use v in this
example, but we do in the next, when we explore parametric surfaces).

Drawing parametric surfaces
gnuplot allows us to define surfaces parametrically, which allows us to plot complex and
possibly self-intersecting shapes.

The previous figure shows a surface that slices through itself in 3D.

Chapter 8

159

How to do it…
Following is the script for the previous figure:

set param
set iso 50
set ztics .5
set xtics .4
set ytics .4
set urange [-pi:pi]
set vrange [-pi:pi]
set hidd
splot cos(u)*cos(v), sin(u)*cos(v), sin(u)

How it works…
As in the previous recipe, we provide the x, y, and z components, but the provision of
components that depend on both parameters (u and v) defines a surface rather than
merely a path through the 3D space.

There's more…
The same thing can be done with colored surfaces.

The Third Dimension

160

The previous figure is of the same function that we plotted in the one prior to it, rendered
as a color-coded surface rather than a wireframe. Note that although the axes are visible
through the surface, the surface is hidden by itself. Following is the script that produced
the previous figure:

set param
set iso 50
set ztics .5
set xtics .4
set ytics .4
set urange [-pi:pi]
set vrange [-pi:pi]
set pm3d depthorder

splot cos(u)*cos(v), sin(u)*cos(v), sin(u) with pm3d

We've added something to the splot command with pm3d. We also set a special pm3d option
with set pm3d depthorder. This option causes gnuplot to draw the surface starting with the
elements farthest away from our viewpoint, which simulates hidden line removal and renders
the surface as if it were opaque, making it much easier to understand visually.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

9
Using and Making

Graphical User
Interfaces

This chapter contains the following recipes:

 f Using the JAVA gnuplot GUI JGP

 f Using the Emacs GUI

 f Sharing with Plotshare

 f Writing a web GUI for gnuplot

Introduction
The tremendous utility and flexibility of gnuplot is due in large part to its essential nature as
a command-line program. This allows it to be controlled by scripts or with text sent through a
pipe or socket, which opens up an unlimited horizon of interoperability. gnuplot can be used
from within any programming language, using either a custom interface or through the general
method of writing to a socket. Indeed, it is the flexibility of a textual interface that is largely
responsible for the enduring popularity of gnuplot among programmers, scientists,
and other demanding technical users.

However, there are milieus for which it can be an advantage or a requirement to wed the
superior technical graphing abilities of gnuplot with a graphical user interface or GUI. Some
of these situations might include using gnuplot as a back end for an interactive web page
that produces graphs in response to user input. We might also want to make gnuplot output
available to people who use it infrequently and are therefore unfamiliar with its options, but
need some graphs quickly.

Using and Making Graphical User Interfaces

162

In the latter case, a GUI front end to gnuplot might allow users to make sophisticated graphs
without becoming experts or even having to consult a manual. There is undoubtedly a place
for such aids, but the user who demands more control over the final result and the ability to
work as efficiently as possible will of course buy this book and learn to use gnuplot's native
command-line interface.

Using the Java gnuplot GUI JGP
In this recipe, we learn how to get started with the JGP program, which provides a basic
but serviceable GUI front end to gnuplot.

Getting ready
JGP does not come with a normal gnuplot installation. You need to go to its home page at
http://jgp.sourceforge.net/ and download the source code and Java binaries (JGP
is an open source project, distributed under the GPL license, and authored by Maximilian
Fabricius). You can compile it yourself or simply run the supplied binaries. The current version
of the software works only with the Linux operating system. I encountered no difficulties running
version 0.1.2 pre alpha of the software, using the Java binaries as supplied in the download.
You should have Java version 5.0 installed, and in order for JGP to find gnuplot, it must be on
your path.

Where is gnuplot?

To use GUI front ends, gnuplot must be on your path. For example, if you
have been typing /usr/local/bin/gnuplot, you must now add this
to your path with (using bash-type syntax) export PATH=$PATH:/
usr/local/bin and put this command in your shell startup file.

How to do it…
It's pretty straightforward to get started with JGP. The following steps explain what you
need to do:

1. Installing and starting up
After unzipping the downloaded archive, you should have a file called jgp. Make it executable,
if it is not already, with the command chmod +x jgp. Then you can start the program by
typing ./jgp.

Chapter 9

163

The following screenshot shows you what it will look like after making a plot:

In the previous screenshot, we can see the main interface window, a plot output window, and
another window that can be used for defining additional data sources or functions. The main
(largest) window shows the functions that are plotted. We can also see a bit of the terminal
window from which we started the program peeking out at the bottom. One quirk with JGP is
that it must not be put in the background, but must be left in the foreground, so this terminal
window cannot be used for any other purpose while JGP is running.

2. Doing more with JGP
There are separate windows for adding other features to the plot:

Using and Making Graphical User Interfaces

164

The previous screenshot shows the window that we used for adding the label Circular
functions. These windows are accessed by clicking on the tabs that can be seen in the
large main window.

We clicked on the tab Add. plot commands to get the window in the following screenshot:

We used this to set the parameters for the key and the grid; this window is for adding
commands to the plot script that are not directly accessible from the GUI.

Although a little rough around the edges, JGP certainly provides a usable GUI for gnuplot on
Linux that less experienced users might appreciate. It also has the advantage of being, similar
to gnuplot itself, open source software.

Using the Emacs GUI
Emacs is one of the two most venerable and powerful text editors used by programmers
and other expert users of computing systems derived from the UNIX fork of computer history.
While the other one, Vim, is of course superior, Emacs has the ability to be customized to
such an extreme extent that it can be turned into a textual or even a graphical interface for
other programs. There are Emacs modes for reading mail and netnews, playing games, and
much more. In this recipe, we will introduce Emacs gnuplot-mode, which is a useful
GUI for gnuplot.

Getting ready
Naturally, you need to have Emacs installed. Emacs comes in various flavors. You need
one with hooks into your operating system's graphical libraries compiled in. If you are on
Linux or Apple's OS X there is a good chance that you already have such a version of Emacs
installed. Most versions of Emacs for Windows should also work. We mention this because
there is a small chance that you might have a stripped down version that cannot support a
GUI customization, in which case you will need to upgrade your Emacs before trying to use
gnuplot-mode.

You will need to install gnuplot-mode using whatever method you use on your system to install
Emacs modes. It is normally not installed by default. On Linux systems such as Ubuntu, it is
packaged separately (and called "gnuplot-mode") by the system package manager. If all else
fails you can download it from its github home at https://github.com/bruceravel/
gnuplot-mode/downloads.

Chapter 9

165

How to do it…
The gnuplot-mode editing mode for Emacs provides a handful of facilities that make writing
gnuplot scripts more convenient. It offers syntax coloring, automatic completion of gnuplot
keywords, automatic indentation, as well as a system of menus to help us when we forget how
to do something in gnuplot. It includes its own interface into the gnuplot help system, too.

1. Running a gnuplot script
 The following screenshot shows what we will see after we've written a script and executed it:

The big buttons on the left allow us to execute either the whole script or selected lines.
After a plot command is executed, we get a new interactive window containing our graph.

Using and Making Graphical User Interfaces

166

2. Help and menus
The following screenshot illustrates some parts of the interface, showing a help screen
and illustrating how we can use the menus to insert lines into our script:

Sharing with Plotshare
This section will explain how to get graphs from gnuplot even if you don't have gnuplot installed.

How to do it…
Go to http://www.plotshare.com/. You will find a web page with a box near the top.
Enter a gnuplot script in the box and click the execute button, and you will get the same
result as if you had run the script through gnuplot on your own machine. You can even
upload datafiles to be saved on the server and plotted.

Chapter 9

167

In addition to providing graphing services, this website is designed so you can share your
gnuplot scripts with others and work on them collaboratively. You can click on the recent
tab to see the scripts and resulting output submitted by other users, which can be a fun
and interesting way to learn about the program.

The previous screenshot shows what the recent section of the Plotshare website looks like.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Using and Making Graphical User Interfaces

168

How it works…
Because gnuplot is a C program with the ability to use the filesystem, execute system
commands, and do other powerful and dangerous things, allowing it to execute arbitrary user
commands would be a security nightmare, essentially handing control of the server over to
the first malicious person with the requisite knowledge. For these reasons, there are a few
limitations in the commands you can use in your scripts on Plotshare; for example, only the
png terminal is allowed (and you can leave the set term command out, as it is the default,
as well as the set output commands). There is a limit of 10 plotting commands in a script
and some limits on resources consumed.

The people behind this project have generously donated a unique and extremely valuable
resource to the community. One hopes that it is used responsibly, for exploration, sharing,
and a reasonable amount of plot generation, and not abused.

Writing a web GUI for gnuplot
This final recipe will teach you how to make your own interactive web application that uses
gnuplot to draw a graph in response to user input. It is not a general-purpose GUI for gnuplot
as was the subject of the previous recipe, but rather shows one way to use gnuplot as part of
a special-purpose web application. Because gnuplot can be controlled through text commands
and can create PNG files, which are size-efficient and well supported by current web browsers,
it is very well suited to this type of project.

We are going to create a simple game that asks the user to hit a target with a cannonball.
The player enters two numbers, the initial speed of the projectile and the angle of the cannon.
After clicking on a button labeled fire!, a graph is displayed showing the trajectory of the
cannonball calculated from the two input numbers and plotted by gnuplot. The player can
repeatedly enter new numbers and fire, and each time the graph will be replaced. The game
can be used to illustrate the elementary principles of ballistics; there are an infinite number
of correct solutions that can be calculated with simple physics (there are no advanced
complications such as air resistance).

Chapter 9

169

The previous figure shows what the game looks like; this is a screenshot taken directly
from the browser window.

Getting ready
We need a few things in place in order to run a web application. Our example will use the
Python scripting language for the back end, so we'll need to have a Python interpreter
installed. Fortunately, this is very widespread and comes built-in on Macintosh OS X and
many other systems; it's also free, open source, and easy to install. In order for Python code
to run in response to requests from a web browser, we also need to install a Python web
framework. There are plenty of these to choose from, and it doesn't really matter which
one we choose, as our bare-bones application will be easily modified to use any of them. In
order to give a specific working example, we chose the Django framework (https://www.
djangoproject.com/), which is also open source and can be installed anywhere Python
is installed. Nevertheless, there is nothing in our example that depends on any special
features of Django.

Using and Making Graphical User Interfaces

170

How to do it…
The entire main application fits into one Python file. In the following steps we provide a listing
of the main program, two short auxiliary files, and explain how to run the application:

1. The program
The following listing shows the main Python program:

from django.http import HttpResponse
import commands
c = commands.getoutput
GPATH = '/webapps/cannon/'
def draw(request):
 angle = request.POST.get('angle', "0")
 speed = request.POST.get('speed', "0")
 try:
 angle = float(angle)
 speed = float(speed)
 except:
 warning = """Enter numbers: the angle should be positive and
less than 90 degrees and the speed
 must be positive."""
 else:
 if not (0<=angle<=90 and 0<=speed):
 warning = """The angle should be positive and less than 90
degrees and the speed must be positive."""
 angle = "0"
 speed = "0"
 else:
 warning = ''
 gnuplotscript ='g = 9.8; a = %s; v = %s; set angle degrees;
set term png; set out "%scannongraph.png"; set parametric; set samp
5000; set trange [0:1000]; set yrange [0:1000]; set xrange [0:1000];
plot v*cos(a)*t, v*sin(a)*t-g/2.*t**2 lw 5 title "Trajectory"' %
(angle, speed, GPATH)
 c('gnuplot -e \'%s\'' % gnuplotscript)
 page = """
 <!DOCTYPE HTML>
 <head><meta content="text/html;charset=utf-8" http-equiv="Content-
Type">
 <title>Aim the Cannonball</title>
 </head><body>
 <h1>Aim the Cannonball</h1>
 <p style = "width:32em;">Enter values for the angle from the
horizontal, in degrees, of the cannon, and the inital speed of the
cannonball. Your goal is for the ball to hit the ground at x = 1,000
meters. Gravity is that of earth, 9.8 meters/second².
 </p>

Chapter 9

171

 <form name = "cannon" action = "/cannongraph/" method = "post">

 Cannon angle: <input type = "text" size = "4" name = "angle" value
= "%s">
 Initial speed: <input type = "text" size = "4" name="speed" value =
"%s">
 <input type="submit" name = "fire" value = "Fire!" />
 </form>
 <p style = "color:red; width:32em;">%s</p>
 </body></html>
 """ % (angle, speed, warning)
 response = HttpResponse(page)
 response['Cache-Control'] = 'no-cache'
 return response

This file is supplied as draw.py. We need to choose a place to store the graph as well as the
draw.py program and the associated project files that we describe later. We shall store the
graph files in /webapps/cannon/ and the program and project files in webapps/cannon/,
which is not an absolute filesystem path but part of the directory tree rooted somewhere in
Python's module loading path, so it can find and load these files (both paths might be the
same if / is on the Python path; in Python we turn the filesystem path into a path for importing
by placing __init__.py files in each directory in the chain).

2. The auxiliary files
The rest of the details in this recipe are most appropriate for deployment on a local machine.
In order to connect the action /cannongraph/ to the script, we need to route the URL, which
is accomplished in Django with a urls.py file:

fromdjango.conf.urls.defaults import *
fromdjango.conf import settings
urlpatterns = patterns('',
 (r'^cannongraph/$', 'webapps.cannon.draw.draw'),
 (r'^(.*.png)/$', 'django.views.static.serve', {'document_root':
 settings.MEDIA_ROOT}),)

We also need a settings file:

DEBUG = True
TIME_ZONE = 'America/New_York'
LANGUAGE_CODE = 'en-us'
MEDIA_ROOT = '/webapps/cannon/'
MIDDLEWARE_CLASSES = ("django.middleware.common.CommonMiddleware",)
ROOT_URLCONF = 'webapps.cannon.urls'
INSTALLED_APPS = ('webapps.cannon.draw',)

Using and Making Graphical User Interfaces

172

3. Running
Now, for use on our local machine, we need merely start Django's development server, setting
an environment variable pointing to our settings file:

DJANGO_SETTINGS_MODULE=webapps.cannon.settings django-admin.py runserver
&

Some of the details regarding settings and URL dispatch, and especially the method of
starting the local web server, will vary between web frameworks or libraries, but the main
program in the file draw.py should be nearly independent of framework. Indeed, it is likely
to be entirely portable between most frameworks aside from its very first and last lines (and
possibly the request.POST.get statements).

Next, we fire up any reasonably modern web browser and navigate to
http://127.0.0.1:8000/cannongraph/, and we should see the initial screen of our
application. After entering some numbers and clicking on the fire button, we should see
something similar to what is shown in the previous figure.

How it works…
The development server started by the django-admin.py program opens (by default) port
8000 on the local machine. This is pointed to by the URL http://127.0.0.1:8000/. The
last component of the URL, cannongraph/, is looked up in the list of regular expressions
in the file urls.py, where it is matched to webapps.cannon.draw.draw, which causes
django to execute the function draw in the module webapps.cannon.draw, which in turn
is the file draw.py in the Python path webapps.cannon. The settings.py file tells Django
where to look for the urls.py file, and activates the webapps.cannon.draw module.

The draw function sets the angle and speed variables by attempting to read the appropriate
entries from the request.POST dictionary, which is the dictionary of values sent by a form
on a web page using the POST method. If there are no corresponding values in the dictionary,
the fallback "0" values are assigned. Initially, when first navigating to the page, this dictionary
is empty, because no form has been submitted yet, so these initial values are assigned. If
there are values submitted, they are checked to ensure that they are within the appropriate
ranges for the problem and that they are in fact numbers. If a service like this is deployed
publicly, one must be sure, as mentioned in the previous recipe, not to trust user input. Even
in a highly constrained situation such as the one in this example, where arbitrary scripts are
not being sent to gnuplot, the inputs should be sanitized before being used.

If the submitted numbers are acceptable, then the variable gnuplotscript is defined. This
is the script that will be sent to gnuplot, in the form of a single line with commands separated
by semicolons. We will use it with the -e option to the gnuplot command, which accepts a
script in this form on the command line.

Chapter 9

173

After this, the page variable is set. This is a long string that holds the entire web page. It
contains three locations where the variable's speed, angle, and warning are interpolated.
Python's method of interpolating values into strings is so convenient that it makes the use of
template languages unnecessary.

Note the action attribute of the form tag in the page. The value /cannongraph/ submits
the form to the URL http://127.0.0.1:8000/cannongraph/ with the form input values
sent along as POST data (determined by the form's method attribute). This is in turn looked up
and dispatched by the table in urls.py, and we begin again.

The last line in the program sends the page to the browser as a properly formatted web
response. We've set a response header to disable caching in the browser, to try to ensure
that the user sees the newly calculated figure each time the form is submitted.

We have kept this example simple and bare-bones, in order to expose the structure of the
project, as lucidly as possible while constructing a working web service that does something
mildly interesting. In practice, there would be all sorts of graphics, JavaScript, other options,
extra security checking, resource limiting, and more. But the general method can be
elaborated upon in infinite ways to add interactive plotting capabilities to web applications.

10
Surveying Special

Topics

This chapter contains the following recipes:

 f Avoiding overlapping labels

 f Plotting labels from files

 f Mapping the Earth

 f Making a labeled contour plot

 f Softening the axes

 f Putting arrows on the axes

 f Plotting with pictures

 f Breaking an axis

 f Fitting the grid to the data

 f Coloring the axes

Introduction
This chapter collects a few special topics that didn't quite fit anywhere else. Some of these
are completely new topics and some are elaborations of examples from earlier chapters. All
of them assume some familiarity with common gnuplot commands introduced elsewhere in
the book.

Surveying Special Topics

176

Avoiding overlapping labels
We devote our first recipe in this chapter to demonstrating several ways to avoid a common
problem with gnuplot. As mentioned in previous chapters, gnuplot does not really try to
account for the horizontal space occupied by tic labels, simply placing them at the tic
positions and printing them in the selected tic font, whether that is the default or the one
specified by the user.

This works acceptably well most of the time, but can fail spectacularly if our labels are
long or we've chosen a big font. In these cases, the tic labels on the x-axis are in danger
of overlapping. This is a particularly common problem when gnuplot is used to generate
graphs automatically, where the user has no opportunity to tune each graph by hand.

In this recipe, we'll explore two ways to deal with long x-axis labels that don't require the
use of tiny fonts to squeeze them in. The following figure shows the use of some very long
numerical labels that are rotated to get them to fit, in a fashion reminiscent of some parking
space arrangements:

How to do it…
Feed the following script to gnuplot to produce the previous figure:

set xrange [0:2*pi]
set xtics 0, 0.12*pi, 2*pi
set xtics format "%.10f"

Chapter 10

177

set xtics rotate by -30

set rmargin 10
plot sin(x)

How it works…
The first two lines should not contain any surprises. The third line tells gnuplot to print the tic
labels on the x-axis with 10 places following the decimal point, which should take up a bit of
room. The third line rotates the labels by 30 degrees clockwise from the axis. We then need
to increase the margin on the right of the graph to avoid cutting off the labels near the right,
which is what the set rmargin command accomplishes.

There's more…
The problem of long labels often arises when we are plotting dates and times (see Chapter
4, Controlling your Tics). gnuplot tries to avoid collisions by truncating date/time tic labels at
24 characters. This is unfortunate, because it not only fails to solve the problem but severely
constrains the format of our labels.

If we try the following settings followed by any plot command, then we get the figure that
follows, where the labels overlap:

set xdata time
set format x "%A, %b %d, %Y"
set xrange ["1/1/72" : "1/10/72"]

These commands tell gnuplot that we're working with time/date data, that our label format
should follow the pattern "Thursday, Jan 26, 2012", and that the range along the x-axis should
cover 10 days starting at Jan 1, 1972.

We can fix this with one change to the format:

set format x "%A\n%b %d, %Y"

The previous command inserts a linebreak (\n) after the code for the weekday, leading to the
arrangement of labels on the axis shown in the following figure:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Surveying Special Topics

178

Plotting labels from files
In Chapter 2, Annotating with Labels and Legends, we learned how to place a text label
anywhere on the graph with the set label command. It is also possible to plot a set of
labels whose text, positions, and possibly other attributes are derived from the information
in a datafile. In this way, we can create visualizations such as the following:

Chapter 10

179

The previous figure shows a collection of names of countries printed with a text size that is
proportional to each country's population (aside from the practical requirement to impose
a maximum and minimum font size). The labels are positioned to indicate each country's
school intake rate in the first grade as a percentage of official school-age population versus
the literacy rate for people in the age group 15-24. The data comes from the World Bank and
can be found at http://data.worldbank.org/data-catalog/world-development-
indicators. The numbers reported for 2009 are used, and all countries with data for that
year are plotted.

Getting ready
We are going to read in data from the file p3.dat, which is provided with this book.

How to do it…
Execute the following gnuplot script to produce the previous figure:

set term pngcairo enhanced size 750, 1000
set out 'p3.png'
unset key
set rmargin 10
set xrange [0:110]
set yrange [55:105]
set xlabel '% eligible entering 1st grade'
set ylabel '% youth literacy'
min(a,b) = (a<b?a:b)
max(a,b) = (a>b?b:a)
scale(x) = min(max(x/1000000,8), 32)
CountryName(String,Size) = sprintf("{/=%d %s}", scale(Size), String)
plot 'p3.dat' using 2:3:(CountryName(stringcolumn(1),$4)) with labels

How it works…
Since we are going to be using codes to set the font size for each label, we need to select a
terminal that supports enhanced text, which is the purpose of the first line of the script. We've
also set a size that will help keep our labels from becoming too crowded together; this was
chosen through trial-and-error.

A text legend on this type of plot would just be confusing, so we've turned it off with unset
key. We've increased the size of the right margin to make room for one of the labels that
sticks out.

Surveying Special Topics

180

The next two lines that require some explanation are the definitions of the min and max
functions. gnuplot does not come with these, so we had to make our own. We've used the
ternary operator explained in Chapter 7, Programming gnuplot and Dealing with Data to very
simply create functions that return the minimum or maximum of two arguments, which is all
that we'll need them to do.

After that we've defined a scale function that uses our min and max functions. This function
transforms the large population numbers to much smaller font sizes, and imposes minimum
and maximum font size cutoffs. The particular numbers used were arrived at largely through
trial and error.

The CountryName function takes two arguments. The first will be the name of the country
read from the file. The second will be a size, which we will read in from the column giving the
total population. The CountryName function inserts the enhanced text code for setting the
font size, which it calculates using our scale function.

Finally, the plot command in the last line uses the labels style. This style accepts three
entries for the x and y coordinates and the text to be positioned at those coordinates (it is also
possible to plot labels in 3D). We use the stringcolumn function here, which returns, as a
string, the text of the column given in its argument.

The general approach in this recipe is inspired by the example provided in the online help
under help labels.

Mapping the Earth
The main purpose of this recipe is to call attention to the fact that gnuplot comes with a very
useful datafile called world.dat. This consists of coordinates for a rough outline of the
Earth's land masses, as latitude and longitude in the usual degree units. It can be used as a
map background for plotting other geographically relevant data. In the following figure, we've
overlaid some data on recent earthquake activity:

Chapter 10

181

Getting ready
We've included a copy of the world.dat datafile in case you've mislaid the one that comes
with gnuplot. You also need to have the file earthquakes.dat. This contains data from
the United States Geological Survey and contains the locations, magnitudes, and other
information about all the earthquakes in the world for three recent days. We've simply
changed the format in which the latitudes and longitudes are recorded to make the data
digestible by gnuplot. The S (South) and W (West) coordinates were turned into negative
numbers and N (North) and E (East) coordinates were turned into unadorned positive
numbers. You need to be in the same directory as these datafiles in order for the example
script to work as written.

How to do it…
The following script will produce the earthquake map:

unset tics
unset border
unset key
set title "Earthquakes Worldwide 20Jan2012 Through 22Jan2012"
set style fill transparent solid 0.4 noborder
plot 'world.dat' with lines lt -1,\
 'earthquakes.dat' using 4:3:6 with circles

How it works…
We've seen all of these gnuplot commands in earlier chapters. Our map will look better
without a border or a legend, so we do away with these adornments in the first three lines,
and then set a title.

The set style line determines the style of the circles that we are going to plot to show the
locations of the earthquakes. We want them to be filled with a partially transparent solid color
(that we leave as the default) and to not have a border.

Finally, we plot from the two datafiles. The map data is plotted with solid black lines and
the earthquake data is plotted with circles. The longitude is plotted along the horizontal
coordinate and the latitude is plotted along the vertical coordinate; the latter is in the third
column and the former is in the fourth column of the file. The third entry in the using clause
will be used for the sizes of the circles; we've told gnuplot to use the sixth column, which
contains the earthquake magnitudes.

Using partially transparent circles lets us see the map boundaries through them, and also
makes it clear when two earthquakes occurred at the same position.

Surveying Special Topics

182

There's more…
We learned how to plot 3D data from files in spherical or cylindrical coordinates in the recipe
Using coordinate mappings, in Chapter 8, The Third Dimension. We can use this technique to
make a globe of the Earth from the world.dat data:

The previous figure was produced by loading the following script into gnuplot:

set mapping spherical
set angles degrees
set isosamples 30
set xrange [-1:1]
set yrange [-1:1]
unset tics
unset border
set parametric
set hidden3d
set urange [-90:90]
set vrange [0:360]
unset key
splot cos(u)*cos(v),cos(u)*sin(v),sin(u) with lines lt rgb '#dddddd',\
 'world.dat' with lines lt -1

We learned about the set Mapping command in Chapter 8, The Third Dimension. We need
to set the angles to degrees to use latitudes and longitudes directly on the sphere. The set
parametric command does not affect the plot of land masses from the datafile, but it does
allow us a convenient way to express a set of latitude and longitude lines covering the globe.
The splot command in the last line uses a common parametric representation of the sphere,
plotting the lines in a light gray color.

Chapter 10

183

The plotting of latitude and longitude curves serves two purposes: it makes it obvious to the
eye that we are plotting the globe, and it defines a surface upon which gnuplot can apply its
hidden3d option, causing it to render a solid Earth. Without such a surface, we would be
able to see through the globe and be confused by the drawing of the backs of the continents
on the other side.

Making a labeled contour plot
We got an introduction to contour plots in Chapter 8, The Third Dimension, where we saw that
the contours can be drawn in a sequence of dash-dot styles; the contour values can then be
identified by referring to the legend that gnuplot constructs for us automatically.

There is another style of contour plot that incorporates numerical labels directly on the
contours. gnuplot does not support this style directly, but can be tricked into compliance,
as shown in the following figure:

How to do it…
Type the following script:

unset key
unset surf
set view map
set contour base
unset clabel

Surveying Special Topics

184

set xrange [0:5]
set yrange [0:5]
set style fill solid
set for [n = 1:4] cntrparam levels discrete n**2
set for [n = 1:4] object n circle at n,n size 0.2 front fillcolor rgb
'#ffffff' lw 0
set for [n = 1:4] label n sprintf("%d", n**2) at n,n center front
splot x*y

How it works…
The first four lines set us up for making a typical contour plot (see Chapter 8, The Third
Dimension). The command unset clabel turns off the automatic use of a sequence of
colors or line styles for the contours; this will make all the contours the same color and style.

Our trick relies on defining a set of levels for the contours, and then setting the locations of
some objects based on that set of levels and on the function that we are plotting. To do this
conveniently, we use one of gnuplot's iteration commands (see Chapter 7, Programming
gnuplot and Dealing with Data) three times. First, we set four discrete levels for the
contours, which means we'll get four contours at those levels. We then define four circle
objects that is, circles whose positions will lie on the contours. Two lines above this, the
command set style fill solid will apply to the circles. Each circle has a size defined,
is drawn in front of the other graph elements, is filled with white, and will have a zero border.
The purpose of these circle objects is simply to obscure a section of each contour line to give
a neater appearance and make the numerical labels easier to read.

The last iterative command defines four numerical labels. Each label has the same position as
the corresponding circle, is drawn in front of everything, and has a text value encoded with the
sprintf function using the code for an integer. What the label actually says is the same as
the corresponding cntrparam value.

Softening the axes
The default gnuplot style gives roughly equal visual prominence to both the axes and tics
and to the actual curves being plotted. Some may prefer the aesthetic properties of the style
of plot illustrated in the following figure. In this graph, the curve is made to stand out by
rendering the tics labels, border, and background grid in a lighter shade and using a thicker
line for the curve:

Chapter 10

185

How to do it…
Load the following script into gnuplot to see the result:

set style line 2 lc rgb '#999999' lt 0 #grid
set style line 1 lc rgb '#999999' lt 1 #border
set grid linestyle 2
set border linestyle 1
plot sin(x)/x lw 2

How it works…
The set border and set grid commands accept a linestyle (see Chapter 3, Applying
Colors and Styles). We've defined two styles, both with a mid-gray color. The linestyle for the
grid will use linetype (lt) 0, which is dotted in most terminals, and that for the border will use
linetype (lt) 1, which is solid. After defining these styles, we can use them in the set grid
and set border commands, which we do in the following two lines. Finally, we specify a
thicker linewidth (lw) in the plot command, and voilà.

Surveying Special Topics

186

Putting arrows on the axes
The following style is popular in the classroom:

Notice that there is no border, but rather one pair of axes sporting arrows.

How to do it…
Execute the following script and you should see something very similar to the previous figure:

set arrow from graph 0,1 to graph 0,1.1 filled
set arrow from graph 1,0 to graph 1.1,0 filled
set tmargin 5
set rmargin 20
set border 3
set tics nomirror
set grid
plot sin(x)/x lw 2

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

187

How it works…
We learned about arrows in Chapter 2, Annotating with Labels and Legends. The first two
lines define two arrows positioned using the graph coordinate system. This coordinate system
is ideal for our purposes here, because 1 in this system is defined to be the very edge of the
graph, which is exactly where we want the arrows to start. We also set them to be filled; as
we saw in Chapter 2, Annotating with Labels and Legends, we can also, if we want, get very
specific as to precisely how our little arrowheads are drawn. The set border 3 command
tells gnuplot to draw only a bottom and left border; type help set border for the full
explanation of these numerical codes.

Plotting with pictures
A style, popular in journalism, for presenting a small set of data employs a technique
illustrated in the following figure:

The previous figure shows the growth in warhead inventory of a fictional nation over time.
A generic image of a bomb is scaled vertically to indicate the quantity for each year plotted.

Getting ready
The public domain bomb image that is used for the plot is called bomb.png and is provided
in the datafiles folder for this chapter. You can modify this recipe to use your own pictures,
in a variety of formats. To see which file types your version of gnuplot can use, type show
datafile binary filetypes at the gnuplot interactive prompt. You will need to modify
some of the parameters in the script to take into account the pixel dimensions of your image.

Surveying Special Topics

188

How to do it…
The following script produces the Elbonian bomb plot:

set title "Elbonian Warhead Inventory" font "Times,24" offset 0,2
set xlabel "Year" font "Times,12"
set xlabel "Year" font "Times,16"
set ylabel "Number of Operational Warheads\n" font "Times,16"
unset key
set tics nomirror
set xtics scale 0
set for [n = 0 : 3] ytics (sprintf("%d", n*10) 200*n)
set for [n = 0 : 3] xtics (sprintf("%d", 1990+10*n) 91+200*n)
set xtics add ("2020\n(Projected)" 691)
set cbrange [0:250]
set pal gray positive
set view map
unset colorbox
splot for [n = 0 : 3] 'bomb.png' binary filetype=auto\
center=(91+200*n, 300*0.2*(1+n), 0) dy=0.2*(1+n) with image

How it works…
The offset keyword in the first line pushes the title up by two character heights; without this
we would find the title in the font we chose touching the border.

Our bomb image is 182 pixels wide by 600 pixels high. These numbers determine the values
of some of the parameters in the remainder of the script. Our strategy will be to plot the image
four times at different x-positions, each time with its pixels scaled differently in the y-direction.
This will give the image a varying total height, determined by the scaling.

But first we must arrange our tics. We say set xtics scale 0 because, although we want tic
labels, we don't want tic marks on the x-axis. Following that command, there are two iterating
set commands that use the syntax introduced in Chapter 4, Controlling your Tics to set the
text and positions of four tic marks on the x- and y-axes. The actual range of the y-axis, for
example, is from 0 to 600, because our bomb image is 600 pixels high. We use the set
ytics command to place the values that we want to see in the proper places along the axis.
We do the same thing for the x-axis, keeping in mind that our picture is 182 pixels wide. We
are positioning tic labels at the centers of the images, which explains the use of the value 91
= 182/2. Finally, we replace the last x tic with one that indicates a "projected" year.

Chapter 10

189

The set cbrange command sets the range of values mapped into colors in the palette. We
have clipped this at the high end to render all values above the high limit as white. This has
the effect of erasing the background around the bomb image. We've selected a grayscale
palette and told gnuplot not to draw the color box, which is the legend that indicates how
values are mapped to colors. This legend is useful for the kind of surface and image plots
covered in Chapter 8, The Third Dimension, but here it conveys no useful information.
Different palettes will create different color transformations of the image; it may be useful
to experiment with these when producing a color graph.

The last line positions the input image four times on the graph. For typical image files, we
need the keyword binary. The clause filetype=auto means that gnuplot will figure
out that this is a PNG file from the file extension. For each iteration, we need to define the
center, which is the (x, y, z) position of the center of the image, and we define a value for dy,
which is the scaling for the y pixels and determines the height of the picture. Again, keep in
mind the pixel dimensions of the image to see how this works.

Please note that, although this type of image plotting is discussed in the official documentation
and in the online help, the information there is incomplete and in some places not correct.

Breaking an axis
Sometimes we would like to plot something over two disjoint domains, but want the plot to be
contained in a single graph. In this case, we need to indicate that there is a discontinuity in
the axis and generate two separate sets of tic marks, as shown in the following figure:

Surveying Special Topics

190

How to do it…
The following gnuplot script will produce the previous figure. It is provided with this book as a file
called breaking_an_axis.gnuplot. Run it with gnuplot breaking_an_axis.gnuplot
to get a PNG file that should look just like the previous figure. If you don't have the pngcairo
terminal installed, you can use the png terminal or anything you wish, but you may get a
different pattern in the vertical box. Type test at the gnuplot interactive prompt after setting
your terminal (and output file if you are not using an interactive terminal) to see a list of the
available patterns.

set term pngcairo font "Times,8"
set out "plot.png"
set border 2
set zeroaxis lt -1
set ytics axis nomirror
set xtics axis nomirror
set tics out
set samp 5000
set xrange [0.007:.1]
set yrange [-.05:1]
s = .2
b = 0.03
w = .001
h = 1
h(x) = sin(1/x)**2
f(x) = (x<b?h(x):NaN)
g(x) = (x>b?h(x+s):NaN)
set xtics .005, .005, .025
set for [n = 4 : 10] xtics add(sprintf("%.3f", s + n/100.0) n/100.0)
set object 1 polygon from first b-w,-h to b+w,-h to b+w,h to b-w,h to
b-w,-h front
set object 1 fillstyle pattern 5 lw 0
set key font "Times,12" samplen -1
plot f(x) title "sin(1/x)" lt -1, g(x) notitle lt -1

How it works…
The script plots a function over two disjoint sections of the x-axis; the first near x = 0 and the
second from x = 0.03 to x = 0.3.

Setting up the axes
We include a font specification with the set term command to make sure there is enough
space between the tic labels.

Chapter 10

191

The command set border 2 draws a border only on the left side of the plot, leaving the
other three sides blank. help set border will explain the syntax.

The next command tells gnuplot to draw a pair of solid, black axes through the origin.
We'll only see the x-axis, as the y-axis is off the graph. Its place is taken by the border.

The following three commands put tics on the axes and make them stick out of the graph
area. We specify a large number of samples because our function is quickly varying and set
an xrange to avoid the singularity at the origin. Our yrange leaves a little space below zero,
which will allow our polygon to overlap the axis.

Defining the functions
Our goal is to plot the function sin(1/x)**2 over two disjoint domains. To do this, we define
three functions. But first, it is convenient to define a few variables. The variable s the shift,
which is the amount by which the second segment of the graph is shifted relative to the first.
We plot a piece of the function, then skip ahead by s along the x-axis, then continue. Next we
define b, which is where the break occurs on the x-axis. The next two variables have only to
do with the decoration that we shall use to indicate the discontinuity in x values: w is its width
and h is its height, both in axis coordinates.

Now we define the functions. h(x) is simply the function that we are plotting. The next
two are defined using the ternary syntax introduced in Chapter 7, Programming gnuplot
and Dealing with Data where we learned how to plot on subintervals. f(x) is defined to be
equal to our function h(x) below x = b (the breakpoint) and is set to be undefined above
x = b. g(x) is defined to be h(x) but shifted by an amount s, and is only defined above
the breakpoint.

Setting up the tics
We need two sets of tics and tic labels for the two separate sections of the plot.

The tics for the left-hand section are defined with the line set xtics .005, .005, .025:
the syntax is start, interval, end.

The tics for the right-hand section are established with the following line, which uses gnuplot's
looping syntax (see Chapter 7, Programming gnuplot and Dealing with Data). For each value
of n in (4, 5, ... 10), we add a tic at position n/100. The label printed for the tic is encoded
using the sprintf function, which uses the same syntax as in the C language. %.3f means
to represent the number as a float with three decimal places. The numbers that we print are
shifted by the shift variable s. Since we are shifting the tics and the function argument by the
same amount, the graph will be correct.

Surveying Special Topics

192

Indicating the break
We need some device to show that there is a discontinuity in the set of x coordinates. Here
we've chosen a style that makes this hard to miss, by creating a long, thin rectangle enclosing
a hatch pattern that lies over the break in the axis.

To do this, we use gnuplot's new object facility. We define a polygon object using the
variables that we defined earlier for its width and height, and for the breakpoint. The final
point repeats the first to close the polygon.

The next line sets some properties of the polygon. We set its fill pattern and set its linewidth
(lw) to zero so it won't have an outline.

And finally...
Before plotting, we want to make the legend font bigger, since we set the default font a little
small to make room for the tics. The clause samplen -1 causes the legend to be printed with
no line sample, since there is only one curve. Thus, we're using the key as a convenient way to
make a title for the plot that will save space by being placed inside it.

The plot command in the last line plots both segments of the curve as black solid lines (lt
-1), sets the title for the curve, and makes sure not to repeat the title for the second part.

Fitting the grid to the data
gnuplot, by default, arranges our graph with a set of ticmarks at equally spaced intervals, with
gridlines to match (if we turn the grid on). If we want to make it easy to read off the values of a
particular set of points, we can do better:

Chapter 10

193

How to do it…
The following script will create the previous figure:

set term pngcairo dashed
set out 'xsquared.png'
set samples 6
set key top left
set for [n = 1 : 4] arrow from first n, 0 to first n, n**2 back \
 nohead lt 7
set for [n = 1 : 4] arrow from first 0, n**2 to first n, n**2 back \
 nohead lt 7
set for [n = 0 : 5] ytics (n**2)
plot [0:5] x**2 with linespoints pt 7 ps 3

How it works…
We have included explicit set terminal and set out commands because we want our
linetype specifications to select a dashed line; if you prefer to use colored lines where the
figure has a dashed line, you can omit the dashed keyword.

We set a small number of samples because we want to illustrate the technique with a handful
of points, that typically might be read from a datafile.

After placing the legend in the top-left corner where it will not collide with the data, we use
iteration to define two sets of four arrows. The coordinates of their starting and ending
positions are taken from the positions of the tic marks and the function that we plan to plot.
The keyword back puts the arrows behind the data points, and lt (linetype) 7 is the desired
dash style for our simulated grid (this will vary with terminal). We don't want arrowheads.
These sets of arrows will simply take the place of the automatic grid that gnuplot would
otherwise draw for us, which would not intersect the data points.

The next iterative command sets the ytics to align with the six plotted points.

Finally, we plot the function, choosing the pointtype (pt) that maps to a solid circle in this
terminal, and a fairly large pointsize (ps).

Coloring the axes
We showed back in Chapter 1, Plotting Curves, Boxes, Points, and more, how to use two
different y-axes when plotting two functions or datasets that have dissimilar ranges. We can
make it easier to see which curve goes with which axis by using color.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Surveying Special Topics

194

In the following figure, two curves are colored (shaded in print) to match corresponding
colors on the vertical axes with which they are associated. The axis labels are colored to
match, as well. This makes it easy to match the curves with their y-axes without having
to use arrows or legends.

How to do it…
The following script created the previous figure:

set multi
set tmargin at screen .8
set rmargin at screen .8
set lmargin at screen .2
set bmargin at screen .2
unset key
set tics nomirror
set xrange [0:5]
set border 8
set border lt 4
set y2tics 0,25,150
unset ytics
set y2label "exp(x)" textcolor lt 4
plot exp(x) axis x1y2 lt 4
set border 7
set border lt -1
set ylabel "1/x" textcolor lt -1
unset y2label

Chapter 10

195

set ytics 0,1,5
set tics nomirror
unset y2tics
set yrange [0:5]
plot 1/x lt -1
unset multi

How it works…
There are several ways to cajole gnuplot into yielding this effect. We've chosen to use
multiplot mode to draw two different graphs and arrange to have them precisely overlaid.

The first line enters multiplot mode. When drawing a set of graphs in multiplot mode that need
to be aligned on top of each other, we need to set global margins in screen coordinates. That's
the purpose of the four margin commands.

We then have some familiar range and tic setting commands for the first plot, and a set
border command that tells gnuplot to draw the right vertical border only. We've also set the
linetype (lt) of the border to yield a light magenta, which should appear as gray in print. We
want the tics and labels to appear on the right (y2) axis only, and our plot command selects
the same linetype as was used in the border. So we have one curve plotted against an axis
with the same color. The command for setting the y2label contains the clause textcolor
lt 4, which will cause the label to be drawn in the same color as is used for linetype 4; so the
curve, axis, and axis label describing the curve are all in the same color.

For the second plot, which will be associated with the left-hand y-axis, we set border 7,
which draws a bottom, left, and top border (type help border to see how this works). We
select a solid black linestyle (lt -1) for this part of the border, and the same linetype for
plotting the curve and defining the ylabel. The commands for unsetting the unused tics and
preventing mirroring need to be repeated as in the script to prevent extra, unwanted tic marks
and labels.

The technique of overlaying plots in multiplot mode by setting screen margins only works for
fairly recent versions of gnuplot, but can be used for many advanced plotting techniques, such
as aligning a contour plot and a 2D plot of a cross-section of the contours.

Finding Help and
Information

I hope that this book has been useful to you in getting gnuplot to do what you need it to
do. But no single book can contain everything you might need to know. So, in this Appendix,
I have compiled a brief list of other sources of gnuplot information and education.

The most direct and immediate source of help when using gnuplot is the built-in help
system; by typing the Help topic at the interactive prompt you can get detailed information
on any topic. This is most useful if you already have some idea about what you are looking
for. Sometimes the help system provides too much information, and often not enough, but
this is usually the first place to look if you need to know all the options associated with a
particular command.

The official gnuplot manual, which can be found in various HTML and PDF configurations
at the official gnuplot home at http://gnuplot.info/documentation.html, contains
some detailed information that cannot be found anywhere else, and is an essential reference
work for the advanced gnuplotter. Beware that it is impossible to actually learn how to use
gnuplot from this manual, however, and it is organized in a way that makes it difficult to find
relevant information.

There is a gnuplot reference card at http://www.gnuplot.info/docs_4.0/gpcard.pdf,
which is a brief reminder of the most useful commands and options, suitable for printing out
and tacking up next to your computer.

There is a great collection of gnuplot demos indexed from http://gnuplot.info/
screenshots/index.html#demos.

More beautiful 3D sample plots (with scripts) can be found at http://ayapin.
film.s.dendai.ac.jp/~matuda/Gnuplot/pm3d.html.

Finding Help and Information

198

The first book treating gnuplot in detail was Gnuplot in Action by Philipp K. Janert, which can
be found at http://www.manning.com/janert/. This is more concerned with teaching
data analysis than gnuplot per se, but is a well-regarded volume.

The page of gnuplot tips and "not so Frequently Asked Questions" by T. Kawano at
http://t16web.lanl.gov/Kawano/gnuplot/index-e.html has some very
useful information and examples, although it was last updated in 2005.

More gnuplot demonstrations can be found at http://www.csse.uwa.edu.au/
programming/gnuplot_demos/.

An impressive collection of Gnuplot tricks, showing some nonobvious ways of doing things
with gnuplot, can be discovered at http://gnuplot-tricks.blogspot.com/.

David MacKay's lovely examples of using gnuplot in physics can be found at http://www.
inference.phy.cam.ac.uk/teaching/comput/C++/examples/gnuplot/index.
shtml.

The involved subject of date/time plotting in gnuplot is given a tutorial treatment by Marco
Fioretti in the article How to handle time-based data with Gnuplot at http://www.
zdnetasia.com/how-to-handle-time-based-data-with-gnuplot-62301350.htm.

The gnuplot mailing list is archived at http://news.gmane.org/gmane.comp.
graphics.gnuplot.user, and the newsgroup comp.graphics.apps.gnuplot can be
scanned at http://groups.google.com/group/comp.graphics.apps.gnuplot/
topics. You should keep an eye on both of these if you want to keep up-to-date; gnuplot is
actively developed.

Finally, I maintain a page about gnuplot at http://lee-phillips.org/gnuplot. Its
original purpose was to help people who want to install gnuplot on the Macintosh, but now
serves up general information and maintains a current list of links to other gnuplot resources.
You will also be able to find updated and, if necessary corrected code and data files for use in
this book, on this page.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Index
Symbols
1D graph 8
2D Gaussian surface 155
3D

path, plotting 157, 158
3D Lissajous figure 157
3D sample plots

URL 197
--persist flag 52
++ pseudofile 140
/Symbol tags 49

A
Aquaterm terminal 19, 55
array of plots

arranging 84, 85
arrow

labels, adding with 44, 45
arrows

multiplotting with 89-91
putting, on axes 186, 187

arrowstyle 148
aspect ratio 61
auxiliary files 171
axes

arrows, putting 186, 187
break, indicating 192
coloring 193, 195
functions, defining 191
labeling 36, 37
setting up 190
softening 184, 185
tics, setting up 191

axis
breaking 189, 190

B
beamer package 108
Bessel functions 8, 84
bezier smoothed approximation 123
bomb.png 187
box

placing, around legend 43
plotting 14, 15

breaking_an_axis.gnuplot 190

C
C

about 9
used, for talking to gnuplot 128, 129

cairo graphics library 94
canvas terminal 114
character coordinate system 86
circles

plotting 16
Clojure

about 131
plotting with 131
URL 131

cntrparam value 184
color output device

using 150, 151
complex graphs 44
contour, and surface grid plots

combining 146, 147

200

contour plot
about 144
creating 145, 146

contours, and images
combining 152, 153

coordinate mappings
about 139
using 139, 140

CountryName function 180
cumulative distribution

creating 127, 128
curves

coloring 52, 53
points, plotting with 57, 58
styling 54

D
data

functions, fitting to 124, 125
handling, with gnuplot 133, 134
smoothing 123, 124

data versus time
plotting 76, 77

division 122
Django framework

URL 169
document

assembling, epslatex terminal used 103-105
assembling, LaTeX used 99-103
assembling, TikZ used 99-103

draw function 172

E
earth

mapping 180-183
earthquakes.dat file 181
Emacs

about 164
gnuplot script, running 165
help and menus 166
installing 164
using 165

empty string 20
enhanced text 47

epslatex terminal
about 103
used, for assembling document 103-105

equations
placing, in labels 47-49

error bar
about 25, 26
combining, with other plot styles 26, 27

errors
dealing with 25, 26

European-style decimals
using 79, 80

F
figure

creating, with gnuplot 98
filled curves

drawing 17, 18
financial data

handling 20
fit command 124
for keyword 120
for loop 120
Fortran 9
frames 111
front command 88
function

about 8
plotting 9

function keyword 108
functions

fitting, to data 124, 125

G
Ghostscript 95
gird

fitting, to data 192, 193
github home

URL 164
global hidden3d setting 142
gnuplot

about 8
array of plots, arranging 84, 85
axes, labeling 36, 37
basic histogram plot, making 21, 22

201

boxes, plotting 14, 15
box, placing around legend 43
circles, plotting 16
contour plot, creating 145, 146
contours, combining with images 152, 153
coordinate mappings, using 139, 140
cumulative distribution, creating 127, 128
curves, coloring 52, 53
curves, styling 54
C, used for talking to 128, 129
data, handling with 133, 134
data, smoothing 123, 124
data versus time, plotting 76, 77
dealing, with errors 25, 26
Emacs, using 165
equations, placing in labels 47-49
error bar 25, 26
European-style decimals, using 79, 80
figure, creating with 98
filled curves, drawing 17, 18
financial data, handling 20
function, plotting 9
functions, fitting to data 124, 125
graphs, positioning on page 61, 62
heat map, creating 150
high-quality graphics formats 94, 95
histograms, stacking 22, 23
image plot, creating 150
impulse plot, making 30
inset plot, creating 87-89
JGP, using 163, 164
kdensity smoothing, used for improving histo-

grams 126, 127
labels, adding with arrow 44, 45
label size, setting 38-40
legend, adding 40-42
locating 162
manual tics, setting 75
multiple curves, plotting 10, 11
multiple histograms, plotting 24, 25
multiplotting, with labels and arrows 89-91
parametric curves, graphing 31, 32
parametric surfaces, drawing 158-160
path, plotting in 3D 157, 158
pie chart, plotting with objects 62, 63

plot size, modifying 60
plots, positioning manually 85, 86
plotting, on subintervals 121, 122
points, plotting with curves 57, 58
point style, modifying 58, 59
polar coordinates 32, 33
plotting, with Clojure 131
scatterplot, making 13, 14
scripting, with own language 118,-120
scripting, with Python 130
sharing, with PlotShare 167, 168
statistical whisker plot, making 27, 28
surface, coloring 141-143
surface plot, creating 136, 137
surfaces, combining with images 153-156
tic labels, formatting 80, 81
transparency, applying 56, 57
two different Y axes, using 11, 12
Unicode characters, using 46
URL, for info 9
URL, for 3D sample plots 197
URL, for demonstrations 198
URL, for demos indexed 197
URL, for documentation 197
URL, for examples 198
URL, for mailing list 198
URL, for reference card 197
using, within LaTeX 106, 107, 108
vector plot, creating 148
volatile data, handling 132
WebGUI, writing for 168-173
WebGUI, writing for 172

gnuplot-lua-tikz package 103
gnuplot-mode 164
gnuplot, output devices collection

pdfcairo terminal 96
svg terminal 97
wxt terminal 96

gnuplot script
about 111
running 165

graph coordinates 42
graphs

positioning, on page 61, 62

202

H
heat map

about 149
creating 150

help arrowstyle 148
help set mapping 139
hexadecimal format 53
hidden line removal technique 138
high-quality graphics formats, gnuplot 94, 95
histogram plot

making 21, 22
histograms

improving, kdensity smoothing used 126,
127

stacking 22, 23

I
if-then-else statement 118
image plot

about 149
creating 150

images
surfaces, combining with 153-156

images, and contours
combining 152, 153

impulse plot
about 29
making 30

incrementally displayed graphs
presentation slides, creating with 108-111

inputenc package 103
inset plot

about 87
creating 87-89

interactive plot
creating, for Web 114, 115

internationalization features 78
isoline density 137
isosamples 141

J
JGP

about 162
installing 162, 163

URL, for home page 162
using 163, 164

K
kdensity smoothing

used, for improving on histograms 126, 127
kernel density estimate 126
key 40

L
labeled contour plot

making 183, 184
labels

adding, with arrow 44, 45
equations, placing in 47-49
labelsplotting, from files 178-180
language, modifying 78, 79
multiplotting with 89-91
size, setting 38-40

label size
setting 38-40

language
gnuplot, scripting with 118-120
modifying, for labels 78, 79

LaTeX
gnuplot, using within 106-108
running 98
used, for adding plot to paper 97, 99
used, for assembling documents 99-103

legend
about 40
adding 40-42
box, placing around 43

linecolor 53
linestyle 55
linestyles 54
linetype 43
linetypes 54
linewidth 43, 53

M
manual tics

setting 75
multiple curves

plotting 10, 11

203

multiple histograms
plotting 24, 25

multiplot mode 195
about 83, 85

N
Not A Number (NaN) 122
notitle keyword 42
numpy 130

O
objects

about 62
plotting with 62, 63

opacity 56
overlapping labels

avoiding 176, 177

P
page

graphs, positioning on 61, 62
palette 142
parameter 31
parametric curves

graphing 31, 32
parametric surfaces

drawing 158-160
path

plotting, in 3D 157, 158
pdfcairo terminal 96
pdflatex command 97
pdf terminal driver 94
PGF 106
picture

completing 141
pictures

plotting with 187-189
pie chart

plotting, with objects 62, 63
plot

adding, to paper with LaTeX 97, 99
including, in web page 112, 114
size, modifying 60

plot besj0(x) function
about 8

plotting 9
plot command 12, 45, 120, 123, 124 137
plots

positioning, manually 85, 86
Plotshare

about 166
sharing with 168
URL 166

plot size
modifying 60

pm3d mode 142
pngcairo version 46
png terminal driver 94
pointinterval 59
points

plotting, with curves 57, 58
pointsize 58, 59
point style

modifying 58, 59
point type 14, 26, 58, 59
polar coordinates

plotting with 32, 33
polygon object 192
popen function 129
Portable Graphics Format. See PGF
POST method 172
presentation slides

creating, with incrementally displayed graphs
108-111

pseudofiles 140
Python

gnuplot, scripting with 130

R
refresh command 134
replot 137
replot command 45, 134
reread keyword 120
rgb keyword 53

S
scale function 180
scatterplot

about 13
making 13, 14

204

set arrow command 45
set bmargin command 86
set border 2 command 191
set border 3 command 187
set border command 185
set cbrange command 189
set cntrparam command 145
set decimalsign command 80
set grid command 185
set hidden3d command 138, 154
set hidden front command 154
set isosamples command 137
set key command 40, 43, 120
set lmargin command 86
set mapping command 137, 140, 182
set multiplot command 91
set origin command 86
set output command 45
set parametric command 158, 182
set pm3d at base 153
set pm3d command 143, 144
set rmargin command 120
set samples command 137
set size command 86
set style line 181
set term command 9, 49, 60, 168
set terminal command 38
set title command 37, 91
set urange command 158
set view command 137
set view map command 145
set ytics nomirror command 12
show colors command 53
size option 60
smooth plotstyle 123
special filenames 19
splot command 137, 145, 147
sprintf function 184
standalone mode 115
statistical whisker plot

making 27, 28
stem plot 30, 31
string catenation operator 120
stringcolumn function 180

subintervals
plotting on 121, 122

surface
coloring 141-143

surface grid plots, and contours
combining 146, 147

surface plot
about 136
creating 136, 137
with one setting changed 138

surfaces
combining, with images 153-156

svg terminal 97

T
test command 53
TeX document 98
tic labels

formatting 80, 81
tics

manual tics, setting 75
tics commands 11
TikZ

used, for assembling documents 99-103
title phrase 42
trange 32
transparency

applying 56, 57
two different Y axes

using 11, 12
two dimensional (2D) plots 135
two X axes

using 12
typecast 120

U
Unicode characters

about 46, 95
using 46

unset key 179
unset multiplot command 85
unset surface command 142
userstyles 55
using keyword 19

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

205

V
vector plot

about 147
creating 148

view 137
Vim 164
volatile data

handling 132
Volatile Data Source 132
volatile keyword 133

W
Web

interactive plot, creating for 114, 115
webGUI

writing, fot gnuplot 168-173

web page
plot, including in 112, 114

whiskerbars 28
world.dat datafile 181
wxt terminal 96

X
xlabel command 37
xrange 90

Y
ylabel command 37

Z
ztics value 137

Thank you for buying

gnuplot Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Matplotlib for Python
Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication quality plots the easy way

1. Create high quality 2D plots by using Matplotlib
productively

2. Incremental introduction to Matplotlib, from the
ground up to advanced levels

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them in
Python applications

4. Deploy Matplotlib in web applications and expose
it on the Web using popular web frameworks such
as Pylons and Django

NumPy 1.5 Beginner's Guide
ISBN: 978-1-84951-530-6 Paperback: 234 pages

An action-packed guide for the easy-to-use, high
performance, Python based free open source NumPy
mathematical library using real-world examples

1. The first and only book that truly explores NumPy
practically

2. Perform high performance calculations with clean
and efficient NumPy code

3. Analyze large data sets with statistical functions

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

LaTeX Beginner's Guide
ISBN: 978-1-84719-986-7 Paperback: 336 pages

Create high-quality and professional-looking texts,
articles, and books for business and science using
LaTeX

1. Use LaTeX's powerful features to produce
professionally designed texts

2. Install LaTeX; download, set up, and use
additional styles, templates, and tools

3. Typeset math formulas and scientific expressions
to the highest standards

4. Include graphics and work with figures and tables

GNU Octave Beginner's Guide
ISBN: 978-1-84951-332-6 Paperback: 280 pages

Become a proficient Octave user by learning this
high-level scientific numerical tool from the ground up

1. The easiest way to use GNU Octave's power and
flexibility for data analysis

2. Work with GNU Octave's interpreter – declare
and control mathematical objects like vectors
and matrices

3. Rationalize your scripts and control program flow

4. Extend GNU Octave and implement your own
functionality

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Plotting Curves, Boxes, Points, and more
	Introduction
	Plotting a function
	Plotting multiple curves
	Using two different y-axes
	Making a scatterplot
	Plotting boxes
	Plotting circles
	Drawing filled curves
	Handling financial data
	Making a basic histogram plot
	Stacking histograms
	Plotting multiple histograms
	Dealing with errors
	Making a statistical whisker plot
	Making an impulse plot
	Graphing parametric curves
	Plotting with polar coordinates

	Chapter 2: Annotating with Labels and Legends
	Introduction
	Labeling the axes
	Setting the label size
	Adding a legend
	Putting a box around the legend
	Adding a label with an arrow
	Using Unicode characters [new]
	Putting equations in your labels

	Chapter 3: Applying Colors and Styles
	Introduction
	Coloring your curves
	Styling your curves
	Applying transparency [new]
	Plotting points with curves
	Changing the point style
	Changing the plot size
	Positioning graphs on the page [new]
	Plotting with objects [new]

	Chapter 4: Controlling your Tics
	Introduction
	Adding minor tics
	Placing tics on the second y-axis
	Adjusting the tic size
	Removing all tics
	Defining the tic values
	Making the tics stick out
	Setting manual tics
	Plotting with dates and times
	Changing the language used for labels [new]
	Using European-style decimals [new]
	Formatting tic labels

	Chapter 5: Combining Multiple Plots
	Introduction
	Arranging an array of plots
	Positioning plots manually
	Creating an inset plot
	Multiplotting with labels and arrows

	Chapter 6: Including Plots in Documents
	Introduction
	Introducing gnuplot's high-quality graphics formats [new]
	Adding a plot to a paper using LaTeX
	Assembling a document using TikZ and LaTeX [new]
	Assembling a document using epslatex
	Using gnuplot within LaTeX
	Creating presentation slides with incrementally displayed graphs
	Including a plot in a web page
	Making an interactive plot for the Web [new]

	Chapter 7: Programming gnuplot and Dealing with Data
	Introduction
	Scripting gnuplot with its own language
	Plotting on subintervals
	Smoothing your data
	Fitting functions to your data
	Using kdensity smoothing to improve on histograms [new]
	Creating a cumulative distribution [new]
	Talking to gnuplot with C
	Scripting gnuplot with Python
	Plotting with Clojure
	Handling volatile data [new]

	Chapter 8: The Third Dimension
	Introduction
	Making a surface plot
	Using coordinate mappings
	Coloring the surface
	Making a contour plot
	Making a vector plot
	Making an image plot or heat map
	Combining contours and images
	Combining surfaces with images
	Plotting a path in 3D
	Drawing parametric surfaces

	Chapter 9: Using and Making Graphical User Interfaces
	Introduction
	Using the Java gnuplot GUI "JGP"
	Using the Emacs GUI
	Sharing with Plotshare
	Writing a web GUI for gnuplot

	Chapter 10: Surveying Special Topics
	Introduction
	Avoiding overlapping labels
	Plotting labels from files
	Mapping the Earth
	Making a labeled contour plot
	Softening the axes
	Putting arrows on the axes
	Plotting with pictures
	Breaking an axis
	Fitting the grid to the data
	Coloring the axes

	Appendix: Finding Help and Information
	Index

