
M A N N I N G

SECOND EDITION

IN ACTION
Understanding data with graphs

Covers gnuplot version 5

Philipp K. Janert

www.it-ebooks.info

http://www.it-ebooks.info/


Praise for the First Edition

Knee-deep in data? This is your guidebook to exploring it with gnuplot.

 —Austin King
Mozilla

Sparkles with insight about visualization, image perception, and data 
exploration.

 —Richard B. Kreckel
GiNaC.de

Incredibly useful for beginners—indispensable for advanced users.

 —Mark Pruett
Dominion

Bridges the gap between gnuplot’s reference manual and real-world problems.

 —Mitchell Johnson
Border Stylo

A Swiss Army knife for plotting data.

 —Nishanth Sastry
University of Cambridge / IBM

Plain and simple: if you use Gnuplot and would like to understand it better, 
this book is for you. If you are looking for an excellent plotting tool—one that is 
highly configurable and can easily handle millions of data points, then down-
load Gnuplot and get this book.

 —Amazon reviewer

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Gnuplot in Action
SECOND EDITION

PHILIPP K. JANERT

M A N N I N G

SHELTER ISLAND

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of 
elemental chlorine.

Manning Publications Co. Development editors: Marina Michaels
20 Baldwin Road Technical development editor: Ravishankar Rajagopalan
PO Box 761 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Toma Mulligan
 Technical proofreader: Clark Gaylord

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781633430181
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.manning.com
http://www.it-ebooks.info/


 The purpose of computing is insight, not numbers.

 —R. W. Hamming

 

 The purpose of computing is insight, not pictures.

 —L. N. Trefethen

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


vii

brief contents
PART 1 GETTING STARTED............................................................ 1

1 ■ Prelude: understanding data with gnuplot 3

2 ■ Tutorial: essential gnuplot 16

3 ■ The heart of the matter: the plot command 31

PART 2 CREATING GRAPHS ......................................................... 53

4 ■ Managing data sets and files 55

5 ■ Practical matters: strings, loops, and history 78

6 ■ A catalog of styles 100

7 ■ Decorations: labels, arrows, and explanations 125

8 ■ All about axes 146

PART 3 MASTERING TECHNICALITIES......................................... 179

9 ■ Color, style, and appearance 181

10 ■ Terminals and output formats 209

11 ■ Automation, scripting, and animation 236

12 ■ Beyond the defaults: workflow and styles 262

PART 4 UNDERSTANDING DATA ................................................. 287

13 ■ Basic techniques of graphical analysis 289

14 ■ Topics in graphical analysis 314

15 ■ Coda: understanding data with graphs 344

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ix

contents
preface xvii
acknowledgments xix
about this book xx

PART 1 GETTING STARTED ...............................................1

1 Prelude: understanding data with gnuplot 3

1.1 A busy weekend 4

Planning a marathon 4 ■ Determining the future 6

1.2 What is graphical analysis? 9

Why graphical analysis? 11 ■ Limitations of graphical 
analysis 11

1.3 What is gnuplot? 11

Gnuplot isn’t GNU 12 ■ Why gnuplot? 12 ■ Limitations 13
Gnuplot 5: the best gnuplot there ever was! 13

1.4 Summary 15

2 Tutorial: essential gnuplot 16

2.1 Simple plots 17

Invoking gnuplot and first plots 17 ■ Plotting data from a 
file 20 ■ Abbreviations and defaults 24

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTSx

2.2 Saving commands and exporting graphics 25

Saving and loading commands 25 ■ Exporting graphs 26

2.3 Managing options with set and show 29

2.4 Getting help 30

2.5 Summary 30

3 The heart of the matter: the plot command 31

3.1 Plotting functions and data 32

Plotting functions 32 ■ Plotting data 33

3.2 Math with gnuplot 34

Mathematical expressions 34 ■ Built-in functions 36
User-defined variables and functions 37 ■ Mathematically 
undefined values and NaN (not a number) 39

3.3 Data transformations 39

Simple data transformations 40

3.4 Logarithmic plots 42

3.5 Smooth interpolation and approximation 45

Interpolation curves 46 ■ Point distributions 49
Deduping repeated entries 51

3.6 Summary 51

PART 2 CREATING GRAPHS .............................................53

4 Managing data sets and files 55

4.1 Quickstart: the standard data-file format 56

Comments and header lines 58 ■ Selecting columns 58

4.2 Managing structured data sets 59

Multiple data sets per file: index 59 ■ Records spanning 
multiple lines: the every directive 62

4.3 File format options in detail 63

Number formats 63 ■ Comments 63 ■ Field 
separator 64 ■ Missing values 65 ■ Strings in data 
files 66

4.4 Accessing columns and pseudocolumns 67

Accessing columns by position or name 68 ■ Pseudocolumns 69
Column-access functions 69

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTS xi

4.5 Pseudofiles 70

Reading data from standard input 71 ■ Heredocs 72
Reading data from a subprocess 74 ■ Writing to a pipe 74
Generating data 75

4.6 Metadata in data files 75

4.7 Other file formats 76

4.8 Summary 77

5 Practical matters: strings, loops, and history 78

5.1 Strings 79

Quotes 80 ■ String operations 80 ■ Worked example: 
plotting the Unix password file 82

5.2 String expressions and string macros 85

String expressions in commands 86 ■ Executing a string 
with eval 86 ■ String macros inside commands 87

5.3 Generating textual output 88

The print and set print commands 88 ■ The set table 
command and the with table style 89 ■ Reading and 
writing heredocs 90

5.4 Simplifying work with inline loops 90

Loops over numbers 90 ■ Loops over strings 91
Summary of inline loops 92

5.5 Gnuplot’s internal variables 93

5.6 Inspecting file contents with the stats 
command 94

The stats command and internal variables 95
Further options for the stats command 96

5.7 Command history 96

Redrawing a graph 97 ■ The general history feature 97
Restoring session defaults 98

5.8 Summary 99

6 A catalog of styles 100

6.1 Why use different plot styles? 101

6.2 Styles and aspects 101

Choosing styles inline through with 101 ■ The default 
sequence 102 ■ Customizing graph elements 103

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTSxii

6.3 A catalog of plotting styles 105

Core styles: lines and points 106 ■ Indicating uncertainty:  styles 
with error bars or ranges 108 ■ Styles with steps and boxes 112
Filled styles 114 ■ Beyond lines and points: multivariate 
visualization 115

6.4 Putting it together 120

6.5 Other styles 123

6.6 Summary 123

7 Decorations: labels, arrows, and explanations 125

7.1 Quick start: minimal context for data 126

7.2 Understanding layers and locations 128

Locations 128 ■ Layers 129

7.3 Additional graph elements: decorations 130

Common conventions 130 ■ Arrows 131 ■ Text  labels 134
Shapes or objects 136

7.4 The graph’s legend or key 137

Turning the key on and off 138 ■ Placement 138 ■ Layout 139
Appearance 139 ■ Explanations 140 ■ Default settings 143

7.5 Worked example: features of a spectrum 144

7.6 Summary 145

8 All about axes 146

8.1 Multiple axes 147

Terminology 147 ■ Plotting with two coordinate  systems 148
Linking axes 150

8.2 Selecting plot ranges 153

What you need to know for interactive work 154
What you might want to know for batch processing 155

8.3 Tic marks 156

Overview and common conventions 156 ■ Tic mark  appearance 
and placement 157 ■ Tic labels 159 ■ Tic mark location and 
frequency 163 ■ Reading tic labels from file 165 ■ Grid and 
zero axis 166

8.4 Special case: time series 168

Turning numbers into names: months and weekdays 169
General time series: the gory details 170 ■ Beyond tic labels: 
processing date/time information 176

8.5 Summary 178

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTS xiii

PART 3 MASTERING TECHNICALITIES ............................179

9 Color, style, and appearance 181

9.1 Color 181

Explicit colors 182 ■ Alpha shading and transparency 185
Selecting a color through indexed lookup 187 ■ Mapping a 
value into a continuous gradient 188 ■ Using data-dependent 
colors 189 ■ The built-in color sequences 193 ■ Tips and 
tricks 194

9.2 Lines and points 195

Point types and shapes 195 ■ Dash pattern 196

9.3 Customizing color, dash, and point sequences 198

Customizing line types 199 ■ Special line types 200

9.4 Global styles 200

Data and function styles 200 ■ Line styles 201 ■ Arrow 
styles 202 ■ Fill styles 202 ■ Other global styles 203

9.5 Overall appearance: aspect ratio and borders 203

Size and aspect ratio 204 ■ Borders 205 ■ Margins 207
Internal variables 207

9.6 Summary 208

10 Terminals and output formats 209

10.1 The terminal abstraction 210

Historical digression 210 ■ The terminal workflow 210
Terminal capabilities and the test command 212

10.2 Font selection and enhanced text mode 214

Font selection 214 ■ Font resolution 215 ■ Enhanced 
text mode 217 ■ Worked example 219

10.3 Generating PNG and PDF with cairo-based terminals 220

10.4 Using gnuplot with LaTeX 221

Including a graph in a LaTeX document 222 ■ Using the 
cairolatex terminal 224 ■ Letting LaTeX generate the graph 228

10.5 Scalable graphics for the Web with SVG and HTML5 229

The svg terminal 229 ■ The canvas terminal 230

10.6 Interactive terminals 232

Common options 232 ■ The wxt and qt terminals 233
The aqua terminal 233 ■ The windows terminal 233

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTSxiv

10.7 Other terminals 233

10.8 Summary 234

11 Automation, scripting, and animation 236

11.1 Loops and conditionals 237

Worked example: making graph paper 239 ■ Worked 
examples: iterating over files 240 ■ Worked examples: 
Taylor series and Newton’s method 241

11.2 Command files 243

Scripts as subroutines 244 ■ Worked example: export 
script 246

11.3 Batch processing 247

Using gnuplot in shell pipelines 249

11.4 Calling gnuplot from other programs 250

Worked example: calling gnuplot from Perl 250 ■ Worked 
example: calling gnuplot from Python 251 ■ Helpful 
hints 252

11.5 Animations 254

Introducing a delay 254 ■ Waiting for a user event 255
Further examples 255

11.6 Case study: continuously monitoring a live data 
stream 256

Using gnuplot to monitor a file 256 ■ Using a driver 
to monitor arbitrary data sources 259

11.7 Summary 261

12 Beyond the defaults: workflow and styles 262

12.1 The standard interactive workflow 263

Extracting specifics from command files 263 ■ Extending the 
command set 264 ■ Session variables, loops, and macros 266

12.2 Using external editors and viewers 267

12.3 Invoking shell commands from gnuplot 268

Worked example: plotting each file in a directory 269

12.4 Hotkeys and mousing 269

Default hotkeys 270 ■ Mousing 270 ■ Custom hotkeys 271
Capturing mouse events 273 ■ Case study: placing arrows 
and labels with the mouse 274

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTS xv

12.5 Startup configurations and initialization 275

Startup and initialization files 276 ■ Environment 
variables 277 ■ Gnuplot command-line flags 278

12.6 Stylesheets 279

Worked example: stylesheets 279

12.7 Summary 285

PART 4 UNDERSTANDING DATA....................................  287

13 Basic techniques of graphical analysis 289

13.1 Representing relationships 290

Scatter plots 290 ■ Highlighting trends 292

13.2 Logarithmic plots 295

Large variations in data 295 ■ Power-law behavior 298

13.3 Point distributions 299

Summary statistics and box plots 300 ■ Jitter plots and 
histograms 300 ■ Kernel density estimates and rug 
plots 302 ■ Cumulative distribution functions 303

13.4 Ranked data 304

13.5 Pie charts 307

13.6 Organizational issues 308

The lifecycle of a graph 308 ■ Input data files 309
Output files 310

13.7 Presentation graphics 311

13.8 Summary 313

14 Topics in graphical analysis 314

14.1 Techniques for time-series plots 315

Plotting an Apache web server log 315 ■ Smoothing 
and differencing 316 ■ Monitoring and control 
charts 319 ■ Changing composition and stacked 
curves 325

14.2 Graphical techniques for multivariate data sets 328

Introduction 329 ■ Distribution of values by attribute 329
Distribution by level 331 ■ Scatter-plot matrix 333
Parallel-coordinates plot 335

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


CONTENTSxvi

14.3 Visual perception 338

Banking 338 ■ Judging lengths and distances 340
Plot ranges and whether to always include zero 342

14.4 Summary 343

15 Coda: understanding data with graphs 344

appendix A Obtaining, building, and installing gnuplot 346

appendix B Resources 352

appendix C Surface and contour plots available in the e-book only
appendix D Palettes and false-color plots available in the e-book only
appendix E Special plots available in the e-book only
appendix F Higher math available in the e-book only

index 355

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


xvii

preface
On New Year’s Day, 2015, the gnuplot development team released version 5.0—the

first major new gnuplot release in over 10 years! I decided to take this opportunity to

bring Gnuplot in Action up to date and to cover all the new features gnuplot has

acquired since the first edition of this book was written (in 2007).

 It quickly became apparent it wouldn’t be sufficient to just add a couple of chap-

ters explaining the new features. In fact, the book you’re reading now has been almost

entirely rewritten from scratch. Most of the material from the first edition has been

retained, but it’s been heavily rearranged to accommodate the addition of new topics

and to reflect the changes in my own understanding and priorities.

 Gnuplot 5 is largely backward compatible with previous versions, and hence most

of the first edition remains valid. At the same time, new features have been added to

all parts of gnuplot, either to add new functionality or to streamline and improve the

existing usage. Although many of the new features are small by themselves, when

taken together, their cumulative effect leads to a significantly different, more sophisti-

cated user experience.

 In the process, the book’s page count has increased substantially from the first edi-

tion. To keep the physical dimensions of the printed book in check without having to

sacrifice important and useful material, some topics of a more specialized nature have

been relegated to the electronic (e-book) version. Access to the e-book is included in

the purchase of a print copy of the book.

 Today, gnuplot is still going strong. Despite increased competition, gnuplot’s two

most attractive features are still largely unmet by other tools:

 The ability to explore data graphically, with an absolute minimum of effort, pro-

tocol, overhead, or boilerplate

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


PREFACExviii

 The ability to create immaculate, very high-quality graphs, with text labels and

other decorations, for presentation purposes

What’s new is that gnuplot has arrived in the 21st century. Color is now the standard,

font handling is up to date, and the graphing backend makes use of all contemporary

technologies to create the best-looking graphs possible.

 In the first edition, I wrote that gnuplot was “an indispensable part of my toolbox:

one of the handful of programs I can’t do without.” Several years on, this is still true.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


xix

acknowledgments
During the preparation of this book, I enjoyed conversations and correspondence

with Austin King, Richard Kreckel, Ethan Merritt, Dawid Weiss, Bastian Märkisch,

Daniel Sebald, Petr Mikulik, Chris Mague, Luis Moux-Dominguez, and Lee Phillips.

Christoph Bersch, Zoltán Vörös, and Clark Gaylord read drafts of this book and pro-

vided many detailed suggestions; Mojca Miklavec answered several specific questions

with meticulous care. Others who read the draft manuscript include Ryan Balfanz,

Martin Beer, Andrew Bovill, Vitaly Bragilevsky, Anthony Cramp, Wolfgang Ecker-Lala,

Wesley R. Elsberry, Nitin Gode, David Kerns, Pavol Kral, Mathew Peet, Ravishankar

Rajagopalan, Karl-Friedrich Ratzsch, Jonathan Rioux, Mike Shepard, and Arthur

Zubarev.

 I would also like to acknowledge the tremendous impact that Wikipedia has had

on the way I work. When I prepared the first edition, obtaining even basic information

on topics such as color spaces, Bézier curves, and the Mandelbrot set was a real chal-

lenge—difficult, time consuming, and not always successful. For all its faults and defi-

ciencies, Wikipedia has made it tremendously much easier to obtain at least an initial

introduction (and often quite a bit more) to an incredibly wide range of topics. It is a

stunning achievement.

 Finally, I want to thank the people at Manning who made this book possible: pub-

lisher Marjan Bace and everyone on the editorial and production teams, including

Mary Piergies, Marina Michaels, Kevin Sullivan, Tiffany Taylor, Dottie Marsico, and

many others who worked behind the scenes. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


xx

about this book
This book is intended to be a comprehensive introduction to gnuplot: from the basics

to the power features and beyond. In addition to providing a tutorial on gnuplot itself,

it demonstrates how to apply and use gnuplot to extract insight from data.

 The gnuplot program has always had complete and detailed reference documenta-

tion, but what was often missing was a continuous presentation that tied all the differ-

ent bits and pieces of gnuplot together and demonstrated how to use them to achieve

certain tasks. This book attempts to fill that gap. It should also serve as a handy refer-

ence for more advanced gnuplot users and as an introduction to graphical ways of

knowledge discovery.

 And finally, this book tries to show you how to use gnuplot to achieve some surpris-

ingly nifty effects that will make everyone say, “How did you do that?”

Contents of this book

This book is divided into four parts. Part 1 consists of chapters 1 through 3 and is

intended as a tutorial introduction to get you started with gnuplot. These three chap-

ters cover all the truly essential material so that by the end of chapter 3, you should be

able to handle most basic plotting tasks in gnuplot.

 Whereas part 1 only skims the surface, part 2 goes into depth. First, chapters 4 and

5 lay more groundwork by talking about the ins and outs of file formats, string han-

dling, and other practical matters. Then, chapters 6 through 8 discuss the various ways

to change the appearance of a plot: using different plotting styles; adding labels,

arrows, or other decorations; and changing the axes and their subdivisions. These

chapters cover the tactical aspects of working with gnuplot in detail.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ABOUT THIS BOOK xxi

 Part 3 turns its attention away from individual graphs and addresses a variety of

more technical aspects. First, in chapter 9, you’ll learn more about color specification,

point and line types, and other relatively low-level graph elements. Chapter 10

explains how to export plots to common graphics file formats. Finally, chapters 11 and

12 address ways to improve the overall workflow through scripting and configuration

changes.

 In the last part, I’ll mostly take gnuplot’s features for granted and concentrate on

the things you can do with them. Chapter 13 presents various fundamental types of

graphs and explains when and how to use them. Chapter 14 is more advanced and

offers solutions to some recurring topics in graphical analysis, before we end the book

with a reminder of what it’s all about in chapter 15.

 The book has several appendixes. Appendix A explains how to obtain, build, and

install gnuplot. Appendix B provides pointers to some relevant resources.

 Finally, some topics of a more specialized character have been relegated to a set of

supplemental appendixes: appendixes C and D discuss three-dimensional surface

plots and false-color plots (heatmaps), appendix E treats some special types of graphs,

and appendix F covers more mathematical topics. To reduce the physical dimensions

of the print book, these four appendixes are only available in the electronic (e-book)

version of this book. The purchase of a hard copy includes access to the e-book as

well—you can find instructions in the front of the print book.

TIP Appendixes C through F are only available in the e-book version of this
book, which is included with the purchase of the hard-copy version. Check
the front of the print book for instructions on how to obtain the e-book.

How to read this book

This book was written as if readers were going to read it sequentially, cover to cover.

New material is presented in order, with later chapters relying only on topics intro-

duced earlier and avoiding forward references as much as possible. I realize that this is

not a realistic picture and that the need for technical information tends to arise in a

much more disjointed manner. In this spirit, I offer a few different “trail maps” to the

material presented here:

 If you’re new to gnuplot, begin with chapters 2 and 3 and then dive into chap-

ters 4–8 as required to pick up the skills you need to complete whatever task

you want to accomplish.

 If you’re comfortable creating day-to-day graphs with gnuplot, then the mate-

rial in chapters 9–12 should help you achieve greater efficiency in your work

and fine-tune the results.

 If you’ve been using gnuplot for a long time already, then make sure you read

up on the new features in gnuplot 5. Chapters 5, 9, and 10, as well as parts of

chapters 11 and 12 will probably be of the most immediate interest to you.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ABOUT THIS BOOKxxii

 If you’re new to graphical analysis, you may want to begin with chapter 13 to

learn some of the basic methods and concepts.

Finally, keep in mind that some interesting and useful material is only available in the

e-book. Three-dimensional surface and contour plots are discussed in appendix C.

False-color plots (heatmaps) are treated in appendix D, together with guidelines for

how to construct effective color gradients for data visualization. Appendix E explains

how to combine individual graphs into composites and also discusses some other spe-

cialized types of graphs. Appendix F treats topics of a more mathematical nature.

Whom this book is for

This book is intended for anyone who wants to plot and visualize data, either to

explore data sets graphically, or to create attractive, high-quality graphs for presenta-

tion and publication purposes. I had two kinds of people in mind when writing this

book—those who already know gnuplot, and those who don’t:

 If you already know gnuplot, I hope you’ll still find it a useful reference, in par-

ticular in regard to some of the more advanced topics later in the book. I’ve

tried to provide exactly the big-picture explanations and examples that have

always been missing from the standard gnuplot reference documentation.

 If you’re new to gnuplot, I think you’ll find it easy enough to pick up—in fact, I

can promise you that by the end of chapter 2, you’ll be productive with gnuplot;

and by the end of chapter 3, you’ll be well equipped for most day-to-day data

graphing tasks that may come your way.

This book doesn’t require a strong background in mathematical methods or any in

statistics, but I occasionally do expect you to have at least a fleeting familiarity with

simple programming concepts. A few sections naturally require some special prelimi-

naries (for instance, some of the discussions in chapter 10 require knowledge of

LaTeX, and some sections in chapter 11 use Perl or Python code), but you can safely

skip those sections if their material doesn’t apply to you.

Conventions

I spell the name of the program in all lowercase (gnuplot), except at the beginning of

a sentence, when I capitalize it normally. This is in accordance with the usage recom-

mended in the gnuplot FAQ.

 The gnuplot documentation is extensive, and I refer to it occasionally for addi-

tional details on topics covered only briefly or not at all here. Traditionally, the gnuplot

documentation has been called the online help or online documentation, owing to the

fact that it’s available online during a gnuplot session. But since the advent of the inter-

net, the word online seems to suggest network connectivity—falsely, in this context. To

avoid confusion, I’ll always refer to it as the standard gnuplot reference documentation.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ABOUT THIS BOOK xxiii

Code examples

Gnuplot commands are shown using a monospace font, like this: plot sin(x). Gnu-

plot commands can be entered at the gnuplot command prompt as shown in the text;

the prompt itself has been suppressed to save space.

 Single command lines can be long; to make them fit on a page, I occasionally had

to break them across multiple lines. If so, a gray arrow (➥) has been placed at the

beginning of the next line, to indicate that it is the continuation of the previous one:

plot "data" using 1:2 smooth csplines title "data" with lines,

➥     sin(x) title "model"  

The break in the original line isn’t indicated separately. When using gnuplot in an

interactive session, your terminal program should automatically wrap a line that’s too

long. Alternatively, you can break lines by escaping the newline with a backslash as

usual. This is useful in command files for batch processing (and you’ll see some exam-

ples in chapter 12 in the context of string macros).

 Some code snippets are only intended to demonstrate the syntax and don’t have a

graph associated with them. In this case, I use the generic name “data” as a place-

holder for the actual filename. No file named data exists in the downloads (in the

same way that no key named any can be found on a computer keyboard). It’s just a

generic placeholder.

 Occasionally, I show Unix commands that need to be entered in a Unix shell; to

emphasize that these aren’t gnuplot commands, I prefix them with a generic shell

prompt, like this: shell>. Similarly, Python commands to be entered in a Python ses-

sion are prefixed with python>>>.

Downloads

The code for all numbered listings is available for download from www.manning.com/

books/gnuplot-in-action-second-edition, and so are the data sets. The only exception

to this are publicly available data sets: for these, I provide the URL where they can be

found.

 Gnuplot searches for data files in the current directory, so the easiest way to run

the supplied command files is as follows:

1 Change into the data directory of the downloaded bundle.

2 Start gnuplot.

3 Issue plot commands at the gnuplot prompt the way they’re shown in the text

(for example, plot "marathon" using 1:2), or give the full pathname to the

gnuplot command file that you wish to run (for example, load "../gnuplot/

shapes.gp").

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.manning.com/books/gnuplot-in-action-second-edition
http://www.manning.com/books/gnuplot-in-action-second-edition
http://www.it-ebooks.info/


ABOUT THIS BOOKxxiv

Command synopses

Gnuplot has a large number of options, and keeping all of them and their sub-

options and optional parameters straight is a major theme running through this

book. Frequently, I’ll display all available options to a command in a command syn-

opsis before discussing the options in detail. To distinguish a synopsis of available

options from actual gnuplot code, a synopsis uses an italic font, like so:

set datafile commentschar ["{str:chars}"]

Within these summaries, I use a few syntactic conventions. My intent here is to stay

close to the usage familiar from the standard gnuplot reference documentation, but

also to follow more general conventions (such as those used for Unix man pages):

[ ... ]  

[  |  ]

{ ... }  

For parameters supplied by the user, it’s often not clear from the context what kind of

information the command expects: is it a string or a number? If it’s a number, is it a

value selected from a fixed range of integers or a numerical factor? And so on. I’ve tried

to clarify this situation by prefixing each user-supplied input parameter with a type indi-

cator, terminated by a colon. I summarize the prefixes and their meanings in table 1.

Abbreviations

Many gnuplot commands have abbreviated forms, which I use frequently. The essen-

tial plot command, in particular, takes a large number of keyword directives, which I

usually abbreviate to save space and keystrokes. I strongly recommend that you quickly

become familiar with these shorthands and use them yourself. Table 2 lists both the

abbreviated and the full forms. The plot command also understands a large number

of appearance options (controlling aspects such as line width, style, and color), which

are generally also abbreviated. A comprehensive summary of appearance options,

together with their shorthands, can be found in table 6.1.

Table 1 Type indicators for user-supplied parameters

Prefix Description

str: A string

int: An integer number

flt: A floating-point number

idx: An integer number, which is interpreted as a selection from a fixed range of values

clr: A color specification—for example, rgbcolor "red" or rgb "#FFFF00"

pos: A pair of comma-separated coordinates, optionally containing coordinate system specifiers—
for example, 0,0 or first 1.1, screen 0.9

enum: A gnuplot keyword as unquoted string

Square brackets for optional parts

Vertical bars to separate alternatives

Curly braces for user-supplied input

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ABOUT THIS BOOK xxv

 

Table 3 lists three frequently occurring commands that are also usually abbreviated.

The figures in this book

The graphs in this book were generated with gnuplot; some special cases were han-

dled using pic. All graphs were originally prepared in color, using my own set of pre-

ferred colors instead of one of gnuplot’s default color schemes. The color versions of

the graphs are used in the electronic (e-book) version of this book. For the print

book, I prepared black-and-white versions through the application of an appropriate

stylesheet (see chapter 12). A handful of graphs required manual touch-ups in addi-

tion to the monochrome stylesheet to yield an optimal appearance.

 You’ll find the line-type definitions of both the color and the black-and-white

stylesheets in table 4. The same colors and dash patterns are discussed in listings 12.7

and 12.9.

 In particular in the latter part of the book, I frequently use point types (point

shapes) that aren’t the default, because the visual appearance of the graphs can often

be improved greatly this way. If so, the point type is usually chosen explicitly in the

appropriate code examples and listings.

Table 2 Abbreviations for frequently used directives to

the plot command

Abbreviation Full

i index

ev every

u using

s smooth

s acs smooth acsplines

s f smooth frequency

s kdens smooth kdensity

t title

w with

w l with lines

w linesp or w lp with linespoints

w p with points

w vec with vectors

Table 3 Abbreviations for frequently occurring commands

Abbreviation Full

set t set terminal

set o set output

set logsc set logscale

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ABOUT THIS BOOKxxvi

 The final version of each figure was generated using the pdfcairo terminal, using

a (non-default) aspect ratio of √2 to 1 and Helvetica as the requested font.

Hardware and software requirements

This book describes gnuplot version 5.0 or higher, which was initially released in early

2015. Not all examples in this book will work with earlier gnuplot versions. If you have

an earlier version of gnuplot, you should upgrade to a more current version—appen-

dix A tells you how.

 I assume you have access to a reasonably modern computer running any flavor of

Unix/Linux, a recent release of MS Windows, or Mac OS X. Gnuplot has been ported

to many other platforms but is actively supported primarily on the three operating sys-

tems just mentioned, and so I concentrate on them in this book.

Reference materials

Command and option references are distributed throughout the book, wherever the

material is first introduced. The following pointers are intended to help you find

these summaries more easily.

Graphical styles and specifications

Table 4 Colors and dash patterns used for the color and monochrome figures in this book

Color Monochrome

set linetype  1 lc rgb '0xee0000' set linetype 1 lc black dt solid

set linetype  2 lc rgb '0x008b00' set linetype 2 lc black dt (8,6)

set  linetype  3 lc rgb '0x0000cd' set linetype 3 lc black dt (4,3)

set linetype  4 lc rgb '0xff3fb3' set linetype 4 lc black dt (3,6)

set linetype  5 lc rgb '0x00cdcd' set linetype 5 lc black dt (12,5,2,5,2,5)

set linetype  6 lc rgb '0xcd9b1d' set linetype 6 lc black dt (16,8)

set linetype  7 lc rgb '0x8968cd' set linetype 7 lc black dt (20,6,2,6)

set linetype  8 lc rgb '0x8b8b83' set linetype 8 lc black dt (30,10)

Appearance specifiers and line options Table 6.1 page 104

Graph locations Figure 7.2 page 128

Graph layers Figure 7.3 page 129

Explicit color-specification formats Table 9.1 page 184

Point types Figure 9.7 page 196

Dash patterns Table 9.2 page 197

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


ABOUT THIS BOOK xxvii

File access

String handling and formatting

Operators and mathematical functions

Programming constructs

About the author

PHILIPP K. JANERT was born and raised in Germany. He obtained a Ph.D. in theoreti-

cal physics from the University of Washington in 1997 and has been working in the

tech industry ever since, including four years at Amazon.com, where he initiated and

led several projects to improve Amazon’s order-fulfillment process. He’s the

author of several books on data analysis and applied math, including the best-selling

Data Analysis with Open Source Tools (O’Reilly, 2010). He has contributed to CPAN and

is an occasional committer on the gnuplot project. Visit his company website at

www.principal-value.com. 

Author Online

Purchase of Gnuplot in Action, Second Edition includes free access to a private web forum

run by Manning Publications where you can make comments about the book, ask tech-

nical questions, and receive help from the lead author and from other users. To access

Column-access methods and functions Table 4.2 page 67

Pseudofiles Table 4.3 page 71

Metadata in data files Table 4.4 page 76

String functions Table 5.1 page 81

General conversion specifiers Table 8.2 page 160

Accuracy specifiers Table 8.3 page 160

Time-series conversions, sorted alphabetically Table 8.4 page 172

Time-series conversions, sorted by topic Table 8.5 page 173

Time functions Table 8.6 page 176

Enhanced text mode Table 10.1 page 218

Unary operators Table 3.1 page 35

Binary operators Table 3.2 page 35

Mathematical functions Table F.1 page F11

Complex numbers Table F.2 page F13

Inline loops Listing 5.3 page 92

General loops and conditionals Table 11.1 page 238

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.principal-value.com
http://www.it-ebooks.info/


ABOUT THIS BOOKxxviii

the forum and subscribe to it, point your web browser to www.manning.com/books/

gnuplot-in-action-second-edition. This page provides information on how to get on the

forum once you are registered, what kind of help is available, and the rules of conduct

on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the author can take place.

It is not a commitment to any specific amount of participation on the part of the

author, whose contribution to Author Online remains voluntary (and unpaid). We

suggest you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessible

from the publisher’s website as long as the book is in print.

About the cover

The figure on the cover of Gnuplot in Action, Second Edition is captioned “A peer of

France.” The title of Peer in France was held by the highest-ranking members of the

French nobility. It was an extraordinary honor granted only to a few dukes, counts,

and princes of the church. The illustration is taken from a 19th-century edition of Syl-

vain Maréchal’s four-volume compendium of regional dress customs published in

France. Each illustration is finely drawn and colored by hand.

 The rich variety of Maréchal’s collection reminds us vividly of how culturally apart

the world’s towns and regions were just 200 years ago. Isolated from each other, people

spoke different dialects and languages. In the streets or in the countryside, it was easy

to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time,

has faded away. It’s now hard to tell apart the inhabitants of different continents, let

along different towns or regions. Perhaps we have traded cultural diversity for a more

varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

Maréchal’s pictures.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.manning.com/books/gnuplot-in-action-second-edition
http://www.manning.com/books/gnuplot-in-action-second-edition
http://www.it-ebooks.info/


Part 1

Getting started

Gnuplot is a tool for visualizing data and mathematical functions. The

chapters in this first part will give a first introduction to gnuplot and its most

important features. Chapter 1 introduces gnuplot and describes the kinds of

problems it’s designed to solve. Chapter 2 provides a quick tutorial to gnuplot.

By the end of this chapter, you’ll be able to prepare simple plots with gnuplot

and to save and export your work. Chapter 3 takes a detailed look at the all-

important plot command, which is used to generate most graphs in gnuplot.

You’ll also learn about inline transformations and built-in smoothing methods.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


3

Prelude: understanding
data with gnuplot

NOTE TO PRINT BOOK READERS Some material of a more specialized nature
is only available in the e-book version of this book. The e-book also shows
all the graphs in color. To get your free e-book in PDF, ePub, or Kindle for-
mat, go to www.manning.com/books/gnuplot-in-action-second-edition to
register your print book. 

Gnuplot has long been one of the most popular open source programs for plotting

and visualizing data. In this book, I want to show you how to use gnuplot to make

plots and graphs of your data: both quick and easy graphs for your own use and

highly polished graphs for presentations and publications.

 But I also want to show you something else: how to solve data-analysis problems

using graphical methods. The art of discovering relationships in data and extract-

ing information from it by visual means is called graphical analysis, and I believe

gnuplot to be an excellent tool for it.

This chapter covers

 Warmup examples

 What is graphical analysis?

 What is gnuplot?

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.manning.com/books/gnuplot-in-action-second-edition
http://www.it-ebooks.info/


4 CHAPTER 1 Prelude: understanding data with gnuplot

 As a teaser, let’s look at some problems and how you might be able to approach

them using graphical methods. The graphs here and in the rest of the book (with very

few exceptions) have been, of course, generated with gnuplot.

1.1 A busy weekend

To get a feeling for the kinds of problems you may be dealing with and for the kinds

of solutions gnuplot can help you find, let’s look at two examples. Both take place dur-

ing a long, busy weekend.

1.1.1 Planning a marathon

Imagine you’re in charge of organizing the local city marathon. There will be more

than 2,000 starters, traffic closed around the city, plenty of spectators—and a major

Finish Line Festival to celebrate the victors. The big question is: when should the Fin-

ish Line crew be ready to deal with the majority of runners? At what point do you

expect the big influx of the masses?

 You have the results from last year’s event. Assuming that the starters haven’t

improved dramatically over the last year (probably a safe assumption), you do a quick

average of the completion times and find that last year’s average was 282 minutes. To

be on the safe side, you calculate the standard deviation as well, which comes out to

about 50 minutes. So you tell your crew to be ready for the big rush starting three and

a half hours (210 minutes) after the start, and you feel reasonably well prepared for

the event.

 So it comes as a surprise when on the big day, plenty of runners start showing up at

the finish line after only two hours—a good 90 minutes earlier than the expected onset

of the rush. In terms of event management, the number of runners who show up early

isn’t overwhelming, but it’s a bit strange. The next day you wonder: what went wrong?

 Let’s look at the data to see what you can learn about it. So far, all you know are the

mean and the standard deviation.

 The mean is convenient: it’s easy to calculate, and it summarizes the entire data set

in a single number. But in forming the mean, you lost a lot of information. To under-

stand the entire data set, you have to look at it. And because you can’t understand data

by looking at more than 2,000 individual finish times, this means you have to plot it.

 It will be convenient to group the runners by completion time and to count the

number of participants who finished during each five-minute interval. The resulting

file might start like this:

# Minutes Runners

135 1

140 2
145 4

150 7

155 11
160 13

165 35

170 29
...

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


5A busy weekend

Now you plot the number of runners against the completion time (see figure 1.1). It’s

immediately obvious where you went wrong: the data is bimodal, meaning it has two peaks.

There is an early peak at around 180 minutes and a later main peak at 300 minutes.

 Actually, this makes sense: a major sporting event such as a city marathon attracts

two very different groups of people: athletes, who train and compete throughout the

year and are in it to win, and a much larger group of amateurs, who come out once a

year for a big event and are mostly there to participate. The problem is that for such

data, the mean and standard deviation are obviously bad representations—so much

so. that at the time when you expected the big rush (200 minutes), there’s a lull at the

finish line!

 The take-home message here is that it’s usually not a good idea to rely on summary

statistics (such as the mean) for unknown data sets. You always should investigate what

the data looks like. Once you’ve confirmed the basic shape, you can choose how to

summarize your findings best.

 And of course, there is always more to learn. In this example, for instance, you see

that after about 400 minutes, almost everybody has made it, and you can start winding

down the operation. The actual “tail” of the distribution is quite small—surprisingly

so. (I would’ve expected to see a greater number of stragglers, but possibly many run-

ners who are really slow drop out of the race when they realize they’ll place badly.)

USING GNUPLOT

Let’s look at the gnuplot command that was used to generate figure 1.1. Gnuplot is

command-line oriented: after you start gnuplot, it drops you into an interactive com-

mand session, and all commands are typed at the interactive gnuplot prompt.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

 120  180  240  300  360  420  480

Figure 1.1 Number of finishers vs. time to complete (in minutes)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


6 CHAPTER 1 Prelude: understanding data with gnuplot

 Gnuplot reads data from simple text files, with the data arranged in columns as

shown previously. To plot a data file takes only a single command, plot, like this:1

plot "marathon" using 1:2 with boxes

The plot command requires the name of the data file as argument in quotes. By

default, gnuplot looks for the data file in the current working directory—normally the

directory from which you started gnuplot. The filename provided to the plot com-

mand may contain path information to refer to a file that doesn’t reside in the current

directory.

 The rest of the command line specifies which columns to use for the plot and in

which way to represent the data. The using 1:2 declaration tells gnuplot to use the

first and second columns in the file called marathon. The final part of the command,

with boxes, selects a box style, which is often suitable to display counts of events.

 Gnuplot handles most everything else by itself: it sizes the graph and selects the

most interesting plot range, it draws the border, and it draws the tic marks and their

labels. All these details can be customized, but gnuplot typically does a good job at

anticipating what the user wants.

NOTE The little markers along the edge that define the scale of the corre-
sponding axis are called tick marks (or tic marks). The gnuplot standard refer-
ence documentation uses the spelling tic mark; the relevant commands are
called set xtics, set ytics, and so on. In order to avoid confusion, I use the
same spelling (tic) throughout this book. 

1.1.2 Determining the future

The same weekend when 2,000 runners are running through the city, a diligent grad-

uate student is working on his research topic. He studies diffusion limited aggregation

(DLA), a process wherein a particle performs a random walk until it comes into con-

tact with a growing cluster of particles. At the moment of contact, the particle sticks to

the cluster at the location where the contact occurred and becomes part of the cluster.

Then a new random walker is released to perform a random walk, until it sticks to the

cluster. And so on. Clusters grown through this process have a remarkably open, tenu-

ous structure (as shown in figure 1.2): they’re fractals.2

 The DLA process is simple, so it seems straightforward to write a program to grow

such clusters in a computer, and this is what the busy graduate student has done. Ini-

tially, all seems well; but as the simulation progresses, the cluster appears to grow

more and more slowly—excruciatingly slowly, in fact. The goal was to grow a DLA clus-

ter in excess of 100,000 particles. Will the program ever finish?

1 Depending on your gnuplot setup and initialization, your graphs may look slightly different from the figures
shown in this chapter. We’ll discuss user-defined appearance options starting with chapter 6.

2 The original paper on DLA was “Diffusion Limited Aggregation, A Kinetic Critical Phenomenon” by T. A.
Witten and L. M. Sander, Physical Review Letters  41 (1981): 1400. It’s one of the most-quoted papers from that
journal of all time. If you want to learn more about DLA and similar processes, check out Fractals, Scaling, and
Growth Far From Equilibrium by Paul Meakin (Cambridge University Press, 1998).

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


7A busy weekend

Luckily, the simulation program periodically writes information about its progress to a

log file: for each new particle added to the cluster, the time (in seconds) since the

start of the simulation is recorded. The grad student should be able to predict the

completion time from this data, but an initial plot (figure 1.3) isn’t helpful; there are

too many ways this curve can be extrapolated to larger cluster sizes.

Figure 1.2 A DLA cluster of N=50,000 

particles, drawn with gnuplot

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

R
u

n
 t

im
e

 [
s
e

c
]

Cluster size

Figure 1.3 Time required to grow a DLA cluster

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


8 CHAPTER 1 Prelude: understanding data with gnuplot

The time consumed by many computer algorithms grows as a simple power of the

size of the problem. In this case, this would be the number N of particles in the clus-

ter T ~ N k , for some value of k . The research student therefore plots the running

time of his simulation program on a double-logarithmic plot versus the cluster size

(see figure 1.4). The data points fall on a straight line, indicating a power law. (I’ll

explain later how and why this works.) Through a little trial and error, he also finds

an equation that approximates the data quite well. The equation can be extended to

any cluster size desired and will give the time required. For N=100,000 (which was the

original goal), he can read off almost T=100,000 seconds (or more), corresponding

to more than 24 hours, so there is no point in your friend spending the weekend in

the lab—he should go out (maybe run a marathon) and come back on Monday, or

perhaps work on a better algorithm. (For simulations of DLA cluster growth, dramatic

speedups over the naive implementation are possible. Try it if you like.)

USING GNUPLOT

Again, let’s see how the graphs in this section were created. The easiest to understand

is figure 1.3. Given a file containing two columns, one listing the cluster size and the

other listing the completion time, the command is just

plot "runtime" using 1:2 with lines

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000  10000  100000

R
u

n
 t

im
e

 [
s
e

c
]

Cluster size

Data

Model

Figure 1.4 Time required to grow a DLA cluster in a double-logarithmic plot, together with 

an approximate mathematical model

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


9What is graphical analysis?

The only difference compared to figure 1.1 is the style: rather than boxes, I use line

segments to connect consecutive data points: with lines.

 Did you notice that figure 1.3 and figure 1.4 contain more than just data? Both

axes are now labelled! Details such as labels and other helpful decorations often make

the difference between a mediocre and a high-quality graph, because they provide the

observer with the necessary context to fully understand the graph.

 In gnuplot, all details of a graph’s appearance are handled by setting the appropri-

ate options. To place the labels on the x and y axes in figure 1.3, I used

set xlabel "Cluster size"

set ylabel "Run time [sec]"

Figure 1.4 is drawn using double-logarithmic axes. This is another option, which is set

as follows:

set logscale

Figure 1.4 shows two curves: the data together with a best “fit.” Plotting several data

sets or mathematical functions together in one plot is easy—you list them one after

another on the command line for the plot command:

plot "runtime" using 1:2 title "Data" with lines,

➥  (x/2500)**3 title "Model"

This command introduces a further gnuplot feature: the title directive. It takes a

string as argument, which is displayed together with a line sample in the plot’s key or

legend (visible at upper left in figure 1.4).

 Finally, we come to figure 1.2. It’s a somewhat different beast. Notice that the bor-

der and the tic marks are missing. The aspect ratio (the ratio of the graph’s width to

its height) has been constrained to 1, and a single dot has been placed at the position

of each particle in the cluster. Here are the most important commands that I used:

unset border

unset xtics

unset ytics

set size square

plot "cluster" using 1:2 with dots

You can see that gnuplot is simple to use. In the next section, I talk more about using

graphical methods to understand a data set, before coming back to gnuplot and dis-

cussing why it’s my favorite tool for this kind of activity. 

1.2 What is graphical analysis?

The previous two examples should have given you an idea of what graphical analysis is

and how it works. The basic steps are always the same:

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


10 CHAPTER 1 Prelude: understanding data with gnuplot

1 Plot the data.

2 Inspect it, trying to find some recognizable behavior.

3 Compare the actual data to data that represents the hypothesis from the previ-

ous step (as in the second example earlier, when our grad student plotted the

running time of the simulation program together with a power-law function).

4 Repeat.

You may try more sophisticated things, but this is the basic idea. If the hypothesis in

the second step seems reasonably justified, you can try to remove its effect—for

instance, by subtracting a formula from the data—to see whether there is any recog-

nizable pattern in the residual. And so on.

 Iteration is a crucial aspect of graphical analysis: plotting the data this way and that

way; comparing it to mathematical functions or to other data sets; zooming in on

interesting regions or zooming out to detect the overall trend; applying logarithms or

other data transformations to change its shape; using a smoothing algorithm to tame

a noisy data set; and so on. During an intense analysis session using a new but promis-

ing data set, it’s not uncommon to produce literally dozens of graphs.

 None of these graphs will be around for long. They’re transient, persisting just

long enough for you to form a new hypothesis, which you’ll try to justify in the next

graph you draw. This also means these graphs aren’t polished in any way, because

they’re the graphical equivalent of scratch paper: notes of work in progress, not

intended for anyone but ourselves.

 This isn’t to say that polishing doesn’t have its place. But it comes later in the pro-

cess: once you know the results of your analysis, you need to communicate them to

others. At this point, you’ll create permanent graphs, which will be around for a long

time—maybe until the next departmental presentation, or (if the graph will be part of

a scientific publication, for instance) possibly forever!

 Such permanent graphs have different requirements: other people must be able

to understand them, possibly years later, and most likely without you there to explain

them. Therefore, graph elements such as labels, captions, and other contextual

information become very important. Presentation graphs must be able to stand by

themselves.

 Presentation graphs also should make their point clearly. Now that you know the

results of your analysis, you should find the clearest and most easily understood way

of presenting your findings. A presentation graph should make one point and make

it well.

 Finally, some would argue that a presentation graph should look good. Maybe. If it

makes its point well, there is no reason it shouldn’t be visually pleasing, too. But that’s

an afterthought. Even a presentation graph is about the content, not the packaging.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


11What is gnuplot?

1.2.1 Why graphical analysis?

Graphical analysis is a discovery tool. You can use it to reveal as-yet-unknown informa-

tion in data. In comparison to statistical methods, it helps you discover new and possi-

bly unexpected behavior.

 Moreover, it helps you develop an intuitive understanding of the data and the

information it contains. Because it doesn’t require particular math skills, it’s accessible

to anyone with an interest and a certain amount of intuition.

 Even if rigorous model building is your ultimate goal, graphical methods still need

to be the first step so that you can develop a sense for the data, its behavior, and its

quality. Knowing this, you can then select the most appropriate formal methods. 

1.2.2 Limitations of graphical analysis

Of course, graphical analysis has limitations and its own share of problems:

 Graphical analysis doesn’t scale. It’s a manual process that can’t easily be auto-

mated. Each data set is treated as a separate special case, which isn’t feasible if

there are thousands of data sets.

But this problem is sometimes more apparent than real. It can be remarkably

effective to generate a large number of graphs and browse them without study-

ing each one in great depth. It’s totally possible to scan a few hundred graphs

visually, and doing so may already lead to a high-level hypothesis regarding the

classification of the graphs into a few subgroups, which can then be investigated

in detail. (Thank goodness gnuplot is scriptable, so preparing a few hundred

graphs poses no problem.)

 Graphical analysis yields qualitative—not quantitative—results. Whether you regard

this as a strength or a weakness depends on your situation. If you’re looking for

new behavior, graphical analysis is your friend. But if you’re trying to determine

the percentage by which a new fertilizer treatment increases crop production,

quantitative methods are the way to go.

 It takes skill and experience. Graphical analysis is a creative process, using induc-

tive logic to move from observations to hypothesis. There is no prescribed set of

steps to move from a data set to conclusions about the underlying phenomena,

and not much can be taught in a conventional classroom format.

But by the same token, it doesn’t require formal training, either. Ingenuity,

intuition, and curiosity are the most important character traits. Everyone can

play this game, if they’re interested in finding out what the data tries to tell

them. 

1.3 What is gnuplot?

Gnuplot is a program for exploring data graphically. Its purpose is to generate plots

and graphs from data or functions. It can produce highly polished graphs, suitable for

publication, or simple throw-away graphs when you’re merely playing with an idea.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


12 CHAPTER 1 Prelude: understanding data with gnuplot

 Gnuplot is command-line–driven: you issue commands at a prompt, and gnuplot

redraws the current plot in response. Gnuplot is also interactive: the output is gener-

ated and displayed immediately in an output window. Although gnuplot can be used

as a background process in batch mode, typical use is highly interactive. On the other

hand, its primary user interaction is through a command language, not through a

point-and-click GUI interface.

 Don’t let the notion of a command language throw you: gnuplot is easy to use—

really easy to use! It takes only one line to read and plot a data file, and most of the

command syntax is straightforward and intuitive. Gnuplot doesn’t require program-

ming or any deeper understanding of its command syntax to get started.

 This is the fundamental workflow of all work with gnuplot: plot, examine, repeat—

until you have found out whatever you wanted to learn from the data. Gnuplot per-

fectly supports the iterative process model required for exploratory work.

1.3.1 Gnuplot isn’t GNU

To dispel one common point of confusion right away, gnuplot isn’t GNU software, has

nothing to do with the GNU project, and isn’t released under the GNU Public License

(GPL). Gnuplot is released under a permissive open source license.

 Gnuplot has been around a long time—a very long time! It was started by Thomas

Williams and Colin Kelley in 1986. On the gnuplot FAQ, Thomas has this to say about

how gnuplot was started and why it’s named the way it is:

I was taking a differential equation class and Colin was taking Electromagnet-
ics, we both thought it’d be helpful to visualize the mathematics behind
them. We were both working as sys admin for an EE VLSI lab, so we had the
graphics terminals and the time to do some coding. The posting was better
received than we expected, and prompted us to add some, albeit lame, sup-
port for file data. Any reference to GNUplot is incorrect. The real name of
the program is “gnuplot.” You see people use “Gnuplot” quite a bit because
many of us have an aversion to starting a sentence with a lower case letter,
even in the case of proper nouns and titles. gnuplot isn’t related to the GNU

project or the FSF in any but the most peripheral sense. Our software was
designed completely independently and the name “gnuplot” was actually a
compromise. I wanted to call it “llamaplot” and Colin wanted to call it
“nplot.” We agreed that “newplot” was acceptable but, we then discovered
that there was an absolutely ghastly pascal program of that name that the
Computer Science Dept. occasionally used. I decided that “gnuplot” would
make a nice pun and after a fashion Colin agreed. 

1.3.2 Why gnuplot?

I have already indicated why I like gnuplot, but three primary reasons stand out to me:

 Gnuplot lends itself to ad hoc, iterative work with a minimum of effort or over-

head. Plotting a data file involves only a single command, without the need (for

example) to load the file into an internal data structure first. Common tasks

can be accomplished simply. The absence of most programming features helps

to keep the workflow focused on creating and analyzing graphs and figures.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


13What is gnuplot?

 Gnuplot is mature and robust. Edge cases are generally detected and handled

properly. Gnuplot isn’t picky about input formats and is tolerant of messy or

poorly formatted data sets.

 Gnuplot makes it easy to produce polished, high-quality figures, using good col-

ors, fonts, and symbols. The default appearance of most graph elements is gen-

erally well-chosen or can be customized easily. Manipulating low-level graph

elements, although possible, is rarely necessary.

In addition, gnuplot is scriptable and can handle large data sets. Its reliance on plain

text files for data sets makes it easy to use gnuplot in combination with other tools or

programs. Finally, gnuplot is free and open source, actively supported, and available

for all major platforms (Linux, Windows, and Mac OS X). 

1.3.3 Limitations

It’s important to remember that gnuplot is a data-plotting tool, nothing more, noth-

ing less. In particular, it’s neither a numeric nor a symbolic workbench, nor a statistics

package. It can therefore only perform simple calculations on the data. On the other

hand, it has a flat learning curve, requiring no programming knowledge and only the

most basic math skills.

 Gnuplot is also not a drawing tool. All of its graphs are depictions of some data set

or mathematical function. It has only very limited support for arbitrary box-and-line

diagrams, and none at all for freehand graphics.

 Finally, gnuplot isn’t a tool to create dashboards, infographics, or virtual-reality

visualizations. It’s a tool for quantitative analysis, and therefore its bread and butter

are dot and line plots. It has only rudimentary support for three-dimensional solid-

body imaging and none whatsoever for ray-tracing, fisheye functionality, and similar

techniques.

 Overall, I regard these limitations more as strengths in disguise: in the Unix tradi-

tion, gnuplot is a simple tool, doing (mostly) one thing, and doing it very, very well. 

1.3.4 Gnuplot 5: the best gnuplot there ever was!

On New Year’s Day, 2015, the gnuplot development team released gnuplot 5.0—the

first major new release in over 10 years! It goes without saying that gnuplot 5 is the

best, most modern, and most complete gnuplot there ever was.

 Most of the new features and changes to previous versions are relatively small and

incremental, but in aggregate their effect is pronounced. A few major themes stand

out that make gnuplot 5 distinct from the previous major release:

 Color—The greatest change that I perceive is the universal use of color through-

out. Gnuplot assumes that you’re working on a color terminal and are produc-

ing graphs for a color device. Producing black-and-white graphs is now the

exception case.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


14 CHAPTER 1 Prelude: understanding data with gnuplot

If you’re familiar with previous gnuplot versions, the most visible change is

probably gnuplot’s new default color sequence , which replaces the familiar

red/green/blue sequence of colors. (Hint: you can restore the previous behav-

ior through the command set colorsequence classic. More on that topic in

chapter 9.)

Support for color has been enhanced in various ways. Most styles and facili-

ties support partial transparency (alpha shading). You can generally choose

the color of a plot element based on the numerical value of the data (data-

dependent coloring).

 Terminals—Handling of terminals and output file formats has been greatly

improved and unified. A major breakthrough is the development of a family of

terminals that are all based on a single set of contemporary libraries for graph-

ics and text rendering. Because these terminals all share the same back end,

you can now create bitmaps (PNG), vector images (PDF), and graphs for inter-

active viewing (wxWidgets) with consistent appearance across all formats.

Gnuplot takes advantage of the contemporary features of the underlying librar-

ies to produce high-quality graphs through the use of over-sampling, anti-alias-

ing, and so on.

 Fonts —Another huge improvement compared to previous gnuplot versions is

the unified font handling. Current terminals all rely on the same system libraries

for font handling, which means generally all locally available fonts can be used

for text labels in gnuplot graphs with a minimum of fuss. By default, enhanced

text mode, which allows the inclusion of sub- and superscripts, is now enabled in

all current terminals. Enhanced text mode has also been extended to include

support for characters in boldface and italics.

In the past, gnuplot’s support for PDF was relatively weak, particularly in

comparison to the very full-featured PostScript terminal. This situation has now

been reversed, and the Cairo-based PDF terminal is probably to be preferred

over the classic PostScript terminal.

 Styles for points and lines—You have a greater deal of control over the appearance

of points and lines than ever before. In addition to line color, line width, point

size, and point shape, you can now control and customize the dash pattern of

lines. The syntax has been unified, and the appearance of points and lines can

be customized locally wherever lines and points are used. Moreover, there is

now a universal set of (at least) eight standard point and line styles, which are

consistent across all contemporary terminals.

 Unicode—Strings and string expressions in gnuplot support Unicode. This is a

big deal, because it makes the entire universe of Unicode characters and sym-

bols seamlessly available within gnuplot. Greek letters, mathematical symbols,

and dingbats are now as easy to use as ASCII characters. (You still need a font

that provides glyphs for all these characters, but several freely available fonts

exist that provide extensive coverage of Unicode characters.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


15Summary

 Loops and programming constructs—Gnuplot has acquired support for some pro-

gramming constructs, most notably for loops. This promises to simplify certain

repetitive tasks significantly; but because gnuplot doesn’t (yet) include an iter-

able data type (that is, an array type), the use of loops often leads to somewhat

haphazard constructs and ad hoc data manipulations.1

In addition, there of course are many smaller improvements and enhancements, such

as an improved multiplot mode, more consistent commands to control tic marks on

coordinate axes, additional plotting styles, and more. 

1.4 Summary

In this chapter, I showed you a couple of examples that demonstrate the power of

graphical methods for understanding data. I also suggested a suitable method for

dealing with data-analysis problems. Start with a plot of the data, and use it to identify

the essential features of the data set. Then iterate the process to bring out the behav-

ior you’re most interested in. And finally (not always, but often), develop a mathemat-

ical description for the data, which can then be used to make predictions (which, by

their nature, go beyond the information contained in the actual data set).

 Your tool in doing this kind of analysis will be gnuplot. And it’s gnuplot, and how

to use it, that we’ll turn to next. Once you’ve developed the skills to use gnuplot well,

we’ll return to graphical analysis and discuss useful techniques for extracting the most

information possible from a data set, using graphs.

1 This may be changing. Merely days before this book went to the printer, Ethan Merritt published an experi-
mental patch that adds an array-type to gnuplot. Check it out: http://sourceforge.net/p/gnuplot/
patches/724/.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://sourceforge.net/p/gnuplot/patches/724/
http://sourceforge.net/p/gnuplot/patches/724/
http://www.it-ebooks.info/


16

Tutorial: essential gnuplot

This chapter introduces gnuplot’s most important features: generating plots, saving

them to a file, and exporting graphs to common graphics file formats. I’ll also

explain briefly how to set options and how to access gnuplot’s built-in documenta-

tion. This chapter covers those commands that you’ll find yourself using almost

every time you start up gnuplot. In the next couple of chapters, you’ll learn about

further features for graphical analysis and how to manage data sets and files. By the

end of chapter 4, you’ll know most of the commands you’ll use on a day-to-day basis.

 Are you surprised that just a few chapters are sufficient to get you this far? Con-

gratulations! You just discovered why gnuplot is cool: it makes easy things easy, and

hard things possible. This chapter and the next two cover the easy parts. As to the

hard parts … well, that’s what the rest of this book is about.

This chapter covers

 Invoking gnuplot

 Plotting functions and data

 Saving and exporting

 Managing options

 Getting help

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


17Simple plots

2.1 Simple plots

Because gnuplot is a plotting program, it should come as no surprise that the most

important gnuplot command is plot. It can be used to plot both functions (such as

sin(x)) and data (typically from a file). The plot command has a variety of options

and subcommands, through which you can control the appearance of the graph as

well as the interpretation of the data in the file. The plot command can even perform

arbitrary transformations on the data as you plot it.

2.1.1 Invoking gnuplot and first plots

Gnuplot is a text-based plotting program: you interact with it through command-line-

like syntax, as opposed to manipulating graphs using the mouse in a WYSIWYG fash-

ion.2 Gnuplot is also interactive : it provides a prompt at which you type commands.

When you enter a complete command, the resulting graph immediately pops up in a

separate window. This is in contrast to a graphics programming language (such as PIC),

where writing the command, generating the graph, and viewing the result are sepa-

rate activities, requiring separate tools. Gnuplot has a history feature, making it easy to

recall, modify, and reissue previous commands. The entire setup encourages you to

play with the data: making a simple plot, changing some parameters to hone in on the

interesting sections, eventually adding decorations and labels for final presentation,

and in the end exporting the finished graph in a standard graphics format.

 If gnuplot is installed on your system, it can usually be invoked by issuing the

command

shell> gnuplot

at the shell prompt. (Check appendix A for instructions on obtaining and installing

gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays a

welcome message and then replaces the shell prompt with a gnuplot> prompt. Any-

thing entered at this prompt is interpreted as gnuplot commands until you issue an

exit or quit command, or type an end-of-file (EOF) character, usually by pressing

Ctrl-D on Unix.

 Probably the simplest plotting command you can issue is

plot sin(x)

(Here and in the following, the gnuplot> prompt is suppressed to save space. Any

code shown should be understood as having been entered at the gnuplot> prompt,

unless otherwise stated.)

 On Unix running a GUI (an arbitrary window manager running on top of X11), this

command opens a new window showing the resulting graph, something like figure 2.1.

Note how gnuplot has selected a “reasonable” range for the x values automatically (by

default, from -10 to +10) and adjusted the y range according to the values of the function.

2 The Windows version of gnuplot contains a menu you can use to build up command strings using the mouse.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


18 CHAPTER 2 Tutorial: essential gnuplot

Let’s say you want to add more functions to plot together with the sine. You recall the

last command (using the up-arrow key or Ctrl-P for “previous”) and edit it to give

plot sin(x), x, x-(x**3)/6

This will plot the sine together with the linear function x and the third-order polyno-

mial x - ⅙x3, which are the first few terms in the Taylor expansion of the sine.3 (Gnu-

plot’s syntax for mathematical expressions is straightforward and similar to that found

in almost any other programming language. Note the ** exponentiation operator,

familiar from Fortran or Perl. Section 3.2 contains tables of all available operators

and their precedences.) The resulting plot (see figure 2.2) is probably not what you

expected.

 The range of y values is far too large, compared to the previous graph. You can’t

even see the wiggles of the original function (the sine wave) anymore. Gnuplot adjusts

the y range to fit in all function values, but for this plot, you’re only interested in

points with small y values. So, you recall the last command again (using the up-arrow

key) and define the plot range you’re interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

3 A Taylor expansion is a local approximation of an arbitrary, possibly complicated, function in terms of powers
of x. You won’t need this concept in the rest of this book. Check your favorite calculus book if you want to
know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

sin(x)

Figure 2.1 Your first plot: plot sin(x)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


19Simple plots

The range is given in square brackets immediately after the plot command. The first

pair of brackets defines the range of x values (leave it empty, because you’re happy

with the defaults in this case); the second restricts the range of y values shown. This

results in the graph shown in figure 2.3.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5  0  5  10

sin(x)

x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5  0  5  10

sin(x)

x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


20 CHAPTER 2 Tutorial: essential gnuplot

You can play much longer with function plots, zoning in on different regions of inter-

est and trying different functions (section F.4 contains a table of all built-in mathemat-

ical functions). But let’s move on and discuss what gnuplot is most useful for: plotting

data from a file. 

2.1.2 Plotting data from a file

Gnuplot reads data from text files. The data is expected to be numerical and to be

stored in the file in whitespace-separated columns. Lines beginning with a hash mark (#)

are considered to be comment lines and are ignored. The following listing shows a typ-

ical data file containing the share prices of two fictitious companies, with the equally

fictitious ticker symbols PQR and XYZ, over a number of years.

# Average PQR and XYZ stock price (in dollars per share) per calendar year

1975 49 162

1976 52 144

1977 67 140
1978 53 122

1979 67 125

1980 46 117
1981 60 116

1982 50 113

1983 66 96
1984 70 101

1985 91 93

1986 133 92
1987 127 95

1988 136 79

1989 154 78
1990 127 85

1991 147 71

1992 146 54
1993 133 51

1994 144 49

1995 158 43

The canonical way to think about this is that the x value is in column 1 and the y value

is in column 2. If there are additional y values corresponding to each x value, they’re

listed in subsequent columns. (You’ll see later that there’s nothing special about the

first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that

long-time gnuplot users usually generate data this way to begin with. In particular, the

ability to keep related data sets in the same file is a big help (so you don’t need to

keep PQR’s stock price in a separate file from XYZ’s—although you could if you

wanted to).

 Although whitespace-separated numerical data is what gnuplot expects natively,

gnuplot can parse and interpret significant deviations from this norm, including text

Listing 2.1 A typical data file: stock prices over time (file: prices)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


21Simple plots

columns (with embedded whitespace if enclosed in double quotes), missing data, and

a variety of textual representations for calendar dates, as well as binary data. (See

chapter 4 for a more detailed discussion of input file formats, chapter 5 for strings,

and chapter 8 for the special case when one of the columns represents date/time

information.)

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is

called prices and is in the current working directory (typically, the directory from

which gnuplot was started), you can type

plot "prices"

Because data files typically contain many different data sets, you’ll usually want to select

the columns to be used as x and y values. This is done through the using directive to the

plot command:

plot "prices" using 1:2

This plots the price of PQR shares as a function of time: the first argument to the

using directive specifies the column in the input file to be plotted along the horizon-

tal (x) axis, and the second argument specifies the column for the vertical (y) axis. If

you want to plot the price of XYZ shares in the same plot, you can do so easily (as

shown in figure 2.4):

plot "prices" using 1:2, "prices" using 1:3

 40

 60

 80

100

120

140

160

180

 1975  1980  1985  1990  1995

"prices" u 1:2

"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


22 CHAPTER 2 Tutorial: essential gnuplot

TIP The using directive tells the plot command which columns to use. plot
"data" using 1:2 selects the first column for the x axis and the second col-
umn for the y axis.

By default, data points from a file are plotted using unconnected symbols. Often this

isn’t what you want, so you need to tell gnuplot what style to use for the data. You do so

using the with directive. Many different styles are available. Among the most useful

are with linespoints, which plots each data point as a symbol and also connects sub-

sequent points, and with lines, which just plots the connecting lines, omitting the

individual symbols:

plot "prices" using 1:2 with lines,

➥     "prices" using 1:3 with linespoints

TIP The with directive to the plot command selects the plotting style. The
most frequently used styles include with points, with lines, and with
linespoints.

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-

matically provides a key, which shows a sample of the line or symbol type used for each

data set together with a text description, but the default description isn’t very mean-

ingful in this case. You can do much better by including a title for each data set as

part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,

➥   "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (see figure 2.5). The

title has to come after the using directive in the plot command. A good way to

memorize this order is to remember that you must specify the data set to plot first and

provide the description second : define it first, then describe what you defined.

TIP You can use the title directive to place a descriptive string in the
graph’s legend.

Want to see how PQR’s price correlates with XYZ’s? No problem; plot one against the

other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

You see here that there’s nothing special about the first column. Any column can be

plotted against either the x or the y axis; you pick whichever combination you need

through the using directive. Because it makes no sense to connect the data points in

the last plot, I chose the style with points, which plots a symbol for each data point

but no connecting lines (see figure 2.6).

 A graph like figure 2.6 is known as a scatter plot and can show correlations between

two data sets. In this graph, you can see a clear negative correlation: as the stock price

of PQR is going up, the price of XYZ is going down. We’ll revisit scatter plots and their

uses in chapter 13.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


23Simple plots

 40

 60

 80

100

120

140

160

180

 1975  1980  1985  1990  1995

PQR

XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using 1:2 title 

"PQR" with lines, "prices" using 1:3 title "XYZ" with linespoints

 40

 60

 80

100

120

140

160

180

 40  60  80  100  120  140  160

"prices" u 2:3

Figure 2.6 Any column can be used for either the x or y axis: plot "prices" using 2:3 

with points.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


24 CHAPTER 2 Tutorial: essential gnuplot

Now that you’ve seen the most important basic commands, let’s step back for a

moment and quickly introduce some creature comforts that gnuplot provides to the

more experienced user. 

2.1.3 Abbreviations and defaults

Gnuplot is good at encouraging iterative, exploratory data analysis. Whenever you

complete a command, the resulting graph is shown immediately, and all changes take

effect at once. Writing commands isn’t a different activity from generating graphs,

and there’s no need for a separate viewer program. (Graphs are also created almost

instantaneously; only for data sets including millions of points is there any noticeable

delay.) Previous commands can be recalled, modified, and reissued, making it easy to

keep playing with the data.

 Gnuplot offers two more features to the more proficient user: abbreviations and sen-

sible defaults. Any command and subcommand or option can be abbreviated to the

shortest, non-ambiguous form. So the command

plot "prices" using 1:2 with lines,

➥  "prices" using 1:3 with linespoints

is more likely to be issued as

plot "prices" u 1:2 w l, "prices" u 1:3 w linesp

You can shorten the linespoints style description even further to lp, so the com-

mand becomes

plot "prices" u 1:2 w l, "prices" u 1:3 w lp

This compact style is useful when you’re doing interactive work, and you should mas-

ter it. From here on, I’ll increasingly use it. (You can find a table with the most fre-

quently used abbreviations at the beginning of this book in the “About this book”

section.)

 But this is still not the most compact form possible. Whenever part of a command

isn’t given explicitly, gnuplot first tries to interpolate the missing values with values the

user has provided; failing that, it falls back to sensible defaults. You’ve already seen

how gnuplot defaults the range of x values to [-10:10] but adjusts the y range to

include all data points.

TIP Abbreviations for common keywords facilitate quick, interactive, itera-
tive work. You can find a table of common abbreviations in the “About this
book” section at the start of the book.

Whenever a filename is missing, the most recent filename is interpolated. You can use

this to abbreviate the previous command even further:

plot "prices" u 1:2 w l, "" u 1:3 w lp

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


25Saving commands and exporting graphics

Note that the second set of quotation marks must be there.

 In general, any user input (or part of user input) remains unaffected until explic-

itly overridden by subsequent input. The way the filename is interpolated in the pre-

ceding example is a good example of this behavior. In later chapters, you’ll see how

options can be built up step by step, by subsequently providing values for different

suboptions. Gnuplot helps to keep commands short by remembering previous com-

mands as much as possible.

 One last example concerns the using directive. If it’s missing entirely and the data

file contains multiple columns, gnuplot plots the second column versus the first (this

is equivalent to using 1:2). If a using directive is given but lists only a single column,

gnuplot uses this column for y values and provides x values as integers starting at zero.

This is also what happens when no using is given and the data file contains only a sin-

gle column. 

2.2 Saving commands and exporting graphics

There are two ways to save your work in gnuplot: you can save the gnuplot commands

used to generate a plot, so that you can regenerate the plot at a later time. Or you can

export the graph to a file in a standard graphics file format, so that you can print it or

include it in web pages, documents, or presentations.

TIP Saving a graph is the act of storing the gnuplot commands used to create
the graph. Exporting a graph means creating a version of the graph in a com-
monly used graphics file format (such as PNG, PDF, or SVG).

2.2.1 Saving and loading commands

If you save to a file the commands you used to generate a plot, you can later load them

again and regenerate the plot where you left off. Gnuplot commands can be saved to

a file using the save command:

save "graph.gp"

This saves the current values of all options, as well as the most recent plot command,

to the specified file. This file can later be loaded again using the load command:

load "graph.gp"

The effect of loading a file is the same as issuing all the contained commands (includ-

ing the plot command) at the gnuplot prompt.

TIP Never forget to save your commands using save so that you can re-create
your graph later using load.

An alternative to load is the call command, which is similar to load but takes up to

nine additional parameters after the filename to load. The parameters are available in

the loaded file in the variables ARG1 through ARG9. The special variable ARG0 is set to

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


26 CHAPTER 2 Tutorial: essential gnuplot

the filename, and the variable ARGC holds the number of parameters supplied to

call.4 You can use call to write simple scripts for gnuplot.

 Command files are plain text files, usually containing exactly one command per

line. Several commands can be combined on a single line by separating them with a

semicolon (;)—this also works at the interactive command line. The hash mark (#) is

interpreted as a comment character: the rest of the line following a hash mark is

ignored. The hash mark isn’t interpreted as a comment character when it appears

inside quoted strings.

 The recommended file extension for gnuplot command files is .gp, but you may

also find people using .plt instead. Because command files are plain text files, they can

be edited using a regular text editor. It’s sometimes useful to author them manually

and load them into gnuplot (see section 12.2 for further discussion of that point), and

they’re also used for batch operations (chapter 11) and configurations (chapter 12). 

2.2.2 Exporting graphs

The save command I just introduced saves the commands required to generate (or

regenerate) the graph into a text file, but it doesn’t save the graph itself. How do you

get the graph that you see in the plot window into a file? It turns out there are three

ways to do it: easy, roundabout, and complicated.

USING THE GUI BUTTON

In recent gnuplot versions, most contemporary terminals (including the wxt and qt

terminals) include a GUI button you can use to export a graph to a file. The button

opens a standard file-selection dialog where you select the desired name of the target

file and the file format (PNG, PDF, or SVG). Easy. 

USING THE CLIPBOARD

A roundabout way to save the graph to a file is to take a screenshot of the graph, using

your favorite screenshot utility, and save the result as a GIF or PNG file. After all, the

graphics window on the screen is nothing more than a bitmap image, and a screen-

shot saves it to a file.

 Gnuplot facilitates this process by offering a GUI button that copies the current

content of the plot window to the window manager’s clipboard, from which the graph

can be pasted into a paint program (such as the Gimp or Microsoft Paint) or saved

directly to a file. Only the canvas is copied, without the tool and title bars, and without

any of the decorations put on the window by the window manager. Don’t be disturbed

if nothing appears to be happening if you click the GUI button: there is no visual feed-

back, but the window’s content is copied to the clipboard, from which it can be pasted

into other applications. (The details of how to do that depend on your choice of win-

dow manager and the way the clipboard is configured on your local computer.) This

method may appear a bit unsophisticated, but it has two significant advantages: the

4 Earlier versions of gnuplot used the special tokens $0 through $9. That syntax is now deprecated.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


27Saving commands and exporting graphics

workflow is simple, and the resulting graph corresponds exactly to the graph that was

on the screen. 

USING TERMINALS

Both the GUI button and the clipboard are relatively new methods for exporting a

graph. They’re easy to use but don’t allow for much flexibility in the appearance of

the generated graph. To get full control over the export process, you need to become

familiar with gnuplot’s terminal facility.

 In gnuplot parlance, a terminal is a graphics-capable output device. Traditionally,

this may have been a specific piece of hardware (such as a pen-and-ink plotter), but

today a gnuplot terminal is merely a reference to the underlying graphics library.

TIP A terminal is gnuplot’s abstraction for a graphics-capable end point.
Terminals can be interactive (screen oriented) or file-based. All graphics out-
put must be directed to a terminal.

Contemporary terminals come in two flavors: interactive and file-based. Interactive

terminals create the graphs that you see on the screen. On Linux, you have a choice

among three interactive terminals, each built using a different widget set: the qt ter-

minal uses Qt, the wxt terminal uses wxWidgets, and the old x11 terminal is a pure

Xlib application. (Both the qt and the wxt terminals also exist on Windows and Mac

OS X, together with platform-specific terminals.)

 But to export a graph to a file, you need to employ a file-based terminal that can

generate output in the desired output format (PNG, PDF, SVG, and so on). Most file-

based terminals accept a large number of options through which you can control vari-

ous aspects (such as the size) of the resulting graph. These options are covered in

detail in chapter 10.

 All of this is straightforward. But there is one stumbling block: exporting a graph

via a file-based terminal requires multiple steps. In order to export a graph with a gnuplot

terminal, several commands must be executed in proper sequence. This may come as a

surprise, because “exporting to a file” is a single, atomic operation in most other appli-

cations these days. Gnuplot is different.

 The full sequence of steps is shown in listing 2.2. Let’s step through it:

1 Begin with an arbitrary plot command.

2 Select the desired file-based terminal, using the set terminal command.

3 Specify the name of the output file, using the set output command.

4 Regenerate the last plot, this time sending it to the file-based terminal and the

named file.

5 Restore the interactive terminal again, using both set terminal and the set

output command.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


28 CHAPTER 2 Tutorial: essential gnuplot

plot exp(-x**2)

set terminal pngcairo

set output "graph.png"

replot

set terminal wxt

set output

This is the first time you’ve encountered gnuplot’s set command—I’ll talk about it in

more detail in the next section (and subsequently in almost every chapter of this

book!). For now, it’s enough to understand that it sets a parameter (such as terminal)

to a value. But—and this is often forgotten—it does not generate a plot! The only com-

mands that do so are plot, splot (which is used for three-dimensional graphs, dis-

cussed in appendix C), and replot and refresh (both of which repeat the most

recent plot or splot command).

 I’d like to emphasize three things about listing 2.2:

 The file format and the output filename must be specified separately, using set

terminal and set output, respectively.

 The graph must be sent to the newly created file in a separate command, using

plot, replot, or an equivalent command.

 Afterward, the interactive terminal must be restored explicitly. (This is easy to

forget.)

As long as you keep these three items in mind, creating files via terminals won’t pose

any difficulties. (In chapter 11, you’ll see how to use scripts and macros to facilitate

this process.)

TIP Be sure to complete all the required steps, and in the proper order. Typ-
ical mistakes are forgetting to issue a replot command (resulting in an empty
file) and forgetting to restore the original terminal at the end.

Before leaving this section, one last word of advice: always save the commands used to

generate a plot to a command file before exporting to a printable format. Always. It’s

almost guaranteed that you’ll want to regenerate the plot to make a minor modification

later (such as fixing a typo in a label, adding one more data set, or adjusting the plot

range slightly). This can only be done from the commands saved to file using save, not

from plots exported to a graphics file. We’ll come back to this topic several times.

TIP Don’t just store the finished graph. Always save the commands required
to generate it as well, so you can come back and modify it later. 

Listing 2.2 Complete workflow to export to file 

A plot command

Selects the file format

Specifies the output filename

Repeats the most recent plot command, with 
the output now going to the specified fileRestores

the
terminal
settings

Sends output to the screen again by 
using an empty filename

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


29Managing options with set and show

2.3 Managing options with set and show

Gnuplot has relatively few commands (such as the plot, save, and load commands

you’ve already encountered) but a large number of options. These options are used to

control everything from the format of the decimal point to the name of the output

file. More than 100 such options are available, along with countless sub-options for

each. Check the entries for set and show in the gnuplot standard reference manual

for the complete list.

TIP Many aspects of gnuplot’s behavior can be controlled through options.
Use the set command to change their value; use show to see their current
value.

The three commands used to manipulate individual options are as follows:

 show—Displays the current value of an option

 set—Changes the value of an option

 unset—Disables a specific option or returns it to its default value

There’s also a fourth command, reset, which returns all options to their default val-

ues. The only options not affected by reset are those directly influencing output gen-

eration: terminal and output.

 The syntax of all three commands is straightforward. To assign a new value to an

option, use the set keyword followed by the name of the option and the new value.

The show command takes only a single argument: the name of the option you want to

inspect.

 The show command is also used more generally to display all kinds of information

about gnuplot’s internal state, not just options that can be changed using set. For

example, show variables displays all variables that are defined in the current session

together with their values, and show functions lists all user-defined functions.

 Another useful command is

show version long

This prints the current version of gnuplot, together with a copyright notice and point-

ers to the online documentation. More important, it also shows the compile-time flags

that gnuplot was compiled with. This is particularly relevant because some features have

only recently been added to gnuplot and may not be enabled on all platforms. You can

use show version long to see which flags your version of gnuplot was built with.

 Finally, you can use show all to see a listing of all possible options and their val-

ues. Be prepared for a long listing!

TIP You can use the show command to learn about your gnuplot installation
and to inspect the current state of a gnuplot session. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


30 CHAPTER 2 Tutorial: essential gnuplot

2.4 Getting help

Gnuplot has an extensive built-in, online help system (online in the sense that it’s

accessible from within the gnuplot session; it has nothing to do with network connec-

tivity to the internet). To get started, enter help at the gnuplot prompt. Alternatively,

you can go directly to the reference page for a specific command or option by enter-

ing the name of the command or option as an argument to the help command. For

example, to learn about the plot command, you’d use

help plot

The online help is detailed and comprehensive, so you should become familiar with

it. But keep in mind that it’s a reference, not a tutorial. If you know the name of the

command or option you’re looking for, it’s great. But if you want to find all relevant

options for a specific task, navigating the online help can be frustrating.

TIP Type help, followed by a command or option name, to access gnuplot’s
built-in reference documentation. 

2.5 Summary

In this chapter, you learned how to do the most important things with gnuplot: plot-

ting, saving, and exporting. You also learned how to set and inspect options and how

to access the built-in reference documentation.

 This means you can already do the three most important things for day-to-day

work: generate a plot, save it to file, and export it. In the next chapter, you’ll begin to

learn how to use gnuplot to analyze data and understand what it’s telling you.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


31

The heart of the matter:
the plot command

In gnuplot, you use the plot command to create plots of functions and data. It is,

hands down, the most frequently used and most important of all gnuplot com-

mands. In this chapter, we’ll take a systematic look at the plot command and the

ways it can be used.

 You’ll begin by making simple plots of functions and data. Then I’ll introduce

inline transformations: gnuplot can apply arbitrary transformations to the data as it’s

being plotted. You’ll learn how to use this useful feature after we take a quick

detour to describe how to do math with gnuplot. Logarithmic plots are another

indispensable technique in graphical analysis, and I’ll show you how and when to

use them. (If you’ve never seen them before, you’ll find a sidebar giving you more

This chapter covers

 Plotting functions and data

 Math with gnuplot

 Inline transformations

 Logarithmic plots

 Smoothing data

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


32 CHAPTER 3 The heart of the matter: the plot command

background on them.) Finally, we’ll be ready to discuss gnuplot’s built-in features to

simplify, smooth, and summarize data.

3.1 Plotting functions and data

You use the plot command to plot both functions and data. Let’s look at plotting

functions first and then move on to plotting data.

3.1.1 Plotting functions

To plot a function, you use the plot command followed by the function to plot and

(optionally) any style directives you wish to use (see chapters 6 and 9 to learn about

available styles and how to specify them):

plot sin(x)

plot cos(x) with linespoints

Including two or more functions in the same graph is easy. You simply list them all

after the initial plot command, separated by commas:

plot sin(x), cos(x) w lp

If you don’t specify a style, gnuplot chooses a different line color or dash pattern for

each new function in the plot. If you include more functions than there are currently

defined styles, gnuplot cycles through them again from the beginning. (This is

explained in more detail in chapters 6 and 9.)

 Gnuplot comes with a large number of built-in functions, and it’s also possible to

define your own. I’ll talk about this in section 3.2 later in this chapter.

THE SAMPLING RATE FOR FUNCTIONS

The set samples option controls the number of points at which a function is evalu-

ated to generate a plot. It defaults to 100 points, but this isn’t sufficient for curves

including cusps or singularities. A value of 1,000–3,000 works well—the sampling rate

should be slightly higher than the horizontal number of pixels of the output device

(which is usually around 600 for interactive and bitmap terminals). This option has no

effect when plotting data, unless you use one of the smoothing algorithms (see sec-

tion 3.5 later in this chapter); the smooth curve is sampled according to the value of

the set samples option.

 Changing the number of sampling points is easy. Give an integer argument to set

samples:

set samples 1000

You may want to include that line in your personal gnuplot initialization file, overrid-

ing gnuplot’s (ridiculously) small default value (see chapter 12 to learn how to set up

a gnuplot initialization file).

Plots in the default style

Plots with lines and points

Now uses 1,000 points

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


33Plotting functions and data

TIP Choose an appropriate value (such as 1,000 or even 3,000) for the num-
ber of points gnuplot uses to plot a function. The default value of 100 is
unreasonably low given the capabilities of today’s computers and displays. 

3.1.2 Plotting data

To plot data, you again use the plot command, but in place of the function to plot,

you specify the name of the file containing the data set. There is one additional wrin-

kle: you also need to specify which columns from the file to select. And finally, you can

again choose which style gnuplot should use for your plot.

 I’ll talk about data files and their permissible formats in more detail in chapter 4.

For now, suffice to say that gnuplot expects data files to be whitespace-separated, col-

umn-oriented text files, with one line per record. Listing 3.1 shows an example: the

world records (as of late 2014) for both men and women running events at a variety of

distances. (Distances are in meters, and times are in seconds—the last two entries with

the “odd” distances are for half-marathon and full-marathon races.)

# Distance Men Women Men Women

100 9.58 10.49 2009-08-16 1988-07-16

200 19.19 21.34 2009-08-20 1988-09-29
400 43.18 47.60 1999-08-26 1985-10-06

800 100.91 113.28 2012-08-09 1983-07-26

1000 131.96 148.98 1999-09-05 1996-08-23
1500 206.00 230.46 1998-07-14 1993-09-11

3000 440.67 486.11 1996-09-01 1993-09-13

5000 757.35 851.15 2005-05-31 2008-06-06
10000 1577.53 1771.78 2005-08-26 1993-09-08

21098 3503.00 3912.00 2010-03-21 2014-02-16

42195 7377.00 8262.00 2014-09-28 2003-04-13

Figure 3.1 displays a plot of the finishing times for events up to 10,000 meters as a

function of the distance, together with two function plots for comparison (the using,

title, and w p directives were introduced in section 2.1.2):

plot [:12000] "records" u 1:2 title "Men" w p, "" u 1:3 title "Women" w p,

➥ 0.14*x, 0.16*x

Not surprisingly, the time required increases roughly in proportion to the distance,

but not precisely so. A comparison with the straight lines included in the graph shows

that for longer distances, the required time is greater than you’d expect given the

short-distance results. Again, that’s no surprise: as the distance gets longer, the run-

ners slow down. (We’ll come back to this point later.)

 This example plots two (simple) functions together with the data, so that you can

compare the data against a known behavior (as expressed by the function). This kind

of comparison constitutes an important part of graphical analysis, and gnuplot makes

it particularly easy to combine multiple data sets and functions in a single graph.

Listing 3.1 Data for figure 3.1 (file: records)

Half marathon
Full marathon

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


34 CHAPTER 3 The heart of the matter: the plot command

TIP Comparing data against a known function can tell you a lot about the
data set. Including one or several suitable functions in the graph brings out
the behavior of the data. 

3.2 Math with gnuplot

Not surprisingly, gnuplot can evaluate mathematical expressions and includes support

for many mathematical functions. Gnuplot’s syntax for mathematical expressions is

straightforward and similar to the conventions found in other programming lan-

guages.

 Gnuplot ships with its own math library, which these days is used only when the sys-

tem math library is found to be insufficient. (The most notable extension that gnu-

plot’s math library provides is support for complex numbers: see appendix F.)

3.2.1 Mathematical expressions

Gnuplot uses standard infix syntax for mathematical expressions, including the nor-

mal operators for the four basic arithmetical operations, as in most C-like languages.

Parentheses can be used to change the order of evaluation. Gnuplot has the exponen-

tiation operator (**) found in Fortran and Perl. All of these operate either on float-

ing-point values or on integers.

 It’s important to understand that integer division truncates, so 3/2 yields 1. Integers

are promoted to floating-point values in mixed expressions, but in some situations

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2000  4000  6000  8000  10000  12000

W
o

rl
d

 r
e

c
o

rd
 (

in
 s

e
c
o

n
d

s
)

Distance (in meters)

Men

Women

0.14*x

0.16*x

Figure 3.1 Current athletic world-record running times as a function of the competition 

distance, for both men and women. The data is shown in listing 3.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


35Math with gnuplot

truncation occurs in expressions involving variables. If you want nontruncating divi-

sion, it’s always safer to force the use of floating-point arithmetic by writing x/2. or

x/2.0. You can also force a mixed expression by adding a floating-point zero: x + 0.0.

TIP Keep in mind that integer division truncates. Hence an expression like
3/2 evaluates to 1, not to 1.5. To force floating-point division, include a deci-
mal point: 3/2. evaluates to 1.5.

Gnuplot also offers a range of operators for integer arithmetic, such as the familiar

modulo operator %, and a unary factorial operator: n! = 1 * 2 * ... * (n-1) * n. You

can also find bit-shift and bitwise logical operators.

 All the usual relational and logical operators are available as well, including the

ternary conditional operator (?:). A recent addition is the comma operator, which can

be used to evaluate several statements as part of a single expression. (This is a rela-

tively advanced feature; you’ll see an application in section 14.1.2.) Tables 3.1 and 3.2

list all the unary and binary operators in order of their precedence.

Table 3.1 Unary operators in order of decreasing precedence

Operator Example Argument type Description

! !a Integer Logical NOT

~ ~a Integer One’s complement

! a! Integer Factorial

- -a Any numerical Unary minus

+ +a Any numerical Unary plus

Table 3.2 Binary operators in order of decreasing precedence

Operator Example Argument type Description

** a**b Any numerical Exponentiation

* a*b Any numerical Multiplication

/ a/b Any numerical Division

% a%b Integer Modulo

+ a+b Any numerical Addition

- a-b Any numerical Subtraction

. a.b String String concatenation

<< a<<b Integer Unsigned bitwise left shift

>> a>>b Integer Unsigned bitwise right shift

< a<b Any numerical Less than

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


36 CHAPTER 3 The heart of the matter: the plot command

3.2.2 Built-in functions

Gnuplot provides all the mathematical functions you’ve come to expect on any scien-

tific calculator: square root, exponential function and logarithms, and trigonometric

and hyperbolic functions. It also supports some less-standard functions that are rele-

vant in physics, applied math, and statistics (such as Bessel functions, the error inte-

gral, and the gamma function). You can execute help expressions functions from

within gnuplot or check table F.1 in appendix F for the full list.1

 Gnuplot also includes a built-in random number generator, which can be quite use-

ful at times. You access it through the function rand(x). If called with an argument that

is equal to zero, the function returns a pseudo-random number between zero and one.

 The algorithm used to generate the pseudo-random numbers requires two seeds

to be set; given the same values for the seeds, exactly the same sequence of numbers is

returned. Gnuplot doesn’t have a separate function to set the seeds; instead, this is

accomplished by providing special values as arguments to rand(x). Check table 3.3

for details. Keep in mind that rand(x) is a function and therefore must be called as an

expression, even if you’re only setting the seeds. The command print rand(-1), for

example, can be used to reset the seeds to their default values.

<= a<=b Any numerical Less than or equal to

> a>b Any numerical Greater than

>= a>=b Any numerical Greater than or equal to

== a==b Any numerical Numerical equality

!= a!=b Any numerical Numerical inequality

eq a eq b String String equality

ne a ne b String String inequality

& a&b Integer Bitwise AND

^ a^b Integer Bitwise XOR

| a|b Integer Bitwise OR

&& a&&b Integer Logical AND

|| a||b Integer Logical OR

= a=b Any (numerical or 
string)

Assignment

(,) (a,b) Any (numerical or 
string)

Sequential evaluation 

1 A summary of built-in functions for string and time handling can be found in tables 5.1 and 8.6, respectively.

Table 3.2 Binary operators in order of decreasing precedence (continued)

Operator Example Argument type Description

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


37Math with gnuplot

     

The standard gnuplot distribution contains a file called stat.inc in the demo/ folder

that defines many additional functions, most of them related to various probability

distributions. You can load this file into your current gnuplot session using load and

then use these functions the same way you would use built-ins.

TIP Check the file stat.inc in gnuplot’s demo/ folder for many useful func-
tions related to probability distributions. 

3.2.3 User-defined variables and functions

It’s easy to define new variables by assigning an expression to a name. For instance,

you might want to define some useful mathematical constants. (You don’t need to

define pi, because it’s already defined by gnuplot.) The following listing shows several

useful constants you may want to define.

e = 2.71828182845905

sqrt2 = sqrt(2.0)

euler = 0.57721566490153

Here, euler is the Euler-Mascheroni constant (usually represented using the Greek

letter gamma), which is “the most important number that you’ve never heard of

before” (J. Stopple).2

 Functions can be defined in a similar fashion, as shown next.

f(x) = -x * log(x)

gauss( x, m, s ) = exp( -0.5*( (x-m)/s )**2 )/sqrt(2*pi*s**2)

binom( n, k ) = n!/(k!*(n-k)!)

min( a, b ) = ( a < b ) ? a : b

step( x ) = ( x < 0 ) ? 0 : 1

Table 3.3 The rand(x) function is used both to access the random number generator and to set its

seeds, depending on the value of the argument.

Invocation Description

rand(0) Returns the next pseudo-random number, using the current values of both seeds

rand(-1) Resets both seeds to a standard value

rand(x) For x>0, sets both seeds to a value based on the value of x

rand({x,y}) For x,y>0, sets the first seed to x and the other seed to y

Listing 3.2 Examples of user-defined variables and constants

2 Read his wonderful A Primer of Analytic Number Theory (Cambridge University Press, 2003) to find out why you
should care. The quote can be found on page 49.

Listing 3.3 Examples of user-defined functions

The base of the natural logarithm

The square root of 2

The Euler-Mascheroni constant

Uses the factorial
operator to generate
binomial coefficients

Uses the ternary ? operator

A piece-wise defined function

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


38 CHAPTER 3 The heart of the matter: the plot command

Functions can have up to 12 variables and can contain other functions and operators.

You use them as you would use any other function. Assuming you had issued the defi-

nitions in listing 3.3, you could then write plot sin(x), f(x).

 By default, gnuplot assumes that the independent dummy variable, which is auto-

matically replaced by a range of x values when plotting a function, is labeled x (as in:

plot sin(x)), but you can change this using the set dummy command. For example,

set dummy t makes t the independent variable, so now you would say plot sin(t).

 All other variables occurring in a function definition (parameters) must have been

assigned values before you can plot (that is, evaluate) the function. For convenience,

you can assign values to parameters as part of the plot command. For example, you

could do the following (notice that no comma is required between the variable assign-

ment and the function):

g(x) = exp(-0.5*(x/s)**2)/s
plot s=1 g(x), s=2 g(x), s=3 g(x)

But in general, I think it’s better to make all parameters explicit arguments in the func-

tion definition. The previous example could (and probably should) be written as fol-

lows (except for the entries in the graph’s legend or key, the resulting figures are

identical—see figure 3.2):

g(x, s) = exp(-0.5*(x/s)**2)/s

plot g(x,1), g(x,2), g(x,3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5  0  5  10

g(x,1)

g(x,2)

g(x,3)

Figure 3.2 Plotting a function for different values of a parameter: plot g(x,1), g(x,2), 

g(x,3) where g(x, s) = exp(-0.5*(x/s)**2)/s

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


39Data transformations

All functions and variables have global scope. There’s no such thing as a private vari-

able or local scope!

 You can obtain lists of all user-defined variables and functions using the following two

commands (remember to use help expressions functions to list built-in functions):

show variables

show functions

3.2.4 Mathematically undefined values and NaN (not a number)

Gnuplot tends to be pretty tolerant when encountering undefined values: rather than

failing, it doesn’t produce any graphical output for data points with undefined values.

For instance, you may safely plot the square root (which is only defined for positive

values) over any plot range: if the argument is negative, gnuplot won’t fail—it just

won’t show anything on the graph for x < 0. Similarly, you never have to worry whether

the denominator of a function might equal zero for any value in the plot range: if it

does, gnuplot will silently skip those points.

 This behavior can be used to suppress data points or define piecewise functions,

usually in conjunction with the ternary conditional operator. For example, consider

the following function:

f(x) = abs(x) < 1 ? 1 : NaN

It’s only defined on the interval [-1:1]. For values with an absolute value equal to 1 or

greater, it returns NaN, which stands for not a number and indicates a mathematically

undefined value.3 A plot of this function shows data points only on the interval [-1:1]

and is empty otherwise. This NaN technique is a good trick that’s frequently useful, in

particular in conjunction with the ternary operator, as in these examples.

TIP Gnuplot doesn’t fail when it encounters a mathematically undefined
value during a plot; it just doesn’t generate graphical output for such points.
You can use this effect to exclude intervals or data points from plots. 

3.3 Data transformations

As stated before, gnuplot is first and foremost a plotting tool: a program to generate

straightforward plots of raw data in a simple and efficient manner. Specifically, it’s not

a statistics package or a workbench for numerical analysis. Large-scale data transfor-

mations aren’t what gnuplot is designed for. Properly understood, this is one of gnu-

plot’s main strengths: it does a simple task and does it well, and it doesn’t require

learning an entire toolset or programming language.

 Nevertheless, gnuplot has the ability to perform arbitrary data transformations on

the fly as part of the plot command. Thus you can apply filters to the data from within

gnuplot without having to take recourse in external tools or programming languages.

3 Using the NaN special value from the IEEE 754 standard for floating-point computations is new with gnuplot
5; in previous releases, it was customary to achieve the same effect using the expression 1/0.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


40 CHAPTER 3 The heart of the matter: the plot command

3.3.1 Simple data transformations

An arbitrary function can be applied to each data point as part of the using directive

in the plot command. If an argument to using is enclosed in parentheses, it’s treated

not as a column number, but as an expression to be evaluated. Inside the parentheses,

you can access the column values for the current record by preceding the column

number with a dollar sign ($) (as in shell or awk programming). Some examples will

help to clarify:

 To plot the square root of the values found in the second column versus the val-

ues in the first column, use
plot "data" using 1:( sqrt($2) ) with lines

 To plot the average of the second and third columns, use
plot "data" using 1:( ($2+$3)/2 ) with lines

 To generate a log/log plot, you can use the following command (although the

logscale style, discussed in section 3.4, is the preferred way to achieve the same

effect):
plot "data" using ( log($1) ):( log($2) ) with lines

TIP Inline transformations allow you to apply an arbitrary transformation to
each point as it’s being plotted.

A fundamental limitation to all these transforms is that they can only be applied to a

single record at a time. If you need aggregate functions over several records (sums or

averages, for example), or across different data sets, you’ll usually have to perform

them externally to gnuplot. Nevertheless, the ability to apply an arbitrary filter to each

data point and to combine different data points for the same x value is often tremen-

dously useful.

A WORKED EXAMPLE

Remember the running records from listing 3.1? Based on the basic plot of time ver-

sus distance, you were led to suspect that athletes run more slowly over longer dis-

tances. The best way to confirm this would be a plot of the average speed for the

different events. The data set doesn’t contain the speed, but you can calculate it easily

as distance (column 1) divided by time (in column 2 or 3, respectively). This is pre-

cisely the kind of simple combination of column values that inline transformations are

intended for (remember that an empty filename is a placeholder for the most

recently accessed file):

plot [9:][5:11] "records" u 2:($1/$2) t "Men" w lp,

➥ "" u 3:($1/$3) t "Women" w lp

Figure 3.3 shows the speed as a function of the time (not distance), in a semi-logarith-

mic plot (in the horizontal axis: set logsc x). The figure confirms the expectation that

average speed decreases for longer distances, but it shows you more: the rate of

decrease isn’t constant. We can distinguish three regimes: a sprint regime (up to 20

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


41Data transformations

seconds); a long-duration regime (longer than about 2 minutes); and a transition

regime in between, where the decrease in speed is particularly drastic.

MORE IDEAS FOR INLINE TRANSFORMATIONS

Here are some more creative uses for inline transformations. To plot two data sets of

different magnitudes on a similar scale, use this (assuming that the data in column 3 is

typically greater by a factor of 100 than the data in column 2):

plot "data" using 1:2 with lines, "" using 1:( $3/100.0 ) with lines

If the data file contains the x value in the first column, the mean in the second, and

the variance in the third, you can plot the band in which to expect 68% of all data to

fall:

plot "data" using 1:( $2+sqrt($3) ) with lines,

➥ "" using 1:( $2-sqrt($3) ) with lines

All expressions involving operators or functions can be part of using expressions,

including the conditional operator:

plot "data" using 1:( $2 > 0 ? log($2) : 0 ) with lines

 5

 6

 7

 8

 9

 10

 11

 10  100  1000  10000

A
v
e

ra
g

e
 s

p
e

e
d

 (
in

 m
e

te
rs

 p
e

r 
s
e

c
o

n
d

)

Completion time (in seconds)

Men

Women

Figure 3.3 The average speed of the current world record holder, as a function of the distance. The 

speed has been calculated from the distance and the finishing time as part of the plot command, using 

an inline transformation: plot "records" u 2:($1/$2) w lp. (See listing 3.1 for the data.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


42 CHAPTER 3 The heart of the matter: the plot command

You can use a similar method to exclude certain data points when plotting data from a

file. For example, the following command only plots data points for which the y value

is less than 10:

plot "data" using 1:( $2 < 10 ? $2 : NaN ) with points

Finally, keep in mind that the expression supplied in parentheses can be a constant.

You’ll see some examples for this usage in section 3.5 later in this chapter. 

3.4 Logarithmic plots

Let’s see how you can generate logarithmic plots. Logarithmic plots are a crucial tech-

nique in graphical analysis. In gnuplot, it’s easy to switch to and from logarithmic

plots:

set logscale

set logscale x

set logscale y

unset logscale

unset logscale x

unset logscale y

You can provide a base as a second argument: set logscale y 2 turns on binary loga-

rithms for the y axis. (The default is to use base 10.) We’ll talk more about uses for set

logscale in chapter 13.

Turns on double logarithmic plotting

Turns on logarithmic plotting for the x axis only …

… for the y axis only

Turns off logarithmic plotting for all axes

… for the x axis only

… for the y axis only

How do logarithmic plots work?
Logarithmic plots are a truly indispensable tool in graphical analysis. It’s possible to
understand what they do even without detailed understanding of the mathematics
behind them, but the math isn’t all that hard; therefore, I’ll explain in this sidebar
how logarithmic plots work and how they’re used.

Let’s quickly recapitulate the most relevant properties of logarithms. The defining
relation for the log function is 

There isn’t a single log function, but infinitely many; you always need to specify the
base b with respect to which the logarithm needs to be taken.

Logarithms with respect to different bases are related to one another in a simple way: 

Logarithms to two specific bases are used most often: the logarithm to base 10 (typ-
ically abbreviated log) and the so-called natural logarithm to base e=2.7818...
(abbreviated ln). Be aware that the notation just introduced (log(x) and ln(x)) is com-
mon in mathematical contexts, but when you’re using gnuplot’s built-in functions,
log(x) refers to the natural logarithm; you must use log10(x) for the logarithm to
base 10.

n logbb
n

=

logax logab logbx⋅=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


43Logarithmic plots

 

Logarithms have many interesting properties, two of which are of fundamental
importance: 

and 

You can see that the logarithm of a product equals the sum of the logarithms, so
these two relations can be summarized by saying that logarithms turn products into
sums and powers into products. You’ll see how these relationships are at the core
of logarithmic plots.

In a logarithmic plot, you don’t plot the actual values; instead, you plot their loga-
rithms. But tic marks on the axes are usually labeled with the actual values (not their
logarithms). Here’s an example: suppose you want to plot the values 1, 10, 100, and
1,000. Their logarithms (to base 10) are 0, 1, 2, and 3, respectively (because 103 =
1,000, and so on). In a logarithmic plot, you place tic marks at equal distances from
each other (at the locations 0, 1, 2, and 3) but label them 1, 10, 100, and 1,000.

The following figure illustrates these aspects. The y axis on the left is scaled logarith-
mically. Comparing the values on the left vertical axis to the units of the vertical axis
on the right shows how a logarithmic axis is linear in the exponent to which the base
must be raised to obtain the actual value (that is, it’s linear in the logarithm). Also
note how the same relative change results in the same visual length when using log-
arithmic scales: both scale arrows are the same length and represent a 100% change,

xy( )log x( )log y( )log+=

xk( )log k x( )log=

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100

-1

 0

 1

 2

 3

 4

100%

100%200

400

800
600

V
a

lu
e

P
o

w
e

r 
o

f 
1

0

A semi-log plot. See the text for details. (Labels for some of the minor tic marks on the left 

axis are provided.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


44 CHAPTER 3 The heart of the matter: the plot command

 

(continued)

although the absolute change is different for both arrows (1 to 2 on the left, 100 to
200 on the right).

You can switch on logarithmic plotting either on a single axis (usually the y axis) or
on both, yielding a single- or double-logarithmic plot, respectively. Single-logarithmic
plots are sometimes referred to as semi-log plots, and double-logarithmic plots are
also known as log-log plots. Both plots are used for different purposes.

There are two uses for single-logarithmic plots. First, if you have data with exponential
behavior, showing it on a single-logarithmic plot lets the data fall onto a straight line: 

In other words, if y (x) is an exponential function of x, then log( y (x) ) is a linear func-
tion (straight line) of x. You can use single-logarithmic plots in this way to determine,
for instance, the half-life of a radioactive substance from measured decays.

The other use for single-logarithmic plots is common in finance: on a single-logarithmic
plot, all relative changes have the same size, no matter how large the underlying
absolute changes. Here’s an example: if a stock you own falls by $10 in a single day,
your reaction will be different depending on whether you paid $20 or $100 initially.
In the first case, you lost 50% of your money; but in the second, you lost only 10%.
You care about relative changes, not absolute ones. Therefore you want a plot in
which all changes of the same relative magnitude result in the same distance on the
graph. That’s what semi-log plots do for you. If the value before the change is y1 and
the value after the change is y2 = g y1, where g equals 1.1 (corresponding to a 10%
gain), then the change in absolute terms is 

which depends on the overall size of the value y1. But if you consider logarithms, you
find 

which is independent of the overall value and depends only on the relative size of the
change, g. This is why long-term charts of, for example, the Dow Jones index are usu-
ally shown as semi-log plots: a 10% drop today or in 1929 results in the same dis-
tance covered on the graph, despite the fact that the Dow Jones is around 17,000
today but stood at about 300 then.

Double-logarithmic plots serve a different purpose. They help you identify power-law

behavior—that is, data that follows an equation such as the following (C is a constant): 

The analysis goes through as before, but you end up with logarithms now on both

sides of the equation:

y x( ) eax y x( )( )log ax= =

y1 y2– y1 gy1– 1 g–( )y1= =

y1( )log y2( )log– y1( )log gy1( )log– y1( )log g( )log– y1( )log– g( )log–= = =

y x( ) Cxk
=

y x( )( )log k x( )log C( )log+=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


45Smooth interpolation and approximation

TIP Log and log-log plots are part of the standard toolset. They reveal expo-
nential and power-law behavior, and they’re generally useful when dealing
with data that changes over many orders of magnitude. Learn how to use
them!

3.5 Smooth interpolation and approximation

Gnuplot can construct a variety of smooth curves as representations of a data set. You

can invoke this feature using the smooth directive to the plot command, followed by

an additional keyword that selects the specific interpolation method. Table 3.4 lists

the available smoothing methods, together with brief descriptions.

Table 3.4 Smoothing methods available for plot ... smooth ...

Keyword Description

1 csplines Cubic spline interpolation

2 mcsplines Monotone cubic spline interpolation

3 acsplines Approximate cubic spline

4 bezier Bézier curve

5 sbezier Sorted Bézier curve (constructed after sorting the data points on 
their x values)

6 kdensity Kernel density estimate

7 cumulative Cumulative distribution function (constructed after sorting the 
data points on the x values)

8 cnormal Normalized cumulative distribution function (independent of the 
number of data points—see the text for details)

9 unique Sorts data points on their x values, dedupes repeated entries, 
and replaces the y value for repeated x values with the average 
of the y values

10 frequency Sorts data points on their x values, dedupes repeated entries, 
and replaces the y value for repeated x values with the sum of 
the y values

The resulting graph is a straight line with a slope that depends on the exponent k.
You saw an example of this in chapter 1, when estimating the completion time of a
long-running computer program.

Double-logarithmic plots are very important. Power laws occur in many different con-
texts in the real world but aren’t always easy to spot. Go back to figure 1.3 in chapter
1: many different curves will seem to fit the data about equally well. But once plotted
on a double-log plot (see figure 1.4), the linear shape of the data stands out and pro-
vides a strong and easily recognizable indicator of the underlying power-law behavior.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


46 CHAPTER 3 The heart of the matter: the plot command

 Although all of these smoothing methods are invoked using the smooth keyword,

they fall into three broad groups that do different things and apply to different situa-

tions. Methods 1–5 construct a smooth curve through a set of (x,y) coordinate pairs.

Methods 6–8 treat the data set as a one-dimensional (or univariate) point distribution

and generate visual representations of this distribution. Methods 9 and 10 remove

multiple entries from a data set. As it turns out, method 10 (frequency) can also be

used to count data points in order to construct a histogram.

 The remainder of this chapter describes each group of options. In chapter 13, I’ll

show you how these methods can be applied to solve common problems in the graph-

ical analysis of data sets.   

3.5.1 Interpolation curves

Gnuplot provides two sets of methods to draw a smooth curve through a set of (x,y)

points: those based on cubic splines, and those based on Bézier curves.

SPLINE INTERPOLATIONS

Splines4 are smooth curves constructed from piecewise-polynomial functions that are

smoothly joined together. If the polynomials used are third order, then the resulting

spline is called a cubic spline. Splines can be used to give a smooth approximation to a

set of points; interpolating splines pass through each of the points exactly, whereas

approximating splines only pass the vicinity of each point.

 Both csplines and mcsplines construct interpolating cubic splines, meaning

the resulting curve passes through every point in the data set. The second form

(mcsplines)5 also guarantees that the curve has the same monotonicity and convex-

ity properties as the original data. Look at figure 3.4: the curve drawn using csplines

occasionally “overshoots” near locations of greatest curvature, whereas the line drawn

using mcsplines doesn’t. The second curve therefore may give a better, more faithful

representation of the data.

 The third keyword (acsplines) creates an approximating spline, meaning the

curve doesn’t pass exactly through the data points. To control how close the curve

passes to each point, you need a new parameter (in addition to the x and y coordi-

nates of each point), which is supplied to gnuplot using a third “column” in the using

directive, like so:

plot "data" u 1:2:(0.01) smooth acsplines

This third parameter is a measure for the weight with which each point contributes to

the spline: the greater it is, the more the point influences the curve, and the closer the

curve passes to each point; the smaller it is, the less each point influences the curve.

The two extreme cases are instructive: as the weight parameter approaches infinity,

4 I’ll have more to say about splines in section 13.1.2.
5 F. N. Fritsch and R. E. Carlson, “Monotone Piecewise Cubic Interpolation,” SIAM Journal on Numerical Analysis

17 (1980): 238–246. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


47Smooth interpolation and approximation

the curve approaches the interpolating spline (which passes through every point

exactly); but as the weight parameter approaches zero, the resulting spline

approaches the linear least-squares fit to the data. (See figure 3.5.)

 I’d like to draw attention to the way I handled the third column specifier in the

using directive: I supplied an expression in parentheses, which means it was inter-

preted (because of the parentheses) as a transformation to be applied to the data. The

expression itself, however, is a constant, so the value of this third column is the value

of that constant. Because the third column gives the weight with which the point

should contribute to the spline approximation, every point received the same weight.

Instead of supplying a numerical constant, you could specify an actual column from

which to take the weights, like so: plot "data" u 1:2:3 smooth acsplines (note the

missing parentheses, which means the 3 is interpreted as a column number, not as a

numerical constant). If the third column in the data file contains some measure of the

reliability or accuracy with which each point is known, you can have each point con-

tribute with a different weight, according to the certainty with which it’s known.

TIP It’s frequently useful to supply a constant expression in inline transfor-
mations. For example, to have every point contribute equally to a spline
approximation, you can use plot "data" u 1:2:(0.1) smooth acsplines.

 20

 40

 60

 80

100

120

140

160

 1975  1980  1985  1990  1995

Data

smooth cspline

smooth mcspline

smooth bezier

Figure 3.4 Interpolating splines: both csplines and mcsplines interpolate the data points 

smoothly, but mcsplines doesn’t “overshoot” the data. In contrast to splines, which are locally 

defined, the Bézier curve constitutes a global approximation. plot "splines" u 1:2 w p pt 6, "" u 

1:2 smooth csplines, "" u 1:2 smooth mcsplines,"" u 1:2 smooth bezier. (The directive 

pt 6 selects the shape of point symbols—see section 9.2.1.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


48 CHAPTER 3 The heart of the matter: the plot command

Approximating splines are an important tool for graphical analysis. In chapter 13, I’ll

show you how to use them to visualize trends and features in noisy data sets. 

BÉZIER APPROXIMATIONS

Bézier curves6 are constructed as the path that would be traced by a particle that, start-

ing at one point, steers toward each of the subsequent points in turn. By construction,

Bézier curves pass through the first and last point exactly but in general don’t pass

through any of the internal points. Whereas splines are defined locally (between neigh-

boring points), Bézier curves are defined for the entire data set. As a result, Bézier

curves usually appear particularly smooth—which is also why they’re used so frequently

in computer graphics and design.

 Gnuplot creates a Bézier curve of order n (where n is the number of data points)

using smooth bezier. (See figure 3.4.)

 Because Bézier curves are traced out by a particle heading toward a set of way-

points in turn, not only the positions of the waypoints matter, but also the order in

which they’re traversed. When you use smooth sbezier, the data points are first sorted

by their x coordinates, and a Bézier curve is constructed for the resulting data set. 

6 The Wikipedia entry on Bézier curves is a good place to start.

 20

 40

 60

 80

100

120

140

160

 1975  1980  1985  1990  1995

Data

weight = 106

weight = 101

weight = 10-1

weight = 10-6

Figure 3.5 Influence of the weight parameter on approximate splines. As the weight increases, the 

curve approximates an interpolating spline; as the weight goes to zero, the curve approaches a 

straight line: plot "splines" u 1:2 w p pt 6, "" u 1:2:(10e6) s acs, "" u 1:2:(10) s 

acs, "" u 1:2:(1./10) s acs, "" u 1:2:(10e-6) s acs.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


49Smooth interpolation and approximation

3.5.2 Point distributions

Gnuplot includes a few different ways to visualize univariate point distributions, some

involving the smooth facility, and some not. Here we’re primarily interested in the

technicalities of using the smooth feature—consult chapter 13 for additional informa-

tion about the math involved and to learn about the kinds of questions these methods

can help you answer.

KERNEL DENSITY ESTIMATES

Assume that you have a number of measurements of a single quantity, like the ones in

the following listing. These numbers may be weights of different shipments, or the

time it took a bunch of queries to finish, or the temperatures in various parts of the

house. It doesn’t matter: in every case, you want to know how the values are distrib-

uted, and that means how much the points scatter about.

2.14

1.25
1.10

1.00

1.60
1.31

0.95

0.90
4.01

1.95

2.53
0.65

You can just plot all the points along a horizontal line (see figure 3.6) and take a look,

but if the number of points becomes large, it can be difficult to recognize the details

of the distribution. In a kernel density estimate, you replace each point with a strongly

peaked but smooth curve (the kernel) centered at the location of each point. You then

sum the contributions from all these curves and plot the result.

 Gnuplot’s smooth kdens feature uses Gaussian curves as kernels and takes two col-

umns in the using specifier: the first column gives the position of each point, the sec-

ond the weight of each point. If you want to weight all points equally, you may again

supply a constant. To obtain a normalized density estimate, the weight of each point

should be 1/n, where n is the number of points in the data set.

 With a third parameter, you control the width of each kernel. If you choose a large

value for this parameter, each point will appear more smeared out, and the resulting

curve will show few details; if you choose a small bandwidth, more features will show, but

the resulting curve may be noisy. (This is explained in greater detail in section 13.3.3.)

The bandwidth parameter isn’t passed as a pseudo-column; instead, it follows the

bandwidth keyword:

plot "data" u 1:(1) s kdens, "" u 1:(1) s kdens bandwidth 1

Listing 3.4 Data for figure 3.6 (file: measurements)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


50 CHAPTER 3 The heart of the matter: the plot command

If you don’t supply a bandwidth explicitly, gnuplot calculates one based on the stan-

dard deviation of the data set and stores it in a variable called GPVAL_KDENSITY_

BANDWIDTH. In practice, this default bandwidth often appears too broad. You can

inspect its value using print GPVAL_KDENSITY_BANDWIDTH. (I’ll formally introduce

gnuplot’s internal variables in section 5.5.) 

CUMULATIVE DISTRIBUTION FUNCTIONS

Another way to visualize a point distribution is to count the fraction of points that lie

to the left of the current position: this is the cumulative distribution function of the data

set. By construction, the cumulative distribution function is monotonically increasing:

it’s 0 to the left of the point with the smallest value, and it’s 1 to the right of the point

with the greatest value. (See figure 3.6.)

 In gnuplot, you use smooth cumul to create a cumulative distribution function. It

takes two columns in the using specifier: the first holds the position of each measure-

ment, the second the associated weight. (It isn’t necessary for the data set to be sorted:

gnuplot takes care of that.) If you supply a weight of 1, then the value of the resulting

curve at any position is equal to the number of data points to the left of the current

position; if you supply a weight of 1/n to cumul, where n is the number of points in the

data set, then the curve is equal to the fraction of data points to the left.

 Gnuplot offers a second way to draw a cumulative distribution function, which

doesn’t explicitly depend on the number of data points: smooth cnormal. Like smooth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5

Bandwidth 0.1 Bandwidth 0.2 Cumulative

Figure 3.6 Visualizing point distributions using kernel density estimates and the cumulative 

distribution function: plot "measurements" u 1:(-0.1) w p pt 7, "" u 1:(1/12.) s kdens 

bandwidth .1, "" u 1:(1/12.) s kdens bandwidth 0.2, "" u 1:(1/12.) s cumul. The 

calculated default bandwidth is 0.58. See listing 3.4 for the data.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


51Summary

cumul, you need to supply two columns in the using directive: the first for the position

of each measurement, the second for the weight of each point. With smooth cnormal,

gnuplot sums the weights and then divides the sum by the total number of data points

in the current data set. The following two commands are therefore equivalent (assum-

ing that the variable n holds the number of records):

plot "data" u 1:(1.0/n) smooth cumul

plot "data" u 1:(1.0) smooth cnormal

The advantage of smooth cnormal is that you don’t need to know and supply the num-

ber of data points explicitly. Nevertheless, the second parameter in the using directive

must be there!

3.5.3 Deduping repeated entries

The last two smoothing methods available are less sophisticated. When using smooth

unique on a data set consisting of (x,y) coordinate pairs, gnuplot first sorts the points

in ascending order on their x coordinates. It then replaces all points that have the

same x coordinate with a single point that has the same x coordinate, but whose y

coordinate is the average over all the y coordinates of such points.

 The smooth frequency method works the same way, except that it replaces the y

coordinate with the sum of the y coordinates of all the affected points. This isn’t very

useful by itself, but it can be used to construct histograms of point distributions—I’ll

show you how to do that when we revisit this topic in chapter 13. 

3.6 Summary

The plot command is the most important gnuplot command. Not only does it gener-

ate plots of functions and data, but it also can apply arbitrary transformations to the

data as it’s being plotted, and it can perform a variety of operations to interpolate or

approximate the data. We also looked at the way gnuplot handles mathematical

expressions and at its built-in functions.

 Next, we’ll take a closer look at data files and data file formats. You’ll see how gnu-

plot reads data from files and learn more about accessing column values in conjunc-

tion with inline transformations.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Part 2

Creating graphs

This part explains in detail gnuplot’s various options and features that

you’ll use all the time when preparing graphs and figures. Chapter 4 discusses

file formats of data files and the different pieces of information that gnuplot can

extract from them. Chapter 5 covers a number of supplemental topics. Very

important is an introduction to gnuplot’s string data type, which not only is

essential when you want to add labels and explanations to a graph, but also is

used in gnuplot’s macro facility and as gnuplot’s only complex data type. This

chapter also explains how you can facilitate repetitive tasks through inline loops.

Chapter 6 provides an overview and catalog of all the different styles that are

available to represent data. Chapter 7 introduces all kinds of decorations that

can make a graph more informative. You’ll learn about arrows, text labels, and

ways to customize a graph’s legend. Chapter 8 describes how to control the way

axes and tic marks are drawn. The chapter also explains how to handle time-

series data and how to use calendar dates as tic labels.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


55

Managing data sets
and files

Working with data is what gnuplot is all about. Data is usually presented to gnuplot

as files, and in this chapter you’ll learn a range of useful tricks that can make you

more productive when working with gnuplot.

 We’ll begin with a review of gnuplot’s standard file format and discuss options

to modify its defaults. We’ll then look at some special gnuplot syntax to pick out

only parts from larger files. This is required when dealing with data sets that are

larger or more complicated than the straightforward ones you’ve encountered so

far, and it’s often useful.

 Next, we’ll systematically consider all the ways you can access columns—in par-

ticular, in conjunction with inline transformations. In the process, you’ll also

This chapter covers

 Data-file formats and options

 Managing structured data sets

 Accessing columns and pseudocolumns

 Pseudofiles and input/output redirection

 Metadata in data files

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


56 CHAPTER 4 Managing data sets and files

encounter pseudocolumns, which are synthetic columns that gnuplot automatically pro-

vides when reading a file. Pseudocolumns hold useful information (such as line num-

bers) and often come in handy when you’re constructing inline transformations.

Then we’ll turn to files that aren’t: pseudofiles are data sources that don’t live on the

disk but that you can treat almost as if they were regular files. 

 But data files often contain information beyond the actual data that goes onto a

plot. Such metadata typically consists of textual information that you may want to place

onto a plot in the form of text labels. In this chapter, where we talk about data files in

general, we’ll merely summarize the kind of metadata that gnuplot can take from a

file and use in a plot. The details will follow in their proper context when we discuss

how to handle text labels and similar auxiliary information in a plot in chapters 6

through 8.

4.1 Quickstart: the standard data-file format

Data is usually fed to gnuplot as plain text in a simple, whitespace-separated format:

gnuplot neither uses nor requires special proprietary binary formats or weird markup.

Nor do you need to use special tools or libraries to generate data that constitutes suit-

able input for gnuplot.

 Input files may also contain comments, text strings, and other information, in

addition to the data. Furthermore, many aspects of this format can be changed

through options. We’ll consider each of these topics in turn.

 By default, gnuplot data files are text files that contain data in whitespace-

separated columns, with one line per record. This is a natural tabular format—basi-

cally, the way you would lay out information in a spreadsheet or the way it would result

from a database query. Listing 4.1 shows the beginning of a data set with information

on customer orders as received by an online retailer. There’s a lot of information in

such a file; in particular, the relationships between different columns are often inter-

esting. Figure 4.1 shows four different plots, using different plot types, based on this

file. It includes a time-series plot of the number of orders received per day, a histo-

gram of the number of items per order, and a scatter plot investigating the relation-

ship between the weight of an order and its value. The last panel in figure 4.1 consists

of a parallel-coordinates plot: a special graphical technique to identify relationships in

multivariate data sets. (For the sake of completeness, the commands to generate fig-

ure 4.1 are given in listing 4.2. Don’t worry if you don’t understand all this yet; we’ll

cover these commands in the chapters to come.)

# ID Date CustomerID ItemCount Weight Value ShipMethod
oid0012 2014-12-01 cid59 2 2.13 11.39 1-Regular

oid0014 2014-12-01 cid61 4 7.11 15.44 0-Ground

oid0015 2014-12-01 cid30 2 2.33 11.11 0-Ground
oid0025 2014-12-01 cid87 4 4.48 16.55 2-Express

oid0034 2014-12-01 cid08 4 4.35 16.95 1-Regular

...

Listing 4.1 Incomplete generic data file—see figure 4.1 (file: orders)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


57Quickstart: the standard data-file format

unset key

set multiplot layout 2,2 margins 0.06,0.95,0.085,0.95 spacing 0.075,0.1

# --------------------

set xtics 2,2

set mxtics 2

set label 1 "Orders per Day" at 8,3

plot [1:14] "orders" u (strcol(2)[9:10]+0):(1) s f w lp pt 7

set xtics 1
unset mxtics

# --------------------

set label 1 "Histogram:\nItems per Order" at 3.5,50
plot [0:7] "orders" u 4:(1) s f w boxes

# --------------------

set label 1 "Value vs Weight" at 4,7
plot "orders" u 5:6 w p pt 6

Listing 4.2 Commands for figure 4.1 (file: orders.gp)

 0

 2

 4

 6

 8

10

12

14

16

 2  4  6  8  10  12  14

Orders per Day

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7

Histogram:

Items per Order

 4

 6

 8

10

12

14

16

18

20

22

 0  1  2  3  4  5  6  7  8

Value vs Weight

Date Items Weight Value Ship

Figure 4.1 Different types of graphs, all based on a single data file. Clockwise from top left: a 

time-series plot of the number of orders per day, a histogram showing the distribution of the number 

of items per order, a parallel-coordinates plot of several order attributes (with ground-shipping 

orders highlighted), and a scatter plot of order value versus order weight.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


58 CHAPTER 4 Managing data sets and files

# --------------------
set xtics ( "Date" 1, "Items" 2, "Weight" 3, "Value" 4, "Ship" 5 )

unset ytics

set style parallel lw 1
set linetype 1000 lc "0xff000000"

ship(c) = 0+strcol(c)[1:1]

unset label 1
plot [1:5] "orders" u (strcol(2)[9:10]+0):4:5:6:(ship(7)) w parallel lt 10,

➥ "" u (strcol(2)[9:10]+0):4:5:6:(ship(7)):(ship(7)==0?1:1000)

➥    w parallel lc var

unset multi

4.1.1 Comments and header lines

Lines beginning with a # are considered comment lines and are ignored. You can also

instruct gnuplot to ignore the first n lines of a file by using the skip directive in the

plot command:

plot "data" skip 2 using 1:2

Now gnuplot will discard the first two lines of the file, regardless of whether they’re com-

mented out. This is a convenient way to get rid of header lines without having to com-

ment them out explicitly.

TIP You can use the new skip keyword to discard the first n lines of a file as
it’s being plotted. 

4.1.2 Selecting columns

You can pick out any column and plot its values against any other column by means of

the using directive. If no using directive is found, gnuplot plots the first column

against the line number; if only a single column is specified, gnuplot plots that col-

umn against the line number.

 For the most part, input-file parsing with gnuplot is very robust and works without

much tinkering. One good piece of advice is to always specify all required columns

explicitly via the using directive. If this is done, gnuplot silently skips any garbage

(fields it can’t parse) in the file, treating them as missing values. If you rely on the

default columns (without the using directive), gnuplot will instead silently bail when

it encounters an unparsable field. This is most likely to happen when you’re doing

casual work with small files containing only two columns, and it can sometimes lead to

mysterious failures. My advice: make it a habit always to specify all columns with using.

TIP If you specify all columns to plot explicitly in the using directive, gnu-
plot will correctly parse even files that are partially garbled or that contain
garbage.

Returns the shipping 
method as an integer

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


59Managing structured data sets

Time and date information in a data file constitutes a special case. Gnuplot provides

special facilities to parse timestamps, which we’ll discuss in detail in section 8.4.2. Do

not attempt to parse time and date information yourself—use the appropriate

options!1

4.2 Managing structured data sets

Sometimes data sets have more internal structure than the simple one-record-per-line

model you’ve seen so far. Two cases in particular are reasonably common and must be

dealt with: files containing data blocks—that is, different data sets one after another in

a single file—and files containing records that span several lines each. Let’s look at

how to handle each case in turn.

4.2.1 Multiple data sets per file: index

Here’s a common scenario: monitoring web traffic across multiple hosts. A script logs

in to each host, pulls the log files for the last few days, summarizes the hits per day,

and writes the results to an output file before moving on to the next host. You want to

use gnuplot to look at the contents of the resulting file.

1 In listing 4.2, I chose to manipulate the date value explicitly using string functions, but only because in the
crowded multipanel figure, I needed to exert finer control over the appearance of the tic marks.

Plain text as data format
Using text files as primary data stores has a number of advantages: you don’t need
special tools to generate or read them, and it’s easy to write scripts to pre- or post-
process them. If they’re large, it’s simple to compress them. And if necessary,
you can even load them into any text editor (or a spreadsheet!) and manipulate them
by hand.

Furthermore, text files are largely portable across most current computer architec-
tures (so that files generated on Unix, say, can be opened and read on Windows)—
except for the choice of the linebreak indicator (newline character). Gnuplot expects
lines in input files to be terminated by whatever the local operating system (or rather,
the local C library) considers the “native” newline character. If you encounter prob-
lems reading files generated on a different platform, try converting newlines to the
local format. (The same argument applies to the files gnuplot writes: lines are termi-
nated with the native newline character on the given system.)

Gnuplot string handling is based around Unicode and UTF-8. We’ll have more to say
about both topics in the sidebar in section 5.1 in the next chapter.

Gnuplot currently does not have built-in support for data files in a hierarchical or
markup format, such as XML, JSON, or HDF5. If you want to plot such data sets, you’ll
have to extract them to plain, column-oriented text files first. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


60 CHAPTER 4 Managing data sets and files

 The important issue here is that the resulting file doesn’t contain individual data

points, but entire data sets: one for each host. Each data set spans several rows: one for

each day. The file might look something like the one shown in the following listing.2

# Day Hits

0 101
1 100

2 102

3 103

0 25

1 26

2 27
3 28

0 5

1 4

2 3
3 2

This data file looks as if several distinct data files (for different hosts) had been

appended to one another. Because this situation is sufficiently common, gnuplot pro-

vides a way to handle it. But first, we need to look at the meaning of blank lines in a

data file.

 For gnuplot, blank lines in a data file are significant. A single blank line indicates a

discontinuity in the data. The data above and below the blank line is treated as belong-

ing to the same data set (and is shown using the same line color and line style), but no

connecting line is drawn between the records before and after the blank.

 In contrast, double blank lines are used to distinguish data sets in the file. Each set

can be addressed in the plot command as if it were in a separate file using the index

directive to plot. Table 4.1 summarizes these differences.

Listing 4.3 Data file containing several sets (file: traffic1)

2 The data in this data set is dorky. This is intentional. I want to make sure you can distinguish data from each
of the three hosts by looking at the data (the number of hits) itself. This will be important when we compare
this data set with the one in listing 4.4.

Table 4.1 Meaning of blank lines in data files

Meaning

Single blank line Indicates a discontinuity in the data. No connecting line is drawn between 
points separated by a single blank line.

Double blank line Indicates different data set (or data blocks) in the same file. Different data 
blocks can be selected using the index keyword with the plot command.

host=main

host=staging

host=test

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


61Managing structured data sets

The index directive follows immediately after the filename in the plot syntax and

takes at least one argument specifying which data set to select from the file. The argu-

ment can be either numeric or a string.

SELECTING DATA SETS BY POSITION

A numeric argument is treated as an index into an array, following the C language

convention of counting from 0 (zero). Therefore, to plot only the traffic for the stag-

ing site, you can use

plot "traffic1" index 1 using 1:2 w linespoints

This picks out only the data set with index 1 and shows it with linespoints.

 The index directive can be abbreviated as i. It can take up to three arguments,

separated by colons (similar to the syntax familiar from using):

index {int:start}[:{int:end}][:{int:step}]

If only a single argument is given, only the corresponding data set is plotted. If two

arguments are present, they’re treated as the index of the first and last data set (inclu-

sive) to be shown: plot "data" index 2:5 plots four data sets total. A third argument

is interpreted as a step size. Accordingly, plot "data" index 2:5:2 plots only the data

in sets 2 and 4. Only the first argument is mandatory. 

SELECTING DATA SETS BY NAME

Gnuplot 5 offers a new way to pick out a single data set from a file: if the data set is

preceded by a comment line that includes the ID or name of the data set, you can use

this identifier in the index directive. The comment character and any leading

whitespace are removed; the following characters are treated as the “name” of the

data set that follows the comment line in the file.

 Referring again to the file shown in listing 4.3, the following two commands are

equivalent:

plot "traffic1" index 1 using 1:2 w linespoints

plot "traffic1" index "host=staging" using 1:2 w linespoints

Only a single data set can be selected this way. If the “name” given is ambiguous, then

gnuplot plots the first data set in the file that matches. (Matching is case-sensitive.)

Referring again to listing 4.3, the following three commands are both unambiguous

and will result in an identical plot:

plot "traffic1" index 2 using 1:2 w linespoints

plot "traffic1" index "host=t" using 1:2 w linespoints
plot "traffic1" index "host=test" using 1:2 w linespoints

In contrast, plot "traffic1" index "host" u 1:2 w lp is ambiguous, and gnuplot will

plot the first matching data set in the file (which happens to be the one for the main

host): that is, the first data set in the file. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


62 CHAPTER 4 Managing data sets and files

4.2.2 Records spanning multiple lines: the every directive

Whereas the index directive lets you select consecutive sets of data from a file, the

every option, which we discuss now, solves a different problem. Consider the same

arrangement of hosts as in the previous section, together with an auxiliary script that

gathers traffic data from all hosts and dumps it into a single file. But in contrast to the

previous scenario, the script now retrieves only a single day’s worth of traffic and

appends it to the output file before moving on to the next host. After a few days, the

output file might look like the one shown next.

# Day Hits
0 101
0 25
0 5
1 100
1 26
1 4
2 102
2 27
2 3
3 103
3 28
3 2

Here, each record for a single day spans three lines: one for each host. (Compare this

file against the one in listing 4.3: the data in both is exactly the same!) If you want to

plot the traffic for each host separately, you can use the every directive to pick up only

the relevant subset of all lines. The following command, for instance, plots only the

traffic for the staging host:

plot "traffic2" every 3::1 using 1:2 with lp

Using the every directive, you can control how you step through individual lines. The

syntax looks similar to the syntax used for index, except that individual arguments are

separated by two colons. Unfortunately, this similarity is somewhat deceiving, because

the order of the arguments isn’t the same for every as it is for index:

every {int:step}[::{int:start}[::{int:end}]] 

The first argument is the increment, followed (optionally) by the first and last line

numbers. Line numbers are counted from zero. Don’t forget to use double colons

with the every directive: single colons won’t generate an error message but will lead

to strange and hard-to-predict behavior.3

Listing 4.4 Data file containing interleaved data sets (file: traffic2)

3 I’m simplifying here. Gnuplot recognizes an additional concept known as a data block in a file: a set of consec-
utive lines delimited from each other using single blank lines. Data blocks are functionally redundant with data
sets (delimited by double blank lines). Data blocks can be selected through additional arguments to the every
directive, which are placed between the double colons. This is why it’s not illegal to use single colons in this
context. If you want to know more about data blocks, check the standard gnuplot reference documentation.

host=main
host=staging
host=test

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


63File format options in detail

 You can play other tricks with the every feature. For instance, the following com-

mand skips the first two lines of every data set in the file:

plot "data" every ::2 using 1:2

This is similar to, but not quite the same as, the skip facility: skip only discards lines

at the beginning of the file, not at the beginning of every data set in the file. More-

over, every only applies to data lines, whereas skip also skips comments. Feel free to

devise other creative uses for the every keyword!

TIP I recommend that you use a file format suitable for the index facility
when you need to combine several data sets in a single file. The every key-
word is a bit of a legacy feature, and data handling based on index is more
robust and transparent. 

4.3 File format options in detail

You can control several aspects of the file format using options. For instance, you can

choose additional characters to indicate comment lines in data files. In this section,

we look at the fine points of input-file formats: numbers, missing values, comments,

and strings.

4.3.1 Number formats

Gnuplot can read both integers and floating-point numbers, as well as numbers in sci-

entific notation (strictly speaking, scientific E notation): a floating-point number, followed

by an uppercase or lowercase character e, followed by an integer, which is interpreted

as a power of 10. The numeric value of such a field is obtained by multiplying the

floating-point part by 10 raised to the appropriate power. A couple of examples will

make this clear: in scientific notation, the value 35,100 is encoded 3.51e4; the value

-0.0001 is written -1e-4.

 You can also allow the letters d and q (both uppercase and lowercase) instead of e

or E for Fortran D and Q constants, by setting

set datafile fortran

This option is off by default, because it requires additional parsing; it should be

enabled only if needed. 

4.3.2 Comments

You can include comments in a data file on lines starting with the comment character

(#). The line must start with the comment character and is ignored entirely. If gnuplot

encounters a # in any location other than the first one in the line, it isn’t interpreted

as a comment character, and any text following it is interpreted as additional data.

This isn’t a problem as long as only columns preceding it are specified in the using

declaration of the plot command.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


64 CHAPTER 4 Managing data sets and files

 You can make gnuplot interpret additional characters as comment characters by

using the set datafile commentschars command:

set datafile commentschars ["{str:chars}"]

For example, to tell gnuplot that the exclamation point indicates a comment line in a

data file, you can say

set datafile commentschars "!"

The string can contain any number of characters, each of which is interpreted as a

comment character if found at the beginning of a line. Resetting this option to a new

value overrides all previous settings. 

4.3.3 Field separator

By default, fields (columns) are separated from one another by whitespace, which

means any number of space or tab characters. You can change the field separator

using the set datafile separator command:

set datafile separator [ "{str:char}" | whitespace | tab | comma ] 

You can use the symbolic names whitespace, tab, and comma, or specify a string of

characters. If you provide an explicit string, then each character in the string will be

treated as a separator character.

 For example, to make both the colon and the pipe character individually be field

separators, you’d use

set datafile separator ":|"

To let gnuplot parse comma-separated (CSV) files, either of the following two com-

mands will work:

set datafile separator ","

set datafile separator comma

Separator characters aren’t interpreted as separators when inside quoted strings:

quoted strings are always interpreted as the entry of a single column.

 You can specify several characters, each of which by itself is interpreted as a field

separator. It isn’t possible to specify a multicharacter pattern as a field separator. (This

isn’t true when using whitespace.) To reset to gnuplot’s default behavior, you can

issue set datafile separator whitespace or set datafile separator so that col-

umns are split on whitespace again. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


65File format options in detail

4.3.4 Missing values

You can use the set datafile missing command to specify a string to be used in a

data file to denote missing data:

set datafile missing ["{str:str}"] 

An example is set datafile missing "NaN", which interprets the IEEE floating-point

indicator NaN (“not a number”) as a missing value. There’s no default value for this

parameter.

 Having an indicator for missing values is important when you’re using a

whitespace-separated file format: if the missing value were left blank, gnuplot

wouldn’t recognize it as a column value and would use the value from the next column

instead.

TIP In a whitespace-separated format, you must use an explicit missing-value
indicator. It isn’t permissible to leave a missing value blank.

The interpretation of missing values in a data set depends on the precise syntax of the

using directive. Let’s look at two examples. The following listing shows a file contain-

ing a missing value.

1 10
2 10

3 11

4 12
5 NaN

6 11

7 11
8 10

9 10

First, let’s assume that datafile missing has been set to "NaN". If you now plot this

file using

plot "missing" using 1:2 with linespoints

then the fifth record (the one containing the missing value) is ignored and the data is

plotted with one continuous, unbroken line. In contrast, if you use the command

plot "missing" using 1:($2) with linespoints

or if the datafile missing option doesn’t equal "NaN" (either because this option is

undefined or because it’s been set to a different value), then gnuplot also ignores the

fifth record but treats it as a blank line and therefore doesn’t draw a connecting line

across the gap (see figure 4.2).   

Listing 4.5 Data file containing a missing value (file: missing)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


66 CHAPTER 4 Managing data sets and files

4.3.5 Strings in data files

Gnuplot can read and process text fields found in input files. A valid text field can be

any string of printable characters that doesn’t include blank spaces. If the string con-

tains blanks, it must be enclosed in double quotes to prevent gnuplot from interpreting

the blanks as column separators. (Single quotes don’t work!) The enclosing double

quotes are stripped off and aren’t part of the field’s value. If a field contains whitespace

and is protected by enclosing double quotes, it must not contain double quotes as part

of the string value. If you need to use quotation marks and blanks in the same string,

you must use single quotes inside the string and double quotes to enclose the entire

field. If you’ve designated a non-whitespace character as a column separator using set

datafile separator (see the previous section), the same considerations apply: strings

containing the separator must be protected with double quotes. Listing 4.6 shows some

ways you can use strings in a data file.

TIP You can include strings in data files. If the strings contain whitespace,
they must be enclosed in double quotes. Single quotes won’t work.

# Year Title

1965 Yesterday

1966 "Yellow Submarine"
1969 "Maxwell's Silver Hammer"

For more information on string handling, check section 5.1 in the next chapter. 

Listing 4.6 Strings in data files need quotes only if they contain whitespace.

 9

10

11

12

 0  2  4  6  8  10

 10

 11

 12

 13

Missing value skipped:

plot 'data' u 1:($2)

or

datafile missing not equal to 'NaN'

Missing value interpolated:

set datafile missing 'NaN'

plot 'data' u 1:2

Figure 4.2 Gnuplot treats missing values differently, depending on the value of the 

datafile missing option and the plot syntax. The data file is shown in listing 4.5.

Bare string without blanks
Blanks require double quotes.
Single quote inside double quotes

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


67Accessing columns and pseudocolumns

4.4 Accessing columns and pseudocolumns

In chapters 2 and 3, you saw how to access columns in using directives. Here, you’ll

review what you know already and learn some new features. Table 4.2 summarizes all

methods of accessing columns in gnuplot.

Table 4.2 Column-access methods, pseudocolumns, and column-access functions. (An entry in the first column

in italics is a placeholder for any matching value. Non-italic entries must be used verbatim.)

Specifier Example Description

number using 1:2 Accesses a column by its horizontal position 
in the file.

string using 

"Height":"Weight"

Accesses a column by its name as given in 
the first non-comment line in the file.

0 using 0:2 Pseudocolumn, containing the record 
number (starting from zero) in the current 
data set.

-1 using -1:2 Pseudocolumn, containing the line number 
(starting from zero). Reset by a single blank 
line.

-2 using -2:2 Pseudocolumn, containing the index (start-
ing from zero) of the current data set. Reset 
by a double blank line.

(expression) using 1:($2+$3) Inline transformation. The expression in 
parentheses is evaluated, and the value of 
the expression is plotted. The column val-
ues for the current record are available 
through the shorthands $1, $2, and so on.

(constant) using 1:(1) Same as the previous, but the expression is 
a constant, independent of the values in the 
data file.

(column(expression)) using 

1:(column($3+1))

The argument to the column() function 
should be an expression that evaluates to 
an integer. The value of this expression is 
interpreted as a column number, and the 
column() function returns the value of the 
current record for the desired column as a 
numeric value. (For example, column(3) 
returns the current value of the third column 
as a numeric value.)

(column(string)) using 

1:(column("Weight"))

If the argument to the column() function is 
a string, it’s interpreted as the name of a 
column (as given in the first non-comment 
line in the data file). The column() func-
tion returns the value of the current record 
for the desired column as a numeric value.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


68 CHAPTER 4 Managing data sets and files

4.4.1 Accessing columns by position or name

Columns are usually accessed by their position in the file (counting left to right, start-

ing at one):

plot "data" using 1:2

This is convenient for files with only a few columns, but it can also work well for truly

large files, because it’s easy to iterate over numeric column specifiers with gnuplot’s

new inline looping feature. The following command plots columns 2 through 24

against the first column in a single plot (more on this kind of looping construct in sec-

tion 5.4; we’ll treat loops in greater detail in chapter 11):

plot for [j=2:24] "data" u 1:j

You can also specify a column by name if the data file contains a set of column labels in

the first row of the file (or the data set, if the file contains multiple data sets addressed

(stringcolumn(expression)) 
or (strcol(expression))

using 

1:(stringcolumn(
   $3+1))

The argument to the stringcolumn() 
function should be an expression that evalu-
ates to an integer. The stringcolumn() 
function returns the value of the current 
record for the desired column as a string 
value.

(stringcolumn(string)) 
or (strcol(string))

using 
1:(stringcolumn(     

   "ID"))

If the argument to the stringcolumn() 
function is a string, it’s interpreted as the 
name of a column (as given in the first non-
comment line in the data file). The 
stringcolumn() function returns the 
value of the current record for the desired 
column as a string value.

(timecolumn(expression,

            formatstring))

using 

1:(timecolumn(3, 

   "%Y-%m-%d"))

Parses a column entry as a timestamp and 
returns the corresponding Unix epoch sec-
ond as numeric value. The first argument 
must evaluate to an integer, identifying a 
column. The second argument specifies a 
time format, according to table 8.4 or 8.5.

(valid(expression)) using 

1:(valid(2)?$2:$3)

The argument to the valid() function 
must be an expression that evaluates to 
an integer (not a string). The valid() func-
tion returns 1 if the current record for the 
identified column is a valid number or zero 
otherwise.

Table 4.2 Column-access methods, pseudocolumns, and column-access functions. (An entry in the first column

in italics is a placeholder for any matching value. Non-italic entries must be used verbatim.) (continued)

Specifier Example Description

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


69Accessing columns and pseudocolumns

using index). For example, for the file shown in listing 4.7, the following commands

are equivalent:

plot "grains" skip 1 using 1:2

plot "grains" using 1:"Wheat"
plot "grains" using "Year":"Wheat"

Year Wheat Barley Rye
1990 8 6 14

1991 10 5 12

1992 10 7 15
1993 11 5 13

1994 9 6 12

Observe that the line containing the labels must not be a comment line. Furthermore, if

any of the entries in the using phrase are strings, the entire first line is interpreted as

labels and isn’t included in the plot. 

4.4.2 Pseudocolumns

Gnuplot supplies three pseudocolumns for each file it reads. They’re numbered 0, -1,

and -2.

 The pseudocolumn 0 contains the line number in the current file (or data set),

starting at zero, without counting any comment, label, or skipped lines. You can also

access this column in inline transformations using $0. (This counter is reset to zero

when it encounters the double blank line that separates data sets.)

 The pseudocolumn -1 contains the line number, starting at zero, and is reset by a

single blank line. (This is relevant if the data file is in grid format—see appendix C for

details.)

 The pseudocolumn -2 contains the index of the current data set within the data file.

When a double blank line is encountered in the file, the line number (corresponding

to the value of pseudocolumn 0) resets to zero, and the index is incremented.

 You can use these pseudocolumns, for instance, like this:

plot "data" using 0:1

plot "data" using 1:-2

4.4.3 Column-access functions

You can use the column() function whenever an expression has become too compli-

cated for the using syntax, or in contexts where the $ shorthand isn’t available. The

function evaluates its argument to a column identifier and returns the value of the

identified column as a numeric value. (There is also a stringcolumn() [or strcol()]

function that returns the column value as a string. See the next chapter for more

information on strings.)

Listing 4.7 Column names in a data file (file: grains)

Not a comment line!

Plots the first column against the line number

Plots the data set index against the first column

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


70 CHAPTER 4 Managing data sets and files

 The argument to column() (or stringcolumn()) can be either numeric or a

string. A numeric argument is evaluated into a column number. A string argument is

only suitable if the file contains a non-comment header line with column identifiers

(as in listing 4.7): if that’s the case, the argument should evaluate into one of the col-

umn names. An error results if no column with the supplied identifier can be found.

 The column() function and pseudocolumns work well together. For instance, this

example plots all values from a file but adds a constant vertical offset of 1.5 to values

from different data sets (to separate curves from different data sets from each other,

so that you can distinguish them more easily):

plot "data" using 1:($2 + 1.5*column(-2)) with lines

The following example (found in the standard reference documentation) plots each

data set in a different color (see chapter 9 to learn more about linecolor variable):

plot "data" u 1:2:(column(-2)) linecolor variable

FURTHER COLUMN-ACCESS FUNCTIONS

If a column contains date and time values, then the timecolumn() function may be

useful. It takes two arguments: the first must be an integer identifying a column (it

can’t be a string!), and the second must be a string specifying the format of the time-

stamp in the data file. The function returns the Unix epoch seconds corresponding to

the parsed value as a number. This value may, for example, be formatted into a text

label using the strftime() function.

 The format specifiers are based on those used by the strftime() and strptime()

functions from the C standard library. We’ll discuss the handling of date and time

information in section 8.4.2 in the context of time-series plotting; here we present

only a brief preview. Imagine a file containing dates and values like this:

2014-12-01 3

2014-12-02 5
2014-12-05 1

The following command converts the dates in the first column to their corresponding

epoch seconds and uses them as horizontal positions:

plot "data" u (timecolumn(1, "%Y-%m-%d")):2 w lp

One other function can be useful for inspecting column values: valid(). It returns

true only if the value of the column with column number x is a valid number. You can

use this function to test values from messy files and only plot those that are valid. 

4.5 Pseudofiles

Typically, the data rendered by the plot command is read from a file, but in some sit-

uations it makes sense to accept data from a different source. Gnuplot includes a

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


71Pseudofiles

number of special filenames that you can read from as if they were proper files,

although they don’t exist on any disk.

 As of gnuplot 5, data can be embedded in command files and accessed through a

variable-like identifier called a heredoc. Data can also be read from the command line

interactively and stored in a heredoc—this can be useful when you want to add a few

data points to an existing graph.

 On platforms that support pipes, gnuplot can read data from standard input—this

is particularly useful when you’re scripting gnuplot to run in batch mode. When

they’re available, you can also send output to another process via pipes.

 Finally, two special filenames let you apply the full flexibility of the using facility to

function plots. Table 4.3 lists all these special filenames and describes their meaning.

4.5.1 Reading data from standard input

When given the special filename - (as in: plot "-" u 1:2), gnuplot attempts to read

data from standard input, which in an interactive session is the command window.

After you run this plot command, gnuplot shows a prompt at which you can type

data. Finish each line by pressing Enter. Gnuplot will keep prompting for data until

either an end-of-file (EOF) character (typically Ctrl-d) is encountered or the character

e is entered on a line by itself.

 You can even read data from standard input multiple times within the same plot

command: plot '-', '-' reads data until an EOF character is encountered and then

expects to read more data (for the second “file”) until it finds a second EOF character.

Of course, the data entered at a prompt this way can have multiple columns, from

Table 4.3 Pseudofiles

Pseudofile Description

"" (empty filename) Reuses the most recently encountered filename.

"-" Reads from standard input. In an interactive session, reads from the com-
mand window. (Terminate input with the EOF character or e.)

"+" Generates samples equally spaced x values covering the entire current plot 
range.

"++" Generates spaced x and y values covering the entire current plot range. (This 
is the two-dimensional equivalent to "+".) The number of points in the x direc-
tion is controlled by set samples, and the number of points in the y direc-
tion is controlled by set isosamples.

"< name" Reads from a subprocess via pipe.a

"| name" Writes to a subprocess via pipe.a

$heredoc Reads from a heredoc (no quotes around the name).

a Only available on Unix-like platforms.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


72 CHAPTER 4 Managing data sets and files

which you can select some with using; all the other features of the plot command can

be used as well.

 Although this feature can be used interactively, it’s mostly intended for situations

where gnuplot is used in batch mode as part of larger scripts (we’ll talk more about

that in chapter 11). When used interactively, this feature quickly becomes inconve-

nient, because (as explained earlier) gnuplot doesn’t maintain data sets in memory

and therefore all data has to be manually reentered every single time you want to plot

or replot the graph. 

4.5.2 Heredocs

Gnuplot 5 contains a new feature that makes it possible to embed data in a command

file (as opposed to a data file) or to enter data in the command window and store the

data in a variable for the duration of the gnuplot session . This is somewhat of a radical

departure, because traditionally gnuplot never maintained data in memory—data was

read from file every time the plot command was executed. This new feature is

referred to as heredocs because its syntax is modeled after the eponymous feature in

Perl and in Unix shells. (The gnuplot standard reference also calls them data blocks,

but this term is already used in other contexts. I therefore use the unambiguous here-

doc terminology for this feature, which seems justified given that these data structures

are intended to be populated through a corresponding facility.)

DEFINING AND USING HEREDOCS

You define a heredoc by preceding a variable identifier with a $ (dollar sign), followed

by the << redirection operator and an arbitrary sequence of characters that will mark

the end of the data section:

$d << EOD

Now follows the actual data section, just as if it was a data file. The data is terminated

by the end-of-data indicator (on a line by itself—the indicator must match exactly).

The entire affair may look like the following listing.

$d << EOD
1 0.5

2 0.75

3 0.99
EOD

You can now use the heredoc as you’d use a file. In particular, you can plot its contents

(note that there are no quotes around the heredoc identifier):

plot $d using 1:2

Listing 4.8 could be part of a command file; in this case, it could be loaded (with

load). Alternatively, it could be entered interactively during a gnuplot session.

Listing 4.8 Defining a heredoc

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


73Pseudofiles

 Several gnuplot commands that usually write to a file can write to a heredoc,

instead; both set print and set table accept a heredoc identifier (see section 5.3).

This makes it possible to have gnuplot commands “write” to a heredoc from within a

gnuplot session.

 No specific commands exist to populate a heredoc from a generic data file or to

persist the contents of a heredoc to disk. In contrast to other information that exists in

the session (such as gnuplot variables), the contents of a heredoc are not saved by the

save command. Using set print and set table, you can circumvent these hurdles

(we’ll come back to this in section 5.3).

 A heredoc, once defined, occupies memory. To release these resources, use

the undefine command: undefine $d. Using undefine $* drops all currently existing

heredocs.

Understanding heredocs
Heredocs are a new and somewhat controversial feature, and some of their aspects
may have changed by the time you read this. Heredocs break with several of gnu-
plot’s longstanding and fundamental design principles. It’s important to understand
how they came about.

Heredocs arose from a desire to embed data in command files, in order to enable
command files that are self-contained and don’t require a separate data file. But
because traditionally the contents of gnuplot command files can be issued without
change at the gnuplot command prompt, the syntax chosen for gnuplot’s heredocs
can be issued interactively, as well. This gives the impression that heredocs are akin
to session variables, but that isn’t how they’re meant to be used.

The result is strangely halfhearted and contradictory. Heredocs live in the session
and occupy memory, just like gnuplot variables—yet they aren’t persisted with save.
Heredocs can stand in for files in the plot and splot commands, in set print and
set table—yet they aren’t intended to be populated from generic data files.

Heredocs break with the tradition that gnuplot doesn’t maintain any memory of the
data: data had to be read from file every time it was used so that gnuplot was state-
less (with regard to data). With heredocs, data lives in the gnuplot session, giving the
impression of a data set or data frame—yet there exist no operations to manipulate
heredocs (in addition to the inability to populate them from a generic data file).

Heredocs are intended to be defined in command files, where they require a special
(albeit simple) syntax, thus breaking with the principle that gnuplot data files are
plain, unstructured, and generic text files.

Ultimately, the problem is that the heredoc design is too flexible and feature-rich for
the intended purpose. What was intended was a static (read-only) data block as part
of a command file—similar to the DATA filehandle in Perl. But the ability to define
heredocs at runtime and to maintain them in the session, independent of file access,
gives the appearance of a general-purpose data structure and invites to be used as
such. But because heredocs were never intended as general-purpose data sets,
some of the functionality you might expect is missing. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


74 CHAPTER 4 Managing data sets and files

4.5.3 Reading data from a subprocess

On platforms that support input/output redirection, gnuplot can read from a subpro-

cess via a pipe. Let’s say that a.out is a program that prints data suitable for gnuplot to

standard output. The following command runs a.out and captures and plots its output

without accessing the file system:

plot "< a.out" using 1:2

The < character must always be the first character of the filename, even when reading

from an entire pipeline. For instance, if the output of the first program a.out is piped

through a second program b.out, the gnuplot command is plot "< a.out | b.out".

 You need to watch out for several things when reading from a subprocess like this.

First, keep in mind data might be buffered by the operating system, so that gnuplot

doesn’t plot anything until the buffer is flushed or the process has finished (which is

guaranteed to flush the buffer), at which point gnuplot plots all the data received at

once. If you want to monitor a live stream with data trickling in over time, you need to

use one of the methods from section 11.6. Furthermore, if you attempt to read from

the same subprocess twice—for instance, plot "< a.out" u 1:2, "" u 1:3—gnuplot

runs the program twice (and you’ll have to wait until both instances complete). Repeat-

ing a plot command (or using the replot command) starts the subprocesses anew.

 For these reasons, it’s usually a better idea to write the process output to a file,

which can then be plotted at leisure and as often as necessary. Alternatively, you might

consider running gnuplot itself as a subprocess and piping data to it—we’ll come back

to this idea in chapter 11. 

4.5.4 Writing to a pipe

If pipes are available, gnuplot can also write to them. Because gnuplot’s output con-

sists primarily of graphs, this feature is mostly of interest for post-processing image

files. A single example will suffice.

 Among gnuplot’s terminals based on the cairo library (see section 10.3), there isn’t

one that can generate files in GIF format. The following sequence of commands uses

gnuplot’s pngcairo terminal to create a graph in the PNG format, which is then piped

through the convert utility from ImageMagick (www.imagemagick.org) to create the

desired GIF:

set terminal pngcairo
set output "| convert - graph.gif"

plot sin(x)

set output

The pipe character sends gnuplot’s output to a pipe; the dash instructs convert to

read from standard input. The final set output is necessary to flush gnuplot’s output

channel. (See chapter 10 for additional information.) 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


75Metadata in data files

4.5.5 Generating data

When gnuplot plots a function (as in plot sin(x)), gnuplot evaluates the function on

a set of equally spaced points, which are evenly distributed over the entire plot range.

The number of points is controlled by the set samples option (see section 3.1), and

the plot range is either given (in square brackets) as part of the plot command (see

chapter 2) or specified using set xrange (see chapter 8).

 Reading from the special filename "+" is like reading from a file that contains

exactly those x positions at which the function would be evaluated, in a single column.

In other words, the following two commands are equivalent:

plot sin(x)

plot "+" using 1:(sin($1)) w l

In the second command, you must specify the with lines style explicitly, because—as

far as gnuplot is concerned—you’re plotting data (not a function), and hence the

default data style applies (see chapter 9).

 The special file "++" is the two-dimensional equivalent of "+". It generates regu-

larly spaced positions on a two-dimensional grid as used by the splot command. (See

appendix C for more information about splot.)

 You probably won’t need the "+" and "++" pseudofiles often—they’re special-

purpose tools for handling certain edge cases. Sections 6.3.4, 8.2.2, 9.1.5, and F.5.1 dis-

cuss potential applications. 

4.6 Metadata in data files

Gnuplot can read a variety of (mostly textual) information from a data file in addition

to the data points being plotted. We haven’t discussed gnuplot’s string-handling facili-

ties in detail yet (we’ll do so in the next chapter), nor have we introduced the context

in which the need for metadata arises (we’ll do so in chapters 7, on decorations that

can be placed on a plot, and 8, on axes), so this section is mostly a teaser.

 Strings can be read from a data file and placed directly onto a plot using the with

labels style (see section 5.1.3 in the next chapter). With the ticslabels() family of

functions (see chapter 8), you can use strings read from a file as labels on the axes of a

plot (see section 8.3.5 and the examples in section 13.4). Special rules apply if the data

in the file represents calendar dates and times (see the section on time series in 8.4.2).

Finally, you can use the values of the first line in an input file (the column labels) as

entries in the legend or key of a plot (see section 7.4.5). Table 4.4 summarizes all the

metadata that can be found in a data file.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


76 CHAPTER 4 Managing data sets and files

 

4.7 Other file formats

In passing, let’s mention some other file formats used by gnuplot that you haven’t

seen. It’s possible to parse more complicated record formats than the ones we’ve dis-

cussed so far by passing a format string, which describes the format of each record, to

using. The format string must be compatible with the scanf() family of functions,

familiar from the standard C library. Check the standard gnuplot reference documen-

tation if you believe this is relevant to you; but given the well-known fussiness of

scanf(), this is rarely the best path forward. If a file has a format that can’t be parsed

normally by gnuplot, it’s usually a better idea to convert it to a gnuplot-compatible for-

mat using a small conversion program in Perl, awk, or a similar tool.

 Date and time strings are handled in a special way: don’t attempt to parse them

using a scanf()-like format string. Use the timecolumn() function (see table 4.2) or

the special commands described in section 8.4, instead, to parse and process such

data.

TIP Time and date information constitutes a special case. Use gnuplot’s ded-
icated facilities for handling such data (see section 8.4.2).

In addition to the regular, column-oriented, tabular file format you’ve seen up to this

point, gnuplot can also handle data on a two-dimensional grid. There are two formats

to choose from: one that contains the data values together with the coordinates of the

grid points, and a packed “matrix” format. We’ll discuss them in appendix C on multi-

dimensional plots.

Table 4.4 Metadata in data files

Section Description

# 4.3.2 If found at the beginning of a line, treats the entire line as 
a comment.

plot skip n 4.1.1 Skips the first n lines.

index name 4.2.1 Identifies a data set in a file by a unique identifier in the 
comment line immediately preceding the data block.

Named column 4.4.1 Identifies a column by a name, which is found in the first 
non-comment line of the file.

Key entry explanations 7.4.5 Reads explanations to be used in the graph’s key from the 
first non-comment line of the file.

with labels 6.3.5 Reads text labels from the data file and places them on 
the graph.

xtics(col) 8.3.5 Reads tic labels from column col in the data file.

set xdata time 8.4.2 In time-series mode, reads and parses appropriately for-
matted strings as timestamps. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


77Summary

 Finally, gnuplot can read certain binary packed file formats. Again, if this is rele-

vant to you, I suggest the standard gnuplot reference documentation. Unless you have

particular needs, I recommend that you stick with text files.

4.8 Summary

Gnuplot is all about graphing data, and in this chapter we covered how to get data

into gnuplot. You learned about data files and formats. Gnuplot reads data from text

files, which are portable, easy to generate, and easy to modify.

 You learned how to keep multiple data sets in a single data file and select from

them with index, and how to select a subset of records with every. You also learned

different ways to identify and access individual columns in a data file.

 We discussed pseudofiles, which are data sources that don’t live on the disk, and we

also mentioned that gnuplot can read data from another process (if it’s installed on a

platform that permits it). Finally, we took a brief look at other information you can

find in a data file and mentioned alternative file formats in addition to the whitespace-

separated columns we’ve concerned ourselves with exclusively until now.

 This concludes what you need to know to get started doing data analysis using gnu-

plot. In the next chapter, we’ll turn away from gnuplot’s core functionality of dealing

with data and generating plots, and instead talk about a host of useful features that

make your work with gnuplot easier.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


78

Practical matters:
strings, loops, and history

In the previous chapters, we looked at ways to manipulate and visualize data using

gnuplot, which is the core task that gnuplot was designed for. In this chapter, we’ll

sidestep the presentation of gnuplot’s graphic capabilities and introduce some

foundational features that will be useful later.

 First you’ll learn about strings and textual information. Although gnuplot is pri-

marily a tool for creating graphics, textual labels are nevertheless very important: it’s

only through information expressed in a human language, which tells the user

what is displayed, that a graph receives meaning and semantics. In addition, strings

are used in and by gnuplot as a general-purpose data structure—that’s another rea-

son to pay attention to them.

This chapter covers

 Strings and textual data

 String operations and macros

 Inline loops

 Internal variables and the stats command

 Command history

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


79Strings

 We’ll then introduce some facilities that make it easier to work with gnuplot: inter-

nal variables allow you to inspect gnuplot’s internal state and use this information to

adjust options accordingly; and inline loops can help significantly reduce the number

of keystrokes required when your commands contain repeated operations (for

instance, when dealing with a large number of files). As a last topic, we’ll introduce

gnuplot’s command history.

 Although they don’t produce graphs themselves, the features introduced in this

chapter all help you be more productive with gnuplot. The effort to learn them will

pay off!

5.1 Strings

In this section, we’ll first look at the way strings are defined and then introduce opera-

tions that gnuplot can perform on strings, before moving on to some example appli-

cations that demonstrate what you just learned. This section concludes with a lengthy

digression on Unicode and UTF-8: this may sound boring, but it is, in fact, extremely

good news, because it greatly simplifies the handling of mathematical symbols and

other special characters.

 Although it may not be apparent yet, strings are tremendously important in gnu-

plot, because they serve three different purposes:

 Strings as descriptions—Strings have an obvious use as textual descriptions. This

is no small matter. Only through textual description can you convey semantic

information: what the data means that’s shown in the graph. A graph without

labels is mute.

 Strings as data structures—Strings are gnuplot’s only complex data structure and

are therefore used (or abused) as a general-purpose container type.

Whitespace-separated strings of tokens frequently stand in for proper arrays,

and functions exist to extract an individual token by its index (mimicking the

access of an array element). In the absence of proper alternatives, strings are

the only iterable data structure required by loops.

 Strings as macros and functions—Strings containing gnuplot commands can be

executed at runtime. In the absence of subroutines, strings are one way to bun-

dle several commands into a single callable unit. Moreover, because strings can

be built up at runtime, it’s possible to use them in a fashion resembling closures

in certain dynamic programming languages.

We’ll pursue some of the more creative uses for strings further in chapters 11 and 12.

In this chapter, we’ll lay the foundations by treating strings as holders of textual infor-

mation. We’ll also give a preview of their array-like application when we introduce

inline loops in section 5.4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


80 CHAPTER 5 Practical matters: strings, loops, and history

5.1.1 Quotes

You can assign a string constant to a gnuplot variable. String constants must be

enclosed in quotes—either single or double. The difference is that escaped control

characters (such as \n) are interpreted as control characters within double -quoted

strings but are treated literally (that is, not interpreted) inside single -quoted strings

(reminiscent of the behavior of Perl strings, for instance).

 A double-quoted string can contain single quotes; to obtain a double quote inside

a double-quoted string, it must be escaped with a preceding backslash. Within single-

quoted strings (which don’t recognize the backslash as an escape operator), you can

get a single quote by doubling it:

a = 'This is a string.'

b = "First Line\nSecond Line."

c = "Double quote\" escaped."

d = 'Single quote'' escaped.'

TIP Backslash-escaped control characters are interpreted as control charac-
ters inside double -quoted strings but are treated literally inside single -quoted
strings. 

5.1.2 String operations

Strings can be assigned to variables just as numbers can. Strings are converted to num-

bers silently, if possible. But only integers (not floating-point numbers) are promoted

to strings:

x = '3.14'

y = 2 + x

a = 4
b = 'foo' . a

z = 0.0 + x
c = '' . z

TIP Depending on the context, gnuplot automatically interprets the value of
a parameter as number or as string. If necessary, you can coerce evaluation as
number by adding 0.0 or as string by concatenating an empty string.

Three operators and a handful of functions act on strings. The first operator is the

concatenation or dot operator:

a = 'baz'
b = "foo" . 'bar'

c = b . a

The other two operators are comparison operators for use in conditionals: eq (equal)

and ne (not equal). The first returns true if both of its arguments are equal, and the

second returns true if they differ:

String
Promotes to number: now y = 5.14

Number (integer!)
Promotes to string: now b = 'foo4'

Forces evaluation as number
Forces evaluation as string

c is now "foobarbaz".

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


81Strings

a = 'foo'
b = 'bar'

c = a eq 'foo' ? 'equal' : 'different'

Strings can be indexed like arrays, using a syntax similar to the syntax used to indicate

plot ranges:

a = "Gnuplot"

b = a[2:4]
c = a[4:]

The first character in the string has index 1 (not 0!). Also notice that both limits are

inclusive. If you leave either the beginning or the end of the substring empty, it will

default to the beginning or the end of the entire string, as shown.

TIP The first character in a string has index 1 (not 0). Index ranges for sub-
strings are interpreted inclusively at both ends.

A small set of functions is available to analyze and parse strings (see table 5.1). You can

also define your own string functions, in the same way you define functions that oper-

ate on numbers:

head( s ) = s[1:3]

a = head( "January" )

Table 5.1 String functions

Function Description

strlen( "str" ) Takes a string and returns the number of characters in the string.

substr( "str", i, j ) Takes a string and two integers. Returns the substring beginning at 
i and ending at j, inclusive. Equivalent to str[i:j].

strstrt( "str", "key" ) Takes two strings. Returns the index of the first character of the 
string key in the string str, or zero if not found.

words( "str" ) Takes a string. Strips the leading and trailing whitespace and then 
breaks the string into tokens on whitespace. Returns the number 
of tokens found. Newlines and tabs are interpreted as whitespace 
only if the string was double-quoted.

word( "str", n ) Takes a string and an integer. Strips the leading and trailing 
whitespace and then breaks the string into tokens on whitespace. 
Returns the nth token found. (Tokens are counted starting at 1, 
not at 0.) Newlines and tabs are interpreted as whitespace only if 
the string was double-quoted.

sprintf( "format", ... ) Takes a format string and an arbitrary number of arguments. 
Returns a formatted string. Equivalent to the sprintf() function 
in the C standard library.

b is now "nup".
c is now "plot".

a is now "Jan".

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


82 CHAPTER 5 Practical matters: strings, loops, and history

5.1.3 Worked example: plotting the Unix password file

As a crazy example of what’s possible, let’s plot a typical Unix password file with gnu-

plot! Listing 5.1 shows the file. (For non-Unix users: each line in the file describes a

user. Each line consists of several fields, separated by colons. The first field is the user-

name, the third field is a numeric user ID, and the fifth field is a textual description of

the user. The other fields are of no relevance here.)

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash

daemon:x:2:2:Daemon:/sbin:/bin/bash

ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
games:x:12:100:Games account:/var/games:/bin/bash

ldap:x:76:70:User for OpenLDAP:/var/lib/ldap:/bin/bash

lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false

man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash

mysql:x:60:108:MySQL database admin:/var/lib/mysql:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash

ntp:x:74:103:NTP daemon:/var/lib/ntp:/bin/false

postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false
sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false

uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash

wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false

To plot this file, you need to set the field separator to be the colon (:); you can then

plot the file using the with labels style (see chapter 7). Just for fun, I’ll also make the

letter 'm' the comment character. Verify how records starting with an 'm' don’t

appear in the graph. (See section 4.3 for details of the file-format specifications.)

 In the plot (see listing 5.2; the resulting graph is shown in figure 5.1), the numeric

user ID is used as the x coordinate and the line number in the file as the y coordinate.

The label, printed at the resulting position, consists of each user’s login name, stacked

(by virtue of a newline character) on top of the textual description of the user.

gprintf( "format", ... ) Takes a format string and a single argument to format. Returns a 
formatted string. Similar to sprintf() but uses gnuplot’s format 
specifiers (compare table 8.2).

value( "string" ) Takes the name of a gnuplot variable as a string and returns the 
current value of that variable. (This is useful if the name of the vari-
able is determined or constructed at runtime. See the examples in 
section 11.1.2.)

system( "string" ) Takes a shell command as string and executes it in a subshell. 
Returns the output of the shell command. (You can find more 
details in chapter 11.) 

Listing 5.1 Data for figure 5.1 (file: passwd)

Table 5.1 String functions (continued)

Function Description

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


83Strings

 

set datafile separator ':'
set datafile commentschar "m"

plot [-10:90][0:15] "passwd"

➥     u 3:($0+2):( stringcolumn(1) . "\n" . stringcolumn(5) ) w labels

Listing 5.2 Commands for figure 5.1 using data from listing 5.1 (file: passwd.gp)

 0

 2

 4

 6

 8

10

12

14

 0  20  40  60  80

/etc/passwd

at

daemon

ftp

games

ldap

lp

news

ntp

postfix

sshd

uucp

wwwrun

Batch jobs daemon

Daemon

FTP account

Games account

User for OpenLDAP

Printing daemon

News system

NTP daemon

Postfix Daemon

SSH daemon

Unix-to-Unix CoPy system

WWW daemon apache

Figure 5.1 Demonstrating string functions and the with labels plot style: plotting the 

Unix password file with gnuplot. See listing 5.1 for the data and listing 5.2 for the commands.

Unicode and UTF-8
Gnuplot 5 can handle Unicode strings that are encoded using UTF-8. Although this
may sound like the typical configuration and localization nightmare, it’s actually really
good news—once you understand why.

Unicode

Unicode is based on the concept of a character. A character is a logical abstraction,
such as “the first capital letter in the Latin alphabet” (that is: the letter A), or the
“question mark” character (?). In Unicode, every character is identified by a unique

integer value, known as that character’s code point. Unicode defines over 1 million
code points, which are usually specified as U+xxxx, where each x stands for a hexa-
decimal digit. The capital letter A, for instance, can be found at code point U+0041.a

a You can find tables of Unicode characters and their code points on the Unicode website:
www.unicode.org/charts.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.unicode.org/charts
http://www.it-ebooks.info/


84 CHAPTER 5 Practical matters: strings, loops, and history

(continued)

Separate from the notion of the character is the concept of the glyph. A glyph is the
geometric shape or symbol used to represent a character visually. The same (logical)
character can be represented by a different glyph, depending on the typeface or font.b

Here comes the first possible stumble: not every font provides a glyph for every pos-
sible code point—in fact, most fonts map only a small subset of characters. That
shouldn’t be surprising: a calligraphic font designed to print wedding invitations (in
English!) need not include glyphs for mathematical symbols or for characters from
Asian languages. Hence it’s essential to use a font that provides glyphs for all the
characters you want to display. Fortunately, several open source fonts exist that pro-
vide a wide variety of glyphs that may be useful in scientific or technical contexts. I
recommend Nimbus Sans L, which is designed to be similar to Helvetica. A good font
manager is helpful for browsing available fonts and glyphs—if you don’t have a pref-
erence yet, you might want to check out Fontmatrix.c (I’ll have more to say about font
name resolution in gnuplot in chapter 10.) 

It’s important to remember that a Unicode code point uniquely identifies a character
and that the only remaining task is to find a font that provides a glyph for that char-
acter. All this is very different from the old way of doing things, where the number of
characters was limited to 255 and different encodings were used to map these 255
characters to different glyphs, depending on the language or symbols you wanted to
use. In the first edition of this book, I explained how to switch from the main text font
(such as Helvetica) to the Symbol font to get access to Greek letters and a (limited)
choice of mathematical symbols. Although changing fonts is still possible, there is
much less need for it today, because a single font can provide not only Latin letters
but also a wide range of mathematical and geometric symbols, as well as letters from
non-Latin alphabets.

UTF-8

I haven’t yet explained how a Unicode string is represented internally. Fortunately,
you (for the most part) don’t need to know. 

Clearly, one byte per character isn’t enough to represent all the 1.1 million possible
Unicode characters, and several encoding schemes have been developed to map Uni-
code characters to “bits and bytes.” The good news is that one encoding came out
as the clear winner: UTF-8.d It isn’t necessary to know anything about the (very clever)
details of UTF-8, as long as you stick with UTF-8 always and exclusively. 

b Technically, the typeface is the abstract design, whereas the font is an implementation of
that design. In the times of hot-lead typesetting, that distinction was a lot more important
than it is today: you had to be in physical possession of the metal pieces that made up a
“font” to be able to print something.

c Although its development seems to have been stagnant for several years, the currently avail-
able version works well and is available for a large number of Linux distributions.

d It’s amusing to note that UTF-8 was designed, quite literally, on the back of a napkin: see
Rob Pike’s “UTF-8 History” at http://mng.bz/TuD3.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://mng.bz/TuD3
http://www.it-ebooks.info/


85String expressions and string macros

TIP All strings in gnuplot (and the libraries it uses) can handle Unicode
that’s encoded using UTF-8. Together with an appropriate font, this should
take much fear out of handling special characters in gnuplot. For best results,
make sure to set the encoding explicitly to UTF-8 using set encoding utf8. 

5.2 String expressions and string macros

The string-handling capabilities just introduced make it possible to construct com-

mand lines programmatically. Specifically,

 Wherever a command expects a string, a string expression can be substituted.

 The eval command takes a fixed string and executes it as if its contents were

entered at the command line.

If you present your strings to gnuplot in UTF-8 (and use a font that provides glyphs for
all characters in your strings), things will “just work.”

This brings us to the second possible stumble: how to generate arbitrary strings
encoded in UTF-8. The most common case (in my experience) is that I know the code
point for a character I want to use (like the “white smiling face” character found at
code point U+263A)—but gnuplot isn’t prepared to handle code points directly. I must
translate the code point to a UTF-8 encoded string first.

There are several ways to do that. Some combination of keys on your keyboard may
generate the desired character in the interactive terminal already. Your favorite editor
may allow input of characters by code point or Unicode name:e you can then save the
string to file and let gnuplot read it, or cut-and-paste the string from the editor window
to the gnuplot session (yes, this works). Finally, current programming languages gen-
erally can handle both Unicode and UTF-8. In Python, for example, the following
works:

python>>> print u'\u263a'.encode( 'utf-8' )

python>>> print unichr( 0x263a ).encode( 'utf-8' )

Choosing an encoding

To take full advantage of Unicode, the encoding must be set to UTF-8:

set encoding utf8

This isn’t necessarily selected by default, so you probably want to include this com-
mand in your gnuplot initialization file (see section 12.5.1). Not all terminals support
all encodings, but contemporary terminals will usually work with both Unicode and
UTF-8.  

e In Emacs, for instance, typing C-x 8 RET, followed by the code point in hex or the Unicode
name, will work—note that tab-completion of the name is available. You may also want to
check out the TeX input method: you enable it using C-x RET C-\, followed by TeX. You can
now input Greek letters and other symbols as in LaTeX: for instance, typing \lambda will pro-
duce the corresponding Greek letter.

Unicode literal

Function call

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


86 CHAPTER 5 Practical matters: strings, loops, and history

 By prefixing a variable containing a string with the @ character, you can create

macros that can be used even in places where gnuplot doesn’t expect to find a

string expression.

Let’s look at these options in a bit more detail.

5.2.1 String expressions in commands

As just pointed out, anywhere a command expects a string, you can substitute a string

expression. For instance, this will work just fine:

file = "data.txt"

desc = "My Data"

plot file title desc

 You can also use functions that return a string. Here, a function provides the file

extension for you:

f( x ) = x . '.txt'

plot f( 'data' )

The example is whimsical, of course, but it’s easy to come up with more useful applica-

tions. The string functions (see table 5.1) are often helpful in this context. 

5.2.2 Executing a string with eval

The eval command takes a string (or string expression) and executes it as if its con-

tents had been issued at the command prompt. This is occasionally useful when you

want to use string functions to build up a command line dynamically at runtime.1

 Here’s an example. Exporting a graph to a file requires several steps (choosing the

terminal and filename, regenerating the graph, and restoring the original state). You

can facilitate this process by using a function that builds up a string containing all

required steps:

export( file, terminal ) = sprintf(

➥ "set t push; set t %s; set o '%s'; replot; set o; set t pop",

➥ terminal, file )

When supplied with the desired filename and terminal type, this function returns a

string consisting of all the required gnuplot commands to export the most recent

graph. This string can be executed using eval. In fact, the function can be invoked

simultaneously with the eval command:

eval export( "graph.pdf", "pdfcairo" )

1 At a deeper level, this reflects a fundamental limitation of gnuplot’s functions. Gnuplot functions must be
defined in terms of expressions. It isn’t possible to define a function as a sequence of commands. Building up
a complicated string and executing it is a way to group several commands together.

Assigns the string "data.txt" to a variable
Assigns the description to a variable

Equivalent to “plot "data.txt" title "My Data"”

Plots the contents of "data.txt"

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


87String expressions and string macros

This works and is probably the most elegant way to export a graph to file. (The export()

function as defined here uses the pseudoterminals push to store the most recently used

terminal settings and pop to restore the original terminal. See section 10.1.2 for details.)

 It isn’t necessary for the string to be built up dynamically; you can use the same

process to create convenient shorthands. For example, in appendix D, you’ll learn to

define color gradients. The definition of palettes is a bit wordy, so it may be conve-

nient to define appropriately named string variables (possibly in your gnuplot config-

uration file—see chapter 12) and then execute them:

redblue = "set palette defined( 0 'blue', 1 'white', 2 'red' )"

eval redblue

5.2.3 String macros inside commands

When you want to replace part of a command line where gnuplot doesn’t expect a

string, you can’t use a string variable (or string expression) directly. Instead, you must

resort to a string macro.2 String macros let you insert the contents of string variables at

arbitrary positions in a gnuplot command. Here’s an example:

cols = "using 1:3"

style = "with lines"

plot "data" @cols @style

The symbol @ in front of a variable name indicates that the value of the variable

should be interpolated into the command line at the current location. The command

line is evaluated after all string macros have been expanded.

 Macros aren’t evaluated within quotes (either single or double), but you can usu-

ally achieve the desired effect through simple string manipulations. This example

shows both situations:

tool = "(made with gnuplot)"

set title "My plot @tool"

set title "My plot " . tool

Only string variables are evaluated when prefixed with an @—more general string

expressions aren’t. The return value from a string function must therefore always be

assigned to a variable before it can be evaluated. Also keep in mind that string macros

are evaluated only once: when the command line containing the macro is parsed. You

also can’t define and use a macro in the same command line. 

2 At the time of this writing, the future of string macros in gnuplot is a bit uncertain. You can run show
version long and look for an entry of the form +MACROS to see whether macros are enabled in your gnuplot
installation. In previous gnuplot versions, macro processing had to be explicitly enabled using set macro;
this is now the default.

Define

Execute

Assigns a string variable
Assigns another one

Equivalent to “plot "data" using 1:3 w lines”

String variable

Macro expansion doesn’t work …
… but string concatenation is fine!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


88 CHAPTER 5 Practical matters: strings, loops, and history

5.3 Generating textual output

Gnuplot creates graphs—after all, that’s the whole point! Nevertheless, sometimes it’s

useful to have gnuplot create textual output. For example, you may want to export the

results from gnuplot’s spline-interpolation algorithm to a file so you can use them in

another application. Or you may have applied an inline data transformation and want

to get your hands on the resulting data.

 Gnuplot has two facilities for generating text: the print command and the set

table option. Although they may seem similar, they’re intended for different uses:

 The print command evaluates expressions and displays their results as text.

 The table facility generates a textual description of the output of the plot or

splot command. Instead of a graph of the data, the table style produces a rep-

resentation of the data in textual format. In this way, it’s akin to the set terminal

command, which is used to choose the output format for the plot or splot com-

mand. (In previous versions of gnuplot, what is now the set table facility was

exposed as a terminal.)

5.3.1 The print and set print commands

The print command evaluates one or more expressions (separated by commas) and

prints them to the currently active printing channel—usually the screen:

print sin(1.5*pi)
print "The value of pi is: ", pi

This example demonstrates the two typical uses for the print command:

 Evaluating expressions (effectively, using gnuplot as a calculator)

 Inspecting the current value of variables and heredocs

THE SET PRINT OPTION

You can change the device to which print sends its output by using the set print

option:

set print  

set print "-"  

set print "{str:filename}" [ append ]   
set print $heredoc [append]  

By default, print sends its output to standard error (usually the current terminal if gnu-

plot is run interactively). But output can be redirected either to standard output (using

the special filename -) or to a regular file (by giving the filename as argument to set

print). Each invocation of set print creates a new file (clobbering any existing file of

the same name), unless you specify the additional keyword append. The destination file

may be a pseudofile (see section 4.5.1): on systems that support input/output redirec-

tion, you can specify a shell command as recipient of the output from print by starting

the filename with the pipe symbol (|). You can also send the output from print to a

heredoc so it can be used subsequently in the same gnuplot session.

Prints to standard error
Prints to standard output

Prints to file
Prints to heredoc

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


89Generating textual output

 Some gnuplot commands that generate textual output use the set print option

internally to determine where to send their output. (An example is the show palette

palette command; see section D.2.4.) 

5.3.2 The set table command and the with table style

The set table facility gives you access to the data that makes up a graph as text. In

other words, using set table, you can obtain the values of all points shown in a plot

as numeric expressions.

 The command to generate output as numbers, as opposed to graphics, is set

table:

set table [ "{str:filename}" | $heredoc ] 

As long as set table is active, all output is directed to the specified file (or to the cur-

rent value of set output if no file was named). To return gnuplot to creating graph-

ics, use unset table. (Don’t forget!) You can also use a heredoc as the destination.

 It’s important to remember that set table doesn’t generate output: it merely

selects a channel to which the output is sent. Only the plot, splot, replot, and

refresh commands generate output. One of them must be issued after set table;

otherwise, the resulting file will be empty. You can use the with table style to sup-

press any graphics-related processing when doing so:

set table "output.txt"

plot "data" u 1:2 with table

unset table

Both x and y values are printed to the file as two separate columns. If the plot contains

several curves, they’re written to the file one after another, as separate data blocks.

The data format for each column is equal to the format used for the tic labels of the

corresponding axis (see section 8.3.3). The third column contains a marker indicat-

ing whether this data point was within the plot range or outside of it: i for “inside,”

o for “outside,” or u if the point is undefined.

 For data from a file, only the data points read from the input file are written to the

output file. For functions, including Bézier and spline approximations, the number of

data points depends on the value of the set samples option (see section 3.1).

 You can also redirect the output to a heredoc using the set table facility. For

example, if you want to use the results of one of gnuplot’s smoothing algorithms (see

section 3.5) in subsequent calculations, a heredoc is a convenient way to do so. In sec-

tion F.6, I’ll first use plot ... smooth cumul to calculate the cumulative distribution

function, store the result in a heredoc, and later apply an inline transformation to

generate a probability plot. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


90 CHAPTER 5 Practical matters: strings, loops, and history

5.3.3 Reading and writing heredocs

No explicit commands exist to save the contents of a heredoc to a file or to populate a

heredoc from a general data file, but both tasks can be accomplished through creative

use of the techniques just discussed. Remember that the contents of a heredoc aren’t

included in the information persisted with save. Instead, you have to use print.

Assuming that a heredoc called $d exists in the current session, these commands will

persist its contents to a file called data:

set print "data"

print $d
unset print

To populate a heredoc from a data file, use set table:

set table $d
plot "data" with table

unset table

Writing heredocs with print isn’t a problem, but reading heredocs from file using set

table is subject to some limitations. First, no more than 14 columns can be read at a

time. More important, the with table style is only suitable for numeric data. If

you want to read strings into a heredoc, you must use the with labels style. But the

with labels style requires exactly three columns in the using specification (typically

x-position, y-position, and the string itself—see section 6.3.5). This means, among

other things, that you can only read in a single string column per heredoc instance. 

5.4 Simplifying work with inline loops

Recently, gnuplot has acquired features commonly associated with programming lan-

guages: loops and conditionals. We’ll investigate them in detail in chapter 11. But the

looping facility also has a shorthand version that is so simple and useful that I’ll intro-

duce it here.

 This shorthand is a form of for loop that is used to simplify plot and set com-

mands that contain a repeated element. The loop is embedded in the plot or set

command, which is why I call them inline loops. (This terminology isn’t used in the

standard gnuplot reference documentation.) A few examples will clarify.

5.4.1 Loops over numbers

Let’s assume that you wish to plot the second, third, and fourth columns of a file

against the first. You’ve learned how to do this:

plot "data" u 1:2 w l, "" u 1:3 w l, "" u 1:4 w l

For three columns, it isn’t a big deal to type this out explicitly, but you can see how quickly

it will become tedious if you include more columns. This is where the looping construct

comes in handy. You can obtain the same plot as in the previous command as follows:

plot for [j=2:4] "data" u 1:j

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


91Simplifying work with inline loops

The variable j is set to the values 2, 3, and 4, successively; and the data from all three

columns is included in the graph. Notice that there are no parentheses around the

second column specifier.

 The body of the loop extends to the first comma, and multiple loops can be com-

bined in the same plot command:

plot for [j=2:4] "data1" u 1:j, "data2" u 1:2

plot for [j=2:4] "data1" u 1:j, for [j=2:4] "data2" u 1:j

The first of these commands plots three columns from data1 and a single column

from data2. The second command plots three columns from data1 together with

three columns from data2.

 The loop condition is specified in square brackets

for [ variable = start : end : increment ]

where the increment defaults to 1 if it isn’t included explicitly. A negative increment is

possible and will lead to a descending loop. An increment value that isn’t an integer

will be truncated to the next integer. (Gnuplot truncates the same way C does: (int)1.5 =

1, but (int)-1.5=-1.)

 Both the start and end points of the loop are inclusive. In other words, gnuplot’s

for loop is equivalent to the following construct in a C-like language:

for( var = start; var <= end; var += increment ) {...}

All the examples so far have used the plot command, but the same operations are

also available for set. For instance, the following command places a text label at three

positions on the graph (I haven’t formally introduced the set label option yet; we’ll

remedy that in chapter 7):

set for [j=1:3] label "Here!" at j,0

5.4.2 Loops over strings

In the previous examples, the loop extended over a range of numbers. This is conve-

nient if you want to select columns from a file. But what if you want to loop over a

bunch of files? To do that, you need to loop over strings. As it turns out, you can do

this, too.

 To make this concrete, let’s say that you want to plot the daily temperatures as mea-

sured in three cities. The observations are contained in files named according to the

locations. The following two commands are equivalent:

plot "newyork" u 1:2, "chicago" u 1:2, "sanfranciso" u 1:2

plot for [name in "newyork chicago sanfranciso"] name u 1:2

The loop condition in this case is

for [ variable in tokenstring ]

where tokenstring is a string of whitespace-separated tokens.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


92 CHAPTER 5 Practical matters: strings, loops, and history

 String operations are available when using loops. For instance, you can use string

concatenation with the . (dot) operator to build up more complicated filenames:

plot for [name in "newyork chicago sanfranciso"] name . ".txt" u 1:2

The word() and words() functions (see table 5.1) may come in handy. Remember:

words(s) returns the number of tokens found in the string s; word(s,k) returns the

kth token found. For example, the following command iterates over all files. For each

file, it plots the second against the first column, but it also adds a vertical offset:

files = "newyork chicago sanfranciso"

plot for [j=1:words(files)] word(files,j) using 1:($2+5*j)

5.4.3 Summary of inline loops

Inline loops are a new addition and have the potential to change the way you interact

with gnuplot. For this reason, I want to summarize their most relevant features.

TIP Become familiar with inline loops. They can help a lot, in particular if
you work with many files or with files containing a large number of columns.

Inline loops are available for the plot and set commands. In both cases, they follow

directly after the command keyword. The loop’s body extends to the next comma (for

plot) or to the end of the command line. Loops can extend over numeric ranges or

over the tokens found in a string. (See the following listing.)

plot for [ variable = start : end : increment ] ...
plot for [ variable in tokenstring ] ...

set for [ variable = start : end : increment ] ...

set for [ variable in tokenstring ] ...

For numeric ranges, the loop includes both start and end points. The increment

should be an integer; it’s truncated to an integer otherwise. For iteration over strings,

the loop condition consists of a string of whitespace-separated tokens.

 Finally, I’d like to point out that inline loops nest. The following is legal and works

as expected:

set for [j=1:3] for [k=1:3] label sprintf( "%d-%d", j, k) at j,k

Inline loop expressions are evaluated statically when the command is first parsed.

This means you can’t use the value of the first loop variable to control the range of

the second loop dynamically: set for [j=1:3] for [k=1:j] ... does not work as

expected. You must use one of the general looping constructs for such applications

(see chapter 11). 

Listing 5.3 Inline loop syntax for the plot and set commands

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


93Gnuplot’s internal variables

5.5 Gnuplot’s internal variables

The frequent use of internal variables is a relatively recent trend in gnuplot develop-

ment. I use the term internal variable to refer to variables that are set by gnuplot itself

and that can be read out by the user to investigate various aspects of gnuplot’s internal

state. The purpose of these internal variables is twofold:

 To make information about gnuplot’s internal state available to user-defined

functions and expressions

 To report the result of an internal calculation back to the user

If you know the name of a specific variable, then you can inspect its value using print,

and you can use it in expressions just like a user-defined variable (as introduced in sec-

tion 3.2.3). If you don’t know the variable name, you can list all currently defined vari-

ables using

show variables all

To avoid conflicts with user-defined variables, the names of internal variables are pre-

fixed by strings in capital letters (see table 5.2). You can restrict the show command to

variables beginning with a certain prefix. For example,

show variables GPVAL

only shows internal variables with names beginning with GPVAL. (Note that there are

no quotes around the prefix in the argument to the show command.)

An example will help to clarify. In section 3.5.2, you learned that the smooth kdens

algorithm can calculate a default bandwidth. Upon completion of the plot ...

smooth kdens command, the internal variable GPVAL_KDENSITY_BANDWIDTH contains

the numerical value of the default bandwidth. I also mentioned that this default

bandwidth often appears too broad to reveal all the details in the data. You may

therefore want to redraw the graph with a bandwidth that is (for instance) half the

Table 5.2 Prefixes used for internal variables

Prefix Description

GPVAL_ For general-purpose variables, most of which refer to the most recent plot and graph 
(see section 9.5.4).

GPFUN_ For every user-defined function (see section 3.2.3), the function definition—as a 
string—is stored in an internal variable prefixed with GPFUN_, followed by the name of 
the user-defined function.

MOUSE_ For variables containing information about mouse events (see section 12.4.3).

STATS_ For variables set by the stats command (see section 5.6).

FIT_ For variables used by the fit command (see section F.7).

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


94 CHAPTER 5 Practical matters: strings, loops, and history

default bandwidth. You can achieve this effect through the sequence of the following

two commands:

plot "data" u 1:(1) s kdens

plot "data" u 1:(1) s kdens bandw 0.5*GPVAL_KDENSITY_BANDWIDTH

You first need to run the plot command without specifying a bandwidth, because this

operation creates and populates the internal variable. This leads us to two important

properties of internal variables:

 Internal variables are only created when needed. Before the first plot command (in a

newly started gnuplot session), most internal variables aren’t just empty—they

aren’t even defined (as show variables all will tell).

 Internal variables are read-only. Internal variables inform the user of gnuplot’s

internal state, but not the other way around: assigning a new value to such a

variable does not change gnuplot’s behavior (even if gnuplot allows the assign-

ment, the new value is silently ignored). Assigning to internal variables isn’t a

way to modify options: you must use the set command to do that.

Not all option values can be inspected through internal variables at the moment, but

it’s relatively easy to add a new internal variable to the gnuplot implementation (if

you’re a gnuplot developer, that is). You should therefore expect that the information

available through internal variables will grow over time. Use show variables all to

see what’s been included by the time you read this. 

5.6 Inspecting file contents with the stats command

With gnuplot’s stats command, you can examine the contents of a file and obtain

information about the number of valid and invalid records, as well as find summary

statistics (such as mean and standard deviation) for each column. The results are

made available through internal variables (see section 5.5) and can therefore be used

in subsequent calculations.

 The syntax of the stats command is similar to that of plot. To examine the men’s

results from listing 3.1, you can use

stats "records" u 1:2

The complete output is shown in listing 5.4. The first part gives some information

about the data file itself, such as the number of records, the number of blank lines,

and the number of data blocks (that is, blocks of consecutive records separated by

double blank lines). The entry labelled Out of range indicates the number of records

disregarded because they’re eliminated by the application of ranges (using ranges

with stats is discussed in a moment). The subsequent parts of the output give the

value for several typical summary statistics, such as mean and standard deviation.3

3 In general, the definitions for the various quantities are taken from their respective entries in Wolfram Math-
World (http://mathworld.wolfram.com). The abbreviation Avg Dev stands for the mean absolute deviation
from the mean. The standard gnuplot reference documentation provides some additional details.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://mathworld.wolfram.com
http://www.it-ebooks.info/


95Inspecting file contents with the stats command

 The second-to-last block in the output shows extremal values and percentile statis-

tics. For the minimum and maximum, the number of the record where the extremal

value is reached is displayed in square brackets. To find the median and quartiles, the

data is sorted first. If the number of records N is odd, then the value of the record at

position (N+1)/2 is reported as the median; if the number of records is even, then the

mean of the two points at positions N/2 and 1+N/2 is reported. Equivalent treatment is

used for the quartile values. The final section shows the result of a linear regression

calculation, when treating the first column as a predictor for the second.

* FILE:

Records: 11
Out of range: 0

Invalid: 0

Blank: 0
Data Blocks: 1

* COLUMNS:

Mean: 7753.9091 1287.8518

Std Dev: 12439.9995 2169.5345
Sample StdDev: 13047.1815 2275.4270

Skewness: 1.9336 2.0063

Kurtosis: 5.5228 5.7949
Avg Dev: 9095.9091 1562.0000

Sum: 85293.0000 14166.3700

Sum Sq.: 2.36364e+09 7.00199e+07

Mean Err.: 3750.8010 654.1393

Std Dev Err.: 2652.2168 462.5463

Skewness Err.: 0.7385 0.7385
Kurtosis Err.: 1.4771 1.4771

Minimum: 100.0000 [ 0] 9.5800 [ 0]

Maximum: 42195.0000 [10] 7377.0000 [10]
Quartile: 400.0000 43.1800

Median: 1500.0000 206.0000

Quartile: 10000.0000 1577.5300

Linear Model: y = 0.1743 x - 63.9

Slope: 0.1743 +- 0.001633

Intercept: -63.9 +- 23.94
Correlation: r = 0.9996

Sum xy: 4.066e+08

5.6.1 The stats command and internal variables

The stats command makes all of its results available through internal variables. To

prevent clobbering existing variables, the prefix STATS_ is prepended to all variable

names. Furthermore, the suffix _x or _y, respectively, is appended to the variable

name to indicate the first or second column; if only a single column is identified in

the using specification, no suffix is appended. (Use the show variables command to

list all the variables, their names, and their values.)

Listing 5.4 Typical output from the stats command

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


96 CHAPTER 5 Practical matters: strings, loops, and history

 Let’s look at an example. The following code snippet prints the mean of the first

and second columns to screen:

stats "records" u 1:2

print STATS_mean_x, STATS_mean_y

You can change the prefix with the name keyword. (You can’t leave the prefix blank or

empty.) For example, to use the string "REC" as a prefix, you use this command:

stats "records" u 1:2 name "REC"

Custom prefixes can be useful if you’re working with multiple files. By prefixing each

set of variables with its own identifier, you can compare summary statistics across sev-

eral data sets.

A WORKED EXAMPLE

Because stats assigns all of its results to internal variables, they can be used seamlessly

in subsequent operations. Here’s an example. Back in section 3.5.2, you learned about

gnuplot’s smooth kdensity feature. I also pointed out that to obtain a normalized esti-

mate, it is necessary to give each data point a weight equal to 1/n, where n is the num-

ber of points in the data set. Back in chapter 3, I supplied the number of points

manually and explicitly. Now, using stats, I can do better:

stats "measurements" u 1

plot "measurements" u 1:(1.0/STATS_records) smooth kdensity

Running the stats command first populates all the variables, including

STATS_records: the number of records in the file. You now don’t need to know the

value of this quantity—instead, you refer to it by its symbolic name in the plot com-

mand. This same technique is widely applicable; you’ll see examples in later chapters

(see, for example, sections 11.1.2, 11.6, and F.6). 

5.6.2 Further options for the stats command

To apply the stats command to a single column, you include only one column identi-

fier in the using specifier. Of course, it doesn’t make sense to perform the calculation

for the linear model in this case.

 You can limit the application of stats by using ranges. Ranges can be included in

the command line (as for plot): stats [0:2000] "records" u 1:2. The stats com-

mand also honors ranges set using the set _range family of functions (see section 8.2).

 To send the output to a file, specify a filename using set print (see section 5.3.1).

You can suppress all output by appending the nooutput keyword to the command line. 

5.7 Command history

Gnuplot has a history feature, making it possible to recall the most recent commands.

The history feature is bound to the up- and down-arrow keys, as well as to the Ctrl-p

and Ctrl-n key combinations. The easiest way to modify an existing plot is to recall the

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


97Command history

command (using the up-arrow) and make whatever change is desired to the com-

mand line.4

 The most common application is to regenerate the current graph. In the next

section, we’ll discuss some special commands to do that. In section 5.7.2, we’ll exam-

ine gnuplot’s history command, which gives you greater control over the command

history.

5.7.1 Redrawing a graph

You’ve already (in listing 2.2) encountered the replot command. It runs the most

recent plot command again. You usually use it after making changes to options using

set.

 You can add new data or functions to replot:

plot sin(x)
replot cos(x)

The refresh command is like replot, except that it does not read the data again. This is

convenient if data was read from standard input (using the special filename "-") or

when the file may have changed on disk. It is not possible to add further data or func-

tions using refresh.

TIP The refresh command reruns the most recent plot command (just like
replot does), but without having to reread the data from disk.

It’s fairly common to load a script using load and then want to edit the plot com-

mand. Unfortunately, load doesn’t enter the contents of the file into the command

history, so the plot command from the file isn’t available using the up-arrow key. A

new option to the show command can help:

show plot add2history

This not only prints the command line containing the plot command to screen, but

also enters it as the most recent entry in the command history.

TIP You can enter plot commands read from a file into the command his-
tory using the (optional) add2history argument to show plot. 

5.7.2 The general history feature

If you want more control over the command history, you can use history. The history

command can be used three ways: to print all or parts of the command history, to

search the command history, or to reexecute a command:

 

4 Gnuplot supports various key bindings for editing the command line. The exact selection depends on the spe-
cific version of the readline library that was used to compile the local gnuplot executable. See appendix A and
the gnuplot standard reference documentation for details.

Plots a sine wave
Plots both a sine wave and a cosine wave

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


98 CHAPTER 5 Practical matters: strings, loops, and history

history [quiet] [{int:max}] ["{str:filename}" [append]] 
history ?"{str:cmd}"  

history ![ {int:pos} | "{str:cmd}" ]  

The first line shows how to print the command history to the screen or (if a filename

is given) to a file. Optionally, history clobbers any existing file of the same name,

unless you use the append keyword. By default, the command history is shown

together with line numbers, but they can be suppressed with the quiet option. Finally,

you can restrict the output to the last max entries by providing a numerical argument.

For example, the command history quiet 5 plots the last five commands preceding

the current one to screen, suppressing line numbers. On my system, this command

currently produces the following output:

plot cos(x)

plot sin(x)
plot [-2:2] sin(x)

plot [-2:2] sin(x), x

plot [-2:2][-1:1] sin(x), x

history quiet 5

Alternatively, you can give a command, or just its beginning, as an argument to history,

prefixed by either a question mark (?) or an exclamation point (!). If the question

mark is used, gnuplot searches the command history and shows only entries that start

with the string provided. If the exclamation point is used, the most recent matching

entry in the command history is executed again. For example, history ?"set term"

shows all commands that changed the terminal setting. Finally, the exclamation mark,

together with a number, executes the command at the specified history position.

 There is also a history option that can modify the behavior of the history

command:

set history [ size {int:max} ] [quiet|numbers] [full|trim] [default]

The size keyword takes an integer argument that specifies how many entries in the

history should be saved to file when a gnuplot session is ended. A value of -1 allows an

unlimited number of entries to be written to file.

 Specifying set history quiet suppresses numbers generally when using the

history command. The trim option removes duplicate entries in the command his-

tory, retaining only the most recent one. The default keyword restores the default

settings, which are set history size 500 numbers trim. 

5.7.3 Restoring session defaults

At times you may want to remove all user-defined variables and options and restore

your gnuplot session to a defined state. You can do this using reset. The reset com-

mand does not affect options having to do with terminal settings (set terminal and

set output), with locale settings (set locale, set encoding, and set decimalsign),

and with search paths (set loadpath, set fontpath, and set psdir).

Shows the command history
Searches the history
Executes a command

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


99Summary

 The reset command restores gnuplot to its default settings, period. If you also

want to reload your personal initialization file (see chapter 12), then you must use

reset session.

TIP Use reset session to restore gnuplot’s default state and to load your
personal initialization file.

Finally, there are two special forms of this command: reset errors clears only the

two internal variables GPVAL_ERRNO and GPVAL_ERRMSG. The command reset bind

restores all hotkey bindings (see chapter 12) to their default values. 

5.8 Summary

This chapter was something of a grab bag of useful features that make life easier. Such

material often appears dry, so let’s highlight what was important and why.

 Strings and string operations are important whenever you want to include textual

information on a graph. That’s usually not a concern for initial and exploratory work,

but it’s crucial to provide semantics to finished graphs intended for public presenta-

tion. Feel free to come back to this topic whenever the need arises!

 String macros and inline loops can simplify repetitive tasks. Inline loops (which are a

relatively new gnuplot feature) can be a major convenience; you should at least be

aware of this feature.

 Internal variables, compile-time options, and the command history are all methods to

inspect gnuplot’s internal state. The need for these features usually arises only when

you’re trying to tackle more complex tasks—for now, it should suffice to know that

these possibilities exist.

 This concludes the introduction to gnuplot fundamentals. You have all the fea-

tures and commands at your disposal to work efficiently with gnuplot. Now we’ll take

the basics for granted and talk in detail about the different ways you can affect the

appearance of a graph: the “looks.” Stay tuned.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


100

A catalog of styles

The next few chapters describe the different ways you can control the appearance

of a plot: how to make it look just right. In this chapter we’ll discuss the various

ways to display data, and in the next chapter we’ll talk about all the other stuff that

goes onto a plot, such as labels, borders, arrows, and similar decorations. Because

axes and their labels can provide so much relevant information about a plot,

they’re given their own chapter (chapter 8). And finally, in chapter 9, we’ll discuss

how you can customize the appearance of all plot elements, in case you don’t like

the defaults.

 Most of this chapter is taken up by a comprehensive gallery of available plotting

styles. Feel free to treat it as a catalog: look at the pictures to see whether there’s any-

thing you like and might want to use right away. As your needs change, you can

always come back and check out what other styles are available.

 In any case, be sure to read section 6.2, because it explains the mechanics of

how to choose plot styles in gnuplot. The remainder of the chapter is optional (at

this point).

This chapter covers

 Directives for choosing styles

 Gallery of plotting styles

 Pointers to additional styles

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


101Styles and aspects

6.1 Why use different plot styles?

Different types of data call for different display styles. For instance, it makes sense to

plot a smooth function with one continuous line but use separate symbols for a sparse

data set in which each individual point counts. Experimental data often requires error

bars together with the data, whereas counts of discrete events call for histograms.

Choosing an appropriate style for the data leads to graphs that are both informative

and aesthetically pleasing.

 But the choice of plot style isn’t just an aesthetic issue: different graphical repre-

sentations give a data set context and may even imply specific semantics:

 Continuous lines indicate a function or a dense data set with little noise.

 Explicit point symbols emphasize the discrete nature of a sparse data set and

make individual data points stand out.

 Boxes are mostly used for histograms and so imply counts of discrete events.

 Error bars make the uncertainty in a data set explicit.

TIP Remember: the style you choose determines not only what people are
seeing, but also how they will interpret it!

6.2 Styles and aspects

Gnuplot can create graphs using different overall styles: you’ve already encountered

with lines, with points, and with linespoints. In this chapter, you’ll learn about

additional styles for drawing boxes, error bars, circles and arrows, and so on. The style

determines the overall appearance of the plot. Styles are usually specified using the

familiar with keyword. 

 All graphs are constructed from lines and point symbols. In addition to the overall

choice of style, you can also customize many aspects of lines and points: things like the

width, color, and dash pattern of lines; and the shape, size, and color of points. These

aspects can be set globally or locally for each data set individually.

 Unless you specify aspects explicitly, gnuplot will choose a different set of aspects

for each new data set you include in a graph. For example, if you create a graph from

four data sets, by default each data set will be drawn using a different color (or dash

pattern) and point shape. You can override this default sequence locally (as part of

the plot command) or redefine the overall sequence globally.

 In this section, we’ll first review how to use inline customizations to modify the

appearance of graph elements as part of the plot command. Then I’ll give you an

overview of the aspects that can be changed this way.

6.2.1 Choosing styles inline through with

Generally, plot styles are chosen inline, as part of the plot command. (There are also

ways to set global style preferences—we’ll come back to this in chapter 9.) You already

saw inline styles in chapter 2; by giving the with keyword as part of the plot com-

mand, you can specify which style to use:

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


102 CHAPTER 6 A catalog of styles

plot "data" u 1:2 with lines, "" u 1:3 with linespoints,

➥ "" u 1:4 with points

As usual, keywords can be abbreviated to the shortest unambiguous form, so it’s more

convenient to write w l, w linesp (or even: w lp), and so on. 

6.2.2 The default sequence

In graphical analysis, you often want to plot several similar data sets, possibly together

with functions, all on the same plot—usually so that they can be compared directly to

one another:

plot [0:4][-0.25:1.5] "sequence" u 1:2 w lp, "" u 1:3 w lp, "" u 1:4 w lp,

➥ -log(x)+(x-1) w l

All data sets are plotted using the same overall style (with linespoints), but gnuplot

makes sure to change the color (or dash pattern) of the lines used. Gnuplot also uses

a different point symbol for each data set (see figure 6.1).

By default, lines and points are chosen automatically from a sequence of available pat-

terns. If there are more data sets in the plot than there are patterns in the sequence,

the selection starts again at the beginning.

 You can override the automatic selection by explicitly specifying the index of one

particular element from the default sequence. For example, if in the previous exam-

ple you wanted to draw the second data set in the same style as the first, you could say

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4

"sequence" u 1:2

"" u 1:3

"" u 1:4

-log(x)+(x-1)

Figure 6.1 Gnuplot automatically chooses a different line style for each curve.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


103Styles and aspects

plot [0:4][-0.25:1.5] "sequence" u 1:2 w lp, "" u 1:3 w lp lt 1,

➥ "" u 1:4 w lp, -log(x)+(x-1) w l

Here, lt is short for linetype (which refers to elements of the default sequence), and

lt 1 asks for the first element from the sequence. Fixing a specific line like this

doesn’t affect the way the internal counter is incremented, so the ways the fourth col-

umn of the data and the function are displayed don’t change.

 So far, I’ve only shown you how to select a specific entry from the default sequence.

Instead of making such a local change, you can also customize the default sequence

globally—or even use different default sequences for different purposes. We’ll discuss

how to do that in chapters 9 and 12, but it’s pretty advanced stuff. Most of the time,

you’ll find that gnuplot cycles through the default sequence in a way that just works.

6.2.3 Customizing graph elements

You can exercise detailed control over various aspects of graph elements. Table 6.1

lists all commonly used properties. Many are reasonably self-explanatory, but some

may not be. In particular, color specifications and customized dash patterns require

more detail—we’ll come back to them in chapter 9.

 There are several contexts in which the properties from table 6.1 can be specified:

 Some properties can be set globally. For example, you can use the set pointsize

option to adjust the size of point symbols globally. Other properties can be con-

figured globally using set style (see chapter 9).

 Several terminals allow you to modify the line widths and point size used for the

selected terminal (see chapter 10).

 By far the most common way to specify appearance aspects is inline as part of

the plot command. It’s straightforward to do this, as I’ll show next.

INLINE CUSTOMIZATIONS

To change any appearance property, you tack the desired specifiers onto the function

or data set in the plot command:

plot sin(x) w l lw 3
plot "data" u 1:2 w lp lt 2

If there are multiple curves in a plot, attach the specifiers to the desired curve:

plot "data" u 1:2 w lp lt 3, sin(x) w l lt 1

This plots the data set using the properties of line type 3 and the sine function with

the properties of line type 1.

 You can include more than one modifier (but gnuplot will prevent you from

including the same modifier multiple times):

plot "data" u 1:2 w lp pt 6 ps 2
plot cos(x) w l lw 3 lc rgb "red"

Uses line width 3
Inherits all properties from line type 2

Point type 6, at point size 2
Triple line width, in red

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


104 CHAPTER 6 A catalog of styles

Table 6.1 Modifiers for the appearance of lines, points, and other graph elements

Keyword Abbreviation Description

linetype lt A line type is a combination of all aspects of both lines and 
points: line width, color, and dash type, as well as point type, 
point size, and point interval. If not instructed otherwise, gnu-
plot will cycle through a predefined sequence of line types for 
each new curve in a plot.

linestyle ls User-defined combination of appearance aspects. Similar to 
linetype but not eligible for automatic assignment to 
curves. (See section 9.4.)

linewidth lw Numerical multiplier, multiplying the default line width.

linecolor lc Color used to draw graphical elements (lines and points). 
(See section 9.1 for the syntax of color specifications.)

dashtype dt Pattern of dots and dashes used to draw the line. (See sec-
tion 9.2.2 for the syntax of dash-pattern customizations.)

pointtype pt Shape or symbol used to display a data point. Chosen from a 
selection of available symbols. (See section 9.2.1.)

pointsize ps Numerical multiplier, multiplying the default point size.

pointinterval pi Controls whether only a subset of records is displayed with an 
explicit symbol when using the linespoints style. (See 
section 6.3.1.)

textcolor tc Color used for textual labels. (See section 9.1 for the syntax 
of color specifications.)

fillstyle fs Closed shapes (boxes, circles, ellipses, 
candlesticks) can be filled with a color or a pattern. The 
keyword solid, followed by a density between 0.0 and 1.0, 
fills the shape with the current color at the specified density; 
pattern uses the current pattern from the range of available 
patterns; and empty leaves the shape unfilled. (See section 
9.4.4 for more information on fill styles.)

fillcolor fc Color used to fill closed shapes. (See section 9.1 for the syn-
tax of color specifications.)

border bo Describes the border used for filled areas. Expects any combi-
nation of line options as argument. (See the tip at the end of 
this section for the lineoptions shorthand.)

arrowstyle as Selects a separately defined arrow style when using with 
vectors. (See section 7.3.2 for more information on arrows 
and section 9.4.3 for information on arrow styles.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


105A catalog of plotting styles

Line types and line styles are special: they’re containers for all available properties.

Each line type (or line style) indicates a line width, color, and dash pattern, as well as a

point shape and size. By specifying either a line type or a line style, you choose values

for all properties at once. Gnuplot allows you to override individual aspects, and

doing so is common:

plot sin(x) w l lt 3 lw 2

plot "data" u 1:2 w p lt 4 pt 3

As you can see, if a line type (or line style) is given, the curve inherits the applicable

properties, unless they’re explicitly overridden. In the previous example, the data set

was plotted with points (that is, without connecting lines), so the graph inherited

point shape, size, and color from the indicated lt 4. But because the point type was

selected explicitly, the resulting graph used color and point size from lt 4 but the

point shape corresponding to pt 3. 

SHORTHAND: LINE OPTIONS

Most styles and decorations introduced in this and the next few chapters are con-

structed from lines, and the appearance of these lines is usually subject to the appro-

priate modifiers from table 6.1. In particular, linetype, linestyle, linewidth,

linecolor, and dashtype are generally recognized.

 To condense the presentation, I won’t list these modifiers individually going for-

ward but will instead refer to them as line options. In command summaries, the string

lineoptions is henceforth used as a placeholder for any combination of the aforemen-

tioned explicit appearance modifiers. Of course, lineoptions is not a legal gnuplot

keyword—it’s just a notational shorthand.1

TIP In command summaries, the placeholder lineoptions stands for any
combination of the explicit line-appearance modifiers listed earlier. This is
just a convenient shorthand; lineoptions is not a legal gnuplot keyword!

6.3 A catalog of plotting styles

Well over two dozen styles are available in gnuplot. Here we look at those most useful

for ordinary, two-dimensional data. I’ll provide pointers to additional styles (for more

complicated data sets) in section 6.5, toward the end of this chapter.

1 That being said, as a symbolic placeholder for all available line modifiers, the lineoptions shorthand is
more robust and often more accurate than an explicit list that becomes incomplete whenever gnuplot’s selec-
tion of line modifiers grows. The standard gnuplot reference documentation contains many instances where
explicit lists of line modifiers haven’t kept up with gnuplot’s increased capabilities and are now incomplete.

Uses line type 3, 
but doubles the width

Uses color and point size of line type 4, 
but overrides the shape of the points

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


106 CHAPTER 6 A catalog of styles

6.3.1 Core styles: lines and points

There are four styles I consider core styles, because they’re so generally useful: with

points, with lines, with linespoints, and with dots. These styles represent data

with simple symbols or lines on the plot (see figure 6.2).

POINTS

The points style plots a small symbol for each data point. The symbols aren’t con-

nected to each other. This is the default style for data (see figure 6.2).

 The size of the symbol can be changed globally using the set pointsize com-

mand. The parameter is a multiplier, defaulting to 1.0:

set pointsize {flt:mult} 

You can also change pointsize (abbreviated ps) inline:

plot "data" u 1:2 w points pointsize 3

The point type (or point shape) can be selected using pointtype (or pt). Remember

that ps stands for pointsize, not for point style (there is no such thing)! Figure 9.7

shows all commonly available point shapes.

 In addition to the selection of available point types, you can also specify a single letter

as argument to pointtype. The selection of symbols available depends, of course, on

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

 0  2  4  6  8  10

points

lines

linespoints

dots

Figure 6.2 The four core styles: with points, with lines, with linespoints, 

and with dots

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


107A catalog of plotting styles

the fonts installed on your system. Modern fonts that provide glyphs for a large num-

ber of Unicode code points may offer some interesting possibilities (see figure 6.3)!

Note that when you use a character as a symbol, you must change its color using text-

color instead of using linecolor. (See the sidebar in section 5.1 for information on

Unicode and how to access characters from extended sets.)   

LINES

The lines style doesn’t plot individual data points, only straight lines connecting adja-

cent points. This is the default style for functions and the preferred style for dense

data sets without too much noise.

 Many aspects of lines, including their width, color, and dash pattern, can be cus-

tomized. For instance, to double the width of a single line in a plot, you can use the

following inline directive:

plot "data" u 1:2 w l linewidth 2

LINESPOINTS

The linespoints (abbreviated lp) style is a combination of the previous two: each

data point is marked with a symbol, and adjacent points are connected with straight

lines. This style is mostly useful for sparse data sets.

30

40

50

60

70

80

90

 1994  1996  1998  2000  2002  2004  2006

w lp pt '☺' pi -3

w lp pt '?'

w lp pt 2 pi 2

w lp

☺
☺ ☺

☺ ☺

? ?
?

?

?

?

?

?

? ?

?

? ?

Figure 6.3 Variants of the with linespoints style. Top to bottom: default behavior, using a 

(regular) character as symbol, omitting every second symbol, and using a character from an extended 

range of glyphs while omitting two out of every three points. Note that in the last case, the lines have 

been erased to make room for the characters by giving a negative argument to the pi keyword.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


108 CHAPTER 6 A catalog of styles

 What has been said about the with points and with lines styles generally applies

to with linespoints: the default size of the symbol is controlled by the set pointsize

option but can be overruled inline, as can the line type and the point type.

 A property that is only available for linespoints is pointinterval (short: pi).2 If

this property is set to a positive integer n, then gnuplot plots a symbol only for every

nth data point; all other points are drawn with lines only (see figure 6.3). This can

be extremely useful for dense data sets.

 If pointinterval is negative, then it has the same effect as just explained, but in

addition, a circular region centered at the location of the point is cleared, using the

special bgnd color before the symbol is drawn (see figure 6.3). (The background

color bgnd is a property of the terminal; use set terminal ... background ... to

set it. See chapter 10.) The size of the cleared region is controlled using the set

pointintervalbox option:

set pointintervalbox {flt:mult} 

The value of pointintervalbox multiplies the point size to find the radius of the

region to be cleared. All this is demonstrated in figure 6.3. 

DOTS

The dots style prints a minimal dot (a single pixel for bitmap terminals) for each data

point. This style is occasionally useful for very large, unsorted data sets (such as large

scatter plots). Figure 1.2 was drawn using dots. 

6.3.2 Indicating uncertainty: styles with error bars or ranges

Sometimes you don’t just want to show a single data point; you also want to indicate a

range with it. This may be the experimental uncertainty (the error bar), or it may be

the range over which some quantity has changed during the observation interval (this

is typical of financial charts). Gnuplot offers several styles that place an indicator for

such a range onto the plot. First we’ll look at styles that draw regular error bars (both

in vertical and in horizontal directions). Then we’ll go on to discuss styles that let you

indicate several ranges at once (but only in the vertical direction).

STYLES WITH ERROR BARS

There are two basic styles to show data with error bars in gnuplot: errorbars and

errorlines (see figure 6.4). The errorlines style is similar to the linespoints style

(a symbol for each data point, adjacent points connected by straight lines), whereas

the errorbars style is similar to the points style (unconnected symbols).

 These styles draw error bars in addition to the data. Error bars can be drawn in

either the x or y direction or both. To select a direction, prefix the style with x, y, or

xy, respectively, as in plot "data" with xyerrorlines. Table 6.2 summarizes all avail-

able combinations.

2 This feature is a relatively recent addition to gnuplot.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


109A catalog of plotting styles

 

The appearance of both the errorlines and errorbars styles is determined by the

current line style. Both styles draw a symbol at the location of the data point—which is

unnecessary, because the intersection of the error bars already indicates this position!

You can suppress the symbol by specifying pointtype 0, like so: plot "data" u 1:2:3

with yerrorlines pt 0.

 The error bars themselves are drawn in the current line style. A tic mark is placed

at the ends of each error bar (see figure 6.4). You can control the size of the tic mark

using the set bars option:

set bars [ small | large | fullwidth | {flt:mult} ] 

The parameter is a multiplier, defaulting to 1.0. The symbolic names small and large

stand for the values 0.0 and 1.0, respectively. The value fullwidth is only relevant to

Table 6.2 All possible combinations of errorbars and errorlines styles

Error bars in 

x direction

Error bars in 

y direction

Error bars in both 

directions

Unconnected symbols xerrorbars yerrorbars xyerrorbars

Connected symbols xerrorlines yerrorlines xyerrorlines

 0

0.5

 1

1.5

 2

 0  0.5  1  1.5  2  2.5

yerrorlines

xyerrorbars

boxxyerrorbars

boxerrorbars

Figure 6.4 Different plot styles showing uncertainty in the data. From top to bottom: connected 

symbols using errorlines, unconnected symbols using errorbars, ranges indicated as boxes 

using boxxyerrorbars, and errors on top of a histogram using boxerrorbars.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


110 CHAPTER 6 A catalog of styles

histogram styles (more on that in a minute). Finally, you can turn off the tic marks

using unset bars.

 Error bars require additional information. Just the x and y coordinates aren’t

enough: you must also provide data about the size of the uncertainties. Usually, this

data comes from the data file, in the form of one or two additional columns. If one

additional column is given, it’s interpreted as a range dy to be added to and subtracted

from the corresponding data value, so the error bar is drawn from (x, y−dy) to (x, y+dy).

If two additional columns are supplied, they’re interpreted as the absolute coordinates

of the lower and upper ends of the error bar (not the ranges), so error bars are drawn

from (x, ylow) to (x, yhigh). Corresponding logic applies to error bars drawn in the x

direction.

 As usual, the columns to use are indicated with the using directive to plot:

plot "data" using 1:2:3 w yerrorbars
plot "data" using 1:2:3:4:5:6 w xyerrorbars

Data transformations (see section 3.3) are often useful in this context. Here are some

examples:

 If the input file contains only the variance (instead of the standard deviation,

which is usually plotted as error) together with the data, you can apply the nec-

essary square root inline: plot "data" u 1:2:(sqrt($3)) w yerrorb.

 If you know that the uncertainty in the data is a fixed number (such as 0.1), you

can supply it directly: plot "data" u 1:2:(0.1) w yerrorl.

 If the data supplied in the file is of the unsupported form (x, y, ylow, yhigh, dx),

you can build up the required plot command manually: plot "data" u

1:2:($2-$5):($2+$5):3:4 w xyerrorl.

As a final style to visualize data with uncertainty in both directions, there’s boxxyerror-

bars. It’s similar to the xyerrorbars style, except that the range of uncertainty is shown

as a rectangular box centered at the data point, rather than as a cross of error bars. (If

you prefer to use circles or ellipses instead of boxes to indicate a confidence range, you

may want to peek ahead at section 6.3.5.)

 The last style that uses error bars is boxerrorbars (not to be confused with

boxxyerrorbars), which is a combination of the boxes and yerrorbars styles. It’s dis-

played as a box with a vertical error bar centered at its top. It might be used, for

instance, for histograms that have some uncertainty in their counting statistics. The

additional values required for the error bar are supplied as the third (or third and

fourth) arguments to the using directive. The box width is provided as the last argu-

ment to using.

 The styles discussed in this section are mostly used to plot data stemming from sci-

entific experiments or calculations, where you want to show the uncertainty in the

data clearly. But there are other situations where you may want to indicate a range (or

even several ranges) together with the data. Those are the topic of the next section. 

( x, y, dy )
( x, y, xlow, xhigh, ylow, yhigh )

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


111A catalog of plotting styles

TIME-SERIES STYLES

Gnuplot offers two styles that are mostly useful for time-series data, although they can

be used for other purposes as well: candlesticks (also known as a bar-and-whiskers

plot) and financebars (see figure 6.5). Both can show two ranges in a single (vertical)

direction: for instance, the typical band of variation and the highest and lowest values

ever. Both are frequently used for financial data (such as stock prices), and I’ll discuss

them in those terms. The candlesticks style in particular is quite versatile and can be

used to good effect in a variety of situations.

Both styles require five columns of data: the x value followed (in order) by the open-

ing, low, high, and closing prices. As usual, the appropriate columns are selected with

the using directive to the plot command. Additional columns may optionally be spec-

ified to indicate the box width or the color.

 Both styles represent the maximum range (low to high) with a vertical line. They

differ in the way the secondary (opening to closing) range is displayed: in the candle-

sticks style, a box of finite width is overlaid on the vertical line; in the financebars

style, tic marks indicate the opening and closing values. The size of the tic marks is

controlled by the set bars option familiar from errorbars styles (see figure 6.5). 

 You can control the details of the candlesticks style using some additional

options. If the current fill style is empty and the closing value is less than the opening

one, the box is filled with the current color; otherwise, the box is left empty. (If you

choose a particular fill style using set style fill, then this style is used to fill the box,

 8

10

12

14

16

18

20

22

-6 -4 -2  0  2  4  6

candlesticks

financebars

Figure 6.5 Styles for time series: financebars and candlesticks. Filled bars 

indicate that the closing value is less than the opening value for the current record.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


112 CHAPTER 6 A catalog of styles

independent of the opening and closing values. See section 9.4.4 for more informa-

tion on set style fill.)

 You can change the width of the box either by using the set boxwidth option or

by supplying a value in a sixth column. If the width is read from a column, it’s assumed

to be given in the same units as the x coordinate. (If boxwidth is unset, the value of

set bars is used instead, but this usage is deprecated for candlesticks. For finance-

bars, the set bars option is the only way to change the size of the opening and clos-

ing markers.)

 To place tic marks at the ends of the vertical line, append the keyword whisker-

bars (or whisker) to the plot command. You can control the size of these tic marks

independently from the box width by appending a numerical value to the whisker-

bars keyword. This value is interpreted as a multiplier giving the length of the tic

mark relative to the box width.

 A few examples will make this clearer:

plot "data" u 1:2:3:4:5 w candlesticks

plot "data" u 1:2:3:4:5 w cand whiskerbars

plot "data" u 1:2:3:4:5 w cand whisker 0.1

Neither the financebar style nor the candlesticks style connects consecutive

entries. If that’s what you want, you’ll have to do so explicitly. Keep in mind that it’s

not clear what should be connected in these styles—they don’t have a concept of a

“middle” value. You must supply this information separately. 

6.3.3 Styles with steps and boxes

Box styles, which draw a box of finite width, are sometimes useful for counting statis-

tics or for other data sets where the x coordinates have only discrete values.

STEPS

Gnuplot offers three styles to generate steplike graphs consisting only of vertical and

horizontal lines (see figure 6.6). The only difference between the three styles is the

location of the vertical step:

 histeps centers each bin around the supplied x value.

 steps places the vertical step at the end of the bin.

 fsteps places the vertical step at the front of the bin.

If in doubt, the histeps style is probably the most useful.   

BOXES AND IMPULSES

In contrast to the step styles from the previous section, the boxes style plots a box cen-

tered at the given x coordinate from the x axis (not from the graph border) to the y

coordinate (see figure 6.7). The width of the box can be set three ways:

 Supplied as the third parameter to using.

 Set globally through the set boxwidth option.

 Otherwise, boxes are sized automatically to touch adjacent boxes.

Plain Tic marks the same
length as boxwidth

Tic marks one tenth 
the length of boxwidth

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


113A catalog of plotting styles

26

28

30

32

34

36

38

40

42

 1994  1995  1996  1997  1998  1999  2000  2001

fsteps

steps

histeps

Figure 6.6 The three step styles. The same data set is shown three times (vertically 

shifted). Individual data points are represented by symbols; the three steps styles are 

shown with continuous lines. Note how different the same data set can appear, 

depending on the exact location of the vertical steps.

-15

-10

-5

 0

 5

10

15

20

-10 -5  0  5  10

plot u 1:2 w boxes - default width

plot u 1:2:(0.75) w boxes - fixed width

plot u 1:2:3 w boxes - variable width

plot u 1:2 w impulses

Figure 6.7 Box and impulse styles. The widths of boxes can be set globally or for each 

box individually. The second data set uses a fixed width (enclosed in parentheses in the 

using directive); the third one reads values for variable box widths from file.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


114 CHAPTER 6 A catalog of styles

If you supply a third column in the using directive, it’s interpreted as the total width

of the box in the same coordinates that are used for the x axis. The set boxwidth

option has the following syntax:

set boxwidth [ {flt:size} ] [ absolute | relative ] 

The size parameter can either be a measure of the absolute size of the box in x axis

coordinates or denote a fraction of the default box size, which is the width of the box

if it touches adjacent boxes. If absolute mode isn’t stated explicitly, relative sizing is

assumed. You can use a boxwidth of -2 to force automatic sizing of boxes (with adja-

cent boxes touching each other). The impulses style is similar to the boxes style with

boxwidth set to zero. The examples in figure 6.7 clarify this. 

 Boxes can be filled or shaded, according to the global set style fill option (see

section 9.4.4) or the inline fillstyle specification. The fillsteps style is a filled

equivalent of the steps style.   

6.3.4 Filled styles

You can fill the area between two curves in two-dimensional plots with color or pat-

terns using the filledcurves style. The appearance of the filled regions is deter-

mined by the settings of the fill style, which is controlled by the set style fill option

(see section 9.4.4) or given inline. 

 Filling the area between two curves requires a data set with at least three columns:

for the x coordinate and the y coordinates of the two curves. The two curves constitute

the boundaries of the filled area. If the two lines cross each other, you can distinguish

the enclosed areas depending on whether the first or the second line is greater than

(that is, above) the other. By default, all enclosed areas are shaded, but you can

restrict shading to only one of the two kinds of areas by appending the keyword above

or below.

 This style is only available when plotting data from a file, but you can “fake” it

using the "+" pseudofile (see section 4.5). That’s what’s done in the following code

snippet (see figure 6.8):

plot [0:3*pi][-1.1:2.1] "+" u 1:(sin($1)):(0.5*sin($1)) w filledc,

➥ "" u 1:(1+sin($1)):(1+0.5*sin($1)) w filledc above,

➥ "" u 1:(2+sin($1)):(2+0.5*sin($1)) w filledc below

All three versions are shown: the default (with all enclosed areas filled) and—verti-

cally shifted—the same curves with only the areas above and below filled.

 In addition to filling the areas between two explicitly given curves, gnuplot can

also handle other boundaries:

 Fill the area between one curve and one straight line (which may be one of the

coordinate axes or a plot boundary).

 Treat a single curve as a closed polygon, and fill its interior.

 Specify an additional point that will be included in the construction of the polygon.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


115A catalog of plotting styles

I suggest you consult the standard gnuplot reference documentation for the pertinent

details. 

6.3.5 Beyond lines and points: multivariate visualization

Several styles allow you to encode information by other means than the position on

the graph: with labels reads a text string from the input file and places it on the plot.

Using pointsize variable, you can change the symbol size according to the values in

the data set. Finally, you can place arrows or entire geometric shapes on the plot using

the with arrows, with circles, and with ellipses styles.

 All these styles have in common that they consist of graphical elements that aren’t

simple but that instead have internal degrees of freedom—that’s what enables them to

encode additional information beyond their position on the graph. (We’ll come back

to multivariate visualization in section 14.2.) At the same time, because they’re more

than “lines and points,” the distinction between these styles and some of the decora-

tions discussed in the next chapter is a bit fuzzy—in fact, these styles share many imple-

mentation details with the corresponding decorations. Frequently, what applies to one

applies to the other, even if it doesn’t say so explicitly in the text!

TIP The with labels, with arrows, with circles, and with ellipses
styles share many properties with the set label, set arrow, and set object
decorations.

-1

-0.5

 0

0.5

 1

1.5

 2

 0  1  2  3  4  5  6  7  8  9

above above

below

Figure 6.8 Shading the area between two curves in a single data set: plot 

"data" u 1:2:3 w filledcurves. You can select only those areas where one 

of the curves is above or below the other curve. (See the text for details.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


116 CHAPTER 6 A catalog of styles

LABELS AND POINT SIZE

Let’s look at an example that demonstrates both the with labels style and the point-

size variable facility. Listing 6.1 shows a short data file containing the additional

information required for labels and symbol sizes as additional columns. Given this file,

you can generate the plot in figure 6.9 using the following commands:

plot [0:6][0:3.5] "labels" u 1:2:3 w p pt 6 ps var,

➥ "" u ($1+0.25):($2-.25):4 w labels

Both styles require a third column as part of the using declaration, the contents of

which are interpreted as labels or desired symbol sizes, respectively. Variable symbol

sizes are most easily recognized if the symbols are circles, which are chosen by point-

type 6 (pt 6 for short). Then follows the pointsize variable (abbreviated ps var)

specification. Labels are chosen using with labels, and all the labels are offset a little

down and to the right so they don’t overlap with any of the circles.

# x y size label
1 2.6 3 ABC

2 2.1 6 EFG

3 1.0 2 PQR
4 1.2 1 UVW

5 1.6 4 XYZ

Listing 6.1 Data for figures 6.9 and 6.10 (file: labels)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6

ABC

EFG

PQR

UVW

XYZ

Figure 6.9 Encoding additional information through symbol size or textual labels: pointsize 

variable and with labels. The corresponding data file is shown in listing 6.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


117A catalog of plotting styles

You should exercise some caution when using pointsize variable: it’s often difficult

for the observer to judge the size of symbols accurately. Moreover, it’s not necessarily

clear to the observer whether the radius or the area of the symbol is proportional to

the encoded quantity. I’ll have more to say about visual perception in chapter 14.

 In contrast, the with labels style is frequently useful and very versatile. As men-

tioned earlier, many of the options of set label carry over to with labels; see sec-

tion 7.3.3 for details. Here are only a few remarks:

 You can rotate the label using rotate by.

 You can change the text font and its size using font "...".

 You can select the text color with textcolor (tc). Data-dependent text coloring

is available through tc var (see section 9.1.5 for more on data-dependent color

selection).

 You can draw a point symbol using point and shift the text label relative to it

using offset.

 If the hypertext directive is included, the text label is usually hidden and is dis-

played only when you hover with the mouse near the point’s location. (Obvi-

ously, this is relevant only for interactive terminals.)

Figure 6.10 shows some of these options in action—the data is again that shown in list-

ing 6.1. The plot command is as follows:

plot [0:6][0:3.5] "labels"

➥ u 1:2:(sprintf("{/=%d %s}",5*column(3), strcol(4))):1

➥   w labels rotate by 30 point pt 5 offset 1,-1 tc var

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6

ABC

EFG

PQR

UVW

XYZ

Figure 6.10 Further capabilities of the with labels style: plotting a point symbol 

together with the text label, and changing the color, size, and orientation of the label

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


118 CHAPTER 6 A catalog of styles

Mind you, I’m not saying this is an example of a successful visualization! But it does

demonstrate many of the concepts just introduced. (The variable text size uses

enhanced text mode—I’ll formally introduce this concept in section 10.2.3.)

 A final word of warning: in contrast to what’s customary elsewhere, the with

labels style directive can’t be abbreviated. Neither with lab nor with label will work!

SHAPES AND ARROWS

Gnuplot defines three shapes that can be used as plotting symbols: arrows, circles, and

ellipses. What’s different about these plot elements is that they have a nontrivial inter-

nal structure that can be used to encode information: the arrow has not only a position

(as does any other point symbol) but also a direction and a length. An ellipse has a

variable shape and orientation; and circles are interesting, because gnuplot lets you

draw arc segments in addition to full circles. (As I pointed out earlier, these styles

share many properties with set arrow and set object—see sections 7.3.2 and 7.3.4

for additional details.)

 As an example, consider the short data file shown in listing 6.2. In listing 6.3, I use

the first two columns as x and y coordinates and display the data in the third and

fourth columns as size and angle, respectively. (Compare figure 6.11.)

# x y size angle
1 1 0.1 0

2 1.2 0.2 15

3 1.8 0.3 45
4 1.7 0.2 90

5 1.6 0.15 160

6 1.5 0.2 250
7 1.4 0.3 300

Arrows are drawn using the with vectors style. They require four columns in the

using directive: x and y position, followed by the offset of the arrow’s tip from its start-

ing position. You can control the way the arrow is drawn either by giving explicit style

details inline (see section 7.3.2 to learn how to control an arrow’s appearance) or by

referencing a separately defined arrow style (see section 9.4.3 for globally defined

styles). With arrowstyle variable, you can also read the index of a predefined arrow

style from an additional column:

plot ... using 1:2:3:4 with vectors nohead
plot ... using 1:2:3:4 with vectors arrowstyle 3

plot ... using 1:2:3:4:5 with vectors arrowstyle variable

Circles require only two columns, for the x and y positions. If you specify a third col-

umn, it’s used for the radius; otherwise the radius is taken from the global set style

circle setting. (The radius is always measured in x coordinates.) The fourth and

fifth columns, if present, measure the beginning and ending angle of the drawn arc

segment (the “pie slice”). Both are measured in degrees, counterclockwise, against

Listing 6.2 Data for figure 6.11 and listing 6.3 (file: shapes)

Inline
Global style

From file

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


119A catalog of plotting styles

the positive x axis. The circle (or circle segment) can be filled using either an inline

fillstyle specification or the global set style fill setting. Finally, the color of the

entire shape may be read from an additional column, using linecolor variable.

Keep in mind that the resulting shape is always a circle, independent of the selected

y range. If you want to control the ratio of the horizontal to the vertical axis, you must

use with ellipses. 

 Ellipses require four columns, for the x and y coordinates of the center and for the

length of the major and minor diameters. You can use a fifth column to give the angle

of the ellipse with the positive x axis. Fill and color properties are the same as for cir-

cles. (There are some fineries about the units in which the diameters of an ellipse are

measured. Check the standard gnuplot reference manual for details.)

 Let’s now discuss the commands used to create figure 6.11, as shown in listing 6.3.

This listing is worth studying in detail, because it demonstrates how you can adapt plot

styles to a given purpose through judicious application of inline transformations.

 Because the various shape styles expect angles in degrees (not radians), you first

need to make sure trigonometric functions will interpret their arguments accordingly

by using the set angle option (for more information, see appendix F). The data set is

then plotted several times, shifted vertically. Basic trigonometric relations are used to

calculate the offsets of the arrow’s tip from the angle and the radius. In the first row of

complete circles, the command ignores the angle argument in the fourth column. For

both the incomplete circles and the ellipses, the y coordinate is ignored instead, and

all shapes are plotted at the same vertical elevation.

0

1

2

3

4

-1  0  1  2  3  4  5  6  7  8

using x:y:dx:dy with vectors

using x:y:radius with circles

using x:y:radius:start:end w circles

using x:y:bigaxis:smlaxis:angle w ellipses

Figure 6.11 The data from listing 6.2, plotted using with vectors, with circles, 

and with ellipses. See listing 6.3 for details of the plot command.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


120 CHAPTER 6 A catalog of styles

   

set angle degrees

plot "shapes" u 1:($2+2):(2*$3*cos($4)):(2*$3*sin($4)) w vectors,

➥  "" u 1:($2+1):($3) w circles,

➥  "" u 1:(1):($3):(0):4 w circles,

➥ "" u 1:(0):(0.5):($3):4 w ellipses

6.4 Putting it together

This section combines everything you’ve learned in this chapter to create figure 6.12.

Imagine that you’ve been given a set of daily weather observations (the beginning of

the file is shown in listing 6.4). It includes the day of the month followed by the tem-

perature (in Celsius), the dew point,3 the cloud cover (in percent), and visibility (in

miles, where 10 miles means unrestricted visibility). The last four columns give the

wind speed (in knots), wind direction, air pressure (in millibars), and the pressure’s

short-term trend (up or down). That’s a lot of data, and we’d like to present it both

compactly and intuitively.

Listing 6.3 Commands for figure 6.11 using data from listing 6.2 (file: shapes.gp)

3 The dew point is the temperature at which water vapor in the air begins to condense. The dew point is always
lower than or equal to the actual temperature, and the closeness of those two temperatures is a measure of
the humidity in the air.

 0

 2

 4

 6

 8

10

12

14

16

18

 0  5  10  15  20  25  30

▼

△ ▼

◎

▼

△

▼

◎

▼

◎

◎
△

▼ △
▼

◎

◎

◎

▼ ◎ ◎ △
▼
▼

◎
▼

△

▼
◎

▼ △

Figure 6.12 All-in-one visualization of the data set in listing 6.4: temperature and 

dew point as solid lines, atmospheric pressure and its trend with symbols, visibility 

with grey bars; wind speed and direction across the top, cloud cover along the 

bottom. See listing 6.5 for the commands.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


121Putting it together

 

# Day Temp Dew Cloud Visib Wind Direct Press Trend
1 14.3 14 20 7 0 0 1007.6 dn

2 14.3 14 80 2.5 7 0 1006.4 up

3 13.8 13.5 70 10 6 150 1006.4 dn
4 14.3 13.9 50 10 8 190 1009.6 --

5 14.3 13.9 10 10 6 170 1012 dn

6 12.4 11.8 80 1.75 6 210 1008.2 up
7 12.4 11.5 90 2.5 3 190 1005.8 dn

...

In figure 6.12, temperature and dew point are shown using continuous lines, pressure

is shown using unconnected symbols (in millibars above 1,000), and the symbols indi-

cate the most recently observed tendency: light triangles pointing upward for rising

tendency; and dark, downward triangles for falling tendency. Visibility (or, rather,

restrictions to visibility) are shown as grey bars in the background—the shorter the

remaining white area at the bottom of the graph, the shorter the visible range. Finally,

wind is shown with vectors along the top, and cloud cover is shown using circles along

the bottom. The complete commands are given in the following listing.

set angle degrees
unset key

set bar 0  

set boxwidth .7

sym(s) = s eq 'up' ? "△ " : (s eq 'dn' ? "▼ " : "◎")

plot [0:32][0:18]

"weather" u 1:($5+2):($5+2):(10+2):(10+2) w cand lc rgb "grey" fs solid,

➥ "" u 1:2:3:2 w yerrorlines pt 0 lt 1,

➥ "" u 1:(1):(0.4):(90-0.01*$4*359):(90) w circ lc rgb "blue" fs solid,

➥ "" u 1:(1):(0.4) w circ lc rgb "black",

➥ 2 lc rgb 'dark-grey', 10+2 lc rgb 'dark-grey',  

➥ "" u 1:(16) w p lt 2 pt 7 ps .75,

➥ "" u 1:(16):(.05*$6*cos(90-$7)):(.05*$6*sin(90-$7))

➥ w vectors lw 2 lt 2 nohead,

➥ "" u 1:($8-1000):(sym(stringcolumn(9))) w labels

This set of commands uses many of the concepts introduced previously. The plot

command in this example is unusually complicated (including nine rather different

quantities!). Here are a few pointers as you step through it.

 This example uses the candlestick style to draw the grey bars that indicate the vis-

ible range B. This style is convenient because it draws a box, all dimensions of which

you can control explicitly. The whiskers have zero length. 

Listing 6.4 Incomplete data for figure 6.12 with commands in listing 6.5 (file: weather)

Listing 6.5 Commands for figure 6.12 using data from listing 6.4 (file: weather.gp)

Disables whiskers 
on the error bars

Fixes the width of 
the candlesticks

C
Temperature 
and dew 
point

BVisibility

D
Cloud
cover

Horizontal 
dividersE

F
Wind speed 
and direction Symbols for trend G

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


122 CHAPTER 6 A catalog of styles

 Gnuplot draws items onto the graph in the order in which they appear in the plot

command. For this reason, it’s important that the visibility comes first: the grey bars

should be in the background and not obscure any of the other plot elements.

 The yerrorlines style comes in handy to draw the temperature and the dew

point C.

 Next come the circle segments for the cloud cover D. There is a little math to

account for the fact that gnuplot measures angles counterclockwise from the horizon-

tal axis, but angles should increase clockwise from the 12 o’clock position in this

graph. The filled pie slices are drawn first; the empty black circles that provide a rim

for each symbol are drawn afterward, so they’re visually in front.

 Two horizontal lines are included to divide the graph visually E. This part of the

plot command could also have come earlier or later.

 Now the wind speed and direction indicators are added F. First a circular symbol

(pointtype 7) is drawn to indicate the origin of each vector—this is important if the

wind speed is so low that the vector has zero length. Next comes the vector, again

adjusting the angles to be measured clockwise from the top rather than counterclock-

wise from the right. The arrow head is suppressed using nohead: the origin of each

arrow is already clearly marked, so there’s no need to clutter the graph by drawing

explicit heads.

 Finally, the symbols are drawn for the pressure tendency G. This part of the com-

mand exploits gnuplot’s ability to use a single character as plotting symbol. The sym-

bols can be found in the “Geometric Shapes” section of the Unicode standard: the

light upward triangle has code point U+25b3, the filled downward triangle corre-

sponds to U+25bc, and the bullseye character has code point U+25cd. The latter was

chosen to be as neutral as possible compared to the other two symbols (no angles and

of intermediate visual weight, due to the inner circle on an unfilled background).

 The sym(s) function consists of two nested conditional operators and converts the

strings used in the data file to the characters used in the plot. You need to use the

stringcolumn(i) function here—the $9 shortcut doesn’t work in this evaluation con-

text. Also remember that stringcolumn(i) takes a numeric argument: the position of

the column from which a value should be taken. (See section 4.4 for more informa-

tion about stringcolumn(i) and the sidebar in section 5.1 for more information

about Unicode.)

 Figure 6.12 is certainly impressive, and so are the details of listing 6.5—but remem-

ber that most graphs (and commands) are much, much simpler! More important is

the question of whether figure 6.12 succeeds in its visualization task. Here are some

things to think about:

 The graph packs a lot of information into a relatively compact space. The mid-

dle section is shared by three totally different quantities, but because they’re

represented using different visual cues (lines, symbols, and filled regions), their

interference is reduced. The amount of information encoded in the different

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


123Summary

symbols used to represent pressure readings seems too high: I find it difficult to

get an intuitive sense of the behavior of the air pressure from this graph.

 The dew point is represented particularly well, I think. The absolute value of

the dew point is less relevant than its distance from the temperature, and it’s

precisely this distance that is emphasized by the vertical error lines. The contin-

uous lines used for the ambient temperature highlight the actual values.

 For the visibility data, I wanted to stress the reduction in visibility, represented by

the grey bars intruding from above, possibly leaving only a small, unobscured

visible region at the bottom of the graph. Although good in concept, I don’t

think this idea works well in practice: drawing the visual range with lines

would have been clearer.

 Both the wind and the cloud cover visualizations represent their underlying

data intuitively: you can, literally, see which way the wind blows. It would have

been weird to use with lines to indicate the wind direction.

Nevertheless, the visualization of the wind speed and direction has a couple

of problems: although you have a relative sense of the wind speed, there’s no

indication of its numerical range—if you’re trying to land a plane, that matters

a lot! And if the wind speed is high and the direction is variable, the arrows will

have a tendency to obscure each other. (That this isn’t an issue here is solely a

consequence of this particular data set.)

 One last problem: although the example uses good numerical tic marks for the

temperature and dew-point values, things are less clear for the visibility and

pressure readings. A single axis isn’t enough to represent quantities that have

such totally different numerical ranges.

6.5 Other styles

The styles discussed in this chapter are all very general: they can be used to represent

all sorts of data in a variety of situations. In addition to these general-purpose styles,

gnuplot offers further possibilities for special applications:

 Appendix E explains boxplots (to represent point distributions), histograms

(for counting statistics), and parallel coordinates (a particular kind of multivar-

iate technique).

 Appendix C and appendix D introduce surface and contour plots, as well as

false-color plots and heatmaps. All of these methods apply to cases where you’d

like to represent how one dependent quantity depends on two independent

variables.

 Appendix F introduces some special plot types for non-Cartesian coordinates.

6.6 Summary

This chapter is like an illustrated catalog: it demonstrates all of gnuplot’s major plot

styles by way of example. As such, I’m not disappointed if you didn’t read the chapter

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


124 CHAPTER 6 A catalog of styles

from start to finish: it’s fine to look at the figures until you find one that does what you

need and then read the accompanying section.

 The only part of this chapter that you should have read, even on a first pass, is sec-

tion 6.2, because it explains how styles are chosen and how you can customize them to

meet your needs. This is fundamental material that you’ll need basically every time

you use gnuplot.

 Everything in this chapter exists to visualize data. In contrast, chapter 7 looks at

things you may want to put on a plot in addition to the data: labels, arrows, and other

decorations.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


125

Decorations: labels, arrows,
and explanations

Data alone doesn’t tell a story. To be useful, the data needs to be placed in context:

you must tell the observer what the data is (such as position versus time, particle

count versus scattering angle, stock price versus date, and so on) and what units the

data is plotted in (centimeters or inches, seconds or minutes, dollars or Euros). No

plot is complete without this information.

 But you can do much more to make a graph useful and informative: you can

add arrows and annotations on the graph to point out and explain interesting fea-

tures. You may also want to provide special tic marks and labels to make quantita-

tive information stand out more. Or you can change the size and shape of the

entire graph to accommodate a specific data set.

This chapter covers

 Understanding layers and locations on a graph

 Adding arrows, labels, and other decorations

 Providing explanations using a key

 Changing a graph’s overall appearance

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


126 CHAPTER 7 Decorations: labels, arrows, and explanations

 In this chapter, we’ll discuss all the means that gnuplot offers to put ancillary infor-

mation on a plot (in addition to the data). Because much of this material is quite dry,

I’ve gathered the most important commands and options together in the next section.

Unless you have specific requirements, this may be all you need to know right now—

gnuplot is good at automatically doing the right thing in most situations.

7.1 Quick start: minimal context for data

For the sake of concreteness, let’s go back to the diffusion limited aggregation (DLA)

example of section 1.1.2 and in particular figure 1.4. We’ll use this plot as our exam-

ple throughout this section.

 The absolute quickest way to add the most important contextual information to

the plot is to give it a title, such as

set title

➥ "Run Time (in seconds) vs. Cluster Size (in thousands of particles)"

This tells the observer both what is plotted (computation time versus system size) as

well as the relevant units (time is given in seconds, and particles are counted by thou-

sands), conveniently packaged in a single command. This is the bare minimum.

 The title is centered at the top of the graph (as in figure 7.1—you may want to go

back to section 1.1.2 to learn about the context in which this example arose). With a

little additional effort, you can put labels on the axes using the set xlabel and set

ylabel commands. This frees up the title for contextual information about the data in

the plot, like so:

set xlabel "Cluster size [thousands]"
set ylabel "Running time [sec]"

set title

➥ "DLA Growth Program: Run Time vs Cluster Size (Double Logarithmic)"

Finally, there’s the key (or legend), which relates line types to data sets. By default, it’s

placed in the top-right corner of the graph, but this may not be suitable if it will inter-

fere with data. You can change the position of the key using the keywords

left, right, top, bottom, center

in the set key command: for example, set key right center, to place the key verti-

cally centered on the right side of the graph. The order of the keywords doesn’t mat-

ter, and if only one is given, all the other options retain their values. Finally, you can

suppress the key using unset key.

 You saw in section 2.1.2 how you can change the string describing the data set in

the key using the title option to the plot command. To suppress an entry in the key,

you can either use the notitle option or provide an empty title string. In the follow-

ing command, the data curve has an entry in the key, but the fitted curve doesn’t:

plot [1:100][0.1:] "progress" u 1:2 title "Data" w p, (x/2.5)**3 notitle

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


127Quick start: minimal context for data

Now let’s put all this together. The following listing summarizes the commands used

to build figure 7.1.

set xlabel "Cluster size [thousands]"

set ylabel "Running time [seconds]

set title

➥ "DLA Growth Program: Run Time vs Cluster Size (Double Logarithmic)"

set key top left

set logscale

plot [1:100][0.1:] "progress" u 1:2 title "Data" w p, (x/2.5)**3 notitle

This concludes our quick start, and it may be all you need for now. The rest of this

chapter discusses the miscellaneous options that are available if you aren’t happy with

the defaults. But first I need to describe the different ways you can refer to a location

on a plot.

TIP You can use set xlabel and set ylabel to tell the viewer what quantities
are plotted along the horizontal and vertical axes. The set title command is
an easy way to add general context to a plot. And don’t forget the plot ...
title "..." facility to add a meaningful string to the plot’s legend. 

Listing 7.1 Commands for figure 7.1 (file: progress.gp)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1  10  100

R
u

n
n

in
g

 t
im

e
 [

s
e

c
o

n
d

s
]

Cluster size [thousands]

DLA Growth Program: Run Time vs Cluster Size (Double Logarithmic)

Data

Figure 7.1 Providing minimal context for a plot using a title and axes labels. See listing 7.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


128 CHAPTER 7 Decorations: labels, arrows, and explanations

7.2 Understanding layers and locations

To add decorations to a plot, you must be able to tell gnuplot where on the graph the

new elements should be placed. Two different concepts are involved. In the next sec-

tion, I’ll explain how to specify positions laterally within the plane of the graph. Then,

you’ll learn about the stacking order that enables you to place elements visually in the

foreground or background relative to each other. 

7.2.1 Locations

First, let’s establish some terminology. The entire area of the plot is referred to as the

screen or the canvas. On the canvas is the graph, which is surrounded by a border (unless

you explicitly turn off the border). The region outside the border is called the margin.

All these are indicated in figure 7.2.  

You can provide up to two different sets of axes for a plot. This is occasionally useful

when comparing different data sets side by side: each data set can be presented with

its own coordinate system in a single graph. The primary coordinate system (named

first) is plotted along the bottom and left borders. The secondary coordinate system

(second) is plotted along the top and right borders. By default, the secondary system

isn’t shown; instead, the primary system is displayed on all four borders. (You’ll find

more information on axes and coordinate systems in chapter 8.)

 Now that you know what all parts of a graph are called, we can talk about the differ-

ent ways to specify locations. Gnuplot uses five coordinate systems:

first, second, graph, screen, character

Border

Margin

graph (0,0)

screen (0,0)

graph (1,1)

screen (1,1)

fi
rs

t

s
e

c
o

n
d

first

second

Figure 7.2 The parts of a gnuplot graph: canvas, borders, and margins

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


129Understanding layers and locations

The first two refer to the coordinates of the plot itself. The third and fourth (graph

and screen) refer to the graph area and the entire canvas, respectively, placing the

origin (0,0) at the bottom-left corner and the point (1,1) in the top-right corner (see

figure 7.2). Finally, the character system gives positions in character widths and

heights from the origin (0,0) of the screen area. Obviously, positions in this last coor-

dinate system depend on the font size of the default font for the current terminal.

 Coordinates are given as pairs of numbers separated by a comma. As necessary,

each number in this pair can be preceded by one of the five coordinate specifiers. The

default is first, and if no coordinate system is given explicitly for y, the one for x is

used for both values.1

 You’ll see many examples of coordinate specifications in the rest of this chapter. 

7.2.2 Layers

Gnuplot draws graph elements onto the canvas in a well-defined sequence. You can

use this stacking order to place some elements visually “in front of” or “behind” other

elements.

 Plot elements are organized into layers (see figure 7.3). Graph elements in a layer

that’s closer to the front obscure elements in layers further back.

Labels, arrows, and geometric shapes (objects) are organized in two layers, one of

which is (visually) behind the plotted data; the other one is on the top of the visual

stack. When creating a decoration, you can assign it to either of these two layers using

the keywords front and back; the default is back. Within each layer, arrows are visu-

ally in front of labels, and geometric shapes are even further behind. As you’ll learn in

the next section, each arrow (or label or object) has a numeric tag, and this tag is used

to sort elements of the same type: arrows with lower tag numbers are drawn first, and

all arrows are drawn before any text labels are drawn.

 A special layer, identified using the keyword behind, resides at the bottom of the

visual stack. Only objects (but no arrows or labels) can be added to this layer. You can

1 Although it may seem weird to use different coordinate systems in the same coordinate pair, this feature is
occasionally useful. For example, you can use the following command to place a vertical line at a fixed x loca-
tion and let it extend over the full range of the graph, independent of the y range: set arrow from 1.25,
graph 0 to 1.25, graph 1.

behind

back

plotplot

key

front

objects
labels

arrows

objects
labels

arrows

Only objects allowed in this layer

Cur ves drawn in command-line order

Within layer

Within layer

Figure 7.3 Stacking order of 

layers, front to back. Within each 

layer, objects are drawn first, 

followed by labels and arrows. 

Curves are drawn in the order in 

which they appear in the plot 

command.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


130 CHAPTER 7 Decorations: labels, arrows, and explanations

use this layer to provide a visual background (such as a solid color or a color gradient)

to the entire graph.

 Data and functions are plotted in the order in which they appear in the plot com-

mand, left to right. This means elements specified later in the plot command appear

in front of those given earlier.

 Whereas the locations within the plane of the graph are essential when working

with decorations, the stacking order becomes relevant only for complicated graphs

consisting of many plot elements. For most day-to-day operations, you probably won’t

need to concern yourself with it. But you have control over the visual stack for those

special situations when you need it!

7.3 Additional graph elements: decorations

I use the term decorations for all additional graphical elements that can be placed on

the graph but that don’t (primarily) represent data. The most important decorations

are text labels, closely followed by arrows, but gnuplot can also draw rectangles, cir-

cles, ellipses, and polygons.

7.3.1 Common conventions

Labels, arrows, and objects share some conventions that apply to all of them equally.

I’ll summarize these conventions here so I don’t need to repeat this information for

each of the individual styles.

CREATING DECORATIONS

All decorations are created using the set ... command (see chapter 5). It’s very

important to remember that this command does not generate a replot event: the deco-

rations won’t appear on the plot until the next plot, splot, replot, or refresh com-

mand has been issued!

 Keep in mind that decorations aren’t taken into account by the autoscale feature,

which automatically attempts to adjust the plot ranges in such a way as to display the

relevant parts of the data. In other words, if a decoration (or part of it) falls outside

the plot range (either explicitly given or automatically selected), it will not appear on

the plot. (More on autoscaling in section 8.2.)

TIP Decorations created with set ... won’t appear on the graph until the
entire plot is redrawn through a plot, replot, or equivalent command. 

IDENTIFYING DECORATIONS WITH TAGS

So that you can later refer to a specific object (such as an arrow or a text label), you

can give the object a numeric tag: for instance, set arrow 3 .... Now you can make

changes that apply only to this arrow by providing the tag in the next call to set

arrow; or you can eliminate the arrow using unset arrow 3. Arrows, labels, and objects

have separate counters. 

 If you omit the label, gnuplot will assign the next unused integer automatically

(when using set ...) or apply the command to all instances of the object (when using

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


131Additional graph elements: decorations

unset ...). The command unset arrow, without an explicit tag, removes all arrows

from the graph!

 You can see all defined arrows, together with their location and appearance

options, by using show arrow and including a tag (for example, show arrow 3 limits the

command to the corresponding element). Labels and objects can be listed using equiv-

alent commands. Because decorations are drawn onto the plot in the order of their tag

number, you can control visual stacking through appropriately assigned tag numbers.

TIP When you’re using gnuplot interactively, it’s usually a good idea to
assign numeric tags explicitly and not rely on the automatically generated
tags. Almost invariably, you’ll want to modify a graph element created earlier,
and always using an explicit tag number ensures that you only edit the one
element you intend to. 

7.3.2 Arrows

Arrows are generated using the set arrow command, which has the following

options:

set arrow [{idx:tag}] from {pos:from} to {pos:to} 
set arrow [{idx:tag}] from {pos:from} rto {pos:offset}

set arrow [{idx:tag}] from {pos:from} length {pos:len} angle {flt:degrees}

set arrow [{idx:tag}] [ nohead | head | heads | backhead ]
                      [ size {flt:length} [,{flt:angle}] [,{flt:backangle}] 

                        [fixed] ]

                      [ nofilled | empty | filled | noborder ]
                      [ front | back ]

                      [ lineoptions ]

set arrow [{idx:tag}] [ arrowstyle | as ] {idx:style} 

Each arrow has a beginning and an end point. The starting point is always given explic-

itly, as a coordinate pair in any of gnuplot’s coordinate systems, but the end point can

be given in three different ways (see the first three lines in the previous snippet):

 As an explicit end point coordinate using the to keyword. Example: set arrow

from 0,0 to 2,1.

 As a relative offset from the starting point, using rto. The horizontal and verti-

cal length of the offset are measured in units of the x and y axis, respectively.2

Example: set arrow from 0,0 rto 2,0 draws a horizontal arrow that is two x-axis

units long.

 As a length and an angle. The length is measured in units of the horizontal axis

but can be preceded by any of the permissible coordinate system specifiers. The

angle is given in degrees and measured counterclockwise from the positive x

axis. Example: set arrow from 0,0 length 2 angle 45.

2 For logarithmic coordinates, the relative offset is multiplicative, not additive.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


132 CHAPTER 7 Decorations: labels, arrows, and explanations

Many aspects of the arrow’s appearance can be changed using the set arrow com-

mand. These specifications can be given either explicitly or by referencing a previ-

ously defined arrow style (using the arrowstyle keyword). In the next section, I’ll

explain the different appearance options; we’ll come back to predefined styles in

chapter 9.

 Appearance options can be either specified separately or combined with the coor-

dinates in a single call. The following two code snippets show two equivalent ways to

define the same arrow:

set arrow 1 from 0,0 to 2,1

set arrow 1 nohead front

set arrow 1 from 0,0 to 2,1 nohead front

CUSTOMIZING ARROW APPEARANCE

You can customize the appearance of an arrow, in particular the size and shape of its

head (or heads) and the look of its “backbone”:

 Heads—By default, a head is drawn at the destination endpoint. Heads can be

suppressed entirely using nohead. The keyword heads draws heads at both ends;

backheads draws only a single head at the start point.

 Head size and shape—You can change the size and shape of the head using the

keyword size followed by the length and the angle at the arrow tip, and—

optionally—the angle at the back of the head (see figure 7.4). Unless otherwise

specified, the length is measured in units of the primary horizontal axis; this

can be changed using any of the coordinate system specifiers (see figure 7.2).

All angles are measured in degrees; the back angle is ignored if the fill style is

nofilled (which is the default).3

By default, the size of the arrow head is reduced for very short arrows; this

can be disabled using fixed immediately following the size.

 Head color and fill style—By default, arrow heads aren’t filled and the back angle

is ignored. The keyword empty draws only the outline, filled draws the outline

and fills it, and noborder draws the filled area but not the outline. This matters,

because the outline extends, by one line width, beyond the end position of the

arrow; hence you may need to suppress the outline. It also matters if you’re using

a dashed line for the arrow and want to suppress a dashed outline for the head.

You can’t choose the fill color separately from the outline color. If you want a

red-filled arrow head with a black outline, you need to construct it from two

arrows, one on top of the other.

 Layer assignment—Arrows can be assigned to the front or back layer.

 Line options—All available line options can be used. They apply to the arrow’s

backbone and its head or outline.

3 The default values for the head size are size screen 0.0225,15,90. Using the screen coordinate system
guarantees that the head size doesn’t change if the plot range does.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


133Additional graph elements: decorations

Some examples of custom arrow heads are shown in figure 7.5.  

MORE TRICKS WITH ARROWS

The arrow facility is versatile and can be used for purposes other than placing explicit

arrows on a plot. Here are some ideas:

 Because an arrow without a head is just a straight line, you can use set arrow

... to draw arbitrary straight lines on a plot. In particular, arrows can be used to

draw vertical lines. (You don’t need arrows to draw horizontal lines, of course; it’s

generally easier to use plot 1, -1 to draw horizontal lines at y = -1 and y = +1.)

 The ability to mix different coordinate systems in the same coordinate specifica-

tion can come in handy in this context. For example, if you want to draw a verti-

cal line at x = 0.5 from the lower to the upper boundary, you can say set arrow

AngleBackangle

Length
Figure 7.4 The parameters that 

control the shape of an arrowhead

10 -5  0  5  10

set arrow

set arrow heads

set arrow nohead

set arrow heads size 0.3,90

set arrow empty

set arrow filled size 0.5,15,165

set arrow empty 0.75,30,60

(Check main text for description)

Figure 7.5 Different arrow forms and the commands used to generate them. See 

listing 7.2 for the last one.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


134 CHAPTER 7 Decorations: labels, arrows, and explanations

from 0.5, graph 0 to 0.5, graph 1 without having to worry about the exact val-

ues of the vertical plot range.

 You can use short arrows without heads to draw custom tic marks, if gnuplot’s

built-in tic marks are insufficient (see chapter 8 for more information on tic

marks).

 Arrows with customized heads can be used to indicate a scale or range on a

graph—figure 7.8, later in the chapter, contains an arrow used for this purpose.

 You can generate an arrow with two different heads by generating two single-

headed arrows back to back. You can also overlay arrows to generate more

sophisticated effects. The following listing shows the commands used to gener-

ate the bottom arrow in figure 7.5.

set arrow 1 from 0,-9 to 6, -9 size 0.5,30

set arrow 2 from 0,-9 to 5.75, -9 size 0.5,30

set arrow 3 from 0,-9 to 1, -9 backhead size 0.3,90

As you’ve seen, arrows are a versatile graph element. But more often than not, you’ll

want to combine them with some textual explanation. That’s what labels are for. 

7.3.3 Text labels

Text labels are a natural companion to arrows. The arrow shows the observer where to

look, and the label explains what’s happening:

set label [{idx:tag}] [ "{str:text}" ] [ at {pos:location} ]
                      [ left | center | right ]

                      [ rotate [ by {int:degrees} ] | norotate ]

                      [ [no]boxed ]
                      [ front | back ]

                      [ point lt|pt {idx:pointtype} 

                              | ps {flt:pointsize} | nopoint ]
                      [ offset {pos:off} ]

                      [ hypertext ]

                      [ noenhanced ] 
                      [ font "{str:name}[,{int:size}]" ] 

                      [ textcolor | tc [ {clr:colorspec} 

                                       | lt {idx:type} | ls {idx:style} ] ]

The label text is typically a constant, but it can also be a string variable or any string-

valued expression. To obtain a formatted string, the sprintf() and gprintf() func-

tions are often useful. For example, to create a label (at the origin) showing the value

of π, truncated to two digits, you can use set label at 0,0 sprintf( "%.2f", pi ).

(See section 5.1 for more information about string operations, in particular table 5.1.)

 

Listing 7.2 Commands to generate the double-feathered arrow in figure 7.5

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


135Additional graph elements: decorations

 By default, the text is placed flush left at the position specified by the at ... loca-

tion. This can be changed using the left, center, and right keywords.

 Gnuplot allows text to be rotated, but not all terminals support arbitrary angles.

Use the test command to see what’s possible (see section 10.1.3). If the text hasn’t

been rotated, you can draw a frame around it using boxed. The stacking order can be

controlled with front and back, as for arrows.

 Using point, you can place a symbol at the position specified with at; the text label

is shifted relative to it. The point style and size of the symbol can be fixed using lt

(line type), pt (point type), and ps (point size), and the offset can be customized

using offset. The nopoint option suppresses the point.

 The hypertext option creates a label that is visible only when the mouse hovers near

the location of the label—specifically, near the symbol placed at the location of the

label. (The hypertext option can only be used together with the point option.) The

hypertext option isn’t available for all terminals. Currently, only the (interactive)

wxt, qt, and windows terminals support it, as well as the (browser-based) svg and

canvas terminals.

 You can select the color of the text using textcolor (abbreviated tc), followed by

either a color specification (see chapter 9) or the keyword linetype (lt) and the index

of a predefined line type. In this case, the color of the line type is applied to the text.

 Finally, you can choose a specific font using the font option. The keyword

noenhanced suppresses the interpretation of enhanced-mode control characters in the

text string, even if enhanced mode is active for the current terminal. (Read chapter 10

for an in-depth discussion of font selection and enhanced text mode.)

 In addition to the fully general set label facility that I just described, gnuplot offers

two specialized labeling commands: to add a label to any axis of the plot, or to add a title

to the entire graph. Both provide convenient shortcuts for common situations.

TITLE

The title option is a label with some special defaults. For instance, it’s automatically

placed centered at the top of the graph, and the top margin of the graph is adjusted

accordingly.

 The set title option takes the following arguments, which should be familiar

from the discussion of set label:

set title [ "{str:text}" ] [ offset {pos:off} ] 

          [ font "{str:name}[,{int:size}]" ][ noenhanced ]

          [ textcolor | tc [ {clr:colorspec} 
                             | lt {idx:type} | ls {idx:style} ] ]

Only the behavior of the offset directive requires an explanation. It can be used to

shift the title from its default position by a specified amount. What’s unusual is that by

default, it interprets its argument as given in the character coordinate system. With

this in mind, the following commands are entirely equivalent—both shift the title

down by the height of a single character:

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


136 CHAPTER 7 Decorations: labels, arrows, and explanations

set title "..." offset 0,-1
set title "..." offset character 0,-1

AXIS LABELS

The commands that place labels on the axes of a plot are also variants of the standard

set label command. Because labels can be placed on any axis, there’s an entire fam-

ily of related commands, all differentiated by prefixes (such as x and y), that indicate

which axis a label belongs to. (We haven’t discussed these prefixes yet but will do so in

chapter 8.) In the following syntax summary, the underscore (_) stands for any of the

permissible prefixes:

set _label ["{str:text}"] [ offset {pos:offset} ]

                          [ rotate by {int:degrees} | parallel | norotate ] 

                          [ font "{str:name}[,{int:size}]" ] [ noenhanced ]
                          [ textcolor | tc [ {clr:color} 

                                      | lt {idx:type}

                                      | lt {idx:style} ] ]

The options are an almost strict subset of those available for the plain set label com-

mand. Check section 7.3.3 for details. The only new feature is the rotate parallel

directive. It applies only to three-dimensional plots (see appendix C) and rotates each

label such that it’s parallel to its axis (by default, the labels are printed horizontally in

three-dimensional plots).

 Finally, keep in mind that both set title and the axis label commands are merely

standard text labels with some convenient defaults. If they don’t give you sufficient

control to achieve the effect you’re looking for, you can always use explicit set label

commands instead.

 In addition to arrows and labels, which primarily are intended to add explanations

to a graph, gnuplot also lets you place arbitrary graph objects on a plot. You do so using

the set object command. 

7.3.4 Shapes or objects

The set object ... facility can place a variety of geometrical objects on a graph, such

as rectangles, circles, ellipses, and even arbitrary polygons. Shapes are different from

other graphical elements described so far: they’re less suited to represent data,

because their coordinates can’t be read from a file and instead must be set manually.

Shapes also don’t add semantic information to a graph in the way arrows and labels

do. They introduce functionality to gnuplot that you’d expect in a general-purpose

drawing program rather than in a data-visualization tool—but here they are, in case

that (special) need arises.

 Because gnuplot’s shapes and objects are a bit outside this book’s primary goal

(which is to help you understand data with graphs), I won’t discuss them much further,

except for some cautionary notes. (See the standard reference documentation for

details.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


137The graph’s legend or key

 All objects share a single tag counter, which is separate from the tag counters for

arrows and labels; but keep in mind that there is no separate tag counter for (say) cir-

cles as opposed to rectangles. All shapes are of type object; the particular shape

(whether circle, rectangle, ellipse, or polygon) is specified as a property of each indi-

vidual object. For rectangles, you can define a global style using set style rectangle;

the other shapes inherit properties from the global fill style, which is defined through

set style fill. (See section 9.4 for information on global styles.) Finally, let me

remind you that elements of type object are the only items that can be placed in the

layer at the bottom of the visual stack (using the behind keyword). This can be useful

to give a colored background to the entire graph. (Most contemporary terminals let

you specify a background color, which may be a more convenient alternative, pro-

vided you want to give a single color to the entire canvas area.)

 Arrows, labels, and objects are graphical elements that you can use to make graphs

more interesting and more informative. But they aren’t the only elements that can go

on a plot besides data, and they aren’t even the most useful ones. The single most use-

ful element is probably the graph’s legend or key, which explains what all the lines and

symbols on the plot stand for. Gnuplot’s set key facility is very powerful and therefore

deserves a section by itself. 

7.4 The graph’s legend or key

We all know the little boxes on maps that explain what the different symbols mean:

thick red lines indicate highways, white is for country roads, and thin dashed lines

mean unpaved gravel. (And the odd-looking symbol with a roof? Right: that’s an out-

house.) In gnuplot, this box is called the key.

 The key (or legend) explains the meaning of each type of line or symbol placed on

the plot. Because gnuplot generates a key automatically, it’s the most convenient way

to provide this sort of explanation. On the other hand, relying on the key separates

the information from the actual data. I therefore often find it preferable to place

arrows and labels directly on the graph instead, to explain the meaning of each curve

or data set. A separate key excels when there are so many curves that individual arrows

and labels would clutter the graph.

 As usual, almost anything about the key can be configured. All available options

are summarized next:

set key [ on|off ] [ default ]

        [ [ at {pos:position} ]
          | [ inside | outside ] [ lmargin | rmargin | tmargin | bmargin ] ]

        [ left | right | center ] [ top | bottom | center ]

        [ vertical | horizontal ] [ Left | Right ]
        [ [no]reverse ] [ [no]invert ]

        [ maxrows [ auto | {int:rows} ] ] [ maxcols [ auto | {int:cols} ] ] 

        [ [no]opaque ]
        [ samplen {flt:len} ] [ spacing {flt:factor} ]

        [ width {int:chars} ] [ height {int:chars} ]

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


138 CHAPTER 7 Decorations: labels, arrows, and explanations

        [ [no]title "{str:text}" ]
        [ [no]box [ lineoptions ] ]

        [ [no]enhanced ]

        [ font "str:font,int:size" ] [ textcolor | tc {clr:color} ]

        [ [no]autotitle [columnheader] ]

As you can see, there are a lot of sub-options! To make information easier to find, I’ve

broken the following explanation into separate sections under their own headings.

7.4.1 Turning the key on and off

You can suppress the key using either of the following two commands:

set key off

unset key

The command set key on enables it again. 

7.4.2 Placement

The key can be placed at any position on the canvas. The most straightforward (but

not necessarily the most convenient) method is to fix a specific location using the at

option. The location can be prefixed by any of the standard coordinate system pre-

fixes. The keywords left, right, top, bottom, and center align the key relative to the

specified position. For instance,

set key at 0,0 top left

places the top-left corner of the key at the origin of the coordinate system.

 As usual, with great power comes great responsibility. When using the explicit at

option, gnuplot doesn’t rearrange the plot in any way to make room for the key: you

must do this explicitly. It’s usually more convenient to use the predefined keywords

that place the key relative to the graph; when you use these keywords, the borders of

the graph are automatically adjusted to make room for the key.

 The keywords left, right, top, bottom, and center push the key into the desired

position. You can place the key inside the plot using inside (this is the default) or on

any one of the margins using lmargin, rmargin, tmargin, and bmargin (meaning the

left, right, top, and bottom margin, respectively). You can also use combinations of

position specifiers, such as set key top left. The effect of these options is cumula-

tive, so the following two examples have the same effect:

set key bottom left

or

set key bottom
set key left

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


139The graph’s legend or key

One surprising exception is that the keyword center by itself is interpreted as the cen-

ter of the graph (both horizontally and vertically). 

7.4.3 Layout

The samples in the key can be either stacked vertically or aligned horizontally using

the vertical and horizontal keywords. The alignment of the labels within the key

is controlled using the Left and Right options (note the capitals). The default is

vertical Left.

 Usually, the textual description of the line sample is to the left, with the line sam-

ple on the right. The keyword reverse interchanges this arrangement.

 Entries in the key are made in the order in which the corresponding data sets

occur in the plot command. If you want to sort entries in a specific way, you need to

list the data sets in the appropriate order in the plot command. But you can invert

the stacking order of the samples in the key using invert. This is mainly useful to

force the ordering of labels in the key to match the order of box types in a stacked his-

togram (see section E.4). 

 In general, the key is built up in its primary direction as far as possible. Assuming

that key entries are vertically stacked (which is the default), gnuplot will continue to

add lines to the key and only begin a new column when there is no more vertical room

on the graph. To change this behavior, use the maxrows keyword together with a

numeric argument: gnuplot will create a new column in the key whenever the number

of rows exceeds the specified value. The maxcols keyword has the equivalent effect

with a key that is built up horizontally. 

7.4.4 Appearance

By default, each entry in the key is created at the same time the corresponding line is

drawn on the graph. Later plot elements may therefore obscure parts of the key.

When the opaque keyword is given, the key is drawn after the graph is complete; more-

over, the key area is cleared before the key is created.

 The length of the line sample in the key can be controlled using samplen. The

sample length is the sum of the tic length (see chapter 8) and the argument given to

samplen times the character width. A negative argument to samplen suppresses the

line sample.

 The vertical spacing between lines in the key is controlled using spacing. The spac-

ing is based on the product of the point size and the argument to spacing. This param-

eter does not influence the horizontal spacing between entries in horizontal mode.

 You can give the entire key a title (which is placed at the top of the key) using the

title option, and draw a frame around the key using box. In this case, you may need

to adjust the size of the box using the width and height parameters. Both take the

number of characters to be added to or subtracted from the calculated size of the key

before the box is drawn. In particular, if any text label in the key contains control char-

acters for enhanced text mode, the size of the autogenerated box may be incorrect.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


140 CHAPTER 7 Decorations: labels, arrows, and explanations

Finally, you can adjust the appearance of the lines used to draw the box using the usual

line options.

 Enhanced text mode (see chapter 10) can be switched on or off for the key, inde-

pendent from the terminal’s behavior. You can set the default font for the key by using

the font keyword, but keep in mind that these settings can be overruled in the expla-

nations (see the next section). 

7.4.5 Explanations

The explanation is a bit of text that assigns a meaning to each line sample or symbol

type included in the key. The string for the explanation can come from one of two

places: the plot command or the data file. Let’s look at both methods.

TAKING EXPLANATIONS FROM THE PLOT COMMAND

Usually, the explanatory text is taken from the plot command, using the title keyword:

plot "data" u 1:2 title "Experiment" w l, sin(x) title "Theory" w l

If no explicit title is set in the plot command, by default gnuplot will generate a stan-

dard description based on the filename and the selection of columns plotted. If you

don’t like this behavior, you can turn it off using set key noautotitle: now only

curves with an explicit title keyword in the plot command will have an entry in the

key. (The command set key autotitle restores the default behavior.)

 There are two further ways to suppress parts or all of a key entry:

 If an empty string is given as argument to the title keyword, gnuplot will gener-

ate no key entry for the corresponding data set: neither a line sample nor an

explanation will be shown.

 To generate a key entry consisting only of the line sample, without a visible

explanation, use a string consisting only of whitespace as argument to the title

keyword in the plot command.

TAKING EXPLANATIONS FROM THE DATA FILE

Instead of taking explanations for the key from the plot command, gnuplot can take

them from the first non-comment line in the data file. This is the same information used

in section 4.4.1 to identify a column in the using specification—now it’s used for the

graph’s key, as well.

 Although the strings used in the key always come from the first non-comment line

in the data file, there are three ways to instruct gnuplot what to do:

 Globally, using set key autotitle columnhead

 As part of the plot command, via title columnhead

 To have maximum control, using the function columnheader() as part of an

inline transformation in the using specification

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


141The graph’s legend or key

Let’s look at an example. The next listing shows a data file that you’ve seen before (in

listing 4.7). Note how the first line, containing the column headings (which will be

used in the key of the plot), isn’t a comment line.

Year Wheat Barley Rye

1990 8 6 14
1991 10 5 12

1992 10 7 15

1993 11 5 13
1994 9 6 12

You already know how to plot a file like this and generate proper key entries using

explicit explanations in the plot command (technically, you need to use skip 1,

because the first line isn’t commented out):

plot "grains" skip 1 u 1:2 t "Wheat" w lp, "" skip 1 u 1:3 t "Barley" w lp,

➥ "" skip 1 u 1:4 t "Rye" w lp

If you use global style settings instead, the plot command can be particularly simple

(see figure 7.6):

set style data linesp

set key autotitle columnhead  

plot "grains" u 1:2, "" u 1:3, "" u 1:4

Listing 7.3 Data for figures 7.6 and 7.7 (file: grains)

Not a comment line!

A global style setting …

… and global key configuration …

… result in a simple plot command.

 4

 6

 8

10

12

14

16

 1990  1991  1992  1993  1994

Wheat

Barley

Rye

Figure 7.6 Using set key autotitle columnhead, key entries are taken from 

the first non-comment line in the data file. See listing 7.3 for the data file.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


142 CHAPTER 7 Decorations: labels, arrows, and explanations

Rather than use a global directive, you can tell gnuplot to take the explanation from

the data file within the plot command. Doing so lets you modify the behavior on a

case-by-case basis:

plot "grains" u 1:2 t columnhead w lp,

➥ "" skip 1 u 1:3 t "Brown Barley" w lp

➥ "" skip 1 u 1:4 t "" w lp

Using title columnhead as part of the plot command instructs gnuplot to take the

explanation for that column from the header entry for the same column. If you want

more control (for instance, because you want to specify a different column, or you’re

applying an inline transformation that combines multiple columns), you can use the

columnheader() function.4 The argument to columnheader should evaluate to an

integer, which is interpreted as a column number; the function returns the contents

of the first non-comment line in this column as a string. This string can either be sup-

plied to the title keyword in the plot directly or be part of a string expression. The

next code snippet shows all these variants:

plot "grains" u 1:2 t columnhead w lp,

➥ "" u 1:3 t columnhead(3) w lp,

➥ "" u 1:4 t "Black " . columnhead(4) w lp

Note that the title can be taken from a different column than the data, which can be

useful in combination with data transformations: commands such as plot "data"

using 1:($2/$3) title columnhead(2) are legal.

 The ability to take explanations directly from the data file is an interesting feature,

adding significant convenience in particular when you’re including many data sets in

a single plot. Nevertheless, I’m a bit uncomfortable with the way it mixes data and com-

ments in the same file without an easy way to distinguish the two; files in this format are

harder to use with data-processing filters or as input to other programs. (I’d probably

have preferred to make the line containing the column heads a comment line and

indicate its use as title information through a special marker, such as a doubled hash-

mark or other comment character at the beginning of the line.) Judge for yourself.

PLACING EXPLANATIONS ON THE GRAPH

I quickly want to mention another new feature. Traditionally, explanations are visu-

ally grouped together to form the key. You can now also put some (or all) explana-

tions onto the graph itself, either at the beginning or the end of the line they’re

describing (see figure 7.7). To do so, include at beginning or at end after the title

keyword in the plot command:

 

4 The columnheader() function is new. In previous versions of gnuplot, this effect was achieved by supplying
the column number directly as an argument to the title keyword.

Takes the explanation 
from the file

Explicitly 
provided 
explanationSuppresses the 

key entry

Same column

Arbitrary column

String expression

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


143The graph’s legend or key

unset key

plot [1989:1995] "grains" u 1:2 t "Wheat" at beginning w lp,

➥  "" u 1:3 t columnhead at end w lp,

➥  "" u 1:4 t at beginning w lp

Notice that the explanation string may be missing, but the title keyword (or its

abbreviated form t) must be present. Also keep in mind that you have no fine control

over the placement of the explanation. Furthermore, gnuplot won’t adjust plot ranges

automatically to make room for these labels: you have to do so yourself. If you want

more control, use the set label facility (see section 7.3.3).   

7.4.6 Default settings

Just to provide a reference, the default settings for the key are

set key on right top vertical Right noreverse noinvert autotitle

➥ samplen 4 spacing 1.25 title '' nobox

The previous command is equivalent to the much shorter

set key default

which can occasionally be helpful to restore sanity when you’re experimenting with

key placement and layout.

Explicit description 
at beginning

Default description
at beginning

Description from 
column head at end

 4

 6

 8

10

12

14

16

 1989  1990  1991  1992  1993  1994  1995

Wheat

Barley

"" u 1:4

Figure 7.7 Explanations can be placed at the beginning or end of the curves rather 

than grouped together in a global key.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


144 CHAPTER 7 Decorations: labels, arrows, and explanations

 Now that you’ve seen all the different graph elements you can use in a gnuplot fig-

ure, it’s time to put everything together and look at a worked example. That’s what

we’ll do next. 

7.5 Worked example: features of a spectrum

To demonstrate how to use all the features together, let’s study a more extensive exam-

ple (see figure 7.8). The plot shows some experimental data, together with two theo-

retical curves that might explain the data from the experiment.

The folllowing listing gives the commands used to generate this graph, as they would

be entered at the gnuplot prompt. Let’s step through them in detail—there is much

to learn.

set title "Scattering: Data and Theory"

set xlabel "Frequency offset"

set ylabel "Relative intensity"

set key top left box title "Legend" height .5

set arrow 1 from -4,.35 to -3.4,0.2

set label 1 "Cusp at x=-π?" at -6,0.4

set arrow 2 from 5,-.2 to 5,.95 nohead dashtype '-' lc black
set label 2 "Singularity at x=5" at 5,1 center

set arrow 3 from -1,0.2 to 1,0.2 heads size 0.1,90

set label 3 "Full Width at\nHalf Maximum" at 0,0.125 center

Listing 7.4 Commands for figure 7.8 (file: spectrum.gp)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

Cusp at x=-π?

Singularity at x=5

Full Width at

Half Maximum

R
e

la
ti
v
e

 i
n

te
n

s
it
y

Frequency offset

Scattering: Data and Theory

Legend

Data

Lorentzian

Gaussian

Figure 7.8 A complicated plot. See listing 7.4 for the commands used to generate it.

TitleB

Axis labelsC

KeyD

Arrow and labelE

Vertical 
line

F
Scale

indicator
G

Label with
line break

H

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


145Summary

plot [-7:7][-.2:1.1] "spectrum" u 1:2 t "Data" w p pt 7,

➥ 1/(1+x**2) t "Lorentzian", exp(-x**2) t "Gaussian"

The graph receives an overall title B, and both axes are labeled C. The key is moved

to the top-left corner, so it doesn’t interfere with the data, and surrounded with a box

D. The key gets its own title, which makes it necessary to increase its overall height a

bit to give it a less crowded appearance.

 An arrow and a label are used to point out an oddity in the data E. The label con-

tains the Unicode character π (see the sidebar in section 5.1 for more information on

Unicode and how to enter Unicode characters in gnuplot).

 An arrow without heads is used to create a dashed, vertical line F. The dashed line

shows the vertical asymptote as the data approaches the singularity at x=5. (Dash types

will be introduced in section 9.2.2.)

 The scale indicator is yet another creative use for an arrow, this time with two cus-

tomized heads G. This arrow doesn’t point out a feature in the graph, but gives an

indication of scale. (“Full Width at Half Maximum” is commonly used in spectroscopy

to measure the width of a spectral line.) The label for this arrow contains an explicit

line break so that it spreads over two lines H. Remember from chapter 5 that escaped

characters (such as \n here) in double-quoted strings are interpreted as control char-

acters. Finally, finally, the data is plotted I!

 I hope this example gives you an idea how you can use decorations to improve

your graphs. Arrows and labels can be used to explain data and point out specific fea-

tures, but nothing prevents you from getting more creative. 

7.6 Summary

This chapter explained techniques for putting additional, decorative graphical ele-

ments on a plot: things like arrows and text labels. Because it’s such an important tool

to help a viewer understand a complicated graph, I spent a lot of time explaining how

to customize and tweak the graph’s key or legend.

 You also learned how to specify locations on a graph; I introduced the coordinate

systems gnuplot uses for that purpose. I also discussed the layers that make up the

graphical stacking order.

 Decorative graphical elements (such as those in this chapter) are important, even

though they don’t represent data. Through these additional decorations and text

labels, a graph receives its semantics: only if there is text can an onlooker understand

what the data shown in the graph means.

 In the following chapter, we’ll look at the last important elements that give a plot

context: the axes and their subdivisions and labels. Stay tuned.

Plot
command

I

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


146

All about axes

In this chapter, we finally come to coordinate axes and their labeling. Treating

them last, after discussing plot styles and decorations, may seem surprising, given

how critical well-labeled coordinate axes are to achieving an informative graph. On

the other hand, gnuplot’s default behavior for axes-related options is adequate in

almost all situations, so explicit customization is rarely required.

 One topic deserves special consideration: the use of multiple axes on the same

plot. We’ll discuss this first. Then we’ll move on and describe all the ways axes and

their labels can be customized. Finally, we’ll treat the special case when one axis

(usually the x axis) represents time : in other words, when the plot shows a time

series. Time-series plots pose special challenges, because the labels aren’t numeric.

Instead, you need to worry about things such as the names of months and week-

days—potentially in different languages! This has long been a problem to gnuplot

users, so I’ll devote significant space to this application. But first, let’s talk about

multiple axes on the same plot.

This chapter covers

 Using multiple axes

 Selecting plot ranges

 Customizing tic marks and tic labels

 Plotting time series with gnuplot

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


147Multiple axes

8.1 Multiple axes

Gnuplot gives you the ability to plot graphs using two different coordinate systems

within the same plot. Typically, these coordinate systems share one axis (otherwise

there’s no good reason to have them on the same plot), but they may also be entirely

independent.

 Plots involving two different y axes usually make the most sense when you want to

compare side by side two data sets that have very different units. As a typical example,

let’s study figure 8.1, which compares the average ice cream consumption (in some

community) over consecutive four-week periods with the mean temperature during

the same period.1

 Figure 8.1 is a good example of why you might want to use multiple axes on a plot:

the two quantities (ice cream consumption and temperature) are of a different nature

and are also numerically quite different. Yet once you put them next to each other,

the correlation becomes clear (not too surprisingly, in this example).

8.1.1 Terminology

As you’ve just seen, gnuplot can handle two sets of axes on a single plot. The conse-

quence is that all commands and options to manipulate axes-related properties come

1 This example was inspired by the “Ice Cream Consumption” story, found in the StatLib’s Data and Story
Library (DASL) at http://lib.stat.cmu.edu/DASL/Datafiles/IceCream.html.

 100

 120

 140

 160

 180

 200

 220

 240

 260

01Apr 01Jul 01Oct 01Jan 01Apr 01Jul 01Oct 01Jan 01Apr 01Jul

-5

 0

 5

 10

 15

 20

 25

M
e

a
n

 i
c
e

 c
re

a
m

 c
o

n
s
u

m
p

ti
o

n
 p

e
r 

h
e

a
d

 [
g

ra
m

s
]

M
e

a
n

 t
e

m
p

e
ra

tu
re

 [
C

e
ls

iu
s
]

Ice cream

Temperature

Figure 8.1 Using multiple axes on a plot to compare two different quantities side by 

side. (See listing 8.2 to find out how this plot was made.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://lib.stat.cmu.edu/DASL/Datafiles/IceCream.html
http://www.it-ebooks.info/


148 CHAPTER 8 All about axes

in two versions—one for each set of axes. This section summarizes the naming con-

ventions associated with these commands.

 The primary coordinate system is usually plotted along the bottom and left bor-

ders of the graph. (This corresponds to the first coordinate system introduced in

section 7.2.) If the secondary system (second) is used, it’s plotted along the top and

right borders.

 By default, the secondary system isn’t used. Instead, the tic marks (but not the

labels) of the primary system are mirrored on opposite sides of the plot (that is, on

the top and right borders, respectively).

 All options that modify aspects of the coordinate systems can be applied to any of the

axes: either the x or the y axis, in either the primary or the secondary coordinate system.

The commands and options are prefixed to indicate which specific axis a command

should be applied to (see table 8.1). Omitting the prefix applies the option to all axes. 

In the rest of this chapter, I’ll frequently discuss only one variant of any option—typi-

cally the one for the x axis of the primary coordinate system. You should keep in mind

that everything applies to all other axes as well, just by selecting the appropriate prefix

per table 8.1. 

8.1.2 Plotting with two coordinate systems

The best way to understand how multiple coordinate systems are used in the same

plot is through an example. Listing 8.1 shows the beginning of the data file from fig-

ure 8.1; the complete set of commands used to generate the plot from the data file is

in listing 8.2.

# Date Consumption[g] Temperature[Celsius]
1951-04-01 179.8 6.01

1951-04-29 180.8 13.34

1951-05-27 186.5 17.78
1951-06-24 202.1 19.38

1951-07-22 190.1 19.48

...

set xdata time

set timefmt "%Y-%m-%d"
set xtics format "%d %b"

Listing 8.1 Incomplete data for figure 8.1 (file: icecream)

Listing 8.2 Commands for figure 8.1 using data from listing 8.1 (file: icecream.gp)

Primary Secondary

x axis x x2

y axis y y2 Table 8.1 Prefixes used to indicate

the selected coordinate system

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


149Multiple axes

set ytics nomirror
set y2tics

set ylabel "Mean ice cream consumption per head [grams]"

set y2label "Mean temperature [Celsius]"

set key top left reverse Left

plot ["1951-03-25":]

➥    "icecream" u 1:2 t "Ice cream" axes x1y1 w lp,

➥    "" u 1:3 axes x1y2 t "Temperature" w lp

The first three lines (from set timefmt to set xdata) tell gnuplot how to parse and for-

mat the calendar date used along the x axis. We’ll discuss them in section 8.4.

 Next, the mirroring of the primary axis’ tic marks is switched off on the opposite

(right) side of the plot (set ytics nomirror), and instead tic marks for the second-

ary y axis (set y2tics) are switched on.

 Explicit labels are placed on both vertical axes—this step is crucial when using

multiple axes, because otherwise the viewer has no chance of figuring out which data

set goes with which axis. The key is modified from its default location and appearance

(see section 7.4 if you need a refresher on any of the options).

 Finally, the only new thing in the actual plot command is the use of the axes key-

word with its arguments. These directives tell the plot command which combination

of axes to use for each data set. For example, axes x1y2 means that the data should be

plotted according to the primary x axis, but the secondary y axis. There are four possi-

ble combinations of axes that can be used, and they can be selected using x1y1, x1y2,

x2y1, and x2y2.

Switches mirroring of the principal system off
Switches the secondary system on

Should you do it?
Multiple axes on a single plot are occasionally frowned upon, because they can easily
be abused to manipulate the message of a graph. Look at the figure at the end of
this sidebar. The top-left panel shows both data sets drawn to the same scale. Both
curves grow, but one grows more strongly than the other.

The other panels show exactly the same data, but look how different the appearance
is in each one! The curve that seems to be growing most strongly in the top-right
panel is the one that is lagging behind in the original graph. And in the bottom two
panels, both curves seem to grow at an equal rate. These dramatically different
appearances were achieved solely by manipulating the plot ranges for each curve
individually.

Dual axes have their uses. They can be helpful (even necessary) to combine two data
sets with very different scales in a single graph. But you must always take care,
because the ability to select different plot ranges in a single graph makes dual-axes
plots open to the kind of abuse you see in the figure.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


150 CHAPTER 8 All about axes

8.1.3 Linking axes

In the previous section, you learned how to plot two curves representing different and

independent quantities (ice cream consumption and temperature) on the same plot.

In this section, we’ll consider a related problem: how to plot two curves representing

different but related quantities.

 Let’s look at an example. Figure 8.2 shows two data files, side by side. Both contain

temperature readings for the same date range, but for two different locations (New

York City, USA and Frankfurt a.M., Germany) and in two different units (Fahrenheit

and Celsius).2

2 Weather data is available from the respective government services: http://mng.bz/V299 and www.dwd.de.

(continued)

If you choose to use multiple axes, it’s mandatory that you indicate which scale
applies to which curve. In the figure shown here, this information is intentionally (and
maliciously) omitted, to emphasize the problems that can occur in this kind of graph.
When using dual axes, always include an explicit label stating which axis applies to
which curve! 

 0

 2

 4

 6

 8

10

 0  2  4  6  8  10

 0

 2

 4

 6

 8

 10
Left scale

Right scale

 0

 10

 20

 30

 40

 0  2  4  6  8  10

 3.5

 4

 4.5

 5

 5.5

 6

 0

 2

 4

 6

 8

10

 0  2  4  6  8  10

 3.5

 4

 4.5

 5

 5.5

 6

 0

 10

 20

 30

 0  2  4  6  8  10

 0

 2

 4

 6

The malicious effect of not-to-scale graphs. The data in all four panels is the same, but the 

scales have been changed for both curves independently.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

www.dwd.de
http://mng.bz/V299
http://www.it-ebooks.info/


151Multiple axes

Because both data sets show the same kind of data, it makes sense to plot them in the

same graph. Nevertheless, because the units are different, the two data sets can’t just

share a single y axis. Of course, you could use inline transformations (see section 3.3)

to transform (say) the Fahrenheit values into Celsius and plot them—but in order to

easily go back and forth between both temperature systems, it would be nice if you

could retain both units in the same plot.

 This is where gnuplot’s new set link facility comes in. Using set link, you can

make the values on one axis dependent on the values on the opposite axis. All you

need to do is provide a link function that maps values from one system to the other,

together with its inverse.

 In this example, Celsius must be mapped to Fahrenheit and vice versa. The two

temperature systems are related to each other by the following formulas:

Fahrenheit = (9/5)*Celsius + 32

Celsius = (5/9)*(Fahrenheit - 32)

Using these formulas, you can set up the link between the two vertical axes:

set link y2 via (9/5.)*y+32 inverse (5/9.)*(y-32)

This establishes a link between the primary vertical axis (the y axis, on the left),

which shows temperatures in Celsius, and the secondary vertical axis (the y2 axis, on

the right), which shows values in Fahrenheit. You can now plot both files using the

commands from listing 8.3; the resulting graph is shown in figure 8.3. (See listing 8.2

for an explanation of the commands at the beginning of this example.)

# Frankfurt/M  Celsius

2014-11-01      9.3

2014-11-02     10.2

2014-11-03     12.9

2014-11-04     12.3

2014-11-05      9.3

2014-11-06      6.6

2014-11-07      5.8

# New York     Fahrenheit

2014-11-01     45

2014-11-02     45

2014-11-03     50

2014-11-04     61

2014-11-05     60

2014-11-06     53

2014-11-07     47

Figure 8.2 Two data sets showing daily temperatures. Note that the data sets use 

different units.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


152 CHAPTER 8 All about axes

 

set xdata time
set timefmt "%Y-%m-%d"

set xtics format "%d%b%y"

set ytics nomirror
set y2tics

set ylabel "Celsius"

set y2label "Fahrenheit"

set link y2 via (9/5.)*y+32 inverse (5/9.)*(y-32)

plot "frankfurt" u 1:2 axis x1y1 w lp, "newyork" u 1:2 axis x1y2 w lp

This example should give you a sense how the set link feature can be used. Here are

a few additional details:

 Links can be established between the two horizontal axes and between the two

vertical axes using set link x2 and set link y2, respectively.

 When linking the horizontal axes using set link x2, you must call the dummy

variable in the link functions x; when linking the vertical axes using set link

y2, the dummy variable in the link functions must be called y. 

 You can remove the link between either set of axes using unset link x2 or

unset link y2.

Listing 8.3 Commands for figure 8.3 using data from figure 8.2 (file: link.gp)

 4

 6

 8

 10

 12

 14

 16

 18

01Nov14 02Nov14 03Nov14 04Nov14 05Nov14 06Nov14 07Nov14

 40

 44

 48

 52

 56

 60

 64

C
e

ls
iu

s

F
a

h
re

n
h

e
it

Frankfurt

New York

Figure 8.3 Linking two axes using link. See the text for details and listing 8.3 for 

the commands.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


153Selecting plot ranges

 Keep in mind that the link function must be invertible! This isn’t a problem

when the link function is linear (as in the example), but non-linear functions

are, in general, not invertible (or are invertible only over a limited domain—

the function x2, for instance, is invertible for all non-negative values of x).

The set link feature is relatively new and strikes me (at the time of this writing) as

still somewhat immature. Feel free to experiment further!

8.2 Selecting plot ranges

I introduced plot ranges in chapter 2, but only in a limited form as an inline specifica-

tion to the plot command, something like this:

plot [-10:10][-2:2] sin(x)

The first pair of numbers in brackets sets the desired x range, and the second pair of

numbers in brackets fixes the y range. Both terms are optional—if you leave them out,

gnuplot will select ranges automatically.

Do-it-yourself log plots
The link feature can be used to create log plots. Doing so may shed more light on
what link can do.

Let’s consider the data set displayed in the sidebar in section 3.4.  Back then, I used
set logscale y to generate a semi-logarithmic plot. Now, I’ll use link instead.

In a semi-log plot, you plot the logarithm of the y value. You can do this using a simple
inline transformation:

plot "data" u 1:(log10($2)) w lp

This gives the appearance of a semi-log plot, but the tic marks along the vertical axis
show not the actual y values from the data sets, but rather their logarithms (to base
10)—so, a value of 10 corresponds to a tic mark labeled 1, a value of 100 to a tic
mark labeled 2, and so on. (See the scale on the right in the figure in the sidebar in
section 3.4.)

The link feature makes it possible to have an axis showing the original y values:

set link y2 via 10**y inverse log10(y)

One problem is that gnuplot isn’t very clever at figuring out where to place tic marks
for the dependent (linked) axis, which means you have to specify them explicitly
using a command like this (the set _tics family of options is explained later in this
chapter):

set y2tics ( 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 )

Although you must specify the tic marks explicitly, link lets gnuplot figure out where
along the vertical axis these tic marks should go. The resulting plot is equivalent to
the figure in section 3.4  (with the tic marks on the left and right interchanged). 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


154 CHAPTER 8 All about axes

 This is enough—most of the time. But using this syntax, only the plot ranges of the

primary coordinate system can be fixed, which is insufficient if you want to use multi-

ple axes on the same plot. Also, the inline syntax doesn’t work well when you’re

attempting to change the plot range with the mouse. Let’s look at gnuplot’s facilities

for controlling plot ranges in more detail.

TIP A distinctive property of good graphs is that they show what is relevant.
Plot ranges are the primary means of achieving this goal. Well-selected plot
ranges are essential!

8.2.1 What you need to know for interactive work

The inline syntax is a shorthand for the family of _range commands. (In this discus-

sion, the underscore is a placeholder for any one of the prefixes from table 8.1.) To

adjust plot ranges for the primary and secondary systems independently, you need to

issue separate set _range commands using different prefixes.

 The explicit set _range commands expect a pair of numbers enclosed in square

brackets, similar to the syntax for inline range specifications. The following listing

shows some examples of _range commands in action. 

set xrange [-1:5]

set xrange [:10]

set yrange [3:*]

set yrange [:sqrt(2)]

set yrange [1:0]

In addition to providing explicit lower and upper boundaries, you can leave one or

both of the numbers blank, in which case the corresponding value won’t be changed.

Alternatively, you can supply a star (*) to turn on autoscaling for that particular value.

Autoscaling means gnuplot selects a plot range that is at least large enough to include

all data points, but gnuplot may extend the range in order to include the next full tic

mark position. This behavior can be suppressed using the noextend specifier. Using

the following setting, the vertical range is bounded precisely by the minimal and max-

imal values in the plotted data set:

set yrange [*:*] noextend

The inline shorthand (like plot [0:1] ...) only affects the command line it’s part

of—it doesn’t reset the overall plot ranges, the way set _range does. This is why you

don’t need to use the * indicator to turn on vertical autoscaling when using only the

shorthand: by default, the plot ranges are [-10:10] horizontally and [*:*] vertically.

Issuing a command like plot [][0:1] ... doesn’t change the global autoscale setting

for the y axis, so a subsequent command like plot [][0:] ... will autoscale the posi-

tive y axis. But if the vertical range has been fixed globally—using set yrange [0:5],

Listing 8.4 Permissible syntax for setting plot ranges

Explicit min and max

Leaves the min unaffected; sets the max explicitly

Sets the min explicitly; uses autoscaling for the max

Numeric expressions are legal.

Inverted axes are possible.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


155Selecting plot ranges

for example—then plot [][0:] ... will honor the explicit plot range. To reestablish

autoscaling behavior, you need to turn it on explicitly, either inline (plot [][0:*]

...) or using set yrange [0:*]. 

8.2.2 What you might want to know for batch processing

Special considerations apply when creating large numbers of graphs automatically.

Imagine, for instance, that you want to monitor traffic across many websites—in

hosted or enterprise environments, this may mean following hundreds of separate

traffic streams. Furthermore, the traffic to these sites is likely to vary by several orders

of magnitude: a busy site may see tens of thousands of clicks a day (or more), but

other sites may see few if any clicks.

 Obviously, you don’t want to select plot ranges manually (for all the sites—every

day!). But relying entirely on gnuplot to adapt the plot range to the available data

often isn’t satisfactory either. For some of the very slow sites (those that show at most a

single click a day), gnuplot will select a vertical plot range of [0:1], which isn’t a visu-

ally pleasing solution. It would be better if you could make sure the plot range is

always at least [0:10] but larger if need be. Fortunately, gnuplot let’s you do just that:

you can define bounds for autoscaled ranges. The next listing shows you the syntax.

set yrange [*:*]

set yrange [0:5<*]

set yrange [0:5<*<10]

set yrange [-10<*:*<10]

Other times, it may make sense to let autoscaling apply to only some of the lines in a

plot. For example, imagine that you want to plot two data sets together, one of which

is corrupted by occasional crazy outliers. In that case, you may want to let gnuplot use

only the smoother curve to determine the plot range. There are two ways to do this.

Using the noautoscale (noauto for short) keyword, you can flag those data sets in a

plot command that should be disregarded when determining the plot range:3

plot "smooth" u 1:2, "noisy" u 1:2 noautoscale

Another approach is to evaluate the data sets first and then use the information

obtained to calculate the plot range. The set _range family of options provides a way

of doing this (using writeback and restore), but the stats command (see section

5.6) and the internal variables it defines are probably more straightforward to use.4

Listing 8.5 Restricting plot ranges to bounded intervals

3 The noautoscale directive is available only when plotting data files, not when plotting functions. If you want
to use it with functions, you need to “fake” it using the "+" pseudofile facility (see section 4.5). 

4 Another related option is set autoscale, possibly in conjunction with set offset, but it seems overly com-
plicated and largely redundant. For more information about this, as well as about writeback and restore,
see the standard reference documentation.

Unbounded autoscaling

Lower bound is fixed; upper bound is 5 or more

Lower bound is fixed; upper bound is between 5 and 10

Double-sided bound, not exceeding [-10:10]

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


156 CHAPTER 8 All about axes

8.3 Tic marks

Subdivision markers or tic marks are placed on the axes of a plot to indicate the scale

of the graph. Only if tic marks are present can a viewer infer quantitative information

from a graph. Suitably chosen tic marks are therefore of critical importance to any

well-constructed graph. Fortunately, gnuplot handles tic marks well on its own, and

you rarely need to customize tic-mark generation and labeling. But for the few cases

when you do have special requests, here’s how to do it.

8.3.1 Overview and common conventions

Gnuplot distinguishes between major and minor tic marks. The difference is that major

tic marks also carry a textual label (normally a number), whereas minor tic marks

don’t. By default, only major tic marks are used, except for logarithmic axes, where

both major and minor tic marks are drawn by default.

 Major tic marks are by far the more important of the two types. The appearance of

major tic marks and their labels is controlled through the family of set _tics options.

The available sub-options are as follows:

set _tics [ axis | border ] 

          [ in | out ] [ front | back ]

          [ scale [ default | {flt:major} [,{flt:minor}] ] ]
          [ [no]mirror ]

          [ rotate [by {flt:ang}] | norotate ]

          [ left | right | center | autojustify ]
          [ offset {pos:offset} | nooffset ]

          [ font "{str:name} [,{int:size}]" ] 

          [ textcolor | tc {clr:color} ]
          [ format {"str:format"} ]

As before, the underscore _ is a placeholder for any one of the available axes identifi-

ers (see table 8.1), indicating which axis the settings should be applied to. If you omit

the identifier (set tics ...), then the chosen style is applied to all axes.

 The location and frequency of tic marks is controlled through another set of sub-

options to set _tics. These sub-options only make sense when applied to a specific

axis (meaning you can’t leave the _ placeholder blank in this case):

set _tics ...

          [ add ]
          [ autofreq

            | {flt:incr}

            | {flt:start}, {flt:incr} [,{flt:end}]
            | ( ["{str:label}"] {flt:pos} [ 0 | 1 ] 

                [, ["{str:label}"] ... ] ) ] 

We’ll next step through these options: first we’ll discuss how to modify the appearance

and placement of tic marks, and then we’ll talk about labels, before discussing ways to

control the location and frequency of tic marks. We’ll round off this section with some

related features that are handled using commands other than set _tics. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


157Tic marks

8.3.2 Tic mark appearance and placement

By default, gnuplot draws tic marks on the border of the plot, extending inward

into the plot region, but they can be drawn toward the outside using the out

option. This is useful in particular when the tic marks would interfere with the data.

Tic marks can be drawn in either the front or the back layer of the visual stack (see

section 7.2).

 Instead of being placed along the borders of the plot, tic marks can also be drawn

along the zero axis (for instance, set xtics axis draws tic marks along the line of

the plot where y equals 0). If the zero axis isn’t within the plot range, the tic marks are

drawn along the border.

 The scale parameter controls the size of both major and minor tic marks. If no

size for the minor tic marks is given explicitly, it’s set to half the size of the major

marks. The size is given relative to the default size of 1.0 for major tic marks.

 By default, the tic marks (but not their labels) of the primary coordinate system

are mirrored on the opposite side. You can turn off this behavior using nomirror.

You want to do this when you’re using two coordinate systems in one plot (such as

both the y and the y2 systems), but there are also other situations when mirroring is

undesirable.

Why gnuplot’s defaults make sense
Graphs drawn using gnuplot can often be recognized by their overall appearance
(unless the defaults have been modified significantly, of course): the plot is sur-
rounded by a frame (or border), with tic marks and labels on the frame. This format
may at times strike you as a bit tired, but I’d like to emphasize some advantages that
should make you hesitate at least a moment before rejecting it:

 The frame on all four sides provides a clear visual boundary for the data. If
only two axes were drawn along the bottom and left side, data points in the
upper-right corner might get (visually) lost.

 The other two sides of the frame (top and right side) can be used to mirror
the primary tic marks or to carry a set of secondary tic marks, thus making
qualitative evaluation of the data easier.

 Because tic marks and their labels are drawn along the border of the graph
(as opposed to along the zero axis) they’re less likely to interfere with the
data.

If you nevertheless want to give your graphs a different appearance, we’ll discuss
some options in section 12.6.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


158 CHAPTER 8 All about axes

A WORKED EXAMPLE

Figure 8.4 shows a graph that doesn’t use the gnuplot default format: it has no border,

and instead uses explicitly drawn coordinate axes (zero axes). Because there is no bor-

der, the tic marks are drawn along the coordinate axes.
 

You’ll find the commands for this figure in listing 8.6. First the border is switched off,

but the coordinate axes are drawn with solid black lines. (See section 8.3.6 later in this

chapter for the set zeroaxis command. The line type -1 is guaranteed to draw a

solid black line; see table 9.3.) Then gnuplot is instructed to place tic marks along the

coordinate axis (instead of the border) with set xtics axis (and equivalent for the

vertical axis). Finally, a function is plotted.5

unset border

set zeroaxis lt -1

set xtics axis
set ytics axis

plot [-8:4] airy(x)

Listing 8.6 Commands for figure 8.4 (file: var-axes.gp)

5 The Airy function is the solution to the differential equation y  - xy = 0 that is bounded everywhere. It’s impor-
tant in the approximation theory of differential equations.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

8 -6 -4 -2  0  2  4

airy(x)

Figure 8.4 Nonstandard placement of coordinate axes and tic marks. See listing 8.6.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


159Tic marks

The resulting graph is closer to what is common in mathematical contexts, but the dis-

advantages are clear: the curve interferes with the tic marks whenever it crosses the

axes. (The partial obscuring of the zeros near the origin could be avoided through

smarter placement of the labels and isn’t a fundamental problem.) 

8.3.3 Tic labels

The text labels associated with major tic marks can be rotated and shifted using

rotate and offset. If rotate is used without an explicit angle (in degrees), the labels

are turned by 90 degrees to the left. You can adjust the position of the labels using

offset. The relative shift can be specified in one of the five usual coordinate systems

(see section 7.2); if none is specified, the character coordinate system is assumed.

 By default, tic labels are justified depending on the axis and the rotation angle

(autojustify). Alternatively, you can control the alignment explicitly with left,

right, and center. Text font and color can be selected in the usual fashion.

FORMATTING TIC LABELS

You can change the formatting used for the labels placed at the major tic marks using

set _tics format, followed by a string that describes the desired format.6 The format

string is similar to the format string used by the printf() family of functions from the

standard C library. In addition, gnuplot uses some extra format (or conversion) specifi-

ers, which are listed in table 8.2. These conversion specifiers only apply to numeric

arguments; for date/time values, check section 8.4.

TIP Don’t attempt to build up date and time strings manually; use dedicated
conversion specifiers for time series (see section 8.4).

If the % character is encountered in the format string, it’s interpreted as the beginning

of a conversion specifier. It must be followed by one of the characters from table 8.2.

Several modifiers can be placed between the % character and the conversion specifier;

see table 8.3. In general, gnuplot’s functionality is built on top of the system’s C

library—check its documentation for additional details.

 The format string can also contain arbitrary characters, which are placed verbatim

onto the plot. This makes it possible, for instance, to print the units (such as kg or cm)

together with the numerical values.

 Finally, providing an empty string as the format specifier (as in set xtics format

"") is a way to suppress the generation of tic labels, although the tic marks are drawn.

 

6 Traditionally, formatting of tic labels was accomplished using the set format option. This option is still avail-
able, but it’s now redundant and should probably be avoided in favor of the more consistent method
described in the text.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


160 CHAPTER 8 All about axes

  

Table 8.2 Conversion specifiers understood by the gprintf(...) function. See table 8.4 and table

8.5 for conversion specifiers for date and time values, and table 5.1 for information on gprintf(...).

Conversion specifier Description

%f Floating-point notation

%e or %E Exponential notation, using e or E (respectively) to indicate an exponent

%g or %G Uses the shorter of %f and %e (or %E)

%h or %H Like %g or %G, but uses enhanced text mode to format the power of 10 as a 
proper superscript. When the encoding is UTF-8, labels are formatted as 
a × 10^{b}; when Unicode isn’t available, the multiplication sign is replaced 

by the letter x (for %h) and by an asterisk * (for %H).a

a This conversion specifier is new with gnuplot 5.

%x or %X Hexadecimal representation

%o or %O Octal representation

%P Multiple of π

%c Character replacement for scientific powers, such as k (kilo) for 1,000, 
and so on

%% Inserts a % character into the output (no conversion)

%t and %T Coefficient and exponent to base 10

%l and %L Coefficient and exponent to the base of the current logscale

%s and %S Coefficient and exponent to the base of the current logscale; scientific power 
(restricts the power to a multiple of 3)

%b and %B Coefficient and exponent using ISO/IEC 80000 notation

Table 8.3 Accuracy specifiers to be used with the gprintf() and sprintf() functions

Accuracy specifier Description

"-" Left-justifies the number

"+" Explicitly signs all numbers

" " Uses a space instead of a positive sign

"#" Forces a decimal point, even if all following digits are zero

"a.b" Field width a and number of decimal places b. (Both a and b must be positive 
integers.) 

"0a.b" Same as previous, but pads the number with zeros instead of spaces on the left 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


161Tic marks

SCIENTIFIC NOTATION AND ENHANCED TEXT MODE

Several of the conversion specifiers in table 8.2 give you individual access to the coeffi-

cient and exponent of a number in scientific notation. They’re intended for situations

where you want to build up the combination of coefficient and exponent yourself.

 In scientific notation, a number x is represented as

where a is called the coefficient (also mantissa or significand), b is the base, and c is called

the exponent or power. For example, the number 1,024 can be written as 1.024 × 103

(base 10) or 1 × 210 (base 2).

 When in enhanced text mode, gnuplot interprets certain regular characters embed-

ded in string labels as control or formatting characters. This way, it’s possible to

change font face, size, and weight locally and on the fly.7 A full discussion of enhanced

text mode will have to wait until chapter 10; what is of interest in the context of tic

marks and especially tic labels is the ability to include subscripts and superscripts in all

text elements that are part of a graph. Subscripts are indicated with an underscore (_)

and superscripts with a caret (^). A single character following either of these (or a

sequence of characters enclosed in curly braces) is formatted as subscript or super-

script, respectively. 

 In particular for powers of 10, the ability to use real superscripts is welcome. Imag-

ine a number such as 5,000. In scientific notation, this becomes

Using the customary E notation (see section 4.3), this is written as 5.0e+03. But using

enhanced text mode, you can format this string as

"5 × 10^{3}"

(or even as "5 × 10^3", because the exponent consists only of a single character), and

gnuplot will display the exponent as a proper superscript.

 The new conversion specifiers %h and %H use enhanced text mode to format num-

bers this way if the proper encoding (such as UTF-8; see the sidebar in section 5.1) has

been chosen. Otherwise, the lowercase version (%h) uses the letter x to signify the mul-

tiplication operator following the coefficient, whereas the uppercase version (%H) uses

the asterisk *. 

A WORKED EXAMPLE

Let’s study an example. Figure 8.5 shows the weight of several mammals as a function

of their heart rate in a double-logarithmic plot. Remarkably, the points seem to fall

roughly onto a straight line: there is a distinct relationship between the size (or

7 Enhanced text mode is now the default in gnuplot 5; in general, it’s no longer necessary to enable it explicitly.
In fact, at times you may need to disable it using the noenhanced keyword in order to include control charac-
ters in text labels.

x a b
c

×=

5 10
3

×

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


162 CHAPTER 8 All about axes

weight) of an animal and the rate of its metabolism. This is known as allometric scaling

and extends to other properties, such as the life span, as well: bigger animals live lon-

ger. Allometric scaling is a fascinating topic, but what interests us right now are the

commands used to draw this graph. They’re shown in the following listing. 

set logscale
unset key

set ylabel "Weight"

set xlabel "Heart rate [beats per minute]"

set ytics format "%.0s%cg"

set xtics format "%.0t·10^{%T}"

plot [10:1000][:0.2e9]

 ➥    "mammals" u 3:2:1 w labels point pt 7 lc rgb 'red' offset 0,-1

Choosing logarithmic scales and setting axes labels should be familiar by now, but pay

close attention to the way the tic labels are formatted. For the vertical axis, the format

string is "%.0s%cg" B. According to table 8.2, %s is the coefficient (in scientific nota-

tion) when the power is restricted to being a multiple of 3, and %c is a character replace-

ment for that power (k for kilo, M for Mega, and so on). Hence a number like 2,000 is

Listing 8.7 Commands for figure 8.5 (file: mammals.gp)

Tic labels for vertical axisB

Tic labels for horizontal axisC

Custom point type and color D

10 g

100 g

1kg

10kg

100kg

1Mg

10Mg

100Mg

1·101 1·102 1·103

W
e

ig
h

t

Heart rate [beats per minute]

Human

Cat

Dog

Hamster

Monkey

Horse
Cow

Pig

Rabbit

Elephant

LargeWhale

Rat

Wolf

Figure 8.5 Allometric scaling: larger animals have a slower heart rate. Notice the customized 

tic labels along both axes. See the text for details and listing 8.7 for the commands.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


163Tic marks

split into the coefficient 2 (all decimals are suppressed because of %.0s), followed by k

for the factor of 1,000. The example tacks on an additional g, which carries through

unchanged, to represent the weight unit gram. The result is perfect for grams and kilo-

grams, but megagrams are more commonly known as (metric) tons. The horizontal

axes uses a custom format with a multiplication dot in place of the cross sign C.8 Finally,

the plot command is an interesting example of the use of the with labels style (see

section 6.3.5), with an explicitly selected point type and color D. 

8.3.4 Tic mark location and frequency

Finally, you can control where tic marks are drawn. Using autofreq, gnuplot will auto-

matically generate tic marks covering the plot range.9 Alternatively, you can provide

an increment alone; then tic marks are drawn at integer multiples of the increment.

Or you can specify a start point, an increment, and (optionally) an endpoint. (For log-

arithmic axes, the increment is interpreted multiplicatively instead of additively.)

 Some examples will clarify (remember that the variable pi is predefined in gnuplot):

set xtics pi

set xtics 1, pi

set xtics 0,0.1,1

You can also provide a list of explicit labels and locations at which to draw tic marks.

The list must be enclosed in regular parentheses, with list entries separated by com-

mas. Each entry in the list consists of the text label for the tic mark, its location, and a

third, optional parameter that indicates whether the tic mark should be drawn as a

major or minor tic mark: 0 for major and 1 for minor.10 The text label can be an

empty string (so that no label is drawn for the tic mark), or it can be missing (in this

case, a textual representation of the location parameter is used as a label). If a text

label is provided for minor tic marks, it’s ignored. Here are some examples:

set xtics ( 0, 1, 2, 3, 4 )

set xtics ( "First" 1, "Second" 2, "Third" 3 )

set xtics ( "A" 0 0, 1 1, 2 1, "B" 3 0 )

8 The multiplication cross can be found at Unicode code point U+00d7 and the multiplication dot at U+22c5.
The interpunct at code point U+00b7 provides an alternative for the latter that may be more readily available.

9 To generate tic marks covering only the actual range of the data, rather than the plot range, you can use the
rangelimited keyword. See the standard gnuplot reference documentation for details.

10 You can add further levels of tic marks beyond major and minor. See the standard gnuplot reference docu-
mentation for set tics and set xtics for details.

Increment alone: tic marks at pi, 1*pi, 2*pi, …

Start and increment: tic marks at 1, 1+pi, 1+2pi, …

Start, increment, and end point: tic 
marks at 0, 0.1, 0.2, … 0.9, 1 only

5 major tic marks with 
autogenerated (numeric) labels

2 major tic marks at 0 and 3 labeled “A” and 
“B”, with 2 minor tic marks between them

3 major tic marks using 
provided text labels

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


164 CHAPTER 8 All about axes

ADDING AND OVERRIDING INDIVIDUAL TIC MARKS

Usually, any change to the location and frequency of tic marks wipes out any previous

settings. To make changes to individual tic marks while retaining existing ones, use

the add keyword. This can be useful for adding tic marks for special values to other-

wise autogenerated tics, like so:

set xtics autofreq
set xtics add ( "π" pi )

These commands draw a tic mark at π in addition to the automatically generated

ones. If you omitted the add keyword here, the second line would clobber the first,

and the only tic mark would be the one explicitly set at π.

 You can also use the add keyword to override the label of an autogenerated tic

mark.11 Consider the following:

set xtics -5,1,5

set xtics add ( "" 0, "max" 5 )

TIP You can use set _tic add to add individual tic marks or to replace the
label for autogenerated ones. 

MINOR TIC MARKS

Minor tic marks aren’t labeled and are typically drawn smaller than major tic marks.

By default, minor tic marks are disabled for linear axes and enabled for logarithmic

axes.

 Minor tic marks can be switched on using the m_tics family of options, where the

underscore is again used as a placeholder for any of the usual prefixes:

set m_tics [ {int:intervals} ] 

The optional parameter counts the number of subintervals between major tics marks;

the number of minor tic marks generated is one less than this number. For example,

let’s say there are major tic marks at x=0 and x=5, and you’d like to create minor tic

marks for all the integers in between. The command set mxtics 5 will do the trick,

because there are five integer-sized intervals between neighboring major tics, but the

number of minor tic marks generated is only four. 

 Minor tic marks are drawn only when there are regularly spaced major tic marks. If

all major tics are individually placed, m_tics has no effect. You can still create minor

tic marks manually, using set _tics. 

11 I’d like to thank Christoph Bersch for making me aware of this possibility.

Creates major tic marks at all integer
values between -5 and +5

Wipes out the label (not the tic mark) at 0, and 
replaces the label for the right-most tic mark with 
the expression “max”

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


165Tic marks

A WORKED EXAMPLE

You may have wondered how I generated the plot in figure 4.2 using two different

y axis scales, each covering only part of the plot. Now you have all the information at

hand to discover the secret.

 The plot shows the same data twice, but vertically shifted. You can achieve this—

without using inline transformations!—by plotting the data once against the primary

and once against the secondary vertical coordinate axis, with properly chosen plot

ranges for both axes. Note how the visible range (from min to max) is the same for

both systems, but the two ranges are offset from each other.

 Next, the tic marks are added. The following listing specifies both a start and an

end value for tic-mark generation—this way, you partially label each axis, but only for

the part of the plot that’s relevant to each curve.   

set yrange [9:16]
set y2range [6:13]

set ytics 9,1,12 nomirror

set y2tics 10,1,13

set datafile missing "NaN"

plot [0:10] "missing" u 1:2 ax x1y2 w linesp lt 1 pt 7,

➥ "" u 1:($2) ax x1y1 w linesp lt 1 pt 7

8.3.5 Reading tic labels from file

Finally, gnuplot can read the tic labels from the input file using the _ticlabels()

family of functions as part of the using directive to the plot command. (The under-

score _ is again a placeholder for any of the axis identifiers from table 8.1.)

 Let’s look at the data file in listing 8.9. The x values are present both in numeric

form (column 1) and as strings. Of course, it would be nice to use the strings for the

tic labels. Here’s how to do that:

plot "months" u 1:2:xtic(3) w linesp

The xtic() function takes as argument the number of a column to be used for the tic

labels. Equivalent functions exist for the other coordinate axes; labels for the y axis

are specified after labels for the x axis.

# Month Data Month Name
1 3 Jan

2 4 Feb

3 2 Mar
4 5 Apr

5 8 May

6 7 Jun

Listing 8.8 Commands for figure 4.2 (file: missing.gp)

Listing 8.9 Time series data for figure 8.7 (file: months)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


166 CHAPTER 8 All about axes

7 4 Jul
8 5 Aug

9 3 Sep

10 2 Oct
11 4 Nov

12 2 Dec

When you use any of the _tic() functions in a plot command, tic marks and labels

are only drawn at the locations explicitly read from the data file—in other words, auto-

generation of tic marks is turned off.

 The _tic() functions allow a variety of further tricks beyond reading an explicit

string from the data file. The following snippet calculates the quarter of the year for

each month (such as Q1 or Q2) and uses it as the tic label:

plot "months" u 1:2:xtic( 'Q' . (1+int(($1-1)/3) )) w lp

In sections 8.4.1 and 8.4.2, I’ll show you two more ways to produce figure 8.7 (shown

later in the chapter) from the file in listing 8.9. 

8.3.6 Grid and zero axis

In addition (or as an alternative) to tic marks along the border of the graph, you can

overlay a scale grid on the data. Grid lines are drawn at the position of major and,

optionally, minor tic marks:

set grid [ [no]_tics ] [ [no]m_tics ]

         [ layerdefault | front | back ]
         [ polar [ {flt:angle} ] ]

         [ majorlineoptions [, minorlineoptions] ]

You can switch the grid on to be drawn at major or minor tic marks, for the primary or

secondary coordinate system. (The underscore again must be replaced by any one of

the prefixes from table 8.1.) Tic marks must be enabled—instructions to draw a grid

at nonexistent tic locations are ignored. The grid is drawn either in front of (set grid

front) or behind the data (set grid back).12 The lines to use for the grid can be set

separately for grid lines drawn at major and minor tic marks. If no style or type is

given, gnuplot uses the style ls 0, which draws the least-visible lines possible (often

using a dotted line). The polar option is relevant only for plots using polar coordi-

nates, which we’ll discuss in section F.2.1. 

 Similar to grid lines, but less obtrusive, are zero axes. These are lines drawn across

the graph for all the points where one of the coordinates is equal to zero:

set _zeroaxis [ lineoptions ]

12 The option layerdefault is only relevant for three-dimensional graphs—see the standard reference docu-
mentation for details.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


167Tic marks

For example, set xzeroaxis switches on a horizontal line at y=0 (representing the x

axis). The default line type is ls 0, the same as for the grid.

A WORKED EXAMPLE

A quick example will help to clarify. (See the following listing and figure 8.6.) Turning

on the grid is simple; more interesting are the tic marks and labels along the horizon-

tal axis.

set grid

set xtics pi format "%.0Pπ"

plot [-4*pi:4*pi] sin(x)/x

The command set xtics pi instructs gnuplot to place major tic marks at multiples

of π. The format specification format "%.0Pπ" tells gnuplot to use the integer multi-

ple of π as a label. Tacking on the character π makes it clear to the viewer what the tic

marks represent.

 It’s important to understand that the format specifier %P interprets a value as a

multiple of π but by itself does not ensure that tic marks will only be drawn at integer

multiples of π. Instead, you must explicitly choose the locations where tic marks will

be drawn using set xtics pi and then use format "%P" to format the labels at those

positions accordingly.   

Listing 8.10 The commands for figure 8.6 (file: ticmarks.gp)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4π -3π -2π -1π 0π 1π 2π 3π 4π

sin(x)/x

Figure 8.6 Tic marks at multiples of π and Greek letters used for the tic labels. 

See listing 8.10.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


168 CHAPTER 8 All about axes

8.4 Special case: time series

Whenever you want to study how a quantity changes over time, you’re dealing with a

time series.13 Time series are incredibly common—from stock charts and opinion

polls to fever curves. Unfortunately, they pose special challenges, because the tic

labels you’d like to use for the x axis (such as the names of months or weekdays)

aren’t strictly numeric. Worse, they aren’t even universal, but locale-dependent. If you

want to plot time-series data, you therefore need to be able to parse arbitrary

date/time formats from a file, and you must be able to format timestamps in a suit-

able, locale-dependent format.

 Gnuplot offers three different ways to deal with date/time information as part of

axes labels:

 The classic approach uses set _data, set timefmt, and set _tics format,

which let you parse and reformat arbitrary date/time information in the input

file; I’ll describe these in detail in section 8.4.2. This is gnuplot’s most flexible

and powerful method of handling timestamps.

 Alternatively, gnuplot can read fully formatted tic labels directly from the input

file using the _ticlabels() functions introduced in section 8.3.5. This method

is easy if the labels read from file are in the format you want, but it only works if

the data set also contains numeric time information (to fix the x coordinate of

the data points). It’s also only suitable for relatively sparse data sets, because

_ticlabels() creates a tic mark and label for every data point. And it doesn’t

allow locale-dependent formatting. 

 For special cases when you don’t require arbitrary date/time labels but merely

want to use the names of months or weekdays in a plot, gnuplot provides the

simplified set _mtics and set _dtics facilities (see section 8.4.1).

In the next section, we’ll first discuss the simpler case of using month or weekday

names as tic labels. Afterward, we’ll tackle the harder problem of dealing with arbi-

trary date/time information, both for input and for output. (Reading tic labels in files

was discussed previously in section 8.3.5.)

13 If the time intervals between successive measurements are equal, the data points form a discrete time series; oth-
erwise, the time series is continuous. I have more to say about time-series analysis in chapter 14.

Locales
The names of months and days of the week differ from country to country and lan-
guage to language. The set of parameters defining such details of the user interface
is called the locale. By examining the current locale, gnuplot determines the strings
to be used in tic labels involving the names of months or weekdays.

The default is taken from the LANG environment variable but can be changed using
the following command:

set locale ["{str:locale}"] 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


169Special case: time series

 

8.4.1 Turning numbers into names: months and weekdays

Gnuplot provides two simple commands to turn numbers into the names of months

or days of the week. They offer much less flexibility than the general time-series com-

mands discussed in the next section, but they’re easy to use.

 Let’s look back at the data file in listing 8.9. Suppose you want to label the x axis

with the names of the months, but without using the explicit names in the third col-

umn. You can do this using the set xmtics command, which maps numbers to

names of months (with 1=“January”, …, 12=“December”). Don’t confuse this com-

mand with the set mxtics command introduced in section 8.3.4, which switches on

minor tic marks!

 The following sequence of commands produced the plot in figure 8.7:

set xmtics
plot [][0:10] "months" u 1:2 w linesp

The choice of available locales is system-dependent. On Unix systems, you can use
the shell command locale -a for a list of available locales or check the directory
/usr/share/locale/. Note that some locales have country-specific variations (such as
en_AU, en_CA, en_GB, and en_US). In this case, it may not be sufficient to set the
general locale (such as en), and a more specific locale must be chosen. 

Sets format of major tic marks to months

 0

 2

 4

 6

 8

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 8.7 A time-series plot, using set xmtics to use months for the labels along 

the horizontal axis. Also see listings 8.11 and 8.12. The data is shown in listing 8.9.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


170 CHAPTER 8 All about axes

In addition to the names of months, you can use days of the week (such as “Mon”,

“Tue”, and so on) as tic labels. You enable them using set xdtics (with 0=“Sunday”,

…, 6=“Saturday”), similar to what you’ve seen for set xmtics. Both set xmtics and

set xdtics map overflows back into the legal range through a modulo operation

(modulo 12 and modulo 7, respectively), as you’d expect. To restore normal (numeri-

cal) axes labeling, use unset xmtics or unset xdtics. Equivalent commands exist for

all other axes, using the usual prefixes in table 8.1. 

 The set xmtics and set xdtics facilities are very limited. The strings follow the

locale but can’t be formatted any further. But as a quick-and-easy alternative to the

general methods described next, the techniques introduced in this section are occa-

sionally useful. 

8.4.2 General time series: the gory details

For more general time series, you face two problems: you must be able to read arbi-

trary timestamps from the input file and then format them again for output. But

before you can do anything, you must first put gnuplot into time-series mode (for the

primary x axis) using

set xdata time

Issuing set xdata (without an argument) restores normal operation. Equivalent com-

mands exist for all other axes, distinguished through the usual prefixes.

TIP To handle general date and time information in data files, you must first
switch to time-series mode using set xdata time. In time-series mode, time-
stamps are parsed (for input) according to the value of set timefmt and are
formatted (for output) according to set _tics format. 

In time-series mode, input (parsing of timestamps from files) and output (formatting

timestamps for inclusion in the plot) are controlled by the commands set timefmt

for input and set xtics format for output.14 Both accept a format string using a syn-

tax similar to that found in the POSIX strftime() routine. (I introduced set _tics

format in section 8.3.3 already, but there we only talked about the formatting of plain

numbers. Now I explain the ability to format complex date/time values.)

 Gnuplot assumes that all data is in universal time coordinates (UTC)—it has no

facilities to perform time zone changes, adjust for daylight savings, or apply similar

transformations. If they’re required, they must be applied externally, before you

attempt to plot the data.15

14 The command set format x is an older alternative for controlling the output format. It’s now redundant,
but you’ll still find references to it in the standard reference documentation.

15 Gnuplot 5 stores timestamps internally as seconds since the beginning of the Unix epoch. This is a change
from previous versions of gnuplot.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


171Special case: time series

INPUT

Time/date information is parsed in a way reminiscent of the scanf() family of func-

tions and shares its familiar challenges. The expected input format is indicated

through a format string to set timefmt. The format string may contain several conver-

sion specifiers, all of which begin with the % character, followed by a letter that indi-

cates how an input value should be interpreted. Check tables 8.4 and 8.5 for a list of

all possible conversion specifiers and their meanings.

 The input format string may contain other characters besides format specifiers,

but input strings must match the format exactly (with some exceptions regarding

whitespace that we’ll discuss shortly):

set timefmt "%Y-%m-%d"

set timefmt "%d%b%y"

If there are no characters separating different fields from one another, gnuplot con-

sumes a fixed number of characters per field (left to right), and the fields must be left-

zero-padded as necessary:

set timefmt "%Y%m%d"

Special rules apply when the date format to be parsed contains whitespace. First, gnu-

plot interprets whitespace-separated data as occupying several columns. A timefmt

format containing whitespace in turn consumes several columns. A blank space (not

an escaped tab: \t) embedded in a formatting string matches one or more blanks

(not tabs) in the input file. So, "%H %M" matches 12␣20 and 12␣␣␣20 but not 1220.

(The ␣ symbol indicates a whitespace character.)

 An example will help. The following input file

2005-01-01 8:41 3
2005-01-01 9:17 4

2005-01-01 22:46 2

2005-01-02 03:05 5

will be correctly parsed and plotted by the following commands:

set xdata time

set timefmt "%Y-%m-%d %H:%M"
set xtics format "%F\n%T" rotate

plot "data" u 1:3 w lp

Note that the column used for the y values is the third, because the time format con-

sumes two columns. Also, the format string contains a single whitespace, but in the

data file several blanks separate the date from the time. The file won’t parse correctly

if the spaces between date and time are replaced by tabs.

Matches 2000-01-01, but also 2000-1-1

Matches 1JAN05, 01Jan05, 1jan05

Parses 20020101 as Jan 1, but parses 2002101 
as Oct 1, and will fail to parse 200211

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


172 CHAPTER 8 All about axes

 

Table 8.4 Alphabetically sorted conversion specifiers for date/time information for the set _tics format and set

timefmt commands. See table 8.2 to format numeric values. See table 8.5 for a list sorted by topic.

Conversion 

specifier

Available for ...

Values Descriptioninput: 

set 

timefmt

output: 

set _tics

format

%a ✓ Sun, Mon, … Abbreviated day of the week

%A ✓ Sunday, Monday, … Full day of the week

%b ✓ ✓ 

(also %h)

Jan, Feb, … Abbreviated name of the month (three characters)

%B ✓ ✓ January, February, … Full name of the month

%d ✓ ✓ 01–31 Day of the month (always two digits on output)

%D ✓ Example: 
“03/25/08”

Shorthand for “%m/%d/%y” (US date format)

%F ✓ Example: “2008-03-
25”

Shorthand for “%Y-%m-%d” (extended ISO date for-
mat)

%H ✓ ✓ 00–24 Hour—24-hour clock (always two digits on output)

%I ✓ 00–12 Hour—12-hour clock (always two digits)

%j ✓ ✓ 001–366 Day of the year (always three digits on output)

%k ✓ 0–24 Hour—24-hour clock (one or two digits on output)

%l ✓ 0–12 Hour—12-hour clock (one or two digits)

%m ✓ ✓ 01–12 Month (always two digits on output)

%M ✓ ✓ 00–60 Minute (always two digits on output)

%p ✓ “am”, “pm” a.m./p.m. indicator

%r ✓ Example: “10:55:48 
pm”

Shorthand for “%I:%M:%S %p” (US time format)

%R ✓ Example: “22:12” Shorthand for “%H:%M” (24-hour clock time format 
without seconds)

%s ✓ 0–… Unix epoch seconds (input only!)

%S ✓ ✓ 00–60 Seconds (always two digits on output)

%T ✓ Example: “22:12:48” Shorthand for “%H:%M:%S” (extended ISO time for-
mat: 24-hour clock with seconds)

%U ✓ 00–53 Week of the year (weeks starting on Sunday; always 
two digits)

%w ✓ 00–06 Day of the week (0=Sunday; always two digits)

%W ✓ 00–53 Week of the year (weeks starting on Monday; 
always two digits)

%y ✓ ✓ 00–99 Year (two-digit; always two digits on output)

%Y ✓ ✓ 0000–9999 Year (four-digit; always four digits on output)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


173Special case: time series

Table 8.5 Conversion specifiers for date/time information for the set _tics format and set timefmt

commands, sorted by topic. See table 8.2 to format numeric values. See table 8.4 for a list sorted alphabetically

by conversion specifier.

Conversion 

specifier

Available for 

Values Descriptioninput: 

set 

timefmt

output: 

set _tics

format

%s ✓ 0–… Unix epoch seconds (input only)

%S ✓ ✓ 00–60 Seconds (always two digits on output)

%M ✓ ✓ 00–60 Minute (always two digits on output)

%k ✓ 0–24 Hour—24-hour clock (one or two digits on output)

%H ✓ ✓ 00–24 Hour—24-hour clock (always two digits on output)

%l ✓ 0–12 Hour—12-hour clock (one or two digits)

%I ✓ 00–12 Hour—12-hour clock (always two digits)

%p ✓ “am”, “pm” a.m./p.m. indicator

%j ✓ ✓ 001–366 Day of the year (always three digits on output)

%d ✓ ✓ 01–31 Day of the month (always two digits on output)

%m ✓ ✓ 01–12 Month (always two digits on output)

%b ✓ ✓ 

(also %h)

Jan, Feb, … Abbreviated name of the month (three characters)

%B ✓ ✓ January, 
February, …

Full name of the month

%y ✓ ✓ 00–99 Year (two-digit; always two digits on output)

%Y ✓ ✓ 0000–9999 Year (four-digit; always four digits on output)

%w ✓ 00–06 Day of the week (0=Sunday; always two digits)

%a ✓ Sun, Mon, … Abbreviated day of the week

%A ✓ Sunday, 
Monday, …

Full day of the week

%W ✓ 00–53 Week of the year (weeks starting on Monday; always 
two digits)

%U ✓ 00–53 Week of the year (weeks starting on Sunday; always 
two digits)

%R ✓ Example: 
“22:12”

Shorthand for “%H:%M” (24-hour clock time format 
without seconds)

%T ✓ Example: 
“22:12:48”

Shorthand for “%H:%M:%S” (extended ISO time for-
mat: 
24-hour clock with seconds)

%r ✓ Example: 
“10:55:48 pm”

Shorthand for “%I:%M:%S %p” (US time format)

%F ✓ Example: 
“2008-03-25”

Shorthand for “%Y-%m-%d” (extended ISO date for-
mat)

%D ✓ Example: 
“03/25/08”

Shorthand for “%m/%d/%y” (US date format)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


174 CHAPTER 8 All about axes

Finally, gnuplot won’t parse strings enclosed in quotes (see section 4.3.3). Therefore,

you can’t parse a file that contains date/time information as strings with embedded

whitespace:

"2005-01-01 8:41" 3
"2005-01-01 9:17" 4

Also keep in mind that gnuplot’s capabilities when it comes to parsing date/time

information depend on the capabilities (and sensibilities) of the underlying system

libraries. Don’t expect edge cases to be absolutely portable!

OUTPUT

Compared to parsing time/date information, it’s much easier to format the informa-

tion into human-readable tic labels. To do so, specify the desired output format using

set _tics format "..." (where the underscore again is a placeholder for any of the

possible prefixes from table 8.1), and you’re done.16

 The format string can contain arbitrary text in addition to the formatting charac-

ters. Here’s a useful snippet to stack the time on top of the date (note the embedded

newline):

set xtics format "%T\n%D"

But you can also use other text, such as formatting characters

set xtics format "%Y-%m-%D %H:%M"

and even plain text:

set xtics format "It happened on %A"

In particular when used together with string functions, there is almost no limit to the

appearance of tic labels for plots displaying time series.  

WORKING IN TIME-SERIES MODE

Keep in mind that when working in time-series mode (after issuing the set xdata

time command), all x coordinates are interpreted according to the current setting of

the set timefmt format option (or equivalent for all other axes). In particular, this

means plotting ranges must be specified as quoted strings, in the format defined by

timefmt (the input time format): plot ["01Jan00":"15Jan00"] "data" u 1:2. Similar

concerns hold for the coordinates supplied to set arrow and set label.17

 Also, don’t forget that the currently selected locale (as inherited from the environ-

ment when gnuplot was started, or set using set locale) affects the tic labels (names

of months and of days in the week).

16 I also recommend that you avoid the former way of formatting tic labels based on the set format command.
The new style, based on set xtics format, is both clearer and more robust.

17 Alternatively, you can specify ranges and positions as integers, which are interpreted as Unix epoch seconds.

Will not parse

Time stacked on top of date

Date followed by time

Full day of the week

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


175Special case: time series

 And finally, always remember that you need to switch on time-series mode explic-

itly using set xdata time. This necessary step is easy to forget, and doing so will lead

to mysterious errors.

TIP Before parsing date/time information from files and using it to plot
data, you must enable time-series mode using set xdata time. 

A WORKED EXAMPLE

Remember the file with monthly data from listing 8.9? In section 8.3.5, gnuplot read

the tic labels for the horizontal axis directly from the data file. In section 8.4.1, the

plot was created using the simple set xmtics formatting. Now you’ll see a third way of

plotting the file, this time using the full machinery of gnuplot’s general time-series

mode.

 The next listing shows one way to do it. In this version, the strings in the third col-

umn aren’t used. (See tables 8.4 and 8.5 for the conversion specifiers.) The resulting

graph is exactly the same as figure 8.7.)

set xdata time

set timefmt "%m"
set xtics format "%b"

plot [][0:10] "months" u 1:2 w lp

Amusingly, there’s another way to achieve the same effect. Remember that the data in

listing 8.9 is redundant: the first and third columns both contain information that can

be interpreted as months. You can therefore ignore the first (numeric) column and

base the graph on the third column. The following listing shows this approach.

set xdata time

set timefmt "%b"
set xtics format "%b"

plot [][0:10] "months" u 3:2 w lp

Notice how the strings in the third column are used to give the horizontal position for

each point. (You may want to change the output format to full, rather than abbrevi-

ated, month names using set xtics format "%B" to convince yourself that the strings

read from the file are actually parsed and interpreted and aren’t just passed through

to the graph.) 

Listing 8.11 Commands for figure 8.7 using time-series mode (file: months1.gp)

Listing 8.12 Alternative commands for figure 8.7 (file: months2.gp)

Turn on time-series mode!

Input format: 1, 2, …, 12
Output format: Jan, Feb, …

Plot using the first column.

Turn on time-series mode!

Input format: Jan, Feb, …
Output format: Jan, Feb, …

Plot using the third column.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


176 CHAPTER 8 All about axes

8.4.3 Beyond tic labels: processing date/time information

The functionality I just described for use with time-series plots can be extended to

more general applications. Most date/time manipulations involve the first three func-

tions in table 8.6.

As an example, consider again the list of athletic records in listing 3.1. This data set

contains not only the finishing times, but also the calendar date when the record was

set. You may want to include this information in a plot of the data (see figure 8.8).

Table 8.6 Functions to parse and format arbitrary time strings. See tables 8.4 and 8.5 for conversion

specifiers.

Function Description

strftime(format, seconds) Formats its second argument, which is interpreted as Unix epoch 
seconds, according to the format string in the first argument. 
Returns a formatted string.

strptime(format, string) Parses its second argument, which must be a string containing a 
timestamp, according to the format string in the first argument. 
Returns the corresponding number of Unix epoch seconds as a 
floating-point number.

timecolumn(column, format) Takes an integer column identifier and a format string. Parses 
the current entry in the identified column according to the format 
string. Returns the corresponding number of Unix epoch seconds. 
Equivalent to strptime(format, stringcolumn(column)).

time(dummy) Returns the current system time in Unix epoch seconds. A 
numeric argument must be supplied, but its value is ignored.

tm_year(seconds) Takes a timestamp in Unix epoch seconds, and returns the full 
year as a floating-point number.

tm_yday(seconds) Takes a timestamp in Unix epoch seconds, and returns the day of 
the year as a floating-point number (0.0–365.0).

tm_mon(seconds) Takes a timestamp in Unix epoch seconds, and returns the num-
ber of the month as a floating-point number (0.0–11.0).

tm_mday(seconds) Takes a timestamp in Unix epoch seconds, and returns the day of 
the month as a floating-point number (1.0–31.0).

tm_wday(seconds) Takes a timestamp in Unix epoch seconds, and returns the day of 
the week as a floating-point number (Sunday=0.0).

tm_hour(seconds) Takes a timestamp in Unix epoch seconds, and returns the hour 
as a floating-point number.

tm_min(seconds) Takes a timestamp in Unix epoch seconds, and returns the min-
ute as a floating-point number.

tm_sec(seconds) Takes a timestamp in Unix epoch seconds, and returns the sec-
ond as a floating-point number.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


177Special case: time series

 

This plot command to create this figure is shown here:

plot [0:1200] "records"

➥ u 1:2:(strftime( "%d %b %y", timecolumn(4, "%Y-%m-%d")))

➥ w labels point pt 7 offset 0,-1

The primary plot style is with labels (see section 6.3.5), using the ability to plot a

point symbol together with the label. The labels are first parsed (using timecolumn())

and then formatted (using strftime()). Notice that the date format in the graph is dif-

ferent than in the data file—the date strings are parsed and reformatted, not merely

passed through to the plot.

 Instead of using the timecolumn() function, you can use strptime() in conjunc-

tion with the basic stringcolumn() function:

plot [0:1200] "records"

➥ u 1:2:(strftime("%d %b %y", strptime("%Y-%m-%d", strcol(4))))

➥ w labels point pt 7 offset 0,-1

This example will suffice to demonstrate the possibilities. Keep in mind that timecol-

umn() and strptime() return a numeric representation of a timestamp, thus making

all kinds of further date calculations and manipulations possible. 

 0

 20

 40

 60

 80

 100

 120

 140

 0  200  400  600  800  1000  1200

T
im

e
 [

s
e

c
o

n
d

s
]

Distance [meters]

16 Aug 09

20 Aug 09

26 Aug 99

09 Aug 12

05 Sep 99

Figure 8.8 Men’s world records, together with the date when the record was set. The 

dates are read from the data file, reformatted, and placed onto the graph. See the text for 

details and listing 3.1 for the data.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


178 CHAPTER 8 All about axes

8.5 Summary

In this chapter, we talked about all the ways you can control the appearance of the

axes on a plot. It’s been a long chapter, but axes—or rather, the tic marks and labels

placed on them—are important: they enable the viewer to gain quantitative insight

from the data displayed in the plot.

 This chapter concludes our overview of what I would call “basic” gnuplot. In the

following chapters, we’ll look at some exciting but distinctly more advanced topics,

such as color in graphs, customizations, and scripting capabilities. You’ll also learn just

about everything there is to know about exporting graphs to standard file formats.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Part 3

Mastering technicalities

The topics treated in this part are of a more technical nature than in the

preceding chapters. You’ll need the material in these chapters when you’re no

longer satisfied with gnuplot’s defaults and want to establish greater control over

the appearance of your figures, or if you want to automate and configure the way

you work with gnuplot. Chapter 9 explains how to customize many aspects of

graph elements, such as their color, the shape of point symbols, and the dash

patterns used to draw lines. You’ll also learn how to change the overall appear-

ance of a graph, such as its size and aspect ratio. Chapter 10 describes in detail

how you can export graphs to file, using gnuplot’s terminal capabilities. Chapter

11 discusses ways to automate repetitive tasks, either using gnuplot’s own script-

ing facilities or by using gnuplot in conjunction with scripts or programs written

in a separate programming language. Chapter 12 presents options to customize

your gnuplot work environment.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


181

Color, style, and appearance

Whereas the previous few chapters dealt with very local aspects of a graph (such as

an individual curve, a single text label, or the details of tic mark formatting), the

present chapter addresses global issues. We begin with a long and important sec-

tion on color. Color is an exciting topic, and it opens a range of options for data

visualization; I’ll explain gnuplot’s support for color handling in detail.

 Next, we discuss a few details that matter if you want to modify the default

appearance of point types, dash patterns, and the automatic selection of visual

styles. The overall size and aspect ratio of the graph are the subjects of the closing

section of this chapter.

9.1 Color

Color is an important element in visualization. At the base level, colors are often

easier to distinguish than dash patterns or different symbol shapes. But colors open

This chapter covers

 Global appearance options

 Color

 Lines and points

 Size and aspect ratio

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


182 CHAPTER 9 Color, style, and appearance

many more options for visualization—in fact, colors by themselves are sufficient to

represent semantic information (we’ll come back to this in appendix D). And finally,

color is just plain fun!

 At the same time, color adds complexity: what colors look good, and which are

suitable for representing information? And then there’s the problem of representing

color in computer systems. In appendix D, we’ll have more to say about choosing col-

ors for visualization; here we’re only interested in the technicalities of specifying color

in gnuplot.1

 There are three fundamentally different ways to select a color in gnuplot:

 Through explicit specification , either by using a known color name (such as

"red") or by giving its red-green-blue (RGB) components (like "#FF0000"). An

explicit color specification is indicated by the keyword rgb.

 By indexed lookup from a selection menu of discrete colors. (For example, lc 1

picks the first color from an existing list of color styles.) Indexed lookup is the

default and doesn’t use a special keyword.

 By mapping a value into a continuous color gradient. Color gradients are called pal-

ettes in gnuplot terminology (with keyword palette) and are the principal topic

of appendix D. In this chapter, we’ll give only a brief preview.

Each one of these methods can be used in two ways:

 Fixed—A specific color is selected for a given data set, to distinguish this data set

from any other.

 Variable or data-dependent—The color is determined by the value of the data plot-

ted so that the curve changes its color depending on location. Data-dependent

coloring is switched on with the keyword variable in place of an explicit color

name or index, and with palette z for gradient-mapped colors.

Keeping all these possibilities straight is one of our primary goals in this section!

 No matter which way you use color, a color specification always requires the line-

color keyword for graph elements (not just lines, but all graph elements, like points

or boxes) and the textcolor keyword for all forms of text labels. 

TIP Remember: all color specifications are preceded either by the keyword
linecolor (or lc) for graph elements or by textcolor (or tc) for text labels.

9.1.1 Explicit colors

The most fundamental way to indicate a color is to specify it explicitly. You can do so

by giving its name or by spelling out its components.

1 To find the pertinent information in the standard gnuplot reference documentation, use the command
help colorspec.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


183Color

COLOR NAMES

Several colors can be referred to by their name. Gnuplot knows 111 predefined color

names (corresponding to only 95 distinct colors; the duplications are mostly due to

both grey and gray being valid spellings). You can see all the color names and their cor-

responding RGB values using the show colornames command. Note that gnuplot’s list

of color names isn’t identical to the list of X11 colors.2

RGB COMPONENTS

The most common way in computer graphics to indicate an arbitrary color is through

its RGB (red-green-blue) values: a triple of numbers giving the relative intensities of

the red, green, and blue components that make up the desired color. By convention,

each component is represented through a single byte, so that each RGB component

lies between 0 and 255. Conventionally, the components are written as two-digit hexa-

decimal numbers (from 00 to FF), and an entire triple can be represented through a

string of the following format:

rgb "#RRGGBB"

This is the X11 format. You can also write the string explicitly as a hexadecimal constant

in the format "0xRRGGBB". Here are three equivalent ways to specify the same color:

rgb "red"
rgb "#FF0000"

rgb "0xFF0000"

Instead of representing the RGB triple as a string, you can also use the integer value

corresponding to the value of the three bytes making up the triple. It may be conve-

nient to use the hexadecimal representation of the integer, instead of the representa-

tion to base 10. The following are equivalent:

rgb 0xff0000

rgb 16711680

Here’s a function that takes the three components (as integers between 0 and 255)

and packs them into an equivalent integer value:

pack( r, g, b ) = 2**16*r + 2**8*g + b

This gives you an additional way to obtain the color red:

rgb pack( 255, 0, 0 )

2 The Wikipedia pages for “X11 color names” and “Web colors” contain more information about commonly
used color names. The amusing history of color names used in graphical user interfaces can be found in the
article “‘Tomato’ versus ‘#FF6347’—the Tragicomic History of CSS Color Names” by Julianne Tveten (Ars
Technica, October 11, 2015); http://mng.bz/R56B.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://mng.bz/R56B
http://www.it-ebooks.info/


184 CHAPTER 9 Color, style, and appearance

HSV COLOR MODEL

The RGB color model has the advantage of corresponding directly to the way a com-

puter display operates, but it’s not particularly intuitive for a human to use. (Quickly,

what does #2e8b57 look like?)

 The HSV (hue-saturation-value) scheme is an alternative to the RGB color descrip-

tion and the most popular intuitive color model. The hue describes the shade of the

color (by convention, a hue value of 0 corresponds to red followed by yellow, green,

cyan, blue, and magenta at equal intervals). The saturation measures the richness of

the color, from pale pastel shades to full saturation. Finally, the value element of the

HSV triple describes the lightness of the color, from very dark to very bright. All HSV

values vary from 0 to 1.3

 Gnuplot’s built-in function hsv2rgb( h, s, v ) takes a triple of HSV values, per-

forms the conversion to RGB, and returns an integer-packed representation of the cor-

responding RGB triple. This gives you yet another way to specify the color red

(remember that red corresponds to a hue value of 0):

rgb hsv2rgb( 0, 1, 1 )

Table 9.1 shows all these forms together, this time for the color magenta, which is a

mixture of full red and full blue components. (Its hue value in the HSV model is 5/6.)

TIP The input values to the hsv2rgb() function must all lie in the interval
[0:1]. The function silently replaces values outside this interval with the near-
est legal value (so, 1.1 becomes 1.0, and -0.1 becomes 0). In particular, the
hue parameter does not wrap around for values greater than 1.0—you must
map it into the unit interval yourself!

You can use the expression x - floor(x) to reduce an arbitrary hue value to the unit

interval. You may want to define a more general version of the hsv2rgb() function

that removes the restriction on the hue value:

hsv( h, s, v ) = hsv2rgb( h - floor(h), s, v )

3 The Wikipedia page for the HSL and HSV color models provides more detail.

Table 9.1 Equivalent ways to specify a color explicitly (here, magenta)

Description Example

Color name rgb "magenta"

X11 RGB string rgb "#FF00FF"

String with hex constant rgb "0xFF00FF"

Integer in hex format rgb 0xff00ff

Packed integer rgb 2**16*255 + 2**8*0 + 255 or rgb 16711935

Conversion from HSV rgb hsv2rgb( 5/6., 1, 1 )

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


184a

Color figure 1 Alpha shading and transparency. When a partially transparent color is added to 

an existing background, the added (foreground) color tends to prevail; adding it to a background 

of the same hue just increases the intensity. In the left panel, this effect is used to visualize 

point density in a dense data set. All data points are drawn with both blue disks and red rims. 

Because contributions from overlapping points add visually, regions of high point density show 

up as areas of high color intensity. Regions where the density is high enough for the rims to 

contribute significantly appear red. The right panel demonstrates what kinds of color mixtures 

you can expect when several colors are added together. (See chapter 9 for details.)

Color figure 2 Using color gradients to visualize data values. In the left panel, color is used to 

indicate the order in which particles were added to the cluster. The right panel shows a section 

of the complex plane, including part of the Mandelbrot set (black) and its fractal boundary. Color 

is used to visualize the number of iteration steps before the Mandelbrot iteration diverged. (See 

chapter 9 and appendix D.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


184b

linetype 1

linetype 8

Default linetype 1

linetype 8

Classic

linetype 1

linetype 8

Podo linetype 1

linetype 8

Custom

Color figure 3 The three built-in color sequences that can be selected using set colorsequence, 

and the custom sequence that was used for the color illustrations in this book. (See chapters 9 and 

12 for details.)

A
0.0

0.2

0.4

0.6

0.8

1.0

B C D E F G H J K L M N O P Q

Color figure 4 Several color gradients (or palettes) for visualization purposes, as discussed in 

appendix D.  Each panel in the figure displays a different palette.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


184c

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

R
e

s
p

o
n

s
e

Input

Sparse 1

Sparse 2

Smooth

Dense 1

Dense 2

Dense 3

Color figure 5 Using stylesheets to change the appearance of a plot. The plot in this 

figure has been prepared with a stylesheet that uses relatively bright colors, but thin lines. 

(Compare color figure 6. Also see listing 12.7 in chapter 12 for details.)

Color figure 6 Using stylesheets to change the appearance of a plot. The plot in this 

figure has been prepared with a stylesheet that uses soft pastel colors, but relatively thick 

lines. (Compare color figure 5. Also see listing 12.8 in chapter 12 for details.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


184d

Color figure 7 Using a combination of several graphical techniques to represent a complicated, 

multivariate data set. The figure shows a parallel-coordinates plot of the entire glass data set. Because 

of the relatively large number of records, all lines are drawn partially transparent so they don’t obscure 

each other. A subset of records has been highlighted in a different color: records with a Calcium (Ca) 

content between 9 and 10 have been selected for highlighting. (See chapter 14 for details.)

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30

M
a

c
h

in
e

Day

 0

 1

 2

 3

 4

 5

 6

 7

D
e

fe
c
ts

Color figure 8 A false-color plot prepared using a color gradient. The color of each square represents 

the number of defects produced by each machine on each day of the month. Missing squares indicate 

that the corresponding machine wasn’t used on that day. Many different aspects of the operation are 

visible in this graph. You should be able to recognize weekends and two clusters of machines that seem 

more error-prone than the others. This data set contains a handful of outliers (that is, isolated instances 

with an excessive number of defects), which are drawn in black. (See appendix D for details.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


185Color

9.1.2 Alpha shading and transparency

So far, we’ve assumed that colors are fully opaque, so that an object drawn on top of

another completely hides its background. But gnuplot can do more: several terminals

allow for transparent colors.4

MAKING COLORS TRANSPARENT

Indicating that a pixel should be transparent requires additional information. In prac-

tice, you add a fourth byte to the RGB components; this is often called the alpha chan-

nel. In gnuplot’s string representation, it precedes the RGB value:

rgb "#ααRRGGBB"
rgb "0xααRRGGBB"

Transparency information is encoded in the highest-order bit, as follows:

 α = 0 : fully opaque

 α = 255 : fully transparent

This convention has the advantage that a fully opaque color rgb "#00RRGGBB" has

the same numerical value as rgb "#RRGGBB", so opaque colors don’t require special

treatment.

ALPHA BLENDING

So, what happens when two transparent colors are overlaid? Obviously, the color

“underneath” is still visible—but how? It turns out that there is no obvious answer to

this question—the cairo graphics library defines 29 (!) different operators to combine

two pixels containing alpha-channel information!5

 Even in gnuplot, the answer isn’t unique: lines and similar graph elements are

combined using cairo’s OVER operator (the library’s default), but filled objects use the

SATURATE operator. (You can’t specify an operator explicitly.) 

 To make the behavior of these two operators concrete, let’s assume that you want

to add a new object of color α1X1 to an existing color α0X0, resulting in color α2X2.

(Here X stands for any one of the three RGB components.) The new color is then cal-

culated separately for each RGB component according to the following formulas:

4 All cairo-based terminals support transparency, but several of the older terminals don’t. In particular, neither
the PostScript terminal nor the GD-based bitmap terminals can handle transparency.

5 See http://cairographics.org/operators.

α2 α1 α 0 1 α1–( )+=

X2 α1X1 α 0X0 1 α1–( )+( ) α2⁄=

α2 min 1 α1, α 0+( )=SATURATE

OVER

X2 min α1 1, α 0–( )X1 α0X0+( ) α2⁄=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://cairographics.org/operators
http://www.it-ebooks.info/


186 CHAPTER 9 Color, style, and appearance

These formulas aren’t so helpful to predict the outcome, but you can use them retro-

spectively to understand what happened. Two general observations hold (see figure 9.1):

 The two source colors don’t commute: it matters which color is in the back-

ground and which is newly added. The color that is added on top of an existing

background tends to prevail.

 When all pixels are of the same hue, things are simpler: the hue basically stays,

and only the intensity increases (in a roughly additive way).   

USES FOR TRANSPARENT COLORS AND ALPHA BLENDING

Transparent colors can be useful when you’re visualizing large data sets consisting of

many points. If such data is plotted in a scatter plot, points frequently overlap. With

fully opaque colors, overlapping points completely obscure each other, making the

local density of points indistinguishable. But with partially transparent colors, overlap-

ping points contribute additively, so that a higher color intensity reveals a higher point

density.

 Figure 9.2 shows such a scatter plot. The plot command is as follows:

plot [-0.4:1.2][-0.2:1.2] "alpha" u 2:1 w p pt 7 ps 1 lc rgb "#cc0000ff",

➥ "" u 2:1 w p pt 6 ps 1 lc rgb "#ddff0000"

Figure 9.1 Alpha blending in action. The color that is added to an existing 

background tends to prevail; adding it to a background of the same hue just 

increases the intensity.

BBlue filled circles

CRed unfilled circles

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


187Color

All points are first drawn as filled circles (pt 7) in blue B and then again as unfilled

circles (pt 6) in red C. Adding an outline to the circles significantly improves the

appearance of the graph; giving the outline a different color sets off areas of truly

high point density even more strikingly.

 You may want to experiment further with this—for example, I’ve obtained good

results when using the same color (say, blue) for both disk and outline, but making

the outline slightly larger than the disk itself (for example, ps 1.5 for the outline, but

ps 1 for the disk). 

9.1.3 Selecting a color through indexed lookup

The methods explained so far in this section let you select individual colors. When

that’s what you want, these techniques are convenient: plot sin(x) lc rgb "red" does

exactly that—it plots the sine in red.

 It gets trickier if you want to plot several curves at once. To distinguish them, each

should be plotted in a different color, and it would be convenient if gnuplot would do

so automatically. In other words, now you want colors to be chosen from a discrete

selection (rather than specified individually).

 This is exactly what gnuplot does: as I explained in section 6.2, gnuplot maintains a

set of distinct colors and (by default) uses the next one for each new function or data

Figure 9.2 Using alpha blending to visualize point density in a dense 

data set. All data points are drawn both with blue disks and red rims. 

Because contributions from overlapping points add visually, regions of 

high point density show up as areas of high color intensity. Regions 

where the density is high enough for the rims to contribute significantly 

appear red.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


188 CHAPTER 9 Color, style, and appearance

set. (Later in this chapter, you’ll learn how to customize the overall selection of colors

available in this way.)

 Colors (and line types and styles more generally) are identified by a positive inte-

ger. If you want to override gnuplot’s automatic choice of color, or if you want to pick

a particular color from the predefined set, you do so by supplying the appropriate

integer value:

plot "data" u 1:2 w l lc 2, "" u 1:3 w l lc 2

This plots both the second and third columns against the first using the second color

from the predefined set of colors for both data sets.

 All of this is straightforward. There’s only one possible glitch: don’t confuse lc 1

with lc rgb 1. The former specifies the first color from the selection of predefined col-

ors (whatever color this may be!). The latter selects a specific color by giving its RGB

components as an integer-packed value. (The value 1 corresponds to "#000001",

which is almost black.)

SPECIAL COLOR INDICES

Gnuplot knows about two special color indices: black and bgnd. The first is a short-

hand to obtain a black line through indexed lookup (that is, without having to iden-

tify a color explicitly). It’s mostly convenient for drawing graph elements like arrows,

borders, and labels: set arrow 1 from 0,0 to 1,1 lc black. (Note the absence of

either quotes or the rgb keyword.)

 All contemporary terminals allow an explicit background color to be set using the

background keyword: set terminal pdfcairo background rgb "grey" (see chapter

10). This color is then available through the bgnd index for all graphs sent to this ter-

minal. This is mostly useful to rub out or erase parts of the graph:

set object 1 circle at 0,0 radius 1 fill solid fc bgnd front

This clears a circular area of radius 1, centered at the origin, by filling it with the back-

ground color. 

9.1.4 Mapping a value into a continuous gradient

Continuous color gradients (called palettes in gnuplot) are the topic of appendix D.

But a discussion of color in gnuplot would be incomplete without mentioning them,

so I’ll give a brief preview here.

 First, you need to define a gradient, for example like this:

set palette defined ( 0 'blue', 0.5 'white', 1 'red' )

This defines a color gradient from blue over white to red; white is centrally located in

the mapped interval. You can now use any of the colors from this gradient in a plot

like this:

plot sin(x) lc palette frac 0.25

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


189Color

This plots the curve in the color that is halfway between blue and white. (The keyword

palette can be abbreviated to pal.)

 When you select a color from a palette using the frac keyword, the numeric argu-

ment must lie in the interval [0:1]. You can also map the gradient to a different interval

using set cbrange. (The identifier cb stands for color box.) For example, set cbrange

[-5:5] maps the color gradient into that interval. You can now specify a color by pro-

viding a value from this interval together with the cb keyword. The following plot com-

mand produces the same curve as the previous listing, because -2.5 lies at the same

relative position within the interval [-5:5] as 0.25 lies within the interval [0:1]:

set cbrange [-5:5]

plot sin(x) lc pal cb -2.5

Remapping a gradient to a specific numeric range makes sense when you want to indi-

cate a specific numeric value with a color. That’s the topic of the next section and—in

much more detail—of appendix D. 

9.1.5 Using data-dependent colors

Gnuplot can change the color of a line or point based on the values of the data. As

usual, there are three ways to do this: explicitly (using the rgb keyword), by indexed

lookup (using an integer index), and using a gradient (with the palette keyword).

In any case, you must supply an additional column with the using specification of the

plot command; the color information is always taken from the last (rightmost) col-

umn in the using specification. (Value-dependent color is only available for data—if

you want to use it with functions, you have to fake it using the "+" pseudofile—see

section 4.4.)

EXPLICIT AND INDEXED DATA-DEPENDENT COLORS

Let’s consider an example. Here’s a very short data file:

# x y color

1 2.0 1
2 2.1 2

3 1.9 3

4 2.0 4
5 2.0 5

Either of the following two commands will work:

plot "data" u 1:2:3 w lp lc rgb variable

plot "data" u 1:2:3 w lp lc variable

The first thing to notice is that although the plot style is linespoints, three columns

are specified: the last (rightmost) is used for color information. Next, notice the key-

word variable in the color specification: that’s what turns on data-dependent color-

ing. If variable follows the rgb keyword, the value in the third (color) column is

taken as an integer-packed RGB (or αRGB) tuple; if variable is used by itself, the

entry in the color column is taken as the index of the color to use. (It’s not possible to

use color names or RGB strings together with variable.) 

Explicit

Indexed

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


190 CHAPTER 9 Color, style, and appearance

A WORKED EXAMPLE USING EXPLICIT DATA-DEPENDENT COLORS

In practice, you’ll almost never read either the color value or the color index from a

file. Instead, think of the third column in the using specification as a place to perform

some creative inline transformation (see section 3.3) to calculate a data-dependent

color. Let’s consider a few examples.

 Remember DLA clusters, like the one in figure 1.2? For each particle, the data set

contains not only the particle’s coordinates but also the sequence order in which it

was added to the cluster. If you map the latter information onto a color spectrum, you

can generate “tree rings” that indicate how the cluster grew (see figure 9.3).

 An easy way to turn sequence numbers into colors is to map them onto the hue

value in the HSV model. Using the hsv2rgb() built-in function, you can do this on the

fly (on a 100,000 particle cluster, in this case):

plot "dla" u 2:3:(hsv2rgb($1/100000.,1,1)) w d lc rgb var

This graph shows clearly that a DLA cluster tends to grow mostly at the rim. Despite

the tenuous structure, it’s rare for a particle to penetrate deeply into an existing clus-

ter; it’s much more likely to get caught by one of the branches extending outward.

 Although it worked reasonably well in this example, in general you should use cau-

tion when mapping a quantity to the rainbow spectrum of the HSV color model. One

problem is that this particular color spectrum doesn’t have any inherent sense of

ordering: is yellow larger than blue, or vice versa? Another problem is that the spec-

trum closes in on itself: red represents both very small and very large values. In this

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

Figure 9.3 A DLA cluster (see section 1.1.2) using the HSV color model to indicate 

the order in which particles were added to the cluster

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


191Color

example, it doesn’t matter, because the geometric structure of the cluster provides the

required sense of ordering; but in more general cases, a rainbow plot like this can be

highly confusing. Carefully designed color gradients are almost always a better idea. For-

tunately, gnuplot makes this easy—a topic we’ll come back to in appendix D. 

WORKED EXAMPLES USING INDEXED DATA-DEPENDENT COLORS

Indexed data-dependent colors make sense when the data contains an attribute that

assumes only a discrete set of values (or levels). In listing 9.2, some attributes (such as

the physical dimensions, the year of presentation, and the available horsepower) are

numeric and can have essentially any value. But others, such as the number of cylin-

ders and the country of manufacture, assume only a finite number of discrete values.

Those can be represented through distinct, indexed colors. (See listing 9.1 for the

commands and figure 9.4 for the resulting plot.)

unset key

set xlabel "Year"; set ylabel "Horsepower"

set for[k=1:3] label k sprintf( "% d Cylinders", 4*(k+1) )

➥ at 2003.75,1200+k*50 point pt 7 lc k offset 11,-0.175 right

plot [2003:2014][500:1400] "supercars" u 1:2:($3/4-1) pt 7 ps 1.0 lc var,

➥ "" u 1:2:8 w labels offset 1,-1

# Year PS Cyl Len Height Weight Country Name

2005 1014 16 4462 1159 1888 France "Bugatti Veyron"
2006 1061 8 4475 1092 1270 USA "SSC Aero"

2012 1261 8 4655 1079.5 1244 UK "Hennessey Venom GT"

2011 940 8 4293 1120 1435 Sweden "Koenigsegg Agera"
2005 806 8 4293 1120 1456 Sweden "Koenigsegg CCX"

2009 1104 8 4665 1198 1688 Denmark "Zenvo ST1"

2005 650 8 4460 1114 1100 Germany "Gumpert Apollo"
2009 750 12 4601 1222 1630 UK "Aston Martin 0ne-77"

2011 700 12 4780 1136 1575 Italy "Lamborghini Aventador"

But data-dependent indexed colors can also be used to represent metadata. Here’s a

clever trick:6 consider a data file containing several data sets, separated by double

blank lines. The index of each data set is available in the pseudocolumn -2 (see sec-

tion 4.4). You can use this information to let gnuplot select a different color for each

data set, by using the value of the pseudocolumn as an index into the set of pre-

defined colors:

plot "data" u 1:2:(1+column(-2)) w lp lc var

Listing 9.1 Command for figure 9.4 using data from listing 9.2 (file: supercars.gp)

Listing 9.2 Data for figure 9.4 (file: supercars)

6 The idea for this application was taken from the standard gnuplot reference documentation.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


192 CHAPTER 9 Color, style, and appearance

Because this example uses indexed lookup, the keyword rgb is absent. You need to use

the column() function, because the dollar-sign shorthand doesn’t work for a negative

column number. And finally, you need to add 1 to the return value, because data sets

in a file are counted starting at 0, whereas line colors are counted starting at 1. 

COLOR GRADIENTS

Indexed and explicit colors work well for discrete colors, but if you want a curve

that changes color continuously, then color gradients are the way to go. Using data-

dependent color with a continuous gradient is similar to what you’ve seen so far,

except the keyword is z instead of variable. Assuming an appropriate color gradient

has been defined, the following command will color the curve according to the gradi-

ent. Again, you need to specify a third column for the color information:

plot "data" u 1:2:3 w l lc palette z

Figure 9.5 shows a way that a color gradient can be used with a regular curve. The idea

is that this curve monitors an important quantity that must not exceed some thresh-

old. The graph uses a color gradient to change the appearance of the curve depend-

ing on the value of the monitored quantity. It’s easy to set up the gradient and create

the plot (more details in appendix D):

set palette defined ( 0 'green', 3 'green', 4 'red', 5 'red' )

plot [][0:5] "monitoring" u 1:2:2 w l palette z lw 2

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 2004  2006  2008  2010  2012  2014

 8 Cylinders

 12 Cylinders

 16 Cylinders

H
o

rs
e

p
o

w
e

r

Year

Bugatti Veyron
SSC Aero

Hennessey Venom GT

Koenigsegg Agera

Koenigsegg CCX

Zenvo ST1

Gumpert Apollo

Aston Martin One-77

Lamborghini Aventador

Figure 9.4 Using indexed color to visualize discrete values or levels in a data set. For a 

set of current “supercars,” the date of presentation and the available horsepower are 

visualized through the location on the graph, and the number of cylinders is represented via 

color. Compare listing 9.2 for the data and listing 9.1 for the commands.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


193Color

  

9.1.6 The built-in color sequences

For many years, the default color sequence for the most common terminals consisted

of full-intensity red, green, and blue, followed by magenta, cyan, and yellow, because

these are the three basic colors of computer graphics and their binary combinations.

It’s a simple sequence, but not a very good one: the colors are bright and garish, and

yellow is exceptionally difficult to see against a white background. Moreover, this

sequence of colors (with its emphasis on red and green) is particularly challenging for

people who are color-blind! There are also more subtle problems, having to do with

color perception: the blue line, for example, always seems “heavier” than any of the

other colors and tends to dominate a graph.

 In gnuplot 5, you can choose from three different color sequences, using the set

colorsequence command (see figure 9.6):

set colorsequence [ default | classic | podo ]

 The three color schemes are identified using keywords:

 default—A terminal-independent sequence of eight colors

 classic—The original behavior, which differs from terminal to terminal but

usually produces the red/green/blue sequence mentioned earlier

 podo—A terminal-independent sequence of eight colors, intended to be easy

for color-blind people to distinguish7

7 Bang Wong, “Points of View: Color Blindness,” Nature Methods 8 (2001): 441.

0

1

2

3

4

5

 0  50  100  150  200  250  300

"monitoring" u 1:2:2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Figure 9.5 Gradient-mapped color. The control curve changes its color if the 

monitored quantity exceeds its safe value.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


194 CHAPTER 9 Color, style, and appearance

 

Unfortunately, none of these three options constitutes a particularly good choice, in

my opinion: the new default scheme, for instance, may be much less garish than the

classic scheme, but its colors are so muted that I now find it difficult to distinguish dif-

ferent lines! The set colorsequence facility is also strangely limited (for example, you

can’t extend or modify the provided color choices), so you’ll probably want to con-

struct your own sequence of colors (and other line properties) from scratch. That’s

what I do, and that’s the topic of section 9.3.

TIP Because the three built-in color sequences aren’t very good, you should
consider defining and using a custom sequence. 

9.1.7 Tips and tricks

Color specifications tend to be clumsy: they’re both lengthy and obscure. It may there-

fore be a good idea to introduce shorthands. Here are some ideas to get you started.

 Instead of using a hex string, you can assign its value to a semantically named

variable:

gold = "#FFD700"

gold = pack( 0xff, 0xd7, 0 )

plot "data" u 1:2 w l lc rgb gold

linetype 1

linetype 8

Default linetype 1

linetype 8

Classic

linetype 1

linetype 8

Podo linetype 1

linetype 8

Custom

Figure 9.6 The three built-in color sequences that can be selected using set colorsequence, 

and the custom sequence used for the color illustrations in this book. (See section 12.6 for details.)

Hex string

Equivalent: integer value

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


195Lines and points

This isn’t ideal, because you still have to type the keyword rgb every time. You can

absorb it into the variable if you use gnuplot’s macro facility (see section 5.2):

blue = "rgb '#0000ff'"

plot "data" u 1:2 w l lc @blue

You can even include the lc keyword in the macro:

green = "lc rgb 'green'"

plot "data" u 1:2 w l @green

Rather than use color names, you may also want to consider semantic names for colors:

alarm = "red"

normal = "#00cd00"

The options are endless—adapt them to your needs. 

9.2 Lines and points

Gnuplot graphs are constructed from lines and points: these are the fundamental

building blocks. (In keeping with the usage in the gnuplot documentation, the term

point here and in the following refers to the symbol used to represent a single data

point.) All aspects of lines and points can be customized: the width, color, and dash

pattern of lines, and the shape, size, and color of points.

 This isn’t news—I introduced all these concepts at the beginning of chapter 6 and

have been using them ever since. (Table 6.1 provides a handy summary.) Most of these

properties are straightforward and won’t need explanation beyond what you can find

in the table. But there are a few exceptions: the selection of available point types

deserves a few words, and so do user-defined dash patterns.

9.2.1 Point types and shapes

Each terminal provides a set of shapes or points that can be used to represent a single

data point. Because these shapes are relatively low-level graph elements, they’re hard-

coded into the implementation of each terminal driver. In general, a gnuplot user

can’t change the existing shapes or add new ones.8 All commonly used terminals pro-

vide at least a dozen (or so) different shapes, but some terminals define many more

(the old PostScript terminal defined 75 distinct point types!). In practice, fewer than

about 10 point types are sufficiently different that they can be distinguished visually.

 The sequence of shapes has been unified across all (contemporary) terminals, at

least for the first few point types (see figure 9.7). Although you can’t change the shape

of the symbol, you can modify its size, line width, and color using the pointsize (or

ps), linewidth (or lw), and linecolor (or lc) properties.

8 You may be able to use symbols beyond those provided by gnuplot by using a single character from a suitable
font as a point symbol—see section 6.3.1. Some terminals, such as tikz, permit user-defined point shapes.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


196 CHAPTER 9 Color, style, and appearance

 

Point shapes are usually indicated using their index: plot ... w p pt 7 represents

each data point with a filled circle. You may want to define symbolic names for point

types:

frame = 4

box = 5

circ = 6

disk = 7

plot "data" u 1:2 w p pt frame

9.2.2 Dash pattern

The ability to customize dash patterns is a new feature in gnuplot 5; support in older

terminals may be spotty. A dash pattern can be specified inline or defined separately

using set dashtype. Once a dash pattern has been defined this way, you can reference

it by its (integer) index. There are two ways to specify a dash pattern: using a symbolic

string or using a tuple that gives the relative lengths of solid and empty line segments.

SYMBOLIC STRINGS

A dash pattern can be defined using a symbolic string consisting of the symbols shown

in table 9.2. The dash pattern can consist of up to four non-whitespace characters;

leading whitespace and any further characters are ignored. Figure 9.8 shows some

examples.

 Symbolic strings can conveniently be used inline in a plot command. The follow-

ing two commands are equivalent:

plot sin(x) dt '-'

set dashtype 1 '-'

plot sin(x) dt 1

1 : Cross

2 : Saltire

3 : Cross and Saltire

4 : Square, empty

5 : Square, filled

6 : Circle, empty

7 : Circle, filled

 8 : Up Triangle, empty

 9 : Up Triangle, filled

10 : Down Triangle, empty

11 : Down Triangle, filled

12 : Diamond, empty

13 : Diamond, filled

14 : Pentagon, empty

15 : Pentagon, filled

0 : no symbol

Figure 9.7 Available 

point symbols

Square, empty

Square, filled

Circle, empty

Circle, filled

Uses empty squares

Inline specification

Separate definition …

… and indexed lookup

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


197Lines and points

 

EXPLICIT TUPLES

The most general way to specify a dash pattern is to supply a tuple of numeric values.

These values represent the length of subsequent solid and empty line segments.

There can be at most eight elements in the tuple (so that a dash pattern can have at

most four solid parts); the first entry in the tuple is interpreted as solid. Here are two

examples (compare figure 9.8):

set dashtype 1 (2,2)

set dashtype 2 (20,10,2,4,2,10)

Lengths of line segments are measured in units of the line width. A tuple entry of 2

(not 1!) results in a line segment that is as long as it is wide.

 Or so it may appear. If you’re using very short line segments, you’re likely to run into

an obscure subtlety: line caps. The cairo library defines three types of line ends: butt,

Table 9.2 Symbols for dash patterns

Symbol Numeric Description

. (dot) (2,5) A dot followed by a short space

- (dash) (10,10) A dash followed by a space

_ (underscore) (20,10) A long dash followed by a space

␣ (whitespace) (...,10) A space 

Dotted line

Long dash followed by a double dot

'.'

'-'

'_'

'... '

'- ..'

(20,10,2,4,2,10)

square round butt

Figure 9.8 Top: Dashed lines resulting from various combinations of the standard 

dash symbols or given by an explicit numeric tuple (as shown on the left—the pattern 

for the bottom line is given by an explicit numeric tuple). Bottom: Effect of the 

different line-cap styles. The line end and the added cap are shown in different colors.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


198 CHAPTER 9 Color, style, and appearance

round, and square (see figure 9.8, bottom),9 which can be selected when choosing a

cairo-based gnuplot terminal (see section 10.2.3). Unless the chosen style is butt, the

line extends by half a line width past its actual end point. But the default style for the

cairo-based terminals in gnuplot is square, meaning all solid line segments in a dash

pattern appear longer by half the line width at both ends—and the empty segments

appear that much shorter. You now have two options: select the butt option when set-

ting the terminal (for example, set terminal wxt butt) or take the extent of the line

caps into account when setting up the dash pattern. (You may find it amusing to work

out why the dash pattern (2,2) using butt line caps is equivalent to the dash pattern

(0,4) when using square.) 

9.3 Customizing color, dash, and point sequences

Let’s first establish when a predefined sequence of colors (and possibly of other line

properties, such as dash patterns) is relevant: it comes into play only if you’re plotting

many functions (or data sets) and you want to let gnuplot automatically choose a dif-

ferent line color (or pattern) for each new curve. If you don’t use gnuplot’s automatic

style selection, because you specify the plotting style explicitly for each curve instead,

the existence of a predefined color sequence is immaterial. The topic of this section

therefore applies only to a very limited purpose.

 That being said, letting gnuplot choose line styles automatically is such a huge con-

venience (in particular when you’re doing casual and exploratory work) that it can’t

be ignored. (It matters less when you’re preparing presentation graphics, because in

that case you naturally want to have full control over all aspects of the plot.)

 Gnuplot’s automatic style selector chooses from a sequence of line types. Line types

are gnuplot’s original method for specifying appearance options, and nowadays they

sit rather awkwardly next to the more modern paradigm (based on the set style

facility; see section 9.4). Line types are still essential for gnuplot’s automatic assign-

ment of visual styles to different curves but otherwise have lost much of their previous

importance; in particular, line types are no longer used as containers for general

appearance options.

 A line type is a combination of all graphic line attributes together with a point type

and the other point attributes. By construction, every terminal provides an (in princi-

ple) infinite sequence of different line types. This guarantees that gnuplot never runs

out of different styles, no matter how many curves you plot. In practice, not all of

these line types look different, of course—gnuplot uses only about a dozen different

colors and dash patterns before it repeats itself. But every new line gets its own line

type, with a unique numerical index.

9 See http://cairographics.org/samples/set_line_cap.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://cairographics.org/samples/set_line_cap
http://www.it-ebooks.info/


199Customizing color, dash, and point sequences

9.3.1 Customizing line types

You can customize the default sequence of colors and other properties using the set

linetype command:

set linetype {int:idx} [ lineoptions ]

Here, the first argument is the index of the line type that you wish to modify; it’s fol-

lowed by specifications of graphical attributes (line color and width, point type and size,

and so on—see the tip at the end of section 6.2.3 for an explanation of lineoptions).

The terminal-specific default values prevail for attributes that aren’t changed explicitly.

TIP Line types are persistent: they prevail until changed explicitly. In partic-
ular, line types aren’t affected by calls to reset. (They’re reinitialized by
reset session.) 

In practice, you’ll only want to redefine a few (the first few) line types and have

gnuplot cycle through them repeatedly when plotting many curves. But because

the number of available line types is always infinite, gnuplot has no way of knowing

when to begin cycling: you have to tell it explicitly. You do so with the command set

linetype cycle:

set linetype cycle {int:period}

Let’s consider an example. You want curves to be drawn with alternating thin red and

wide black lines (only two styles, in other words); the red line should use an empty

square as point symbol and the black line a filled circle ( pt 4 and pt 7, respectively—

see figure 9.7). The following commands achieve this behavior. Because there are odd

precedence rules between explicit customizations and set linetype cycle, it’s neces-

sary to wipe out previous settings first:

unset for [i=1:32] linetype i

set linetype 1 lw 1 lc rgb "red" pt 4

set linetype 2 lw 2 lc rgb "black" pt 7

set linetype cycle 2

Unfortunately, the set linetype cycle facility applies only to line properties, but not

to point types! It also obeys non-obvious precedence rules, which make its behavior

surprising and hard to predict.10 My recommendation, therefore, is to avoid it and

instead set all line types explicitly:

set for [i=1:64:2] linetype i lw 1 lc rgb "red" pt 4

set for [i=2:64:2] linetype i lw 2 lc rgb "black" pt 7

This will give you the desired behavior for the first 64 curves you include in a graph

(and, of course, you can always increase the upper limit in the loop as far as necessary).

10 At the time of this writing, this entire area appeared to be somewhat in flux. Check the gnuplot standard ref-
erence documentation for up-to-date details.

Erases any existing customizations

Defines the first line style

Defines the second line style

Tells gnuplot to alternate between two styles

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


200 CHAPTER 9 Color, style, and appearance

The same method can be used, even if you want more than two distinct line types—just

increase the step size in the loop accordingly!

9.3.2 Special line types

Every terminal defines two special line types that can’t be modified by the user; see

table 9.3. Line type 0 is frequently useful to add reference or grid lines to a plot. Line

type -1 can be used to add arrows or other decorations, with the guarantee that they

appear solid black.

9.4 Global styles

You can control all graphical aspects of plot elements inline by spelling out the desired

appearance options as part of the plot (or set arrow or set object) command. But

you can also define global styles. There are three primary reasons to do so:

 Convenience—Instead of listing all the desired options explicitly (possibly more

than once, if you plot more than one data set or have more than one arrow or

other decoration), you can refer to a style with just its identifier.

 Semantics—You can set up and refer to styles based on their function (such as

“important” in bright red or “reference” as a dotted hairline).

 Display targeting—Imagine that you need graphs that look good in different con-

texts: clear and crisp on the screen, bold and bright in a presentation, and

black-and-white in a print publication! Using collections of styles (stylesheets) for

each intended use, this becomes much easier than having to redo all the graphs

by hand.

You create styles using the set style command and can define them for lines and

points, arrows, objects, and so on. In addition to defining global styles, set style is

also used to fix the options on some special-purpose plots—we won’t discuss these

applications here but in their proper context (appendix E).

9.4.1 Data and function styles

By default, functions are plotted with lines (with lines), and data from files is plotted

using both lines and points (with linespoints). These defaults can be changed using

these commands:

set style data ...

set style function ... 

For example, to plot data using with lines, you say set style data lines. 

Table 9.3 Special line types defined by all terminals

Line type Description

linetype 0 A minimally visible line; often a thin dotted line in black or gray

linetype -1 A solid black line 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


201Global styles

9.4.2 Line styles

You define line styles using set style line. This command takes an integer index of

the style you want to create or change, followed by a combination of line options that

define the desired appearance of the style (see the tip at the end of section 6.2.3 for

the lineoptions shorthand):

set style line {int:index} [ lineoptions ]

set style line {int:index} default 

Unless explicitly overridden, all aspects of a line style default to the corresponding

value of the line type of the same index. The keyword default restores a line style to

the equivalent line type.

 This begs the question: what’s the difference between line styles and line types? In

brief:

 Line types are persistent: all of their properties prevail until explicitly changed.

Every terminal provides an infinite number of line types and their properties.

When assigning lines to curves automatically, gnuplot chooses from the avail-

able line types only.

 Line styles aren’t persistent: they’re deleted by calls to reset. The properties of

line styles default to those of the line type with the same index, unless explicitly

redefined. Line styles aren’t available for automatic assignment to data sets and

functions.

I use the following little mnemonic to remember which is which: 

Line-T-ypes are sys-T-em settings.

Line-S-tyles are u-S-er preferences.

My recommendation is to prefer line styles over line types whenever possible and to

restrict the use of line types to the automatic selection feature (where line types are

required).

 Here are some examples that give you an idea how line styles can be used:

solid = 100
dotted = 101

important = 102

reference = 103
strut = 104

set style line solid lw 1 lc rgb "green" pt 5

set style line dotted lw 1 lc rgb "blue" dt '.'

set style line important lw 2 lc rgb "red" pt 0

set style line reference lw 0.5 lc rgb "grey" dt (2,4)

set style line strut lw 2 lc black

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


202 CHAPTER 9 Color, style, and appearance

9.4.3 Arrow styles

You can predefine arrow styles using set style arrow. The available appearance options

are summarized here—they should all be familiar from section 7.3.2:

set style arrow {idx:index} default

set style arrow [{idx:tag}] [ nohead | head | heads | backhead ]

                [ size {flt:length} [,{flt:angle}] 
                  [,{flt:backangle}] 

                  [fixed] ]

                [ nofilled | empty | filled | noborder ]
                [ front | back ]

                [ lineoptions ]

Given all the different appearance options for arrows (in particular with regard to

arrow heads), it may make sense to define common arrow types, for example like so:

nohead = 100

filled = 101
outline = 102

bold = 103

set style arrow nohead nohead

set style arrow filled size screen 0.025, 30, 45 filled
set style arrow outline size screen 0.025, 30, 45 empty

set style arrow bold lw 2 lc rgb "red"

Of course, using symbolic names for the arrow styles is entirely optional. You can now

create an arrow by referencing one of these styles:

set arrow 1 from 0,0 to 1,1 as filled

set arrow 1 from 0,0 to -1,0 as 103

Remember that it’s a good idea to use the screen coordinate system to define the

arrow head: this way, the head size won’t change if the plot range changes!

9.4.4 Fill styles

Several plot styles and decorations can be filled with a color or pattern. This section

introduces the syntax of fill specifications. The three pertinent keywords are fill-

color (or fc), fillstyle (or fs), and border (or bo).

 Two of these don’t present surprises: fillcolor must be followed by a color speci-

fication (see section 9.1), and border must be followed by any combination of line

options (see the tip at the end of section 6.2.3). The keyword noborder suppresses the

border. That leaves fillstyle, which does warrant some discussion.11

 

 

11 At the time of this writing, the border and noborder keywords are permissible only if they follow immedi-
ately after the fillstyle or fs directive on the command line.

Uses the symbolic name

Uses the explicit style index

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


203Overall appearance: aspect ratio and borders

 There are three forms of fill specifiers:

fillstyle empty

fillstyle [transparent] solid [{flt:density}]

fillstyle [transparent] pattern [{idx:style}]

The first one leaves the area empty. The second one fills the area with color; an

optional numerical argument between 0 and 1 is interpreted as density, with 1.0 stand-

ing for full intensity and 0.0 for an invisible fill color. If the optional transparent key-

word is present, then the density value is interpreted as the value of the α channel for

the fill color.

 It’s also possible to fill closed areas with cross-hatched patterns: that’s what the

pattern keyword does. All contemporary terminals define a set of eight different pat-

terns (use the test command to see them—this command will be formally introduced

in section 10.1.3); you select one of them through an integer argument after pattern.

If the transparent keyword is present, then the background remains visible through

the grid pattern.

TIP Areas may appear unfilled even if you set an explicit fill style using fill-
style, unless a fill color has also been selected using fillcolor.

Using set style fill, you can set a global default for many filled styles, such as with

boxes, with candlesticks, with filledcurves (all in chapter 6), and with histograms

(appendix E). It also becomes the default fill style for circles, ellipses, and polygons—

but not for rectangles: for those, you have to use their own set style rectangle com-

mand. See the standard reference documentation for details. 

9.4.5 Other global styles

In addition to the applications just discussed, you can use the set style command to

express other global appearance preferences. In particular, you can create predefined

styles for objects (or shapes) in a way similar to that discussed for arrows. Check the

gnuplot standard reference documentation for set style circle, set style ellipse,

and set style rectangle.

 The other available applications of set style are more specific. The command

set style textbox applies only to boxed labels (see section 7.3.3). Again, the stan-

dard reference has the details.

 Finally, set style boxplot and set style histogram apply only to special-purpose

plotting styles that I haven’t yet introduced. I’ll do so in appendix E. 

9.5 Overall appearance: aspect ratio and borders

In addition to the graph elements that go onto a plot, there are some features that

determine its general appearance: its size and aspect ratio, and the presence or

absence of borders and margins.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


204 CHAPTER 9 Color, style, and appearance

9.5.1 Size and aspect ratio

We have to distinguish between the size of the plot and the size of the canvas. The latter

determines the size of the output file (or screen), whereas the former affects the size of

the graph on the canvas. The canvas size is specified using the following command

set terminal {enum:terminaltype} size {flt:x},{flt:y} 

which we’ll discuss in chapter 10 on files and output devices. Here, we’re interested

in the size of the plot on the screen or canvas, which is controlled by the set size

command:

set size [ [no]square | ratio {flt:r} | noratio ] 

         [ {flt:x} [,{flt:y}] ] 

The numeric values x, y scale the plot with respect to the screen. For values less than

1.0, the graph doesn’t fill the entire screen; for values greater than 1.0, only part of

the graph is shown. If y is omitted, the plot is scaled in both directions by x. For exam-

ple, set size 0.5 reduces the extent of the plot by half along both axes, while keeping

the overall canvas size fixed.

 If the size of the graph is smaller than the size of the canvas, it’s not clear where on

the canvas the graph should be located. You can fix the graph’s position on the screen

using the set origin option:

set origin {flt:x},{flt:y} 

The arguments give the origin of the graph in screen coordinates (see figure 7.2 in

chapter 7 for an overview of gnuplot’s coordinate systems).

 The ratio option and its relatives (square and noratio) provide a shorthand to

control the aspect ratio of the plot: that is, the ratio of the y-axis length to the x-axis

length. Setting set size ratio 2 therefore results in a plot that’s twice as tall as wide,

and set size square is a synonym for set size ratio 1.

 Negative values for the ratio have a special meaning: set size ratio -1 scales the

graph so that the length of the x-axis unit is equal to the length of the y-axis unit. For

ratio -2, the y-axis unit has twice the length of the x-axis unit; for ratio -0.5, the

x-axis unit is twice the y-axis unit’s length. Figure 9.9 demonstrates all these settings.

 With nosquare and noratio, you reset the aspect ratio of the graph to the default

value of the terminal. Note that neither command resets the scale given by x, y.

 It’s possible to give contradictory hints to gnuplot when prescribing both scale val-

ues in addition to the aspect ratio. In such cases, gnuplot attempts to maintain the

desired aspect ratio without exceeding the minimum area given by the scale values.

You can always avoid these situations by fixing only two of the values. My recommen-

dation is to control the size of the plot on the canvas through either the x or y scale value

and to control the aspect ratio using the ratio option. The effect of both of these

options is intuitively clear, and no ambiguity is possible. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


205Overall appearance: aspect ratio and borders

9.5.2 Borders

By default, gnuplot draws borders on all four sides of the plot. This is suitable if the

graph will be used in a larger text document (because it gives the plot a “frame” sepa-

rating it from surrounding text) but can feel cluttered for a standalone diagram; but

it’s simply unsuitable for special diagrams that don’t fit neatly in a rectangular box.

For these reasons, gnuplot gives you the ability to control all parts of the border using

the set border option:

set border [ {int:mask} ] [ front | back | behind ] [ lineoptions ]

The only argument that isn’t familiar by now is mask (see figure 7.3 for layers, and the

tip at the end of section 6.2.3 for the meaning of lineoptions). This argument is a

bit mask in the form of an integer, each bit referring to one side of the border (see

figure 9.10). The bit positions are counted clockwise from the bottom, so that a mask

value of 1 refers to the bottom, 2 to the left, 4 to the top, and 8 to the right:

15 (=1+2+4+8) paints borders on all four sides. (Additional bits are used for three-

dimensional plots using splot—we’ll discuss them in appendix C.) To draw borders

on some but not all sides, you switch on only those you want to see:

set border 1+2

set border 3

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

Default

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

set size ratio 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

set size ratio -1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

set size 0.5

Figure 9.9 Controlling overall image size and aspect ratio with set size. Clockwise from top left: 

default settings, aspect ratio 10/7; set size ratio 1, full plot size, aspect ratio 1:1; set size 

0.5, reduced plot on a full-size canvas, default aspect ratio; set size ratio -1, full plot size, x unit 

with the same apparent length as the y unit.

Switches on the bottom and left borders

Same thing

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


206 CHAPTER 9 Color, style, and appearance

If tic marks are drawn on the border (as is the default), unsetting the border does not

unset the tic marks. They must be controlled separately using the options discussed in

chapter 8.

CREATING AN EMPTY SPACE BETWEEN AXES AND DATA

With the set offsets command, you can introduce an empty space between the data

and the borders. This can be desirable to avoid interference between the data and tic

marks and other axes decorations. The set offsets command controls the size of the

empty space on all four sides:

set offsets {flt:left}, {flt:right}, {flt:top}, {flt:bottom}

By default, the arguments are interpreted as given in the first coordinate system;

using the keyword graph, you can also specify the arguments as fractions of the size of

the overall graph. Gnuplot extends the plot ranges to make room for the empty space

as required by set offsets—keep this in mind when using this command. 

CLIPPING DATA POINTS CLOSE TO THE BORDERS

The set clip option controls how gnuplot plots points that are too close to or outside

the plot area:

set clip points 

set clip [ one | two ] 

The first version, set clip points, is relevant only when you’re using a style that

shows discrete plotting symbols (with points, with linespoints, and so on). If it’s

active, symbols that would touch or overlap the borders of the plot are suppressed.

Exactly how many points are clipped depends on the symbol size: for larger symbols,

more points need to be clipped. (See chapter 6 for more detail on styles and ways to

influence the symbol size.)

 The second version controls how gnuplot plots line segments connecting points if

at least one of the points falls outside the currently visible plot range. If set clip one

is active, line segments are drawn if at least one of the end points falls into the visible

plot range. If set clip two is active, line segments are drawn even if both end points

are outside the current plot range but a straight line connecting them crosses the visi-

ble range. In no case are parts of the line segment drawn outside the visible range. By

default, set clip one is on, but set clip two is off. 

15=1+2+4+8 3=1+2

1

2

4

8

1

2

Figure 9.10 The set border 

command takes as its first argument an 

integer that encodes the choice of 

borders to switch on in the form of a bit 

mask. The graph indicates which 

borders correspond to which bit (in 

decimal representation) and also gives 

the overall mask value for two common 

cases: borders on all sides and borders 

on the bottom and left.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


207Overall appearance: aspect ratio and borders

9.5.3 Margins

The empty areas outside a plot’s borders make up the margins (see figure 7.2). By

default, gnuplot calculates the size of the margins automatically, based on the presence

or absence of tics, axis labels, a plot title, and other decorations placed outside the bor-

ders. If necessary, you can fix margins manually using the set margin command. 

 Traditionally, there have been four different commands, for each of the margins

separately. Gnuplot 5 also contains a version that combines all four into one:

set bmargin [ {flt:chars} | screen {flt:frac} ]

set lmargin [ {flt:chars} | screen {flt:frac} ]

set tmargin [ {flt:chars} | screen {flt:frac} ] 

set rmargin [ {flt:chars} | screen {flt:frac} ]

set margin [ {left}, {right}, {bottom}, {top} ]

show margin   

The argument is interpreted differently depending on whether the keyword screen is

present:12

 Without screen, the argument is interpreted as the width of the margin around

the graph, measured in character widths or heights. Supplying a negative value

restores automatic calculation of an appropriate margin width.

 With screen present, the argument is interpreted as the absolute position of the

graph’s border, measured in screen coordinates. Using screen ignores and

overrides the current values of set size and set origin.

It’s important to clearly distinguish between these two modes of operation! (See fig-

ure 7.2 for the meaning of screen; see section 9.5.1 for set size and set origin.)

 The set margin command combines all four separate commands into a single

invocation. Each argument can be either a desired width (in character units) or an

absolute position (if preceded by the screen keyword). You can combine both modes

in a single invocation: a command like set margin 10, screen 0.9, -1, -1 is valid. 

9.5.4 Internal variables

You can inspect gnuplot’s internal size and margin information by examining the val-

ues of several internal variables. (See section 5.5 for general information on internal

variables.) The variables that are of interest in the current context all have the prefix

GPVAL_TERM_. You can list them and their values as follows:

show variables GPVAL_TERM_

There are seven such variables; table 9.4 explains what they represent.

12 The gnuplot standard reference documentation states the syntax as at screen, but the at keyword is
optional and will be ignored henceforth.

Bottom margin

Left margin

Top margin

Right margin

Shows the current settings

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


208 CHAPTER 9 Color, style, and appearance

 Frequently, the numerical value of these variables is less useful; what really matters

are various ratios. For example, the position of the left border in screen coordinates

(see figure 7.2 for the different coordinate systems) is

GPVAL_TERM_XMIN/(1.0*GPVAL_TERM_XSIZE/GPVAL_TERM_SCALE)

In this expression, the multiplication with 1.0 is necessary to force floating-point eval-

uation of the fraction. In general, the units of the variables representing the canvas

size are different from the units representing the location of the graph borders. The

variable GPVAL_TERM_SCALE holds the conversion factor: you must always divide the

variables holding the size by this variable, as in the expression given earlier.

9.6 Summary

In this chapter, we focused less on individual graph elements and their properties and

instead discussed several topics that influence the overall appearance of a graph.

Color, and the way it’s made available in gnuplot, occupied the first part of this chap-

ter. The discussion was pretty technical; appendix D will return to the color topic, but

then we’ll emphasize how to employ color for visualization tasks.

 Next, we described how the appearance of lines and points can be controlled in

minute aspects. Gnuplot 5 gives you the ability to define custom dash patterns for

lines, and we explained how to do that.

 The last part of this chapter explained how to control the overall appearance of a

graph, such as the presence or absence of graphical borders around a plot, and how

to modify the size and aspect ratio of the entire graph. Gnuplot’s defaults for all these

properties are probably sufficient for the vast majority of your work, but there are situ-

ations where being able to go beyond the basics can give your graphs a palpable lift.

Table 9.4 Internal variables that contain information about the size of the canvas and the position of

the borders

Variable name Description

GPVAL_TERM_XSIZE, 
GPVAL_TERM_YSIZE

Size of the entire canvas (or screen) in the horizontal and vertical directions.

GPVAL_TERM_XMIN, 
GPVAL_TERM_YMIN

Positions of the bottom and left borders with respect to the canvas. These 
are the lower limits of the graph in both directions.

GPVAL_TERM_XMAX, 
GPVAL_TERM_YMAX

Positions of the top and right borders with respect to the canvas. These are 
the upper limits of the graph in both directions.

GPVAL_TERM_SCALE Conversion factor between the units of the canvas size and the location of 
the borders. Variables representing the size must be divided by this variable 
to be comparable to the other variables in this table. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


209

Terminals and
output formats

Gnuplot can generate graphs in all common graphics formats (and some uncom-

mon ones, too). The components within gnuplot that are ultimately responsible for

creating all graphical output are called terminals. Different output formats require

different terminals. 

 Because terminals are the final step in the creation of a graph, the ultimate

appearance of a graph depends directly on the capabilities of the terminal used to

generate it. Some of gnuplot’s terminals produce output of very high quality and

are among gnuplot’s primary assets. Unfortunately, terminal handling in gnuplot is

a bit different than comparable functionality in other programs. We’ll therefore

This chapter covers

 Understanding terminals

 Font selection and enhanced text mode

 Standard graphics file formats

 Mathematical formulas with gnuplot and LaTeX

 Interactive terminals

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


210 CHAPTER 10 Terminals and output formats

begin our discussion of terminals with a brief historical digression that explains the

motivation behind gnuplot’s terminal abstraction. 

 An important capability that is provided by each terminal is the handling of fonts

or typefaces: the selection of fonts and the available effects (italics, boldface, sub- and

superscript) are determined by the choice of terminal. So, we’ll discuss fonts and

related topics in this chapter as well.

 Next, we’ll examine the most important terminals, beginning with terminals that

generate output in standard graphics file formats (specifically, PDF and PNG). Then

we’ll talk about ways to include mathematical notation and formulas on graphs, with

and without the use of LaTeX. We’ll introduce gnuplot’s svg and canvas terminals,

which generate graphics suitable for viewing in contemporary web browsers. And

finally, we’ll quickly survey gnuplot’s interactive terminals. 

10.1 The terminal abstraction

If you look in the standard gnuplot reference documentation, you’ll find that gnuplot

supports some 70 different terminals! This may seem daunting, but the reality is that

most of them are obsolete today—the number of terminals that are relevant is (thank-

fully) much smaller. But this leaves unanswered the question of where these 70 differ-

ent terminals originally came from. For this, we need a bit of history.

10.1.1 Historical digression

Gnuplot was originally conceived and implemented at a time (the late 1980s!) when

graphics support was much less standardized than it is today. It wasn’t safe to assume

that a computer even had an interactive graphics terminal: producing graphics usually

required special hardware (such as an attached pen-and-ink plotter or a dedicated

graphics display).

 The generic name for such a device that produced visible output was terminal. To

keep gnuplot portable, all code specific to a single terminal was encapsulated into the

terminal facility—today, we’d call it the terminal driver. As graphic terminals devel-

oped and proliferated, gnuplot acquired a selection of such drivers. Nowadays, many

of these legacy devices are obsolete, but the drivers are still part of the gnuplot distri-

bution. Most of them can safely be ignored.

 Nevertheless, the abstraction has proven itself capable of adapting to changing cir-

cumstances. Today, the established architecture supports the two forms of graphical

output that are still relevant: it drives interactive, screen-based displays (interactive ter-

minals such as the wxt and qt terminals), and it creates output files, using any of a vari-

ety of standard graphics formats and command languages. 

10.1.2 The terminal workflow

The primary reason terminal handling is often seen as obscure and confusing is that it

requires multiple steps. Moreover, if the sequence of steps is interrupted, the gnuplot

session may end up in a different state than at the beginning. This is confusing,

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


211The terminal abstraction

because the near-unequivocal behavior of most contemporary programs is that an

action “export to file” is both atomic and stateless (or, at least, it appears to be). In

other words, you usually issue a single command to create a file, and then you’re right

back to where you started. Not so in gnuplot.

THE STANDARD WORKFLOW

The complete workflow to create a graphics file from an interactive gnuplot session

and to restore the interactive session again consists of the following six steps (also

compare listing 2.2):

1 Save the current state of the terminal option with set terminal push.

2 Select a new terminal using set terminal. 

3 Select the desired output file or channel name with set output. 

4 Generate a plot using plot, splot, replot, or refresh.

5 Restore the original terminal setting using set terminal pop.

6 Restore the original file or channel name with set output.

One reason for this multistep process is that the same terminal abstraction is used for

both the interactive session display as well as the printable export, requiring you to

switch between different modes in a way that seems cumbersome today.

 Two issues in particular tend to trip up the unwary. The first is the need to choose

the file format (via the terminal) and the desired filename through two separate com-

mands (set terminal and set output). The second is the requirement to restore the

interactive session explicitly after the output file has been generated. (If this doesn’t

happen, subsequent plot commands continue to be sent to the file, clobbering its

contents.) 

 Some day, gnuplot will acquire an export command that will perform all the

required steps automatically. Until then, you have to either make sure to complete all

the necessary steps manually or use a macro of some form. (You can find implementa-

tions of macros for this purpose in sections 5.2.2, 11.2.1, 11.2.2, and 12.1.2.)

TIP To export a plot to a file from an interactive session requires multiple
steps. Make sure you complete the process manually or use a macro. 

FLUSH YOUR BUFFERS!

As it turns out, there is a particularly nasty third problem, which is that output buffers

aren’t necessarily flushed after a plot (or equivalent) command. This means when the

plot (or equivalent) command returns, the output file may still be incomplete and

not yet ready to be used as input to other programs. 

 There’s a simple remedy, though: the next set terminal or set output command

is guaranteed to complete the output file and flush any open buffers. Hence, even if

you don’t want to resume your interactive session, you still need to issue either a set

output or set terminal command. Also be aware that quitting gnuplot does not nec-

essarily flush open files!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


212 CHAPTER 10 Terminals and output formats

TIP Output files may not be complete even after the plot command returns.
To guarantee that all buffers are flushed and the file is completed and closed
properly, you must issue either a set output or set terminal command after
the plot command. 

THE PUSH AND POP PSEUDOTERMINALS

The pseudoterminals terminal push and terminal pop can be very helpful in this

context. The command set terminal push saves not only the current terminal type,

but also all selected options. The command set terminal pop restores it. It’s there-

fore possible to restore the previous terminal state even without having explicit infor-

mation about it. 

CHANGING DEFAULT TERMINAL PROPERTIES

A special command exists to change certain terminal options without having to reset

the entire terminal. This can be useful when you want to modify some terminal aspect,

regardless of the current choice of terminal. Five terminal properties can be changed

using this command:

set termoption font "{str:name} [,{flt:size}]"

set termoption fontscale {flt:scale}

set termoption [no]enhanced

set termoption [ linewidth | lw ] {flt:factor} 

set termoption [ dashlength | dl ] {flt:factor}

Be aware that only one aspect can be changed per invocation of set termoption; the differ-

ent aspects can’t be combined into a single call. 

SCALING A COMPLETE PLOT UP OR DOWN

It’s occasionally necessary to scale an entire, finished graph up or down—for a presen-

tation, say, or for inclusion in a publication. Increasing the size of the resulting graph

using set terminal ... size isn’t enough, because the line widths and font sizes won’t

be scaled correspondingly. Instead, you want to adjust the fontscale and linewidth

sub-options to the set terminal command as well. 

 The set termoption command may be helpful in this context, because it can

adjust these two settings separately from the set terminal command. There is no

equivalent terminal option for the size of symbols; you must use the set pointsize

command for this purpose. 

10.1.3 Terminal capabilities and the test command

Output devices (terminals) obviously can differ widely in their capabilities—you can’t

get color plots from a black-and-white printer. Gnuplot has a built-in command called

test that generates a standard test image. The test image shows all available line styles

and fill patterns and also attempts to demonstrate more advanced terminal capabili-

ties, such as the ability to rotate text through an arbitrary angle. To use the test com-

mand, you first need to select the terminal you’re interested in and set the name of

the output file (if it’s not an interactive terminal) like so:

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


213The terminal abstraction

set terminal pdfcairo
set output "test.pdf"

test

Note that the command is test—not plot test!

 In figure 10.1, you see the available line and symbol styles along the right side, fill

patterns along the bottom, and line widths on the left. You can also see what kinds of

arrows the terminal supports and whether it has the ability to rotate text. For the ter-

minal as shown in the figure, all these features are supported.   

pdfcairo terminal test

12345678901234567890

test of character width:

Enhanced text: x0
n+1

Bold Italic

left justified

centre+d text

right justified

ro
ta

te
d

 c
e

+
n

tr
e

d
 t

e
x
t

ro
ta

te
d 

by
 +

45
 d

eg

rotated by -45 deg

show ticscale -1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
lw 1
lw 2
lw 3
lw 4
lw 5
lw 6

linewidth

pattern fill

0 1 2 3 4 5 6 7 8

filled polygons:

Figure 10.1 The standard test image to demonstrate terminal capabilities, shown here for 

the pdfcairo terminal and the default color sequence set colorsequence default

Gnuplot terminals today
In recent versions of gnuplot, terminal handling has become easier and more consis-
tent than ever. The improvements in terminals and terminal handling alone justify
upgrading to gnuplot 5 at the earliest possible moment!

A huge advance is the development of a family of terminals that are all based on a
common set of high-quality libraries for graphics and font handling. The pngcairo,
pdfcairo, epscairo, and wxt terminals all use the cairo and pango libraries for graph-
ics and font rendering, and the fontconfig facility for font selection. These libraries
provide advanced capabilities, enabling gnuplot terminals to produce high-quality graph-
ics output. Moreover, because an entire  family of terminals shares a common back

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


214 CHAPTER 10 Terminals and output formats

10.2 Font selection and enhanced text mode

Fonts aren’t handled by gnuplot itself—instead, gnuplot relies on capabilities of the

installed system libraries (and, of course, on the selection of installed fonts). In this

section, we investigate how to tell gnuplot to use a specific font from among the avail-

able ones, and we introduce enhanced text mode, which allows additional formatting

options for text. 

10.2.1 Font selection

There are three ways to select a font, in increasing order of granularity:

 Terminals have a default font that’s used for all text labels (unless overridden).

You can select a different default font using the font keyword in the set

terminal command. 

(continued)

end, it’s now possible to generate bitmap (PNG), vector (PDF and EPS), and interactive
(wxWidgets) versions of the same graph, with only minor differences between them.a

Even outside this family of terminals sharing a common back end, terminals in gnu-
plot 5 exhibit more consistent behavior than ever before. A common set of options is
available for basically all contemporary terminals. Terminals are guaranteed to offer
at least eight line types that have the same appearance (with regard to color, dash
pattern, and point type) across all terminals. A background color can be selected as
part of the set terminal command. 

Font handling, in particular, has become much easier, because all contemporary ter-
minals obtain their font support from the underlying font subsystem in the same way.
Enhanced text mode (see section 10.2.3) is supported and is enabled by default. At
the same time, some traditional uses of enhanced text mode are no longer as rele-
vant: thanks to Unicode and UTF-8 encoding, special symbols can now be requested
without an explicit font change, and the font subsystem will do its best to provide a
suitable glyph. 

By default, terminals produce colored graphs using solid lines. The option mono is still
available for all terminals to enforce graphs in black and white, but it does not auto-
matically turn on dashed lines, essentially rendering this option useless. (The options
solid and dashed are still accepted by most terminals but are ignored.) You there-
fore have to select dash patterns explicitly (either globally using set linetype or
inline with dashtype); thus you’re overall better off using a stylesheet (see section
12.6) to define a set of line types that have both the desired dash type and the
required color when you want to create graphs in black and white. 

a In particular, many of the configuration tricks and tweaks required by the bitmap terminals
based on the GD library and the PostScript terminal are no longer necessary.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


215Font selection and enhanced text mode

 Most commands that generate textual output (such as set label and set key)

let you select a font explicitly, again using the font keyword. The font is used only

for the specific label in question.

 Using enhanced text mode, you can change the font inside a string. This makes it

possible to render individual characters using a specific font if necessary or desired.

Another reason the default font is important is that the average size of its characters is

used to define the character coordinate system (see section 7.2) and to set the size of

the graph’s margins (see section 9.5.3). For variable-width fonts, gnuplot makes a best-

effort attempt to determine an average character size. 

10.2.2 Font resolution

In general, all terminals rely on some underlying system library for font resolution.

Most contemporary terminals, and in particular the ones based on the cairo library,

use the fontconfig utility for this purpose. One important service this library pro-

vides is font substitution: given a request for a font, it selects that font from among the

available ones that most closely matches the request, taking into account not just the

name of the requested font but also font characteristics such as style, slant, and

weight. This “ensures that a font will always be returned, but doesn’t ensure that it is

anything like the requested pattern,” as the fontconfig user manual says.1 The details

of the matching process, and in particular the relative priority of the various attri-

butes, are complicated and not necessarily transparent to the user. The substitution

occurs glyph by glyph: I’ve encountered instances where each character in a string of

special characters was rendered using a different font, depending on which font in

the list of candidates first provided a glyph for the requested character.

 One particular problem concerns the rendering of mathematical symbols and

Greek characters. In general, textual labels on a graph should support the graph but

not distract from it. That calls for a clear and neutral font, like Helvetica or another

linear sans-serif font with little line-width variation. In contrast, mathematical symbols

and Greek letters are traditionally drawn with varying stroke weight. If a sans-serif font

is selected as the default font for a terminal, then the font subsystem will attempt to

find sans-serif glyphs for all requested characters, even for special symbols. To avoid

this, I’ve found it necessary to switch fonts inside a string, particularly when I wanted

to use letters from the Greek alphabet.

 Figure 10.2 shows the results produced on my system when various free fonts are

requested using the test script in listing 10.1. (Depending on what fonts you have

installed, your results may differ.) The test string consists of a set of regular characters

chosen to exhibit the particulars of the font and a selection of mathematical symbols.

The first group of fonts consists of non-serifs, the second group of serif fonts, and the

last group of three special math fonts. (OpenSymbol is distributed with Open-

Office/LibreOffice, AsanaMath is intended as complement to Palatino, and the STIX

project intends to provide a “comprehensive set of fonts” for scientific publishing.)

1 See www.freedesktop.org/software/fontconfig/fontconfig-user.html.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.freedesktop.org/software/fontconfig/fontconfig-user.html
http://www.it-ebooks.info/


216 CHAPTER 10 Terminals and output formats

   

unset border; unset tics; unset key

set t pdfcairo size 14cm,17cm

set output "fonttest.pdf"

Listing 10.1 Commands for figure 10.2 (file: font-demo.gp)

Helvetica Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Nimbus Sans L Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

FreeSans Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

TexGyreHeros Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Arial Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Verdana Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

DejaVu Sans Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Liberation Sans Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Droid Sans Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Times Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Palatino Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Bitstream Charter Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Utopia Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Century Schoolbook L Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

OpenSymbol Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

STIXGeneral Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Asana Math Quarges Gyt R17 ∑αλ ∝ ∫ Γ(θ ⋅ π) dφ → ∞

Figure 10.2 Output produced when various free fonts are requested on my computer—your version 

may look different. The first part of the test string contains a selection of characteristic regular 

characters, and the second part consists of common mathematical symbols and Greek letters.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


217Font selection and enhanced text mode

s = "Quarges Gyt R17"
t = "∑αλ  ∫ Γ(θ ⋅ π) dφ → "

f = "Helvetica 'Nimbus Sans L' FreeSans TexGyreHeros Arial "

f = f . "Verdana 'DejaVu Sans' 'Liberation Sans' 'Droid Sans' ? "
f = f . "Times Palatino 'Bitstream Charter' Utopia 'Century Schoolbook L' ? "

f = f . "OpenSymbol STIXGeneral 'Asana Math'"

a = 0; b=2.75; c=5.75
n = words(f); m = n

do for[k=1:n] {

m = m - 1
w = word(f,k)

if( w ne '?' ) {

set label w at a,m font "Helvetica,12"
set label s at b,m font sprintf("%s,16", w)

set label t at c,m font sprintf("%s,16", w)

}
}

plot [-0.25:9.25][-1:n] -2

10.2.3 Enhanced text mode

All contemporary terminals support enhanced text mode, which allows additional for-

matting options. In enhanced text mode, some characters become control characters

and indicate, for example, sub- and superscripts. As of gnuplot 5, enhanced text mode is

now the default for all terminals. Enhanced text mode can be enabled or disabled for

individual elements (such as text labels or the key) that contain strings. This may be

useful if you want to use the special characters in regular text. Table 10.1 lists the spe-

cial characters and their effects.
 

 Here are some additional remarks on enhanced text mode:

 Curly braces {...} are used both to group several characters together and to

limit the effect of a font declaration to the contents of the braces only. They can

be left off for single-character sub- and superscripts.

 Phrases in curly braces nest, as in e^{-x^2} or a^{x_i}.

 Font specifiers must be preceded by a slash / that immediately follows the open-

ing curly brace.

 Font specifiers can be combined into a single expression: for example,

{/Times:Italic*2 Hello}.

 Font specifiers apply to everything within the enclosing braces: {/:Italic a_k}

creates a label where both characters are italic. To prevent the subscript from

being italic, you must either take it outside the braces, as in {/:Italic a}_k, or

use an explicit :Normal, like so: {/:Italic a_{/:Normal k}}.

 A character within the single-byte ASCII range can be selected by supplying its

ASCII code as a three-digit octal number preceded by a backslash.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


218 CHAPTER 10 Terminals and output formats

Table 10.1 Control characters for enhanced text mode

Control 

character 
Example Result Description

{} Establishes groups and scopes

^ x^2 Superscript

_ A_{ij} Subscript

@ x@^s_i Aligns sub- and superscripts vertically

x@_i^{-3/2}y You need to put the shorter one first…

x@^{-3/2}_iy … rather than last.

{/ } {/Times Hello} Changes the font

{/= } {/=24 A} Selects an absolute font size (size in printer 
points)

{/* } {/*0.5 A} Changes the font size relative to the enclos-
ing font

{/:Normal } {/:Normal Hello} Selects regular font characteristics

{/:Italic } {/:Italic Hello} Selects italics 

{/:Bold } {/:Bold Hello} Selects boldface

& [&{abc}] Space, corresponding to the length of the 
enclosed argument

~ ~B/ Overlays the two following characters or 
groups

~x{.5-}  Overlays a - character on the previous char-
acter, raised by 0.5 times the current charac-
ter size

\ \{ x \~ y \} Escapes a special character by preceding it 
with a backslash in single-quoted strings

\\ \\{ x \\~ y \\} The backslash must be doubled to escape 
special characters in double-quoted strings.

\NNN \101 Selects a symbol using its octal code (single-
byte characters only)

\NNN\NNN \316\261 Selects a multibyte character using a 
sequence of octal numbers, one for each byte 
in the binary encoding of the character. (The 
Unicode character α at code point U+03B1 
has the binary representation 0xCE 0xB1 in 
UTF-8, which translates to \316\261 in octal 
numbers.)

x2

Aij

x2
i

xi
-3/2y

x-3/2
iy

Hello

A

A

Hello

Hello

Hello

[ ]

B/

x-

{ x ~ y }

{ x ~ y }

A

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


219Font selection and enhanced text mode

 Similarly, a multibyte Unicode character can be selected by encoding each byte

of its binary representation as a three-digit octal number. Remember that the

Unicode codepoint U+xxxx does not equal the binary representation in UTF-8.

Instead, you have to look up the binary representation, convert each byte sepa-

rately to a three-digit octal number, and then supply the sequence of numbers

thus obtained.

 Special characters can be used in enhanced text mode by preceding them with

a backslash \ for single-quoted strings and by preceding them with a double

backslash \\ for double-quoted strings.

 Overlays and the escaping of special characters aren’t available for the original

postscript terminal. Both work normally for the pdfcairo and epscairo

terminals.

10.2.4 Worked example

Let’s look at some examples of enhanced text mode (see listing 10.2 and figure 10.3).

Most of the commands should be clear; I only want to point out a few details.

Enhanced text mode can be used anywhere that gnuplot expects a string: in the exam-

ple, it’s used in the labels, for the x tics, and for the entries in the graph’s key. The

scope of a font selection can be limited using curly braces. This is done several times:

for example, in expressions such as {/OpenSymbol φ}(x), which prints the first char-

acter using the OpenSymbol font but the last three using the regular font.

 A word of warning: enhanced text mode works best for simple applications, such as

sub- and superscripts, boldface and italics, and simple changes to the font size or font

face. But complicated, nested expressions may not always work out perfectly (in par-

ticular when using the PostScript terminal—see the gnuplot standard reference docu-

mentation for details).

Enhanced text mode vs. Unicode
Enhanced text mode used to be very important for two applications that today are bet-
ter solved through Unicode. Overlays (using the ~ operator) were a way to create
accented characters, and special characters (such as Greek letters and certain math-
ematical symbols) could be accessed by switching to a different font, like the Post-
Script Symbol font.

Today, both of these effects are better achieved through Unicode. Dedicated glyphs
for accented characters almost always look better than an ad hoc solution using over-
lays; and system-wide font subsystems do their best to return a suitable glyph when
a special symbol is requested, without you having to declare a specific font.

This leaves enhanced text mode as a solution for basic formatting tasks: sub- and
superscripts, and local changes in font size and appearance (italics and boldface).
Nevertheless, font changes are still available, and you’re free to use them if you have
reason to override the selection made by the font subsystem. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


220 CHAPTER 10 Terminals and output formats

  

set label 1 "{/OpenSymbol φ}(x) = e^{-x^2/2} / √2{/OpenSymbol π}" at 1.2,.25
set label 2

➥ "{/OpenSymbol Φ}(x) = ∫@_{- }^x &{i} {/OpenSymbol φ}(t) dt" at 1.2,0.8

set label 3 "{/:Bold*2 Big and Bold}" at -2.5,0.6

set key top left title "{/:Bold Legend}"

set xtics ( "{/OpenSymbol π}/2" pi/2, "0" 0, "-{/OpenSymbol π}/2" -pi/2 )

plot [-3:3] exp(-0.5*x**2)/sqrt(2*pi) t "{/OpenSymbol φ}(x)",
➥ norm(x) t "{/OpenSymbol Φ}(x)"

10.3 Generating PNG and PDF with cairo-based terminals

The pngcairo and pdfcairo terminals are the first choice when it comes to generat-

ing graphs in a standard bitmap (PNG) or vector (PDF) file format. (There is also the

epscairo format, which is equivalent to the pdfcairo format but produces encapsu-

lated PostScript.) These terminals share a common set of options:

set terminal [ pngcairo | pdfcairo | epscairo ]
             [ size {flt:x}[ in|cm ],{flt,y}[ in|cm ] ]

             [ font "{str:face} [, {int:size}]" ] [ fontscale {flt:scale} ]

             [ background rgb {colorspec} ] [ [no]transparent ]

Listing 10.2 Commands for figure 10.3 (file: enhanced-mode.gp)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-π/2 0 π/2

φ(x) = e-x2/2 ⁄ √2π

Φ(x) = ∫-∞x  φ(t) dt

Big and Bold

Legend

φ(x)

Φ(x)

Figure 10.3 Enhanced text mode. See listing 10.2.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


221Using gnuplot with LaTeX

             [ [linewidth|lw] {flt:factor} ][ [dashlength|dl] {flt:factor} ]

             [ butt | square | rounded ] 

             [ [no]enhanced ] [ [no]crop ] [ mono | color ]

The only option that requires some care is size, because it treats units differently

depending on the output format:

 For PNG, the size defaults to 640×480 pixels (aspect ratio 4:3). If no units are

specified, pixels are assumed; if either cm or in is given, the size is converted to

pixels, assuming 72 pixels per inch.

 For PDF and EPS, the size defaults to 5×3 inches (aspect ratio 5:3). Other sizes

can be specified using either cm or in as units; if no units are given explicitly,

inches are assumed.

Most of the other options are straightforward:

 You can choose a typeface and size for the terminal’s default font. The default is

font "sans,12" (but see fontscale). You can give only the size, leaving the

font blank: font ",16".

 Using fontscale, you can adjust the size of the font separately and relative to

the current font size. Be aware that the default value of this option is 0.5!

 You can specify a background color using any one of the explicit color specifica-

tions (those using the rgb keyword—see section 9.1.1). Using transparent

makes the background color transparent. 

 Line widths (for vector formats) default to 0.25 points (with 72 points per

inch). Both the line width and the dash length can be changed by a multiplica-

tive factor. Note that it’s not possible to change the point size in the same man-

ner; you have to use the global set pointsize option instead. 

 The keywords butt, square, and rounded control how the cairo library renders

line ends and joins (see figure 9.8). The default is butt. 

 Enhanced text mode is the default. You can disable it using noenhanced—for

instance, because you want to use its control characters as regular characters.

 When you use crop, the terminal attempts to trim empty space around the

graph before saving it. The plot isn’t rescaled, so the resulting graph is in gen-

eral smaller than the size specified in the size directive. (The crop option is

only available for pngcairo.)

 By default, terminals produce colored output. You can force monochrome out-

put using mono, but be aware that this does not automatically turn on dashed

lines—you have to do so explicitly for each line in your graph. 

10.4 Using gnuplot with LaTeX

One very common use of gnuplot graphs is to include them as illustrations in a

LaTeX document. This section presents a couple of cookbook-style recipes. First, I

describe how to include a regular graphics file as an image in a LaTeX document.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


222 CHAPTER 10 Terminals and output formats

Then we discuss gnuplot’s special cairolatex terminal, which allows you to combine

gnuplot graphics with LaTeX text in the same illustration so that you can use the full

power of LaTeX for mathematical typesetting in gnuplot graphs. 

10.4.1 Including a graph in a LaTeX document

Including an external figure in LaTeX is fairly easy. One possibility is to use the

graphicx package. This LaTeX package can handle both bitmap and vector formats,

but for best results you want to use a vector format when available.2

 As an example, let’s assume you want to include the graph from figure 10.3 in a LaTeX

document. You’d have to export the graph to PDF, using the following commands:

...

set terminal pdfcairo

set output 'enhanced.pdf'
replot

The resulting file can then be included into a LaTeX document. The complete LaTeX

document is shown in the following listing.

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\section{The First Section}

Here is a very short paragraph. The plot will be included
after this paragraph.

\begin{figure}[h]

\begin{center}
\includegraphics[width=10cm]{enhanced}

\end{center}

\caption{A gnuplot graph, included in \LaTeX}
\end{figure}

And here is a second paragraph. The graph should have

been included before.

\section{The Second Section}

The second section really contains only a very short text.

\end{document}

The graphicx package provides the \includegraphics command, which takes

the name of the graphics file to include as a mandatory parameter. (The filename

extension isn’t required, and it’s recommended that you omit it.) The \include-

graphics command takes a number of optional parameters as key/value pairs, which

2 Also keep in mind that you may have to use pdflatex when using graphics in PDF format, but plain latex
for EPS graphics. Some newer TeX installations perform the necessary format conversion automatically.

Listing 10.3 Importing a PDF into LaTeX: see figure 10.4 (file: doc1.tex)

Commands from listing 10.2 go here.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


223Using gnuplot with LaTeX

let you perform useful operations on the image as it’s included: you can trim, scale,

and rotate it. Here, its size is adjusted ever so slightly (from 5 inches to 10 cm).3 The

document’s final appearance after processing with LaTeX is shown in figure 10.4.    

3 There are many more options—check your favorite LaTeX reference for details. A good place to start is
H. Kopka and P. W. Daly, Guide to LaTeX, 4th ed. (Addison-Wesley, 2004).

1 The First Section

Here is a very short paragraph. The plot will be included after
this paragraph.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-π/2 0 π/2

φ(x) = e-x2/2 ⁄ √2π

Φ(x) = -
x  φ(t) dt

Big and Bold

Legend

φ(x)
Φ(x)

Figure 1: A gnuplot graph, included in LATEX

And here is a second paragraph. The graph should have been
included before.

2 The Second Section

The second section really contains only a very short text.

1

Figure 10.4 The final appearance of the LaTeX document shown in listing 10.3. Note the labels 

using enhanced text mode in the included gnuplot graph.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


224 CHAPTER 10 Terminals and output formats

10.4.2 Using the cairolatex terminal

In the previous example, a graphics file containing enhanced-mode text was included

in a LaTeX document. This seems inconvenient, to say the least: because LaTeX has

such powerful capabilities to format text (and mathematical expressions specifically),

there should be ways to use them to lay out the text, rather than dealing with the

much more limited possibilities available through enhanced text mode.

 The cairolatex terminal does exactly that: it splits a gnuplot graph into its graph-

ical and textual components. The graph is stored as a PDF (or EPS) file, and the text is

saved to a LaTeX file. You then include this LaTeX document, which in turn imports

the graphics file, into your LaTeX master file.4

TIP When gnuplot generates a file that has to be postprocessed using LaTeX,
it’s particularly important to close the file properly by invoking set output
after the plot is finished: otherwise, the generated file won’t be complete, and
LaTeX will fail. (This applies equally to the cairolatex terminal, as well as to
the tikz terminal later in this section, and other comparable terminals.) 

A WORKED EXAMPLE

An example will make this clearer. Let’s re-create the graph from figure 10.4, this time

using LaTeX formatting commands instead of enhanced text mode. See the next list-

ing (compare to listing 10.2 for a version of this graph using enhanced text mode).

set label 1 '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'

➥ at 1.2,0.25

set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set label 3 '\textbf{\Large Big and Bold}' at -2.5,0.6

set key top left Left title '\textbf{Legend}'

set xtics ( '$-\pi/2$' -pi/2, '$0$' 0, '$\pi/2$' pi/2 )

plot [-3:3] exp(-0.5*x**2) /sqrt(2*pi) t '$\phi(x)$',

➥ norm(x) t '$\Phi(x)$'

set terminal cairolatex pdf

set o "cairolatex.tex"

replot
set o

The text for labels and tic marks that are added to the graph now contains LaTeX

directives. In particular, note the $...$, which indicate math mode in LaTeX and which

are required for many of the special mathematical formatting commands.

4 The cairolatex terminal is a modern replacement for the epslatex terminal, but epslatex remains avail-
able as well. 

Listing 10.4 Combining gnuplot and LaTeX using cairolatex (file:cairolatex.gp)

Supply the name of the output LaTeX
file with extension!

Make sure to flush and close the output file.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


225Using gnuplot with LaTeX

 All the strings in listing 10.4 use single quotes, and therefore the backslashes they

contain don’t need to be doubled. If you used double quotes instead, then all the con-

tained backslashes would have to be escaped. The third label, for example, would

have to be written like so:

set label 3 "\\textbf{\\Large Big and Bold}" at -2.5,0.6

The cairolatex terminal generates two files: the graph (as a PDF or an EPS file) and

the text (as a LaTeX file). Gnuplot expects the full name (including extension) of the

LaTeX file to be set using set output when you use the cairolatex terminal (see the

third-to-last line in listing 10.4). The following listing shows the LaTeX master file.

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

This is a different document. We will include a \LaTeX\ file
containing the graph below.

\begin{figure}[h]

\begin{center}
\input{cairolatex}

\end{center}

\caption{A graphics file included in \LaTeX, with \LaTeX\ labels}
\end{figure}

And here is a second paragraph. The graph should have

been included before.

\section{The Second Section}

The second section really contains only a very short text.

\end{document}

Note how similar this document is to the one in listing 10.3. The graphicx package

must again be specified explicitly. The document then uses \input (instead of

\includegraphics—that’s the only difference) to include the LaTeX file written by

gnuplot. Again, it’s recommended that you omit the extension: LaTeX will look for a

file with .tex extension. The final document (after LaTeX processing) is shown in fig-

ure 10.5.  

Listing 10.5 LaTeX document that imports cairolatex.tex (file: doc2.tex)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


226 CHAPTER 10 Terminals and output formats

1 The First Section

This is a different document. We will include a LATEX file contain-
ing the graph below.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−π/2 0 π/2

φ(x) = 1√
2π
e−

1

2
x
2

Φ(x) =
∫
x

−∞ φ(t)dt

Big and Bold

Legend
φ(x)
Φ(x)

Figure 1: A graphics file included in LATEX, with LATEX labels

And here is a second paragraph. The graph should have been
included before.

2 The Second Section

The second section really contains only a very short text.

1

Figure 10.5 The final appearance of the LaTeX document shown in listing 10.5. Note the true LaTeX 

labels and tic marks on the graph. Compare to figure 10.4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


227Using gnuplot with LaTeX

OPTIONS FOR THE CAIROLATEX TERMINAL

Now that you’ve seen how the cairolatex terminal is used, we can take a closer look

at its features. It shares most of its features with the pngcairo and pdfcairo terminals:

set terminal cairolatex [ eps | pdf ] [ standalone | input ]

             [ header "{str:header}" | noheader ]

             [ size {flt:x}[ in|cm ],{flt,y}[ in|cm ] ]
             [ font "{str:latexfont}[,{int:size}]" ][fontscale {flt:scale}]

             [ background rgb {colorspec} ] [ [no]transparent ]

             [ [linewidth|lw] {flt:factor} ][ [dashlength|dl] {flt:factor} ]

             [ butt | square | rounded ] [ [no]crop ] 

             [ blacktext | colortext ] [ mono | color ] 

Only three options are new: using the eps and pdf keywords, you choose the format of

the graphics part of the output. Be aware that the default is eps (not pdf).

 If you select standalone, the generated LaTeX document is complete and can be

compiled by itself. In other words, it doesn’t have to be included into another LaTeX

document for further processing. This way, you can create standalone graphics with

LaTeX-style annotations. 

 In standalone mode, the name of the generated graphics (PDF or EPS) file is mod-

ified by appending -inc to the base name: the two files written by cairolatex would be

called, for example, graph.tex and graph-inc.pdf. This means that the resulting graph,

which combines both plot and text, can still be named graph.pdf. The default value

for this option is input, which generates an incomplete LaTeX document for inclu-

sion in a master file, as shown earlier. 

 The last new option is header. With it, you can add an arbitrary set of LaTeX com-

mands into the LaTeX file containing the text component of the plot. For instance,

you could use this

set terminal cairolatex header "\\bfseries"

to print all text in the plot in boldface.

 If LaTeX finds the file gnuplot.cfg when processing a standalone file, it’s included

in the preamble of the document. It’s included before the argument to the header

option, so the latter can be used to override global settings from the gnuplot.cfg file. 

 Finally, the font option changes its meaning for the cairolatex terminal, com-

pared to the pdfcairo and pngcairo terminals. Instead of the names of system fonts,

cairolatex obviously expects names for LaTeX fonts. The font description consists of

three parts: the font name, the font series, and the font shape. All three parts are

optional, but the commas are mandatory. Here are two quick examples:

set terminal cairolatex font "cmr,b,it"

set terminal cairolatex font ",,sc"
ComputerModern, bold, italic

Surrounding font, with small caps

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


228 CHAPTER 10 Terminals and output formats

You can give the size of the font after the font description: set terminal cairolatex

"cmr" 14.

 The cairolatex terminal provides additional ways you can access LaTeX features

from within a gnuplot command script. Check the gnuplot standard reference docu-

mentation and your favorite LaTeX reference for more details. 

10.4.3 Letting LaTeX generate the graph

When you use the cairolatex terminal, gnuplot draws the graph, and LaTeX pro-

vides the text labels. You can go a step further and let LaTeX draw both the text and

the graph. Gnuplot merely creates a set of LaTeX commands that accomplish both

tasks. Several terminals take this approach; here I’ll briefly introduce the tikz termi-

nal as an example for the overall concept. The context terminal follows a similar idea. 

 The tikz terminal uses the Lua language to create the required LaTeX commands.

The next listing re-creates the graph from listing 10.4 but uses the tikz terminal. 

set label 1 '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'

➥ at 1.2,0.25

set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set label 3 '\textbf{\Large Big and Bold}' at -2.5,0.6

set key top left Left title '\textbf{Legend}'

set xtics ( '$-\pi/2$' -pi/2, '$0$' 0, '$\pi/2$' pi/2 )

plot [-3:3] exp(-0.5*x**2) /sqrt(2*pi) t '$\phi(x)$', norm(x) t '$\Phi(x)$'

set terminal tikz standalone

set o "tikz.tex"

replot
set o

Notice that the tikz terminal is invoked with the standalone option: in this case,

you’re creating just the graph. Gnuplot produces a LaTeX file called tikz.tex that can

be processed using pdflatex. Some auxiliary files that are required by LaTeX are part

of the gnuplot distribution, but you can also generate local copies of them in the cur-

rent directory by including the keyword createstyle in the call to set terminal

tikz .... The resulting graph is shown in figure 10.6. Be aware that you need to have

the pgf (TeX Portable Graphics Format) package installed, which is part of the LaTeX

distribution but may not be installed by default.

 How does this entire approach compare to the alternatives? Historically, one

advantage of letting LaTeX generate the graph was that LaTeX allowed greater con-

trol over the appearance of lines, dash patterns, and the like. This aspect has become

less important as gnuplot has acquired some of these capabilities.

 Terminals such as pdfcairo produce a separate (standalone) graph, which poten-

tially has to be included into a document. Using the tikz or context terminal, you

can embed the commands that generate the graph into the document, so only a

Listing 10.6 Commands for figure 10.6 (file: tikz-demo.gp)

Supply the name of the output LaTeX file with extension!

Make sure to flush and close the output file.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


229Scalable graphics for the Web with SVG and HTML5

single file has to be processed. Whether this is a good idea is another question—per-

sonally, I prefer the separation of concerns provided by having standalone graphs and a

document that references them. Also be aware that LaTeX may encounter resource

(specifically, memory) limitations when processing large graphs. 

10.5 Scalable graphics for the Web with SVG and HTML5

Traditionally, graphics to be displayed in web pages were bitmaps—and you can still

do this, using the pngcairo terminal, for instance. But gnuplot can also generate

graphs using scalable formats that can be rendered in a web browser. The svg terminal

creates a graph using the Scalable Vector Graphics (SVG) format; the canvas terminal

prepares JavaScript commands for use with the HTML5 canvas element. 

10.5.1 The svg terminal

The svg terminal behaves similarly to the pngcairo and pdfcairo terminals, but it

creates SVG code, which can be captured in a file using set output:

set terminal svg [ size {int:x},{int:y} [ fixed | dynamic ] ]
                 [ font "{str:name} [, {int:size} ]" ] 

                 [ fname "{str:fontname}" ] [ fsize {int:fontsize} ]

                 [ fontfile {str:filename} ] [ [no]enhanced ]

                 [ rounded | butt | square ] [ background rgb {colorspec} ]

                 [ [linewidth|lw] {flt:fac} ] [ [dashlength|dl] {flt:fac} ]

                 [[ mouse ] [ standalone | jsdir "str:dirname" ]]
                 [ name "{str:title}" ] 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−π/2 0 π/2

φ(x) = 1√
2π

e−
1

2
x
2

Φ(x) =
∫
x

−∞
φ(t)dt

Big and Bold

Legend
φ(x)
Φ(x)

Figure 10.6 A graph drawn using the tikz terminal. See listing 10.6 for the commands.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


230 CHAPTER 10 Terminals and output formats

You can specify a size in pixels; the default size is 600×480. By default, or if the key-

word fixed is given, the resulting graph has an absolute size; if dynamic is given, then

the resulting graph adapts to the size of the viewer (typically filling the entire avail-

able area).

 A font can be specified using the usual format, but you can also specify only a font

name or font size using the keywords fname and fsize. Using fontfile, a file with

font information can be embedded into the SVG document; gnuplot searches for the

requested file using the information in the GNUPLOT_FONTPATH environment variable.

The font must be an SVG font, not a PostScript or TrueType font. 

 The keyword mouse enables mousing: mouse coordinates are continuously dis-

played when the mouse is over the image; and individual curves can be toggled on or

off by clicking their entry in the graph’s key. Mousing requires an external JavaScript

script, which is usually found in a standard location of the local gnuplot installation;

you can change the location by providing a path name to the jsdir option. The

standalone option embeds the mousing code in the SVG file, rather than referring to

an external document. Finally, you can use name to give the plot an identifier by which

it can be referred to by JavaScript or a web page that includes the graph. 

 An SVG file can be used by itself or included in a web page. It’s recommended that

you use the <object> tag for this purpose, like so:

<object type="image/svg+xml" data="graph.svg">
Your browser does not support SVG.

</object>

This also provides a fallback message to the user, in case the user’s browser doesn’t

support SVG. 

10.5.2 The canvas terminal

The canvas terminal creates JavaScript commands that draw onto an HTML5 canvas

element. It can be called in two different modes:

 Using standalone, the terminal produces a web page (that is, HTML code) con-

taining a <canvas> element and the JavaScript to draw on it. The set output

option should therefore specify a file with extension .html (or equivalent). 

 The name option identifies the name of a JavaScript function that will be gener-

ated, and the terminal produces just the set of JavaScript commands that

implement that function. The set output option should specify a file with

extension .js. 

The canvas terminal supports various options:

set terminal canvas [ size {int:x},{int:y} ]
                    [ font "{str:name} [,{int:size}] ] [ fsize {int:size} ]

                    [ [no]enhanced ]

                    [ title "{str:title}" ] 
                    [ rounded | butt | square ] [background rgb {colorspec}]

                    [ [linewidth | lw] {flt:fac} ] 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


231Scalable graphics for the Web with SVG and HTML5

                    [ [dashlength | dl] {flt:fac} ]

                    [ standalone [mousing] | name "funcname" ]

                    [ jsdir "{str:url}" ]

You can specify a font using font. This setting is currently ignored, but a font size can

be selected using fsize.

 In standalone mode, the terminal creates a complete web page, which includes

the JavaScript code for the graph. In addition, the web page refers to various other

JavaScript files that are part of the gnuplot installation and that it expects to find in a

standard location. You can specify a different directory using the jsdir option; this

may be appropriate when the web page isn’t viewed locally, but is served on the Web.

If the mousing keyword is used in conjunction with standalone, then some additional

elements are included in the page that show the mouse coordinates and provide fur-

ther ways to interact with the graph (such as zoom and unzoom functionality).

 When the name option is used, gnuplot generates only the JavaScript. The resulting

code contains the implementation of a JavaScript function with the desired name. For

example, assume that you’ve created a JavaScript file called plotter.js, containing a

function called drawplot(), using the following commands:

...

set terminal canvas name "drawplot"

set output "plotter.js"
replot

These files can be used in a web page like the one in the following listing.    

<html>

<head>

<script src="/usr/share/gnuplot/5.0/js/canvastext.js"></script>
<script src="/usr/share/gnuplot/5.0/js/gnuplot_common.js"></script>

</head>

<body onload="drawplot();">
<script src="plotter.js"></script>

<canvas id="drawplot" width=600 height=400>

<div id="err_msg">Your browser does not support HTML5 canvas.</div>
</canvas>

</body>

</html>

Several details are important:

 The header section references two external scripts, which are part of the gnu-

plot distribution. Make sure the path to these files is correct in the header and

that the files are visible.

 The name of the function appears twice in the page: as the value of the onload

attribute of the <body> tag, and as the value of the id attribute of the <canvas> tag. 

Listing 10.7 Using the canvas name terminal (file: canvas-demo.html)

plot commands go here.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


232 CHAPTER 10 Terminals and output formats

 The name of the generated JavaScript file is used in the <script> tag within the

page’s body.

10.6 Interactive terminals

In contrast to the large range of options available for file-based terminals, interactive

terminals are rather straightforward.

10.6.1 Common options

Gnuplot can have multiple plot windows open simultaneously, although only one of

the windows will receive plot commands at any time. You can create a new plot win-

dow by specifying the terminal ID (which is just an integer expression) when choosing

the terminal, like so:

set terminal wxt 1

To switch between open windows, use set terminal together with the terminal type

followed by the window ID to select the active terminal. The keyword close in a set

terminal command closes the identified window. (Depending on the window man-

ager, the window may persist until it has received mouse or keyboard focus for the first

time after the set terminal ... close command has been issued.) 

 To distinguish between multiple plot windows, you can give each one a title, which

will (depending on the window manager) be displayed in the window’s header bar.

(This is the title of the window only and has nothing to do with the title that can be

placed on the plot using set title.)

 Plot windows are automatically raised and receive input focus when a new plot is

drawn. You can disable this behavior using the noraise option, so that keyboard focus

stays with the command window even when a plot command is issued. 

 By default, pressing the space bar while the plot window has focus raises the command

window, and pressing the Q key closes the plot window. Using the ctrl option, these bind-

ings are replaced by combinations of the Ctrl key together with either the space bar or the

Q key (thus freeing up those keys to be rebound otherwise: see section 12.4.3).5

 When the persist option has been enabled, plot windows stay up even when gnu-

plot is exited (or prevent gnuplot from terminating completely until all plot windows

have been closed explicitly).

 You can use three commands to manipulate interactive terminals directly: raise,

lower, and clear. The first two take an optional window identifier as optional argu-

ment. The clear command (which always acts on the most currently active terminal)

is useful even for non-interactive terminals: it clears the plot area (and forces a

form-feed or page break for non-interactive terminals). It’s required, for example, in

some applications of multiplot mode (see section E.1). 

5 Everything having to do with keyboard focus and the raising and lowering of windows depends on the inter-
play of the window manager and the widget set implementing the terminal. As of this writing, not all of this
functionality works with all window managers.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


233Other terminals

10.6.2 The wxt and qt terminals

The wxt and qt terminals are very similar in their functionality but are built using dif-

ferent widget sets. Because both widget sets are cross-platform, both terminals are

available on all current operating systems: Linux, Windows, and Mac OS X.

 Both terminals share the most important options:

set term [ wxt | qt ] [ {int:id} ] [ title "{str:title}" ]
         [ size {int:width},{int:height} ] [ position {int:x},{int:y} ]
         [ font "str:face[,{int:size}]" ] [ [no]enhanced ]
         [ [no]raise ] [ [no]persist ] [ [no]ctrl ]
         [ close ]

In addition, both terminals support the dashlength (or dl) option. The wxt terminal

(but not the qt terminal) also offers the background (or backg) and linewidth (or

lw) options. 

10.6.3 The aqua terminal

The aqua terminal is a native Mac OS X terminal for gnuplot. It relies on AquaTerm.app:

set term aqua [ {int:id} ] [ title "{str:title}" ]
              [ size {int:width},{int:height} ]
              [ font "str:face[,{int:size}]" ] [ [no]enhanced ]

10.6.4 The windows terminal

The windows terminal is for use on Microsoft Windows platforms:

set term windows [ {int:id} ] [ title "{str:title}" ]
         [ size {int:width},{int:height} ] [ position {int:x},{int:y} ]
         [ font "str:face[,{int:size}]" ] [ [no]enhanced ]
         [ close ]

The windows terminal supports some additional GUI features; see the standard gnu-

plot reference documentation for details. 

10.7 Other terminals

As mentioned in the introduction to this chapter, gnuplot supports a lot of termi-

nals—many more than I discussed in this chapter. Although most of them are no lon-

ger relevant, some may be of use in specialized situations.

 Traditionally, the postscript terminal was very important, and so were the gif, png,

and jpeg bitmap terminals based on the GD library. These terminals have largely been

replaced by the pdfcairo and pngcairo terminals discussed earlier in this chapter.6

6 The default appearance of graphs produced using pdfcairo differs somewhat from those generated with
postscript. Explicitly specifying the aspect ratio with set terminal pdfcairo size 5in,3.5in and
adjusting the border thickness and point size with set border lw 1.5 and set pointsize 0.75 bring the
results from the pdfcairo terminal much closer to the look familiar from the postscript terminal. If you
want to create monochrome graphs, you’ll need to define your own dash patterns—see the stylesheet in listing
12.9 for an example. You may also want to specify the Helvetica font, but the result will depend on the selec-
tion of fonts installed on your system (whereas PostScript graphs were guaranteed to use the actual Helvetica,
because it’s one of the 35 PostScript core fonts).

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


234 CHAPTER 10 Terminals and output formats

 There are many more terminals that generate commands suitable for TeX or

LaTeX processing than I described here. If you’re interested, you may want to check

out the standard gnuplot reference documentation for eepic, latex, pslatex,

pstricks, texdraw, and tpic.

 In addition to LaTeX, gnuplot supports some other graphical command lan-

guages. Check out the fig and tgif terminals. 

 You should also know about two terminals that are truly obsolete but are still sup-

ported and may provide a safe fallback solution if necessary: x11 and dumb. The x11

terminal is built on the X11 system without the benefit of a modern widget system. As

an X11 application, it honors many of the standard X11 conventions, such as geome-

try, color resources, and app-defaults. The x11 terminal has been superseded by termi-

nals such as wxt and qt that are built using contemporary widget sets.

 Finally, a true classic: the dumb terminal (see figure 10.7). This is a terminal for

character-oriented output devices. It uses characters to draw an ASCII-art rendition of

the plot: it’s the fallback for console-oriented systems or over really slow network con-

nections. For all of these terminals, see the standard gnuplot reference documentation.

10.8 Summary

Gnuplot uses the terminal facility to create output for other applications and devices.

The pngcairo and pdfcairo terminals create graphs in standard bitmap (PNG) and

vector (PDF) formats. The svg and canvas terminals can generate vector graphics suit-

able for inclusion in dynamic web pages. 

Figure 10.7 The dumb terminal

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


235Summary

 The appearance of strings and text labels depends on the available fonts and the

capabilities of the chosen output format. Enhanced text mode lets you embed simple

formatting commands (such as sub- and superscripts) in text labels.

 For those who are familiar with LaTeX, the cairolatex terminal makes it possible

to use LaTeX’s text (and, in particular, math) formatting capabilities together with

gnuplot’s plotting facilities to achieve particularly high-quality plots for publications

or other printable documents. Finally, I provided a brief overview of interactive termi-

nals for various platforms.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


236

Automation, scripting,
and animation

In the preceding chapters, we’ve studied most commands and options that can be

used from within gnuplot. But up to this point, our discussions assumed that you’d

be running gnuplot interactively: entering commands, viewing plots, and then

entering more commands.

 But sometimes that’s not what you want. For instance, you may have a large

number of data sets and just want to convert all of them to plots: it would be great

to automate this task through scripting. Or you may have a cron job running nightly

to scan web server logs and want it to also generate some plots showing the number

of hits per hour, without requiring human intervention: that’s batch processing. Or

you might want to use gnuplot as a graphing back end, while tendering control to

some other program.

This chapter covers

 Loops and conditionals

 Command files and batch processing

 Calling gnuplot from other programs

 Animations

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


237Loops and conditionals

 All these situations involve tasks that have been automated to some degree. In this

chapter, we’ll study ways to do this, either using gnuplot’s own facilities or using gnu-

plot in conjunction with an external programming language.

11.1 Loops and conditionals

Gnuplot has support for loops and conditionals: this makes it possible to automate

repeated tasks. In contrast to the inline loops that we encountered earlier (see section

5.4), the control structures introduced in this section are more general. They can be

applied to any command, or any combination of commands—not just a single plot or

set command, as was the case for inline loops. In addition to two different loops and

a conditional construct, there’s also a special operator that calculates the sum of a set

of numbers. Let’s look at all of them in detail; table 11.1 provides a summary. 

 The do for loop is a generalization of the inline loop concept. Loops can extend

over a numeric range (start and end inclusive; the increment is optional and defaults

to 1). Alternatively, the do for loop can also iterate over whitespace-separated tokens

in a string. 

 The other loop is a while loop. It executes the statements in the loop body as long

as the supplied condition doesn’t evaluate to 0.

 The if statement is used to construct conditionals. The else clause is optional; at

present, there is no provision for repeated conditions (no elsif or similar). 

 Finally, the sum construct is an expression (meaning it returns a value). It iterates over

a set of integers, evaluates a given expression, and adds the expression’s value to a run-

ning total. Upon completion, the value of the running total is returned. It isn’t possible

to give a step size, and the evaluated term need not include the iteration variable:

sum[var=start:end] expression

The following examples will make this clearer:

print sum[k=1:10] 1

print sum[k=1:10] k

plot "data" u 1:(sum[k=2:5] column(k)/4.)

Prints 10.0

Prints 55.0

Plots the average of cols 2–5

Limitations of gnuplot’s programming model
At the present time, gnuplot offers only limited support for scripting. It has control
structures (loops and conditionals) but neither data structuresa nor subroutines—and
of course no such thing as local variables! This shouldn’t be a surprise: gnuplot was
never intended as a programming environment, and the available scripting support is
little more than an ad hoc collection of convenience features, intended to take the
tedium out of repeated tasks.

a But see the footnote on page 15.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


238 CHAPTER 11 Automation, scripting, and animation

Table 11.1 Gnuplot loop constructs and conditionals

Syntax Example

do for [var=start:end:increment] {

 statement
 statement

 ...

} 

do for[k=1:10] {

print k
}

do for [var in tokenstring] {

 statement
 statement

 ...

}

do for [s in "abc uvw xyz"] {

print s
}

while( condition ) {

 statement
 statement

 ...

}

x = 0

while( x < 10 ) {
x = x + 1

print x

}

if( condition ) {

 statement
 statement

 ...

} else { 
 statement

 statement

 ...
}

x = 0

if( x < 0 ) {
print "Negative"

} else {

print "Not negative"
}

(continued)

The problem is that control structures like loops require arrays and subroutines to
work properly: they don’t make much sense otherwise. But because gnuplot doesn’t
offer such facilities, existing features find themselves “press-ganged” into roles that
they aren’t intended for: whitespace-separated strings, together with the word() and
words() functions, are used to mimic iterable data structures; array indexes are
faked through numeric suffixes on variable names; and individual command files
have to stand in for subroutines. Depending on your perspective, you may find this
either hideous or ingenious. 

You can’t very well have “a little” programming support. Either you don’t have any, or
you’ll find that each “small” feature before long leads to the addition of yet another
“small” feature, until you end up with a complete programming environment any-
way—simply by following the law of unintended consequences.

Because of this, I doubt the wisdom of adding programming support to gnuplot
through opportunistic accretion and without clarity about the intended programming
model. The evolution of programming languages over the last 30 years (and the last
15, in particular) has shown how difficult it is to create a programming environment
that “wears well as one’s experience with it grows.”

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


239Loops and conditionals

11.1.1 Worked example: making graph paper

To kick off our list of examples for gnuplot’s looping constructs, let’s make some quad-

ruled graph paper. This application demonstrates how repetitive tasks can be automated

with loops. It also has an immediate graphical representation (see figure 11.1).

On commercially produced graph paper, every fifth line is printed a little wider than

the remaining lines to impose some larger-scale, visual guidance to the user. In the

graph in figure 11.1, I instead made every fifth line a little darker than the other lines,

using different shades of grey. For best effect, it’s important to add the darker lines

later to the plot than the other lines.

 The commands for the graph paper in figure 11.1 are shown in listing 11.1. The

size of the entire graph is set to 12.5cm×12.5cm, but the actual plot (the canvas) is

scaled to 80% of that, leading to a finished 10cm×10cm square with millimeter spac-

ing of individual lines. 

Figure 11.1 Graph paper: an easy application of gnuplot’s loops. See listing 11.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


240 CHAPTER 11 Automation, scripting, and animation

  

set terminal pdfcairo size 12.5cm,12.5cm
set o 'graphpaper.pdf'

set size 0.8,0.8

set origin 0.1,0.1
set margins 0,0,0,0

unset key

unset tics

set style arrow 1 nohead lw 1

set for [i=1:99] arrow from i/10.,0 to i/10.,10 as 1 lc rgb 'light-grey'

set for [i=1:99] arrow from 0,i/10. to 10,i/10. as 1 lc rgb 'light-grey'

set for [i=5:95:10] arrow from i/10.,0 to i/10.,10 as 1 lc rgb 'grey'

set for [i=5:95:5] arrow from 0,i/10. to 10,i/10. as 1 lc rgb 'grey'

set for [i=10:90:10] arrow from i/10.,0 to i/10.,10 as 1 lc rgb 'dark-grey'
set for [i=10:90:10] arrow from 0,i/10. to 10,i/10. as 1 lc rgb 'dark-grey'

plot [0:10][0:10] 1/0

set o

11.1.2 Worked examples: iterating over files

It’s no surprise that gnuplot’s looping facilities come in handy whenever you’re deal-

ing with a large number of similar files. Let’s consider two examples—one straightfor-

ward, the other one not.

PLOTTING SEVERAL FILES

Imagine that you have a directory containing many data sets. Each data set is in a sep-

arate file, and the files are all named in a predictable fashion: data01, data02, and so

on. You want to generate a plot of every data set, each in its own file, with appropri-

ately chosen filenames. Here’s how to do it (the sprintf() function comes in handy

to format the input and output filenames properly):

set terminal pdfcairo

do for[k=1:50] {

set output sprintf( "graph%02d.pdf", k )

plot sprintf( "data%02d", k ) u 1:2

set output

}

MAKING DATA COMPARABLE

The next example is more complicated. In this case, you have only three files (data1,

data2, and data3), but you don’t want to plot each data set in a separate graph.

Instead, you want to combine them onto a single graph so that they can be compared

easily. To compare disparate data sets meaningfully, it’s often necessary to normalize

the data before plotting it. For now, and to keep the exposition simple, let’s assume

that you just want to subtract the respective average value from each data set before

Listing 11.1 Commands for figure 11.1 (file: graphpaper.gp)

Chooses the output file format

Creates the output file

Plots the data

Flushes the output channel

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


241Loops and conditionals

plotting it. (You’ll see another example of normalizing data for the sake of compari-

son in section 14.1.3.)

 It’s easy enough to loop over the files and use the stats command (see section 5.6)

to calculate the respective average (or mean) values. The problem is that you need to

store the separate values temporarily, so that you can use them later in the plot com-

mand. Because gnuplot doesn’t have an array data structure, you need to bend over

backward to accomplish this goal. I’m going to show you two different ways to get there. 

 In the first implementation, variables with numeric suffixes stand in as array

entries. But because it’s impossible to create variables dynamically, a string containing

the variable definition is constructed instead, which is then executed using eval. The

subsequent plot command, using an inline loop, does the same thing—it builds up

the variable name as a string and obtains the value of the corresponding variable

using the value() function (see section 5.1 for information about value()):

do for[file in "data1 data2 data3"] {

stats file u 2 nooutput

eval sprintf( "mean_%s=%f", file, STATS_mean )

}

plot for[file in "data1 data2 data3"]

➥ file u 1:($2-value(sprintf("mean_%s", file)))

The second implementation may be more straightforward, but personally I find it

even more ominous. It fully embraces the idea that an array is nothing more than a

sequence of values and hence can be conveniently represented as a string. String

operations are then used to extract the desired entry.

 In the first loop, a string is built up from the values calculated by stats (don’t miss

the whitespace in the sprintf() format specifier that indicates token boundaries).

The plot command contains an inline loop and uses the word() function to extract

each appropriate element in turn from the string of values (see table 5.1 for informa-

tion about the word() function):

files = "data1 data2 data3"
means = ""

do for[file in files] {

stats file u 2 nooutput
means = means . sprintf( " %f", STATS_mean )

}

plot for[k=1:3] word(files,k) u 1:($2-word(means,k))

11.1.3 Worked examples: Taylor series and Newton’s method

In this section, I demonstrate two other applications of looping constructs. Both

require some familiarity with calculus—feel free to skip this section.1

1 This isn’t the place to explain either Taylor series or Newton’s method; the purpose of this section is to dem-
onstrate gnuplot’s looping features. For this reason, my presentation of the mathematical concepts is inten-
tionally brief. The Wikipedia pages for both topics are reasonably accessible.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


242 CHAPTER 11 Automation, scripting, and animation

TAYLOR SERIES

According to Taylor’s theorem, every smooth function can be locally approximated by a

polynomial: the higher order the polynomial, the better the approximation. We demon-

strate this here for the function sin(x), which has the following Taylor approximation:

Using gnuplot’s sum feature, together with the ! operator to indicate the factorial, this

can be written very compactly in gnuplot (also see figure 11.2—the function s(n) has

been introduced to fix the key entry when there is only a single term in the series):

f(x,n) = sum[k=1:n] (-1)**(k-1)*x**(2*k-1)/(2*k-1)!
s(n) = (n==1 ? "1 Term" : sprintf( "%d Terms", n ) )

plot [-8:8][-1.2:1.2] sin(x) lw 2, for[n=1:4] f(x,n) t s(n) 

NEWTON’S METHOD

The other example involves Newton’s method for finding the roots of an analytic

function. Newton’s method consists of an iteration of the following form:

x( )sin 1–( )
k 1–

k 1=

n

 x
2k 1–

2k 1–( )!
-----------------------≈

-1

-0.5

 0

 0.5

 1

-8 -6 -4 -2  0  2  4  6  8

sin(x)

1 Term

2 Terms

3 Terms

4 Terms

Figure 11.2 Successive approximations to sin(x) using the sum facility

xn 1+
xn

f xn( )

f ′ xn( )
----------------–=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


243Command files

This can be implemented using a while loop. The derivative f (x) is evaluated

through a finite-difference approximation:

f(x) = cos(x)

steps=0; x=0.5; eps=1e-6

while( abs(f(x)) > 1e-10 && steps < 15 ) {

df = (f(x+eps) - f(x) )/eps

x = x - f(x)/df
steps = steps + 1

print steps, x, f(x)

}

With the given choice of parameters, Newton’s method converges to the first positive

root of the cosine in five steps. Here’s the total output from running this snippet:

1 2.33048604607464 -0.688696509312027
2 1.38062453566562 0.189027591805359

3 1.57312250575387 -0.0023261768611035

4 1.57079632259625 4.19864216189357e-09
5 1.5707963267949 6.12323399573677e-17

11.2 Command files

Gnuplot commands can be not only entered at the command prompt but also cap-

tured in a script file. Such a file can be loaded into a gnuplot session, included in

other command files, or processed by gnuplot in batch mode.

 So far, we’ve encountered command files mostly as the product of the save com-

mand. The files generated by save capture the entire state of the gnuplot session at

that moment: the values of all options and variables, all user-defined functions, as well

as the most recent plot command. If you load such a file, it re-creates exactly the pre-

vious session state, and—in particular—it re-creates exactly the previous plot. 

 It’s worth emphasizing that this isn’t the only way to use command files; in particu-

lar, it isn’t necessary for command files to contain a plot or splot command. Com-

mand files without either of these commands obviously don’t generate visual output,

but they can be very useful nevertheless:

 As setup or configuration scripts—Such scripts contain nothing but function defi-

nitions, customized line types and styles, or shorthands for commonly used

color gradients. We’ll explore some of these possibilities in chapter 12.

 As subroutines—I mentioned earlier that gnuplot doesn’t have subroutines: it’s

not possible to group several statements together into a single, callable unit.

Command files provide a workaround for this limitation.

 As batch files—The contents of a command file can be processed by gnuplot in

the background, without an interactive user session.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


244 CHAPTER 11 Automation, scripting, and animation

11.2.1 Scripts as subroutines

Gnuplot doesn’t have a way to group several commands or statements together into a

single, callable unit. Gnuplot’s functions are expressions (they return a value), and

their definitions must consist entirely of expressions as well. It isn’t possible to evaluate

a gnuplot command within a gnuplot function, much less a sequence of commands.

 Scripts provide a workaround. A script can contain any valid gnuplot code and is

callable as a single unit. The generic export script is a good example (compare sec-

tion 10.1.2):

set terminal push
set terminal pdfcairo

set output "graph.pdf"

replot
set output

set terminal pop

This sequence of commands can be run with a single invocation of load or call.

PASSING PARAMETERS TO SCRIPTS

The script in the previous example didn’t take any parameters: the name of the out-

put file was hardwired. That’s not ideal; it would be better to supply a filename at run-

time. There are two ways to do this:

 Prepopulate a gnuplot session variable, and use it in the script.

 Use call to invoke the script, and specify the parameters as part of the 

command.

To use the first method, the export script must be changed to use a variable:

set terminal push
set terminal pdfcairo

set output outfile

replot
set output

set terminal pop

Be sure to assign the proper value to this variable before invoking the script (assuming

that the script is called export.gp):

outfile = "graph.pdf"

load "export.gp"

The alternative is to use the call command to invoke the script (instead of load). The

call command accepts up to nine parameters on the command line, which are avail-

able in the script in variables called ARG1, ARG2, and so on. (The variable ARG0 is set to

the name of the script file, and the variable ARGC holds the number of arguments sup-

plied to call.) A version of the export script, suitable for call, looks like this:

set terminal push
set terminal pdfcairo

The outfile variable holds 
the desired filename.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


245Command files

set output ARG1
replot

set output

set terminal pop

You call it like this:

call "export.gp" "graph.pdf"

Personally, I prefer the call mechanism over prepopulating session variables, because

it makes the parameter passing explicit. You need to be aware of an important limita-

tion, though: parameters are passed by call as strings and therefore must be repre-

sentable by strings (numbers are converted to strings on the fly). This makes passing

functions inconvenient, whereas a function that exists in the current session can be

used by the script. (You’ll see an example in a moment, when we discuss a script that

implements Newton’s method.) 

SIMULATING LOCAL VARIABLES

Gnuplot doesn’t have local variables: all variables that are created live in the global

session space. This means if you call a script that defines variables, these variables are

still part of the session when the script finishes. This may be desirable (because it pro-

vides a way to retrieve values from the script), but more often it isn’t. The problem

also exists in reverse: if a variable existed in the session before the script was run, then it

will have been clobbered afterward.

 The solution is to give the names of all strictly internal variables a unique prefix.

You can even use the undefine command to clean up the session by removing all vari-

ables with a given prefix upon completion of the script. 

FURTHER POSSIBILITIES WITH SCRIPTS

Scripts may contain load and call commands. Their effect is to include the contents

of the loaded file at the position of the load or call command. (Gnuplot safeguards

against infinite recursive inclusion.)

 When you use the command quit in a script, it doesn’t terminate the gnuplot ses-

sion; instead, it terminates execution of the current script. It therefore acts similarly to a

return statement in most programming languages, initiating an immediate return to

the calling code (but without a return value, of course). 

A WORKED EXAMPLE: NEWTON’S METHOD (AGAIN)

Listing 11.2 is another implementation of Newton’s method that demonstrates some

of the ideas just introduced. The script defines three internal variables, all of which

are prefixed with NEWTON_ and are removed from the session on the last line of the

script. Parameters are passed to the script implicitly: both the function f(x) and the

starting value x must exist in the session before the script is called. Upon completion,

the variable x holds the position of the found root. A sample use of this script might

be as follows (the last line is the final output from the script):

Uses the special variable

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


246 CHAPTER 11 Automation, scripting, and animation

f(x) = cos(x**2); x=1.0

load "newton.gp"

f(1.253314137316) = -0.000000000001 in 4 steps

# Must prepopulate f(x) and x before call

NEWTON_steps = 0

NEWTON_eps = 1.e-6

while( abs(f(x)) > 1e-12 && NEWTON_steps < 15 ) {
NEWTON_df = (f(x+NEWTON_eps) - f(x) )/NEWTON_eps

x = x - f(x)/NEWTON_df

NEWTON_steps = NEWTON_steps + 1
}

print sprintf("f(%.12f) = %.12f in %d steps", x, f(x), NEWTON_steps)

undefine NEWTON*

11.2.2 Worked example: export script

The script in listing 11.3 is intended to demonstrate how far you can push the “script-

as-subroutine” concept in gnuplot. You decide whether this is a good idea.

 The purpose of the script is my old standby: saving the commands of the last plot,

and exporting the plot to a file in a standard graphics file format.2 But this script

does more:

 It infers the desired file format by examining the extension of the target file.

 The target file can include an absolute or relative path. The script places both

the command file and the graphics file in the specified directory.

 You can specify additional options when invoking this script. These options are

supplied to the chosen terminal when the graph is exported.

The script makes a number of (platform-specific) assumptions:

 The filename extension indicating the desired graphics file format consists of

exactly three letters.

 The path separator is / (Unix convention—you need to change this if you’re on

a different platform).

The script itself is straightforward but messy, because much of the string handling has

to be done explicitly. Moreover, gnuplot doesn’t follow the convention of most con-

temporary programming languages of using zero-offset strings and asymmetric

bounds, thus necessitating the explicit conditional when splitting the argument into

path and basename. (To reduce clutter, I have refrained from prefixing all internal

variables to make them “private.”)

Listing 11.2 Newton’s method in gnuplot (file: newton.gp)

2 If gnuplot should ever acquire a simple export command that bundles all the required steps into a single
invocation, I’ll lose one of my best sources for examples.

Prepopulates function f (x) and starting value x

Invokes script

Output

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


247Batch processing

 As I said, I regard this example as a “technology demonstrator” that shows how you

can encapsulate complex tasks in scripts and use them like subroutines. You decide

whether you think this is the right approach. 

# Invoke as: call "mega-export.gp" "graph.png" "terminal options"

# File format MUST be a three-letter extension.

arg = ARG1

opts = ARG2

len = strlen( arg )

k = 0

do for [i = 1:len] {

if( arg[i:i] eq "/" ) {
k = i

}

}

if( k == 0 ) {

path = ''

file = arg[1:len-4]

} else {
path = arg[1:k]

file = arg[k+1:len-4]

}
type = arg[len-2:]

term = ''

if( type eq 'eps' ) { term = 'epscairo' }
if( type eq 'pdf' ) { term = 'pdfcairo' }

if( type eq 'png' ) { term = 'pngcairo' }

if( type eq 'svg' ) { term = 'svg' }
if( term eq '' ) {

print "Unknown file type - using pdf"

term = 'pdfcairo'
}

save path . file . '.gp'

set t push
eval "set t " . term . " " . opts

set o path . file . "." . type

replot
set o

set t pop

print "Done!"

11.3 Batch processing

Gnuplot can be run by itself as a standalone command interpreter, executing scripts

from files—basically like a Perl or Python interpreter interpreting a program in its

respective language. The only difference is that in gnuplot’s case, the final output is a

graph. Running gnuplot non-interactively as a command interpreter like this is known

as batch mode. 

Listing 11.3 Full-featured export script (file: mega-export.gp)

Saves arguments

Finds the last "/" 
in the filename

No "/" found: uses current directory

Splits the 
filename 
into path, 
file, and 
extension

At least one "/" found

Assumes a 3-letter extension

Selects a terminal 
based on the extension

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


248 CHAPTER 11 Automation, scripting, and animation

TIP Batch mode isn’t terribly common, because you usually want to see and
interact with the graph that’s created. Batch mode is useful whenever you
want to create a large number of file-based graphs using a predetermined set
of commands, or when you need to re-create the same graphics file again and
again as the data set that’s plotted changes. 

Running gnuplot in batch mode is straightforward and equivalent to the way Perl and

Python behave: any files listed after the gnuplot command are expected to contain

gnuplot commands. They’re executed in the order specified, as if they had been

loaded using load. Alternatively, gnuplot will read commands from standard input.

There are thus three ways to execute a set of command files:

 Using command-line arguments:
shell> gnuplot plot1.gp plot2.gp plot3.gp

 Reading from standard input:
shell> cat plot1.gp plot2.gp plot3.gp | gnuplot

 From within a gnuplot session:
load "plot1.gp"

load "plot2.gp"

load "plot3.gp"

Gnuplot doesn’t start an interactive session when invoked with command-line argu-

ments: it just processes all commands (including any plot commands) and termi-

nates. This implies that plots sent to an interactive terminal usually aren’t visible, or rather,

they’re visible for a tiny moment as gnuplot opens the terminal window, draws the

graph, and immediately closes the plot window again and exits.3 It’s a common mis-

take to forget to set appropriate (file-based) terminal and output options in gnuplot

batch files!

TIP By default, gnuplot uses one of the interactive terminals for all graphical
output. That’s great for interactive sessions but makes no sense when you’re
using gnuplot in batch mode. Don’t forget to choose a meaningful output
format and destination.

You can force an interactive session by using the special filename - (hyphen) on the

command line. The following command runs a setup script before dropping you into

an interactive session (you’ll need to issue an end-of-file character before quitting):

shell> gnuplot setup.gp -

3 You can also specify the command-line flag -persist when invoking gnuplot so that the plot remains visible
on the screen.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


249Batch processing

11.3.1 Using gnuplot in shell pipelines

It’s possible to use gnuplot as part of a command pipeline,4 wherein gnuplot reads

both commands and data from standard input. The special filename - (see section 4.5)

tells gnuplot to read data from the current source: that is, from the same input device

from which the most recent command was read. So if the command was read from

standard input, then plot "-" will continue reading data from standard input as well.

This makes it possible to build a pipeline like the following:

shell> cat script.gp data | gnuplot

Here, the command file script.gp may be as simple as

set t pngcairo

set o "out.png"
plot "-" u 1:2 w lp

and the data file may contain any data set, as long as it has at least the two columns ref-

erenced in the plot command.

 The pipeline concept can be taken a step further: remember that set output

defaults to standard output (if no filename is given as argument). Now the script is

even simpler

set t pngcairo
plot "-" u 1:2 w lp

but in the pipeline you need to deal with the results that gnuplot sends to standard

output. The easiest way is to capture them in a file

shell> cat script.gp data | gnuplot > graph.png

but it would of course also be possible to pipe gnuplot’s output to some other post-

processing step instead.

 A word of warning: to use gnuplot in a pipeline like that, both commands and data

must be sent to standard input explicitly. Just listing them on the command line

doesn’t work: gnuplot won’t read a combination of command and data files from the

command line.

TIP Using gnuplot in a shell pipeline may seem unusual at first, but it can be
very convenient. Any pre- or postprocessing can be done in one fell swoop.
Moreover, sending the graph to standard output avoids all of gnuplot’s awk-
ward file-handling issues. 

4 Provided the platform supports pipes, of course.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


250 CHAPTER 11 Automation, scripting, and animation

11.4 Calling gnuplot from other programs

Sometimes it’s necessary or desirable to let gnuplot be controlled by another com-

puter program. Three situations come to mind:

 You need a level of automation and control that is difficult or impossible to

achieve with gnuplot’s limited scripting capabilities.

 You want to use gnuplot to visualize data that is generated by some other pro-

gram without having to save the data to an intermediate file.

 You’d like to use gnuplot as a generic graphics back end for a system that has no

graphics capabilities otherwise.

You can use gnuplot this way, and it isn’t even particularly difficult—but it isn’t espe-

cially convenient, either. Gnuplot doesn’t offer an API or a robust method of interpro-

cess communication. Gnuplot must be run as a subprocess, and all communication

has to occur via pipes (where available) or otherwise through the file system. Bidirec-

tional communication (that is, sending data back from gnuplot to the controlling pro-

cess) is particularly challenging.

TIP Before investing effort in one of the solutions sketched in the following
sections, consider whether batch operations are sufficient. In batch mode,
your program creates a file with gnuplot commands (and a heredoc contain-
ing the data) on disk and then invokes gnuplot on that file (in a subshell).
The detour through the file system effectively decouples gnuplot from your
program, which makes operations more robust and easier to debug.

In the following two sections, I demonstrate how to run gnuplot from either Perl or

Python. The master process sends some data to gnuplot (via a pipe), and gnuplot cre-

ates a graphics file on disk—this is probably the most common case. The main differ-

ences between these examples concern the way Perl and Python handle subprocesses

and have little to do with gnuplot itself. (The Python example also makes use of a

heredoc, whereas the Perl example uses the - special file.)

11.4.1 Worked example: calling gnuplot from Perl

Perl, the “duct tape of the internet,” is (still) a common choice for gluing processes

together. It lets you open a subprocess as a file handle—in the same way you’d open a

file—provided the first character in the filename is a | (pipe symbol). You can then

write anything to this file handle using print, and it will be sent to the standard input

of the subprocess. In listing 11.4, this method is used to send both commands and

data to gnuplot. The special file - is useful here, because it instructs gnuplot to read

data from standard input (see section 4.5 for more information on pseudofiles). It’s

important to close the file handle describing the subprocess explicitly when you’re

done, because Perl won’t terminate while gnuplot is still running!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


251Calling gnuplot from other programs

 

open PROC, "| /usr/bin/gnuplot " || die "Could not start gnuplot: $!";

print PROC "set xlabel 'Time'; set ylabel 'Amplitude';"

print PROC "set o 'graph.png';";

print PROC "set t pngcairo;";

print PROC "plot '-' u 1:2 t 'data' w l\n";

for( $x = 0.0; $x <= 10.0; $x += 0.1 ) {
$y = exp(-$x/5)*sin( $x );

print PROC "$x $y\n";

}
print PROC "e\n";

close PROC;

11.4.2 Worked example: calling gnuplot from Python

Listing 11.5 shows a simple Python program that uses gnuplot to create a graph. It

uses the Popen facility from the subprocess module in the standard library. The con-

structor returns an object that provides a handle to the subprocess. The script sends

commands to the subprocess via the stdin member of this handle. In contrast to the

Perl example in the previous section, this script doesn’t use the special - filename.

Instead, it creates a heredoc named $d and references it in the plot command. The

heredoc is particularly useful here, because this example involves two columns of data.

The - filename would require looping through the data twice: once for the first col-

umn and once for the second. The heredoc submits all the data to gnuplot in one fell

swoop and then provides access to it as needed. 

import subprocess

data = [ [0, 12, 25],

[1, 14, 22],
[2, 15, 23],

[3, 11, 25] ]

gnuplot = "/usr/bin/gnuplot"

gp = subprocess.Popen( gnuplot, stdin=subprocess.PIPE )

gp.stdin.write( "$d << EOD\n" )

for row in data:
for col in row:

Listing 11.4 Calling gnuplot from Perl (file: driver.pl)

Listing 11.5 Calling gnuplot from Python (file: driver.py)

Opens gnuplot as a subprocess and 
assigns it to the file handle PROC Writes gnuplot options to the file handle

Writes the name of the output file …
… and the desired terminal to the file handle

Instructs gnuplot to expect 
data to follow inline

Sends the data to the file handle

The data stream is 
terminated by the 
single letter e.Closes the file handle 

and terminates the 
gnuplot subprocess

Columns: [x, y1, y2]

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


252 CHAPTER 11 Automation, scripting, and animation

gp.stdin.write( "%f\t" % (col,) )
gp.stdin.write( "\n" )

gp.stdin.write( "EOD\n" )

gp.stdin.write( "set t pngcairo; set o 'graph.png';\n" )
gp.stdin.write( "plot $d u 1:2 w l, $d u 1:3 w l\n" )

11.4.3 Helpful hints

Using gnuplot in such a way from another program works quite well but can appear a

bit fickle at first, because you need to re-create exactly those conditions that are usu-

ally fulfilled by input coming from the interactive command-line environment. Diag-

nosing glitches in this area isn’t helped by error messages, which are intended for

interactive use. Here’s a checklist of trouble spots to look for when things don’t work

out at first:

 Commands must be separated from one another by explicit semicolons or new-

lines. A common mistake is to write code like this (also see listing 11.4):

print PROC "set key";

print PROC "set border";

The two set commands appear to be broken down onto two separate lines, but

gnuplot will see them as one consecutive string. This will work:

print PROC "set key\n";

print PROC "set border";

Instead of the newline, a semicolon could have been used as well.

 The line containing the plot command must be terminated by an explicit new-

line. Gnuplot doesn’t parse a command line until it has encountered a newline.

Because the plot command is the last command, it must end with an explicit

newline. 

 You must use an explicit using directive when using the special filename - to tell

gnuplot how to parse the incoming data stream. 

 For each occurrence of - in the plot command, there must be a separate data

stream. Gnuplot will continue to interpret incoming data as data until it has

encountered a corresponding number of end-of-file characters. (This is

another reason heredocs are probably more convenient in this situation.)

 Keep in mind that some characters in gnuplot code may have a special meaning

in a programming environment. For example, the $ character, frequently used

to indicate the value of a column in gnuplot, is also used by Perl and Unix shells.

To prevent interpretation by the programming environment, the character

needs to be protected (that is, escaped). Alternatively, you can use the column()

function, which eliminates the need for the $ character in gnuplot code. 

 Don’t forget to separate data lines from one another using newlines as well.

One final comment: when generating many graphs from the same program, it’s usually

a good idea to start gnuplot only once and use a single process instance for all the

graphs, rather than starting a separate gnuplot process for each of them. This doesn’t

WRONG: missing newline or semicolon!

RIGHT: explicit newline

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


253Calling gnuplot from other programs

matter much when you’re preparing two or three graphs, but when the number of

graphs is large, the time savings are significant. Just be sure to reset all relevant options

(and specifically the output filename) between invocations of the plot command. 

Thoughts for the design of a gnuplot access layer
If you find that you need to drive gnuplot from some other program a lot, it may be
worth investing in an access layer. A quick internet search will turn up several gnuplot
wrappers for a variety of languages. Most of them attempt to replicate gnuplot’s set
of commands and options as an API in the host language. This approach is funda-
mentally mistaken in my opinion, because whenever new features are added to gnu-
plot or existing ones change, the access layer is no longer up to date.

Instead, I recommend building an access layer in the spirit of the thin database wrap-
pers that exist in all common programming languages for interfacing to relational
databases. They don’t try to replicate SQL in the host language; they merely provide
a way to submit well-formed SQL to the database and to move data back and forth.

I think such an access layer needs to have only three basic functions:

 open()—Starts the subprocess, and maintains a handle to it. This function
hides all the messy details.

 exec()—Takes a string (or an array of strings), and sends them to gnuplot.
It’s the user’s responsibility to make sure the strings contain valid gnuplot
commands, but the access layer may apply safeguards against common over-
sights, such as ensuring that each command is terminated with a semicolon
or a newline. 

 data()—Takes the identifier for a heredoc (such as "$d") and a two-
dimensional data structure in the host language. It turns the data structure
into a sequence of strings, each corresponding to one line in the data “file,”
and then sends commands to gnuplot that create a heredoc under the given
name, containing the supplied data. Subsequent plot commands can then
reference this heredoc by its identifier. 

The primary idea is to play on the strengths of the host language as much as possi-
ble, rather than try to replicate gnuplot’s command set. For example, the user should
be able to build up a native data structure and manipulate it in the host language—
only at the last moment does the access layer turn it into strings that can be passed
to gnuplot as a “data file.” The heredoc facility comes in handy, because it means
data needs to be submitted to gnuplot only once.

These are just considerations that you might find useful if you’re designing an access
layer for gnuplot. Because every language is different, it doesn’t make sense to pro-
vide a skeleton implementation here: in particular, what is considered the most suit-
able “native” data structure is likely to differ so much from one host language to the
next that little can be said in general. Also keep in mind that getting the edge cases
right will require a disproportionate amount of effort (this is especially true for the
serialization of the data structure into strings). A one-off, specialized implementation
that takes the specifics of the intended usage into account may be able to skirt some
of these issues.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


254 CHAPTER 11 Automation, scripting, and animation

 

11.5 Animations

All the facilities you’ve encountered in this chapter support automation in some form:

events occurring without human intervention. You can take this a step further and

think about a series of graphs being created, by themselves, in sequence. In other

words, you have all the ingredients for animation: moving pictures. 

11.5.1 Introducing a delay

To achieve satisfactory animation, you’ll need one additional feature: a controlled delay

between successive figures. This is where the pause command comes in. The pause

command takes the number of seconds to wait (-1 waits until a carriage return is

encountered or—if mousing is enabled—a mouse click has occurred) and an optional

string argument, which is printed to the command window to prompt the user:

pause {int:seconds} [ "{str:message}" ] 

The pause command is usually used in conjunction with one of the loop constructs.5

For a first example, let’s go back to the Taylor series example from section 11.1.3 ear-

lier in this chapter. Using pause, you can create an animated version of this example:

f(x,n) = sum[k=1:n] (-1)**(k-1)*x**(2*k-1)/(2*k-1)!

do for[n=1:8] {

plot [-8:8][-1.2:1.2] sin(x) lw 2, f(x,n) t sprintf("%d Terms",n)
pause 2

}

This plots a new graph every two seconds, each one representing a better approxima-

tion than the one before. (Try it yourself—there’s no point showing a static graph of

an animated effect.) 

 

5 In previous gnuplot versions, the same effect was achieved using the reread command. When included in a
command file, reread instructs gnuplot to begin executing the current file from the beginning, resulting in
an infinite loop.

(continued)

Finally, be aware of the false sense of security that such an access layer instills. A
proper API lets you detect and recover from error conditions in the encapsulated
code (by throwing exceptions or returning error codes). This isn’t true for gnuplot,
because gnuplot has no way of notifying you when things go wrong: it just spews
(human-readable) error messages to standard error. It’s difficult to respond program-
matically to that.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


255Animations

11.5.2 Waiting for a user event

A second form of the pause command waits until a specific user event has occurred:

pause mouse [ {eventmask} ] [ "{str:message}" ] 

The event mask can contain any combination of the following keywords, separated by

commas: keypress, button1, button2, button3, close (meaning the plot window was

closed), and any. If pause was terminated through a keyboard event, the ASCII value

of the selected key is stored in the gnuplot variable MOUSE_KEY and the corresponding

character in the variable MOUSE_CHAR. If a mouse event occurred, the mouse coordi-

nates are stored in the variables MOUSE_X, MOUSE_Y or MOUSE_X2, MOUSE_Y2, respec-

tively, and are available for further processing. The command pause mouse (without

an event mask) is equivalent to pause -1. 

11.5.3 Further examples

Some of the most striking applications of animations involve three-dimensional

graphics. We’ll discuss these in detail in appendix C and appendix F, but I want to give

two quick demos here (see listings 11.6 and 11.7).6

 The logic of both listings is straightforward: a parameter-dependent graph is con-

tinuously re-created in a while loop. Because the parameter is slowly changed at the

same time, no two successive graphs are exactly equal, giving the appearance of a

smooth change.

 It’s essential to include a delay in the loop (using pause) and to provide an explicit

break condition for the loop—gnuplot doesn’t recover gracefully if the loop is stopped

using Ctrl-C. You can stop the animations in the example scripts by pressing the X key

on your keyboard (we’ll formally introduce the bind command in chapter 12). 

TIP Always include an explicit break condition. Gnuplot doesn’t recover if
the loop isn’t stopped cleanly.

unset key; unset border; unset tics

bind "x" "end=1"

end = 0; t = 0
while( end==0 ) {

t = t + 0.1

splot [][][-1:1] exp(-0.2*sqrt(x**2+y**2))*cos(sqrt(x**2+y**2) - t)
pause 0.001

}

6 The file world_110m.txt required by the second listing can be found at www.gnuplotting.org/plotting-the-
world-revisited/.

Listing 11.6 Animation demo (file: pebble.gp)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.gnuplotting.org/plotting-the-world-revisited/
http://www.gnuplotting.org/plotting-the-world-revisited/
http://www.it-ebooks.info/


256 CHAPTER 11 Automation, scripting, and animation

For another stunning example of what is possible using gnuplot animations, check out

the demo/games directory of the gnuplot distribution. There you’ll find, among other

things, a rather addictive implementation of a Tetris-like game—entirely in gnuplot!

unset key; unset border; unset tics

set hidden3d

set mapping spherical; set angles degrees

set parametric; set urange [-90:90]; set vrange [0:360]

bind "x" "end=1"

end = 0; t = 0

while( end==0 ) {

t = (t + 1)%360

set view 90-30*cos(t), 360-t, 1.5, 1.25

splot cos(u)*cos(v),-cos(u)*sin(v),sin(u) w l lc rgb "grey", \

             "world_110m.txt" w l lt 1

pause 0.01
}

11.6 Case study: continuously monitoring a live data stream

Monitoring a live stream7 means animated figures that are continuously changing as

they’re being updated with newly arriving data. This isn’t a situation that gnuplot was

designed for, but—as it turns out—gnuplot can handle it quite gracefully. 

 In this section, I’ll present several different approaches to this problem. We’ll start

with a very basic, ad hoc solution; the final solution is more involved and can be

regarded as the beginnings of a production-level, real-time monitoring system that uses

gnuplot as its graphics back end. Some of the initial ideas use Unix tools for simplicity,

but the final solution is fully general and can, in principle, be adapted to any platform.

11.6.1 Using gnuplot to monitor a file

First, let’s assume that you would like to monitor the tail end of a log file. Messages are

appended to the log file asynchronously by some other process (or processes). For

demonstration purposes, let’s assume that each log entry consists of a timestamp fol-

lowed by the actual value. The goal is to have a constantly updated plot of the last few

entries in the log file.

 The minimal gnuplot script to achieve this goal is just a few lines long:

while( 1 ) {

plot "< tail -200 logfile" u 0:2 w lp
pause 0.1

}

Listing 11.7 Animation demo (file: globe.gp)

7 This section was partially inspired by the blog post “Visualize real-time data streams with Gnuplot” by
Thanassis Tsiodras. You can find it at http://mng.bz/N3kJ.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://mng.bz/N3kJ
http://www.it-ebooks.info/


257Case study: continuously monitoring a live data stream

The script consists of an infinite loop, which is executed 10 times per second (pause

0.1). The plot command uses the Unix tail facility to extract the last 200 lines from

the log file. The output from tail is piped directly to gnuplot, without accessing the file

system. The pseudocolumn 0 (that is, the line number in the actual data set) is used for

the x coordinate. (See chapter 4 for information on pseudofiles and pseudocolumns.) 

 This works quite well, although the result isn’t very pretty (we’ll remedy this

next). But as a minimal-effort solution, this script can’t be beat. It should be commit-

ted to memory for all situations where you have an ad hoc need for real-time moni-

toring of data.

A DATA GENERATOR FOR TESTING

If you want to try the solutions described in this section and you don’t have access to a

live data stream, you may find the script in listing 11.8 helpful. It generates data at ran-

dom intervals; you must specify the average time between write events as a command-

line parameter. So, to have the script generate about 10 events per second, you call it

like this (depending on your needs, you may want to redirect the generator’s output

to a file):

shell> python -u datagen.py 0.1

The -u option forces Python to use unbuffered I/O. This is important in this applica-

tion, because you’re interested in seeing real-time data. Don’t forget. The generated

“data” here is a sine wave. The script writes out about 20 points per period of the sine,

regardless of the specified wait time between write events.

import sys

import time
import math

import random

tmax = float( sys.argv[1] )

t = 0

while 1:

dt = random.uniform( 0, 2.0*tmax )
time.sleep(dt)

t += dt

print t, math.sin(0.1*math.pi*t/tmax)

A BETTER MONITOR

Let’s improve the monitoring script given earlier. The data does contain timestamps,

but so far, they’re ignored. The graph therefore gives the impression that log entries

are equally spaced in time—which isn’t true.

 But if you try using the timestamp as the x coordinate, the visual effect is unsatis-

factory. The reason has to do with the way gnuplot handles the plot range: unless

instructed otherwise, it makes sure all data points are included, and it extends the plot

Listing 11.8 A random data generator (file: datagen.py)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


258 CHAPTER 11 Automation, scripting, and animation

range to the next tic mark. But because data points occur asynchronously (at random

times), the range of seconds spanned by the points in the sample changes as new

points are added and old points are removed. This constant change in the plot range

leads to the undesirable “flicker” effect. The following script uses a fixed plot range to

avoid this problem.

logname = "logfile"

tmplen = 200

tmpname = "tmp"

bind "x" "end=1"

end = 0

while( end==0 ) {
system sprintf( "tail -%d %s > %s", tmplen, logname, tmpname )

stats [*:*][*:*] "tmp" u 1:2 nooutput

set xrange [STATS_max_x-11.0:STATS_max_x+1]
plot "tmp" u 1:2 w lp

pause .01

}

The first few lines of the script are used to configure the script to local conditions: you

must supply the name of the log file to monitor, as well as the name of a temporary file

and the number of records that will be saved to it. (We’ll come back to the latter

parameter later.) The script then invokes the Unix tail utility via gnuplot’s system

command to dump the configured number of data points from the end of the log file

into a temporary file. The stats command is used to determine the value of the last

(most recent) timestamp in this temporary file. The set xrange command then

chooses a fixed plot range that is based on this value: the plot range extends 1 second

into the future and 11 seconds into the past, measured from the last entry in the tem-

porary file. (That the upper limit of the plot range isn’t made to coincide with the

largest data point is sheerly for visual effect. Try it both ways: personally, I find it help-

ful to see explicitly where the available data ends.) The range indicators on the stats

command are important: without them, stats would discard data outside the plot

range and hence fail to reflect changes to the input file. 

 The result works quite well in practice. (Try it!) Here are a few additional ideas you

may want to explore:

 The script contains three adjustable parameters: the wait time in the pause

command, the number of lines that tail extracts, and the size of the plot range

in seconds. All three should depend on the frequency with which entries are

added to the log file. Begin by deciding how many previous seconds you want to

see in the graph. If you know at what rate new lines are appended to the log file,

you can figure out how many records you need to extract. The wait time in

pause should be smaller (by a factor of 2–10) than the time between log-file

updates to ensure smooth animation, but keep in mind that reducing this num-

ber drives up resource consumption. 

Listing 11.9 A real-time data monitor (file: monitor.gp)

Name of the log file to monitor
Number of records to save to a temporary file
Name of the temporary file

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


259Case study: continuously monitoring a live data stream

 Listing 11.9 uses the Unix tail command to extract a certain number of

records from the log file to a temporary file, which is then read by both stats

and plot. Both the tail command and the temporary file are optional: in prin-

ciple, you could rely entirely on the plot range to restrict the data and run both

stats and plot directly on the log file. But if the log file is long (and what log

file is ever short?), then the tail command is likely to be faster and less

resource-intensive than gnuplot’s own (and very complex) data-file parser

(which is invoked by both stats and plot). Furthermore, by creating a tempo-

rary file, it’s guaranteed that both stats and plot see exactly the same data: if

you let both commands run on the log file in sequence, you introduce a possi-

ble race condition wherein the log file is being updated between the two com-

mands. You decide whether any of these precautions are necessary or desirable

in your situation!

11.6.2 Using a driver to monitor arbitrary data sources

The solution in the previous section is nice because it’s implemented entirely using

gnuplot’s own facilities. But it also has some drawbacks:

 It’s a polling solution. Gnuplot polls its input source constantly, whether there is

new data or not. As a rule, polling architectures are more resource-intensive

than other solutions.

 It’s not flexible, because any processing of the data would have to be accom-

plished using gnuplot’s limited scripting capabilities.

The approach presented in this section is different, because it relies on an intermedi-

ate layer, written in a general-purpose programming language (Python, in this case,

but it could, of course, be anything). The script in listing 11.10 acts as a filter : it gathers

data from standard input and passes it on to gnuplot only if new data is available. It

therefore implements a “push” model, rather than the “pull” model of the previous

solutions. The script also acts as a buffer, storing the most recent set of points and pass-

ing the points to gnuplot. This is necessary because now the file system is skipped

entirely, and gnuplot itself doesn’t retain data between plots.

import sys

import subprocess

buflen = 200

gnuplot = "/usr/bin/gnuplot"

gp = subprocess.Popen( gnuplot, stdin=subprocess.PIPE )
gp.stdin.write( "set t wxt\n" )

buf = []

while 1:
line = sys.stdin.readline()

Listing 11.10 A data monitor in Python (file: monitor.py)

Number of data points to buffer

Reads unbuffered from standard input

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


260 CHAPTER 11 Automation, scripting, and animation

t, u = line.strip().split()
buf.append( (float(t), float(u)) )

buf = buf[-buflen:]

mx = buf[-1][0]
gp.stdin.write( "set xrange [%f:%f]\n" % ( mx-10, mx+1 ) )

gp.stdin.write( "plot '-' u 1:2 w lp\n" )

for d in buf:
gp.stdin.write( "%f %f\n" % d )

gp.stdin.write( "e\n" )

The script runs gnuplot as a subprocess and communicates with gnuplot by writing to

gnuplot’s standard input via a pipe. The script reads incoming data from its own stan-

dard input (not from a file), splits and parses the intake, and pushes it onto a buffer,

before passing it on to gnuplot. In this case, there is no need for gnuplot’s stats com-

mand, because the determination of the plot range is now done in the Python script. 

 The script is straightforward. Only two Python-specific implementation details

require comment:

 To achieve real-time behavior, all input and output must be unbuffered. This is

the reason the script uses sys.stdin.readline() in a while loop, instead of

the more familiar idiom for line in sys.stdin:. Also, make sure to run this

script using Python’s -u command-line option. 

 The line buf = buf[-buflen:] retains the last buflen elements in the array. If

the array contains fewer than buflen elements, then all of them are retained. 

It should be clear that listing 11.10 is only the beginning. Not only are all features

missing that would make the program more robust (error-handling, and so on), but

the function of the script could be extended in many ways:

 Observe and combine multiple input sources. The script in listing 11.10 listens

to its own standard input—instead, it could keep tabs on a range of different

log files, combine data from all of them, and generate a unified status plot.

 Conversely, split a single, heterogeneous input source into multiple data

streams, and maintain several gnuplot processes, each of which is used to plot

only a single output channel.

 Statistically manipulate the data, remove outliers, and identify trends. The

results of a predictive model could be combined with the raw output so that

both can be plotted together and compared easily.

 Make any other modifications you can think of …

The options are endless but have little to do with our primary topic, which is gnuplot.

Listing 11.10 is only intended to get you started. 

Drops the oldest data 
points, retaining at 
most buflen pointsMost recent

timestamp

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


261Summary

11.7 Summary

In this chapter, you learned about ways to automate gnuplot tasks. Gnuplot provides

some programming constructs, such as loops and conditionals, but for more compli-

cated tasks, it may be more convenient to “drive” gnuplot from an external program-

ming language as a subprocess.

 Another way to automate tasks is to capture all the required gnuplot commands in

scripts that can be run by themselves, as batch processes, or even as part of Unix pipe-

lines. In chapter 12, you’ll learn about additional uses for script files.

 Gnuplot’s automation capabilities enable the creation of animated graphics. We

demonstrated the basic principles and then used them in a particularly interesting

application: the real-time monitoring of a live data stream.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


262

Beyond the defaults:
workflow and styles

Overall, gnuplot’s defaults are pretty good—so good, in fact, that it’s easy to forget

that they aren’t set in stone, and that there may be good reasons for changing

them. This applies not only to the visual appearance of plots, but also to the way

you interact with gnuplot.

 In this chapter, we’ll explore some ways to customize your gnuplot experience.

First, we’ll consider workflow alternatives: ways to organize your interaction with

gnuplot beyond the regular, interactive session. We’ll discuss various shortcuts and

conveniences, along with the possibility of using an external editor for authoring

gnuplot command files rather than typing in commands interactively at the gnu-

plot prompt. Next come various topics that are more typically associated with user

This chapter covers

 The standard workflow and some variations

 Using external editors and viewers

 Hotkeys and mousing

 Configuring your workspace

 Defining and using stylesheets

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


263The standard interactive workflow

customization: custom key (and mouse) bindings, and the definition of private option

settings and configurations.

 Finally, I’ll introduce the idea of stylesheets : collections of appearance options for

lines and points that can be applied to graphs to give them a different appearance. In

particular, defining and choosing stylesheets judiciously makes it possible to create

graphs with a specific purpose in mind, be it a computer screen, a black-and-white

publication, or an overhead presentation. 

12.1 The standard interactive workflow

Gnuplot was originally conceived as an interactive tool, and this is still the most natu-

ral way to use it: you start an interactive session, enter commands at the gnuplot

prompt, examine the resulting graph, and iterate. Frequently, such an interactive ses-

sion results in a saved command file that can be used to re-create the final state, as

well as a final graph, exported in some graphics file format. This section reviews some

ideas for improving this straightforward workflow.

12.1.1 Extracting specifics from command files

I’ve pointed out several times before that it isn’t enough to just export the final graph

as a PNG or PDF—it’s crucial to also save the final set of options (using save). Only

then can you re-create the graph in gnuplot to examine it again, to modify an aspect,

or to update it with new data.

 The files that the save command generates are long: they contain the values of all

of gnuplot’s options,1 as well as all user-defined functions and variables. Most of this

information is redundant: options are written to file even if they still have their default

values. The advantage is, of course, that the resulting file is guaranteed to be self-

contained. But the information that is specific to the current graph is hard to discern.

 You can recover the plot-specific information by comparing the saved file against a

file that contains only default values. This baseline file can be obtained by starting gnu-

plot and—without doing anything else—issuing a save command.

 Because the file format of gnuplot’s command files is so simple (line-oriented text

files, with one command or option per line), it’s easy to write a short program in your

language of choice to compare the two files.2 Wherever the GNU diff utility is avail-

able, it can be used to good effect as well (the cryptic command-line options instruct

diff to print only lines that are new or different in the second file):

shell> diff --new-line-format="%L" --old-line-format=""

➥ --unchanged-line-format="" default.gp graph.gp

The resulting file is short and neat, but it’s less self-contained than the original file was,

because it doesn’t contain a complete set of options. If the shortened file is loaded into

1 With three exceptions: the set output, set terminal, and set linetype settings.
2 For example, you can find one such program among the contributed scripts on the gnuplot homepage at

www.gnuplot.info.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.gnuplot.info
http://www.it-ebooks.info/


264 CHAPTER 12 Beyond the defaults: workflow and styles

a gnuplot session that’s configured differently from the baseline file, the resulting

graph will be different than the original. Also, if gnuplot’s defaults change, the graph

created by the shortened file will be affected. This is something to be aware of. 

12.1.2 Extending the command set

Sometimes it takes several gnuplot commands to achieve a common task (exporting

to file, for instance), sometimes the syntax is awkward and hard to remember (setting

up a palette for false-color plots), and sometimes both (time-series scaling for the x

axis). It would be nice if we could define our own commands to take the drudgery out

of it. There are basically two mechanisms available:

 Build up a string of commands, and execute it using eval (see section 5.2.2).

 Capture commands in a command file, and run it using either load or call

(see section 11.2.1).

These methods are almost equivalent—the main difference between them lies in the

way they’re called. Let’s look at some examples. (Either method can also be bound to

a hotkey—see section 12.4.3 later in this chapter.) 

USING SCRIPTLETS

It’s important to remember that command files don’t need to be complete: a com-

mand file that only defines some functions or sets some options is perfectly legitimate

and often useful. Listings 12.1 and 12.2 show two examples that do just that: listing

12.1 defines two distributions that I frequently need in my work; and listing 12.2

switches on time-series mode, using a specific timestamp format. The real benefit of

the latter example is that I don’t need to remember the conversion specifiers! (I can

never remember whether it’s minutes or months that go with an uppercase M as

opposed to a lowercase one.)

 You can also collect style definitions and appearance options (line widths and col-

ors) together to form stylesheets. This idea is so important that it’s given its own section

(section 12.6) later in this chapter.

 Gnuplot looks for scripts invoked with load or call first in the current working

directory and then in the directories listed in the loadpath option.3 The loadpath

option can be set using set loadpath; if the GNUPLOT_LIB environment variable is set,

its contents are appended to loadpath (see section 12.5.1). It’s therefore possible to

create a library of useful scripts in a personal collection.   

sqrt2pi = sqrt(2.0*pi)

gauss(x,m,s) = exp(-0.5*((x-m)/s)**2)/(sqrt2pi*s)
lognorm(x,m,s) = exp(-0.5*((log(x)-m)/s)**2)/(sqrt2pi*x*s)

3 Gnuplot uses loadpath for scripts and also for data: it searches first in the current directory and then in the
directories listed in loadpath for data files named in calls to plot or splot.

Listing 12.1 Scriptlet defining common functions (file: normdist.gp)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


265The standard interactive workflow

set xdata time

set xtics format "%T"

set timefmt "%H:%M:%S"

USING EVAL

Strings containing valid gnuplot commands can be executed using eval. Further-

more, you can build up strings dynamically for a specific purpose or—even better—

write functions to do this for you.

 Here’s a simple example. Switching to polar mode usually requires several com-

mands (see section F.2.1). Combining them all into one string, you can achieve the

same effect with a single call:

polar = "set polar; set size sq; unset border; unset tics; set rtics; \
set grid polar; set key outside"

Now, eval polar will not only turn on polar mode, but also set up suitable appearance

options.

 Switching on time-series mode can be accomplished in a similar fashion. If the fol-

lowing strings exist in the current gnuplot session

times = "set xdata time; set xtics format '%T'; set timefmt '%H:%M:%S'"

dates = "set xdata time; set xtics format '%F'; set timefmt '%Y-%m-%d'"

then time-series mode can be turned on by using eval times or eval dates. (Of

course, the format of the timestamps in the input file must match the format specified

in these strings.)

 Finally, and as an example of a function that generates a string dynamically, con-

sider again the export function introduced in section 5.2.2 (see listing 12.3). It gen-

erates a string that—when executed using eval—exports a graph, using a user-

supplied filename and terminal. The function can be called directly from within the

eval command:

eval export( "graph.pdf", "pdfcairo" )  

export( file, terminal ) = sprintf(

➥ "set t push; set t %s; set o '%s'; replot; set o; set t pop",

➥ terminal, file )

ADDITIONAL CONSIDERATIONS

On startup, gnuplot reads an initialization file (see section 12.5.1), and it may seem

natural to place as many definitions as possible in this file so they’re always available.

Over time, I’ve moved away from this approach and instead suggest that you use many

Listing 12.2 Scriptlet to activate time-series mode (file: timeseries-mode.gp)

Listing 12.3 A function that generates a command string dynamically (file: export.gp)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


266 CHAPTER 12 Beyond the defaults: workflow and styles

smaller files, each containing only closely related definitions that can be loaded as

needed; this way, you avoid polluting the gnuplot session with all kinds of rarely used

functionality.

 This highlights one of the main differences between scriptlets and dynamically

evaluated strings. The strings (or functions that generate them given a set of argu-

ments) must exist in the gnuplot session, whereas scriptlets don’t. Furthermore, any-

thing that lives in the gnuplot session may be overwritten at any time and without

warning; scriptlets, by contrast, offer a degree of encapsulation.

 Finally, you can bind either scriptlets or strings to be evaluated with eval to key-

board events. In that case, pressing the appropriate key invokes the desired action.

(We’ll discuss this later in this chapter, in section 12.4.3.) 

12.1.3 Session variables, loops, and macros

Don’t forget that it’s often possible to streamline your workflow using the techniques

introduced in chapter 5: session variables, string macros, and inline loops. Inline

loops don’t need any further explanation (you’ve seen plenty of examples), but here

are some ideas for using session variables and macros.

USING VARIABLES

Imagine that you want to work with a data set that’s in a file with an inconveniently

long filename (possibly not even in the current directory). Assigning the name to a

variable helps to keep command lines much shorter:

FILE = "../path/to/directory/long-and-painful-filename.dat"

stats FILE u 2 nooutput
plot FILE u 1:($2/STATS_mean) w lp

Another possibility is to assign just the base name of the file to a variable, and add

extensions on the fly:

BASE = "long-and-painful-filename"

plot BASE . ".dat" u 1:2

save BASE . ".gp"

set terminal pdfcairo

set output BASE . ".pdf"

replot

You get the idea. 

USING MACROS

Macros are another way to shorten command lines (see section 5.2). Imagine that you

want to plot several files using the with xyerrorbars style. That style requires six col-

umns to be named in the using clause. A macro may come in handy:

cols = "using 1:2:3:4:5:6"
plot "data1" @cols w xyerrorbars, "data2" @cols w xyerrobars

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


267Using external editors and viewers

In fact, you could make with xyerrorbars part of the macro! Macros can also help

straighten out complicated inline transformations:

trsf = "using ($1-$2/$3):(sqrt((abs($4-$5)/$6)))"

plot "data1" @trsf, "data2" @trsf

A third idea is to use macros to shorten appearance options, in particular colors (see

section 9.1). Compare this command

plot "data" u 1:2 lc rgb "red", "" u 1:3 lc rgb "green",

➥ "" u 1:4 lc rgb "blue"

with this:

r = "lc rgb 'red'"
g = "lc rgb 'green'"

b = "lc rgb 'blue'"

plot "data" u 1:2 @r, "" u 1:3 @g, "" u 1:4 @b

Defining line styles is an alternative, of course. 

12.2 Using external editors and viewers

In everything so far, I’ve assumed that you’re using gnuplot interactively: that you

started gnuplot and are typing commands at gnuplot’s own command prompt and that

you view the generated plots in one of gnuplot’s interactive terminals (such as the wxt

or qt terminal). But it turns out there are other ways to interact with gnuplot, even for

interactive, non-batch work. (Batch-oriented operations are treated in chapter 11.) 

 Rather than entering commands at gnuplot’s prompt, you may find it convenient

to use your favorite text editor to type commands into a command file and then let

gnuplot run this file as a script. One way to do this is to run an interactive gnuplot ses-

sion in another window.4 You then load the script using load and examine the graph

in one of the interactive terminals. 

 Alternatively, you may choose to work with one of the file-based terminals and

export graphs in PNG or PDF format directly. If you do this, you need to specify the

output terminal and filename in your script before the plot command:

set terminal pdfcairo

set output "graph.pdf"

plot sin(x)

Now you don’t even need to start an interactive session. Instead, you run gnuplot at the

shell prompt, giving the name of your script as a command-line argument to gnuplot

shell> gnuplot script.gp

4 Depending on your text editor, you may not even need a separate window. If you use Emacs, for instance, an
internet search will turn up not one, but two gnuplot modes that let you run gnuplot from within your Emacs
window.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


268 CHAPTER 12 Beyond the defaults: workflow and styles

and view the resulting graph in a separate viewer (such as okular or evince). Modern

viewers usually detect when the file they’re displaying changes on disk; they automati-

cally reload and redisplay the graph after you change your script and run gnuplot

again, leading to a comfortable workflow experience.

 Alternatively, you can load the command file into a gnuplot session using load, but

in this case your script must contain the command set output after the plot com-

mand to ensure that all output buffers are flushed. Running gnuplot from the shell

prompt avoids this need: the gnuplot process terminates after completion of the

script, and that forces all open files to be flushed. 

 Using an external editor (and, possibly, an external viewer) has some advantages

compared to running gnuplot in an interactive session:

 All commands and option values are simultaneously visible in the command

file.

 Editing may be more convenient in a proper editor.

 You can never forget to save your commands (not just your graph).

 For file-based formats, there can be no discrepancy between the appearance of

the graph during the interactive session and the final graph saved to disk. (This

can be a problem when you prepare a graph using an interactive terminal but

then export the final version as PNG or PDF.)

 Because multiplot mode (see section E.1) doesn’t permit you to change the

output and terminal settings, the command-file-based approach is the only

practical way to create a multiplot graph.

The primary disadvantage of using an external editor is the need to run a separate

window (which can be mitigated if a gnuplot plug-in is available for your editor).

When using file-based output formats and external viewers, you lose the ability to

interact with the graph using the mouse—which often doesn’t matter but can be pain-

ful at times.

TIP Consider using an external editor and viewer. You might like it!

12.3 Invoking shell commands from gnuplot

Gnuplot can’t do everything alone. It’s occasionally useful to invoke other programs

within a gnuplot session. There are four ways to do this:

 The system command executes a command in a subshell, directing its output

to the interactive gnuplot terminal. For example, you can list the contents of

the current directory with system "ls". 

 The system() function is similar to the system command. It takes a command

as argument, executes it as a subprocess, and returns its output as a string (in

contrast to the system command, which always directs any output from the sub-

process to the interactive terminal). 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


269Hotkeys and mousing

 Backticks or back quotes (decimal ASCII code 96—typically bound to the left-

most key in the top row on the keyboard) may be familiar from Perl and some

Unix shells. The command in back quotes is executed, and its output replaces

the back-quoted text (including the back quotes). Back-quote substitution can

be used anywhere except inside single-quoted strings. 

 The shell command suspends the current gnuplot session and starts an inter-

active shell. Quitting the shell (typically by typing exit or pressing Ctrl-D)

resumes the gnuplot session. (The shell command is somewhat of a legacy

from days before windowing systems—today, we’re more likely to pop up a shell

in another terminal window, rather than suspend the process in the current

window.) 

In general, the system() function is more versatile than backticks and is the preferred

way to capture output from a subprocess. But backticks have the advantage that they

can occur inside double-quoted strings, whereas the output from the system() func-

tion must be concatenated explicitly to the string. In other words, the following two

commands are equivalent:

set label 1 "Today: `date`" at 0,0
set label 2 "Today: " . system( "date" ) at 0,1

For simple string substitutions such as these, backticks can be a convenient shorthand.

For more complicated operations, the system() function is the better choice. 

12.3.1 Worked example: plotting each file in a directory

Shell commands can be combined with loops. To plot every file in the current direc-

tory, either of the following two commands will work:

files = system( "ls" )

plot for[f in files] f u 1:2

plot for[f in "`ls`"] f u 1:2

12.4 Hotkeys and mousing

When you issue a plot command, gnuplot pops up a new window containing the plot

(assuming, of course, that you’re working with one of the interactive terminals and

not currently exporting graphs to file). The new window containing the graph is auto-

matically raised or active.

 When a graphics window is active like this, you can invoke gnuplot commands

through keyboard shortcuts or mouse clicks. In this section, we look at some of the

default bindings provided by gnuplot, and also see how to define custom keyboard or

mouse shortcuts.

Uses the system() function

Uses backticks

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


270 CHAPTER 12 Beyond the defaults: workflow and styles

12.4.1 Default hotkeys

Pressing the space bar when the plot window is active raises the gnuplot command

window. This is convenient when you’re doing interactive work: you can iteratively

continue working on a single graph without ever having to take your hands off the

keyboard!

 Grid lines can be toggled on or off through the hotkey g. Logarithmic plotting is

bound to l (y axis only) and L (in this case, gnuplot scales only the axis closest to the

mouse pointer logarithmically). The + and - keys can be used to zoom in and out of

the plot. Pressing q closes the current plot window.

 These and some other interesting default bindings are listed in table 12.1. You can

get a display of all currently defined key bindings by pressing h while the plot window

is active.

 I don’t find most of the default bindings all that useful (and some are outright

annoying), but custom hotkeys (see section 12.4.3) can be very useful indeed.

12.4.2 Mousing

In interactive terminals, you can use the mouse to navigate the graph. By default,

mouse actions should be enabled, but in case they aren’t, you can enable them using

the command

set mouse

When the mouse is active, the current coordinates are always displayed at the bottom

of the plot window. You can place a temporary crosshair at the current mouse position

Table 12.1 Selected default hotkey bindings

Key Function

Space bar Raises the command window and switches keyboard focus to it

q Closes the current plot window

g Toggles grid lines on the plot

r Toggles the crosshair (ruler) at the current mouse position

l (lowercase letter L) Toggles logarithmic scaling for the y axis

L Toggles logarithmic scaling for the axis closest to the mouse pointer

+ Zooms in

- Zooms out

u Unzooms (after zooming using the mouse)

h Help: shows all key bindings

Arrow keys Scrolls the graph in the indicated direction 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


271Hotkeys and mousing

by pressing the r key. Pressing r again switches off the crosshair. While the crosshair is

active, its location and the relative distance of the mouse pointer from the crosshair

coordinate are shown in the plot window, together with the absolute coordinates of

the mouse pointer. 

 You can use the mouse to zoom in on a graph by dragging the mouse while hold-

ing mouse button 3 (often the right mouse button). Click into the graph with mouse

button 3, drag while holding the button down, and then click with mouse button 1 to

replot only the section of the graph in the indicated region. Press u (unzoom) to

return to the previous setting. When you use the mouse to set the plot range in this

way, both the x and the y range are fixed according to the mouse coordinates (in par-

ticular, the y range is no longer autoscaled).

 There are other ways to use the mouse in current interactive terminals. For exam-

ple, clicking a key entry toggles the corresponding curve in the graph on or off.5 The

set mouse command takes some additional options that mostly control the display for-

mat of the mouse coordinates in the plot window. Check the standard gnuplot refer-

ence for details. 

12.4.3 Custom hotkeys

The standard hotkey bindings are nothing to write home about, and neither is the

default mouse behavior. But you can also define your own hotkey and mouse bind-

ings, and that allows for some exciting possibilities.

 The bind command is the essential facility to do this. It’s used to bind gnuplot

commands to key strokes or mouse clicks. Here’s a trivial example:

bind "r" "replot"

This binds the r key to the replot command. Now, pressing the r key (while the plot

window has focus) will redraw the most recent plot.

THE BIND COMMAND IN DETAIL

The bind command takes two string arguments: the key (possibly in combination with

one or several of the control keys) and the command to be executed (when invoked

without arguments, bind shows all currently defined bindings): 

bind

bind [allwindows] "{str:keys}" "{str:command}"

You can bind commands to special keys—see table 12.2 for the symbolic names of

some function keys you may want to know, and see the standard gnuplot reference

documentation for the bind command for the complete list.

5 This feature is new with gnuplot 5.

Shows current bindings

Defines a new binding

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


272 CHAPTER 12 Beyond the defaults: workflow and styles

    

Usually, the commands bound to the hotkeys are executed only if the plot window has

keyboard focus ; hotkeys don’t apply when the command window has focus. This behav-

ior can be overridden by the optional allwindows option to bind: if it has been given,

then the binding applies to all plot windows, active or not. In this case, the variable

MOUSE_KEY_WINDOW is set to the ID of the window generating the event. 

 Here are some additional points to watch out for:

 Neither the space bar nor the q key can be rebound from its default settings.

 Only mouse button 1 can be bound.

 Running bind without arguments displays a list of current bindings. So does

show bind or pressing the h key while the plot window has focus. 

 The command reset bind returns all key bindings to their defaults. 

WORKED EXAMPLES

Some of the custom additions to the standard command set that were discussed in sec-

tion 12.1.2  can be bound to keys. Assuming that the string variables polar, times, and

dates exist in the gnuplot session and have the values shown earlier, you can bind

them to keys, like so:

bind "F1" polar

bind "F2" times

bind "F3" dates
bind "F4" "reset session"

For convenience, I’ve bound these commands to function keys here; you can bind

them to any other key as well. The binding for F4 resets gnuplot to its state at the

beginning of the session, presumably resetting the configuration changes brought

about by any of the other keys.

 You can also bind the loading of a scriptlet to a key. In this case, the effective com-

mand is load:

bind "F5" "load 'normdist.gp'"

Table 12.2 Symbolic names of some of the function keys available

Location Name

Control keys "ctrl-", "alt-"

Main key block "Tab", "Escape", "Return"

Arrow keys "Left", "Up", "Down", "Right"

System key block "Home", "End", "PageUp", "PageDown"

Function keys "F1", …, "F12"

Window events "Button1", "Close"

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


273Hotkeys and mousing

One word of warning: if you use string variables in bind (as in the bindings for F1, F2,

and F3 in the earlier example), then the variables must contain the string to evaluate

at the time the bind command is executed (early binding). You can’t bind a key to a vari-

able first and then dynamically change the value of that variable later. 

12.4.4 Capturing mouse events

Whenever a mouse or keyboard event occurs while the graph window has focus (and

provided mousing is enabled using set mouse), gnuplot populates several variables

with information regarding the details of the most recent events. The names of these

variables all begin with the prefix MOUSE_. See table 12.3 for a complete list.

 You can use the information contained in these variables, in combination with the

bind command, to write gnuplot code that responds to user actions. In this way, it’s

possible to achieve a limited form of programmable interactivity.   

WORKED EXAMPLE

Here’s an intentionally simple example, mostly to demonstrate the principle. I’ll pres-

ent a much more interesting and useful application in the following section.

 If you execute the following command

bind "Button1" "set label at MOUSE_X, MOUSE_Y center point pt 1 ps 4; \
set label at MOUSE_X, MOUSE_Y center point pt 6 ps 3; replot"

and then click into the plot window, a point symbol is placed at the current mouse posi-

tion—for example, to draw attention to an oddity in the data. To make things a little

Table 12.3 These variables are set whenever a mouse or keyboard event occurs when a plot

window is active, provided that mousing has been enabled using set mouse.

Variable name Description

MOUSE_X x coordinate at the time of the mouse event (measured in the first 
coordinate system)

MOUSE_Y y coordinate

MOUSE_X2 x coordinate (measured in the second coordinate system)

MOUSE_Y2 y coordinate

MOUSE_BUTTON ID of the mouse button clicked (1, 2, or 3)

MOUSE_SHIFT Nonzero if the Shift key was pressed when the event occurred

MOUSE_CTRL Nonzero if the Ctrl key was pressed when the event occurred

MOUSE_ALT Nonzero if the Alt (Meta) key was pressed when the event occurred

MOUSE_KEY ASCII code of the key that was pressed

MOUSE_CHAR Character value of the key that was pressed

MOUSE_KEY_WINDOW ID of the plot window that received the event

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


274 CHAPTER 12 Beyond the defaults: workflow and styles

more interesting, it’s a symbol that gnuplot doesn’t provide as a built-in: a crosshair,

here generated from a separately drawn cross and circle. To remove the symbols, you

need to find their tags first using show label and then remove them individually with

unset label, followed by the tag. 

 This code snippet is a straightforward application of the bind command. Let me

draw your attention to the replot command at the end of the command string: this is

common practice when using bind and ensures that the result of the action is visible

immediately. You’ll see more examples of this technique in the next section. 

12.4.5 Case study: placing arrows and labels with the mouse

Truth be told, I don’t find most key bindings terribly useful: the whole purpose of

gnuplot is graphs, and I want to interact with them using the mouse, not the keyboard

(for a stunning exception to this rule, see section D.7). Fortunately, the bind com-

mand can be used to create some special mouse bindings as well. 

 Wouldn’t it be nice if you could place arrows and labels onto the graph with the

mouse: just point and click? Turns out you can. Here are some ideas.

LABELS

The problem with placing labels is that there isn’t a way to prompt the user for the

text of the label. Hence, you must rely on the user to prepopulate an agreed-on vari-

able, or you must rely on the user to call an appropriate function later.

 The following snippet follows the former approach:

bind "ctrl-Button1" 'eval sprintf( "set label %d \"%s\" at %f,%f; replot", \

labeltag, labeltext, MOUSE_X, MOUSE_Y )'

It assumes that the variables labeltext and labeltag have been populated appropri-

ately. Then, clicking into the plot while pressing the Ctrl key will place the label at the

current position of the mouse pointer.

 Two notes on implementation: in the second argument to bind, you must escape

the innermost quotation marks. Also note the replot command, which ensures that

the plot automatically updates when the mouse button is clicked. This is common

practice when using bind. 

 The next code snippet takes the other approach. You click first, and then you sup-

ply the text (note that the second string supplied to the bind command is continued

on the next line):

bind "ctrl-Button1" "label_x=MOUSE_X; label_y=MOUSE_Y; \

set label 1000 at label_x,label_y point; replot"

label( tag, text ) =

➥ sprintf( "set label %d '%s' at %f,%f; unset label 1000; replot",

➥          tag, text, label_x, label_y )

Now, if you Ctrl-click anywhere in the plot window, a point symbol is placed at the

position of the mouse cursor, to remind you to supply the label text. You do the latter

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


275Startup configurations and initialization

using the label() function, which removes the point from the graph and replaces it

with the supplied text. Don’t forget to use eval with this function:

eval label( 2, "Hello, World!" )

ARROWS

Arrows are trickier, because you need to capture two positions. The problem is that the

only accessible mouse event is the click: this means you can’t use drag-and-drop as in a

drawing program. Instead, you have to capture two clicks separately. This leads to a

problem: what if you change your mind between the first click and the second?

 Listing 12.4 shows the solution. You bind both the mouse click and the Esc key.

When the mouse key is clicked once, a temporary marker is placed on the plot; when

a second click occurs, the marker is removed and an arrow is drawn. If you change

your mind after the first click, you can press the Esc key, which removes the temporary

marker and leaves gnuplot in a clean state. Pretty cool! (Try it!)   

bind "Button1" \

"if(exists('arrow')==0) { \

arrow=1; arrow_x=MOUSE_X; arrow_y=MOUSE_Y; \
set label 1000 at arrow_x,arrow_y point; replot; \

} else { \

unset label 1000; \
set arrow from arrow_x,arrow_y to MOUSE_X, MOUSE_Y; replot; \

undefine arrow,arrow_x,arrow_y \

}"

bind "Escape" "unset label 1000; replot; undefine arrow,arrow_x,arrow_y"

A crucial element of the logic in listing 12.4 is the variable called arrow. If it exists in

the gnuplot session, then you know the first point has been selected and the tempo-

rary marker has been placed; if it doesn’t exist, then the first point has not been

selected yet. You can test for the existence of a variable with this name using the

exists() function. The reason to test for the existence of this variable (rather than

for its value) is that a test for value would result in an error if the variable hadn’t yet

been initialized. The existence test is more robust. 

TIP The snippet in listing 12.4 works extremely well. It takes all the pain out
of gnuplot’s set arrow facility. 

12.5 Startup configurations and initialization

You can pass commands and information to gnuplot on startup. All three typical ways

of initializing a program are available: initialization files, environment variables, and

command-line flags. Let’s consider them in turn.

Listing 12.4 Commands to place arrows using the mouse (file: mouse-arrows.gp)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


276 CHAPTER 12 Beyond the defaults: workflow and styles

12.5.1 Startup and initialization files

On startup, gnuplot attempts to read the file gnuplotrc from a standard location, such

as /usr/share/gnuplot/ on Linux—run show loadpath to see the configured loca-

tion. By default, this file is empty, but you can use it for customizations that should be

global to your installation.

 Gnuplot also looks for a personal initialization file, called .gnuplot on Unix (and

Mac OS) and GNUPLOT.INI on Windows. Gnuplot searches for this file first in the cur-

rent directory and then in the current user’s home directory (as defined by the corre-

sponding environment variable). Once a file has been located, searching doesn’t

continue. The file is executed (using load) before any other files or commands are

read from the command line, standard input, or an interactive terminal. In general,

settings in the initialization file override environment variables.

 You can suppress reading of both initialization files by giving the -d command-line

option when invoking gnuplot. This may be useful when you want all of gnuplot’s

internal settings to assume their default values.

WHAT TO PUT IN YOUR INITIALIZATION FILE

I recommend keeping the default initialization file relatively short, in order to prevent

pollution of the gnuplot session (and all command files subsequently saved with

save). I think it’s a better idea to group related settings in individual command files

that can be loaded as needed, and to limit the default file to only those settings that

you really want to have in effect at all times. Also keep in mind that there is only one

initialization file that is read automatically by gnuplot. With individual command files

or stylesheets (see section 12.6), you have greater control over the state of your gnu-

plot session. (You can either load them after gnuplot has started, using load, or spec-

ify them on the command line.)

 The following listing shows my personal initialization file. It’s relatively short and

contains only a handful of settings that I find generally useful. 

set encoding utf8

set samples 3000

set isosamples 30

set hidden3d

set loadpath "/home/janert/lib/gnuplot/"

load "default-style.gp"

hsv( h, s, v ) = hsv2rgb( h - floor(h), s, v )

pack( r, g, b ) = 2**16*r + 2**8*g + b

bind "Button1" \

"if(exists('arrow')==0) { \

arrow=1; arrow_x=MOUSE_X; arrow_y=MOUSE_Y; \

Listing 12.5 A typical .gnuplot initialization file (file: dot.gnuplot)

Improves the 
default settings

B

Personal library of 
gnuplot scripts

CLoads
personal

stylesheet

D

Color-management 
functionsE

F Sets arrows 
with the mouse

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


277Startup configurations and initialization

set label 1000 at arrow_x,arrow_y point; replot; \
} else { \

unset label 1000; \5

set arrow from arrow_x,arrow_y to MOUSE_X, MOUSE_Y; replot; \
undefine arrow,arrow_x,arrow_y \

}"

bind "Escape" "unset label 1000; replot; undefine arrow,arrow_x,arrow_y"

The first few lines fix instances where gnuplot’s defaults don’t work well B. I explicitly

enable UTF-8 (see the sidebar at the end of section 5.1) and increase the sampling

density for plot and splot (see sections 3.1 and C.1.2). Next, I define the path for my

local library of gnuplot scripts C and load the default style sheet directly from that

directory D. Then I define two functions for handling color (see section 9.1.1) E
and define bindings that let me set arrows with the mouse (see listing 12.4) F. That’s

it—everything else is loaded only as required. 

12.5.2 Environment variables

Gnuplot examines several environment variables (see table 12.4). Not all of them are

still important; some of them provide information for graphics terminals that are no

longer current. In general, I don’t like to rely on environment variables and instead

prefer explicit initialization in a configuration file or scriptlet.

Table 12.4 The environment variables that gnuplot reads on startup. Unless otherwise specified, the

variables have the same name on all platforms.

Name (Unix and Mac OS X)
Name (Windows, 

if different)
Description

GNUTERM Name of the terminal to be used. (Compare the 
set terminal command.)

GNUHELP Path to the online help file gnuplot.gih.

GNUPLOT_LIB Additional directories to be searched for data 
and command files. (Compare the set 

loadpath facility.)a

GDFONTPATH and 
GNUPLOT_DEFAULT_GDFONT

Search path used by terminals based on the GD 
library (PNG, GIF, and JPG) to locate font files, 
and a default font to be used with these termi-
nals, respectively.

GNUPLOT_FONTPATH Search path used by the PostScript and SVG ter-
minals to locate font files. (Compare gnuplot’s 

set fontpath facility.)a

GNUPLOT_PS_DIR Used by the PostScript terminal to locate cus-
tom prologue files.

a Path entries are separated from one another using a colon (:) on Unix and a semicolon (;) on Windows.

F

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


278 CHAPTER 12 Beyond the defaults: workflow and styles

12.5.3 Gnuplot command-line flags

In general, gnuplot executes the contents of command files named on the command

line when gnuplot is first started (see section 11.3). Remember that the special file-

name - (hyphen) suspends processing of the command line and begins reading inter-

active commands from standard input.

 In addition, gnuplot recognizes six command-line flags. See table 12.5.

GNUFITLOG Name of the log file maintained by the fit 
command (discussed in section F.7); defaults 
to fit.log. If a directory is named, then gnuplot 
creates a file with the default name in this 
directory.

HOME GNUPLOT and 
USERPROFILE

Directory to search for a .gnuplot initialization 
script if none is found in the current directory.

PAGER n/a Name of the pager program to use.

SHELL COMSPEC Name of the shell to spawn in response to the 
gnuplot shell command. 

Table 12.5 Command-line options recognized by gnuplot

Short form Long form Description

-V --version Prints version information.

-h --help Prints a short usage message.

-p --persist Continues to display the display window for interactive 
terminals, even after the interactive gnuplot session has 
terminated.

-d --default-settings Suppresses loading of both the global (gnuplotrc) and 
the personal (.gnuplot) initialization files.

-c ... Treats the rest of the command line as if invoked using 
call. This option should be followed by the name of a 
command file and, optionally, its arguments.

-e "..." Executes the commands given as string argument 
before processing the rest of the command line. 

Table 12.4 The environment variables that gnuplot reads on startup. Unless otherwise specified, the

variables have the same name on all platforms. (continued)

Name (Unix and Mac OS X)
Name (Windows, 

if different)
Description

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


279Stylesheets

12.6 Stylesheets

The concept of a stylesheet is probably most familiar in the context of web develop-

ment, but it is, in fact, more general: wherever a document is prepared using markup,

the stylesheet principle can be applied. The markup language is used to indicate

semantics, whereupon the stylesheet is applied to fix the visual appearance. 

 This notion can be carried over to gnuplot, once you realize that a command like

plot "data" u 1:2 w lp lt 1, "" u 1:3 w l lt 2

constitutes a form of markup. The appearance of the plot depends on the styles that

are in effect when the plot is rendered by gnuplot. By supplying suitably chosen defini-

tions for line types and other properties (such as arrow styles and text fonts), you can

therefore create a family of graphs, each with a different visual appearance.

 The notion of using stylesheets like this with gnuplot may seem unfamiliar (at

least, I’ve never seen this done before), but it’s an extremely powerful concept. It

enables you to create graphics for specific circumstances and purposes. At their most

basic, stylesheets allow you to create both color and black-and-white versions of

graphs, but the idea can be taken further. Graphs for interactive work (on a computer

screen) place different demands on colors, line widths, point sizes, and so on, than

graphs prepared for (say) a PowerPoint presentation (see the sidebar “But is it beauti-

ful?” later in this chapter).

 To be clear, I’m not saying you can apply a different stylesheet to an existing com-

mand file and obtain a satisfactory graph without tweaking (as you can with CSS or, for

example, LaTeX). But by using different sets of predefined line types and other visual-

appearance options, you can begin to create graphs that take the specifics of the

intended presentation channel or medium (screen, print, or overhead) into account.

If nothing else, you can use a personal stylesheet to escape the standard look of gnu-

plot graphics (although I don’t think you should—see the sidebar in section 8.3.2).

But it’s nice to have the option!

TIP Customize styles to adapt the appearance of graphs to their intended use
and medium. Collect related styles together to create stylesheets for different
purposes.

12.6.1 Worked example: stylesheets

What does the stylesheet concept look like in practice? In this section, I’ll present the

same graph four different ways, using four different stylesheets—with no changes to

the plot command! The plot includes six curves (so there’s a need for a variety of dis-

tinguishable line styles) and both sparse and dense data sets (so I have the opportu-

nity to use both the with lines and the with linespoints plot styles). 

 The plot command is shown in the next listing. It’s used without modification to

generate all of the next four graphs. Only the stylesheets differ.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


280 CHAPTER 12 Beyond the defaults: workflow and styles

 

set xlabel "Input"
set ylabel "Response"

plot "sparse" u 1:2 t "Sparse 1" w lp, "" u 1:3 t "Sparse 2" w lp,

➥ "" u 1:2:(1000) t "Smooth" s acs w l,

➥ "dense" u 1:2 t "Dense 1" w l, "" u 1:3 t "Dense 2" w l,

➥ "" u 1:4 t "Dense 3" w l

The stylesheets must be loaded (using load) before the plot command is issued. You

should also run reset or reset session before loading the next stylesheet (other-

wise, previous styles will sometimes interfere with current ones).

INTERACTIVE COMPUTER WORK 1: THIN AND BRIGHT

The stylesheet in listing 12.7 is intended as a replacement for the old gnuplot default

appearance and is meant primarily for interactive use at a computer screen (although

I also used it for most of the color figures in this book). It’s characterized by relatively

thin lines, in bright colors. To make thin lines visually distinguishable, it’s necessary to

choose relatively bright colors; but in contrast to the old gnuplot default, the colors

are toned down a bit. A dark green is used in place of bright green, and the color yel-

low (traditionally the sixth style in the default sequence), which is too difficult to see

against a white background, is replaced with a drab goldenrod.6 Moreover, I tried to

make sure colors that are adjacent in the sequence exhibit good contrast with each

other; hence the two greens and blues are well separated. The choice of point type

also warrants a remark: instead of the spidery cross and saltire, this stylesheet prefers

filled and open circles and squares. The resulting plot is shown in figure 12.1. (The

set termoption command changes just one aspect of a terminal, without requiring

the terminal to be specified—see chapter 10.)  

set linetype 1 pt 7 lc rgb '0xee0000'

set linetype 2 pt 5 lc rgb '0x008b00'

set linetype 3 pt 6 lc rgb '0x0000cd'

set linetype 4 pt 4 lc rgb '0xff3fb3'

set linetype 5 pt 2 lc rgb '0x00cdcd'

set linetype 6 pt 7 lc rgb '0xcd9b1d'

set linetype 7 pt 5 lc rgb '0x8968cd'

set linetype 8 pt 6 lc rgb '0x8b8b83'

set linetype 9 pt 4 lc rgb '0x00bb00'

set linetype 10 pt 2 lc rgb '0x1e90ff'

set linetype 11 pt 7 lc rgb '0x8b2500'

set linetype 12 pt 5 lc rgb '0x000000'

set termoption font "Helvetica,12"

set termoption fontscale 0.5

Listing 12.6 Plot command for figures 12.1 through 12.4 (file: style-cmd.gp)

6 Because hex strings aren’t intuitive, the X11 color name has been included for each stylesheet color in this
section.

Listing 12.7 Stylesheet for figure 12.1 (file: style1.gp)

Red2

Green4

MediumBlue

Maroon1

Cyan3

Goldenrod3

MediumPurple3

Ivory4

Custom green

DodgerBlue1

OrangeRed4

Black

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


281Stylesheets

INTERACTIVE COMPUTER WORK 2: THICK AND PASTEL

The second stylesheet (listing 12.8) is also intended for interactive use on a computer

screen, but behold how different the resulting graph appears! (See figure 12.2.) Gone

are the brightly colored hairlines, and instead the graph uses thick, wide lines in soft

pastel colors. (It also uses a boldface font, in keeping with the thick line widths.) If

you’re used to graphs like figure 12.1, then this style takes some getting used to, but I

recommend that you give it a fair try. After a while, you may notice that the muted col-

ors and soft edges have a welcome, soothing effect. But it’s quite different than what

you saw before.

set linetype 1 lw 3 pt 7 lc rgb '0x87ceeb'

set linetype 2 lw 3 pt 5 lc rgb '0x7ccd7c'

set linetype 3 lw 3 pt 6 lc rgb '0xab82ff'

set linetype 4 lw 3 pt 4 lc rgb '0x6ca6cd'

set linetype 5 lw 3 pt 7 lc rgb '0xfa8072'

set linetype 6 lw 3 pt 5 lc rgb '0xd2b48c'

set pointsize 0.5

set termoption font "Helvetica-Bold,11"

set termoption fontscale 0.5

Listing 12.8 Stylesheet for figure 12.2 (file: style2.gp)

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

R
e

s
p

o
n

s
e

Input

Sparse 1

Sparse 2

Smooth

Dense 1

Dense 2

Dense 3

Figure 12.1 The example graph using the stylesheet from listing 12.7: thin lines, bright 

colors, small symbols

SkyBlue

PaleGreen3

MediumPurple1

SkyBlue3

Salmon

Tan

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


282 CHAPTER 12 Beyond the defaults: workflow and styles

PRINT PUBLISHING: BLACK-AND-WHITE

For print publishing, it may still be necessary to submit graphs in black and white. For

line art, this means you have to resort to dash patterns to distinguish lines from each

other. This is what the stylesheet in listing 12.9 is for. It uses custom dash patterns that

are intended to re-create (and improve on) the dash patterns from gnuplot’s Post-

Script terminal. In keeping with the preference for hairlines in scientific drawing, it

doesn’t use filled point symbols and instead gives preference specifically to the cross

and saltire—but with a twist! It uses gnuplot’s new pointintervalbox feature so the

continuous line doesn’t touch, and thereby interfere with, the point symbols. The

resulting graph is shown in figure 12.3.  

set linetype 1 pi -1 pt 1 lc black dt solid
set linetype 2 pi -1 pt 2 lc black dt (8,6)
set linetype 3 pi -1 pt 6 lc black dt (4,3)
set linetype 4 pi -1 pt 4 lc black dt (3,6)
set linetype 5 pi -1 pt 1 lc black dt (12,5,2,5,2,5)
set linetype 6 pi -1 pt 2 lc black dt (16,8)
set linetype 7 pi -1 pt 6 lc black dt (20,6,2,6)
set linetype 8 pi -1 pt 4 lc black dt (30,10)

set pointsize 0.5
set pointintervalbox 1.75

set termoption font "Helvetica,12"
set termoption fontscale 0.5

Listing 12.9 Stylesheet for figure 12.3 (file: style3.gp)

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

R
e

s
p

o
n

s
e

Input

Sparse 1

Sparse 2

Smooth

Dense 1

Dense 2

Dense 3

Figure 12.2 The example graph using the stylesheet from listing 12.8: thick lines, pastel 

colors. Compare figure 12.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


283Stylesheets

A WALK ON THE WILD SIDE

The last stylesheet has a two-fold purpose: I want to demonstrate some intentionally

questionable choices for the appearance of a graph—these aren’t recommendations!

More seriously, I also want to show how to make a graph look entirely different from the

usual gnuplot appearance. Here are some of the differences: the graph has no frame,

but a couple of arrows indicating the coordinate axes; the aspect ratio is square; the

font is a serif type; the lines are wide and bright; despite being color-coded, they’re

also dashed; the frame around the key unnecessarily clutters and partially obscures

the graph; and the text is either too large or too small. Not all of these choices are

poor, but some definitely are. (See the following listing and figure 12.4.)

unset border

set xtic nomirror

set ytic rotate by 90 center nomirror
set arrow 1000 from graph 0,0 to graph 1.075,0 head filled lw 2

set arrow 1001 from graph 0,0 to graph 0,1.075 head filled lw 2

set size square

set lmargin 7

set rmargin 5

set tmargin 1.5
set ylabel offset 3,0

set xlabel offset 0,0.5

Listing 12.10 Stylesheet for figure 12.4 (file: style4.gp)

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

R
e

s
p

o
n

s
e

Input

Sparse 1

Sparse 2

Smooth

Dense 1

Dense 2

Dense 3

Figure 12.3 The example graph using the stylesheet from listing 12.9: black-and-white, 

dashed hairlines, cross-shaped symbols

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


284 CHAPTER 12 Beyond the defaults: workflow and styles

set key opaque title "Legend" box lw 2 font ",10"

set linetype 1 lw 2 pt 9 lc rgb '0xff4500'

set linetype 2 lw 2 pt 11 lc rgb '0x00ff00' dt '-'

set linetype 3 lw 2 pt 13 lc rgb '0x0000ee' dt '_'

set linetype 4 lw 2 pt 9 lc rgb '0xff1493' dt '.'

set linetype 5 lw 2 pt 11 lc rgb '0x00eeee'

set linetype 6 lw 2 pt 13 lc rgb '0x9400d3' dt '-'

set termoption font "Times,20"

set termoption fontscale 0.5

OrangeRed
Green
Blue1

DeepPink
Cyan2
DarkViolet

-0
.5

 0
 0

.5
 1

 1
.5

 2

 0  0.2  0.4  0.6  0.8  1

R
es

p
o
n
se

Input

Legend

Sparse 1

Sparse 2

Smooth

Dense 1

Dense 2

Dense 3

Figure 12.4 The example graph 

using the stylesheet from listing 

12.10: as different from the 

gnuplot defaults as possible

But is it beautiful?
Gnuplot’s defaults owe some to scientific tradition and some to technical limitations
on early computer systems. Few of these limitations still remain, which means you’re
free to choose from the available options for the best results.

The first two of gnuplot’s point symbols (or point types—see figure 9.7) come from a
scientific tradition: on graph paper, where accuracy needed to be maintained manu-
ally, two thin, short lines intersecting in a point provided a good way to fix a location
on the graph precisely. Today, when the data is available numerically and the com-
puter takes care of accuracy, this is much less of a concern, and you can choose sym-
bols that are more aesthetically pleasing.

For scientific plots of medium-sized data sets, both cross and saltire may still be ade-
quate. The combination of the two (the third symbol in gnuplot’s default ordering) is
bulky and shouldn’t be used.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


285Summary

12.7 Summary

In this chapter, we explored different ways to go beyond gnuplot’s default appearance

and behavior. First, we considered ways to streamline your gnuplot workflow through

scripts and customized key bindings (hotkeys). You may want to personalize your work

environment when using gnuplot, and I showed you how to do that.

 In the last part of the chapter, I introduced the concept of stylesheets. Stylesheets are

bundles of appearance options that you can use to create graphs that are optimized

for their intended use and medium—be it an interactive computer session, a black-

and-white print publication, or a presentation to a live audience.

For presentation graphics, in particular for sparse data sets, I recommend the filled
circle and the filled square. These two symbols, together with a choice of colors,
should be enough to distinguish several data sets in a single graph. If you need even
more symbols, I recommend the unfilled circle and unfilled square, followed by cross
and saltire, and possibly the tip-down triangles (filled and unfilled). The diamond (four-
cornered symbol, standing on its tip) doesn’t reproduce well and should probably,
although regretfully, be avoided.

For large data sets consisting of many points, the unfilled circle has a special advan-
tage: even if points are spaced densely enough that symbols overlap partially, unfilled
circles provide the best chance of being recognizable as separate symbols. Whereas
filled symbols occlude each other, and symbols made up of straight lines (such as
crosses and squares) blend together as individual edges align, unfilled circles can
still be distinguished from each other.

Traditionally, thin lines have been used in scientific publishing: again, because a thin
line fixes a location on a graph more precisely. This is still a good tradition to follow,
in particular for print publishing: thin lines often give a publication a classy appear-
ance. (Provided they aren’t too thin to render properly—as publishers switch from
photo-offset to print-on-demand technology, sturdier lines might be a good idea!)

For other publication channels, this isn’t true. In particular for slides and overhead
presentations, thicker, rounded lines work better: they can be seen from the back of
the room, and they tend to fit better with the overall style of the medium. Graphs for
the Web fall between these two extremes.

In general, I recommend using non-serif fonts (such as Helvetica) for labels on a
graph, because such fonts are the most neutral. Make sure you choose the font size
properly: it’s surprisingly common to see graph labels that are too large, leading to
an imbalanced appearance of the entire graph. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Part 4

Understanding data

In this final part, we can take the technical aspects of working with gnuplot

largely for granted, and instead concentrate on the tasks that can be solved with

gnuplot. Chapter 13 introduces several fundamental types of graphs and explains

when and how to use them. Chapter 14 is more advanced and offers solutions to

some recurring topics in graphical analysis. Chapter 15 closes this book with a

reminder regarding the ultimate purpose of all kinds of analysis. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


289

Basic techniques of
graphical analysis

This chapter and the next largely take gnuplot and its features for granted and

instead concentrate on applying gnuplot to specific goals that commonly arise when

graphing data. At the same time, I’ll take the opportunity to show you how certain

tasks can be accomplished using gnuplot’s features. In this chapter, I’ll discuss

some basic activities that are generally useful in graphical analysis; the next chapter

will cover some more specialized tasks in greater depth.

 When faced with a new data set, two questions usually dominate. The first is,

how does one quantity depend on some other quantity—how does y vary with x?

The second question (for data sets that include some form of statistical noise) asks,

how is some quantity distributed—where are data points located, and what’s the

This chapter covers

 Investigating relationships

 Using logarithmic scales

 Representing point distributions

 Visualizing ranked data 

 Organizing your work

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


290 CHAPTER 13 Basic techniques of graphical analysis

character of the randomness? These are the two primary questions for this chapter. In

the course of it, we’ll also revisit logarithmic plots and their uses and examine more

applications of smooth approximations to noisy data sets—topics first introduced in

chapter 3. 

13.1 Representing relationships

One of the conceptually easiest and most familiar types of graphs shows the dependence

of one quantity on another—so much so that creating a plot of this type is what is com-

monly meant by “graphing data.” You’ve seen several examples in this book, like fig-

ure 2.4, figure 3.1, and many more.

13.1.1 Scatter plots

For many data sets, it’s natural to ask whether one quantity depends on another and,

if so, how: does y grow as x grows, or does it fall, or does y not depend on x to begin

with? A scatter plot is the first step in finding the answer. A scatter plot shows uncon-

nected symbols located at the position given by x and y. It’s an easy way to get a feeling

for an otherwise unknown data set.

A SIMPLE EXAMPLE: CAR DATA

Listing 13.1 shows the first few lines from a sample data set containing 26 attributes

for 205 different car models that were imported into the US in 1985.1 The 14th col-

umn gives the curb-weight in pounds, and the last (26th) column the price (in 1985

dollars). A scatter plot like the one in figure 13.1 shows how weight varies as a func-

tion of price.

1,158,audi,gas,turbo,four,sedan,fwd,front,105.80,192.70,71.40,55.90,
0,?,audi,gas,turbo,two,hatchback,4wd,front,99.50,178.20,67.90,52.00,

2,192,bmw,gas,std,two,sedan,rwd,front,101.20,176.80,64.80,54.30,2395

0,192,bmw,gas,std,four,sedan,rwd,front,101.20,176.80,64.80,54.30,239
0,188,bmw,gas,std,two,sedan,rwd,front,101.20,176.80,64.80,54.30,2710

...

In this case, the input file is not whitespace-separated, but comma-separated. Instead

of transforming the input file to space separated, it’s more convenient to use gnu-

plot’s set datafile separator option to plot this data file. The open circle (pt 6) is

used because it remains easiest to distinguish even when data points overlap:

set datafile separator ","

plot [2500:] "imports-85.data" u 26:14 pt 6

You can clearly see that weight goes up as the price increases, which is reasonable. You

should also note that there are many more low-price/low-weight cars than heavy, pre-

mium vehicles. For budget cars, weight seems to increase in step (linearly) with price

1 This example comes from the “Automobile” data set, available from the UCI Machine Learning Repository at
http://archive.ics.uci.edu/ml/datasets/Automobile.

Listing 13.1 Incomplete data for figure 13.1 (file: imports-85.data)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://archive.ics.uci.edu/ml/datasets/Automobile
http://www.it-ebooks.info/


291Representing relationships

for a while; but for higher-priced vehicles, the gain in weight levels off. This observa-

tion may have a simple explanation: the price of mass-market vehicles is largely deter-

mined by the cost of materials, so that a car that’s twice as big (as measured by its

overall mass) is also twice as expensive, whereas the price of luxury cars is determined

by higher quality (fancier materials such as leather seats, and additional options such

as more electronics) rather than by sheer bulk.

USING SCATTER PLOTS

This example demonstrates what to look for when examining a scatter plot. The first

question usually concerns the nature of the relationship between x and y. Does y fall

as x grows or vice versa? Do the points fall approximately onto a straight line or not? Is

there an oscillatory component? Whatever it is, take note of it.

 The second question concerns the strength of the relationship, or, put another

way, the amount of noise in the data. Do the data points jump around unpredictably

as you go from one x value to the next? Are there outliers that seem to behave differ-

ently than the majority of the points? Detecting outliers is important: gone unnoticed,

they’ll mess up most statistical quantities (such as the mean) you may want to calculate

later. And sometimes, outliers indicate an interesting effect—maybe a subgroup of

points follows different rules than the majority. Outliers in scatter plots should never

go uninvestigated.

 A third aspect to look for in a scatter plot is the distribution of points in either dimen-

sion. Are points distributed rather uniformly, or do they cluster in a few locations? If so,

do you understand the reason for the clustering, or is this something you should investi-

gate further? There may be a lot of information even in a humble scatter plot!

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

W
e

ig
h

t 
[P

o
u

n
d

s
]

Price [USD]

Figure 13.1 Curb weight versus price for 205 different cars. See listing 13.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


292 CHAPTER 13 Basic techniques of graphical analysis

13.1.2 Highlighting trends

The primary reason for preparing scatter plots is to determine whether there is any

relationship between the plotted quantities, and what the nature of this relationship

might be. In particular when the data is noisy, it may be difficult to recognize the dom-

inant behavior from the individual data points alone, and so there is a need for graph-

ical tools to highlight trends that may exist in the data. Gnuplot offers weighted cubic

splines for this purpose. Let’s study an example before discussing splines in more detail. 

WORKED EXAMPLE: MARATHON WINNING TIMES

Figure 13.2 shows the finishing times of the winners in a marathon event from when

the event was first conducted until 1990.2 In general, you see that the finishing times

have decreased over time—the top athletes are getting better every year. The changes

are particularly dramatic for the women’s results since they started competing in 1966.

Also shown are the best-fit straight-line approximations to the data (as found by the

stats command), and they seem to represent the data quite well. The only issue is

that according to those fits, women should overtake men sometime in the early

1990s—and then continue to get dramatically faster. Is this a reasonable conclusion?

 This example attempts to demonstrates two important points when working with

data. The first is the need to be sensitive to the structure and quality of the data. For

the data in figure 13.2, fitting a straight line provides only a very coarse—and, as you’ll

see, misleading—approximation of the real behavior.

2 This example was inspired by the book Graphic Discovery by Howard Wainer (Princeton University Press, 2005).

 120

 140

 160

 180

 200

 1900  1920  1940  1960  1980  2000

Men

Women

W
in

n
in

g
 t

im
e

 i
n

 m
in

u
te

s

Year

Men

Women

Figure 13.2 Finishing times (in minutes) for the winner of a marathon (up to the year 1990), 

together with the best straight-line fit. Will women overtake men in the coming years?

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


293Representing relationships

 You need to remember that by fitting a straight line, you’ve chosen one specific

model to represent the data. At this point, you’re no longer analyzing the data with the

intention of revealing the information contained in it, but are making a specific state-

ment about its surmised behavior. Before making such a strong statement, you should

have sufficient evidence for the applicability of the particular model selected. And com-

ing back to the current example, there certainly doesn’t seem to be any strong theoret-

ical reason why athletic performance should follow a straight line as a function of time.

 To understand the structure of the data, it might be a better idea to represent the

data by using “soft” local approximations, such as weighted splines. Some experimen-

tation with the weights will tell you much about the structure of the data: does the

overall shape of the approximation curve change drastically as you vary the weighting?

Which features are the most robust, and which disappear most quickly? Typically, sig-

nificant features tend to be rather robust under transformations, whereas less relevant

features are more transient.

 Figure 13.3 shows the same data as figure 13.2, but instead of a straight line, a soft

spline is used to represent the data, like so:

plot [1890:2017.5][115:215] "men-women" u 1:2 t "Men" w p pt 4,

➥ "" u 1:3 t "Women" w p pt 6,

➥ "" u 1:2:(1e-2) t '' s acs lt 1 lw 2,

➥ "" u 1:3:(1e-2) t '' s acs lt 2 lw 2

 120

 140

 160

 180

 200

 1900  1920  1940  1960  1980  2000

1990

W
in

n
in

g
 t

im
e

 i
n

 m
in

u
te

s

Year

Men

Women

Figure 13.3 The same data as in figure 13.2, together with a weighted-splines fit. The fit is 

based only on points prior to 1990, but the actual finishing times for the following years are also 

shown. The softer spline clearly reveals the leveling off of the women’s results well before 1990.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


294 CHAPTER 13 Basic techniques of graphical analysis

This approximation suggests that women’s performance starts to level off in the late

1980s, and the results from years after 1990 corroborate this observation. Note that

the spline approximation in the graph is based only on years up to and including 1990,

but not on later data points.

More on splines
Splines are a way to provide a smooth approximation to a set of points.a Splines are
constructed from piecewise polynomial functions, which are joined together in a
smooth fashion; the joints are referred to as knots. In the case of interpolating

splines, the knots are made to coincide with the actual data points; the resulting
curve is therefore forced to pass exactly through all data points. In the case of
smoothing or approximating splines, the vertical position of each knot is left to vary,
so the resulting curve in general does not pass through the individual data points.
Because in the latter case the curve doesn’t have to pass through any data points
exactly, it can be less wiggly.   

Both interpolating and approximating splines must fulfill the same smoothness con-
ditions, but in addition, the approximating spline must strike a balance between the
following two conditions:

 Passing close to the data points

 Not being too wiggly

These conditions are expressed in the following functional, which is minimized by the
approximating spline s(x)  

where (xi, yi) are the coordinates of the data points, the wi are the weights attached
to each data point, and the prime indicates a derivative with respect to x. In this func-
tional, the first term is large if s(x) is wiggly, and the second term is large if s(x)
doesn’t pass close to the data points. (The form of the first term comes from a phys-
ical analogy: if the spline were made out of a real material, such as a thin strip of
wood or metal, the first term would be related to the total bending energy of the strip.)

The balance between these two terms is controlled through the weight parameters wi:
if the wi are small, the first term dominates, and the resulting spline approaches a
straight line (which happens to coincide with the least-squares linear regression line for
the data set). If the weights are large, the second term dominates, and the spline
approaches the interpolating spline (which passes exactly through all data points). 

a I’d like to thank Lucas Hart and Clark Gaylord for helpful correspondence regarding this topic.

J s[ ] s″ x( )( )
2

xd wi s xi( ) yi–( )
2

i

N

+=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


295Logarithmic plots

13.2 Logarithmic plots

Logarithmic scales are one of the most versatile tools in the graphical analyst’s tool-

box. I introduced them in section 3.4 and discussed how they work. Now let’s put

them into action.

 Logarithmic scales serve three purposes when plotting:

 They rein in large variations in the data.

 They turn multiplicative deviations into additive ones.

 They reveal exponential and power-law behavior.

13.2.1 Large variations in data

To understand the meaning of the first two items, let’s study the daily traffic pattern at

a website. Figure 13.4 shows the number of hits per day over approximately three

months. There’s tremendous variation in the data, with alternating periods of high

and low traffic. During periods of high traffic, daily hit counts may reach close to half

a million hits but then fall to very little traffic shortly thereafter. On the scale of the

graph, the periods of low traffic seem barely different from zero, with little fluctuation.

Another way to think about the weights is to write wi = 1/d i
2, where di is a measure

for the uncertainty in the data of point i (such as the standard deviation in this point).
One would expect the spline to pass through the interval [yi -di, yi+di] at xi. The higher
the confidence in one point, the smaller you can choose to make this interval, and
therefore the larger the weight wi will be. By choosing di = 0 for one of the points, you
can even force the curve to pass through this point exactly, although you may let the
spline float more freely for the other points. In principle it’s possible to choose a dif-
ferent weight for each point, but if all points are known to the same accuracy, then
all weights should be the same. This is what was done for all examples in this book.

One important remark: the way J [s] is written in the example, the size of the second
term depends on the number of data points—if you double the size of the data set,
the size of the second term will be (approximately) twice as large. By contrast, the
first term does not depend on the number of data points. If the number of data points
grows, the second term will therefore become larger relative to the first one, and the
resulting spline will be more wiggly.

To maintain the original balance between wigglyness and closeness of approxima-
tion, the weights must be increased accordingly for data sets containing a larger num-
ber of points. Equivalently, you might want to take the number of points into account
explicitly by writing wi = ui/N , where ui is the actual weight and N is the number of
knots. With this choice for wi, the balance between both terms will be maintained
regardless of the number of knots in the data set.b  

b You can find more information on splines in chapter 1 of Handbook on Splines for the User

by E. V. Shikin and A. I. Plis (CRC Press, 1995).

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


296 CHAPTER 13 Basic techniques of graphical analysis

Figure 13.5 displays the same data, but now on a semi-logarithmic scale. The logarith-

mic scale helps to dampen the extreme variation of the original data set (two orders of

magnitude) so you can see the structure during both the high- and the low-traffic sea-

sons. That’s the first effect of logarithmic plots: they help to make data spanning

extreme ranges visible by suppressing high-value outliers and enhancing low-value

background.

 Furthermore, you can see that the relative size of the day-to-day fluctuations is

about equal during both phases. The absolute size of the fluctuations is quite differ-

ent, but their size as a percentage of the average value is roughly the same (very

approximately, during low season, traffic varies between 2,000 and 20,000 hits a day, a

factor of 10; whereas during high season it varies between 30,000 and 300,000 hits a

day, again a factor of 10). That’s the second effect of logarithmic plots: they turn mul-

tiplicative variations into additive ones.

 Figure 13.6 tries to demonstrate the last point in a different way. The bottom panel

shows the web traffic on consecutive days (like figure 13.4), displaying great seasonal

variance, but the top panel shows the ratio of the difference in traffic on consecutive

days divided by the actual value—(current day − previous day)/current day—which does

not exhibit a seasonal pattern. This is further proof that the daily fluctuation, viewed as

a percentage of the overall traffic, is constant throughout. The calculation for the top

panel can be performed as an inline transformation, by the way:

prv=40000

plot [0:365][-1:1] "webtraffic" u (y=($2-prv)/($2+prv), prv=$2, y) w l  

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  61  122  183  244  305

H
it
s
 p

e
r 

d
a

y

Day

Figure 13.4 Traffic patterns for a website. Daily hit count versus day of the year. Note 

the extreme variation in traffic over time.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


297Logarithmic plots

 1000

 10000

 100000

 1×106

 0  61  122  183  244  305

H
it
s
 p

e
r 

d
a

y

Day

Figure 13.5 The same data as in figure 13.4, but on a semi-logarithmic scale. Note how the 

high-traffic outliers have been suppressed and the low-traffic background has been enhanced. 

In this presentation, data spanning two orders of magnitude can be compared easily.

-1

-0.5

 0

 0.5

 1

R
e

la
ti
v
e

 c
h

a
n

g
e

0k

50k

100k

150k

200k

250k

300k

0 62 124 186 248 310

H
it
s
 p

e
r 

d
a

y

Day

Figure 13.6 Bottom panel: hits per day over time (as in figure 13.4); top panel: change in traffic 

between consecutive days, divided by the total traffic. Note how the relative change (top panel) 

doesn’t exhibit any seasonal pattern, indicating that the relative size of the variation is constant.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


298 CHAPTER 13 Basic techniques of graphical analysis

13.2.2 Power-law behavior

Finally, let’s look at a curious example that brings together two benefits of logarithmic

plots: the ability to display and compare data of very different magnitude, and the

ability to turn power-law behavior into straight lines. Mammals come in all shapes and

sizes, from tiny rodents (the smallest known land mammal is the Pygmy Shrew, which

weighs only a few grams, but some bats found in Thailand are apparently smaller still)

to the largest of whales (weighing several hundreds of tons). It’s a curious empirical

fact that there seem to be fixed relationships between different metabolic quantities—

basically, the larger an animal is, the slower its bodily functions progress. Figure 13.7

shows an example: the duration (in seconds) of a single resting heartbeat as a func-

tion of the typical body mass. The regularity of the data is remarkable, spanning eight

orders of magnitude for the mass of the animal. What’s even more amazing is how well

the data is represented by the simple function T ~ m1/4. This law isn’t limited to the

examples shown in the graph: if you added animals to the list, they’d also fall close to

the straight line (I didn’t just pick the best ones).

 The existence of such scaling relations in biological systems has been known for a

long time and seems to hold generally. For example, it turns out that the typical lifetime

of a mammal also obeys a quarter-power scaling law relation against the body mass, lead-

ing to the surprising conclusion that the total number of heartbeats in the life of a sin-

gle organism is fixed—no matter what the typical resting heart rate is. (In case you care,

the number comes out to about 1.5 billion heartbeats during a typical lifetime.)

 0.1

 1

 0.01  0.1  1  10  100  1000  10000  100000  1×106

P
u

ls
e

 d
u

ra
ti
o

n
 [

s
e

c
]

Weight [kg]

Human

Cat

Dog

Hamster

Monkey

Horse

Cow
Pig

Rabbit

Elephant

LargeWhale

Rat

Wolf

Figure 13.7 Allometric scaling: the duration of an average resting heartbeat as a 

function of the typical body mass for several mammals. Note how the data points seem 

to fall on a straight line with slope 1/4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


299Point distributions

These observations have been explained in terms of the geometrical constraints that

must exist in the vascular networks (the veins and arteries), which supply nutrients to

all parts of the organism.3 As it turns out, you can derive the quarter-power scaling

laws starting from only three simple assumptions: that the support network must be a

space-filling fractal, reaching all parts of the organism; that the terminal capillaries

where nutrients are exchanged are the same size in all animals; and that organisms

have evolved in such a way that the energy required for the transport of nutrients

through their bodies is minimized. I think it’s amazing how such a powerful result can

be derived from such simple assumptions. But, on the other hand, we shouldn’t be

surprised: generally applicable laws (such as the quarter-power scaling in this exam-

ple) must stem from very fundamental assumptions, disregarding any specifics. 

 Let’s come back to figure 13.7. The double-logarithmic scales make it possible to

follow the data over eight orders of magnitude. (Had I used linear scales, all animals

except for the whale would be squished against the left side of the graph—literally

crushed by the whale.) So again, logarithmic scales can help to deal with data span-

ning a wide range of values. In addition, the double-logarithmic plot turns the power

law relationship T ~ m1/4 into a straight line and makes it possible to read off the expo-

nent from the slope of the line. I explained how this works in detail in section 3.4 and

won’t repeat it here.

 Finally, figure 13.7 is a nice example for the power of gnuplot’s with labels plot

style. The graph was generated using

plot [][:5] "mammals" u ($2/1000):(60/$3) w p pt 7,

➥ "" u ($2/1000):(60/$3*1.125):1 w labels

The first part of the command draws the symbols (with points); the second adds the

labels. Inline transformations are used to express the weight in kilograms (instead of

grams) and to transform the heart rate (given in beats per minute) into the duration

of each beat (measured in seconds). All the labels are shifted a bit upward so as not to

obscure the symbols. In this example, the vertical offset is multiplicative, because of the

logarithmic scale of the graph (remember: logarithms turn multiplicative offsets into

linear ones). 

13.3 Point distributions

Besides detecting relationships between quantities, you may want to understand how

data points that are somehow random are distributed. Are data points spread out evenly,

or are they clustered in a few spots? Are distributions symmetric, or are they skewed?

How much weight is contained in the tails of a distribution, compared to its center?

 Let’s say you have a file containing a set of measurements. They can be anything:

interarrival times for requests at a web server, completion times of database queries,

weights of potatoes, heights of people—whatever. What can be said about them?

3 The original reference is the paper “A General Model for the Origin of Allometric Scaling Laws in Biology”
by G. B. West, J. H. Brown, and B. J. Enquist, Science  276 (1997): 122. Additional references can be found on
the web.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


300 CHAPTER 13 Basic techniques of graphical analysis

13.3.1 Summary statistics and box plots

Two commands will give a first answer: the stats command and the with boxplot style

(see sections 5.6 and E.2, respectively). Both share the advantage that they have no

adjustable parameters—they are as simple as can be. Both also share the disadvantage

that they lose a lot of information about the distribution of individual points, because

both aggregate the entire distribution into a handful of summary statistics. (A box-and-

whisker plot is after all nothing more than a graphical representation of the results

from running the stats command.)

 In short: to get a first idea how the values in a new dataset are distributed, both of

these commands are convenient, because of their extreme simplicity. But both hide

too much information to develop a detailed understanding. 

13.3.2 Jitter plots and histograms

One easy way to get a visualization of a collection of random points is to generate a jit-

ter plot, which is really a one-dimensional scatter plot, but with a twist. The bottom part

of figure 13.8 was created by shifting each data point vertically by a random amount.

(The rand(0) function returns a random number in the range [0:1].) If I’d plotted

the data in a true, one-dimensional fashion, too many of the points would’ve over-

lapped, making it difficult to detect clustering. Such jittering by a random amount is a

good trick to remember whenever you’re creating scatter plots of larger data sets:

plot "jitter" u 1:(0.25*rand(0)-.35)

-0.4

-0.2

 0

0.2

0.4

0.6

0.8

 1

 0  2  4  6  8  10

smooth frequency

smooth cumulative

Figure 13.8 Three ways to represent a distribution of random points: jitter plot 

(bottom), histogram (with boxes), and cumulative distribution function (dashed line)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


301Point distributions

You can see that the distribution of points is skewed. It’s strictly bounded by 0 on the

left, with points clustering around 1; and as you move to the right, points become

increasingly sparse. But it’s hard to say something more definite just by looking at the

jitter plot. For instance, is there a second cluster of points between 3 and 4? This does

seem possible, but it’s hard to tell for sure using this representation.

 The next step when investigating the properties of a distribution usually involves

drawing a histogram. To create a histogram, you assign data points to buckets or bins

and count how many events fall into each bin. It’s easiest to make all bins have equal

width, but with proper normalization per bin, you can make a histogram containing

bins of differing widths. This is sometimes useful out in the tails of a distribution

where the number of events per bin is small.

 Gnuplot doesn’t have an explicit histogramming function, but you can use the

smooth frequency functionality (see section 3.5.3) to good effect. Recall: smooth

frequency sorts the x values by size and then plots the sum of y values per x value.

That’s what you need to build a histogram.

 The next example introduces a function bin(x,s) that takes two parameters. The

first parameter is the x value you’d like to bin, and the second parameter is the bin

width. The return value of the function is the position of the left edge of the bin—you

can use the binc(x,s) function for bins centered on the x value.

 The smooth frequency feature forms the sum of all y values falling into each bin. If

all you care about is the overall shape of the histogram, you may supply any constant,

such as (1); but if you want to obtain a normalized histogram (one with a total surface

area equal to unity), you need to take into account the number of points in the sam-

ple and the bin width. You can convince yourself easily that the proper y value for a

normalized histogram is

1/(bin-width ⋅ total-number-of-points-in-sample) 

You can use the with boxes style to draw a histogram (see figure 13.8), but you want to

fix the width of the boxes in the graph to coincide with the bin width. (By default, the

boxes expand to touch their neighbors, which leads to a faulty graphical representa-

tion if some of the internal bins are empty.) Choose a bin width of 0.1, and use the

stats command to find the number of points in the data set. The plot command

uses the binc() function, because the with boxes style positions its boxes centered at

the supplied position:

bin(x,s) = s*floor(x/s)
binc(x,s) = s*(floor(x/s)+0.5)

set boxwidth 0.1

stats "jitter" u 1 noout
plot "jitter"

➥ u (binc($1,0.1)):(1./(0.1*STATS_records)) smooth frequency with boxes

Figure 13.8 also includes a curve for the cumulative distribution function of the data set.

We’ll come back to it in section 13.3.4.  

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


302 CHAPTER 13 Basic techniques of graphical analysis

13.3.3 Kernel density estimates and rug plots

The apparent simplicity of the histogramming method hides some pitfalls. The first

concerns the width of the bins: make them too narrow, and the resulting histogram

will be bumpy; make them too wide, and you lose relevant features. There’s also ambi-

guity in regard to the placement of the bins: is the first bin centered at 0 (or any other

value) or flush left there? In particular for sparse data sets, the overall appearance of

the histogram can depend quite sensitively on these details!

 A better method to generate distribution curves from individual data points goes

under the name kernel density estimation. Rather than count how many data points fall

into each bin, a strongly peaked but smooth function (a kernel) is placed at the loca-

tion of each data point. Then the contributions from all these curves are summed up

and the result is plotted. Mathematically, the kernel estimate f(x) for a data set consist-

ing of N points xi is

Here, K(x) is any smooth, peaked, normalized function, and h is the bandwidth: a mea-

sure of the width of the kernel function. A popular example is the Gaussian kernel:

As you already saw in section 3.5.2, gnuplot can generate such curves using the smooth

kdensity functionality. It works in much the same way as the smooth frequency fea-

ture discussed earlier:

plot "jitter" u 1:(1./STATS_records) smooth kdensity bandwidth 0.05

The first column specifies the location; the second gives the weight each point should

have. For a normalized histogram, this should be the inverse of the number of data

points—because the kernel functions are normalized themselves, you don’t have

to worry about the bandwidth at this point as you did for histograms using smooth

frequency. The bandwidth parameter (preceded by the bandwidth keyword) is

optional. If it’s omitted (or negative), gnuplot calculates a default bandwidth, which

would be optimal if the data were normally distributed. This default bandwidth tends

to be conservative (which means, rather broad).    

 Figure 13.9 shows several curves drawn using kdensity for the same data set you saw

in figure 13.8, for a variety of bandwidth parameters. Studying this graph carefully, you

may conclude that there is indeed a second cluster of points, located near 3.5. Note how

the choice of bandwidth can hide or reveal features in the distribution of points.

 One more thing: figure 13.9 uses a different representation for the individual data

points. Instead of using symbols as in the jitter plot included in figure 13.8, this figure

f x( )
1
N
----

1
h
---

i

N

 K
x xi–

h
-------------- 
 

=

K x( )
1

2π
-----------e

1
2
---x

2
–

=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


303Point distributions

uses a rug plot along the bottom edge. Each data point is represented through a short,

vertical line. In gnuplot, this can be accomplished through the with vectors style:

plot [:11][-0.1:0.8] "jitter" u 1:(-0.1):(0):(0.05) t '' w vec nohead

I prefer jitter plots, because lines in a rug plot tend to obscure each other, making it

difficult to identify individual data points. But rug plots may give a somewhat neater

appearance to your graphs and appear less noisy. 

13.3.4 Cumulative distribution functions

Histograms and density estimates have the advantage of being intuitive: they show you

directly the probability for a certain value to occur. But they have some disadvantages

when it comes to making quantitative statements. For example, based on the histo-

gram in figure 13.8, it’s hard to determine how much relative weight is in the tail of

the distribution: how likely are values larger than 4 to occur? How about values larger

than 6? You can guess that the probability is small, but it’s hard to be more precise. To

answer such questions, you need to know the area under the histogram within certain

bounds. In other words, you want to look at the cumulative distribution function (or dis-

tribution function for short). 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10

default

Bandwidth 0.3

Bandwidth 0.1

Figure 13.9 An alternative to histograms: kernel density estimates using smooth 

kdensity. Curves for three different bandwidths are shown. A bandwidth of 0.3 

seems to give the best trade-off between smoothing action and retention of details. 

Note how it brings out the secondary cluster near x=3.5. Individual data points are 

represented through the rug plot along the bottom.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


304 CHAPTER 13 Basic techniques of graphical analysis

 The value of the cumulative distribution function at position x is the fraction of

events that have occurred with xi less than x. In figure 13.8, I showed the distribution

function together with the histogram. To repeat: the value of the cumulative distribu-

tion function at position x is equal to the area under the (normalized) histogram from

its left border to position x.

 Cumulative distribution functions are accessible using smooth cumulative. The

smooth cumulative feature is similar to smooth frequency: first all points are sorted in

order of ascending x value, and then the sum of all y values to the left of the current

position is plotted as a smoothed value. To obtain a normalized distribution function,

you must supply 1/number-of-points as the y value. In contrast to histograms or density

estimates, distribution functions don’t depend on a width parameter:

stats "jitter" u 1 noout

plot "jitter" u 1:(1./STATS_records) smooth cumulative

Cumulative distribution functions can be a little unintuitive at first, but they’re well

worth becoming familiar with. They make it easy to answer questions such as those

raised at the beginning of this section. From figure 13.8, you can immediately see that

there’s a 3% chance of finding a point at x > 6 and about a 15% chance for x > 4. You

can also find more proof for the second cluster of points between 3 and 4: here the

distribution function seems to make a jump, indicating an accumulation of points in

this interval.

 The cumulative distribution function is also very important theoretically and often

the basis for further tests and calculations. The discussion of probability plots in sec-

tion F.6 is a good example and also shows how the results from smooth cumul can be

captured into a heredoc for further processing. 

13.4 Ranked data

Imagine that I give you a list of the countries in the European Union, together with

their land area (in square kilometers) and population numbers. How would you rep-

resent this information? How would you represent it graphically?

 The particular challenge here is that the independent variable has no intrinsic ordering.

What does this mean?

 Given the name of a country, the value of the area measure is fixed; hence the

name is the independent variable, and the area is the dependent variable. Usually, the

independent variable is plotted along the x axis and the dependent variable is

observed with it. But in this case, there’s no natural ordering of the independent vari-

able. Sure, you can order the states alphabetically by their names, but this ordering is

arbitrary and bears no relationship on the data. (You wouldn’t expect the size of a

state to change if you gave it a different name, would you?) Also, the ordering might

change if you were to translate the names to a different language. But the information

that is to be displayed depends on the areas and shouldn’t be affected by the spelling

of the country names.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


305Ranked data

For data like this, the only ordering that’s intrinsic to the data is in the values of the

dependent variable. Therefore, a graphical representation of this data should be

ordered by the dependent variable, not the independent one. Such plots are often called

dotplots, but I tend to think of them as rank-order plots. Figure 13.10 shows an example.

 If the input file is sorted by the appropriate quantity, you can generate such plots

easily using gnuplot’s facility for reading tic labels from the input file. Given an input

file containing the names and areas in two columns, such as this4

Malta 316
Luxembourg 2586

Cyprus 9251

Slovenia 20273
...

the entire plot can be generated using the following command:

plot "europeanunion" using ($2/1000):0:ytic(1) w p pt 7

The ytic(1) function selects the values in column 1 as tic labels for the y axis (see sec-

tion 8.3.5); and the pseudocolumn 0, which evaluates the line number in the input

file, is used as the corresponding vertical coordinate (see section 4.4). The inverted y

range places the first line in the file at the top of the graph instead of the bottom.

4 The data can be found on the Wikipedia page for the European Union.

Malta
Luxembourg

Cyprus
Slovenia
Belgium

Netherlands
Denmark

Estonia
Slovakia

Croatia
Latvia

Lithuania
Ireland

CzechRepublic
Austria

Portugal
Hungary
Bulgaria
Greece

Romania
UnitedKingdom

Italy
Poland
Finland

Germany
Sweden

Spain
France

 0  100  200  300  400  500  600  700

Area [1000 sq km]

Figure 13.10 A rank-order plot. Because there’s no natural ordering in the independent 

variable (in this case, the country names), the data has been sorted by the dependent 

variable to emphasize the structure in the data.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


306 CHAPTER 13 Basic techniques of graphical analysis

 This is the basic idea. You could plot the state names along the x axis instead, but

then you’d need to rotate the labels to make sure they didn’t overlap. Unfortunately,

rotating the labels by 90 degrees (so that they run vertically) makes them hard to read.

A good trick is to rotate them by some angle so that they run diagonally; but the initial

layout, with the names running down the y axis, is the easiest to read.

 What if you want to show and compare multiple data sets, such as the land area

and the population? The best strategy is to declare a primary data set, which deter-

mines the ordering for all others. Figure 13.11 shows an example. The points of the

secondary data set (the population in millions) have been connected with lines to

make them stand out more. Additionally, the x axis has been scaled logarithmically,

which is often useful with dotplots of this sort. You can see that overall the population

count follows the area, but there are some notable outliers: the northern Scandina-

vian countries Sweden and Finland are thinly populated, whereas the so-called Bene-

lux countries (Belgium, Netherlands, and Luxembourg) have an exceptionally high

population density.

 Dot- or rank-order plots are useful whenever the independent variable has no nat-

ural ordering. On the other hand, if the independent variable can be ordered—even

if it’s nonnumeric, such as the categories Strong Dislike, Dislike, Neutral, Like, and Strong

Like—you should use the information in your graphs and order data points by the

independent variable. 

Malta
Luxembourg

Cyprus
Slovenia
Belgium

Netherlands
Denmark

Estonia
Slovakia

Croatia
Latvia

Lithuania
Ireland

CzechRepublic
Austria

Portugal
Hungary
Bulgaria
Greece

Romania
UnitedKingdom

Italy
Poland
Finland

Germany
Sweden

Spain
France

 0.1  1  10  100  1000

 0.1  1  10  100  1000

Area [1000 sq km]

Population [Millions]

Area

Population

Figure 13.11 A rank-order plot displaying a primary and a secondary data set for 

comparison. The country names are sorted according to the primary data set (the 

area); the points in the secondary data are connected by lines to make them easier 

to distinguish. Note the logarithmic scale for the horizontal axes.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


307Pie charts

13.5 Pie charts

Pie charts are a way to visualize how an entity breaks down into its constituent parts.

Their strongest point (and the only reason to use them) is that, by construction, they

represent all components of the overall entity, without any pieces that might possibly

be missing. Aside from that, pie charts have many well-known problems. Specifically,

comparing the size of different components with similar magnitudes is difficult, as is

the representation of more than a handful of components. For such tasks, some vari-

ant of rank-order plot (see section 13.4) is usually a better solution.

 Gnuplot doesn’t have pie charts built in, but they can be constructed through judi-

cious use of existing gnuplot features. Given the following data set

# Name Percent

A 55
B 25

C 10

D 7
E 3

you can generate the pie chart in figure 13.12 using the following commands:

set size square

set angles degrees
unset key; unset tics; unset border

beg(x) = (b=a, a=a+x, 360.*b)

end(x) = (c=c+x, 360.*c)
med(x) = (u=v+x/2, v=v+x, 360.*u)

a=b=c=u=v=0

plot [-1:1][-1:1]

➥   "pie-data" u (0):(0):(1):(beg($2/100.)):(end($2/100.)) w circ,

➥   "" u (0.75*cos(med($2/100.))):(0.75*sin(360.*u)):1 w labels

The challenge is that the with circles style requires the beginning and end angle of

each pie segment (each wedge). But the data set only gives the percentage for each

component, which corresponds to the angle enclosed (or subtended) by the wedge.

The function end(x) therefore keeps a running total of all percentages encountered

so far: this is the leading edge of the current slice. The function beg(x) does the same,

but it always reports the most recent value: this is the trailing edge of the current slice.

The function med(x) reports a value halfway between the leading and the trailing

edges: this is where the label is placed. Don’t forget to set (or reset) all variables to 0

before each plot!   

 

 

 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


308 CHAPTER 13 Basic techniques of graphical analysis

13.6 Organizational issues

The basic techniques of graphical analysis don’t just range over types of graphs and

when to use them, but also include some recurring administrative tasks and organiza-

tional questions, mostly relating to the handling of data sets and the files containing

them. In this section, I’ll make some recommendations on that.

 I also want to stress that graphs are prepared for different purposes. Graphs that

are prepared merely for personal use and discovery require little polishing, but this

isn’t true for presentation graphics that are intended to communicate results to an

audience. Presentation graphics are important: they document completed work. I’ll

close this section with some recommendations for the preparation of attractive and

valuable presentation graphics.

13.6.1 The lifecycle of a graph

It’s helpful to have a sense for the life expectancy of your graphs: short (seconds to

days, for interactive exploration and ongoing work), intermediate (days to weeks, for

intermediate results), and long (weeks to infinity, for final results and public con-

sumption). Treat graphs differently, based on their expected lives: for short-lived

graphs, ease of use is the predominant concern. Nothing should stop you from

redrawing the graph, changing the range or plotting style, or applying a transforma-

tion. Any amount of polishing is too much.

A

B
C

D

E

Figure 13.12 A pie chart

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


309Organizational issues

 For graphs in the intermediate bracket, polishing is still not required, but contex-

tual descriptions (title, units, key) become important: not necessarily to communicate

such details to others, but to serve as reminders to yourself, should you come back to

your work after a few days or weeks of absence. (It’s amazing how quickly even essen-

tial details can be forgotten.)

 For long-lived graphs, and those published or presented publicly, different rules

apply. Such graphs belong to presentation graphics proper, and I’ll have a bit more to say

about that topic in section 13.7. 

13.6.2 Input data files

Data files should be reasonably self-contained and self-explanatory. Let me explain.

 When I was looking for data sets to use as examples for this book, I checked out

quite a few publicly accessible data-set libraries on the web. In one of them, I found a

data set that, according to the description on the website, contained annual sunspot

numbers for a certain specified range of years. I downloaded the corresponding file

together with several others data sets from the website, and only then started to exam-

ine the contents of each file in detail.

 Each file consisted of only a single column, containing the dependent variable—

and nothing else! Looking at these files alone, it was no longer possible to determine

which one contained what, be it sunspot numbers or the price of pork bellies, or some

other data set. Because the independent variable was missing as well, I couldn’t even

tell whether I was looking at monthly or yearly data, and, in any case, for what time

frame. In other words, the sheer act of downloading a file turned it into instant gar-

bage, by irrevocably separating it from the information that gave it meaning!

 To avoid such embarrassments, it’s generally a good idea to keep the basic informa-

tion that’s necessary to understand the data contained in the data set as part of the data

file, typically as a block of comments near the beginning of the file. (I find it more con-

venient to have this information at the top of the file than at the end.) The informa-

tion contained in such a header is more or less the same information you’d put onto a

graph in the form of textual labels and descriptions. Here are some pointers:

 Most important is a description of the file format. It should at least include a

description of the content of all columns, together with the units used. It’s nice

if it also contains a brief overall headline description of the file. If ancillary

information would be required to re-create the data set, it should also be

included: things such as parameter settings for the experimental apparatus, or

starting values and the version number for the simulation program used to cal-

culate the data. If the data was downloaded from the web, I always make sure to

keep a reference to the source URL in the file.

 I also recommend being generous when it comes to the inclusion of redundant

information. The sunspot data I mentioned earlier is an interesting example.

The lack of data for the independent variable made it more difficult to use and

understand the contents of the file. Given the starting value and the increment,

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


310 CHAPTER 13 Basic techniques of graphical analysis

it’s trivial to reproduce the values, but it’s generally much more convenient to

have all this information available already.

 The ability to reproduce a data file if necessary is critical. If you combine data

from several sources into a single data set, or manually edit a data set to remove

glitches, keep the originals. And stick a note in the combined file explaining its

origins. More likely than not, you’ll have to come back and do it all over again

at some point. Remember: if you delete the originals, they’re gone forever.

 Unless there are extenuating circumstances (and even in most cases when there

are), prefer plain text files over binary formats. The advantages of plain text are just

too numerous: plain text is portable across all platforms (despite the annoying

newline character issue) and can be manipulated using standard tools (editors,

spreadsheets, scripting languages). A corrupted text file can be repaired easily—

not so for a binary file. A text file is by construction more self-explanatory than

a binary file will ever be. And finally, text files compress nicely and therefore

don’t take up much disk space.

Some statistics packages keep their data sets in proprietary binary formats. I find the

constant need to invoke a special, proprietary program just to view the contents of a

file a major inconvenience, and the dependence on the operations provided by the

package for all data-manipulation tasks is an unwelcome hindrance to my work.

 If you have a legitimate need for a binary file format, at least use an existing stan-

dard, for which quality libraries are easily available. Ad hoc binary formats are almost

certainly a bad idea.

 Something we don’t tend to think of often are clerical errors: typos, incorrectly

named files, data entered into the wrong column, wrongly recorded units—that sort

of thing. They’re apparently more common than you might think: Cleveland and

Wainer5 give interesting examples of odd entries in well-known data sets and provide

convincing arguments that explain these entries as due to clerical errors, such as the

interchange of digits or the inadvertent switching of columns for the data points in

question.

 Finally, make sure critical data is backed up frequently. (I once accidentally deleted

data that had taken weeks to compute. Praise your system administrators!) 

13.6.3 Output files

The most important advice (again) is to make plots reproducible. Don’t just export to

a printable format and move on. It’s almost guaranteed that you’ll want to redraw the

graph, with minor modifications, as more data becomes available or the understanding

of it grows. Always save the plotting commands and options to a file before moving on.

 Use an appropriate file format. Bitmaps (such as PNG) are simple and portable

but can’t be resized without loss of quality. Whenever there is a chance that you (or

5 See section 6.4 in Visualizing Data by W. S. Cleveland (Hobart Press, 1993) and the introduction to Graphic
Discovery by H. Wainer (Princeton University Press, 2005) for details.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


311Presentation graphics

whoever is using your graphs) might need to resize a graph, make sure to use a vector

format (such as PDF). This is particularly true for print publishing: not only will

graphs routinely be resized, but only vector formats will take advantage of the higher

resolution offered by printing devices.

 Decide whether you need to prepare your graphs in color, black and white, or half-

tone (grayscale). Consider the use of stylesheets (see section 12.6) to target graphs to

different display channels. I routinely create different versions of the same graph

(using different stylesheets) so I’m set for all possible applications. Adopting a nam-

ing convention helps to keep different versions organized. 

13.7 Presentation graphics

This book isn’t primarily about presentation graphics, but about graphical analysis.

There’s already plenty of advice on presentation graphics, and you’ll have no difficulty

finding it, but not much of it appears to be based on rigorous studies. Nevertheless,

the advice is often worded assertively, if not emotionally, and there’s an unfortunate

(and ultimately unhelpful) tendency toward the derision of work considered inade-

quate. Given the lack of rigorous evidence, tastes and personal opinions naturally play

a large role.

 I don’t intend to add to this debate. Instead, I’d like to present a list of reminders

concerning details that are easily (and inadvertently) forgotten when preparing a

graph for publication. Most of them concern the inclusion of contextual information,

which can’t be inferred from the graph itself, but which is nevertheless important for

understanding. By publication I mean any form of wider distribution of the graph: any-

thing leaving the immediate group of coworkers who were involved in its creation,

and in particular any use with a long expected lifetime. 

 These aren’t commandments, but reminders. Use your own good judgment:

 Axes should be labeled. The labels should describe the quantity plotted and

should include the units of measurement. Don’t leave this information to a sep-

arate figure caption. Keep in mind that the graph may be separated from its

context, in which case information contained only in the caption may be lost.

The caption should be used to describe salient features of the graph, not to give

vital information about the plotted data.

 Choose meaningful, self-explanatory labels. If you must use abbreviations that

aren’t in common use, explain them, ideally on the graph itself, not in the cap-

tion (see previous item). (In a recent book on data graphing, I found a figure

of a histogram in which the buckets were labeled Married, Nvd, Dvd, Spd, and

Wdd. I marveled about the possible meaning of Nvd for quite a while. The

abbreviations were explained neither in the text nor in the figure caption.)

 If there’s more than one line in a graph, explain what each of the lines repre-

sents, either through a key or by using an explicit label referring to each line. If

you use a key, make sure the key entries are meaningful.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


312 CHAPTER 13 Basic techniques of graphical analysis

 If there’s ancillary information, consider placing it onto the graph, rather than

supplying it only in the caption.

 If at all possible, make sure text labels, including the key, don’t obscure the

data. If necessary, move or rewrite them.

 When publishing a false-color plot, always include the associated color scale in

the graph. No matter how intuitive the chosen palette may appear to you,

remember that there’s no universal and unambiguous mapping from numbers

to colors and vice versa.

 Describe the meaning of error bars. Do they show the calculated standard devi-

ation of the sample population? Do they represent interquartile ranges? Or do

they indicate the limits of resolution of your experimental apparatus? This

information can’t be inferred from the graph but must be explained through

textual information.

 Use an appropriate measure of uncertainty. Don’t show standard deviations for

highly skewed or multimodal populations just because they’re easy to calculate.

 Choose meaningful plot ranges. The graph should display the relevant part of

the data, and the data should make use of the entire available space. It may be

necessary to use more than one graph to convey all the relevant detail: it isn’t

unreasonable to have one graph to exhibit the overall shape of the data and

one that zooms in on a particular region at greater resolution. Keep in mind

that the relevant information in a data set is sometimes the trend and some-

times the absolute value. Make sure the chosen plot range is appropriate given

the context.

 Consider logarithmic scales if the variation in the data is too great to be repre-

sented otherwise.

 Don’t be shy about choosing a different font if the default font looks ugly. Given

the importance of textual information on a graph (labels, tic marks, keys),

make the necessary effort to ensure that all text is clearly readable even after

the graph has been reproduced and possibly reduced in size a few times. (On

the other hand, making labels too big or too bold can easily ruin the overall

appearance of a plot. Experiment!)

In general, sans serif fonts (such as Helvetica) are preferred for standalone

pieces of text, whereas serif fonts (such as Times Roman) are considered more

suitable for body text. Because labels on a graph tend to be short, this suggests

using a good sans serif font in plots. (I also find that sans serif fonts enhance the

visual clarity of a graph, whereas serif fonts don’t, but others may disagree.

Judge for yourself.)

 Use an appropriate aspect ratio. Human perception seems to have an affinity to

figures with an aspect ratio of roughly 10:7, in landscape orientation (that is,

wider than tall). In particular, it’s generally not a good idea to use a square

graph unless the symmetry of the data demands it.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


313Summary

 Don’t use bitmapped graphics formats (PNG, GIF, JPG) in print publications.

Use vector formats such as PDF, PostScript, and EPS instead.

 Proofread your graphs. Common error spots include typos in textual labels,

switched data sets or interchanged labels, and omitted qualifiers (milli-, kilo-,

and so on) for units. 

13.8 Summary

Understanding data with graphs typically involves certain recurrent tasks and ques-

tions. How one quantity depends on another is such a question; how a bunch of data

points are distributed is another. Other recurrent problems have to do with data that

spans many orders of magnitude, and data that isn’t strictly numeric.

 In this chapter, we discussed the standard types of graphs to investigate such ques-

tions, and showed how to create them using gnuplot. All these methods and plots are

very general—in the next chapter, we’ll concentrate on some more specific problems

and explore them in depth.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


314

Topics in graphical analysis

The previous chapter discussed some fundamental graphical methods that are very

generally useful. In this chapter, I’ll select a few tasks that are more specific and

explore them in greater depth.

 Because of their immense practical importance, our first topic will be the han-

dling of time series. In particular, you’ll see some clever ways to smooth a time

series using only gnuplot commands. The next topic concerns multivariate data

sets: data sets with more than two or three different attributes. A variety of tech-

niques are available for such data, and some of gnuplot’s relatively new features

facilitate the visual exploration of such data.

 Next, we’ll discuss ways to enhance the visual perception of graphs. You can aid

analysis and discovery by preparing graphs such that noteworthy features are more

easily recognized. This topic isn’t frequently discussed, but some awareness of the

issues involved can greatly improve your results.

This chapter covers

 Techniques for time-series plots

 Techniques for multivariate data sets

 Techniques to improve visual perception

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


315Techniques for time-series plots

14.1 Techniques for time-series plots

Time-series plots are probably the most common graph in practice: whenever you want

to monitor a quantity, you’re dealing with a time-series plot of some form. This section

introduces some operations that are frequently useful when dealing with time series

and shows you how to coax gnuplot into performing those operations.

14.1.1 Plotting an Apache web server log

Technically, a discrete time series consists of measurements at equally spaced time intervals.

The requirement that all time steps are of the same size is important: several time-

series operations and transformations rely on this property.1

 But raw data is frequently not of that form. Web server logs (and other event logs,

generally) merely record the timestamp when an event occurred—they’re asynchro-

nous. Turning this data into a (discrete) time series means counting the number of

events per (equally sized) time interval.

 In general, I strongly suggest that you do this kind of data munging outside of gnu-

plot, using the programming language of your choice. But in a pinch, it can be done

with gnuplot. The following listing shows the beginning of an Apache web server log

file (lines are truncated on the right).2

64.242.88.10 - - [07/Mar/2004:16:05:49 -0800] "GET /twiki/bin/edit/Main/Doub

64.242.88.10 - - [07/Mar/2004:16:06:51 -0800] "GET /twiki/bin/rdiff/TWiki/Ne

64.242.88.10 - - [07/Mar/2004:16:10:02 -0800] "GET /mailman/listinfo/hsdivis
64.242.88.10 - - [07/Mar/2004:16:11:58 -0800] "GET /twiki/bin/view/TWiki/Wik

64.242.88.10 - - [07/Mar/2004:16:20:55 -0800] "GET /twiki/bin/view/Main/DCCA

...

The timestamp is in the fourth column, and gnuplot’s time-series mode is required to

parse it properly. The timestamp must be truncated to the desired interval for the

time series. Then the number of events in each interval must be counted. You can use

smooth frequency (see section 3.5.3) for the latter. When truncating the timestamp,

keep in mind that gnuplot treats it as a string, so you need to use string operations for

all manipulations. The next listing truncates the timestamp to the hour: that is the

step size of the resulting time series (see figure 14.1).

set xdata time

set timefmt "[%d/%b/%Y:%H:%M:%S"
set xtics format "%d%b\n%H:00" rotate

set ylabel "Hits per hour"

plot "access_log" u (strcol(4)[1:15] . ":00:00"):(1) s f w l

1 If observations occur asynchronously, so that the intervals are of varying sizes, the data is said to form a contin-
uous time series. I recommend reserving the term time series for sets of equally spaced observations only, and
speaking of an (asynchronous) event stream otherwise.

Listing 14.1 Part of a web server log; incomplete data for figure 14.1

2 You can find the complete file at www.monitorware.com/en/logsamples/apache.php.

Listing 14.2 Commands for figure 14.1 (file: access-log.gp)

Turns on time-series mode
The left bracket is part of the format.

Truncates the 
timestamp to the 
first 15 characters

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.monitorware.com/en/logsamples/apache.php
http://www.it-ebooks.info/


316 CHAPTER 14 Topics in graphical analysis

Because this method relies on gnuplot’s timestamp parsing, it’s rather brittle and

doesn’t deal well with missing or malformed entries in the log file. If you encounter

such problems, it’s probably easiest to preprocess the raw data in a general program-

ming language. 

14.1.2 Smoothing and differencing

The transformation most frequently applied to a time series is probably some form of

smoothing, to remove noise and bring out the underlying trend more clearly. Another

often useful operation is the differencing of a time series, wherein the original data is

replaced by the difference between any two consecutive observations. Using session

variables and the comma operator, these tasks can be accomplished as part of a plot

command. 

EXPONENTIAL SMOOTHING IN GNUPLOT

Probably the most familiar smoothing methods are the floating and trailing averages,

which replace each data point with the average over some number of adjacent data

points. In the first case, the averaging interval is symmetrical, which means the

smoothed curve can never extend all the way to the most recent value in the time

series; for this reason, the trailing average uses a one-sided interval. Both methods

have some problems, not the least of which is that they need to keep track of all the

data points in the averaging interval individually.

 An often more favorable and much simpler smoothing method is known as expo-

nential smoothing or the Holt-Winters method. It replaces each data point not with the

average, but with the following quantity:

 0

 20

 40

 60

 80

 100

 120

0
7

M
a

r

1
2

:0
0

0
8

M
a

r

0
0

:0
0

0
8

M
a

r

1
2

:0
0

0
9

M
a

r

0
0

:0
0

0
9

M
a

r

1
2

:0
0

1
0

M
a

r

0
0

:0
0

1
0

M
a

r

1
2

:0
0

1
1

M
a

r

0
0

:0
0

1
1

M
a

r

1
2

:0
0

1
2

M
a

r

0
0

:0
0

1
2

M
a

r

1
2

:0
0

H
it
s
 p

e
r 

h
o

u
r

Figure 14.1 Web traffic (hits per hour). Compare listing 14.2.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


317Techniques for time-series plots

s[t] = a * x[t] + (1-a) * s[t-1]

Here, s[t] is the smoothed value at time step t, and it’s calculated as a mixture

between the observed value x[t] at that time and the most recent smoothed value

s[t-1]. The smoothing parameter a is a number between 0 and 1: the closer to 1, the

less the data is smoothed. 

 Exponential smoothing can be implemented as an inline transformation in

gnuplot:

s=0; a=0.5

plot "data" u 1:(s=a*$2 + (1-a)*s) w l

This works because the value of an assignment expression is the assigned value. It may

be convenient to bundle the operation into a function, as in the following listing (also

see figure 14.2).

hw(x,a) = a*x + (1-a)*s

s=1; plot "unsmoothed" u 1:2 w l, "" u 1:(s=hw($2,0.2)) w l lw 2

It’s important that the variable s is initialized before the plot command. For best

results, it should be initialized to a value that is similar to the first value in the data set.

Listing 14.3 Single exponential smoothing: see figure 14.2 (file: smoothing.gp)

 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

1.05

 1.1

1.15

 0  20  40  60  80  100

data

smoothed

Figure 14.2 A noisy time series and a smoothed trend line. The trend was calculated using 

single exponential smoothing: s=a*x + (1-a)*s, with a smoothing parameter of a = 0.5.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


318 CHAPTER 14 Topics in graphical analysis

TIP Exponential smoothing is an exceedingly simple yet robust and versatile
method to smooth a time series and bring out an underlying trend. It can be
implemented using a convenient inline transformation in gnuplot. Don’t
forget that the temporary variable must be initialized before invoking the plot
command. 

DOUBLE EXPONENTIAL SMOOTHING

Single exponential smoothing (as in listing 14.3) works best for stationary time series

that don’t exhibit a long-term trend. If a trend is present, the smoothed curve tends to

lag behind and doesn’t constitute a good approximation to the raw data. For data sets

that include a trend, it may therefore be necessary to use a smoothing scheme that

explicitly includes a trend. One such method is double exponential smoothing:

s[t] = a*x[t] + (1-a)*(s[t-1] + u[t-1])
u[t] = b*(s[t] - s[t-1]) + (1-b)*u[t-1]

Here, s[t] is the smoothed value at time step t, and u[t] is the smoothed trend at the

same time step. There are now two smoothing parameters, a and b, for the value and

the trend, respectively. This method, too, can be implemented as an inline transfor-

mation in gnuplot:

a=0.5; b=0.5

s=0; u=0; q=0

plot "data" u 1:(s=a*$2+(1-a)*(s+u), u=b*(s-q)+(1-b)*u, q=s) w l

Obtaining a good approximation now requires finding suitable values for both smooth-

ing parameters, a and b. This may involve a fair bit of trial-and-error experimentation!

 Again, the formulas can be wrapped into a function:

hw2(x,a,b) = (s=a*x+(1-a)*(s+u), u=b*(s-q)+(1-b)*u, q=s)

s=0; u=0; q=0
plot "data" u 1:(s=hw2($2,0.5,0.5)) w l

Keep in mind that a gnuplot function doesn’t create a scope for local variables: all

variables are global. The function finds the variables it writes to (such as s, u, and q) as

session variables in the current gnuplot session. It’s a mistake to supply such variables

as arguments to the function. But because the function expects to find these variables

in the gnuplot session, it’s essential that the variables be created (that is, initialized)

before the function is invoked. 

DIFFERENCING A TIME SERIES IN GNUPLOT

Another transformation that is often useful is to difference the time series. This

amounts to replacing each entry in the series with the difference between two consec-

utive values; the resulting series is shorter by one record.

 In gnuplot, this can be accomplished through an inline transformation as well:

u=0

plot "data" u 1:(v=$2-u, u=$2, v) w l

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


319Techniques for time-series plots

This works because gnuplot treats the comma (,) as an operator, similar to the way

the C programming language does. It separates different expressions, evaluating each

in turn (left to right), and returns the value of the last (rightmost) one.

 Using the comma operator, it’s possible to define gnuplot functions comprising mul-

tiple statements. Traditionally, the body of a gnuplot function had to consist of a single

expression, but the comma operator provides a way to circumvent this limitation. You

saw an example in the previous section on double exponential smoothing, in the defini-

tion of the function hw2(x,a,b) = (s=a*x+(1-a)*(s+u), u=b*(s-q)+(1-b)*u, q=s).

TIP The comma operator lets you combine multiple statements into a single
expression. Statements are evaluated left to right, and the value of the right-
most statement is returned as the value of the entire expression. 

14.1.3 Monitoring and control charts

One of the most common applications of time series and time-series graphs is the

monitoring of a metric over time—usually to detect whether the observed system is

behaving as expected. Two tasks commonly arise in such applications: data needs to

be normalized, so that the behavior can be compared across different metrics. Addi-

tionally, there’s often an interest in identifying unexpected behavior, such as outliers

and drifts. Let’s discuss them in turn.

MAKING DATA COMPARABLE

Imagine that you’re in charge of some operation. It may be a factory or production

plant, it may be a data center, or it might even be a sales department. What matters is

that you want to monitor the most relevant metrics constantly.

 To keep things simple, let’s assume it’s a manufacturing operation where just three

parameters really matter: overall productivity (units per hour), the completion time

for each unit (in minutes), and the defect rate (the ratio of defective units to the total

number of units produced). You might want to plot them together on a control chart

so you can immediately see if one of them starts running out of the allowed zone. But

most of all, you want to be able to compare them against each other: is one parameter

consistently performing better than the others? Is one of the parameters on a slippery

slope, getting worse and worse, relative to the others? And so forth.

 A naive way to achieve this effect is to plot the three parameters in a single chart.

The result is shown in figure 14.3 and is probably not what you want!

 The problem is that the three parameters assume very different values: productiv-

ity is typically around 10,000 units per hour, assembly time is on the order of an hour,

and the defect rate should be very, very small. Before you can compare them, you

therefore need to normalize them.

 Making metrics comparable by normalizing them usually involves two steps: first,

they are shifted by subtracting a constant offset (such as a long-term average), and then

they are rescaled by dividing them by their typical range of values (as expressed in the

standard deviation, for example). The resulting normalized metrics are all centered

on or near zero, and their fluctuations are of roughly unit size. (Also see figure 14.4.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


320 CHAPTER 14 Topics in graphical analysis

 0

 2000

 4000

 6000

 8000

10000

12000

 0  20  40  60  80  100  120  140  160

Productivity (Units per Hour)

Completion Time (Minutes)

Defect Rate (Defects per Thousand)

Figure 14.3 A control chart showing three very different quantities simultaneously. 

What’s wrong with this picture?

-1.5

-1

-0.5

 0

0.5

 1

1.5

 0  20  40  60  80  100  120  140  160

Productivity (normalized)

Completion Time (normalized)

Defect Rate (normalized)

Figure 14.4 A control chart showing normalized metrics. The data is the same as 

in figure 14.3.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


321Techniques for time-series plots

More generally, normalizing metrics always involves a linear transformation of the form 

where m is a measure for the typical value of the metric in question, and s is a measure

for the typical spread or range of values. If the metric is well-behaved, with relatively

regular and symmetric fluctuations, then the mean and standard deviation are popu-

lar choices for m and s; but if the metric is strongly affected by outliers, then the

median and the interquartile range may be more robust choices. Another possibility is

to use the smallest possible value for m and the range between the greatest and the

smallest value for s: the resulting normalized quantity isn’t centered on zero but is

restricted to the unit interval.

 Because normalization involves rescaling by the typical range of values, the result-

ing quantities are all dimensionless and are therefore directly comparable (in contrast

to the original data, whose numerical values depended on the units of measure that

were used).  

IDENTIFYING OUTLIERS

Identifying outliers is in some ways a complementary activity to normalizing data,

because it amounts to finding data points that are different than the rest. When you’re

dealing with time series, there is one additional issue: the baseline itself is changing

constantly!

 In the context of time-series analysis, an outlier is a data point that is further away

from the trend than is typical. In the absence of other information about the data, the

smoothed data is the best guess at the true trend, and is therefore used as a baseline.

 Identifying outliers in a time series thus involves three steps:

1 Establish a baseline by finding a smooth trend for the time series.

2 Find the range of typical deviations of the raw data from the trend.

3 Tag as outliers those records that differ by more than the typical range from the

trend.

Figure 14.5 shows the situation after the first step. The data consists of the daily num-

ber of calls made to a call center, and a trend has been added using single exponential

smoothing:

s=0; a=0.25

plot "callcenter" u 1:2 w l, "" u 1:(s=a*$2+(1-a)*s) w l lt 3 lw 2

The next step involves finding the typical range of the fluctuations of the raw data

around the trend. It can be found using the stats command:

s=0; a=0.25

stats "callcenter" u 1:(s=a*$2+(1-a)*s, $2-s)

It’s important that the last expression in the using expression is $2-s: this is the

momentary deviation of the actual data from the smoothed trend. For simplicity, I used

z
x m–

s
-------------=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


322 CHAPTER 14 Topics in graphical analysis

the standard deviation (as reported by stats) as a measure for the range—for this

data set, it doesn’t differ much from the interquartile range. The value of the standard

deviation is roughly 21, and I chose to label all records that differ by more than twice

that as outliers.

 Figure 14.6 shows the data together with the trend, as before. Outliers as identified

by the foregoing procedure are marked with symbols, and the typical range of fluctua-

tions is indicated using a grey band. The complete plot command is as follows:

s=0; a=0.25

plot "callcenter" u 1:2 w l,

➥ "" u 1:(s=a*$2+(1-a)*s) w l lt 3 lw 2,

➥ "" u 1:(s=a*$2+(1-a)*s, abs($2-s)>2*STATS_ssd_y?$2:NaN) w p lc 2 pt 7,

➥ "" u 1:(s=a*$2+(1-a)*s, s+2*STATS_ssd_y):(s-2*STATS_ssd_y)

➥ w filledc fs transparent solid 0.5 lc rgb "dark-grey"

CUSUM PLOTS

Occasionally, you may find yourself monitoring a quantity that has a well-defined target

value (or setpoint in control-theory lingo): for instance, you may want to keep a power

supply at a precisely determined temperature. In such cases, it’s essential to detect early

whether the metric has drifted away from its setpoint. This may be difficult, because

any noise in the data is likely to obscure a small but systematic change quite effectively.

Consider figure 14.7. Would you say that the system has undergone any change from its

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250  300  350  400  450

C
a

lls

Days

Data

Smoothed

Figure 14.5 Number of daily calls to a call center. The figure shows the raw data and 

the smoothed trend line.

Initializes temporary variables

Raw data
Smooth trend

Outliers

Grey band

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


323Techniques for time-series plots

setpoint at y=5 during the observed interval? (The horizontal lines at y=3 and y=7 are

intended to indicate the permissible range for the observed metric.)

 The trick is to amplify the effect by keeping an accumulating sum of all deviations

from the intended setpoint. As long as the system is centered on the correct value, the

deviations will cancel each other out. But a persistent deviation, even if it’s small, will

quickly lead to the build-up of noticeable error in the cumulative sum. Plotting this

quantity in a cusum chart provides a low-tech yet remarkably sensitive diagnostic instru-

ment to spot even small but persistent deviations from the setpoint.   

 In gnuplot, you can obtain a cusum chart through a simple inline transformation.

I used the following commands to create figure 14.8, which clearly shows that some-

thing changed near time step 15:

setpoint = 5

s=0; plot [][-1:11] "cusum" u 1:2 w lp pt 7, "" u 1:(s=s+($2-setpoint)) w l

In this case, the data has been created synthetically as Gaussian noise, with mean =5

and standard deviation σ=1 for the first 15 observations, but with mean =5.5 for the

subsequent data points. Looking at the raw data in figure 14.7 doesn’t reveal this per-

manent shift; even comparison with the reference lines above and below doesn’t sug-

gest any trouble. But the cumulative error in figure 14.8 is a dead giveaway!

 

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250  300  350  400  450

C
a

lls

Days

Data

Smoothed

Outliers

Figure 14.6 Same data as in figure 14.5. In addition to the smoothed trend line, the 

region of normal fluctuations is indicated (shaded); outliers outside this region are 

indicated with symbols. (See the text for details.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


324 CHAPTER 14 Topics in graphical analysis

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30

O
b

s
e

rv
e

d
 m

e
tr

ic

Time

Figure 14.7 A control chart. The target value for the observed metric is 5. The horizontal 

lines indicate the permitted range around the setpoint.

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30

O
b

s
e

rv
e

d
 m

e
tr

ic

Time

Data

Cusum

Figure 14.8 Same data as in figure 14.7, but shown together with the cumulative 

deviation from the intended setpoint of 5. The sudden and persistent increase in the 

cumulative error indicates that the system is shifted away from its target value—even 

though this isn’t immediately visible in the raw data.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


325Techniques for time-series plots

 When using cusum charts, the cumulative error shouldn’t be calculated “since the

beginning of time.” Even when the system is perfectly centered on its setpoint, the

cumulative error will exhibit arbitrarily large deviations in the long run. For this rea-

son, the cumulative error should be reset frequently and calculated over only a rela-

tively small number of recent observations (a few dozen). 

14.1.4 Changing composition and stacked curves

As a final example of a time-series problem, let’s consider a situation where the com-

position of an aggregate changes over time, while at the same time, the magnitude of

the entire aggregate also changes. The total human population, for example, changes

over time—but so does its breakdown by continent. Representing both aspects (over-

all size and composition) simultaneously is a difficult problem. This section intro-

duces four complementary solutions. This will also give me an opportunity to

demonstrate gnuplot’s for and sum constructs. (See the next listing—multiplot mode

will be discussed in section E.1.) 

set xtics 26

set mxtics 2

set xrange [0:150]

set multip layout 2,2 rowsfirst margins 0.1,0.95,0.15,0.9 spacing 0.1,0.05

set key horizontal samplen 2 at screen 0.55,0.95 width -7 center

set xtic format ""
set ylab "Absolute" offset 1,0

tx(k) = (k==2 ? 'Product 1' : ''.k-1)

plot for[k=2:5] "composition" u 1:k t '' . tx(k) w l
unset ylab

unset key

plot for[k=2:5] "composition" u 1:(sum[j=2:k] column(j)) w l 

set xtic format "%g"

set xlab "Individual"

set ylab "Fractional" offset 1,0
plot [][0:.6] for[k=2:5] "composition"

➥ u 1:(column(k)/(sum[j=2:5] column(j))) w l

unset ylab

set xlab "Stacked"

plot [][0:1.025] for[k=2:5] "composition"

➥ u 1:((sum[j=2:k] column(j))/(sum[j=2:5] column(j))) w l

unset multiplot

Listing 14.4 Commands for figure 14.9 (file: composition.gp)

Turns on
multiplot mode

Upper
left:

individual
product

numbers

Uses a function to 
supply a description 
for key entry

Upper right: 
stacked product 
numbers. Uses 
the sum feature.

Lower
left:

individual
fractions

Divides by the 
sum over all 
products

Lower
right:

stacked
fractions Divides the 

sum by the 
overall sumTurns off multiplot mode

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


326 CHAPTER 14 Topics in graphical analysis

Let’s consider a company that manufactures four products, numbered 1 through 4.

The absolute weekly production numbers (in thousands of units) for each product

separately are shown in figure 14.9, upper left. Such a plot makes it easy to follow the

behavior of each product individually, but as the number of products grows, such a

plot can become cluttered. Moreover, it isn’t easy to see how total production changes

over time. You could add a curve, but it would obviously be on a very different scale

than the individual contributions. Using a second vertical scale (one for the individual

numbers and one for the totals) is possible but leads to even more clutter.

For these reasons, you occasionally see the data represented in a stacked plot, as in fig-

ure 14.9, upper right. Here, the numbers for all products have been stacked on top

of one another, so that the curve for (say) product 2 represents the total manufac-

tured output for products 1 and 2 combined. By construction, lines in such plots

never cross, and hence the graphs always have a neat appearance—which makes

them popular in general-interest publications. Nevertheless, they have significant

problems. Only two curves are easy to interpret: the bottom one (product 1) and the

top one (total production). It’s exceptionally hard in such a stacked graph to esti-

mate how the contributions from the individual components change over time. For

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

A
b

s
o

lu
te

Product 1 2 3 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 26 52 78 104 130

F
ra

c
ti
o

n
a

l

Individual

 0

 0.2

 0.4

 0.6

 0.8

 1

0 26 52 78 104 130

Stacked

Figure 14.9 Four different ways to present changes in composition. Each line corresponds to 

the number of units produced for one of four different products. The top row shows absolute 

numbers of units produced; the bottom row shows fractions relative to total production. In the 

left column, each line is drawn separately; in the right column, the lines are stacked, giving a 

cumulative view into the data. See listing 14.4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


327Techniques for time-series plots

example, how much of the sudden increase in total production after week 130 is due

to product 4? It’s basically impossible to tell from this graph—you have to go back to

the previous panel. Similarly, from this graph, it isn’t easy to see that the double-

hump configuration starting in week 100 is due exclusively to product 2. (Judging the

distance between closely spaced curves that vary a lot over the plot range is excep-

tionally difficult—see section 14.3.2.)

 If you’re interested in the relative changes in composition, then—following the

principle to “plot what’s relevant”—you shouldn’t plot the absolute numbers but

rather their fractional contribution to the total. That’s what the panel at bottom right

in figure 14.9 does. This panel is also a stacked graph, but it shows the relative contri-

bution of each component, not the absolute numbers. It shares with the previous

panel that it’s guaranteed to look clean and that the individual contributions are hard

to estimate. In addition, this diagram completely hides any information about total

production. In particular, the dramatic increase toward the end of the observation

time frame is invisible! Although diagrams of this form have a lot of intuitive appeal,

they convey information poorly.

 Finally, the panel at bottom left shows the relative contributions, separately for

each component again. It shares with the first panel (top left) that it appears cluttered

but that the information on individual products is easy to discern.

 The appearance and information content of stacked graphs (like the ones on the

right side of figure 14.9) depend strongly on the order in which the individual curves

(here: product lines) are stacked. If there is some natural ordering, then such stacked

graphs may, in fact, be the best way to represent the information. Figure 14.10 shows

one such attempt. In this figure, the products have been ordered by their contribu-

tion to the total output, based on the (reasonable) assumption that products that con-

tribute more are more important. It makes sense to include curves that show less

variation and are flatter earlier in the graph, to retain a more stable baseline for the

curves that are added later to the stack. For this reason, product 1 has been included

before product 2, although it contributes overall slightly less: this way, the infamous

double-hump affects fewer curves in the overall stack.

 Because the components for figure 14.10 had to be picked individually, the sum

facility was much less useful:

plot [0:150] "composition" u 1:5 t "Product 4" w l lt 4,

➥ "" u 1:($5+$2) t "1" w l lt 1,

➥ "" u 1:($5+$3+$2) t "2" w l lt 2,

➥ "" u 1:($5+$3+$2+$4) t "3" w l lt 3

TIP Stacked graphs look appealing but often convey information poorly,
unless you can find a natural order in which to add curves to the stack. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


328 CHAPTER 14 Topics in graphical analysis

14.2 Graphical techniques for multivariate data sets

Data sets with more than two (or maybe three) columns are called multivariate data

sets. In principle, the number of columns can be arbitrarily large. Multivariate data

sets pose special challenges for graphical methods: it’s difficult to represent more

than two dimensions in a necessarily flat graph!

 There are basically two approaches to overcome the limitation posed by the two-

dimensional nature of the canvas:

 Juxtapose several graphs, each representing only a small number of the avail-

able attributes.

 Use complex symbols or glyphs that convey information not only through their

position on the graph, but also through their appearance (shape or color).

In this section, I’ll demonstrate some of the most common graphical techniques for

multivariate data sets. My intent here is twofold: I want to describe these graphical

methods, but I also want to show you how to realize them in gnuplot. Given that we’re

dealing with a multivariate problem, this will be an exercise in the use of loops and

multiplot mode!3

3 This section uses several gnuplot features that are explained in appendix E.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  26  52  78  104  130

U
n

it
s
 [

in
 1

,0
0

0
]

Weeks

Product 4

1

2

3

Figure 14.10 A stacked graph of absolute production numbers. The curves have 

been sorted in such a way that lines showing the smallest variation are lower in the 

stack, leading to a more stable baseline to which the subsequent products are added.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


329Graphical techniques for multivariate data sets

14.2.1 Introduction

Our case study for exploring multivariate graphics is a data set describing the compo-

sition of a little more than 200 individual samples of glass.4 The data set consists of 11

columns: the first is an integer to identify the record, followed by 9 columns of actual

measurements, and finally a column that specifies the type of glass as an integer

between 1 and 7.5 Hence, this data set has 9 (or, if you count the glass type as well, 10)

attributes. The data set is therefore neither particularly large nor excessively high-

dimensional—it’s just the right size to introduce the topic.

 The data file is comma-separated, so it’s necessary to use set datafile separator

','. The following listing does this and also includes a bunch of other definitions that

will turn out to be useful. In all subsequent listings, this file with common definitions

is loaded first. 

set datafile separator ','

data = "glass.data"

names = "ID RfIx Na Mg Al Si K Ca Ba Fe Type"

types = "Bldg1 Bldg2 Vhcl1 Vhcl2 Cont Tbl Lamp"

14.2.2 Distribution of values by attribute

The first question concerns the distribution of values for the various attributes. The

nine observed values are numerical, but the glass type is categorical—it can take on

only seven distinct values. Figure 14.11 shows a histogram of the latter; the commands

are in the next listing.

load "glass.def"

set boxwid 1

set xtic format ""
set for[k=1:7] xtic add ( word(types,k) k )

plot data u 11:(1) smooth frequency w boxes

Clearly, window glass as used in buildings dominates this data set; moreover, there are

no records in this data set of type 4 (vehicle windows of variety 2). For this reason, it’s

important to fix the boxwidth: otherwise, the two adjacent boxes will extend to fill

the gap.

4 This example comes from the “Glass Identification” data set, available from the UCI Machine Learning Repos-
itory at http://archive.ics.uci.edu/ml/datasets/Glass+Identification.

5 The measurements consist of the refractive index (RfIx) and the relative concentration of various chemical
elements in each glass sample. The types of glass include two types each for building and vehicle windows,
glass for containers, tableware, and headlamps.

Listing 14.5 Common definitions for the glass data set (file: glass.def)

Listing 14.6 Commands for figure 14.11 (file: glass1.gp )

Name of the input data file

Column names

Types of glass (column 11)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://www.it-ebooks.info/


330 CHAPTER 14 Topics in graphical analysis

Next let’s investigate the distribution of the nine numerical attributes. Keep in mind

that, at this point, you have no idea what their numerical ranges are. That suggests

box-and-whisker plots, because they don’t require any adjustable parameters. See fig-

ure 14.12 and the next listing. 

load "glass.def"

unset xtics; unset key

set ticscale 0; set grid lt 1 lc rgb "grey" lw 2
set ytic offset 0.5,0

set style fill solid 0.5

set multiplot layout 1,9 margin 0.075,0.975,0.1,0.95 spacing 0.075,0
do for[k=2:10] {

set xlabel word(names,k)

plot data u (1):k:(0.5) w boxplot pt 6
}

unset multi

The graph is a bit cluttered, mostly because each panel requires its own set of tic

marks. For this reason, individual tic marks are replaced with grey grid lines to pro-

vide a quieter visual appearance. Empty, instead of filled, circles are used for the outli-

ers, because those are easier to distinguish when they overlap partially. 

Listing 14.7 Commands for figure 14.12 (file: glass2.gp )

 0

10

20

30

40

50

60

70

80

Bldg1 Bldg2 Vhcl1 Vhcl2 Cont Tbl Lamp

data u 11:(1)

Figure 14.11 Number of data points for each type of glass. Compare listing 14.6.

Moves the tic marks 
closer to their boxes

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


331Graphical techniques for multivariate data sets

14.2.3 Distribution by level

It’s natural to ask whether different glass types can be distinguished by the observed

properties of the sample. Figure 14.13 therefore investigates the distribution of values

separately for each type of glass, which in the present case constitutes the level. (Also

see the next listing.) The situation certainly isn’t as clear cut as in section E.2.2!

load "glass.def"

unset xtic; unset key

set multi layout 3,3 margin 0.075,0.99,0.015,0.975 spacing 0.055,0.035
do for[k=2:10] {

set label word(names,k) at graph 0.95,0.9 right

plot data u (1):k:(0.5):11 w boxplot pt 6
unset label

}

unset multi

SAMPLE SIZE IN A SERIAL BOX-AND-WHISKER PLOT

Figure 14.13 is great to get an overall view, but a graph showing only a single attribute

allows greater detail—see figure 14.14. An interesting question when looking at a

serial box-and-whisker plot concerns the number of data points for each level: that

would be good information to have in order to evaluate the relative importance of

Listing 14.8 Commands for figure 14.13 (file: glass3.gp )

 1.51

1.515

 1.52

1.525

 1.53

1.535

RfIx

 10

 11

 12

 13

 14

 15

 16

 17

 18

Na

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Mg

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Al

 69

 70

 71

 72

 73

 74

 75

 76

Si

 0

 1

 2

 3

 4

 5

 6

 7

K

 4

 6

 8

 10

 12

 14

 16

 18

Ca

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Ba

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Fe

Figure 14.12 Distribution of values for each attribute. Compare listing 14.7.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


332 CHAPTER 14 Topics in graphical analysis

each level. One way to represent this quantity is via the width of the central box for

each level, and that’s what’s done in figure 14.14.

 Gnuplot’s with boxplot style doesn’t support this feature out of the box, but

because it does support level-specific boxwidths, you can accomplish this goal with a lit-

tle effort. In the following listing, the stats command is used to count the number of

records for each level. A string is built up holding all the counts as whitespace-

separated tokens; the word function extracts the appropriate token when needed.

(See section 11.1.2 for a more detailed discussion of this technique.) 

load "glass.def"

col = 6

get( s, k ) = word( s, int(k) )

unset key

set title "Attribute: " . get(names,col)

s = ''

do for[k=1:7] {

stats data u ($11==k?1:0) noout
s = s . sprintf( " %d", STATS_sum )

}

plot data u (1):col:(0.01*get(s,$11)):(get(types,$11)) w boxplot

Listing 14.9 Commands for figure 14.14 (file: glass4.gp)

 1.51

1.515

 1.52

1.525

 1.53

1.535
RfIx

 10
 11
 12
 13
 14
 15
 16
 17
 18

Na

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

Mg

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5
Al

 69

 70

 71

 72

 73

 74

 75

 76
Si

 0

 1

 2

 3

 4

 5

 6

 7
K

 4

 6

 8

 10

 12

 14

 16

 18
Ca

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5
Ba

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
Fe

Figure 14.13 Distribution of values for each attribute, shown separately for each type of glass. The 

sequence of glass types is the same as in figure 14.11; type Vhcl2 is ignored because there are no 

records for it. Compare listing 14.8.

Selects the column 
to display

Accesses the k-th 
element in string s

Builds up the string 
of record counts for 
each level

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


333Graphical techniques for multivariate data sets

14.2.4 Scatter-plot matrix

Box-and-whisker plots help us understand the distribution of data points for each attri-

bute, but they tell us nothing about the relationships between different attributes.

That’s what the scatter-plot matrix is for. 

 A scatter-plot matrix consists of scatter plots for all possible pairs of attributes in a

data set. In the present case, there are nine numerical attributes, and hence the

scatter-plot matrix forms a 9×9 array (see figure 14.15 and listing 14.10). You can

inspect this collection of graphs for correlations between attributes. For example, the

index of refraction grows quite regularly with the calcium (chemical symbol: Ca) con-

tent of the sample.

 The upper and lower half of a scatter-plot matrix aren’t independent; each pair of

attributes appears twice, with the horizontal and vertical axes interchanged. For this

reason, I use the bottom half of the array to visualize clusters of points. The symbols

are larger than in the top half, but the color is so transparent as to be almost invisible.

Only where many points overlap is the density high enough to form recognizable

spots. (See section 9.1.2 for information about transparency and alpha shading.)

69

70

71

72

73

74

75

76

Bldg1 Bldg2 Vhcl1 Cont Tbl Lamp

Attribute: Si

Figure 14.14 Distribution of values for attribute Si, shown separately for each type of glass. 

The width of the central box is proportional to the number of data points for each level. 

Compare listing 14.9.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


334 CHAPTER 14 Topics in graphical analysis

   

load "glass.def"

unset key; unset tics

set size square

set multi layout 9,9 margin 0.01,0.99,0.01,0.99 spacing 0.01
do for[i=2:10] {

do for[j=2:10] {

if( i!=j ) {
if( i<j ) {

Listing 14.10 Commands for figure 14.15 (file: glass5.gp )

RfIx

Na

Mg

Al

Si

K

Ca

Ba

Fe

Figure 14.15 Scatter-plot matrix of all attributes, ignoring the type of glass. The upper half of the 

matrix shows individual points, and the lower half shows smeared-out and partially transparent 

symbols to facilitate the recognition of clusters. Compare listing 14.10.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


335Graphical techniques for multivariate data sets

plot data u i:j w p ps .25 pt 7
} else {

plot data u i:j w p ps .5 pt 7 lc rgb "#e60000ff"

}
} else {

unset border

set label word(names,i) at 0,0 center
plot [-1:1][-1:1] 1/0

unset label

set border
}

}

}
unset multi

The command set size square ensures that each individual panel of the 9×9 matrix

is square. For best results, you may want to make sure that the shape of the overall

canvas forms a square as well, using set terminal ... size ... with your preferred

terminal. 

14.2.5 Parallel-coordinates plot

The scatter-plot matrix is a method to visualize the relationship between any two attri-

butes, but it provides no help at all when it comes to relationships across more than

two attributes at the same time. For that, we turn to parallel-coordinates plots. They’re

formally introduced in section E.3, and there it’s also explained that gnuplot’s current

implementation is subject to some limitations: in particular, the number of attributes

is constrained to a small integer number. Among other things, you’ll now learn how to

work around this issue.

 The trick is to use multiplot mode (again)! Using multiplot mode, you can include

as many attributes as desired by placing several graphs side by side, each of which

doesn’t exceed the maximum number of columns supported (see listing 14.11).

 Multiplot mode deals with the number of attributes; alpha shading is used to cope

with the number of records. In the present case, the number of records is sufficiently

high that lines obscure each other, making it impossible to discern any dominating

structure in the graph. By using partially transparent lines, isolated lines fade into the

background, but areas where lines cluster stand out strongly. (See figure 14.16.)

load "glass.def"

unset key; unset ytics

set xtics format ""

set style parallel lw 1 lc black

set linetype 1 lc '#ddff0000' lw 1

set multi layout 1,2 margin 0.05,0.9,0.1,0.95 spacing 0

set for[k=1:5] xtic add ( word(names,k) k )
plot [1:6] data u 1:2:3:4:5:6 w parallel lt 1

Listing 14.11 Commands for figure 14.16 (file: glass6.gp )

Turns on 
multiplot 
mode

Left side

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


336 CHAPTER 14 Topics in graphical analysis

set for[k=1:6] xtic add ( word(names,k+5) k )
set paxis 6 tics format ""

set for[k=1:7] paxis 6 tics add ( word(types,k) k ) offset 7,0

plot [1:6] data u 6:7:8:9:10:11 w parallel lt 1

unset multi

HIGHLIGHTING A SUBSET OF RECORDS

It’s often desirable to highlight a subset of records in a parallel-coordinates plot,

based on some condition. In figure E.12, records are highlighted based on their class.

In the present case, all records are highlighted that belong to a particular cluster. If

you examine figure 14.16, you’ll notice that there is a reasonably well-separated clus-

ter of records with an intermediate concentration of Ca. In figure 14.17, those lines

are highlighted, and you can observe two things: records with an intermediate Ca con-

centration tend to have an unusually high or low aluminum (symbol: Al) concentra-

tion. And they tend to correspond to glass made for lamps or tableware, but not for

containers or windows. That’s an interesting finding.

 Highlighting makes use of data-dependent coloring (see section 9.1.5): an addi-

tional column is specified at the end of the using declaration, and its value is evalu-

ated to the linetype to use. Listing 14.12 defines the function c() that selects the

linetype, depending on whether the argument to the function falls into the desired

numerical range. (Tic marks have been turned on for the attribute in question.)

ID RfIx Na Mg Al Si K Ca Ba Fe Type

Bldg1

Bldg2

Vhcl1

Vhcl2

Cont

Tbl

Lamp

Figure 14.16 Parallel-coordinates plot of the entire glass data set. Because of the relatively large 

number of records, all lines are drawn partially transparent, so as not to obscure each other. To 

accommodate all attributes, this graph was composed using multiplot mode (see listing 14.11).

Right side

Turns off multiplot mode

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


337Graphical techniques for multivariate data sets

 

load "glass.def"

unset key; unset ytics

set xtics format ""

c(x) = 9<x && x<10 ? 2 : 3

set style parallel lw 1 lc black

set linetype 1 lc '#ddff0000' lw 1

set linetype 2 lc '#aa0000ff' lw 1
set linetype 3 lc '#ff000000' lw 1

set multi layout 1,2 margin 0.05,0.9,0.1,0.95 spacing 0

set for[k=1:5] xtic add ( word(names,k) k )
plot [1:6] data u 1:2:3:4:5:6 w parallel lt 1,

➥ data u 1:2:3:4:5:6:(c($8)) w parallel lc var

set for[k=1:6] xtic add ( word(names,k+5) k )
set paxis 3 tics 1

set paxis 6 tics format ""

set for[k=1:7] paxis 6 tics add ( word(types,k) k ) offset 7,0
plot [1:6] data u 6:7:8:9:10:11 w parallel lt 1,

➥ data u 6:7:8:9:10:11:(c($8)) w parallel lc var

unset multi

Listing 14.12 Commands for figure 14.17 (file: glass7.gp )

ID RfIx Na Mg Al Si K Ca Ba Fe Type

Bldg1

Bldg2

Vhcl1

Vhcl2

Cont

Tbl

Lamp

Figure 14.17 Same as figure 14.16, but with a subset of records highlighted. Records with 

a Ca content between 9 and 10 have been selected for highlighting. Compare listing 14.12.

Default 
style Highlight 

style Invisible 
(transparent) 
style

Left
side

Right
side

Turns on tic marks 
for one column

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


338 CHAPTER 14 Topics in graphical analysis

The listing defines two line types in addition to the default: one for highlighting and

one that is completely transparent and therefore invisible. Because it doesn’t obscure

any of the existing graphical elements, it’s used for the records that aren’t selected for

highlighting.

FURTHER SUGGESTIONS

Figure 14.17 explores only one aspect of the data set; many similar clusters can be

found and traced across all attributes. You can also do what I did in figure E.12 and

highlight all records belonging to a particular type of glass. Does this reveal any inter-

esting structure in the data set? Another possibility is to draw all lines belonging to the

same type of glass in the same color, using six different colors simultaneously.

 Another aspect affecting the appearance of a parallel-coordinates plot is the order

or sequence in which attributes are plotted. In figures 14.16 and 14.17, I used the (arbi-

trary) arrangement of columns in the original data file, but different permutations

may give quite different results. Unfortunately, gnuplot doesn’t make it easy to shuffle

columns in a parallel-coordinates plot: you have to create different using declarations

to rearrange attributes. Here are two permutations that you may want to try:

1,4,6,2,5,3,8,7,10,9,11
1,4,6,3,5,8,2,10,7,9,11

14.3 Visual perception

Even if you’ve found the most appropriate combination of quantities to look at, the

amount of information you can extract from a graph still depends on the way the data is

presented. The way people perceive a plot depends on the human, visual-psychological

perception of it. To get the most out of a graph, you should therefore format it to

improve the way it will be perceived.

 Whether aware of it or not, in looking at a plot, humans always tend to engage in com-

parisons. Is this line longer than that? Is this part of the curve steeper than that? Is the

area underneath this function larger than the area underneath that function? And so on.

 To gain the maximum insight from a plot, you therefore want to find a representa-

tion of the data that facilitates such comparisons as much as possible. In this section, I

give you some ideas for how this can be achieved.

14.3.1 Banking

The idea of banking (or banking to 45 degrees) was proposed by W. S. Cleveland, who

demonstrated in a series of controlled experiments that our ability to compare angles

is greatest for angles that are close to 45 degrees.6 In other words, if you want to assess

and compare the slopes of lines on a graph, you’ll do best if the graph is sized in such

a way that most of the lines are roughly going diagonally across it.

 In a way, this is a confirmation of something you’ve probably been doing intui-

tively already. Whenever you’ve found yourself adjusting the plot ranges of a graph to

get its aspect ratio right (as opposed to narrowing the plot ranges to zoom in on a

6 See The Elements of Graphing Data by William S. Cleveland (Hobart Press, 1994) and references therein.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


339Visual perception

region), you’ve probably been banking. Let’s consider an example: figure 14.18 shows

the number of sunspots observed annually for the 300 years from 1700 to 2000.7 The

number of sunspots observed varies from year to year, following an irregular cycle of

about 11 years.

 Because of the large number of cycles included in the graph, vertical (or almost

vertical) line segments dominate the graph, making it hard to recognize the structure

in the data. In figure 14.19, the plot range has been split into thirds, and each third is

displayed in a separate panel. The aspect ratio of the panels has been chosen in such a

way that the rising and falling edges of the curve are close to 45 degrees. The graphs

alone (without the labels and decorations) can be created easily:

set multiplot layout 3,1 margins 0.1,0.95,0.1,0.95 spacing 0
plot [0:100] "sunspots" u ($1-1700):2 w l

plot [0:100] "sunspots" u ($1-1800):2 w l

plot [0:100] "sunspots" u ($1-1900):2 w l
unset multi

Now an interesting feature in the data can be recognized: the number of sunspots

during each cycle rises quickly but tends to fall more slowly. (There’s the visual com-

parison I referred to earlier!) You wouldn’t have been able to see this from the repre-

sentation of the data in figure 14.18.

7 The data was obtained from WDC-SILSO, Royal Observatory of Belgium, Brussels, www.sidc.be/silso
/datafiles.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1700  1750  1800  1850  1900  1950  2000

A
n

n
u

a
l 
m

e
a

n
 t

o
ta

l 
s
u

n
s
p

o
t 

n
u

m
b

e
r

Figure 14.18 Annual sunspot numbers for the years 1700 through 2000. What can you 

say about the shape of the curve in this representation?

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.sidc.be/silso/datafiles
http://www.sidc.be/silso/datafiles
http://www.it-ebooks.info/


340 CHAPTER 14 Topics in graphical analysis

 

Banking is a valuable tool. In particular, I find it helpful because it draws attention to

the importance of the apparent slopes of lines on a graph. Nevertheless, it must be

used with judgment and discretion. Taken by itself, it can lead to graphs with strongly

skewed aspect ratios. Figure 14.19 is a good example: if the three segments hadn’t

been stacked on top of each other, the resulting graph would have had a very awkward

shape (extremely long and flat).

TIP To improve the perception of slopes, choose the plot range and aspect
ratio of your graphs such that most of the curves are at approximately 45
degrees to the horizontal. If necessary, chop up the data set into segments
and arrange them in a cut-and-stack plot, to keep the overall aspect ratio of
the plot at a convenient value. 

14.3.2 Judging lengths and distances

Look at figure 14.20. It shows the flows to and from a storage tank as a function of

time. For the time interval considered here, the inflows are always greater than the

outflows, so the tank tends to fill up over time, but that’s not our concern right now.

(Let’s say the tank is large enough.)

 Instead, let’s ask for the net inflow as a function of time—the inflow less the outflow

at each moment. Could you draw it? Does it look at all like the graph in figure 14.21?

In particular, does your graph contain the peak between 6 and 7 on the horizontal

axis? How about the relative height of the peak?

 0

 25

 50

 75 1700

 0

 25

 50

 75 1800

A
n

n
u

a
l 
m

e
a

n
 t

o
ta

l 
s
u

n
s
p

o
t 

n
u

m
b

e
r

 25

 50

 75

0 20 40 60 80 100

1900

Figure 14.19 A different representation of the sunspot data from figure 14.18. The aspect ratio 

of each segment in the cut-and-stack plot is such that it banks lines to 45 degrees.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


341Visual perception

 

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12

Outflow

Inflow

F
lo

w
 r

a
te

Time

Figure 14.20 Inflow to and outflow from a storage tank. What’s the net flow to the tank?

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12

N
e

t 
fl
o

w
 r

a
te

Time

Figure 14.21 Net flow to the storage tank. This is the difference between the inflow and 

the outflow (see figure 14.20).

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


342 CHAPTER 14 Topics in graphical analysis

This example shows how hard it is to estimate accurately the vertical distance between

two curves with large slopes. The eye has a tendency to concentrate on the shortest dis-

tance between two curves, not on the vertical distance between them. The shortest dis-

tance is measured along a straight line perpendicular to the curves. For nearly

horizontal curves, this is reasonably close to the vertical distance; but as the slopes

become steeper, the difference becomes significant. (Because the net flow is the dif-

ference between the two flow rates at the same point in time, you’re looking specifi-

cally for the vertical distance between the two curves.)

 You may also want to compare the observations made here with the discussion in

section 14.1.4—the problems are similar. As a general rule, it’s difficult to estimate

changes against a baseline that itself isn’t constant; and the more rapidly the baseline

changes, the harder it is to use.

TIP The eye has difficulty accurately judging the vertical distance between
two curves with large slopes. If the nature of the difference between two quan-
tities is important, then plot it explicitly. Don’t rely on observers to recognize
it from the contributing components. 

14.3.3 Plot ranges and whether to always include zero

Plots should have meaningful plot ranges, showing those parts of the data that the

viewer is most likely going to be interested in at a reasonable resolution. It may not be

possible to convey all the meaning appropriately with a single choice of plot ranges, so

don’t be shy about showing two or more views of the same data set—for instance, an

overview plot and a detailed close-up of only a small section of the entire data set.

 A long-standing (and largely unfruitful) discussion concerns the question of

whether zero should be included in the range of a graph. The answer is simple: it

depends.

 If you’re interested in the total value of a quantity, you probably want to include

zero in your range. If you care only about the variation relative to some baseline other

than zero, then don’t include zero.

 Figure 14.22 demonstrates what I mean. Both panels of the graph show the same

data. The main graph tells us that the total variation is small, compared to the overall

value. The inset tells us that there has been a steady increase from left to right. Both

views are valid, and each gives an answer to a different question.

 Plot ranges are a bit more of a concern when you need to compare several graphs

against each other. In such a situation, all graphs should have the same scale to facili-

tate comparison; in fact, using different scales for different graphs is a guaranteed

path to confusion (because the difference in scales will go unnoticed or be conve-

niently forgotten). And if one of the graphs legitimately includes zero, then all of

them must do the same. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


343Summary

14.4 Summary

In this chapter, I chose three recurring topics and discussed them in greater depth.

The first was the graphical analysis of time series; we paid particular attention to find-

ing a smooth approximation to the raw data’s overall trend. I then described a variety

of methods for the graphical treatment of multivariate data sets and how to realize

them in gnuplot. Finally, I pointed out the importance of visual perception and

described some ways to take advantage of it.

 0

 2

 4

 6

 8

10

12

14

16

 0  20  40  60  80  100

 15

 15.2

 15.4

 15.6

 15.8

 16

 16.2

 0  50  100

Figure 14.22 Two different views of the same data set. The outer graph includes zero in the 

vertical plot range, and the inner graph displays only that part of the vertical axis that 

corresponds to data points. Both views are valid: the outer graph shows that the relative change 

in the data is small compared to its absolute value; the inner graph shows that the variation 

increases dramatically from left to right.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


344

Coda: understanding
data with graphs

But in the end, the most impor-

tant thing is to draw the right

conclusions from the available

evidence.

 During World War II, a pro-

gram was launched to explore

the possibility of equipping

fighter planes with additional

armor as protection against

ground-based anti-aircraft fire.1

To determine where on the air-

plane to place the armor,

fighter planes returning from

combat missions were investi-

gated for bullet holes. In figure

15.1, the areas where bullet

holes were found are shown

shaded; areas without bullet

holes are left white.

 Given this evidence, where

would you put additional armor?

1 The inspiration for this story stems from the book Graphical Discovery by Howard Wainer (Princeton Uni-
versity Press, 2005).

Figure 15.1 Schematic outline of a fighter airplane. Areas 

where bullet holes were found on machines returning from 

combat missions are shaded. Where would you recommend 

placing additional armor?

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


345

 The not-so-obvious obvious answer is to add the armor in those areas where no bul-

let holes were found. Why? Because airplanes are subject to hits everywhere, but if the

hits strike in the white areas in figure 15.1, the airplane doesn’t come back from its mis-

sion. (Statisticians speak of survivorship bias.) Therefore, those are the most vital areas

of the machine and should receive the best possible protection.

 So, let this be our final lesson. Evidence, be it graphical or otherwise, is just that:

mere data. But actual insight arises only through the correct interpretation of those

facts.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


346

appendix A
Obtaining, building, and

installing gnuplot

The easiest way to install gnuplot on your local computer is to download and install a

precompiled package. If you’re running Linux, there’s a good chance gnuplot is

already installed; if not, you’ll have no difficulty finding an RPM or Debian package on

the internet. There are MacPorts packages for Mac OS X and precompiled binaries for

Windows as well. In section A.3, we consider some of these options in more detail.

 If you’d like to be totally up to date and have access to the newest features, or if you

want to start hacking on gnuplot yourself, you’ll have to build from source. Section

A.4 in this appendix will help you get started.

A.1 Inspecting compile-time options

You can inspect what compile-time options your version of gnuplot was built with from

within a gnuplot session. The pertinent commands are show version and show ver-

sion long. The first version will tell you little more than the version number, but the

second version will also print the compile-time options to the screen. A - prefix indi-

cates an option that is disabled, a + prefix one that is enabled.

 Most of this information is primarily relevant if you’re building gnuplot from

source yourself (see section A.4) or if you want to report bugs to the gnuplot develop-

ers’ mailing list (gnuplot-beta@lists.sourceforge.net). But even if some feature doesn’t

work as expected, it may be worth checking whether your gnuplot executable was

built with support for that feature to begin with. 

A.2 Release and development versions

Gnuplot versions are generally labeled with a three-part version number indicating

major, minor, and bug-fix releases. Bug-fix releases are prepared as needed (roughly

twice a year). Minor releases introduce new features but preserve backward compati-

bility for existing gnuplot command scripts. Major releases may break backward

compatibility. The development version of a minor release is indicated by an odd

version number, which is incremented to the next even number on promotion to a

released version.

 Gnuplot is a mature project—for the 5.x.x major release series, minor releases

are a few years apart, and the core developer team is very conscientious about not

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


347Installing a prebuilt package

introducing instability into released versions. On the other hand, new and exciting

features continue to be added to gnuplot all the time, so there are good reasons for

learning how to build gnuplot from source. 

A.3 Installing a prebuilt package

Installing a prebuilt package is usually straightforward and mostly dependent on your

choice of package manager.

A.3.1 Linux

Usually, the easiest way to install new software on a Linux box is to use the standard

administration tool that comes with your local Linux distribution. On RPM-based dis-

tributions, you can also download an RPM file explicitly and then install it (as root)

using

rpm -i gnuplot-XXX.rpm

where you should replace gnuplot-XXX.rpm with the exact name of the package file

you’ve downloaded. RPM files for current gnuplot releases can be found without diffi-

culty on the web.

 On Debian-based systems, you can execute the following:

apt-get install gnuplot

But be warned that there are reports that gnuplot for Debian-based systems is often

built without the GNU readline library (due to strict interpretations of the differences

in the GNU and the gnuplot licenses), so you might want to build gnuplot from source

instead. 

A.3.2 Mac OS X

The most convenient way to install gnuplot on Mac OS X is to use a package manager,

such as Homebrew or MacPorts, which will automatically deal with configuration

issues and resolve dependencies.1 Assuming you already have Homebrew installed,

you can install gnuplot by entering the following command in the Terminal:

brew install gnuplot

If you’re using MacPorts, you type

sudo port install gnuplot

The latter will prompt you for your password, which you need to enter. Once gnuplot

has been successfully installed using either method, you can run it by issuing the com-

mand gnuplot in the Terminal window. 

1 I’d like to thank Mojca Miklavec for help with this section.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


348 APPENDIX A Obtaining, building, and installing gnuplot

 Be aware that a choice of build options is available when installing gnuplot, in par-

ticular with regard to the selection of terminals that will be included. The MacPorts

distribution, for example, includes AquaTerm and the cairo-based terminals (includ-

ing the wxt terminal) by default, but not the qt terminal. 

A.3.3 Windows

The easiest way to install gnuplot on Windows is to use the precompiled package avail-

able from the download section of the gnuplot website at www.gnuplot.info.2 At the

time of this writing, the most recent version available was gnuplot 5.0.1. Download the

file gp501-win64-mingw.exe, and execute it. The package works with the Windows

installer, which takes care of things like permissions and menu entries.

 No further installation is required. To run gnuplot, select the entry in the Start

menu. A new window will pop up, containing the familiar gnuplot command prompt.

The window has some additional menus that provide shortcuts to many of the gnuplot

commands.

 The bin directory contains additional gnuplot executables, which are intended to

emulate Unix pipes and files necessary to run the qt and wxt terminals on Windows.

Refer to the README-Windows.txt file for additional details. 

A.4 Building from source

If you want to build gnuplot from source, you have two choices: either you can down-

load and build an officially released version of gnuplot, or—if you want to be truly on

the cutting edge—you can download and build the latest development version. Released

versions of gnuplot can be downloaded as source tarballs from the gnuplot home

page at www.gnuplot.info. There, you can also find precompiled binaries for several

non-Unix platforms.

A.4.1 Obtaining the development version from CVS

The development version of the gnuplot source tree is kept in CVS at www.source-

forge.net. To get a copy of the development version from the repository, follow these

steps:

1 Create a directory on your local drive, and change into it. You can name it any

way you like.

2 Log in to the CVS repository:

cvs

➥ -d:pserver:anonymous@gnuplot.cvs.sourceforge.net:/cvsroot/gnuplot

➥ login

Press Enter when you’re prompted for a password. (This step is only necessary

the first time around.)

2 I’d like to thank Bastian Märkisch for help with this section.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


349Building from source

3 Check out the source tree:

cvs

➥ -d:pserver:anonymous@gnuplot.cvs.sourceforge.net:/cvsroot/gnuplot

➥ checkout gnuplot

You may want to set the environment variable CVSROOT to

:pserver:anonymous@gnuplot.cvs.sourceforge.net:/cvsroot/gnuplot

(How you do this depends on the shell you’re using.) If CVSROOT is set, you don’t need

to repeat the cvs-directory as part of the CVS command line using the -d option. 

 The checkout command creates a directory called gnuplot in the current direc-

tory. We’ll examine its contents next. 

A.4.2 Layout of the source tree

Whether you downloaded and unpacked a tarball of a released version or checked out

the current development version from CVS, you should now have a directory called

gnuplot (or similar) on your local drive. Inside this directory, you’ll find the following

(I’m listing only the most important files and directories):

 config/—Files required by the automake/autoconf utility, which is used to con-

figure the build process to the local environment.

 demo/—A large set of gnuplot demos and the data files required by them.

 docs/—Source files for the gnuplot reference documentation. Documentation

for gnuplot is maintained in a markup language that’s specific to gnuplot. Help

files in common formats (HTML, TeX, GNU Info, and so on) are built from the

master file (called gnuplot.doc), as is the gnuplot online help feature. You can

find an explanation of the markup format in the README file in the docs/

directory.

 src/—The source tree.

 Copyright—The gnuplot copyright and license.

 INSTALL—Gnuplot build and installation instructions. Very detailed.

 INSTALL.gnu—Documentation for the GNU autoconf/configure utility.

 NEWS—Overview of new features, changes, and fixes in the current version of

gnuplot.

 README—The overall gnuplot Readme file.

 RELEASE_NOTES—A rather detailed overview concerning the new features in

the current version, bugs and limitations, and important configuration options. 

A.4.3 Building and installing

Specific build instructions are platform dependent. Because of the great variability of

Unix platforms, the instructions for building on Unix are the most complex.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


350 APPENDIX A Obtaining, building, and installing gnuplot

UNIX

Building gnuplot from source on Unix requires that the standard Unix development

tools are installed. In addition to a C compiler and make, this also includes the auto-

conf/automake utility, which is used during the configuration step to probe many

aspects of the local build environment and to create a localized Makefile. Building is

then a rather painless process using make.

Configuring

When building from source, it’s necessary to set up your build script first. To do so,

change into the gnuplot directory and execute ./prepare. This creates a script called

configure. (This step is only required when building the development version of gnu-

plot; the release versions already include a usable configure script.) 

 In either case, execute ./configure in the gnuplot directory. The configure script

takes a large number of command-line options. You can obtain a complete list using

./configure --help

Many of these options are described in detail in the INSTALL file. Here, I mention just

the ones that you’ll most likely want to tinker with. For the majority of options, the

defaults are fine:

 --prefix=PREFIX—This controls where the gnuplot executable, library, and

documentation files will be installed. The default is /usr/local. If you don’t

have root permission on your box, or if you’d like to maintain a local version of

the development version, you may want to provide a different path here.

There are many more options that control the installation location of execut-

able, library, and documentation files independently. Check the INSTALL file

for details.

 --with-readline—Gnuplot comes with its own minimal version of a readline

library (which provides command-line editing capabilities, command comple-

tion, and a history feature). You can select this version using --with-readline

or using --with-readline=builtin (this is the default). If instead you’d like to

use the more powerful GNU readline library, use --with-readline=gnu, or

--with-readline=DIR, where DIR is the path to a (nonstandard) directory con-

taining the GNU readline library. Note that the GNU readline library is released

under a different license than the rest of gnuplot. 

 --with-wx=DIR—The location of wx-config, the wxWidgets configuration pro-

gram. This is important if you want to include support for the wxt terminal.

 --with-qt—This determines whether gnuplot will be built with support for the qt

terminal, and which version of qt to use. If you select --with-qt=no, the qt termi-

nal won’t be supported; other possible values for this option are qt4 and qt5. 

The configuration step produces a long list of output describing the local environ-

ment that will be used during the build process. It’s worth skimming this output: if the

configuration utility doesn’t seem to find libraries that you know are available, you

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


351Building from source

may have to change some of the defaults using additional command-line options

described in the INSTALL file. Libraries required for some of the terminals are occa-

sionally not found, which means you need to override the search paths by tweaking

the corresponding command-line options to configure. 

 Also be aware that you’ll need the devel packages for many of the required libraries

if you want to build gnuplot from source, not just the release packages. In particular,

the packages required for the wxt, cairo, and pango libraries may not be installed on

your local system by default.

Building and installing

If the configuration step has completed successfully, building gnuplot is very simple:

execute make from within the gnuplot directory. Compilation (on a reasonably cur-

rent system) takes only a few minutes.

 If the compilation was successful, execute make install to install the gnuplot

binary, its documentation, and any required auxiliary files into the specified locations.

You may want to follow this with make distclean to remove many of the temporary

files left over from the build process. 

WINDOWS

Gnuplot can be built on Windows using a variety of compilers. A major challenge

when building on Windows is resolving the dependencies on external libraries. Check

the INSTALL file for more information. 

MAC OS X

To build gnuplot on Mac OS X, you should have the Xcode development environment

installed: the build process is then essentially the same as for other Unix platforms.

You may also want to have AquaTerm installed, which you can obtain through a pack-

age manager or directly from SourceForge (http://aquaterm.sourceforge.net).

 To include support for cairo and wxt, you must have the cairo and pango libraries

installed already. See the INSTALL file for details.

 Also, there have been reports of problems with the readline library that ships with

Mac OS X. You may want to fall back to gnuplot’s own (minimalistic) version of the

readline library: ./configure --with-readline=builtin; or replace the default

library with the GNU readline version before building. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://aquaterm.sourceforge.net
http://www.it-ebooks.info/


352

appendix B
Resources

B.1 Gnuplot

The official website for the gnuplot project is www.gnuplot.info. There you’ll find the

official documentation, including the extensive and helpful FAQ, as well as links (not

always current) to other sites and related projects.

 Community support is available through the newsgroup comp.graphics.apps

.gnuplot and the mailing list gnuplot-info@lists.sourceforge.net. There’s also a mail-

ing list for gnuplot developers: gnuplot-beta@lists.sourceforge.net.

B.1.1 Websites

Several websites are dedicated to gnuplot and often contain very good information, as

well as tips and tricks. The following stand out both for the quality of their material

and for the range of topics covered:

 Gnuplotting at www.gnuplotting.org—Hagen Wierstorf maintains a page with

some stunning examples and uncommon gnuplot applications. 

 Impossible Gnuplot Graphs at www.phyast.pitt.edu/~zov1/gnuplot/html/intro

.html—The first of two websites with gnuplot tricks by Zoltán Vörös.

 Gnuplot Tricks at http://gnuplot-tricks.blogspot.com—The other site prepared

by Zoltán Vörös.

 Gnuplot—not so Frequently Asked Questions at http://lowrank.net/gnuplot/index-e

.html and at http://mng.bz/5i80—Originally collected by Toshihiko Kawano at

Los Alamos National Lab, this is a large collection of techniques. Some of the

material is a little dated, but most of it is still relevant and interesting. (The orig-

inal site has gone away, but the material is now fortunately hosted by volun-

teers.)

For specific topics, a quick Google search will typically result in additional posts and

articles. 

B.1.2 Books

To my knowledge, there is only one other book dedicated exclusively to gnuplot:

 Gnuplot Cookbook by Lee Phillips (Packt Publishing, 2012)—This book contains

a collection of “recipes” for common, and not-so-common, tasks. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

www.phyast.pitt.edu/~zov1/gnuplot/html/intro.html
www.phyast.pitt.edu/~zov1/gnuplot/html/intro.html
http://gnuplot-tricks.blogspot.com
http://lowrank.net/gnuplot/index-e.html
http://lowrank.net/gnuplot/index-e.html
http://mng.bz/5i80
http://www.it-ebooks.info/


353Books

B.2 Data repositories

I assume that you’ll usually have your own data that you want to plot! Still, the need

for example data sets arises from time to time. Here are some good collections of

freely available data sets on the web:

 UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/index.html—A

very large and frequently updated collection of data sets.

 Journal of Statistics Education Data Archive at www.amstat.org/publications

/jse/jse_data_archive.htm—A large collection of often very interesting data

sets used in papers published by the JSE.

 Time Series Data Library at http://data.is/TSDLdemo—A very large collection of

time series data, collected by Rob Hyndman. Unfortunately only sparsely

documented.

 The Data and Story Library at http://lib.stat.cmu.edu/DASL—An older, medium-

sized collection of data sets and “stories,” intended to teach basic statistics.

 StatLib Datasets Archive at ftp://rcom.univie.ac.at/mirrors/lib.stat.cmu.edu

/datasets/.index.html—Many data sets that have been mentioned in textbooks

can be downloaded from this site. You usually need the respective textbook to

make sense of the downloads.

 100+ Interesting Data Sets for Statistics at http://rs.io/100-interesting-data-sets-for-

statistics—A large and heterogeneous collection of links and pointers to data

archives on the web. 

B.3 Books

Here are a few books on scientific graphics and graphical discovery that I’ve found

helpful and interesting:

 The Elements of Graphing Data by William S. Cleveland (Hobart Press, 1994)—

Probably the definitive reference on graphical analysis (as opposed to presenta-

tion graphics). Much of the material in chapter 13 and chapter 14 has been

influenced by Cleveland’s careful approach. There’s also a companion volume,

Visualizing Data (1993), by the same author. 

 Visual Revelations by Howard Wainer (Copernicus/Springer, 1997), Graphic Dis-

covery by Howard Wainer (Princeton University Press, 2005), and Picturing the

Uncertain World: How to Understand, Communicate, and Control Uncertainty through

Graphical Display by Howard Wainer (Princeton University Press, 2011)—Three

collections of short essays on statistical graphics, written in an entertaining,

semi-popular style. Many good ideas and interesting case studies can be found

here, but also a lot of editorializing about various issues.

 Data Analysis with Open Source Tools by Philipp K. Janert (O’Reilly, 2009)—The

first several chapters of this book cover graphical methods in data analysis (sim-

ilar in spirit to chapters 13 and 14, but in more depth). The remainder of the

book discusses a variety of other (nongraphical) techniques for extracting

insights from data. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://archive.ics.uci.edu/ml/index.html
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://data.is/TSDLdemo
http://lib.stat.cmu.edu/DASL
ftp://rcom.univie.ac.at/mirrors/lib.stat.cmu.edu/datasets/.index.html
ftp://rcom.univie.ac.at/mirrors/lib.stat.cmu.edu/datasets/.index.html
http://rs.io/100-interesting-data-sets-for-statistics
http://rs.io/100-interesting-data-sets-for-statistics
http://www.it-ebooks.info/


354

Symbols

^ (caret) symbol 161, 218
^ operator 36
_ (underscore) symbol 156, 161, 197, 218
_tic() functions 166
_ticlabels() family of functions 165, 168
- (dash) symbol 197
- operator 35
! (exclamation point) 98
! operator 35, 242
!= operator 36
? (question mark) character 98
. (dot) operator 35, 92
" " accuracy specifier 160
"-" accuracy specifier 160
"#" accuracy specifier 160
"+" accuracy specifier 160
(,) operator 36
{} control character 218
{/ } control character 218
{/:Bold} control character 218
{/:Italic} control character 218
{/:Normal} control character 218
{/*} control character 218
{/=} control character 218
@ control character 218
@ symbol 87
* (asterisk) character 154
* (multiplication) operator 35
** (exponentiation) operator 32, 35
/ (division) operator 35
/ path separator 246
\ control character 218
& control character 218

& operator 36
&& operator 36
# (hashmark) 20, 26, 58
% operator 35
%% conversion specifier 160
%A conversion specifier 172–173
%a conversion specifier 172–173
%B conversion specifier 172–173
%b conversion specifier 160, 172–173
%c conversion specifier 160
%D conversion specifier 172–173
%d conversion specifier 172–173
%e conversion specifier 160
%F conversion specifier 172–173
%f conversion specifier 160
%g conversion specifier 160
%H conversion specifier 172–173
%h conversion specifier 160–161
%I conversion specifier 172–173
%j conversion specifier 172–173
%k conversion specifier 172–173
%l conversion specifier 160, 172–173
%M conversion specifier 172–173
%m conversion specifier 172–173
%o conversion specifier 160
%P conversion specifier 160, 167
%p conversion specifier 172–173
%R conversion specifier 172–173
%r conversion specifier 172–173
%S conversion specifier 172–173
%s conversion specifier 160, 162, 172–173
%T conversion specifier 172–173
%t conversion specifier 160
%U conversion specifier 172–173
%W conversion specifier 172–173
%w conversion specifier 172–173

index
Note: index entries that begin with the letters C, D, E, and F can be found in the corresponding appendixes 

in the e-book version of this book.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


355INDEX

%x conversion specifier 160
%Y conversion specifier 172–173
%y conversion specifier 172–173
+ default hotkey binding 270
+ operator 35
< operator 35
<< operator 35
<= operator 36
= operator 36
== operator 36
> operator 36
>= operator 36
>> operator 35
| operator 36
|| operator 36
~ control character 218
~ operator 35
$ character 252
$2-s using expression 321

Numerics

"0a.b" accuracy specifier 160
0 set hidden3d option C4
1 set hidden3d option C4
2 set hidden3d option C4

A

a smoothing parameter 317–318
"a.b" accuracy specifier 160
abbreviations feature 24
abs(x) function F12–F13
acos(x) function F11
acosh(x) function F11
acsplines keyword 45
add keyword 164
airy(x) function F12
allometric scaling 162, 298
allwindows option 272
alpha channel 185
alpha shading 185–186
"alt-" control key 272
animations 254–255

introducing delays 254
waiting for user event 255

Apache web server log, plotting 315–316
appearance (plot), changing 338
append keyword 88
approximating splines 46, 294
aqua terminal 233
arg(x) function F13
ARG1 variable 244
ARG2 variable 244
ARGC variable 244

ARGO variable 244
arrays, creating with multiplot layout E4
arrow keys, default hotkey binding 270
arrow variable 275
arrows 131–134

customizing appearance of 132–133
placing with mouse 275
styles for 202

arrowstyle keyword 104
arrowstyle variable 118
asin(x) function F11
asinh(x) function F11
aspect ratio, view point using 204, C10
asterisk (*) character 154
at option 138
at symbol (@) 87
atan(x) function F11
atan2(x) function F11
atanh(x) function F11
auto C12
autoscaling 154
axes

double-logarithmic 9
graphs sharing common axis E7–E8
labels for 136
multiple 147–153

linking axes 150–153
plotting with two coordinate systems

148–150
terminology 147–148

selecting plot ranges 153–155
batch processing and 155
interactive work and 154–155

tic marks 156–167
appearance and placement 157–159
grid and zero axis 166–167
labels for 159–163
location and frequency of 163–165
overview 156
reading from file 165–166

time series 168, 170–177
date and time information 176–177
example 175
input 171–174
months and weekdays 169–170
output 174
working in time-series mode 174–175

B

b smoothing parameter 318
back keyword 129
background option 233
backheads keyword 132
backslash-escaped control characters 80

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


356 INDEX

bandwidth keyword 302
banking 338–340
base plane C7–C8
batch files 243
batch mode 247–248
beg(x) function 307
behind keyword 129
besj0(x) function F12
besj1(x) function F12
besy0(x) function F12
besy1(x) function F12
Bézier approximations 48
bezier keyword 45
bgnd index 188
bimodal data 5
bin function 301
binc() function 301
binc(x,s) function 301
bind command 255, 271–274, D30
bird’s-eye view C10
black color index 188
blank lines 60
bmargin keyword 138
<body> tag 231
border (bo) keyword 104, 202–203, D22
borders 128, 205–206

clipping data points close to 206
creating empty space between axes and 

data 206
borders plane C7
bottom keyword 138
box plots 112, 300
box set dgrid3d keyword C19
box-and-whisker plots E1, E10–E17

appearance options E13–E14
individual E10–E14
semantics of E11–E13
serial box-and-whisker plots E14–E17

appearance options for E15–E16
example of array of E16–E17

boxerrorbars style 110
boxes 112–114
boxplot keyword E10
boxxyerrorbars style 110
Brewer, Cynthia D31
Brown, J. H. 299
bspline keyword C13
buffers, flushing 211–212
buflen element 260
building gnuplot from source 348–351

layout of source tree 349
obtaining development version from CVS

348–349
on Mac OS X 351
on Unix 350–351
on Windows 351

built-in color sequences 193–194
built-in functions 36–37
butt control 221
butt line end 197–198
Button1 window event 272

C

-c ... command-line option 278
c() function 336
cairo-based terminals, generating PNG and PDF 

with 220–221
cairolatex terminal 221, 235

example 224–225
options for 227–228

call command 25, 244–245, D30
candlesticks style 111, 121
<canvas> element 229–231
canvas terminal 210, 230–231, 234
canvas, size of 128, 204
caret (^) symbol 161
cauchy set dgrid3d keyword C19
cb keyword 189
cbdata time option D17
cbdtics option D17
cbmtics option D17
cbrange option D18–D19, D24, D29
cbtics option D17
ceil(x) function F12
center keyword 138–139
char keyword E7
character coordinate system 215
Chebyshev polynomial E5
clear command 232, E9
Cleveland, William S. 310, 338
close window event 272
cls(s) function E22
clustered histogram style E25
clustered style E25
clusters 6, 8
CMY (cyan-magenta-yellow) D3
cnormal keyword 45
coerce evaluation 80
color 181–195

alpha shading 185–186
built-in color sequences 193–194
data-dependent colors 189–193

color gradients 192–193
examples 190–192
explicit and indexed 189

explicit colors 182–184
color names 183
HSV color model 184
RGB components 183

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


357INDEX

color (continued)
mapping value into continuous gradient

188–189
selecting through indexed lookup 187–188
transparency 185–187

colorbox D16–D19
colored surface plots with pm3d D21–D22

appearance options for D21–D22
elevation and color D22

column-access functions 69–70
column() function 69–70, 192, 252
columnheader() function 140, 142
columns

accessing 67–70
by position or name 68–69
column-access functions 69–70
pseudocolumns 69

selecting 58–59
columnsfirst keyword E3
comma operator 35
comma-separated data file 329
comma, mandatory E26
command files 243–247

export script example 246–247
extracting specifics from 263–264
scripts as subroutines 244–246

Newton’s method 245–246
passing parameters to scripts 244–245
simulating local variables 245

command-line flags 278
command-line-orientation 5, 12
commands

extending command set 264–266
using eval 265
using scriptlets 264

history of 96–99
general history feature 97–98
redrawing graphs 97
restoring session defaults 98–99

recalling 18
saving and loading 25–26

comment character 26, 63
comments 58, 63–64
comparison operator 80
complex numbers F12–F14
concatenation operator 80
config/ file 349
configuration script 243
configure options 350
constants F13
continuous gradient, mapping value into 188–189
continuous time series 168
contour plots C1, C10

contour lines and C10–C14
contour labels C12–C13

customizing contour lines and their labels
C12–C14

frequency and spacing of contours C12
smoothing contour lines C13–C14

coordinate axes C6–C10
base plane C7–C8
borders plane C7

plotting data from a file using splot C14–C17
grid format C14–C16
matrix format C16–C17

smooth surfaces C17–C20
view point C8–C10

bird’s-eye view C10
unit length and aspect ratio C10
using mouse C8–C9
using set view C9

control charts, monitoring and
cusum plots 322–325
identifying outliers 321–322
making data comparable 319–321

controlled delay feature 254
coordinate axes C6–C10

base plane C7–C8
borders plane C7

Copyright file 349
corners2color keyword D22
cos(x) function F11
cosh(x) function F11
critical point E9
crop option 221
csplines keyword 45–46
ctrl option 232
ctrl- control key 272
cubic splines 46
cubicspline keyword C13
cumulative distribution functions 50–51, 301, 

303–304
cumulative keyword 45
cumulative sum 323
curve fitting F18–F27

background F18–F19
example F19–F21
fit command F22–F23

managing fitting parameters F23
options for F24–F27
specifying columns for data and weighting 

factors F22
variables set by F23

practical advice F24
curves, stacked, changing 325–327
custom hotkeys 271–273

bind command 271–272
examples 272–273

customizing line types 199–200
cusum plots 322–325

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


358 INDEX

cvs-directory 349
CVS, obtaining development version from

348–349
CVSROOT environment variable 349
cylindrical coordinates F6–F7

D

-d command-line option 276, 278, 349
dash patterns 196–198, 282

dash (-) symbol 197
dot (.) symbol 197
explicit tuples 197–198
symbolic strings 196–197
underscore (_) symbol 197
whitespace symbol 197

dashlength option 233
dashtype keyword 104
data

bimodal 5
minimal context for 126–127

Data Analysis with Open Source Tools 353
Data and Story Library, The 353
data blocks 62
data repositories, resources 353
data set examples

allometric scaling 298
Chebyshev polynomial E5
diffusion limited aggregation (DLA) 6
fractal 6
mammals 298
marathon 4

data sets. See data set examples
data stream, live, continuously monitoring

256–260
using drivers to monitor arbitrary data sources

259–260
using gnuplot to monitor files 256–259

data structures, strings as 79
data styles 200
data transformations 39–42
data-dependent colors 189–193

color gradients 192–193
examples 190–192
explicit and indexed 189

data() function 253
datafile missing option 65
dates variable 272
decorations 130–137

arrows 131–134
common conventions 130–131
creating 130
identifying using tags 130–131
objects 136–137

shapes 136–137
text labels 134–136

axis labels 136
title label 135–136

deduping repeated entries 51
default font 214
default hotkeys 270
default keyword 98, 201
--default-settings command-line option 278
defined keyword D4–D6
delays, in animations 254
demo/ file 349
dependent variable F1
descriptions, strings as 79
dgrid3d option C2, C14, C17–C19
diff utility 263
differencing 319–325
discontinuity in data 60
discrete time series 168, 315
distances, judging 340–342
division (/) operator 35
dl option 233
DLA (diffusion limited aggregation) 6
do for loop 237
docs/ file 349
dot (.) operator 35, 92
dotplots 305
dots style 108
double blank lines 60
double exponential smoothing 318
double-logarithmic axes 9
double-quoted strings 80
Down arrow key 272
downwards keyword E3
drawplot() function 231
dumb terminal 234
dy default C19

E

-e "..." command-line option 278
editors, external 267–268
Elements of Graphing Data, The 338, 353
ellipses 119
EllipticE(x) function F12
EllipticK(x) function F12
EllipticPi(x) function F12
else clause 237
empty keyword 132
End system key block 272
end(x) function 307
enhanced text mode 161, 214–219
Enquist, B. J. 299
environment variables 277–278

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


359INDEX

eps keyword 227
epscairo terminal 213, 218
eq operator 36, 80
erf(x) function F11
erfc(x) function F11
error bars 108–110
errorbars style 108–109
errorlines style 108–109
Escape main key block 272
estimate parameter values F27
Euler-Mascheroni constant 37
eval command 85, 241, 264–266, 275
eval dates command 265
eval polar command 265
eval times command 265
every directive 62–63, C15
example data sets

allometric scaling 298
Chebyshev polynomial E5
diffusion limited aggregation (DLA) 6
fractal 6
mammals 298
marathon 4

example matrix format C16
exclamation point (!) 98
exec() function 253
exists() function 275
exp set dgrid3d keyword C19
exp(x) function F11
expint(n, x) function F12
explicit colors 182–184, 221

color names 183
HSV color model 184
RGB components 183

explicit newlines 252
explicit semicolons 252
explicit specification 182
exponential smoothing 316–318
exponentiation (**) operator 34–35
export command 211, 265
exporting

graphs 26–28
using clipboard 26–27
using GUI button 26
using terminals 27–28

palettes D8
expressions (math) 34
external editors and viewers 267–268

F

f function F13, F18
f range C8
f(x) function 245

F1 function key 272
F12 function key 272
false-color plots C1, D1, D22–D28

further reading about D31
using points 23–D25
using with image D26–D28
using with pm3d D25–D26

fc (fillcolor) keyword 202–203
field separators 64
fig terminal 234
file keyword D6
files

accessing columns 67–70
by position or name 68–69
column-access functions 69–70
pseudocolumns 69

file format options 63–66
comments 63–64
field separator 64
missing values 65
number formats 63
strings in data files 66

metadata in data files 75–76
pseudofiles 70–75

generating data 75
heredocs 72–73
reading data from standard input 71–72
reading data from subprocess 74
writing to a pipe 74

standard data-file format 56–59
comments and header lines 58
selecting columns 58–59

structured data sets 59–63
multiple data sets per file 59–61
records spanning multiple lines, the every 

directive 62–63
fill, styles for 202–203
fillcolor (fc) keyword 104, 202–203
filled styles 114–115
filledcurves style 114
fillsteps style 114
fillstyle (fs) keyword 104, 202–203
financebars style 111
first coordinate system F6
fit command 278, F18–F19, F21–F23

managing fitting parameters F23
options for F24–F27
specifying columns for data and weighting 

factors F22
variables set by F23

FIT_ prefix, for internal variables 93
FIT_CONVERGED variable F23
FIT_COV_ variable F26
FIT_LOG variable F26
FIT_NDF variable F23

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


360 INDEX

FIT_NITER variable F23
FIT_P variable F23
FIT_SCRIPT variable F26
FIT_STDFIT variable F23
FIT_WSSR variable F23
fixed plot range 258
flicker effect 258
float keyword D8
floating average 316
floor(x) function F12
flushing, buffers 211–212
font handling, unified 14
font keyword 214–215
font option 135
font substitution 215, 217
fontconfig utility 213, 215
Fontmatrix 84
fonts

resolution of 215–216
selection of 214–215

fontscale sub-option 212, 221
for construct 325
for loop 91
frac keyword 189, D19
fractal 6
fraction keyword E13
frequency keyword 45
front keyword 129
fs (fillstyle) keyword 202–203
fsteps style 112
function styles 200
functions F4

built-in 36–37
defining palettes using D6–D7
rand(0) 300
sampling rate for 32–33
strings as 79
user-defined 37–39

functions feature D10
functions keyword D6

G

g default hotkey binding 270
gamma(x) function F11
gauss set dgrid3d keyword C19
geo palettes D13
geo scale D13
gif bitmap terminal 233
global styles 200–203

arrow styles 202
data and function styles 200
fill styles 202–203
line styles 201
other global styles 203

glyphs 84
GNFONTPATH variable 277
GNPLOT_DEFAULT_GDFONT variable 277
GNPLOT_FONTPATH variable 277
GNPLOT_PS_DIR variable 277
GNU software, vs. gnuplot 12
GNUFITLOG variable 278
GNUHELP variable 277
gnuplot

building from source 348–351
layout of source tree 349
obtaining development version from cvs

348–349
on Mac OS X 351
on Unix 350–351
on Windows 351

calling from other programs 250–254
from Perl 250–251
from Python 251
helpful hints 252–254

defined 3
inspecting compile-time options 346
installing prebuilt package 347–348

on Linux 347
on Mac OS X 347–348
on Windows 348

limitations of 13
reasons for using 12–13
release and development versions 346–347
resources 352
version 5 13–15
vs. GNU software 12
websites 348

gnuplot command 248, 347
Gnuplot Cookbook 352
Gnuplot Tricks 352
GNUPLOT_FONTPATH environment 

variable 230
GNUPLOT_LIB variable 264, 277
Gnuplotting 352
GNUTERM variable 277
GPFUN_ prefix, for internal variables 93
gprintf() function 134
GPVAL_ prefix, for internal variables 93
GPVAL_TERM_SCALE variable 208
GPVAL_TERM_XMAX variable 208
GPVAL_TERM_XMIN variable 208
GPVAL_TERM_XSIZE variable 208
GPVAL_TERM_YMAX variable 208
GPVAL_TERM_YMIN variable 208
GPVAL_TERM_YSIZE variable 208
gradient color D1
graph area E6
graph keyword 206
Graphic Discovery 292, 310, 344

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


361INDEX

graphical analysis 9–11
benefits 11
defined 3
limitations of 11
logarithmic plots 295–299

large variations in data 295–296
power-law behavior 298–299

multivariate data sets 328–338
distribution by level 331–332
distribution of values by attribute 329–330
overview 329
parallel-coordinates plot 335–338
scatter-plot matrix 333–335

organizational issues 308–311
input data files 309–310
lifecycle of graphs 308–309
output files 310–311

pie charts 307
point distributions 299–304

cumulative distribution functions 303–304
jitter plots and histograms 300–301
kernel density estimates and rug plots

302–303
summary statistics and box plots 300

presentation graphics 311–313
ranked data 304–306
reasons for using 11
representing relationships 290

highlighting trends 292
scatter plots 290–291

time-series plots 315–327
changing composition and stacked 

curves 325–327
differencing time series 318–319
double exponential smoothing 318
exponential smoothing 316–318
monitoring and control charts 319–325
plotting Apache web server log 315–316

visual perception 338–342
banking 338–340
judging lengths and distances 340–342
plot ranges and whether to always include 

zero 342
graphical analysis techniques, changing 

appearance 338
graphicx package 222, 225
graphs

customizing elements of 103–105
inline customizations 103–105
line options 105

exporting 26–28
using clipboard 26–27
using GUI button 26
using terminals 27–28

legend of 137–144
appearance 139–140

default settings 143–144
explanations 140–143
layout 139
placement 138–139
turning on and off 138

lifecycle of 308–309
parallel-coordinates graphs E19–E20
presentation 10
redrawing 97
scatter plot 22
sharing common axis E7–E8
within graphs E9

grayscale palette D9–D10
Green, J. J. D31
grid cbtics option D17
grid format C14
grid mcbtics option D17
GUI button, exporting graphs using 26

H

-h command-line option 278
h default hotkey binding 270
Handbook on Splines for the User 295
hann set dgrid3d keyword C19
hashmark (#) 20, 26, 58
header lines 58
header option 227
heads keyword 132
heatmaps D1
help command 30
--help command-line option 278
help expressions functions 36, F11
heredocs, reading and writing 72–73, 90
histeps style 112, E23
histogram error bars E25
histograms 300–301, E23–E27
history, of commands 96–99

general history feature 97–98
redrawing graphs 97
restoring session defaults 98–99

Holt-Winters method 316
Home system key block 272
HOME variable 278
horizontal keyword 139
Hornik, Kurt D31
hotkeys 264

custom 271–273
bind command 271–272
examples 272–273

default hotkeys 270
See also mousing

HSV (hue-saturation-value) 184, D3
hsv2rgb() function 184, 190
hue 184

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


362 INDEX

hypertext directive 117
hypertext option 135

I

ibeta(p, q, x) function F11
id attribute 231
if statement 237
igamma(a, x) function F11
imag(x) function F13
images, using false-color plots with D26–D28
Impossible Gnuplot Graphs 352
impulses 112–114
\includegraphics command 222
incremental keyword C12
independent variable F1
index directive 61, 63
indexed lookup 182, 187–188
indexing strings 81
initialization. See startup configurations and 

initialization
inline loops 90–92

loops over numbers 90–91
loops over strings 91–92

input data files 309–310
input option 227
insets E1
inspecting compile-time options 346
INSTALL file 349–351
INSTALL.gnu file 349
installing prebuilt package 347–348

on Linux 347
on Mac OS X 347–348
on Windows 348

int keyword D8
int(x) function F12
interactive terminals 232–233

aqua terminal 233
common options 232
qt terminal 233
windows terminal 233
wxt terminal 233

interactive workflow
extending command set 264–266

using eval 265
using scriptlets 264

extracting specifics from command files
263–264

using macros 266–267
using variables 266

internal variables 93–96, 207–208
interpolating splines 294
interpolation curves 46–48

Bézier approximations 48
spline interpolations 46–48

interquartile range E11
interval keyword C13
inverf(x) function F11
inverse Gaussian distribution function F14
invert keyword 139
invnorm(x) function F11, F14
iterating over files 240–241

making data comparable 240–241
plotting several files 240

iteration, defined 10

J

jitter plots 299–301
Journal of Statistics Education Data Archive 353
jpeg bitmap terminal 233
jsdir option 230–231

K

kdensity keyword 45
Kelley, Colin (gnuplot author) 12
kernel density estimates 49–50, 302–303
key bindings D30
key default hotkey binding 270
key, defined 22
keywords

offset E4
scale E4

knots 294
known functional form F18

L

L default hotkey binding 270
l default hotkey binding 270
label() function 275
labels, placing with mouse 274–275
labeltag variable 274
labeltext variable 274
lambertw(x) function F12
landscape orientation 312
large variations in data 295–296
LaTeX 221–229

generating graph using 228–229
including graph in document 222–223
using cairolatex terminal 224–228

example 224–225
options for 227–228

layers 129–130
layout directive E3
layout feature E3–E4
layout keyword E3

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


363INDEX

lc keyword 195
Left arrow key 272
left keyword 138
legends, of graphs 137–144

appearance 139–140
default settings 143–144
explanations 140–143
layout 139
placement 138–139
turning on and off 138

lengths
judging 340–342
view point using C10

lgamma(a, x) function F11
lifecycle of graphs 308–309
limitations of gnuplot 13
line types, special 200
linear keyword C13
linecolor keyword 104, 182
linecolor variable 119, E22
lines

blank 60
customizing types of 199–200
dash pattern 196–198

explicit tuples 197–198
symbolic strings 196–197

styles for 107, 201
types of 198

linespoints style 106–108, 189
linestyle keyword 104
linetype (lt) keyword 103–104, 135
linewidth keyword 104
linewidth option 233
linewidth sub-option 212
link command F16–F17
linking axes 150–153
Linux, installing prebuilt package on 347
Lissajous figures F2
live data stream, continuously monitoring

256–260
using drivers to monitor arbitrary data 

sources 259–260
using gnuplot to monitor files 256–259

lmargin keyword 138
load command 25, 243–245, 248, 264, 267–268, 

272, D8
loadpath option 264
local variables, simulating 245
locales 168–169
locations 128–129
log-log plots 43
logarithmic plots 42–45, 295–299

large variations in data 295–296
power-law behavior 298–299

logarithmic scaling, of colorbox D19

loops and conditionals 237–243
iterating over files 240–241

making data comparable 240–241
plotting several files 240

making graph paper 239
Newton’s method 242–243
Taylor series 242

loops. See inline loops
lw option 233

M

m_tics family of options 164
Mac OS X

building gnuplot from source on 351
installing prebuilt package on 347–348

macros
in interactive workflow 266–267
strings as 79

magnet E9
make distclean command 351
make install command 351
Mandelbrot set, coloring D28–D29
margins 128, 207, E4–E8
margins keyword E6–E7
markup 279
Marquardt-Levenberg method F19
math 34–39

built-in functions 36–37, F10–F12
complex numbers F12–F14
curve fitting F18–F27

background F18–F19
example F19–F21
fit command F22–F27
practical advice F24

expressions 34
mathematical expressions 34–36
mathematically undefined values 39
nan (not-a-number) 39
non-Cartesian coordinates F3–F7

cylindrical and spherical coordinates F6–F7
polar coordinates F4–F6

overview 34
parametric plots F1–F3
probability plots F14–F17
user-defined variables and functions 37–39
vector fields F7–F10

plane vector fields with plot F7–F9
three-dimensional vectors with splot F9–F10

matrix format C16
matrix keyword C17
maxcols keyword 139
MAXITR F13
maxrows keyword 139
mcbtics option D17

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


364 INDEX

mcsplines keyword 45–46
median E11
merit function F18
metadata 56, 75–76
minimal context for data 126–127
mirror keyword F5
missing values 65
model keyword D3
monitoring and control charts

cusum plots 322–325
identifying outliers 321–322
making data comparable 319–321

monitoring live data stream, continuously
256–260

using drivers to monitor arbitrary data 
sources 259–260

using gnuplot to monitor files 256–259
mono option 214, 221
Moreland, Kenneth D31
MOUSE_ prefix, for internal variables 93
MOUSE_ALT variable 273
MOUSE_BUTTON variable 273
MOUSE_CHAR variable 273
MOUSE_CTRL variable 273
MOUSE_KEY variable 255, 273
MOUSE_KEY_WINDOW variable 272–273
MOUSE_SHIFT variable 273
MOUSE_X variable 255, 273
MOUSE_X2 variable 255, 273
MOUSE_Y variable 255, 273
MOUSE_Y2 variable 255, 273
mousing 270–271

adjusting viewing angle C8–C9
capturing mouse events 273–274
placing arrows with mouse 275
placing labels with mouse 274–275
See also hotkeys

multiple axes 147–153
linking 150–153
plotting with two coordinate systems 148–150
terminology 147–148

multiple data sets per file 59–61
selecting data sets by name 61
selecting data sets by position 61

multiple lines, records spanning 62–63
multiple steps 210
multiplication (*) operator 35
multiplot E1

accommodating marginal labels with margins 
and spacing E4–E8

graphs within graphs E9
layout options and set multiplot command

E2–E4
regular arrays of graphs with layout E4
using multiplot mode E1–E2

multiplot layout E4
multiplot mode E16, E20
multivariate data sets 328–338

distribution by level 331–332
distribution of values by attribute 329–330
overview 329
parallel-coordinates plot 335–338
scatter-plot matrix 333–335

multivariate visualization 115–120
arrows 118–120
labels 116–118
point size 116–118
shapes 118–120

Murrell, Paul D31

N

n lines 58
name keyword 96
name option 230
name, accessing columns by 68–69
NaN (not a number) 39, 65
ne operator 80
net inflow function 340
newhistogram command E26
NEWS file 349
NEWTON_ 245
Newton’s method 242–243, 245–246
Nimbus Sans L 84
\NNN control character 218
\NNN\NNN control character 218
noautoscale keyword 155
nodes, defining palettes through D4–D6
noenhanced keyword 135
nomirror 157
non-Cartesian coordinates F3–F7

cylindrical coordinates F6–F7
polar coordinates F4–F6
spherical coordinates F6–F7

nonlinear least-square fits F18
nonuniform matrix format C17
nooffset keyword C4
nooutput keyword 96
noraise option 232
noratio option 204
norm(x) function F11
normalize data 240
nosquare option 204
notitle option 126
NTSC luminance D7
number formats 63
Number theory 37
numbers, loops over 90–91

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


365INDEX

O

<object> tag 230
off keyword E16
offset argument C3
offset command 135, 159
offset keyword C4, E4
onload attribute 231
opaque keyword 139
open() function 253
organizational issues 308–311

input data files 309–310
lifecycle of graphs 308–309
output files 310–311

outliers E12, F27
output formats. See terminals and output formats
output setting 268

P

-p command-line option 278
PageDown system key block 272
PAGER variable 278
PageUp system key block 272
palette keyword 182, 189
palettes 182, D1

color models and components D3–D4
colorbox D16–D19
colored surface plots with pm3d D21–D22

appearance options for D21–D22
elevation and color D22

creating D3–D16
defining through nodes D4–D6
defining using functions D6–D7
displaying D7–D8
examples of D9–D16

for segregation tasks D12–D13
four industrial-strength palettes D11–D12
geo palettes D13
grayscale D9–D10
standard rainbow D9–D10
three simple workhorses D10–D11
tree rings D13–D16

exporting D8
further reading about D31
interactive palette explorer example D29–D30
mapping plot range to D17–D19

logarithmic scaling of colorbox D19
outliers D18–D19

querying palette definition D8
saving D8
using D19–D22

parallel coordinates 335, E1, E18–E23
highlighting subset of records E21–E23
improving appearance E21

parameters, passing to scripts 244–245
parametric mode F7
parametric plots F1–F3
pattern keyword 203
pause -1 command 255
pause command 254–255, 258
pause mouse command 255
pdf keyword 227
PDF, generating with cairo-based terminals

220–221
pdfcairo terminal 213, 218, 227, 229, 233–234
pdflatex 228
Perl, calling gnuplot from 250–251
--persist command-line option 278
persist option 232
phase transition E9
pie charts 307
pipe, writing to 74
Plis, A. I. 295
plot ... smooth cumul command F14
plot command 6, 9, 17, 211–212, 232, 237, 241, 

243, 249, 251–253, 259, 267–269, 277, 
279–280, 301, 316–318, 322, C1, D29, 
E3, E6, E21, F6–F8, F22

data transformations 39–42
logarithmic plots 42–45
plotting data 33–34
plotting functions 32–33
smooth interpolation and approximation 45–51

deduping repeated entries 51
interpolation curves 46–48
point distributions 49–51

See also math
plot option 211
plot sin(x) command 17
plot styles, box 112
plot... smooth kdens command 93
plots

abbreviations and defaults 24–25
box 112
invoking gnuplot and first plots 17–20
plotting data from file 20–24
ranges 18

pm3d
colored surface plots with D21–D22

appearance options for D21–D22
elevation and color D22

using false-color plots with D25–D26
png bitmap terminal 233
PNG, generating with cairo-based terminals

220–221
pngcairo terminal 213, 218, 227, 229, 233–234
point distributions 49–51, 299–304

cumulative distribution functions 50–51, 
303–304

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


366 INDEX

point distributions (continued)
jitter plots and histograms 300–301
kernel density estimates 49–50, 302–303
summary statistics and box plots 300

pointinterval (pi) property 108
pointinterval keyword 104
pointintervalbox feature 108, 282
points

false-color plots using D23–D25
styles for 106–107
types and shapes 195–196

points option C14
points style 106–107
pointsize keyword 104
pointsize variable 116–117
pointtype (pt) keyword 104, 106
polar coordinates F4–F6
polar option 166
polar variable 272
polishing 10
Popen facility 251
position, accessing columns by 68–69
PostScript file D7
postscript terminal 218, 233
power-law behavior 298–299
--prefix=PREFIX control 350
presentation graphics 10, 311–313
Primer of Analytic Number Theory, A 37
print command 88–89
probability plots F14–F17
pseudocolumns 55, 69
pseudofiles 55, 70–75

generating data 75
heredocs 72–73
reading data from standard input 71–72
reading data from subprocess 74
writing to a pipe 74

Python, calling gnuplot from 251

Q

q default hotkey binding 270
qt terminal 27, 210, 233, 267, 348, 350
qt4 value 350
qt5value 350
querying palette definition D8
question mark (?) character 98
quiet option 98, F25
quit command 245

R

r default hotkey binding 270
radius F4

rainbow, standard D9–D10
ramp color D1
rand(0) function 300
rand(x) function 37, F12
range keyword E20
ranked data 304–306
ratio option 204
README file 349
real(x) function F13
recalling commands 18
recursive F13
redrawing graphs 97
refresh command 97
refresh option 211
relationships, representation of 290

highlighting trends 292
scatter plots 290–291

release and development versions 346–347
release packages 351
RELEASE_NOTES file 349
relief map C1
replot command 28, 271, 274
replot option 211
reset bind command 99, 272
reset command 29, 98, 280
reset errors command 99
reset session command 199, 280
restoring, session defaults 98–99
Return main key block 272
return statement 245
reverse keyword 139
RGB (red-green-blue) 183, D3
rgb keyword 182
Right arrow key 272
right keyword 138
rmargin keyword 138
Rogowitz, Bernice D31
rotate command 159
rotate parallel directive 136
round line end 197–198
rounded control 221
rowsfirst keyword E3
rowstacked style E26
rug plots 302–303

S

s(n) function 242
samplen keyword 139
sampling rate for functions 32–33
saturate operator 185
saturation 184
save command 25, 243, 263, E2
saving palettes D8

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


367INDEX

sbezier keyword 45
scalable graphics for web 229–231

canvas terminal 230–231
svg terminal 229–230

scale keyword C10, E4
scale parameter 157
scaling law 8
scanf() functions 76, 171
scansautomatic directive D22
scansbackward directive D22
scansforward directive D22
scatter plots 289

graph 22
splines 294

scatter-plot matrix 333, 335
scientific notation 63
screen keyword E7
screen system E4
screen. See canvas
<script> tag 232
scripting

batch processing 247–249
calling gnuplot from other programs 250–254

from Perl 250–251
from Python 251
helpful hints 252–254

command files 243–247
export script example 246–247
scripts as subroutines 244–246

continuously monitoring live data stream
256–260

using drivers to monitor arbitrary data 
sources 259–260

using gnuplot to monitor files 256–259
loops and conditionals 237–243

iterating over files 240–241
making graph paper 239
Newton’s method 242–243
Taylor series 242

scriptlets, extending command set using 264
segregation tasks, palettes for D12–D13
self-contained files 309
self-explanatory files 309
semantics 279
semi-log plots 43
semicolon (;) 26
sensible defaults feature 24
separate symbols 285
separation keyword E16
serial box-and-whisker plots E14–E17

appearance options for E15–E16
example of array of E16–E17

session defaults, restoring 98–99
set _range command 154, E20
set _tic add command 164

set _tics command E20
set _tics format command 160
set angle command 119
set arrow command 130–132
set arrow facility command 275
set arrow style command 115, 202
set autoscale command 155
set bars command 109, 111
set border command C6–C7
set boxwidth command 114, E25
set cblabel command D17
set cbrange command D17–D18
set cbrange option D18
set clip command 206
set clip points command 206
set cntrlabel command C12
set cntrlabel format command C13
set cntrlabel onecolor command C12
set cntrlabel parameter command C13
set cntrlparam command C12
set cntrparam command C13
set colorbox command D16
set colorsequence classic command 14
set colorsequence facility 194
set command 28–29, 237, 252
set contour command C10
set contour option C10
set dashtype command 196
set datafile separator command 290
set dgrid3d facility C19, D22
set dummy command 38
set fit command F18, F23–F24
set fit covariancevariables command F26
set fit errorscaling command F26
set fit errorvariables command F25
set fit limit command F25
set fit limit_abs command F25
set fit logfile command F25
set fit maxiter command F25
set fit prescale command F24–F25
set fit script command F26
set fit start_lambda command F25
set format command 159
set grid polar command F5
set hidden3d command C3–C4
set history quiet command 98
set isosamples command C3, C5, C11
set key command 126
set key noautotitle command 140
set label command 136
set label style command 115
set linetype command C12
set linetype cycle facility 199
set link command F16
set link facility 151–152

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


368 INDEX

set link x2 command 152
set link y2 command 152
set loadpath command 264
set logscale cb command D17, D19, D29
set logscale y command 153
set macro command 87
set mapping facility F3, F6
set margin command 207
set margins command E7
set mouse command 271, 273
set multiplot command E1, E3, E6
set multiplot layout command E4, E6, E8
set multiplot next command E3
set mxtics 5 command 164
set object command 136
set object style command 115
set offsets command 206
set origin command 204, E2, E4, E9
set output command 27–28, 211–212, 224, 229–

230, 249, 268
set palette command D1, D3–D4, D6, D8–D9, D12
set palette cubehelix command D6
set palette defined (...) command D5
set palette file ... command D6, D8
set palette functions command D8
set palette rgbformulae command D7
set paxis command E20
set pm3d corners2color command D26
set pm3d hidden3d command D21
set pm3d mode command D21
set pointsize command 103, 212, 221
set polar facility F3
set print command 73, 88–89, D8
set raxis command F5
set rrange command F6
set samples command 32, 75, 89, C4, C11
set samples parameter command C13
set size command E2, E4
set size square command 335
set style boxplot command 203, E12–E13, E15
set style circle setting command 118
set style command 200, 203, E24
set style fill command 114, 137, E13
set style histogram clustered command E24
set style histogram clustered gap 2 command E24
set style histogram columnstacked style 

command E26
set style histogram command 203
set style line command 201
set style rectangle command 137
set style textbox command 203
set surface command C3
set table command 73, 89
set terminal ... close command 232
set terminal ... size... command 335

set terminal command 27–28, 211–212, 214, 232
set terminal pop command 211
set terminal push command 211
set termoption command 212, 280
set timefmt command 170–171, 174
set title command 135–136, E3
set urange command F3
set view command C8–C9
set view equal xy command C10
set view equal xyz command C10
set view map command C10
set vrange command F3
set x2tic add ( ... ) command F17
set xdata command 170
set xdata time command 170, 175
set xdtics command 170
set xlabel command 126–127, C7
set xmtics command 170
set xrange command 258
set xrange plot range command F2
set xtic command E16
set xtics command F5
set xtics format command 170
set xtics pi command 167
set xyplane command C8
set xzero axis command 167
set ylabel command 126–127, C7
set yrange plot range command F2
set ytics command E20, F5
set zeroaccess command 158
set zlabel command C7
set[...] command 130
setborder command 205
setup script 243
sgn(x) function F12
shell commands, invoking from gnuplot 268–269
SHELL variable 278
show all command 29
show bind command 272
show colornames command 183, D4
show command 29, 131
show functions command 29
show label command 274
show loadpath command 276
show palette command D8
show variables all command 94
show variables command 29
show version long command 29, 87
show version long pertinent command 346
show version pertinent command 346
sin(x) function F11
single blank lines 60
single plot E4
single-quoted strings 80
sinh(x) function F11

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


369INDEX

size directive 221
size option 218
size, of canvas 204
skip directive 58
smooth cnormal command 50–51
smooth cumul command F14
smooth cumulative feature 304
smooth directive 45–46, 49
smooth frequency function 51, 301–302, 315
smooth interpolation and approximation 45–51

deduping repeated entries 51
interpolation curves 46–48

Bézier approximations 48
spline interpolations 46–48

point distributions 49–51
cumulative distribution functions 50–51
kernel density estimates 49–50

smooth kdens command 49
smooth kdensity feature 96, 302
smooth sbezier command 48
smooth surfaces, dgrid3d facility C17–C20
smooth unique command 51
smoothing 319–325
smoothing splines 294
source tree, layout of 349
space bar default hotkey binding 270
spacing directive E4
spacing keyword 139, E6–E7
spacing value E8
special line types 200
special plots

box-and-whisker plots E10–E17
appearance options E13–E14
individual E10–E14
semantics of E11–E13
serial box-and-whisker plots E14–E17

histograms E23–E27
multiplot E1

graphs within graphs E9
layout options and set multiplot 

command E2–E4
marginal labels with margins and 

spacing E4–E8
regular arrays of graphs with layout E4
using multiplot mode E1–E2

parallel coordinates E18–E23
parallel-coordinates graphs E19–E20

spectrum, features of 144–145
spherical coordinates F6–F7
spline interpolations 46–48
splines 294
splines algorithm C18
splot command 211, 243, 277, C1–C3, C15–C16, 

C20–D1, D20–D22, D25, F3
sprintf() function 134, 240–241

sqrt(x) function F11
square control 221
square line end 197–198
src/ file 349
stacked curves, changing 325–327
stacked histogram style E25
stacking order 128
standalone mode 227, 231
standalone option 230
standard data-file format 56–59

comments and header lines 58
selecting columns 58–59

standard rainbow D9–D10
startup configurations and initialization 275–278

command-line flags 278
environment variables 277–278
startup and initialization files 276–277

StatLib Datasets Archive 353
stats command 94, 96, 241, 258–260, 299, 321, 

332, F17
STATS_ prefix, for internal variables 93
steps style 112
Stopple, J. 37
strftime() function 70, 176–177
stringcolumn(i) function 122
strings 79–85

data files 66
executing with eval 86–87
in data files 66
loops over 91–92
quotes 80
string expressions in commands 86
string macros inside commands 87
string operations 80–82

strptime() function 70, 176–177
structure matrix format C16
structured data sets 59–63

multiple data sets per file 59–61
selecting data sets by name 61
selecting data sets by position 61

records spanning multiple lines 62–63
styles 22, 101–105

boxes 112–114
choosing inline using with keyword 101–102
customizing graph elements 103–105

inline customizations 103–105
line options 105

dots 108
filled styles 114–115
global 200–203

arrow styles 202
data and function styles 200
fill styles 202–203
line styles 201
other global styles 203

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


370 INDEX

styles (continued)
impulses 112–114
lines 107
linespoints style 107–108
multivariate visualization 115–120

arrows 118–120
labels 116–118
point size 116–118
shapes 118–120

points 106–107
reasons for using 101
steps 112
time-series styles 111–112
with error bars 108–110

stylesheets 263–264, 279–285
subprocess module 251
subprocess, reading data from 74
subroutines, scripts as 243–246

Newton’s method 245–246
passing parameters to scripts 244–245
simulating local variables 245

sum construct 237, 242, 325, 327
summary statistics 300
surface plots C1–C6

coordinate axes C6–C10
base plane C7–C8
borders plane C7

plotting data from a file using splot C14–C17
grid format C14–C16
matrix format C16–C17

smooth surfaces C17–C20
special options for C3–C6

sampling frequency for plotting functions 
with splot C4–C6

set hidden3d option C3–C4
set surface option C3

splot command C2–C3
view point C8–C10

bird’s-eye view C10
unit length and aspect ratio C10
using mouse C8–C9
using set view C9

svg terminal 210, 229–230, 234
sym(s) function 122
synopsis C7, C18
system() function 268–269

T

Tab main key block 272
tags, identifying decorations using 130–131
tail command 259
tail facility 257–258
tan(x) function F11

tanh(x) function F11
Taylor expansion 18
Taylor series 242
terminal abstraction 210–214
terminal facility 210, 234
terminal option 211
terminal pop pseudoterminal 212
terminal push pseudoterminal 212
terminal setting 268
terminals 209–210
terminals and output formats

capabilities and test command 212–213
enhanced text mode 217–219
font resolution 215–216
font selection 214–215
generating PNG and PDF with cairo-based 

terminals 220–221
interactive terminals 232–233

aqua terminal 233
common options 232
windows terminal 233
wxt and qt terminals 233

scalable graphics for web 229–231
canvas terminal 230–231
svg terminal 229–230

terminal abstraction 210–214
using gnuplot with LaTeX 221–229

generating graph using LaTex 228–229
including graph in document 222–223
using cairolatex terminal 224–228

workflow 210–212
changing default terminal properties 212
flushing buffers 211–212
push and pop pseudoterminals 212
scaling complete plot up or down 212
standard workflow 211

test command 135, 212–213
test palette command D7–D8
text labels 134–136

axis labels 136
title label 135–136

textcolor (tc) keyword 104, 117, 135, 182
textual output generation 88–90

print command 88–89
reading and writing heredocs 90
set print command 88–89
set table command 89
with table style 89

tgif terminal 234
thermodynamics of phase transitions E9
three-dimensional vectors, with splot F9–F10
tic marks 6, 156–167

appearance and placement 157–159
grid and zero axis 166–167

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


371INDEX

tic marks (continued)
labels for 159–163

formatting 159–160
scientific notation and enhanced text 

mode 161
location and frequency of 163–165

adding and overriding individual tic 
marks 164

minor tic marks 164
overview 156
reading from file 165–166

tics keyword E20
ticslabels() function 75
tikz terminal 224, 228
time series 168, 170–177

date and time information 176–177
example 175
input 171–174
months and weekdays 169–170
output 174
styles for 111–112
working in time-series mode 174–175

Time Series Data Library 353
time-series plots 315–327

changing composition and stacked curves
325–327

differencing time series 318–319
double exponential smoothing 318
exponential smoothing 316–318
monitoring and control charts

cusum plots 322–325
identifying outliers 321–322
making data comparable 319–321

plotting Apache web server log 315–316
smoothing and differencing 319–325

time() function 176
timecolumn() function 70, 76, 176–177
times variable 272
title columnhead 141
title directive 9, 22, E3
title keyword 22, 140, 142–143
title label 135–136
title option 139, C2
title strings 66
tm_hour() function 176
tm_mday() function 176
tm_min() function 176
tm_mon() function 176
tm_sec() function 176
tm_wday() function 176
tm_yday() function 176
tm_year() function 176
tmargin keyword 138
to keyword 131
top keyword 138

trailing average 316
trange plot range F2
transformation F27
transformations, data 39–42
transparency 185–187
transparent keyword 203
Treinish, Lloyd D31
trianglepattern keyword C3–C4

U

-u command 257, 260
u default hotkey binding 270
u variable F3
UCI Machine Learning Repository 290, 329, 353
undefine command 245
undefined command 73
undefined values 39
underscore (_) symbol 156, 161
Unicode 14
unique keyword 45
Unix, building gnuplot from source on 350–351
unset arrow command 131
unset colorbox command D17
unset command 29
unset label command 274
unset multiplot command E1–E2
unset raxis command F5
unset xdtics command 170
unset xmtics command 170
Up arrow key 272
update command F18
upset session 99
upwards keyword E3
user keyword D16
user-defined variables and functions 37–39
using directive 21–22, 25, 40, 58, 252, 266, C2, 

D6, D20, D22, F4, F22
UTF-8 84–85

V

-V command-line option 278
v variable F3
valid() function 70
value() function 241
values, missing 65
variable keyword 182, 189
variables

environment variables 277–278
in interactive workflow 266
internal 93–96
local, simulating 245
set by fit command F23
user-defined 37–39

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


372 INDEX

vector fields F7–F10
plane vector fields with plot F7–F9
three-dimensional vectors with splot F9–F10

verbose F25
--version command-line option 278
vertical keyword 139
via clause F21
view point C8–C10

bird’s-eye view C10
unit length and aspect ratio C10
using mouse C8–C9
using set view C9

viewers, external 267–268
visual perception 338–342

banking 338–340
judging lengths and distances 340–342
plot ranges and whether to always include 

zero 342
Visualizing Data 310

W

w pm3d style D1
Wainer, Howard 292, 310, 344
weighted cubic splines 292
weighted least-squares merit function F18
West, G. B. 299
while loop 237, 243, 255, 260
whiskerbars keyword 112
Wierstorf, Hagen D31
Williams, Thomas (gnuplot author) 12
Windows

building gnuplot from source on 351
installing prebuilt package on 348

windows terminal 233
with arrows style 115
with boxes style 301
with boxplot style 299, 332, E10
with boxxyerrorbars style D25
with candlesticks style E13
with circles style 115, 307, 24
with directive 22
with ellipses style 115
with histogram style E24
with image style D25–D29
with keyword 101–102
with labels style 82, 90, 115–118, 163, C13
with lines style 22, 75, 106
with linespoints style 22, 108
with option C2

with points style 22, 106, D24, D28–D29
with rgbalpha style D28
with table style 89
with vectors style 118, 303, D24, F1, F7, F9
with xyerrorbars style 266–267
--with-qt option 350
--with-qt=no option 350
--with-readline option 350
--with-readline=builtin option 350
--with-readline=DIR option 350
--with-readline=gnu option 350
--with-wx=DIR option 350
Witten, T. A. 6
word function 238, 241, 332–334
word() function 92
words() function 92, 238
workflow 266–267

changing default terminal properties 212
scaling complete plot up or down 212
See interactive workflow

wxt terminal 27, 210, 213, 233, 267, 348, 350

X

x variable 245, C2
X11 format 183
x11 terminal 27, 234
xmtics command 169
xrange option C3
xrange plot range F2
xtic() function 165, E25
xticlabels() function E25
xyplane option C7–C8

Y

y variable C2
yerrorlines style 122
yrange option C3
yrange plot range F2
ytic(1) function 305

Z

z direction C1
z keyword 192
z range C8
Zeileis, Achim D31

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C1

appendix C
Surface and contour plots

The plot command discussed in this book creates graphs that show how one variable

(y) behaves as a function of another one (x). But what if you want to show how some

quantity depends on two independent variables? In other words, how can you best

visualize a single “output” variable as a function of two “input” variables? That’s basi-

cally the problem cartographers have: show a quantity (the elevation above sea level

or the type of ground cover) as a function of two coordinates (the position on the sur-

face). In gnuplot, you have essentially the same options cartographers have:

 Create a rendering of a raised surface. Cartographers call this a relief map; I’ll

refer to it as a surface plot.

 Create a contour plot by looking straight down onto the coordinate plane and

using contour lines (similar to the ones found on topographic maps) to indi-

cate the elevation (or whatever the dependent variable represents).

 Use color to create a false-color plot (what is colloquially known as a heatmap).

Surface and contour plots are treated in this appendix; false-color plots are the topic

of appendix D. Surface and contour plots are created using gnuplot’s splot com-

mand (short for “surface plot”). It’s a close relative of the familiar plot command;

most of what you already know will carry over directly. 

 Neither surface nor contour plots deal very well with noise. This means it can be

difficult to use either of them with real data—smooth functions are easier, and that’s

why most of the examples in this appendix show functions only. We turn to data later

in this appendix and discuss the different file formats available. (Also keep in mind

that false-color plots may be a better approach for noisy data altogether.)

C.1 Surface plots

Surface plots (and contour plots) are created using the splot command. Its syntax is

very similar to the syntax for the plot command. The differences are largely due to

the need to handle one additional dimension, which I’ll refer to as the z direction. 

 Here’s an example of the splot command in action (also see figure C.1—if your

plot doesn’t look anything like figure C.1, keep reading; I’ll tell you about the options

you need to adjust manually to get a satisfactory result shortly):

splot [-2:2][-2:2]

➥       exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2))

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C2 APPENDIX C Surface and contour plots

You can see how the function must depend on two variables, x and y. Corresponding

to the two variables, there are two brackets to limit the plot range. A third bracket can

be added to restrict the plot range in the new, “vertical” z direction.

C.1.1 The splot command

Most of the additional options applicable to the plot command are available for the

splot command as well. You can also plot data from a file (see section C.4 later in this

appendix) and use many of the directives familiar from plot:

 The title option is available to place a descriptive string into the key.

 The using directive now requires three arguments to pick out the columns used

for the x, y, and z directions, respectively.

 Similarly, you have to add a third bracket if you want to restrict the z range:

splot [xmin:xmax][ymin:ymax][zmin:zmax] ....

 Plotting styles are selected in the usual form through the with option. Not all

the styles described in chapter 6 are available with splot. Only points, lines,

linespoints, and impulses can be used with splot; in particular, this means

none of the styles drawing error bars are available.

Although we don’t show an example here, nothing prevents you from plotting several

functions (or data sets) simultaneously using splot: for example, splot f(x,y),

g(x,y).

 In addition to using, you can use index and every to plot only parts of a file. The

smooth directive (see chapter 3) isn’t available for splot, but you can apply data trans-

formations as part of the using directive, as discussed in section 3.3. Furthermore, the

dgrid3d option provides a way to calculate and plot a smooth approximation to a

noisy data set when using splot (see section C.5).

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

Figure C.1 Creating three-dimensional plots using the splot command: 

splot [-2:2][-2:2] exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2))

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C3Surface plots

STYLE, DECORATIONS, AND AXES WHEN USING SPLOT

Global options can be used with splot in the same way as with plot. Both set style

function and set style data have the desired effect. In addition to the familiar

xrange and yrange options (see section 8.2), there’s a zrange option to control the

plot range globally. 

 Arrows and labels (but not objects) can be placed onto a three-dimensional graph

without problems. Just remember to provide a third value to each coordinate for the z

value (for example, set label "text" at -2,-3,1).

 In contrast to plot, graphs generated with splot can have only a single coordinate

system. Therefore, all the options used to control the secondary coordinate system (see

section 8.1) have no meaning for graphs generated with splot. Also, the axes directive

can’t be used with splot. We’ll study tic marks and axes in more detail later, when we

discuss ways to choose the viewpoint for a graph created with splot in section C.2. 

C.1.2 Special options for surface plots

There are three options specific to the appearance of a surface plot: set surface, set

hidden3d, and set isosamples.

THE SET SURFACE OPTION

The set surface option turns rendering of the surface on or off. For surface plots,

this is of course not useful; but the splot command is also used to generate contour

and false-color plots, where an explicitly drawn surface is not desired.

 By default, the surface is shown, but it can be switched off using the following

command:

unset surface

Switch the surface back on using set surface. 

THE SET HIDDEN3D OPTION

In figure C.1, the surface is opaque : parts closer to the observer obscure parts of the

surface further back. By default, this effect is off, and only a transparent wire mesh of

the surface is drawn. Figure C.2 demonstrates what a plot looks like if no opaque sur-

face is drawn.

 To switch to an opaque surface rendering, use the set hidden3d option. You’ll

probably want to make opaque surfaces the default—for example, by including the

following line in your gnuplot startup file (see section 12.5):

set hidden3d

The hidden3d option can take a number of optional arguments. The most important

of these are offset and trianglepattern:1

set hidden3d [ [no]offset {int:offset} ] [ trianglepattern {int:mask} ]

1 There are a few further options to hidden3d, most of which deal with certain edge cases that may arise when
making a surface plot containing undefined points or points outside of the z range. Check the standard gnu-
plot reference documentation if this is relevant to you.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C4 APPENDIX C Surface and contour plots

You can use the offset keyword to control the color and line type that are used for

the bottom side of the surface. As you know, gnuplot will cycle through all available

plot styles for each new data set (see section 9.3). Through the integer argument to

offset, you can control how far the internal style counter should be advanced from

the style used for the top side of the surface. By default, gnuplot chooses the next

available style. An argument of zero (set hidden3d offset 0) draws both sides of the

surface in the same style. The same effect is achieved through the nooffset keyword. 

 Using the trianglepattern keyword, you can control which lines are drawn to

connect neighboring grid points. The argument to trianglepattern is an integer,

which is interpreted as a bitmask (see table C.1).

You can select any combination of bits. The default is 3, so that the surface is made up

of rectangular surface elements. When you use a value of 7, diagonal lines are also

drawn, so that the surface appears to be made out of triangles. Figure C.3 compares

different settings of this option. 

SAMPLING FREQUENCY FOR PLOTTING FUNCTIONS WITH SPLOT

In section 3.1, you learned to use the set samples option to control the number of

points where gnuplot evaluates a function (of a single variable) in order to plot it. When

plotting a function of two variables using splot, things are a bit more complicated.

 If hidden3d is on, so that the surface is opaque, then set isosamples controls the

number of evaluation points, and these points are connected with straight lines to

Table C.1 Values used in the mask to the set hidden3d option

Bit position Value Description

0 1 Lines parallel to the x axis

1 2 Lines parallel to the y axis

2 4 Diagonal lines, from southwest to northeast

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x
y

Figure C.2 The same plot as in figure C.1, but without the opaque surface effect. 

Use set hidden3d to enable the drawing of an opaque, nontransparent surface.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C5Surface plots

form the surface. If hidden3d is off, so that the surface is transparent, then set

isosamples still controls the number of grid points, but set samples controls the

number of evaluation points for each line in the grid.

 The set isosamples command takes one or two integer values, which specify the

number of grid points in the x and y direction, respectively. If only a single value is

provided, it’s used for both directions:

set isosamples {int:xlines} [, {int:ylines} ] 

By default, functions are evaluated on a 10×10 grid, which is too coarse to give a

good, smooth appearance of the plotted curve. I find values of around 30 to be

ideal—using an even finer grid brings little additional smoothness but leads to grid

lines overlapping each other unfavorably. You probably want to include the following

line in your gnuplot startup file:

set isosamples 30

Figure C.4 shows the same function plotted in figure C.1, but now plotted with the

default setting of set isosamples 10.

TIP Gnuplot’s default value of 10 for the set isosamples option is much too
small to give attractive graphs. Choosing a moderately higher number (such
as 30) will lead to much better results.

isosamples 90

trianglepattern 1

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

isosamples 60

trianglepattern 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

isosamples 60

trianglepattern 4

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

isosamples 40

trianglepattern 7

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

Figure C.3 Comparing different values of isosamples and hidden3d trianglepattern. 

Except for the values of those two options, these graphs are identical to figure C.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C6 APPENDIX C Surface and contour plots

Special rules apply to the pseudofile ++ (see section 4.5). In this case, the number of

grid points used for drawing the surface is controlled by set samples for the x direc-

tion and by set isosamples for the y direction. To obtain behavior from the pseudo-

file ++ that is equivalent to a regular function plot, you need to assign the same value

to set samples and set isosamples, as in the following example:

f(x,y) = exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2))

set samples 30

set isosamples 30
splot [-2:2][-2:2] "++" u 1:2:(f($1, $2)) w l

Finally, let me remind you that set samples and set isosamples are only relevant

when plotting functions and have no effect when plotting data from a file. 

C.2 View point and coordinate axes

With three-dimensional plots, there’s a new problem that doesn’t exist with regular,

two-dimensional plots: they can be viewed from different positions and under different

angles. You must therefore choose a view point. Closely related is the issue of coordinate

axes: you need to provide a clear frame of reference so that the viewer can understand

from which position the graph is seen. And finally, you have to provide a scale and tic

marks if you want to convey quantitative information. Let’s look at all of that.

C.2.1 Borders and base plane

A regular (two-dimensional) plot has four borders that you can modify using the set

border option, as you’ve seen in section 9.5.2. For a surface plot, you can imagine the

entire surface embedded in a cube. You can use the set border option to switch each

individual edge of this cube on or off.

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

Figure C.4 The isosamples option controls the number of nodes used to draw 

the surface. Here, we use the default value of set isosamples 10, whereas in 

figure C.1, we used a much finer grid of set isosamples 30.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C7View point and coordinate axes

BORDERS

The set border command takes an integer argument, which is interpreted as a 12-bit

bitmask; each bit turns one of the edges on or off. Table C.2 shows the bit positions for

each edge of the surrounding cube.

The default value is 31 when you use splot, turning on the four sides of the base and

the leftmost vertical axis. (No matter what’s specified in the set border option, bor-

ders other than the base are drawn only if set surface is true.)

 You can place labels along the borders of the plot in the usual fashion using set

xlabel, set ylabel, and (only for splot) set zlabel. In all graphs in this appendix,

I’ve made sure to use explicit labels on both the x and the y axes.

TIP There is no “obvious” view point for surface plots; it often makes sense to
choose a different view point for each function or data set. Because of this, it
is essential that you tell the reader which axis is which by using explicit labels
on all axes.

Tic marks are drawn independently of the borders—see chapter 8 for all the options

available to control the drawing and placement of tics. Just keep in mind that the sec-

ondary coordinate system (x2tics and so on) isn’t available; instead, there’s an addi-

tional set of options to control the appearance of tic marks in the z direction (ztics

and so forth). 

THE BASE PLANE

By default, the plotted surface is elevated a certain distance above the base plan of the

surrounding box. You can control this elevation through the xyplane option:

set xyplane [ at {flt:zvalue} | {flt:frac} ] 

Table C.2 The values of the mask used in the set border option. The red lines are the ones switched

on by the corresponding bit in the mask.

Bit 

position Value Edge 

Bit 

position Value Edge

Bit 

position Value Edge

0 1 4 16 8 256

1 2 5 32 9 512

2 4 6 64 10 1024

3 8 7 128 11 2048

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C8 APPENDIX C Surface and contour plots

There are two ways you can use set xyplane to fix the position of the base relative to

the plot surface. You can specify an explicit z value at which the base plan should be

drawn, using the keyword at together with xyplane:

set xyplane at 0.1

This is the easiest way to fix the location of the base plane if you use an explicit plot

range in the vertical direction.

 If the z range is dynamically chosen, it doesn’t make sense to specify a fixed loca-

tion for the base plane; instead, its position should be chosen as a fraction of the total

apparent height of the figure. This is precisely what set xyplane without the at key-

word does: it allows you to control the elevation of the plot surface above the base

plane as a fraction of the total z range.

 A few examples may help to clarify. The command

set xyplane 0

puts the base plane right at the low end of the z range. Choosing

set xyplane 0.5

elevates the plotted surface by half the total z range (or half the apparent height of

the plot) above the base plane. Using negative arguments to set xyplane lifts the base

plane so that it intersects with the plot surface. For example, the command

set xyplane -0.5

places the base plane at the middle of the z range.

 The following formula can be used to convert between the two models. It tells you

the z value at which the base plane will be drawn, given the fractional parameter f and

the z range [zmin:zmax]:

z = zmin - f * ( zmin - zmax )

C.2.2 View point

When creating surface plots using splot, you can control one aspect of the graph that

has no equivalent in two-dimensional plots: the view point—that is, the location (rela-

tive to the graph) from which the observer appears to be regarding the plotted sur-

face. You can set the view point in two ways: either programmatically with the set

view option, or interactively using the mouse. 

USING THE MOUSE

The more convenient way to adjust the viewing angle is of course using the mouse!

Grab the plotted surface (by left-clicking into the plot window), and drag it to its

desired position. This requires a reasonably fast computer (and works much better if

the surfaces are opaque—when hidden3d is true). When you hold down the Ctrl key

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C9View point and coordinate axes

while dragging with the mouse, only the box surrounding the graph is shown: this may

facilitate this process on slow computers or for surfaces containing many points.

 Holding down the middle mouse button and moving the mouse zooms the graph:

moving the mouse left to right increases the size of the entire graph (and vice versa).

Moving the mouse upward stretches the graph in the z direction only; moving the

mouse downward shrinks the graph in the z direction. Again, you can suppress ren-

dering of the actual plot surface when dragging by holding down the Ctrl key while

moving the mouse. Finally, holding down the Shift key together with the middle

mouse button lets you move the base plane of the plot (this is equivalent to set

xyplane). 

USING SET VIEW

The set view command gives you exactly the same capabilities, but in a non-interac-

tive fashion. The set view option takes up to four optional arguments:

set view [{flt:theta} [, {flt:phi} [, {flt:scale} [, {flt:z_scale}]]]]

The first two arguments are the angles (in

degrees) of the view point around the horizontal

and the vertical axes, respectively. (In spherical

coordinates, these are the polar and azimuthal

angles.) The angles are restricted to values from

0 to 360. (See figure C.5.) Figure C.6 demon-

strates how a graph can appear from different

view points.

 The third and fourth parameters correspond

to the zooming effect I’ve already mentioned in

the context of mouse interactions. Both default

to 1.0: choosing smaller scale factors results in a

smaller graph on the canvas. (In particular, the

scale factor is the inverse of the radial compo-

nent in spherical coordinates.) 

set view 60,65

set xyplane -0.25

-2
-1

 0
 1

 2
x

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y

set view 77,77

set xyplane 0

-2-1 0 1
x -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y

Figure C.6 Different view points. Compare to figure C.1, where the same function is shown with 

set view 45,50.

View

point

x

y

z

θ

φ

Figure C.5 The angles used when 

setting the view point with set view

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C10 APPENDIX C Surface and contour plots

UNIT LENGTH AND ASPECT RATIO

You can also use set view to fix the length of the x and y axis units. (The set view

command therefore does for splot what set size does for plot—see section 9.5.1.)

 The command set view equal xy creates a graph within which the (visual) length

of one x axis unit equals the length of one y axis unit. The graph is scaled so that it’s

guaranteed to fit on the canvas.

 The command set view equal xyz also sets the z axis unit to the same visual

length, but in this case, there is no guarantee that the graph will fit on the canvas! The

command set view noequal removes the constraint between the axis units. 

BIRD’S-EYE VIEW

The special command set view map places the observer right above the plotted surface

so they perceive just the base plane of the plot as a regular, two-dimensional plot. This

is the proper view for contour plots (see section C.3) and for false-color plots (see

appendix D).

 But set view map is not just a convenient shorthand for set view 0, 180, 1.425, 1.

It also enables set size for splot. In particular, you can use set size square and set

size ratio -1 to influence the appearance of contour plots and heatmaps.

 It’s possible to append the keyword scale together with a numerical factor to scale

the resulting graph on the canvas. The following code snippet turns on map view and

also shrinks the graph to half its default size:

set view map scale 0.5

C.3 Contour lines and contour plots

You can add contour lines to a plot generated using splot. Contour lines can be a

great help when it comes to associating specific z values with surface plots. They can

also be used by themselves to make contour plots. 

 Use the set contour option to enable contour lines:

set contour [ base | surface | both ] 

By default, contour lines are only plotted on the bottom of the box surrounding the

surface plot. But contours can also be drawn on either the plot surface or on both

(base and surface), through the use of the appropriate options to set contour (as in

figure C.7). 

C.3.1 Contour plots

Contour lines are almost more useful by themselves than in combination with surface

plots: a contour plot shows only the contour lines, from the bird’s-eye perspective. Fig-

ure C.8 is yet another representation of the function from figure C.1—this time as a

contour plot. Listing C.1 summarizes the commands necessary to go from a three-

dimensional surface plot to a flat contour plot.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C11Contour lines and contour plots

The quality of the resulting plot depends strongly on the choices for set isosamples

and set samples. The former controls the number of nodes at which the function is

evaluated, and the latter controls the number of line segments used to draw the con-

tours. Higher resolution is obviously better, but it requires more computational

power. (Values from 30 to 300 for either seem to work well in practice.)

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

Figure C.7 Adding contour lines at the base and on the surface using set contour 

both and set cntrparam levels incremental -0.3,0.1,0.4. The function 

is the same as in figure C.1.

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

Figure C.8 The function from figure C.1, plotted 

in contour view. See listing C.1 for the commands.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C12 APPENDIX C Surface and contour plots

 

set view map

set size ratio -1

unset surface

set contourv

set isosamples 150

set cntrparam levels 10

set clabel "%.1f"

C.3.2 Customizing contour lines and their labels

As you can see in figure C.8, gnuplot assigns a new line type from the predefined

sequence of types to each new contour (see section 9.3). To customize the assignment

of colors to contours, you need to redefine the appropriate style using set linetype.

It’s also possible to use only a single line type for all contours, using the command set

cntrlabel onecolor. 

 A word of warning: gnuplot’s commands for customizing contour plots aren’t very

polished. Most actions are achieved through two commands—set cntrparam and set

cntrlabel—but each is responsible for several, only vaguely related tasks, distin-

guished by various suboptions. Also, and in contrast to usual gnuplot usage, these

commands don’t allow you to combine multiple suboptions into a single invocation.

FREQUENCY AND SPACING OF CONTOURS

To influence the frequency and spacing of contour lines, use set cntrparam levels.

The different ways to do this are reminiscent of the options used to place tic marks

along the axes (see section 8.3.4):

set cntrparam levels [ auto [{int:n}]
                       | discrete {flt:z0} [, {flt:z1} [, ...]]

                       | incremental

                            {flt:start}, {flt:inc} [, {flt:end}] ]

When using auto, approximately five uniformly spaced contour lines are drawn. You

can pass an integer argument to auto to change the number of contour lines that are

generated. All these settings are approximate, because gnuplot attempts to place con-

tour lines at round numbers.

 Using discrete, you can control exactly where contour lines are placed. The dis-

crete suboption takes a comma-separated list of z values as an argument, at which

contours should be drawn. All z values for which contours should be shown must be

specified in a single call to set cntrparam levels discrete; you can’t add individual

contour lines to autogenerated ones. Finally, you can fix a starting z value and an

increment (and optionally an end value) through the incremental keyword. 

CONTOUR LABELS

By default, gnuplot automatically generates an entry in the key (see section 7.4)

for each contour line. The formatting of these labels can be customized using set

Listing C.1 Commands to switch to a contour view—see figure C.8

Chooses bird’s-eye view

Chooses equal units in both directions

Switches off the surface

Switches on contour lines

Increases the sampling frequency

Increases the number of contour lines

Chooses the format of the contour labels in the key

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C13Contour lines and contour plots

cntrlabel format. The format string can contain any of the familiar conversion spec-

ifiers (see section 8.3.3):

set cntrlabel [format "str:format"] [font "str:font"]

It’s also possible to place the labels directly onto the graph, rather than grouping them

into a separate key, but (at the time of this writing) support for this feature is still rudi-

mentary. To place labels onto the graph, use the with labels style together with the

splot command. This will draw only the labels; if you want both contours and labels,

you need to plot the function of data twice in the same command: once with lines

and once with labels.

 Two parameters control the number and placement of labels that are drawn for

each contour line: set samples and set cntrlabel. By default, a label is placed at

every 20th line segment—hence a larger value of set samples means more labels. You

can modify the number and position of labels using

set cntrlabel [start {int:segment}] [interval {int:segment}]

Using the interval keyword, you can change the frequency of labels: a higher num-

ber means more line segments are drawn between consecutive labels. Unfortunately,

values higher than 100 are silently truncated to 100. The argument to the start key-

word determines at which line segment (starting from some arbitrary origin) the first

label is drawn. Changing this value, you can slide all labels in the graph along their

contours.

 It’s currently not possible to shift or rotate labels. Feel free to experiment, but you

may be better off using explicit labels (using set label; see section 7.3.3) to annotate

a contour plot on the graph. 

SMOOTHING CONTOUR LINES

The set cntrparam command can also control how contours are generated—this may

be useful at times, for example if you want to graph noisy data. The relevant sub-

options are as follows:

set cntrparam [ linear | cubicspline | bspline ]

set cntrparam [ points {int:q} ]

set cntrparam [ order {int:q} ]

To draw contours, gnuplot determines a set of points (called nodes) at which the func-

tion (or data) has the same z value. Through the first set of keywords, you can choose

how these points are connected: linear (the default) uses straight lines; cubicspline

uses a smooth curve, which is guaranteed to pass exactly through the nodes; and

bspline uses a curve that’s guaranteed smooth but isn’t guaranteed to pass through

the nodes exactly. For “crumply” surfaces, or low resolutions (that is, few grid points),

one of the spline options may give significantly better results than the default. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C14 APPENDIX C Surface and contour plots

 You can specify two additional parameters that are relevant to the way splines are

drawn (they have no meaning for linear mode). The points option controls the

number of points for which the interpolation between any two neighboring nodes is

evaluated when drawing the contour. More points again mean smoother curves. With

order, you can set the order of the spline to be used (this option is only relevant for

bspline). The order must be an integer between 2 and 10. The greater the order, the

smoother the contour. Note that both points and order require separate calls to set

cntrparam—they can’t be combined with the type of curve (linear, cubicspline, or

bspline) in the same call. 

C.4 Plotting data from a file using splot

Everything we’ve done so far has involved the plotting of functions only. Can gnuplot

use data from a file to generate surface and contour plots? Of course it can!

 Gnuplot supports two data file formats to work with splot. For data files in other

formats, or for data that’s not on a grid, check the dgrid3d option described in sec-

tion C.5.

C.4.1 Grid format

If the data file is in grid format, each line must contain both x and y coordinates, as well

as the z value that is to be plotted. Data must be organized into data blocks, which are

separated from each other by a single blank line. Each block must contain all data

points for a single row of data points, parallel to the x axis (in other words, within each

data block, the x coordinate stays constant, but the y coordinate runs). The following

listing shows a short example file demonstrating this format. The corresponding plot

is in figure C.9.

# x y  z
0 -1 10

0 0 10

0 1 10

1 -1 10

1 0 5

1 1 10

2 -1 10

2 0 1

2 1 10

3 -1 10

3 0 0

3 1 10

Keep in mind one very important restriction: all data blocks must contain the same number

of data points. If the number of data points isn’t the same in all data blocks, or if even a

single data point is missing or invalid, splot can’t draw a surface.

Listing C.2 Simple data file suitable for splot—see figure C.9 (file: grid)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C15Plotting data from a file using splot

This is a formal requirement, only: there’s no constraint that the data values (that is,

the x and y coordinates) form a regular grid. Small deviations of the x and y positions

from regularity are fine, but the plot may look strange or may not be very useful if the

underlying grid is too distorted.

 As mentioned when we first introduced the splot command earlier in this appen-

dix, many of the directives familiar from the plot command are available when plot-

ting gridded data using splot. In particular, you can have different data sets in a single

file, separated from each other by double blank lines (as discussed in chapter 3). You

can then select a specific such set using index. The every directive can be used to pick

out subsets of each data set. Finally, the using directive can be used to choose the data

columns for x, y, and z values and to apply data transformations in the usual fashion

(see section 3.3). 

MISSING DATA

It’s instructive to see what gnuplot does with a defective file that doesn’t follow this

format. Figure C.10 shows the results of the splot command for a file that’s the same

as in listing C.2, except that the last entry (the point at (3,1,10)) has either been

replaced with the not-a-number marker NaN or been omitted entirely.

 If gnuplot finds a not-a-number marker (as defined by set datafile missing—see

section 4.3.4), it can still draw a complete surface, just omitting the panels that touch

the invalid data point. But if the data point is missing entirely, then no surface can be

drawn. Instead, the splot command connects all points in one data block consecu-

tively, but doesn’t connect data points separated (in the file) by a single blank line—

this is exactly what the plot command does when it encounters single blank lines in a

file. But in addition, splot staggers the plots for successive data blocks (front to back)

and thus gives the illusion of optical depth. But cross lines (parallel to the x axis) are

 0

 0.5

 1

 1.5

 2

 2.5

 3

x

-1
-0.5

 0
 0.5

 1

y

 0

 2

 4

 6

 8

 10

z

Figure C.9 The data from listing C.2 plotted using splot "grid" u 1:2:3 w linesp

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C16 APPENDIX C Surface and contour plots

only drawn when the data in the input file fulfills the requirements of regular, gridded

data blocks, as discussed earlier. 

C.4.2 Matrix format

The matrix format is an alternative file format for data on a regular, rectangular grid.

It’s more compact, because it doesn’t store the (redundant) information on x and y

coordinates for every data point—only the z values at the grid locations are kept.

There are two permissible matrix formats: one that stores the coordinates of the grid

points (without duplication) together with the z value, and a super-compact format

that does away with the grid coordinates altogether.

 Table C.3 shows the general structure of both formats. In the general matrix for-

mat, the first row contains the x coordinates of the grid points, and the first column

contains the y coordinates. The entry in the top-left corner is ignored but must con-

tain a numeric value. In the compact format, the coordinates aren’t stored explicitly.

Instead, when reading a file in the compact format, gnuplot assumes that the coordi-

nate values consist of pairs of positive integers, starting at (0, 0).

Table C.3 The matrix formats

General: nonuniform matrix Compact: matrix

Structure NA x0 x1 x2 x3 ...

y0 z00 z01 z02 z03
y1 z10 z11 z12 z13

y2 z20 z21 z22 z23

y3 z30 z31 z32 z33
... ...

z00 z01 z02 z03 ...

z10 z11 z12 z13
z20 z21 z22 z23

z30 z31 z32 z33

... ...

Example  0  0 1 2 3
-1   10 10 10 10

0  10 5 1 0

1  10 10 10 10

 10 10 10 10
 10 5 1 0

 10 10 10 10

Missing

 0

 1

 2

 3
x

-1 -0.5  0  0.5  1

y

 0
 2
 4
 6
 8

 10

z

NaN

 0

 1

 2

 3
x

-1 -0.5  0  0.5  1

y

 0
 2
 4
 6
 8

 10

z

Figure C.10 The splot command requires all data points to be supplied on a regular grid, with 

none missing. This figure shows what happens when the last point (at x=3, y=1) has been replaced 

with a not-a-number marker or omitted entirely. See listing C.2 for the original data file. The splot 

command is the same as in figure C.9.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C17Smooth surfaces

Upon reading a file in matrix format, gnuplot internally transforms the contained

information into a three-column grid format, with the x coordinates in the first col-

umn, the y coordinates in the second, and the data values in the third. These columns

can then be selected in a regular using specifier. 

TIP Keep in mind that a file in matrix format is internally transformed into
the equivalent grid format. Construct a using specifier as you would for a file
in grid format. 

A WORKED EXAMPLE

Let’s say that the two example files in table C.3 are called matrix and packedmatrix,

respectively. Then the following three commands are equivalent:

splot "grid" u 1:2:3 w l

splot "matrix" nonuniform matrix u 1:2:3 w l

pos( k, origin, spacing ) = origin + k*spacing
splot "packedmatrix" matrix u (pos($1,0,1)):(pos($2,-1,1)):3 w l

The only difference is the appearance of the new keywords matrix (indicating a file in

packed matrix format) and nonuniform matrix (for a file in general matrix format:

that is, including coordinate information in the first row and column). 

 A special consideration applies to files in the packed matrix format, because the

integer pairs that gnuplot supplies instead of coordinate values must be transformed

into true locations. As long as the grid points lie on a regular, rectangular grid, this

can always be accomplished through a simple linear transformation, involving the

coordinate value of the origin and the lattice spacing, as shown in the listing. 

C.5 Smooth surfaces

Surface plots can be fun, but things can go wrong in practice—in particular, when

you’re graphing data (as opposed to plotting smooth functions):

 Data is scattered (not on a regular grid), so that no regular surface can be

drawn.

 Data is sparse, so that the surface consists only of a few elements and is there-

fore not easy to recognize.

 Data is noisy, so that the surface appears overly bumpy.

 The data file isn’t in a suitable format.

C.5.1 The set dgrid3d facility

Gnuplot provides a slick little facility that takes arbitrary input data and generates a

smooth interpolation onto a two-dimensional grid: the dgrid3d option. If dgrid3d is

on, splot doesn’t plot the raw data. Instead, it reads the data and then generates an

approximation to this data for every point of a regular grid. The number of grid

points and some aspects of the interpolation algorithm can be controlled through set

dgrid3d:

Using grid format

Using matrix format

Using packed 
matrix format

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C18 APPENDIX C Surface and contour plots

set dgrid3d [ {int:nx} [, {int:ny} [, {int:q} ] ] ]

set dgrid3d [ {int:nx} [, {int:ny} ] ] 

            [ splines 

              | gauss | cauchy | exp | box | hann 
                  [ {flt:dx} [, {flt:dy} ] ] ] 

By default, dgrid3d is disabled. When it’s enabled, three-dimensional data read from

a file is always treated as a scattered data set. A grid with dimensions derived from a

bounding box of the scattered data and size as specified by the nx and ny parameters

is created for plotting and contouring. The grid is equally spaced in x rows and in y

columns; the z values are computed as weighted averages or spline interpolations of

the scattered points’ z values. In other words, a regularly spaced grid is created, and a

smooth approximation to the raw data is evaluated for all grid points. Only this

approximation is plotted, but not the raw data. The number of columns defaults to

the number of rows, which defaults to 10.

 Several algorithms are available to calculate the approximation from the raw data.

Some of these algorithms can take additional parameters. All the algorithms have in

common that the closer a data point is to a grid point, the more effect it has on that

grid location.

 The splines algorithm calculates an interpolation based on thin plate splines. It

doesn’t take additional parameters, which is convenient but also means the algorithm

can’t be adapted to take the nature of the data into account.

 An alternative and more flexible algorithm is based on weighted averages.2 Each

data point is replaced with a kernel : a smooth function that’s peaked at the location of

the data point. The contributions from all kernels are combined to find the weighted

average for the plot:

Here, zi is the value of the ith data point, and di is the Euclidean distance between the

current grid point and the location of the ith data point. The function w(d) is the

smoothing kernel. Several kernels can be selected by supplying the appropriate key-

word to set dgrid3d. Table C.4 lists the available choices. 

 When using one of the five smoothing kernels from table C.4, up to two additional

parameters can be specified: dx and dy. These are used to rescale the coordinate dif-

ferences when calculating the Euclidean distance:

2 The dgrid3d facility allows for some other options as well. Check the standard gnuplot reference documen-
tation for details.

z
Σi

w di( ) zi⋅

Σi
w di( )

------------------------------=

di

x xi–

dx
---------------- 
 

2 y yi–

dy
--------------- 
 

2
+=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C19Smooth surfaces

The value of dy defaults to the value of dx, which defaults to 1. The parameters dx and

dy make it possible to control the radius over which data points contribute to a grid

point in the units of the data.

 Figure C.11 shows the data from listing C.2 plotted when smoothed using dgrid3d

with the Gaussian kernel. (The Gaussian kernel is probably the most generally useful

and versatile kernel—unless you have specific reasons to use a different one, it’ll serve

you well in a variety of situations.)

The set dgrid3d facility isn’t perfect. In particular, it can’t be turned on and off for

individual data sets—either all data sets are smoothed with it, or none. This makes it

impossible, for instance, to plot the raw data together with the smooth surface. But

overall, dgrid3d is a great tool to generate good-looking two-dimensional graphs from

otherwise unsuitable data.

Table C.4 Smoothing kernels available with set dgrid3d

Keyword Definition

gauss w(d ) = exp(-d2) 

cauchy w(d ) = 1/(1+d2) 

exp w(d ) = exp(-d ) 

box w(d ) = 1 if |d | < 1; 
w(d ) = 0 otherwise

hann w(d ) = ½⋅(1-cos(2πd )) if |d | < 1; 

w(d ) = 0 otherwise

 0

 0.5

 1

 1.5

 2

 2.5

 3

x

-1
-0.5

 0
 0.5

 1

y

 0

 2

 4

 6

 8

 10

z

Figure C.11 The same data 

as in figure C.9, but plotted 

after turning on smoothing 

using set dgrid3d 

30,30 gauss 0.6,0.6

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


C20 APPENDIX C Surface and contour plots

 

Words of caution
Graphs generated with the splot command can be visually very appealing, and
you’ve seen some nice examples in this appendix. Nevertheless, my recommenda-
tion is to use them sparingly and to also explore other ways of representing multivar-
iate data (for example, take a look at chapter 14). Surface plots are often stunning,
but (because of the additional need to find a suitable view point) getting them “right”
is disproportionately more difficult. Reading quantitative (as opposed to qualitative)
information off of them is often tricky, if not impossible. Finally, they simply aren’t
suitable for noisy data sets. But they can be effective for conveying the broad aspects
of a multidimensional data set, in particular to an audience that has a harder time
making sense out of other ways of representing such data (such as false-color plots:
for those, see appendix D). 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D1

appendix D
Palettes and false-color plots

Gnuplot provides a facility to map numeric values into a continuous range of colors.

This allows you to create false-color plots (or heatmaps): graphs in which a numeric value

is represented by a color, instead of by position.

 In this appendix, we’ll first study how to set up such mappings between numbers

and colors. Because the values in a false-color plot typically form a continuum, the

mapping usually consists of a continuous color ramp or color gradient. The gnuplot

command to create and manage such color gradients is set palette, and hence I’ll

refer to these mappings as palettes. After introducing the commands to define palettes,

we’ll look in detail at a catalog of example palettes for a variety of different applica-

tions and point out their strengths and weaknesses. 

 Next, we’ll study ways to use palettes to create colored graphs in gnuplot. Gnu-

plot’s palette feature is quite flexible, and you can use it for a variety of purposes, of

which heatmaps are only one (but arguably the most important) example.

D.1 Warm-up examples

Before discussing all the various commands and options in detail, let’s quickly look at

an example that demonstrates the capabilities that’ll be introduced in this appendix.

Consider again the function that was studied in appendix C. There, you saw surface

plots (such as figure C.1) and contour plots (figure C.8) of this function. Now we’re

going to add some color!

 Let’s begin simply. The following commands create a colored figure (figure D.1):

set isosamples 200

set palette defined ( 0 "blue", 0.5 "light-grey", 1 "red" )

splot [-2:2][-2:2]

➥ exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2)) w pm3d

Two items are new. First, the set palette command is used to create a smooth color

gradient palette in gnuplot. The w pm3d style in the splot command then uses this pal-

ette to create a colored surface by mapping the surface elevation into the palette. (The

abbreviation stands for “palette-mapped three-dimensional” plot—you can see why.)

 Of course, other color schemes are possible—that’s the point of the set palette

command. Later in this appendix (in section D.2), you’ll learn how to set up your own

palettes using the set palette command.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D2 APPENDIX D Palettes and false-color plots

But color palettes are not only available for surface plots (as in figure D.1), but also

for many other plots. Figure D.2 shows the same function again, but instead of using

contour lines, it now uses only color to indicate the local value of the function at each

point.

 The graph in the left panel was constructed with a very simple palette, using the

following commands:

set isosamples 400
set view map; set size square

set palette defined (-1 'white', 0 'blue', 0 'red', 1 'white' )

splot [-2:2][-2:2]

➥ exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2)) w pm3d

The palette for the other graph is a tad more complicated; you’ll see its definition

later, in section D.2.5.

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

-0.4
-0.3
-0.2
-0.1
 0
 0.1
 0.2
 0.3
 0.4

Figure D.1 Adding color from a continuous palette to a surface plot. Compare figure C.1.

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

Figure D.2 Two examples of false-color plots. The function is the same as in figure D.1. The graph 

on the left was drawn using a simple palette defined by set palette defined (-1 'white', 0 

'blue', 0 'red', 1 'white' ); the graph on the right uses the palette from panel N in figure D.4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D3Creating palettes

For yet another kind of graph that used a color palette, go back to figure 9.5, when we

discussed data-dependent colors. The time has come to introduce all the detail that

we skipped back then!

D.2 Creating palettes

Gnuplot’s command to create color gradients is set palette. The command is pretty

smart and does a lot of legwork for you. It’s also fairly complex and combines many

different bits of functionality. In fact, one of its problems is its almost promiscuous

flexibility: the command places few limits on user input, which can be both very con-

venient and very confusing, depending on whether you understand how gnuplot pro-

cesses the arguments.

 There are basically two different ways to define a color gradient using set palette:

 A gradient can be defined through a discrete set of colors at fixed positions

within the numerical range. The set palette command fills in the gaps

between these nodes through linear interpolation, separately for each color

component. 

 A gradient can be defined through a set of three functions (one for each color

component) that map the numerical range to a color component.

D.2.1 Color models and components

The set palette command can handle five different color models: RGB (red-green-

blue), HSV (hue-saturation-value), CMY (cyan-magenta-yellow; mostly used in print

publishing), YIQ (US color television standard), and CIE XYZ (a model based on color

perception).1 For computer graphics, RGB and HSV are by far the most important.

 You can select the color model using the model keyword. For example:

set palette model RGB

set palette model HSV

The color model selection is sticky, meaning it remains in effect until explicitly changed:

you don’t need to include the model specification in every call to set palette. The

default is the RGB model.

TIP The color model in set palette is sticky and silently stays in effect until
explicitly overridden. Unless the color model is RGB, I always include the
explicit choice of color model in each call to set palette.

All color models represent color through exactly three components, and formulas exist

to translate between the different color models. (Transparency would require a fourth

component, but set palette doesn’t handle transparent colors, so three components

are sufficient.)

1 Check the respective Wikipedia pages for details.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D4 APPENDIX D Palettes and false-color plots

 To specify the three components, the set palette command accepts three differ-

ent formats:

 A named color, such as "red". Use show colornames for a list of permissible

colors.

 A hex string, such as "#ff0000" or "0xff0000". Both formats are equivalent.

 A numeric triple, such as 1 0 0. The numbers must be between 0 and 1 and be

separated by whitespace, without punctuation or delimiters.

Here are two colors in all three formats:

"red" "#ff0000" 1 0 0

"grey" "0xc0c0c0" 0.75 0.75 0.75

Here’s the first potential for confusion: the set palette command separates the input

into three components (let’s call them A, B, and C) and interprets them according to the cur-

rently selected color model. Every format is permissible for every color model, and gnuplot

makes no attempt to “guess” the intended color model from the input format.

 Let’s consider an example. Regardless of whether your input was "red" or

"#ff0000" or 1 0 0, gnuplot will interpret it as follows: first channel (component A)

at maximum, and the other two channels (components B and C) at minimum. If the

chosen color model is RGB, then this amounts to “full red, no green or blue.” But if the

chosen color model is HSV, this means “full hue, no saturation or value” (that is, black,

by virtue of the zero value in the third channel). Similarly, the arguments "grey",

"0xc0c0c0", and 0.75 0.75 0.75 will all be interpreted as “all three channels at

three-quarters of their maximum.” In the RGB space, this amounts to a light gray; but

in the HSV space, the color will be a medium purple! In every case, the input is split

into its three components first, and only then are the components interpreted accord-

ing to the currently active color model. (In fairness, set palette warns you if you try

to use named colors with color spaces other than RGB.)

TIP The set palette command doesn’t restrict the input format to appro-
priate color models. Instead, all input is first broken into components, which
are only then interpreted according to the currently selected color model. 

D.2.2 Defining palettes through nodes

You can define a palette by specifying a set of colors at fixed locations within the plot

range, and gnuplot will fill in the gaps in between. This is, in my opinion, the most

useful way to create palettes in practice.

 You use the defined keyword to specify the list of colors and positions. You can use

any of the color formats discussed in the previous section, and hence the following

four commands are equivalent:

set palette defined ( -1 "red", 0 "white", 1 "blue" )

set palette defined ( -1 "#ff0000", 0 "#ffffff", 1 "#0000ff" )

set palette defined ( -1 1 0 0, 0 1 1 1, 1 0 0 1 )
set palette defined ( -1 "red", 0 "#ffffff", 1 0 0 1 )

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D5Creating palettes

The defined keyword must be followed by a comma-separated list in parentheses.

Each of the entries between the commas consists of a position, followed by a color.

Don’t get confused when using the third format (numeric triples): each entry indeed

consists of four numbers, without any punctuation between them.

 There’s no limit on the number of entries in the list of colors. The values used as

positions aren’t restricted: they can be positive or negative, integer or floating-point.

The only constraint is that they must form a non-decreasing sequence of numbers. It’s

possible to repeat a position, and doing so can be useful to create palettes with sharp

transitions, as we’ll discuss later. Two examples:

set palette defined ( -1 "red", 0 "red", 0 "blue", 1 "blue" )

set palette defined ( 0 "red", -1 "white", 1 "blue" )

This brings us to the second potential source of confusion when using set palette:

the positions need not correspond to actual values from the plot range! In fact, they

aren’t absolute positions at all—they’re merely relative positions in the interval

spanned by the smallest and the greatest of the positions (that is, by the first and the

last entries between the parentheses). The following four commands all define exactly

the same palette:

set palette defined ( -1 "red", 0 "white", 1 "blue" )

set palette defined ( -10 "red", 0 "white", 10 "blue" )

set palette defined ( 0 "red", 0.5 "white", 1 "blue" )
set palette defined ( 7 "red", 14 "white", 21 "blue" )

In every case, the total range of values spanned by the positions will be shifted and

scaled to the unit interval. All nodes retain their relative positions in the process. In

particular, the positions need not correspond to actual values from the plot range; you

use a special command (set cbrange—see section D.3) to map the entire palette to

the desired plot range.

TIP The positions assigned to nodes when using set palette defined (...)
aren’t absolute positions; they’re relative positions within the interval of val-
ues spanned by the first and last node. Gnuplot internally normalizes the
values by shifting and scaling the nodes into the unit interval for further
processing.

Gnuplot interpolates linearly between nodes, for each component separately. The

interpolation is done in the currently selected color space, and only afterward are the inter-

polated values transformed to RGB for actual presentation. For example, the following

command creates a standard rainbow palette:

set palette model HSV defined ( 0 0 1 1, 1 1 1 1 )

In HSV space, gnuplot interpolates linearly between a hue value of 0 and a hue value

of 1, but if you look at the resulting palette in RGB space, the behavior is most defi-

nitely not linear.

Valid

Not valid: positions 
are out of order!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D6 APPENDIX D Palettes and false-color plots

READING NODES FROM FILE

It’s possible to read the nodes from file, using the file keyword. The file is treated as

a regular data file, which means the using directive is available to pick out columns

and to apply inline transformations.

 Gnuplot expects three or four columns (the position, followed by the three color

components). If only three columns are provided, the nodes that are read from file will

be spaced uniformly along the palette. Again, the values of the color components that

are read from file will be interpreted according to the currently active color model!

 Here are two syntax examples, with and without an explicit using directive:

set palette file "palette.gpf"

set palette file "palette.gpf" using 1:2:3:4

The color values read from file (or resulting from an inline transformation) should be

between 0 and 1. Values exceeding this interval are truncated back into this interval.

TIP Any color values that are read from file using set palette file ... and
that exceed the unit interval are truncated back into the unit interval. 

D.2.3 Defining palettes with functions

Rather than provide a set of nodes and let gnuplot interpolate between them, you can

also provide a set of three functions (one for each color component). Depending on

the color model chosen, the components will be interpreted as red, green, and blue

channels (RGB), or as hue, saturation, and value channels (HSV), and so on.

 Instead of using defined, you use the functions keyword in the set palette com-

mand. The functions are arbitrary, but each one must map the unit interval [0:1] into

the unit interval [0:1]. The independent (dummy) variable in the function definition

must be called gray (not x, not grey!).

 Defining palettes using functions works best in the relatively intuitive HSV color

space. Here are a few simple examples:

set palette model HSV functions gray, 1, 1

set palette model HSV functions 0, 0, gray

set palette model HSV functions 0, 0, sqrt(gray)

set palette model HSV functions gray, 1-gray, 1

TIP When defining a palette through functions with set palette functions
..., don’t forget that the independent (dummy) variable in the function def-
initions must be called gray. If you choose any other variable name (such as x),
gnuplot will not warn you—things just won’t work!

OTHER WAYS TO DEFINE PALETTES WITH FUNCTIONS

The set palette command offers some further features that I want to mention in

passing. Check the gnuplot standard reference documentation for details.

 The command set palette cubehelix (which is intended to be used with the RGB color

model) creates a palette that traces out a rainbow, while simultaneously increasing color

intensity. Several sub-options allow you to control various aspects of the resulting palette.

Standard rainbow

Linear grayscale

Nonlinear grayscale

Rainbow that fades to white

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D7Creating palettes

 The set palette rgbformulae command is intended to reduce the size of Post-

Script files. When using this option, you must define your palette in terms of several

predefined functions. When exporting your graph to PostScript, these functions are

written to the PostScript file so that the palette can be evaluated analytically when the

PostScript file is processed. Because the palette need not be saved explicitly, the result-

ing PostScript file is smaller. 

D.2.4 Displaying and exporting palettes

The following command is a valuable tool when developing palettes:

test palette

It produces a figure (using the current settings of set output and set terminal!) like

the one in figure D.3. The bottom panel shows the palette as a spectrum of colors; the

top panel shows the intensity levels of the red, green, and blue components. (Regard-

less of the choice of color model, the test palette command always displays RGB

components.) Also included in the top panel is the value of the NTSC luminance, which

corresponds to the Y channel in the YIQ model. It indicates the result if the color were

displayed on a black-and-white TV screen.   

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R,G,B profiles of the current color palette

red green blue NTSC

Figure D.3 The result of the test palette command for a palette defined with set palette 

defined ( 0 'web-green', 0.4 'goldenrod', 1 'red' ) or, equivalently, set palette 

defined ( 0 "#00c000", 0.4 "#ffc020", 1 "#ff0000" )

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D8 APPENDIX D Palettes and false-color plots

QUERYING THE PALETTE DEFINITION

In addition to this graphical visualization of the palette with test palette, you can

query the current definition using

show palette

This prints the current values of all sub-options of set palette to the screen, including

the three function definitions if the palette was defined using set palette functions.

If the palette was created from a set of discrete nodes using set palette defined

(...), then the printed message won’t include explicit information on the nodes.

Instead, you must use

show palette gradient

to list them. 

EXPORTING A PALETTE

It may be desirable to export a finished palette as a set of RGB triples: for example, to use

it in another application. You can do so using the show palette palette command:

show palette palette {int:n} [ int | float ]

This prints a list of RGB triples to the output channel identified by the current value of

set print. The mandatory integer argument gives the number of intermediate colors

in the exported palette. By default, the output is formatted for human readability, but

by giving either the int or the float keyword, you can obtain a listing that’s easier to

parse from a program. (With int, the RGB values are integers in the range 0 to 255;

with float, they’re floating-point values between 0 and 1.) 

SAVING A PALETTE

All the details supplied to the set palette command are included in the information

persisted with save; hence an existing graph (and its palette) can be re-created using

load, as you’d expect. You should be aware, though, that gnuplot saves the color for

each node in a palette only in the third format, which consists of three numbers

between 0 and 1. In particular, gnuplot will not write the names of named colors to file

when using save. The resulting command files are therefore, by construction, much

less human-readable. If you want to save a palette to file with the idea of later continu-

ing to edit it manually, then you should edit the respective command file in an editor

(see section 12.2), rather than use gnuplot’s save command.

TIP Even though you may have defined a palette in terms of named colors,
gnuplot will only persist the equivalent numerical values for each of the three
color components to file. To retain the named colors, you must edit and save
the command file in an external editor. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D9Creating palettes

D.2.5 Some example palettes

Let’s look at some example palettes. The purpose here is twofold: first, I want to dem-

onstrate how to use the set palette command; and I also want to provide you with

recommendations for palettes and specific color choices that work well in practice.

(For all the following, compare figure D.4.)2 Defining your own palettes is particularly

important because gnuplot’s default palette isn’t very good. To obtain good results,

you need to define your own.

TIP Because gnuplot’s default palette isn’t very good, it’s essential that you
learn how to define your own palettes. Moreover, false-color plots generally
need palettes that have been adapted to the specific graph in order to be
effective, necessitating you to have the required know-how.

GRAYSCALE AND STANDARD RAINBOW

Two palettes are particularly suitable to demonstrate the various features of the set

palette command: the linear grayscale and the standard rainbow (panels A and B,

respectively, in figure D.4). Here are four equivalent ways of creating a linear grayscale

2 You can find a very large collection of palettes at http://soliton.vm.bytemark.co.uk/pub/cpt-city. Although
many of them are intended for graphic design, not data visualization, the site is a terrific source of inspiration.

A
0.0

0.2

0.4

0.6

0.8

1.0

B C D E F G H J K L M N O P Q

Figure D.4 Several example palettes: each panel in the figure displays a different palette. See the 

text for details.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://soliton.vm.bytemark.co.uk/pub/cpt-city
http://www.it-ebooks.info/


D10 APPENDIX D Palettes and false-color plots

palette, using all combinations of the RGB and HSV color model together with either

the defined or the functions feature:

set palette defined ( 0 "black", 1 "white" )

set palette functions gray, gray, gray

set palette model HSV defined ( 0 0 0 0, 1 0 0 1 )

set palette model HSV functions 0, 0, gray

The standard rainbow only makes sense to define in HSV space. Here are two ways,

using nodes and functions, respectively:

set palette model HSV defined ( 0 0 1 1, 1 1 1 1 )

set palette model HSV functions gray, 1, 1

Neither of these two palettes works particularly well in practice. The standard rainbow

doesn’t convey an intuitive sense of ordering; it wraps around (so that the highest and

the smallest values are assigned similar colors); and its garish colors don’t aid percep-

tion. Graphs drawn using a simple grayscale are dominated by shades of black and

white, which are harder to distinguish than shades of darker and lighter grays. More-

over, a grayscale isn’t in color!

THREE SIMPLE WORKHORSES

Here are three palettes that are simple enough to keep in mind, so that you can re-

create them on the spot. The first consists of the colors blue, white, and red (panel C

in figure D.4):

set palette defined ( 0 "blue", 0.5 "white", 1 "red" )

You should commit this palette to memory! It has several advantages:

 It has an intuitive sense of ordering.

 It provides strong gradients on both sides of the central white band. (The white

can be replaced with gray if it’s hard to distinguish from the background.)

 The white band need not be symmetric in the unit interval. By shifting it rela-

tive to the other two colors, the palette can be adjusted to asymmetric problems

(for example, set palette defined ( 0 "blue", 0.25 "white", 1 "red" )).

 The basic idea is easy to remember and set up.

TIP Despite its extreme simplicity, the blue/white/red palette is amazingly
convenient and versatile. The color white should be replaced by a light gray if
white would be hard to distinguish from the color of the background.

Another combination of colors that conveys a sense of ordering consists of the traffic

light colors: red, yellow, and green (panel D in figure D.4). In addition to the sense of

ordering, this particular trio of colors invariably also conveys a semantic “good/bad”

meaning—which may or may not be appropriate:

 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D11Creating palettes

set palette defined ( 0 "web-green", 0.5 "goldenrod", 1 "red" )
set palette defined ( 0 "#00c000", 0.5 "#ffc020", 1 "#ff0000" )

set palette defined ( 0 0 3/4. 0,    1 1 3/4. 1/8.,   2 1 0 0 )

The three definitions given are equivalent—the one using gnuplot’s color names may

be the easiest to remember, the one using hex strings is the most portable, and the

one using numeric fractions makes the specific choice of colors clearest. In this pal-

ette, I use a warmer green and a dark shade of yellow: I’ve found that both colors look

better than pure green and yellow at full intensity.

TIP The red/yellow/green color combination conveys not only a high/low
but also a semantic good/bad distinction. You need to decide whether this is
appropriate for the visualization task at hand. Keep in mind that a pure yel-
low may be hard to see against a white background; instead, it’s better to use a
darker shade of yellow or even a light orange. Also keep in mind that this pal-
ette will pose difficulties for people with red/green color vision deficiencies.

The last simple workhorse is the “improved rainbow” (panel E in figure D.4):

set palette model RGB defined ( 0 'blue', 1 'cyan', 2 'green', 3 'yellow',

➥ 4 'red', 5 'magenta' )

It fixes the two biggest problems of the standard rainbow: because the colors run from

blue (cold) to red and magenta (hot), it conveys an intuitive sense of ordering. More-

over, because it doesn’t wrap around, the color mapping is unambiguous. The

improved rainbow isn’t a very good palette, but it’s much better than the standard

rainbow, and—because it only depends on primary colors as nodes—it’s still easy to

remember and simple to set up. 

FOUR INDUSTRIAL-STRENGTH PALETTES

The following palette, which is a further refinement on the improved rainbow palette,

is similar to the default color palette in MATLAB (panel F in figure D.4):

set palette defined ( 0 'dark-blue', 1/8. 'blue', 3/8. 'cyan',

➥ 5/8. 'yellow', 7/8. 'red', 1 'dark-red' )

This is a good, all-purpose palette with a strong intuitive sense of ordering and several

distinct visual gradients toward the center of the plot range. Furthermore, the central

part of the palette consists of softer, pastel colors, which results in graphs that are eas-

ier on the eyes.

 In a similar spirit, here’s an improved version of the red/yellow/green color com-

bination. Like the most recent palette, this also uses pastel colors in the center of the

plot area (panel G in figure D.4):

set palette defined ( 0 0 0.55 0.2, 0.3 0.65 0.85 0.4, 0.5 1 1 0.75,

➥ 0.7 0.95 0.68 0.38, 1 0.75 0 0.15 )

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D12 APPENDIX D Palettes and false-color plots

The next two palettes are very good but also very subtle: each is constructed from a

large number of nodes with precisely chosen colors for each node. Instead of giving

you an approximation, which would necessarily lose some of the subtlety of either pal-

ette, I recommend that you download the original files.

 The first of these palettes3 is based on work by the oceanographer William F.

Haxby (panel H in figure D.4). It’s similar in spirit to the MATLAB palette you just saw,

but it works with even milder colors. Highly recommended!

 The other palette4 was developed by computer scientist Kenneth Moreland and is

an improvement on the simple blue/white/red palette (panel J in figure D.4). It uses

non-saturated colors and special, nonlinear color ramps and thereby achieves

an uncommonly uniform variation of intensity across the entire spectrum. Highly

recommended!

 It shouldn’t be lost on you that all the palettes in this section are improvements on

simple palettes that were introduced earlier. The difference doesn’t come from a con-

ceptual breakthrough, but from a relentless attention to detail.5

TIP High-quality palettes can’t be improvised but are the result of many
incremental improvements in detail. Become familiar with and use high-
quality palettes that are available. 

PALETTES FOR SEGREGATION TASKS

All the palettes discussed so far consisted of smooth transitions and were suitable for

continuously varying data. But sometimes that’s not what you want: sometimes it’s nec-

essary to indicate sharp boundaries between categories. (Think of the difference

between a political compared to a topographical map!)

 Using the set palette command, you create a sharp color transition by listing one

of the positions twice, giving a different color each time. The following traffic-light pal-

ette consists only of sharp transitions (panel K in figure D.4):

set palette defined ( 0 "green", 1 "green", 1 "yellow",

➥ 2 "yellow", 2 "red", 3 "red" )

Palettes can feature sharp transitions together with smooth gradients. Here’s a variant

of the blue/white/red palette that emphasizes the break at the center of the plot

range. You might use this palette to indicate the location where a function or data set

changes sign—while still indicating total magnitude through the smooth color change

on either side. Notice that the palette doesn’t fade to white (or gray) away from the

center, but always retains some tint (panel L in figure D.4):

set palette defined ( -1 '#aaaaff', 0 'blue', 0 'red', 1 '#ffaaaa' )

3 “Hx-110-110,” cpt-city, http://mng.bz/T48T.
4 “Cool-warm,” cpt-city, http://mng.bz/m8bp.
5 You can find another interesting palette at www.gnuplotting.org/matlab-colorbar-parula-with-gnuplot. This

palette combines a continuous change in hue with an almost linear increase in lightness over the entire color
range.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://mng.bz/T48T
http://mng.bz/m8bp
www.gnuplotting.org/matlab-colorbar-parula-with-gnuplot
http://www.it-ebooks.info/


D13Creating palettes

Here’s a red/green palette with a sharp transition. In contrast to the blue/red palette

you just saw, this one has the highest color intensity not in the center, but toward the

edges. The fully saturated colors were chosen to be relatively mild and to have compa-

rable lightness (panel M in figure D.4):

set palette defined (0 0 0.75 0, 0.2 0.2 0.8 0.2, 0.5 0.75 0.95 0.75,

➥ 0.5 1 0.66 0.66, 0.8 0.9 0.25 0.25, 1 0.9 0.1 0.1 )

Here’s a more complicated take on the same idea (panel N in figure D.4). This palette

also exhibits red and blue color gradients away from the middle, but in addition it

sports a rapid sequence of color changes right at the center point, thus very effectively

highlighting the transition:6

set palette defined ( 0 "dark-blue", 0.45 "blue", 0.495 "web-blue",

➥ 0.4995 "cyan", 0.5 "white", 0.5005 "yellow",

➥ 0.505 "sienna1", 0.55 "red", 1 "dark-red" )

GEO PALETTES

A geo scale is yet another type of palette that offers a sense of ordering, using the kind

of color sequence familiar from topographic maps (although in this case the sense of

ordering is more conventional than inherent). Such palettes seem to work best when

all the colors are particularly pale. Here’s an example (panel O in figure D.4):

set palette defined ( 0 0.7 0.85 0.6, 0.3 1 1 0.75,

➥ 0.7 0.75 0.6 0.4, 1 1 1 1 )

Geo palettes may include a sharp transition to indicate the boundary between sea and

land. Here’s a a rather complex example7 (panel P in figure D.4):

set pal defined (0 0.45 0.66 0.85,0.25 0.725 0.9 1, 0.33 0.85 0.95 1,

➥ 0.33 0.68 0.82 0.65,0.4 0.58 0.75 0.53,0.575 0.95 0.9 0.75,

➥ 0.8 0.66 0.52 0.32,0.85 0.66 0.6 0.5, 1 0.95 0.95 0.95 )

TREE RINGS

Yet another idea is to create a palette from well-separated color bands (possibly on a

smoothly varying background). Here’s an example8 (panel Q in figure D.4):

hue(x) = word( "0.75 0.66 0.5 0.33 0.16 0.1 0.0 0.83", 1+int(8*x) )

sat(x) = cos(2*pi*(x*7.4-0.2))

set palette model HSV functions hue(gray), sat(gray)>0?sat(gray):0, 1

If you want to superimpose the colored bands on a smoothly changing grayscale, you

can replace the 1 in the last entry (for the value component) with an expression like

sat(gray)>-0.5?1:gray. Personally, I find that the background clutters up the result

too much.

6 For a similar palette, see “Curvature,” cpt-city, http://mng.bz/QJ7x.
7 This palette was inspired by the standard palette used by maps on Wikipedia. See “Wikipedia elevation

schemes,” cpt-city, http://mng.bz/6lBR.
8 This is an improvement on the version given in the first edition. I’ve since learned that you need to use rela-

tively wide color bands that don’t have sharp edges, but that fade away gently.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://mng.bz/QJ7x
http://mng.bz/6lBR
http://www.it-ebooks.info/


D14 APPENDIX D Palettes and false-color plots

 

Thoughts on palette design
It isn’t at all obvious what makes a good palette. Here are some considerations and
recommendations for you to consider:

 Be clear about the purpose of the visualization. Are you looking for a realistic
representation of the variations in the data, or are you more interested in seg-
menting (categorizing) it into different strata? Are you particularly interested
in the features within a certain limited range of values? Do you want to iden-
tify and highlight data points representing specific values (such as outliers)?

All of these tasks are valid but lend themselves to different palettes. To repre-
sent smooth variation, a palette with a continuous spectrum of colors works
best; but for segmentation tasks, a palette consisting of several discrete
color bands makes more sense. These attributes can be combined, for
instance in a palette varying smoothly in the center but with solid colors once
certain thresholds are crossed.

 Understand the nature of the data. Does the data form a continuous spec-
trum, or does it consist of a set of discrete values? In either case, is there a
natural ordering in the values?

If the data is discrete, you want to make sure the color bands in your palette
correspond to the values in your data set. If the data comes from a continu-
ous spectrum, you may want either a continuous palette or a discrete one,
depending on the purpose of the visualization. Finally, if the data is ordered,
you want a palette that has some form of visual ordering (such as a black-to-
white grayscale).

 If you want to express order, make sure your palette has an intuitive sense of

ordering. Changes in lightness are unambiguously perceived as ordered;
that’s why a grayscale naturally conveys a sense of ordering. In contrast, hues
aren’t necessarily sorted. Some exceptions (that do convey a sense of order-
ing) are based on similarity with temperature. Examples include the heat

scale (black, red, yellow, white—coinciding with a change in lightness) and
the combinations of blue and red. Other color combinations are convention-

ally perceived as ordered, such as palettes based on the shades of the
traffic-light colors green, yellow, and red, or the geo scales familiar from topo-
graphic maps. By contrast, the standard rainbow is not ordered: this is one of
the primary reasons it’s such a poor choice for palettes.

 Make sure there are strong visual gradients in those regions of the data where

significant and relevant change occurs. There tend to be regions in the data
where change is more relevant to the task at hand than in others. What this
region is depends on the data (and the task): are you interested in the
detailed behavior in the middle of the data set, while caring less about the
exact behavior near the edges of the spectrum? Or do you mostly want to
identify outliers, so you’re less interested in the variation in the middle
ground? Either way, you want to make sure the strongest visual change in the
palette coincides with those regions you care about the most. The conse-
quence is that palettes that distribute change uniformly across the full range
of values probably won’t give the most insight into the most relevant parts of

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D15Creating palettes

 

your data. (This implies that palettes generated by a simple mathematical for-
mula are often suboptimal.)

Specialized tasks call for more creativity in the creation of palettes. For exam-
ple, the data may pass through zero (or some other relevant threshold) in the
middle of the spectrum. You want to clearly indicate this threshold but also
show the smooth variation on both sides of it. In such a situation, you may
want to have a sharp transition (such as a hard red/blue changeover) in the
spectrum at the location of the threshold, while letting the colors change
smoothly as you go away from the threshold on either side.

To summarize: don’t distribute strong visual gradients uniformly over the
entire plot range if some regions of the plot range contain much less detail
than others. Good palettes are often not uniform, and every palette must be
tuned for both the current data set and the intended use.

 Make sure the color-mapping is unambiguous. One problem with the standard
rainbow is that it wraps around: the very highest and the very lowest numeric
values are mapped to similar colors. In general, you want to avoid such
ambiguous mapping, although there are situations where it may be less of a
problem because the data is sufficiently smooth to prevent ambiguity when
interpreting a plot.

 Prefer pastel colors and subtle changes in palettes. This is possibly the most
surprising of all recommendations. Intuitively, you’d expect that bright, fully
saturated colors would give the best visual contrast. But this isn’t the case.
Instead, pastel colors, which are easier on the eyes, make it easier to detect
details and structure in the data. High-quality palettes often employ a range
of carefully chosen, subtle colors.

 Use a palette suitable for the intended medium. Graphs for a print publication
may require a different palette than graphs for an overhead presentation. For
best results, you may need to choose or adapt a palette for each target
medium.

A particular concern is black-and-white publishing. Some palettes attempt to
change hue and lightness simultaneously, in an attempt to be suitable for
both color displays and monochrome printing. (Gnuplot’s standard palette is
of this kind.) I usually don’t find the results very convincing. If in doubt, I’d opt
for redrawing a graph using a custom-made grayscale palette for black-and-
white displays.

 Develop a library of high-quality palettes. Designing good palettes is difficult,
involving much trial-and-error. I recommend that you build a library of well-
designed palettes, drawing not only on your own experience, but also on pal-
ettes developed by others. Adapting a good palette to a specific task is likely
to lead to better results than improvising one from scratch.

 Never publish a false-color plot without showing the mapping of numbers to col-

ors explicitly. No matter how intuitive you think your chosen color scheme is,
keep in mind that there’s no universally accepted, generally understood map-
ping from numbers to colors. Without a colorbox, there’s a good chance that
your graph can’t be understood by someone else.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D16 APPENDIX D Palettes and false-color plots

D.3 The colorbox

The colorbox shows the mapping of numeric values to colors. It fulfills a role similar

to that of the key (see section 7.4), but for colored plots. You encountered examples

in figures D.1 and D.2; further examples can be found in figures D.5 and D.6, in sec-

tion D.4. In all cases, the colorbox appears to the right of the main figure.

 The colorbox is only visible when you use palette-mapped colors. Its appearance is

controlled through the set colorbox options:

set colorbox [ vertical | horizontal ]

             [ noborder | bdefault | border {idx:linestyle} ]
             [ default | user [ origin {pos:orig} ] [ size {pos:size} ] ]

             [ front | back ]

The colorbox can be oriented either horizontally or vertically (this is the default). It’s

usually surrounded by a border, which you can turn off using noborder. Alternatively,

a predefined line style can be selected as an integer argument to the border keyword.

You can’t use explicit line options with set colorbox. 

 The standard size and position for the colorbox can be chosen using the

default keyword. Alternatively, the keyword user selects customized sizing and

placing of the colorbox, indicated through the appropriate optional arguments. For

(continued)

What’s more, even if the ordering relation in your color scheme is clear (for
example, in a simple grayscale), the mapping of numbers to specific colors is
impossible to infer without an explicit key. Always provide one!

 Be aware of color-blindness. A significant percentage of the population exhib-
its some form of color-vision deficiency, with men being much more likely to
be affected than women. Graphs that rely solely on color to convey informa-
tion pose special challenges for such individuals.

The phenomenon of color-vision deficiency is complex, with many different
aspects to consider, and it exhibits a great deal of individual variation. It’s
therefore difficult, if not impossible, to give general advice, but here are two
observations to keep in mind. First, be aware that the most common form of
color-blindness is a reduced ability (or inability) to distinguish between red
and green. Palettes that rely primarily on red and green are therefore particu-
larly challenging. Furthermore, you may want to include secondary clues
(such as changes in lightness) in a palette and not rely on color changes
exclusively.

Finally, keep in mind that it all depends on the specific task at hand and on the pur-
pose of your visualization. Consider a map: it may either be colored continuously (top-
ographic map) or use discrete colors (political map). In the discrete case, the colors
may be unsorted and chosen for contrast (to indicate different countries) or sorted
(to indicate a sorted quantity, such as the average income per head for each country).
Continuous quantities are always sorted, and therefore smooth palettes should
always be constructed to convey a clear sense of ordering. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D17The colorbox

three-dimensional plots, the only permitted coordinate system is the screen system

(see section 7.2); but for two-dimensional plots (including set view map plots), all

coordinate systems can be used.

 The colorbox can be suppressed using unset colorbox. Keep in mind that hiding

the colorbox doesn’t allow the viewer to extract any quantitative information from

your plot, because there’s no obvious mapping from colors to numbers and vice versa.

Don’t do it unless you’re sure the graph is meaningful even without the colorbox.

 You can think of the colorbox as just a little plot within a larger one, and so it

responds to all commands and options that manipulate plot ranges, axes, and tic

marks. For the colorbox, there’s only a single axis, running from low values (and the

corresponding colors) to high values (and colors). This axis as known as the cb (for

colorbox) axis. Table D.1 lists all relevant options. None of these options change the

way colors are distributed in the palette; they merely change the way numeric values

are assigned to those colors.

D.3.1 Mapping the plot range to the palette

As I pointed out in section D.2.2, the positions assigned to the various nodes making

up a palette are merely relative positions within the palette. In particular, they don’t

necessarily correspond to the values that are being plotted. Hence there’s a separate

step, wherein the range of the palette is mapped to the range of data values.

Table D.1 Colorbox options. They control the placement and formatting of tic marks along the colorbox

and are therefore similar to the corresponding commands for any of the other axes. (The details given in

the indicated sections apply to the colorbox as well.)

Option name Description Section

set cbrange Sets the range of numeric values covered by the colorbox, inde-

pendently of the range chosen for the range of z values.
8.2

set logscale cb Distributes numeric values logarithmically across colors. 3.4

set cblabel Assigns a text label to the colorbox. This label is placed next to 
the colorbox. If the label is invisible, use set cblabel 
offset, because the default placement may put the label out-
side the canvas area.

7.3.3

cbtics Controls all aspects of tics for the colorbox (major tic marks). 8.3

mcbtics Controls minor tic marks for the colorbox. 8.3.4

grid cbtics Draws grid lines within the colorbox at the major colorbox tic 
positions.

8.3.6

grid mcbtics Draws a grid within the colorbox at the minor colorbox tic 
positions.

8.3.6

cbdata time Chooses time-series mode for the values in the colorbox. 8.4

cbdtics Uses weekdays as tic labels for numeric values. 8.4.1

cbmtics Uses months as tic labels for numeric values. 8.4.1

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D18 APPENDIX D Palettes and false-color plots

 The relevant command in this context is set cbrange. Its syntax is equivalent to

the familiar set xrange or set yrange command (see section 8.2). The set cbrange

command assigns a specific numeric value to the minimum and the maximum posi-

tion in the palette; intermediate values are distributed uniformly into the interval. To

make this concrete, let’s say that you’ve defined a palette using

set palette defined ( 0 "blue", 0.5 "white", 1 "red" )

If the data that you want to plot now spans the range from -5 to +5, then you want to

set cbrange to this interval:

set cbrange [-5:5]

All of this is extremely straightforward. Confusion can arise through three items in

particular:

 It’s easy to forget that the positions specified when defining the palette are only

relative positions and are in no fixed relationship to the plotted data.

 By default, cbrange is set to autoscaling (see section 8.2.1): that is, set cbrange

[*:*]. In practice, this means gnuplot sets the range of the palette equal to the

range of plotted values. Most of the time this is exactly what you want, but it

obscures the fact that choosing the cbrange is a separate step.

 Values outside the chosen cbrange are plotted in the nearest color. That means

a data point that exceeds the maximum (or minimum) of an explicitly set

cbrange is plotted in the color corresponding to the largest (or smallest) posi-

tion in the palette. In particular, there’s no visual indication that a data point is

outside the interval defined by cbrange. 

DEALING WITH OUTLIERS

A common problem when using palettes is the occurrence of outliers in the data.

(You’ll see a worked example in section D.5.1.) Imagine a data set where all data

points take on values between 0 and 1 except for a handful of records that have a

value of 10. Gnuplot’s default setting of set cbrange [*:*] means the palette will be

autoscaled to the interval [0:10]. Most of the data points (and all the data points that

you care about) are therefore mapped to the bottom tenth of the palette, with the con-

sequence that they’re all drawn in more or less the same color. That’s not the

intended effect.

 The remedy is simple: fix cbrange to the relevant range of values using set

cbrange [0:1]. Now, the “good” data points are mapped to the full range of the pal-

ette, and the few outliers are mapped to the color at the top end of the palette.

 It may be desirable to indicate data points that exceed the specified cbrange using

a special color. This can be done—see section D.5.1 for an explanation.

 

 

 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D19Using palettes

TIP Gnuplot’s default of autoscaling cbrange means a single outlier can dis-
tort the mapping of colors to values. Choose an explicit cbrange to make sure
the interesting data points span the entire range of the palette. Gnuplot han-
dles outliers that exceed the cbrange reasonably. 

LOGARITHMIC SCALING OF THE COLORBOX

Finally, you can use logarithmic scaling with the colorbox. Setting set logscale cb

distributes tic marks (that is, numeric values) logarithmically across the color spec-

trum. This command doesn’t affect the way the palette is constructed from the nodes;

it only affects the way the colors are mapped to data values. 

D.4 Using palettes

Palettes can be used with different plot styles. First, wherever gnuplot expects an

explicit color specification (such as rgb "red" or rgb "#ff0000"), you can instead pro-

vide a color from a palette using the keyword frac followed by the relative position in

the palette. See the following listing and figure D.5.  

set palette defined ( 0 'web-green', 1 'goldenrod', 2 'red' )

set grid lt 1 lw 1.5 lc palette frac 0.5

set label 1 "{/:Bold Origin}" at 1.5,-0.15 center tc palette frac 0.9

set arrow 1 from 1.1,-0.15 to 0.125,-0.02 lw 2 lc palette frac 0.9

plot [-5:3] airy(x) lw 2 lc palette frac 0.1

Listing D.1 Commands for figure D.5 (file: airy.gp)

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-5 -4 -3 -2 -1  0  1  2  3

Origin

airy(x)

-10

-5

 0

 5

 10

Figure D.5 Selecting colors from a palette (see listing D.1). In this figure, the color position 

in the palette is fixed, and the colors are therefore not data-dependent.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D20 APPENDIX D Palettes and false-color plots

More interestingly, palettes can be used for data-dependent coloring: the color of

each point or line segment is found by mapping the values of an additional data col-

umn into the palette, using the keyword palette in the plot command. Figure 9.5

showed how to use this feature to create a curve that changes its color continuously.

The next listing shows another application (compare figure D.6).

set palette defined ( 0 'blue', 1 'grey', 2 'red' )

plot "cloud" u 1:2:3 palette pt 7

The first two columns determine the location of each point, and the third column is

used to find the point’s color by mapping the numeric value into the provided palette.

Because data-dependent coloring depends on the ability to add columns to the using

directive, it’s only available when plotting data. If you want to use it when plotting

functions, you must employ the "+" pseudofile.

 Furthermore, palettes can be used together with splot to create colored surface

plots—that will be the topic of the following section. But the most exciting application

of palettes is to use them in false-color plots that rely entirely on color to convey values

in a data set. Because of their importance, they’re treated in their own section later in

this appendix (section D.5).

Listing D.2 Commands for figure D.6 (file: cloud.gp)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

0.1

0.2

0.3

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

"cloud" u 1:2:3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

Figure D.6 Selecting colors from a palette (see listing D.2). In this figure, the 

values of the data points are used to select their colors from the palette; the plot 

uses data-dependent coloring.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D21Using palettes

D.4.1 Colored surface plots with pm3d

Palettes were originally developed to color surface plots generated by splot (see

appendix C). You saw an example at the beginning of this appendix (see figure D.1).

The splot command uses palettes when the with pm3d style is given explicitly as part

of the splot command, or when pm3d mode is enabled globally using set pm3d. 

APPEARANCE OPTIONS FOR COLORED SURFACE PLOTS

The set pm3d command controls various aspects of the way color is used:

set pm3d [ at [b|s|t] | map ]

         [ implicit | explicit ]
         [ border {lineoptions} | hidden3d {idx:linestyle} | nohidden3d ]

         [ interpolate {int:xsteps},{int:ysteps} ]

         [ corners2color 
         [ mean|geomean|harmean|rms|median|min|max|c1|c2|c3|c4 ] ]

         [ scansautomatic | scansforward | scansbackward | depthorder ]

         [ flush [ begin | center | end ] ] [ [no]ftriangles ]
         [ clip1in | clip4in ]

In pm3d mode, gnuplot constructs a surface from colored, nontransparent polygons.

Because the polygons are opaque, no explicit hidden-line removal is required—

instead, surface areas closer to the observer hide surface areas further away. The

resulting effect therefore depends on the order or direction in which the surface is

drawn. Although gnuplot usually chooses a reasonable strategy for drawing surfaces, it

helps to keep this point in mind when working in pm3d mode. (The gnuplot standard

reference documentation contains more information on the algorithm.)

 A colored, opaque surface can be drawn at three positions: at the top of the plot-

ting box, on the plotted surface, or at the bottom. The position is specified using the

keyword at together with a combination of the letters b (bottom), s (surface), and t

(top). Each letter can appear twice (for example, set pm3d at bsb: this is one instance

where the way surfaces are drawn in pm3d mode is potentially relevant). You can use

the keyword map as a shortcut for set view map; set pm3d at b. 

 By default, the command set pm3d puts pm3d into implicit mode, meaning all sur-

faces drawn with splot are drawn using colored, nontransparent polygons. If you

want to combine colored surfaces together with transparent, wire-mesh surfaces in a

single graph, you need to choose explicit mode using set pm3d explicit. In explicit

mode, you must specify pm3d as part of the splot command:

splot f(x,y) w l, g(x,y) w pm3d

This plots the function f(x,y) with a transparent wire mesh, but the function g(x,y)

with a colored, opaque surface.

 A colored surface can be drawn together with a wire mesh of the same surface

using set pm3d hidden3d. This command takes as an additional, mandatory argument

the index of a (previously defined) line style, which is used for the wire mesh. When

using this plot mode, don’t forget to switch off the regular surface and hidden-line

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D22 APPENDIX D Palettes and false-color plots

removal using unset surface; unset hidden3d. An alternative to hidden3d is the

border keyword, which can be followed by any of the familiar line options (see the tip

at the end of section 6.2.3) that should be used for drawing the wire mesh. 

 As an alternative to set dgrid3d (see section C.5), pm3d has a similar interpolating

capability, triggered by the keyword interpolate. It takes two mandatory arguments,

giving the number of interpolation steps in both x and y directions.

 Two sub-options to set pm3d control the way the surface is constructed. The

corners2color keyword selects how the color of each polygon is determined from the

z coordinates of its four corners: as mean, median, and so on, or by choosing the value

from one of the corners directly. The scansforward, scansbackward directives con-

trol the direction in which the surface is constructed. The default is scansautomatic

and usually doesn’t need to be changed. 

 Further sub-options apply to certain edge cases when the input data doesn’t fall on

a regular grid. See the gnuplot standard reference documentation for details. 

ELEVATION AND COLOR

So far, we’ve assumed that the color of each surface element was chosen based on the

elevation of that surface element, in order to enhance the height perception of the sur-

face. But it’s also possible to map a different quantity than the height to the color spec-

trum. This is done with an additional parameter to the using directive to the splot

command:

set pm3d at s

splot "data" u 1:2:3:4 w pm3d

Here, the first and second columns of the data file are taken as x and y coordinates,

the value of the third column is used for the z coordinate (the height) of the surface,

and the color is assigned according to the fourth column. 

D.5 False-color plots

There are at least three different ways to use gnuplot palettes to create false-color

plots:

 Using the with points style (and other standard styles)

 Using the with pm3d style

 Using the with image style

All of these approaches have different strengths and weaknesses, which makes them

suitable to different tasks. Table D.2 summarizes the most important differences.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D23False-color plots

 

D.5.1 Using points

Imagine that you oversee a fleet of machines or servers, and you want to visualize the

number of defects that have occurred for each device and for each day of operation.

The situation is complicated by the fact that not all machines operate every day:

depending on the daily load, machines are either active on a given day or not.

 This problem has a natural grid-like structure: you care about the number of

defects for each machine-day. But because not all machines are active on all days, the

grid isn’t complete and has missing cells. One interesting question is this: do defects

cluster in any way? The data format is simple enough: for each day that a machine was

active, the data set contains a record with the day number, the machine ID, and the

number of observed defects (see listing D.3).

# Day Machine Defects
1 1 2

1 3 0

1 4 1
1 5 2

...

Figure D.7 uses gnuplot’s with points style, together with a color palette, to visualize

this data set. The selected point size is relatively large, because each point represents a

cell in the data grid. Each record is first plotted as a filled (colored) square; then a

Table D.2 Relevant differences between the three plot styles that can be used to create false-color plots

with points with pm3d with image

Surface elements can be at 
arbitrary locations.

Surface elements must form a 
regular, but possibly distorted, 
grid.

Surface elements must form a 
strictly regular grid.

Each surface element is drawn 
independently from all others.

Each surface element is deter-
mined by the data points at its 
four corners.

Each surface element is centered 
on a data point and extends half-
way to the four neighboring data 
points.

Surface elements can be at 
arbitrary locations.

Surface elements can be drawn 
on an elevated surface.

Surface elements must form a 
flat surface.

Style is only available for data. Style works with functions and 
data.

Style is only available for data.

Listing D.3 Incomplete data for figure D.7 and listing D.4 (file: machines)

with points with pm3d with image

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D24 APPENDIX D Palettes and false-color plots

thin, black empty frame is drawn around it purely for aesthetic reasons. (Try it with

and without the frame!) Two clusters of sometimes troublesome machines are clearly

visible. (The commands are in the following listing.)

unset key

set xlab "Day"; set ylab "Machine"; set cblab "Defects" offset 1,0

set palette defined (0 'web-green', 0.5 'goldenrod', 0.999 'red', 1 'black')

set cbrange [0:7]

plot [0:32][0:21] "machines" u 1:2:3 w p pt 5 ps 1.75 pal,

➥ "" u 1:2 w p pt 4 ps 1.75 lw 0.5 lc black

To get a good result with this data set, it’s necessary to specify cbrange explicitly.

Although the number of defects for most of the data points is somewhere between 0

and 7, there is a handful of records that show catastrophic failure, with defect rates up

to 50! If you relied on gnuplot’s autoscaling of the cbrange, then almost all the data

points would be drawn in green. Fixing the palette using set cbrange [0:7] ensures

that the interesting data points are distributed across the entire palette. The palette

was designed for this scenario: its uppermost edge is black so that points exceeding

the interval defined by cbrange stand out.

One last comment before leaving this section: this approach to creating false-color

plots isn’t limited to the with points style, but works with most of the familiar styles. You

Listing D.4 Commands for figure D.7 (file: machines.gp)

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30

Day

 0

 1

 2

 3

 4

 5

 6

 7

D
e

fe
c
ts

Figure D.7 Showing the number of defects per machine and day in a false-color 

plot. This plot uses the with points style. See listing D.4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D25False-color plots

may want to experiment with the with vectors and with circles styles (section 6.3.5).

The with boxxyerrorbars style may come in handy to create rectangles of arbitrary

size. For example, the following plot command is for all practical purposes equivalent

to the one from listing D.4:

plot [0:32][0:21]

➥  "machines" u 1:2:(.35):(0.35):3 w boxxyerrorbars lc palette fs solid,

➥  "" u 1:2:(.35):(0.35) w boxxyerrorbar lw 0.5 lc black

D.5.2 Using the pm3d style

Although pm3d mode has so far been discussed only in the context of colored surface

plots, it can also be used for false-color plots by placing the viewpoint vertically above

the surface. This is what the set pm3d map option does. 

 For data sets on a regular grid, the with image style is probably more convenient,

but there are two instances where you still need with pm3d for false-color plots: when

plotting functions and when the points fall on a grid that is locally distorted. Figure D.2

demonstrated two examples of plotting functions using with pm3d, so I don’t need to

repeat this here, but I’ll show an example of a distorted grid. Listing D.5 is similar to

the file in listing C.2 that was graphed in a surface plot in figure C.9, but with one dif-

ference: the positions of the points down the center line are all slightly shifted in an

irregular fashion. The splot command can handle this:

set palette defined ( 0 'blue', 0.5 'grey', 1 'red' )

set pm3d map

splot "distorted-grid" u 1:2:3

# x y  z

0 -1 10
0 0 10

0 1 10

1 -1 10

1.2 0.2 5

1 1 10

2 -1 10

1.9 -0.2 1
2 1 10

3 -1 10
2.8 0 0

3 1 10

As you look at figure D.8, I’d like to emphasize how the surface elements are spanned

by their four corners, and that the color is a combination of the z values at those four

corners. You may want to experiment with set pm3d corners2color to see what results

you get.

Listing D.5 Data for figure D.8: distorted grid (file: distorted-grid)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D26 APPENDIX D Palettes and false-color plots

    

D.5.3 Using the image style

The with image style is suitable for flat graphs on a regular, rectangular (or at least

rhomboidal) grid. The style is very restrictive (the grid has to be strictly regular, with

no missing values) but convenient if the necessary conditions are fulfilled. The style

performs few internal consistency checks, and it’s relatively easy to get gnuplot (and

oneself) confused by trying to use with image for anything other than what it was

intended for: flat graphs on strictly regular grids!

 The with image style works with all three data formats familiar from splot: grid,

matrix, and packed matrix (see section C.4). When using the packed matrix format

(which doesn’t include coordinate information), then all the formal requirements are

automatically fulfilled—this is the sweet spot for the style. When using the general,

non-uniform matrix format, be aware that gnuplot does not evaluate all the coordi-

nates. It merely examines the coordinates of the bottom-left and top-right corners

(the origin and its diagonal counterpart) and then chops the coordinate axes into

cells of equal size. It isn’t possible to have a non-uniform grid with the with image style,

even when using the non-uniform matrix format!

 Even more confusion may result when using the grid format, which includes

explicit coordinate information for all cells, because gnuplot ignores most of them

and again constructs a regular, equally spaced array of cells. The with image style will

fail with an error message if any of the cells are missing.

TIP The with image style is strictly for data sets on a regular, rectangular grid of
equally spaced cells. If your problem doesn’t fit that description, don’t use this style. 

 0  0.5  1  1.5  2  2.5  3

x

-1

-0.5

 0

 0.5

 1

y

 0

 2

 4

 6

 8

 10

Figure D.8 The with pm3d style can create false-color plots even when the grid is distorted. 

Every tile is spanned by the data points at its four corners. See listing D.5 for the data.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D27False-color plots

Figure D.9 shows a false-color plot of the original file from listing C.2 (that is, without

distortions). Notice that the individual cells are centered on the location of the data

points. Because of the large areas of solid color, I used a pastel version of the usual

red/white/blue palette. Also, notice that the command is plot, not splot!

set palette def ( 0 '#8080ff', 0.5 '#ffffff', 1 '#ff8080' )

plot "grid" u 1:2:3 w image, "" u 1:2 w p pt 7 lc black

MISSING VALUES AND UNSORTED DATA FILES

The with image style won’t tolerate missing values: every cell in the grid must exist

and contain a value, even if it’s an invalid value (see section 4.3.4). If gnuplot detects

an invalid value, with image doesn’t draw the corresponding surface element; the

background remains visible (that’s usually what you want).

 Furthermore, if your data file is in grid format, you may think it isn’t necessary for

the file to be sorted: after all, the grid format contains the locations of all the surface

elements explicitly, and hence gnuplot should be able to place each surface element

individually. But remember that the with image style doesn’t process the coordinates:

instead, it places surface elements in the order in which they’re found in the data file.

The data file therefore must be sorted, by horizontal coordinates first and by vertical

coordinates second.

 If your file doesn’t fulfill these two requirements, then you need to write a short

script in the programming language of your choice that reads in the raw data, populates

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.5  0  0.5  1  1.5  2  2.5  3  3.5

y

x

 0

 2

 4

 6

 8

 10

Figure D.9 A false-color plot for a regular grid, created using the with image style. 

Notice that each tile is centered on a data point. The data is shown in listing C.2.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D28 APPENDIX D Palettes and false-color plots

a suitable grid, and then prints the grid, in order, while supplying NaN values for all cells

that don’t contain data. Or, you can use the with points style to begin with. 

OTHER WITH IMAGE FORMATS

In addition to the with image style described so far, gnuplot also provides the with

rgbimage and with rgbalpha styles. Both are similar to the with image style, but they

expect each data point to be described not by a single value, but by separate color com-

ponents. The with rgbimage style expects three values per data point (for the red,

green, and blue color components), and the with rgbalpha style expects four (with the

addition of an alpha channel for transparency). All values are expected in the range

from 0 to 255. See the standard gnuplot reference documentation for more details. 

D.6 Case study: coloring the Mandelbrot set

Figure D.10 was created using the with image style from a file containing the x and y

coordinates for each pixel and a third value that’s mapped into a color palette. The

figure shows a small section of the complex plane near the edge of the Mandelbrot

set. The x and y coordinates correspond to the real and imaginary components of a

complex number, and the color-coded quantity is the number of iteration steps before

the Mandelbrot iteration diverged.9 The data file was calculated separately.

 This example is interesting not only because the appearance of the Mandelbrot set

continues to be fascinating, but also because it poses particular challenges for the

9 See the Wikipedia page on the Mandelbrot set for details of the calculation.

 0.225

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

-0.745 -0.74 -0.735 -0.73 -0.725 -0.72 -0.715 -0.71 -0.705

 100

 1000

 10000

Figure D.10 A section of the complex plane, showing part of the Mandelbrot 

set and its fractal boundary. See listing D.6.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D29Case study: an interactive palette explorer

design of a good palette. The range of values that needs to be represented through

color spans three orders of magnitude (from 10 to 10,000). Moreover, the distribution

of values is extremely uneven: all larger values are concentrated in a very narrow area

near the border of the Mandelbrot set (the black area in figure D.10).

 You can attempt to form a palette by distributing nodes non-uniformly, like so:

set palette defined ( 0 'cyan', 200 'blue', 300 'red', 600 'yellow',

➥ 2000 'white', 9999 'white', 10000 'black' )

The problem is that now the colorbox is almost useless: fully 80% of the area is white

(from 2,000 to 10,000). It’s better to use logarithmic scales. Remember: set logscale

cb doesn’t change the way the palette is constructed from the nodes, but only changes

the way numerical values are mapped to colors (that is, how tic marks are distributed

across the palette). In order to assign nodes to specific numerical values despite the

logarithmic scale, the following listing uses the logarithms of the desired values in the

definition of the palette and fixes cbrange explicitly.  

set size ratio -1
unset key

set palette defined ( log(15) 'cyan', log(100) 'blue', log(200) 'red',

➥ log(500) 'yellow', log(2000) 'white',

➥ log(9995) 'white', log(10000) 'black')

set logscale cb

set cbrange [15:10000]

plot "fractal" u 1:2:3 w p pt 5 ps .05 lc pal z

One last question concerns the style to use with the plot command. This example

may look like an ideal application of the with image style, because it involves a regular

grid without missing cells. But the implementation of with image contains certain

optimizations that lead to a loss of accuracy for a figure containing as much fine-

grained detail as the Mandelbrot set. I therefore used the with points style, but with

a very small point size. 

D.7 Case study: an interactive palette explorer

For palettes that are defined through nodes, two things need to be fixed:

 The precise color of each node

 The absolute position of each node within the palette

In section D.2.5, I gave many examples of colors and color combinations. In this sec-

tion, I’ll demonstrate a technique you can use to experiment with the position of each

node.10

Listing D.6 Commands for figure D.10 (file: fractal.gp)

10 I’d like to thank Ethan Merritt for making me aware of this technique.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D30 APPENDIX D Palettes and false-color plots

 In section D.2.5, the nodes were distributed more or less uniformly across the spec-

trum. The need to place the nodes more carefully arises when there’s more than one

strong visual gradient in the palette and you want these gradients to coincide with

regions of significant change in the data set. Depending on the placement of the

nodes, a false-color plot of the same data set can appear quite different—even when

the colors for all the nodes remain unchanged. Wouldn’t it be lovely if you could

move the nodes back and forth in the palette and have gnuplot simultaneously redraw

the graph you’re working on? The following listing shows a tool that does just that.

# Invoke as: call 'palette-explorer.gp' 'blue' 'white' 'red'

c1 = ARG1

c2 = ARG2
c3 = ARG3

s = 0.5

ds = 0.025

p = sprintf( "set palette defined (0 '%s', s '%s', 1 '%s'); ", c1, c2, c3 )

bind 'F1' "s=(s-ds>0?s-ds:0); " . p . "replot;"

bind 'F2' "s=(s+ds<1?s+ds:1); " . p . "replot;"

eval(p)

This script is intentionally simple: it’s intended for palettes of only three nodes. But

the principles carry over directly to more complicated situations. You invoke the script

using the call command and giving the three colors that you would like to use in

your palette:

call "palette-explorer.gp" "blue" "white" "red"

The script creates a palette using the supplied colors and also defines a parameter s

that controls the relative position of the central node within the palette. Furthermore,

the script creates two key bindings to the two function keys F1 and F2 (the choice of

keys is obviously arbitrary; see section 12.4.3 for more information on the bind com-

mand). If the plot window has keyboard focus, then with each key press, the parame-

ter s and therefore the position of the middle color are moved by the amount ds,

either up or down. Then the palette is re-created, and the plot is redrawn—using the

new palette—via replot. The effect needs to be seen to be believed. Try it out with a

graph like figure D.6 or figure D.7.

 As I said, this script is intentionally simple and is meant to demonstrate the basic

principle most clearly. Three generalizations suggest themselves:

 Extension to more than three colors

 Different choice for the size of the step width ds

 Displaying or exporting the final palette

Have fun!

Listing D.7 Command file for an interactive palette explorer (file: palette-explorer.gp)

Stores the 
supplied colors

Initializes the location 
of the central node

Selects the step size

Constructs
a string

containing
the palette

definition

Creates 
hotkey bindings

Evaluates the string when a hotkey is pressed

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


D31Further reading

D.8 Further reading

It’s difficult to find information on color selection that is based on empirical evidence;

many recommendations aren’t much more than personal opinion. At the same time,

it’s interesting to observe that there has been real (albeit slow) progress over time.

Here are some suggestions:

 A relatively recent and very careful paper has been prepared by Kenneth More-

land at Sandia National Lab. This is a good place to start, and it also reviews pre-

vious work. (He’s also the inventor of the palette in panel J in figure D.4.)

Check out his website: http://kennethmoreland.com/color-maps.

 Two early papers by Bernice Rogowitz and Lloyd Treinish at IBM suggest using

changes in lightness for data exhibiting lots of fine detail and using changes in

hue and saturation for data with smooth changes. The titles are “Why Should

Engineers and Scientists Be Worried About Color?” and “How Not to Lie with

Visualization,” and you can find copies on the web.

 Another interesting paper is “Escaping RGBland: Selecting Colors for Statistical

Graphics” by Achim Zeileis, Kurt Hornik, and Paul Murrell. These authors

emphasize the importance of taking human visual perception into account

when designing palettes and recommend palettes involving very pastel colors.

This paper also can be found on the web.

Several websites make palettes available for download:

 J. J. Green maintains a very large selection of color gradients at his cpt-city web-

site (http://soliton.vm.bytemark.co.uk/pub/cpt-city). Many of the palettes

found here are intended for graphic design, not data visualization, and the

sheer number of examples can be overwhelming at first. Palettes can be down-

loaded in a format that is suitable for gnuplot.

 Hagen Wierstorf (who also maintains the www.gnuplotting.org website) provides

a selection of suitable palettes at https://github.com/Gnuplotting/gnuplot-

palettes. Many of these palettes are based on the work of Cynthia Brewer (see the

next entry). 

 Cynthia Brewer has done extensive research into the development of color

schemes, primarily for use in the preparation of maps. Be aware that not all of

these findings may carry over to scientific visualization! There’s an online tool

that you can use to create your own color palettes, incorporating her ideas, at

http://colorbrewer2.org. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://kennethmoreland.com/color-maps
http://soliton.vm.bytemark.co.uk/pub/cpt-city
http://colorbrewer2.org
http://www.it-ebooks.info/


E1

appendix E
Special plots

In this appendix, we’ll discuss several “special” plotting options. All of them produce

graphs that are visually and semantically more complicated than the line-and-point

plots we’ve been dealing with so far.

 First, you’ll learn about gnuplot’s multiplot feature. This is a way to combine differ-

ent plots into a single graph. The individual components may either be arranged on a

regular array (that’s the more common case) or be placed arbitrarily (for example, to

create insets within a larger graph).

 In the remainder of the appendix, we’ll introduce three types of plots that summa-

rize entire data sets in some way. First, we’ll discuss box-and-whisker plots: a popular

method to visualize the distribution of points in a simple and robust fashion. Then

we’ll turn to parallel coordinates. This is a relatively new type of plot that’s intended to

reveal structure in multidimensional data sets, but gnuplot makes them easy to create.

The final section deals with gnuplot’s support for drawing histograms: pretty and pop-

ular, they’re most suitable for presentations and information graphics.

 Except for the first topic (multiplot), the material in this appendix is rather spe-

cialized, and not everyone may have a need for it. Make sure you catch the multiplot

features, but feel free to skip the rest if it’s not relevant to you right now.

E.1 Multiplot

Gnuplot’s multiplot feature allows you to combine several plots into a single graph.

This can be useful for a number of purposes:

 To make arrays of related graphs

 To create insets: graphs within a graph (for example, to show some details at

greater magnification)

 For special effects, such as multiple, clearly separate plots aligned on a common

axis

E.1.1 Using multiplot mode

Multiplot mode is enabled like an option through a set multiplot command and

remains active until an unset multiplot command has been issued. When multiplot

mode is active, the usual gnuplot> prompt is replaced by a multiplot> prompt. All

plot (or splot or replot or test, but not test palette) commands issued at this

prompt are directed to the same graph, and you can control their relative location by

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E2 APPENDIX E Special plots

giving additional directives to the set multiplot command. Any other option modi-

fied while in multiplot mode is applied to all subsequent plots. This is the normal gnu-

plot behavior; multiplot mode doesn’t change that. Any option or decoration you

want to apply to only one of the plots in a multiplot combination has to be explicitly

set before and unset after the respective plot command. (This doesn’t apply to deco-

rations positioned with screen coordinates: because there’s only a single screen coor-

dinate system even for a multiplot graph, they’re global objects.)

 Different terminals may exhibit different behavior regarding the time when plots

become visible. Some show each plot right when the corresponding plot has been

issued; others may delay generation of the entire array of graphs until multiplot mode

is switched off again.

 There’s one very important limitation to keep in mind: you can’t change the termi-

nal while in multiplot mode! This implies that you may have to change the way you

use gnuplot: it’s not possible to build up a graph iteratively using an interactive

(screen) terminal and then, finally, export it to a graphics file format, because this

would require a change of terminal before the last step. Instead, the file-based termi-

nal has to be selected first, with all other commands following. Personally, I write all

my commands to a command file (using a text editor) and then run it using load,

while using an interactive terminal. When I’m satisfied with the resulting graph, I

insert a terminal and output setting at the top of the command file, and run it one

final time to export the graph to file. Because multiplot mode is mostly a tool for gen-

erating final presentation graphics (as opposed to doing exploratory data analysis,

which must be interactive to be useful), this works quite well. (Also see section 12.2 on

using external editors in general.)

 There’s one additional gotcha to be aware of when using multiplot mode: if you

want to capture the commands for the plot using save, you must issue the save com-

mand before leaving multiplot mode. (Otherwise, only the commands for the last plot

in the multiplot set will be saved to file!) And remember to exit multiplot mode using

unset multiplot, not using Ctrl-D (which terminates gnuplot). 

TIP When using multiplot mode, it makes the most sense to prepare a com-
mand file with all plot and appearance commands and to load it into gnuplot
using load. Using multiplot mode interactively is just too fickle and frustrating. 

E.1.2 Layout options and the set multiplot command

The multiplot feature can be used in two different ways. You can specify the layout of a

tabular array of graphs as part of the set multiplot command and let gnuplot figure

out sizing and positioning of all components in the overall graph automatically. Or

you can take control of all aspects of the layout yourself and arrange the individual

graphs using set size and set origin. All of this will become much clearer once we

look at some examples. 

 

 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E3Multiplot

 The set multiplot option has the following sub-options:

set multiplot [ title "{str:title}" ] [ font "str:font [,int:size]" ]

              [ layout {int:rows},{int:cols}

                [ rowsfirst | columnsfirst ] [ downwards | upwards ]
                [ scale {flt:xfactor}[,{flt:yfactor}] ]

                [ offset {flt:xoff}[,{flt:yoff}] ] 

                [ margins {flt:left},{flt:right},{flt:bottom},{flt:top}
                  [ spacing {flt:horizontal} [, {flt:vertical} ] ] ]

              ]

set multiplot [ prev | next ]

The title directive is equivalent to set title (see section 7.3.3) for regular plots: it

can be used to give an overall title to the entire assembly of graphs. (The set title

command can still be used to assign a title to each of the individual component

graphs.) All other directives (besides title) are only meaningful in combination with

the layout keyword, which is a convenience feature to create arrays of graphs easily.

In the following sections, I’ll first guide you through some examples using the layout

facility before explaining how to place graph components explicitly. 

TIP The layout feature of gnuplot’s multiplot mode may seem daunting at
first, but—once mastered—it takes the pain out of multipanel graphs. I highly
recommend that you learn how to use it and prefer it over explicit placement
of individual graphs whenever possible.

The layout directive takes two mandatory integer arguments, which describe the

number of rows and columns in the resulting array of graphs. This array will be filled

with subsequent plot commands. The order in which subsequent panels are filled can

be controlled through the rowsfirst, columnsfirst, downwards, and upwards key-

words (see figure E.1). The default is rowsfirst downwards.    

 Each new plot command moves to and fills the next array location (when using

layout). You can skip one location by using set multiplot next instead of a plot

Figure E.1 Choosing the layout direction in multiplot mode: rowsfirst downwards (left; this is the 

default) and columnsfirst upwards (right)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E4 APPENDIX E Special plots

command: gnuplot will leave the next location in the sequence blank. You can back

up using set multiplot prev.

 Individual plots can be scaled and shifted from their (automatically assigned) size

and position using the scale and offset keywords. The arguments to scale are mul-

tiplicative scale factors for the x and y size of the individual plots (if only one is given,

it’s applied to both axes). Using the offset directive, you can shift all graphs by the

same amount; the arguments are interpreted as coordinates in the screen system (see

section 7.2), so that offset 0.25, 0.1 shifts everything by a quarter of the overall

width of the graph to the right and by a tenth of the height up. 

 The margins and spacing directives must be used together (and together with the

layout option). They create a regular array of equally sized graphs that are properly

aligned, even if only some of these graphs have marginal labels. (This will become

much clearer when we look at an example in section E.1.4.) One important limita-

tion: set multiplot layout doesn’t nest—you can’t have a small array of graphs as a

panel in a larger array. 

E.1.3 Regular arrays of graphs with layout

The layout feature makes it truly easy to generate multipanel graphs (as in figure E.2):

just see how short and clear the following listing is! (It’s important to use a complete do

for loop here, and not just an inline loop: if I had used an inline loop, all six curves

would have been drawn to a single plot, instead of six plots with a single curve in each.) 

t(x,n) = cos(n*acos(x))

set xrange [-1:1]

set yrange [-1:1]

set multiplot title "Chebyshev Polynomials" layout 3,2

do for[k=1:6] { plot t(x,k) t sprintf( "k=%d", k ) }

unset multiplot

If you want to have more control over the way individual plots are assembled to form a

plot, you can’t use layout; instead you have to handle everything yourself using set

size and set origin. You’ll see an example in a moment (in section E.1.5), but first,

let’s turn to another problem: tic marks and axes labels in a multiplot array. 

E.1.4 Accommodating marginal labels with margins and spacing

Figure E.2 is pretty and was easy to do. Yet it isn’t fully satisfactory: it feels cluttered.

Can’t we remove some of the decorations, so that we have more room for the graphs,

but do so without losing any information? An obvious candidate are some of the tic

labels: all the individual graphs show exactly the same plot range (both horizontally

and vertically), and hence there’s no need to repeat the tic labels on all the graphs.

Just a single set of tic labels around the outer edges of the entire array would be suffi-

cient. In fact, that’s exactly what you see in figure E.3.

Listing E.1 Commands for figure E.2. (file: chebyshev.gp)

Defines the function to plot

Fixes the range for all plots

Turns on 
multiplot mode

Creates six 
individual plots

Don’t forget to turn 
off multiplot mode!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E5Multiplot

You now need to switch on tic and axis labels for some, but not all, of the graphs. As a

result, the commands in the next listing aren’t nearly as nice as the previous version

(in listing E.1).

t(x,n) = cos(n*acos(x))

set xrange [-1:1]

set yrange [-1:1]

set multiplot layout 3,2 margins 0.15,0.95,0.15,0.95 spacing 0.03,0.05

set xtics format ""; set ytics format "%g"; plot t(x,1) t "k=1"

set xtics format ""; set ytics format ""; plot t(x,2) t "k=2"

set ylabel "Chebyshev\nPolynomials"
set xtics format ""; set ytics format "%g"; plot t(x,3) t "k=3"

unset ylabel

set xtics format ""; set ytics format ""; plot t(x,4) t "k=4"

set xlabel "k odd";
set xtics format "%g"; set ytics format "%g"; plot t(x,5) t "k=5"

set xlabel "k even";

set xtics format "%g"; set ytics format ""; plot t(x,6) t "k=6
unset xlabel

unset multiplot

Listing E.2 Commands for figure E.3 (file: marginals.gp)

Chebyshev Polynomials

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k=1

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k=2

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k=3

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k=4

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k=5

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k=6

Figure E.2 A regular array of small plots created in multiplot mode. See listing E.1. 

Now includes margins
and spacing options!

Top 
row

Middle 
row

Defines the
overall vertical

axis label

Turns off the
vertical

label again

Bottom 
row

Turns off the horizontal label

Defines the horizontal axis label on the left

Defines the horizontal axis label on the right

Don’t forget to turn off multiplot mode again!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E6 APPENDIX E Special plots

Before each plot command, the tic labels for both axes are turned either on or off.

The title is dropped from the top of the plot (and hence from the set multiplot

command), but axis labels are attached to some of the plots.

 An essential change has occurred in the set multiplot command: it now includes

the margins and spacing keywords. When these keywords (which must be used

together) are included in the set multiplot command, then the individual graphs

are drawn so that their graph area (that is, the area within their borders) is exactly the

same size for all of them—regardless of whether an individual graph has marginal

labels (such as tic or axis labels). In contrast, if the margins and spacing keywords

aren’t included, then gnuplot draws the individual plots such that their screen area

(that is, their total extent, including their margins) is the same. (See section 7.2 for

the definition of graph and screen coordinates, specifically figure 7.2.)

 To put it differently: when margins and spacing are included in the set multi-

plot command, then gnuplot ignores the margins of individual plots and instead arranges

plots with equally sized graph areas on a regular array. In this case, it’s the user’s

responsibility to make sure there’s enough room for any marginal notes attached to

individual graphs. By contrast, when using set multiplot layout without the margins

and spacing keywords, then gnuplot shrinks the graph area of individual plots to

make room for that plot’s margins. In this case, you can be sure the margins fit into

-1

-0.5

0

0.5

1
k=1 k=2

-1

-0.5

0

0.5

1

C
h

e
b

y
s
h

e
v

P
o

ly
n

o
m

ia
ls k=3 k=4

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

k odd

k=5

-1 -0.5 0 0.5 1

k even

k=6

Figure E.3 A regular array of small plots. All individual plots are of the same size and therefore 

line up, although some of them have marginal notes whereas others don’t. See listing E.2.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E7Multiplot

the multiplot array, but the individual plots may not all be the same size (and, in con-

sequence, their borders may not line up).

 The numerical arguments to margins and spacing control the extent of the mar-

gins around the outer edge of the array of plots and the internal spacing between

individual plots, respectively. Two different systems of measurement are available:

character widths and heights, and fractions of the total screen size. Character widths

must be indicated through the char keyword, and fractions of the screen width

through the screen keyword. If neither is found, screen is assumed.1

 The margins sub-option behaves similarly to the set margins command (see sec-

tion 9.5.3): when the char system is used, then the arguments are interpreted as the

width of the margins around the array of subplots; if the screen system is used, then

the arguments are interpreted as the absolute position of the outer boundaries of the

array of subplots. In contrast to set margins, the keyword doesn’t need to be repeated

for each argument, but applies to all subsequent numbers (until the next appearance

of either screen or char).

GRAPHS SHARING A COMMON AXIS

Here’s another example that demonstrates the features just introduced. Occasionally,

you may want to show two or more graphs together, aligned on a common axis, to

facilitate comparison between curves in both graphs. Of course, it’s possible to put all

the curves into a single plot (as in section 8.1), but sometimes doing so would lead to

an overly cluttered graph—for example, if you wanted to compare not just two curves,

but two entire sets of curves.

 To make this concrete, let’s assume I want to compare the log-normal probability

density function and its cumulative distribution function for an entire set of parame-

ters. I could place all these curves into a single graph, but the graph would appear

crowded, and it would be difficult to distinguish the curves properly from each other.

 Instead, let’s put them into two different graphs, aligned on a common axis, as

shown in figure E.4. By now, you know how to create a multipanel plot using multiplot

mode (see the following listing), so I only need to point out a few details.

lgn( x, s ) = exp(-0.5*(log(x)/s)**2)/(x*s*sqrt(2*pi))

clgn( x, s ) = norm(log(x)/s)

vals = "0.05 0.1 0.25 0.5"

set multiplot title "" layout 2,1 margins 0.1,0.9,0.1,0.95 spacing 0,0

1 For gnuplot 5.0, only screen is available; char is available for gnuplot versions beginning with 5.1.

Listing E.3 Commands for figure E.4 (file: sidebyside.gp)

The log-normal 
probability density

B Its cumulative
distribution function

C

Defines parameters as a 
whitespace-separated string

D

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E8 APPENDIX E Special plots

set key bottom right Left title "Cumulative"
set xtics 0.2 format ""

set ytics 0.2,0.2

set grid

plot [0:2][0:1] for[v in vals] clgn(x,v) t "s=" . v

set key top right Left title "Density"

set format x "%g"
set ytics auto

unset grid

plot [0:2][0:8.5] for[v in vals] lgn(x,v) t "s=" . v

unset multiplot

First come the definitions of the two functions to plot B C. You also define the set

of parameters, as a whitespace-separated string (because gnuplot doesn’t have an

array type) D.

 The spacing value in set multiplot is 0, so that the two graphs will touch each

other. So that the axis labels for the vertical axis don’t clobber each other where the two

graphs meet, the first label (for y=0) in the top graph is suppressed E (see section 8.3.3

for details of the set ytics option). 

Top
plot

No tic labels for the x axis, 
but tic marks are drawn 
with the given frequency

Suppresses the tic label 
for y=0 (tics start at 0.2 
with step width 0.2)E

Bottom
plot

Restores the tic labels for the x-axis

 0.2

 0.4

 0.6

 0.8

 1

Cumulative

s=0.05

s=0.1

s=0.25

s=0.5

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Density

s=0.05

s=0.1

s=0.25

s=0.5

Figure E.4 Showing two plots side by side using multiplot mode (see listing E.3)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E9Multiplot

E.1.5 Graphs within a graph

Sometimes it’s useful to place small graphs inside a larger one: for example, to show a

detail of the overall graph at greater magnification, or to provide some form of ancil-

lary information (as in figure E.5). This can’t be accomplished using layout, so you

have to roll your own.

Listing E.4 shows how it’s done.2 Let’s step through this example carefully and point

out some details and potential pitfalls.

 In this example, the main curve is drawn first, and then the small insets are added

to it. Options (such as their size) that apply to all insets are defined first. Because the

insets are small, all decorations and margins are removed, to reduce clutter.

 The insets are placed on the existing graph individually by specifying the location

of their bottom-left corner using the set origin command. By default, gnuplot

doesn’t clear the area where the insets will be placed, and therefore it’s necessary to

2 This example is taken from the thermodynamics of phase transitions: if you heat a magnet beyond its critical
temperature, it loses all magnetization. In the graph, the thick curve shows the magnetization as a function of
temperature, and the three insets show the typical form of the free energy as a function of the magnetization
for three different temperatures: below, at, and above the critical value. Below the critical temperature, the
free energy develops two minima at nonzero values of the magnetization, indicating that a magnetized phase
is stable. Right at the critical temperature, these two minima coalesce, yielding a curve that’s flat at the origin.
Above the transition temperature, there’s only a single minimum at zero: the magnetization of the sample is
now zero.

-1

-0.5

 0

0.5

 1

1.5

 2

-3 -2 -1  0  1  2

Figure E.5 A larger graph with insets showing ancillary information. See listing E.4.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E10 APPENDIX E Special plots

do so explicitly using the clear command. The subsequent plot command then

draws one of the insets on the cleared area. 

f(x,a) = x<a ? sqrt(a-x) : 0

g(x,b) = 0.25*x**4 + b*x**2

set multiplot

set grid

plot [-3:2.5][-1:2] f(x,0) notitle w l lw 3

unset grid

unset tics

unset key

set margins 0, 0, 0, 0

set size 0.2

set origin 0.175,0.425

clear

plot [-2.5:2.5][-1.5:2] g(x,-1)

set origin 0.4625,0.125

clear

plot [-2.5:2.5][-0.5:3] g(x,0)

set origin 0.675,0.425 

clear

plot [-2.5:2.5][-0.5:3] g(x,1)

unset multiplot

E.2 Box-and-whisker plots

Box-and-whisker plots (or boxplots for short) are a simple and robust way to visualize

univariate point distributions. They serve the same purpose as kernel-density esti-

mates (see section 3.5.2). Boxplots are somewhat easier to use, because they don’t

depend on an adjustable parameter (kernel-density estimates require a choice for the

bandwidth). This convenience comes at a price: boxplots lose some detail of the rep-

resented data set (in particular, boxplots are unable to identify data sets having multi-

ple maxima—an important limitation to keep in mind!) and aren’t very intuitive.

E.2.1 Individual box-and-whisker plots

Boxplots are created using the familiar plot command together with the with boxplot

style. (The boxplot keyword can’t be abbreviated!) At least two parameters must be

supplied in the using specifier. The first is the horizontal position at which the boxplot

Listing E.4 Commands for figure E.5 (file: insets.gp)

Defines the functions to plot

Switches on multiplot—this time without the layout option

Turns on the background grid

Plots the main curve as a thick line

Switches off the background grid for subsequent plots

Removes all decorations, such as tic marks 
and text labels, from the inset plots

Sets all margins for the insets to zero

Sets the size of the insets, as a 
fraction of the overall plot size

Left inset
Sets the inset location by specifying its origin in screen coordinates

Clears the background for the inset

Generates the inset plot

Middle
inset

Sets the inset location by specifying its origin in screen coordinates

Clears the background for the inset

Generates the inset plot

Right
inset

Sets the inset location by specifying its origin in screen coordinates

Clears the background for the inset

Generates the inset plot

Switches off multiplot mode

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E11Box-and-whisker plots

will be drawn (usually this is a numeric constant, but it can also be a column number so

that the horizontal position will be read from file). The second entry in the using spec-

ifier indicates which column from the data file to represent via box and whiskers. (This

means the first column in the using specifier gives the horizontal position and the sec-

ond column the vertical “data”—just as for any other plot style.) To create a boxplot of

the data from listing 3.4, you’d use this command (see figure E.6):

plot "measurements" u (1):1 w boxplot

It’s not a problem to have multiple boxplots in the same graph (for easy comparison).

You can also combine the boxplot style with other styles, such as lines or points.

SEMANTICS OF BOX-AND-WHISKER PLOTS

The various elements of box-and-whisker plots represent different properties of the

underlying data set. Boxplots usually represent various percentiles: for skewed point dis-

tributions, these quantities are more informative than the (more familiar) mean and

standard deviation. (The boxplot style uses gnuplot’s stats command to find the

median and percentiles. Check section 5.6 for details on the calculation.)

 The box indicates the interquartile range: the top and bottom boundaries of the

box are chosen such that one quarter of points falls outside and below the box,

and one quarter outside and above the box.

 The location of the median is indicated by a marker inside the box. The median

divides the data set in two equal parts: half of all data points have a value less

than the median, and half of the points have a value greater than the median.

0.5

 1

1.5

 2

2.5

 3

3.5

 4

4.5

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

"measurements" u (1):1

Figure E.6 A box-and-whisker plot, when drawn using only default appearance options

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E12 APPENDIX E Special plots

 The construction of the whiskers is more complicated (and more ambiguous).

Traditionally, whiskers extend to the most extreme data point that lies within

1.5 times the interquartile range from either edge of the box. The process is as

follows: draw a line that’s 1.5 times the height of the box outward from either

end of the box, and then trim the line back to the last data point within its

range. This location marks the end point of the whisker. (See figure E.7.)

 Points that fall outside the range of the whiskers are considered outliers and are

indicated with individual symbols.

The complicated prescription for constructing the whiskers requires an explanation.

The idea is to indicate the actual extent of the “tails” of the distribution, while distin-

guishing them clearly from true outliers.

 What are outliers? A point is considered an outlier only if it’s exceptionally far away

from the other points. It isn’t enough for a point to be the smallest or largest value in

a data set: a data set that’s very compact (so that all points cluster close together)

doesn’t have any outliers—but it still has a smallest and a largest value! All this means

true outliers are points that are far from the center of the distribution, when mea-

sured in units of the width of the distribution. The method for constructing whiskers

reflects this: only points far from the center in comparison to the interquartile range are

considered outliers. (Look at figure E.7: it has an outlier at its upper range, but its

lower part is sufficiently compact that no point is considered an outlier.)

 0

 1

 2

 3

 4

IQR

Step 1:

1.5 × IQR

Step 2:

Trim back

Step 1
Step 2

Outlier

No

Outlier!

Figure E.7 Construction of a box-and-whisker plot from the data set. (The individual 

data points are shown on the left.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E13Box-and-whisker plots

 Once outliers have been identified, each whisker is trimmed back toward the most

extreme data point still within the range of the respective whisker. The length of each

whisker therefore indicates the true extent of the tail of the distribution on either side

of the distribution.

 You can customize the precise determination of the whiskers using set style

boxplot:

set style boxplot [range {flt:range} | fraction {flt:frac}] 

If invoked with the range keyword, followed by a floating-point number, the whiskers

are constructed in the way just explained, and the numerical argument is used as the

factor by which the interquartile range is multiplied to determine the original extent of

the whisker. This is the default behavior, and the default value of the multiplier is 1.5.

 But it’s also possible to designate a fixed fraction of points as outliers. This is done

with the fraction keyword. It must be followed by a numeric argument between 0.5

and 1.0, which indicates the fraction of regular (that is, non-outlier) points. For exam-

ple, set style boxplot fraction 0.9 treats 10% of points as outliers. As before, the

whiskers will extend to the data point furthest from the center that isn’t considered

an outlier. 

APPEARANCE OPTIONS

In addition to the options just discussed, which control the semantics of the boxplot,

there are also options that merely modify the visual appearance of the plot. Boxplots

are similar to the with candlesticks style (see section 6.3.2), and many of the options

mentioned there apply to the present situation as well. In particular, you can use set

bars (see section 6.3.2) to customize the length of the bars at the end of the whiskers;

set boxwidth controls the width of the central box, and set style fill its fill style.

Instead of using global options, you can also use inline directives. For example, to

have the central box lightly shaded, you can use 

plot "measurements" u (1):1 w boxplot fs solid 0.2

Similarly, the box width can be specified inline, as a third entry to the using specifier.

This makes it possible to have the box width be data-dependent. (Compare figure 14.14

and listing 14.9 for an example.)

 Finally, there are some additional sub-options to set style boxplot:

set style boxplot [ [no]outliers ] [pointtype | pt {int:pointtype}]

[ candlesticks | financebars ]

By default, outliers are indicated with filled circles (point type 7). The point type can

be overridden in the plot command or changed globally using set style boxplot. If

there are several outliers with the same value, then they’re plotted as individual points

in a horizontal row. The keyword nooutliers suppresses the visual representation

for individual outliers. It isn’t possible to draw horizontal box-and-whisker plots with

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E14 APPENDIX E Special plots

gnuplot at this time, but you can use the financebars appearance in conjunction with

the boxplot style instead of the candlesticks appearance (see section 6.3.2).

 By default, gnuplot draws a box around the plotted data. I’ve argued elsewhere

(see the sidebar in section 8.3.2) why this makes sense. For box-and-whisker plots, this

additional boundary is less important, and you may want to switch it off (using the set

border command—see section 9.5.2). But if you choose to do so, you should retain

the left border and its tic marks: otherwise, there’s no way for an observer to infer

quantitative information from the plot! (See figure E.8 and listing E.5 for an example.)

TIP Many of gnuplot’s default appearance options aren’t particularly suitable
for box-and-whisker plots. You can improve the quality of your graphs by cus-
tomizing borders, tic marks, and tic labels. But it’s essential to retain enough
information that an observer can still infer numeric values from the graph!

E.2.2 Serial box-and-whisker plots

So far, we’ve only considered individual box-and-whisker plots for single data sets. But

the technique becomes significantly more useful when you’re dealing with an entire

series of data sets, distinguished by a discrete label. For example, imagine that some

experiment has been repeated several times, each time subject to a different treatment

level. It would be nice to see a graph of all point distributions at once, showing a separate

boxplot for each different treatment level. Fortunately, gnuplot let’s you do just that. 

 All you have to do is to include a fourth column in the using specifier. The value

of this fourth column is interpreted as the treatment level, and a separate boxplot is

constructed for each new value of the level. (Of course, the values in the fourth col-

umn should form a discrete set—frequently it will be a string.) All the resulting box-

plots are then shown together and on the same scale, facilitating comparison across

treatment levels.

 We’ll demonstrate this feature using one of the most famous data sets in the his-

tory of statistics: Fisher’s Iris data.3 The data set consists of size measurements of differ-

ent parts of Iris flowers. For each flower, four quantities were measured (sepal length

and width, and petal length and width, all in centimeters). Three different kinds of

Iris are considered (I. Setosa, I. Versicolor, and I. Virginica), and for each kind, the data

set contains values for 50 instances. The question is whether it’s possible to determine

the type of plant from the measurements in the data set.

 Figure E.8 shows the sepal length as box-and-whisker plots separately for each type

of flower. The commands for this graph are in the next listing. (The file format of the

data set available at the UCI repository is comma-separated, not whitespace-separated,

requiring a call to set datafile separator!)

3 A quick internet search will turn up multiple sources; I use the version found in the UCI Machine Learning
Repository at http://archive.ics.uci.edu/ml/datasets/Iris.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://archive.ics.uci.edu/ml/datasets/Iris
http://www.it-ebooks.info/


E15Box-and-whisker plots

 

set datafile separator ","

unset key

set border 2

set xtics scale 0

set ytics nomirror

set ylabel "Sepal length [cm]"

plot "iris.data" u (1):1:(0.5):5 w boxplot

This graph follows the suggestions made at the end of the previous section: it does

away with most decorations, but retains the numerical scale along the left edge. You’ll

also notice that gnuplot automatically labels each boxplot with the corresponding

level (that is, the entry in the fourth column in the using expression).

APPEARANCE OPTIONS FOR SERIAL BOX-AND-WHISKER PLOTS

Most of what you learned for a single box-and-whisker plot carries over to serial box-

and-whisker plots. The first entry in the using specification (which previously gave

the horizontal location of the boxplot) now gives the horizontal position of the first

(left-most) boxplot in the series. The spacing between successive boxplots is con-

trolled using set style boxplot, which also allows you to customize some other

appearance aspects:

Listing E.5 Commands for figure E.8. (file: iris1.gp)

Retains only the border on the left

Removes the tics, but retains the tic labels

Avoids tics on the right

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

Iris-setosa Iris-versicolor Iris-virginica

S
e

p
a

l 
le

n
g

th
 [

c
m

]

Figure E.8 A serial box-and-whisker plot. The distribution of sepal lengths is shown 

separately for each type of flower.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E16 APPENDIX E Special plots

set style boxplot [ separation {flt:s} ]
                  [ labels [ off | auto | x | x2 ] ]

                  [ [un]sorted ]

In brief:

 Using the separation keyword, you can control the distance between boxes.

The argument is the desired separation in x axis units; its default is 1.

 By default, the value of the fourth column (the level) is printed as a tic label on

the horizontal axis. The axis can be selected using x (below) or x2 (above).

Choosing auto places the labels on whichever axis is indicated by the axes key-

word inside the plot command (see section 8.1.2). The keyword off suppresses

printing of labels. 

 Boxplots are sorted by the first appearance of their level in the data file. (It isn’t

necessary for the data file to be grouped by level, hence the first appearance of

a level determines the sort order.) This can be changed using the sorted

option. Levels are assumed to be strings, so the sort order is alphabetical, not

numeric. An arbitrary sort order isn’t possible at this time.

Here are three further things to keep in mind:

 As you saw in figure E.8, gnuplot automatically places a string label for the level

in the margin. These labels are equivalent to tic marks and tic labels; you can

customize their appearance using set xtic. 

 Although I don’t show an example here, it’s absolutely possible to combine

multiple data sets in a single graph. For example, if you want to plot both sepal

length and width in a single plot, you can do so as follows:

plot "iris.data" u (1):1:(.5):5 w boxplot, "" u (5):2:(.5):5 w boxplot

This creates boxplots for the sepal lengths of the three types of flower starting at

x=1, together with corresponding boxplots of the sepal widths, starting at x=5.

 It’s unfortunately not possible to draw each level in a separate color or style at

this time. 

WORKED EXAMPLE: AN ARRAY OF SERIAL BOXPLOTS

In figure E.8, you can see the distribution of sepal lengths for all three types of flowers

at once—but wouldn’t it be great if you could compare all four measured quantities

for all types of flowers in a single graph? The multiplot mode that was explained ear-

lier in this appendix makes this easy. 

 Figure E.9 shows all four measurements in a 2×2 matrix of serial boxplots. Looking

over these graphs, it immediately stands out that I. setosa is distinguished by petals that

are smaller, in both length and width, than those of the other two variants. Because

the boxplots display outliers explicitly, you know for sure that even the largest instance

of I. setosa in this data set was smaller than the smallest instance of either of the other

two types!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E17Box-and-whisker plots

You can see the commands for figure E.9 in the next listing. Notice that I retained the

borders around the individual plots in this case: this helps to distinguish them from

one another in the array of graphs.   

set datafile separator ","
unset xtics; set ytics 1

set bars 0; unset key;

set multiplot

➥ title "From left to right: I. Setosa, I. Versicolor, I.Virginica"

➥ layout 2,2 margins 0.1,0.9,0.1,0.9 spacing 0.075

set xlabel ""; set ylabel "Sepal"
plot "iris.data" u (1):1:(0.5):5 w boxplot

set xlabel ""; set ylabel ""

plot "iris.data" u (1):2:(0.5):5 w boxplot

set xlabel "Length"; set ylabel "Petal"

plot "iris.data" u (1):3:(0.5):5 w boxplot

set xlabel "Width"; set ylabel ""
plot "iris.data" u (1):4:(0.5):5 w boxplot

unset multi

Listing E.6 Commands for figure E.9 (file: iris2.gp)

From left to right: I. Setosa, I. Versicolor, I.Virginica

 4

 5

 6

 7

 8

S
e

p
a

l

 2

 3

 4

 5

 1

 2

 3

 4

 5

 6

 7

P
e

ta
l

Length

 0

 1

 2

 3

Width

Figure E.9 An array of serial box-and-whisker plots. The distribution of all four observed 

quantities is displayed for all flower types separately. (See listing E.6.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E18 APPENDIX E Special plots

E.3 Parallel coordinates

Graphs using parallel coordinates are a relatively new idea. Their purpose is to reveal

structure in multivariate data sets: that is, data sets that have more than two or three

attributes per record. In contrast to some other multivariate visualization techniques,

parallel coordinates aren’t limited to data sets containing only a few records. The par-

allel-coordinates technique therefore scales well, both in the number of attributes and

in the number of records. The downside is that plots of parallel coordinates are nei-

ther pretty nor particularly intuitive. You aren’t likely to exhibit them in a presenta-

tion, but they may serve as an intermediate discovery tool.

 To understand parallel coordinates, let’s go back to the Iris data set introduced in

section E.2.2. For the moment, consider just the first record in that data set. It has the

following values in its five columns:

Sepal length 5.1 cm

Sepal width 3.5 cm

Petal length 1.4 cm
Petal width 0.2 cm

Name Iris setosa

To construct a parallel-coordinates plot, you draw a coordinate axis for each attribute;

but in contrast to other types of graphs, all axes are arranged in parallel. The values

for every record are then marked on each coordinate axis and connected with lines.

For the first record from the Iris data set, the result is shown in figure E.10.

Sepal

Length

Sepal

Width

Petal

Length

Petal

Width

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 2

 2.5

 3

 3.5

 4

 1

 2

 3

 4

 5

 6

 0.5

 1

 1.5

 2

 2.5

Figure E.10 Parallel-coordinates plot for a single record

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E19Parallel coordinates

This procedure is repeated for all records in the data set (see figure E.11). Now this

plot can be examined for possible structure in the data set. Look for clusters or gaps

along one of the axes: those can be used to classify data sets into groups. You can also

look for outliers and for correlations among data sets: positively correlated quantities

show up as parallel (or nearly parallel) lines, whereas negative correlation is indicated

by lines crossing each other. From figure E.11, for instance, a cluster of records with

relatively small values for petal length and width stands out: those belong to I. setosa—

something you already knew from figure E.9. But from the parallel-coordinates plot, it

becomes also obvious that short sepal length implies long sepal width (and vice

versa)—a fact that isn’t so easy to discern from figure E.9.

 Having seen what graphs of parallel coordinates are and how they’re used, let’s

understand how to create them with gnuplot. (Support for this feature is still new. The

basic functionality works well, but you’ll frequently find that you need to change the

default appearance yourself.)

E.3.1 Creating parallel-coordinates graphs

You create graphs of parallel coordinates in gnuplot using the plot command together

with the with parallelaxes style. The individual columns that are used for the axes

are listed as entries in the using specifier. The basic command to create figure E.11 is

therefore 

set datafile separator ","

plot "iris.data" u 1:2:3:4 w parallelaxes

Sepal

Length

Sepal

Width

Petal

Length

Petal

Width

4.5

 5

5.5

 6

6.5

 7

7.5

 2

 2.5

 3

 3.5

 4

 1

 2

 3

 4

 5

 6

 0.5

 1

 1.5

 2

 2.5

Figure E.11 Parallel-coordinates plot for the entire Iris data set

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E20 APPENDIX E Special plots

A word of warning: the current implementation arbitrarily limits the number of col-

umns to seven.4 If you want to use more columns, you need to employ multiplot

mode—see section 14.2.5 for a worked example. 

APPEARANCE OPTIONS FOR PARALLEL COORDINATES

You can use the set paxis command to control the appearance of individual axes in a

parallel-coordinates plot:

set paxis {int:n} [ range {range-options} | tics {tic-options} ] 

This command combines the functionality of the set _range and the set _tics

commands familiar from chapter 8. The mandatory first argument to set paxis is an

integer between 1 and 7 that identifies which of the parallel axes the options should

be applied to. (The axis with index 1 is always the left-most one.) Only a single axis

can be identified with each invocation to set paxis; if you want to make adjustments

to several axes, you need to do so explicitly or use an inline loop (set for[k=1:7]

paxis k ...). 

 The range keyword must be followed by a legal range specification (like so: set

paxis 1 range [0:10]). The tics keyword acts like the familiar set xtics or set

ytics; all options available to those commands apply in the current case as well. 

 The appearance of the parallel axes can be customized using5

set style parallel [ front | back ] [ lineoptions ]

By default, the axes and the associated tic marks are drawn in front of the data. The

axes are drawn as thick black lines; you may find that you want to reduce the thick-

ness. (See the tip at the end of section 6.2.3 for all the appearance aspects covered by

lineoptions.) 

E.3.2 Worked example: Iris data, again

I hope the preceding discussion has convinced you that gnuplot’s parallel-coordi-

nates feature is remarkably easy to use, despite the intimidating appearance of the

resulting graphs. In order to get the most value out of these graphs, it’s nonetheless

necessary to augment gnuplot’s functionality. In this section, you’ll first see ways to

improve the appearance of the plot and then learn how to highlight a subset of records.

The latter is an essential capability when using parallel-coordinates plots. (Chapter 14

shows some additional tricks applicable in particular to data sets containing a large

number of records.)

4 The details of the implementation may have changed by the time you read this. Check the release notes for
the most up-to-date information.

5 This feature wasn’t documented in the standard gnuplot reference documentation at the time of this writing.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E21Parallel coordinates

IMPROVING APPEARANCE

Similar to the situation you encountered for serial box-and-whisker plots (section E.2.1),

gnuplot’s defaults aren’t the most suitable for parallel-coordinates plots, either. (As

you may have found out already, the graphs resulting from the simple command given

earlier look quite different than figure E.11.) You can improve the appearance of the

plot by adapting the defaults appropriately. Here’s how it’s done.

set datafile separator ','

unset key

unset border

unset ytics

set xtics ("Sepal\nLength" 1, "Sepal\nWidth" 2,

➥ "Petal\nLength" 3, "Petal\nWidth" 4 )

set lmargin 6

set bmargin 3

set for[k=1:4] paxis k tics

plot [1:4] "iris.data" u 1:2:3:4 w parallel

Because there are exactly four parallel axes (located at positions 1 through 4), the

plot range is restricted in the plot command to that interval. This gets rid of the mar-

gins that gnuplot leaves by default on both sides of a parallel-coordinates plot and

maximizes the area available for the plot. Whether you want to switch off the borders

around the entire graph is a personal choice. I prefer the appearance of the graph

without them—in particular the horizontal lines at top and bottom feel visually con-

straining. 

HIGHLIGHTING A SUBSET OF RECORDS

The purpose of parallel-coordinates plots is to identify structure in a data set. The

visual presentation makes it easy to see where lines cluster (for example, in figure E.11,

there is an obvious cluster of lines with small petal length). This leads to the next ques-

tion: how are lines that cluster for some attribute distributed elsewhere? If you could

just select the lines in the cluster so that they’re highlighted everywhere, then this ques-

tion would be answered. In this section, I’ll show you how to do this, but there’s more:

you’ll also learn how to take the type of flower into account and to include it in the

highlighting (see figure E.12).6

 The name of the flower is given in the data set as a string. To plot it, you must

map the names to numbers. The most convenient way to do such transformations is

Listing E.7 Commands for figure E.11 (file: iris3.gp)

6 After this section was written, I noticed that the Wikipedia page for parallel coordinates also uses Fisher’s Iris
data to demonstrate this technique and includes a figure very similar to figure E.12. As I said, it’s one of the
best-known and most-frequently used data sets in all of statistics!

Switches off unnecessary decorations

Replaces the tic labels along
the horizontal axis with the 
names of the quantities plotted

Adjusts the left and bottom margins 
to make room for the labels

Turns on tic marks for all four parallel axes

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E22 APPENDIX E Special plots

probably using an external scripting language, but it can be done entirely in gnuplot,

too. The following function (cls is short for class)

cls(s) = s eq 'Iris-setosa' ? 1:(s eq 'Iris-versicolor' ? 2:3)

consists of two nested conditionals and maps the names to the value 1, 2, or 3. To

include the names in the plot, remember that all of gnuplot’s commands to control

tic labels are available for each axis in a parallel-coordinates plot. With

set paxis 5 tics ( "I. Setosa" 1, "I. Versicolor" 2, "I. Virginica" 3 )

➥ left offset 4,0

you can place informative labels on the tics of the new, fifth axis.

 The last trick is to use data-dependent coloring for the lines themselves (see sec-

tion 9.1.5)! You remember: if you use linecolor variable (or lc var for short), then

the right-most entry in the using specifier is interpreted as the index of a color from

gnuplot’s sequence of linetypes (and their associated colors). Because the function

cls(s) already maps the flower names to the values 1, 2, and 3, you can use these val-

ues directly as a color index: each flower type is drawn with a different line type (and

therefore a different color). You can find all the commands in the next listing. (One

last comment: instead of adjusting the left and right margins explicitly, here I decided

to manage the horizontal extent of the plot entirely through the plot range. That’s

sheerly a matter of convenience—you can do it either way.)

Sepal

Length

Sepal

Width

Petal

Length

Petal

Width

4.5

 5

5.5

 6

6.5

 7

7.5

 2

 2.5

 3

 3.5

 4

 1

 2

 3

 4

 5

 6

 0.5

 1

 1.5

 2

 2.5

I. Setosa

I. Versicolor

I. Virginica

Figure E.12 A parallel-coordinates plot for the entire Iris data set. Records are 

color-coded based on the flower type.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E23Histograms

    

set datafile separator ','

unset key

unset border

unset ytics
set xtics ( "Sepal\nLength" 1, "Sepal\nWidth" 2,

➥ "Petal\nLength" 3, "Petal\nWidth" 4 )

set bmargin 3

set for[k=1:4] paxis k tics

set paxis 5 tics ( "I. Setosa" 1, "I. Versicolor" 2, "I. Virginica" 3 )

➥ left offset 4,0

cls(s) = s eq 'Iris-setosa' ? 1:(s eq 'Iris-versicolor' ? 2:3)

plot [0.6:5.8] "iris.data" u 1:2:3:4:(cls(strcol(5))):(cls(strcol(5)))

➥            w parallel lc var

E.4 Histograms

The histogram styles are a bit of a departure from gnuplot’s usual processing model,

in that they have the concept of a data set. The overall appearance of the plot depends

on both row and column information simultaneously.

 Histograms are the result of counting statistics. For the sake of discussion, let’s

assume that there are three political parties (Red, Blue, and Green), and you want to

show the number of votes for each party. The outcome of a single election can be

shown easily using, for instance, the histeps style. 

 But what to do if elections are held annually, and you want to show the results for a

number of years in one plot? To make matters concrete, let’s consider a specific data

file, shown next.

# Year Red Green Blue Spending

1990 33 45 18 21
1991 35 42 19 18

1992 34 44 14 25

1993 37 43 25 27
1994 47 15 30 28

1995 41 14 32 33

1996 42 20 35 35
1997 39 21 31 32

One possible solution would be to plot the data as a regular time series (see figure

E.13—ignoring the last column for the time being):

set style data lp

set for [k=1:3] lt k pt 7

plot "elections" u 1:2 t "Red", "" u 1:3 t "Green", "" u 1:4 t "Blue"

Listing E.8 Commands for figure E.12 (file: iris4.gp)

Listing E.9 Data for figures E.13 and E.14 (file: elections)

Uses line points Uses a filled circle
as a symbol

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E24 APPENDIX E Special plots

Often this is exactly what you want, but this format can be clumsy, in particular if

there are many competing parties or if there is a lot of variation year over year. The

histogram style offers an alternative. 

 Using set style histogram clustered generates a sequence of histograms (see

figure E.14). Each histogram corresponds to one row in the input file (in this example,

this corresponds to one year):

set style fill solid 0.5
set style histogram clustered

plot "elections" u 2 t "Red" w histograms,

➥ "" u 3 t "Green" w histograms, "" u 4 t "Blue" w histograms

Instead of repeating the with histograms style directive multiple times in the plot

command, you can select the global style to use histograms for all data sets:

set style fill solid 0.5
set style histogram clustered

set style data histograms

plot "elections" u 2 t "Red", "" u 3 t "Green", "" u 4 t "Blue"

For all the histogram styles, it’s usually a good idea to have the boxes filled to make

them more easily distinguishable, and so this option is enabled here. You can control

the spacing between consecutive histograms using the optional gap parameter to the

set style command: set style histogram clustered gap 2. The size of the gap is

measured in multiples of individual boxes in the histograms. (To create gaps within

each histogram, so that neighboring boxes don’t touch each other, use set boxwidth.) 

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1990  1991  1992  1993  1994  1995  1996  1997

Red

Green

Blue

Figure E.13 Election results as a time series. The data file is shown in listing E.9.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E25Histograms

Keep in mind that the way gnuplot reads the data file for histograms is a bit unusual:

each new row generates a new histogram cluster, but the histogram style accepts only a

single column in the using directive. You therefore have to list the file repeatedly in

the same plot command to generate meaningful histograms, as shown previously.

 Finally, the labels gnuplot places along the x axis aren’t very meaningful. You can

either set explicit labels for each histogram using the set xtics add command or

read a textual label from the data file using the function xticlabels() (xtic() for

short). The effect of the latter is demonstrated in figure E.15. (For more information

on tic labels, see chapter 8.)

 In addition to the clustered histogram style we looked at so far, there is also a

stacked style. Using this style, the individual boxes aren’t placed next to one another,

but stacked on top of each other, so that each vertical box forms an entire histogram.

By default, adjacent boxes touch each other, but as usual, you can use set boxwidth

to control the width of individual boxes (see figure E.15):

set style fill solid 0.5

set style histogram rowstacked
set style data histograms

plot "elections" u 2:xtic(1) t "Red", "" u 3 t "Green", "" u 4 t "Blue"

There are two additional histogram styles, which I won’t describe here in detail,

because they’re similar to the ones we discussed already. The set style histogram

errorbars style is similar to the clustered style, except that it reads two values for

10

15

20

25

30

35

40

45

50

-1  0  1  2  3  4  5  6  7  8

Red

Green

Blue

Figure E.14 Election results using set style histogram clustered. This is the 

same data set as in figure E.13.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E26 APPENDIX E Special plots

each box, the second being the uncertainty in the data, represented with a standard

error bar. The set style histogram columnstacked style is equivalent to the row-

stacked style, except that each vertical box is built from a single column (not row) in

the input file. 

 One last directive related to histograms is newhistogram (see figure E.16). It can

be used to have several sets of clustered histograms on the same plot. An example will

suffice:

set style fill solid 0.5

set style histogram clustered
set style data histogram

set bmargin 5

set xtic rotate by 90 offset 0,-2

plot newhistogram "\n\nElection Results",

➥ "elections" u 2:xtic(1) t "Red", "" u 3 t "Green", "" u 4 t "Blue",

➥ newhistogram "\n\nCampaign Spending",

➥ "" u 4:xtic(1) t "Spending"

The syntax for the newhistogram command is a bit unintuitive (I still tend to get it

wrong), so let me point out the salient features: the newhistogram keyword is followed

by a mandatory string label (an empty string is permitted) and a mandatory comma, and

then the rest of the plot command follows, starting with the filename. 

 0

 20

 40

 60

 80

100

120

1990 1991 1992 1993 1994 1995 1996 1997

Red

Green

Blue

Figure E.15 Election results using set style histogram rowstacked. This 

is the same data set yet again. Note the effect of the xtic() function, which is 

used to read x axis labels directly from the data file.

Makes room for xtics
Rotates xtics so they don’t overlap

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


E27Histograms

In addition to the commands that are directly related to the histogram feature, this

example includes some appearance options: tic labels are rotated so that they don’t

overlap each other, and the bottom margin has been increased to make room for both

the rotated tic labels as well as the histogram label supplied to the newhistogram key-

word. Finally, I began each of the two histogram labels with some newlines: otherwise,

they interfere with the tic labels.   

 Histograms such as those discussed in this section look good and are frequently

used in business presentations or in the media. But they make it difficult to see trends

in the data, and in particular quantitative comparison of data can be difficult. (Gnu-

plot offers some additional features that I didn’t mention; check the standard refer-

ence information if you want to know more.) 

10

15

20

25

30

35

40

45

50

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

Red

Green

Blue

Spending

Campaign SpendingElection Results

Figure E.16 Several histograms can be combined in a single graph using newhistogram.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F1

appendix F
Higher math

This appendix discusses several topics that are mathematically a bit more advanced

than the rest of the book. We’ll explore gnuplot’s support for parametrized curves

and non-Cartesian coordinates (such as polar, cylindrical, and spherical coordinates).

In section 6.3.5, you learned about the with vectors style; here, we’ll demonstrate

some additional uses for it. Gnuplot has built-in support for complex numbers, which

we haven’t mentioned so far—we’ll remedy this now. Next I’ll show you how to create

probability plots with gnuplot; and finally, there’s a lengthy section on fitting nonlin-

ear functions to data. 

 Because this isn’t a math book but a book on gnuplot, I won’t provide much of the

background for these concepts; I’ll just show you how gnuplot handles them. This

appendix is best skipped unless you have a specific need for its contents. Rest assured:

if you don’t know what I’m talking about, you aren’t going to need it.

F.1 Parametric plots

Parametric plots are only relevant when you’re plotting functions with gnuplot: the

concept has no meaning when plotting data from files. So far, whenever you’ve plot-

ted a function, the function provided a y value (the dependent variable) as a function of

an x value (the independent variable): plot sqrt(x). Alternatively, you can give two

functions, one for the x and one for the y value separately, but both depending on a

common parameter, which by convention is called t. For certain kinds of curves, such a

parametrization is simpler than the explicit form. The following plot command draws

a circle (after adjusting the aspect ratio appropriately):

set size square

set parametric
plot [0:2*pi] cos(t), sin(t)

This parametric representation is significantly simpler than the equivalent explicit

form:

set size square

unset parametric
plot [-1:1] sqrt(1-x**2), -sqrt(1-x**2)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F2 APPENDIX F Higher math

In general, the following two commands give the same result:

unset parametric

plot f(x)

set parametric
plot t, f(t)

For parametric plots, there are now three relevant plot ranges: trange, xrange, and

yrange. The first controls the range of values assumed for the parameter (the dummy

variable) t, whereas the other two are used (as before) to control the range of points

visible in the plot. All three ranges can be adjusted either explicitly using set trange

or the familiar set xrange and set yrange commands (see section 8.2), or inline as

part of the plot command. If used inline, the setting for the trange precedes the

other two. This is demonstrated in the following listing. The resulting plot is shown in

figure F.1. 

set parametric

set size square

plot [0:2*pi][-1.1:1.1][-1.1:1.1] sin(2*t), cos(5*t)

Parametric graphs of trigonometric functions (such as figure F.1) are known as Lissa-

jous figures, and gnuplot’s parametric mode makes drawing them very easy. Simple

Listing F.1 Parametric mode: commands for figure F.1 (file: lissajous.gp)

-1

-0.5

 0

0.5

 1

-1 -0.5  0  0.5  1

Figure F.1 A simple Lissajous figure, 

drawn using parametric mode. 

See listing F.1.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F3Non-Cartesian coordinates

expressions, as in listing F.1, lead to simple graphs, but more complicated expressions

can also be fun. Figure F.2, for instance, was generated as follows:1

set parametric

set size square
unset key; unset border; unset tics

set samples 100000

plot [0:100*pi] sin(0.99*t)-0.7*cos(3.01*t), cos(1.01*t)+0.1*sin(15.03*t)

For three-dimensional plots (using the splot command), you obviously need to pro-

vide a third function, with all three functions depending on two variables called u and

v and possessing corresponding options set urange and set vrange. 

F.2 Non-Cartesian coordinates

Not all coordinate systems are made out of straight lines at right angles to each other.

To plot points on a circle, for instance, it makes more sense to use polar coordinates,

or to use spherical or cylindrical coordinates for systems possessing those kinds of

symmetry. Gnuplot has built-in support for these three symmetries through the set

polar and set mapping facilities. To generate plots using other coordinate systems,

you have to resort to inline data transformations or external filters. 

 

1 This example was taken from A. K. Dewdney’s “Computer Recreation” column in Scientific American, May 1988.

Figure F.2 A more complicated 

figure drawn with parametric mode. 

Plotted are the functions 

sin(0.99*t)-0.7*cos(3.01*t) 

for the horizontal coordinate and 

cos(1.01*t)+0.1*sin(15.03*t) 

for the vertical coordinate.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F4 APPENDIX F Higher math

F.2.1 Polar coordinates

Polar mode is enabled using

set polar

which doesn’t take any further options. In polar mode, the independent variable is

interpreted as an angle and the dependent variable as a radius. When plotting data,

this means the first column specified in the using clause is interpreted as the angle

and the second column as the radius. When plotting functions in polar mode, the inde-

pendent (dummy) variable is denoted with t (not x), similar to the convention used

for parametric plots (see section F.1).

 The angle may be given either in radians (multiples of π—this is the default) or in

degrees. You can switch between both representations using

set angles [ degrees | radians ] 

The current value of this option affects not only polar plots, but also how the argu-

ments of trigonometric functions are interpreted.

 Let’s look at an example (see figure F.3). The process to generate attractive plots

in polar mode requires several steps, because some artifacts from regular plots must

be removed explicitly. It’s also necessary to introduce some additional options control-

ling the appearance of polar plots.2 The individual steps are shown in the following

listing.

set polar

set size square

unset border

unset tics

set tmargin 2; set bmargin 2

set key left at graph 1,0.95

set rrange [0:1]

set raxis

set rtics 0.25 nomirror scale 0.5

set grid polar pi/8.0

2 The way polar plots are handled has changed from previous versions of gnuplot; in particular, the commands
set raxis and set rtics are relatively new.

Listing F.2 Polar mode: commands for figure F.3 (file: polar.gp)

Switches on polar mode. Angles are 
interpreted as radians (the default).

Ensures a square aspect ratio

Removes
the usual

decorations

Switches off border and tic marks

Makes room for labels at the top and bottom

Gets the key out of the way

Adds
polar plot

decorations

Fixes the radial range

Switches on the axis at zero-angle

Defines the spacing for radial tic marks and grid lines

Turns on the grid, and defines the angular 
spacing tic marks and grid lines

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F5Non-Cartesian coordinates

set label "0π" at 1,0 offset char 1,0

set label "+0.5π" at 0,1 center offset char 0,0.75

set label "-0.5π" at 0,-1 center offset char 0,-0.75

set label "+/-π" at -1,0 offset char -5,0

plot [-0.875*pi:0.875*pi] "polardata" u 1:2 t "Data" w l,

➥ 0.27*(2-cos(3*t)+0.75*cos(5*t)) t "Model"

APPEARANCE OPTIONS FOR POLAR DIAGRAMS

Gnuplot draws polar diagrams with the zero angle located on the right (rather than at

the top, which is possibly more common). By default, the half-axis at zero-angle is

drawn explicitly; you can turn it off using unset raxis. 

 With polar plots, it’s helpful to have a grid (as is the case with figure F.3). The spac-

ing of radial lines in the polar grid is controlled through the argument to set grid

polar, and the concentric circular grid lines are controlled through set rtics. The

set rtics command behaves just like the familiar set xtics and set ytics com-

mands and takes the same sub-options (see section 8.3). One difference is the key-

word mirror: if it’s used in conjunction with set raxis, then radial tic marks are

drawn on the left half-axis as well. 

 

Defines 
angular 
tic labels

Plots the data together with a function. The plot range
controls the dummy variable t (effectively, the angle variable).

 0  0.25  0.5  0.75  1
0π

+0.5π

-0.5π

+/-π

Data

Model

Figure F.3  A graph in polar mode. 

See listing F.2.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F6 APPENDIX F Higher math

 The radial plot range is controlled through set rrange. The radial range need not

include 0. It’s possible to specify a range of values such as set rrange [0.2:0.8], but

the diagram always appears like a circular disk, not as an annulus. Only a small circle

near the origin is left blank to indicate that 0 isn’t included. (Gnuplot will neither

warn you if you specify negative values in set rrange nor suppress such data points if

you try to plot them. You have been warned.) 

 Finally, if you study the commands in listing F.2 carefully, you’ll notice that gnuplot

doesn’t really have a polar coordinate system! The positions for the labels, for

instance, are given in the first coordinate system (see section 7.2), despite the fact

that this coordinate system isn’t visible in the graph. To identify arbitrary locations,

you’ll probably want to use explicit trigonometric expressions to perform the neces-

sary calculations on the fly. 

F.2.2 Cylindrical and spherical coordinates

Polar mode only makes sense for graphs generated using plot—the equivalent for

graphs created with splot is the set mapping option:

set mapping [ cartesian | cylindrical | spherical ] 

I’ll demonstrate this facility here by means of a familiar object (see figure F.4). The

coordinates (at a scale of 1 to 10 million) are contained in the file world_110m.txt.3

This data is now plotted twice: once using plot as a projection into the plane, and

once with set mapping spherical. 

 The projection into the plane holds no surprises, but the spherical representation

warrants a few comments. As you can see in listing F.3, you first switch on spherical

3 This data set has a much greater resolution than the world.dat file that is part of the gnuplot distribution. You
can find the data set used here at www.gnuplotting.org/plotting-the-world-revisited/. It’s based on original
data, which you can find at www.naturalearthdata.com/downloads.

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

100

-200 -150 -100 -50  0  50  100  150  200

Figure F.4 Using a spherical coordinate system together with splot. On the left, the data 

is plotted as a regular two-dimensional plot using plot; on the right, it’s plotted (together 

with a grid) using set mapping spherical and splot. (See listing F.3.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.gnuplotting.org/plotting-the-world-revisited/
http://www.naturalearthdata.com/downloads
http://www.it-ebooks.info/


F7Vector fields

coordinates and turn off most standard decorations—just as for polar plots (in section

F.2.1 a moment ago). But in this case, you also turn on parametric mode (see section F.1).

Remember that parametric mode has no bearing on the plotting of data; it only affects

functions. Here, it’s used to draw a grid on the surface of the globe, using the parame-

trized version of the surface of a sphere that makes up the last entry in the plot

command. 

 This should be enough to demonstrate non-Cartesian coordinates. If you need to

know more, check the standard gnuplot reference documentation for further details. 

set mapping spherical

set angles degrees

unset border

unset tics

unset key
set hidden3d

set parametric

set urange [-90:90]

set vrange [0:360]

set view 55,80,1.5,1.25

splot "world_110m.txt" w l,

➥ cos(u)*cos(v),-cos(u)*sin(v),sin(u) w l lc rgb "grey"

F.3 Vector fields

Vector-valued quantities have both a magnitude and a direction, in contrast to scalars,

which only have a magnitude. Simply put, vectors are arrows, whereas scalars are num-

bers. Think of a climber in a mountainscape: the local height is a scalar, but the direc-

tion in which the climber would tumble down (if he let go) is a vector.

 You’ve already encountered gnuplot’s with vectors style (in section 6.3.5), which

can be used to plot vector-valued quantities. So far, it’s only been used in conjunction

with the plot command, but it’s also available for splot.

F.3.1 Plane vector fields with plot

Additional information is required when plotting vectors, to indicate the direction.

For two-dimensional plots using plot, gnuplot requires four columns: the first two

give the position of the start of each arrow, and the last two give the offset (relative to

the start) of the arrow’s end. In other words, the columns must represent x, y, dx, and

dy, and gnuplot shows the data as arrows from (x, y) to (x+dx, y+dy). All quantities are

interpreted as locations in the diagram’s coordinates.

 Figure F.5 shows an example. The data can be interpreted as the force on a test

charge in the presence of three other charges (indicated by dots). It was created using

the following:

Listing F.3 Commands for figure F.4 (file: world.gp)

Switches on spherical coordinates
Uses degrees, not radians

Cleans up 
unnecessary 
decorations

Used by the functions 
that draw the grid lines

Chooses the view point

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F8 APPENDIX F Higher math

set size square
unset key

set style arrow 100 size screen 0.01,10 lt 1

plot [-5.3:5.3][-5.3:5.3] "arrows" i 0 u 1:2:3:4 w vec as 100,

➥ "" i 1 u 1:2 w p pt 7 ps 0.5 lc rgb 'black'

All the options to change the appearance of an arrow (see section 7.3.2) are available

to you. You can provide them inline as part of the plot command or define your own

custom arrow style, as I did here (see section 9.4.3).

Another possibility is to use data-dependent coloring (see section 9.1.5). Figure F.6

shows the same data set as figure F.5 but uses a fifth column (giving the relative field

strength) to color the arrows. To map the latter value to a color, it’s convenient to use

a palette:

set size square
unset key

set palette defined ( -1 "blue", 0 "grey", 1 "red" )

set style arrow 100 size screen 0.02,10,90 filled fixed lc palette z

plot [-5.3:5.3][-5.3:5.3] "arrows" i 0 u 1:2:3:4:5 w vec as 100,

➥ "" i 1 u 1:2 w p pt 7 ps 0.5 lc rgb 'black'

-4

-2

 0

 2

 4

-4 -2  0  2  4

Figure F.5 A vector field, plotted 

using the with vectors style

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F9Vector fields

  

F.3.2 Three-dimensional vectors with splot

Similar considerations apply to vectors in three dimensions, only now you need to sup-

ply six columns in total. In three dimensions (when using splot), the with vectors

style can be used in creative ways to visualize three-dimensional objects. In particular,

together with the mousing capabilities of interactive terminals (see section 10.6), this

can be useful—a lot of visualization power that’s usually only achieved with much

more complicated programs.

 A quick example will help to clarify. Listing F.4 shows a data file. The top part of

the data file gives the coordinates of a pyramid-shaped body (a tetrahedron, to be pre-

cise). The bottom part of the file shows the edges of the pyramid. The labels A, B, C,

and D at the corners help to identify the edges of the body.

# x y z color label
1 0 -0.7 1 "A"

-1 0 -0.7 1 "B"

0 1 0.7 2 "C"

0 -1 0.7 2 "D"

# x1 y1 z1 x2 y2 z2

1 0 -0.7 -1 0 -0.7

-1 0 -0.7 0 1 0.7

0 1 0.7 0 -1 0.7

0 -1 0.7 1 0 -0.7

1 0 -0.7 0 1 0.7

-1 0 -0.7 0 -1 0.7

Listing F.4 Data for figure F.7 (file: pyramid)

-4

-2

 0

 2

 4

-4 -2  0  2  4

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Figure F.6 Same as figure F.5, 

but using data-dependent 

coloring to represent additional 

information in the graph

End points

Edges

A → B

B → C

C → D

D → A

A → C

B → D

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F10 APPENDIX F Higher math

When attempting to plot this data, you need to remember that the with vectors style

requires the starting points and the relative offsets of the end points, not the coordi-

nates of the start and end points directly. The commands in listing F.5 use inline data

transformations to convert the coordinates into offsets on the fly. Furthermore, this

example uses some of the tricks you learned in sections 6.3.5 and 9.1.5 to attach a text

label to each end point and to give them different colors. The resulting graph is

shown in figure F.7. Try it yourself and then grab the figure with the mouse to rotate

it. Have fun!  

unset border

unset tics

unset key
set view 200,80

splot [-1:1][-1:1][-1:1] "pyramid" i 0 u 1:2:3:4 w p pt 7 ps 3 lc var,

➥ "" i 1 u 1:2:3:($4-$1):($5-$2):($6-$3) with vectors nohead lt -1,

➥ "" i 0 u 1:2:3:5 w labels offset 1,1

F.4 Built-in mathematical functions

As mentioned in chapter 3, gnuplot provides a large number of standard mathematical

functions as well as quite a few that are much less standard. Table F.1 gives the full list.4

 Several of the more common functions can handle complex arguments (see sec-

tion F.5) and return complex-valued return values if necessary. Other functions accept

complex-valued arguments but silently ignore the imaginary part. Yet other functions

require real (or integer) arguments. See table F.1 for the behavior of each function.

Be aware that the behavior of the trigonometric functions depends on the current

value of the set angles option (see section F.2.2 earlier in this appendix).

Listing F.5 Commands for figure F.7 using data from listing F.4 (file: pyramid.gp)

4 For non-elementary functions with ambiguous notations, I’ve given a pointer to the defining relationship in
Handbook of Mathematical Functions by M. Abramowitz and I. Stegun (Dover Publications, 1965), quoted as
A&S. (The full content of the book can be found on the web, for instance at www.nr.com/aands/ and
www.convertit.com.)

C
D

A

B
Figure F.7 The body whose coordinates were 

given in listing F.4. Load listing F.5 into gnuplot, 

using an interactive terminal, and then grab this 

figure with the mouse and try to rotate it!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.nr.com/aands/
http://www.convertit.com
http://www.it-ebooks.info/


F11Built-in mathematical functions

 Additional functions may be available if gnuplot has been linked against the

appropriate libraries. Check the release notes for your installation. (To find the list of

available mathematical functions in the gnuplot standard reference documentation,

use help expressions functions. The command help functions pulls up informa-

tion on user-defined functions.)   

Table F.1 All built-in mathematical functions

Function Arguments Description

sqrt(x) Any Square root function

exp(x) Any Exponential function

log(x), log10(x) Any Logarithm to base e and to base 10

sin(x), cos(x), tan(x) Any Trigonometric functions. Arguments inter-
preted according to set angles.

asin(x), acos(x), 
atan(x)

Any Inverse trigonometric functions. Return 
values depend on the value of set 
angles.

atan2(y, x) Real Evaluates to atan(y/x), but uses the 
signs of both arguments to determine 
the resulting quadrant. Return value 
depends on the value of set angles.

sinh(x), cosh(x), 
tanh(x)

Any Hyperbolic functions

asinh(x), acosh(x), 
atanh(x)

Any Inverse hyperbolic functions

erf(x) Anya Error function (A&S 7.1.1)

erfc(x) Anya Complementary error function (A&S 
7.1.2): erfc(x) = 1 - erf(x)

inverf(x) Anya Inverse error function

invnorm(x) Anya Inverse normal distribution function

norm(x) Anya Normal (Gaussian) distribution function 
(A&S 26.2.2): norm(x) = 
0.5*(1+erf(x/sqrt(2)))

gamma(x) Anya Gamma function (A&S 6.1.1).

ibeta(p, q, x) Anya Incomplete beta function (A&S 6.6.1)

igamma(a, x) Anya Incomplete gamma function (A&S 6.5.1)

lgamma(x) Anya Natural logarithm of the gamma function: 
lgamma(x) = log( gamma(x) )

a  For complex-valued arguments, the function ignores the imaginary part of the argument.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F12 APPENDIX F Higher math

F.5 Complex numbers

Gnuplot has limited support for complex numbers, so let’s take a quick look. (If you

don’t know what complex numbers are, you probably want to skip this section.)

 Complex numbers are pairs of numbers, the so-called real and imaginary parts. In

gnuplot, a complex number is indicated using curly braces ({}). The following

expression would be interpreted as the complex number z = 1 + i, where i is the imag-

inary unit:

z = { 1, 1 }

Gnuplot can perform simple arithmetic on complex numbers, such as { 1, 1 } + { -1, 0 }.

Furthermore, several of the built-in mathematical functions (such as sin(x), exp(x),

and so forth) can accept complex arguments and return complex numbers as results.

besj0(x), besj1(x) Real Bessel function of the first kind of order 
0 and 1. Argument is always interpreted 
as radians.

besy0(x), besy1(x) Real Bessel function of the second kind of 
order 0 and 1. Argument is always inter-
preted as radians.

airy(x) Anya Airy function (A&S 10.4.2)

EllipticK(x), 
EllipticE(x)

Real Complete elliptic integral of the first and 
second kind (A&S 17.3.1 and 17.3.3)

EllipticPi(n,x) Real Complete elliptic integral of the third kind 
(A&S 17.7.2)

expint(n, x) n integer, x real Exponential integral (A&S 5.1.4)

lambertw(x) Real Lambert-W function (the inverse of f(w) = 
w exp(w)

abs(x) Any Absolute value for real or complex x

floor(x), ceil(x) Anya Smallest integer not less than x, and 
largest integer not greater than x (both 
as floating-point values)

int(x) Anya Integer part of x, truncated to zero

rand(x) Anya Random number generator 
(see table 3.3)

sgn(x) Anya Sign function 
(-1 if x < 0; 0 if x = 0; 1 if x > 0) 

a For complex-valued arguments, the function ignores the imaginary part of the argument.

Table F.1 All built-in mathematical functions (continued)

Function Arguments Description

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F13Complex numbers

You can use the special functions real(x) and imag(x) to pick out the real and imagi-

nary parts, respectively (see table F.2).

 One important limitation of gnuplot’s complex numbers is that both parts must be

numeric constants—not variables, not expressions! You can always work around this

limitation, though, by using a complex constant as part of a more general expression.

For example, the following command will plot real and imaginary parts of the expo-

nential function, evaluated for a purely imaginary argument:

plot real( exp(x*{0,1}) ), imag( exp(x*{0,1}) )

Complex numbers are of fundamental importance in mathematics and theoretical

physics, and they have important applications in signal processing and control theory.

Gnuplot’s ability to handle them makes it particularly suitable for such applications.

F.5.1 Application: Mandelbrot set (pure gnuplot)

Gnuplot’s support for complex numbers makes it possible to write a program that cal-

culates and visualizes the Mandelbrot set entirely in gnuplot.5 Listing F.6 is short and

sweet. The core of the script is the function f(z,c,k) that implements the iteration

that defines the Mandelbrot set. The function is recursive (that is, it calls itself):

because the body of a gnuplot function must be an expression, that’s the only way to

define an iteration inside a function. The function takes three arguments: the recur-

sion variable, the starting point for the iteration (which is kept constant during the

recursion), and the depth of the recursion. The function returns the number of itera-

tions before the absolute value of the recursion variable (the first argument) exceeds

2, unless the maximum number of iterations MAXITR is reached first. This function is

evaluated on a regular grid using the pseudofile ++ (see section 4.5). Remember to

use the same granularity for both set samples and set isosamples when using ++

(see section C.1.2). The results are shown in figure F.8. (Depending on the speed of

your computer, the figure may take a few seconds to render.)

Table F.2 Functions to access parts of complex numbers

Function Description

abs(x) Absolute value of x: sqrt( real(x)**2 + imag(x)**2 )

arg(x) Phase angle of x: atan( imag(x)/real(x) )

imag(x) Imaginary part of x

real(x) Real part of x

5 The Wikipedia page on the Mandelbrot set is quite detailed and informative.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F14 APPENDIX F Higher math

    

set size sq; set view map

set samples 500; set isosamples 500

MAXITR = 100

f(z,c,k) = abs(z)>2 || k>=MAXITR ? k : f(z**2+c,c,k+1)

set palette defined

➥( 0 'white', 5 'blue', 15 'red', 50 'yellow', 99 'yellow', 100 'black' )

splot [-1.5:0.5][-1:1] "++" u 1:2:( f({0,0}, $1+$2*{0,1}, 0) ) w pm3d

F.6 Probability plots

A probability plot (or, more precisely, a “normal” probability plot) is a graphical tech-

nique to determine whether a bunch of values are distributed according to a normal

(Gaussian) distribution. From such a plot, it is also possible to obtain the two parame-

ters of the Gaussian distribution (mean and standard deviation) by purely graphical

means. Gnuplot doesn’t have probability plots built in, but it does provide all the

ingredients necessary for you to roll your own.

 To understand what a normal probability plot does, consider the cumulative distri-

bution function of a set of points. If the data points were drawn from a Gaussian distri-

bution, then their empirical cumulative distribution function would have the shape of

the Gaussian cumulative distribution function. Applying the inverse Gaussian distribu-

tion function to the empirical distribution function of the set of measurements should

therefore result in a straight line. Because deviations from a straight line are easy to spot,

this technique provides an easy, graphical way to test a data set for Gaussian behavior. 

 Gnuplot can calculate the cumulative distribution function of a set of points using

smooth cumul in the plot command. The inverse Gaussian distribution function is

Listing F.6 Commands for figure F.8 (file: mandelbrot.gp)

-1.5 -1 -0.5  0  0.5

-1

.5

0

.5

1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure F.8 The Mandelbrot set, rendered 

and calculated in gnuplot. See listing F.6 for 

the complete implementation.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F15Probability plots

available as the built-in function invnorm(x). To create a probability plot in gnuplot,

you need to employ these facilities in sequence: first, obtain the empirical distribution

function using plot ... smooth cumul. The results aren’t plotted right away; instead,

they’re stored in a heredoc via the set table (see section 5.3.2) facility. Then apply the

inverse Gaussian distribution function to the data in the heredoc and plot the results.

 Figure F.9 shows the probability plots for two data sets: one that’s Gaussian and

hence forms a straight line, and one that’s clearly not Gaussian. (It’s truncated on the

left and somewhat heavy-tailed on the right.) Listing F.7 summarizes the basic

sequence of steps to create a probability plot for a single data set. This code attempts

to be generic, so you must configure the name of the file and the column to use in the

first lines of the listing.

FILE = "probplot"

COL = 1

stats FILE u COL nooutput

set table $tmp

plot FILE u COL:(1./(STATS_records+1)) s cumul

unset table

plot $tmp u (invnorm($2)):1 w l

Listing F.7 Commands to generate a probability plot (file: probplot1.gp)

-10

-5

 0

 5

10

15

20

25

30

35

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

Gaussian

Non-Gaussian

Figure F.9 Normal probability plots for two data sets: one that follows a Gaussian 

distribution, the other showing non-Gaussian behavior

Use this to configure the data file …

… and which column to use in the file.

Populates STATS_records

Stores the cumulative distribution 
function in a heredoc

Creates the probability plot

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F16 APPENDIX F Higher math

F.6.1 Adding a probability scale

You can improve the graph by adding a second axis, with divisions in probability units

(probits). This way, you also learn more about the ability to link two axes using the set

link command introduced in section 8.1.3. 

 In a probability plot, the observed values are plotted along the vertical axis,

whereas the distribution of points is plotted along the horizontal axis, measured in

standard deviations. Instead of measuring the distribution of points along the hori-

zontal axis in standard deviations, you can also express the distribution in fractions of

the entire data set (see figure F.10). The meaning of this scale is possibly more intui-

tive, but it comes at the cost of a non-uniform division of the axis.

The complete code is shown in listing F.8. Two things are new, compared to the previ-

ous example. First, the secondary axis (x2) is linked to the primary one using

set xrange [-1:1]

set link x2 via norm(x) inverse invnorm(x)
set xrange [*:*]

I’ve explained the link command before (section 8.1.3). The two calls to set xrange

are necessary to suppress some gnuplot warnings: to validate its input, the set link

command tests that the two functions supplied are actually inverses of each other, by

7.95

 8

8.05

 8.1

8.15

 8.2

8.25

 8.3

-4 -3 -2 -1  0  1  2  3  4

0
.0

1

0
.0

5

0
.9

5

0
.9

9

0
.1

0

0
.2

0

0
.3

0
0

.4
0

0
.5

0
0

.6
0

0
.7

0

0
.8

0

0
.9

0

Figure F.10 A normal probability plot, with secondary tic marks and grid lines 

added. (See listing F.8.)

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F17Probability plots

evaluating them at the ends of the current plot range. The problem is that the func-

tions used here encounter numerical precision loss at the extreme values of the

default plot range (which is [-10:10]). Restricting the plot range first to a safe inter-

val, and then turning on autoscaling again afterward, suppresses the warnings.

 The link command by itself doesn’t switch on the tic marks on the secondary axis;

you have to do so yourself. Because the tic marks are distributed in such a non-uni-

form manner, it’s necessary to add some tic marks for extreme values explicitly, using

set x2tic add ( ... ). 

 The other new feature in listing F.8 is the second call to stats, this time not on the

data set, but on the heredoc. The linear regression results from the stats command

are used as a model for the data and combined in the probability plot together with

the data (see figure F.10).

FILE = "probplot"

COL = 1

stats FILE u COL nooutput

set table $tmp

plot FILE u COL:(1./(STATS_records+1)) s cumul

unset table

set xrange [-1:1]

set link x2 via norm(x) inverse invnorm(x)

set xrange [*:*]

set xtics nomirror

set x2tics format "%.2f" rotate

set x2tics add ( "0.01" 0.01, "0.05" 0.05, "0.95" 0.95, "0.99" 0.99 )

set grid x2tics ytics

stats $tmp u (invnorm($2)):1 noout

print "mu=", STATS_intercept, " sigma=", STATS_slope

plot $tmp u (invnorm($2)):1 w l, STATS_slope*x + STATS_intercept

The data set shown in figure F.10 is much larger than the one in figure F.9 (2,000 data

points now versus 100 data points before). It’s mostly Gaussian, except for a handful of

outliers. Using the newly added axis, you can conclude that more than 0.99 −0.01=0.98

or 98% of the points are normally distributed. The number of true outliers isn’t large

(about 12). Notice that their values aren’t massively different from the rest of the data

points, but sufficiently different that in a data set of 2,000 points, you wouldn’t expect

to find such values—if all the values were drawn from a Gaussian distribution, that is.

The probability plot helps to identify the outliers and their range of values. 

Listing F.8 Commands for figure F.10 (file: probplot2.gp)

Configures the data file …

… and column

Populates STATS_records

Stores the cumulative distribution 
function in a heredoc

Links the two axes

Fixes the appearance
of the tic labels

Performs a linear 
regression, and …

… prints the results

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F18 APPENDIX F Higher math

F.7 Curve fitting

Gnuplot includes a facility to perform nonlinear least-square fits. This subject is a little

outside gnuplot’s primary area of applicability (which is to generate graphs), but it’s a

popular part of gnuplot’s feature set.

 Gnuplot’s fitting subsystem consists of two commands: the fit command and the

update command that’s used to export fitted parameter values. Many aspects of the

fitting algorithm can be modified using set fit.6

F.7.1 Background

Before describing how to use the fit command and the associated options, let me

explain the context and define some specific terms. Assume that you have a set of N

data points (xi, yi) and a function f(x ; a1, …, am) of known functional form. Note that

the function doesn’t just depend on the independent variable x, but also on m param-

eters a1 through am. Fitting this function to the data means finding those values for

(a1, …, am) that optimize a certain merit function—a function measuring how well the

data is represented by the function. The most common merit function is the sum of

the squares of the deviations (or residuals):

I’ll refer to it as the squared error E 2
0 ; the gnuplot reference documentation calls it SSR,

for “sum of squared residuals.” You can assign a weight to each term in this sum, such

that data points that are known more accurately contribute more strongly. Let’s write

the weight for the ith term as 1/δi, where δi is a measure for the uncertainty (such as

the standard deviation) of that term. The result is the weighted least-squares merit func-

tion (which I denote by E2, and which is called WSSR for “weighted sum of squared

residuals” in the gnuplot reference documentation):

The optimal choice of parameters (in a least-squares sense) minimizes this value.7

 If the function f(x ; a1, …, am) is linear in the independent variable—that is, if

f(x; a, b) = ax + b, then the minimization of the error with respect to the parameters a

and b can be performed analytically, so that expressions for the optimal values for

6 In previous versions of gnuplot, the aspects now bundled in set fit were controlled through a variety of
internal variables (and two environment variables) that are now deprecated.

7 Although the sum of squared residuals is by far the most commonly used merit function, it’s not the only pos-
sible choice. It can be justified on statistical grounds when the noise in the data has certain properties. It has
the technical advantage of being simple and analytic everywhere. A disadvantage is that it tends to over-
emphasize outliers.

E2
0 yi f xi ;a1,...,am )(–( )

2

i

N

=

E
2 yi f– xi ;a1,...,am )(

δi
-------------------------------------------------

 
 
 

2

i

N

=

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F19Curve fitting

these parameters can be obtained in closed form (linear regression). If the function isn’t

linear in x but is linear in the parameters—for example, f(x; a, b) = a sin(x) + b

cos(x)—a similarly simple relation holds. But if the function is not linear in the param-

eters—for example, f(x; a, b ) = sin(a x)/sqrt(x+b)—there’s generally no solution to

the minimization problem in closed form, and you have to resort to an iterative

approximation scheme.

 In this case, the merit function is minimized using an iterative algorithm, in which

different values for the parameters are tried repeatedly until the merit function

reaches its optimal value. The standard numerical algorithm for this task, which takes

into account the specific analytic form of the merit function as a sum of squares, is

known as the Marquardt-Levenberg method. This is what gnuplot’s fit command uses. 

F.7.2 A worked example

Before describing the fit command and all its options in detail, let’s see how it works

in practice. Consider the data in figure F.11, showing the results of a scattering exper-

iment. The horizontal axis (corresponding to the scattering angle and thus the

energy) has been divided into 140 equal-sized bins, and the vertical axis gives the

number of events registered in each bin. You can observe different peaks in this spec-

trum and would like to know their position, strength, and width.

 0

100

200

300

400

500

600

700

800

 0  20  40  60  80  100  120  140

Figure F.11 Data from a scattering experiment. How many peaks are there, where are 

they located, and what’s their width?

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F20 APPENDIX F Higher math

 Because this data stems from a scattering experiment, you have good reason to believe

that the shape of each peak is well described by a function of this form

and that the entire spectrum is a mixture of such functions, for proper values of the

parameters. It’s these parameters that you want to determine using fit.

 Simply eyeballing figure F.11, two peaks can be identified at once: one near x=50

with a strength of about 700, and another near x=90 with a strength of about 250.

(Experienced practitioners will point to the little shoulder on the right flank of the

taller peak near x=65 and suggest the existence of a third peak, but we’ll ignore this

for now.) These initial guesses for the position and strength of the peaks must be pro-

vided as starting values for the iteration. The following listing shows the commands

required to fit the two primary peaks, and figure F.12 shows a plot of the data together

with the fitted function.

c(x,m,s) = 1/(1.0 + ((x-m)/s)**2)

set fit results

a1=700; m1=50; s1=10
a2=250; m2=90; s2=15

fit a1*c(x,m1,s1) + a2*c(x,m2,s2) "bumps" u 1:2 via a1,m1,s1,a2,m2,s2

After 4 iterations the fit converged.

final sum of squares of residuals : 33965.5
rel. change during last iteration : -7.50711e-06

degrees of freedom (FIT_NDF) : 134

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.9209
variance of residuals (reduced chisquare) = WSSR/ndf : 253.474

Final set of parameters Asymptotic Standard Error

======================= ==========================
a1 = 682.455 +/- 5.853 (0.8577%)

m1 = 48.8178 +/- 0.08384 (0.1717%)

s1 = 9.5442 +/- 0.1334 (1.397%)
a2 = 193.285 +/- 5.162 (2.671%)

m2 = 90.5625 +/- 0.3414 (0.3769%)

s2 = 12.3524 +/- 0.5457 (4.417%)

...

plot "bumps" u 1:2 w lp pt 6, a1*c(x,m1,s1) + a2*c(x,m2,s2)

Overall, the function fits the data quite nicely, and you can read the position, strength,

and width of the peaks from the fitted values. Comparing the data to the curve, the

deviation near x=65 seems too systematic to be noise—you may want to repeat the pro-

cess but include a third peak. What’s its relative strength, compared to the two pri-

mary ones?

Listing F.9 Results from fit for the data in figure F.11

c x;m s, )(
1

1
x m–

s
------------- 
  2

+

---------------------------------=

Defines the function

Suppresses most output

Guess for the first peak
Guess for the second peak

Further output omitted

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F21Curve fitting

Listing F.9 shows the basic steps of fitting data with gnuplot:

1 Define a function to fit. This isn’t strictly required; you can use an explicit

expression in the fit command, but in order to keep things neat, it’s almost

always worth the effort to define a function depending on the fitting parame-

ters explicitly.

2 Choose starting values for all parameters. Again, this isn’t strictly required,

because gnuplot will initialize all parameters listed in the via clause to 1.0

before starting the iteration. But most realistic problems will need reasonable

guesses for the starting values for the iteration to converge well.

3 Perform the fit.

4 Plot the data together with the fitted function. By the end of the fit, the result-

ing parameters are stored in the variables named in the via clause, thus over-

riding the starting values. This makes it possible and convenient to express the

fitted function (in the plot command) in terms of these variables, rather than

using the numerical values instead.

This concludes the process of “fitting” a function to the data, but the work doesn’t

stop here. The next step would be to subtract the fit from the data to obtain the resid-

ual. You might want to plot it and inspect it for trend and correlation (there shouldn’t

be either) and Gaussian distribution (validating assumptions required for interpreta-

tion of the results—a probability plot may come in handy). 

 0

100

200

300

400

500

600

700

800

 0  20  40  60  80  100  120  140

Figure F.12 The data from figure F.11 when fitting two peaks using the fit command. 

The agreement is quite good, but is there a third peak, centered near x=65?

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F22 APPENDIX F Higher math

F.7.3 Using the fit command

The syntax of the fit command is superficially similar to the plot command. The

main difference is that before the name of the data file, you must specify the function to

fit, and at the end of the command, you must name the fitting parameters using the

keyword via:

fit [ {ranges} ] 
    {function} "{str:datafile}" [ index ... ] [ every ... ]

               using {columnspec}

               via [ {var1}, {var2}, ... | "{str:parameterfile}" ] 

The requirements for the format of the data file are the same as for the plot com-

mand. The index and every directives to select parts from the data file are available

for fit as well, and so are on-the-fly transformations through the using option. The

using clause specifies columns, as with plot. Plot ranges can be given inline, using the

syntax familiar from the plot command. Any data point outside the plot range is

ignored in the fitting procedure.

 The function must depend on the dummy variable explicitly but otherwise can be

any valid gnuplot expression. Usually, it’s a user-defined function. The names of the

parameters with respect to which the fit is performed are specified using the via

directive. There are two variants: the names of the parameters can be given explicitly

as part of the fit command or can be read from a file (more on this in a moment). At

the end of the iteration, the variables are assigned their final values and therefore can

be used directly in subsequent plots. (We made use of this in listing F.9.)

 During the iteration, the fit command prints out progress and diagnostic mes-

sages to screen and to a log file (by default called fit.log). The file is always appended

to, so you may want to delete it every once in a while. You can control the verbosity of

these messages as well as the filename using set fit (see section F.7.5).

SPECIFYING COLUMNS FOR DATA AND WEIGHTING FACTORS

When used with fit, the using directive can specify one to three columns: if only a

single column is given, it’s assumed to be the y value, and the line number is used as

the x value. Two columns are interpreted as (x, y) pairs. A third column is interpreted

as the weight for the corresponding value and is used to form a weighted least squares

merit function: if the value in the third column is δ, then each term in the sum of

squares is multiplied by 1/δ2).

 In recent versions of gnuplot, it’s also possible to fit functions of more than one

independent variable: in other words, rather than fit a curve to a set of points, you can

fit a surface (or hyper-surface). Obviously, this requires additional columns to be

included in the using clause. Check the gnuplot standard reference for details of the

syntax. 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F23Curve fitting

MANAGING FITTING PARAMETERS

Nonlinear least squares require an iterative algorithm, and therefore it’s necessary to

initialize all parameters with good starting values. With badly chosen starting values,

the procedure may require many steps to converge, or it may diverge altogether.

 If the variable names are listed explicitly in the via clause, then you should initial-

ize the corresponding session variables with suitable starting values. Any parameter

that hasn’t been defined is set equal to 1.

 It’s also possible to specify the parameters and their starting values in a file. This

method is intended for batch operations, when you want to fit several data sets and

need to give different starting values to each. The parameter file may contain starting

values for all parameters, using the following syntax:

varname = value
varname = value # FIXED

The comment on the second line forces gnuplot to keep this value fixed during the

iteration; that is, the corresponding variable won’t be adjusted when attempting to

optimize the merit function.

 If the list of parameters (and their starting values) has been read from a file, then

the resulting values can be written out to a file using the update command. This com-

mand takes the name of the parameter file as mandatory first argument. If no second

argument is given, the input file is renamed by appending .old, and the resulting val-

ues are written to a file with the original name. Alternatively, if a second filename is

supplied, the resulting values are written to this file, and the original file is left

untouched. 

VARIABLES SET BY THE FIT COMMAND

After the iteration has converged (or has been interrupted), gnuplot sets several vari-

ables that can be read out to obtain the results of the fitting procedure:

 FIT_CONVERGED—A flag that equals 1 if the iteration converged or 0 if it was

interrupted or exceeded the allowed number of steps.

 FIT_NITER—The number of iteration steps taken.

 FIT_NDF—The number of degrees of freedom for this fit. It equals the number

of data points less the number of adjustable parameters and is usually denoted

as :  = N − m. 

 FIT_WSSR—The weighted sum of squares residual, evaluated at the point to

which the iteration converged: E 2 (as defined earlier).

 FIT_STDFIT—sqrt(E 2/ ).

 FIT_P—The p-value, calculated from the chi-square distribution, given the

number of degrees of freedom and the final weighted sum of squares. 

Depending on the settings chosen by set fit, gnuplot may also create session vari-

ables holding the uncertainties in the estimated parameter values and for the entries

in the covariance matrix. (See section F.7.5.) 

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F24 APPENDIX F Higher math

F.7.4 Practical advice

Like any other nondeterministic, iterative calculation, nonlinear least-squares fitting

isn’t guaranteed to converge (and even less guaranteed to converge to the “desired”

solution.) The following considerations may be helpful if you encounter problems.

 Most problems with convergence can be solved with a better choice of starting val-

ues. Spend some time trying to fit the curve “by eye” before calling fit, manually try-

ing out different values for the fitting parameters. (This is much more useful than

fiddling with the iteration limits and lambda parameters accessible through set fit.)

 If you need to fit a function with many parameters, try to reduce the complexity by

getting the dominant behavior right before dealing with smaller effects. (In section F.7.2,

we fitted only the two obvious peaks first, before asking whether there might be sec-

ondary peaks present as well.)

 All fitting parameters should be of roughly equal scale. If some of the parameters

differ wildly (by many orders of magnitude) from one another, the fitting function

should be modified to take these factors into account explicitly. (Say you want to fit

f(x; a, b) = a cos(b x), and you know that a is close to 1,000, whereas b is close to 1. You

can either divide the data by 1,000 or write the function as f(x; a, b) = 1000 a cos(b x)

instead.) You can use the set fit prescale option to let gnuplot do some of the work

for you. 

 Finally, the iteration problem becomes mathematically badly conditioned if the fit-

ting function contains several parameters that have similar effects on the behavior of

the function. A blatant example is f(x; a, b) = a  exp(x+b), which despite its appearance

has only one adjustable parameter, because a  exp(x+b) = (a exp(b)) exp(x) = c  exp(x).

For more complicated models, this kind of cross-correlation may be hard to detect

ahead of time. 

F.7.5 Options for the fit command

You can control many aspects of the fitting operation through the set fit command.8

Here’s a summary:

set fit [ verbose | brief | results | quiet ]

        [ logfile "{str:filename}" | default ]

        [ maxiter {int:val} | default ]

        [ limit {flt:eps} | default ] [ limit_abs {flt:eps }

        [ start_lambda {flt:val} | default ]
        [ lambda_factor {flt:val} | default ]

        [ [no]prescale ]

        [ [no]errorvariables ] [ [no]covariancevariables ]
        [ [no]errorscaling ]

        [ script [ "{str:command} | default ] ]

8 The internal variables that were used for this purpose in previous versions of gnuplot have been deprecated.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F25Curve fitting

 Let’s step through them:

 Gnuplot generates a diagnostic for each step in the iteration. Four levels of ver-

bosity are available: 

– verbose prints the entire message.

– brief prints a one-line message for each iteration step.

– results suppresses messages for individual steps and only prints the results

of the fit.

– quiet switches off all diagnostic output.

 By default, diagnostic messages are written (appended) to a file called fit.log.

The filename can be overridden using set fit logfile. If the path name con-

figured identifies a directory (rather than a file), then a file named fit.log is cre-

ated in that directory.9

 The maximum number of iterations can be controlled using set fit maxiter.

A value of 0 or default allows for an infinite number of steps.

 The main convergence criterion is the size of the most recent reduction in the

squared residual. If the relative change in the sum of squared residuals between

successive iteration steps is less than the value specified with set fit limit,

then the iteration stops. The default is 10-5. 

It’s also possible to define a limit for the absolute size of the correction step

using set fit limit_abs. It defaults to 0. 

 The Marquardt-Levenberg algorithm always attempts to take the largest possi-

ble step that will reduce E 2. A numerical factor (usually called  or lambda) con-

trols the size of the step taken and is itself modified by the algorithm as the

iteration proceeds. The value defined using set fit start_lambda is the initial

value of lambda at the start of each iteration step; the value of set fit

lambda_factor is the factor by which lambda is varied when searching for the

optimal step size. Controlling these variables can help to achieve convergence

in difficult situations.10

 For best convergence, all the fitting parameters should be roughly of the same

scale. If they aren’t, you can either rewrite the problem (to take the differing

scales into account explicitly) or try to use set fit prescale. If it’s switched on,

then every variable is scaled by its starting value before each iteration step. 

 When set fit errorvariables is selected, gnuplot generates session variables

that hold the estimates of the uncertainty in the fitted parameters. The names

of these session variables are obtained by appending _err to the actual variable

9 The current gnuplot development version also provides a set fit nolog option that suppresses the creation
of a log file entirely.

10 Keep in mind that the simplest and most effective way to influence the behavior of the fitting routines is to
provide better starting values for the fit parameters. A reasonable selection of starting values will usually obvi-
ate the need to fiddle with the lambda values.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F26 APPENDIX F Higher math

name. That is, the uncertainty in the estimate for a parameter called a is stored

in a variable called a_err, and so on.

If set fit covariancevariables is switched on, then the entries in the cova-

riance matrix are similarly made available. The resulting variable names begin

with FIT_COV_, followed by the names of the two variables in question, sepa-

rated by an underscore. For example, the covariance of two variables named a

and b is in a variable called FIT_COV_a_b.

 The set fit errorscaling parameter concerns the way the accuracies of the

parameter estimates are calculated. (Check the gnuplot standard reference for

details.)

 Using set fit script, you can provide a gnuplot command to run when the iter-

ation is interrupted using Ctrl-C. (The default is to run the replot command.)

For the sake of completeness, I’ll mention that two of these options can be prepopu-

lated through environment variables: FIT_LOG can give the name of a file used for

diagnostic output, and FIT_SCRIPT can contain the name of a command file that’s to

be executed when the iteration is interrupted. Configurations made with set fit take

precedence over those made using environment variables.

Should you do it?
To be honest, I’m not a great fan of least-squares fitting. Despite (or because of) its
appeal and popularity, in my experience it’s easily overused and frequently misused.
It’s wrong to regard it as a “versatile general-purpose tool.” In particular, non-linear

fitting as described here has only some very specific application areas that it’s suited
for; for other purposes, better methods exist. Personally, I think it should be regarded
more as a “last resort” than as a “first thing to try.” Instead consider the following
options:

What are the alternatives?

Depending on what you’re trying to do, there may be easier or otherwise better meth-
ods to use.

If you’re trying to find a smooth curve as a purely graphical visualization of a noisy set
of points, then you should use a non-parametric approximation such as weighted
splines (see section 3.5.1), rather than attempt to fit a function. By choosing the
function to fit, you’re making a very strong statement about the shape of the curve.
You shouldn’t make such a statement unless you have a reasonable justification for
making this particular choice.

Also, keep in mind that your mathematical model may describe the dominant behav-
ior over some region of the data set well, but may nevertheless be incorrect else-
where. The fitting process, by contrast, attempts to minimize the merit function
globally. If the model isn’t applicable over some part of the data set, the values
obtained from the fit may be less accurate than if the fit had been constrained to only
that part of the original data that can be  described accurately by the model. You
should therefore be careful to perform fits only on those parts of the data set for
which the model is good. Proceed with caution!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


F27Curve fitting

 

In a similar spirit, outliers can wreak havoc on results obtained using standard sta-
tistical methods. Both linear and nonlinear regression are affected.

If you’re trying to estimate parameter values, you’ll frequently find that better, more
direct methods exist. Instead of “fitting” a Gaussian to a histogram of values, you
can simply calculate the mean and standard deviation of the data set! Similar closed-
form, maximum-likelihood estimators exist for many commonly used distributions.

Often, a transformation of the data will remove the need for a nonlinear fit. Single and
double logarithmic transformations turn exponential and power-law behavior into lin-
ear problems, for example. If only the dominant or asymptotic behavior is of interest,
you may want to concentrate on it alone and seek a transformation to linear form for
it, rather than fitting a complicated model to the entire problem.

When does curve fitting make sense?

It can be appropriate to fit a phenomenological model to a data set, in order to obtain
an analytical (yet still only phenomenological) description of the data. Although this
looks innocuous, it still can lead to problems because the justification and origin of
the model are so easily ignored. Typically, it won’t be long before it’ll be conveniently
forgotten that the simple analytical model that was assumed for the fitting procedure
has no theoretical justification, and all kinds of unwarranted conclusions will be
drawn from it. Furthermore, the fit is only as good as the function chosen in the first
place. Maybe a different choice would have given different (and better) results. If
more or newer or better data becomes available, will somebody really remember to
reevaluate the choice of model?

Nonlinear fitting can make sense if you want to find good estimates for parameter
values and the nature of the problem is such that no simpler method will do. The dif-
ficulty here lies in the interpretation of the results—not so much for the parameter
values themselves, but for the estimated uncertainty of these results. The interpre-
tation of the reported “errors” isn’t obvious and depends on conditions that aren’t
necessarily fulfilled in practice. This is even more true when you’re trying to decide
between different models based on some measure for the goodness of fit. The entire
topic is complex and difficult, resting on subtle assumptions and producing results
that aren’t easily interpreted correctly. Beware of a false sense of security!

Licensed to Stephanie Bernal <nordicka.n@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/


Philipp K. Janert

G
nuplot is an open-source graphics program that helps 
you analyze, interpret, and present numerical data. 
Available for Unix, Mac, and Windows, it is well-

maintained, mature, and totally free.

gnuplot in Action, Second Edition is a major revision of this 
authoritative guide for developers, engineers, and scientists. 
The book starts with a tutorial introduction, followed by a 
systematic overview of gnuplot’s core features and full coverage 
of gnuplot’s advanced capabilities. Experienced readers will 
appreciate the discussion of gnuplot 5’s features, including 
new plot types, improved text and color handling, and sup-
port for interactive, web-based display formats. The book 
concludes with chapters on graphical effects and general 
techniques for understanding data with graphs. It includes 
four pages of color illustrations. 3D graphics, false-color plots, 
heatmaps, and multivariate visualizations are covered 
in chapter-length appendixes available in the eBook. 

What’s Inside
●  Creating different types of graphs in detail
●  Animations, scripting, batch operations
●  Extensive discussion of terminals
●  Updated to cover gnuplot version 5

No prior experience with gnuplot is required. This book con-
centrates on practical applications of gnuplot relevant to users 
of all levels.

Philipp K. Janert, PhD, is a programmer and scientist. He is the 
author of several books on data analysis and applied math and 
has been a gnuplot power user and developer for over 20 years.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

manning.com/books/gnuplot-in-action-second-edition

$44.99 / Can $51.99  [INCLUDING eBOOK]

gnuplot IN ACTION  Second Edition

OPEN SOURCE/DATA VISUALIZATION

M A N N I N G

“The highly anticipated, 
updated version of my 
go-to-for-everything 
  book on gnuplot.” 

—Ryan Balfanz, Shift Medical, Inc.

“The essential guide 
for newcomers and the 
defi nitive handbook for 

advanced users.” 
—Zoltán Vörös

University of Innsbruck

“Learn how to use gnuplot 
to convert meaningful data 

into attention-grabbing 
visualizations that 

communicate your message 
quickly and accurately.”—David Kerns
Rincon Research Corporation

“An accessible guide to 
gnuplot and best practices of 
everyday data visualization.”—Wesley R. Elsberry, PhD

RealPage, Inc.

SEE  INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Gnuplot in Action, 2nd edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Contents of this book
	How to read this book
	Whom this book is for
	Conventions
	Code examples
	Downloads
	Command synopses
	Abbreviations
	The figures in this book
	Hardware and software requirements
	Reference materials
	Graphical styles and specifications
	File access
	String handling and formatting
	Operators and mathematical functions
	Programming constructs

	About the author
	Author Online
	About the cover

	Part 1 Getting started
	1  Prelude: understanding data with gnuplot
	1.1 A busy weekend
	1.1.1 Planning a marathon
	1.1.2 Determining the future

	1.2 What is graphical analysis?
	1.2.1 Why graphical analysis?
	1.2.2 Limitations of graphical analysis

	1.3 What is gnuplot?
	1.3.1 Gnuplot isn’t GNU
	1.3.2 Why gnuplot?
	1.3.3 Limitations
	1.3.4 Gnuplot 5: the best gnuplot there ever was!

	1.4 Summary

	2  Tutorial: essential gnuplot
	2.1 Simple plots
	2.1.1 Invoking gnuplot and first plots
	2.1.2 Plotting data from a file
	2.1.3 Abbreviations and defaults

	2.2 Saving commands and exporting graphics
	2.2.1 Saving and loading commands
	2.2.2 Exporting graphs

	2.3 Managing options with set and show
	2.4 Getting help
	2.5 Summary

	3  The heart of the matter: the plot command
	3.1 Plotting functions and data
	3.1.1 Plotting functions
	3.1.2 Plotting data

	3.2 Math with gnuplot
	3.2.1 Mathematical expressions
	3.2.2 Built-in functions
	3.2.3 User-defined variables and functions
	3.2.4 Mathematically undefined values and NaN (not a number)

	3.3 Data transformations
	3.3.1 Simple data transformations

	3.4 Logarithmic plots
	3.5 Smooth interpolation and approximation
	3.5.1 Interpolation curves
	3.5.2 Point distributions
	3.5.3 Deduping repeated entries

	3.6 Summary


	Part 2 Creating graphs
	4  Managing data sets and files
	4.1 Quickstart: the standard data-file format
	4.1.1 Comments and header lines
	4.1.2 Selecting columns

	4.2 Managing structured data sets
	4.2.1 Multiple data sets per file: index
	4.2.2 Records spanning multiple lines: the every directive

	4.3 File format options in detail
	4.3.1 Number formats
	4.3.2 Comments
	4.3.3 Field separator
	4.3.4 Missing values
	4.3.5 Strings in data files

	4.4 Accessing columns and pseudocolumns
	4.4.1 Accessing columns by position or name
	4.4.2 Pseudocolumns
	4.4.3 Column-access functions

	4.5 Pseudofiles
	4.5.1 Reading data from standard input
	4.5.2 Heredocs
	4.5.3 Reading data from a subprocess
	4.5.4 Writing to a pipe
	4.5.5 Generating data

	4.6 Metadata in data files
	4.7 Other file formats
	4.8 Summary

	5  Practical matters: strings, loops, and history
	5.1 Strings
	5.1.1 Quotes
	5.1.2 String operations
	5.1.3 Worked example: plotting the Unix password file

	5.2 String expressions and string macros
	5.2.1 String expressions in commands
	5.2.2 Executing a string with eval
	5.2.3 String macros inside commands

	5.3 Generating textual output
	5.3.1 The print and set print commands
	5.3.2 The set table command and the with table style
	5.3.3 Reading and writing heredocs

	5.4 Simplifying work with inline loops
	5.4.1 Loops over numbers
	5.4.2 Loops over strings
	5.4.3 Summary of inline loops

	5.5 Gnuplot’s internal variables
	5.6 Inspecting file contents with the stats command
	5.6.1 The stats command and internal variables
	5.6.2 Further options for the stats command

	5.7 Command history
	5.7.1 Redrawing a graph
	5.7.2 The general history feature
	5.7.3 Restoring session defaults

	5.8 Summary

	6  A catalog of styles
	6.1 Why use different plot styles?
	6.2 Styles and aspects
	6.2.1 Choosing styles inline through with
	6.2.2 The default sequence
	6.2.3 Customizing graph elements

	6.3 A catalog of plotting styles
	6.3.1 Core styles: lines and points
	6.3.2 Indicating uncertainty: styles with error bars or ranges
	6.3.3 Styles with steps and boxes
	6.3.4 Filled styles
	6.3.5 Beyond lines and points: multivariate visualization

	6.4 Putting it together
	6.5 Other styles
	6.6 Summary

	7  Decorations: labels, arrows, and explanations
	7.1 Quick start: minimal context for data
	7.2 Understanding layers and locations
	7.2.1 Locations
	7.2.2 Layers

	7.3 Additional graph elements: decorations
	7.3.1 Common conventions
	7.3.2 Arrows
	7.3.3 Text labels
	7.3.4 Shapes or objects

	7.4 The graph’s legend or key
	7.4.1 Turning the key on and off
	7.4.2 Placement
	7.4.3 Layout
	7.4.4 Appearance
	7.4.5 Explanations
	7.4.6 Default settings

	7.5 Worked example: features of a spectrum
	7.6 Summary

	8  All about axes
	8.1 Multiple axes
	8.1.1 Terminology
	8.1.2 Plotting with two coordinate systems
	8.1.3 Linking axes

	8.2 Selecting plot ranges
	8.2.1 What you need to know for interactive work
	8.2.2 What you might want to know for batch processing

	8.3 Tic marks
	8.3.1 Overview and common conventions
	8.3.2 Tic mark appearance and placement
	8.3.3 Tic labels
	8.3.4 Tic mark location and frequency
	8.3.5 Reading tic labels from file
	8.3.6 Grid and zero axis

	8.4 Special case: time series
	8.4.1 Turning numbers into names: months and weekdays
	8.4.2 General time series: the gory details
	8.4.3 Beyond tic labels: processing date/time information

	8.5 Summary


	Part 3 Mastering technicalities
	9  Color, style, and appearance
	9.1 Color
	9.1.1 Explicit colors
	9.1.2 Alpha shading and transparency
	9.1.3 Selecting a color through indexed lookup
	9.1.4 Mapping a value into a continuous gradient
	9.1.5 Using data-dependent colors
	9.1.6 The built-in color sequences
	9.1.7 Tips and tricks

	9.2 Lines and points
	9.2.1 Point types and shapes
	9.2.2 Dash pattern

	9.3 Customizing color, dash, and point sequences
	9.3.1 Customizing line types
	9.3.2 Special line types

	9.4 Global styles
	9.4.1 Data and function styles
	9.4.2 Line styles
	9.4.3 Arrow styles
	9.4.4 Fill styles
	9.4.5 Other global styles

	9.5 Overall appearance: aspect ratio and borders
	9.5.1 Size and aspect ratio
	9.5.2 Borders
	9.5.3 Margins
	9.5.4 Internal variables

	9.6 Summary

	10  Terminals and output formats
	10.1 The terminal abstraction
	10.1.1 Historical digression
	10.1.2 The terminal workflow
	10.1.3 Terminal capabilities and the test command

	10.2 Font selection and enhanced text mode
	10.2.1 Font selection
	10.2.2 Font resolution
	10.2.3 Enhanced text mode
	10.2.4 Worked example

	10.3 Generating PNG and PDF with cairo-based terminals
	10.4 Using gnuplot with LaTeX
	10.4.1 Including a graph in a LaTeX document
	10.4.2 Using the cairolatex terminal
	10.4.3 Letting LaTeX generate the graph

	10.5 Scalable graphics for the Web with SVG and HTML5
	10.5.1 The svg terminal
	10.5.2 The canvas terminal

	10.6 Interactive terminals
	10.6.1 Common options
	10.6.2 The wxt and qt terminals
	10.6.3 The aqua terminal
	10.6.4 The windows terminal

	10.7 Other terminals
	10.8 Summary

	11  Automation, scripting, and animation
	11.1 Loops and conditionals
	11.1.1 Worked example: making graph paper
	11.1.2 Worked examples: iterating over files
	11.1.3 Worked examples: Taylor series and Newton’s method

	11.2 Command files
	11.2.1 Scripts as subroutines
	11.2.2 Worked example: export script

	11.3 Batch processing
	11.3.1 Using gnuplot in shell pipelines

	11.4 Calling gnuplot from other programs
	11.4.1 Worked example: calling gnuplot from Perl
	11.4.2 Worked example: calling gnuplot from Python
	11.4.3 Helpful hints

	11.5 Animations
	11.5.1 Introducing a delay
	11.5.2 Waiting for a user event
	11.5.3 Further examples

	11.6 Case study: continuously monitoring a live data stream
	11.6.1 Using gnuplot to monitor a file
	11.6.2 Using a driver to monitor arbitrary data sources

	11.7 Summary

	12  Beyond the defaults: workflow and styles
	12.1 The standard interactive workflow
	12.1.1 Extracting specifics from command files
	12.1.2 Extending the command set
	12.1.3 Session variables, loops, and macros

	12.2 Using external editors and viewers
	12.3 Invoking shell commands from gnuplot
	12.3.1 Worked example: plotting each file in a directory

	12.4 Hotkeys and mousing
	12.4.1 Default hotkeys
	12.4.2 Mousing
	12.4.3 Custom hotkeys
	12.4.4 Capturing mouse events
	12.4.5 Case study: placing arrows and labels with the mouse

	12.5 Startup configurations and initialization
	12.5.1 Startup and initialization files
	12.5.2 Environment variables
	12.5.3 Gnuplot command-line flags

	12.6 Stylesheets
	12.6.1 Worked example: stylesheets

	12.7 Summary


	Part 4 Understanding data
	13  Basic techniques of graphical analysis
	13.1 Representing relationships
	13.1.1 Scatter plots
	13.1.2 Highlighting trends

	13.2 Logarithmic plots
	13.2.1 Large variations in data
	13.2.2 Power-law behavior

	13.3 Point distributions
	13.3.1 Summary statistics and box plots
	13.3.2 Jitter plots and histograms
	13.3.3 Kernel density estimates and rug plots
	13.3.4 Cumulative distribution functions

	13.4 Ranked data
	13.5 Pie charts
	13.6 Organizational issues
	13.6.1 The lifecycle of a graph
	13.6.2 Input data files
	13.6.3 Output files

	13.7 Presentation graphics
	13.8 Summary

	14  Topics in graphical analysis
	14.1 Techniques for time-series plots
	14.1.1 Plotting an Apache web server log
	14.1.2 Smoothing and differencing
	14.1.3 Monitoring and control charts
	14.1.4 Changing composition and stacked curves

	14.2 Graphical techniques for multivariate data sets
	14.2.1 Introduction
	14.2.2 Distribution of values by attribute
	14.2.3 Distribution by level
	14.2.4 Scatter-plot matrix
	14.2.5 Parallel-coordinates plot

	14.3 Visual perception
	14.3.1 Banking
	14.3.2 Judging lengths and distances
	14.3.3 Plot ranges and whether to always include zero

	14.4 Summary

	15  Coda: understanding data with graphs
	appendix A


	Appendix A  Obtaining, building, and installing gnuplot
	A.1 Inspecting compile-time options
	A.2 Release and development versions
	A.3 Installing a prebuilt package
	A.3.1 Linux
	A.3.2 Mac OS X
	A.3.3 Windows

	A.4 Building from source
	A.4.1 Obtaining the development version from CVS
	A.4.2 Layout of the source tree
	A.4.3 Building and installing
	appendix B



	Appendix B Resources
	B.1 Gnuplot
	B.1.1 Websites
	B.1.2 Books

	B.2 Data repositories
	B.3 Books

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	appendix C

	Appendix C  Surface and contour plots
	C.1 Surface plots
	C.1.1 The splot command
	C.1.2 Special options for surface plots

	C.2 View point and coordinate axes
	C.2.1 Borders and base plane
	C.2.2 View point

	C.3 Contour lines and contour plots
	C.3.1 Contour plots
	C.3.2 Customizing contour lines and their labels

	C.4 Plotting data from a file using splot
	C.4.1 Grid format
	C.4.2 Matrix format

	C.5 Smooth surfaces
	C.5.1 The set dgrid3d facility
	appendix D



	Appendix D  Palettes and false-color plots
	D.1 Warm-up examples
	D.2 Creating palettes
	D.2.1 Color models and components
	D.2.2 Defining palettes through nodes
	D.2.3 Defining palettes with functions
	D.2.4 Displaying and exporting palettes
	D.2.5 Some example palettes

	D.3 The colorbox
	D.3.1 Mapping the plot range to the palette

	D.4 Using palettes
	D.4.1 Colored surface plots with pm3d

	D.5 False-color plots
	D.5.1 Using points
	D.5.2 Using the pm3d style
	D.5.3 Using the image style

	D.6 Case study: coloring the Mandelbrot set
	D.7 Case study: an interactive palette explorer
	D.8 Further reading
	appendix E


	Appendix E  Special plots
	E.1 Multiplot
	E.1.1 Using multiplot mode
	E.1.2 Layout options and the set multiplot command
	E.1.3 Regular arrays of graphs with layout
	E.1.4 Accommodating marginal labels with margins and spacing
	E.1.5 Graphs within a graph

	E.2 Box-and-whisker plots
	E.2.1 Individual box-and-whisker plots
	E.2.2 Serial box-and-whisker plots

	E.3 Parallel coordinates
	E.3.1 Creating parallel-coordinates graphs
	E.3.2 Worked example: Iris data, again

	E.4 Histograms
	appendix F


	Appendix F  Higher math
	F.1 Parametric plots
	F.2 Non-Cartesian coordinates
	F.2.1 Polar coordinates
	F.2.2 Cylindrical and spherical coordinates

	F.3 Vector fields
	F.3.1 Plane vector fields with plot
	F.3.2 Three-dimensional vectors with splot

	F.4 Built-in mathematical functions
	F.5 Complex numbers
	F.5.1 Application: Mandelbrot set (pure gnuplot)

	F.6 Probability plots
	F.6.1 Adding a probability scale

	F.7 Curve fitting
	F.7.1 Background
	F.7.2 A worked example
	F.7.3 Using the fit command
	F.7.4 Practical advice
	F.7.5 Options for the fit command



