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1
Introduction 

Object of the Chapter

Where advances made in the twentieth century in continuum mechanics and 
the recent developments in configurational mechanics are presented in a dis-
cursive and historical manner so as to introduce the subject matter of this 
book.

1.1 Continuum Mechanics in the Twentieth Century 

Continuum mechanics in its simplest form has been the paragon of field 
theory and developed in parallel with the mathematical field of partial dif-
ferential equations since the inception of this concept by d’Alembert in his 
studies of wave motion in a string and his elements of hydrodynamics in the 
mid-1700s, following Johann and Daniel Bernoulli. Then, after the successful 
modeling of standard behaviors by our great elders (Euler, Lagrange, Cauchy, 
Navier, Stokes, Kelvin, Kirchhoff, Helmholtz, Boussinesq, Boltzmann, von 
Mises, etc.), progress was relatively slow due to the mathematical difficul-
ties in constructing appropriate solutions to boundary-value problems of 
complex geometries and finding the most appropriate functional classes to 
allow for the existence of the looked-for solutions. Now often considered, 
with some scorn—or at least condescension—as an “old” and closed science 
by some physicists, it is true that further progress at the conceptual level was 
also slow and perhaps not as spectacular as in other branches of “natural phi-
losophy” such as electromagnetism. For example, the difficult notion of dis-
sipation had to be grasped and mathematically formulated, whether in fluids 
in the form of viscosity or in solids in the form of plasticity and damage. 

Until recently all these advances were made in the framework of three tenets of 
nineteenth-century physics: linearity, isotropy, and homogeneity. Of course, there 
are exceptions to these such as the early introduction of finite strains in elastic-
ity by Cauchy in the 1820s and others (Piola, Kirchhoff, etc.) in following years, 



2 Configurational Forces

and the inherent nonlinearity of some problems of fluid mechanics. Anisotropy 
was conquered next due to the consideration of crystals. Duhamel was among 
the pioneers along this line, but W. Voigt must be singled out in this frame-
work in particular with his seminal introduction of tensorial concepts, while 
Gibbs and Heaviside were introducing dyadics and a true vectorial analysis. 
This became a landmark of the field to the point that, to many physicists, tensor 
analysis is practically synonymous with continuum mechanics (and general 
relativity). Much more recently, this notion of anisotropy even reached fluids 
in the form of liquid crystals, that is, media that can flow but still exhibit some 
ordering with direction-dependent properties akin to crystals. Considerations 
of material heterogeneities were to come last, as we shall briefly see. 

Apart from mathematical advances with the introduction of new functional 
spaces (Sobolev spaces, distribution theory), the main advance that emerged 
after the rejuvenation (in fact a true “rebirth”) of the field by authors such as 
C.A. Truesdell (e.g., Truesdell and Toupin, 1960; Truesdell and Noll, 1965) was 
the firm grounding of continuum mechanics in a thermomechanical frame-
work, to the posthumous satisfaction of Pierre Duhem (see Maugin, 1999b). 
That very much helped scientists (i) to classify and logically arrange the field, 
although sometimes to a useless extreme (“bourbakism”), and also (ii) to 
incorporate some multiphysics effects (e.g., electromagnetism; see Eringen and 
Maugin, 1990), and to prepare the way for enlarging the categories of model-
ing, including multiscale continuum mechanics and the introduction of scale 
effects (characteristic internal lengths, nonsymmetric Cauchy stress, micropo-
lar and micromorphic continua; gradient theories). In this regard, building on 
the early works of Duhem and the Cosserat brothers, scientists such as Eringen, 
Rivlin, Naghdi, Mindlin, Tiersten, Kroener, Sedov, and others (see Kroener, 
1968) were instrumental in putting on solid grounds the essentials of such gen-
eralized continuum mechanics (cf. Maugin, 2010), with “generalized” often simply 
meaning “more complicated” than the now-standard models of Cauchy, Euler, 
and Navier and Stokes. The books of Eringen (1999, 2001, 2002) illustrate per-
fectly these generalizations, which call for new elements of the kinematics of 
deformation and, correspondingly, in agreement with the duality dear to us, 
new force concepts such as couple stresses, hyperstresses, and so on. 

All these advances of the second half of the twentieth century are more 
generalizations than new conceptual thinking. Of course, we cannot ignore 
the very successful technique of homogenization (replacing a somewhat com-
plicated microstructured—not necessarily periodic—medium by an effective 
medium, the building block of this being a representative volume element 
[RVE] made of rather simple—most often “classical”—material elements). 
Forest (2006), in a remarkable monograph, has established the relationship of 
the results of this powerful technique with generalized continuum mechan-
ics, while the existence of the latter is also supported by long-wavelength 
limits of discrete models in so-called lattice dynamics.

Only at this point was more attention paid to a more original conceptual 
approach to material heterogeneities, whether in the case of composite materials 
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or that of polycrystals, and the necessary accompanying notion of defects. This, 
in our opinion, is the last great conceptual advance in continuum mechanics, 
in particular due to the recognition of the conceptual unity of the subfield of 
continuum mechanics related to the notion of configurational force, the subject 
matter of this book. Indeed, the first example of such “forces” is the Peach–
Koehler (1950) force that drives a dislocation line, while the second is the force 
on a material elastic inhomogeneity (e.g., inclusion) and a field singularity in 
the pioneering work of J.D. Eshelby (1951), whom we consider the founding 
father of our field. The remarkable feature of these developments in a half 
century, which accelerated in the 1990s–2000s, has been the new interrela-
tion of continuum mechanics with recent fields of mathematical physics, in 
particular insofar as invariances are concerned, and with some fields of solid-
state physics and materials science insofar as the relationship between the 
two antagonistic views of the continuum and the discrete are concerned. 

The basic thinking here is a typical Pavlovian reflex of a good “mechani-
cian.” Whatever apparently moves or progresses in the matter in an observ-
able manner is thought of as being acted on by a “force” dual to the observed 
displacement of that “object.” But here this is not a force of the Newtonian type 
(typically characterized per unit of matter), for the object can be a material 
defect of mathematically vanishing support, a dislocation line, a mathematical 
surface of discontinuity (e.g., a phase-transition front, a shock wave), a mate-
rial inclusion, a hole, a field singularity such as a crack tip, a strongly localized 
mathematical field solution (e.g., structured shock waves, solitons), and so on. 
In the framework of continuum mechanics all these take place on the material 
manifold M3, that is, the set of material points constituting the body in a more 
or less smooth manner. This is directly related to the notion of material het-
erogeneity since that feature describes the dependency of the material prop-
erties on the material point (not the point occupied in physical space), hence 
on the local configuration. The problem with such “configurational” forces is 
that they are not directly accessible, but what is shown in their theory is that 
they may be computed once more classical entities are obtained, and then fur-
ther progress of their point of application can be envisaged depending on the 
implementation of a criterion of progress. One easily imagines the practical 
engineering interest for such a procedure in problems of fracture (progress of 
a crack tip) or phase transformations because of its predictive nature.

1.2 The Object of This Book

So-called configurational forces, also called material forces in modern contin-
uum mechanics and, more generally, energetic driving forces, are those forces 
that are associated by duality with the displacement or motion of whatever 
may be considered a defect in a continuum field theory. Conceptually simple 
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examples of such defects are dislocations in ordered crystals, disclinations 
in liquid crystals, vortices in fluid mechanics, cracks and cavities in materi-
als science, propagating fronts in phase-transition problems, shock waves in 
continuum mechanics, domain walls in solid-state science, and, more gen-
erally, all manifestations, smooth or abrupt, of changes in material proper-
ties. In such a framework, the material symmetry of the physical system is 
 broken by the presence of a field singularity of a given dimensionality (point, 
line, surface, volume). Until very recently all these domains were studied 
separately but a general framework emerged essentially through the works 
of the present author and his coworkers, based initially on inclusive ideas 
of Eshelby (deceased 1981)—hence the coinage of Eshelbian mechanics by the 
author for the mechanics of such forces. In this framework, which is devel-
oped in a synthetic form in this book, all configurational forces appear as 
forces of a non-Newtonian nature, acting on the material manifold (the set of 
points building up the material, whether discrete or continuous) and not in 
physical space, which remains the realm of Newtonian forces and their more 
modern realizations, which usually act per quantity of matter (mass or elec-
tric charge). That is, configurational forces act on spatial gradients of proper-
ties, on field singularities, and so on. They acquire a true physical meaning 
only insofar as the associated expended power is none other than a dissipation; 
accordingly, configurational forces are essentially used to formulate criteria 
of progress of defects in accordance with the second law of thermodynamics. 
Within such a general vision, in fact, many irreversible properties of mat-
ter (e.g., damage, plasticity, magnetic hysteresis, phase transition) are seen 
as irreversible local rearrangements of matter (material particles in an ordered 
crystal, spin layout in a ferromagnetic sample, director network in a liquid 
crystal) that are represented by pure material mappings. This is where some 
elements of modern differential geometry enter the picture following earlier 
works by Kröner, Noll, and others. 

Having recognized the material (also called sometimes Lagrangian—as 
opposed to Eulerian) nature of configurational forces, the main progress 
was to identify (i) that the energetic driving forces on material inhomoge-
neities—whether true inhomogeneities, as in recently developed gradient-
materials and obviously in composite materials or quasi-inhomogeneities, as 
in field singularities or gradients in the solution of nonmechanical fields, 
such as temperature in conductors of heat—are generated by a change in 
particle and not a change in the placement of one particle in physical space, 
(ii) that the accompanying flux is none other than the “energy-momentum” 
tensor introduced by Eshelby in defect mechanics in the early 1950s (and 
obviously known in field theories since Hilbert), and, finally, (iii) that the 
associated momentum is a material momentum, also called canonical momentum 
in the nondissipative case but which we sometimes prefer to call pseudomo-
mentum (after Peierls in optics). This kinetic quantity is a covector on the 
material manifold, and it includes, a priori, contributions from all fields. Its 
conservation or nonconservation relates to the fact that the physical system 
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as a whole may exhibit properties that generally depend explicitly—and not 
through the field solution—on the considered material point. In many appli-
cations this dynamic entity is not so much relevant (e.g., in fracture or phase 
transitions), but it plays an essential role in the linear dynamics of crystals 
(Brenig’s so-called crystal momentum) and in the nonlinear dynamics of soli-
tonic structures (wave momentum) and other nonlinear wave phenomena, as 
we proved in the dynamics of nearly integrable systems by using the notion 
of quasiparticles.

Although configurational forces do not live, if we may say so, in the real 
world, they are “visible” through the duality they enjoy with their thermo-
dynamic partners, material displacements. For instance, a macrocrack in the 
protecting vessel of a nuclear reactor is observable; with changes in some 
external conditions (e.g., periodic thermal heating of the structure), we see the 
unfortunate crack progress. According to the classical reasoning of mechan-
ics, a force—the said configurational force—is associated with this progress. 
The theory allows one to compute this force. Similarly, lines of dislocations 
can be observed by some techniques (x-rays). When a system of physical 
forces is applied to the specimen we see the dislocation lines “move.” The 
configurational force associated with this movement, the Peach–Koehler force, 
can be computed. Finally, the same holds true of the tip of a crack, whose 
motion can be observed by infrared thermography in a transparent sample, 
or of domain walls in ferromagnets, which can be observed by Bitter’s tech-
nique, or, further yet, of the propagation of a phase-transformation front during 
quenching of a Japanese sword! Configurational forces do not live in our world 
because they are not the direct manifestation at a point of a classical cause at 
the same point. They are the results of complex, in general cooperative, and 
most often dissipative phenomena, and they can only be the result of a com-
putation, analytical in some cases, numerical in most cases. The mechanics of 
configurational forces or Eshelbian mechanics, as we like to call it, provides the 
means to perform this computation and gives us the tools to exploit them in 
decisive circumstances. It is a true mechanics of forces in the sense that these 
forces contribute in dynamics to a local “conservation” of momentum in the 
general manner of Newton, and they also combine, add, or subtract with 
one another, and they exhibit moments! Later on we will forcefully distin-
guish between “balance laws”—which in contemporary continuum physics 
are most often obtained by localization of global balance laws—and “con-
servation laws,” which are deduced locally and would not correspond to the 
global balance of any a priori physically meaningful quantity. 

The book presents the general framework for configurational forces along the 
above-described line of thought at a time when we consider this framework 
to have reached a sufficiently firm grounding and applications and to have 
embraced a sufficiently rich and varied range to justify this synthesis by an 
active proponent of the subject matter. The power of the concepts indeed 
resides in the many applications, which, in addition to the previously men-
tioned cases, involve as well the study of the perturbed motion of solitonic 
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structures (viewed as localized defects or quasiparticles) under the influence 
of external or coupled fields, and the accuracy of numerical computations 
in finite-difference schemes (FDS) and finite-element methods (FEM) where 
perturbing configurational forces appear if limit/boundary conditions are 
not exactly satisfied (in FDS) or simply due to a bad design of the grid of 
computation in FEM. Although it is based initially on field-theoretic con-
cepts and a somewhat complex geometric vision, the theory of configura-
tional forces is thus endowed with computational interests in addition to the 
obvious understanding and convenient tools that it brings to fields of engi-
neering (e.g., in fracture, damage, plasticity) and condensed-matter physics. 
In our opinion, it constitutes one of the latest and most fruitful advances in 
macroscopic field theories, an area that many have considered a completely 
closed field of research offering no further progress, and therefore no true 
scientific interest, for quite a long time already. 

1.3 The Contents of This Book

The present chapter is a discursive one presenting the most recent steps in the 
evolution of continuum mechanics—at the time of writing—and introducing 
the most relevant notions for our present purpose: material inhomogeneities 
and the allied notion of material forces. Although marked by the idiosyncra-
sies of the author, Chapter 2 presents in a rather condensed manner the fun-
damentals of accepted standard continuum mechanics with no effort at pure 
abstraction but still trying to keep a sufficient level of rigor. Special attention 
is paid to pull-back and push-forward operations between physical space 
and the material manifold. Unusual considerations are those pertaining to 
the so-called inverse motion. The basic thermomechanics are also formulated 
with an emphasis on the Cauchy format and the Piola–Kirchhoff format of 
local balance equations and recalling the role played by the principle of vir-
tual power in modern continuum mechanics. Examples of standard linear 
and nonlinear, recoverable, and thermodynamically irreversible behaviors 
are given by way of illustration, including truly dissipative bulk mechanical 
behaviors treated by means of the notion of internal variable of state. 

Chapter 3 inaugurates the truly original part of the book by introducing 
the notion of Eshelby material stress, the main ingredient in subsequent devel-
opments. This allows us to remind the reader of Eshelby’s original works 
that relate to the evaluation of the “force” acting on an inhomogeneity or a 
material defect. Variational formulations of finite-strain elasticity are given 
on that occasion. In the absence of dissipative processes, Chapter 4 contin-
ues along the same line by introducing the reader to the general notions of 
field theory, variational formulations, and Noether’s theorem, with resulting 
conservation laws. This subject matter is revisited in Chapter 5 in the general 
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case of complex continua admitting no variational formulation because of a 
present dissipation. Two viewpoints are contrasted here, the one classically 
associated with the names of B.D. Coleman and W. Noll and the other closer 
to the spirit of abstract field theory. Chapter 6 then introduces the reader to 
the important notion of local structural rearrangement and its relationship to the 
Eshelby stress as understood by Epstein and the author, following in the path 
of pioneering works by E. Kroener, W. Noll, and C.C. Wang. The geometric 
theory of defects is also dealt with in that chapter, where it is finally shown that 
three lines of research that were developed in the second half of the twenti-
eth century unite in a single synthetic view, in particular unifying the line of 
thought of Eshelby with that of Kroener, Noll, and others and including the 
celebrated multiplicative decomposition of the total deformation gradient. 

While previously mentioned chapters deal with rather smooth fields, 
Chapter 7 concerns the relevance of the notion of Eshelby stress in the thermo-
dynamic description of singular interfaces. Applications concern shock waves, 
phase-transition fronts, and metallurgy problems involving a multitude of 
phases. Other singularity sets are those pertaining to the fracture problem and 
are examined in Chapter 8, with special attention paid to the consideration of 
invariant integrals and the exploitation of generalized functions. From here on 
the reader will find various applications of the already-introduced concepts 
to some complex cases that occur frequently in contemporary continuum 
mechanics. This concerns polar and other microstructured media (Chapter 9), 
systems with mass exchanges, such as in the phenomenon of growth or in 
solid–fluid mixtures (Chapter 10), and electromagnetic deformable media of dif-
ferent types (Chapter 11), a subject dear to the author. In each case attention 
is paid to the most relevant problems such as fracture and phase-transition 
fronts. Of course, the technicality of the exposition increases with the sub-
sequent chapters, and we require here a good deal of patience and some 
previous knowledge from the readers. But the results are worth the effort as 
the whole simultaneously proves the richness, power, and efficiency of the 
approach from the application viewpoint. 

Chapters 12 through 14 have a different nature than the previously 
described chapters. Chapter 12 deals with the exploitation of the canoni-
cal conservation law of momentum (where the involved flux is none other 
than the Eshelby stress) in nonlinear wave propagation as it captures the whole 
dynamic solution and therefore plays an obvious fundamental role in the 
dynamics of quasiparticles associated with some remarkable solutions such 
as solitary waves and solitons. A variety of examples based on generalized 
continuum mechanics are given. Chapter 13 deals with the application of 
the notions of canonical-momentum conservation law and material force in 
the implementation of numerical schemes of different types. The most origi-
nal point here is the strategy of back-and-forth treatment between spatial 
and material configurations in the finite-element scheme, while FDS are 
directly related to the dynamic contents of Chapter 12, and finite-volume ele-
ments find a straightforward application in the numerical simulation of the 
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irreversible progress of phase-transition fronts in crystals. Finally, the con-
clusive Chapter 14 provides hints at analogies with some considerations of 
fluid mechanics and aerodynamics and really sets forth the general view of 
the world of material-configurational forces. A number of appendices have 
been added where necessary. I have been generous in giving an extended 
list of references, trying to be fair to most authors and providing access to a 
roster of works that can be useful to the reader, whether a graduate student 
or a professional researcher. Not all references are cited in the body of the 
text, but are listed in the Bibliography. 

The book is dedicated to Ekkehart Kroener, Henryk Zorski, and Arnold 
M. Kosevich. The chapter abstracts were written with the help of the 
late Jules Verne. 

1.4 Historical Note

The exposition that follows is a rationally ordered reconstruction of the field 
rather than a linear history of it. A short prejudiced personal historical per-
spective goes like this. Clearly, Eshelby’s works were inspired by mathemati-
cal physics. The same can probably be said of the early work of Rogula (1977) 
and Golebiewska–Herrmann (1981, 1982). The latter strongly influenced engi-
neering scientists at Stanford University, the late George Herrmann and his 
coworkers (e.g., Pak and Herrmann, 1986a, 1986b; Eischen and Herrmann, 
1987). This was taken over very successfully by Reinhold Kienzler from 
Bremen, in collaboration with G. Herrmann, in their brilliant application 
of the concept of configurational forces to engineering mechanics (Kienzler 
and Herrmann, 1986) and the strength of materials, culminating in a book 
(Herrmann and Kienzler, 2000). In parallel, a more traditional school of 
mechanical engineering, following along the path opened by German scien-
tists such as Günther (1962), studied in depth various path-independent inte-
grals (Knowles and Sternberg, 1972; Fletcher, 1976; Bui, 1978) with a repeated 
interest in fracture and other problems whose solution exploits these inte-
grals (see, e.g., Buggisch et al., 1981). Pioneers such as Cherepanov (1967; see 
also the collection of papers in the 1998 book edited by Cherepanov) and Rice 
(1968) must be cited as having been instrumental in the application of some 
path-independent integrals (e.g., the celebrated J-integral of fracture). We may 
say that the works of Abeyaratne and Knowles (1990) on interfaces  follow 
this line as well, keeping simultaneously close contact with physical features 
(see their 2001 book). Along another line, it was natural for M.E. Gurtin, a 
pioneer in good mathematical approaches to fracture (Gurtin, 1979a, 1979b) 
and moving interfaces (Gurtin, 1993), to enter the domain of configurational 
forces with an original view (1995, 1999), which we cannot share for reasons 
repeatedly explained in the present book. 
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On our side, having devoted our previous research mostly to relativistic 
mechanics, the electrodynamics of deformable bodies, and nonlinear waves 
in solids while paying sustained attention to the general thermomechanics 
of continua, generalized media, and the theory of elastoplasticity, we entered 
the field in a pedestrian way by establishing first the  relationship between 
the general geometric considerations of K. Kondo, E. Kröner, W. Noll, and 
C.C. Wang (e.g., Noll, 1967), and their theory of material uniformity, and the 
notion of Eshelby stress tensor (his energy-momentum tensor). This was 
achieved in collaboration with M. Epstein (Epstein and Maugin, 1990a, 
1990b), while, in cooperation with C. Trimarco (Maugin and Trimarco, 1992), 
we revisited the relationship of the notion of Eshelby stress with that of the 
variational principle (obviously in the absence of dissipation in matter per 
se). Generalizations to electromagnetic materials of different types by the 
same group of three authors followed rapidly, while a small book (Maugin, 
1993) written while I was a member of the Wissenschaftskolleg in Berlin 
set forth in a few pages general ideas on the subject with special emphasis 
on the differences between Newtonian mechanics and Eshelbian mechan-
ics. This was complemented by a long review (Maugin, 1995). Both the book 
and the review were instrumental in attracting the attention of several 
researchers to the field. Particularly noteworthy was the important remark 
made by Manfred Braun (1997) on the possibility of exploiting the material 
momentum equation or its equilibrium version to the benefit of finite-ele-
ment computations. This was to generate a series of works by R. Mueller and 
coworkers (in Darmstadt), including the present author (e.g., Maugin, 2000a; 
Mueller and Maugin, 2002) and the very active group of Paul Steinmann, 
then in Kaiserslautern (e.g., Steinmann, 2000, 2002a, 2002b; Steinmann et al., 
2001). Steinmann and coworkers cleverly introduced in a systematic way 
the so-called Cauchy and Eshelby formats of a stress tensor and treated a 
number of numerical applications, in particular in the field of large-strain 
biomechanics. 

In the meantime we established a kind of universality for the canonical 
thermomechanics of continua, including most intrinsically dissipative cases 
(Maugin, 1998b, 2000b). Before that, Epstein and I had introduced the notion 
of thermal material force in heat conductors (Epstein and Maugin, 1995a), 
a simple form of which had been introduced by Bui (1978). We also exam-
ined the geometric definition of the Eshelby stress in the case of finite-strain 
plasticity (Epstein and Maugin, 1995b, 1997) as well as in the theory of mate-
rial growth (Epstein and Maugin, 2000). In this line I identified effects of 
pseudoinhomogeneity and pseudoplasticity by their resemblance to the 
Eshelbian type of inhomogeneity effects (Maugin, 2003). Many generaliza-
tions to the cases of electromagnetic materials of different classes and to 
generalized continuum mechanics were given by the author and coworkers 
between 1991 and 2005 (see the appropriate chapter in this book). An origi-
nal approach to dissipative interfaces such as phase-transition fronts and 
shock waves was given in 1997–1998 (e.g., Maugin, 1997, 1998a). Applications 
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to the conservation laws and perturbation of soliton-like solutions were per-
formed in cooperation with Christo I. Christov (e.g., Maugin, 1999a; Maugin 
and Christov, 2002)—after my work of 1992 published in the Journal of the 
Mechanics and Physics of Solids (Maugin, 1992a)—while an original thermody-
namically admissible numerical scheme of the finite-volume type was con-
ceived together with Arkadi Berezovski, with a special interest in moving 
interfaces (see Berezovski et al., 2008) and leaning heavily on the notion of 
material framework and configurational force. 

Several authors have agreed that the work of Burton (1891) germinally 
contains the notion of “material space,” but our own efforts to assess this 
fact have been unsuccessful due to that author’s poetry and approximate 
statements. We rather like to toy with the idea that Nicole (Nicholas) Oresme 
(a French philosopher, mathematician, theologian, and economist, ca. 1320–
1382, who received his doctorate from Paris University in 1356) could be our 
oldest precursor with his well-named Tractatus de configuratione qualitatum et 
motuum, who introduced a graphic representation of material inhomogeneity 
by plotting the variation of a characteristic material property along a direc-
tion and then generalizing this to three dimensions, inventing by the same 
token rectangular coordinate geometry long before Descartes. Indeed, he 
developed a universal theory explaining physical phenomena via the notion 
of geometric configuration (cf. Duhem, 1909; Taschow, 2003). This tells more 
or less the whole story in a nutshell. 

A particular tribute must be paid to my main coworkers, in chronologi-
cal order: Marcelo Epstein, Carmine Trimarco, Cristian Dascalu, Christo 
I. Christov, Anaclet Fomethe, Mohammed Sabir, Shoji Imatani, Liliana 
Restuccia, Arkadi Berezovski, Sara Quiligotti, Ralf Mueller, S. Cleja-Tigoiu, 
Vassilios Kalpakides, and Markus Lazar, all professionals of indispen-
sable value. My friends George Herrmann and Henryk Zorski (both now 
deceased), Reinhold Kienzler, Wolfgang Muschik, Manfred Braun, Genady 
P. Cherepanov, Juri Engelbrecht, Paul Steinmann, and James Casey were also 
of great help in their sustained support and comprehension. I could also 
always count on my masters, Paul Germain, A. Cemal Eringen, and Ekkehart 
Kröner, all unfortunately now deceased. 
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2
Standard Continuum Mechanics

Object of the Chapter

Where we remind the reader of the formulation of deformation theory and 
thermomechanics principles accepted by most specialists in the period 
1950–1990.

2.1 Theory of Motion and Deformation

First we have the notion of the material body.

2.1.1 Material Body

Here, a nondefective material body is a simply connected region B of a three-
dimensional Euclidean manifold M, or simply M, called the material manifold. 
The elements of this manifold are so-called material points X. In (possibly but 
not necessarily) curvilinear coordinates XK, K = 1, 2, 3, this point is simply rep-
resented by the boldface letter X. To each point X on M is attached a density, the 
matter density ρ0, which is the density of matter at the reference configuration 
KR. This may be a function of X, as is the case in materially inhomogeneous 
bodies, and perhaps, but rarely, a function of Newtonian time t itself. The lat-
ter scalar parameter belongs to an ordered one-dimensional continuum, the 
positive real line R, which presents no defects. That is, time itself cannot be 
“fractured.” With this we have introduced the basic space–time parametriza-
tion of the classical mechanics of deformable solids, the set (X, t).

Next we have the definition of the motion.

2.1.2 Motion (or Deformation Mapping)

The motion (or deformation) of the material body B of M is the time-ordered 
sequence of the positions, sometimes called placements, occupied by the point 
X in Euclidean physical space E3, the arena of classical phenomenological 
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physics. This is expressed by the sufficiently (as needed) regular space–time 
parametrized mapping (Figure 2.1).

 x = χ (X, t). (2.1)

This is often (but not necessarily) reported to a Cartesian system of coordi-
nates xi, i = 1, 2, 3. Note that physical space here is always Euclidean, since we 
work in Newtonian physics, while M could be non-Euclidean (as would be 
the case in a defective material body). The set of geometric points x(B, t fixed) 
constitutes the actual or current configuration Kt of the body at time t. Usually, 
an origin of time, say t0, is chosen such that t0 < t, and (2.1) then reads

 x0 = χ (X, t0). (2.2)

When both mappings (2.1) and (2.2) are sufficiently smooth, and in particu-
lar, invertible, we can rewrite (2.1) as

 x x x x= ( )( ) = ( ) = ( )−χ χ χ χ1
0 0 0 0 0, , , ; , .t t t t t  (2.3)

This representation of the direct motion is called Lagrangian, the x0 being 
Lagrangian coordinates. The configuration K0 = Kt (t = t0) of the body, the ini-
tial configuration at t = t0, belongs to the sequence of “actual” configurations. 
This is the motion description preferred in fluid mechanics. Many authors 
identify the two representations (2.1) and (2.3) by identifying X and x0. But 
the motion representation (2.1) is somewhat more abstract and is essentially 
due to Gabrio Piola (1848) in a paper of far-reaching insight. Indeed, the 
consideration of the material configuration KR that corresponds to an ideally 
unstrained and unloaded configuration, corresponding usually to a mini-
mizer of the energy (cf. Lardner, 1974), is essential in studying the material 

C(X)
X–1(x,t)

X

x(X,t) 

M3 x

X0(X,t)

E3

Figure 2.1
The classical view of finite transformations (direct and inverse motions).
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symmetry of solid bodies and defining material properties in a general man-
ner. While (2.1) is called the direct-motion mapping KR → Kt at t, in the same 
smoothness conditions as above, the inverse motion is given by

 X = χ–1 (x, t). (2.4)

The direct F and inverse F–1 motion gradients are defined thus

 F
X

F
x

: , : .= ∇ ≡ ∂
∂

= ∇ ≡
∂
∂

− −
−

Rχ
χ χ

χ1 1
1

 (2.5)

It is immediately checked that

 F.F–1 = 1, F–1.F = 1R, (2.6)

where the symbols 1 and 1R represent the unit dyadics in E3 and on M, 
respectively. It must be emphasized that both F and F–1 are not tensors in the 
traditional sense because they are geometric objects defined on two differ-
ent manifolds simultaneously. In picturesque language, we can say that they 
have one foot in Kt and another in KR. Such objects are so-called two-point 
tensor fields. They have components

  F F F F= ≡{ } = ( ) = ( ){ }− − −F FK
i

iK i

K Ki
, ,1 1 1  (2.7)

where the upward or downward position of the lower Latin indices is irrel-
evant by virtue of the Cartesian representation chosen in Kt. Speaking of an 
a priori symmetry of F and F–1 is a mathematical nonsense since one must 
specify with respect to what metric tensorial symmetry is defined. The 
Jacobian determinant of F is noted

 JF = det F. (2.8)

Of course,

 J J
F F− = = ( )− −

1
1 1

det F .  

M AT T ER DENSI T y: If ρ0, the matter density at X, does not depend on time, 
the actual mass density ρ is related to ρ0 by the change of volume between 
configurations, that is,

 ρ ρx X, .t JF( ) = ( ) −
0

1  (2.9)
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Since densities are always positive, only deformation mappings such that JF 
is positive and never vanishes, are considered. In physical terms this signifies 
the impenetrability of matter.

2.1.3 Some Deformation Measures

Deformation measures are typical “metrics” (truly symmetric tensors). Some 
of them can be defined thus (here the superscript T denotes the operation of 
transposition, δ’s are Kronecker symbols):

 C X F F, : ,t C F FT
KL K

i
ij L

j( ) = = ={ }δ  (2.10)

 C F F C F F− − − − − −= ( )( ) = ( ) = ( ) ( ){1 1 1 1 1 1:
T KL

i

K ij
j

Lδ }},  (2.11)

 c FF c− −= = ( ) ={ }1 1: ,T
ij iK

KL
jLF Fδ  (2.12)

 c F F F F: ,= ( ) = ( ) ( ){ }− − − −1 1 1 1T

i

K
KL j

Lδ  (2.13)

The first two, defined over M, are called the Cauchy–Green finite (material) 
strain tensor and the Piola finite (material) strain tensor, respectively. They are 
the inverse to one another. Similarly, the last two, defined in physical space, 
are the (unnamed) finite (spatial) strain tensor and the Finger finite (spatial) 
strain tensor, respectively, and they are inverses of one another. These four 
measures are absolute ones. They are not compared to an undeformed metric. 
Natural relative strain measures are given by

 E C 1 e 1 c: , : .= −( ) = −( )1
2

1
2R  (2.14)

These two are shown to be related by

 E F eF e F EF F F= = ≡ ( )− − − −T T T T
, , .1 1  (2.15)

Equation 2.14 defines relative finite material and spatial strain measures. A 
more general definition than the first of (2.14) allows one to introduce a series 
of material strain measures such that, m = … , –2, –1, + 1, + 2, …,

 E U 1m m
Rm

( ) = −( ): .
1

 (2.16)
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Here U is the right stretch (material) tensor introduced in the polar decomposi-
tion of any nonsingular F—nonvanishing det F—according to a theorem due 
to Cauchy:

 F = RU = VR, (2.17)

where V is the left stretch (spatial) tensor, and R is a rotation that belong to 
SO(3), that is,

 RT = R–1, det R = + 1. (2.18)

Both U and V are positive definite. We immediately check that

 C U c V U V c= = = = = ( )− −2 1 2 1 2
, ; ,

/
JF det det det  (2.19)

and thus from (2.16), in particular,

 E E E 1 C2 2 11
2

( ) −( ) −≡ = −( ), .R  (2.20)

Note that there would be a difficulty with m = 0, so that the following Hencky 
logarithmic strain measures are of special interest by reason of their range of 
values:

 E C e cH H= = −1
2

1
2

log log, .  (2.21)

Also, finding U from C, or V from c–1, is an awkward operation (finding the 
square root of a tensor).

2.1.4 Displacement Field

This is the field u(X, t) or u x,t( )  defined by

 x X u X x X u x= + ( ) = + ( ), , .t tor  (2.22)

On taking the material gradient ∇R of the first of these and the spatial gradi-
ent ∇ of the second we obtain with (2.5),

 F 1 H H u F 1 h h u= + ≡ ∇ = − ≡ ∇−, ; , .R
1  (2.23)
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It follows that we have the following exact formulas:

 E H H H H e h h h h= + +( ) = + −( )1
2

1
2

T T T T, .  (2.24)

In small-strain theory, for which H and h are small in the sense that |H| ≡ 
(trace HT H)1/2 or |h| ≡ (trace hT h)1/2 is considered as an infinitesimal quan-
tity of the first order, then neglecting terms of second order in the “small” 
displacement gradients, we obtain the following approximation:

 E e u u u R 1 u u= = = ∇( ) ≡ ∇ + ∇( )( ) − = = ∇( ) ≡ ∇ − ∇ε ω
S

T

A

1
2

1
2

, uu( )( )T
,

(2.25)

where the subscripts S and A denote the operations of symmetrization and 
skew (anti)- symmetrization, respectively. The true tensors ε and Ω are called 
the infinitesimal strain and rotation. In Cartesian components in the actual 
configuration they have components

 ε ωij i j i j j i i j i j ju u u u u u= ≡ +( ) = ≡ −( ) [ ], , , , ,,
1
2

1
2 ,, ,i( )  (2.26)

where a comma followed by an index i means the partial derivative with 
respect to the spatial coordinate xi. The reader will have noticed that in this 
small-strain approximation we no longer distinguish between material and 
spatial representations. To the same degree of approximation (tr = trace),

 J JF F≅ + ≅ −−1 11tr , trε ε.  (2.27)

QU EST ION:  Find a unique displacement u corresponding to a given 
deformed metric C. Of course, there must exist six so-called compatibility 
conditions in order to extract the three components of u from the nine com-
ponents of C or E. These were originally derived in the nineteenth century 
by Navier and Saint-Venant in small-strain theory. For finite-strain theory, 
it is noticed that, in the absence of defects, the material manifold is flat (in 
the sense of Riemannian differential geometry) and must remain so in the 
course of the deformation. Accordingly, the Riemann curvature associated 
with C or E must always vanish (see, for instance, Maugin, 1993, pp. 54–57, 
for these developments). In three-dimensional space, which is our concern, 
the Riemann curvature tensor reduces to the so-called Einstein tensor. For 
small strains, this tensor, in term of the deformed metric ε, is given by

 Sab ajk bli ki jl= −ε ε ε , ,  (2.28)
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where εijk is the completely skewsymmetric Levi-Civita alternating symbol 
(equal zero when two indices are alike). The condition Sab = 0 is the looked-
for compatibility or integrability condition.

2.1.5 Convection, Pull Back, and Push Forward

Equation 2.15 gives examples of operations of convection of a tensorial object, 
called pull back or push forward depending on whether the operation carries 
a tensorial object from the actual configuration to the reference one, or from 
the latter to the former. They are tensorial transformations effected with 
the help of the motion mapping itself since these operations are conducted 
between two different manifolds. Historically first, but also endowed with 
a definite relevance in continuum mechanics, is the convection operation 
introduced by G. Piola, the Piola transformation. Let A be a vector field in the 
actual configuration. Then the material contravector defined by

 A F A F= = = ( ){ }− −J A J AF
K

F
Ki

i
1 1 .  (2.29)

is the Piola transform of A. Conversely,

 A FA= = ={ }− −J A J F AF
i

F K
i K1 1 .  (2.30)

In this connection the reader will note the following two demonstrable 
identities:

 ∇ ( ) = ∇( ) =− −
R F FJ JF 0 F 01 1, ,  (2.31)

from which there follows that

 ∇ = ∇( ) = ∇R F R FJ J. . . .A F A A  (2.32)

Of course, this reminds us of the formula for the change of elementary vol-
ume, dv and dV, between the actual and reference configurations:

 dv J dVF= ,

so that

 ∇( ) = ∇( )R dV dv. . .A A  (2.33)

By the same token it is salient to remind the reader of the so-called Nanson’s 
formula for the change between oriented surface elements nds and NdS of 
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the same surface with respective unit normals n and N in the actual and 
reference configurations:

 n N F N n Fds J dS dS J dsF F= =− −. , . .1 1  (2.34)

If σ is a spatial tensor defined per unit area in Kt, then we readily check that

 n N T. . ,σds dS=  (2.35)

where the two-point tensor field T is such that

 T F F FT= = = ( ){ } =− − −J T J JF i
K

F
Kj

ji F
1 1 1σ σ σ, .  (2.36)

Note that Equation 2.35 still has a foot in the actual configuration (physical 
space). The object T is the Piola transformed of σ but on the first index only. 
Of course, if one takes the material divergence to the left, noted divR of T, one 
gets immediately (compare to (2.33)):

 div divR FJT = σ,  (2.37)

where the symbol ∇ denotes the spatial divergence taken at the left of a 
tensorial object. Equation 2.37, just like (2.35), still has a foot in the actual 
configuration.

We have emphasized here the importance of the Piola transformation— 
compare the remarkable expressions (2.33), (2.35), and (2.37)— because most of 
this book is concerned with reference configurations while basic physical laws 
are first expressed in the physical frame (actual configuration; see Section 2.2).

2.1.6 Time Derivatives and rates

Motion, as compared to statics and equilibrium, has to do with the time evo-
lution of fields, whereas most of the operations mentioned before had to do 
with the spatial variation of fields. In this regards the basic notion in con-
tinuum mechanics is that of the velocity field. From the two descriptions (2.1) 
and (2.4) of the motion, we can define the physical velocity field v in Kt and the 
material velocity field V in KR by

 v X V x, : , , : ,t
t

t
tX x

( ) = ∂
∂

( ) = ∂
∂

−χ χ 1

 (2.38)

where the second should not be mistaken for the right stretch tensor in spite 
of the notation. Please note the functional dependence indicated in Equation 
2.38. We let the reader check by way of exercise the following two important 
relations between these two velocities:
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 v FV 0 V F v 0+ = + =−, .1  (2.39)

The derivatives used in (2.38) are called the material (or Lagrangian) time 
derivative and the spatial (Eulerian) time derivative since, depending on the 
case, they are taken at fixed material coordinates (particle) or fixed spatial 
coordinates. We clearly have the following operational definitions (prove 
these by way of exercise)

 
∂
∂

= ∂
∂

+ ∇ ∂
∂

= ∂
∂t t t tX x x Xfixed fixed fixed fixed

. ,v ++ ∇V. ,R  (2.40)

since we verify with (2.39) that

 v V. . .∇ = − ∇R  (2.41)

2.1.7 rate of Deformation

This is now a pure question of computation given the basic definitions of the 
deformation field. First of all, we check that

 
∂
∂

= ∇( ) ∂
∂

= ∇( )
−F

v
F

V
t tX

R
T

x

T
, .

1

 (2.42)

These are but compatibility conditions between second-order space–time 
derivatives. But this can also be written as

 
∂
∂

=
∂
∂

=
−

−F
LF

F
M F

t tX x

, . ,
1

1  (2.43)

where we defined the spatial and material rates, L and M, by

 L v M V= ∇( ) = ∇( )T
R

T
, ,  (2.44)

since

 ∇ = ∇ ∇ = ∇−
R

T T
RF F, .  (2.45)

We also have

 L FF M
F

F= =
∂
∂

−
−

 1
1

, ,
t x

 (2.46)



20 Configurational Forces

where a superimposed dot is used as an alternate notation for the material 
time derivative. The symmetric and skewsymmetric parts of L are the strain 
rate (spatial) tensor and rotation rate (or vorticity) tensor, respectively, that is,

 D L v v L v v= = ∇( ) + ∇( ) = = ∇( ) − ∇( )S
T

A
T1

2
1
2

, .Ω  (2.47)

We could also define strain rates and rotation rates in material space.
The denomination of D comes from the fact that a simple calculation yields

 D F EF E F DF= =− −T T 1, .  (2.48)

The following formulas are easily established:

 
∂
∂

= = ∇( ) ∂( )
∂

= ∇( )J
t

J J
dv
t

dvF

X
F F

X

tr L v v. , . ,  (2.49)

since tr L = tr D = ∇.v and ∂ ∂ =( )dV t
X

/ 0 .

2.1.8 rigid-Body Motions

This special class of motions is defined in geometry by Killing’s equations 
for isometries (conservation of a metric in time), here, for instance,

 
∂ ( )

∂
=

E X
0

,
.

t
t X

 (2.50)

For nonzero F, this is equivalent to the spatial expression

 D x 0, ,t( ) =  (2.51)

at all times t. The integral in space of this partial differential equation is 
shown to read (cf. Maugin, 1988, pp. 78–79)

 v x v 0 v 0= + ∇ = ∇ =Ω Ω* *, * , * ,  (2.52)

where Ω* is a skewsymmetric space-independent tensor (rotation rate) and 
v* is a space-independent velocity field, such that

 Ω Ω* *, *
*

,T

T
d
dt

d
dt

= 





= − =P
P v

a
 (2.53)
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after the space-to-space mapping

 x P x a= ( ) + ( )T t t* ,  (2.54)

where P(t) ∈ O(3) is a spatially uniform finite rotation, x* is the position of a 
particular point in the material body in the reference frame, a(t) is a spatially 
uniform time-dependent vector, and x is the position of points of the solid 
in R. Equation 2.54 also represents a rigid change of frames in Newtonian 
mechanics, hence the use of rigid-body motions to define yardsticks for dis-
tance measurements in Newtonian–Galilean mechanics.

REM A R k 2 .1 :  In the case of a deformable body, quite similar to the first of 
(2.54), we would show that

 Ω Ω= ∂
∂

= −R
R

t X

T T , (2.55)

where R is the finite rotation involved in the polar decomposition (2.17).

REM A R k 2 . 2 :  It is interesting to compute the material time derivative of a 
quantity defined by means of the Piola transformation. For instance, starting 
from (2.29), we let the reader show that

 
∂
∂

= ( )−A
F A

t
J

X
F

1 *,

where (A)* is the so-called convected time derivative of A given by

 A A A v A v
A

A v v A( ) = + ∇( ) − ∇( ) = ∂
∂

+ ∇ × ×( ) + ∇( )* : . . .
t x

..  (2.56)

This leads us to the question of so-called objectivity or material-frame indif-
ference. A geometric object is said to be objective if it transforms tensorially 
with respect to changes of spatial frames (cf. (2.54)), that is, by purely spa-
tial, spatially uniform rotations Q(t), such that QT = Q–1, det Q = + 1. For 
instance, the rate of strain D is objective, while the velocity v itself and the 
vorticity are not objective. If a spatial vector field A is objective, then this 
is not the case of its material time derivative. However, we let the reader 
show that the convective time derivative defined by (2.56) is an objective 
field, hence the importance of this derivative in many problems of rheology 
(and electrodynamics of continua; cf. Eringen and Maugin, 1990), where 
constitutive equations in terms of velocities of fields are required to be 
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objective, a natural requirement for the description of matter properties 
independently of the observer. The perspicacious geometer will notice the 
close relationship of the derivative defined in (2.56) with the so-called Lie 
derivative, of which the left-hand side of Equation 2.56 may be the defini-
tion. Another useful objective time derivative is the so-called corotational 
or Jaumann derivative. Let A be a spatial vector field. Then its Jaumann 
derivative is defined by

 DJ A A A= − Ω ,  (2.57)

where Ω is the vorticity tensor.

E x E rC isE :  Prove the objectivity of the field DJA. As a matter of fact, define 
the following material vector by means of a transport by rotation (instead of 
standard pull back), A R A= T  and prove that

 D
tJ

T

X

A R
A= ∂
∂









−


.  (2.58)

Generalization of the definition of convective and Jaumann derivatives to 
tensors of any order is straightforward.

REM A R k 2 . 3 :  In the small-strain theory where the superimposed dot may 
be used for any of the two time derivatives defined in (2.40), we have the fol-
lowing reductions:

 L F H= = =  or v ui j i j, , ,  (2.59)

 D = = = ( )  ε εor D uij ij i j, ,  (2.60)

 Ω Ω= = = [ ]  ω ωor ij ij i ju , .  (2.61)

Of interest for future developments is also the approximation of an infini-
tesimally small rotation, as we can write in the first approximation (compare 
to the second of (2.25)):

 P = +1 ηω,  (2.62)

where η is an infinitesimal parameter and ω = –ωT is finite. Equation 2.62 
introduces the notion of infinitesimal generator of the rotation (orthogonal) 
group O(3).



Standard Continuum Mechanics 23

REM A R k 2 .4 :  The preceding introduction to the motion and kinematics of 
continua is necessary and sufficient for the purpose of this book. Of course, 
there exist more rigorous geometric approaches involving abstract mani-
folds, tangent spaces, fiber bundles, and so on. In this line we recommend 
the  now-classic book by Marsden and Hughes (1975), as well as Ciarlet’s 
(1988) book. But these are not really permeated by the true spirit of contin-
uum mechanics. Along the present line we recommend the books of Eringen 
(1980) and Ogden (1984), with which we fully agree, and, of course, the clas-
sical treatises of Truesdell and Toupin (1960) and Truesdell and Noll (1965), 
the textbooks by Spencer (1976) and Chadwick (1976), the series Continuum 
Physics edited by Eringen (1971–1976), and our own books (Maugin, 1988, 
1993) and Eringen and Maugin (1990).

2.2 Basic Thermomechanics of Continua

2.2.1 Balance Laws

It has become an established tradition in modern continuum physics to intro-
duce the basic balance laws of continuum mechanics and thermodynamics 
in global form, that is, for a whole deformable body B. This applies even to 
Maxwell’s equations in the electrodynamics of continua (cf. Eringen and 
Maugin, 1990). This can be achieved in two different formalisms—which are 
not fully independent of one another—whether the postulate of these bal-
ance laws is made in the actual configuration Kt or on the material manifold 
(configuration KR). To that purpose we note BR and ∂BR the open, simply con-
nected region occupied by the body in KR and its regular boundary (in prin-
ciple without edges and apices) with uniquely defined unit outward-pointing 
normal N, and Bt and ∂Bt, the image of these in the actual configuration, with 
uniquely defined outward-pointing normal n, it being understood that the 
body still is simply connected in this configuration; that is, no holes have 
formed during the deformation mapping. The material bodies considered in 
this section are classical continua exhibiting no visible evolving microstruc-
ture, and they are acted on at most by body forces and surface forces. From 
the thermodynamic viewpoint, they may conduct heat and dissipate energy. 
They may also present body sources of energy and admit a flux of energy at 
their boundaries. They are submitted to the first and second laws of thermo-
dynamics. We are thus led to introducing the following quantities:

The mass density •	 ρ(x, t) in Kt and ρ0(X, t) in KR

The body force •	 f(x, t) per unit mass in Kt

An applied traction •	 Td (x, t;n) at ∂Bt
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An internal energy •	 e per unit mass in Kt

A body source of energy •	 h(x, t) per unit mass in Kt

An energy influx •	 q(x, t; n) at ∂Bt

An entropy •	 η per unit mass in Kt

A body source of entropy •	 η̂  per unit mass in Kt

An entropy influx •	 s(x, t; n) at Kt

An internal source of entropy •	 η  per unit mass in Bt

Exchanging no mass with its exterior and with no mass being created inter-
nally in this modeling, the material body is endowed with an invariant mass 
measure dm, such that

 dm dv dV= = =ρ ρ0 const.  (2.63)

Then the following global balance laws hold true in the actual configuration.

Balance of mass•	 :

 
d
dt

dm
Bt
∫ = 0  (2.64)

Balance of linear (physical) momentum•	 :

 
d
dt

dm dm da
B

d

BBt tR

v f T∫ ∫∫= +
∂

 (2.65)

Balance of angular (physical) momentum•	 :

 
d
dt

dm dm da
B B

d

Bt t t

x v x f x T× = × + ×∫ ∫ ∫∂  (2.66)

First law of thermodynamics•	 :

 
d
dt

H dm P B hdm qdat

B
t

B Bt t t

/ extρ( ) = ( ) + −∫ ∫ ∫∂  (2.67)

Balance of entropy•	 :

 
d
dt

dm dm sda dm
B B B Bt t t t

η η η∫ ∫ ∫ ∫− + =
∂

ˆ   (2.68)

Second law of thermodynamics•	 :

 ηdm
Bt
∫ ≥ 0  (2.69)
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Here we have defined the energy per unit volume or Hamiltonian density, 
the kinetic energy Et, and the power expanded by external source Pext by

 H K E K t E et t t t t= + = ( ) =, , , ,
1
2

2ρ ρx v  (2.70)

and

 P B dm dat
B

d

Bt t

ext ( ) = +∫ ∫∂f v T v. . .  (2.71)

Note that the balance law (2.66) contains no new notion; for example, there is 
no applied couple per unit volume in this modeling. The elementary surface 
area has been noted da.

Following a celebrated principle of Cauchy (cf. Truesdell and Toupin, 1960), 
the surface data (Td, q, s) are linear affine in the unit normal n. Accordingly, 
we can write

 T x n n x n q n x n n sd t q t s t, ; . , , ; . , , ; . ,( ) = ( ) = ( ) =σ  (2.72)

where the second-order (spatial) tensor σ is called the Cauchy stress, q is 
the (spatial) heat (in)flux vector, and s is the (spatial) entropy (in)flux vector. 
Equation 2.72 means that the “internal forces” introduced and their thermal 
analogs depend at most on the first-order description of the geometry of the 
limiting surface. This applies to any facet cut in the body. Accordingly, we 
are not considering here any generalized continuum mechanics (which call 
for the notions of hyperstresses, couple stresses, etc.).

In like manner, global balance laws can be postulated for material domains 
over M. To that purpose, we introduce the Piola transformation of several 
thermomechanical fields (stresses, heat flux, and entropy flux):

 T F Q F q S F s= = =− − −J J JF F F
1 1 1σ, , .  (2.73)

The first of these defines the first Piola–Kirchhoff stress. The transformation is 
performed only on the first index, so that the transformation is only partial, 
yielding a two-point tensor field and not a tensor in the classical sense. The 
second and third parts of (2.73) define the material heat and entropy fluxes. 
Then the postulate of the basic balance laws of thermomechanics in the 
Piola–Kirchhoff form is given by the following set of equations:

 
d
dt

dm
BR
∫ = 0,  (2.74)

 
d
dt

dV dV dAR
B B BR t R

p f N T∫ ∫ ∫= +
∂

ρ0 . ,  (2.75)
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d
dt

H dV h dV dAR
B B BR R R
∫ ∫ ∫= +( ) − −( )

∂
ρ0 f v N Q T v. . . ,  (2.76)

 
d
dt

S dV dV dA dVR
B BB BR RR R

− + = ≥∫ ∫∫ ∫∂
ρ η ρ η0 0 0ˆ . .N S   (2.77)

Here we have not recalled the balance of angular momentum, which is a 
secondary notion, and we have defined a few new quantities by

 

p v p v p

v

R
t

F R R
R R

R R

J H K E

K E

= = = = +

= =

−ρ ρ

ρ ρ

0
1

0
21

2

, , ,

, 00 0e SR, .= ρ η
 (2.78)

Because of the invariance of dm and the fact that dV and BR are material, it is 
immediately checked that we have the following obvious results for any P:

 
d
dt

Pdm
dP
dt

dm
d
dt

PdV
P
t

dV
B B XBBt R Rt
∫ ∫ ∫∫= = ∂

∂
, .  (2.79)

2.2.2 Cauchy Format of the Local Balance Laws of Thermomechanics

On using the first of (2.79), the divergence theorem, where it applies and 
enforcing the basic working continuity hypothesis of continuum physics 
according to which the final integrands must vanish for any spatial volume 
element and surface element, we obtain the following local balance laws 
from (2.64) through (2.69):

Balance of mass, also called the continuity equation•	 :

 ρ ρ ρ ρ+ ∇( ) = ∂
∂

+ ∇ ( ) = =. . , :v p p v
t x

t t0  (2.80)

Balance of linear (physical) momentum•	 :

 ρ σ ρv f− =div  (2.81a)

or

 
∂
∂

+ ∇ ⊗ −( ) =
t

t

x

tp p v f. σ ρ  (2.81b)
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Balance of angular (physical) momentum•	 :

 σ σ σ σ σ= = =[ ]
T

ij ji ij, i.e., or 0  (2.82)

First law of thermodynamics•	 :

 ρ ρ σ ρd
dt

H ht/( ) − ∇ −( ) = +( ). . .v q f v  (2.83a)

or

 
∂
∂

+ ∇ ( )− +( ) = +( )
t

H H ht

x

t t. . .p v q f v/ρ σ ρ  (2.83b)

Balance of entropy•	 :

 ρ ρ ρη ρ ρηd
dt

S st /( ) + ∇ ( ) − =. ˆ   (2.84a)

or

 
∂
∂

+ ∇ −( ) − =
t

S st

x

t. p sη ρ ρη  (2.84b)

Second law of thermodynamics•	 :

 ρη ≥ 0.  (2.85)

Equation 2.82 means that the Cauchy stress is symmetric in the absence of 
microstructure and body couple. Equations 2.80, 2.81b, 2.83b, and 2.84b take 
the form of strict conservation laws in the spatial framework in the absence 
of any source.

2.2.3  Piola–Kirchhoff Format of the Local Balance 
Laws of Thermomechanics

In full parallelism with what was done for the Cauchy format, on using 
the second of (2.79), the material divergence theorem, where it applies and 
enforcing the basic working hypothesis of continuum physics according to 
which the final integrands must vanish for any material volume element 
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and surface element, we obtain the following local balance laws from (2.74) 
through (2.77):

Balance of mass, also called the continuity equation•	 :

 
∂
∂

=
t X

ρ0 0  (2.86)

Balance of linear (physical) momentum•	 :

 
∂
∂

− =
t R

X
Rp T fdiv ρ0  (2.87)

Balance of angular (physical) momentum•	 :

 FT T F= T T  (2.88)

First law of thermodynamics•	 :

 
∂
∂

− ∇ −( ) =
t

HR
X

R. . .T v Q f vρ0  (2.89)

Balance of entropy•	 :

 
∂
∂

+ ∇ − = =
t

SR
X

R R. ˆ :S ρ η ρ η0 0Σ   (2.90)

Second law of thermodynamics•	 :

 ΣR ≥ 0  (2.91)

These equations are not independent of those deduced previously in the 
spatial frame. In particular, (2.88) is just a rewriting of (2.82) in the material 
framework. As for (2.87)—which still has components in physical space—it 
is readily shown to follow from (2.81) by multiplying the latter by JF and 
exploiting (2.9) and (2.31). Again, Equations 2.86, 2.87, 2.89, and 2.90 take 
the form of strict conservation laws in the material formalism (X, t) in the 
absence of source terms. However, sometimes these equations are referred 
to as material equations, as compared to the spatial equations deduced in 
the Cauchy format. This is a misnomer because only the space–time param-
etrization and partial derivatives here refer to this framework while both 
Equations 2.87 and 2.88 still have components in the physical framework 



Standard Continuum Mechanics 29

(actual configuration Kt). We shall see in other chapters how one constructs 
equations that are completely in the material framework, in terms of both 
tensorial objects and space–time parametrization.

2.2.4 Thermodynamic Hypotheses

We denote by θ > 0, inf θ = 0, the thermodynamic temperature. Such a notion, 
as well as that of entropy, is well defined only in thermostatics (see my book 
on thermodynamics, Maugin, 1999), where θ is given by

 θ η
η

η= ∂
∂

> =e
e e

(., )
, (., ),0  (2.92)

where the missing argument may be any other variable of state such as 
strain in thermoelasticity. It is traditional to introduce another thermo-
dynamic function, the Helmholtz free energy ψ, by the following Legendre 
transformation:

 e + − = =
∂ −( )
∂

= − ∂
∂

( ) , .ψ ηθ η
ψ
θ

ψ
θ

 (2.93)

The first of these equations places e and ψ in duality in the sense of convex 
analysis (see Maugin, 1992). Since the Legendre transformation conserves 
convexity, if, as it should be, the internal energy e is convex in η, then the free 
energy ψ is concave in θ, so that the specific heat Cθ is always positive:

 Cθ θ
ψ
θ

= −
∂
∂

>
2

2
0.  (2.94)

Modern thermodynamics, in the manner of Coleman and Noll (cf. Truesdell 
and Noll, 1965), assumes that the notions of temperature and entropy are 
still defined in true thermodynamics, that is, outside thermodynamic equilib-
rium. We shall assume the same as well as the fact that heat body source and 
heat flux and entropy body source and entropy flux are related by

 ˆ , , .η θ θ θ= = =h/ / /s q S Q  (2.95)

If necessary, the last two can be relaxed by considering more general 
 expressions such as

 s
q

k S
Q

k= + = +
θ θ

, ,  (2.96)
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where k and k are so-called extra fluxes of entropy, in the spatial and material 
descriptions, respectively. These vanish most of the time, but there are excep-
tions (e.g., in fluid mixtures).

2.2.5 general Thermomechanical Theorems

We apply the working hypotheses enunciated in the preceding. Then we can 
establish the following theorems.

Kinetic energy theorem•	 : On taking the inner product of (2.81a) with v, 
we obtain that

 ρ
ρ

σ σ ρ
d K

dt

t
T/

tr
( ) − ∇ ( ) + ∇( )( ) =. . . . .v v f v  (2.97)

Internal energy theorem•	 : On expanding (2.84a) and combining with 
(2.97) we obtain that

 ρ
ρ

σ ρ
d E

dt
h

t
T/

tr
( ) − ∇( )( ) + ∇ =. . .v q  (2.98)

Clausius–Duhem inequality•	 : Combining now (2.98), (2.84a), and (2.85) 
and introducing the free energy density ψ = e – ηθ, we obtain the 
following inequality:

 − +( ) + ∇( )( ) − ( ) ∇ = ≥ρ ψ ηθ σ θ θ ρθη  tr /. . ,v q
T

0  (2.99)

while (2.98) takes also the alternate form

 ρθη ρ ρθη + ∇ = +. .s h  (2.100)

Because of the symmetry of σ, we have here

 tr trσ σ. . .∇( )( ) ≡ ( )v D
T

Ultimately, Equation 2.100 is the equation that will govern the temperature 
field.
In direct parallelism with these spatial equations, it is easy to establish the 
following equations in the Piola–Kirchhoff form:

Kinetic energy theorem•	 :

 
∂
∂

− ∇ ( )+ ∇( )( ) =K
t
R

X
R R

T
. . . .T v T v f vtr ρ0  (2.101)
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Internal energy theorem•	 :

 
∂
∂

− ∇( )( ) + ∇ =E
t

hR

X
R

T
Rtr T v Q. . ρ0  (2.102)

Clausius–Duhem inequality•	 :

 θ θ θ θΣR R
T

RW S= − +( ) + ∇( )( ) − ( )∇ ≥  tr /T v Q. ,0  (2.103)

 where we introduced the free energy W = Et – Sθ, per unit volume in 
the reference configuration.
Heat propagation equation•	 :

 θ ρ θS hR R+ ∇ = +.S 0 Σ  (2.104)

REM A R k 2 . 5 :  Had we kept the possibility of considering a nonzero extra 
entropy flux K, then the last two equations would be replaced by the follow-
ing ones:

 θ θ θ θΣR R
T

R RW S= − +( ) + ∇( )( ) + ∇ ( ) − ∇ ≥  tr T v k S. . . 0  (2.105)

and

 θ ρ θS hR R+ ∇ = +. .S 0 Σ  (2.106)

Equations 2.103 and 2.105 essentially mean that S, whatever its detailed form, 
is always the thermodynamic dual of the gradient of temperature.

REM A R k 2 .6 :  We already noticed that e and –ψ are dual to one another 
as regards Legendre transformations. But other, more general quantities 
are associated in the same way. In particular, this remark applies to the 
Hamiltonian and so-called Lagrangian densities (as usually conceived in 
analytical mechanics). As a matter of fact, as we shall find in some sub-
sequent chapters, it may be of interest to consider the Hamiltonian built 
from the kinetic energy and the internal energy, while we may consider a 
Lagrangian built as the difference between a kinetic energy and a kind of 
potential energy—a most usual definition—but the latter may be the free 
energy. Accordingly, considering the material framework for the sake of 
example, we can write

 H K E L K WR
R R

R
R R= + = −, ,  (2.107)
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We let the reader check that the Hamiltonian HR per unit volume in the refer-
ence configuration and the Lagrangian LR are related by

 L S H H S LR R R R R R= +( ) − = +( ) −p v p v. . ,θ θor  (2.108)

with

 p
v

v
pR

R R

R

R RL H
S

L H
S

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

, ; , ,
θ

θ

in agreement with the rules of analytical mechanics applied to a contin-
uum. That is, Equation 2.108 represents a double Legendre transforma-
tion concerning simultaneously thermal processes and the dynamics of 
continua.

REM A R k 2 .7:  The principle of virtual power

Consider Equation 2.81a and take its inner product by a vector field v*—with 
the dimension of a velocity field. On applying the divergence theorem and 
integrating, where fitted, over the volume Bt or the surface ∂Bt, and account-
ing for the natural boundary condition Td = n.σ, we obtain the following global 
expression that is referred to as the statement of the principle of virtual 
power:

 P B P B B P Bt t t tinertia ext int* * , * ,( ) = ∂( ) + ( )  (2.109)

where we have defined the virtual power of inertial forces, of externally 
applied forces, and so-called “internal forces” (here stresses) by

 P B dvt
t

Bt

inertia * . * ,( ) = ∫ p v  (2.110)

 P B B dv dat t
d

BB tt

ext * , . * . * ,∂( ) = +
∂∫∫ ρf v T v  (2.111)

 P B dv dvt
T

BB tt

int tr tr* . * . *( ) = − ∇( )( ) = − ( )∫∫ σ σv D ..  (2.112)

It is immediately noticed that the expressions in (2.110) and (2.111) are linear 
(continuous) functionals over the virtual velocity field v*, while (2.112) is a 
linear (continuous) functional over the spatial gradient of v*, or rather its 
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symmetric part D*: = (∇v*)s, by virtue of the symmetry of the stress (in this 
case). For a special case for which v* is none other than the actual (physical) 
velocity field v, then (2.109) yields the global form of the kinetic energy theo-
rem (cf. (2.97)):

 
d
dt

K dv P B B P Bt
t t

B
t

t

( ) = ∂( ) + ( )∫ ext int, .  (2.113)

Combining this with the global statement in (2.67), we shall obtain a global 
statement of the internal energy theorem. We can proceed along this line. 
Accordingly, this shows that instead of the global statements of the balance 
of linear and angular momenta, we may as well consider Equation 2.109 as 
an a priori statement in which the virtual power of internal forces (stresses) 
accounts for the objectivity of the stress tensor, hence the writing as a lin-
ear continuous functional over D*, an objective tensor, as is easily shown. 
This basic formulation of continuum thermomechanics is in the tradition 
of d’Alembert (notice the affiliation of the author) and presents the advan-
tage of easy generalization to the case of generalized continuum mechan-
ics by enlarging a priori the field of virtual velocities in agreement with the 
degree of fineness selected for the generalized velocity fields (see Maugin, 
1980). Furthermore, it is already in the form of interest for the application 
of certain numerical schemes (e.g., finite elements) since v* is none other 
than a test function in the appropriate functional space. Of course, a par-
allel formulation exists in the Piola–Kirchhoff formulation for which we 
would write

 P B P B B P BR R R Rinertia ext* * , * ,int( ) = ∂( ) + ( )  (2.114)

wherein

 P B dVR R
BR

inertia * . * ,( ) = ∫ p v  (2.115)

 P B B dV dAR R
B

R
d

BR R

ext * , . * . * ,∂( ) = +∫ ∫∂ρ0f v T v  (2.116)

 P B dVR R
T

BR

int * . * .( ) = − ∇( )( )∫ tr T v  (2.117)

Note here that because the Piola–Kirchhoff formulation is not completely 
material, the virtual velocity field v* still is in the actual configuration. 
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Furthermore, this is also true of the body force f and the surface traction TR
d  

that is related to the traction Td via the change of area elements,

 N T T T. ,= = ( )R
d dda dA/

with (cf. Truesdell and Toupin, 1960)

 
da
dA

JF= ( )−N C N. . .
/1 1 2

2.3 Examples of Thermomechanical Behaviors

2.3.1 Thermoelastic Conductors

Apart from pure elasticity, this is the simplest thermomechanical behav-
ior for deformable solids. It is simpler to present the derivation of the cor-
responding constitutive equations in the Piola–Kirchhoff formulation, for 
which the local form of the second law of thermodynamics takes on the form 
of (2.100), that is,

 θ θ θ θΣR R
T

RW S= − +( ) + ∇( )( ) − ( )∇ ≥  tr /T v Q. .0  (2.118)

The observable variables of state in this case are the deformation gradi-
ent F and temperature θ, so that we a priori write the following functional 
dependence for the thermodynamic dependent variables:

 T T F Q Q F F F= ∇( ) = ∇( ) = ∇( ) =, , , , , , , , ,θ θ θ θ θ θR R RW W S S ,, , ,θ θ∇( )R

(2.219)

The same functional dependency is assumed just as a precautionary mea-
sure. Of course, computing the material time derivative of W, we have

   W
W W W

R
T

R
R= ∂

∂
∇( )




+ ∂
∂

+ ∂
∂ ∇( ) ∇tr

F
v. .

θ
θ

θ
θ,,  (2.120)

where we took advantage of the first of (2.42). On substituting this into the 
inequality (2.118) and, following a now-classical argument of B.D. Coleman 
and W. Noll, noting that the resulting inequality involves no terms linear 
affine in ∇Rθ and ∇R

θ  other than those already present in (2.118) or the 
term introduced by (2.120), and the coefficients of the time derivatives do 
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not depend on these, for any nonvanishing values of these derivatives (in 
particular, the motion of the body is not one of a rigid body), we necessarily 
arrive at the following constraints (a more rigorous proof is found in Maugin, 
1988):

 
∂

∂ ∇( ) = = ( ) = ∂
∂

= ( ) = − ∂
∂

W W
S S

W

Rθ
θ θ

θ

0 T T F
F

F, , , ,





θθ
θ θ

F

Q Q F, , ; ,= ∇( )
R

(2.121)

with

 W W= ( ) ∇ →( ) = F Q F 0 0, , .θ θ θlim , ; R  (2.122)

That is, entropy is formally defined just like in thermostatics, although there 
is thermal disequilibrium, and heat flux may still depend on deformation 
and temperature as parameters. The remaining dissipation inequality is of 
pure thermal origin and reads

 Φconduction ≡ −( ) ∇ ≥Q/ . .θ θR 0  (2.123)

A standard expression respecting the last of (2.122) is given by

 Q k F= − ( ) ∇, . ,θ θR  (2.124)

where the necessarily symmetric material tensor k is positive definite.
On using the push forward of T and Q, we obtain the Cauchy stress and 

spatial heat flux as

 σ = ∂
∂

=− −J
W

JF F
1 1F

F
q FQ


, .  (2.125)

Now, if we enforce the condition of objectivity on the function W and the 
tensor k, that is, form invariance under the finite proper orthogonal group of 
transformations in the actual configuration, this will reduce the functional 
dependency of W and k on F on a material measure of strain, for example, 
E, that is,

 W W R= ( ) = − ( ) ∇ˆ , , , . .E Q k Eθ θ θ  (2.126)

One way to prove the first of these is to notice that the local balance of angu-
lar momentum here reads like (2.82) or (2.88). The latter can be viewed, on 
account of the second of (2.121), as a system of first-order partial differential 
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equations for W. According to the Monge–Ampère theory of such equations, 
the first of (2.126) is an admissible integral along the characteristics of this 
system. The identity between this result and (2.126) is due to the fact that the 
group of proper orthogonal transformations is connected, and, therefore, it is 
sufficient to study the invariance of the function W under an infinitesimal 
generator of the group, as given by (2.62). At order η2 of approximation, the 
resulting equation is none other than (2.88) with T given by the second of 
(2.121). This reasoning applies only to elasticity.

Now define the true symmetric material tensor, called the second Piola–
Kirchhoff stress or energy stress in the case of elasticity, S—not to be mistaken for 
the material entropy flux—by

 S TF F F F F= = = = ( ) ( ){ } =− − − −J S JF
T KL

F
Ki

ij
Lj1 1 1σ σ σ, JJF

T−1FSF .  (2.127)

On account of (2.121) and (2.126), this yields

 S
E

F
E

F= ∂
∂

= ∂
∂

−
ˆ

,
ˆ

,
W

J
W

F
T

θ θ

σ 1  (2.128)

where the first of these justifies the name of energy stress. Then a classical 
writing of the balance of linear momentum clearly is in components

 
∂

∂
+( )[ ]+ =

∂
∂X

S u f
u
tK

KL
iL i L i

iδ ρ ρ, .0 0

2

2
 (2.129)

REM A R k 2 . 8 :  Material inhomogeneity

All the preceding developments still hold true when an explicit dependence 
of the function W and of the tensorial coefficient k on the material point X 
exists, that is, when the thermoelastic material considered is materially inho-
mogeneous. It suffices to add the ignored dependency in the relevant func-
tions, but none of the proofs is changed.

REM A R k 2 .9 :  Conjugate pairs or associated pairs of stresses and deforma-
tion measures

While proceeding we have shown that the power of internal stresses per unit 
mass is an invariant. By this we mean that, for example,

 p R
T

int tr tr= ( ) = ∇( )( )− −ρ σ ρ1
0

1. . .D T v  (2.130)

In the present context these two formulations result from the consideration 
of the direct motion and directly derived finite-strain measures. There is 
no opposition in principle to considering formulations that account for the 
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inverse motion and associated finite-strain measures. Accordingly, we could 
envisage energy densities that depend on such arguments. For instance, 
making abstraction of the temperature dependence, we may consider the 
following energy densities:

 W W W W W W= ( ) = ( ) = ( )( )
− −

( )
−( )

1
1

2
1

3
2F C E, , .( )  (2.131)

Then we verify that the following holds true:

 − =
∂
∂















 =

∂
( )

− −
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int . .tr trT
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1
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∂











=

∂
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−( )

t t
tr S

E
. ,  (2.132)

where the partial time derivatives are taken at actual placement x fixed, and 
we have set

T F S C1
1

1
1 1

2
12( )

−
( )

− −
( )

−= ∂ ∂( ) = ∂ ∂( )J W J WF F/ /, , SS E= ∂ ∂( )−
( )

−( )J WF
1

3
2/ .  (2.133)

We let the reader show that the Cauchy stress is then given by

 σ = − = −− − − −2 1 1F S F F S FT T. . . . ,  (2.134)

while the second and first Piola–Kirchhoff stresses are given by

 S C S C C S C T F T F= − = − = −− − − − −
( )

−2 1 1 1 1 1
1

1. . . . , . . JF ..  (2.135)

The proof of these identities exploits the following relations (written in com-
ponents to facilitate the computations):

 
∂( )
∂

= −( ) ( )
−

− −
F

F F
1

1 1j

L

K
i i

L

j

K

F
 (2.136)

and

 
∂( )
∂

= −( ) ( )
−

− −
C

C C
1

1 1

KL

MN

KM LN

C
.  (2.137)

We remark that w J WF= −1  is the free energy per unit volume in the actual 
configuration. Then we ask the reader to check that the Cauchy stress may 
be given the following form (Maugin and Trimarco, 1993):

 σ = −
∂ ( )
∂

= −−
−

−
−

( )w
w

wT T1 F
F

F
1 F T. . .

1

1 1  (2.138)
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Although this is the Cauchy stress, for reasons to become clear in subsequent 
chapters, we say that (2.138) provides an Eshelby format of the Cauchy stress. In 
conclusion of this remark, we note that the various dependencies introduced 
in the preceding for the energy serve to illustrate the notion of conjugate pairs 
of associated stresses and deformation measures via the invariance of the 
specific power expanded by the various stresses (cf. (2.130) and (2.132); see 
also Ogden, 1984, p. 156).

REM A R k 2 .10 :  Isotropic thermoelasticity

The symmetry group of isotropy is the full orthogonal group in the refer-
ence configuration. Accordingly, in the isotropic case function W and tensor 
k must be an isotropic scalar-valued function and an “isotropic” symmetric 
tensor-valued function of the finite strain E, respectively. For instance, we 
shall have the following representations:

 W W W W I SOT= ( ) = ( ) = =( ) ∀ ∈ ( )E PEP P, , , , , , ,θ θ α θα 1 2 3 3 ,, :Iα α= trE

and

 k 1 E E= ( ) + ( ) + ( )K I K I K IR0 1 2
2

α α αθ θ θ, , , ,

according to known representation theorems (cf. Eringen and Maugin, 1990, 
appendices).

REM A R k 2 .11 :  Anisotropic thermoelasticity

It is known, at least in special coordinate frames, how to represent exactly a 
scalar function and a material tensor in terms of a second-order tensor such 
as E, for all crystallographic groups (cf. Eringen and Maugin, 1990, appen-
dices). However, most times, it is sufficient to consider an expansion of the 
energy W and of tensor k in terms of the “small” E and of a slight deviation 
θ θ θ= − 0  from a uniform temperature field, for instance (the abbreviation 
h.o.t. stands for “higher-order terms”),

 W S M E
C

C EKL
KL

KLMN
KE,   θ θ θ ρ

θ
θθ( ) = − + − +0

0

0

2

2
1
2 LL MNE + h.o.t.

and

 K KPQ PQE 0, ,θ θ( ) = ( ) +0 0 h.o.t.,

with the obvious tensorial symmetries

 M M C C C K KKL LK KLMN KL MN MNKL PQ QP= = = =( )( ), , ,0 0
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so that these two tensors have at most 21 and six independent components, 
respectively, and much less for many material symmetries. The first of these 
is called the tensor of elasticity coefficients of the second order since it cor-
responds to the second-order derivative of W, and MKL is the tensor of ther-
moelasticity coupling coefficients, that is,

 M
W
E

C
W

E
KL

KL

KLMN

KL

θ
θ

θ
θ θ

0

2

0

2

0

( ) = ∂
∂ ∂

( ) = ∂
∂= =E 0 ,

,
∂∂

= =
EMN E 0 ,

.
θ θ0

REM A R k 2 .1 2 :  Infinitesimal thermoelasticity

The way is already paved for this approximation, for which the higher-order 
terms noted h.o.t. in the preceding equations are discarded and the finite 
strain E can be replaced by the infinitesimal one, and we need not distin-
guish anymore between upper and lower Latin indices. The balance of linear 
physical momentum and the energy equation take on the following forms:

 σ ρ ρ σ ε θ εij j i i ij ijkl kl ij ij if u C M u, , ,+ = = + =0 0 
,, j( )  (2.139a)

and

 ρ θ θ θ ε ρθ0 0 0 0C K M hij j i ij ij
  = ( ) + +, , ,  (2.139b)

where a superimposed dot stands for partial time derivative and the tenso-
rial material coefficients may still be dependent on the point x for a materially 
inhomogeneous body. The expression of the tensorial material coefficients 
simplifies further in the case of isotropy, for which we have the following 
reduced representations:

 C M m Kijkl ij kl ik jl il jk ij ij i= + +( ) =λδ δ µ δ δ δ δ δ, , 0 jj ijK= δ ,

where λ and μ are Lamé constants (still dependent on θ0), m is the remaining 
thermoelastic coefficient, and K is the heat-conduction coefficient. The usual 
dilatation coefficient α is defined by α = –m/(3λ + 2μ) since we have internal 
strains due to thermal processes defined by

 ε ε σ θ αθδ0ij ij ij= =( ) =0, ,   (2.140)

obtained by inversion of the Hooke–Duhamel linear constitutive equation in 
(2.139a2). The elasticity coefficients introduced in the preceding correspond 
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to a situation of isothermal processes. We let the reader check that under the 
condition of adiabatic or isentropic processes, we have (anisotropic case)

 σ ε θ ρ θij ijkl
S

kl ijkl
S

ijkl O ij klC C C C M M= = + ( ), .0/

These are all the elements of thermoelasticity we need in further chapters.

2.3.2 A Sufficiently Large Class of Dissipative Solids

The elementary stress power (2.118) per unit reference volume can be writ-
ten as

 p i
R

R
T

( ) = ∇( )( ) = ( )tr trT v S E. . .  (2.141)

If instead of (2.119) one assumes that a part of T or S, say Sv, will also a priori 
depend on the strain rate E , for instance linearly, then we obtain for Sv a 
tensor of stress much like what happens in the Newtonian model of viscous 
fluidity but for deformable solids. This provides the so-called Kelvin–Voigt 
model of viscoelasticity, which is not such a good model of solid viscosity (cf. 
Maugin, 1992). Fortunately, there is a much better way to obtain realistic mod-
els of dissipative solids, such as viscous, elastoplastic, viscoplastic, or damag-
ing solids, models that also completely fulfill thermodynamic requirements 
while keeping some contact with physical bases. This is the due application 
of the thermodynamics with internal variables of state (Maugin and Muschik, 
1994; Maugin, 1999). We remind the reader that both deformation and ther-
modynamic temperature are said to be observable state variables. They can 
be measured. They are also directly controlled by means of bulk and surface 
data. Accordingly, there are data associated with them in the bulk and at the 
bounding surface. This is even more visible on the expression of the prin-
ciple of virtual power (for the mechanical part) where bulk and surface data 
are associated with the dual of deformations, stresses.

Of course, macroscopically observable dissipative effects result from 
intricate microscopic processes that are not directly controllable macro-
scopically, although they may be observed with the appropriate instrument 
(e.g.,  optical or electronic microscopes, x-ray, etc.). An example of this is the 
 thermodynamically necessary presence of many dislocations (defects) in 
 metals. Although the dislocations can be observed and some of their prop-
erties (e.g., density) can be measured, we have no means to act directly on 
them. We simply observe their evolution under the action of the local stress 
field, itself determined by bulk and surface force data applied to the body via 
a boundary-value problem solved by any means.

We have to acknowledge our relative ignorance of microscopic processes 
and remedy this in some way at the phenomenological level. The basic idea 
is to identify (a gifted experimentalist should do this identification) a new 
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set of thermodynamic variables, so-called internal ones, noted collectively 
by the symbol α. This may have any tensorial nature depending on the phe-
nomenon studied. According to a remark just made, there won’t be any bulk 
and surface data associated with them, for example, neither contributions 
to the power of external forces in the principle of virtual power nor con-
tributions to the statement of the first law of thermodynamics. These new 
variables are purely dissipative. This is the point of view forcefully advocated 
by Joseph Kestin that we adopted in previous works (Maugin and Muschik, 
1994; Maugin, 1999). It has become a well-accepted point of departure in the 
description of many thermodynamically irreversible processes, whether in 
mechanics or in other fields of physics (e.g., electromagnetism; cf. Maugin, 
1999). The result of this is that all basic statements are left unchanged com-
pared to what was proposed in the foregoing paragraphs, save for the 
assumed dependence of the free energy density on α; that is, instead of 
(2.1221) we shall a priori write

 W W A
W= ( ) = − ∂
∂

F, , , ,θ α
α

 (2.142)

where A is the thermodynamic force associated with α, that is, its thermo-
dynamic dual or conjugate. The associated (intrinsic) dissipated power is 
given by

 p Aintr = . .α  (2.143)

If this is the only dissipative contribution to the Clausius–Duhem inequal-
ity (CDI), and its nonnegativity is required independently of thermal con-
duction dissipation (the most often considered hypothesis), then because of 
(2.142) and using an argument à la Coleman–Noll, we shall have the follow-
ing results of the exploitation of the CDI:

 T
F

Q= ∂
∂

= − ∂
∂

≥ ( ) ∇ ≤W
S

W
A R, , . , . .

θ
α θ θ 0 0/  (2.144)

The precise conditions in which these hold good, in particular, the second 
of these, are duly analyzed in Maugin and Muschik (1994); see the notion of 
local accompanying state. Examples of the exploitation of (2.144) are given in 
Maugin (1999) for both finite- and small-strain theories. It remains to exploit 
the third of (2.144), the simplest strategy consisting in considering the rate α  
as being essentially determined by the conjugate “force” A (Kestin and Rice, 
1970), for example,

 α α θ α= ( )A; , , .F  (2.145)
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Most of the physics related to α is contained in this evolution equation, which 
may have a very singular expression, as shown by some examples in the fol-
lowing. Indeed, a simple proportionality (linear affine) expression of α  in 
terms of A involves a time scale typical of viscous and relaxation effects. But 
there exist dissipative effects, such as plasticity and magnetic hysteresis (at 
low frequencies), that are practically rate-independent; that is, they present 
no time scale. They may also exhibit a threshold in A space. This must be dealt 
with more astutely.

2.3.3 example: elastoplasticity in Finite Strains

In general, deformation is characterized by the tangent map F, a material gra-
dient, between the reference configuration KR and the current configuration 
Kt. Such gradients, by their very nature, compose in a multiplicative man-
ner. Accordingly, if there exist elastic (thermodynamically recoverable) finite 
deformations and anelastic (dissipative) deformations, they should compose 
the total, and only true, gradient F in a multiplicative manner. That is, with 
an obvious notation,

 F F F= e a ,  (2.146)

where none of the contributors Fe and Fa of the decomposition is a true gradi-
ent. In geometric differential terms, they are only Pfaffian forms. The decom-
position in (2.146) goes back to Bilby et al. (1957) but was made popular later 
on by Lee (1969) and his coworkers. A simple picturesque interpretation of 
this is given in Figure 2.2, where the first step, that is, Fa, defines from KR 
a so-called intermediate or elastically released configuration Krelax, as it is also 
obtained from Kt by applying the inverse elastic deformation Fe( )−1

. Then it 
is clear that the decomposition in Equation 2.146 is invariant by rotations Q 
∈ SO(3) of Krelax as we can write

 F F F F F F Q F Q Fe a e a e e a T a= = =ˆ ˆ , ˆ , ˆ ,  (2.147)

KR

F = Fe Fa

Fa Fe

Kt

Ki

Figure 2.2
The multiplicative decomposition of finite strain.
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with

 QQ Q Q 1 Q Q QT T T= = = = ±−, ,1 det 1.  (2.148)

In practice a definite orientation can be granted to Krelax through a particular 
crystal lattice (for this, see Mandel, 1971). Concerning constitutive equations 
all we note is that we may rewrite the inequality (2.118) in a specific form 
by introducing the following elements of kinematics and kinetics. For that 
purpose, on the basis of (2.142), noting that only Fe is observable by elastic 
unloading, we will set (an argument for this will be presented later on based 
on the notion of local structural rearrangement)

 W W e= ( )F , ,α θ  (2.149)

and

 S
W W

A
We

e
= − ∂

∂
= ∂
∂

= − ∂
∂θ α

, : , .T
F

 (2.150)

Then we look for a convenient and suggestive expression for the residual dis-
sipation inequality. To reach such an expression, first note that

   F F F F F Fe a e a a= ( ) − ( )− −
. . . ,

1 1
 (2.151)

obtained by computing F  on the basis of (2.145) and applying Fa( )−1
 to the 

right of the result. Furthermore, setting

 T F T T T T Fv a e: . , : . ,= − =  (2.152)

it is readily checked on account of (2.118) and (2.150) that we obtain the fol-
lowing residual dissipation inequality:

 Φ Φ Φ= + ≥intr th 0,  (2.153)

with

 Φ Φintr thtr /= +{ }+ = −( ) ∇T F T F Qv e a
RA. . , . .  α θ θ  (2.154)

Then we note that the original first Piola–Kirchhoff stress is recovered by 
computing

 T F T T T T= ( ) +( ) = +−a e v e a1
. ,  (2.155)
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wherein

 T F F T F Te a e a vW= ( ) ∂ ∂( ) = ( )− −1 1
. , . ./  (2.156)

The first of (2.154) is of interest because it clearly separates the dissipative 
effects related to Fe  and Fa  (cf. Maugin, 1994). Accordingly, the first is often 
related to pure viscous processes, hence the notation for Tv , and the sec-
ond to pure plasticity effects, so that the superscript a will now be replaced 
by p.

To proceed further we discard the “viscous” type of dissipation so that the 
first of (2.152) yields

 T F T F F= −( ) = ( ) ∂ ∂( )− −p e p eW
1 1
. . ./  (2.157)

It is salient to introduce strain measures in the configuration Krelax by (com-
pare to (2.10) and (2.14))

 
C F F E Ce e T e e e: , ,= ( ) = −( )1

2
1relax

 (2.158)

which are true covariant symmetric tensors in the configuration Krelax 
equipped with unit 1relax.

We introduce the Jacobian determinants

 J J J J Je e p p
F

e p= = = >det detF F, , .0  (2.159)

The following plastic strain rates are also useful:

 D F L F D L F Fp e p e T

S

p T

t
p p pK= ( ){ } = ( ) = ( )− −

. . ,in  1
 (2.160)

and

 D C L Drelax relax relaxinp e p

S

p T
K= { } = ( ). ,  (2.161)

while the second Piola–Kirchhoff stress relative to Krelax reads as

 S F Frelax = ( ) ( )− −
Je e e T1

. . .σ  (2.162)

Then the intrinsic dissipation per unit volume reads

 Φintr tr in= ( ) + −σ α.Dp
F tJ A K1   (2.163)
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and

 Φintr relax relax relax relatr in( ) = ( ) +S D. p A K α xx ,  (2.164)

together with the energy (per unit volume of Krelax)

 W W e
relax = ( ) E , , ,α θ  (2.165)

and the laws of state

 S
Erelax relax= ∂
∂

= − ∂
∂

= − ∂
∂




 W
A

W
S

W
e

, , .
α θ

 (2.166)

Here Ee is the observable mechanical variable of state.
A finite-strain rate-independent theory of elastoplasticity is now completed by 

assuming the existence of a yield (hyper-) surface f ASrelax , ( ) = 0  bounding a 
convex set C in Srelax , A( )  space, and considering the following plastic evolu-
tion equations

 D
Srelax

relax

p f f
A

= ∂
∂

= ∂
∂

  
λ α λ, ,  (2.167)

where λ ≥ 0 , λ  being a so-called plastic multiplier. Equation 2.167 means 
that the plastic evolution presents no time scale (there is a time derivative on 
both sides), and the corresponding intrinsic dissipation is mathematically 
homogeneous of degree one only in the time rates. Mechanical dissipation 
occurs possibly, but not necessarily, when a point on the surface f has been 
reached. The evolution, if any, then is directed along the outward unit nor-
mal to the yield surface. This is the very singular mechanical behavior exhib-
ited by rate-independent plasticity. Finite-strain viscoplasticity would allow 
the working point in Srelax , A( )  space to sit outside the convex set C but with 
a kind of elastic recall—related to a relaxation time—toward the hypersur-
face f = 0 (cf. Maugin, 1999).

RE M A R k 2 .13 :  From (2.161) and (2.164), we note that the intrinsic dissipation 
due to stresses in the elastically released configuration is given by

 tr trrelax relax relax relax rS D M L M S. . , :p p( ) = ( ) = eelax. ,Ce  (2.168)

where Mrelax is the Mandel stress relative to the configuration Krelax. This 
makes some say that the Mandel stress is the driving force of plasticity (cf. 
Mandel, 1971).
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2.3.4 Small Strain rate independent elastoplasticity

In this case we have (F–1)ij = ui,j. The multiplicative decomposition in (2.146) 
translates into the additive decomposition

 ε ε ε= ∇( ) = +u
S

e a ,  (2.169)

where neither the “elastic” strain εe nor the “anelastic” strain are true gra-
dients. There is no longer any distinction between various configurations. 
Following along the same line as for finite strains, we have the following 
expressions in that theory:

Laws of state:•	

 W W e= ( )ε α θ, ,  (2.170)

 S
W W

A
We

e
= − ∂

∂
= ∂
∂

= − ∂
∂θ

σ
ε α

, ,  (2.171)

Dissipation inequality:•	

 Φ Φ Φ= + ≥intr th 0  (2.172)

 Φ Φintr tr /= +( ) + = −( ) ∇σ ε σ ε α θ θv e a
thA. . , . ,   q  (2.173)

where σv : = σ–σe. In the case where there is no viscous stress σv, we contem-
plate the case of pure elastoplasticity in small strains with εa ≡ εp. In close 
parallelism with the reasoning for finite strain, we shall have the following 
evolution equations for rate-independent plasticity:

    ε λ
σ

α λp f f
A

= ∂
∂

= ∂
∂

, ,  (2.174)

where f (σ,A) = 0 is the hypersurface in (σ,A) space that represents the plastic-
ity threshold limiting a convex set C in that space. Points inside this convex 
set correspond to a purely elastic (thermodynamically reversible) behavior. 
Plasticity behavior (a possible nonzero evolution of εp) may occur when the 
working point is on the hypersurface f = 0. Examples of internal variables α and 
the mathematical developments of the small-strain theory are given in Maugin 
(1992). Variable α may be εp itself or a more complex entity such as a work hard-
ening variable accounting for the total past evolution of the plastic strain, in 
which case the convex set C may become mobile during the time evolution.
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3
Eshelbian Mechanics for Elastic Bodies

Object of the Chapter

Where we introduce the notion of Eshelby stress in elasticity and its direct 
generalizations, and witness its first applications to materially inhomogene-
ous bodies.

3.1 The Notion of Eshelby Material Stress

3.1.1 Quasistatic eshelby Stress

For the sake of simplicity we consider the case of the quasistatics of materi-
ally inhomogeneous purely elastic bodies (no dissipation of any kind, inertial 
effects neglected). Then the balance of linear (physical) momentum in the 
Piola–Kirchhoff formulation reads:

 divR
W

W WT f 0 T
F

F X+ = = ∂
∂

= ( )ρ0 , , ; . (3.1)

On applying F to the right of the first equation and noting that

 div div divR R R
T

R RWT F T F T F T F( ) = ( ) − ∇( ) = ( ) − ∇ −. . . . ffinh ,  (3.2)

since

 ∇ = ∂
∂

∇( ) + ∂
∂

= − ∂
∂

≡R R
T

W
W W W
F

F
X

f
XF

. , :
fixed

inh

expl

−− ∂
∂
W
X F fixed

,  (3.3)
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we obtain the fully material equilibrium equation

 div ext inh
Rb f f 0+ + = ,  (3.4)

wherein we have set

 b T F f f F: . , : .= − = −W R1 0
ext ρ  (3.5)

The fully material stress tensor b is called the quasistatic Eshelby stress ten-
sor in honor of J.D. Eshelby (cf. Maugin and Trimarco, 1992), who previously 
called it the elastic energy-momentum tensor or Maxwell stress tensor (but 
this denomination is somewhat misleading; see further developments in 
the following). This material tensor has no specific symmetry. However, on 
account of the local balance of angular momentum (2.82), we easily show that 
it satisfies the following symmetry condition with respect to the Cauchy–
Green (or deformed) material metric C:

 C b C b b C. . . .= ( ) =T T  (3.6)

The material forces fext and finh are the externally applied material force 
(obtained by the negative of the pull back of the prescribed body force) and the 
material force of inhomogeneity. According to its definition in (3.3), the latter cap-
tures the explicit dependence of the function W on the material point (e.g., the 
dependence of the elasticity coefficients on X). At all regular material points 
X, (3.4) is an identity deduced from the basic balance law in (3.1). In field theory 
(see Section 4.2) this is called a conservation law, but here it is in fact a noncon-
servation because of the lack of invariance of the physical system under mate-
rial translation. In the absence of body force and material inhomogeneity, (3.4) 
reduces to a strict conservation law. In the case where (3.1) and (3.4) hold good, 
the preceding manipulation is equivalent to writing the following identity:

 div div ext inh
R RT f F b f f 0+( ) + + +( ) =ρ0 . ,  (3.7)

which may be referred to as the Ericksen identity of elasticity, as Ericksen 
(1977) gave it in the special case (no body force, no elastic inhomogeneity):

 div divR RT F b 0( ) + ( ) =. .  (3.8)

In field theory (Section 4.2), these are none other than special cases of the 
celebrated Noether’s identity.

REM A R k 3 .1 :  On comparing the first of (3.5) and (2.138), we now understand 
why the latter was referred to as the Eshelby format of the Cauchy stress.
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REM A R k 3 . 2 :  Mandel stress

On using the definition of the second Piola–Kirchhoff stress, it is easily 
shown that the Eshelby stress b also reads

 b 1 S C 1 M M S C= − = − =W WR R. , : . ,  (3.9)

where M is the so-called Mandel stress in the reference configuration 
(cf. Remark 2.13). This material true tensor plays an important role in finite-
strain elastoplasticity (cf. Mandel, 1971; Lubliner, 1990). Just like b, M is sym-
metric with respect to C.

3.1.2 Dynamic generalization

In this case we should start with the general equation of balance of linear 
(physical) momentum such as (2.87). We apply F to the right of the two sides 
of this equation for an inertially inhomogeneous material, noting the result 
in (3.31), as well as the fact that

 
∂( )
∂

= − ∂
∂

− ∇ + ( )∇ρ
ρ ρ0

0 0
v

F
P

t t
K K

X X
R

R R
R. / ,  (3.10)

where we have set

 P v F F v X v: . . , .= − = − = ( )ρ ρ ρ0 0 0
21

2
T RK  (3.11)

The first of these we called the material momentum or pseudomomentum. A 
short exercise consists in proving that this materially covariant vector can 
also be written as

 P C V v FV= = −ρ0 . ,since  (3.12)

if V is the material velocity field. Finally, we obtain the balance of material 
momentum in the form

 
∂
∂

− = +P
b f f

t X
Rdiv ext inh ,  (3.13)

where, now,

 b 1 T F 1 M f: . , : ,= − +( ) = − +( ) =
∂
∂

L L
L
t

R
R

R
R

R

X

inh  (3.14)
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if we define a density of Lagrangian LR by (cf. Chapter 2)

 L K W
L

K
WR R

R
R

R= −
∂
∂

= ( )∇ ( ) − ∂
∂

with /
expl expX

X
X

ρ ρ0 0
ll

.  (3.15)

Accordingly, the material force finh captures both inertial (via ρ0) and elastic 
(via W) inhomogeneities. Some authors (Gurtin, 1999) prefer to isolate the 
effect of inertial inhomogeneities. The dynamic Eshelby stress (3.141) satis-
fies the symmetry condition in Equation 3.6. The generalization of Ericksen’s 
identity clearly reads

 
∂( )
∂

− +( )





+ ∂
∂

− +
ρ

ρ0
0

v
T f F

P
b f

t tR Rdiv div ex. tt inh+( )




=f 0.  (3.16)

3.1.3 Weak Form of the Balance of Material Momentum

Equation 3.13 is a covectorial equation on the material manifold M. Let V* be 
a virtual material velocity field, that is, a field at our disposal and not neces-
sarily part of the solution of an actual problem. Taking the inner product of 
both sides of (3.13) by this V* and integrating over the material volume BR 
bounded by ∂BR, we arrive at the following expression:

 P B P B P B B P BR R R R Rinertia int ext inh* * ,( ) = ( ) + ∂( ) + (( ),  (3.17)

with the following definitions for the various virtual powers:

 P B
t

dVR
XBR

inertia * . * ,( ) = ∂
∂∫ P

V  (3.18)

 P dVR
T

BR

int tr* . * ,= − ∇( )( )∫ b V  (3.19)

 P B B dV LR R
B

d R

R

ext
ext* , . * . * . *∂( ) = + − ( )( )∫ f V T v N V ddA

BR∂∫ ,  (3.20)

 P B dVR
BR

inh
inh* . * ,( ) = ∫ f V  (3.21)

where we used the definition of T N Td : .=  and also the relation v* + F.V* = 0, 
which defines v*. Compared to (2.114), the weak formulation (principle of virtual 
power) in (3.17) is not altogether standard because of the intervention of (3.21) 
and of the energy contribution, via LR, in the surface expression in (3.20). Such 
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a term (in quasistatics, hence with LR replaced by –W) is strangely postulated to 
exist by certain authors (cf. Gurtin, 1999) so as to recover essentially (3.13) after 
localization for any V* if the statement (3.17) is considered as primary.

3.2 Eshelby Stress in Small Strains in Elasticity

3.2.1 reduced Form of the eshelby Stress and Field Momentum

First, according to the introduction of this notion already given, we note that 
the Eshelby stress itself is less important than its divergence or its flux insofar 
as mechanics is concerned. This remark is to be taken seriously because such a 
tensor can then be defined up to a divergence-free tensor. This is what clearly 
occurs in the following consideration of the small-strain case. In the quasistatic 
case and in the absence of external body force, the Cauchy stress has a vanish-
ing divergence. Abandoning the distinction between upper and lower Latin 
indices, from the preceding, we have for a materially inhomogeneous body

 f bi i ji j i ji j
inh div div= −( ) = − ( ) =b , ,, .σ σ  (3.22)

On account of the definition of the deformation gradient F in terms of the 
displacement gradient, we immediately have

 b W uji ji jk ki k i= − +( )δ σ δ , .  (3.23)

On substituting from this into the first of (3.22) and accounting for the sec-
ond, we can write identically

 f b b W u W ui ji j ji ji jk k i
Tinh = − ≡ − = − ∇( ), ,with .δ σ σ1(( )

ji
,   (3.24)

where the last expression is the one to be considered for the Eshelby stress 
in small strains. This procedure is not a linearization of b, a procedure that 
would have no meaning, because all elements of b should be of the energy 
type. Some authors, whom we will not cite, have mistakenly “linearized” the 
second contribution in the Eshelby stress, showing by that a lack of under-
standing of the notion. This remark has an importance in fracture studies. 
What about the dynamic case? For small strains we will have in components

 

P u u p P p u

P

i j ji j i i i
f

i i

i
f

= − +( ) = − + =

= −

ρ δ ρ0 0 , , ,

: ρρ ρ0 0 u uj j i
T

i
, . ,= − ∇( )( )u u

 (3.25)
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where the last equation defines the so-called field momentum (sometimes 
called wave momentum) as it appears in crystal physics (cf. Brenig, 1955). Of 
course, we note the remarkable identity

 P p Pf = + ;  (3.26)

that is, field momentum is the sum of linear physical momentum and mate-
rial momentum.

On account of the balance of linear physical momentum and of (3.25), we 
then check in the case of the presence of an external body force and of mate-
rial inhomogeneities of both inertial and elastic origins that the balance of 
material momentum takes on the following form:

 P b f fi
f

ji j i i− = +, ,ext inh  (3.27)

wherein

b L u L K W K fji ji jk k i i= − +( ) = − = ( )δ σ ρ, , , ,
1
2 0

2x u extt = −ρ0 0f uj j i, .  (3.28)

3.3  Classical Introduction of the Eshelby Stress 
by Eshelby’s Original Reasoning

First, we note that if, by its very nature (components in the current configura-
tion), (3.1) could be generated by a variation of the actual placement x, (3.4) 
would correspondingly be generated by an infinitesimal variation in the 
material point X. In order to respect the identity (3.7), these two variations 
should be related by

 δ δ δ δx F X 0 X F x 0+ = + =−. , . ,1  (3.29)

where F and F–1 have their actual values. Mathematically, the elementary 
variations appearing in (3.29) should be defined by

 δ
χ ε

ε
δ

χ ε
εε ε

x
X

X
x

=
∂ ( )

∂
=
∂ ( )

∂=

−

=

, ,
,

, ,
,

t t

0

1

0

 (3.30)
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where ε is an infinitesimally small scalar. These variations, which may be 
referred to as material (at fixed X) and spatial or Eulerian (at fixed x) varia-
tions, were used by Maugin and Trimarco (1992). One way to establish any of 
the two parts of (3.29) is to notice that the material variation of X itself must 
vanish by definition, that is, with an improved notation,

 δ
χ χ ε ε

ε ε
X

t
X 0

X
0=

∂ ( )( )
∂

=
−

=

,
, , ,

.that is,
1

0

The first part of (3.29) is but the variational version of (2.39). In terms of the 
displacement u = x – X and using only one coordinate system, the first of 
Equation 3.29 yields

 δ δu u Xi i j j= − , .  (3.31)

Then we cannot help but repeat in some detail the beautiful argument—a 
thought experiment—of J.D. Eshelby (1951, 1975), which this pioneer used to 
exhibit the notion of material inhomogeneity force in elasticity. (Note: Eshelby’s 
collected works have been edited by Markenscoff and Gupta [2006].)

Consider to that effect Figure 3.1, representing an elastic body of finite 
extent with schematic boundary conditions in displacement and loading. 
The body is supposed to be perfectly elastic and made of a single mate-
rial everywhere except perhaps at a “defect” D that creates a singularity 
in the elastic field and is symbolically represented by a small black region 
in the figure. We want to evaluate what we will now call the configurational 
force acting on that defect. In the spirit of d’Alembert and the principle of 
virtual work, to do so we must slightly move the defect in material space and 

 2 

TdTd

D
S

D
S

1

δX

Figure 3.1
Evaluation of the force on a defect: (a) Original system, (b) replica. (Adapted from Maugin G.A. 
Material inhomogeneities in elasticity, London: Chapman & Hall, 1993.)
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find out how the elastic field gets involved in this virtual material motion, 
hence the interest in the expression in (3.31). If, following Eshelby, we draw 
an arbitrary regular surface S encircling the defect D before its motion 
(Figure 3.1a), we also draw another surface S´ in the replica of Figure 3.1a (cf. 
Figure 3.1b), where S´ still encircles D but is obtained from S via a uniform 
infinitesimal displacement –δX = –{δXj; j = 1,2,3} in the undeformed state of 
the body. Our aim is to compute the energy change from this rigid material 
displacement δX of the singularity. In the original system of Figure 3.1a, cut 
out the material inside S and discard this material, thus creating a hole. We 
must apply suitable tractions on the surface of this hole to prevent any mat-
ter relaxation. In the replica in Figure 3.1b, we do the same but for the sur-
face S .́ The energy E(S´) inside S´ differs from that in S, E(S), by the addition 
of the energy associated, schematically, with the crescent-shaped region ω1 
and by the removal of the energy associated with the crescent-shaped region 
ω2, so that we can write

 δ δE E S E S W dA
S

1 : ' . ,= ( ) − ( ) = − ∫X N  (3.32)

where W is the elastic energy per unit volume in KR. At this stage no change 
occurs outside the hole in the original system or in the energy of its loading 
mechanisms. Now, Eshelby tries to fit the body bounded by S´ into the hole 
S. Obviously, S and S´ can be made to coincide by a simple translation in the 
undeformed state. But this is not true after deformation. The displacement 
on S´ differs from that on S back to the original system by the amount given 
by (3.32). This is the displacement field that we shall apply to the surface of 
the hole. It corresponds to an amount of elementary work (remember that 
n.σ = Td at S):

 δ δ δ σE dA dAd

SS
2 = − = −∫∫ u T u N. . . ,  (3.33)

where the minus sign is introduced because the unit normal N points out-
ward of S. The subtlety now is as follows. Some of the energy variation (3.33) 
goes to raise the elastic energy in the material outside S and some to increase 
the potential energy of the loading mechanisms. Now we can fit S´ into S and 
weld across the interface. But though the displacement matches across the 
interface, the tractions on either side of this interface still differ by a quantity 
of the order of |δX|. Accordingly, there exists a layer of body forces of the 
same order spread over the interface. As we relax this undesirable distribu-
tion of forces, the displacement changes by a quantity of the order of |δX|. 
Therefore, an amount of energy of order |δX|2 is extracted. This will be negli-
gible compared to (3.32) and (3.33). We are now in the situation where the sys-
tem is as it was to begin with except that the defect has been shifted by the 
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material displacement δX, as required in this thought experiment. Adding 
now (3.32) and (3.33) and accounting for (3.31), we obtain

 δ δE dA
S

= − ( )∫X N b. . ,  (3.34)

where b is given by the second of (3.24). Because of the beauty of the argu-
ment Eshelby fully deserves to have his name associated with the material 
tensor b (to which he naturally gave a different name). The configurational 
force Finh associated with the preceding calculation is such that

 δ δ δE
E E

dA
S

= ∂
∂

= − = − ∂
∂

= ∫X
X F X F

X
N b. . , . .inh inh  (3.35)

This configurational force measures the negative of the change of energy 
in the rigid displacement of the defect D, in material space. This justifies the 
naming of “mechanics on the material manifold” or “mechanics in material space” 
used by some authors (e.g., Herrmann and Kienzler, 2000). This we person-
ally christened Eshelbian mechanics.

3.4  Another Example Due to Eshelby: Material 
Force on an Elastic Inhomogeneity

This, if we may say so, is the example that started it all, with Eshelby’s cele-
brated paper of 1951. Again we consider only small-strain elasticity and con-
template the material force acting on an inhomogeneity, such as a region of 
the material body where material properties, here elasticity coefficients, vary 
pointwise in the material. For instance, the components of the second-order 
tensor of elasticity coefficients Cijkl depend on three parameters ξn, n = 1,2,3, 
which may be the coordinates of a foreign inclusion in an otherwise uniform 
body. We write thus

 C C x C Cijkl ijkl
n n

ij kl klij= −( ) = =( )( )ξ .  (3.36)

We assume that fixed surface tractions Td are applied at the regular surface 
∂B of the body so that we can a priori state that

 
∂
∂

( ) = ∂
ξ

σ
n

j jin B0 at .  (3.37)
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In the same spirit as in the previous example, we envisage a slight variation of 
one of the ξn’s, say by the amount δξn. This results in a variation of the exter-
nal potential energy, assuming the absence of body force and quasistatics,

 
∂
∂

= − ∂
∂

= − ∂
∂

( )
∂∂ ∫∫E

da da
n n

d

nBB

ext

ξ ξ ξ
σu T

u
n. . . ,  (3.38)

on account of (3.37). Enforcing the balance of equilibrium in this special case 
(no body force, quasistatics), that is, σji,j = 0 in B, and using the divergence 
theorem in (3.38), we obtain from (3.38) that

 
∂
∂

= − ∂
∂

E E

n

e

n

ext

ξ ξ
2 ,  (3.39)

where Ee is the total elastic energy given by

 E B C dve ijkl
ij kl

B
ij ji( ) = 





= 



∫ 1

2
1
2

ε ε σ ε ∫ dv
B

 (3.40)

in linear anisotropic (inhomogeneous or homogeneous) elasticity. We define 
the force acting on the inhomogeneity by

 F
E

i

e

n

inh = ∂
∂ξ

.  (3.41)

To evaluate this quantity we first consider finite differences and then take a 
limit. The difference of energy between two elastic bodies of the same shape 
and size acted on by the same surface tractions Td but with different elastic-
ity coefficients is obviously given by

 ∆W C C dve ijkl
ij kl

ijkl
ij kl

B
= −( ) =∫1

2
1
2

   ε ε ε ε σ iij ji ij ji
B

dvε σ ε−( )∫ ,   (3.42)

while there holds

 n n T. . .σ σ= = ∂ d Bat  (3.43)

A simple consequence of this is that

  σ σ σ σ εij ij i j ij ij ji
BB

n u da dv−( ) = = −( )∫∫∂ 0 ,  (3.44)
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where, we emphasize, ui is the elastic displacement pertaining to the solu-
tion without superimposed tildes. Combining now the last result with (3.42) 
provides the reduced expression

 ∆E C C dve ijkl ijkl
ij kl

B
= −( )∫1

2
 ε ε .  (3.45)

Thus

 
∆
∆ ∆

E C C
dv

e

n

ijkl ijkl

nB
ij klξ ξ
ε ε=

−( )∫1
2


 ,  (3.46)

and passing to the limit for vanishingly small |Δξn|, subscript n fixed, 
delivers

 F
E C

dvn

e

n

ijkl

n
ij kl

B

inh =
∂
∂

= − ∂
∂∫ξ ξ

ε ε1
2

.  (3.47)

Then the relationship to the Eshelby stress follows from the evaluation of the 
derivative under the integral sign and noting that ∂/∂ξn = –∂/∂xn. We succes-
sively have

 F C C u u dvn
i ijkl

ij kl n

ijkl
i j k

nh = ( ) −( )1
2

2ε ε
, , , ln

BB

e
n kl k

B
W u dv∫ ∫= ( ) −( ), , ,σ ln  (3.48)

or

 F W u u dvn
e

n mk k n m mk m kn
B

inh = ( ) − ( ) +( ) =∫ , , , , .σ σ n b(( )
∂∫ n
B

da,  (3.49)

with a quasistatic Eshelby elastic stress given by (3.24).

3.5 Gradient Elastic Materials

The elementary material force associated with (3.47) is the inhomogeneity 
force given by

 f
W
X

C
Xn

e

n

ijkl

n
ij kl

inh

expl

= −
∂
∂

= − ∂
∂

1
2

ε ε ,  (3.50)
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where the strain (a field) is kept fixed. Imagine a simple variation of all elas-
ticity coefficients in the same way, for example,

 W Ce ijkl
ij klε α ε ε α; , .X X( ) = −( )( ) >1

2
00 exp .e1  (3.51)

From (3.50) we have thus

 f We
1 1
inh inh= =e f. .α  (3.52)

Since α is positive and We is positive definite, the scalar f1
inh  is positive in 

the direction of decrease in the value of the material constants. Accordingly, 
although it is not a force in the Newtonian sense, it provides an indicator of 
the direction of variation of (here) elastic properties. Here it is oriented from the 
harder to the softer part of the material. This will also hold with properties 
varying abruptly such as at the interface in layered composites.

3.6 Interface in a Composite

Both Equations 3.35 and 3.49 exhibit the fundamental role played by the 
Eshelby stress in the formulation of configurational or material forces driving 
singularities and/or material inhomogeneities. This can also be seen at an 
interface between two different elastic materials. Consider that the interface 
is an ideal mathematical surface Σ of zero thickness obtained by the flatten-
ing of a regular region BT of transition. Let x be the local coordinate orthogo-
nal to this transition layer of thickness (x2–x1) counted along the normal of 
the layer, which may be supposed to be flat locally without loss in generality. 
The material inhomogeneity force along x per unit “surface” of this transi-
tion layer will be given by (cf. (3.47))

 f
C

x
dv

ijkl

ij kl
x

x
inh = ∂

∂










∫ 1

21

2

ε ε .  (3.53)

As the thickness of the transition layer goes to zero (the so-called pill-box 
method of engineers), it is easy to see that this expression will reduce to the 
singular expression

 f Cijkl
ij kl

inh Σ( ) = −  
1
2

ε ε ,  (3.54)
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where we have introduced the jump [..] in elasticity coefficients at Σ by

 C C C[ ] = −+ − ,  (3.55)

where C± are the uniform limits of C in approaching Σ from its plus and minus 
sides, respectively, the unit normal being oriented from the minus to the plus 
side.

Accordingly, for hypothetical identical deformations on both sides of Σ, 
and for a one-dimensional model, we see that the “material force” f inh (∑) 
is directed from the harder to the softer side of the surface Σ. It is not a force of 
the Newtonian type. We do not see it in the physical frame. It is none other 
than an indicator (a vectorial one in the truly three-dimensional case) of the 
manner in which material (here elastic) properties vary smoothly (cf. (3.53)) 
or abruptly (cf. (3.54)). On account of the continuity of tractions at Σ, n.[σ] = 0, 
we let the reader show that

 f n binh Σ( ) = − [ ]. .   (3.56)

3.7 The Case of a Dislocation Line (Peach–koehler Force)

In the preceding we examined successively the case of a localized singular-
ity (in the bulk) and the case of smoothly or abruptly distributed material 
inhomogeneities, hence in the bulk or at a surface, so that we now conclude 
the historical contributions to this theory by the evaluation of a material 
force acting on one singular line. This was first developed by Peach and 
Koehler (1950) in a celebrated paper, a true landmark in dislocation theory. 
A dislocation line L is seen in continuum physics as a line along which the 
displacement vector of elasticity suffers, in a certain sense, a finite discon-
tinuity, called the Burgers vector, that we shall note b  to avoid any confu-
sion with Eshelby stress (although there exists a relation between these 
two notions). The magnitude and direction of b  characterize the different 
types of dislocations (see Lardner, 1974). In a discrete crystal b  can only be 
equal to a finite number of the vectors of the lattice. What exactly occurs is 
that in the presence of a dislocation line L, the displacement vector u is no 
longer a  single-valued function of the coordinates: It receives a finite incre-
ment b  in going along a circuit around the dislocation line L. With a definite 
choice of sign, this is expressed by

 d
d
ds

ds
SS

u
u

b= = −∫∫  ,  (3.57)
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where s is a line coordinate along the circuit S. A dislocation is called a screw 
dislocation when b  is parallel to the unit tangent τ to L. It follows from this a 
singularity in the distortion β = ∇u. On subjecting an elastic crystal contain-
ing dislocations to an appropriate external loading, some of the atoms in the 
discrete view will move, and the dislocation line will seem to move in the 
opposite direction. The dislocation is thus subjected to a “displacement,” and 
the true “mechanician” will associate with that motion a “force.” This is the 
driving force on the dislocation, not a force in the classical Newtonian sense, 
since the dislocation line is not a massive object but a mathematical notion 
(a singularity of the field). This force is called the Peach–Koehler force after its 
creators, the qualification of creators—not  discoverers—being justified here 
since this force does not belong to the physical space. However, this “force” 
can be computed if we know the field solution of the problem at hand outside 
the singularity. Its original derivation goes as follows.

In the continuum elastic description of a defective crystal, the interaction 
energy between a dislocation D characterized by an elastic displacement 
field uD and an applied stress field σA is given by

 E D A da daA D

S

D A

S
, . . . ,( ) = − = −∫ ∫n u u Tσ  (3.58)

where TA is the traction associated with stress σA and S is the boundary of 
the region containing the dislocation line L. Equation 3.58 is the expression 
of a potential energy. The dislocation itself is supposed to not produce any 
traction at S. Thus adding the vanishing contribution –n.σD.uA = –uA.TD to 
the integrand in (3.58), we obtain

 E D A daD A A D

S
, . . .( ) = − −( )∫ u T u T  (3.59)

According to the statement of the well-known Rayleigh–Betti reciprocity 
theorem of linear (isotropic or anisotropic) elasticity (cf. Maugin, 1992, p. 87, 
Equation A.16) for any closed surface ∂Ω that does not embrace any body 
force or singularity, we have

 u T u T1 2 2 1 0. . ,−( ) =
∂∫ da
Ω

 (3.60)

for two elastic solutions labeled 1 and 2. Accordingly, the vector

 g u u: . . ,= −1 2 2 1σ σ  (3.61)

is divergence free in that enclosed surface ∂Ω. Applying this reasoning to our 
dislocation case, the surface S can be replaced by any other surface enclosing 
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the line L, as the difference between (3.59) and the new integral will be zero. 
In particular, we may choose a surface such as that in Figure 3.2, made up 
of an open tube enclosing L and the top Σ+ and bottom Σ– of an arbitrary 
 discontinuity surface Σ leaning on the dislocation line L. Here Eshelby (1982, 
p. 211) proposes an ingenious argument that is often bypassed (compared to 
the treatments of Nabarro [1967, p. 83] or Kosevich [1979, p. 63]). Suppose, to 
simplify the reasoning (but this is really immaterial), that the cross-section of 
the small tube that provides a jacket for the loop is everywhere along L a cir-
cle of radius a. Then divide the tube into a large number of short  cylindrical 
beads threaded by the dislocation (i.e., somewhat like a necklace). While inte-
grating the second contribution in (3.59) over one bead, we may take the com-
paratively slowly spatially varying field uA outside the integral. The stress 
field σD of a dislocation is of the order of the inverse, 1/r, of the distance r from 
the dislocation (for this, see Nabarro [1987] or Kosevich [1979]). Thus, the total 
traction exerted on the curved surface of the cylinder will be of the order of 
a2.a–1 = a, while each bead is in static equilibrium. Accordingly, we are now 
sure that the second contribution in (3.59) will go to zero with a. As to the 
first contribution, according to a classical evaluation of dislocation theory 
(see Nabarro [1987] or Kosevich [1979]), we have |uD| = O(ln r) for small r, 
so that this contribution causes no trouble. As a result, we shall be left in 
(3.59) with the integral over the two sides Σ+ and Σ– of the cut Σ. The second 
contribution from (3.59) is continuous across Σ while uD has a discontinuity 
of the value equal to the Burgers vector b. Therefore, the expression in (3.59) 
is now reduced to

 E D A daA, . ,( ) = −
= +
∫b T
Σ Σ

 (3.62)

where Σ+ is oriented as Σ. To complete the proof we consider that when the 
dislocation loop L suffers a little change of shape, say by an infinitesimal 

L

a

Σ Σ–

Σ+

Figure 3.2
Shrinking of S to a surface englobing the dislocation line L and a singularity surface Σ. (Adapted 
from Maugin G.A. Material inhomogeneities in elasticity, London: Chapman & Hall, 1993.)



62 Configurational Forces

vectorial displacement δξ (cf. Figure 3.3), then the corresponding change in 
(3.62), δE, is just the value of the integral in the right-hand side of (3.62) taken 
over the freshly formed portion of the cut. This additional infinitesimal sur-
face element can be written in vector form as

 δ δξ τa X X= × ≡d d ds, ,  (3.63)

where τ is the unit tangent vector to L. We can now write δE as

 δ δξE dsPK

L
= − ( )∫ f . ,  (3.64)

where the Peach–Koehler “force” acting on the dislocation line L per unit 
length, due to an applied stress field σA, is given by

 f bPK A( ) = ( ) ×. .σ τ  (3.65)

Like the material forces exhibited in previous paragraphs, the Peach–Koehler 
force is generated in a thought experiment by a displacement of the defect, 
the dislocation loop L, in material space.

Several remarks are in order. First, there exists a discussion whether it 
is the whole of σA or just its deviatoric part that should be involved in the 
computation of f(PK) (cf. Nabarro, 1967, p. 84). Second, the expression (3.65) is 
very similar to that of the force acting on a current-carrying wire in applied 
electromagnetism. Third, a generalization of (3.65) based on nonlinear elas-
ticity was given by Zorski (1981). Finally, a dynamic equation was derived 
when velocities are involved. This was achieved by Kosevich (1962, 1964) 

L

dX δξ

Figure 3.3
Slight change in the dislocation loop L generating the Peach–Koehler force. (Adapted from 
Maugin G.A. Material inhomogeneities in elasticity, London: Chapman & Hall, 1993.)
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using an analogy with Lorentz’s derivation of the equation of motion of an 
electron accounting for its self-action (cf. Lorentz, 1952). The resulting equa-
tion reads

 f p b VPK( ) = ( ) ×( ). , τ  (3.66)

where the left-hand side is given by expression (3.65), p = ρ0v is the linear 
momentum corresponding to a displacement rate due to both the external 
field and the self-field of the dislocation, and V is the velocity field of the posi-
tion of the dislocation loop L. A field-theoretic derivation of (3.66) was given 
by Rogula (1977, p. 709). The right-hand side of (3.66) can be further trans-
formed to give it the appearance of the product of a “mass” (so-called effec-
tive mass of a dislocation) and an “acceleration,” so that Equation 3.66 takes 
a “Newtonian” form—see Kosevich (1979, pp. 104–109) for this. Remarkably, 
the right-hand side of (3.66) is of second order jointly in the physical veloc-
ity of the material and the dislocation velocity. More recently, a connec-
tion between f(PK) and the Eshelby stress has been established (cf. Denzer, 
2006)—see also Section 3.11 and Chapter 9 for more complex media.

3.8 Four Formulations of the Balance of Linear Momentum

We already have at hand three “formulations” of the balance of linear 
momentum. These are given by (2.81a), (2.87), and (3.13). Consider the case 
of no external body force but a materially inhomogeneous body. These equa-
tions read:

 ρ σd
dt

tp 0− =div ,   (3.67)

 
∂
∂

− =
t R

X
Rp T 0div ,  (3.68)

and

 
∂
∂

− =
t X

RP b fdiv inh .  (3.69)



64 Configurational Forces

Equation 3.68 is deduced from (3.67) by multiplication by JF. Then (3.69) 
follows from (3.68) after application of the deformation F to its right. Why 
not pursue the procedure by multiplying (3.69) by JF

−1 , constructing thus a 
material equation of momentum but per unit volume of the current con-
figuration? We define thus ˆ .P P C V= =−JF

1 ρ  and f̂ finh inh= −JF
1 . Accounting 

now for obvious identities given in Chapter 2, we easily show that the result 
of this manipulation is the following balance of material momentum (cf. 
Maugin and Trimarco, 1992):

 
∂
∂

− − ⊗( ) =
t

div
x

ˆ ˆ ˆ ,P B v P finh  (3.70)

where we have set (see (2.138))

 B F T T
F

: , : ,= − −( ) =
∂

∂
−

( ) ( )
− ( )

−
J L J

W
F F

1
1 1

1 1

1
 (3.71)

where the last stress has already been introduced in (2.133). Equation 3.70 is 
the Eulerian analog of (3.68) in the sense that its exploits the partial deriv-
atives ∇ and ∂/∂t at fixed placement x, but its components are in material 
space. B is a two-point tensor field with variance similar to that of F. It can 
also be written as

 B F T F F: . ,= − −( ) = − +−
( )

−J L J LF F
1

1
1 σ  (3.72)

where σ is the Cauchy stress in the Eshelby format as defined by (2.138) (Maugin 
and Trimarco 1992). Furthermore, by factorizing out the actual density ρ, we 
arrive at the following expression:

 ρ ρd
dt

ˆ / ˆ .P B f( ) − =div inh  (3.73)

Now it is sufficient to check that by applying F–1 to the right of this equation, 
after some labor, one recovers the original Equation 3.67. We have thus com-
pleted the flowchart given in Figure 3.4. Just as in a legerdemain prowess, we 
have made the material inhomogeneity force appear and then disappear. The 
two formulations at the upper-left and lower-right corners involve two-point 
field stress tensors, while the others in the lower-left and upper-right corners 
involve true tensors in current and material configurations, respectively. 
This play with various representations of the same physically meaningful 
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equation is systematically expressed in works by Steinmann et al. (2001 on). 
If these equations are mathematically equivalent (insofar as the fields con-
sidered are sufficiently smooth to allow for the different operations) at any 
bulk points x and X put in one-to-one correspondence through the deforma-
tion, the fact remains that data in the bulk and the bounding surface are only 
meaningful as Newtonian concepts, that is, in the current configuration in 
physical space. To end this paragraph, we note that the symmetry condition 
on σ and b translate to the equations

 B F F B T F F T. . , . . .− −
( )

− −
( )= =1

1
1

1
T T T T  (3.74)

The multiplicity of representations exhibited in the preceding for the bal-
ance of linear momentum necessarily requires, by duality, the existence of 
various variational statements using either the direct- or the inverse-motion 
description.

3.9 Variational Formulations in Elasticity

3.9.1 Variation of the Direct Motion

To simplify the presentation we consider the case of inhomogeneous finite-
strain elasticity in quasistatics and no body force. The equilibrium equations 
in the bulk and at the boundary follow from the following “natural” vari-
ational principle:

 δX
B

d

B
W dV dA

R R

F X x T X x; , . ,( ) − ( )




=∫ ∫∂ 0  (3.75)

∂t X
–divR T = 0 –divR b = f inh

X

JF
–1

·F

·F–1

JF

∂ pR ∂t
∂ p

dd

dt
pt – div σ = 0  (P/ρ) – div B = f inh

dt
ρρ

Figure 3.4
Flowchart exhibiting the four formulations of the linear momentum equation in the absence 
of physical forces. (Adapted from Maugin, G.A., Material inhomogeneities in elasticity, Figure 4.3, 
p. 86, Chapman & Hall, London, 1993.)
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where Td  is a so-called dead loading and δX is a material variation (at fixed 
X). The dependency of W on x means that the contribution of an externally 
applied force has been included in that potential. The material variation con-
serves material volume and commutes with material space integration and 
gradient, so that (3.75) immediately yields

 ∂ ∂( ) − ( )( ) − ∂ ∂( ) − ∂
∂∫ W dA W Wd

B
X R

R

/ div / /F N T X x F. .δ ∂∂( ) =∫ x x. ,δX
B

dV
R

0

(3.76)

so that there follow the local equations

 div in atR
d

R
d

RB BT f 0 N T T− = = ∂, . ,  (3.77)

with

 T F f x= ∂ ∂ = ∂ ∂W Wd/ /, ,  (3.78)

for an arbitrary variation and any material volume and surface elements. 
Here we can write

 W WeF X x F X X x; , ; ,( ) = ( ) − ( ) ( )ρ ϕ0  (3.79)

separating thus the true elastic energy from the potential due to, for example, 
gravity. Then

 f
x x

Xd W= ∂
∂

= − ∂
∂

= − ( )∇ρ ϕ ρ ϕ0 0 .  (3.80)

3.9.2 A Two-Fold Classical Variation: The Complementary energy

In principle, the introduction of the complementary energy density Wc through 
a Legendre transformation allows one to shift from strains to stresses as 
independent variables. But some caution must be taken in the case of finite 
strains. Indeed, as T can be viewed as the thermodynamic dual of F, one 
could be tempted to choose T as the natural variable stresswise. This choice 
would even be additionally supported by the fact that T is naturally related 
to the traction. But for several reasons this would be an illegitimate choice. 
First, T being a two-point tensor field, it is not frame invariant as a tensor. 
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Second, T is not positive (or negative) definite, so that no polar decomposi-
tion applies to it. As a result, basing on T as the only variable, the comple-
mentary energy Wc could not be made depending on material quantities, as 
constitutive laws are requested. Finally, a lack of uniqueness for the inver-
sion with strains could emerge even in the presence of fixed tractions at 
the boundary and unique solution in stresses. This lack of uniqueness is 
due to the indeterminacy of the finite rotation R (see Ogden, 1984). For the 
appropriate choice of the stress tensor and for a detailed discussion of this 
problem, the reader is referred to Ogden (1984), Reissner (1953), Manacorda 
(1954), Hanyga and Seredynska (1983), Maugin and Trimarco (1993), and 
Knops et al. (2003). Indeed, following Reissner (1953)—who himself followed 
Hellinger (1914)—we may consider the second Piola–Kirchhoff stress S in 
such a way that the relevant Legendre transformation reads as follows for an 
elastic material in finite strains:

 W WcS E S E S, . .( ) = ( ) − ( )tr  (3.81)

Then we can state the following variational principle (Maugin and Trimarco, 
1992b):

 

δ ρ ϕX c
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d

BR R1 2

0

 (3.82)

The variation now is a two-fold variation, as both x and X may vary indepen-
dently, while the material particle X is fixed. It is not difficult to show that 
this variation results in the following set of equations:

 div inR
d

RBFS f 0( ) + = ,  (3.83)

 FS T 0− = ∂d
RBon 1 ,  (3.84)

 x x 0− = ∂0 2on BR ,  (3.85)

together with the reciprocal constitutive relation

 E S 0− ∂ ∂( ) =Wc / .  (3.86)
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Note that Equations 3.83 through 3.85, although expressed at material point 
X, have components in the current configuration Kt. This naturally leads to 
considering the inverse-motion kinematic description.

3.9.3 inverse Motion

This may be called the Piola description because we naturally consider the 
motion X = χ–1 (x,t) and the related strain measures C–1 and E(–2). Accordingly, 
we now consider the elastic energy density w(F–1,X) per unit volume of the 
current configuration Kt. The dependence of w on F–1 has to be understood as 
through C–1 or E(–2). Following the Piola procedure, we consider the following 
variational formulation (Maugin and Trimarco, 1993):

 δ δx
d

BB
xw dv da WF X x T x X N X−

∂
( ) + ( )




−∫∫ 1 , , . .

∂∂∫ = =
B

FW J w0, .  (3.87)

This entails the following local equations:

 div / / in
expl

∂ ∂( ) − ∂ ∂ =−w w BF X 01 ,  (3.88)

 ∂ ∂( ) −( ) + = ∂− −w w BT T d/ onF F 1 F n T 01 . .( ) .  (3.89)

In contrast to (3.83) and (3.84), Equations 3.88 and 3.89 are expressed at the 
current placement x, but their components are in the reference configuration 
KR. This set of equations bears no relationship, in principle, with the classical 
equilibrium problem. As matter of fact, this set stands for the balance among 
configurational forces as shown by (3.88) and the expression of the second con-
tribution in its left-hand side. The preceding computation and results call for 
various comments.

First, we note that (3.88) does not capture the spatial body force that would 
be given by ∂ ∂ = ∇w w/

l
x

exp
 because δxx = 0 from its very definition (i.e., 

keeping x fixed). We may express this verbatim by “the Eulerian variation is 
insensitive to the spatial (body) forces.” However, this variation does capture the 
force of inhomogeneity.

Second, we note that T xd ( )  is considered as a dead loading in the variation 
(3.87), although, of course, this traction cannot be a classical dead loading in 
the sense that it does change with configuration.

Third, the material variation δXx can be interpreted as the most classical 
 virtual infinitesimal displacement of a point in a continuum. Quite differently, 
the spatial or Eulerian variation δxX has to be understood as a re- placement 
or rearrangement of material points on the material manifold. This remark sug-
gests that the corresponding forces, related to this variation by conjugacy or 
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duality, are of thermodynamic nature. We shall return to this concept when 
examining the geometric meaning of the Eshelby stress (Chapter 6). As a 
matter of fact, (3.88) is none other than the equilibrium material equation 
involving the Eshelby stress but in a disguise. For the purpose of this identi-
fication, we let the reader check that one can write

 ∂ ∂( ) ≡− = ∂ ∂( ) ≡ ∂−

∂∫ ∫w da dA w dv
B BR R

/ /
expl

F n N b X1 . . WW dV
BB R

/
expl

∂( )∫∫∂ X .

(3.90)

This is none other than the global balance for the Eshelby stress and the material 
force of inhomogeneity, either in a spatial region or in the corresponding mate-
rial region. A similar approach can be found in works by Golebiewska and 
Herrmann (1983) and Pak and Herrmann (1986).

Finally, a complementary energy principle can also be stated in the frame-
work of the inverse motion by proposing the following variational principle 
( S  is the stress dual of the strain measure E(–2) ; cf. (2.133)):

 

δx
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− =

21

0N X. ,δ  (3.91)

where the fields X(x) and S  are “varied” independently (Maugin and 
Trimarco, 1993).

3.10 More Material Balance Laws

To illustrate this point we consider the dynamics of pure finite-strain elastic-
ity in the presence of material inhomogeneities. We consider the following 
equations:

Balance of material momentum •	 (in the absence of body force):

 
∂
∂

− =P
b f

t X
Rdiv inh  (3.92)

Energy equation•	  (no heat conduction, no dissipation, no heat supply):

 
∂
∂

− ∇ ( ) =H
t X

R . .T v 0  (3.93)
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Definitions and constitutive equation•	 :
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and

 W W
W L= ( ) = ∂
∂

= ∂
∂

F X T
F

f
X

; , , .inh

expl

 (3.95)

Equation 3.92 is one possible “material” field equation, a strict conservation 
law in the absence of inhomogeneities and applied body force. It relates to 
the notion of linear momentum but on the material manifold. There may 
exist other material balance laws, some of which we illustrate now by con-
sidering the so-called divergence transformation or gradient operation applied 
to a Lagrangian density. Indeed, consider a priori the material gradient of the 
“Lagrangian” density defined in (3.943). That is,

 ∇ =RL D,  (3.96)

where D is the results of the evaluation of the left-hand side, so that (3.96) is 
an identity. It is an easy matter to show that this yields

 ∇ = − ∂
∂

− ( )R
X

RL
t

f
P

T Finh div . .  (3.97)

But this is nothing but (3.92) in disguise. Now, (3.97), as its stands, is a mate-
rial covectorial equation. We can operate on both of its sides by taking the 
inner product with X and the vectorial product with X. Considering the first 
operation, we have, after some simple manipulations,

 
∂
∂
( ) − ∇ ( ) − − − ( ) =

t
L

X
RP X b X f X T F. . . . . .inh tr3 0  (3.98)

Now we would not know how to proceed further if we did not notice the par-
allelism between the deductions of Equations 3.92 and 3.93 from the linear 
(physical) momentum equation of the Piola–Kirchhoff formulation. Indeed, 
these two equations follow like identities from that equation simply noted 
m = 0 by considering

 m
X

0 m. , . .
∂
∂

= ∂
∂

=χ χ

t Xt
0  (3.99)
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Thus, in parallel with the inner product X.∇RL, we propose to evaluate the 
scalar quantity t(∂H/∂t). This yields

 
∂
∂
( ) − − ∇ ( ) =

t
Ht H t

X
R . . ,T v 0   (3.100)

because t and x are good independent variables in the (X,t) space–time para-
metrization. We can also evaluate the inner product of the original balance of 
linear momentum with the placement x, obtaining thus the identity

 
∂
∂
( ) − − ∇ ( ) + ( ) =

t R
X

R Rp x p v T x T F. . . . . .tr 0  (3.101)

On combining plus (3.98), minus (3.100), and minus (3.101), we are led to the 
following remarkable identity (Maugin, 1993, p. 91):

 
∂
∂

− −( ) − ∇ − −( ) = +
t

Ht t LR
X

RP X p x b X Q T x f X. . . . . .inh 2 ,,  (3.102)

where Q = T.v. The quantity of which the time derivative is taken in the left-
hand side of this equation is not a commonly considered one in continuum 
mechanics. It is homogeneous to a so-called action, that is, the product of time 
by energy per unit volume. In particular, we shall see later on that

 A Ht: . ,= −P X  (3.103)

is the canonical action in analytical continuum mechanics.
It remains now to take the vector product of (3.96) with X. This is a much 

longer affair. We leave this to the reader by way of exercise. The result is as 
follows (Maugin, 1993):

 

∂
∂

× − ×( )( ) − × − ×( )( )

− ×

t
T

R
X

R
TX P F x p X b F x T

X f

. .div

innh ext+( ) + ×( ) =f F x f 0ρ0
T . ,

 (3.104)

where the vector product with a tensor (first contribution in the divergence 
term) is to be understood with the first index of the tensor b . Equation 3.106 
is a kind of material balance of moment of momentum. We have also trivially 
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accounted for the contribution due to an external body force. Adding the 
corresponding contributions in (3.92), (3.93), and (3.102) is also a trivial mat-
ter since their computation does not involve any space or time derivative. In 
particular, contributions ρ0f, ρ0f.v, and –ρ0f.(F.X + tv + x) should be added to 
the right-hand side of (3.92), (3.93), and (3.102), respectively.

s m all- st ra i n A p p r o x i m at io n

In this case X is replaced by x, x by u, P by Pf, T by σ, F by ∇u, and b takes 
its expression of small-strain theory, so that we obtain the following balance 
laws:

 
∂
∂

− − + ∇( ) =
t

fP b f u f 0div inh ρ0 . ,  (3.105)

 
∂
∂

− ∇ ( ) − =
t

H . . . ,T u f u ρ0 0  (3.106)

 
∂
∂

− −( ) −∇ − −( ) − +
t

Ht tfP x p u b x T u u x f. . . . . . . σ ρinh
00 2f u x u u. . ,∇( ) + +( ) =t L

(3.107)

and

 

∂
∂

× − ×( ) − × − ×( ) − × ∇( )

− × +

t
fx P u p x b u u

x f

div

inh

σ σ

ρ



00 0x u f u f 0× ∇( )( ) + × =. ,ρ
 (3.108)

where

 P u u p u x uf H= − ∇( ) = = ( ) + ( )ρ ρ ρ σ ε0 0 0
21

2
1
2

. , , .   tr ,,  (3.109)

 b L u L H Cji ji jk k i ij
ijkl

k= − +( ) = − = ( )δ σ σ ε, , . ,p u x ll ,  (3.110)

along with the short-hand notation

 x b a×( ) ≡ ×( ) ≡ −
kn kij i jn k kij im jm jm mix b a aε σ ε σ σ,  (( ).  (3.111)

Equations 3.105 through 3.110 were essentially obtained by Eischen and 
Herrmann (1987). Delph (1982) had previously considered the preceding 
divergence transformations of the Lagrangian density function for linear elas-
tostatics. We establish in the forthcoming chapter the relationship of the 
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divergence transformation and its results with generalized symmetries and 
Noether’s theorem in field theory.

3.11 Eshelby Stress and kröner’s Theory of Incompatibility

We return to the notion of Peach–Koehler force but now within the frame-
work of a continuous distribution of dislocations and Kröner’s (1958) theory 
of incompatibility in small strains (Note: Kröner = Kroener). In these con-
ditions the compatibility equations for integrating a displacement gradient 
(in general nine independent components) into a displacement vector (three 
components) are given by the vanishing of the Einstein tensor in (2.28), that 
is,

 S
x xab ajk bli

ki

j l

≡ −
∂
∂ ∂

=ε ε
ε2

0,  (3.112)

where εki = β(ik) = u(k,i) or ε = (∇u)S in direct notation. Kroener (1958) introduced 
the source of elastic incompatibility η as the negative of the quantity defined 
in the first part of (3.112), that is,

 Sab ab+ =η 0.  (3.113)

Accordingly, in the absence of elastic incompatibility, we recover the classical 
integrability condition given by the second part of (3.112). We may conceive 
of (3.113) as a balance equation between the Einstein curvature tensor (this is 
what is Sab in two dimensions) and Kroener’s incompatibility tensor. But this 
is in fact related to a “defect of closure” and the concept of Burgers vector in 
a theory of continuous distributions of dislocations.

Indeed, in the theory of isolated dislocations, the Burgers vector b  is intro-
duced via the circuit integral (cf. (3.57))

 dx bj ji i
S

β = −∫  ,  (3.114)

where βji = ui,j is the distortion (displacement gradient). Using Stokes’ theo-
rem for a surface A leaning on S, we can rewrite this for a single dislocation 
line L as

 da da bp pmi ij m
A

p p j
A

ε β τ δ ξ, ,∫ ∫= − ( )  (3.115)
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where δ(ξ) is Dirac’s distribution and ξ is the two-dimensional radius vector 
taken from the axis of the dislocation in the plane perpendicular to the unit 
tangent vector τ to the dislocation line at the given point. For arbitrary con-
tour S and surface A, (3.115) yields

 ε β τ δ ξpmi ij m p jb, .= − ( )  (3.116)

As ξ goes to zero, this relation becomes meaningless due to the obvious sin-
gularity arising in the limit. Passing now to the continuous theory of disloca-
tions, (3.115) is generalized by introducing a tensor of dislocation density α, 
of components αik, such that

 da bi ik k
S

α =∫  ,  (3.117)

so that (3.116) is replaced by

 ε β αilm mk l ik, ,= −  (3.118)

after rearranging indices. From this there follows immediately a conserva-
tion law:

 div orα α= ∂
∂

=0 ik

ix
0.  (3.119)

For a single dislocation this would be equivalent to the statement: “The Burgers 
vector is constant along the dislocation line.” Furthermore, applying the operator 
εjpk∂/∂xp to (3.117) and symmetrizing with respect to i and j, we obtain (3.111) 
in the form

 η ε
α

ε α
ij ipl

jl

p
jpl

il

px x
=

∂
∂

+ ∂
∂







1
2

.  (3.120)

Of course, dislocations are the source of the phenomenon of plasticity. One 
must therefore be able to relate the dislocation density just introduced to the 
plastic part of the distortion. Using the notation of Chapter 2 we have

 β β β ε ε εji i j ji
e

ji
p

ji j i ji
e

ji
pu u= = + = = +( ), ,, .  (3.121)
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Only the total distortion and the total strain are compatible (integrable into 
a displacement). As a consequence, both “elastic” and “plastic” parts of the 
distortion have to satisfy “incompatibility conditions.” This is what, accord-
ing to Kroener, relates the density of dislocations and the plastic distortion, 
since we can write (cf. (3.118))

 α ε βji jkl li k
p= − , .  (3.122)

In Kroener’s theory, the dislocation density tensor is identified with the linear-
ized version of the Cartan torsion tensor Tijk  according to (nine independent 
components)

 α εji jkl iklT= 1
2

 .  (3.123)

But the torsion satisfies identically the so-called Bianchi identity of differen-
tial geometry; but here, on account of (3.122), this is the same as the “conser-
vation law” in (3.118).

The driving force on a single dislocation is the celebrated Peach–Koehler 
force (3.65) such that

 f bi
PK

ijp jk k p
( ) = ( )ε σ τ δ ξ .  (3.124)

For a continuous distribution of dislocation, this is replaced by

 fi
PK

ijp jk kp
( ) = ε σ α .  (3.125)

We further note that the Eshelby stress reads under these conditions

 b W uji ji jk k i ik
p= − −( )δ σ β, .  (3.126)

By direct calculation for a homogeneous elastic body endowed with a con-
tinuous distribution of dislocations (incompatible case), in quasistatics and 
in the absence of body force (i.e., there holds σji,j = 0), we check that

 b fji j i
PK

, .= ( )  (3.127)

This shows that the Peach–Koehler force, a force driving a defect, just like 
the material inhomogeneity force is a configurational force that belongs in the 
mechanics of Eshelby on the material manifold.
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4
Field Theory

Object of the Chapter

Where we discover the difference between field equations, balance laws, 
and conservation equations and where we see how engineering concepts fit 
nicely in abstract field theory and the two enrich one another as they should 
to the satisfaction of all, mathematical physicists and philistines.

4.1 Introduction

For many physicists the ultimate expression of a mathematical physical theory, 
that one that is most elegant and most “economical” in the sense of Ockham’s 
razor and Ernst Mach, is the variational one, at least for those theories that do 
not involve dissipative processes. In this frame of mind a true analytical contin-
uum mechanics can be formulated only for the two extreme cases of mechani-
cal behavior of continua, that is, within the general landscape designed by 
W. Noll (1955) in a landmark paper on the “continuity of (mechanical) states,” 
the pure fluidity of Euler, and the pure elasticity—of Cauchy, among others—
whether the latter is linear or nonlinear, isotropic or anisotropic, homoge-
neous or inhomogeneous. In that framework the application of classical and 
generalized symmetries and related invariances is the most powerful tool for 
extracting the very substance of a theory called a field theory, for continuous 
fields in particular. We shall develop in the following the elements of such 
a theory for elasticity in finite strains, practically the most obvious application 
(just a change in notation), much more, say, than electrodynamics. This almost 
sacred faith in the power of variational principles in the manner of Lagrange, 
Hamilton, Jacobi, Lie, and others is well illustrated by the celebrated treatise 
on theoretical physics by Lev Landau and E.M. Lifshitz from which many 
benefited during the second half of the twentieth century. But we are close to 
believing the following: If we know how to formulate variationally a theory 
in the absence of dissipative processes, then the very structure of the deduced 
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field theory will suggest to us how to generalize the said theory to the case of 
dissipative processes. That is an interesting side benefit. For instance, it has 
long been thought that the notions of Eshelby stress and Eshelbian mechanics 
could be introduced and meaningfully interpreted only after their introduc-
tion in the framework of a variational field-theoretical formulation. But this is 
blatantly erroneous as these notions should always exist, as we shall show in 
further chapters. What is nonetheless true is that the field-theoretic formula-
tion provides a hint for the formulatation of dissipative cases (in the same way 
as Lagrange analytical mechanics suggests to us how to introduce dissipative 
forces such as those related to friction). In what follows it is understood that 
“variation” means “infinitesimal variation,” and the symmetries involved are 
generated by infinitesimally small variations and parameters.

4.2 Elements of Field Theory: Variational Formulation

4.2.1 Noether’s Theorem

Here we are concerned with simple general features of field theories in a con-
tinuum with space–time parametrization {X,t}, where X stands for material 
coordinates of classical continuum mechanics (e.g., in Truesdell and Toupin, 
1960) and t for a time-like scalar variable (Newton’s absolute time). We con-
sider Hamiltonian actions of the type

 A V L X d X
V I

φ φ ∂ φ φα
µ

α
µ ν

α µ; , , ,...;( ) = ∂ ∂( )
×
∫ 4 ,  (4.1)

where ϕα, α = 1,2,…,N, denotes the ordered array of fields, say the indepen-
dent components of a certain geometric object, and d4X = dV dt. This is a 
Cartesian–Newtonian notation, with

 ∂ = ∂ ∂ ={ } = ∂ ∂ = ∂ ∂ = ∂µ
µ µ/ / / /X X K XK; , , , , , , ;1 2 3 4 1 2 3 4 ∂∂{ }t .  (4.2)

The summation over dummy indices (Einstein convention) is enforced.
In agreement with the rather general expression (4.1), we say that we envis-

age the construction of an nth-order gradient theory of the field ϕα when gra-
dients of order n at most are considered in the functional dependence of the 
Lagrangian volume density L. Most of classical physics is based on first-order 
gradient theories (cf. Maugin, 1980). This is the case for classical elasticity, 
which considers gradients of placement or displacement, and electrodynam-
ics, which considers gradients of electric and magnetic  potentials—the basic 
“fields” in the latter theory are not, in fact, the quantities usually called fields, 
such as electric and magnetic fields. In Chapter 1 we have mentioned the 
recent attraction toward higher-order gradient theories in elasticity (a type of 



Field Theory 79

generalized continuum). But historically, the first higher-order gradient theo-
ries based on a variational formulation are the Korteweg (1901) theory of dense 
liquids (including the gradient of density), Einstein’s (1916) theory of gravita-
tion (which is a second-gradient theory of the elasticity of curved space–time; 
space–time curvature is involved in L, and curvature is defined in terms of the 
second space–time gradient of the evolving space–time metric), and Le Roux’s 
(1911, and following works) original theory of crystal elasticity.

From the expression (4.1), we can derive two types of equations: those 
relating to each one of the fields ϕα and those that express a general conserva-
tion law of the system governing all fields simultaneously. The first group is 
obtained by imposing the requirement that the variation of the action A be 
zero when we perform a small variation δϕα of the field under well-specified 
conditions at the boundary, ∂V, of V (if V is not the whole of space) and at the 
end points of the time interval I = [t0, t1] if such limitations are considered. 
However, most field theories are developed for an infinite domain. The sec-
ond group of equations is the result of the variation of the parametrization, 
and these results, on account of the former group, express the invariance or 
lack of invariance of the whole system under changes of this parametriza-
tion. To simplify the presentation we will assume an infinite domain V with 
vanishing fields at infinity and an infinite time interval since our concern 
here is neither boundary conditions nor initial conditions.

To perform these variations we consider ε-parametrized families of trans-
formations of both coordinates (parametrization) and fields such as

 X Xµ α µ αφ φ, ,( )→ ( ),  (4.3)

with

 Xµ µ α α βκ ε φ φ ε= ( ) ( ) = ( )( )X X X X, ,, , ,Φ  (4.4)

where ε is an infinitesimal parameter such that for ε = 0 we have identically 
κ φ φµ µ α β α( , ) , ( , , )X X0 0= =X Φ . We assume that the quantity L in (4.1) trans-
forms as a scalar quantity, that is,

 L LX X X X, det /ε ∂ ∂( ) = ( ) ( ).  (4.5)

We note that derivations with respect to X and ε commute, and the same 
holds true of integration in X space and derivation with respect to ε. The 
variation of a field ϕα is then defined by

 δφ ∂ ∂εα α
ε: /= =Φ 0 .  (4.6)

With vanishing fields at infinity in space and vanishing variations at the 
ends of the time intervals, limiting ourselves to a first-order gradient theory 
and applying an ε-parametrization to (4.1), we immediately have
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 δ ∂
∂φ

δφ ∂
∂ ∂ φ

δ ∂ φ ∂
∂α

α

µ
α µ

α
µA d X

L L L

X
= + ( ) ( )







+4 δδ µ

α

X∑∫






.  (4.7)

In order that δA vanish for all admissible δϕα(X), and any α, with X fixed, a 
classical computation yields the following Euler–Lagrange equations:

 E
L L L

α α α µ
µ

α

δ
δφ φ φ

≡ = ∂
∂

− ∂ ∂
∂ ∂( ) = 0,  (4.8)

for each α = 1,2,…,N, at any space–time event X. Equation 4.8 is a strict con-
servation law when L does not depend explicitly on ϕα. We note that the 
result in (4.8) is left unchanged if we make the substitution

 L L→ + ∂ ( )µ
µΩ X ,

that is, if we add to L a four-divergence contribution in which Ω depends at 
most on the space–time coordinates, and not on the fields.

The second group of equations, called conservation equations, which can 
derive from (4.1) by variation, result from a simultaneous transformation 
of both the coordinates Xμ and the fields. We shall not repeat all the details 
of the derivation of the resulting theorem, known as Noether’s theorem 
(Noether, 1918; Soper, 1976; Nelson, 1979), but we shall give the main steps. 
That theorem states that to any symmetry of the system there corresponds 
the conservation (or lack of strict conservation) of a current (cf. Maugin, 1993, 
pp. 99–103). For L given in (4.1), such a current generally reads

 J L
X L Xµ

µ

µ
α

α

ν
α

ν

α

∂
∂ε

∂
∂ ∂ φ

∂φ
∂ε

∂ φ ∂
∂ε

= + ( ) −



∑ ,  (4.9)

where ε must be taken equal to zero. In spite of the notation, Jμ is not 
always simply a four-vector. It all depends on the group of transformations 
considered.

PROOF OF NOE T HER’S T HEOREM (4 .9)

By invariance of the original action we mean that

 A A A= ( ) = ( ) ∀ ∀ε ε φα0 , , .  (4.10)

Therefore, we need to find out the conditions in which ∂A(ε)/∂ε = 0. Since

 δ ε
ε
δε δ δ

ε
δεA

A
d X L L

L( ) = ∂
∂

= ≡ ∂
∂∫ 4 , ,

X fixed

 (4.11)
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a sufficient condition for δA to vanish is that δL be the four-dimensional diver-
gence of a certain quantity, noted δBμ, in such a way that

 δ δµ
µL B= ∂ ( ).  (4.12)

It suffices now to make the variation δL explicit when L is a scalar such as in 
(4.5). In this case δBμ has the following simple form:

 δ
ε
δεµ

µ
B L

X= − ∂
∂

.  (4.13)

Let us show that this is true. To do this we write explicitly

 L LX X X, , ,ε φ φα
µ

α( ) = ( ) ∂( )   (4.14)

and

 L L XX X X( ) = ( ) ∂ ∂( )φ φα α µ, , ,/  (4.15)

where, here, X stands for (XK, t). Accounting for (4.5), we have

 A A d XL d XLε ε( ) − ( ) = ( ) − ( ) =∫ ∫0 04 4X X, .  (4.16)

Now differentiate this with respect to ε, keeping X fixed. Assuming here that 
L does not depend explicitly on X, we obtain thus

 

∂
∂

∂
∂

+ ∂
∂
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∂L L X

XlX
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X X
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exp
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X
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µ

ε

ε

∂ ∂
( )

= − ∂ ∂( ) ∂
∂

∂
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X X
X
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=ε

 (4.17)

or

 
∂
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∂
∂

+ ∂
∂

= − ∂
∂

∂
∂







L L
L

X

X
X

X
ε ε εµ

µ

expl

 (4.18)

or else

 
∂
∂

= − ∂
∂

∂
∂







L
L

ε εX X
X

fixed

,  (4.19)
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where the differential formula for a determinant has been used in the first 
part of (4.17). Finally, on comparing (4.19) and (4.12), we obtain (4.13). But we 
can also compute δL directly. Using the second of (4.11), we have (omitting 
the α’s)

 δ
φ
δφ

φ
δφµ

µ
L

L L= ∂
∂

+ ∂ ∂
∂ ∂( )







 (4.20)

up to irrelevant terms. Comparing now this and (4.12) and accounting for 
(4.8), we are entitled to write

 ∂( ) = −µ
µ

α
αδε δ

δφ
δφJ

L
,  (4.21)

where the so-called current Jμ is such that

 J B
Lµ µ

µ
α

αδε δ
φ

δφ= − + ∂
∂ ∂( ) .  (4.22)

If the Euler–Lagrange equations (4.8) hold good, then (4.21) tells us that the 
current is conserved. This is the contents of Noether’s theorem. However, it 
remains to find the explicit expression of the current for each of the trans-
formations involved in the set (4.3) and (4.4). This is, in general, obtained by 
evaluating

 δφ
φ
ε

δε
φ
φ

φ
ε

α
α α

β

β

µ

µ

X
X X

( ) = ∂
∂

=
∂
∂

∂
∂

∂
∂fixed fixe

X

X

dd

+
∂
∂













φ
ε

δε
α

.  (4.23)

For ε = 0 we note that ∂ ∂ = −∂ ( ) ∂X Xµ µε ε ε/ /
fixedX

X, . Accounting for this in 
(4.23) and (4.22), we obtain the following general expression for the current:

 J L
X L X v

µ
µ

µ
α

α

ν
α

ε φ
φ
ε

φ
ε

= ∂
∂

+ ∂
∂ ∂( )

∂
∂

− ∂ ∂
∂







.  (4.24)

The quantities within the last parentheses in this equation are called the 
characteristics Qα of the transformation in group theory:

 Q
Xα

α

ν
α

νφ
ε

φ
ε

ε=
∂
∂

− ∂
∂
∂

=taken at 0.
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4.2.2 example 1: Space–Time Translation

In this case the transformations in (4.3) and (4.4) reduce to a pure space–time 
transformation of the type

 X X Xµ µ µ
λ
µε εδ→ ( ) = +X, ,.  (4.25)

where δλ
µ is the Kronecker symbol; that is, it equals 1 only when μ takes the 

value granted to λ. There is no transformation of the fields themselves. On 
account of (4.24), we obtain the following current in components:

 J J T L
Lµ

λ
µ

λ
µ

λ
µ

λ
α

µ
α

α

δ ∂ φ ∂
∂ ∂ φ

→ = = − ( )∑. . . .  (4.26)

This is a mixed second-order space–time tensor called the energy–momentum 
tensor. This denomination is clearly understood when we separate space and 
time components. If L does not depend explicitly on X, then this tensor satis-
fies the following (four-dimensional) strict conservation law:

 ∂ λµ λ
µT. = 0, =1,2,3,4.  (4.27)

Had we considered an explicit dependence of L on the space–time coordi-
nates Xμ, instead of the strict conservation law (4.27), we would have a source 
term

 f
L

Xλ λ
= − ∂

∂
expl

,  (4.28)

on the right-hand side.
With the Cartesian notation introduced in (4.2), we see that the indepen-

dence of L on t, λ = 4, yields a scalar conservation law in the explicit form

 
∂
∂

− ∇ =H
t X

R . ,Q 0  (4.29)

while the independence of L on the spatial part of X, {XK = 1,2,3}, yields the 
material balance law:

 
∂
∂

− =P
b 0

t X
Rdiv ,  (4.30)
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where we defined the following canonical quantities:

Energy (Hamiltonian density)•	 :

 H L L t:= / , /  φ ∂ ∂φ φ ∂φ ∂α α α α

α

( ) − ≡∑  (4.31)

Energy flux vector•	 :

 Q = − ( )











∑Q

LK

K

:= φ ∂
∂ ∂ φ

α
α

α

 (4.32)

Canonical (here material) momentum•	 :

 P = − ( )











∑P

X
L

tK K
:=

/
∂φ
∂

∂
∂ ∂φ ∂

α

α
α

 (4.33)

Canonical stress tensor•	 :

 b = − − ( )







 ∑b L

X
L

XL
K

L
K

K K. .:=
/

δ ∂φ
∂

∂
∂ ∂φ ∂

α

α
α










 (4.34)

The “explicit” independence of L from t—no right-hand side in (4.28)—stands 
for the conservation of energy in (4.28). The “explicit” independence of L from 
XK signifies that the material body is materially homogeneous. But this is not a 
fundamental requirement of physics, so that, in general, (4.29) may contain a 
nonzero right-hand denoted

 finh inh
expl

/= = ( ){ }f L XL
L∂ ∂ ,  (4.35)

so that (4.29) would be replaced by the inhomogeneous equation

 
∂
∂

− =P
b f

t X
Rdiv inh .  (4.36)
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REM A R k 4 .1 :  Had we considered a Lagrangian depending explicitly on 
time, (4.29) would be replaced by

 
∂
∂

− ∇ = = − ∂
∂

H
t

h h
L
tX

R . , .Q
expl

 (4.37)

What must be principally gathered from the preceding is the essentially dif-
ferent nature of the Euler–Lagrange equations (4.8) for which one such equa-
tion is written for each field—or, in a more mechanical jargon, each degree of 
freedom—and of the canonical equations of energy and momentum (e.g., (4.29) and 
(4.30)), which pertain to the whole physical system and by necessity consider 
all fields simultaneously (note the summations over α in the definitions (4.31) 
through (4.34)). In particular, in establishing (4.27), we have made use of the 
celebrated Noether’s identity

 ∂ δε δφµ
µ

α
α

α
J E( ) + ( ) =∑ 0,  (4.38)

which emphasizes the remark already made but naturally implies (4.27) 
whenever all field equations (4.8) are satisfied simultaneously.

4.2.3 relationship to Lie-group Theory

The transformations in (4.3) and (4.4) can be written in the form

 X X
Xµ µ

µ

ε

α α
α

ε

ε
ε

φ φ ε φ
ε

= + ∂
∂

= + ∂
∂= =0 0

, .  (4.39)

In what follows it is understood that the partial derivatives are evaluated at 
ε = 0. Then the infinitesimal generator associated with the group of transfor-
mations in (4.39) is defined as

 V = ∂
∂

∂
∂

+ ∂
∂

∂
∂

X

X

µ

µ

α

αε
φ
ε φ

.  (4.40)

Then the so-called first prolongation of V is given by (cf. Ibragimov, 1985; 
Olver, 1986; Kalpakides and Maugin, 2004)

 V V1( ) = + ∂
∂

∂
∂






− ∂
∂

∂
∂

∂
∂





X X X

X
µ

α α

β µ

βφ
ε

φ
ε 







∂

∂ ∂ ∂( )φα µ/ X
.  (4.41)
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The differential operators V and V(1) are to be applied to L. Indeed, the 
equation

 V 1 0( ) + ∂
∂

∂
∂






=L L

X

X
µ

µ

ε
 (4.42)

is none other than the vanishing of δL if we want to respect the invariance of 
the action A. The second contribution in the left-hand side of (4.42) accounts 
for the change of volume. In the same formalism, Noether’s identity (4.38) 
reads

 ∂ = = ∂
∂

− ∂
∂

∂
∂







µ

µ
α

α α

β

βφ
ε

φ
ε

J E
X

X
0 ,  (4.43)

with

 J T
X L

X
T Lµ

β
µ

β

α µ

α

β
µ

β
µ

ε φ
φ
ε

δ= ∂
∂

+ ∂
∂ ∂ ∂( )

∂
∂

= − ∂
.

/
, :.

φφ
φβ α µ∂
∂

∂ ∂ ∂( )X

L

X/
. (4.44)

This is entirely equivalent to the foregoing formulation.

REM A R k 4 . 2 :  Had we considered a Lagrangian function L depending on 
higher-order space-time gradients, for example, a second-order one,

 L L= ( )φ ∂ φ ∂ ∂ φα
µ

α
µ ν

α, , ;X ,  (4.45)

we would have obtained longer expressions for Eα, Jμ, and Equation 4.9; for 
example, in place of (4.26) and (4.28),

 T L
L L

.λ
µ

λ
µ

λ
α

µ
α ν λ

α

ν µ
α

δ φ
φ

φ
φ

= − ∂ ∂
∂ ∂( ) + ∂ ∂ ∂

∂ ∂ ∂( ) −2 ∂∂ ∂ ∂
∂ ∂ ∂( )





ν λ

α

ν µ
α

φ
φ

L
 (4.46)

and

 ∂ = − ∂
∂µ λ

µ
λ

T
L

X. .
expl

 (4.47)

But apart for some paradoxical theories with strange inertial terms (see, e.g., 
Maugin and Christov, 1997, 2002), in classical theories L depends at most on 
the first-order time derivatives, and the second-order gradients in (4.1) are 
purely spatial. When this is the case, the formal definitions of both H and P 
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are left unchanged, while Q and b take on the following more general com-
ponent form including second-order space-like (here material) gradients:

 Q
L LK

K
L

L K

= − ∂
∂ ∂( ) − ∂

∂
∂ ∂ ∂( )















 −φ

φ φ
α

β α
∂∂ ∂

∂ ∂ ∂( )∑∑ L
L K

Lφ
φ

α
α

αα

 (4.48)

and

 

b L
L L

L
K

L
K

L
K

L M. = − − ∂ ∂
∂ ∂( )







− ∂ ∂ ∂

∂∑δ φ
φ

φα
α

α

α2
∂∂ ∂( )

+ ∂ ∂ ∂
∂ ∂ ∂( )







∑

∑
M K

L M
M K

L

φ

φ
φ

α
α

α
α

α

.  (4.49)

Other symmetries, and thus other consequences of Noether’s theorem, can 
be applied—for example, rotations, dilatation (change of scale), expansion, 
and so on (cf. Maugin, 1993, pp. 110–112).

4.2.4 example 2: rotations

An infinitesimal rotation of the material frame should generate some kind 
of material angular-momentum balance. Accordingly, we need to introduce 
infinitesimal four-dimensional rotations. For finite rotations we have (note 
these are not Lorentz transformations because our space–time is Euclidean)

 X X Xµ µ
ν
µ ν→ = =Λ Λ. , . ,that is, X X  (4.50)

with

 Λ Λ Λ− = = +1 T , det 1.  (4.51)

We consider the following representation for Λ:

 Λ = ( ) = −exp A A A, ,T  (4.52)

by which it is meant that

 exp A 1 A( ) = +
=

∞

∑ 1

1
n

n

n
!

.  (4.53)

This satisfies the first of (4.51) identically, while the representation in (4.52) 
means that the finite transformation in (4.50) can be composed of the product 
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of many infinitesimal transformations (the corresponding group is con-
nected). Accordingly, it suffices to study in detail the action of the infinitesi-
mal generators of the transformations, that is, the matrices A that satisfy the 
second of (4.52), that is, that are skewsymmetric. Now, the last condition writ-
ten as the equation

 A A 0+ =T ,  (4.54)

has six linearly independent solutions, that we label Mαβ so that (the Mαβ are 
4 × 4 matrices)

 M 0 M Mαβ αβ βαα β α β= ≠ = − >if , , .  (4.55)

The elements of these matrices are given by

 Mαβ ν

µ
β
µ

αν α
µ

βν β
µ

α νδ δ δ δ δ δ( ) = − =
. .[ . ] .2  (4.56)

A finite rotation is now written as a linear combination of the M’s by

 Λ = 





exp
1
2
ωαβ

αβM ,  (4.57)

where ωαβ are the components (six in all) of the linear combination, the sum 
being effected on α and β and the ½ factor accounting for the second of (4.55) 
to avoid counting the same elements twice. In a transformation such as (4.57), 
a four-dimensional vector V and a four-dimensional second-order tensor T, 
respectively, transform as

 V V Vµ
ν
µ ν αβ

αβ ν
µ νω= = 











Λ. . ,exp
1
2

M  (4.58a)

 T Tµν
κ
µ

ρ
ν κρ αβ

αβ
κρ

ω= = 











Λ Λ. .
..

exp
1
2

M
µµν

κρT ,  (4.58b)

where we have introduced the following 16 × 16 generating matrices:

 M M Mαβ κρ

µν
αβ κ

µ
ρ
ν

κ
µ

αβ ρ

νδ δ( ) = ( ) + ( ).. . .
.  (4.59)

This works because of the exponential property

 M M M M M M M= + +( ) = ( ) ( )1 2 2, .exp exp exp1 1 2  (4.60)
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Equation (4.58) can be generalized to any geometric object. Therefore, we 
can agree to work in a general manner for coordinates and fields with the 
transformations

 X X Xµ µ αβ
αβ

ν

µ
νω→ = 











exp
1
2

M
.

,  (4.61a)

 φ φ ω φλ α αβ
αβ

σ

λ
σX X M X( )→ ( ) = 









 ( )exp

1
2 .

..  (4.61b)

The generating matrices Mαβ have a general block diagonal form so their 
components are zero unless φλ and ϕσ are components of the same tensorial 
field.

If our original Lagrangian density is to be invariant under the trans-
formations in (4.50), then according to Noether’s theorem, there exist six 
independent conserved quantities noted Sαβ, one for each of the ωαβ. The cor-
responding current will be noted S

~μαβ. Noting that in our formalism

 
∂
∂

= ( ) ∂
∂

= ( )X
X

µ

ε ω
αβ ν

µ ν
λ

ε ω
αβ σ

λ σ

ε
φ
ε

φ
αβ αβ

,
.

,
.

,M M ,,  (4.62)

we can evaluate the currents Sµαβ by using the general formula (4.9). After 
some computation we obtain

  S S X T X T Sµαβ µ αβ α µβ β µα µαβ= = −( ) +[ ] ,   (4.63)

where the first contribution within parentheses to this angular-momentum 
current is called the orbital spin, and the remainder is the spin tensor, per se, 
such that

 S
Lµαβ

µ
λ αβ σ

λ σ

φ
φ= ∂

∂ ∂( ) ( )M
.

.  (4.64)

The conservation of the current yields

 ∂ = ∂ = −µ
µαβ

µ
µαβ αβ βαS S T T0 or .  (4.65)

Thus, in general, Tαβ is not symmetric. A symmetrization procedure was pro-
posed by Belinfante (1940) and Rosenfeld (1940), to replace T by a symmetric 
energy–momentum tensor Θαβ defined by

 Θαβ αβ
µ

µαβ= + ∂T G ,  (4.66)
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where Gμαβ is itself defined by

 G S S Sµαβ µαβ αβµ αµβ= + −( )1
2

.  (4.67)

Due to the skewsymmetry of Sμαβ in its last two indices, it is checked that this 
is also true of Gμαβ while the four-divergence of Θαβ indeed vanishes. Such a 
procedure of symmetrization is common in the study of materials involving 
a microstructure (cf. Maugin, 1978).

4.2.5 example 3: Change of Scale

Consider the special case of transformations in (4.3) and (4.4), for which fields are 
unchanged but material space–time coordinates suffer the transformation

 X X Xµ µ µη→ = +( )1 ,  (4.68)

where η is an infinitesimally small parameter. This is a simple case. Noether’s 
theorem directly yields the following conservation law (in fact with a source 
term when L depends explicitly on the Xμ’s):

 ∂ = ∂
∂µ

µ
µ

µJ
L

X
X

expl

,  (4.69)

with

 J LX
L

D D Xµ µ

µ
α

α µ
µφ

φ= − ∂
∂ ∂( ) ≡ ∂, .  (4.70)

Other conservation laws will be introduced in the application to elasticity.

4.3 Application to Elasticity

4.3.1 Direct-Motion Formulation for Classical elasticity

In this formulation the fields ϕα are none other than the physical components 
of the current placement. In a general manner we can consider the following 
Lagrangian density per unit volume of KR:

 L L t K W R= ( ) = − −v F X x, ; , , ,Φ  (4.71)
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where

 K t t W W t tRv X X v F X X; , , , ; , , ,( ) = ( ) = ( ) = ( )1
2 0

2
0ρ ρ ϕΦ xx, .t( )  (4.72)

This is indeed quite general because it includes a potential for physical body 
forces, via ΦR, where the potential φ per unit mass is necessarily dependent 
on the current placement, while both the reference matter density and the 
elasticity potential remain dependent on both the material point X and 
Newtonian time t. Dependence on X means material inhomogeneity; that is, 
whenever

 
∂
∂

≠ ∂
∂

≠ρ0

X
0

X
0

t

W
, .

expl

 (4.73)

Explicit dependence on time t is a much rarer occurrence in books on con-
tinuum mechanics. Indeed the condition (cf. Epstein and Maugin, 2000)

 
∂
∂

≠ρ0 0
t X

,  (4.74)

would mean that the reference density may evolve in time by addition or 
subtraction of matter by some means. This would account for the phenom-
enon of growth or resorption of matter. We shall return to this in due time. As 
to the condition (cf. Maugin, 2009)

 
∂
∂

≠W
t expl

0,  (4.75)

it would mean a possible evolution in time of elastic properties, hence the phe-
nomenon of aging. This is seldom considered in view of the large time scales 
involved in the process for normal physical conditions for inert matter. From 
the point of view of analytical mechanics, systems in which the Lagrangian 
density depends explicitly on time are said to be rheonomic, according to a 
classification originally due to Boltzmann (cf. Lanczos, 1962). In contrast, sys-
tems in which L does not depend explicitly on time are called scleronomic 
systems. Most systems considered are scleronomic.

REM A R k :  A typical example of a rheonomic system is one in which a time-
dependent spring constant yields a Mathieu differential equation with a 
time-dependent characteristic frequency.

A last remark concerning the Lagrangian density for the direct-motion 
description is that neither the kinetic energy nor the elasticity potential 
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energy involve the field x itself but only its space and time derivative in the 
parametrization (X,t). The reason is that elasticity is a gauge theory, as Galilean 
invariance (translation in physical space) eliminates this possible dependence 
on x (or displacement u in small strains).

To account for both natural boundary conditions at the boundary ∂B and ini-
tial conditions (this specifies the physical momentum, the position being X at 
t = 0), we envisage a Hamiltonian variational principle in the following form:

 δ δ χ δX
B

d
X

B
R R

B
LdVdt dadt t

R R
∫ ∫ ∫+ − ( ) − ( )( )

∂
T p p. .0 XX

tt

dVχ =∫∫ 0
00

,  (4.76)

where the surface term corresponding to the datum of a physical traction is 
expressed at the deformed (actual) boundary. The variation effected in (4.76) 
with simple calculations immediately yields the field equation, which is none 
other than the Piola–Kirchhoff form of the local balance of linear (physical) 
momentum:

 
∂
∂

− = = −∇p
T f fR

X
R Rt

Bdiv inρ ϕ0 , ,  (4.77)

 N T T T. ,= ( ) = ∂da dA Bd d
R/ at  (4.78)

 p p p pR R R Rt t t t=( ) = ( ) =( ) = ( )0 0 , ,  (4.79)

of which the last one is a mere identity.
On applying now Noether’s identity, we can write down the accompany-

ing conservation laws that follow for space–time translations λ = 4 and λ = K, 
K = 1,2,3,

Conservation of energy•	 :

 
∂
∂

− ∇ =H
t

h
X

R .Q  (4.80)

Conservation of material momentum•	 :

 
∂
∂

− = +P
b f f

t X
Rdiv inh ext ,  (4.81)

where the have defined the following quantities:

 p v T F Q T vR W H K W= = ∂ ∂ = + =ρ0 , , , . ,/  (4.82)
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 P v F b 1 T F= − = − +( )ρ0 . , . ,L R  (4.83)

and

 h K
t

W
tX

= −( ) ∂
∂

+ ∂
∂

/
expl

ρ ρ
0

0 ,  (4.84)

 f
X X

inh

expl

/= ( ) ∂
∂

− ∂
∂

K
W

t

ρ ρ
0

0 .  (4.85)

In view of (4.81) we may say that material momentum is not strictly con-
served for a materially inhomogeneous elastic material and in the presence 
of an external body force. As to (4.80), it tells us that energy is not strictly 
conserved for rheonomic materials, whether they suffer growth or aging. 
However, the very form of the source term in the right-hand side of (4.80) 
provides some hint at a simple and naïve approach to deal with these dis-
sipative effects. Indeed, we would have energy conservation if the right-hand 
side of (4.80) would vanish. Without introducing any thermal processes, this 
could be accomplished by adding from the outside (“out of the blue”) a term 
that makes this right-hand side vanishe. This will be a dissipation rate Φd. 
Thus we would have

 Φ Φ Φd
L
t

= − −






= +∂

∂ expl
growth age ,  (4.86)

with (cf. (4.84))

 Φ Π Φgrowth age
expl

/ ,= = −K
W
t0 0ρ

∂
∂

,  (4.87)

where Π0 is the right-hand side of (4.74). This right-hand side will typically be 
of the form (see Epstein and Maugin, 2000)

 Π0 0= + ∇R R .M,  (4.88)

where R0 is an external supply (e.g., via some biophysical process, nutri-
ments) and M is an influx of mass. Since both K and ρ0 are obviously posi-
tive, Π0 must be also to guarantee a positive Φgrowth.

As to Φage a simplistic case exemplifies the situation. We may assume that 
the explicit time dependence of W is only through material functions (with 
certain tensorial properties, a set of scalars being the simplest case) α(t). Then, 
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using a notation intentionally akin to that of the thermodynamics of irrevers-
ible processes with internal variables (cf. Chapter 2), we will set and have

 A
W

A: , age= − ∂
∂

=
α

αΦ  ,  (4.89)

where the appropriate inner product must be used in the last expression, 
which is classically written as a bilinear form, the product of a thermody-
namic force, A, and a time rate. The total expression must be nonnegative 
according to the second law of thermodynamics. We do not pursue here 
these considerations and consider from here on only the case of scleronomic 
elastic systems.

Change of scale: Let us apply the formalism in (4.68) through (4.70). This is 
a simple case that yields immediately

 
∂
∂

− ∂
∂






+ ∇ − ∂

∂
( )



t

tL
L

D L
L

DRv
x X

F
x.( ) . . == X f. ,inh  (4.90)

where X now stands only for the usual material coordinates. Expanding 
(4.90), we are led to

 
∂
∂

− −( ) − ∇ −( ) − =
t

tH t tRP X b X Q X f. . . . .ρ ϕ0 0inh  (4.91)

Exploiting the fact that ∂φ/∂t = –f.v, we could as well write

 
∂
∂

−( ) − ∇ −( ) − − + =
t

tH t tRP X b X Q X f f v. . . . .inh ρ ϕ ρ0 0 0..  (4.92)

The scalar quantity A = P.X – Ht is identified as the action per unit refer-
ence volume. The material (contra-) vector b.X – tQ could also be called the 
dilatational (or scaling) flux. In structural static mechanics this is sometimes 
called the virial.

Although this has many elements in common with (3.99), (4.92) is not 
exactly the same. The reason for this discrepancy is that we have assumed 
here, following (4.68) through (4.70), that time was dilated by the same 
amount as the material coordinates, whence time may be changed in a dif-
ferent amount to obtain a so-called divergence symmetry. In particular, we 
can note that

 

∂
∂
( ) − ∇ ( ) − = ∂

∂
− −

t tR R
R

Rp T f
p

T f. . . .χ χ ρ χ ρ0 0div 


+ − ( ) + ∂
∂

.

. . .

χ

ρ ϕ
p v T F

x
xR tr 0

 (4.93)
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or

 
∂
∂
( ) − ∇ ( ) − = − ( ) + ∂

∂t R R Rp T f p v T F. . . . . .χ χ ρ χ ρ ϕ
0 0tr

xx
x.  (4.94)

REM A R k :  In the case where W is a homogeneous function of degree two with 
respect to F and φ is also a function homogeneous of degree two in x, K being 
already such a function in terms of v, so that

 

p v T F
x

x
v

v
F

FR
K W

. . . . .− ( ) + ∂
∂

= ∂
∂

− ∂
∂







tr trρ ϕ
0 ++ ∂

∂

= − =

ρ ϕ
0

2 2 2

x
x.

,K W L
 (4.95)

we note that (4.93) yields

 
∂
∂
( ) − ∇ ( ) − =

t
LR Rp T f. . . . .χ χ ρ χ0 2  (4.96)

Accordingly, in the absence of body force and material inhomogeneities, sub-
tracting (4.96) from (4.93), we obtain the identity

 
∂
∂

− −( ) − ∇ − −( ) =
t

Ht t LR
X

RP X p x b X Q T x. . . . . ,2  (4.97)

to be compared to the weighted sum

 X
P

b Q x
p

. . .
∂
∂

−




− ∂

∂
− ∇




− ∂

∂t
t

H
t tR R

Rdiv −−




≡divRT 0,

obviously an identity by its very construction.
rotation of the material frame: Here we would have to apply the formal-

ism in (4.50) through (4.65), specializing to the material space. In the direct-
motion description, the motion itself is seen as scalar invariant belonging 
to a different world insofar as material coordinate  transformations are con-
cerned. Accordingly, (4.65) is reduced to the symmetry of the space part of 
the energy–momentum tensor. We let the reader show that this boils down 
to comparing the torque exerted by the “convected”  quantity with the “con-
vected” part of the torque exerted by that quantity. This is clearly seen in the 
result, which reads



96 Configurational Forces

 

∂
∂

× − ×( )( ) − × − ×( )( )

− ×

t
T

R R
TX P F p X b F T

X f

. .χ χdiv

inhh ext+( ) + ×( )( ) =f F f 0T . .χ ρ0
 (4.98)

This is not exactly the same as the symmetry of b with respect to the deformed 
metric C, or the symmetry of b with respect to C–1, or the very symmetry of 
the second Piola–Kirchhoff stress since

 b C C S C C C S. . . ,− − − −= − − = − +( )1 1 1 1L L  (4.99)

and the symmetry of S is equivalent to that of the Cauchy stress.
Other conservation laws: Additional conservation laws useful in struc-

tural mechanics hold good only in the linear theory of elasticity. In effect, lin-
earity allows for the superposition of solutions. “Addition of solutions” can 
in fact be cast in the framework of group theory if we notice that this “sym-
metry” is a consequence of the linearity of the system S of field equations 
and a divergence symmetry for L, that is, the case where the relevant Lie 
group of transformations G is such that (4.42) is replaced by

 v 1( ) + ∂
∂

= ∂L L
X

X
B

µ

µ µ
µ ,  (4.100)

where Bμ is an appropriate analytic function. The case Bμ = 0, which has 
already been studied, corresponds to a variational symmetry of L generated 
by the infinitesimal generator v. Every variational or divergence symmetry of 
the function L is also a symmetry of the associated Euler–Lagrange (i.e., field) 
equations. But not every symmetry of these latter equations is a variational 
or divergence symmetry. “Addition of solutions” requires the construction 
of the relevant Bμ. In small strains and quasistatics, the spatial part of Bμ, Bi, 
i = 1,2,3, is given by

 B ui j ji= ( )σ s ,  (4.101)

where the notation introduced within parentheses stands for a replacement 
of u by any solution s of the linear system S. The corresponding generator 
and conserved vector flux are given by

 v s
u

J s ui
i

i j ji j ji
4( ) = ( ) ∂

∂
= ( ) − ( )x u s, .σ σ  (4.102)

In the absence of body force, this results in the Rayleigh–Betti reciprocity theo-
rem that we already expressed in integral form in (3.60) and local form in 
(3.61), which yields the divergence-free nature of Ji.
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We do not repeat the other conservation laws (e.g., for energy, field momen-
tum, and material angular momentum) associated with small-strain linear 
elasticity on the basis of group theory. They are just those obtained  previously 
via more naïve methods.

4.3.2 inverse-Motion Formulation for Classical elasticity

In that case, assuming for the sake of simplicity that there is no physical 
body force present and the system is scleronomic, we naturally consider a 
Lagrangian density L, still per unit volume of KR but as

 L L L
t x t

= ( ) = ∂
∂

∂
∂









 = ( )−X V F X

X X
x

X V, , , , .1
0

1
2
ρ CC V F X. ˆ ; ,− ( )−W 1  (4.103)

as we easily verify that v2 ≡ V.C.V, so that the deformed metric (hence F) is 
involved in the kinetic energy contributing to L. The situation with (4.103) 
is quite different from that in Equation 4.71 since we cannot avoid the 
direct presence of the field X = χ–1 itself in (4.103) if the body is materi-
ally inhomogeneous. We then consider the following natural Hamiltonian 
principle:

 δ δ δx
B

T d

B

t

x xLdVdt dadt L dA
R
∫ ∫∫+ ( ) − ( )

∂
F T X N X. . .

0
ddt

B

tt

∂∫∫∫ = 0
00

 (4.104)

The variation is Eulerian and has to be performed at fixed placement x. This 
variation commutes with spatial integration. Thus,

 δ δ δx
B

x F
B

F x F
B

LdV J L dv J J L dV
R R
∫ ∫ ∫= ( ) = ( )− −1 1 ,  (4.105)

and we can prove that

 δ δ χx F F R xJ J− − −( ) = ∇1 1 1. ,  (4.106)
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and
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The last contribution in (4.107) arises as a result of the presence of the 
deformed metric in the kinetic energy and the fact that δxC ≠ 0 as

 δ δx R x
TF X F= −∇ ( ). .  (4.109)

Now the proof is completed by showing that (4.105) yields
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where (see (3.70) and (3.71))

 ˆ . , ˆ ,P P C V f f B F T= = = = − −− − − ( )J J J LF F F
1 1 1 1ρ inh inh (( ).  (4.111)

The localization of (4.104) on account of (4.110) yields, for arbitrary δxχ–1 at any 
material point X ∈ BR, the local form of the linear-momentum balance equa-
tion per unit current volume as

 
∂
∂

− − ⊗( ) =ˆ
ˆ ˆ .

P
B v P f

t
x fixed

inhdiv  (4.112)

Therefore, Equation 3.70 is directly derivable from Hamilton’s principle 
applied to the inverse-motion description. Obviously, the δx-variation effected 
at fixed current point x automatically captures the material inhomogeneities 
by extracting the material force f̂inh, but the latter is per unit current volume. 
Then Equation 3.70 is deduced from (4.112), and Equation 3.73 is recovered 
by multiplication by JF and appropriate manipulations. In this procedure one 
must take notice of the following useful identities:

 div divv P V P⊗( ) = − ⊗( )−ˆ ,JF R
1  (4.113)

 J
t tF

x

R
∂
∂

= ∂
∂

+ ⊗( )
ˆ

,
P P

V P
Xfixed fixed

div  (4.114)

and

 div divB b≡ −JF R
1 .  (4.115)

If we now apply Noether’s theorem to the inverse-motion description for 
space–time translations, but this time with spatial coordinates xi, we shall 
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obtain the energy equation for L̂ J LF= −1  not depending explicitly on time 
t, and the linear (physical) momentum balance law. Thus, as noted by the 
most penetrating observers of the continuum mechanics scene (Rogula, 1977; 
Edelen, 1981; Golebiewska-Herrmann, 1981), there are situations where lin-
ear physical momentum is strictly conserved (no body force), while mate-
rial momentum is not conserved (presence of material inhomogeneities), and 
others where the situation is clearly reversed. What about body forces in the 
formulation just given? The inverse-motion description misses body forces 
in the δx-variation. Indeed, assume that these forces are derivable for a poten-
tial φ(x). Then the missing term in the principle in (4.104) would give

 δ ρ ϕ δ ρ ϕ δ ρx
B

x F xdV J dv t
R

0
1

0X x X x x( ) ( ) = ( ) ( ) = (∫ − ( , )) ( ) ≡∫∫ ϕ x dv
BB

0,  (4.116)

from the very definition of an Eulerian variation.

E X ERC ISE 4 .1 :  In the absence of body force, show that Equation 4.29 can also 
be written as
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LR R− ∇ +( )( ) =. .b 1 V 0;   (4.117)

and that this is also a consequence of the following identity:
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=. div .inhG
P
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which is the time-like counterpart of the identity obtained by multiplying 
the identity in (3.16) by F–1 to the right.

4.3.3 Second-gradient elasticity

Many of the results stated in the preceding can be generalized to the case of 
a field theory of elasticity that is a second-gradient theory, that is, whenever 
(4.71) and (4.72), ignoring the presence of a body force and its potential, are 
replaced by the more general expressions:

 L L L
tR= ∇( ) = ∂
∂

∂
∂

∂
∂ ⊗ ∂







v F F X
X X X

X, , ; , , ; ,
χ χ χ2

 (4.119)

and

 L W R= ( ) − ∇( )1
2 0

2ρ X v F F X, ; .  (4.120)
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The kinetic energy is left unchanged for there is no additional microstruc-
ture here, just a finer description of stress effects. Elastic media of the type of 
those governed by a Lagrangian in (4.120) were considered by Toupin (1962, 
1964) for finite strains and Mindlin and Tiersten (1962) and Mindlin and Eshel 
(1968) for the small-strain approximation for which Le Roux’s (1911) work 
seems to be a pioneer. In the 1960s and 1970s, theories of this complexity 
(also called second-grade or strain-gradient theories) were expected to bring 
some satisfactory answer to the question raised by the appearance of local 
singularities in some elasticity problems (e.g., those involving corners, edges, 
etc.). This was not so successful. But gradient theories are also relevant to 
the elasticity theory of crystals, where long-range interactions and the asso-
ciated wave-dispersion effects cannot be neglected (cf. Maugin, 1999). This 
appears of necessity because scale effects are present (e.g., coherence length), 
and theories such as (4.120) include internal length scales.

We are just in the framework of the variational formulation. The field 
(Euler–Lagrange) equations are the spatial components of the local balance 
of linear (physical) momentum in the Piola–Kirchhoff formulation:

 
∂
∂
p

T 0
Xt R− =div eff ,  (4.121)

wherein

 p v T T M= = −ρ0 , diveff
R ,  (4.122)
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where the last introduced quantity has components
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KL
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.. .= ∂

∂( ) =  (4.124)

Here Teff is an effective first Piola–Kirchhoff stress, and M is a new internal 
force that may be referred to as the Piola–Kirchhoff hyperstress. The latter has 
at most 18 independent components due to the symmetry on the two mate-
rial indices. This large number of components will unfortunately be accom-
panied by a large number of new material coefficients to be determined by 
appropriate experiments or by comparison with the long-wave limits of a 
microscopic model or a procedure of homogenization (cf. Forest, 2006). The 
application of Noether’s theorem to the case of material space–time transla-
tions for scleronomic systems in the absence of body force systems yields the 
conservation of material momentum and that of energy in the form
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b f
Xt R− =div eff inh ,  (4.125)

and
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H
t R

X

G− ∇ =. eff 0,  (4.126)

where we have defined the following quantities:

 P p F b b M F= − = − ( ). , div .eff
R ,  (4.127)

 b 1 T F M F= − + + ∇( )( )L R R
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and

 f
X
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expl

= ∂
∂

L
.  (4.130)

This shows very little variance with the first-gradient theory. But two remarks 
are in order. First, we must express the rotational invariance of W. This can 
be obtained by performing an infinitesimal rotation in the current configura-
tion, the result of which is a generalization of (2.88), as

 skew Rij

T

[ ] + ∇( )( ) =FT F M2 0: ,  (4.131)

which shows that the Cauchy stress is not symmetric in this description 
since it is proportional to F.T. Equation 4.131 is automatically satisfied if, for 
instance, for an anisotropic inhomogeneous material, we take

 W W R R
T

R
T= ∇( ) ∇( ) ∇( )( )C F F F F X, : , . ; .  (4.132)

The second remark concerns boundary conditions, which must accompany 
(4.121) and (4.125) for a body of finite extent, as the theory clearly becomes of 
higher degree in space derivatives. This, however, is much  better evidenced 
in the corresponding small-strain theory as developed by, for example, 
Mindlin and Eshel (1968)—obviously without the concepts of inhomogene-
ity, material momentum (field momentum), and Eshelby stress—to whom 
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we refer the reader. In terms of “forces,” N.M must be specified in addition to 
N.T. In terms of displacements, their curvature should be specified in order 
to match the duality of data in terms of forces.

small-strain strain-gradient theory: From the preceding this is trivially 
given by

Balance of linear (physical) momentum•	 :

 ρ σ ρ0 0u f Bi ji j i− =, in  (4.133)

Balance of energy•	 :

   W u mji i j kji ij k= +σ ε, ,  (4.134)

Balance of field momentum•	 :

 P b f f ui
f

ji j i j j i− = −, ,
inh ρ0  (4.135)

Constitutive equations•	 :

 σ δ
δε

σ= = −W
div m,  (4.136)
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Definitions•	 :
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explx
 (4.138)

  where σ is the Cauchy stress, the symmetric tensor σ is called the 
intrinsic stress, and the last object, the hyperstress tensor m, has com-
ponents mkji = mkij.
Natural boundary conditions•	  (see, e.g., Germain, 1973; Maugin, 1980):

 n t n D n D n m T Bj ji j p p j k kji i
d+ −( )( ) = ∂ − ↑at Γ ,  (4.139a)

 n m n R Bk kji j i= ∂ − ↑at Γ ,  (4.139b)
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 ε τipq p k kjq j in m n E  = ↑along Γ ,  (4.139c)

where Dj denotes the tangential derivative at the regular parts of ∂B, 
Ω = −1 2/ D nj j is the local mean curvature at regular parts of ∂B, τ is the unit 
tangent along the oriented edge Γ↑ (if the latter exists), Ri is a so-called double 
normal traction, and Ei is a lineal force along the edge. This shows the complex-
ity of prescribing data at the irregular boundary because the hyperstress is a 
complex notion of internal force.

On the one hand, the very expression of σ through a functional derivative 
of the Euler–Lagrange type provides the expression in terms of even-order 
space derivatives (that is, two orders more appear at each step of refinement in 
the nth-order gradient theory). On the other hand, a local experience (real or 
in thought only) considering a facet cut in the material (geometric description 
at the first order of the cut via its unit normal only) “sees” the Cauchy stress. 
Only edges or the second-order geometric description (tangential derivatives, 
curvature) can “see” m independently (in this regard, see the beautiful work 
of Dell’Isola and Seppecher [1995] on the generalization of Cauchy’s lemma 
for the representation of stresses). This is bypassed by a weak formulation of 
the type of the principle of virtual power such as
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where Td and Md are an applied traction and an applied so-called double force 
(represented by a symmetric second-order tensor—see Maugin (1980) and 
Germain (1973)). Other conservation laws and the connection to Lie groups 
are to be found in Lazar and Maugin (2005).

4.3.4 Hamilton’s equations

The formulation using the material momentum P in the upper right corner in 
Figure 3.4—said to be completely material—is the only one among the four 
formulations that combines simplicity (no convection term, partial deriva-
tives taken with respect to the independent variables X and t) with the fact 
that it is expressed in the same framework KR. This endows this formulation 
with a peculiar nature that does not seem to have been noticed before the 
papers of Maugin and Trimarco (1992), although the canonical formulation 
of elasticity—especially in the small-strain approximation—has attracted 
the attention of some researchers (Holm and Kupershmidt, 1983; Simo et al., 
1988). It is in fact a canonical formulation from the point of view of Hamilton’s 
analytical mechanics of elastic systems. This primarily arises from the fact 
that the XK’s and the components P̂ C VK KL

L= ρ  of the material momentum 
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per unit volume of Kt are conjugate variables in the sense of Hamilton’s 
mechanics. Indeed, we can define the Hamiltonian density Ĥ per unit vol-
ume in Kt by

 ˆ . ˆ . ˆ ,H J L LF= −( ) = −−1 P V P V  (4.141)

so that
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ˆ ,P
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χ δ
δ

1

fixed

 (4.142)

where the Euler–Lagrange functional derivative has been introduced for the 
sake of generality (but it does reduce to a partial derivative in the case of 
Equation 4.142). The last of (4.142) is verified by noting that

 ˆ . . ˆ . . ˆ .K = = = −1
2

1
2

1
2

2 1ρ ρ
ρ

v V C V P C P  (4.143)

The second of (4.142) is none other than the first of Hamilton’s canonical equa-
tions. The second of these equations should read

 
∂
∂
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x fixed

δ
δ

 (4.144)

This, indeed, is none other than the equation of conservation of material 
momentum. To check this, one has to evaluate

 
δ
δ

ˆ
ˆ . ˆ , ˆ ˆ ˆ , .

H
H H H K WRX

F X F= ∇ − ∇ ∂ ∂( ) = + ( )− −/ 1 1  (4.145)

4.3.5 Lie–Poisson Brackets

Consider a materially inhomogeneous elastic body in finite strains but in the 
absence of body forces. Integrating the balance of material momentum over a 
regular material region BR bounded by the regular surface ∂BR, this yields

 
d
dt

dV dA dV
B BB R RR

P N b f= +
∂∫ ∫∫ . .inh  (4.146)

This is a balance among material forces. But we also note that

 P PdV dv
B BR
∫ ∫= ˆ .  (4.147)
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Now define

 A A dv H H dvB
B

B
B

= −( ) = −( )∫ ∫, ˆ ˆ .  (4.148)

We a priori define the Lie–Poisson bracket {.,.} in a global way by

 A B
A B A B

dv
B

, . ˆ ˆ . ,{ } = −




∫ δ

δ
δ
δ

δ
δ

δ
δX P P X

 (4.149)

and we propose the following global evolution equation, as is usual in clas-
sical field theory, by

 A A HB B B= { }, ˆ .  (4.150)

From this total energy is trivially conserved:

 ˆ ˆ , ˆ ,


H H HB B B= { } ≡ 0  (4.151)

because of the skewsymmetry of the bracket. This holds irrespective of 
the presence or absence of elastic inhomogeneities—insofar as the sys-
tem is  scleronomic—as inhomogeneity forces are not dissipative per se. 
Consider now the total material momentum as defined component-wise 
in (4.147). Applying (4.150) to it and accounting for the definition in (4.149) 
and the fact that P̂  satisfies the canonical equations (4.142) and (4.144), we 
obtain that

 ≡ = ∇( ) + ∂
∂









 ≡ ∫d
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dV

t
dv

d
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x BB

ˆ ˆ .
ˆ

ˆP P V
P

P∫∫∫B
,  (4.152)

on account of (2.40). Thus the right-hand side of (4.152) is zero, hence total 
material momentum is conserved in the sense of the  Lie–Poisson brackets, if and 
only if the global inhomogeneity force vanishes and the boundary condi-
tions on b are homogeneous at ∂BR (no flux at this  boundary). This result will 
be of importance in soliton theory (see Chapter 12).

REM A R k 4 . 3 :  Bessel–Hagen extension

Following the remark made after Equation 4.8 the Lagrangian density of 
interest may be defined up to the divergence of a four-field depending only on 
the space–time coordinates. For homogeneous bodies, the flux  conservation 
can now be written as

 ∂ +( ) =µ
µ µJ Ω 0.  (4.153)
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This is called the Bessel-Hagen (1921) extension for a divergence symmetry (cf. 
Olver, 1986). This may be used for the benefit of the construction of additional 
conservation equations (see Herrmann and Kienzler [2001] and an applica-
tion to structural mechanics by Kienzler (1993)).

REM A R k 4 .4 :  Neutral action

Many physical systems, in particular those exhibiting dissipation, do not 
possess a Hamiltonian–Lagrangian variational formulation. In other words, 
their physics is governed by a set of local field equations obtained by substi-
tuting appropriate constitutive equations into local balance laws. In principle 
there is no systematic way to build for those systems a set of conservation 
laws such as that of material momentum (however, see Chapter 5). Such a 
system may be stated formally as (for a first-gradient theory)

 ∆β
α

µ
α µφ φ β, , , , ,...,∂( ) = =X 0 1 2  (4.154)

of which a special case would be Euler–Lagrange equations Eβ(L) = 0. For this 
special case we have (cf. Equation 4.38) Noether’s identity

 ∂ + = ∂ =∑µ
µ

α
α

µ
µ

α

J E Q J0 0, ,hence   (4.155)

where we recall that Qα are the characteristics of the transformation group. In 
the case where (4.154) holds, let us look for a set of functions Qβ  such that we 
could write an expression such as (compare to (4.155))

 ∂ + =∑µ
µ

β
β

β

J Q∆ 0.  (4.156)

It follows from this that a requirement for the existence of conservation laws 
associated with (4.154) is that

 E Qα
β

β∆( ) = 0.  (4.157)

The reason for this is that, in variational calculus, if a Lagrangian density 
L is itself a divergence (these are so-called null Lagrangians), then Eα(L) = 0. 
Equation 4.157 implies that Qβ

β∆  is formally a null Lagrangian L such that

   A Ld X Q d X N J d S= = ( ) = −∫ ∫ ∫4 4 3β
β µ

µ∆ .  (4.158)

This has vanishing variation for any independent fields. That is, δA = 0. In 
other words, this means that to construct conservation laws for any system 
(whether or not it admits a Lagrangian), such as (4.154), we need to construct 
the “product” Qβ

β∆  whose action A is invariant. We can say that this action 
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behaves neutrally under its variation. Such a technique, studied by Chien (1992) 
and referred to as the method of neutral action, was illustrated by Chien et al. 
(1993) in the case of one-dimensional linear viscoelasticity. The remaining 
problem, with a nonobvious solution in a sufficiently sophisticated case, is to 
find the functions Qβ .

4.4 Conclusive Remarks

What we have developed in this chapter is essentially the variational ana-
lytical mechanics of fields with direct application to elasticity. It happens 
that elasticity is paradigmatic as it appears to be an ideal illustration. The 
approach chosen has emphasized the role played by material and spatial 
(Eulerian) variations. This was acknowledged by several authors in special 
cases (no dynamics, no material inhomogeneities, small strains depending 
on the case), among them Casal (1978), Rogula (1966, 1977), Edelen (1981), and 
Golebiewska-Herrmann (1981). But two remarks are essential at this point.

First, the special case of elasticity is indeed more than special in the con-
text of field theory because it leads to some misinterpretation. The reason for 
this is that in this case the field (placement) and the space-parametrization 
share the same nature: They are positions but in different spaces. It is even 
worse when Lagrangian coordinates are used as space-parametrization 
because they correspond to a placement occupied in the past! This gives a 
feeling of strict equivalence by mere pull back or push forward between, 
or of a strict ontological status of, the balances of linear physical momen-
tum and of material momentum. But the latter, which we can better call 
canonical momentum in view of the general theory of fields, sums up contri-
butions from all fields involved (remember the summation over α), whether 
mechanical or other in nature, and it will include contributions other than 
those of the actual placement in more complex theories of continua (such 
as in media with internal degrees of freedom or with coupled fields, which 
we examine later on in this book). In particular, there are field theories that 
admit no deformation field, but they still admit the notions of canonical 
momentum and “Eshelby” stress, a typical example being that of pure elec-
tromagnetic fields in a vacuum or in a rigid body. Another example is given 
in the appendix to this chapter.

Second, the “neutral action” method briefly examined in Section 4.3 offers 
one possibility to account for some (simple) dissipative processes in low-
 dimensional systems in order to construct some conservation equations in 
the absence of starting Lagrangian. But canonical equations for both momen-
tum and energy must exist whatever the precise material behavior of the 
material. We shall see in the forthcoming chapter how this can be dealt with 
in a sufficiently general thermodynamic framework for deformable solids.
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Appendix A4.1: Field Theory of the Peach–koehler Force 
in Matter with Continuously Distributed Dislocations

Since βij = uj,i for a compatible distortion, if we consider an incompatible 
distortion βij (not exactly integrable into a displacement gradient) in small 
strains, we can write

 

∂
∂

− = ≠
t

v Jji i j ijβ , ,0  (A4.1)

where Jij is called the (material) dislocation current. Simultaneously, there holds 
Equation 3.120 relating to the dislocation density α of components αik.

The dislocation current and density are related by

 J Vij ilk l jk= −ε α ,  (A4.2)

where V denotes the dislocation velocity in material space. Consider the 
Lagrangian density L L= ( )v, β . The material force acting on the dislocation 
density, after variation at fixed actual position, is given by the “inhomogene-
ity force” present in the balance of material momentum, that is,

 f
P

bdisl disldiv or= ∂
∂

− = ∂
∂

−
t

f
t

P bR j j ij i, ,  (A4.3)

with the canonical definitions

 P
L
v

b L
L

j
i

ji ji ji ik
jk

= − ∂
∂

= − ∂
∂

β δ β
β

, .  (A4.4)

Effecting now the computation of the right-hand side of Equation A4.3 
we obtain

 f p V b p L vj jlk i l li ik i i
disl /= − −( ) = ∂ ∂ε α , .  (A4.5)

But for a single dislocation

 α τ δ ξik i kb= ( ) ,  (A4.6)
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where the symbols introduced have the same meaning as in Section 3.7, 
so that the first of (A4.8) yields

 f b V p bj jlk li l i i k
disl = −( )ε τ ,  (A4.10)

a formula due to Rogula (1965), where we recognize in the contribution 
ε τ τjlk l i i k jV p b = ×( . )( )p b V  the components of the right-hand side of (3.66.)
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5
Canonical Thermomechanics 
of Complex Continua

Object of the Chapter

Where we discover that canonical conservation laws for continua exhibit-
ing complex dissipative processes can be formulated jointly for energy 
and canonical momentum, opening up the way to applications to a large 
spectrum of problems where progress of a material force and dissipation of 
energy must be considered simultaneously in a compatible manner.

5.1 Introduction

Of course, the variational formulation of the foregoing chapter has its limi-
tations, although it does yield canonical conservation laws of energy and 
material momentum and provides in a direct manner the notions of material 
stresses and forces. But there is no reason why these should be limited to spe-
cial classes of physical processes in which the energy density is known from 
the start, so that, in effect, the material behavior is also specified from the 
start. Only recently a general canonical formulation of thermodynamics was 
formulated that accommodates large classes of dissipative phenomena and is 
naturally subjected to the necessary satisfaction of the second law of thermo-
dynamics. To illustrate this general viewpoint, we consider the sufficiently 
general continuum physics of finitely deformable solids that may conduct heat 
and exhibit dissipation of different types via the presence of so-called internal 
variables of state (cf. Chapter 2). The uncontrollability of the internal state 
variables is reflected in the fact that they have no applied conjugated forces in 
the bulk and at the surface of the considered body, so that their only virtue, 
and essence, is to produce a dissipation. Accordingly, the general starting field 
equations are those of a classical thermodeformable (scleronomic) body.

Working in parallel on the energy equation in a special form and on the 
associated canonical equation of momentum, we focus attention on the case 



112 Configurational Forces

of deformable media that are primarily finitely elastic but also admit the exis-
tence of thermodynamically irreversible phenomena by means of a diffusive 
internal variable of state, or alternately an additional degree of freedom, in 
any case presenting some weak nonlocality (gradient effects). Two descrip-
tions follow thereof, one that can be called standard according to rational 
thermomechanics (there exists a generalized internal force or thermodynam-
ically conjugated force for a variable and each of its gradients separately, and 
the entropy flux has its classical definition) and the so-called field-theoretic 
viewpoint, in which only one generalized force (based on a variational deriv-
ative of the energy) is used. In the latter, the entropy flux deviates from its 
classical definition, but, simultaneously, by virtue of the space–time consis-
tency, the Eshelby stress tensor has to be altered.

Simple examples with diffusion of an internal variable or a true internal 
degree of freedom illustrate these formulations, which may be valuable in the 
description of some complex materials. In this respect, we mention that the 
formulation of a rational theory of continuous media with diffusive effects still 
presents a challenge in modern continuum thermomechanics. One reason for 
this is the recurring question whether the field associated with the diffusive 
process of interest is an observable or an internal variable of state, whether it 
constitutes a true additional internal degree of freedom or merely is a param-
eter compared to the main governing ingredients of the thermomechanical 
description, that is, the deformation and the temperature fields. These ques-
tions have been posed for a long time, including in such classical works as the 
monograph of de Groot and Mazur (1962) or in more “rational” approaches to 
fluid mixtures such as in Bowen (1967, 1976). Furthermore, recent developments 
in the continuum mechanics of complex or microstructured media have led to 
considering gradients of certain variables, a consideration akin to introducing 
diffusive effects related to these variables as well as a sort of weak nonlocal-
ity concerning these variables (weak and strong nonlocalities were first distin-
guished in Maugin, 1979). Among cases of particular interest along this line of 
development we note the case of liquid crystals (Leslie, 1968; Kats and Lebedev, 
1988; Maugin, 1990, 1999, pp. 160–162), damage (Frémond and Nedjar, 1993, 1996; 
Lorentz and Andrieux, 1999), second-grade elastic materials (Forest and Cordona, 
2000), and viscoplasticity (Forest and Sievert, 2003). One specific point raised in 
some of these works is whether the entropy flux follows the standard imposed 
by the Coleman–Noll rational thermodynamics of the 1960s–1970s (cf. Truesdell, 
1984) or its definition may be altered by the present diffusive effect (as shown 
in Maugin, 1990). This alternative, together with the initial question raised, are 
critically examined in this chapter. A recent work by Ireman and Nguyen Quoc 
Son (2004) addresses the same problem on the basis of Maugin (1990).

Remember also that a natural ingredient in diffusive theories in fluids is 
a tensor of chemical potentials (cf. Bowen, 1967; Truskinovskii, 1983; Grinfeld, 
1991) that was easily related to the Eshelby stress tensor (called the energy-
momentum tensor in Eshelby’s original works; cf. the synthesis works of 
Maugin [1993, 1995]). As a matter of fact, this chapter exploits this fruitful 
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concept and clearly shows that alteration in the definition of the entropy 
flux goes along with a parallel alteration in the structure of the Eshelby 
stress tensor. The essential reason for this is the recognition of the comple-
mentary roles played by the balance of entropy and the balance of so-called 
canonical momentum insofar as thermomechanics is concerned. This was 
already emphasized in Maugin (2000, 2002). The considerations in this chap-
ter, although presented in a somewhat abstract frame, are meant to apply 
mostly to cases of interest in geomaterials (especially for weakly nonlocal 
damage and plasticity) and biomaterials (especially in the theory of growth 
as formulated—with diffusional effects—in Epstein and Maugin [2000]).

5.2 Reminder

For our purposes, we suppose that the following three local balance laws 
have been deduced from a global statement for sufficiently smooth fields (see 
Chapter 2). Here we consider the Piola–Kirchhoff formulation of the balance of 
mass, physical (linear) momentum, and energy (no external supply of energy 
apart from that related to the body force) at any regular material point X in a 
continuous body in the presence of a body force f0 per unit reference volume:

 
∂ρ
∂

0 0
t X

= ,  (5.1)

 
∂ ρ
∂

0
0

v
T f

( )
− =

t
X

Rdiv ,  (5.2)

 
∂

∂
K E

t
X

R

+( )
− ∇ −( ) =. . .T v Q f v0 ,  (5.3)

where ρ0 is the mass density, v x= ∂ ∂/ t
X
 is the physical velocity, T is the 

first Piola–Kirchhoff stress, K = ρ0v2/2 is the kinetic energy, E is the internal 
energy per unit reference volume, and Q is the material heat flux. This is 
complemented by the second law of thermodynamics, written as

 ΣR
X

R
S
t

: ,= + ∇ ≥ = ( ) +∂
∂

θ. , /S S Q k0  (5.4)

where S is the entropy density, θ is the absolute temperature (θ > 0, inf 
θ = 0), and S is the entropy flux. The “extra entropy flux” k vanishes in 
most cases.
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5.3 Canonical Balance Laws of Momentum and Energy

5.3.1 A Canonical Form of the energy Conservation

First, we shall formulate an interesting form of the energy conservation equa-
tion. A part of the reasoning is standard. In effect, taking the scalar product 
of both sides of Equation 5.2 by v and performing some elementary manipu-
lations, we obtain the so-called theorem of the kinetic energy as

 
dK
dt R− ∇ ( ) + ( ) −. . tr . =0.T v T F f v.  0  (5.5)

Combining this with the first law of thermodynamics (Equation 5.3) we 
obtain the so-called theorem of internal energy:

 
dE
dt R− ( ) + ∇ =tr .T F Q. . 0  (5.6)

Ca s e wh e r e k ≡  0

In this case, introducing the Helmholtz free energy function by W = E – 
Sθ, we transform the inequality in (5.41) into the celebrated Clausius–Duhem 
inequality:

 − +




+ ( ) − ∇ ≥dW

dt
S

d
dt R
θ θtr .T F S. . 0  (5.7)

As we know (Chapter 2), this is exploited as a constraint in the formulation 
of thermodynamically admissible constitutive equations, while the “conser-
vation equation” (5.6) is the equation governing heat propagation in a dis-
guise. This can be given several transformed forms. A most interesting form 
is obtained straightforwardly by noting that E = W + Sθ, yielding

 
d S

dt
h h

W
tR

X

θ ∂
∂

( )
+ ∇ = ( ) −. = , : trint intQ T F. .  (5.8)

This is of special interest because of the expression in the right-hand side, 
which a priori appears as an internal heat source. Indeed, for a typically 
thermodynamically reversible behavior such as pure nonlinear elasticity 
(hyperelasticity), where W W= ( )F  depends only on F, we have from the 
exploitation of (5.7)

 T F= ⇒ ≡∂ ∂W h/ int 0. (5.9)
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Note that in the situation where (5.8) holds good, the inequality in (5.7) can 
also be written in the following enlightening form:

 S hR
θ θ+ ∇ ≤S. int .  (5.10)

We claim that (5.81) in fact is the most interesting form of the energy con-
servation equation for our purpose (i.e., establishing canonical equations). 
This we discover by constructing the canonical equation of momentum as 
follows.

5.3.2 Canonical (Material) Momentum Conservation

Guided by what is valid for pure finite-strain elasticity (Noether’s identity; 
Chapter 4), we apply F to the right of (5.2) and note that (T = transpose)
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∇( )Rρ0  (5.11)

(this is nothing but (3.13)), and

 div . div . trR R R
T

T F T F T F( ) = ( ) − ∇( )( ). ,  (5.12)

where we have set (cf. (3.12))

 P v F:= .− ρ0  (5.13)

as the material momentum. Introducing now plus and minus the material 
gradient of an (unspecified) free energy density W W= ( ).,..,..,X , we then 
check that (5.2) yields the following material balance of momentum:

 
d
dt R
P

b f f f− = + +div int ext inh ,  (5.14)

in which we have defined the material Eshelby stress b, the material inhomo-
geneity force finh, the material external (or body) force fext, and the material 
internal force fint by

 b 1 T F= − +( ) = −L L K WW R W. , : ,  (5.15)

 f X X vinh
expl fixedfields

/ / /:= ≡ = ( )∇∂ ∂ ∂ ∂L LW W R
2 2 ρρ ∂ ∂0 − W/

expl
X ,  (5.16)

 f f F f T Fext int
impl

. , tr: : . ,= − = ∇( )( ) − ∇0 R
T

RW  (5.17)
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where the subscript notations expl and impl mean, respectively, the  material 
gradient keeping the fields fixed (and thus extracting the explicit depen-
dence on X) and the material gradient taken only through the fields present 
in the function.

Equation 5.14 is the canonical balance of momentum of continuum mechan-
ics in the absence of specification of constitutive equations. It is a (mathematically) 
strict conservation equation only when all source terms in its right-hand side 
vanish. Here the new notion is that of material internal force, which appears 
in parallel and total analogy with the internal heat source in (5.82), the action 
of the material gradient replacing that of the material time derivative. We 
note that there is no “timelike” scalar equivalent to finh in Equation 5.81 
because this inhomogeneity force, which is automatically captured by that 
equation, has no dissipative nature. An explicit dependence of W on time 
(in a rheonomic system) would yield a nonzero term hinh (see Chapter 4 for 
rheonomic systems). Similarly, there is no equivalent to the external mate-
rial force fext in (5.81) because this equation governs essentially the internal 
energy. It would be easy to rewrite Equations 5.81 and 5.14 as a single four-
dimensional space–time equation (see Maugin, 2000, and the appendix to 
this chapter), but this serves no special purpose, except for an aesthetic satis-
faction, in engineering applications. Still, the consistency between the space-
like covectorial Equation 5.14 and the timelike Equation 5.81 is a fundamental 
requirement in the thermodynamic study of the progress of singularity sets 
(e.g., defects) in order that the related dissipation be none other than the 
power expended by the material force in the material velocity of the defect 
(cf. Chapters 7 and 8).

Still, in the present approach, to proceed further we need to specify the full 
functional dependence of W. The general expressions (5.81) and (5.14) are the 
most general canonical equations for momentum and energy we can write 
down without a postulate of the full dependency of W. However, just like for 
other equations in continuum mechanics, we could also write the jump rela-
tions associated with (5.81) and (5.14) at a singular surface by using elements 
of the theory of hyperbolic systems or a more naïve method such as the 
pill-box method. But since the “conservation laws” (5.81) and (5.14) already 
exhibit source terms in the bulk (i.e., they are not conservation laws in a strict 
mathematical sense), the associated jump relations will also contain surface 
source terms. The latter, a priori unknown but responsible for the dissipation 
at the singularity, have to be computed with the help of the standard jump 
relations associated with Equations 5.1 through 5.3.

Ca s e wh e r e k ≠  0

Without reporting the whole algebra, starting with (5.42), we let the reader 
check that the thermodynamic inequality in (5.7) is replaced by

 − +




+ ( ) + ∇ ( ) − ∇ ≥dW

dt
S

d
dt R
θ θ θtr . . RT F k S. , 0  (5.18)



Canonical Thermomechanics of Complex Continua 117

where S is still given by the general expression (5.42). Equations 5.8 and 5.14 
are left unchanged:

 
d S

dt
h h

W
tR

X

θ ∂
∂

( )
+ ∇ = ( ) −. = , trint intQ T F: . ,  (5.19)

 
d
dt R
P

b f f f− = + +div int ext inh .  (5.20)

On account of (5.18), (5.10) is now replaced by

 S hR R
θ θ θ+ ∇ ≤ + ∇ ( )S k. .int .  (5.21)

Now let us illustrate these general equations by specific cases, some of them 
trivial and others nontrivial.

5.4 Examples without Body Force

5.4.1 Pure Homogeneous elasticity

In this case ρ0 = const and W W= ( )F  only. We have hint ≡ 0, fint ≡ 0 since 
(5.9) holds good, and also finh = 0, Q ≡ 0 since the body is  homogeneous 
and nonconducting. Equations 5.8 and 5.14 reduce to the following [in fact 
Hamiltonian for a (3 + 1)-dimensional canonical momentum (P,θ0S)] system 
(θ0 = const):

 
d
dt

dS
dtR

P
b 0− = =div , θ0 0.  (5.22)

In four-dimensional form this is the formulation of Kijowski and Magli 
(1998), in which the second of (5.22) is trivial and 4-momentum is given by 
P4 = (P, θ0S).

5.4.2 inhomogeneous Thermoelasticity of Conductors

In that case ρ ρ0 0= ( )X , and W W= ( )F X, ;θ . We have the constitutive 
equations:

 T
F

= = −∂
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∂
∂θ

W
S

W
, ,  (5.23)
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which follow from a standard exploitation of the Clausius–Duhem inequal-
ity (cf. Chapter 2). Accordingly, we obtain that

 f fint th int th≡ ≡ =, : ,h h S θ  (5.24)

where

 fth := ∇S Rθ   (5.25)

is the material thermal force first introduced by Bui in small strains (1978)—in 
fact in a little-known conference paper of 1977—and independently by 
Epstein and Maugin (1995) in their geometric considerations, so that (5.8) 
and (5.14) are replaced by the following canonical (non-Hamiltonian) system 
of balance of momentum and energy:

 
d
dt

d S
dt

hR R
P

b f f Q− = +
( )

+ ∇ =div , .inh th th
θ

,  (5.26)

as was first found in Maugin (2000, 2006a).

5.4.3  Homogeneous Dissipative Solid Material Described 
by Means of a Diffusive internal Variable

Let α be the internal variable of state whose tensorial nature is not speci-
fied. This may relate to damage or anelasticity of some sort with a possible 
diffusion of the said variable so that its material gradient must be taken into 
account (e.g., in strain-gradient plasticity). This is in the spirit of the thermo-
dynamics developed at length in Maugin (1999a). Then W is specified as the 
general sufficiently regular function

 W W R= ∇( )F, , ,θ α α .  (5.27)

Ca s e wh e r e k  ≡  0

First, we assume that k vanishes. The equations of state (in a sense mere 
 definition of the partial derivatives of the free energy) are given by Gibbs’ 
equation as

 T
F

B= ∂
∂

= − ∂
∂

= − ∂
∂

= − ∂
∂ ∇( )

W
S

W
A

W W

R

, , : , : .
θ α α

 (5.28)

Accordingly, we find that

 f f fint th intr int th intr,= + = +h h h ,  (5.29)
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where the thermal sources have already been defined and the “intrinsic” 
sources are given by

 f B Bintr intr: . , : .= ∇( ) + ∇ ∇( ) = + ∇A h AR
T

R R
T

Rα α α α (( )T ,  (5.30)

so that we have the following consistent (non-Hamiltonian) system of canon-
ical balance laws:

 
d
dt

d S
dt

h hR R
P

b f f Q− = +
( )

+ ∇ = +div , .th intr th intr
θ

,,  (5.31)

while the dissipation reads

 Φ = − ∇ ≥ ≡h R
intr .S k 0θ 0, .  (5.32)

Here the thermodynamic forces A and B are purely dissipative by virtue of 
the “internal” character of the state variable α.

This approach with k = 0 favors the continuum-mechanics (Coleman–Noll) 
standard viewpoint (cf. Truesdell, 1984) by accepting the classical relation-
ship between heat and entropy flux, and assuming that α and its material 
gradient are essentially independent. A more field-theoretic viewpoint is to 
envisage the set of (5.18) through (5.21) as holding true and selecting the 
nonzero k such that the divergence term in (5.18) is eliminated from this 
inequality.

Ca s e wh e r e k  ≠  0

To make the divergence term in Equation 5.18 vanish identically, we set

 k B= − −θ α1  .  (5.33)

This follows the scheme originally developed in Maugin (1990) for materials 
with diffusive dissipative processes described by means of internal variables 
of state.

We let the reader check that Equations 5.31 and 5.32 are then replaced by 
the following equations:
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d S
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h hR R
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b f f Q− = +
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and

 Φ = − ∇ ≥ =    h h AR
intr intr. , :S θ α0 ,  (5.35)
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where we have introduced the new definitions

  A
W W W

AR
R

R≡ − = − − ∇
∇( )
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∂
∂α

∂
∂ α
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and

   b 1 T F B f= − + − ∇( )( ) = ∇L AR R
T

R. . , :intrα α .  (5.37)

The two thermodynamic approaches just illustrated are to be compared to 
the constructive comments of Ireman and Nguyen Quoc Son (2004). Here, 
we additionally show that alteration in the entropy flux definition goes along 
with a parallel alteration in the expression of the Eshelby stress tensor, thus 
reinforcing the spacelike complementarity of the equations (5.34). Alteration 
of the definition of entropy flux is classical in the theory of irreversible pro-
cesses in the presence of diffusion (cf. de Groot and Mazur, 1962). More on 
this, with the possible interpretation of α as an additional degree of freedom 
when it is equipped with its own inertia, can be found in Maugin (2006b; see 
also next section).

5.5 Variable α as an Additional Degree of Freedom

5.5.1 general Formulation

Had we considered α as an observable field endowed with an inertia and a 
flux, where the latter is not necessarily purely dissipative (on the contrary, it 
could be purely nondissipative), we would have started with

A global statement of the •	 principle of virtual power (PVP) following 
Germain (1973a, 1973b) and Maugin (1980)
A global statement of the first and second laws of thermodynamics •	
(following Chapter 2)

The first statement (PVP) would read, for a body B occupying the regular 
region BR with regular boundary surface ∂BR (of outward-pointing unit nor-
mal N) in its reference configuration KR

 P P Piinertia data* *+ *( ) ( ) ( )=  (5.38)
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with

 P dV
BR

inertia *= . * . . *( ) + ( ) ( )( )∫ ρ ρ α α0 0v v I   ,  (5.39)

 P A dVdata *= . * . * . * .( ) + ( )( ) + + (ˆ ˆ ˆ ˆf v T v Bn n α α0 ))( )∫∫ * dA
BB RR ∂

,  (5.40)

and

 P A dAi R R

BR

( ) = − ∇( )( ) − ( ) − ∇ ( )( )* tr . * . *T v B. *  α α∫∫ ,  (5.41)

where

 ˆ ˆ ˆ ˆf T Bn n, , ,A  (5.42)

are prescribed—hence the subscript data in the corresponding power—and

 A, ,T B  (5.43)

are genereralized internal forces to be given (nondissipative or dissipative or 
both) constitutive equations.

REM A R k S:  In Equations 5.38 through 5.41, an asterisk means that the expres-
sion or the field to which it is attached is a virtual field whose choice is at our 
disposal. Deleting the asterisk means that the expression or the field in ques-
tion takes its actual value in the initial-value boundary-value problem to be 
solved. Prescriptions to formulate the various virtual powers, once the basic 
fields such as the motion of the body and the variable α are chosen, have been 
clearly enunciated in Maugin (1980). In particular, the virtual power of inter-
nal forces P(i)* must be written as a linear continuous form on a set of objec-
tive generalized velocity fields in order that the internal forces introduced 
by the inherent duality as the set of (5.43) be objective fields (i.e., invariant 
under superimposed rigid-body motions in the current configuration Kt). If 
α simply is a scalar under such transformations, there are no problems in 
writing directly the linear form (5.41). For instance, this is done by Frémond 
and Nedjar (1993, 1996) when α is a scalar damage variable. Then the “iner-
tia” I in the expression of the virtual power of inertia force is also a scalar, if 
it exists at all. The objectivity requirement does not apply to the other virtual 
powers since neither inertial forces nor externally applied forces are objec-
tive. Whenever α is a field of higher tensorial order (e.g., a vector field such as 
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in the cases of liquid crystals, internally electrically polarized materials—cf. 
Maugin, 1974b, 1976, or internally  magnetized  material—cf. Maugin, 1974a), 
one has to be more thoughtful in writing down P(i); in particular, objective 
(convected or Jaumann) time derivatives of α and its gradient must be intro-
duced. This remark obviously holds true if α is a tensor of second order (e.g., 
representative of a rigid or deformable microstructure). The tensorial order 
of the “inertia” I is accordingly formulated. The dots between symbols in 
Equations 5.38 through 5.41 take their full meaning of contractors of indices 
or inner products in the appropriate space. These technicalities are more or 
less obvious. The formulation given in Equations 5.38 through 5.41 is of the 
type of a first-gradient theory insofar as both the classical continuum motion 
and the variable α are concerned. Higher-order gradient theories, that is, 
“stronger nonlocal theories” may be constructed following the same gener-
alized pattern and rules (cf. Maugin, 1980). “First order” is enough to com-
pare with the foregoing “diffusive-internal-variable” theory. Note that there 
is no obligation that the theory be of the same order for the classical motion 
and for the additional variable α. This choice is at our disposal and depends 
essentially on our apprehending of the spatial range of interactions.

REM A R k :  Here we call α an observable field. We could as well say “control-
lable” field, meaning by this that, contrary to internal variables of state, their 
values can be adjusted by a proper action in the bulk and at the surface of the 
body by the introduced generalized forces present in P(data).

The two laws of thermodynamics are now set forth in the following 
global form:

Fir st  law of t her mody na m ics

 
d
dt

K E dV P Q Q Q dA
B BR R

+( ) = + = −( )∫ ∫data ,  ˆ
n

∂

 (5.44)

and

Second law of t her mody na m ics

 
d
dt

SdV dA
B BR R

∫ ∫+ ≥ = +−N S S Q k. , 

∂

θ0 1 .  (5.45)

In these two equations, K, E, and S are the kinetic energy, internal energy, 
and entropy density per unit reference volume. Q is the energy rate supply 
to the body through its boundary. This occurs through heat. We do not intro-
duce any energy supply per unit volume. In writing the second law, we have 
somewhat anticipated by introducing an entropy flux with the more general 
relationship to heat and dissipative processes, since, while θ is the standard 
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thermodynamic temperature, we have admitted the possible presence of a 
nonzero extra entropy flux k. The kinetic energy here is given by

 K = +1
2

1
20

2
0ρ ρ α αv I . . .  (5.46)

As a first outcome from the application of (5.38) for any virtual fields v*, *α( )( ) 
in any volume and surface element, we obtain the following  balance laws 
and associated natural boundary conditions:

 ∂ ρ
∂0v T f T N Tn

( ) − = =
dt

B B
X

R R Rdiv in . atˆ , ˆ ,  (5.47)

 ∂ ρ α
∂

∂0I B B N Bn
.

. in , . at
( ) = + − ∇ =

t
A A B B

X
R R R

ˆ ˆ .  (5.48)

A second result is obtained for real virtual velocity fields (no asterisks), 
on account of (5.46). It is the so-called equation of kinetic energy in global 
form, as

 
d
dt

KdV P Pi

BR

= +( ) ( )∫ data .  (5.49)

On combining this with the first law (5.44), we obtain the so-called equation 
of internal energy in global form:

 
d
dt

EdV P Qi
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+ =( )∫  ,  (5.50)

the localization of which yields

 
∂
∂

= ∇( )( ) − − ∇ − ∇E
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A B Q
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R R Rtr inT v B Q n. . . . , ˆ α α == ∂N Q. .at BR  (5.51)

Introducing now the Helmholtz free energy W per unit reference volume 
by

 W E S= − θ,  (5.52)

and combining with the local form of the inequality (5.451), we arrive at the 
following Clausius–Duhem inequality:

 − +
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S
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p i R
θ θ θ. . Rk S 0,  (5.53)
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while evaluating θ dS/dt from Equation 5.511 on account of Equation 5.52 we 
obtain the “entropy equation,” which will ultimately provide the heat-prop-
agation equation, in the form

 θ θdS
dt

dW
dt

S
d
dt

p i R= − +




+ − ∇( ) .Q.  (5.54)

We have introduced the following notation

 p Ai R( ) = ( ) − − ∇: tr .T F B.   α α  (5.55)

and accounted for the fact that

 ∇( ) ≡R
T

v F .  (5.56)

Now we consider three cases of exploitation of the scheme developed in the 
preceding.

5.5.2 The Only Dissipative Process is Heat Conduction

We have the following obvious reduction:

 k 0 S
Q≡ ≡, ,
θ

 (5.57)

 − +
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d
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p i R
θ θ0 0, ,Φth : .S  (5.58)

 θ dS
dt R+ ∇ =.Q 0.  (5.59)

The last of these can also be written as (since θ > 0 always)

 
dS
dt R+ ∇ = = −. ,th th thS σ σ θ 1Φ .  (5.60)

With a functional dependence W W R= ∇( )F, , ,θ α α , a classical reasoning 
applied to the first of (5.58) yields the constitutive equations:

 S
W W

A
W W

R

= − = = − = −
∇( )

∂
∂θ

∂
∂

∂
∂α

∂
∂ α

, .T
F

B,  (5.61)
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It remains to give an expression to the heat flux Q to arrive at a fully explicit 
expression for (5.51).

5.5.3 The Coleman–Noll Continuum Thermodynamics Viewpoint

In this case the equations (5.57) are valid a priori independently of any defor-
mation and time-internal evolution of α, that is,

 k 0 S
Q≡ ⇒ ≡
θ

. (5.62)

The generalized internal forces (5.43) are each the sum of a thermodynami-
cally reversible part and a dissipative thermodynamically irreversible part, 
that is,

 A A A= + = + = +rev irrev rev irrev rev irrev,, .T T T B B B  (5.63)

The dependent functions {W,S,Arev,Trev,Brev} depend all on the same set as

 W W R= ∇( )F, , ,θ α α ,  (5.64)

while the remaining dissipative fields S T B, , ,irrev irrev irrevA{ } depend on the 
same set as well as on the set ∇ ∇{ }R Rθ α α, , ,  F . Here also a classical reasoning 
yields constitutive equations similar to those in Equation 5.61 for the nondis-
sipative contributions, that is,

 

T
F

Brev rev rev ,= = − = −
∇( )

= −

∂
∂

∂
∂α

∂
∂ α

∂
∂θ

W
A

W W

S
W

R

, ,

,, W W= ∇( )F, , , Rθ α α

 (5.65)

while there remains the following residual dissipation inequality:

 Φ: . . . .irrev irrev irrev= − − ∇ − ∇ ≥T F B S   A R Rα α θ 0..  (5.66)

In exploiting this inequality, one acts as if the gradient of α and α itself 
were independent variables. This is a standard method reported and 
advised in continuum mechanics books. Note that here the entropy flux 
satisfies the classical formula (5.622). For instance, this is applied to liquid 
crystals (where α is a unit “director”) by Leslie (1968) or to elastic dielectrics 
by Maugin (1974b) and elastic ferromagnets in Maugin (1974a)—and also in 
Maugin (1972), where this was first applied to a sufficiently sophisticated 
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case. We shall not pursue this exploitation of Equation 5.66 here. It suffices 
to notice that if the time parity of α as a tensor allows for it, there might 
be a direct linear coupling between the irreversible effect associated with 
α and heat conduction. On another occasion such a direct coupling could 
arise between heat conduction and the dissipative process associated with 
the gradient of α.

5.5.4 The Field-Theoretic Viewpoint

This is quite different in the sense that a scientist trained in analytical 
mechanics will not a priori assume that α and ∇R α are independent. He 
may prefer to keep the general expressions (5.452) and (5.53) so that (5.66) will 
be replaced by the following expression in which S is given by (5.452) while 
Equation 5.65 still hold true:

 Φ = − − ∇ + ∇ ( ) −T F B kirrev irrev irrev. . . . .  A R Rα α θ S.∇ ≥Rθ 0.  (5.67)

But we note that the very form of Equation 5.361 suggests that we consider 
the grouping

 A A R: .= − ∇ B.  (5.68)

According to Equation 5.68, the reversible part of this is given by

 A
W W W

R
R

rev : .≡− = − − ∇
∇( )







δ
δα

∂
∂α

∂
∂ α

.  (5.69)

On the basis of Equation 5.68 we also set

 A A Rirrev irrev irrev: .= − ∇ B .  (5.70)

On selecting the extra entropy flux as

 k B= −θ α1
irrev  ,  (5.71)

it is easily shown that the inequality (5.67) reduces to the following inequality:

 Φ = ∇ − − ∇ ≥T v Sirrev irrev. . .R RA  α θ 0,  (5.72)

where S is given by Equations 5.452 and 5.71. The exploitation of this inequal-
ity would follow the usual formalism of irreversible thermodynamics.
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Simultaneously, the heat-propagation equation (5.51) is shown to take on 
the following form (compare to Equation 5.54):

 θ αdS
dt

AR+ ∇ = − = +. : :irrev irrev irre
    Q T F Q Q B, vv α,  (5.73)

providing thus a completely coherent theory.

COM M EN T:  Equation 5.71 is a sufficient condition for the nonexistence of a 
divergence term in the residual dissipation inequality.

5.6 Comparison with the Diffusive Internal-Variable Theory

It is clear that such a comparison must be carried out exactly in the condi-
tions where the internal-variable theory holds good and also while going 
from the more general to the particular. To that effect, α not being an inter-
nal degree of freedom, it must have no inertia, so that the left-hand side of 
Equation 5.481 vanishes identically. Furthermore, accepting Kestin’s defini-
tion of internal variables of state, as adopted in Maugin (1999), α should not 
be directly controllable by any means, which requires the vanishing of the 
“data” fields relative to α in the set (5.43). Accordingly, the equations (5.48) 
reduce to the following “self-equilibrated” form:

 A B BR R R− ∇ = =. in . atB N B0 0, .∂  (5.74)

Necessary and sufficient conditions for this to hold at all material points X 
are the vanishing of A and B separately at any point X in the body. It then 
follows from Equations 4.26 and 4.28 that the “thermodynamic irreversible” 
fields Airrev and Birrev are now defined in terms of the energy density W as

 

A A A A
W

rev irrev irrev rev

irrev re

+ = ⇒ = − =

= −

0
∂
∂α

,

B B vv = ∇( )
∂

∂ α
W

R

 (5.75)

Accordingly,

  A A
W W W

R
R

irrev rev : .= − ≡ = − ∇
∇( )







δ
δα

∂
∂α

∂
∂ α

 (5.76)
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and

   S Q B Q= +( ) = +
∇( )







− −θ α θ ∂
∂ α

α1 1
irrev

W

R

.  (5.77)

On account of these results and in spite of apparent discrepancies in signs, 
we recover entirely the expressions of the diffusive-internal-variable theory.

C A NON IC AL BAL A NC E EQUAT IONS

Within the framework of the Coleman–Noll continuum mechanics formulation 
we let the reader check that the balances of canonical momentum and energy 
are given by the following two equations:

 
∂
∂

θ αP
b T F B

t
S A

X
R R R

T
R− = ∇ + ∇( ) − ∇ −div :irrev irrev irrrev .∇ ∇( )R Rα  (5.78)

and

 
∂ θ
∂

θ α
S
t

S A
X

R
( )

+ ∇ = + − −. :irrev irrev irrevQ T F B   ..∇R α,  (5.79)

wherein

 P v F I= − + ∇( )ρ α α0 . . .R  ,  (5.80)

 b 1 T F B= − −( ) + − ∇( )( )K W R R
T

rev rev. . α ,  (5.81)

 K W W R= +( ) = ∇( )1
2 0

2ρ α α α αv I F . . , ,, .  (5.82)

REM A R k : In the case when A presents no irreversible part, the field A does 
not appear at all in the reduced forms taken by Equations 5.78 and 5.81. As 
noticed before, the reason for this is that the reduced form of these equations 
captures only gradients of fields and A relates to α alone.

HIN T:  Equation 5.78 is obtained by multiplying Equation 5.471 to the right by 
F and Equation 5.481 by ∇Rα, adding the two resulting covectorial material 
expressions and manipulating this on account of the already obtained con-
stitutive equations for the reversible fields. We have assumed that the bulk 
data f̂  and Â  were nil; otherwise, they jointly add a source term in Equation 
5.78 in the form − ∇( )ˆ ˆf F. +A Rα .
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If we now consider the field-theoretic formulation, it is immediately shown that 
Equations 5.78 and 5.79 are replaced by

 
∂
∂

θ αP
b T F

t
S A

X
R R R

T
R− = ∇ + ∇( ) − ∇div :irrev irrev

   (5.83)

and

 
∂ θ
∂

θ α
S
t

S A
X

R
( )

+ ∇ = + −. :irrev irrev
    Q T F ,  (5.84)

where Q is given by Equation 5.732 and b is defined by

 b 1 T F B= − −( ) + − ∇( )( )K W R R
T

rev . . α .  (5.85)

The reduction to the case of α being a diffusive internal variable of state, 
treated in Section 5.6, is straightforward since, then, T ≡ Trev as Tirrev ≡ 0, and 
the reduction (5.75) and (5.76) applies.

5.7  Example: Homogeneous Dissipative Solid Material 
Described by Means of a Scalar Diffusive 
Internal Variable

In general, α is an internal variable of state whose tensorial nature is not 
specified. This may relate to damage or anelasticity of some sort with a pos-
sible diffusion of the said variable so that its material gradient must be taken 
into account (e.g., in strain-gradient plasticity). Then W is specified as the 
general sufficiently regular function W W R= ∇( )F, , ,θ α α . Here we specify 
that α is a scalar variable c akin to a concentration. We keep the possibility 
that k be not zero. The equations of state are given by Gibbs’ equation as

  

T
F

M

= = −

= =
∇( )

∂
∂

∂
∂θ

µ ∂
∂

∂
∂

W
S

W

W
c

W
cR

, ,

: , : .

 (5.86)

so that μ is a chemical potential. We find that

 f f fint th intr int th intr= + = +, ,h h h  (5.87)
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where the thermal sources have already been defined and the “intrinsic” 
sources are given by

 f M Mintr intr. .: , := − ∇( ) − ∇ ∇( ) = − − ∇µ µR
T

R R
T

Rc c h c c
T( ) ,  (5.88)

so that we have the following consistent (non-Hamiltonian) system of canon-
ical balance laws:

 
d
dt

d S
dt

h hR R
P

b f f Q− = +
( )

+ ∇ = +div .th intr th intr,
θ

,,  (5.89)

while the dissipation reads

 Φ = − ∇ ≥ ≡h R
intr .S k 0θ 0, . (5.90)

This approach favors the continuum mechanics (Coleman–Noll)  standard view-
point by accepting the classical relationship between heat and entropy flux, 
and assuming that c and its material gradient are essentially independent.

A more field-theoretic viewpoint is to envisage a nonzero k M= −θ 1 c. We let 
the reader check that Equations 5.8 and 5.14 are then replaced by the follow-
ing equations:

 
d
dt

d S
dt

h hR R
P

b f f Q− = +
( )

+ ∇ = +div .th intr th   ,
θ

iintr  (5.91)

and

 Φ = − ∇ ≥ = −    h h cR
intr intr.S θ µ0, ,  (5.92)

where we have introduced the new definitions

  µ δ
δ

∂
∂

∂
∂

µ≡ = − ∇
∇( )






= − ∇ =W

c
W
c

W
cR

R
R: , :. .M S θθ− = +1   Q Q Q M, c  (5.93)

and

   b 1 T F M f= − + + ⊗ ∇( )( ) = − ∇L c cR R R. intr, : .µ  (5.94)

This is in the spirit of the approach that we advocated before (Maugin, 
1990).
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The closure of the thermodynamic system requires the setting of relation-
ships between (μ, M) and  c cR,∇( ), on the one hand, or µ and c, on the other, 
and a relationship à la Fourier between S and ∇Rθ. We pursue the second line 
(the field-theoretic one), considering as an example a free energy function W 
of the type

 W c c c c W cR R RF F, , , . , ,θ γ θ∇( ) = ∇( ) ∇( ) + ( )1
2

ˆ .  (5.95)

Here the positive scalar coefficient γ depends at most on the temperature θ. 
In agreement with (5.92), we select (sufficient conditions) the evolution equa-
tion and heat transport equation as

   c R= − = − ∇−τ µ χ θ1 , ,S  (5.96)

with positive coefficients τ and χ (they could be temperature dependent). On 
account of these and Equations 5.95 and 5.93, we obtain a nonlinear evolution–
diffusion equation for c in the following form:

 τ θ γc f c cR R+ ( ) = ∇ ∇( ); , .F ,  (5.97)

where

 f c
W
c

; ,F θ µ( ) ≡∂
∂

=
ˆ

.  (5.98)

One could assume that Ŵ  behaves like c2 for small cs, but more generally it 
may be of a higher degree in c, or may even be nonconvex in c, remaining 
nonetheless positive. To the same degree of approximation, the nonlinear 
evolution–diffusion equation for temperature is given by

 θ γ θχ θ S f c cR R R R+ − ∇ ∇( )( ) + ∇ ∇( ) =. . 0,  (5.99)

where S = –∂W/∂θ is usually linear in θ and such that W is concave in this 
variable.

Finally, Equation 5.91, considered with inertia neglected, yields the 
equation

 divR R R R R RW c c S c1 T F− − ∇( )⊗ ∇( )( ) + ∇ + ∇ =. λ θ µ 0  (5.100)
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or, equivalently,

 div .R R R R R RG c c S c 1 T F− − ∇( )⊗ ∇( )( ) − ∇ − ∇ =λ θ µ 0,  (5.101)

where   G W S c E c= + + = +θ µ µ  is Gibbs’ energy density.
In the absence of temperature effects and for a nondiffusive variable c, this 

reduces to the simple equation

 div .R R RG c1 T F−( ) − ∇ =µ 0,  (5.102)

where G = W + μc. In this case (5.97) reduces to a (generally) nonlinear relaxation 
equation:

 τ c f c+ ( ) =; .F 0  (5.103)

REM A R k :  First, one may think that we have given a peculiar status to the 
free energy W in expressing the Eshelby stress in terms of W. What is impor-
tant is that it be the same potential that appears in both canonical equations 
of energy and momentum. It could have been the internal energy, and then 
the situation would be more prepared to treat adiabatic situations. This criti-
cal dependence of the equations of both energy and material momentum 
on the same thermodynamic potential was especially noticed by the author 
(Maugin, 2002) and Abeyaratne and Knowles (2000) when dealing with the 
jump relations associated with these canonical equations. We return to this 
in the chapter devoted to discontinuity surfaces.

Second, but nonetheless important, is the fact that the expression for the 
Eshelby stress contains the gradient of α. This means that the conjugate force 
B will directly play a role in the evaluation of the critical driving forces if we 
follow the scheme given in Maugin (2000), while the associated expression of 
hint will directly yield an evolution–diffusion equation for α in a simple applica-
tion of the thermodynamics of irreversible processes.

5.8 Conclusion and Comments

The preceding developments show that there is no unique thermomechani-
cal description of continuous media exhibiting diffusion of some property. A 
first choice is that of considering the additional variable required to describe 
this property either as a true additional degree of freedom (with an inertia 
and then safely following an application of the PVP) or as an internal vari-
able of state. If the second possibility is selected (essentially when the new 
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property is fully dissipative), then the main question is whether this variable 
is diffusive and therefore controllable to some extent via a flux at a material 
boundary. Finally, it is shown that the field-theoretic viewpoint certainly pre-
vails and is more economical from the point of view of thought even though 
both notions of entropy and Eshelby’s material stress tensor must then be 
consistently revisited. The resulting formulation offers new perspectives for 
research in both biomechanics and the mechanics of complex materials exhib-
iting a microstructure of some kind. These may be inert materials or materials 
encountered in biological situations. The example of polar materials will be 
treated in greater detail in a later chapter. This also applies to electromagnetic 
deformable materials, which will also receive special attention in due place.

5.8.1 Two Viewpoints on the equation of Material Momentum

Here we shall emphasize that there exist two opposite viewpoints concern-
ing the status of the equation of material (or canonical) momentum in contin-
uum mechanics. The viewpoint of the author (Maugin, 1993, 1995) expressed 
in this chapter is that this equation is never independent of the classical 
(physical) equation of linear momentum, in Cauchy or Piola–Kirchhoff form, 
being essentially deduced from the latter by a complete pull back to the ref-
erence configuration, even when constitutive equations are not known to 
start with (i.e., there exists no variational formulation). It is, therefore, an 
identity at all regular material points—but it is still extremely useful on any 
singular manifold (see Chapter 7). This viewpoint agrees with the applica-
tion of Noether’s identity when one considers a variational formulation for a 
nondissipative material, a point of view shared by J.D. Eshelby in his original 
works (e.g., Eshelby, 1975).

The second viewpoint is that of Gurtin (in several works but particularly 
Gurtin, 1999), who repeatedly claims that the equation of material momen-
tum (bulk equation for “configurational forces”) is an a priori statement 
independent of the classical balance laws, although in the end it is, for sure 
(our opinion), always shown to be related to the physical balance of momen-
tum so that Gurtin’s statement is somewhat inappropriate. In the preceding, 
we expanded the view that the balance of canonical or material momentum, 
albeit following from the balance of physical momentum, can be formulated 
independently of any constitutive behavior. Moreover, accounting for the 
fact that this equation is the spacelike equation associated with a particular 
form of the energy equation, it was shown that the former and the latter can 
be used in parallel to build a consistent thermomechanics of many behav-
iors. As a matter of fact, the two canonical equations of momentum and 
energy must be consistent if, for instance, dissipation due to the irreversible 
movement of a singularity set is none other than the power expanded by the 
driving force acting on this set, and this in all cases (Maugin, 2000); Gurtin’s 
approach is summarized in Appendix 5.2 of this chapter, while Appendix 5.1 
presents a four- dimensional formalism.
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Appendix A5.1: Four-Dimensional Formulation

Equations such as (5.31) and (5.34) hint at a unified four- dimensional (4D) 
Euclidean formulation (Maugin, 2000). To that purpose it is sufficient 
to introduce the appropriate notation, for example, to introduce four-
 dimensional coordinates Xα and a four-dimensional nabla operator ∇α such 
that

 X X K X tKα α, , , , , , , , ,={ } = = ={ } ={ }1 2 3 4 1 2 3 4X  (A5.1)

 ∇ ={ } = ∇ = ∂ ∂ ={ } ∂ ∂ = ∂ ∂α α, , , , / , , , ,1 2 3 4 1 2 3 4
R

KX K X/ / tt{ }.  (A5.2)

We also set
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, .f
h hα
f fth int

th intr
 (A5.3)

Considering the case of a homogeneous material conducting heat and 
equipped with an internal variable α, we can rewrite (5.31) as the single four-
dimensional equation

 ∇ = = ∇ + ∇β α
β

α α αθ αB f S A. : . .  (A5.4)

Define a 4-velocity by

 V V K VKα α, , , , , , , ; .={ } = = ={ }1 2 3 4 1 2 3 14  (A5.5)

This corresponds to the “world-invariant” kinematics described by Truesdell 
and Toupin (1960, Section 152). Then, on account of (A5.4), we have

 f V h h S
t

A
tx x

α
α θ α= +( ) + + = ∂

∂
+ ∂

∂
f f Vth intr th intr. . ,,  (A5.6)

where we implemented the definition of the Eulerian time derivative (2.402). 
The result (A5.6) can also be written as

 f V
W
t x

α
α = − ∂

∂ ;

,
F fixed

 (A5.7)

since in the present case the free energy is given by W W= ( )F, ,θ α . 
Accordingly, we can say that the four-force and four-velocity are orthogonal 
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when both temperature and internal variable of state do not evolve in the 
Eulerian framework.

We can integrate (A5.4) over a purely spacelike hypersurface, that is, a 3D 
material volume BR:

 ∇ = ∫∫ β α
β

αB dV f dV
BB RR

. .  (A5.8)

Notice that the four-dimensional space–time manifold considered here is 
Euclidean, so that there exists a unique global spacelike section at all of its 
points, and (A5.8) does make sense.

The formalism introduced obviously resembles a relativistic one, but it is 
in fact quite neutral geometrically. It only provides a short-hand notation for 
a (3 + 1)-dimensional formalism. On fixing index α, (A5.8) is  equivalent to

 
d
dt

B dV N B dA f dV
B

K
K

B BR R R

. ,α α α
4 + =∫ ∫ ∫

∂

 (A5.9)

in the absence of singularities in BR, whence the global balance law of 
material momentum and energy. Nonnegativeness of energy imposes the 
condition

 B. .4
4 0≥  (A5.10)

In the same formalism, the global entropy equation reads

 ∇ = +( )∫ ∫β
β σ σS dV dV

B BR R

th intr  (A5.11)

or

 
d
dt

S dV N S dA dV
B

K
K

B BR R R

4∫ ∫ ∫+ = +( )
∂

σ σth intr ,  (A5.12)

where

 S S Q S SK Kα α θ, , , , ; ,={ } = = ={ }1 2 3 4 4/  (A5.13)

and σth and σintr are the volume sources of entropy due to thermal processes 
and intrinsic dissipative processes.
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Appendix A5.2: Another Viewpoint

Here we succinctly present the view of Gurtin (1995, 1999) and some cowork-
ers (e.g., Podio-Guidugli, 2002) on the introduction of the notion of con-
figurational force and, more particularly, the equation governing material 
momentum or its quasistatic version. This is our interpretation of their 
standpoint, with our notation, and any misinterpretation, if any, is ours. We 
consider the case of quasistatics for the sake of simplicity. In this framework 
and in the Piola–Kirchhoff formalism, the principle of virtual power (2.114) 
reduces to

 P B B P BR R Rext int* , * ,∂( ) + ( ) = 0  (A5.14)

wherein

 P B B dV dAR R
B

R
d

BR t

ext* , . * . * ,∂( ) = +∫ ∫∂ρ0f v T v  (A5.15)

and

 P B dVR
BR

int * . .( ) = − ( )∫ tr T F  (A5.16)

Here BR is a material region bounded by ∂BR and N T T. = R
d at the latter. 

Gurtin et al. consider in the reference configuration KR a so-called migra-
tion control volume MR bounded by ∂MR with outward-pointing unit normal 
N. The notion of control volume is frequently used in fluid mechanics, 
especially to compute global forces or moments acting on bodies placed in 
a flow. Then introduce a velocity field U, which may be interpreted as the 
velocity with which some external agency adds material to MR (the influ-
ence of the notion of growth by “accretion” here is visible). At ∂MR, the 
normal velocity UN is such that UN = U.N. The motion velocity in following 
∂MR will be given by

 u v FU= + .  (A5.17)

That is, the evolution at the actual placement of a point of ∂MR is made of 
two terms, the physical velocity v and the velocity FU at which deformed 
material is transferred to this point. Since u is in physical space, it is invari-
ant under change of material observer, while U is material and, therefore, 
invariant under change of spatial observer. Gurtin proposes to introduce a 
material stress tensor (that we denote by bS—our notation; it is denoted C by 



Canonical Thermomechanics of Complex Continua 137

Gurtin)—and a material traction N.bS that represents a force that expands 
power in conjunction with the migration of ∂MR and has, therefore, conju-
gate velocity U. Consequently, he proposes, for the region ∂MR, to replace the 
expression (2.116) or (A5.15) by

 P M M dV dA dAR R
M MR

ext s, . . . . .∂( ) = + +
∂ ∂∫ρ0f v N T u N b U

RRRM ∫∫ .  (A5.18)

An argument of invariance under change of material observer (crucial point! 
see Gurtin, 1999, p. 36) allows one to show that there follows the following 
local “force balance”:

 div int ext
R Sb f f 0+ + = ,  (A5.19)

where the two source terms, respectively an internal and an external “ material” 
body force, could not appear in (A5.18) since they exert no power because 
their material point of application is fixed in the reference configuration. 
Furthermore, on using (A5.17), we can rewrite (A5.18) in the form

 P M M dV dAR R
M MR R

ext s, . . . .∂( ) = + + +∫ ∫∂ρ0f v N T v N b TF(( )
∂∫ . .UdA
MR

 (A5.20)

The invariance of this expression under changes of velocity field for which 
the normal component is unaltered while only the tangential component of 
U is changed requires, then, that there holds the result

 N b TF t. . ,S
M

dA
R

+( ) =
∂∫ 0  (A5.21)

where t is any tangent vector field at ∂MR. The requirement that the inte-
grand in (A5.21) vanishes for all N is equivalent to requiring that the tensor 
quantity within parentheses in (A5.21) be proportional to the unit material 
tensor. Let Π be the coefficient of proportionality, so that

 b 1 TFS R= −Π .  (A5.22)

The scalar Π may be thought of as a bulk (volume) tension that works to 
increase the volume of MR through the addition of material at its boundary 
(still the idea of “accretion”). Further arguments of invariance under time-
dependent changes in reference yield the following expressions for the exter-
nal and internal “material” body forces (cf. Gurtin 1999, pp. 38–39):

 f f F f T Fext int= − = −∇ + ∇( )ρ0 . , . ,R R
TΠ  (A5.23)
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so that these quantities are not independent of the scalar Π, of the bulk data, 
and of the description of standard internal forces (Piola–Kirchhoff stress; 
another crucial point). Finally (very important and crucial point), a thermo-
dynamic study (cf. Gurtin, 1999, pp. 41–43) allows one to identify the scalar 
pressurelike term as the free energy W per unit reference volume, so that 
(A5.22) reads

 b 1 TFs = −W R ,  (A5.24)

in which we recognize the quasistatic Eshelby material stress. Extension of 
the proof to include classical inertia is along the same line of thought, with 
additional crucial points (cf. Gurtin, 1999, Chapter 7; also Gurtin and Podio-
Guidugli, 1996). We do not see any advantage to this approach over the pre-
sentation in this chapter (Section 5.3). On the contrary, it contains several 
dubious ah hoc reasonings, and overemphasized allusion to accretion and 
surface phenomena clouds the general nature of the balance (conservation 
or nonconservation) of material momentum as a general (but secondary) 
law of physics, which, as we know, exists even when there is no mechanics 
involved.
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6
Local Structural Rearrangements 
of Matter and Eshelby Stress

Object of the Chapter

Where we discover that the notion of Eshelby stress is intimately related to 
that of local structural rearrangements of matter as happens in many metal-
lurgical and physical processes in inert or living matter, such as in the phe-
nomena of thermal stresses, plasticity, damage, biological growth, initiation 
of motion of dislocations, phase transformations, fatigue, and so on.

6.1 Changes in the Reference Configuration

In the foregoing chapters, when it happens, components of a geometric object 
or an equation are referred to one reference configuration only, K (no sub-
script R to simplify the notation), and this is sufficient in most of continuum 
mechanics. Accordingly, that reference configuration is chosen as the most 
convenient one for computations depending on the geometry of the deform-
able body under study. With the consideration of the physics of the problem, 
this may also be chosen as a stable solution providing a minimum of energy 
(cf. Lardner, 1974). But we could have been more cautious in noting FK, TK, 
and SK, the various objects where the relation to the selected reference con-
figuration K is understood, because the question naturally arises of a possible 
change of reference configuration, for example, between configurations K and K’. 
Let PKK’ be the transformation between K and K’ at a material point X. Given 
the tensorial nature of F and T—these are in fact two-point tensor fields, that 
is, geometric objects having their two feet on different manifolds—we have 
the following transformations:

 F F F F′ ′ ′ ′= =K K K K K KP PKK , ,  (6.1)

 T T T T′ ′
−

′ ′
−

′ ′= =K K K K K K K KK KK KJ P J P1 1, ,  (6.2)
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where

 P P P PKK K K K K KK′ ′ ′ ′= =I I, ,  (6.3)

symbol I being the identity transformation. Of course, the equations in (6.2) 
are Piola transformations.

Now consider the case of energy-based elasticity for which there exists a 
potential energy per unit volume of the considered reference configuration, 
for example, WK (FK), such that

 T FK K KW= ∂ ∂/ .  (6.4)

Accordingly, for another reference configuration K’, we would have

 T F′ ′ ′=K K KW∂ ∂/ .  (6.4’)

Since W is per unit volume, we have

 W J W W J WK K K K K KK K′ ′
−

′
−

′= =1 1, .  (6.5)

By direct computation of (6.4’) and use of (6.1) and (6.5), we check that the 
equations in (6.2) hold identically.

Now let us do something more original by computing the quantity

 b FKK
K

KK KK
KK K K KK

W
P P

J W P′
′ ′

′
−

′ ′= = ( )( )∂
∂

∂
∂

1 .  (6.6)

The result is

 b T FKK KK K K K K KJ P W′ ′
−

′ ′ ′= − −( )1 .  (6.7)

We call configurational stress the geometric object defined in the K configu-
ration by

 b b b= = − ′ ′K KK KKP: ,  (6.8)

that is, as shown by a simple calculation

 b b I T F= = − = −
′

′K
K

KK
KK K K K K

W
P

P W
∂
∂

.  (6.9)

This obviously is the quasistatic Eshelby material stress (cf. (3.51)) but referred 
explicitly to a specific reference configuration.

Let P be the two-point tensor field representing the transformation PK’K. 
Accordingly, (6.1) and (6.9) read (T = transpose):
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 F FP b
P

P 1 TF= − = −, =
∂
∂
W

WT
R ,  (6.10)

where 1R is the identity in KR = K, and

 W J W W= ( ) = ( )−
P F F P1  , .  (6.11)

This follows Epstein and Maugin (1990a, 1990b), so that

 T
F P
F

F
F

b
F P
P

P 1 TF= ( ) = ( ) − ( ) = −∂
∂

∂
∂

∂
∂

 W W W
WT

R
,

, =
,

.  (6.12)

This means that T measures the elastic energy change in a classical defor-
mation, while b measures this change in a change of reference configuration 
(i.e., purely material mappings). We can also note that

 TF SF F S C M= = =T . : ,  (6.13)

where C = FTF is the Cauchy–Green finite strain on the configuration KR, and 
M is the Mandel stress tensor in KR already introduced in previous chapters 
(cf. Lubliner, 1990; Maugin, 1992). Therefore, configurational stresses and 
Mandel stresses are intimately related since they differ only by the presence 
of an energy isotropic term, that is,

 b 1 M b M 1= − =W WR Ror + .  (6.14)

This difference reduces to a pure change of sign for an isochoric deformation 
associated with b or M.

We have seen before that the symmetry of the Cauchy stress results in the 
symmetry of b with respect to C, considered as the deformed metric on the 
material manifold M3, that is,

 Cb Cb b C= ( ) =T T ,  (6.15)

as first noticed by Epstein and Maugin (1990a). If, furthermore, the material 
considered is isotropic, then classical symmetry (i.e., with respect to a neu-
tral unit covariant metric) applies because S becomes a function of the basic 
invariants of C.

6.2 Material Force of Inhomogeneity

If KR is a global reference configuration over the material body B, and PK’K is 
smooth and integrable over the material manifold, then P will be the gradient 
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of a deformation in a classical sense, so that (6.2) is not distinguishable from 
a standard Piola transformation. The situation may be altogether different 
in the case when the body is not materially homogeneous. Indeed, the case 
when T is a function of F and F only, where F is a true gradient, represents 
the essence of pure homogeneous elasticity—a paradigmatic case as we shall 
see hereinafter—with

 T T F
F

F
= =( )

( )
.

∂
∂

W
 (6.16)

This plays the role of a standard with which any other situation in a solid 
is compared (the case of more complicated functional dependences of W). 
Indeed, as soon as W becomes an explicit function of additional arguments, 
we are no longer in this ideal framework. This happens whether the additional 
argument is another field variable such as temperature in  thermoelasticity, 
or electric polarization or magnetization in electro- magneto-elasticity 
(cf. Maugin, 1988), or else any variables such as so-called internal variables 
of state supposed to account for the hidden complexity of microscopic pro-
cesses that have a macroscopic manifestation in the form of thermody-
namic  irreversibility (i.e., dissipation; cf. Maugin, 1999b). These cases will 
be examined later on. Another frequent possibility is that the energy W 
depends explicitly on the material particle X, in which case W W= ( )F X;  and 
the elastic material is said to be materially inhomogeneous from the elasticity 
viewpoint. We have called material force of inhomogeneity the material 
covector defined by

 f
X

inh

expl

: ,= − ∂
∂
W

 (6.17)

if W is a sufficiently smooth function of X, and where the subscript expl 
means that the material gradient is taken at fixed field (here F). In compos-
ite materials where inhomogeneities manifest abruptly by jumps in material 
properties, (6.17) must be replaced by a distributional (generalized function) 
definition. The force finh belongs in the world of material forces (cf. Maugin, 
1993, 1995) since it is a covector on the material manifold. It is a directional 
indicator of the changes of elastic properties as it is oriented opposite to the 
direct explicit gradient of W.

6.3 Some Geometric Considerations

Now we can exploit the thought experiment of Epstein and Maugin (1990a, 
1990b). To that purpose, imagine that at each material point X we can give to 
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the material deformation energy the appearance of that of a pure homoge-
neous elastic body (dependence on one deformation only and nothing else) 
by applying the appropriate local (at X) change of reference configuration 
here noted k, a so-called uniformity map in the language of Noll and Wang. 
We consider this along with the concomitant change of volume (compare to 
(6.5)) so that

 W W J W W= ( ) = ( )( ) = ( )−F X Fk X F kk; ,1  .  (6.18)

Performing the same operation as in (6.12), we clearly have

 T
F X
F

b
F k
k

k 1 TF= ( ) = − ( ) = −∂
∂

∂
∂

W W
WT

R
;

,
,

.  (6.19)

Thus there exists a relationship between the notion of material inhomogene-
ity and that of configurational (or Eshelby) stress. This is made more visible 
by applying the definition in Equation 6.17:

 

f
F X
X

F k
k

k
X

b k

inh

expl

; ,
.

. .

= −
( )

= −
( )

= −

∂
∂

∂
∂

∂
∂

W W

T



∂∂
∂
k
X

b k k= ∇( )( )−. . R
T T

.

 (6.20)

On the other hand, if we compute the material divergence of b in the case of 
quasistatics in the absence of body force, for which the equilibrium at X is 
simply given by divRT = 0, we have

 

div div . .

.

R R R R
T

W

W

b T F T F

F
T

= ∇ − ( ) − ∇( )

= −





∇∂
∂ RR

T W
F

X
( ) + ∂

∂ expl

,
 (6.21)

or, on account of (6.191) and (6.20),

 div inh
Rb f= − .  (6.22)

Here, the material force of inhomogeneity is deduced from (or balanced by) 
the material divergence of the configurational stress. It is justified to give the 
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name configurational forces to these forces that are deduced through an 
operation acting on the configurational stress, whether by differentiation or 
integration (e.g., over a material surface, along a material contour in 2D). If 
we combine the results of (6.20) and (6.22), we also obtain an equation for b 
that involves the local transformation k in a source term, that is,

 divRb b 0+ =. ,Γ  (6.23)

where we have defined a material connection Γ(k) by

 Γ k k k k k( ) = ∇( ) = − ∇( )− −
R R

T1 1. . .  (6.24)

The result in (6.23) is due to Epstein and Maugin (1990a, 1990b). If k is the 
same for all points X, then ∇Rk = 0, and (6.23) reduces to the strict conserva-
tion law

 divRb 0= ,  (6.25)

in the case (we remind the reader) of the absence of body force and neglect of 
inertia (quasistatics). Otherwise, we can write

 f b kinh = ( ). ,Γ  (6.26)

Then, the previously reported intellectual construct means that the opera-
tion carried out (introduction of k) brings the neighborhood of each mate-
rial point X into a prototypical situation of the pure elastic type, which allows 
one to compare the response of different points. Since this is point-like, the 
operation will not result in an overall smooth manifold but instead in a 
collection of nonfitting neighborhoods or infinitesimal chunks of materi-
als, and k will not, accordingly, be itself a gradient. It may at most be a 
Pfaffian form. Of course, if k is not integrable, that is the case of F Fk= .
With Equations 6.23 and 6.24, we enter the geometrization of continuum 
mechanics that was started in the mid-1950s by scientists such as Kondo 
(1952), Kroener (also spelled Kröner; 1958), Noll (1967), and Wang (1967), 
among others. This was thoroughly reviewed in Maugin (2003a, 2003b). 
This ambitious program belongs in the Einsteinian tradition of geometriza-
tion of physics and to part of David Hilbert’s program. Of course, in this 
line of thought, the writing of (6.23) does not fulfill the whole program 
because the two sides of (6.23) contain contributions of a different nature, 
the non- Riemannian geometry being contained only in the right-hand side 
through the notion of connection based on k. However, there is progress 
here compared to other approaches, in the sense that the whole equation 
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(6.23) is written on the material manifold, which indeed is the arena of what 
may happen to the material in its intimacy (e.g., defects). Let us examine the 
source term in (6.26) more thoroughly and discuss more deeply the geomet-
ric connotations.

First of all, in components, (6.23) reads

 b b KI J
J

J
K K

I
J

. , . . . , .+ ( ) =−k 1 0α α  (6.27)

This is a first-order differential equation that is identically satisfied by the 
tensor b associated with a solution of an elastic boundary-value problem. But, 
generally speaking, the k transformation creates a so-called distant parallelism 
(called in the past absolute parallelism or Fernparallelismus), and thus a (gener-
ally nonmetric) connection (cf. Choquet-Bruhat, 1968; Lichnerowicz, 1976) as 
defined by (6.24). In words, following Elie Cartan (probably the main con-
tributor to this field of geometry), distant parallelism in a Riemannian space 
is materialized by the fact that, if we attach to each point in space a reference 
frame, and this in some arbitrary manner, then it is sufficient to agree that 
two vectors of any origin, A and B, are parallel or equipollent if they have 
equal projections (components) on the rectangular frames at A and B. Then 
the reference frames themselves are parallel to each other in that sense! In 
this process it is clear that the metric of the relevant space and the parallelism 
are dependent on one another, but for each given metric there is an infinity 
of distant parallelisms compatible with that metric, and, conversely, given a 
distant parallelism there exists an infinity of metrics compatible with it. Of 
course, in a Riemannian space, the notion of Riemannian curvature plays a fun-
damental role: It is related to the deviation undergone by a vector when the 
latter is transported in a parallel manner around a closed circuit. This notion 
disappears in the condition of distant parallelism; that is, a Riemannian space 
with distant parallelism has no  curvature. Still, something distinguishes it 
from a Euclidean space, and that is torsion. As a consequence all the intrinsic 
geometric properties that characterize a Riemannian space with distant par-
allelism derive from its torsion (Elie Cartan, in some uncontrolled enthusi-
asm, once said that “if physics can be geometrized at all, then all physical laws must 
be expressible in terms of partial differential equations governing the torsion of the 
relevant space” (Cartan, 1931, my translation). This was very far-sighted inso-
far as unified gravitational theories are concerned. But in a way it also applies 
to continuum mechanics on the material manifold, our present concern.

To be more specific, define a moving crystallographic frame over the material 
body B by

 Eα α= ∂
∂

K
X

K
K. .  (6.28)

Two vectors at different points in the reference configuration are, by 
definition, k-parallel if they have the same components in their respective 
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crystallographic bases. This leads to the introduction of a covariant deriva-
tive (here denoted “;”) of a vector V of components VI:

 V
X

dX V dX V K
XJ

I
I

J
J

J
I

I
J

K
.; ., , , .

∂
∂

⊗ = ⊗ = ( )( ) ∂
∂

−α
α

α
αE k 1

KK
JdX⊗ ,  (6.29)

or

 V V VJ
I

J
I

KJ
I K

.; ., ,= + Γ  (6.30)

with a connection Γ defined by (6.19).
Similarly, for a one-form (covector) W, working in the dual basis, we classi-

cally obtain

 W W WI J I J IJ
K

K; , ,= − Γ  (6.31)

while for a mixed tensor b, we will have

 b b b bI K
J

I K
J

IK
L

L
J

LK
J

I
L

. ; . , . . .= − +Γ Γ  (6.32)

The connection symbol Γ is not necessarily symmetric (as is, in contrast, the 
Christoffell symbol based on a metric). It is the skew part of this connection 
that defines the torsion T by

 TJK
I

JK
I

KJ
I: .= −Γ Γ  (6.33)

This allows one (Epstein and Maugin, 1990a) to show that (6.27) can be rewrit-
ten in the following remarkable form:

 b b T b T JI J
J

K
J

JI
K

I
J

JK
K

K. ; . . ,= + ≡  b b  (6.34)

or

 divkb b T= ( )B , ,  (6.35)

where divk denotes the covariant divergence based on k, and B(.,.) denotes 
the specific bilinear form introduced in the first of (6.34). The formula for the 
divergence of a determinant has been employed in writing this on account 
of the introduction of the weighted Eshelby stress b. Particular cases of (6.35) 
are easily discussed: (i) If the reference configuration itself is homogeneous, 
then the k-parallelism reduces to the Euclidean one and we simply have divR 

b = 0. This corresponds to the absence of physical (material) inhomogeneity 
and of any configurational inhomogeneity (i.e., artificial inhomogeneity due 



Local Structural Rearrangements of Matter and Eshelby Stress 147

to the special choice of a reference configuration). (ii) If the body is materi-
ally homogeneous but the reference configuration is arbitrary, then we have 
the material conservation law divkb 0= . We may say that an observer adapted 
to the crystallographic frame sees no inhomogeneity (somewhat as a geo-
desic observer does not feel any gravitational field in general relativity, as 
we need two neighboring observers [notion of geodesic separation] to place 
that field in evidence). (iii) The general case is represented by (6.35), where 
not even an adapted observer can remove the inhomogeneity as the mate-
rial is “intrinsically dislocated” (see next section). In any case, we say that the 
so-called uniformity map (in the language of Noll (1967) and Wang (1967)) k 
helps us define a local prototype reference crystal at each material point X on 
the material manifold.

REM A R k : In standard treatises on continuum mechanics it is recalled that 
material symmetry consists in studying the possible isomorphisms of a par-
ticle onto itself that leave the response of the material invariant (cf. Noll). 
This materializes in changes of the reference configuration that belong to a 
certain group (a crystallographic group in general as studied in the appendix 
of Eringen and Maugin (1990), the group of orthogonal transformations in the 
case of isotropy). These transformations have no energetic contents and do 
not correspond to any dissipative structural rearrangement. For instance, for 
an elastic body in large strains, we would write the invariance

 W W W SO= ( ) = ( ) ∈ ( ) = +F FP P P, ,3 det 1.  (6.36)

The first of these looks somewhat like (6.11) but for the determinant factor. 
What occurs here (Epstein and Maugin, 1990b) is as follows. Although one 
often concentrates on a discrete symmetry group, here we may consider that 
the material is a solid with a continuous symmetry group. In a uniform body 
B, the symmetry groups of W at different points, although generally different, 
are all conjugate, via the k-mappings, with the symmetry group of the refer-
ence crystal. Let GX(λ) be a one-parameter (λ real) subgroup of the symmetry 
group of the energy W at X with GX(0) = I, the identity. From the material 
symmetry condition we have

 W WF X FG XX; , ,( ) = ( )( )λ  (6.37)

which is valid for all real λ’s and all nonsingular deformation gradients F. 
The remarkable property pointed out by Epstein and  Maugin (1990b) is that 
the Eshelby stress does not produce any work in any small change of refer-
ence that belongs, at each material point X, to the Lie algebra of the symmetry 
group, that is,

 tr
d

d
b

GX. .
λ

λ λ

( )







 =

=0

0  (6.38)
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When applied to the special case of isotropy, this reasoning says that for 
this case where point-wise symmetry groups are all conjugate via k(X) 
with the proper orthogonal group SO(3), the Eshelby stress is symmetric 
with respect to a Riemannian metric induced by the uniformity map and 
defined by

 G k kk : . .= − −T 1  (6.39)

In a stress-free configuration, this reduces to ordinary Euclidean symme-
try. This should be contrasted with the C-symmetry in (6.15) satisfied by b 
when the Cauchy stress is symmetric. The preceding reasoning involves the 
theory of so-called G-structures admitting GX(λ) subgroups as discussed by 
Elzanowski et al. (1990).

6.4 Continuous Distributions of Dislocations

Starting with papers by Kroener (1958, 1960) and Bilby (1968), it has been pro-
posed that the torsion of the material connection be a measure of the dislocation 
density—a special type of material inhomogeneities—in an elastic contin-
uum presenting a continuous distribution of dislocations. Kroener’s original 
approach considered only small strains, but we can easily  reformulate his 
reasoning in the finite-strain framework. To that effect, we shall note αQK, 
Q,K = 1,2,3, the local material components of the dislocation density tensor. 
The natural way of comparing the defect of closure of a Burgers’ circuit given 
in the material framework is to write the displacement jump in the form 
(compare to (3.57)):

 ∆u X k E= =∫ ∫ −d dX
C

K
K

C
 ( ) ,.

1 α
α  (6.40)

and the relation to dislocation density is written as (cf. (A4.3))

 ∆u dA N dAQ QK
K

QK
K

SS

= = ∫∫α α ,  (6.41)

where the surface S leans on the contour C. On using Stokes’ theorem, 
this yields

 ∆u k E k G= ( ) = ( )− −ε εα
α

α
α

KLM
K L M

KLM
K L

J
JdA K1 1

. , . , . ddAM

SS
∫∫ ,  (6.42)
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since E Gα α= K J
J. . Here the G’s are a local basis on the material manifold. On 

comparing (6.41) and (6.42), we see that the following relation holds:

 α ε εQM KLM
KL
Q KLM

KL
QT= =Γ  .  (6.43)

As a result either α or T can equally characterize the dislocation density. 
We may conclude this paragraph by noting that the right-hand side of the 
first of (6.34) can be expanded on account of the definition of the quasistatic 
Eshelby stress while accounting for the skewsymmetry of the Levi–Civita 
permutation symbol and the symmetry of α (without loss of generality). We 
thus obtain the Peach–Koehler force in finite strains as

 f J F TI
PK

Q
i

i
J

IJM
QM( ) = k . . .ε α  (6.44)

In small strains this reduces to

 fi
PK

ijp jk kp
( ) = ε σ α .  (6.45)

This coincides with the usual Peach–Koehler force in (3.65) for a unique dis-
location of Burgers vector b and unit tangent vector τ to the dislocation line. 
Mura (1981) has given a derivation of this type.

6.5 Pseudo-Inhomogeneity and Pseudo-Plastic Effects

An example of internal strains is provided by thermal strains as given in 
small strains by (2.139). Corresponding internal stresses are obtained by sub-
stituting from these into the purely elastic constitutive equations, hence 
σ θδ0ij ijm= −   in the case of isotropy according to (2.139). Other examples of 
internal strains are provided by uniform electric polarization in elastic fer-
roelectrics and magnetization in elastic ferromagnets via electrostriction 
and magnetostriction, respectively (see Maugin, 1979). These exist in a uni-
form state and could happen in the central space in a condenser or in the 
central space of a coil, causing a practically uniform magnetic field. Kroener 
(1958) and Indenbom (1965) have dealt in detail with these internal strains 
in the small-strain framework. In particular, Kroener (1958) created a true 
geometric theory of these by relating them to the geometry of the material 
manifold and introducing the notion of incompatibility for these strains since 
these internal strains are not integrable into an elastic displacement. The cor-
responding Einstein tensor defined in (2.28) does not vanish. The German 
expression “eigenspannungen” or  “eigenstresses” or “proper stresses” 
has been adopted for them. They were initially introduced to account for 
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incompatible strains caused by dislocations and ultimately related to a 
macroscopic manifestation in the form of plasticity. Transformation strains 
in phase transformations are of the same type. They are additive in small 
strains. In large strains they naturally become multiplicative (see Appendix 
6.1 to this chapter). This led us to introduce two qualitative definitions 
(Maugin, 2003b) as follows:

DE F IN I T ION 6 .1 :  We call pseudo-plastic effects in continuum mechanics those 
mechanical effects—due to any physical property—that manifest themselves 
just like plasticity, through the notion of eigenstrains and eigenstresses in the 
language of Kroener (1958).

DE F IN I T ION 6 . 2 :  We call pseudo-inhomogeneity effects in continuum mechan-
ics those mechanical effects—of any origin—that manifest themselves as so-
called material forces in the material (Eshelbian) mechanics of materials (as 
developed by the author and coworkers since 1990).

These definitions in fact amount to showing that these effects are indeed 
local structural rearrangements so that the notions of uniformity map such 
as k and Eshelby material stress b come naturally into play. This follows 
from the fact that the reasoning applied in the first two sections of this chap-
ter can also be applied when additional arguments that are true fields (thus 
depending on X in particular) are explicitly present in the energy function 
W. This we show by examining the archetypical examples of thermoelastic-
ity and elastoplasticity in finite strains.

6.5.1 Materially Homogeneous Thermoelasticity

In this case we have only one material configuration to start with, but

 W W= ( )F,θ ,  (6.46)

where θ is the thermodynamic temperature. We can think of introducing a 
local map k(θ), such that

 W J W WF F Fk F kk,θ θθ( ) = = ( )( ) = ( )( )
−1  , .  (6.47)

More classically, we set k Fθ( ) = −
th

1, where Fth is a so-called finite thermal defor-
mation “gradient.” In this case we can say that

 F F FFe : th= = −1,  (6.48)

is the “elastic” deformation “gradient,” such that we have the following mul-
tiplicative decomposition of the true deformation gradient:

 F F F= = ∇e Rth χ.  (6.49)
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Such a decomposition was considered in the 1970s (by Yugoslav research-
ers such as Naerlovic, Micunovic, etc.). Note that neither Fe nor Fth is a true 
gradient. Using the standard definition of entropy per unit reference volume, 
a simple computation yields (Epstein and Maugin, 1995a)

 S
W d

d
= − ∂

∂
= −

−

θ θ
b F

F
. . ,th

th
1

 (6.50)

with

 b
F

F 1 T F= − ∂
∂

= −
−

−
W

WT
R

th
th1

. .  (6.51)

Consequently, we can write the material thermal force of Chapter 5 as

 f b F
Fth

th
th= − 





∇( )−. . . .1 d
d Rθ

θ  (6.52)

In this example, Fth
−1 plays the role of local uniformity map or map of local 

structural rearrangement, and the results in (6.50) and (6.52) exhibit the 
relation of entropy density and the material thermal force with the Eshelby 
stress and this map. Of course, the same formalism will apply whatever the 
additional variable (such as an internal variable of state) α in the energy W.

6.5.2 elastoplasticity in Finite Strains

In this case we identify k with the inverse of the “anelastic” (or plastic) defor-
mation “gradient” (not a true gradient) as introduced in Chapter 2. That is, we 
contemplate the multiplicative decomposition of F as F = Fe.Fp. Accordingly,

 k F Fk F F F− −≡ = ≡1 1p
p

e, . .  (6.53)

Remember that in quasistatics for a materially homogeneous body we have 
a material force fintr due to intrinsic dissipative processes associated with an 
internal variable α such that (cf. Chapter 5)

 div intr intr
R R

T
A A

W
b f 0 f

F
+ = = ∇( ) = −

∂ ( )
∂

, . ,
,

.α
α

α
 (6.54)

Then we envisage the following mental operation. Consider that it is pos-
sible, by an appropriate change of reference configuration k, to make the 
material appear as purely elastic at point X. This means that the new energy 
function W will depend only on a finite deformation “gradient” and no other 
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argument. This is exactly what happens by using the Epstein–Maugin argu-
ment (1990a) and writing

 W W J W t WK= ( ) = ( )( )( ) = ( )( )−F Fk X F k, ˆ , , .α α α1   (6.55)

It follows from this that (compare to (6.50))

 A T
T

=
∂
∂

−b k
k

. . .
α

 (6.56)

Applying this to the case where α ≡ Fp and (6.53) holds true, we obtain

 A Wp T

R
p T

= − ( ) = −( ) ( )− −
b F M 1 F. . ,  (6.57)

where we introduce the Mandel stress M = T.F = S.C. Simultaneously, the 
intrinsic dissipation Φintr related to α takes on the following form:

 Φintr tr tr= = −( ) ( ) ( )( ) = −
−

A W WR
p T p T

R α M 1 F F M 1. . (( ) ( )( ). ,LR
p T

 (6.58)

where we introduced the “plastic finite-strain rate in the reference configura-
tion KR” by

 L F FR
p p p= ( )− . .

1
 (6.59)

If, as is most often the case, the plastic deformation is assumed to be incom-
pressible, then trLR

p = 0, and (6.58) reduces to

 Φintr tr= ( )( )M L. .R
p T

 (6.60)

In plain words this means that the Mandel stress is the driving force behind 
plasticity. The relation (6.60) can be as well expressed with geometric objects 
pushed forward to the intermediate (elastically released) configuration Krelax, 
a more usual formulation. The first relationship between finite-strain plas-
ticity and the notion of Eshelby stress in an intermediate configuration was 
established by Maugin (1994). Further works along this line can be found in 
Epstein and Maugin (1995b) and Cleja-Tigoiu and Maugin (2000).

6.5.3 Other Cases

The same can be achieved when the additional argument is electric polariza-
tion or magnetization in electro-magneto-elasticity so that electrostriction 
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and magnetostriction finite deformation “gradients” can be introduced in 
similar multiplicative decompositions. For example, in deformable magnets 
(cf. Maugin, 1988), the local magnetic field due to the interaction of the mag-
netization m per unit volume of the reference configuration with the crystal 
lattice is given by

 H
F m
m

L
W

= −
∂ ( )

∂
,

.  (6.61)

Applying the preceding reasoning will yield the local magnetic field and the 
associated material magnetic force in the following form:

 H b F
F

m
f b F

F
L =

∂
∂

=
∂− −. . , . .magn

magn magn
magn

mag1 1 nn

∂
∇( )

m
m. ,R

T
 (6.62)

where Fmagn is the (nonintegrable) internal magnetization deformation gradi-
ent such that F decomposes multiplicatively as F = Fe.Fmagn.

If we combine different effects applied in a certain order (decided by 
the order in the composition), we could have a general decomposition in 
a thermal magnetized anelastic material (certainly the case in some struc-
tural members (plates) used, say, in building electricity transformers). We 
would have

 F F F F F= e p. . . ,th
magn  (6.63)

where none of the elements present in this composition is a true gradient. In 
all these cases multiplication reduces to addition in the case of small deforma-
tion and fields; that is, instead of (6.63), there will hold the additive relation

 ∇( ) = = + + +u
S

e pε ε ε ε εth
magn .  (6.64)

All the generalizations given in the preceding deal with a local change of 
reference configuration in order to formulate an energy in a so-called elas-
tically released state (pure homogeneous elasticity). Physically, they all cor-
respond to local structural rearrangements (phase transformations also enter 
this framework with a so-called transformation strain). They all induce the 
existence of so-called internal stresses (stresses in the absence of classical 
deformation). Because of their similarities both with inhomogeneity effects 
and plasticity effects, they well deserve to be called pseudo-inhomogeneity 
or pseudo-plasticity effects (Maugin, 2003a, 2003b). The operation effected 
by the application of k may receive several different names, among which 
the name transplant more vividly appeals to the case of the theory of material 
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growth such as in biological tissues since material growth belongs in the same 
class of phenomena (cf. Epstein and Maugin, 2000). This will be examined in 
greater detail later on.

6.6 A Variational Principle in Nonlinear Dislocation Theory

We return to the line followed in Sections 6.2 through 6.4 by considering 
a variational formulation in the quasistatics of elastic materials when we 
account for the constraint imposed by the connection, more precisely the 
torsion, in terms of k. This was done by Kroener (1993) and Maugin (1999a). 
The total Lagrangian of interest reads:

 L W KQ
PM

PM
Q

P M
Q= ( ) − − ( )[ ]

−
[ ]

 F k k, , ..
..

. , .α λ α
αΓ 1



( )∫

M

dV
3

,  (6.65)

where λ..Q
PM are the components of a Lagrange multiplier tensor and the varia-

tion to be taken is the material one δX. We note that

 δ δ δ δX X K X XW J W= ( )( ) = ( ) − ( )( )− −1 1Fk T F k b ktr tr. . . ++ ( )tr µ δ α. ,X  (6.66)

wherein

 b 1 T F T
F

= − = ∂
∂

= ∂
∂

W
W W

R . , , .µ
α

 (6.67)

With all fields vanishing sufficiently fast at infinity, and on account of (6.66), 
we deduce from the variation of (6.65) where α is taken as the tensor of dis-
location density the following Euler–Lagrange equations:

 divRT 0=  (6.68)

and

 b 0− − + =divR
Tλ λ α λ. . ,Γ  (6.69)

 λ µ= ;  (6.70)

By (6.69) we understand the following component equation:

 b L
K

M L
MK

L
MN

MN
K

Q
MK

ML
Q

. .. ..
..

..
.. ,− ∂ − + =λ λ α λ Γ 0  (6.71)
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while (6.70) means that the Lagrange multiplier introduced is nothing else 
than the hyperstress associated with the dislocation density. Equation 6.69 
relates the Eshelby stress to the flux of this hyperstress via the material 
divergence of the latter and source terms due to dislocations. This equation 
is not the balance of material momentum, in which b itself is the flux. Now 
we go one step further in our geometrization scheme. Let

 G G k kk k
− −= ( ) =1 1

. ,T  (6.72)

the reciprocal (material, contravariant) k-induced metric. We introduce 
a covariant derivative on the material manifold M3 with torsion by (here 
∂J = ∂/∂XJ, and ∇K denotes the covariant derivative based on Gk)

 ˆ ...∇ = ∇ +K K KP
Pα  (6.73)

Then we obtain that b and λ jointly satisfy the covariant equation

 ˆ . ˆ ˆ ,∇ − =λ b 0  (6.74)

where we have introduced (fully covariant) densities b̂ and λ̂ by

 ˆ . , ˆ . ,b b G G k Gk k k= = = =− − − − −J J JK K K
1 1 1 1λ λ det  det 11( )1 2/.

.  (6.75)

Then, following Kroener (1993) while accounting for the skewsymmetry of λ̂ 
with respect to its first indices, we check that b̂ satisfies the following covari-
ant material balance law:

 ˆ . ˆ ,∇ − =( )b f 0α  (6.76)

where we defined a material force f(α) due to the distribution of dislocations by

 f α α λ( )( ) = ∇
Q

ML
P

P
LMQ.. ˆ .  (6.77)

This material force, a dislocation-driven one, is very similar to the Mathisson 
(1937) force introduced in relativistic spinning media in a gravitational field. 
Furthermore, (6.74) is tantamount to saying that, on the material manifold, 
we have the generalized-force structure of a Cosserat continuum, with stress 
given by the contravariant Eshelby stress and the hyperstress determined by 
the dislocation density, notwithstanding the fact that our deformable contin-
uum appears rather classical in physical space (cf. Equation 6.68)—for more 
on Cosserat continua and Eshelby stress, see Chapter 9.
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6.7 Eshelby Stress as a Resolved Shear Stress

In crystal physics the activation of slip systems is governed by Schmid’s law 
(cf. Schmid and Boas, 1935). This is particularly important for single crystals 
because of its relationship to finite-strain plasticity. Schmid’s law in fact is a 
criterion usually expressed in terms of the local value of the Cauchy stress 
projected onto the crystal characteristic directions. Only shear is involved, 
and the appropriate projection of the stress is called the resolved shear-stress. 
In finite strains, where plasticity is involved through a multiplicative decom-
position of F, it would be natural to assume the intervention of the Eshelby 
stress. This is indeed the case as shown by Le (1999) from whom we borrow 
the derivation. We assume that slip takes place on families of slip planes 
equipped with unit normals m0

k( ), regarded as material covectors, and with 
slip directions described by unit material vectors s0

k( ), such that each pair of 
these describes one slip system with m s0 0 0k k) .( ) ( ) =  for k fixed. In single crystals 
there exists only a finite number N of slip systems. Then the time rate of plas-
tic “gradient” is supposed to satisfy Taylor’s fundamental equation:

  F s m Fp k k k

k

N
p= ⊗( )( ) ( ) ( )

=
∑ γ 0 0

1

. ,  (6.78)

where γ(k) is the amount of slip for the k-slip system. A consequence of (6.78) is 
that the plastic distortion is isochoric (i.e., it preserves the volume). In an elas-
tic deformation Fe, the vectors s0

k( ) and covectors m0
k( ) are transformed accord-

ing to the transformation rules for vectors and covectors, that is,

 s F s m F mk e k k e T k( ) ( ) ( ) − ( )= = ( )0 0, ,  (6.79)

while they obviously remain unchanged under slip according to their very 
definition. The energy per unit of the reference crystal configuration (interme-
diate configuration) is a function of the elastic “gradient” Fe only (we con-
sider isothermal evolutions). That is,

 W We e e e T eF C C F F( ) = ( ) = ( )ˆ ; .  (6.80)

But we note that

 C F 1 F F F F F F C Fe e T e p T
T p p T p= ( ) = ( ) ( ) = ( ) (− − −

. . . . .
1 ))−1

.  (6.81)

Accordingly, the energy per unit volume of the reference configuration reads

 W J W Wp e p p= ( )( ) = ( )ˆ , , .C C F F C  (6.82)
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The Clausius–Duhem inequality here is reduced to

  W − ( ) ≤1
2

0tr S C. .  (6.83)

From this, following the classical Coleman–Noll exploitation, we deduce 
that

 S
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= ∂
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We set

 J k k k( ) ( ) ( )= ⊗( )( )tr J s m. ,0 0
 (6.85)

while we show by differentiation that

 J
F

F F b F b 1 S C
C

:
ˆ

. . , ˆ .= − ∂
∂

( ) = −( ) ( ) = −
−W

Wp
p T p T p T

R ..  (6.86)

The remaining dissipation inequality in (6.842) reduces to

 J k k

k

N
( ) ( )

=
∑ ≥γ

1

0.  (6.87)

From this can be deduced a criterion of activation (vanishing or nonvan-
ishing slip) by following general rules of irreversible thermomechanics 
(Maugin, 1999b; also Chapter 2 in this book). In particular, we can formulate 
a generalized Schmid law by considering a dissipation function D, homoge-
neous of degree one in the slip rates, such that

 D Jcr
k N k

k

N

= ( )( ) ( ) ( ) ( )

=
∑ γ γ γ1

1

,...,   (6.88)

and

 J
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j j

k
( )

( ) ( )

( )=
∂ ( )

∂

γ γ

γ

,
,




 (6.89)

where the J k
cr
( ) are critical values, perhaps still functions of the γ’s. Slip sys-

tems of which the shear component of the Eshelby stress reaches its critical 
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value, leading to a nonzero time evolution of γ(k), are said to be activated. More 
precisely, the singular formulation in (6.88) and (6.89) yields

 J Jk k k( ) ( ) ( )< ⇒ =cr γ 0,

 J Jk k k( ) ( ) ( )= ⇒ ≥cr
) ,γ 0  (6.90)

 J Jk k k( ) ( ) ( )= − ⇒ ≤cr γ 0,

so that activation possibly, but not necessarily, occurs only when the modu-
lus of the corresponding J(k) has reached a critical value. This critical behavior 
follows from the mathematical homogeneity of degree one of the dissipation 
function D (see Maugin [1992] for the exploitation of this property in rate-
independent plasticity).

The critical role of the Eshelby stress in a criterion has also been recently 
proposed in the materials mechanics of elastomers, where the question of 
fatigue is crucial (Andriyana, 2006; Andriyana and Verron, 2007). This con-
sideration is based on a remark by Herrmann and Kienzler (2000) that the 
component b L

K
.  of the Eshelby stress b is a scalar that represents the negative 

of energy variation due to a unit material translation of the surface of unit 
normal NK  in the direction of unit vector eL. Indeed, if δu is the amplitude of 
the translation in the direction of unit vector eL, δΠ is the change in energy, 
NK is the unit normal to a small element of surface ΔSR over which b is practi-
cally uniform, we have (indices K and L fixed)

 b S
uL

K
R. .= −( )−∆ Π1 δ

δ

This serves to define a predictive measure of fatigue in elastomers by con-
sidering the smallest of the eigenvalues of b as initiating the growth of 
microdefects.

6.8 Second-Gradient Theory

Some of the results of previous sections have been generalized to the case 
of second-gradient elasticity, for which the Lagrangian density may be writ-
ten as (4.119). We shall focus the attention on the following elastic- potential 
energy per unit reference volume for an inhomogeneous material:

 W W R= ∇( )F F X, ; .  (6.91)
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Let us look at this from the point of view of symmetries. Of course, such a 
material, by its very definition, is sensitive to the first and second-material 
gradients of the direct motion that yields the placement. When evaluated at 
a given point X at fixed time t, the values of these gradients are independent 
of each other. Therefore, it would appear at first view that insofar as charac-
teristic symmetries at a point are concerned, one should be interested only 
in the response of two completely independent arguments, a second- and 
third-order two-point tensor fields. But this cannot be true because mate-
rial symmetries have to respect group properties (Elzanowski and Epstein, 
1990). Accordingly, the value taken by the third-order geometric object ∇RF is 
always the result of evaluating the second gradient of a global deformation, 
so that special requirements on the law of composition of the tensorial objects 
involved must be envisaged. This law, in turn, will determine what kind of 
object the symmetry group of the material should be. To that effect, consider 
the influence of material-particle changes

 y y X= ( ),  (6.92)

with gradients

 ∇ = ={ } ∇ ∇ = = ={ }R I
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on the material response in (6.91). We immediately have

 W W J H J H H J H X YA
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I
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i

I
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A
i

IJ
A I A= + ( )( . . . . . . ., ; )) = ∇( )ˆ , , ,W RJ J y  (6.94)

where J and ∇RJ are the gradients of the direct motion with respect to the sec-
ond reference. Since a material symmetry is a change of reference configura-
tion that leaves the response function unchanged, we are led to identify all 
such reference configurations that have the same first and second gradients 
at the point X and to group them into an equivalent class in which the com-
position law exhibited in the first of (6.94) applies. Thus, we can say that a 
material symmetry relative to a given reference at X is given by two tensors, 
G and S, with the property that

 W F B X W F G B G G FI
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IJ
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K

KL
i
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K. . . . . . ., ; ,( ) = + ii
IJ
K
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K

JI
KS S S. . .; , ,y G( ) = >det 0,  (6.95)

for all Fs and Bs.
The following properties were enunciated by Elzanowski and Epstein 

(1990) and proved in a more or less straightforward manner: (i) The sym-
metries exhibited in (6.95) form a group H = {G,S} with typical element {G,S}, 
identity element {1,0}, and composition law

 G S G S G S G G S G G G S3 3 1 1 2 2 1 2 1 2 2 1 2, , , ,{ } = { } { } = ( ) +
T{{ }.  (6.96a)
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In components, this reads

 G G G S S G G GP
K
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MN
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3 1 2 3 1 2 2 1
. . . . . . .,= = + MM

K
PJ
MS. . .2  (6.96b)

(ii) Two symmetry groups, H and Ĥ, at the same point, relative to two 
different reference configurations, coincide if and only if the values of the 
first and second gradients of the configuration change are, as a pair {H, T}, a 
member of one, and hence of both, of the symmetry groups. Otherwise, the 
groups are conjugate through the constant elements {H, T} by the relation

 G S H T G S H T, , ˆ , , ,{ } = { } { } { }−1
   (6.97)

where inversion and composition have to be understood in the sense of the 
group operations defined in (6.96). For instance, if H–1 is the ordinary inverse 
of H, then

 T H H H− − − −( ) = − ( ) ( ) ( )1 1 1 1

. . . . .
.
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Now we look for the generalization of the local k-transformation of refer-
ence introduced in Section 6.3. Accounting for the composition present in 
(6.95), when a body is materially uniform (there exists a global reference con-
figuration), two mappings k(X) and Q(X)—and not only k—of a reference 
crystal on the first and second tangent spaces at each point of the global 
configuration must exist, so that instead of (6.95) we have

 W J W J WR R
T

F F X Fk F k k F Q Fk k, ; , . .∇( ) = ∇( )( ) +( ) =− −1 1 ,, ,G( )  (6.99)

which defines both F and G. Applying the chain rule of differentiation and 
generalizing the computation of Section 6.3, we compute
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and
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where T̂ is a first Piola–Kirchhoff stress and M̂ is a hyperstress as generically 
defined by the second of (4.124). From (6.100) and (6.101), one then shows that 
the derivatives of W  with respect to k and Q, that is,
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are given in components by
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and
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At this point it is natural to isolate those terms that do not depend on the 
choice of reference crystal in order to define the following completely material 
tensors:
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These are the material Eshelby stress and hyperstress such that (Maugin and 
Trimarco, 1992)
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On defining an effective Eshelby stress by

 b b Beff div:= − R  (6.107)

and taking the material divergence of this by direct calculation, we obtain 
the quasistatic version of the balance of material momentum as

 div eff inh
Rb f 0+ = .  (6.108)

These results (Epstein and Maugin, 1992) may be useful in a geometric 
description of continuous distributions of disclinations.

6.9 Continuous Distributions of Disclinations

The most general dislocations need a characterization, not only by a Burgers 
vector relating to a translation, but also by a rotation of a finite angle ω around 
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an axis. This rotation can be manifested by the rotation of a local triad of 
orthogonal vectors attached at each point of the dislocation line L. In the 
same spirit as the concept of Burgers vector, we may say that this triad, in an 
unstrained solid, corresponds to a local triad of constant orientation along 
L in the strained solid. Such rotation dislocations are called disclinations (cf. 
Friedel, 1979). While the geometric concept of torsion seems to capture the 
concept of translation dislocation characterized by a Burgers vector in a sat-
isfactory manner, the question naturally arises of the geometric characteriza-
tion of continuous distributions of disclinations in material space, the realm 
of structural defects. Anthony (1970) has advanced the idea that while torsion 
associated with a certain material connection could relate to translation dislo-
cations, curvature should then characterize disclinations. But we already saw 
that in continuum mechanics all information required to describe smooth 
distributions of defects is to be found in the material response functional of 
the body (e.g., W, in fact a function), defects being themselves equated with a 
lack of homogeneity of these functionals. Disclinations cannot be described 
in the framework of a first-gradient theory (classical elasticity) since the latter 
gives rise only to a curvature-free material connection. Simultaneously, the 
structural approach to defective materials suggests the presence of couple-
stresses in relation with defects in general and disclinations in particular. As a 
consequence, it seems natural to investigate the possibility that disclinations 
could be placed under the umbrella of continuum mechanics by considering 
second-gradient elastic materials, the subject matter of the preceding section. 
This program has not been completed at the time of writing of this book, but 
some directions of research can be pointed at (in this respect see also the end 
of Chapter 9). Of course, the symmetry question, as examined in the forego-
ing section, is of great importance as, following along the same line as in the 
curvature-free case, we need to express fundamental identities that derive 
from the introduction of Eshelby stresses and hyperstresses. Computing 
directly the inhomogeneity force source in (6.108), that is,
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instead of (6.108), we have thus the equation that generalizes (6.23) in the 
rather frightening form
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 (6.110)

One may wonder how this can possibly be rewritten in terms of covariant 
material derivatives based on the connection with, this time, both torsion and 
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curvature, so that such a formulation reflects in a purely geometric manner 
the presence of both translation and rotation dislocations! There is no unique 
way to do this. However, the framework of path-independent parallelism on 
the material manifold (cf. Schouten, 1954), in terms of a non-Euclidean con-
nection in a so-called Einstein-Cartan space (cf. Choquet-Bruhat, 1968), with 
both torsion and curvature, may be an interesting avenue, in which case one 
would expect a generalization of (6.35) in the self-speaking form

 div eff
Γ b b T B R= ( ) + ( )B F, , ,  (6.111)

where Γ denotes a general nonsymmetric non-Euclidean connection, divΓ 
denotes the covariant divergence based on this connection, and B and F are 
bilinear forms on their arguments, T and R being the torsion and curvature 
tensors. Here we enter the domain of speculations, which obviously sug-
gests a close analogy with the geometrization of modern theories of gravita-
tion, including spin effects (cf. Heyde and Hehl, 1977), where the last term in 
(6.111) again is akin to a Mathisson force. The reader will find in the works 
of Epstein, Elzanowski, De Leon, and Zubov further advances along the geo-
metric line.

Appendix A6.1: Unification of Three Lines of Research

In this chapter and previous ones we have uncovered the unification of three 
of the most productive and creative lines of thought developed in continuum 
mechanics in the second part of the twentieth century, namely, (i) the finite-
strain line with the concept of multiplicative decomposition of the deforma-
tion gradient, (ii) the geometric line, whose purpose, inspired by mathematical 
physics, was to capture anelastic effects via necessarily involved geometric 
descriptions of the material manifold, and (iii) the configurational-force line, 
which gave rise to the notion of material force (i.e., a covector on the material 
manifold) following the pioneering works of Peach and Koehler and Eshelby 
in the 1950s. Here we go over these three lines in some historical digres-
sion; the three great historical figures who emerge thus are J. Mandel (1904–
1978), E. Kroener (1919–2000), and J.D. Eshelby (1916–1988). Other characters, 
although important, remain secondary. Indeed, whether this is an objectively 
correct view or not being another matter, we like to distinguish three lines 
of originally independent creative developments in continuum mechan-
ics in the period 1950–2000 (the flowchart in Figure 6.1 was already given 
in Maugin (2003a, 2003b)) and show how these three lines finally recently 
united in a grand scheme under the umbrella of thermomechanics and how 
the viewpoints of the main protagonists (Mandel, Kroener, Noll, Eshelby) 
find their best combined expression in this powerful unity.
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Along the finite-deformation line (left column in Figure 6.1), following the 
natural notion of composition of maps in analysis, the main fruitful ingredient 
was the multiplicative decomposition of the deformation gradient into an elastic 
contribution and an anelastic one (neither of these being integrable into a dis-
placement separately), originally by the U.K. group of Bilby et al. (1957) and 

Finite-deformation
line

Geometrical
line

Configurational-force
line

1950s 1950s 1950s
Multiplicative Riemannian Force on a singularity
Decomposition Geometry Peach–koehler

(1950)

(1951)

* K. Kondo (JP)
ICTAM Brussels * Bilby . (UK) Force on an

1956 inhomogeneity 
Stroh J.D. Eshelby

Attemps to relate the
Einstein-Cartan tensors to density of defects

Incompatibility tensor
E. Kroener

Non-riemannian geometry
W. Noll (inhomogeneity) 

C.C. Wang Mechanics on the
* E.H. Lee (1969)

Material manifold
Gauge theory

Edelen, Lagoudas * G.A.M.(1969, 1971)
Kroener, Kleinert * D. Rogula

(1980)
A. Golebiewska

R. Kienzler
G.A.M. (1989)

G. Herrmann

Elastoplasticity M. Epstein
J. Mandel divR b f  0

Mandel stress Structural
rearrangements

Eshelby stress

, divR b  b : Γ

Figure 6.1
Flowchart showing three converging lines of continuum mechanics. (Adapted from 
Maugin, G.A., Zeit. angew. Math. Mech., 83: 75–83, 2003a.)
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by Kroener and Seeger (1959) and Kroener (1958) in Germany. This may have 
been anticipated by rheologists (Green and Tobolsky, 1940s) but for exactly 
integrable members of the decomposition. The geometric line (central column 
in Figure 6.1) was connected with this initially. But the  finite-strain theory of 
anelasticity stayed dormant until the late 1960s, when this was revived by 
E.H. Lee (1969) and coworkers, who got most of the credit for it. From our 
viewpoint, however, definite progress was made by J. Mandel (1971) when the 
latter showed that what is now referred to as the “Mandel stress” (Lubliner, 
1990), expressed in the so-called elastically released or “intermediate” con-
figuration—between the material one and the actual one—is the driving 
force behind anelasticity. The introduction of the “intermediate” configura-
tion is intimately—we should say, in duality—related to that of multiplicative 
decomposition of the finite deformation. Sidoroff (1976) has shown how the 
richness of the phenomenological description of finite-strain viscoelasticity 
is enhanced by the decomposition in multiple factors (more than two), intro-
ducing thus a series of “intermediate” configurations; so much for this line.

Along the geometric line (central column in Figure 6.1), we find works by 
scientists who were greatly influenced by mathematical physics, more par-
ticularly the geometric theory of gravitation of A. Einstein, known as the 
general theory of relativity. Kondo (1952) in Japan was the first to infuse such 
ideas into continuum mechanics. But the group of Bilby et al. in the United 
Kingdom, and E. Kroener and A. Seeger in Germany, soon took over this line. 
In particular, introducing the notion of the incompatibility tensor (Kroener, 
1955) to describe mathematically the lack of unique determination of the elas-
tic displacement in continuously dislocated bodies, E. Kroener (1958) made 
a definite step, as he could then relate the density of dislocations (one type 
of “elastic” defect) and the geometry of the material manifold (nonvanishing 
curvature). At this point inclusive ideas of T. Levi-Civita and E. Cartan on 
(geometric) connections, torsion, and distant parallelism entered the scene. This 
was most forcefully implemented by W. Noll (1967) and C.C. Wang (1967) 
in landmark papers. But these authors, fruitful and deep as their research 
was, did not really propose a relationship between a driving force and the 
geometric background.

The third line (right column in Figure 6.1) is that initially developed by 
Peach and Koehler (1950) and Eshelby (1951), who established the expres-
sion of the driving force (not a Newtonian force acting per unit of matter) on 
a singularity line (dislocation line) and a material inhomogeneity, respec-
tively. The celebrated J-integral of fracture (force on a crack tip; Rice, 1968) 
is also such a force. J.D. Eshelby found that this type of “force” is related to 
the divergence of a peculiar stress tensor, which he identified as the spatial 
part of what was known as the energy-momentum tensor in field theories. This 
is now referred to as the Eshelby stress tensor in honor of this great scien-
tist. However, late in the 1960s, D. Rogula (1977) and G. Maugin (1971)—then 
relating to studies in general relativistic continuum mechanics—found it 
convenient to emphasize the duality between projections of the equations of 
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continuum mechanics, whether in physical space or directly onto the mate-
rial manifold. It seems that this viewpoint was exported to the United States 
by A. Golebiewska (1981) in the late 1970s, who initiated a trend followed by 
G. Herrmann and his coworkers, with efficient applications to the strength 
of materials of structural members (see the 2000 book by Herrmann and 
Kienzler). The configurational-force line is also exposed in some detail in 
Kienzler and Maugin (2001).

Finally, Epstein and Maugin (1990) (also many subsequent papers by these 
authors, in particular the synthesis works, e.g., Maugin, 1993, 1995), working 
entirely in material space and exploiting ideas of Noll but pursuing them 
to a logical end, got the final unifying result: The Eshelby material stress is 
indeed fed by all types of material inhomogeneities and field singularities 
(defects). This is shown by establishing the material balance law in which 
the Eshelby stress is the flux. This is the fully material balance law missed 
by Noll and Wang, which represents equilibrium, or dynamics, among all 
types of inhomogeneities. This establishes the relationship between the geo-
metric and configurational-force lines. Furthermore it happens that the pre-
viously mentioned Mandel stress is none other than an easily identified part 
of the Eshelby stress. All of this they achieved by exploiting the notion of the 
 uniformity-inhomogeneity map, or material transplant (with a biophysical con-
notation), or, in yet other words, local structural rearrangement.
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7
Discontinuities and Eshelby Stress

Object of the Chapter

Where we see how deep was the insight of Gibbs, Duhem, and Hugoniot when 
they imagined the propagation of large classes of mobile thin zones of rap-
idly varying fields, and how the Maxwell-Hadamard vision of discontinuity 
surfaces and Eshelby’s ideas of driving force fit in their pioneering views and 
allow now for a satisfactory approach, analytical and numerical, to the propa-
gation of many physical phenomena involving evolving transition zones, in 
particular shock waves, phase-transition fronts, and grain boundaries.

7.1 Introduction

In many physical situations fields are not as regular as they were supposed 
to be in the foregoing chapters. In particular, there are often regions of very 
small extent, that is, thickness (compared to a standard macroscopic length 
scale such as the overall size of a material body), through which fields suffer 
very strong gradients, sometimes in relation to a dissipative process (heat 
conduction, viscosity, plasticity, damage), and this region of mathematically 
vanishing thickness may be moving under the influence of the environ-
ment (differing field solutions on both of its sides). This is what occurs in the 
observed motion of shock waves and phase-transition fronts, two classes of 
phenomena related to an increase of entropy because of their irreversible 
nature. To deal with these we need the set of equations satisfied by the fields 
at the crossing of these thin zones, or the set of jump conditions imposed on 
these fields when the mathematical idealization of a zero-thickness surface 
is accepted. An interesting question is the following one. First, if irrevers-
ibility is involved, then the jump associated with the entropy equation will 
of necessity play an important role as it will select the direction in which 
the singular surface can move in order to respect the second law of ther-
modynamics. In a different line of thought, the presence of a surface across 
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which the fields may suffer an irreversible jump to the point that matter on 
both sides may be considered in two different phases (the case of a phase-
transformation front), or altogether so much altered, is an obvious sign of a 
loss of translational invariance of material properties at the crossing of the 
discontinuity. Accordingly, the theory of material or configurational forces 
must also be involved as, in the spirit of dalembertian mechanics, a force of 
some kind—a driving force—must be associated with the motion of the set of 
points represented by the singular surface, for we see by any means the sin-
gular surface move. Although not forbidden, this view is seldom adopted in 
the classical theory of shock waves, but it comes out naturally in the theory 
of the propagation of phase-transformation fronts. We shall illustrate this in 
this chapter, after a general introduction to jump equations in both spatial 
and material frameworks, and a first approach to the question of the involve-
ment of the Eshelby stress in the simple case of the quasistatics of elasticity.

This goes as follows after Kostrov and Nikitin (1970), Dems and Mroz (1985), 
and Maugin and Trimarco (1995a). Let the sufficiently regular surface Σ sepa-
rate a nonlinear elastic body of material volume BR into two regions, BR

+ and 
BR
− . Let N be the unit normal to Σ oriented from the latter to the former. Let

 A A A[ ] = −+ −  (7.1)

denote the finite jump of the quantity A, A± being the uniform limits of A 
in approaching Σ along its normal on both sides of Σ. We consider the mate-
rial and Eulerian variations already introduced in Chapter 3. These two are 
related by 

 δ χ δ χX x+ =−F. 1 0  (7.2) 

at all regular material points. To generate the looked-for equations we con-
sider the following principle of potential energy (here we note BR as B to sim-
plify the notation):

 δ δ δ χ
∂

Φ = − ( ) +∫ ∫X
B

X
B

W dV dAF Td. ,  (7.3)

where, indeed (the interface Σ is assumed to carry no potential energy of its 
own),

 W dV W dV W dV
B B B

F F F( ) = ( ) + ( )∫ ∫ ∫+ −
+ −

,  (7.4)

where W + and W– are the elastic energy densities per unit volume of the 
reference configuration for two essentially different anisotropic but homoge-
neous elastic materials. Noting NΣ = N– = –N + , a transport theorem yields
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 δ δ δX X x
BB

W dV W dV W d± ± ± ± ±( ) = − ( )
±±± ∫∫F N X.

fixed
Σ

Σ∫∫ ,  (7.5)

so that

 δ δ δ χX X x
BB

W dV W dV dF F N( ) = ( ) + [ ]−∫∫∫ Σ
Σ

Σ. W 1 .   (7.6)

But in computing the first contribution in the right-hand side of this equa-
tion, we obtain

 

δ

δ χ δ χ

X

B

R X X

W dV

dV dV

± ( )

= − ( ) ⋅ + ⋅( ) + ⋅

∫ F

T N T N Tdiv . Σ ⋅⋅[ ]∫∫∫ ∂ −−
δ χX

BB
dΣ

ΣΣΣ
,

 (7.7)

where the jump term comes from the application of the divergence theorem 
in both parts and the gluing back of the two resulting results. From this 
being valid for any volume and surface element, the classical equilibrium 
equations read

 div in /R B WT 0 T F± ± ± ±= = ∂, ,  (7.8)

N

Σ

—
VN

—
V

BR
– BR

+

Figure 7.1
The discontinuity surface Σ in the reference configuration.
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 N T T N T 0. , . .= ∂ − [ ] =d Bat acrossΣ Σ  (7.9)

Collecting the remaining contributions we have

 δ δ χ δ χΦ ΣΣ
Σ

= − +[ ]−∫ N T. .W dx X
1 .  (7.10)

At this point we follow Hill (1986) by selecting the virtual variations in direct 
and inverse motions in the most realistic way. We cannot control the direct 
motion, which, therefore, can suffer a jump in its first variation. But the situa-
tion is different for the inverse motion because, in the absence of defects at Σ, 
we have continuity in the displacement, hence we assume continuity of the 
variation δxX. Accordingly, (7.2) renders

 δ χ δX x[ ] = −[ ]F X. .  (7.11)

On account of the last of (7.9) and of the definition and demonstrable 
relation,

 A A A:= +( )+ −1
2

,   (7.12)

 AB A B A B[ ] ≡ [ ]+ [ ] ,  (7.13)

we finally obtain that

 δ δΦ ΣΣ
Σ

= ∫ f X. x d ,  (7.14)

where

 f N F 1 T FΣ Σ:= . .− ( ) −[ ]W R .  (7.15)

By duality with the inverse-motion variation, this is a material force per unit 
area of Σ. If potential energy is conserved (no dissipation), then

 fΣ = 0 at Σ. (7.16)

If a potential energy localized at Σ exists (e.g., Σ constitutes a third body of infini-
tesimal thickness), then a surface energy term must be added in the right-hand 
side of (7.4). This can be handled with the notion of surface distribution (intro-
ducing a delta function with compact support on Σ); as a consequence (7.16) will 
contain a source term akin to surface tension for a nonflat interface Σ.
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REM A R k 7.1 :  Notice that the quasistatic hypothesis (neglect of inertia) has 
played a role in the special writing of the expression of fΣ. A more general 
form is given later on in the fully dynamic case.

7.2  General Jump Conditions at a Moving 
Discontinuity Surface

7.2.1 equations in the Cauchy Format in the Actual Configuration

Two basic theorems are needed for a global approach to the balance laws of a 
continuum in the presence of a discontinuity surface; one is a generalization 
of the Green–Gauss theorem and the other is related to transport. 

Generalized Green–Gauss Theorem

If the field A suffers a finite discontinuity at the discontinuity surface σ, then 
there holds the following result:

 ∇ = − [ ]∫ ∫∫ ( )∂ −
. . . ,

)
A n A n Adv da d

B tB
σ

σσ
 (7.17)

where n is the unit oriented normal to the sufficiently regular spatial surface 
σ(t). 

The proof consists in considering the two domains on both sides of the sur-
face, applying the regular Green–Gauss theorem to each of these, and gluing 
back the two parts while noting that the unit normals of the two parts at the 
discontinuity surface are in opposite directions. 

Generalized Transport (Reynolds) Theorem

If the field ϕ suffers a finite discontinuity at the discontinuity surface σ(t) 
moving with its proper velocity field ν(x, t) in the configuration Kt, then there 
holds the following result:

 
d
dt

dv
t

dv
B x

φ φ φ ν φ
σ−∫ = ∂

∂
+ ∇ ( )









 + −( )[ ]. .v n v

Σ∫∫∫ −
d

B
σ

σ
,  (7.18)

with the same sign convention as above.
Again the proof is carried out by the same technique of separating the two 

domains on both sides of σ, applying the “regular” transport theorem to 
each part, and gluing back the two parts. Of course, the proper velocity ν(x, t) 
is continuous, but it generally depends on the point x of σ.
Application of these Theorems to the Basic Conservation Laws of 
Continuum Thermomechanics
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On applying the results in (7.17) and (7.18) to the balance laws (2.64) through 
(2.68) in the presence of a self-moving spatial discontinuity surface σ(x, t), we 
obtain the equations at regular points such as (2.80) through (2.85) and, at 
σ(x, t)—not to be mistaken for the Cauchy stress—the following set of jump 
equations: 

 n v. ,ρ ν−( )[ ] = 0  (7.19)

 n v v 0. ,ρ ν σ−( )⊗ −[ ] =  (7.20)

 n v v v q. . ,ρ ν σ−( ) +( ) − +[ ] =e 2 2 0/  (7.21)

 n v s. ,ρ ν η σ−( ) −[ ] = ≥S 0  (7.22)

where e is the internal energy per unit mass and Sσ is the (unknown) non-
negative entropy source at σ. In most cases, s = q/θ. We note the role played 
by the relative spatial velocity (v − ν) and also that of the mass flux 

 mσ ρ ν: . ,= −( )n v  (7.23)

which is continuous at σ according to Equation 7.19: [mσ] ≡ 0. Equations 7.19 
through 7.22 are sometimes called the Rankine–Hugoniot–Kotchine equations. 
It is of interest, exploiting the continuity of mσ, to establish the  so-called 
Hugoniot equation of shock-wave fame. For that purpose we note that (7.21) 
reads

 m eσ σ+[ ] − −[ ] =v n v n q2 2 0/ . . . .  (7.24)

But on taking the inner product of (7.20) by the mean value 〈v〉 and combin-
ing with (7.24) on account of (7.13), we obtain 

 m e mσ σ σ−[ ] + [ ] =−1 0n v n q. . . .  (7.25)

We let the reader show that for a non-heat-conducting perfect fluid, this delivers 
the simple and celebrated Hugoniot relation:

 e p+[ ] =τ 0,  (7.26)

where p is the thermodynamic pressure, and τ = ρ–1 is the specific volume. 

7.2.2 equations in the Piola–Kirchhoff Format

In that case we start with the statements (2.74) through (2.77) of the basic ther-
momechanical balance laws but in the presence of a regular discontinuity 
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surface Σ(X,t), image of σ(x,t) back in KR. The theorems (7.17) and (7.18) are 
shown to take on the following form: 

 ∇ = + [ ]∫ ∫ ∫∂ −
R

B B
dV dS d

R R

. . .A N A N A
Σ Σ

Σ  (7.27)

and

 
d
dt

dV
t

dV V d
B X

N
BR R

φ φ φ
− −∫ ∫∫= ∂

∂
− [ ]

Σ ΣΣ
Σ,  (7.28)

where

 VN ≡ N V. ,  (7.29)

if V  is the material velocity field (a material contravector) of the surface Σ. 
On applying (7.27) and (7.28) to the basic balance laws (2.74) through (2.77), 

we obtain (2.86) through (2.90) at regular material points and, at Σ, the fol-
lowing set of jump equations: 

 VN ρ0 0[ ] = ,   (7.30)

 VN Rp N T 0[ ] + [ ] =. ,  (7.31)

 V HN R[ ] + −[ ] =N T v Q. . ,0  (7.32)

 V SN R[ ] − [ ] = ≥N S. ,σΣ 0  (7.33)

assuming there are no body forces. We can also remark that, with this hypoth-
esis, Equations 2.86, 2.87, and 2.89 become strict conservation equations in 
the Piola–Kirchhoff format. Correspondingly, the three associated jump con-
ditions (7.30) through (7.32) are homogeneous (vanishing right-hand side). 
This is not the case for the entropy condition (7.33), where there remains the 
possibility of a nonnegative entropy source at Σ when the latter is “dissipa-
tive.” What about the jump condition associated with the canonical equation 
of momentum and other equations that may be associated with the energy 
equation? We have shown that in a sufficiently general framework, a consis-
tent system of canonical equations of material momentum and energy reads 
(in the absence of body force; cf. (5.14) and (5.19))

 
d
dt

d S
dt

hR R
P

b f f Q− = +
( )

+ ∇ =div int inh int, . ,
θ

 (7.34)
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at any regular material point X. At this point, noting that these two equations 
are not the results of the direct localization of global balance laws (contrary 
to what is supposed by some for the first equation; see Appendix A5.2) and 
that (7.30) through (7.33) can also be written down directly from their bulk 
analogues by using a rule of thumb that consists in replacing formally the 
operators ∂/∂t|x and ∇R by the operators –V–N and N.[..], respectively (a rule 
that applies directly to conservative hyperbolic systems), then we could use 
the same rule for the two parts of (7.35) for their left-hand side and assuming 
that unknown source terms will appear at the surface. With such a prag-
matic rule we obtain the following two jump equations associated with the 
canonical conservation laws of momentum and energy:

 VN P N b f[ ] + [ ] = −. ,Σ  (7.35)

and

 V S hN θ[ ] − [ ] =N Q. ,Σ  (7.36)

where the three quantities fΣ, hΣ, and σΣ have to be estimated consistently. 
Of course, in physical reality these correspond to integrated source terms 
throughout the thickness of a transition zone that is not mathematically of 
zero thickness (i.e., the discontinuity possesses a structure; such is the case 
of shock waves that exist only because of dissipation occurring through such 
a transition region). That is, we could have been less brutal than simply writ-
ing (7.35) and (7.36). Indeed, if (7.34) are valid at regular material points, then 
we can integrate them over a regular material region, yielding thus

 
d
dt

dV dA dV
B B BR R R

P N b f f∫ ∫ ∫= + +( )
∂

. ,int inh  (7.37)

and

 
d
dt

S dV dA h dV
B B BR R R

θ( ) = − +∫ ∫ ∫∂
N Q. .int  (7.38)

If we apply this to a box (the so-called “pill-box” method) that overlaps a 
piece of small extent (considered as flat without loss of generality; “the flea 
sees a flat surface locally”) of thickness δ and plane coordinates X2 and X3, 
as we squeeze the box to the local surface of Σ, with nothing occurring at the 
two lateral ends, (7.37) and (7.38) will provide the following limit conditions 
per unit area of Σ:

 − [ ] = [ ] + +( ) →
−

+

V dXN P N b f f.
/

/

lim asint inh
1

2

2

0δ
δ

δ

∫∫ ,  (7.39)
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and

 − [ ] = − [ ] − →
−

+

∫V S h dXN

/ 2

/ 2

θ δ
δ

δ

N Q. .lim asint
1 0  (7.40)

With singular integrands in the last two expressions in (7.39) and (7.40), we 
obtain jump relations of the form (7.35) and (7.36). Note that a similar proof 
holds for the first part of (7.34). Such a reasoning was suggested by Mandel 
(1966, pp. 268–269) for the entropy inequality, that is, in parallel with (7.39) 
and (7.40), 

 V S dXN [ ]− [ ] = +( ) ≥
−

+

∫N Q. / lim ath intrθ σ σ
δ

δ

1
2

2

0
/

/

ss δ→ 0.  (7.41)

7.3 Thermomechanical Shock Waves

In this case we can keep as large a framework as possible, including the depen-
dence on internal variables of state (cf. Chapter 5) and therefore treat the gen-
eral case of thermo-anelasticity, since the presence of α (without gradients) 
does not formally alter the presentation. The jump relations (7.31) through 
(7.34) constitute the general point of departure. However, if we kept the idea 
of a transition zone of small but finite thickness from one side of Σ to the 
other, then the source quantities in (7.34), (7.36), and (7.37) would be known in 
terms of excess quantities computed throughout the thickness of the transition 
zone. 

This approach, which can be conceived as a zoom on the front, shows 
the remarkable role played by thermal and intrinsic entropy sources in the 
condition of entropy growth at Σ and the parallel role of the material forces 
fth and fint in writing the jump of the balance of material momentum at Σ. 
While equations such as (7.41) are suggested by Mandel (1966) and consid-
ered by some authors (Stolz, 1989, 1994), Equations 7.39 and 7.40 are quite 
recent (Maugin, 1998b, 1998c). The consistency between the source terms in 
these equations provides the connection between entropy growth at Σ and 
the power expended by the material driving forces, even in the general the-
ory of shock waves where the notion of driving force was heretofore ignored. 
But we shall consider the purely jumplike description, bearing (7.39) through 
(7.41) in mind as some “microscopic” justification. We then define the follow-
ing scalar and vectorial quantities at Σ (such quantities are meaningful in 
themselves only if they are invariant across Σ; otherwise, they become math-
ematically meaningful only once an operator such as [.] or < . > , attached to 
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Σ, is applied to them. We learned this technique from A. Lichnerowicz [1976] 
in his studies of shock waves in relativistic fluids.):

 m VNΣ :=ρ0 ,  (7.42)

 T mΣ Σ:= .v N T+ ,  (7.43)

 m Q m HΣ Σ Σ:= . .+ −( )N T v Q ,  (7.44)

 B mΣ Σ:= .P N b+ ,  (7.45)

 m N m SΣ Σ Σ:= . /− ( )N Q θ ,  (7.46)

where, apart from VN , quantities with overbars are per unit mass in the ref-
erence configuration KR. On account of these definitions, the jump relations 
(7.31) through (7.34) and (7.36) now read

 m T m QΣ Σ Σ Σ[ ] = [ ] = [ ] =0 0, ,0  (7.47)

and

 m N BΣ Σ Σ Σ Σ[ ] = ≥ [ ]+ =σ 0, f 0.  (7.48)

Σ

δ

X2

X1
N

Figure 7.2
The singular surface Σ as the limit of a transition zone of thickness δ.
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This is merely a rewriting, but it allows us to perform some simple manip-
ulations and to express some remarkable results in an attractive manner. 
Define 

 L L Lth th th/ , , ,= = ( )ρ θ α0
 F v .  (7.49)

Then it is proved that the entropy source at Σ is given by the following linear 
weighted combination (Maugin, 1997):

 σ θ θ θΣ Σ Σ Σ Σ= [ ] + [ ] − [ ] ≥−m L m Q Tth/ . /1 0v .  (7.50)

The proof of this is carried out by direct computation. Guided by this, we 
introduce the following generating or Massieu function MΣ at Σ by

 M m Q L TΣ Σ Σ Σ:= .thθ− +( ) −( )1 v ,  (7.51)

Then we prove the following two results (Maugin, 1997):

 σΣ Σ= [ ] ≥M 0  (7.52)

and

 p MΣ Σ Σ: .= = [ ]V f. θ  (7.53)

That is, the generating function MΣ—a notion already used in hydrodynam-
ics and magnetohydrodynamics by Germain (1972) in shock-wave studies—
provides both the entropy source and the power of the driving force at Σ, 
although we do not know yet the explicit form of the latter. From (7.52) and 
(7.53) there follows the following general relationship between pΣ, σΣ, and the 
jump in temperature for a general shock wave relating two regions where 
adiabaticity is not supposed:

 p M m QΣ Σ Σ Σ Σ= + − ( ) [ ]σ θ θ θ/ .  (7.54)

The proof of results (7.52) through (7.54) is as follows. On the one hand, we 
compute the power expended by fΣ by

 p m mΣ Σ Σ Σ= = − +[ ] = − [ ] + [ ]( )f V P N b V v N b V. . . . .2  (a)
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because V V=  at Σ and P V v. = 2  in general. On using the definition of MΣ, 
we can also write this as

 p C C m L T M m QΣ Σ Σ Σ Σ Σ= [ ] = −( ) = −−θ θ θ, : . .1 th /v  (b)

Consequently,

 p M m Q M q e dΣ Σ Σ Σ Σ= [ ]− ( )[ ] = [ ]θ θ θ θ/ . . .  (c)

The result (7.54) follows using the relation (7.50). 

REM A R k 7. 2 :  From the preceding we also obtain that for a discontinuity 
surface relating dissipatively two regions where the working hypothesis of 
adiabaticity holds good (a classical approximation)

 σ θ
θ θ

θΣ Σ
Σ= + +




− [ ]







≥−1 21

2
1

0p
m

Wv N T v. . ..  (d)

This follows from the fact that (b) also reads

 p
m

W TΣ Σ
Σ

Σ= + −




− [ ]σ θ

θ θ
θ1

2
12v v. .  (e)

But, at Σ, we check that

 T m m HΣ Σ Σ. . . , . . ,v v N T v N T v= + [ ] = −[ ]2  (f)

from which (d) follows as a consequence. Here W  and H  are the free energy 
and total (kinetic + internal) energy per unit mass. 

Returning to the general case (7.52) and (7.53), for a homothermal disconti-
nuity ([θ] = 0 at Σ), (7.53) provides the reduction

 p MΣ Σ Σ Σ Σ= [ ] = ≥θ θ σ 0,  (7.55)

where θΣ is the continuous temperature at Σ. Otherwise, we have at hand 
a consistent theory of shock waves because, contrary to the simple theory in 
which the shock relates two regions in adiabatic situations, we here relate 
two regions in which dissipation of both thermal and intrinsic origins is 
taken into account so that we have a justification for the existence of σΣ in 
which the nonnegativity is not imposed out of the blue. What about the 
celebrated Hugoniot equation of classical shock-wave theory (in which there 
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is neither heat flux nor the variable α present)? This is normally obtained 
by expanding the following identity on account of other (classical) jump 
relations:

 TΣ[ ] ≡. v 0,  (7.56)

and combining with the jump of the energy equation (in the absence of heat 
conduction), resulting in the Hugoniot equation for nonlinear elasticity (cf. 
Duvaut, 1964):

 HugoSW:= , , . . atE SF N T F Nα( )−[ ] ≡.   ,0 Σ   (7.57)

where it is the internal energy E per unit reference volume that is involved. 
The proof of (7.57) goes as follows. According to the well-known classi-

fication of singular surfaces by Hadamard (cf. Truesdell and Toupin, 1960; 
Truesdell, 1961), a shock wave in elasticity is a first-order singular surface 
Σ across which the first-order derivatives of the direct motion χ(X,t), that 
is, v and F, suffer a finite discontinuity jump. According to the Maxwell–
Hadamard compatibility jump equations, we have thus at Σ:

 F f N f N[ ] = ⊗ = ∇[ ] = ∂ ∂[ ], : . ,R Nχ χ/  (7.58)

and

 v f[ ] = −VN .  (7.59)

Expanding the identity (7.56), after a short computation, one gets

 m VNΣ v N T v N T F N2 2 0/[ ]+ [ ]+ [ ] ≡. . . . . .  (7.60)

On combining this with the last of (7.47) and assuming that the wave front 
indeed propagates (i.e., VN ≠ 0 ) we obtain (7.57). Simultaneously, N.Q no 
longer appears in (7.46) so that the first part of (7.48) reduces to 

 m SΣ   ≥ 0,  (7.61)

Thus adiabaticity in the regular material regions on both sides of Σ is not 
translated into isentropy across Σ: The entropy density, if it changes at all, 
necessarily grows. This, legitimately, leads to comparison of the thermody-
namic transition through the shock with an isentropic one (see Maugin et al., 
1992, pp. 171–173). This is achieved by introducing the Hugoniot function. 
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The scalar quantity HugoSW defined in (7.57) is in fact a functional since it 
depends on values at two limit points. It may be considered a thermody-
namic force (having the physical dimension of a surface traction or a vol-
ume energy) for all practical purposes. The thermodynamic constraint (7.57) 
relates the two states on both sides of the shock and is subjected to the addi-
tional constraint (7.61). We still have the validity of the general relation in 
(7.52). The present framework shows that the following force power vanishes 
identically:

 p VNHugo HugoSW SW( ) = =. .0  (7.62)

If HugoSW is interpreted as the driving force of the shock, then this force has 
the property to be identically zero, and a fortiori, to expend no power by the 
very definition of the shock wave contemplated here. However, the evolution 
of the shock front may be accompanied by an entropy growth in spite of this! 
There is here some kind of apparent logical contradiction that stems from 
the neglect of intrinsic and thermal dissipations through the shock structure. 
Indeed, imagine now that these dissipations are no longer neglected and 
we logically account for the fact that gradients of temperature and internal 
variables of state take place through the finite thickness δ of the zone front. 
These gradients take infinite values when δ tends toward zero, so that Σ is 
indeed singular from the point of view of both dissipation and the balance 
of  material momentum. The general approach given in the preceding does 
account for this. 

7.4  Thermal Conditions at Interfaces 
in Thermoelastic Composites

Now we can revisit the problem of interfaces in composites—mentioned in 
Section 3.6—but with thermal effects taken into account (cf. Maugin et al., 
1999). As there already exists a nonzero thermal material force at all regular 
material points in the bulk of a thermoelastic material, it is quite normal 
that such a notion a fortiori exists at the crossing of an interface between 
two composite components having different thermoelastic properties. We 
shall again call such a surface material thermal force fΣ when it exists at the 
junction of two thermoelastic conductors. From the viewpoint of mechan-
ics we assume perfect matching between the two components so that we 
have 

 X 0 V 0[ ] = [ ] =, at Σ.  (7.63)
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This supposes that we have neither dislocations nor delamination present at 
Σ. A variety of interface thermal conditions can be applied at Σ. We may have 
perfect thermal contact,

 θ[ ] = 0 at Σ,  (7.64)

or we can impose a heat source per unit area, qΣ, for instance, via Joule heat-
ing of a very thin layer of electric conductor sandwiched between the two 
components, or further, we may consider a kind of mixed adiabatic–isentropic 
conditions:

 N Q N Q. . , at± = ⇒ [ ] ≡ [ ] =0 0 0S Σ.  (7.65)

A temperature difference

 ϑ θ= [ ]  (7.66)

could be imposed by some kind of thermocouple. In any case we assume that 
there generally exist a heat source qΣ and an entropy source σΣ in such a way 
that the jump relations for energy and entropy at Σ read (quasistatics is suf-
ficient for our purpose)

 N V T v Q. .E q+ −[ ] + =Σ 0  (7.67)

and

 N V Q. /S − ( )[ ] = ≥θ σΣ 0.   (7.68)

The corresponding jump of the (quasistatic) balance of material momentum 
then yields 

 N b f 0.[ ] + =Σ ,   (7.69)

while (7.37) reads

 N V Q. ,S hθ −[ ] = Σ  (7.70)

where we emphasize that we do not know the expression of fΣ. The inhomo-
geneous Equations 7.69 and 7.70 must be consistent with the statements (7.67) 
and (7.68). If the perfect thermal matching prevails (7.64), then θ factorizes 
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out in (7.68) and (7.70), and compatibility between the resulting equations 
and (7.68) and (7.70) imposes that the internal heat source at Σ be necessarily 
hot (or zero), since then

 hΣ Σ Σ= ≥θ σ 0.  (7.71)

But Equation 7.69 must also be consistent. This is implemented by comput-
ing the power expended by the “force” fΣ in a motion of material velocity V  
such as in an oscillatory motion (at low frequency to respect the quasistat-
ics hypothesis, or else a virtual velocity field). On account of the reduced 
mechanical matching condition N.[T] = 0, we obtain thus

 p S V qNΣ Σ Σ Σ= − [ ] = [ ] +f V N b V. = . . θ .  (7.72)

From this we obtain V qN ≠ =( )0 0, Σ

 f NΣ = [ ]θ S .  (7.73)

In that case we see that the purely normal but fictitious thermal surface 
force is determined by the entropy source and is directed in the direction of 
entropy growth. 

In the case where conditions such as those in (7.65) prevail, then a similar 
computation yields the dual formula compatible with (7.37): 

 p h S VNΣ Σ Σ≡ = = [ ]f V. θ ,  (7.74)

so that the thermal driving force at the interface is given by

 f f NΣ Σ= = [ ]th : .S θ  (7.75)

This “force” is purely normal and directed from the colder to the warmer face of 
the interface. Clearly, this is a limit case of the expression of the bulk thermal 
material force exhibited in Chapter 5 (cf. (5.25)). To see this, one could sum 
the total thermal force (5.25) across a unit area of a layer of infinitesimally 
small thickness across which S is practically constant and then one flattens 
the layer to the zero-thickness interface. This is in fact what is done in a 
different context when trying to justify the existence of fΣ across singular 
surfaces (compare (7.39)). In the present case the temperature jump present 
in (7.75) could be imposed just the same as in (7.66).
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7.5 Propagation of Phase-Transformation Fronts 

7.5.1 Definition

Phase transitions are physicochemical phenomena that normally take place 
over some time and space intervals. The word transition expresses the pass-
ing over from one state to another one, so-called phases, of the same material. 
For an outsider these phases may be viewed as two different materials. But 
some theoretically distinguishable phases may be of equal energy, differing 
only in their arrangement of basic elements such as atoms in a lattice. Thus 
two energetically equal phases of martensite differ only by a sign of their 
shear in two dimensions. The passing from one of these to the other may be 
realized mechanically by a shearing process that brings one phase back in 
exact superposition with the other. We then say that the transition is stress 
induced. But the progress of phase-transition fronts that separate phases and 
are clearly observable in some thermoelastic solids is essentially controlled 
by temperature. For instance, the existence of several minimizers of the elastic 
potential depends on temperature in the Landau vision of the phenomenon. 
Consequently, thermal effects cannot be left out of the picture, and they are 
essential in the following developments. We consider here the possible irre-
versible progress of a phase into another one, the separation between the two 
phases being idealized as a sharp discontinuity surface Σ across which most 
of the fields suffer finite discontinuity jumps. Only if we look at a smaller 
scale do we observe the structure of the necessarily nonzero-thickness inter-
face between the two phases (cf. Maugin and Inoue, 1998; Maugin, 2000b). 
The thermodynamically irreversible processes occurring within that rela-
tively “thick” interface are responsible for the irreversible motion of the ideal-
ized mathematical discontinuity (just as in the shock-wave theory examined 
in the foregoing sections). We consider the classical theory of thermoelastic 
conductors with the possible presence of internal variables of state, that is, 
with free energy per unit of reference configuration,

 W W= ( )F, , ,θ α  (7.76)

and acknowledge from the start that a phase transition consists in a local 
material rearrangement of the material. Accordingly, a nonintegrable trans-
formation strain could be introduced (e.g., a shear between two martensitic 
phases), but the physically characteristic parameter of a phase transition 
in a solid (order parameter in Landau’s theory) may be more complex than 
that, such as a definite combination of components of an infinitesimal 
strain. Therefore, a “material” description based on the exploitation of the 
Eshelby stress imposes itself. The presence of Σ breaks the material symme-
try of the material body as a whole and manifests a material inhomogeneity. 
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Consequently, the critical equation for the description of the phenomenon 
is not only that relating to dissipation but also the equation associated with 
the lack of conservation of material momentum across Σ, that is, the associ-
ated jump relation that is generated by a change of “particle” on the material 
manifold: The driving force acting on the transition front will, therefore, be 
a “material” or configurational force. 

7.5.2 Driving Force and Kinetic relation

The main problem here consists in writing down a consistent set of thermo-
mechanical jump relations across the front Σ. Let [A] = A+ – A– the jump of a 
discontinuous field A across Σ, the unit normal N to Σ being oriented from 
the minus to the plus side. Let V  be the material velocity of the geometric 
point of Σ. The phase-transition fronts considered are homothermal (no jump 
in temperature; the two phases coexist at the same temperature at which the 
transition occurs) and coherent (they present no defects such as dislocations). 
The first condition requires continuity of temperature, while the second 
requires the continuity of the displacement or, in dynamics on the material 
manifold, that of the material velocity. Consequently, we have the following 
continuity conditions:

 θ[ ] = [ ] =0, atV 0 Σ.  (7.77)

Jump relations associated with strict conservation laws in the bulk are for-
mulated according to the theory of weak solutions of hyperbolic systems. That 
is, following previous developments, we merely replace the operators ∂/∂t|x 
and ∇R by the jump operators −( )[ ]V N. .  and N.[.], respectively. Thus the 
jump equations associated with the bulk equations that are strict conserva-
tion laws read

 VN ρ0 0[ ] = ,  (7.78)

 VN p N T 0[ ] + [ ] =. ,  (7.79)

 V HN [ ] + −[ ] =N T v Q. . 0,  (7.80)

where VN = V N.  is the normal speed of the points of Σ. The same pragmatic 
rule can be applied to the bulk equations of entropy and material momentum—
which are not strict conservation laws—if we formally add unknown source 
terms; that is, we a priori write the following two jump equations:

 V SN [ ] − [ ] =N Q. /θ σΣ  (7.81)
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and 

 VN P N b f 0[ ] + [ ] + =. Σ .  (7.82)

The second law of thermodynamics at Σ reads

 σΣ ≥ 0.  (7.83)

The problem consists in finding the expressions of σΣ and fΣ that are compat-
ible. We know the formal expression of both P and b. The only manipulation 
we can do on Equation 6.6 is to compute the power expended by fΣ in the 
irreversible motion of Σ. To that purpose, we compute 

 pΣ Σ= V f.  (7.84)

on account of the remaining jump Equations 7.77 through 7.80. The proof 
then goes as follows. First we have

 f V P V N b VΣ . . . . ;= −[ ] − [ ]VN  (a)

BR
–

BR
+

N

Σ

Figure 7.3
A phase-transition front without structural defects.
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but on the one hand,

 P V v F V v. . .= − =ρ ρ0 0
2  (b)

and (F.V = −v)

 b V v V T v. . .= − −





+1
2 0

2ρ W  (c)

Substituting from these into (a) we have then

 f V v N v V N T vΣ . . . .= −[ ]+ −





−





V WNρ ρ0
2

0
21

2  ,  (d)

or 

 p V WNΣ Σ= = − +




+





V f v N T v. . . .
1
2 0

2ρ  (e)

But from the energy jump equation we extract 

 N Q N T v. . . .[ ] = [ ] + [ ]V HN  (f)

It is here that the working hypothesis of homothermality (7.761) enters, 
because the entropy jump relation then yields (compare to (7.70))

 N Q. .[ ] = [ ] −V SN θ θ σΣ Σ  (g)

On combining (f) and (g) and accounting for the relation W = E – Sθ, we have 
thus pΣ = θΣσΣ. But we also have

 N T v N T v N T v. . . . . . ,[ ] = [ ] + [ ]  (h)

 N T v v v v. . . / ,[ ] = − [ ] = − [ ]V VN Nρ ρ0 0
2 2  (i)

 N T v v N T F N. . . . . .[ ] = − [ ]− [ ]V VN Nρ0
2 2/  (j)



Discontinuities and Eshelby Stress 187

The Maxwell–Hadamard lemma here yields 

 v F N[ ] = −[ ]. .VN  (k)

On collecting the intermediate results (f) through (k) in (e), we finally obtain

 p f VNΣ Σ Σ Σ= = ≥θ σ 0,  (7.85)

together with the fact that 

 q pΣ Σ Σ Σ= = ≥θ σ 0  (7.86)

is a hot heat source localized at Σ. In these equations θΣ is the uniquely defined 
temperature at Σ (a characteristic parameter of the phase transition), fΣ is the 
scalar driving force for which we need a kinetic equation, and we have at Σ the 
following balance of “material” forces:

 fΣ + =HugoPT 0,   (7.87)

wherein we have defined the scalar material force as

 Hugo WPT := . .−[ ]N T F N. ,  (7.88a)

with the symbolism < .. > indicating the mean value at Σ. 
When inertia is fully disregarded from the start, then N.[T] = 0 across Σ. 

We then let the readers show for themselves with the help of the Maxwell-
Hadamard condition for F that (7.88a) can also be written as

 HugoPT( ) . .quasistatics tr= − ( )[ ]W T F  (7.88b)

The surface “balance” Equation 7.87 is written down just to emphasize the 
different roles of HugoPT —a field quantity that is known once we know the 
field solution by any means on both sides of Σ—and the driving force fΣ that 
is the thermodynamic conjugate of the normal speed VN . The expression of 
VN in terms of fΣ is the kinetic law for normal progress, examples of which 
based on a more microscopic approach can be found in Truskinowsky 
(1994). In the absence of microscopic justification, one simply applies the 
thermodynamic constraint (7.87) to formulate a priori an admissible kinetic 
law. A linear relation between the two terms in the left-hand side of (7.87) 
is most of the time unrealistic, as the dynamic kinetic relation is extremely 
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nonlinear as we shall see later in some examples. A typical kinetic law 
would read formally

 V V fN = ( )
Σ Σ; ,θ  (7.89)

a relation that emphasizes the normal growth behavior (of one phase in 
the other). This may be of the threshold type (i.e., VN = 0  if |fΣ| has not 
reached a critical value fcr, or VN  possibly, but not necessarily, nonzero 
when this critical value is reached). More sophisticated criteria that satisfy 
the constraint (7.86) can be imagined. The engineering approach, however, 
consists in computing HugoPT by any means at each point of Σ and apply-
ing the criterion fΣ = −( )HugoPT Comput

, and this decides whether there is 
further progress at that point and in what direction, and then increment-
ing the problem by incrementing the data (this is the strategy in related 
problems such as elastoplasticity and fracture; see Maugin [1992]). For a 
physicist, however, while (7.86) must hold, the relationship (7.89) must be 
supported by a local analysis of the transition phenomenon at a smaller 
scale, involving the structure of the front. We shall examine this in a later 
chapter. 

The thermomechanical approach given in the preceding finds its roots in a 
paper by Truskinowskii (1987), but the present formalism, including the con-
sideration of the material-momentum jump relation in material space is due 
to Maugin and Trimarco (1995a, 1995b, 1995c). Much work along these lines 
was done independently by Abeyaratne et al. (1990–2003).

But a phase-transition front is a particular case of the general framework 
developed in Sections 7.2 and 7.4, for which the special conditions (7.82) hold 
good. The result obtained in the preceding can therefore be deduced from 
general equations. In particular, from the results (7.52) and (7.53), we directly 
have

 σ
θ θ θΣ
Σ

Σ Σ
Σ

Σ
Σ= = = − = [ ] ≥q

V MN
1 1

0f V. .HugoPT  (7.90)

7.5.3 Nondissipative Phase Transition—Maxwell rule 

What must be remarked concerning the preceding construct is that the nor-
mal “material force” HugoPT is practically never zero since it must satisfy the 
inequality (7.86). However, one may artificially impose a vanishing HugoPT 
for a progressing front (nonzero VN ). This means a nondissipative phase 
transition although we relate through Σ the phases that are in nonadiabatic 
evolution (Q ≠ 0), that is, in the condition

 Hugo atPT = 0 Σ,  (7.91)
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although VN ≠ 0 . It is readily realized that this “condition” of nondissi-
pativity is the three-dimensional version of the rule of the Maxwell line 
(rule of equal areas) in phase-transition theory relating to a scalar order 
parameter (so-called Landau’s theory). To see this, it is sufficient to use 
the definition of HugoPT and the elastic constitutive equation to rewrite 
(7.76) as

 tr
fixed

phase

phase

T F N T F N. . . . .
,

d( ) = [ ]
−

+

∫ θ α
 (7.92)

In one dimension, all quantities becoming scalars, this gives 

 TdF T T F F
fixed

phase

phase

θ α,
.

−

+

+ − + −∫ = +( ) −( )1
2

 (7.93)

This is indeed Maxwell’s rule of equal areas in a graph (elastic constitutive 
equation) T-versus-F on which one phase is on one stable branch, and the 
other is on the other stable branch of an S-shaped curve. The same manipula-
tion cannot be achieved for the shock condition of (7.57) because E depends 
on F and S, and the latter, entropy, is not fixed in passing from one side to the 
other side of the shock. 

In the same conditions as (7.91) holds true, (7.79) yields 

 V
T T

F F
N
2

0

=
−( )
−( )

+ −

+ −ρ
,  (7.94)

but this would provide the normal wave speed VN  only if the jump solution 
were known, which is not the case beforehand. 

The statements (7.57) and (7.91) exhibit the singularity of the “unstructured” 
shock wave and “nondissipative” phase-transition front. The fact that inter-
nal energy is involved in the first case, while free energy appears in the second 
case, deserves comments that are given in a later  section. Generalizations to 
more complex cases than thermoelasticity are given in other chapters. 

For a fluid, the condition (7.91) in fact materializes in the continuity of 
the chemical potential. The relationship of chemical potential and the Eshelby 
stress (sometimes called the chemical potential tensor) was noticed by 
Grinfeld (1991). However, there is something more in the preceding results: 
No quasistatic hypothesis was used, although it is exactly shown that no 
kinetic energy can enter the final expression (7.88). This agrees with the per-
spicacious view of Gibbs and Duhem, who indeed foresaw that only the 
free enthalpy must govern the local matter rearrangement represented by a 
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phase transition. Thus only the quasistatic part of the Eshelby stress finally 
contributes to the Hugoniot–Gibbs functional HugoPT —in agreement with 
their vision.

The result obtained in the preceding can be generalized to more complex 
material bodies such as electromagnetic ones (e.g., Fomethe and Maugin, 
1997) or polar thermoelasticity (Maugin, 1998a), as well as thermo-
 anelastic materials. Furthermore, nothing is fundamentally changed in 
this  argument in the presence of anelastic behaviors described by means 
of internal variables of state (cf. Maugin, 1998c). These generalizations to 
more complex cases than thermoelasticity are reported in other sections 
or chapters. 

7.6 On Internal and Free Energies

It is classically remarked that internal energy is most important in treating 
problems involving a condition of adiabaticity, while free energy is the rel-
evant thermodynamic potential to deal with isothermal situations. This 
was introduced in the preceding by the classical theory of shock waves 
and that of phase-transition fronts, respectively. We have based our ini-
tial approach to the notion of Eshelby stress in thermomechanics on the 
use of the free energy. A question that naturally arises, then, is whether 
this is a prejudice or not. That is, ignoring external body forces and any 
true material inhomogeneity, at each regular material point X, we had 

T

T+

T–

F– F+ F

Figure 7.4
The Maxwell-line construction.
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the Eshelby stress and the material momentum equation in the form (cf. 
Chapter 5): 

 b T F T
F F

= − +( ) = ∂
∂







= − ∂
∂







L
W

S
W

LR1 . , , ,
θ θ

== −K W ,   (7.95)

and

 
∂
∂

− = = ∇P
b f f

t
S

X
R Rdiv th th, .θ  (7.96)

We should have been more careful in the notation, emphasizing by some 
means the fact that it is the free energy that appears in L. Thus following 
Maugin (2002) we rewrite some of these equations in an obvious notation:

 

∂
∂

− = = ∇ = −

= ∂
∂



P
b f f

T
F

t
S L K W

W

X
R W W W R W

W

div th th, , ,θ





= − +( )
θ

, . .b 1 T FW W R WL

 (7.97)

This is well adapted to the treatment of some isothermal situations. For 
prevailing adiabatic conditions, it would be better to consider the internal 
energy density E per unit reference volume, such that 

 E W S
E
S

= + = ∂
∂







>θ θ, .
F

0  (7.98)

Here E E=  (S, F fixed) must be a monotonically increasing function of 
entropy S. But we immediately check that 

 T
F F FW
W E S E= ∂
∂







= ∂
∂







+ ∂
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= ∂
∂θ θ θ

θ
FF

T T






= =
S

E .  (7.99)

Accordingly,

 b b 1 b 1 T FW E R E E R E ES L L K E= − ( ) ≡− +( ) ≡ −θ , . , .  (7.100)
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Then we can write instead of the first of (7.97)

 
∂
∂

− = ≡ − ∇P
b f f

t
S

X
R E E E Rdiv th th, ,θ  (7.101)

with the relationship

 f f 1W E R RSth th= + ∇ ( ). .θ  (7.102)

Equation 7.101 should be the equation of material momentum to be consid-
ered preferably if we have to deal with adiabatic conditions since fE

th will 
vanish with spatially uniform entropy. 

Consequences for Jump Relations

In previous paragraphs we have considered (using now the new, more accu-
rate notation) the jump of material momentum as 

 VN W WP N b f[ ] + [ ] = −. ,,Σ  (7.103)

where the material force on the right-hand side is an unknown quantity. We 
could have as well considered the a priori jump equation 

 VN E EP N b f[ ] + [ ] = −. ,,Σ  (7.104)

where the right-hand side force is equally unknown. But accounting for the 
first of (7.100), we deduced the necessary relation

 f f NΣ Σ, , ,E W S= − [ ]θ  (7.105)

an expression which is in harmony with (7.102). This leads us to look at another 
approach to the driving force problem (Abeyaratne and Knowles, 2000). First, 
remember equations (e) and (g) in the proof of (7.85) earlier. The entropy 
jump condition (7.76) can also be written as 

 V SN [ ] − [ ] − 




=N Q N Q. . .

1 1
θ θ

σΣ  (7.106)

But Abeyaratne and Knowles (2000) astutely note that both adiabatic and 
nonadiabatic conditions can be gathered in a single product equation

 Q θ[ ] = 0,  (7.107)
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an equation that has no more physical meaning than telling that either 
temperature is continuous or the material heat flux vanishes. Therefore, 
necessarily,

 N Q N Q. . .[ ] −





= 




=1 1

0
1

0
θ θ θ

and  (7.108)

Accounting for the conditions (7.107) and (7.108) in the previously mentioned 
equations (e) and (g), we obtain 

 V S V HN Nθ θ σ[ ] − [ ] − [ ] =N T v. . .Σ  (7.109)

And remembering the definition of the free energy, this becomes

 V S V WN Nθ ρ θ σ[ ]− ( ) +( ) +[ ] =0
2 2v N T v/ . . .Σ  (7.110)

Comparing with (e), we conclude that

 f VΣ Σ, . .W NV S− [ ] =θ θ σ  (7.111)

This can be written as

 f N VΣ Σ, . .W S− [ ]( ) =θ θ σ  (7.112)

The expression within parentheses on the left-hand side of the last equation 
is considered as the driving force by Abeyaratne and Knowles (2000). It obvi-
ously coincides with fΣ,W in isothermal processes for which [θ] = 0, while in 
adiabatic processes we have 

 f N NΣ , ,W S S− [ ] = [ ]θ θ  (7.113)

and this yields 

 f NΣ , ,W S= [ ]θ  (7.114)

a result in full accord with (7.105), since then fΣ,W = 0, and also with (7.76). 
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7.7 The Case of Complex Media

To prepare applications to more complex bodies than thermo-anelastic bod-
ies governed by a free energy such as (7.76), we consider the case of media 
described by an additional variable α with its gradients such as in Chapter 5, 
and more particularly Sections 5.3 and 5.4. In particular, at any regular mate-
rial point we should have the following set of equations, no balance (case of 
an additional internal degree of freedom) or evolution (case of an internal 
variable of state) equation being specified for the variable (field) α(X, t), but 
with energy density:

 W W R= ∇( )F X, , ,α α θ;  (7.115)

Balance of mass:•	

 
∂
∂

=
t X

ρ0 0  (7.116)

Balance of physical momentum:•	

 
∂
∂

− =
t X

Rp T 0div  (7.117)

Balance of material momentum:•	

 
∂
∂

− = + +
t X

RP b f f fdiv inh th intr  (7.118)

Balance of energy:•	

 
∂
∂

− ∇ + −( ) =
t

H
X

R . .T v M Qα 0  (7.119)

Heat-propagation equation:•	

 θ α∂
∂

+ ∇ =
t

S A
X

R .Q   (7.120)

Balance of entropy:•	

 
∂
∂

+ ∇ = ≥
t

S
X

R B.S σ 0  (7.121)
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The dependence on ∇Rα indicates a weak nonlocality in the α variable. No iner-
tia of a classical type is here granted to α. We set

 

T F

M

M

= = −

= + ∇ = −

= −

∂ ∂ ∂ ∂θ

δ δα

∂ ∂α

W S W

A A W

A W

R

/ , / ,

. / ,

/ , == ∇( )∂ ∂ αW R/ ,

where δ/δα indicates the Euler–Lagrange functional derivative with respect 
to α. Furthermore, 

 P F p= − T . ,  (7.122)

 b L 1 T F M= − + + ∇( )( )th .R R
T. ,α  (7.123)

 f
X

vinh
th

expl

th,= 





= ( ) −
∂
∂

ρ
L

L X: ,
1
2 0

2 W  (7.124)

 f fth intr,: := ∇ = ∇S AR Rθ α  (7.125)

are, respectively, the canonical (material) momentum, the Eshelby material 
stress, the “material” force of the true material inhomogeneities, an effec-
tive Lagrangian density, the “material” thermal force, and a “material” 
force due to spatial disuniformities in the α variable. The latter, just like 
fth, may be referred to as a material force of quasi-inhomogeneitiy, that is, 
manifesting itself just like finh in the balance equation (7.118). Notice that 
the definition of P is left unchanged because the variable α does not carry 
inertia. 

Concerning the assumed functional dependence (7.115), once the variable 
α is specified, the rotational invariance of the scalar-valued function W (not 
a functional of time) in physical space imposes a condition of the following 
general type (cf. Maugin, 1980; Capriz, 1989):

 skew
W

SO
WT∂

∂





+ 




=

F
F

δ
δα

0,  (7.126)

where the second contribution means the action of members of the proper 
orthogonal group SO(3) on W considered as a function of the tensorial object 
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α and its first material gradient. For instance, if α is a vector field n(X, t) in Kt, 
then (7.126) reads, in components,

 skew
W
F

F
W
n

n
W
n

nij
K
i K

k
kj i

k
kj

K
i[ ]

∂
∂

+ ∂
∂

+ ∂
∂.

.
.

.δ δ KK
k

kjδ





= 0.  (7.127)

This potentially contains the local balance of moment of (physical) momen-
tum. Equation 7.127 applies to the case of liquid crystals (cf. Appendix 9.1 of 
Chapter 9).

Applying now the formalisms of weak solutions, corresponding to (7.116), 
(7.117), and (7.119), we have the following homogeneous jump conditions at 
the singular surface Σ:

 VN ρ0 0[ ] = ,  (7.128)

 N V p T 0. ,⊗ +[ ] =  (7.129)

 N V T v M Q. . .H + + −[ ] =α 0  (7.130)

Proceeding as in previous sections, for the jump conditions corresponding to 
(7.118), (7.119), and (7.121), we a priori write 

 N V P b f. ,⊗ +[ ]+ =Σ 0  (7.131)

 N V Q. ,S qθ −[ ] − =Σ 0  (7.132)

 N V S. ,S −[ ] = ≥σΣ 0  (7.133)

where the expressions of the surface heat source qΣ, the surface entropy 
source σΣ, and the surface material force of inhomogeneity fΣ are to be found 
or related to one another from some analysis on account of the expression of 
all other quantities involved in the jump relations (7.128) through (7.130), with 
the inequality in (7.132) imposing a direction of evolution. We are particularly 
interested in finding the expression of this surface entropy source. Of course, 
on considering (7.128) we see that ρ0 must be continuous across Σ for a really 
moving surface Σ, while a nonzero jump in ρ0 would require that surface to be 
frozen in the material. Second, compatibility between (7.130) and (7.131) for a 
homothermal front (no jump in temperature) yields

 σ θΣ Σ Σ= ≥−1 0q ,  (7.134)

so that qΣ is necessarily a hot source. 
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Now, as in previous sections, we contemplate the computation of the 
power pΣ Σ= f V. . This will be much complicated by the presence of α, but 
the result is canonical being independent of the precise physical meaning of 
this variable. First, we note the following partial results, already established 
in simpler cases: 

 v F V f f F N F f N[ ] = −[ ] = − = [ ] [ ] = ⊗. , : . , ,VN  (7.135)

 N V N V. . ,= = = =+ −V V VN N N at Σ  (7.136)

 N T v. ,[ ] = − [ ]ρ0 VN  (7.137)

 N T v v. . , ,[ ] = − [ ] =V K KN ρ0
2 2/  (7.138)

 N T v N T v. . . . .[ ] = − [ ] + [ ]( )V HN  (7.139)

Also, we note that

 
∂
∂

= ∂
∂

+ ∇ = ∂
∂

− ∇α α α α α
t t tX x x

Rv V. . ,  (7.140)

and thus

 N M N M N M V. . . . ,α α α[ ] = ∂
∂












− ∇( )[ ]

t x
R  (7.141)

and

 N M V N M V. . . . .∇( )



 = ∇( )[ ]R

T
Rα α  (7.142)

If α itself is continuous at Σ, an application of the Maxwell–Hadamard lemma 
(see (7.135)) yields

 ∇[ ] = ⊗ = ∇[ ]R Rα α α αN N, : . ,  (7.143)

so that

 V. .∇( )[ ] = ∂
∂






R NV
N

α α
 (7.144)
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Consequently, after a short calculation, (7.142) yields

 N M V N M N M. . . .∇( )



 = ∂

∂





+ [ ] ∂

∂
−R

T
N

x

V
N t

α α α ∂∂
∂
α
t X

.  (7.145)

But

 p VNΣ Σ= = − + ( )[ ]f V N b V P V. . . . ,  (7.146)

transforms to

 p L V KVN R NΣ = + + ∇( ) −[ ]th N T F v N M V. . . . . ,α 2  (7.147)

or

 p K W V NN RΣ = − +( ) + − ∇( )[ ]N T v M V. . . . .α  (7.148)

On the other hand, we can extract [N.Q] from (7.130) to obtain

 N Q N T v N M. . . . .[ ] = +( ) + +[ ]E K VN α  (7.149)

Accounting now for (7.132) and (7.141) and comparing the result with (7.148), 
we obtain the sought relationship as

 q p
t x

Σ Σ= − ∂
∂













N M. ,
α

 (7.150)

where, we emphasize, the time derivative of α is taken at fixed x.
It remains to find the precise expression of pΣ, and thus qΣ. For this we start 

from (7.148) and note that pΣ reads

 p V
t tN

x X
Σ = − + [ ] ∂

∂
− ∂
∂

HugoPT N M.
α α

 (7.151)

on account of (7.139), (7.145), and the following definition:

 HugoPT : . . . . .= − ∂
∂

− ∂
∂







W
N N

N T N M
χ α

 (7.152)
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We let the reader finish the proof by establishing that the second law at Σ 
reads (Maugin, 1998c)

 q V
t tN

X x
Σ = − − [ ] ∂

∂
+ ∂

∂















HugoPT N M N M. .

α α 


 ≥ 0,  (7.153)

a result that is general enough so as not to involve any particular condition 
on the evolution equation satisfied by the variable α, and where we point out 
the coexistence of two different types of time derivative. But we must realize 
that in most, if not all, cases of interest, the quantity within large parentheses 
in (7.153) vanishes identically. The reason for this is as follows. First, if, as 
implicitly assumed, the additional variable α is of the internal variable type, 
then the natural boundary (jump) condition associated with the continuity 
of the normal flux associated with α reads

 N M. .[ ] = 0 at Σ  (7.154) 

In addition, if the front Σ is coherent as regards the property related to the 
variable α, then by analogy with the condition 

 V x 0[ ] = ∂ ( ) ∂



 =

−χ 1 , ,t t
x

/  (7.155)

we will have to satisfy the following constraint at Σ:

 ∂ ( ) ∂



 =α x, .t t

x
/ 0  (7.156)

The conditions (7.154) and (7.156) together entail the vanishing of the second 
contribution in (7.153), so that we can now write

 θ σΣ Σ Σ Σ= = ≥q f VN 0,  (7.157)

with the auxiliary equilibrium condition

 fΣ + =HugoPT 0,  

just like in the classical case, but with a more general expression for the mate-
rial force (7.152). 

We have given the proof of the preceding result in some detail because 
of its quite general validity. In effect, if Σ is still of the coherent type with 
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respect to both the inverse classical motion (see (7.155)) and α (see (7.156)), 
but α in fact is an additional degree of freedom carrying its own inertia, 
then (7.154) will be replaced by an equation such as

 N M V p 0. ,+ ⊗[ ] =α  (7.158)

where the α-momentum is such that the kinetic energy associated with α be 
homogeneous of degree two in α , hence itself homogeneous of degree one 
in α, and so

 K t t
Xα α α[ ] = [ ] ∂ ( ) ∂p X. , ./  (7.159)

Then it can be shown (Maugin, 1998c) on account of (7.158) and (7.159) that 
the first contribution within large parentheses in (7.153) will compensate an 
inertial term that would have naturally appeared in the Eshelby stress in the 
derivation, had we considered (7.158) to start with. Therefore, with the coher-
ence condition (7.156) still valid, this case also reduces the heat surface source 
to the form (7.157), which exhibits only normal growth, as only the normal 
component of V  is involved and the driving force fΣ acting on Σ is a mere 
scalar. 

7.8 Applications to Problems of Materials Science (Metallurgy)

7.8.1 equilibrium Shape of Precipitates

There is a great deal of interest in the morphology of heterogeneous materi-
als. In particular, it is observed that some initially nearly spherical particles 
or precipitates in a matrix evolve to cuboidal ones with rounded corners dur-
ing growth. These cuboidal shapes may have concave or convex interfaces, 
depending on the specific alloy considered and the volume fraction of the 
precipitated phase. This problem of stable or unstable equilibrium morphol-
ogy has been especially examined by various groups of authors, including 
the group of D. Gross in Darmstadt (in particular, Schmidt and Gross, 1997; 
Mueller and Gross, 1997) with convincing numerical simulations of the vari-
ety of equilibrium shapes. This problem is examined in quasistatics in pure 
elasticity in small strains with an interface energy between the two solid 
phases, the matrix and the precipitate. The total energy in question reaches 
a minimum for a stable equilibrium morphology. Two effects are combined 
here, the difference in elasticities between the precipitate and the matrix, 
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and the presence of the interfacial energy. Mathematically we have thus to 
minimize the total energy 

 Φ
Σ

= +∫ ∫WdV dA
V

γ ,  (7.160)

where W e= ( )( ) .1 2/ tr σ ε  is the strain energy per unit volume with different 
elasticity coefficients Cin and Cout in the precipitate and the matrix, respec-
tively; γ is the interfacial energy per unit area of the interface Σ bounding the 
misfit particle B; and V is the volume of the whole system. The local equa-
tions, outside Σ, are those of pure quasistatics, possibly anisotropic, linear 
elasticity, that is,

 div inσ = 0 V ,  (7.161)

 σ ε ε ε= = −( )C Cin in in: : ,e B0  (7.162)

 σ ε= Cout outside: ,B  (7.163)

 lim asσ = →∞0 x .  (7.164)

where σ is Cauchy’s stress, ε = (∇u)S is the standard infinitesimal strain, and 
ε0 is the so-called nonelastic transformation or eigenstrain, which is a measure 
of the mismatch between the crystalline lattices of the two elastic phases. It 
is a spatially constant geometric quantity. We assume that in the process of 
deformation the inhomogeneity B keeps its volume. Accordingly, we have to 
satisfy the following constraint:

 dV V
B
∫ = 0 .  (7.165)

Introducing a Lagrange multiplier λ to account for this, we will have to mini-
mize the global expression

 Φ Σ
Σ

λ γ λ= + − −








∫ ∫ ∫WdV d dV V

V B

0 .  (7.166)

The first variation of this will yield necessary conditions for equilibrium, 
while the positiveness of the second variation will yield a sufficient condi-
tion for stable equilibrium. The variation considered is one of the inter-
face positions along its normal, say by an amount δw. For the variation of 
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the first term in (7.166), we can use the method and result of Section 7.1, 
for example, (7.14) and (7.15)—caution: change of sign—with δxX = Nδw, 
hence

 δ δWdV wd
V

S∫ ∫= [ ]N b N. . ,Σ
Σ

 (7.167)

where 

 b 1 T F 1 uS R
T

W W= − = − ∇( ). . ,σ  (7.168)

the last of these being the reduction to small strain of the quasistatic Eshelby 
stress. For the second term in (7.166), we have 

 δ γ δ γ γ δ γ δd d d wdxΣ Σ Ω Σ Ω Σ
Σ Σ Σ Σ
∫ ∫ ∫ ∫= ( ) = =N N N X. . ,  (7.169)

where Ω = (∇.N)/2 is the mean curvature of Σ. The third term in (7.166) will 
simply yield (by use of the divergence theorem applied to the integrand 
equal to unity): 

 V dV d VB

B

= = =∫ ∫1
3 0x N. ,Σ

Σ

a term proportional to λ. Gathering these intermediary results we find that 
the vanishing first variation of (7.166) leads to the following necessary condi-
tion of equilibrium of the precipitate:

 τ τ γ λN N S= = [ ] − +0 at Σ Ω, : . . ,N b N  (7.170)

along with the side condition (7.165). Equation 7.170 means that this condition 
results from a balance between various scalar configurational forces repre-
senting the difference of elasticities (i.e., the inhomogeneity effect per se) on 
both sides of Σ, the surface tension via γ and a material force λ to keep the 
volume unchanged. This λ may be sought as the difference between the free 
energies of the matrix and the particle phase. This result is quite general (cf. 
Leo and Sekerka, 1989; Schmidt and Gross, 1997), but it does not account for 
any “inertia.” It can be specialized to the case of a misfit inhomogeneous 
inclusion. This is based on other successful works of Eshelby (the so-called 
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inclusion problem). Indeed, it can be shown, on account of the classical jump 
conditions at Σ (continuity of displacement and traction)

 u 0 N 0[ ] = [ ] =, . ,σ at Σ  (7.171)

that the jump of all the field quantities can be expressed in terms of the total 
strain ε adjacent to the interface inside the inclusion (see Appendix B in 
Schmidt and Gross, 1997). Numerical simulations of a variety of equilibrium 
shapes are reported by Schmidt and Gross (1997) and Mueller and Gross 
(1997), accounting for size and concentration effects. 

Insofar as the stability of the shape satisfying (7.170) is concerned, one 
should check the sign of the second variation of (7.166). Such a second varia-
tion has been established for general problems by Petryk and Mroz (1986). In 
the present case this condition reduces to the condition

 δ δτ δ δ2 0Φ Σ
Σ

= − > ∀∫ N wd w, .  (7.172)

Here δτN is the variation of the configurational force τN with respect to a 
small variation δw of the interface along its own normal. Graphical results on 
this morphological stability are reported by Mueller and Gross (1997). 

7.8.2 inelastic Discontinuities and Martensitic Phase Transitions

In some processes inelastic strains result from physical discrete mecha-
nisms where, for instance, the existence of a given eigenstrain (Burger’s 
vector, transformation strain) is manifest, and the deformation progresses 
by nucleation of new domains or the growth of preexisting ones, with the 
formation of a strain-induced microstructure at the intergranular scale (for 
example, pile-up of dislocations at a grain boundary). In such physical situ-
ations there occurs a discontinuity in anelastic strain, and this can be either 
fixed or stress-dependent along one or several moving boundaries of the 
line or wall type. Looking at this problem in a relatively “cheap” phenome-
nological way, one needs to derive the driving force acting on such a moving 
boundary. It is no surprise here that the Eshelby stress will be involved and 
that intrinsic dissipation due to the anelastic nature of deformation will 
combine with dissipation due to morphological changes. This problem can 
be approached with simplifying assumptions concerning the latter phe-
nomenon, such as ellipsoidal growth (cf. Cherkaoui and Berveiller, 2000). 
This problem is relevant to martensitic phase transitions and the over-
all behavior of polycrystalline transformation-induced plasticity (TRIP) 
steels and is considered first in the framework of micromechanics, with a 
homogenization procedure in a second step. Of course, only small strains 
are involved, and the starting reasoning applies at the scale of a so-called 
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representative volume element (RVE) much smaller than any macroscopic 
scale. In the spirit of this book, only the first step (construction of the driving 
force) is illustrated here. 

The energy description of this problem is quite different from the one 
in Section 7.8.1. One reason for this is that the surface energy due to the 
presence of interfaces between different phases is here disregarded, being 
thought much weaker than other contributions; these other contributions are 
chemical free energy directly coupled with temperature and a stress-depen-
dent energy due to elasticity. That is, only mechanisms where the change in 
mechanical properties with temperature is low compared to the change in 
chemical energy with temperature are considered. Let V be the volume of 
the RVE. Averages of chemical and stress energy are defined by 

 ϕ ϕ= ( ) = ( )∫ ∫1 1
V

dV w
V

w dV
V V

r r, ,  (7.173)

where the spatial dependence of φ and w is emphasized within the RVE. In 
small strains the elastic energy w(r) is given by

 w tr e
ij ij

e er r r r r( ) = ( ) ( )( ) = ( ) ( ) = −1
2

1
2

σ ε σ ε ε ε ε, aa ,  (7.174)

where εa is the anelastic strain. Only ε is exactly integrable into a displace-
ment as ε = (∇u)S.

The total free energy per unit volume of RVE is the sum of the two energies 
in (7.173), that is,

 ψ ϕ= + w.  (7.175)

Changes in this energy will result from the evolution of anelastic strains 
in each phase and also from the moving boundaries in the specimen at the 
scale of the RVE. Thus, jumps in both φ and w take place at discontinuities 
moving with local velocity ν and equipped with unit oriented normal n so 
that the normal speed is noted νn = ν.n. Applying the transport theorem (7.29) 
to the time derivative of (7.175), we obtain

 
d
dt V

w dV
V

w
V

ψ ϕ ϕ ν= ( ) + ( ){ } − ( )[ ] + ( )[ ]{ }∫1 1 r r r r nn

S

dS∫ .  (7.176)

Following Cherkaoui and Berveiller (2000) we consider that φ remains con-
stant during the anelastic deformation in different phases at the current 
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configuration of the RVE. Thus we set ϕ r( ) = 0  in (7.176). On the two sides (+) 
and (–) of the moving boundary S, we have Hooke’s law:

 σ ε ε ε ε± ± ±= = −C : , ,e e a  (7.177)

with elasticity tensors C and, if needed, compliance tensors S. On computing 
the jump of w(r) from (7.174) and accounting for the usual symmetries of the 
Cs, we obtain

 w a e er C( )[ ] = −[ ] + ( ) [ ] ( )+ −σ ε ε ε ε: : ,
1
2

:  (7.178)

or, equivalently, introducing the compliance tensors,

 w ar S( )[ ] = −[ ] − [ ]+ −σ ε ε σ σ: : : .
1
2

 (7.179)

As a result (7.176) reads
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dt V

dV
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e eψ σ ε σ ε σ σ ϕ= − [ ] − [ ] + [ ]


+ −1 1 1
2

: : : : S
∫∫ νn

SV

dS.  (7.180)

We must also evaluate the power expended by external forces (tractions) on 
the external boundary ∂V of the RVE. We have thus

 p
V

dS
V

dV
V

V V S

ext div= = ( ) + [ ]
∂
∫ ∫ ∫1 1 1

T u v n v. . . . σ σ ddS,  (7.181)

where use has been made of the generalized Green–Gauss theorem. The 
evaluation of the integrand in the second contribution in (7.181) by use of the 
Maxwell–Hadamard lemma applied to [v] and [∇u] on account of the conti-
nuity conditions [u] = 0 and [n.σ] = 0 at S yields

 n v. . : .σ σ ε ν[ ] = − [ ] n  (7.182)

Collecting terms, we have from (7.181)

 p
V

dV
V

dS
V

n

S

ext = ( ) ( ) − [ ]∫ ∫1 1σ ε σ ε νr r: : ,  (7.183)
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where we note that the total strain is involved here whereas the elastic strain 
is involved in (7.180). 

The dissipation d attached to the RVE is given by the difference between the 
power input in the system, pext, and the time change in free energy. Thus,

 d p
d
dt

= −ext ψ.  (7.184)

This is straightforward on account of (7.183) and (7.180) and the remark just 
made about various strains. The result is

 d
V

dV
V

f dSa

V

S n

S

= +∫ ∫1 1σ ε ν: ,  (7.185)

in which we have defined the driving force fS acting on S by

 fS
a: : : : .= − −





+ −ϕ σ ε σ σ1
2

S  (7.186)

This is consistent with the normal component of an Eshelby stress modified 
by the term involving stresses and the compliance tensor. The first contribu-
tion in (7.185) has the standard form of an intrinsic bulk dissipation (compare 
to (2.173)). 

To complete the solution of the present problem, one would first have 
to evaluate the surface dissipation contribution in (7.185) and then imple-
ment a homogenization technique to pass from the RVE to the macroscopic 
behavior useful to engineers. This is outside the scope of the present book. 
Suffice it to notice that in many situations (e.g., dislocation loops, twinning, 
and formation of martensitic plates), the evolving boundaries summarized 
by the single symbolism S may be considered as ellipsoid inclusions. This 
allows one to exploit another of Eshelby’s powerful results about such inclu-
sions; see Berveiller and Fischer (1997). In the case of martensitic transforma-
tions, the jump in chemical free energy is commonly approximated by the 
expression

 ϕ θ θr( )[ ] = − −( )B 0 ,  (7.187)

where θ0 is the temperature at which the free energies of the two phases are 
equal (zero jump) and B is a positive material constant. The final expression of 
the thermodynamic force deduced from (7.186) for nucleation and growth of 
martensitic microdomains belonging to different martensitic variants (there 
may be 24 such possible variants) in an austenitic single crystal is obtained 
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by Cherkaoui and Berveiller (2000, Equation 55 and applications thereof). 
Other related works are by Fischer and Reisner (1998) and Cherkaoui et al. 
(1998). 

7.8.3 remark on a Mechano-Biological Problem

Some physiological problems involving mechanics may look like problems 
dealing with phase-transition fronts. This is the case of the growth of long 
bones under the influence of mechanical factors. Here the main phenomenon 
is the growth at the so-called growth plate Γ that connects the metaphyseal 
bone and the epiphyseal bone (cf. Sharipova et al., 2008). This transition zone, 
which may be called the “chondro-osseous junction” (from bone to cartilage), 
has a very slow stationary motion that occurs with a competition between 
proliferation and hypertrophy of chondrocytes and ossification process. In 
spite of the complexity and multiplicity of processes involved in the activa-
tion of the different behaviors of the chondrocytes, the growth plate, con-
sidered as a singular surface of vanishingly small thickness, has a steady 
motion (during the lengthening of the bone that takes years) that is governed 
by a kinetic law such as

 V K KNΓ = >τ , ,0  (7.188)

where (compare to (7.170))

 τ µ µN S S RW= − [ ] = − −( ) = −N b N b 1 T F. . , . ,bone cart  (7.189)

so that the local dissipation inequality VΓ fΓ ≥ 0, fΓ + τN = 0, is satisfied. Bone and 
cartilage have different elastic potentials. N is the unit normal to the growth 
plate, and both displacement and traction are continuous at Γ. The stability of 
the motion (7.188) can be studied. It is found that compression decreases the 
interface rate while traction favors the lengthening of the bone (increase in VΓ), 
as experimentally observed (cf. Sharipova et al., 2008).
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8
Singularities and Eshelby Stress

Object of the Chapter

Where Irwin, Griffith, Eshelby, Cherepanov, Rice, Budiansky, Sobolev and 
Schwartz, and many others join efforts to show that material-configurational 
forces provide the basic formulation of the theory of fracture, whether brit-
tle or ductile, where topological changes take over and cause an irrevers-
ible thermodynamic evolution, yielding a global dissipation, where the total 
energy of a system is shown to consist of elastic energy and the appropri-
ately defined energy of defects and, finally, where it is shown to the anxious 
reader how to devise evolution criteria for engineering purposes while good 
mathematics are at work in the background.

8.1 The Notion of Singularity Set

Considering the purely elastic case of Section 3.1, it may happen that the 
elastic solution of a boundary-value problem based on integrating (3.4) or 
(3.13) and the associated boundary conditions over a material body presents 
a singular behavior over a certain manifold. Working in three-dimensional 
physical space, these manifolds may only be of certain integer dimensions if 
we make abstraction of the appearance of fractals. Typically, one will observe 
the singularity of the strain and stress field at a point, along a line (in the case 
of dislocations, macroscopic cracks), or across a two-dimensional surface (in the 
case of a shock wave or a phase-transition front). The last case was in fact con-
sidered at length in the preceding chapter where the singularity amounted 
to a finite discontinuity in the basic fields (strains, velocities). Following 
Dascalu and Maugin (1994)—also Maugin (1998)—one must clearly distin-
guish between what may thus be considered an elastic defect, D, and what 
is the set of extension points, ED, of the said elastic defect. For example, in 
the crack problem, the defect D is really two-dimensional (the crack itself, 
flat or not, with its two faces), while the set ED is the line representing the 
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front or tip of the crack. This line itself can be obtained by a limiting process 
involving a family of open notches (see Section 8.2). In two dimensions, the 
crack is seen as a line (or a curve) in a plane and the crack tip as an ED point. 
The situation is similar for dislocations, where D in fact is the missing half 
plane of atoms, while ED is the dislocation line. For shock waves and phase-
transition fronts—see Chapter 7—the material on one side of the singular 
surface across which fields suffer finite discontinuities governed by the sec-
ond law of thermodynamics sees the other side as the invading or progressing 
defect, which is therefore three-dimensional (a volume), ED being really the 
singular surface itself. The same holds true for the growth of a cavity where 
D is the cavity itself (therefore three-dimensional; an open set of R3) and ED 
is the surface of the cavity.

In other problems such as the appearance of damage, plasticity, and growth, ED 
is potentially the whole body. This is particularly evident in the case of volu-
metric growth (cf. Epstein and Maugin, 1999, 2000) or elastoplasticity. This does 
not mean that there does not exist a surface separating the already damaged, 
plasticized, or grown 3-D region from the rest of the body, and we can speak 
of the damage boundary, plastic boundary, and so on, which is obviously 2-D 
and is an unknown in the evolution problem (free-boundary problem) result-
ing from the time evolution of physical (Newtonian) loads. However, in all 
cases the driving force causing the growth of the  considered defect D is act-
ing on the set of extension points ED, which is therefore one-, two-, and three-
dimensional for dislocations and cracks, shock waves, and phase-transition 
fronts (and also walls between domains in ferroelectrics and ferromagnets), 
and damage, plasticity, and growth, respectively. In Chapter 7 where the ED 
set was a surface, we simply mentioned that the basic fields were discontinu-
ous at the ED set. This allows one to exploit the Maxwell–Hadamard jump 
conditions on derivatives of these fields. In the present chapter, the situation 
is, as we shall see, more involved, because we need to know the degree of 
singularity of fields to proceed with their thermomechanical behavior. We 
illustrate this first with the case of brittle fracture. But the preceding discus-
sion hints at introducing the energy of an elastic defect as a quantity defined 
over D (Dascalu and Maugin, 1994), and this contradicts a classical vision; 
for instance, the energy of a defect such as a cavity is a bulk energy and not a 
surface energy. Before working in the general framework, let us recall what 
the basic problem of fracture is.

8.2 The Basic Problem of Fracture and Its Singularity

The fundamental problem that we have to face is shown in a schematic way in 
Figure 8.1. The two “lips” Σ± of a straight crack Σ, a semiplane of infinite extent 
in the direction perpendicular to the figure, under the effect of some traction 
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applied at the boundary of an elastic body, are separated, and, although under 
the effect of new forces they might come back in contact, we admit that this 
contact cannot solder back the lips of the crack. Accordingly, along Σ, there 
is absence of cohesion and, therefore, incapacity of the material to further 
transmit across Σ a stress whose normal component is a traction. Although 
elasticity is the mechanical behavior considered in so-called brittle fracture, 
globally the phenomenon of fracture is thermodynamically irreversible. By crack 
front we mean the neighborhood of the end point M of the crack and the tip of 
the crack at this end point. The fundamental problem of fracture is whether, 
starting with a given length l of the crack, this length will grow or remain 
constant under the influence of external stimuli (applied tractions). Of course, 
whether the crack continues in its direction or curves or branches is also a 
most relevant question, but that comes next. An astute way to approach the 
solution from the engineering viewpoint is to introduce a growth or extension 
criterion for cracks. For example, the purely elastic solution of an elastic prob-
lem involving a straight crack in a body of finite extent exhibits a singularity 
in stresses at the tip of the crack. Roughly speaking, the elastic displacement 
of the solution in the neighborhood of the tip is of the type (various techniques 
can be used to prove this, including the complex-function representation of 
two-dimensional elasticity problems; see Maugin, 1992, Appendix 4):

 u f= ( )r K θ ,  (8.1)

where f(θ) is a vector-valued function depending only on the polar angle θ in 
Figure 8.1, r is the radius vector from the tip of the crack, and K is a numeri-
cal factor called the stress-intensity factor (see the following) with physical 
dimension (pressure) × m , which depends on the considered boundary-
value problem. As the elastic stress in linear elasticity behaves like ∇u, we 
have the following behavior as r goes to zero at M:

 σ θ≅ ( )1
r

Kg ,  (8.2)

Σ+

Σ–
M

M

r

X1 = X

θ

X3 = X

Figure 8.1
Straight-through crack (frame moving with the tip). (Adapted from, Maugin, G.A., The thermo-
mechanics of plasticity and fracture. p. 13, Cambridge: Cambridge University Press. 1992.)
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where g(θ) is an angular distribution function. Then Irwin and Kries (1951), 
in a celebrated paper, proposed the following growth criterion for fracture:

 1. If K < Kc, there is no propagation, symbolically l = 0.
 2. If K = Kc, then propagation is possible, that is, symbolically l ≠ 0 , but 

we do not know whether it will actually happen or not, so that l = 0  
is not excluded.

Here Kc is a characteristic material parameter called the fracture toughness or 
tenacity (expressed in (Pascal) × m). The previously stated criterion conveys 
the simple idea that we must “pull rather strongly” to obtain some crack 
propagation. But a global reasoning involving a possible extension of the 
crack and acknowledging the irreversible nature of the global phenomenon 
is certainly more satisfactory. We present such an analysis in quasistatics for 
small strains.

8.3 Global Dissipation Analysis of Brittle Fracture

Consider Figure 8.1 and a system of tractions Td acting on the boundary 
∂V of the body except along the traction-free lips of the crack. We neglect 
body forces if any. Then the global dissipation is the difference between the 
power expended by external forces (here tractions) and the time-rate of 
change of the stored (potential) elastic energy. We already exploited such 
a reasoning in Section 7.8.2 for a RVE instead of a whole body. That is, we 
write

 D V dV
d
dt

W dVd

V V

( ) = − ( )∫ ∫T u. , ε  (8.3)

with Td = n.σ at ∂V and ε = (∇u)S.
We must evaluate the right-hand side of (8.3) when the crack is propagat-

ing, that is, when the domain of integration is evolving in time. Of course, 
if the crack is not propagating and Td is a so-called dead loading, then (8.3) 
reduces to

 D V
d
dt

E V( ) = − ( )potential ,  (8.4)

that is, D is the opposite of the time-rate of change of the total elastic poten-
tial energy. But this is zero in the absence of crack propagation as the global 
potential energy has reached a minimum, and this is left unchanged there-
after. But returning to the case of possible propagation, we must pay more 
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attention and be more cautious in the computation of the time derivative 
involved in (8.3). We must, in a sense, isolate the singularity occurring at the 
crack tip and write that derivative as

 
d
dt

W dV
d
dt

W dV
d
dt

W dV
V V V V

ε ε ε( ) = ( ) + ( )∫ ∫ ∫
−Γ Γ

,  (8.5)

where VΓ is the material volume enclosed in the contour surface Γ around 
the crack tip. Let (X,Y) be a frame attached to that tip in the two-dimensional 
representation in Figure 8.1. In computing ε  we must use the composition 
rule for time derivatives between two frames, a fixed one, and one accompa-
nying the (X,Y) frame. Thus we can write

   ε ε ε= ( ) − ( )t tX Y X Y l, , ,,1  (8.6)

because X = x – l(t), and the symbolism “,1” means the derivative with respect 
to X. As Γ is fixed in the (X,Y) frame, we have

 
d
dt

W dV X Y dV X Y
V

t

V

ε σ ε( ) = ( ) ( )∫ ∫
Γ Γ

: , , , fixed.  (8.7)

For the second contribution to (8.5), we must use Reynolds transport theo-
rem for the material time derivative of a nonmaterial volume integral (here 
extended to V – VΓ). With the present change of frame, which is just a time-
dependent translation along the x1-axis, this yields

 
d
dt

W dV dV W ln d
V V V V

ε σ ε ε( ) = − ( )
− −
∫ ∫ ∫

Γ Γ

Γ
Γ

: , 
1  (8.8)

where we have set n1 = n.e1, if e1 is the unit vector along the x- or X-axis. 
Noting, then, that n nΓ Γ( ) = − ∂ −( )( )V V  at Γ, we obtain

 σ ε σ: . . . .  dV dA d
V

d

V
∫ ∫ ∫= − ( )

∂ − −( )
T u n u

Γ Γ

Γ  (8.9)

Collecting now the various contributions, we obtain the expression

 D V dV Wln d
V

( ) = + + ( ){ }∫ ∫σ ε σ: . . .  

Γ Γ

Γ1 n u  (8.10)
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The integrand in the first contribution is integrable (on account of the singu-
larity order mentioned in Section 8.2). Hence the first contribution in (8.10) 
yields zero as we shrink Γ to the tip of the crack. We are thus left with

 D V Wln d1( ) = +( ) →∫lim as n u. . .σ Γ Γ
Γ

0  (8.11)

But we can remark that for any physical quantity f attached to the tip of the 
crack, f  has the same singularity as −( )f l,1

 —compare Gurtin (1979a). This 
applies to u  in (8.11). Accordingly, factorizing out the extension speed l , we 
can rewrite (8.11) in the following illuminating form:

 D V F C l( ) = ( ) ,  (8.12)

a typical bilinear dissipation form involving a “force” and a “velocity,” where 
the configurational force F(C) has been defined by

 F C Wn d( ) = −( ) →∫lim as1 1 0n u. . .,σ
Γ

Γ Γ  (8.13)

Two remarks are in order. First, in the limit, F(C) is a quantity pertaining to 
the crack tip C. It is possible to show that F(C) is also given by (cf. Maugin, 
1992, pp. 149–151)

 F
l
W l= − ∂

∂
( )potential .  (8.14)

Second, the “force” F(C) is in fact path-independent as shown by a simple cal-
culation involving two different contours of integration Γ1 and Γ2 (under the 
condition that the crack lips are indeed traction free and there are no body 
forces). Thus F(C) is none other than the celebrated path-independent inte-
gral usually noted J, that is,

 J J Wn d= = −( )∫Γ

Γ

Γ1 1n u. . ,,σ

which may be referred to as a the Eshelby–Cherepanov–Rice integral in honor 
of the most prominent contributors to it (in chronological order, in particular, 
Cherepanov, 1967; Rice, 1968). The path-independence is a valuable property 
that allows one to select the integration contour in a manner that yields the 
simplest and least expensive computation.
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8.4 The Analytical Theory of Brittle Fracture

Now we can look at the same problem but in finite strains and full dynam-
ics in a much more powerful framework, that of material-configurational 
forces. To that purpose, we consider general anisotropic finite-strain elastic-
ity in materially homogeneous bodies. Outside singularity sets (at all regular 
material points X in B) we have locally the following reduced forms of the 
momentum equation in spatial Piola–Kirchhoff and completely Eshelbian 
formats (cf. Chapter 3):

 
∂
∂

∂
∂

p
T 0

P
b 0

t tR R− = − =div , div ,  (8.15)

with

 
p v P p F b 1 T F

T F F

= = − = − −( ) +( )
= ∂ ( ) ∂ =

ρ0 , . , . ,

,

K W

W W

R

/ WW F( ).
 (8.16)

On account of the assumed smoothness of all fields (in particular, F and 
v), the two equations (8.15) are entirely equivalent—redundant—according 
to the Noether–Ericksen identity. Each of these can be integrated over an 
extended regular material region B = BR, where the Green-divergence and 
Reynolds’ transport theorems can be used without specific precaution. We 
have commutation rules for space integration and time differentiation since 
(X,t) is a good set of independent space–time parameters from that view-
point. We obtain thus

 
∂
∂ ∂t

dV dA
B B
p N T∫ ∫= . ,  (8.17)

 
∂
∂ ∂t

dV dA
BB

P N b= ∫∫ . .  (8.18)

Reasoning in the same way on the energy equation, in the absence of sources 
and heat conduction, we have

 
∂
∂ ∂t

HdV dA
B B∫ ∫= N T v. . .  (8.19)

Note that (8.17) and (8.18) are no longer in direct correspondence since con-
vection is lost in the space integration. Equations 8.17 and 8.18 are meaning-
ful component-wise only.
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Now if the fields v and T, which are time and space derivatives of the basic 
field (motion), present a certain order of singularity over some subset of M3, 
quantities like P, H, and b that are at least quadratic in these fields will even 
be more singular. Thus, if the stress T is not a good indicator of the presence 
of field singularities (see Maugin, 1995, Section 5), b may be a good indica-
tor. This is exactly what happens in brittle fracture, where the integration 
of (8.152) and the local energy equation over a subset of M3 containing a 
field singularity captures this singularity by making additional nonvanish-
ing terms, characteristic of the singularity, appear in global equations of 
the type of (8.18) and (8.19). These terms are, respectively, the material driv-
ing force acting on the singularity and the so-called energy-release rate asso-
ciated with the energy consumed in the irreversible progress of the defect, 
that is, the evolution of ED; the two must be related through the notion of 
power expended by the driving force. We follow Dascalu and Maugin (1994) 
in this illustration of fracture. Note that the present case already illustrates 
the different roles played at singular manifolds by Equations 8.151–2.

Following Rice (1968), a sharp-ended straight-through crack C is viewed 
as the uniform limit of a family of end-rounded notches (cf. Figures 8.2 and 
8.3). The flat faces of a notch and the rounded cylindrical end are assumed 
to be free of traction. We consider the body B of limiting surface ∂B exclud-
ing the notch, and the notch’s end Γδ, which is assumed to propagate inside 
the body with uniform material velocity V  parallel to the flat faces and 
to the axis E1. This region is regular but geometrically evolving in time 
(configurational change!) due to the extension of the notch. In integrating 
(8.152) and the energy equation over B, we simply have to use generalized 
Green’s and Reynolds’ theorems. These yield (compare to (8.18) and (8.19))

 
∂
∂

δ
∂t

dV dA
BB

P F N b+ ( ) = ∫∫ notch . ,  (8.20)

E1

Nδ

Γ*

Γ

N

N

G

B

Figure 8.2
The notch problem. (Adapted from Dascalu, C. and Maugin, G.A., C.R. Acad. Sci. Paris, Ser. II 
317, 1135–40, 1993.)
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and

 
∂
∂

δ
∂t

HdV G dA
B B∫ ∫+ ( ) =notch . .N T v ,  (8.21)

where we have defined a material force Fnotch(δ) and an energy-release rate 
Gnotch(δ) by

 F E V Nnotch .δ
δ

( ) = ( ) −( )∫1 1 1P LN dA
Γ

,  (8.22)

and

 G H dAnotch .δ
δ

( ) = ( )∫ V N
Γ

.  (8.23)

Assuming the convergence of the family of notches indexed δ toward the 
sharp crack and that the limit of the solutions of the corresponding sequence 
of elasticity problems converges toward the solution for the sharp crack and 
the first term in each of (8.20) and (8.21) converges to zero in this limit (this fol-
lows from the singularity of elasticity solutions and the fact that v + F.V = 0), 
we obtain for the driving force on the crack and the corresponding energy-
release rate the following illuminating formulas:

 F E V Ncrack lim .= − − ( )( )
→ ∫δ

δ
0

1 1 1LN P dA
Γ

,  (8.24)

N

N

B

P

G

Γ

Figure 8.3
The limit straight-through crack problem. (Adapted from Dascalu, C. and Maugin, G.A., C.R. 
Acad. Sci. Paris, Ser. II 317, 1135–40, 1993.)



218 Configurational Forces

 G H dAcrack lim .= ( )
→ ∫δ

δ
0

V N
Γ

.  (8.25)

We have referred to these two basic formulas as those of the analytical the-
ory of brittle fracture, because they involve the elasticity Lagrangian and 
Hamiltonian densities. The meaning of (8.25) is clear: It represents the energy 
consumed (“swallowed”) per unit time by the inward crack motion. The tip 
of the crack acts as an energy sink.

But we can equally well integrate (8.152) and the energy equation over 
the regular material region of volume extension G of external (cylindrical) 
boundary Γ equipped with unit outward normal N and the notch as indi-
cated in Figure 8.2, and moving inward with uniform material velocity V. 
Combining, then, the resulting expression with (8.24) and (8.25), we obtain 
more classical (but less elegant) formulas for the quantities in (8.24) and 
(8.25):

 F P dA
t

P dV
G

1 1 1 1
crack . .= ( ) + ( )( ) −∫ ∫N b V N

Γ

∂
∂

  (8.26)

and

 G H dA
t

HdV
G

crack . . .= ( ) +( ) − ∫∫ V N N T v
∂
∂Γ

.  (8.27)

It is readily checked that (8.26) reduces to the celebrated path- independent 
J-integral of brittle fracture in quasistatics and small strains. Indeed, in these 
conditions, the material momentum and kinetic-energy contributions are 
discarded, and

 F 1 u= + ∇( )R
T

,  (8.28)

where u(X, t) is the elastic displacement. On expanding the expression of T.F, 
we find that the first contribution in the stress contributes nothing because of 
its order of singularity, and there remains the well-known expression

 F J WN
X

dLcrack .= = −



∫ 1

1

t
u∂

∂Γ
 (8.29)

per unit thickness of the body, where t is the traction at Γ.
More remarkably, a relationship can be established between (8.25) and 

(8.24) in the fully dynamic and finite-strain case. Following Gurtin (1979) 
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and Nguyen Quoc Son (1980), let P be a point of Γδ for the notch δ and r the 
vectorial position of any point with respect to P. We can write

 χ χX X r, ,t tP( ) = +( ),   (8.30)

and through differentiation

 v F V V
X= − + =. , :

∂χ
∂

∂
∂t t

P .  (8.31)

On multiplication by F–1 to the left of (8.311), we get

 V V F V E= − −1
1. , //

∂χ
∂t

.  (8.32)

Let all the points of Γδ be in uniform motion; then we can reasonably assume 
that the deformation is the same at all points of Γδ and set ∂χ ∂/ t = 0. Since the 
only nonzero component of V is along E1, multiplying the one-component of 
(8.22) by V1, and accounting for the simplified form of (8.32) and the identity 
V.C.V = v2, we obtain for the notch

 G V Fnotch notchδ δ( ) = ( )1 1 .  (8.33)

Accordingly, for a uniform motion of the points of the notch, we find that 
the material force driving the notch coincides with the energy released dur-
ing the notch progress of a unit length inside the body. The relation in (8.33) 
is meaningful only if V  is not a function of X. This shows the intimate 
relationship between the notion of material configurational force with that 
of rigid-body (“en bloc”) motion. In the limit case of the straight crack, we 
obtain

 G V Fcrack crack= 1 1 .   (8.34)

This is the dissipation rate due to the crack extension. It is in the classical 
bilinear form favored in irreversible thermodynamics. It is thus ready for the 
construction of crack-extension criteria, the relationship between V1  and F1

crack 
(see Maugin, 1992, 1999, for this).

We finally note that (8.33) happily complements (8.24) and (8.15) of the 
analytical theory of brittle fracture, for it can be established only through 
passing from the Lagrangian to the Hamiltonian density thanks to the 
material-momentum contribution and (8.31), which allows the required 
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Legendre transformation between those two quantities. This has not often 
been acknowledged in the wealth of works on fracture that miss or do not 
emphasize the importance of working simultaneously with both the energy 
and material momentum (in a sense, reasoning in space–time) so as to keep 
the consistency between canonical momentum and energy.

8.5 Singularities and Generalized Functions

8.5.1 The Notion of generalized Function or Distribution

Special mathematical tools have been devised, starting in the nineteenth 
century, to deal with singular fields. Noteworthy among these is the notion 
of the Cauchy–Hadamard principal value of an integral. But one had to wait 
until the 1940s to see the appearance of a perfectly adapted notion, that of 
the generalized function or distribution, especially formulated by the French 
mathematician Laurent Schwartz, following pioneering works by Jacques 
Hadamard and Jean Leray in France and S.L. Sobolev in Russia. By transfer-
ring operations of differentiation on sufficiently smooth test functions after 
integration by parts over a compact support, this allows for the weak for-
mulation of solutions of partial differential equations that admit singular 
behaviors at points or jump discontinuities across surfaces. The principle of 
virtual power in continuum mechanics may itself be considered an exem-
plary use of a distributional formulation in which the role of test functions 
is played by virtual fields of displacements or velocities (see, e.g., Maugin 
[1980] for this functional setting). The theory of cracks in particular and, 
more generally, of “elastic defects” should have the theory of distributions 
as its natural background. But few authors have worked along this line, 
probably because of a lack of sufficient mathematical education (a notable 
exception is H.D. Bui and coworkers). Just to give some flavor of what gener-
alized functions are (which we could have exploited in Chapter 7), consider 
the problem of finding the weak formulation equivalent to the following 
“nonlinear wave equation” in one dimension of space for the field u (as may 
occur in continuum mechanics):

 
∂
∂

+ ∂
∂






=u

t x
u

1
2

02 .  (8.35)

To obtain the looked for weak formulation, we multiply (8.35) by an arbi-
trary sufficiently continuous test function w(x, t), for example, of class 
C1(R2) and of bounded support K on R2 with w = 0 on the boundary ∂K of 
K and w = 0 outside K. If u(x, t) is also of class C1 with the initial condition 
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u x x x R, ,0( ) = ( ) ∈φ , then by integration in space and time of the product 
of (8.35) with w, we obtain

 
−∞

+∞

−∞
∫ ∂

∂
+ ∂

∂






+ ( ) ( )u
w
t

u w
x

dxdt x w x dx
2

2
0φ ,

++∞

=

+∞

∫∫ = 0
0t

.  (8.36)

Indeed, all derivatives are now applied to the test function. We can, there-
fore, consider (8.36) as a starting point for solutions u(x, t), which are only 
piecewise continuous, admitting a finite discontinuity across a shock wave 
Σ of equation Σ(x, t) = 0 in the (t, x)-plane, the local slope being (dx/dt)Σ. Call 
x = σ(t) another, explicit, form of the equation of Σ. Then at Σ one has the fol-
lowing Rankine–Hugoniot equation:

 u u d dt[ ] − ( )( ) =σ/ 0,  (8.37)

with the usual meaning of jump and mean value for the symbolisms [..] 
and < .. > , respectively. Equation 8.37 means that for a truly jump solution 
the shock speed is the mean value of the “material particle” velocity on both 
sides of the shock. This peculiar result is due to the simplicity of the starting 
Equation 8.35.

What we do in the sequel of this section is, following Dascalu and Maugin 
(1994), show, thanks to the distribution formalism, that (i) the very struc-
ture of elasticity theory and the singularity order of elastic solutions dictate 
the expression of the energy balance law in the presence of cracks (or another 
defect) and (ii) a Griffith-like surface energy criterion follows of necessity. The 
argument applies to cracks but also to other defects such as cavities in expan-
sion or progressing dislocation lines.

8.5.2 Basic equations

We consider the simplest case of pure elasticity in quasistatics in the absence 
of any local thermomechanical sources. At any regular material point X in 
the body B free of defects, we have the following basic equations of conserva-
tion of linear (physical) momentum, moment of momentum, and energy and 
material momentum:

 divRT 0= ,  (8.38)

 divR x T 0×( ) = ,  (8.39)

 
∂
∂

− ( ) =W
t Rdiv T v. ,0  (8.40)
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 divR b 0= ,  (8.41)

with

 T F b 1 T F= ∂ ∂ = −W W R/ , . .  (8.42)

Equations 8.38 through 8.40 can also be written in the sense of distribution 
theory as

 DivR
d BT T 0+ ∂( ) =δ ,  (8.43)

 DivR
d Bx T x T 0×( ) + ×( ) ∂( ) =δ ,  (8.44)

 D W Bt R
d− ( ) − ( ) ∂( ) =Div T v T v. . ,δ 0  (8.45)

where DivR and Dt are material gradients and time-derivative distributional 
operators, Td  is the traction at the boundary ∂B, and δ(∂B) is the (Dirac) delta 
distribution with support ∂B. The writing of (8.43) through (8.45) is a highly 
elegant way to incorporate the natural boundary conditions in the local state-
ment of balance laws. In the presence of elastic defects (e.g., crack, cavity, dis-
location), both Equations 8.43 and 8.44 are left unchanged while (8.45) takes 
a form including the “energy of the defect.” This is what we show in the next 
section.

8.5.3 Case of Cracks

The theory of Griffith (1921) was the first attempt to attribute an energy to 
a defect in the form of surface tension (energy) on the crack faces. Here the 
existence of this specific energy of a crack is obtained using the distribu-
tional approach, the question being: What is the form taken by the energy 
equation (8.45) in the presence of an evolving crack?

We consider a straight edge crack in a linear elastic body. We choose a 
coordinate system centered at the intersection point of the crack with the 
boundary of B such that the crack lies along the positive x1-axis (Figure 8.4). 
If the tip of the crack has coordinates (l,0), then the set of defect points D 
is the closed interval [0,l]. We assume that the crack progresses in its own 
direction with the velocity c t l t( ) = ( ) . The crack faces C are supposed to be 
traction free. The general form of the solution of the relevant boundary-value 
problem at each moment of time is (see Maugin, 1992)

 u u u T T T= + = +s r s r, ,  (8.46)
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where superscripts indicate the singular and regular contributions in the solu-
tion on account of the presence of the crack tip region. If (r,θ) are polar coor-
dinates with respect to the crack tip, then u TS Sr r= ( ) = ( )−0 01 2 1 2/ /,  —see (8.1) 
and (8.2)—both the displacement and the traction being continuous at C, while 
ur and Tr are regular on B, satisfying the boundary conditions at ∂B. The par-
ticular expressions of these regular terms for the three modes of fracture give 
the regularity of the time derivatives:

 v = ( ) = ( )− −0 01 2 2r W r/ , .  (8.47)

As W and T.v have integrable singularities, they generate regular distribu-
tions on R2. The function W  is not integrable, but we can construct a regu-
larization for it, denoted by W

G
, a distribution that, restricted to R2 – {A}, 

coincides with that generated by W . Let G be a disk centered in A and mov-
ing with it (Figure 8.4) and define (cf. Gelfand and Shilov, 1964, Chap. 1):

   W W A da W da
G

G R G

, ,ϕ ϕ ϕ ϕ= − ( )( ) +∫ ∫
−2

 (8.48)

for ϕ ∈ ( )∞C R0
2 , this distribution depending on G. The existence of the prin-

cipal value of W permits us to take the limit in (8.48) for G → 0. The first 

l(t)

G
A

r

X1

X3

0

θ

Figure 8.4
The crack problem revisited (distribution-theory approach). (Adapted from Dascalu, C. and 
Maugin, G.A., Proc. R. Soc. London, Ser. A 445, 23–37, 1994.)
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integral will vanish, and we obtain another distribution that coincides with 
W  at regular points of B:

 PV W W da G
R G2

 ( ) = →
−
∫, .ϕ ϕlim as 0  (8.49)

By using (8.48) and a differentiation formula on variable domains (Reynolds’ 
theorem), we obtain thus

 D W W
d
dt

Wda cWN ds lt G
G

= + −








 ( )∫ ∫

1 0
Γ

δ , ,  (8.50)

where Γ is the boundary of G, N1 is the first component of the outward unit 
normal to G, and δ(l,0) is the Dirac distribution concentrated in A. The par-
ticular expressions giving the singular part of W show that the first integral 
term in the right-hand side of (8.50) vanishes in the limit as G → 0, so that we 
have the alternate relation

 D W PV W cWN ds lt = ( ) −








 ( )∫ lim 1 0

Γ

δ , .  (8.51)

But we continue with Equation 8.50. The vector field T.v generates a regular 
distribution, but div(T.v) is not integrable, so that we construct in a similar 
manner the regularization div T v.( )( )G

. Then the divergence formula and 
the boundary condition lead to

 Div divT v T v N T v T v. . . . , .( ) = ( )( ) + ( ) + ∂∫G
dds lδ δ0

Γ

BB( ).  (8.52)

We use the traction-free condition to cancel the integral term on C. In every 
regular point the energy equation (8.40) holds, so that

 div T v. ,( )( ) =
G G

W  (8.53)

and, gathering contributions, we finally have

 D W G l Bt
d+ ( ) = ( ) + ∂( )* , . . ,δ δ0 Div T v T v  (8.54)
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where we have set (compare (8.27))

 G cWN ds
d
dt

Wda
G

* ( . ) .= + −∫ ∫1 NT v
Γ

 (8.55)

Because all terms in (8.55) do not depend on the domain G, the same is true 
for G*, which is the energy released by the material during the motion of the tip 
in a unit of time. The dynamic version of (8.55), already given in previous 
sections, was obtained by Gurtin and Yatomi (1980). To further transform 
this formula, we need to use the time-differentiation formula (Gurtin, 1979; 
Nguyen Quoc Son, 1980) u u u= − +c ,

' '
1 , where u' has the same singularity as 

u. Finally, taking the limit as G → 0, the second integral in (8.55) vanishes, 
and the following result equivalent to (8.34) remains:

 G cF* ,=  (8.56)

where F is the driving force or path-independent J-integral of Rice and oth-
ers. In this way, while (8.56) provides the dissipation due to the steady prog-
ress of the crack tip in the material, we find that the local balance of energy 
takes the form:

 D W F l Bt
d+ ( ) = ( ) + ∂( )c N T v T v. , . . .δ δ0 Div  (8.57)

The integral driving force F, which is an energy released during a unit length 
extension, is usually involved in a quasistatic fracture criterion F = Fcr. If this 
holds at every time t, then the energy relation (8.57) takes on the form:

 D W F H l x x Bt
d+ −( ) ( )( ) = ( ) + ∂( )cr Div1 2. . . ;δ δT v T v  (8.58)

This is a distributional conservation law. We call the term

 W G H l x xD : . ,= −( ) ( )cr 1 2δ  (8.59)

the energy of the crack. Here H(l – x1) is the Heaviside function of the interval 
[0, l], and the dot in the right-hand side denotes the tensor product of dis-
tributions. Equation 8.58 shows, as we announced, that the material-plus-
defect system is a conservative one. The preceding derivation, in contrast to 
that of Cherepanov (1967), shows that a quasistatic propagation criterion and 
the elasticity equations suffice to deduce the existence of the defect energy 
in (8.58). We also note that although the preceding analysis was carried on 
linear materials, known crack-tip singularities in nonlinear elastic materials 
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(see, for example, Knowles and Sternberg, 1972; Stephenson, 1982) conduce 
to the same result.

Although it was not mentioned since we focused on energy consider-
ations, there also exists a distributional balance of material momentum that 
includes the driving force at the ED = S set. This will read (proof left by way 
of exercise)

 Div crackb E N b 0+ ( ) + ( ) ∂( ) =F S B1 1δ δ. .

8.6 Variational Inequality: Fracture Criterion

The global phenomenon of fracture for a whole material specimen V, 
although in the frame of brittle fracture implying locally only an elastic 
behavior, is a dissipative phenomenon. As such, it cannot be reached at 
that global level through a variational principle that classically expresses 
a condition of extremum. Only a variational inequality evidencing a pre-
ferred direction of  evolution—in other words, unilateral constraints—can 
secure a basis for a global formulation. Furthermore, the material char-
acter of the forces involved means that such a formulation must involve 
a δX variation (keeping x fixed and varying X, a so-called material varia-
tion) or a mapping of the material manifold onto itself (a so-called local 
rearrangement). This was done by Stumpf and Le (1990) and Maugin and 
Trimarco (1992); see also Maugin (1993, pp. 136–139, 161–163). The proposed 
variational inequality involves the notion of surface energy, and for a 
crack of finite extent Σ (Figure 8.5) and a homogeneous elastic body, it will 
read

 δR SE V E−( ) + ( ){ } ≥Σ Σ 0,  (8.60)

where

 E V W dV E dA
V

S−( ) = ( ) ( ) =
−
∫ ∫Σ Σ
Σ Σ

F , .2γ  (8.61)

Here 2γ is the surface energy along Σ in the tradition of Griffith (1921), for 
whom the cohesion energy at the crack plays a fundamental role in fracture: 
We must overcome or at least reach this energy level to have progression of 
the crack. This is nothing but the “energy of the crack” of the previous sec-
tion when the crack progresses steadily. The variation denoted δR in (8.60) is 
to be understood as an infinitesimal variation of the material manifold onto 
itself at a material point X. Locally, this is represented by the symbol δX y (see 
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Maugin [1993, pp. 136–139], after Maugin and Trimarco [1992], for a definition 
of this). Here in fact

 δ χ δX X= −F y. .  (8.62)

In this variation the two faces of the crack should not overlap. This imposes a 
constraint that we can write in an obvious manner as (Figure 8.5)

 N y N y. . .δ δX X
+ −− ≥ 0 at Σ  (8.63)

The variation δR is also effected at the fixed boundary ∂V, so that the work of 
applied tractions does not appear in (8.60). The variation of the elastic-energy 
term in (8.60) is done just as in Section 3.9 since we are in quasistatics; that is, 
it is shown that

δ δ δR

V

R X

V

XWdV dV d
− −
∫ ∫ ∫= − ( ) + ( ) −
Σ Σ Σ

Σdiv b y N b y. . . FF y∂( )
∂
∫ Σ
Σ

. ,δX dL  (8.64)

while the variation of the surface energy term in (8.60) yields (compare 
(7.169))

 δ γ γ δ γ δR X Xd d dL2 2 2 1Σ Ω Σ
Σ Σ Σ
∫ ∫ ∫= − +

∂

N y N y. . ,  (8.65)

M3 ∆XY+

∆XY–

Σ+

V – Σ

Σ–

N

N1

∂V

Figure 8.5
A crack with surface energy (variational formulation). (Adapted from, Maugin, G.A., Material 
inhomogeneities in elasticity. Figure 7.4, p. 163, London: Chapman & Hall. 1993.)
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where we accounted for the existence of the edge of the crack (N1 being 
defined in Figure 8.5) and the material force F(∂Σ) is given by

 F N b b 1 T F∂( ) = → = −∫Σ Γ Γ
Γ

lim as. , : . .d W R0  (8.66)

The proof of (8.64) involves the exploitation of a generalized Green-Gauss 
theorem for a disklike crack where Γ is the normal circular section of a torus-
like surface leaning on the contour of the disk (see Figure 7.2 in Maugin, 1993, 
p. 154). Of course, the force given by (8.66), when projected onto N1, is none 
other than the path-independent J-integral.

Gathering the results (8.64) and (8.65) in (8.60), we deduce from the latter 
the following results:

 div inR Vb 0= − Σ,  (8.67)

 N b N. ,[ ] = 2 γΩ Σon  (8.68)

 2 01γ δN F y− ∂( ){ } ≥ ∂Σ Σ. ,X at  (8.69)

to which must be adjoined the unilateral constraint (8.63).
While (8.67) is the now-standard equilibrium form of the balance of mate-

rial momentum in the absence of external force, both Equations 8.68 and 
8.69 deserve special comments. On the one hand, (8.68) clearly reminds us 
of the Laplace equation for a membrane with surface tension (or energy). This 
result was criticized by Gurtin (1999, p. 197fn) because it essentially deals 
only with the normal component, leaving a part (the tangential part of N. [b]) 
indeterminate. A Marangoni-like effect introducing a variation of surface 
tension along the surface would remove this indeterminacy. On the other 
hand, (8.69) in fact represents the looked-for fracture criterion. For instance, for 
a plane-through crack of infinite extent in the direction perpendicular to the 
plane of Figure 8.5, and a possible propagation only in the direction of N1 (no 
branching or curving), (8.69) reduces to

 2 0 01γ δ δ δ−( ) ≥ ≡ ≥J l l X, . .N y  (8.70)

This yields either

 2 0γ δ≡ = ≥J J lcr for ,  (8.71)

or

 J J l< = =cr for2 0γ δ .  (8.72)
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This is nothing but a fracture criterion in the manner of Griffith. That the 
J-integral can be viewed as the main ingredient in a fracture criterion was 
elaborated on by Landes and Begley (1972).

8.7 Dual i-Integral of Fracture

All developments so far in this chapter rely on the exploitation of the elastic 
strain energy function, most often simultaneously with the consideration of 
the direct-motion description. It was natural, after the introduction of the 
J-integral based on these arguments, that the complementary energy would 
be used to introduce a dual formulation, hence the notion of I-integral as intro-
duced originally by Bui (1973) in small strains and quasistatics. In these con-
ditions the I-integral reads (using the same definitions as for the J-integral)

 I W n
x

dc= − ( ) + ∂
∂







→∫lim asσ σ
1

1

0n u. . ,
Γ

Γ Γ  (8.73)

where Wc, the complementary elastic energy, is related to the strain energy W 
by the Legendre transformation

 W W
W W

c
cε σ σ ε σ ε σ

ε
ε

σ
( ) + ( ) = ≡ ( ) = ∂

∂
= ∂

∂
: . , , .tr  (8.74)

E X ERC ISE:  To prove directly that I = J, take the integral over a bounded sur-
face S of unit outward normal n of the first of (8.74) and use the facts that σ is 
symmetric and divergence free.

H.D. Bui has shown that I is none other than the decrease rate of the total 
complementary energy per increase in the length of the crack, that is,

 I
l
E lc= − ∂

∂
( ),  (8.75)

with

 E V W dV dAc c

V

d

V

( ) = − ( ) +∫ ∫
∂

σ σn u. . ,

1

 (8.76)

where the displacement u = ud is prescribed on the part ∂V1 of ∂V, while Td  
is a prescribed traction on the complementary part of ∂V. With an evolution 
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of the length of the crack, the expression (8.76) is shown to depend on l as 
established by Bui.

But the preceding formulation can be generalized to finite strains as 
shown by Trimarco and Maugin (1995). To do this, one has to account for 
the developments given in Section 3.8. According to these developments 
the relevant variational formulation is given by (3.91), where, we remind the 
reader,

 E 1 C 1 F F−( ) − − −= −( ) = −( )2 1 11
2

1
2R R

T ,

with

 S E S X E= ∂ ∂ = ( ) = ∂ ∂−
( )

−( ) −( )J W W W WF c c c
1

3
2 2/ /, , ,* * SS.

Note that S  is the covariant associate of the second (contravariant) Piola–
Kirchhoff stress.

The variational formulation yields in the bulk (i.e., at regular points)

 div J J W J
W

F F R c F
c− − − −( ) −( ) − ∇ −( ) − ∂1 1 1 2 1SF E S. . *
*

∂∂
=

X
0.

This equation can also be written as

 divR R c
cW

W
SC E S

X
0− −( )( ) − ∇ −( ) − ∂

∂
=1 2. . .*

*

Now consider the following identity (free running index is the one related 
to ∂/∂X):

 ∇ − ∂
∂






− ∂

∂
=−( )

R c
cW

W*
*

. .tr E
S
X X

02  (8.77)

By taking the scalar product of this with δxX = δX, and integrating over a 
domain D included in V, and applying the Green–Gauss theorem while not-
ing that G = F–1 – 1R = ∇U, U = X – x, we obtain a lengthy expression that 
expresses the variation of the so-called H-integral, that is,

 H W
X

dSc R D= − − ∂
∂

−( )







−( )
∂∫ * . : . ,N e

S
1 E N U

D
1

1

2  (8.78)
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where

 E G G GG
S

e
X

S X e−( ) = − + +( ) ∂
∂

= ∂
∂







=2

1

1
2

T T

X
, . , δ δδl.

It is shown (Trimarco and Maugin, 1995) that sufficient conditions for δH to 
be independent of ∂D read

 ∇ = ∂
∂







= −−
R R D. , .δ δX

S
X

X C 0 X0 1div in   (a)

where X  is the site of a point-wise inhomogeneity. The second of (a) expresses 
the requirement for the stress ∂ ∂( )S X X/ .δ  to be statically admissible in finite 
homogeneous deformations or in infinitesimal deformations. It is then pos-
sible to write that

 H D V D= ( ) ∈ ∈ −F X e X Xinh at and at. , ,0  (8.79)

with

 F
X

inh = − ∂
∂





∫V

cW
dV

*

.  (b)

Assuming that there exists a reference configuration in which the inverse 
image of the crack line is still a line, that the H-integral (8.78) can be defined 
in the two-dimensional case by supposing that X  represents an inhomoge-
neity, and that the problem is translationally invariant along the orthogonal 
direction to the plane, the spatial displacement field corresponding to the δX 
field reads

 δ δx G 1 e= − +( )−R l
1
. .

In the small-strain framework the G present in this expression is disre-
garded. The rigid translation of the whole body being in the direction –e 
while the tip of the crack is kept fixed (this is Bui’s assumption), it is equiva-
lent to the elementary displacement δX into the material in the direction e 
(see Figure 8.6). Then the conditions (a) are satisfied and (8.79) applies. The 
H-integral reduces to the I-integral on noticing that U = –u = –(x – X).

It can also be shown (Trimarco and Maugin, 1995) that

 H
E
l

I
E
l

c c= − = −δ
δ

δ
δ

, ,  (8.80)
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with

 E W dV dSc c

VV

= − − −

∂
∫∫ * : . ,S C N U1

0

1

or

 E w dv J dsc c

v

F

v

= − −∫ ∫ − −

∂

1 1
0

1

S F n u. . ,

with w J Wc F c= −1 * , and U0 is a prescribed displacement. The second of (8.80) 
applies in the small-strain framework. This is none other than one of the 
results of Bui (1973).

8.8  Other Material Balance Laws and 
Path-Independent Integrals

8.8.1 Notion of L- and M-integrals

The path-independent J-integral and its direct interpretation in terms of a 
material force issued from the local conservation of material momentum rely 

B–∆l

Γ

B+

n
X2

X1X
–

V

Figure 8.6
Inverse-motion motion vision of the extension of a crack. (Adapted from Trimarco, C. and 
Maugin,  G.A., Meccanica, Figure 1, 30, 139–45, 1995.)
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on the translational invariance or lack of invariance on the material manifold. 
This directly fits the notion of extension of a straight crack with the virtual en-
bloc translation of the region around the tip of the crack generating the exten-
sion. But other material balance laws (not necessarily conservation laws, even 
in the simplest cases) relate to other material motions such as rotations and 
expansions. Such laws were established and discussed in Section 4.3. The ques-
tion naturally arises of their possible implementation in fracture theory and, 
more generally, in the study of the expansion of various material defects (e.g., 
spherical cavities in the case of material dilatation). Günther (1962), Knowles 
and Sternberg (1972), and Fletcher (1976) are responsible for the introduction 
of the additional material laws (often in statics and generally homogeneous 
materials). Budiansky and Rice (1973) have associated these balance laws with 
invariants of defect mechanics, called the L- and M-integrals, respectively. The 
small-strain approximation for this relationship was recently established by 
Eischen and Herrmann (1987) by a direct calculation. But here we can sup-
port this relationship within the fully nonlinear framework. For this it suf-
fices to consider the global material quantities

 M V dV V dV
V V

inh inh inh inh( ) = − ( ) = − ×∫ ∫X f L X f. , ,  (8.81)

in analogy with (quasistatics)

 F f N b f binh inh inh divV dV dA
V V

R( ) = − = = −∫ ∫
∂

. , .  (8.82)

In plane problems and small strains, which are most often met in engineer-
ing, and introducing the contour Γ, these yield (see Herrmann and Kienzler, 
2000):
 1. The M-integral:

 M x n b dj i ij= ∫ Γ
Γ
  (8.83)

 2. The L-integral:

 L x b u n dkj k ij k ij i= +( )∫ ε σ3 Γ
Γ
  (8.84)

 3. The J1- or J-integral:

 J J n b di i1 1≡ = ∫ Γ
Γ
  (8.85)
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 4. The J2-integral:

 J n b di i2 2= ∫ Γ
Γ
  (8.86)

while (8.821) may be referred to as the vectorial J-integral.
In terms of the elastic displacement u, we have the following explicit 

expressions:

 J n n u= − ( ) ∇( ){ }∫ W d
T

. . ,σ Γ
Γ
  (8.87)

 M W d
T= − ( ) ∇( ) −






∫ x n n u x n u. . . . . . ,σ σ1

2
Γ

Γ
  (8.88)

 L n x n u x u n= − × − ∇( )( ) × + × ( ){ }∫ W d
T

. . . ,σ σ Γ
Γ
  (8.89)

where we need not emphasize the limit procedure as these integrals are path-
independent. We illustrate the appearance of some of these by pursuing the 
exploitation of the distributional approach started in Section 8.5.

8.8.2 Distributional Approach: energy of Cavities and inclusions

Here the defect D has the same dimension as the body, like cavities and 
inclusions. We consider a homogeneous elastic body (plane problem) that 
contains a circular cavity C. Let S the boundary, supposed free of tractions, 
of C:

 N T 0. .= on S  (8.90)

The cavity is supposed to expand uniformly with the rate c t l t( ) = ( ) , l being 
its radius. At each instant of time the solution (u,T) is supposed to have no 
singular behavior in B, so that W, W, T.v, ∇.(T.v) generate regular distri butions 
on R2 by prolongation with the origin outside B. Again, we are interested in 
the relation between the classical and distributional derivatives of W and T.v. 
There is no difficulty to show that (in the notation of Section 8.3)

 D W W cW St = − ( ) δ ,  (8.91)

 Div divT v T v N T v. . . . ,( ) = ( ) − ∂( )δ B  (8.92)
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where, for the last one, we used the condition (8.90). The energy relation in 
(8.40) and the formulas (8.91) and (8.92) yield

 D W cW S Bt
d+ ( ) = ( ) + ∂( )δ δDiv T v T v. . ,  (8.93)

which is a relation similar to (8.57). But in the present case the set S = ED of 
extension points of the defect does not reduce to a single point so that the 
new term in (8.93) is a distribution concentrated on S. By applying (8.93) to ϕ, 
using (8.90) and the relation xi = lNi at S, we get

 
d
dt

Wda l l M dA
B

d

B
∫ ∫+ =

∂

( / ) . , T v  (8.94)

with (compare (8.88))

 M W dA
T

S

= − ∇( )( ){ }∫ x N N T u x. . . . .  (8.95)

The relation (8.94) was obtained by Budiansky and Rice (1973). Its form 
recalls the expressions (8.21), valid also for a crack. Thus the second term in 
the left-hand side of (8.94) is the energy-release rate in the expansion of the 
cavity.

The propagation criterion that fits the formulation in (8.93) will necessarily 
involve a critical specific energy Wcr of the material, that is, W = Wcr on S, so 
that (8.93) becomes

 D W cW S Bt
d+ ( ) = ( ) + ∂( )cr Divδ δT v T v. . .  (8.96)

Let us suppose now that a Griffith-type surface energy exists on the  cavity 
boundary S. If (r, θ) are polar coordinates centered in 0, then δ(S) = δ(r – l). 
Denoting by H(l – r) the Heaviside function of C, by δ′(r – l) the normal deriv-
ative of δ(r – l) on S, and by Dl the derivative with respect to the radius l of 
the cavity, we have

 D W r l cW D r l cW r lt lcr cr crδ δ δ−( )( ) = −( ) = −( )' .  (8.97)

By supposing that the energy of B consists of the elastic energy W and the 
surface energy Wcrδ(r – l), the obtained energy balance will read

 D W cW S Bt
d+ ( ) = ( ) + ( )cr Divδ δ' . . .T v T v  (8.98)
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This obviously differs from (8.96) in what concerns the described behavior 
in the points of S. This means that the existence of an energy distribution on 
S, such as considered by Sih and Liebowitz (1967), contradicts the balance 
laws of elasticity. We note that the same difference exists between (8.98) and 
(8.93), in which the propagation criterion is not used. Returning to our result 
in (8.96), we note that

 D W H l r cW D H l r cW r lt lcr cr cr−( )( ) = −( ) = −( )δ .  (8.99)

Accordingly, the energy equation (8.96) reads

 D W W H l r Bt
d+ −( )( ) = ( ) + ∂( )cr Div T v T v. . .δ  (8.100)

Thus, the obtained energy of B consists of the elastic energy W and the 
energy of the cavity WcrH(l – r). The latter is distributed over the cavity C, 
and its density represents the energy expended to extend the defect by a unit 
area. Every new point of the cavity is endowed with the energy consumed 
for it.

In conclusion, we first note that the incompatibility of the Griffith-type 
energy with the elasticity equations is not particular to circular flaws (cav-
ities). This is also true for the notch problem considered in Section 8.4 to 
introduce the problem of fracture (see Dascalu and Maugin, 1994, pp. 31–33). 
Also, a similar analysis applies to an inclusion of one elastic material into 
another one. Physical situations of this type with migrating interfaces were 
considered by Eshelby (1970). In this case the notion of defect is relative: one 
material is a defect with respect to another. Equation 8.93 remains valid, but 
the distribution concentrated on S now takes the form c[W ]δ(S), [W] being 
the jump of W across S. This reminds us of phase-transition progression. 
The corresponding propagation criterion is [W] = Wcr depending on the two 
materials. The energy of the relative defect is given by the same formula, 
but Wcr represents the energy needed to transform one material phase into 
another.

8.8.3 Distributional Approach: Dislocations

The dislocation motion was one reason that led Eshelby to introduce the 
notion of force on an elastic singularity. It is thus salient to revisit this prob-
lem using distribution theory and obtaining the “energy of a dislocation” in 
that formalism. To that purpose we consider a straight-edge or screw disloca-
tion in a linear homogeneous elastic body. We choose a coordinate system so 
that the dislocation line is parallel to the x3-axis and pierces the x1 x2-plane at 
the point (l, 0). The dislocation is supposed to glide with the speed c t l t( ) = ( )  
along the x1-axis. The situation is the same as in Figure 8.3, but now C is 
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the intersection of the dislocation slip plane with the x1 x2-plane. If b  is the 
Burgers vector, then

 u b[ ] =  on C.  (8.101)

The structure of the solution is the same as that given by (8.46), with (cf. 
Mura, 1982; Teodosiu, 1982)

 T uS S
r r= ( ) ∇( ) = ( )− −0 01 1, ,  (8.102)

and ur and Tr finite on B. The singular terms us and Ts do not depend explic-
itly on time, so that the order of singularity of their time derivatives is the 
same as that of their gradient. Because W and T.v are not integrable we need 
to construct for them the regularizations W

G
 and T v.

G
 defined as in (8.48). 

These distributions depend on G and, restricted to R2 – {A}, coincide with W 
and T.v, respectively. Applying W

G
 to ϕ1 (a test function defined everywhere 

but with value one in the domain of interest), we get

 W W dA
G

B G

, .ϕ1 =
−
∫  (8.103)

This is the elastic energy of B without a circular hole centered in A.
Without giving the tedious mathematical details (see Dascalu and Maugin, 

1994, pp. 33–36 for these), we mention that we have to evaluate D Wt G( )  and 
Div T v.

G( ) . Then, writing the energy conservation law for these two terms, 
after some lengthy computations, we arrive at a distributional energy con-
servation in the form:

 

D W W
d
dt

x l WdA l W
d

t G

G

( ) + − −( )








 ( ) + −∫1 1 1 20δ , ,

ddt
x WdA l

cWN d l

G

2 2

1

0

0

∫

∫









 ( )

+ +

δ

δ

, ,

. . ,N T v Γ
Γ

(( ) = ( ) + ∂( )Div T v T v. . ,
G

d Bδ

(8.104)

wherein

W x l WN d W x WN1 1 1 1 2 2 1: . . , : . .,= −( ) −( ) = −∫ N T u N T uΓ
Γ

,, ,1( )∫
Γ

Γd  (8.105)
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Equation 8.104 is an energy equation depending on G, which applied to ϕ1 
gives the energy balance on B-G. To obtain the dislocation energy we have to 
consider the limit as G → 0. The limit

 lim asD W Gt G( ) →,ϕ 0  (8.106)

exists. This is essentially given by the principal value of W in A. On the other 
hand, the limit as G → 0 of the last contribution in the left-hand side in (8.104) is 
none other than cJ, where J is the Cherepanov–Eshelby–Rice path-independent 
integral. Furthermore, the implicit dependence on time of the singular parts 
of u and T is such that

 lim lim as
d
dt

x l WdA
d
dt

x WdA G
G G

1 2 0 0−( ) = = →∫ ∫ ,  (8.107)

so that the other distributions concentrated in A are also convergent, their 
limit depending on the singular parts of the fields. The integrals (8.105) are 
calculated only for these singular parts. In the end, in the limit, (8.103) will 
take the following reduced form:

 D W cf l Bt
d+ ( ) = ( ) + ∂( )( )PK Divδ δ, . . ,0 T v T v  (8.108)

where the integral f (PK) gives the Peach–Koehler force on a dislocation 
(Eshelby, 1951). Then the energy-like criterion is obtained from (8.108) in 
the form f (PK) = fcr. Such a criterion of activation is usually encountered in 
dislocation theory. On account of this, we can state the following energy 
conservation

 D W f H l x x Bt
d+ −( ) ( )( ) = ( ) + ∂( )cr Div1 2. . . .δ δT v T v  (8.109)

The second contribution in the time derivative represents the energy of the 
dislocation, which is uniformly distributed on its slip plane. The material 
“force” fcr represents the energy expended in the dislocation glide with a unit 
length. A similar calculation can be carried out for edge dislocations.

8.9 Generalization to Inhomogeneous Bodies

Case of smoothly materially inhomogeneous elastic materials. In this 
case (8.152) and (8.22) contain a material inhomogeneity force contribution 
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in their right-hand side. This modifies the expression (8.26) accordingly. 
Then it is shown that for materially inhomogeneous elastic bodies, (8.26) is 
replaced by

 F P dA
t

P dV f
G

1 1 1 1 1
crack in. .= ( ) + ( )( ) − −∫ ∫N b V N

Γ

∂
∂

hh

G
dV∫





.  (8.110)

Such an expression has been exploited in quasistatics by Haddi and 
Weichert (1994). It shows that the crack driving force is a material force in 
its own right; it plays the same role as a spatially integrated true inhomoge-
neity force. Numerical applications and illustrations of (8.110) are given by 
Haddi and Weichert (1995), Mueller and Maugin (2002), and Steinmann et 
al. (2000). However, it is already quite instructive to examine simple cases of 
smooth inhomogeneities as was done by Eischen (1987) and Herrmann and 
Kienzler (2000) and Hermman and Kienzler (2001) in quasistatics and small 
strains, for which (8.110) reduces to

 F WN
x

d f dV
G

1 1
1

1
crack inh= − ∂

∂






+ ∫∫ t
u

. ,Γ
Γ

 (8.111)

where t is the traction at Γ and N1 = N.E1 where N is the unit normal to 
the contour Γ. Here the first contribution is the celebrated J = J1 path-inde-
pendent integral of fracture, but the second integral introduces a domain-
dependent term. Eischen, Kienzler, and Herrmann were able to introduce 
an extended path-independent integral, Je, for plane problems of strains in 
linear isotropic elasticity for specific smooth elastic inhomogeneities. For 
instance, one may consider an exponential variation of the shear modulus 
such that

 µ µ αx x x x1 2 0 2 1, ,( ) = ( ) ( )exp  (8.112)

where μ0 is an arbitrary function of x2, and α is an arbitrary constant, with the 
obvious restriction that μ must be positive and the condition λ λ µ µ, ,1 1/ /( ) = ( )  
guaranteeing that the Poisson ratio is independent of x1. From (8.111) the fol-
lowing integral is then shown to be path-independent:

 J J U U de = − = ∫α , : . ,
1
2

t u Γ
Γ

 (8.113)

where a 2-D divergence theorem has been used to convert the inhomogeneity-
force surface integral of (8.111). In the case of plane stresses, the result (8.113) 
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is still valid under the condition that Poisson’s ratio remains independent of 
x1, and the shear modulus is such that, instead of (8.112),

 µ µ αx x x x x x1 2 3 0 2 3 1, , , ,( ) = ( ) ( )exp  (8.114)

with μ0 an arbitrary function of its arguments.
Another possibility studied by the same authors for plane strains is that 

the shear modulus varies as

 µ µ α= +0 1 1( ) ,mx  (8.115)

where μ0 is a mere material constant. Again, by use of the divergence theo-
rem applied to the last contribution in (8.111), it is shown that the following 
extended integral is path-independent:

 J J m M Ue = + −( )α ,  (8.116)

where U has already been defined in (8.113) and M is none other than the 
M-integral of fracture, here given by

 M W d= − ∇( )( )∫ x n x u t. . . .
Γ

Γ  (8.117)

The homogeneous case is recovered by setting m = 0. The formal result 
(8.116) is valid for plane stresses under the condition (since there remains 
some three-dimensionality in the problem) that M be replaced by its three-
dimensional analog. It is remarkable that the result (8.116) mixes the classi-
cal J- and M-integrals, but this could be figured out since a representation 
of the type (8.115) introduced a moment (multiplication by a certain power 
of x1) of the elastic energy of the homogeneous case (in particular for 
α = 1)—compare the definition (8.83) of the M-integral. More can be found 
on this matter for structural members in Kienzler (1993) and Herrmann and 
Kienzler (2001).

8.10 Generalization to Dissipative Bodies

8.10.1 The Problem of Thermal Brittle Fracture

It should again be clear to the reader that at any regular material point X 
the local equations of momentum (5.2) and (5.31)—in the absence of variable 
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α and setting f0 = 0 (for the sake of simplicity) in materially homogeneous 
materials—are, through the Noether–Ericksen identity, direct consequences 
of one another. However, if we integrate each of these over a regular (sim-
ply connected) homogeneous material body B—of boundary ∂B equipped 
with unit outward normal N—thanks to the trivial commuting of material 
integration and material time differentiation and the mathematically jus-
tified use of the divergence theorem, we obtain the following two global 
equations:

 
∂
∂ ∂t

dV dS
B B
p N T∫ ∫= . ,  (8.118)

 
∂
∂

θ
∂t

dV dS dV S
BBB

RP N b f f= + = ∇∫∫∫ . th th, ,  (8.119)

respectively, where the second must be understood component-wise (on the 
material manifold) because, in contrast to what happens in (8.118), the quan-
tities involved in the integrands in (8.119) are material covectors, and the 
material manifold M3 does not play the same neutral role as that played by 
the Euclidean physical manifold E3 in (8.118). Obviously, in writing the global 
forms, we have again lost the convection property relating the two equations 
of linear momentum. This means that (8.118) and (8.119) can be used for dif-
ferent purposes, essentially (8.118) for solving the physical boundary-value, 
initial-value problem and (8.119) for another purpose that becomes clear in 
two instances. The first of these is exploited during numerical computa-
tions using a certain scheme. Not only must this scheme (e.g., finite-difference 
scheme in nonlinear wave propagation, or finite-element method in structural 
computations; see Chapter 13) be compatible with energy conservation, that 
is, the global equation obtained by summing over the relevant regular mate-
rial region,

 
∂
∂ ∂t

HdV dS
BB

= −( )∫∫ N T v Q. . ,   (8.120)

but it must also be compatible with the additional balance law (another form 
of the energy conservation) obtained by summing the second of (5.31) over 
B, that is,

 
∂
∂

+ = =∫ ∫ ∫∂t
S dV dS h dV h S

B B B
θ θN Q. , .th th   (8.121)

Equations 8.119 and 8.120 or 8.121 are the relevant equations to study the 
progress of fracture in the thermoelasticity of conductors because they 
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capture thermomechanical singularities; that is, they give rise to nonvanish-
ing quantities that characterize this singularity: the driving force and the 
energy-release rate. We will not repeat here the analysis given in the purely 
elastic case. It suffices, accounting for the singularity order of temperature in 
the neighborhood of the crack tip (singularity of the Laplacian operator), to 
mention the thermal generalizations of Equations 8.26 and 8.27:

 
∂
∂ ∂t

P dV F dS dV
BBB

1 1 1 1
+ = ( ) + ( )∫∫∫ crack th.N b f ,  (8.122)

and

 
∂
∂ ∂t

HdV G dS
BB

+ = −( )∫∫ crack . .N T v Q ,  (8.123)

where we were cautious to write the first in component (1) form, and we 
observe the appearance of source terms due to the inward motion of the 
crack front. These are given the same formulas as those for pure elasticity 
except that Lth replaces the previous L. Accounting for these expressions, we 
finally obtain the global balance of material momentum and energy over the 
subbody C with surrounding surface S as

 F P dS dV
t

P dV1 1 1 1 1
crack th. .= ( ) + ( )( ) + ( ) −N b V N f

∂
∂ GGG ∫∫∫Γ  (8.124)

and

 G H dS
t

HdV
G

crack . . .= ( ) + −( )( ) − ∫∫ V N N T v Q
∂
∂Γ

.  (8.125)

We recognize in the last expression minus the change in potential energy 
(dynamic thermoelastic, homogeneous case) that is, the dissipation rate in the 
progress of the notch inside the material body. Accordingly, there must be 
a relationship between the latter quantity and the power expended irrevers-
ibly by the material force of component F1

crack . Because of the universal form 
of the expressions for Fcrack and Gcrack, just the same as before it is shown 
that

 V F G1 1 0crack crack= ≥ ,  (8.126)

where the inequality sign indicates the thermodynamic irreversibility of the 
crack growth phenomenon. This corresponds to the presence of a hot heat 
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source at the crack tip, an effect that can be observed by means of infrared 
thermography.

Note that if the temperature field in the neighborhood of the crack-tip line 
satisfies the following condition

 V
X

. regularterm,R∇ = − +θ ∂θ
∂t

  (8.127)

then the heat source localized at the crack tip is related to entropy and the 
material thermal force by (Maugin and Berezovski, 1999)

 Q dS
t

S dV
G

tip lim . lim l≡ = −( )




−

→ → ∫Γ Γ0 0
N Q

∂
∂

θ iim . th
ΓΓ →

( )∫∫ 0
V f dV

G
.  (8.128)

COM M EN TS:  The perspicacious reader will have noticed that the expression 
(8.124)—component along the crack direction—is a dynamic thermoelastic 
generalization of the celebrated Eshelby–Cherepanov–Rice J-integral of brittle 
fracture if we remember the expression of the dynamic Eshelby tensor b. The 
preceding formulation is strictly based on thermomechanical arguments on 
the material manifold.

8.10.2 Fracture in Anelasticity

This is sometimes called ductile fracture in opposition to the brittle fracture 
that occurs during the elastic behavior of a material. Here we suppose that 
anelasticity is appropriately accounted for by internal variables of state col-
lectively called α. According to the thermomechanical developments in 
Chapter 5, the presence of this last variable has practically the same conse-
quences as temperature effects, for example, the existence of the “intrinsic” 
material force fintr and heat source hintr that cannot be eliminated and will be 
added as volume contributions in (8.119) and (8.121).

Equations 5.1 through 5.3 are left formally unchanged. But, obviously, 
there exists now an intrinsic dissipation so that the entropy equation is gen-
eralized to

 θ ∂
∂

∂α
∂

S
t

A
tR

X

+ ∇ = ≡. intQ Φ .  (8.129)

The balance of material momentum is accordingly modified and was 
obtained in Chapter 5. Its local form at regular material points reads

 
∂
∂

αP
b f f f f

t
A

X
R R

T− +( ) = + ∇( )div , :=inh th intr intr ..   (8.130)



244 Configurational Forces

Clearly, insofar as this equation is concerned, internal variables produce a 
source term—a material force—that resembles fth in both general expression 
and effects! In particular, (8.129) can also be written as (cf. Chapter 5)

 
∂ θ
∂

∂θ
∂

S
t

S
t

X
R

( )
+ ∇ + =. = , :th intr thQ Φ Φ Φ .  (8.131)

The similarity between variables α and θ is thus enhanced, but while the 
 latter is governed by the heat equation, the former has to be governed by a 
pure evolution equation subjected to the second law of thermodynamics (non-
negative dissipation).

In the thermo-anelastic fracture problem, because of the already noticed simi-
larity between source terms in the right-hand side of (8.130), the proof of the 
consistency relation (8.126) will be facilitated. Indeed, for instance, we shall 
have

 V f.lim limintr

Γ Γ→ →∫ ∫≈ −




0 0

dV A
t

dV
G XG

∂α
∂

,   (8.132)

if α verifies a lemma such as in (8.127). We recognize in the right-hand side 
of (8.132) the limit, changed of sign, of the global intrinsic dissipation in the 
material domain G.

Energy-release rate in fracture. We let the reader show that in fracture 
(neglecting thermal effects and considering a materially homogeneous mate-
rial), we can obtain the expression of the energy-release rate as

 G H dA
t

HdV A
t

dV
G X

crack = ( ) +( ) − ∂
∂

+ ∂
∂∫ ∫V N N T v. . .

Γ

α

GG
∫









 ,  (8.133)

while (8.130) yields, component-wise, a global material force, the driving force 
acting on the crack tip,

 F P dS
t

P dV f
G

1 1 1 1 1
crack int= ( ) + ( )( ) − ∂

∂
+∫ ∫N b VN.

Γ

rr

G

dV∫ ,  (8.134)

with, in the limit as G shrinks to the crack tip, the global dissipative inequality

 G F Vcrack crack= ≥1 1 0  (8.135)

in which we have accounted for the fact that in these limits we have the 
following local behavior: v V F V V f≈ − ≈ − ∇ ≈ −−. T

R A, . , . intr α α α . The 
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bilinear form (8.135) governs the irreversible thermodynamics of the exten-
sion of C independently of the precise physical significance of α.

REM A R k :  Dual integral in elastoplasticity

In Equation 8.130 one can perform a Legendre transformation with respect 
to deformation and internal variables of the energy present in the defini-
tion of b—following what is done in Maugin (2000; Equations 66 through 
69)—in order to recur to a generalized I-integral in the manner of Bui (see 
Section 8.7) in the presence of anelasticity effects described by variable α. 
This was discussed by Stolz (2008a, 2008b) in small strains without reference 
to previous relevant works.

8.11 A Curiosity: “Nondissipative” Heat Conductors

8.11.1 Conservation equations

It was shown in previous sections that unavoidable source terms related 
to temperature gradients hinder the a priori existence of path-independent 
integrals in thermoelasticity. But it happens that a rather curious theory of 
continuum thermoelasticity was proposed by Green and Naghdi (1993) with 
a view to formulate a fully hyperbolic system (bounded speed of wave prop-
agation) for such a theory. It also happens that this theory a priori presents 
only strict conservation laws. The absence of source terms, which renders the 
theory dissipation free, is favorable for the existence of path-independent inte-
grals for fracture in such a theory. This was shown by Dascalu and Maugin 
(1995). The main idea is to introduce in the energy density a variable, the ther-
mal displacement, that accounts for the past history of the temperature field, 
and also its material gradient. Thus we introduce a scalar variable γ such 
that

 θ γ γ θX X X, , , .t
t

t t dt
t

( ) = ∂
∂

( ) = ′( ) ′∫or
0

 (8.136)

A variational formulation based on a the direct-motion description will con-
sider a Lagrangian density per unit reference volume in the form:

 L W R
th = − ∇( )1

2 0
2ρ γ γv F, , ,  (8.137)

where no inertia term is isolated for the field γ, which does not appear just by 
itself. We skip the details of the derivation (see Kalpakides and Maugin, 2004a). 



246 Configurational Forces

The two field equations at regular material points X are readily obtained as 
the linear (physical) momentum equation and the entropy equation in the 
form

 
∂
∂

− = = = ∂ ∂p
T 0 p v T F

t
WRdiv /, : , ,ρ0  (8.138)

and

 
∂
∂

+ ∇ = = − ∂
∂

= − ∂
∂

= − ∂
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S
W W W

R
R

. , , .S S0
γ θ γ

 (8.139)

The first of (8.139) has no source term although S is obviously identified as 
the entropy density (cf. second of (8.139)). That is the reason why this theory 
is called a theory of thermoelasticity “without dissipation.” Application of 
Noether’s theorem to the present variational formulation for space–time 
translations in material space yields the canonical equations of (material) 
momentum and energy in the form:

 
∂
∂

− =
∂
∂

− ∇ =
P

b 0 Q
th

th
th

thdiv
t

H
tX

R
X

R, . ,0  (8.140)

where we have set

 P P P p F= − ∇ = −mech mechS Rγ , : . ,  (8.141)

 b T F Sth th= − + − ⊗∇( )L R. ,γ  (8.142)

 H E E W Sth th= + = + = −1
2 0

2ρ θ θv Q T v S, , . .  (8.143)

These results deserve several comments. First, the equations (8.140) have no 
source term, which is the desired result. Second, the classical material heat 
flux is identified as Q = θS, that is, a highly classical relationship between 
heat flux and entropy flux. As a result, the energy equation given by the sec-
ond of (8.140) cannot be distinguished from the classical one (in the absence 
of body force; cf. Chapter 2). Third, the formula for the Eshelby stress (8.142) 
captures the effect of the gradient of γ. Finally, the canonical momentum is 
made of two parts, a now-classical mechanical part and a part due to the 
gradient of γ. This may look strange, but it was remarked by Dascalu and 
Maugin (1995) that such a term can indeed be interpreted as a momentum 
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in some physical theories (e.g., in the two-fluid theory of superfluid helium, 
this term can be transformed into a term proportional to the relative velocity 
between the two fluid components). What is important here is the absence 
of source terms in the right-hand side of both Equations 8.140 and 8.1391. 
Our marked interest in these equations is such that we could have started 
with the variational formulation based on the consideration of the inverse 
motion, for which the initial Lagrangian density is taken as (cf. Maugin and 
Kalpakides, 2002)

 J L w tF
− −= − ∂ ( ) ∂ ∇ = ∂ ∂( )1 11

2
ρ γ γ γV C V F x x x. . , , , ./ /  (8.144)

In this case the Euler–Lagrange equations are directly the equation of canon-
ical momentum in (8.1401) and the entropy equation (8.1391), while the stan-
dard linear momentum equation (8.1381) and the energy equation (8.1402) 
are obtained by application of Noether’s theorem. The reader will find the 
Hamiltonian equations for this theory in Maugin and Kalpakides (2002) and 
the construction of additional conservation laws in Kalpakides and Maugin 
(2004a). In particular, under certain conditions (material homogeneity, 
Lagrangians that are homogeneous of degree two in the deformation gradi-
ent), there holds a balance law of action in the form

 
∂
∂

−( ) − ∇ −( ) =
t

H t t LRP X X b Qth th th th. . . .2  (8.145)

This has the same structure as Equation 3.107.

8.11.2 The Problem of Thermoelastic Fracture

This was considered by Dascalu and Maugin (1995). We need not duplicate 
the arguments in Section 8.4. We simply note that with the requirements 
that

 N T 0 N Q. , .± ±= = 0  (8.146)

along the faces of the crack, equations similar to (8.26) and (8.27) will be 
obtained but with quantities noted with superscript th:

 F P V N N bcrack
th th thlim as= +( ) →∫ ( . ) . ,

Γ

Γ Γd 0  (8.147)

 G H dcrack
thlim as= ( ) + −( )( ) →∫ V N N T v Q. . . .

Γ

Γ Γ 0  (8.148)
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These two are compatible, yielding the local statement of the second law of 
thermodynamics:

 Gcrack crack
th= ≥V F. ,0  (8.149)

when we have the following asymptotic behavior of the fields at the crack 
tip:

 γ γX V X, . , ,t tR( ) ≈ − ∇( ) ( )  (8.150)

 θ γ≈ − ∇ ≈ −V v V F. , . ,R
T

while

 S SRV V P v. , . .∇ ≈ − ≈γ θ ρmech
0

2  (8.151)

Note that the result (8.149) is general, being in fact independent of the consid-
ered thermolasticity theory. An equivalent form of (8.148) is obtained as

 G ds
d
dtR

A
crack

th th th= + ( )( )( ) −∫ ∫N b V P 1 V V P. . . .
Λ

ddA,  (8.152)

where Λ is another contour encircling the domain A that contains the crack 
tip and moves together with it. In quasistatics, this reduces to

 G dscrack
th= ∫N b V. . ,

Λ

 (8.153)

where the kinetic energy is no longer involved in the Eshelby stress bth. This 
is compatible with (8.149).

8.11.3 recovery of Classical Thermoelasticity

We are obviously aware of the amount of artificiality in the Green and 
Naghdi (1993) construct. All is based on the assumptions made regarding the 
free energy functional dependence. An approximation yielding the classical 
theory of thermoelasticity has, therefore, to be obtained from an approxima-
tion of that energy. With β = ∇Rγ, we can write a Taylor series expansion with 
respect to that material vector about its zero value. Thus

 W W
W

RF F 0 0, , ˆ , , .θ γ β γ θ β
β

β β β= = ∇( ) = =( ) + ∂
∂

=( ) + 0 2(( ).  (8.154)
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We let the reader evaluate all the derivatives of W needed in the theory, 
with

 ˆ
ˆ

, ˆ , ˆ ˆ .S
W W= − ∂
∂

= − ∂
∂

=( ) =
θ β

β θS 0 Q S  (8.155)

It is checked that (7.1381), (7.1391), and (8.140) yield the equations (Kalpakides 
and Maugin, 2004a, Section 6):

 
∂
∂

− =p
T 0

t Rdiv ˆ ,  (8.156)

 
∂
∂

+ ∇ = − ∇ = − ∇
ˆ

. ˆ ˆ . ˆ . ,
S
t R R RS S Qθ θ θ  (8.157)

 
∂
∂

− = = ∇
P

b f
mech

thdiv
t

SR R
ˆ ˆ ˆ ,θ  (8.158)

 
∂
∂

− ∇ −( ) =ˆ
. ˆ . ˆ ,

H
t R T v Q 0  (8.159)

where all symbols with a superimposed caret are indeed those of the clas-
sical theory, for example, in Ĥ, ˆ ˆ ˆE W S= + θ, and Pmech is none other than the 
classical purely mechanical term. In the fracture problem one has to focus 
attention on the additional terms that were involved in the Eshelby stress 
of the Green–Naghdi theory. In this limit a source term will appear in the 
expression of the driving force. This will be none other than the bulk integral 
of the material thermal force present in the right-hand side of (8.159). Thus 
in Equations 8.155 through 8.160 one has simply to forget about the way the 
entropy flux was introduced (the second of (8.155)) and then construct a con-
stitutive equation for it or for Q̂  as is usually done.

Note on the Bibliography

The bibliography on fracture, even limited to theoretical works, is  enormous. 
The main technical journal in the field is the International Journal of Fracture. 
But many works are published in general journals on continuum mechan-
ics or applied mathematics. The essential books with a theoretical bias older 
than the present work are the books by Cherepanov (1979), Bui (1978), Freund 
(1990), Maugin (1992), and Cherepanov (1998), the later where all main actors 
are called on the stage as witnesses of the developments over a period of 
50 years. Now, in addition to the works already cited in the body of this chap-
ter, we note the following. General questions on fracture were approached in 
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the works of Sanders (1960), Atkinson and Eshelby (1968), and Cherepanov 
(1968). Dynamic fracture is dealt with by Nilsson (1973), Chen and Shield 
(1977), Casal (1978), Nishioka (1989, 1998), Ehrlacher (1981), Mura (1981), 
Nishioka and Atluri (1983, 1984), Atluri and Nishioka (1983, 1984, 1985), Rice 
(1985), Russo (1986), Van Vroonheven (1992), Maugin (1994b), Kalpakides and 
Agiasofitou (2002), and Agiasofitou and Kalpakides (2004). Path-independent 
integrals and invariants are examined in detail in Chen and Shield (1977), Casal 
(1978), Freund (1978), Buggisch et al. (1981), De Lorenzi (1982), Golebiewska-
Herrmann (1982), Cherepanov (1989), Bank-Sills and Sherman (1992), 
Ioakimidis and Anastasselou (1993), and Chen and Lu (2003). Propagation 
of cracks in inhomogeneous bodies receives some attention in Atkinson (1975a, 
1975b), Rongshun Li and Chudnovky (1993), Haddi and Weichert (1995), 
Weichert and Schultz (1993), Mueller and Maugin (2002), and Maugin and 
Kalpakides (2005). Fracture in anelastic solids (plastic or viscoelastic) is con-
sidered by Atluri (1982), Schapery (1984, 1990), Carpenter et al. (1986), and 
Maugin (1994a). Thermoelastic fracture is the subject of the following works: 
Bui et al. (1979, 1987), Bui and Proix (1984), and Francfort and Golebiewska-
Herrmann (1982, 1986). An interesting mathematically founded variational 
approach to fracture has been developed by Bourdin, Francfort, and Marigo 
(see their review paper, 2008).
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9
Generalized Continua

Object of the Chapter

Where polar solid continua and other generalizations are introduced, show-
ing what is a true multifield theory where conservation laws of the Eshelbian 
framework acquire their true status as relevant to a system wider than clas-
sical continuum mechanics.

9.1 Introduction

Polar continua, also referred to as micropolar continua (in Eringen’s classifi-
cation) or Cosserat continua (acknowledging the pioneering role played by 
the Cosserat brothers, 1909), provide the simplest, while most developed, 
example of generalized continuum mechanics in which a microstructure, 
although simple, is granted to each material point X. This microstructure 
here is equivalent to a rigidly rotating microbody, so that the generalized 
medium under scrutiny will be equipped with six degrees of freedom at 
each point—the classical three degrees of translation giving rise to the classi-
cal notions of displacement, deformation field, and stresses (cf. Chapter 2), and 
three additional degrees of rotation yielding the new notions of microrotation, 
wryness (see later on), and couple stresses—and no more. Such bodies possess 
the means to respond not only to classical forces but also to local couples. The 
microrotation may be mathematically represented by any appropriate means 
for SO(3), such as Euler angles, orthogonal transformations, quaternions, and 
spinors. Here we use orthogonal transformations, which are by far the most 
convenient representation while vividly illustrating the physical situation, 
because the associated energy changes are contained in transformations. If 
the microbody at each X was a completely deformable body, such as a small 
ellipsoid of variable size, then there would be six additional degrees of free-
dom (a true microdeformation), instead of three more, at each X. We would 
then be dealing with micromorphic media (for these see Section 9.6). The basics 
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of polar media are exposed at length in various synthetic works (e.g., Eringen 
and Kafadar, 1976; Nowacki, 1986; Eringen, 1999; the first work emphasizes 
the linear theory, and the other two provide a comprehensive introduction 
to nonlinear theory—finite deformation and microrotation). The modern 
presentation owes much to the paper of Kafadar and Eringen (1971). The 
general structure exposed in this chapter, with a clear distinction between 
balance laws and conservation laws (in the Eshelbian framework), follows a 
contribution of the author (Maugin, 1998). Of course, the contents of the pres-
ent chapter are necessarily related to those of Section 5.5, where the abstract 
additional variable α was an unspecified additional degree of freedom. Here 
it should be equated to the microrotation, an orthogonal tensor, or else in a 
more generalized continuum theory.

Although polar media and generalized continua have been the subject of 
numerous works exhibiting solutions and attempts at identifying the material 
coefficients (see the formidable bibliography in Nowacki [1986] in the case of 
Cosserat media), very few works have considered their invariance properties 
and general geometric framework except recent works with a renewed atten-
tion caused by the conception of artificial polar solids and the relationship to 
new materials such as nanomaterials. The situation concerning various mod-
elings and their application is well described in Maugin and Metrikine (2010).

9.2 Field Equations of Polar Elasticity

9.2.1 elements of Kinematics

In addition to the classical motion already introduced in Chapter 2, we con-
sider a micromotion described by orthogonal transformations noted

 κ κ κ= ( ) = { }X, ,.t K
i  (9.1)

such that

 κ κ κ κ κ κ κ κ− − −= = { } = + = =1 1 11T
i
K

R. , , . , . .det 1 1  (9.2)

Material finite deformation measures called the Cosserat and wryness ten-
sors are defined by

 C F: . , : ,= = × ∇( )−T
Rκ κ κΓ 1

2
1   (9.3)

where the symbolism introduced is such that C is the material pull back of κ, 
and Γ is a geometric object that is axial on its first index, being associated by 
duality with the skew quantity obtained by taking the material gradient of 
(9.1). In components these material covariant objects are given by



Generalized Continua 253

 C FKL ij K
i

L
j

QL QK
P

i
K

P L
i= =δ κ ε κ κ. .

..
. . ,, .Γ 1

2
 (9.4)

It is more than a curiosity to note that

 C C C= . .T  (9.5)

The physical velocity associated with κ is obviously defined by

  κ κ ν κ ν κ κ ν: . , . .= ∂
∂

= = = −−

t X

T1  (9.6)

The axial vector ν associated with the skew tensor velocity ν is given by

 ν ν ν ε ν= − = −1
2

1
2

dual i.e.,, ...
.k kp

q
q
p  (9.7)

Reciprocally,

 ν ν ν ε ν= − = −dual i.e.,, .km kmn
n  (9.8)

In conclusion of these kinematic developments, the direct generalized motion 
of the polar continuum is given by

 χ κX X, , , ,t t( ) ( ){ }  (9.9)

with velocity set v , κ{ } or {v, ν}, first material gradients (deformations) {F, ∇R κ}, 
and independent finite strains C ,Γ{ } in terms of the space–time parametri-
zation (X, t). We are thus unequivocally equipped for a first-gradient field the-
ory of polar elastic media. Kinetic energy will be introduced later on.

9.2.2 Lagrange equations of Motion

We shall consider the following general Lagrangian density per unit vol-
ume of the reference configuration, limiting ourselves to quasistatics for the 
moment:

 L L WR R= ∇( ) = − ∇( )x v F F X, , , , , , , ; .κ κ κ κ κ  (9.10)

Making abstraction of boundary conditions, initial conditions, and external 
data, we obtain the Euler–Lagrange equations of motion in the form:
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 E
L L

R
R

Rχ χ
: .= ∂

∂
− ∇ ∂

∂ ∇( ) = =
x

Tdiv 0  (9.11)

and

 E
L L

R
R

Rκ
κ κ

: . ,= ∂
∂

− ∇ ∂
∂ ∇( ) = + =div M N 0  (9.12)

in which we have defined the two-point tensor fields T, M, and N of compo-
nents Ti

K
. , M i

KL
.. , and N Ki or N i

K
.  by, respectively,

 T
F

M N: , : , : ,= ∂
∂

= ∂
∂ ∇( ) = − ∂

∂
W W W

Rκ κ
 (9.13)

where the first is none other than the first Piola–Kirchhoff stress and the sec-
ond and third may be referred to as the Piola–Kirchhoff microstress and the 
microinternal force, respectively. Here the material divergence is not a covari-
ant operator but just the partial derivative with respect to the material coor-
dinates, taken with respect to the first index.

The second invariance of continuum mechanics is the rotational invariance 
in the actual frame. Here this is equivalent to the invariance of the strain 
function W under infinitesimal rotation of the actual frame. This reads

 TF N M 0− + ∇( )( ) =. : .κ κR
T

skew
 (9.14)

Here skew means the skewsymmetric part of the corresponding spatial ten-
sor. Equation 9.14 is a direct generalization of (2.88). This suggests taking the 
material inner product of (9.12) with κ and then the skew part of the resulting 
spatial tensor, that is

 C R skewκ κ: . ,= +( )( ) =div M N 0  (9.15)

and combine the result with (9.14) to yield

 divRM F T 0+ × =ˆ ,  (9.16)

where the symbolism ×̂ has the opposite operational meaning to the symbol-
ism ×, meaning the vector product in physical space and then inner product 
in material space, and the two-point tensor field M of tensorial component 
M i

K
.  is defined by

 M : .. ..= ={ }M Mi
K ipq

p
KL

qLε κ  (9.17)
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Equation 9.16 is the balance of physical moment of momentum, in quasistatic 
form. In particular, whenever W does not depend on the microstructure, this 
reduces to the classical equation

 F T 0 F T 0ˆ , . ,.× = = ( ) =i.e., orε ijk K
j Kk

skew
F T 0  (9.18)

which reflects the symmetry of the Cauchy stress.
The reasoning just made means that in field theory, (9.16) is not a direct 

field equation but the result of a manipulation that takes the isotropy of physi-
cal space into account. But this does not exhaust the possible conservation 
laws, as we said nothing about the fact that

 
∂
∂







= = − ∂
∂







≠L
t

W

expl

inh

expl

0, : .f
X

0  (9.19)

These relates to the canonical balance laws of energy and material 
momentum.

9.2.3 Canonical Balance Laws

At this point there are two ways to establish the canonical balance laws of 
interest. The sophisticated one is to implement Noether’s theorem for time 
and material space translations. The “poor man” one uses algebraic manip-
ulations of the already known equations. Here, for a change, we briefly 
 illustrate the latter. For that purpose, aiming first at the balance of energy, 
we add up the inner product of (9.11) with v to the contracted product of (9.12) 
with κ, and therefore envisage the vanishing scalar quantity

 v. . .E Eχ κκ+ ( ) =tr  0  (9.20)

This, by using commutation rules and accounting for the obvious identity

 tr ν κ.C( ) = 0

deduced from (9.15), yields, after some algebra that we leave to the reader,

 
∂
∂

− ∇ +( ) =W
t X

R . . . .T v M ν 0  (9.21)

It is readily verified that this can also be written in the form:

 
∂
∂

− ∇ +( ) =W
t X

R . . : ,T M χ κ 0  (9.22)

because of the trivial identity M M. :ν κ≡  .
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We can perform a parallel space-like operation on (9.11) and (9.12) by 
forming the following vanishing material covector (compare to (9.20)):

 E E R
T

χ κ κ. . .F + ∇( ) = 0  (9.23)

Again exploiting commutations rules, the constitutive equations (9.13) and 
the definition given by the second of (9.19) will result in the following fully 
material balance law:

 div inh
Rb f 0+ = ,  (9.24)

in which the generalized (but quasistatic) Eshelby stress has the expression

 b 1 T F M= − − ∇( )W R R
T

. : κ  (9.25)

There is no surprise here, as the Eshelby material stress is a machinery that 
captures all gradient effects present in the energy density. The  intermediate 
equation (9.23) is a generalization of the Ericksen identity of standard hyper-
elasticity (see Chapter 3), but it is also a direct statement of Noether’s identity 
in field theory (see Chapter 4). Of course, (9.21) and (9.24) should be compati-
ble since they are the canonical conservation equations for energy and linear 
momentum. This is indeed true as can be shown by performing the exercise 
that consists in showing that (9.21) is equivalent to the equation

 V b f. .div inh
R +( ) = 0  (9.26)

One may finally wonder what the symmetry condition is that is imposed on 
b so that the original law of moment of momentum, here (9.16), is verified. A 
direct computation shows that the following material equation holds:

 divR skew
ˆ ˆ ,B C Cb+ = ( )  (9.27)

where we have defined an Eshelby material hyperstress tensor B̂ and a material 
couple tensor Ĉ in components by

 ˆ ˆ , ˆ ˆ
. . [ . . ]B B C M F C CPQ
K

PQ
K

P L i
LK

Q
i

PQ PQ≡ = ≡ =[ ] [ ] −−( )C F MP K Q
i

L i
LK

[ . ] , .. .  (9.28)

Objective Form of Constitutive Equations

This can be obtained through a direct reasoning on the functional form in 
(9.10) or, since there are no dissipative processes, by integrating the condition in 
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(9.14)—a set of three first-order partial differential  equations—along character-
istics, yielding a first integral in the objective form:

 W W= ( )ˆ , ; ,C XΓ  (9.29)

so that the basic two constitutive equations become

 T
W

C
M

WKi

KL
L
i Ki

LK
L
i= ∂

∂
= ∂
∂

ˆ
,

ˆ
.. .κ κ

Γ
 (9.30)

9.2.4 Accounting for inertia

If inertia is accounted for, then we must consider the true Lagrangian density 
per unit volume of KR, L = K – W. For a classical type of inertia, for example, 
without gyroscopic term, K is taken as a homogeneous function of degree 
two in the set of velocities v , κ{ } or {v, ν}.That is,

 2K
K K= ∂
∂

⋅ + ∂
∂

⋅
v

v



κ
κ.  (9.31)

The simplest solution of this functional equation reads

 K t Iij
KL

K
i

L
j= ( ) ( ) + ( )( )1

2 0
2ρ κ κX v X X, ,..

. .   (9.32)

where the geometric object i is symmetric in both pairs of indices. Of course, 
this can also be written as the apparently simpler form

 K t t= ( ) + ( ) ( )( )1
2 0

2ρ σ νX v X X, . , ,  (9.33)

where the (axial and spatial) spin vector σ and the inertia tensor of the micro-
structure j (a symmetric spatial tensor with six independent components at 
most) are defined by

 σ ν= j. ,  (9.34)

and (in components)

 j Lpq
ik
p

jl
q ijKL

K
k

L
l= ( )ε ε κ κ. . . . .X  (9.35)
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It was shown by Eringen (1964) that if the material inertia tensor J jPQ pq
p

P
q

Q= κ κ. .  
satisfies the material conservation law (conservation of microinertia)

 
∂
∂

=
J

t

PQ

X

0,  (9.36)

then, in turn, j satisfies the following “spatial” balance law (parentheses 
around a set of indices indicate symmetrization):

 
dj
dt

j
kl

m
k l m− =2 0.

( ) .ν  (9.37)

Then it is trivial to show that in addition to (9.36) or (9.37), the three basic bal-
ance laws of physical linear momentum, angular momentum, and energy (in 
the absence of dissipation and external sources) are obtained as the Euler–
Lagrange equations of motion, and the application of Noether’s theorem for 
time-translation, as

 
∂
∂
( ) − =

t X
Rρ0v T 0div ,  (9.38)

 
∂
∂
( ) − − × =

t X
Rρ σ0 div M F T 0ˆ ,  (9.39)

 
∂
∂

+( ) − ∇ +( ) =
t

K W
X

R . . . .T v M ν 0  (9.40)

It remains to establish the dynamic form of the conservation of material 
momentum for these polar media. Of course, the energy W will be replaced 
by –L in the Eshelby stress, but, what may be more surprising to most readers, 
the material (in fact, here, canonical) momentum includes the  microrotational 
degree of freedom although it is, per se, a linear momentum. Indeed, on 
applying the general formula (4.33), we obtain a canonical material momen-
tum in the form

 P C V G= +( )ρ ν0 . . ,  (9.41)

where the two-point tensor field G is given in components by

 G IL
n

K L
i

jmn ij
KQ

Q
m.

. ,
..

. .= −κ ε κ  (9.42)
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The conservation of canonical momentum reads thus

 
∂
∂

− =P
b f

t X
Rdiv inh ,  (9.43)

with P given by (9.41) and

 b 1 T F M f
X

= − + + ∇( )( ) = ∂
∂







L
L

R R
T

. ˆ : , .κ inh

expl

 (9.44)

This completes the set of fundamental balance and conservation laws for 
nondissipative polar materials, based on the direct-motion description 
and the Piola–Kirchhoff format. Note that a variational principle in the 
spatial framework was given by Maugin (1970) for the more general case 
of  micromorphic materials, thus including the present case. Insofar as the 
inverse-motion description is concerned, one should consider a Lagrangian 
density per unit volume of the actual configuration Kt in the form

 ˆ . . ˆ ,..
. .L L J Wij

KL
K

i
L
j

F= +( ) −1
2
ρ κ κV C V    (9.45)

since the notion of inverse motion applies only to the classical motion. The 
Hamiltonian-mechanics definition of P is P = ∂L/∂V. Still, (9.45) will yield the 
expression (9.41) if we note that

 κ κ κ κ.
. .

.: . .K
i K

i

X

K
i

x
R K

i

t t
= ∂

∂
= ∂

∂
− ∇V  (9.46)

The last contribution in this equation will provide the microrotation con-
tribution in the definition in Equation 9.45, now written per unit of actual 
volume.

The accompanying chart (Figure 9.1) gives a flowchart of the whole set 
of basic conservation laws according to Maugin (1998). Also included here 
are the equations obtained by inner, vectorial, and tensorial multiplication of 
the balance of canonical momentum by X. With the last operation and taking 
the skew part of the result, one should obtain an equation of the type of (9.27) 
(cf. Maugin, 1998) involving Eshelby hyperstresses.

9.2.5 Dissipative Case

In this case we have no variational principle at our disposal, and we must 
resort to a statement of the global balance laws of thermomechanics and 
their localization as achieved by, for example, Kafadar and Eringen (1971). 
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The balance of material momentum will then be deduced for large classes 
of dissipative materials, just as was done for dissipative materials in 
Chapter 5. Accordingly, we just list the local standard balance laws in their 
 Piola–Kirchhoff format in the absence of external sources:

 
∂
∂

=
t X

ρ0 0,  (9.47)

(A)

+

+

divRT = 0
inv. w.r.t. x

divR M + N = 0
inv. w.r.t. X

(F · T – X · N + RX : M)skew = 0
inv. w.r.t Q

(X · B)skew = 0

X · (P) = 0

X × (P) = 0

X· (B)
·

v · (F)
divR M + F×T = 0

divR b + f1nh = 0
inv. w.r.t X

FT ·(A) ( RX)T ·(B)

υ . (A)

(B) (C)

(D)

(E)

(P)

(F)

·∂W
∂t x

·

W = W (F, X, , X; X), finh = – ∂W)expl

T = ∂W)T

, M =  ∂W )T

, N = – ∂W )T

b = W1R – T · F – M : RX, M : X = M · v

∂X

∂F ∂ RX ∂X

– R· (T · υ + M : X) = 0
inv. w.r.t. t

Figure 9.1
Flowchart of the formal structure of the set of field and conservation equations of polar media 
(quasistatics). The notation is slightly different from the one used in the present book but the 
one-to-one correspondence between symbols and operations is easily established; in partic-
ular, some tensors are defined by their transposed. (Reproduced from Maugin, G.A., Philos. 
Trans. R. Soc. London, Ser., A 356, 1367–1395, 1998.)
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∂
∂

=
J

t

PQ

X

0,  (9.48)

 
∂
∂
( ) − =

t X
Rρ0v T 0div ,  (9.49)

 
∂
∂
( ) − − × =

t X
Rρ σ0 div M F T 0ˆ ,  (9.50)

 
∂
∂

+( ) − ∇ + −( ) =
t

K E
X

R . . . .T v M Qν 0  (9.51)

 θ ∂
∂

+ ∇ =
t

S
X

R . ,Q 0  (9.52)

where E is the internal energy per unit of reference volume, S is the entropy 
per unit of reference volume, θ is the thermodynamic temperature, and Q is 
the material heat flux. Equation 9.52 can also be written as

 
∂
∂

+ ∇ 




= = − ∇ ( )S

t
d

d
X

R R. , . .
Q

Q
θ θ

θln  (9.53)

Limiting ourselves to the case of thermoelastic conductors, the second law 
of thermodynamics imposes that d ≥ 0, while the constitutive equations for 
nondissipative processes have been deduced, by use of the “thermodynamic 
admissibility” argument, as

 T
F

M M M= ∂
∂

= ∂
∂ ∇( ) = − ∂

∂
≡ ×W W

S
W

R

, , , ,
κ θ

κ  (9.54)

with free energy density

 W W E SR= ∇( ) = −F X, , , ; .κ κ θ θ  (9.55)

Insofar as Q is concerned, it is subjected only to the nonnegativeness condi-
tion imposed on d and to the continuity condition

 Q F X 0 0, , , , ; .κ κ θ θ θ∇ ∇( )→ ∇ →R R Ras  (9.56)
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The set of Equations 9.47 through 9.56 leaves us with very little room to 
maneuver. To obtain the local balance of material (canonical) momentum, 
we must apply F to the right of Equation 9.49 and account for the other equa-
tions, including the constitutive equations (9.54) and (9.55) to arrive finally at 
the equation:

 
∂
∂

− = +
t X

RP b f fdiv inh th ,  (9.57)

where P is defined by (9.41) and we have set

 b 1 TL M X= − + + ∇( )( ) = − ( )L L K WR R
Tth th: , : .,.,., ; ,κ θ  (9.58)

 f
X

finh
th

expl

th: , : .=
∂
∂







= ∇
L

S Rθ  (9.59)

The last two material covectors are the material force of inhomogeneity and 
the material thermal force, respectively.

9.3 Small-Strain and Small-Microrotation Approximation

In many situations it is sufficient to envisage the case of small strains and, here, 
in addition, small microrotations. Notice, however, that there are situations 
where strains may be small but microrotations may remain mathematically 
finite, yielding a micromotion that exhibits interesting nonlinear effects such 
as solitary wave solutions, while small strains accompany these (cf. Maugin 
and Miled, 1986). But here we consider both macro- and micromotions “small.” 
In this case we naturally introduce a relative Cosserat tensor by

 C C 1= − R.  (9.60)

The direct-motion gradient F and the microrotation κ can be approxi-
mated by

 F 1 u 1= + ∇( ) = +S R
T

S, ,κ Φ  (9.61)

where 1s is a so-called shifter, u is the displacement field, and Φ is skewsym-
metric and of infinitesimally small magnitude. We therefore have the follow-
ing linearized measures:
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  C u 1≅ ∇( ) + ≅ × ∇( )R
T

S RΦ Γ Φ, .
1
2

 (9.62)

Define ϕ, the vector dual to the skewsymmetric tensor Φ, by

 φ ε ε φK KLM ML KL KLM M= = −1
2

Φ Φ, .  (9.63)

Then instead of the measures in (9.62) we can, as well, use the following 
infinitesimal measures of generalized deformation for a linear polar elas-
tic solid (we no longer distinguish between lower- and uppercase Latin 
indices):

 e u: , :,= ∇( ) + = = −{ } = ∇ = =T
ji i j jik k jie udualφ ε φ γ φ γ φφi j, .{ }  (9.64)

In this approximation, the tensors T and M reduce to the usual (but here 
nonsymmetric) Cauchy stress tensor σ and couple-stress tensor m with consti-
tutive equations

 σ
γ θ

γ θ= ∂
∂

= ∂
∂

= − ∂
∂

= ( )
ˆ

,
ˆ

,
ˆ

, ˆ , , ; .
W W

S
W

W W
e

m e x  

The two basic laws of motion (9.49) and (9.50) take on the following form 
(compare to Eringen, 1968; Nowacki, 1986):

 ρ σ ρ
φ

σ0

2

2 0

2

2

∂
∂

− =
∂
∂

− − ×( ) =u
0 1 0

t
j

t
mdiv div, . .  (9.65)

In components the last equation reads

 ρ
φ

ε σ0

2

2
0j

t

m

xij
j ji

j
ipq pq

∂
∂

−
∂
∂

− = .  (9.66)

Isotropic microinertia, j = I1 , that is, jij = Iδij, is often assumed for the sake 
of simplicity or as an evident conclusion from a true microanalysis, but this 
restriction is not imposed by the formulation.

On account of the approximations introduced in the preceding, the canon-
ical balance equations of energy and momentum take on the following form 
(e = internal energy per unit mass):
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   u u. . . . .. ,φ −( ) =q 0  (9.67)

and

 
∂
∂

− = +
t

fP b f ftot inh thdiv. ,  (9.68)

wherein

 P u u f
x

tot inh. . . . ,
ˆ

f j
L= − ∇( ) + ∇( )( ) = ∂
∂




ρ φ φ0   


= ∇
expl

th, ,f S θ  (9.69)

 b u 1 u= − −





− ∇( ) − ∇ˆ . . . .W j m
T1

2
1
20

2
0ρ ρ φ φ σ   φφ( )T .  (9.70)

REM A R k : Constrained theory of Cosserat continua

The first measure introduced in (9.49) compares the displacement gradient 
and the microrotation, an expression that can be written as

 e u uij j i j i ijk k= + −( ), [ , ] .ε φ  (9.71)

The skewsymmetric tensor ωji = u[i,j] is called the (macro-)rotation. If we 
impose that the macro- and microrotations coincide, that is, ωji = εjikϕk, then 
the two measures of deformation introduced in (9.64) reduce to

 e u uij ij i j ij ipq p q j= = =( )ε γ ε, [ , ], ,
1
2

 (9.72)

In plain words, the Cosserat theory becomes a very special second-gradient 
theory of the displacement. Of course, there is then a difficulty in interpreting 
the expression of the total kinetic energy.

9.4 Discontinuity Surfaces in Polar Materials

For the sake of illustration, we consider only the case of coherent phase-
transition fronts (Maugin, 1998b). Already in classical thermoelasticity it is 
assumed that both temperature and material velocity are continuous at a 
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discontinuity front Σ, because the transition occurs at a temperature where 
the two phases coexist, and lattice sites (in the discrete picture) at the front 
belong to the two phases, so that Σ does not exhibit dislocations, a very ideal 
situation we admit. The conditions to be imposed in the case of polar crystals 
are even more severe since the microrotations of material points belonging 
to the two crystalline systems at Σ must obviously be synchronized in time. 
Otherwise, we would have some kind of disclinations (rotation dislocations) 
present at Σ. Therefore θ(X, t) and the generalized velocities based on χ–1(x, t) 
and κ(x, t)—not κ(X, t)—are to be continuous at Σ, that is,

 θ κ[ ] = [ ] = ∂
∂


















=0 0, , .V 0

t x

 (9.73)

A direct consequence of the last of these is the relation

 
∂
∂


















= − ∇[ ]κ κ

t X
RV. .  (9.74)

Now, following the illustrative case of complex media in Section 7.7 and 
based on the equations valid at any regular material points for polar media 
(in the Piola–Kirchhoff format)—Equations 9.47 through 9.53 and 9.57—we 
can write down the following set of jump conditions at Σ:

 VN ρ0 0[ ] = ,  (9.75)

 V JN KL[ ] = 0,  (9.76)

 N V p T 0. ,⊗ +[ ] =  (9.77)

 N V M 0. ,⊗ +[ ] =ρ σ0  (9.78)

 N V T v M Q. . . ,K E+( ) + + −( )[ ] =ν 0  (9.79)

which are all homogeneous (vanishing sources), and the set relating to dis-
sipative and pseudo-inhomogeneous processes:

 N V Q. ,S qθ −[ ] − =Σ 0  (9.80)

 N VS Q. ,− ( )[ ] = ≥/θ σΣ 0  (9.81)
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 N V P b f 0. ,⊗ +[ ]+ =Σ  (9.82)

where qΣ, σΣ, and fΣ are, respectively, a surface heat source, a surface dissipa-
tion rate, and a surface pseudo-inhomogeneity force. Because of the choice of 
entropy flux S = Q/θ and of the first of (9.73), we obviously have

 qΣ Σ Σ= ≥θ σ 0.  (9.83)

Just as in previous chapters, we now have to evaluate the power expended by 
the material surface force fΣ. We give the detail of this only in quasistatics (see 
the comments at the end of Section 7.7). This is none other than a special case 
of the proof given in that section. Thus we simply note the essential steps 
with the following sequence of equations:

 pΣ Σ= = − [ ]f V N b V. . . ,  (9.84)

 N Q N V T v M N V. . . . . ,[ ] = + +[ ] = [ ] −E S qν θ Σ  (9.85)

 q WΣ = − + +[ ]N V T v M. . . ,ν  (9.86)

 N T v M N T F M V. . . . . : . ,+[ ] = − + ∇( )



ν κR

T
 (9.87)

so that

 p qΣ Σ Σ= =f V. .  (9.88)

But the jump relations (9.77) and (9.78) reduce here to

 N T 0 N M 0. , . .[ ] = [ ] =  (9.89)

Consequently,

 N T F M N T F N M. . : . . . : .+ ∇( )



 = [ ] + ∇( )



R

T
R

Tκ κ  (9.90)

Finally, using the Maxwell–Hadamard lemma for jumps of gradients of χ 
and κ, we can write that

 F[ ] = ∇[ ] =
. . ., ,
K

i i
K R KL

i
K
i

Lf N g Nκ  (9.91)
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and thus

 N T F V N M V T F M. . . . . . . :[ ] + ∇( )



 = + ∇( ){ }R

T
R

T
trκ κ



VN .  (9.92)

Gathering these results we obtain that

 q VNΣ = − ≥HugoPT 0,  (9.93)

where we have defined the so-called Gibbs–Hugoniot driving force by

 Hugo trPT = [ ] = − + ∇( )( )



N b N T F M. . . : .W R

Tκ  (9.94)

whence

 θ σΣ Σ Σ= ≥f VN 0,  (9.95)

along with the surface balance of material forces

 fΣ + =HugoPT 0.  (9.96)

The expression (9.94) has a peculiar form that is a consequence of the work-
ing hypothesis of quasistatic evolution. Had we considered the full dynamic 
case including kinetic energy related to both macro- and micromotions, 
we would have shown that (9.94) would be replaced by the more general 
expression:

 HugoPT = [ ]− −W N T f N M g. . . : ,  (9.97)

where f and g are none other than the physical vector and two-point tensor 
field introduced in components in (9.91). Remarkably enough, although this 
is proved in full dynamics, the kinetic energy is not involved in (9.97).

If we impose the vanishing condition

 HugoPT ≡0,  (9.98)

this would correspond to a nondissipative progressing phase transition if 
VN ≠ 0, hence a phase transition à la Landau.

9.5 Fracture of Solid Polar Materials

Because of the canonical form of most relations, we do not need to give the 
detail of the proof of the following results. Considering a straight-through 
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crack just like in Section 8.4, in the pure homogeneous elasticity of nonlinear 
polar materials, we obtain the driving force acting on the tip of the crack 
in its own direction and the accompanying energy-release rate in the same 
form as (8.26) and (8.27) (cf. Maugin, 1998), that is,

 F P dA
t

P dV
G

1 1 1 1
crack = ( ) + ( )( ) − ∂

∂∫ ∫N b V N. . ,
Γ

 (9.99)

and

 G H dA
t

HdV
G

crack = ( ) + +( ) − ∂
∂ ∫∫ V N N T v N M. . . . . ,ν

Γ
 (9.100)

where it is understood that b, P, and H contain the necessary additional 
micropolar contributions due to kinetic energy, gradients of κ, and rotational 
kinetic energy. The relationship (8.34) will hold true if the micromotion satis-
fies at the crack tip a condition such as (compare to (9.74))

 κ κ= − ∇ +V. R regular term.  (9.101)

There are no difficulties to generalize the expressions (9.99) and (9.100) to the 
inhomogeneous and thermally conducting cases (cf. Maugin, 1998).

In the much simpler case of the quasistatics in small strains and small 
rotation angles, Equation 9.99 provides the generalization of the J-integral as 
(compare to (8.29))

 J WN
X X

dL= − ∂
∂

− ∂
∂





∫ 1

1 1

t
u

m. . ,
φ

Γ
 (9.102)

where t = N.T and m = N.M along the contour Γ, while the Eshelby stress has 
the following quasistatic canonical definition:

 b W u mji ji jk k i jk k i= − −δ σ φ, , ,  (9.103)

where mji are the components of the reduction of M to this linearized case. 
The result (9.102) was obtained quite early by Atkinson and Leppington 
(1974). This J-integral and the corresponding L- and M-integrals were dis-
cussed by Jaric (1978). Lubarda and Markenscoff (2000) rediscovered some 
of these results. Lazar and Maugin in the period 2004–2007 have carefully 
studied the viewpoint of Lie groups and conservation laws for micropolar 
materials and their derivatives in comparison with gradient and so-called 
nonlocal theories.
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9.6 Other Microstructure Modelings

As indicated in Section 9.1, micropolar media constitute but a special case of 
micromorphic continua (according to Eringen’s classification). Readers inter-
ested in a general nonlinear presentation of micromorphic continua may 
consult the original work of Eringen and Suhubi (1964), Eringen’s book (1999), 
and, for the application to plasticity, the works of Sievert (1992), Sansour 
(1998), and Forest (2006). Here we shall limit the presentation to the case of 
small strains and to the examination of the problem of compatibility of gen-
eralized measures of deformation in the presence of defects—which may 
now be dislocations, disclinations, and point defects or microvoids—as well 
as the corresponding expression of the Eshelby stress and the various mate-
rial forces in action in such defective media. To proceed by  comparison, we 
remind the reader of Kroener’s incompatibility theory (1958), already given 
in Section 3.11. There we called βji = ui,j the infinitesimal distortion. In the 
case of incompatibilities due to plasticity, it was noticed that if the total dis-
tortion is compatible by definition, the plastic and elastic distortion are not 
compatible simultaneously, and we had

 β β βij ij
e

ij
p

i ju= + = ,  (9.104)

and

 ε β α ε β αjkl li k ji jkl li k
e

ji j, , ,: , ,= ⇒ = ≠ =0 0 0  (9.105)

where the last equation represents Bianchi’s identity. The density of disloca-
tion was then essentially identified to the torsion of the material manifold. 
This can be compared to the finite-strain formulation in Section 6.4.

9.6.1 Micromorphic Compatible Case

We consider a sufficiently general case but in small strains and quasistatics to 
alleviate the notation. This is the theory of micromorphic media, that is, media 
whose material point itself presents a deforming microstructure, so that a 
six-order tensor ϕij has to be added to the usual three components ui of the 
displacements to fully describe the kinematics of the material (cf. Eringen, 
1999), so that kinematics becomes nine-dimensional. Accounting for the gra-
dients of these yields a large number of generalized deformation measures. 
Then a large number of generalized “internal” forces are necessarily involved 
by duality. Such a theory was developed essentially by Eringen and Suhubi in 
1964, and independently by Mindlin in the same years (e.g. Mindlin, 1964). A 
variational Hamiltonian principle (Maugin, 1970) can be used to formulate the 
theory in the absence of dissipation. The principle of virtual power, however, 



270 Configurational Forces

is the safest tool to construct such a theory without any ambiguity in the 
concepts, the duality between deformation fields and generalized forces, and 
the formulation of natural boundary conditions (cf. Germain, 1973; Maugin, 
1980; Forest, 2006). We note ui,j for the displacement gradient, ϕij for the micro-
deformation tensor and κij = ϕij,k for its gradient. For compatible fields, the rel-
evant infinitesimal deformation measures are the relative deformation (nine 
components) γji (which replaces the classical distortion βji), the microstrain (six 
components) eij, and the microwryness tensor (27 components) κkij such that

 γ φ φ κ φji i j ij ij ji ij kij ij ku e e= − = = =( ), ,, , .  (9.106)

These admit themselves canonical decompositions such as

 γ γ γ γ γδ γij ij ij ij ij ij= + = +( ) ( )[ ] , ,  (9.107)

 e e eij ij ij( ) = +δ ,  (9.108)

 κ δ κ κ κ κ κkij ij k k ij k ij k kii= + + =( )[ ] , : ./3  (9.109)

Each of the measures in (9.106) admits a dual in internal-force space. For 
an elastic solid with volume energy W W eij ij kij= ( )γ κ, , , these are the force 
stress (Cauchy stress) σji, the microstress sji, and the micro-hyperstress μkji 
such that

 σ µ
κji

i j
ji

ij
ij kij

ijk

W
u

s
W
e

s
W= ∂

∂
= ∂
∂

= = ∂
∂,

, , ,  (9.110)

which satisfy jointly the following equilibrium equations at each regular 
material point (cf. Eringen and Suhubi, 1964; Eringen, 1999, in a different 
notation):

Balance of linear (physical) momentum:•	

 σ ji j if, + = 0  (9.111)

Balance of micromotion (here equilibrium form):•	

 µ σkij k ji ji jis l, ,+ − + = 0  (9.112)

where bulk data are the body force fi and the body moment tensor lji. The 
micro-hyperstress μkij naturally admits a decomposition similar to that of κkij, 
that is, in the antisymmetric part, its trace, and its symmetric traceless part:

 µ µ µ δ µkij k ij k ij k ij= + + ( )[ ] .
1
3

 (9.113)
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9.6.2 Micromorphic incompatible Case

In this case the “elastic” parts of the deformation measures γji, eij, and κkij are 
incompatible, which means they are not gradients, and we can introduce the 
total same measures—which, then, are compatible—by (we follow Forest and 
Sievert, 2003; Lazar and Maugin, 2007)

 γ γ γ φji ji
e

ji
p

i j iju: ,,= + = −  (9.114)

 e e eij ij ij
e

ij
p= = +( )φ ,  (9.115)

 κ φ κ κkij ij k kij
e

kij
p= = +, .  (9.116)

Accordingly, the “plastic” parts denoted by a superscript p are not compat-
ible. The total quantities are compatible and, therefore, satisfy the following 
compatibility conditions (cf. Eringen, 1999):

 ε γ κ ε κ κjkl li k kil jkl lin k ij k kije, , ,, ,+( ) = = −0 0 2 −− =κ kji 0.  (9.117)

The “plastic” parts—or the “elastic” parts—will have to fulfill incompatibil-
ity conditions. These will read (e.g., for the “elastic” parts)

 α ε γ κ ε κji jkl li k
e

ilk
e

nji jkl i k
e

kiQ= +( ) =, ln ,, ,Θ jj ij k
e

kji
e

kij
ee= − − −( )2 , ,κ κ  (9.118)

and the nonvanishing objects introduced in the left-hand side of these equa-
tions must be given a geometric interpretation if we want to have at hand a 
generalization of Kroener’s vision of incompatibility. The first of these, just 
like in Kroener’s theory, is the dislocation density tensor, which is identified 
with the linearized version of the Cartan torsion tensor Tijk according to (nine 
independent components)

 α εji jkl iklT= 1
2

 .  (9.119)

The second object introduced in (9.118) can be identified with the (linear-
ized) Riemann–Cartan curvature Rijkl by (27 independent components)

 Θkij kmn ijmnR= 1
2
ε ,  (9.120)

hence it is a curvature tensor. This can also be decomposed in such a way that

 Θ Θ Θ Θ Θ Θkij k ij k ij k ij ijl lk ij i= + = − = −( ) ( )[ ] ,ε ε1
2 kkl jkl ikl jmn klmnRΘ = − 1

4
ε ε .  (9.121)
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The last defined quantity is the disclination density tensor. In effect, it seems nat-
ural in this theory to associate the rotational internal degree of freedom with 
this type of defect (cf. Clauss and Eringen, 1969). As for the geometric quantity 
Θk = Θjjk/3, it is called the Weyl “distance curvature” (Schouten, 1954).

Finally, the third object introduced in (9.118) is the tensor of nonmetricity. The 
last of the equations in (9.118) therefore means that the microstrain eij is non-
metric. The quantity Qk = Qkjj/3 is called the Weyl covector and will describe 
defects of the dilatation type. In all we can say from a differential-geometric 
viewpoint that γij, κkij, and eij are, respectively, a coframe, a connection, and a 
metric. The allied torsion, curvature, and nonmetricity fulfill the following 
Bianchi identities (cf. Schouten, 1954):

First identity:•	

 α ji j ji j, ,= Θ  (9.122)

Second identity:•	

 Θ jin j, = 0  (9.123)

Third identity:•	

 εklm mij l k ijQ , = ( )2Θ  (9.124)

The first of these means that dislocations can interact with both disclinations 
and point defects. The second is just a divergence-free condition. And the 
last shows that one part of the curvature is given in terms of the nonmetricity 
tensor that describes point defects. Of course, this greatly simplifies if there 
are only dislocations present in the material (classical Kroener’s theory).

What about the Eshelby stress? We can write it down at once since its for-
mula is canonical, capturing all gradients of the theory. That is, from the 
energy W W e xji ij kij i= ( , , ; )γ κ  where we envisage a possibility of standard 
material inhomogeneity:

 b W uji ji jk k i ik
p

jkl lk i= − −( ) −δ σ γ µ φ, , .  (9.125)

To evaluate the corresponding configurational-material forces, we must com-
pute the divergence of this Eshelby stress. The result of this lengthy compu-
tation is as follows:

 b fij i j
m

, ,+ =( ) 0  (9.126)

where the material force source is given by

 f f f s Q f uj
m

j
PK

j
M

mn jmn lk kjl
P

i i
( ) ( ) ( )= − − + + −1

2
σ κ ,, ,j ij

P
kl jkl jl f−( ) − +γ κ inh  (9.127)
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where the various contributions are, respectively, the negative of the Peach–
Koehler force in the theory of continuously distributed dislocations (compare 
to Equation 1.83) and the negative of the so-called Mathisson–Papapetrou 
force introduced by Maugin in defect theory by analogy with gravitational 
theories with spin (cf. Maugin, 1993). The contribution of nonmetricity is 
original to micromorphic theory; then there is the convected part of the body 
force changed of sign with a convection effected with an effective distor-
tion; an equivalent term for the body couple follows, and finally the standard 
material inhomogeneity force given by the negative of the explicit gradient 
of W . Here,

 f f fj
PK

jkl kp pl j
M

jkl kmn mnl j
( ) ( )= = =ε σ α ε µ, ,Θ inh −− ∂

∂
W
xj expl

.  (9.128)

9.6.3 Special Cases

Several cases of great interest can be extracted from the general micromor-
phic scheme. These are (in the classification of Eringen, 1999):

 i. Microstretch elasticity: Only dilatational degrees of freedom are 
kept in addition to the rotational and translational ones. Therefore, 
this is both a generalization of micropolar elasticity (Cosserat 
continua) and a special case of the micromorphic elasticity. The 
relevant equations can be deduced from the micromorphic ones 
by setting to zero the shear parts of the microfields. This can be 
represented by directors with stretch and rotation only, and no 
microshear of them.

 ii. Micropolar (Cosserat) elasticity: Only the rotational degrees of free-
dom in addition to the translational ones are kept. This is the most 
popular case. This will obviously raise some interest when dealing 
with defects such as disclinations.

 iii. Dilatation elasticity (also called elasticity with voids; Cowin and 
Nunziato, 1983): Only the dilatation of the microstructure is kept in 
addition to the macrodisplacement. We can easily imagine the inter-
est for this scheme for defects such as microvoids or vacancies.

We briefly examine the last two cases.

 i. Case of micropolar (Cosserat) elasticity (see Lazar and Maugin, 
2007). In this case the equilibrium equations read as follows at any 
regular material point:

 σ ε σji j i ji j ikj kj if m l, ,, ,+ = + + =0 0  (9.129)
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where mji is the moment-stress or couple-stress tensor and li is the body 
 couple. The standard elastic constitutive equations are given by

 σ
γ κ

γ κji
ij

ji
ij

ij ij i
W

m
W

W W x= ∂
∂

= ∂
∂

= ( ), , , ; .  (9.130)

The total fields are considered to be the sum of elastic and plastic parts (elas-
tic parts without superscript e), that is,

 γ γ γ ε φ κ κ κ φji ji
e

ji
p

i j ijk k ji ji
e

ji
p

iu= + = + = + =, ,, jj .  (9.131)

The total fields satisfy compatibility conditions (Eringen, 1999) such as

 ε γ ε κ ε κjkl li k ikm lm jkl li k, ,, .+( ) = =0 0  (9.132)

The incompatibility conditions then read (we write them for the elastic parts)

 α ε γ ε κ ε κji jkl li k
e

ikm lm
e

ji jkl li k
e= +( ) =, ,, .Θ  (9.133)

The Bianchi identities for such micropolar media are obtained by differenti-
ating these equations, yielding the result of Clauss and Eringen (1969):

 α εji j imk km, .= Θ  (9.134)

The canonical writing of the Eshelby stress produces the following formula 
in the incompatible case:

 b W mji ji jk ik jk ik= − −δ σ γ κ  (9.135)

and in the compatible case:

 b W u mji ji jk k i jk k i= − −δ σ φ, , .  (9.136)

The last formula corresponds to the result known from repeated studies 
(Jaric, 1978; Atkinson and Leppington, 1974; Lubarda and Markenscoff, 2000; 
and Maugin, 1998, for finite strains and rotations). Computing the diver-
gence of the Eshelby stress in the incompatible case, we find Equation 9.126 
but with

 f f f f lj
m

j j jki lk il
p

i ji
( ) ( ) ( )= − − + − −PK discl ε σ κ γ ii ji jfκ + inh ,  (9.137)
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with

 f f m fj jkl ki il j jkl ki il j
PK discl in( ) ( )= =ε σ α ε, ,Θ hh

expl

= − ∂
∂
W
xj

,  (9.138)

  in which we recognize the Peach–Koehler force, an analogous force 
acting on the disclination density, and the pure inhomogeneity force. 
In the compatible case (9.139) reduces to

 f f u l fj
m

i i j i i j j
inh( ) = − − +, , .φ  (9.139)

 ii. Case of dilatation elasticity (see Lazar and Maugin, 2007). In this 
case the equilibrium equations at each regular material point are 
reduced to

 σ µ σji j i k kf s l, ,, ,+ = + − + =0 0  (9.140)

  along with the constitutive equations

 σ
γ

σ
φ

µ
κ

γ φ κji
ji

k
k

ji k i
W

s
W W

W W x= ∂
∂

− = ∂
∂

= ∂
∂

=, , , , , ;(( ).  (9.141)

  In the presence of incompatibilities, the total fields are given by

 γ φδ γ γ φ κ κ κji i j ij ij
e

ji
p e p

k k
e

ku e e e= − = + = + = = +, , , pp
k= φ, .  (9.142)

  The compatibility conditions for these total fields read

 ε γ δ κ ε κ κjkl li k il k jkl l k k ke, , ,, , .−( ) = = − + =0 0 0  (9.143)

  The incompatibility conditions (here written for the elastic parts) read

 α ε γ δ κ ε κji jkl li k
e

il k
e

j jkl l k
e

kQ e= −( ) = =, , ,, ,Θ 2 kk
e

k
e−( )κ ,  (9.144)

  and the Bianchi identities are given by

 α εji j i k k klm m l kQ, , ,, , .= = =Θ Θ Θ0 2  (9.145)

  Finally, in presence of incompatibilities, the Eshelby stress is given by

 b Wji ji jk ik j i= − −δ σ γ µ κ ,  (9.146)
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  and the material force source in the equilibrium version of the con-
servation of material momentum is given by

 f f f sQ f lj
m

j j j jl l
p

i ji j
( ) ( ) ( )= − − + + − −PK PD 1

2
σ κ γ κ ++ f j

inh ,  (9.147)

  where

 f f f
W

j jkl ki il j jkl k l j
PK PD inh( ) ( )= = = − ∂ε σ α ε µ, ,Θ

∂∂xi expl

,  (9.148)

  are, respectively, the Peach–Koehler force, the material force acting 
on point defects/microvoids (see also Appendix 9.2) and the material 
force of pure inhomogeneity. In the compatible case, (9.146) reduces 
to

 b W uji ji jk k i j i= − −δ σ µ φ, , .  (9.149)

This, of course, is nothing but the tensor defined in (9.103).
This concludes our excursion into the world of material and configura-

tional forces, originally discovered by J.D. Eshelby, in relation to the theory 
of defects and the generalization of Kroener’s geometric incompatibility 
theory to modern theories of complex continua. The reader familiar with 
modern gauge theories of gravitation will have identified some analogy 
between the present developments in their geometric background and those 
in gauge theory. For the case of plasticity, distributed dislocations, and the 
corresponding Peach–Koehler force, we recommend the works of Lazar 
(2000, 2002) in a modern geometric framework. The recent work of Lazar 
and Anastasiadis (2006) seems to bring a final answer in the case of a linear 
theory (quadratic energies).

Appendix A9.1: Liquid Crystals

Liquid crystals (cf. de Gennes, 1974) partake of two visions, as they may 
flow, exhibiting thus a fluid-like property, but also present a tendency to 
ordering that is akin to a solid-crystal-like property, for example, in their 
so-called nematic phase. This ordering may present “defects,” such as dis-
clinations. The natural question therefore arises of the “motion” of such 
defects and, by the duality inherent in mechanics, of associated configura-
tional forces. But in most of this book these forces are dealt with in refer-
ence configurations, while a standard property of many fluids is to possess 
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no such privileged configuration; most fluids respond instantaneously to 
external loading, sometimes with a type of delay related to viscosity, but 
they usually forget any initial configuration. In addition, liquid crystals 
are more elastic fluids than usual fluids, and, compared to classical perfect 
fluids that are Eulerian in nature (that is, present at most a pressure at 
equilibrium), liquid crystals are not Eulerian fluids, presenting most of the 
time a nonisotropic structure, even at rest. Of course, it is not forbidden to 
formulate fluid mechanics, say, in Lagrangian coordinates, but this is sel-
dom used except in some astrophysics and explosion problems. The aniso-
tropic characteristic of liquid crystals is best represented at a mesoscopic 
level by a field of unit directions n(x, t), a so-called director field, which 
represents a kind of average direction of a bunch of elongated particles. 
An accepted kinematic representation therefore consists in considering at 
each point (placement) of a fluid x in its actual configuration Kt the field 
n(x, t), hence two additional degrees of freedom if the vector n is normal-
ized to unity. Accordingly, during the process of flow and deformation, the 
point of application of n is displaced and n can at most rotate. If a reference 
configuration KR is introduced with some arbitrariness, with initial vector 
director field of component NK, the components of n are related to the NK by 
a rotation, hence an orthogonal transformation, that is

 n Ni
K
i K= κ .  (A9.1)

Accordingly, liquid crystals of this type are true Cosserat or micropolar con-
tinua. A consistent theory basing on this remark (and the use of κ) can be 
expanded (cf. Eringen, 2001). But to exhibit something quite different from 
the contents of the present chapter, we consider here the kinematic descrip-
tion given by the couple {x, n(x, t)} or, with a parametrization of the solid 
type,

 x X n n X= ( ) = ( ){ }χ , , , .t t  (A9.2)

and

 X x n n x= ( ) = ( ){ }−χ 1 , , ˆ , .t t  (A9.3)

These two parametrizations provide the basis for several variational formu-
lations in which we emphasize the quasistatic case. The following energies 
may be considered, noting that the fluid nature of a liquid crystal is reflected 
in the fact that energy will depend on the direct or inverse deformation gra-
dient only through the density:

 W W JR R Fρ ρ ρ, , , , ,n n F n n∇( ) = ∇( ) = −as 0
1  (A9.4)
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 w w J
F

ρ ρ ρ, , ˆ , , ˆ ,n n F n n∇( ) = ∇( ) =−
−

1
0 1as  (A9.5)

 W W R
T= ∇( ) ∇ = ∇ˆ , , ˆ . ˆ ,F n n n F nas  (A9.6)

 w w R
T

R= ∇( ) ∇ = ∇− −ˆ , , ˆ . ,F n n n F n1 as  (A9.7)

and also

 φ ρ ρ, , ˆ .n n∇( ) = w/  (A9.8)

Here, W, W , and Ŵ  are per unit volume in the reference configuration while 
w, w , and ŵ  are per unit volume of the actual configuration, and ϕ is more 
traditionally per unit mass of the actual configuration. Following Maugin 
and Trimarco (1995), in the absence of body forces and couples, we can state 
the following natural variational formulations for the hydrostatics of nematic 
liquid crystals:

 δ δX

V

x

V

WdV wdv

R

∫ ∫= =0 0, .  (A9.9)

These are natural in the sense that the variation may commute with the inte-
gral sign and the arguments of the integrand are expressed in terms of the 
appropriate space–time parametrization. Stranger (unnatural) variational 
formulations are given by

 δ δX

V

x

V

wdv WdV

R

∫ ∫= =0 0, .  (A9.10)

Only the first in (A9.9) is commonly considered. It is of interest to note some 
intermediary results, for example,

 δ δ δ χX X X
T∇( ) = ∇( ) − ∇( )( ) ∇n n n. ,  (A9.11)

 δ ρ ρ δ χ ρ δX
T

R X X= − ∇ ( ) =− −F F F. .1  (A9.12)

From the first of (A9.9), one obtains the following Euler–Lagrange equations:

 divR
W

T 0
n

0= ≡ − =, ,Γ δ
δ

 (A9.13)
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with
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F n n n
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= ∂
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, : ;
δ
δ

div  (A9.14)

while from the second of (A9.9) we obtain

 divT 0
n

0= ≡ − =, ,γ δ
δ

w  (A9.15)

with

 T
F n n n

= ∂
∂

= ∂
∂

− ∂
∂ ∇( )





−

w w w w
1

, :
ˆ

,
δ
δ

div  (A9.16)

respectively, at regular points X and x related by the static relation x = χ(X). 
But we note that in truth W depends on F only through JF in order to respect 
the fluidic nature of the medium. Furthermore, in most, if not all, cases, liq-
uid crystals are incompressible, but we discard this constraint for the sake of 
illustration. Therefore,

 T F= − ≡ ∂
∂

−p p
W1, .ρ
ρ

 (A9.17)

In like manner,

 T F= − = ∂
∂

π π ρ
ρ

, .
w

 (A9.18)

Here, both T and T have the perfect-fluid nature in that they are just propor-
tional to the appropriate “unit” tensor in their respective algebra, that is, F–1 
and F. Thus the fact that the nematic liquid crystal is an oriented fluid that 
does not obey Euler’s hydrostatics at rest is not transparent in these “natu-
ral” variational formulations. Had we considered the energies Ŵ  and ŵ , we 
would have obtained more complex expressions for T and T . We let the 
reader show that then (cf. Maugin and Trimarco, 1995)

 T F 1
n

n= − − ∂
∂ ∇( ) ∇( )








= ∂
∂

−1. ˆ
ˆ

ˆ
. ˆ , ˆ

ˆ
p

W
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WT ρ
ρ

..  (A9.19)

But this hints at looking for the (purely spatial) Cauchy stress as

 σ ρ
ρ

= = − ∂
∂

− ∂
∂ ∇( ) ∇( )− − −J J

W
J

W
F F F

T1 1 1F T 1
n

n.
ˆ ˆ

ˆ
. ˆ ,,  (A9.20)



280 Configurational Forces

but since w W/ /ρ ρ= ˆ
0 , we have ˆ ˆ , , ˆW = ∇( )ρ φ ρ0 n n , and thus

 σ ρ φ ρ φ
ρ

= − − ∂
∂ ∇( ) ∇( ) = ∂

∂
p p

T
1

n
n

ˆ
. ˆ , ,2  (A9.21)

or

 σ ρ
ρ

= − ∂
∂

−





− ∂
∂ ∇( ) ∇( )w

w
w T

1
n

n
ˆ

. ˆ .  (A9.22)

By the same token the first of (A9.13) yields

 divσ = 0.  (A9.23)

This is the “Eulerian” equilibrium equation of a “non-Eulerian” fluid. 
Equations A9.22 and A9.23 are precisely the recognized expressions of the 
Cauchy stress in the Ericksen–Leslie (and Oseen–Frank) theory of nonvis-
cous nematic liquid crystals. The stress tensor in (A9.21) or (A9.22) is some-
times referred to as the Ericksen tensor in liquid crystals.

Now we let the reader check by a dual computation to the previous one 
that if one defines a completely material tensor b by

 b F T: . ,= −JF
1  (A9.24)

then it satisfies the conservation law

 divR b 0= .  (A9.25)

The computation shows that (cf. Maugin and Trimarco, 1995)

 b 1
n

n= − ∂
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− ∂
∂ ∇( ) ∇( )W

W W
R

R
R
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. ,  (A9.26)

or

 b 1
F

F
n

n= − ∂
∂

− ∂
∂ ∇( ) ∇( )W

W W
R

R
R

T
. . .  (A9.27)

Thus b is none other than the canonical (material) stress tensor, or Eshelby 
stress for nondissipative nematic liquid crystals.

We can sum up the “natural” variational formulations in the accompa-
nying flowchart (Figure A9.1). The upper left and lower right formulations 
are just these two formulations; the lower left and upper right formulations 
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are those that would follow directly from the variational expressions (A9.10). 
Of course, because of the identification of (A9.25) and (A9.27), another way 
to obtain these equations, perhaps an equivalent but purely spatial one, is 
to apply Noether’s theorem to the preceding formulations. In particular, 
Noether’s identity here takes one of the following two forms:

 div divR RT F b 0( ) + =.  (A9.28)

and

 div divT F 0( ) + =−. .1 σ  (A9.29)

Then it is found through this canonical way that b is indeed given by (A9.27) 
or (A9.26), while (A9.21) or (A9.22) is obtained in the form

 divσ σ= = − ∂
∂

− ∂
∂ ∇( ) ∇( )−

−0 1
F

F
n

n, .
ˆ

. ˆ .W
W W T

1
1  (A9.30)

In the dynamic case, W is replaced by –L. The inertia of the microstructure 
here is reduced to a single scalar I so that we have the following two essen-
tial Lagrangian densities depending on whether we use a direct- or inverse-
motion description:

 L I W R= +( ) − ∇( )1
2 0

2 2ρ v n F n n , , ,  (A9.31)

or

 J L I wF
− −= +( ) − ∇( )1 2 11

2
ρ V C V n F n n. . , , ˆ .  (A9.32)

Γ= 0Γ= 0

divR b = 0divR T = 0

divσ = 0

V
δx ∫

wdv = 0

V
R

δX ∫
wdv = 0

γ = 0 γ = 0

div T = 0

Figure A9.1
Flowchart of the basic quasistatic equations of nematic liquid crystals. (Adapted from Maugin, 
G.A., and Trimarco, C., Int. J. Eng. Sci., 33, 1663–78, 1995.)
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Then we obtain the dynamic equations

 
∂
∂
( ) − = ∂

∂
( ) − =

t t
I

X
R

X

ρ ρ0 0v T 0 n 0div , , Γ  (A9.33)

while the conservation of canonical momentum is given by

 
∂
∂

− = = − + ∇( )( )
t

I
X

R RP b 0 P v F n ntot totdiv , . . ,ρ0   (A9.34)

where the expression of T has been given before and, in that for b, W is 
replaced by –L. Here we have another example where the canonical momen-
tum includes all inertial effects, including those of the microstructure.

REM A R k ON T HE C ASE OF LIQU ID C RySTALS

The example just presented is not gratuitous. It illustrates the ambiguity 
that may exist between the notions of Cauchy stress and Eshelby-like stress 
depending on the energy chosen and its specific arguments. The confu-
sion is such that even sharp observers of the physical scene (Kroener, 1993; 
Nabarro, 1986, 1987; and Eshelby, 1980, himself) were at a loss with the 
case of liquid crystals in which, logically, there is no reference configura-
tion such as in elastic solids. Here we obtained an answer by consider-
ing artificially a reference configuration and introducing a dependence on 
the density, an often nonrealistic hypothesis. This allowed us to exhibit 
the primitive, but enlightening, expressions (A9.17) and (A9.18) that the 
Ericksen tensor, although basically a Cauchy stress, is an Eshelby-like ten-
sor from a different viewpoint. The fact that both Cauchy and Eshelby for-
mats may be introduced even in solid mechanics was emphasized in the 
works of Steinmann and coworkers, while liquid crystals illustrate this fact 
by their very nature. Of course, this is a mark of both the richness of and 
the difficulty in dealing with the notion of force. From general definitions, 
physical forces are those quantities that contribute to the motion or equi-
librium equations whose components are in the physical framework. As a 
consequence, the physical (Newtonian) surface force associated with the 
static balance law on the left-hand side in the flowchart in Figure A9.1 is 
indeed given by the surface integral of the Cauchy–Ericksen tensor; that is, 
when no field singularity contained within S hinders the application of the 
Green–Gauss theorem,

 F n n n
n

S da
W

W
W

S S S( ) = = − ∂
∂

−





+ ∂
∂ ∇( ) ∇. .

ˆ
. ˆσ ρ

ρ
nn( )






∫∫ T

SS

da,  (A9.35)

where nS is the unit outward to S in Kt.
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But the total material or configurational surface force associated with the 
static balance of canonical momentum is given by the surface integral, in 
material space, of the Eshelby stress tensor; that is, again in the absence of 
singularities within the integration domain,

 F N b N N
n

S dA
W

W
W

R S

S

S S
R

R

( ) = = − ∂
∂

−





+ ∂
∂ ∇(∫ . .ρ

ρ )) ∇( )





∫ . ˆ .R

T

S

dA

R

n  (A9.36)

The expressions (A9.35) and (A9.36) are formally identical, although, in gen-
eral, not “taking place in the same space.” But then the question arises of the 
existence and introduction of a reference configuration. Any configuration 
that preserves the volume is as good as another one to serve as a reference. 
In particular, the actual configuration itself is often considered as an instan-
taneously re-actualized reference configuration. With such a picture in mind 
Equations A9.35 and A9.36 become not only formally but also physically identi-
cal, and one is entitled to say that Ericksen’s tensor and Eshelby’s tensor (for 
nematic liquid crystals) are one, and only one, concept.

Appendix A9.2: Material Force Acting on a Center of Dilatation

In the preceding, point defects are associated with the microstructure of a 
nonclassical continuum, that is, through an additional degree of freedom of 
the dilatation type. But one can also express the configurational force acting 
on such a defect in the classical continuum mechanics framework but in the 
presence of an anelastic strain related to the dilatation effect. Thus, in small 
strains, we can write

 ε ε ε ε α δ= + = ∇( ) = −( )e a
S

au 1 x x, ,0  (A9.37)

and

 b 1 u= ( ) − ∇( ) = ∂ ∂W We T eε σ σ ε. , ./  (A9.38)

Here, the scalar α denotes the strength of the center of dilatation (that cre-
ates an obviously incompatible isotropic strain whose center is located at x0). 
The case α > 0 represents indeed a center of dilatation (e.g., a foreign atom in 
the discrete vision), and α < 0 might be called a center of contraction (e.g., 
a vacancy in the discrete vision). The inhomogeneity force acting on this is 
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obtained by the formula (equilibrium in material space in the absence of 
other effects than elasticity):

 F F binh PD div= = − ( )( ) ∫B
dV ,  (A9.39)

where B is a material volume enclosing the center of dilatation (or point 
defect). Applying (A9.38), we have

 b u uji j pq pq i
e

jk j k i jk k ij, , , , , ,= − −σ ε σ σ

where we can exploit (A.9.37), the equilibrium equation in physical space 
(σjk,i = 0) and the symmetry of the Cauchy stress to change the order of indi-
ces in the spatial derivatives, obtaining thus

 b trji j i, ,
.= ( ) −( )( )α σ δ x x0  (A9.40)

Finally, by integration this yields

 F x f
x x

PD PD( ) ( )
=( ) = = − ∇( )0

0
α σtr .  (A9.41)

If V is the material velocity of this defect, then the associated dissipation is 
given by

 D = ≥( )f VPD . .0  (A9.42)

Accordingly, such a point defect with positive α (foreign atom) will try to 
migrate toward regions where the hydrostatic pressure (trace of the stress) 
is high. Obviously, then, a vacancy will have a tendency to move toward a 
region of low hydrostatic pressure.

If, in addition to this, the singular point x0 has attached to it a foreign elec-
tric charge β so that we have a charge density qf = βδ(x – x0), then it is easily 
shown that a term

 − ∇
=

β ϕ
x x0

,  (A9.43)

where φ is the electrostatic potential, will be added to the right-hand side 
of (A9.41). This force has the classical form of an electric force acting on a 
charge in an electric field E = –∇φ (cf. Section 11.1). This has been exploited 
by R. Mueller et al. in examining the influence of foreign atoms in electro-
deformable crystals (Schrade et al., 2007a, 2007b).
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10
Systems with Mass Changes 
and/or Diffusion

Object of the Chapter

Where we discover that volumetric growth is governed by an Eshelby-like 
stress tensor and that binary mixtures of solid and fluid constituents also 
belong in the Eshelbian view of the material to the posthumous satisfac-
tion of both J.D. Eshelby and M. Biot—of porous media fame—while the 
Eshelby stress is a natural tensorial generalization of the notion of chemical 
potential.

10.1 Introduction

Systems with variable mass have always been the object of conceptual dif-
ficulties. Of course, Newton’s equation of balance of linear momentum for a 
point particle, written as

 
d
dt

m x F( ) = ,  (10.1)

contains the potentiality of a time-varying mass m. This has the effect that 
(10.1) is also valid in special relativity with a well-known formula for the 
varying mass in terms of the velocity. In Chapter 12 we shall uncover other 
examples of point mechanics with a more complicated or an unusual for-
mula for mass-versus-velocity when some steadily propagating nonlinear 
waves are reinterpreted as quasiparticles. But here we are more interested in 
cases that are more akin to the “rocket problem” translated to a continuum, 
in which one species, or the continuum itself, can modify its mass even in its 
reference configuration. We have alluded to this in Chapter 5 when we spoke 
of the growth phenomenon. That is, we may be concerned with a single con-
tinuum with a mass balance law (in a reference configuration) written as
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∂
∂

( ) ≠
t

tρ0 0X
X

, .  (10.2)

A nonvanishing right-hand side in this equation suggests that some exter-
nal source is present such as occurs in biological growth where nutriments 
provide this source. More classically for most readers, the theory of so-called 
mixtures provides a modeling of the same type but for each of the constitu-
ents. For example, in a mixture of fluids, with the classical Eulerian represen-
tation, we have equations of mass balance written as

 
∂
∂

+ ∇





+ ∇( ) = ≠
t

mv vα α α α αρ ρ. . ,0  (10.3)

where subscript α = 1, 2, ..., n labels specifically the constituents. As com-
pared to (10.2), when the velocity of the global mixture is defined for the cen-
troid (the center of mass), the global mixture has a mass balance law without 
a source term in the right-hand side, because it is assumed that there is no net 
production or consumption of mass, viz.

 m
n

α
α=
∑ =

1

0.  (10.4)

While in (10.2) the mass exchange takes place with the outside (the system is 
thermodynamically open), in the case of (10.3) and (10.4) these exchanges occur 
only between constituents, sometimes called species. While (10.2) does not at 
first bring conceptual problems, the concepts underlying the formulation in 
(10.3) and (10.4) remain a difficult and debated subject matter. The essential 
reason for this is that some basic working hypothesis of continuum physics 
is readily overthrown. This is posed by the assumed possible simultaneous 
presence of various species (in different amounts) at the same physical point 
while different species a priori belong to different material manifolds! This 
matter is of special importance in the framework of this book, which places a 
strong emphasis on material configurations. This will be treated with caution. 
But to remind the reader of other difficulties, one may mention the evident 
difficulty presented by the definition of some thermodynamic quantities such 
as temperature and internal energy. Should these be defined for the whole 
mixture or for each species, and then how does one pass from the latter to the 
former? For a discussion of these questions we recommend the fundamental 
works of Bowen (1967, 1976) and the book of Rajagopal and Tao (1995) after the 
fundamental contribution of Truesdell revisited in Truesdell (1984).

There is an additional ingredient that means that systems with mass 
exchange have their due place in this book. Classically, in fluids one intro-
duces Gibbs free enthalpy as the quantity
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 h p p= + ( ) = +ψ ρ ψ τ/ ,  (10.5)

where p is the thermodynamic pressure and τ is the specific volume. This 
is the relevant scalar thermodynamic potential in many discussions related 
to phase changes in fluids. In previous chapters we have introduced the 
Eshelby stress tensor. If we write it for a perfect fluid of pressure p and dis-
card inertia, considering the actual configuration as a reference one, the said 
tensor yields

 b W p hi
j

i
j

k
j

i
k

i
j

. ( ) .= − − =δ δ δ ρ δ  (10.6)

It is thus a tensorial generalization of the notion of Gibbs free energy. This 
was remarked by several authors (Bowen, 1976; Grinfeld, 1991; Müller, 1999; 
Buratti et al., 2003) so that the Eshelby stress was even referred to as the chem-
ical tensor (Truskinovskii, 1983). No wonder that the Eshelby stress plays such 
a predominant role in the study of phase transitions in deformable solids. 
Herein after we shall examine how this tensor appears naturally when con-
sidering cases governed by equations such as (10.2) or (10.3), often limiting the 
second case of mixtures to that of binary mixtures for the sake of example.

10.2 Volumetric Growth

Here we are concerned with the growth of bodies in the bulk. We must under-
stand precisely what this means. In classical continuum mechanics we con-
sider that the set of “material particles” composing a given body does not 
vary. These “particles” are neither annihilated nor created ex nihilo. Growing 
or shrinking bodies are not so. One may think of volumetric growth as the 
local structural rearrangement that consists in pushing in more material 
particles of the same type at a given material point. These are not foreign 
ones. They look just the same as those previously there. The result of this 
is a change in the matter density in the reference configuration as stated in 
(10.2). The biological processes by which many tissues grow or shrink are 
of this type when examined at a phenomenological level. This is more dif-
ficult to figure out than the growth of material bodies by accretion or degrada-
tion at their surfaces. The first process, accretion, can occur through crystal 
growth, spray deposition, casting solidification, or filament winding. The 
second takes place when corrosion, wear, ablation, erosion, or decay occurs. 
Accretion of deformable bodies has been analyzed and modeled in several 
more or less successful attempts, for example, by the Arutyunyan school 
(Arutyunyan et al., 1987; Arutyunyan and Naumov, 1993; Naumov, 1994; 
Naumov et al., 1995) or by Gurtin (see the appropriate chapters in Gurtin, 
1999). Wear has been studied by Dragon-Luiset (2001). Gurtin and Dragon-
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Luiset show that accretion and wear have as their driving force the Eshelby 
stress or something close to it (normal jump, tangential component, Mandel 
stress). Cherepanov (1987), with his usual insight, has clearly perceived that 
accretion and ablation (e.g., during machine tooling) fit in the paradigm of 
Eshelbian mechanics (but he does not use this wording).

The present section does not consider accretion or surface growth. It 
focuses on volumetric growth in the spirit of works by Takamizawa and 
Matsuda (1990), Rodriguez et al. (1994), Taber (1995), Epstein and Maugin 
(1999, 2000a, 2000b), Klisch and Hoger (2001), Kuhl et al. (2003), Kuhl and 
Steinmann (2003a, 2003b, 2003c), Kuhl (2004), Imatani and Maugin (2001a, 
2001b, 2002), Di Carlo (2004), Di Carlo and Quiligotti (2002), and Quiligotti 
(2002). We will follow essentially Epstein and Maugin (2000b) but with diffu-
sion neglected. We have, therefore, the following basic equations:

Balance of mass:

 
d
dt

t dV dV
B BR R

ρ0 X, ,( ) =∫ ∫ Π  (10.7)

Balance of linear (physical) momentum:

 
d
dt

dV dV dAR
B BBR RR

p f f N T∫ ∫∫= +( ) +
∂

0 Π . ,  (10.8)

where f0 is the external body force per unit reference volume, and f∏ is a 
source term due to the fact that (10.7) contains a mass source term in its right-
hand side because of volumetric growth. The Cauchy argument has already 
been used, and T is none other than the first Piola–Kirchhoff stress, while 
pR = ρ0v. Localization of (10.7) yields (10.2) in the form

 
∂
∂

= ( )
t

tρ0
X

XΠ , ,  (10.9)

while localization of (10.8) yields

 
∂
∂

= + +
t R Rp f f T

X

0 Π div .  (10.10)

This allows us to identify

 f vΠ Π= ,  (10.11)
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since by expanding the left-hand side of (10.10) on account of (10.9), we must 
recover the balance of linear momentum for a classical continuum.

The balance of angular momentum does not bring anything new (no new 
concept) and simply yields the symmetry of T with respect to F, that is, 
(cf. (2.88))

 F T T F. . .= T T  (10.12)

The writing down of the laws of thermodynamics requires a bit more cau-
tion. However, on account of (10.10), we can write these two laws in global 
form as

 

d
dt

K E dV h K E E
BR

+( ) = +( ) + +( ) +



∫ f v0

0 0
0

. ρ
ρ
Π Π ddV

dA

B

E
B

R

R

∫
∫+ + −( )
∂

N T v M Q. .  (10.13)

and

 
d
dt

SdV h S dV
B

E
R
∫ ≥ +( ) +





− (− −θ ρ
ρ

θ1
0 0

0

1Π Π
N Q. ))

∂∫∫ BB RR

dA.  (10.14)

In these equations,

 K E e S= = =1
2 0

2
0 0ρ ρ ρ ηv , , ,

while e, η, h0, and Q have their usual meaning, and we have introduced irre-
versible volume and surface contributions to the internal energy, ∏E and ME, 
for the sake of generality since we would obviously be tempted to do so a 
priori (this is a line to be pursued further). However, these shall be put equal 
to zero in the sequel since we do not envisage chemical processes in the bulk 
and surface accretion or influx of matter at the surface. On account of this, 
the localization of (10.13) and (10.14) yields the equations

 ρ ρ0 0 0e hR
T

R= ∇( )( ) − ∇ +tr T v Q. . ,  (10.15)

and

 ρ η θ ρ θ0
1

0 0
1 ≥ − ∇ ( )− −h R . ,Q  (10.16)
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that is, the standard equations! But if we use the volume densities of 
internal energy and entropy, these will take the following more interest-
ing forms

 
∂
∂

= ∇( )( ) + + − ∇
t

E E hR
T

R
X

T v Qtr . . ,
Π
ρ

ρ
0

0 0  (10.17)

and

 
∂
∂

≥ − ∇( ) + + ∇− −

t
S h SR R

X

Q Qθ ρ
ρ

θ θ1
0 0

0

2. . .
Π

 (10.18)

Introducing the free energy W per unit reference volume by W = E – θS, we 
can also write (10.17) in the following “canonical form” (compare to (5.8) in 
Chapter 5):

 
∂
∂
( ) + ∇ = + +

t
S h h hR

gθ
X

Q. int ext  (10.19)

and (10.18) in the form of the Clausius–Duhem inequality:

 − +( ) + ( ) + − ∇ ≥−  W S W Rθ
ρ

θ θtr T F Q. . ,
Π

0

1 0  (10.20)

where we have defined the following sources of energy:

 h
W
t

h W S h hgint ext: . , : ,= ( ) − ∂
∂

= +( ) =tr T F
X

 Π
ρ

θ ρ
0

0 00 ,  (10.21)

of which the second is related to volumetric growth. Remarkably enough, 
(10.20) can also be rewritten as

 − +( ) + ( ) − ∇ ≥−ρ ψ ηθ θ θ0
1 0  tr T F Q. . .R  (10.22)

This means that both local equations (10.15) and (10.22) read in their usual 
form if we use energies and entropies per unit mass in spite of the growth 
equation (10.9). Had we considered some possible diffusion in the right-hand 
side of (10.7), we would have obtained more complicated equations for the 
first and second laws (see Epstein and Maugin, 2000b).
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It remains to establish the equation governing the canonical momentum 
(here a purely mechanical one). With

 K = =1
2

1
20

2
0ρ ρv V C V. . ,  (10.23)

where V = –F–1.v is the material velocity and C = FT.F, we have

 p
v

v P
V

C V p FR R
K K= ∂
∂

= = ∂
∂

= = −ρ ρ0 0, . . .  (10.24)

We let the reader check by way of exercise that the material momentum P 
satisfies the following fully material balance law at any regular material 
point X in the body BR (see previous chapters and Epstein and Maugin, 
2000b):

 
∂
∂

− = + + +
t R

gP b f f f f
X

div int ext inh ,  (10.25)

where we have defined the following material forces:

 f T F
X

f f F fint

impl

ext inh= ∇( )( ) − ∂
∂

= − =tr . , . ,R
T W 0 ∂∂

∂
=L g

th

explX
f V, ,Π

(10.26)

together with

 b 1 T.F X= − +( ) = − ( )L L K W tR
th th, ...; , .  (10.27)

For a thermoelastic material we would take

 W W t t= ( ) = ( ) ( )F X X F X, ; , , , ; .θ ρ ψ θ0  (10.28)

and a now-classical reasoning applied to (10.22) would deliver the constitu-
tive equations

 T
F

= ∂
∂

= − ∂
∂

ρ ψ η ψ
θ0 , .  (10.29)
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And computing fint we find that (10.25) takes on the following form:

 
∂
∂

− = + + + = ∇P
b f f f f f

Xt
SR

g
Rdiv th ext inh th, : .θ  (10.30)

10.3 First-Order Constitutive Theory of Growth

We develop the theory within the context of an underlying thermoelastic 
model although the behavior may include rather general anelastic effects. 
Since growth is considered here as a local rearrangement of matter, although 
a special one, we can exploit the notions introduced in Chapter 6, in particu-
lar that of the reference crystal with respect to which the material behaves 
elastically. More precisely, this is a fixed reference in space with supposedly 
undistorted stress-free configuration, that is, what is usually called a natural 
state. This is not the reference configuration of the body, noted KR, but just an 
undistorted spatial configuration of a material point. Constitutive equations 
for so-called simple materials (involving only the first gradient of the direct 
motion, hence the terminology of first-order constitutive theory) are always 
given in this way, namely, locally. This provides a hint for our formulation. 
Indeed, we shall note Ec, Wc, and Sc the internal energy, free energy, and 
entropy per unit volume of the reference crystal (local configuration noted Kc). 
A heat-conducting thermoelastic material point abides by constitutive laws 
of the general type

 
T T F H Q Q F H

F H

c c c c c c c c

c c c cW W

= ( ) = ( )
= (

, , , , , ,

, ,

θ θ

θ )) = ( ), , , ,S Sc c c cF Hθ
 (10.31)

and thus

 E W S Ec c c c c c= + = ( )θ θF H, , .  (10.32)

Here Fc represents the deformation gradient with respect to Kc, and Hc is the 
gradient of temperature with respect to Kc, that is, the pull back to that local 
configuration of the spatial temperature gradient ∇θ. The reference crystal is 
at a fixed density ρc corresponding to some reference temperature θc. There 
is no growth phenomenon in the reference crystal as the infinitesimal die 
called the reference crystal behaves as a perfectly thermoelastic material. In 
contrast, the role of the global reference configuration KR is just to keep track 
of the moving body points throughout the motion x = χ(X, t), giving rise to 
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the (integrable) motion gradient F. To formulate the behavior translated in 
(10.31) we must, at each material point X, apply a linear transplant, noted 
k(X), from the reference crystal to the tangent neighborhood of X such that 
we have the composition

 F Fkc = ,  (10.33)

is the appropriate entity to be used in Equations 10.31 and 10.32. Of course, 
we are just doing the same as in Section 6.3 using a more “surgical” wording. 
Furthermore, if we follow the notion of pseudo-inhomogeneitiy and pseudo-
plastic effects (cf. Maugin, 2003), we can introduce a growth gradient (not a 
true gradient) Fg such that k F= −

g
1  and (10.33) is none other than a standard 

multiplicative decomposition of an anelastic total deformation since, Fc being 
elastic,

 F F F= e g .  (10.34)

Of course, Fg or its inverse k must have specific properties to be strictly asso-
ciated with the growth phenomenon. First we note the inhomogeneity veloc-
ity gradient in the reference configuration KR by

 L k k F F
X

K g gt
: . . .

.

= = ∂
∂ ( )− − 1 1  (10.35)

Because ρc is fixed, computing the time derivative of the reference density 
ρ0, we obtain

 
∂
∂

= ∂
∂






= −−

t t
Jc K Kρ ρ ρ0

1
0

X

Ltr ,  (10.36)

since

 ρ ρ0
1= −

c KJ .  (10.37)

On comparing (10.9) and (10.36), we deduce that in the present theory

 Π = −ρ0 trLK .  (10.38)

This means that no separate time evolution needs to be given for the volumet-
ric source ∏ if we know the time evolution of the transplant k. Furthermore, 
the time evolution of the determinant of k, JK = det k, tells us whether there 
is actually growth (negative time derivative) or resorption (positive time 
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derivative). Accordingly, growth occurs at time t for negative trLK , while JK 
itself is a measure of accumulated growth from the time origin. If k is non-
spherical, then there is a rotation and/or a distortion in addition to growth 
or resorption.

Finally, the phenomenon of growth is associated with dissipation. This is 
shown as follows while uncovering the driving force behind growth. With 
(10.31) as the starting point and exploiting the Clausius–Duhem inequality in 
the usual manner, we obtain that

 
∂
∂

= = − ∂
∂

= ∂
∂

= ( )W
S

W W
W W t

H
0 T

F
F k X, , , , , ; , ,

θ
θ  (10.39)

or

 W t J W tK cF k X Fk X, , ; , , , ,θ θ( ) = ( )( )−1  (10.40)

along with

 Q F H k X kQ Fk X Hk X H, , , ; , , , , , ,θ θt J t tK c( ) = ( ) ( )( )−1 ≡≡∇Rθ.  (10.41)

The residual dissipation inequality reads

 Φ = ( ) − ∇ ≥−tr K RM L Q. . ,θ θ1 0  (10.42)

where

 M T F 1 b= = − +( ). L R
th  (10.43)

is the so-called Mandel stress tensor and b is the material Eshelby stress tensor. 
We can say that the Mandel stress is the driving force behind growth as it is 
formally the driving force behind many bulk structural rearrangements. A 
complete constitutive theory includes the datum of the expressions (10.40) 
and (10.41) and the relationship between generalized forces and rates in 
the inequality (10.42). Leaving aside a conduction law of the Fourier type 
this yields a relationship between M and LK. If the latter involves one or 
several characteristic times, then the material finally behaves as a gener-
ally nonlinear, heat-conducting, viscoelastic material. This will be discussed 
later on.

Summarizing the contents of this section we can state that the pres-
ent approach (i) belongs in a tradition started by various authors such as 
Takamizawa and Matsuda (1990), Rodriguez et al. (1994), Taber (1995), and 
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Klisch et al. (2001), who consider a multiplicative decomposition of the total 
deformation gradient in the line of Lee (1969); and (ii) follows a conduct-
ing thread that inevitably yields that growth may well be triggered by both 
strain and strain rate, hence has a viscoelastic character (cf. Cowin, 1996; and 
references therein).

REM A R k 10 .1 :  Explicit material gradient in quasi-quasistatics

If we introduce a material connection based on k as in (6.24), a short compu-
tation allows us to rewrite (10.30) as (cf. Epstein and Maugin, 2000b)

 div ext th
R S S

gb b f f f 0+( ) + + + =: .Γ  (10.44)

Show this directly by computing the explicit gradient of (10.40) when iner-
tia is neglected and parodying the computation made in Section 6.3. Just as 
in that section, the quantity within parentheses in (10.44) has a deep geo-
metric meaning in the theory of continuously distributed defects such as 
dislocations.

REM A R k 10 . 2 :  General restrictions on the evolution equation for growth

Following the ideas of Cowin (1996), a possible a priori evolution law relating 
M and k reads in the following implicit form:

 ϕ k k b F F, , , , . ( ) = 0  (10.45)

What are the restrictions on this form? Uniformity is already implied in 
(10.45) since we did not put X explicitly. This X intervenes only through k 
according to the very meaning of this k. Also, the evolution law must in 
some sense be independent of the particular reference configuration chosen. 
To obtain a precise mathematical expression of this restriction, we should 
compare the evolutions around the same material point but in two different 
reference configurations. This is called the G-covariance (Epstein and Maugin, 
1997), noting that k1 and k2, the same transplant in two such configurations, 
are related by

 k k2 1= ∇λ  ,  (10.46)

where ∇λ is the local value of the gradient of the (necessarily) smooth change 
of reference configuration λ. The proof given by Epstein and Maugin (2000b) 
shows that the function φ is necessarily of the following form:

   ϕ L b C CK e e, , , ,0 0( ) =  (10.47)
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where

 C F F L k k b k bk C C
X

e e
T

e K K e eJ
t

= = = = ∂
∂

− −. , : . , ,  1
0

1 ..  (10.48)

Of course, the second and third of these can also be written as

   L L F F b 1 F T FK g g g c F e eL J
e

≡ = = − +( )− −: . , . .1
0

1th  (10.49)

The invariance under the symmetry group of the crystal must also be applied. 
A simple special case of (10.47) is

 L F Mg = ( )0 ,  (10.50)

for a fully isotropic reference crystal, where M0 is the Mandel stress in 
the reference crystal. But, in applying the material symmetry invariance 
to (10.47) or the special form in (10.50), we must note that the Eshelby or 
Mandel stress itself is orthogonal to the Lie algebra of the isotropy group 
(Epstein and Maugin, 1990). In the present case, this means that the Eshelby 
stress here is symmetric, since the relevant Lie algebra is that of skewsym-
metric matrices. For the evolution law to prescribe an actual evolution (and 
not just a symmetry restriction), Lg itself must not belong to this algebra 
since otherwise we would be staying within the same inhomogeneity pat-
tern while we expect a true evolution. In conclusion, only the symmetric 
part LgS  of Lg  here represents a true evolution. Accordingly, by a standard 
representation theorem (Cauchy) of a symmetric tensor-valued function of 
a symmetric tensor, we can write (10.50) as

 L 1 M MgS = + +ϕ ϕ ϕ0 1 0 2 0
2 ,  (10.51)

where the φi are scalar functions of the three characteristic invariants of M0. 
Finally, we note that when pulled back to the reference crystal, the principal 
directions of LgS  coincide not only with those of M0 but also with those of 
Ce (cf. Epstein, 2000).

REM A R k 10 . 3 :  Second-order theory of growth

Had we introduced a diffusion term such as ∇R.M—this M bears no rela-
tionship to the Mandel stress—our thermodynamic-constitutive-geometric 
model would be much more complicated. This was originally proposed by 
Epstein and Maugin (2000b), but it was soon discovered that the modeling 
rapidly becomes unmanageable. Indeed, this would introduce additional 
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terms in both the first and second laws of thermodynamics, the most remark-
able facts being that ∏ is no longer simply determined by the evolution of a 
mapping k, and an annoying term coupling the newly introduced M and the 
material gradient of internal energy shows up in the second law. It is shown 
that such a term that truly accounts for the diffusion phenomenon of interest 
is forbidden unless we consider second-order gradients (i.e., the gradient of F). 
This means that, as we surmised in the preceding, mass-diffusive effects 
are not admitted in a first-order constitutive theory of growth. The discus-
sion sketched out in Section 6.8 has exhibited the inherent complexity of a 
second-order (gradient) theory. In the present context of growth, this sup-
poses considering, along with k, a second-order transplant Q that will satisfy 
composition rules for second gradients, that is,

 G k Gk FQe
T= + ,  (10.52)

complementing the now-classic Fe = Fk, where the dependence of k and Q on 
X is understood. An easier specialized modeling would restrict the second-
gradient dependence to that of the gradient of the density. Geometrically, 
however, the second-order theory leads to considering two different linear 
connections. It is possible to subordinate the evolution of the second-order 
structure to that of the first-order underlying counterpart. This avoids intro-
ducing any driving force behind the evolution of the second-order inhomo-
geneities. As a matter of fact the evolution of Q may be generally written in 
components as

   Q K f QI I
K

I
K. . . . .

.
αβ γ αβ

γ
α

γ
γβ β

γ
= ( ) + ( ) + ( )b L L0 QQ I

. .γα  (10.53)

For vanishing f.αβ
γ , this yields

   Q Q QI
K

I
K

I
. . . .

. ,αβ α

γ
γβ β

γ
γα− ( ) − ( ) =L L 0  (10.54)

where the quantity in the left-hand side defines a type of convective time 
derivative in following the first-order inhomogeneity evolution. The pre-
scription (10.54) will (i) preserve its form under arbitrary changes of reference 
configuration, and (ii) dictate a zero-rate process at a reference configuration 
locally and instantaneously coinciding with the reference crystal. We do not 
pursue further this line of thought since problems involving only the first-
order theory are already not simple.

REM A R k 10 .4 :  In spite of obvious complications in the relevant kinematics, a 
second-gradient theory allowing for mass transport during morphogenesis 
is being developed by some authors at the time of completion of this book.
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10.4 Application: Anisotropic Growth and Self-Adaptation

We first note that the tensors Ce and S0 = Se defined by

 C F F S F Fe e
T

e e F e e
TJ

e
= = − −. , . . ,1 σ  (10.55)

are conjugated strain and stress on the material manifold but in the refer-
ence crystal. As easily checked, the corresponding Mandel stress is given by 
M0 = Se.Ce. For a hyperelastic behavior with respect to the reference crystal, 
we have the constitutive equation

 S Ce c eW= ∂ ∂2 / ,  (10.56)

where Wc is the strain energy function per unit volume of the reference 
crystal. A possible expression for Wc is given by

 W C I I C I I C Ic = −( ) + −( ) + −− −
1 1 3

1 3
2 2 3

2 3
3 3

1 23 3
1
2

/ / / 11
2( ) ,  (10.57)

where the Iα’s are the invariants of Ce and the Cα’s are material constants. 
The last term in (10.57) may be thought of as a penalty term for practically 
incompressible elastic materials. With this, (10.56) results in

 S 1 C Ce e e= + +φ φ φ0 1 2
2 ,  (10.58)

with coefficients depending on the Iα’s. Remember that the evolution equa-
tion for the transplant tensor has a similar form to (10.51), that is,

 L 1 M M G MgS = + + = ( )ϕ ϕ ϕ0 1 0 2 0
2

0 0 .  (10.59)

For example,

 ϕ ϕ ϕ0 1 20 0< = =,  (10.60)

yields growth. But, as observed in physiology, anisotropy is an unavoidable 
feature of growth. There are several ways to account for this basic property. 
Privileged directions cannot be given out of the blue, although they could be 
hinted at in a special structure. We prefer here to assume that the directional 
properties follow from the instantaneous mechanical solution itself. Let w 
(w0 in the reference crystal) be the unit vector field that characterizes this 
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anisotropy. This influences the strain–stress relation, and we do not need to 
specify an evolution equation for w. Introducing the associated skewsym-
metric tensor W such that Wa = a × w, for any a, and using representation 
theorems, we can propose a generalization of (10.59) as

 L G M WgS W= ( )0 0, .  (10.61)

Note that we consider here pure growth and that GW is symmetric (without 
any intervening of an intermediate rotation). Neglecting some of the terms 
from the full representation (see the appendices in Eringen and Maugin, 
1990), we may consider the following simple expression:

 G M N 1 M N M N N MW 0 0 0 1 0 3 0 7 0 0 0 0
1
2

, ,( ) = + + + +( )ϕ ϕ ϕ ϕ  (10.62)

where N0 is such that W N 10
2

0= − . The advantage of using N instead of W 
is that the nonzero component in the out-of-plane direction disappears in 
this form, and that is useful to clarify the characteristics of the vector field 
w, especially in plane-strain problems. According to (10.62), the functions 
φ0 and φ1 are related to isotropic growth/remodeling, while φ3 and φ7 are 
related to anisotropic growth.

As to the time development of anisotropy, we may envisage two possibili-
ties. One of these consists in considering that the vector w is embedded in 
the material just as in fiber-reinforced materials; it is oriented like a float. 
Since this anisotropy vector describes only the characteristic orientation, 
its evolution is given in a purely kinematic way, and no phenomenological 
parameter is involved in the equation. With an embedding in the reference 
crystal, we can therefore write the following evolution equation:

 w w G w w G w0 0 0 0 0 0 0= ( )( ) −. .  (10.63)

This equation satisfies frame-indifference since G0 is a sort of stretching.
Noting that the time rate in (10.63) is always perpendicular to the vector 

itself, and while it is understood that G0 could be replaced by any second-
order tensor that satisfies the frame-indifference in the reference crystal 
(Epstein, 2000), we can then also propose that the Mandel stress itself be in 
the evolution equation, which we can write as

 w M w w M w w0 0 0 0 0 0 0= − ( ).( .  (10.64)

Since the rate of the vector is linearly related to the current state of stress, 
the vector behaves like a float. Figure 10.1 shows the variation of the vector 
subject to a certain load. From (10.64) it must be understood that the rate of 
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the vector approaches zero when the Mandel stress is free or when the direc-
tion of the vector coincides with the principal direction of this stress. This 
simply means that the vector varies asymptotically its direction so as to fit 
the principal direction of the Mandel stress. Even when the neighboring vec-
tors take a different direction at the initial time, the vector will be pointing in 
the same direction during the loading process. In other words, growth takes 
place in a particular direction, which depends on the surrounding boundary 
conditions.

10.5 Illustrations: Finite-Element Implementation

The methodology used is as follows. The numerics are based on an incre-
mental formulation in the reference configuration while the constitutive 
modeling was set in the local reference crystal. Mechanical variables need 
to be updated in a step-by-step procedure. The numerical formulation is 
documented in the works of Imatani and Maugin (2001a, 2001b, 2002) for 
two-dimensional problems. The starting point obviously is the principle of 
virtual work in the reference configuration:

 ρ δ δ δ0 v u S E T u
B B

d

BR R R

dV dV dA∫ ∫ ∫+ =
∂

. : . ,  (10.65)

where E is the Green–Lagrange strain. For quasistatics, we write this in 
incremental form as

 S E S E T uτ τδ δ δ: : .∆ ∆ ∆( ) + =∫ ∫ ∫∂B B

d

BR R R

dV dV dA  (10.66)

(a) (b)

Figure 10.1
Variation of material symmetry: (a) Initial state, (b) after applied load. (Adapted from Imatani, 
S. and Maugin, G.A., Mech. Res. Commun., 29, 477–83, 2002.)



Systems with Mass Changes and/or Diffusion 301

where Δ denotes the variation from time τ to time τ + Δτ, while in full dynam-
ics this takes the form

ρ δ δ δτ τ τ τ τ
0 v u S E S E+∫ ∫ ∫+ + ( ) +∆ ∆. : :

B B BR R R

dV dV dV ∆∆

∆

S E

T u

:

. ,

δ

δ

τ

τ τ

B

d

B

R

R

dV

dA

∫
∫= +

∂

 (10.67)

where one can implement Newmark’s method, according to which quantities 
are evaluated at the next time τ + Δτ and then the results are unconditionally 
stable. The following examples have been treated in this way.

10.5.1 Monotonic growth and Adaptation

We consider a quarter part (fragment) of a ring that is analyzed under 
surface-force-free conditions and serves to illustrate isotropic growth. A 
circumferential growth is revealed under the conditions (φ0 = 0.0, φ3 = 0.1; 
C1 = 3.0, C2 = 1.0, C3 = 100.0) and with the anisotropy vector also lying cir-
cumferentially (cf. Figure 10.2). Under the action of constant inner pressure, 
the mean radius varies as indicated in Figure 10.3 for different constitutive 
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Figure 10.2
Growth of a fragment of ring. (Adapted from Maugin, G.A., and Imatani, S., J. Phys. IV Coll., 
Figure 1, 105, 365–72, 2003.)
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assumptions regarding the coefficients. The case noted b-11r shows an adap-
tive behavior. The Cauchy stress distribution in a growing material in the 
form of a ring is illustrated in Figure 10.4, where the nodal displacement at 
the inner surface is prescribed, moving radially during 1 second. The pure 
hyperelastic case corresponds to path B. For other cases, competition between 
growth in the radial and circumferential directions creates completely dif-
ferent distributions.

10.5.2 Anisotropic growth in the Float Model

We consider a quarter part of a cylinder (Figure 10.5) with anisotropy unit 
vector w randomly distributed in direction over the domain in the initial 
state, which implies quasi-isotropy, but w is supposed to evolve according to 
(10.64). Figure 10.5 shows the evolution in orientation of this vector during 
the course of deformation. When the internal pressure is imposed, the vec-
tors w are activated, and some are going to be oriented in the circumferential 
direction, which is none other than the principal direction of the Mandel 
stress. The rate of variation depends on the initial configuration; the closer 
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recovery effect appears in the path b-11r where the anisotropy vector is randomly distributed 
in the domain. (Adapted from, Maugin, G.A., and Imatani, S., J. Phys. IV Coll. Figure 2, p. 371, 
105, 365–72, 2003.)



Systems with Mass Changes and/or Diffusion 303

∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

+ + + + + + + + + + + + + + + + + + + + +∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο
× × × × × × × × × × × × × × × × × × × × ×

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

1 1.2 1.4 1.6 1.8 2
Radius r

Ci
rc

um
fe

re
nt

ia
l s

tr
es

s C
0

∗ No-growth

+ c-5000

c-0100

Ο c-1500

× c-1511

∆

Figure 10.4
Circumferential (Cauchy) stress distribution under various patterns of material parameters. 
(Adapted from, Maugin, G.A., and Imatani, S., J. Phys. IV Coll. Figure 2, p. 371, 105, 365–72, 
2003.)

(a) (b) (c)

Figure 10.5
Variation in orientation of the anisotropy vector in the cylinder subjected to internal pressure 
with float model (10.64): (a) Initial state, (b) intermediate state, (c) final state. (Adapted from, 
Imatani, S., and Maugin, G.A., Mech. Res. Commun., Figure 3, p. 482, 29, 477–83, 2002.)
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the initial orientation is to the circumferential direction, the more rapidly the 
vectors will approach that direction. In general, the vector is forward of the 
maximal principal direction of the Mandel stress. At the final stage in Figure 
10.5, most of the vectors are oriented toward the circumferential direction. 
Although this simulation merely examines the variation of w subjected to 
the float model, we can conclude that the present model has a potential per-
formance for describing the adaptation behavior.

We can revisit the problem of monotonic growth under the stress-free state for 
the same cylinder but with the evolution equation (10.63) for w. The same 
eight-node isoparametric brick element as in the previous case is used in the 
Finite Element (FE) scheme, but the bottom surface is fixed while the outer 
surfaces are kept free. The analyzed domain is shown in Figure 10.6a and 
b with the simulated deformation result in Figure 10.6c. The initial vector 
distribution w is set to be helicoidal, and we used a coefficient φ3 = –0.005. 
The analyzed domain is extensible toward the vector direction without any 
stress. In fact, this model covers various growth patterns of not only a mono-
tonic growth but also stress-induced growth, which have been reported else-
where (e.g., Rodriguez et al., 1994; Hart et al., 1984) .

10.5.3 growth Behavior under Cyclic Loading

Here we consider cyclic dynamic effects in a cantilever beam (2D prob-
lem; cf. Figures 10.7 through 10.9). A time triangular loading A is applied 

(a) (b) (c)

Figure 10.6
Helical flow pattern with evolution equation (10.63): (a) Vector orientation, (b) initial domain, 
(c) final domain at t = 30 s. (Adapted from, Imatani, S., and Maugin, G.A., Mech. Res. Commun., 
Figure 4, p. 482, 29, 477–83, 2002.)
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in quasistatics and combined wave forms such as in B or C are applied in 
the fully dynamical analysis. The input is composed of normal forces at the 
upper edge of the side walls as indicated by arrows in the left scheme of the 
settings in Figure 10.7. The anisotropy vector field w is vertically embedded 
in the material specimen resulting in some resistance to the ending stress. 
Figure 10.8 shows the trajectories of the neutral (central) axis of the beam. 
The dynamic result exhibits an asymmetry in time due to inertial effects that 
become important as the eigenfrequency of the beam is of the same order 
as the time scale of the forcing. Then the damping due to growth (here a 
type of viscoelasticity) takes place after release of the applied force. Finally, 
Figure 10.9 shows the volumetric growth (detk–1 = detFg) during the course 
of cyclic loading. It is remarked that the quasistatic analysis clearly overesti-
mates the growth. This example illustrates how a redistribution of mass takes 
place as a consequence of a purely mechanical applied field. Remodeling of 
some bones is a phenomenon of this type.

In the preceding we have privileged our own amateurish numerical 
simulations. However, we must also cite the beautiful colored illustra-
tions obtained in 3D in a more professional way by Kuhl (2004) and also 
Kuhl et al. (2003) and Kuhl and Steinmann (2003a, 2003b) on the basis of 
an elastic potential different from (10.57) but in the absence of the induced 
anisotropy.
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Figure 10.7
Schematic illustration of the boundary conditions for the cantilever beam problem. The surface 
force is imposed at the edge of the side walls as a normal force. The wave profile A is used in 
the quasistatic analysis while the B and C profiles are used in the dynamic analysis. (Adapted 
from Maugin, G.A., and Imatani, S., J Phys. IV Coll., Figure 4, p.371, 105, 365–72, 2003.)
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10.6 Intervention of Nutriments

The theory presented in the preceding is one of stress-induced growth 
and adaptation or remodeling. Little progress has been made, at the time 
of writing, toward a theory accounting for the effects of nutriments, that 
is, a true mixed physiological–mechanical theory of growth and not only a 
pure mechanical theory. What must be retained from the preceding develop-
ments is that the driving force behind growth viewed as a local but special 
structural rearrangement of matter is necessarily of the Mandel or Eshelby 
stress type. In the same way as the interactions of electromagnetic fields and 
deformable matter may be accounted for by introducing external forces in the 
form of a stress (compared to the Cauchy stress conceived as an “internal” 
tensorial force) of the tensorial type (Maxwell stress) in a formulation of the 
principle of virtual power (cf. Maugin, 1980), an approach of the same type 
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could be envisaged for growth with an “external” Mandel stress acting as a 
source that will combine with the field thermomechanical Mandel stress M 
or Eshelby stress b. Such an additional term should come as a contribution 
of the type

 p g R
Text ext( ) = ∇( )* : * ,M V  (10.68)

where V is a material velocity field and an asterisk indicates a virtual motion 
or the value taken by an expression in such a field. Pursuing thus the idea of 
such external terms, we propose to formulate the principle of virtual power 
in the following form in quasistatics for the material body occupying the 
material volume BR:

 P Pint ext( ) +( ) =* * ,0  (10.69)

with

 P p p dVT b
BR

int int int( ) = ( ) +( )( )∫* * * ,  (10.70)

 p pT R
T

b R
int int( ) = − ∇( ) ( ) = − ∇( )* : * , * : * ,T v b V  (10.71)

and

 P dV dAR
T d

BR

ext ext ext( ) = − ∇( )( ) +
∂

* . * : * . *f v M V T v∫∫∫BR

.  (10.72)

The local equations resulting from this for any v* and ∇RV* read

 div in atext
R R

d
RB BT f 0 N T T+ = = ∂, . ,  (10.73)

and the “material tensorial balance”

 b M 0+ =ext .  (10.74)

As for the constitutive equations, in the absence of heat conduction and 
bulk heat source, they follow from an exploitation of the Clausius–Duhem 
inequality. In the present case the total dissipation is given by the differ-
ence between the power of external forces and the time rate of change of the 
energy, that is (without asterisks),

 Φ B P
d
dt

WdVR
BR

( ) = − ≥∫ext 0.  (10.75)
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On using (10.69) for real fields and localizing, this yields

 T v b V: : .∇( ) + ∇( ) ≥R
T

R
T

W  (10.76)

Now W is taken as in (10.40), that is,

 W J W J W WK c F c e g
e

= ( ) = ( ) = =( )− −1 1Fk F F k F , .  (10.77)

On substituting from this into the inequality (10.76) and computing the time 
derivative of W  just as in Section 5.8, we obtain the following constitutive 
equations:

 T T T T T
F

= + ≡ = ∂
∂

rev irr rev, ,e

e

W
 (10.78)

 b b b b 1 T F= + = −rev irr rev, . ,W R
e  (10.79)

while there remains the dissipation inequality

 D R
T

R
T= ∇( ) + ∇( ) ≥T v b Virr irr: : .0  (10.80)

From this, in particular, we deduce that the material balance (10.74) reads

 W R
e1 T F b M 0−( ) + + =. ,irr ext  (10.81)

in which we clearly see the contribution of the standard Eshelby stress ten-
sor. This equation can also be written as

 W R1 b M M+ + =irr ext ,  (10.82)

where M = Te.F is the standard Mandel stress, birr is a dissipative stress hav-
ing the same nature as the Mandel stress, and Mext has to be prescribed in 
order to represent an input of nutriments. In particular, the latter may be 
spherical, that is, Mext = Wext 1R, so that it does represent an input of energy, 
as (10.82) then transforms to

 W W R+( ) + =ext irr1 b M.  (10.83)

The originality of the present approach stems from the consideration of terms 
involving ∇RV in (10.69) and that of the expression (10.77) for the free energy. 
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This is the essence of a reasoning due to Di Carlo and Quiligotti (2002), as 
well as Di Carlo (2004)—in a different notation—who followed some of the 
arguments of Gurtin (1999) in considering simultaneously the physical and 
material velocity fields in a formulation of the principle of virtual power. 
We shall not pursue this line since little, if not nothing, is known about the 
expression of Mext. A more useful modeling may be the one that considers 
the growing medium of interest as a solid–fluid mixture following the works 
of Quiligotti (2002), Quiligotti, dell’Isola, et al. (2002), Quiligotti, Maugin, et 
al. (2002), and Quiligotti and Maugin (2003a, 2003b, 2004), of which we now 
examine the main lines.

10.7 Eshelbian Approach to Solid–Fluid Mixtures

10.7.1 Kinematics

This is the most questionable point in a continuum theory of mixtures since 
particles of different species—here the solid and the fluid—may occupy the 
same physical placement at time t. Quantities related to the solid are labeled 
with a subscript S and those related to the fluid with a subscript F. For the 
solid constituent, we have the direct motion

 x X X u= ( ) = +χ εS St, ,  (10.84)

with direct gradient and physical velocity given by

 F 1 u v
X

S R S
T

S
S

t

= + ∇( ) =
∂ ( )

∂ =

ε
χ τ

τ τ

,
,

.  (10.85)

The ε scaling parameter is introduced just to remind the reader that elastic 
displacements of the solid constituent will always remain small. We sup-
pose that there exists a smooth inverse mapping χS

−1  providing the inverse 
motion of the solid constituent in the same way as in the classical theory 
(Chapter 2). Thus,

 X X= ( )( )−χ χS S t t1 , , ,  (10.86)

so that the material velocity VS is well defined:

 V F V v 0S
S

x

S S St
S

= ∂
∂

+ =
−

=

χ

χ

1

with .  (10.87)
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Now let us turn to the fluid constituent. Any fluid “point” that belongs to 
the mixture at time t interacts with a one-parameter family of solid “points,” 
moving along the curve

 χ χS F F t− ( )( ) →1 X X,. ,. : ,  (10.88)

at the material velocity WF(X, t) such that

 v x F X W X v xF S F St t t t, , , ,( ) = ( ) ( ) + ( )

since x = χF = χS. The true material velocity of the fluid constituent is then 
given by

 V X F X v xF S Ft t t, , , ,( ) = − ( ) ( )−1  (10.89)

so that

 W V VF S F= − ,  (10.90)

is none other than the relative velocity of the fluid component with respect to 
the solid one but described on the reference configuration of the solid com-
ponent, although fluid and solid “particles” belong a priori to two different 
sets (manifolds). This is rather clearly illustrated by Figure 10.10. Because of 
the choice made concerning the special role of the solid material configura-
tion, many quantities will be pulled back or pushed forward with the help of 
the “solid” gradient FS or its inverse.

Migrating surface and transport theorem 

Let a surface envelop at time t a smooth region γ(t) of the current shape of our 
mixture. Consider that such a surface moves independently of the solid com-
ponent of the mixture. Then the time derivative of the integral of a smooth 
Eulerian field φ over this migrating surface is given by (transport theorem)

 
d
dt

dv
d
dt

dv
t V t

S
tS

ϕ ϕ ϕ
γ τ τ τ τ γ( ) = ( ) = ∂∫ ∫= + −( )n v v.

(( )∫ da,  (10.91)

where v is the independent velocity of the boundary of outward unit nor-
mal n and VS(τ) is the shape at time τ of the solid subbody associated with 
the smooth fixed region of the reference shape V V tS t* ,= ( )−χ 1 . Since the 
inverse motion χS

−1  carries γ(τ) onto γ*(τ), denoting by W the velocity at which 
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the boundary ∂γ* moves through the reference shape of the body, we can 
write the relationship

 W X F X v x v x, , , , ,t t t ts S( ) = ( ) ( ) − ( )( )−1  (10.92)

while we can associate with φ the referential field

 ϕ ϕ* , .X Ft S( ) = ( )det  (10.93)

Thus, instead of (10.91) we can as well consider the expression:

 
d
dt

dV
d
dt

dV d
t V t VS t

ϕ ϕ ϕ
γ τ τ τ

* * * .
* **( ) = = ∂∫ ∫ ∫= + N W aa.  (10.94)

We may also introduce the material velocity related to v by

 v x F X V X 0, , , .t t tS( ) + ( ) ( ) =  (10.95)
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Figure 10.10
Kinematics of a binary solid-fluid mixture with solid and fluid particle- manifolds (top), mate-
rial configuration for the solid constituent (center left), and actual configuration (common to 
the two species) at bottom. (Adapted from, Quiligotti, S., dell’Isola, F., and Maugin, G.A., Proc. 
2nd Biot Conference on Porous Media (Grenoble, August 2002), Poromechanics II, Figure 1, p. 289, 
Rotterdam, the Netherlands: Balkema, 287–92, 2002.)
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As a consequence of (10.92) and (10.95), we have thus

 ϕ ϕ ϕn v v N V V N W. * . * .
*

−( ) = − −( ) =
∂∂ ∂∫∫ S S
VV

da dA dA
tt VVt *

.∫  (10.96)

On account of this we have the following useful transport theorems:

 
∂
∂

= − =
= ( ) = ∂∫ ∫ ∫ϕ

τ
ϕ ϕ ϕ

τ γ τ τtV t V
dv

d
dt

dv da
d
dtt t

n v. ** * . .
* *

dV dA
t Vtγ τ τ

ϕ
( ) = ∂∫ ∫+ N V

(10.97)

This is useful in establishing global balance laws for our mixtures.
The following remark belongs to this section. If we think of a fixed Eulerian 

surface ∂V in the material body, and if the material solid surface currently 
overlapped with ∂V expands, then the migrating surface associated with ∂V 
by the inverse solid motion χS

−1  shrinks. Conversely, if the former shrinks, 
then the latter expands, since we can write

 n v F N V. . ,
*

S
V

S S
V

da dA
t∂ ∂∫ ∫= − ( )det  (10.98)

for V V tt S* , .= ( )−χ 1

10.7.2 Balance of Mass

Here we consider solid and fluid constituents that do not exchange mass. 
Accordingly, the local Eulerian equations of mass for these constituents have 
a classical form with fields indexed S or F, that is, in the actual configuration 
of the mixture:

 
∂
∂

+ ( ) =ρ ρS
S St

div v 0,  (10.99)

and

 
∂
∂

+ ( ) =ρ ρF
F Ft

div v 0,  (10.100)

for the solid and fluid constituents, respectively, at any point of the actual 
volume VS(t). Now we have (cf. (10.93))

 ρ ρ ρ ρS S S F S Ft J t t t J t* , , , , * , ,X x x X X x( ) = ( ) ( ) ( ) = ( ) ,, ,t( )  (10.101)
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where J JS S FS
= ≡det F   . In the notation of Chapter 2, ρS* would have been 

noted (ρ0)S. Of course, the second of (10.101) is peculiar. With a homogeneous 
solid constituent, we clearly have

 
∂
∂

=ρS

t
*

.0  (10.102)

This is not the case of ρF*, for which we check with the help of (10.94) that

 
∂
∂

+ ∇ ( ) =ρ ρF
R F Ft

*
. * .W 0  (10.103)

But we can look at the question of mass conservation in a slightly different 
light. We can refer to the motion of the mixture as a single body with physi-
cal velocity field

 v v v= +ξ ξS S F F ,  (10.104)

where the ξα, α = S, F are the mass fractions associated with the solid and fluid 
constituent, that is, such that

 ξ ρ ρ ρ ρ ρ ξ ξα α: , , .= = + + =/ S F S F 1  (10.105)

Then we let the reader check the following two forms of the continuity 
equation:

 
∂
∂

+ ( ) =ρ ρ
t

div v 0,  (10.106)

and

 
∂
∂

+ ∇ ( ) =ρ ρ*
. * ,

t R W 0  (10.107)

where ρ* = JSρ and W = ξFWF.
Finally, we note the quantity

 
d
dt

dv da
VV tt

ρα α= − −( )
∂∫∫ n v v.  (10.108)
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may not vanish. Here dα = vα – v is the (physical) velocity of diffusion of the 
αth constituent. In particular, we can write

 d v v v v d v v v vS S F S F F F S F S= − = −( ) = − = −( )ξ ξ, .  (10.109)

10.7.3 Stress Power, Kinetic energy, and Acceleration

Considering a first-order gradient theory (cf. Maugin, 1980) for both velocity 
fields vS and vF, we assume that the corresponding stress power is given by the 
following standard expression:

 − = + ∇( )( )
=
∑p

T

S F

int π σα α α α
α

. : .
,

v v  (10.110)

According to the principle of material frame-indifference, the stress power or 
power of “internal forces” in (10.110) must vanish in any rigid-body motion 
given by

 v v w x xS F
Tt t= = ( ) + ( ) −( ) = −0 0Ω Ω Ω. , .  (10.111)

Where both w0 and Ω are spatially uniform, the following conditions follow 
from this requirement:

 π π σ σ σ σS F S F S F
T+ = + = +( )0, .  (10.112)

Next we consider the kinetic energy of the mixture as a whole per unit actual 
volume:

 K = 1
2

2ρv .  (10.113)

We let the reader show by way of exercise that this is nothing but

 K
S F

S F= + ( )
=
∑ 1

2
1
2

ρ ρα α α
α

v v d d. . .
,

 (10.114)

If the acceleration of the mixture as a single continuum is defined as usual 
by

 a x
v x

, :
,

,t
d

d
t

( ) = ( )
=

τ
τ τ

 (10.115)
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then the following results are easily established:

 v a v. .ρ ρα α
α

( ) = ( )∑ aaαα  (10.116)

and

 a a= ( ) −∑ −ξ ρ σα α
α

1div ,  (10.117)

where

 a
v

d dα
α

τ
α α α

α
τ

σ ρ: , : ,= = ⊗
=

∑d
d t

 (10.118)

are, respectively, the time derivative in following the motion of the αth con-
stituent, and the apparent stress due to diffusive motions. Then we can estab-
lish from (10.117) the following two expressions:

 ρ ρ ξ σ ρ ρ
ρ ρ

σ ξS S S S
S F

S F
F S Sa a a a= − ( ) +

+
−( ) + ∇div . ,  (10.119)1

 ρ ρ ξ σ ρ ρ
ρ ρ

σ ξF F F F
S F

S F
S F Fa a a a= − ( ) +

+
−( ) + ∇div . .  (10.119)2

10.7.4 The Principle of Virtual Power

Let v̂α  denote here a virtual (physical) velocity field. Then in the presence 
of body and surface forces, we express the principle of virtual power for the 
solid–fluid mixture occupying the regular region Bt bounded by the regular 
surface ∂Bt with unit outward normal n by

 

ρ ρ ξα α α α α αa v f v t v. ˆ . ˆ . ˆdv dv da
B BBt tt
∫ ∫∫= +




∂ 

− + ∇( )( )
∑∑

∫∑
αα

α α α α
α

π σ. ˆ : ˆ ,:v v
T

Bt

dv

 (10.120)

in which we recognize the standard statement of the balance between the 
power expended by the inertial forces and the total power of both external 
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and internal forces (cf. Chapter 2). For any v̂α  and any volume and surface 
elements, (10.120) yields the local equations

 ρ σ ρ πα α α αa f= + −div in Bt ,  (10.121)

 n t. .σ ξα α= ∂at Bt  (10.122)

On summing these equations over α and taking account of (10.112), we also 
have the equations of linear (physical) momentum relating to a single body 
in a first-order gradient theory as

 ρ σ ρ σa f n t= + = ∂div in atB Bt t, . ,  (10.123)

wherein

 ρ ρ σ σ σα
α

α
α

f f= = =∑ ∑, : .T  (10.124)

NOT E 10 .7.1 :  Here, in the spirit of weak (or variational) formulations, the 
individual boundary conditions (10.122) follow in a straightforward manner, 
while in other approaches splitting the overall boundary condition in (10.123)2 
among the various constituents remains a tricky question (cf. Rajagopal and 
Tao, 1995).

NOTE 10.7.2: All conclusions drawn here might be consistently extended to 
higher-order gradient theories, provided that meaningful physical interpreta-
tion of additional boundary conditions can be taken for granted (cf. dell’Isola 
et al., 2000).

NOT E 10 .7. 3 :  If we further set

 σ σ ξ σα α α: ,= +  (10.125)

and

 ρ ρ ρ π ξ σα α α α α α αf f a a: ,= + −( ) − − ( )div  (10.126)

we can rewrite (10.121) and the total Cauchy stress as

 ρ σ ρα α α α αa f= +div  (10.127)

and

 σ σ ξ σα α
α

= −( )∑ .  (10.128)
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10.7.5 energy equation in the Absence of Dissipation

In this case the total time derivative of the internal (or free) energy is bal-
anced by the stress power, so that we can write

 
d
dt

Wdv dv
B t

T

Btτ τ
α α α α

α

π σ∫ ∫∑
=

= + ∇( )( ). : .:v v  (10.129)

This yields locally

 
dW
dt

W
T

S F

+ ∇( ) = + ∇( )( )
=
∑. . : .

,

v v vπ σα α α α
α

 (10.130)

We introduce the partial first Piola–Kirchhoff stresses Tα by

 T Fα ασ: . .= −JS S
1  (10.131)

That is, both are defined by means of the “solid” pull back. A consequence of 
this is that we can also rewrite (10.129) in the following form:

 
d
dt

J WdV J dVS
B t

S R
T

Btτ τ
α α α α

α

π
* *

. :∫ ∫
=

= + ∇( )( )v T v∑∑ .  (10.132)

Bearing in mind the identity (10.97), we can define additionally the fields τα 
and bα in such a way that we have the following identity for virtual velocity 
fields:

 

J dV J WS R
T

B
S

Bt t

πα α α α
α

. ˆ : ˆ ˆ .
*

v T v V N+ ∇( )( ) + ( )∫∑ ∂ **

*
. ˆ : ˆ .

∫

∫∑= + ∇( )( )
dV

dVR

T

Bt

τα α α α
α

V b V
 (10.133)

Here, of course,

 ˆ . ˆ , ˆ ˆ ˆ .v F V 0 V V Vα α ξ ξ+ = = +S S S F F  (10.134)

From this we deduce the expression of the peculiar Eshelby (static) stress ten-
sors as

 b 1 T Fα α αξ= −J WS R S. ,  (10.135)
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while the τα’s are given by

 τ ξ πα α α α= ∇ ( ) − ∇( ) −R S R S
T

S S
TJ W JT F F: . .  (10.136)

It is again remarked that both solid and fluid Eshelby stresses are built 
uniquely with the “solid” pull back and an energy density in proportion to 
the relevant constituent (factor ξα). Finally, to meet the symmetry requirement 
(10.112)2, these Eshelby stresses have to respect the following symmetry:

 C b b b b C C F FS S F S F
T

S S S
T

S. . , : . .+( ) = +( ) =  (10.137)

10.7.6 Constitutive equations for unconstrained Solid–Fluid Mixtures

To proceed toward a set of useful constitutive equations we must specify the 
functional dependency of the energy W. Let us assume for the sake of exam-
ple that we are interested in a binary mixture made of a materially inhomoge-
neous poroelastic solid and a compressible inviscid fluid. It is natural, therefore, 
to consider an energy that depends on the elastic strain defined in (10.137)2, 
on the fluid density ρF, and also explicitly on X because of the inhomogeneity 
property. Thus,

 W W t t tS F S= ( )( ) = ( )−F X x X X x( , ), , , , , .ρ χ 1  (10.138)

Then we obtain from (10.132) the following constitutive prescriptions for the 
π-interaction forces:

π ξ ξ ξ
ρ

ρ ξS S S
T

S
S S

F
F S

W
W

W= −( ) ∇( ) ∂
∂

+ ∇ + ∂
∂

∇ + −1 1F
F

.
. (( ) ∂

∂
−F

XS
T W

. ,
expl

 (10.139)

 π ξ ξ ξ
ρ

ρ ξF F S
T

S
F F

F
F F S

TW
W

W= ∇( ) ∂
∂

+ ∇ + −( ) ∂
∂

∇ + −F
F

F1
∂∂
∂
W
X expl

,  (10.140)

while for the σα’s we have

 σ ξ σ ρ
ρ

ξS S
S

S
T

F F
F

FW
W W

W= + ∂
∂

= − ∂
∂

−





1
F

F 1, .  (10.141)

The symmetry of the total σ results in

 σ σ ρ
ρ ρS F

S
S
T

F
F F

R
W W W+ = ∂

∂
+ − ∂

∂




F

F 1 .  (10.142)
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Then (10.135) leads to the following straightforward expressions for the pecu-
liar Eshelby stress tensors:

 b F
F

b 1S S S
T

S
F S F

F
RJ

W
J

W= − ∂
∂

= ∂
∂

, .ρ
ρ

 (10.143)

Simultaneously, the π-interaction forces take on the following form:

 τ τ
ρ

ρS S F
F

R S FJ
W W

J= ∂
∂

= ∂
∂

∇ ( )
X expl

, .  (10.144)

The expression (10.143) are of great interest, for they show that in the pres-
ent formulation the partial Eshelby stresses take, up to a sign, the canoni-
cal form of stresses for an elastic solid and an inviscid fluid, respectively. 
This corroborates the importance of the role played by partial chemical 
potentials within the context of solid–fluid mixture theories (see Bowen, 
1976, 1982).

10.7.7 Constitutive equations for Saturated Porolastic Media

This case is mentioned for the sake of completeness. In this case, like other 
authors, we introduce the concept of volume fractions defined by the ratios

 ν ρ ρα α α= /ˆ ,  (10.145)

where, in contrast to the constituent density ρα, which may be considered 
macroscopic, ρ̂α  may be called microscopic and assumed itself to depend on 
the usual state variables already introduced in (10.138), that is,

 ˆ , , , , , , .ρ ρ χα F X x X XS F St t t( ) ( )( ) = ( )−1 x  (10.146)

DE F IN I T ION:  A poroelastic solid infused by a compressible fluid is said to 
be saturated if the solid skeleton is perfectly permeated by the fluid. The cor-
responding constraint reads

 ν νS F+ − =1 0.  (10.147)

Let p, the saturation pressure, be the Lagrange multiplier that will account for the 
mathematical constraint (10.147) so that we will augment W to W + p(νS + νF – 
1). To proceed further one therefore needs to evaluate the various derivatives 
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of the να and ρ̂α  functions mentioned in (10.146). In the absence of justified 
precise functions ρ̂α , we refer the reader to the general results enunciated 
in Quiligotti, dell’Isola, et al. (2002). What must be retained from this is 
that the saturation pressure is the reactive action needed to maintain each 
constituent in contact with the other one, and it is distributed among the 
constituents proportionally to their volume fractions only if the latter are 
“microscopically” incompressible, that is, whenever the ρ̂α  are independent 
of the macroscopic fluid density ρF and of the gradient of the solid motion, FS. 
The reader will find in Quiligotti, Maugin, et al. (2002) a rather general treat-
ment of bulk waves that can propagate in both unconstrained and saturated 
solid–fluid binary mixtures. Some of the Biot features are recovered and/or 
generalized. This is outside the scope of the present work, which intended 
rather to highlight any relationship to Eshelbian mechanics. What is clear 
in the preceding treatment is that the need to refer the active mechanical 
processes to a unique reference configuration imposes the choice of one con-
figuration for the job. For this, it is more than natural to select that of the solid 
constituent in the binary mixtures of interest.

10.8 Single-Phase Transforming Crystal and Diffusion

10.8.1 introductory remark

As mentioned by Wu (2001), it may happen in metallurgy that when an inho-
mogeneous single-phase alloy is annealed, then matter flows in a manner that 
will decrease the concentration gradient ∇c. The net flow will cease when the 
annealed specimen becomes homogeneous. In a somewhat standard small-
strain description of this phenomenon, this should couple, although weakly, 
the conservation of mass written on account of Fick’s law of diffusion with 
elasticity. It appears that while concentration contributes to the mechanical 
equilibrium equation via an eigenstrain linearly related to the concentration 
deviation from uniformity, the diffusion equation is practically independent of 
strains. This is a one-way coupling between composition c and the elastic dis-
placement u (see the introduction in Wu, 2001). An approximation of the same 
type often prevails in thermoelasticity, with temperature deviation replacing 
the concentration deviation. The present subject matter is revisited here in the 
finite-strain framework and in the light of the notion of configurational forces. 
We follow the works of a prominent contributor to this line (Wu, 2001, 2002).

10.8.2 eigenstrains and Molar Concentrations

Remember that the configurational deformation of a single-phase mixture 
from a uniform reference state to a nonuniform state is characterized by 
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a so-called eigentransformation Ft that belongs to the general view of local 
structural rearrangements exposed in Chapter 6. This transformation brings 
an element of the global reference to a locally defined stress-free element 
according to dXSF = Ft. dX. This is generally incompatible (see this concept 
in previous chapters). But Fe, the elastic gradient (no longer compatible by 
itself), ties the stress-free (or “elastically released”) element dXSF to the spatial 
differential element dx by dXSF = Ft F–1.dx, or by inversion

 d de SF e
t

e
tx F X F FF F F F= = =−, .1 or  (10.148)

This is but one example of the multiplicative decomposition of finite strains 
mentioned in Chapter 6. But here the eigentransformation, which we already 
know to be related to the notion of the Eshelby stress tensor according to the 
general reasoning of Chapter 6, may be defined in terms of the underlying 
crystal structure and the experimentally measured molar volume of the mix-
ture. Accordingly, we have to introduce some terminology of thermochemis-
try. Let the examined single-phase mixture of N components be defined by N 
molar concentrations noted Cα (in physical units of kmol/m3) so that the total 
molar concentration (also called molar density) C and the associated mole 
fractions yα = Cα/C satisfy the relations

 C C y
NN

= =
==
∑∑ α α
αα

, .
11

1  (10.149)

REM A R k :  The mole fractions yα are noted xi in treatises on thermo-
chemistry.

Only the first N – 1 molar fractions are independent according to the sec-
ond of (10.149). They are globally referred to by the symbol y. Let V p y, ,θ( )  
be the molar volume (in m3/kmol) of the mixture at pressure p (in the refer-
ence configuration) and temperature θ. This, according to specialists, is an 
important property that may be experimentally determined. The molar frac-

tion V y0 0 0
, ,θ( )  corresponds to a uniform state for the solid mixture occupy-

ing the material region V in the reference configuration KR using coordinates 
X. As θ and/or y  becomes non uniform in terms of X and time t, the molar 
fraction V y0, ,θ( )  may be used to compute the Jacobian Jt of the eigentrans-
formation Ft by

 
J t V t y t V y

J

t

t t

X X X

F

, , , , , / , , ,( ) = ( ) ( )( ) ( )
=

0 0 0 0
θ θ

(( ) =1 3
0 1

/
, ,F Fdet 0

 (10.150)

where F0 is a constant transformation that may be related to the underlying 
crystal structure of our mixture. Of course we accept the relation dVSF = JtdV, 
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and we can write the mixture property V in terms of the partial molar volumes 
V p yα θ, ,( )  by

 V p y y V p y V p y
CV p y

, , , , , , ,
, ,

θ θ θ
θ

α α α( ) = ( ) ( ) = ∂ ( )( )
∂∂

=
∑

≠

C

N

p C
αα θ β α, ,

.  (10.151)

This relation can also be written down for p = 0.
This is complemented by setting

 C V y= ( )1 0 0 0
/ , , ,θ

so that C is the constant number of moles per unit reference volume (this is 
the fixed number of substitutional sites per unit volume of the crystal struc-
ture). On account of this, molar densities can also be defined per unit volume 
of the actual configuration and of the elastically released SF configuration. 
Therefore, we can write

 C C t C C t c c t
N

SF SF

N

= ( ) = ( ) = ( ) =
= =
∑ α
α

α α
α

X X x, , , , ,
1 1

∑∑∑ −

=

J CF

N

1

1α

.  (10.152)

The following relationships are easily established:

 J dV dV C C t C t C tt
SF SF SF= = ( ) = ( ) ( )/ / /X X X, , , ,α α

 J dv dV C c t C t c tF = = ( ) = ( ) ( )/ / x X x, , / , ,α α  (10.153)

 J dv dV C t c te SF SF= = ( ) ( )/ /X x, , ,

 y c c C C C t c tSF
α α α α= = = ( ) ( )/ / /X x, , .

10.8.3 Thermodynamic equations

We write directly the local equations using material fields with the appropri-
ate addition of terms due to diffusion (for details see Wu, 2001, 2002):

Balance of species:•	

 
∂
∂

+ ∇ = =C
t

NR
α

α α
X

J. , ,...,0 1  (10.154)
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or globally

 
∂
∂

= = − ∇
=
∑C

t R

N

X

J0
1

. α
α

 (10.155)

Energy balance (theorem of “internal energy”):•	

  E tr HR R

N

= ( ) − ∇ − ∇ ( )
=
∑T F Q J. . .
α

α α
1

 (10.156)

Second law of thermodynamics:•	

 θ θ θ θ α α
α

S SR R R

N

+ ∇ − ∇ + ∇ ( ) ≥−

=
∑. . .Q Q J1

1

0  (10.157)

Here Sα  is the partial molar entropy and Hα  is the partial molar internal 
energy. It is supposed that equilibrium divRT = 0 is realized in the absence of 
body force and in the quasistatic approximation.

Introducing the Helmholtz free energy per unit reference volume by 
W = E – θS and accounting for (10.156), we obtain the following expression 
for the Clausius–Duhem inequality:
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11
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 (10.158)

where G H Sα α αθ= −  is the partial molar Gibbs free energy that satisfies the 
molar property (10.151). To exploit the inequality in (10.158) in the usual man-
ner we may consider free energies W depending on F, θ, and the Cα’s. From 
this we deduce the constitutive equations

 S
W W

G
CG
C

W
C

C

= − ∂
∂

= ∂
∂

=
∂( )
∂

= ∂
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≠
θ α

α θ α θβ α

, ,
, , ,

T
F

T F ,,

,
Cβ α≠

 (10.159)
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while there remains the following dissipation inequality:

 − ∇ − +








 ∇ ≥−

==
∑∑ J Q Jα α α α
αα

θ θ θ. . .R

N

R

N

G S1

11

0  (10.160)

This shows first that the real entropy flux (factor of ∇Rθ up to a sign) in this 
diffusive mixture is not only the ratio of heat flux by temperature but it 
contains an additional contribution (extra entropy-flux; cf. Chapter 5) due 
to diffusion; second, heat conduction and diffusion are generally coupled 
effects. But here, for the sake of example, we consider isothermal conditions. 
Accordingly, a simple diffusion flux may be envisaged in the form

 Jα α α α αα= − ∇ = ≥M C G N MR , , ,..., , ,1 2 0   (10.161)

where the nonnegative Mα is the molar mobility of component α. Then the 
equations (10.154) yield

 
∂
∂

= ∇ ∇( ) =C
t

M C G NR R
α

α α α α. , , ,..., .1 2  (10.162)

It remains to express diffusion in terms of the mole fractions. This is obtained 
by taking the time derivative of the second in the last line of (10.153) and then 
accounting for (10.162). This is not so much of interest for us here. Rather, we 
prefer to examine the following question.

10.8.4 Chemical Potential and eshelby Stress

What we called molar Gibbs energy in the preceding is historically called 
chemical potential. That is, we indeed have with a more standard notation 
(cf. (10.159))

 µα
α θ α θβ α β α

= ∂
∂

=
∂( )
∂

≠ ≠

W
C

CG
CC CF T, , , ,

.  (10.163)

Thus we need to pay more attention to the expression of the free energy W. 
We can write it as

 W y CW y e
tF F F F F, , , , , ,θ θ( ) = ( ) =  (10.164)
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where W is the molar Helmholtz free energy related to G by

 W y G y trF T T F, , , , . .θ θ( ) = ( ) + ( )  (10.165)

This enjoys the following properties:

 W y0, , ,θ0 0
0( ) =  (10.166)

 W y G y G yt
SF

F T
T 0

, , , , , ,θ θ θ( ) = ( ) = ( ) =
 (10.167)

 W y W y W ye
t t

SF eF F F F, , , , , , .θ θ θ( ) = ( ) + ( )  (10.168)

The first of these fixes the uniform state as a reference. The second reflects 
the fact that Ft is the stress-free eigentransformation at temperature θ and 
composition y. The last requires that

 W y
SF

1, , .θ( ) = 0

Now (10.164) yields

 W CG y J W C CSF
t

SF e SF
N
SF= ( ) + ( )θ θ, , , ,..., .F 1  (10.169)

We can evaluate (10.163) by use of this. We obtain thus
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But we can show that
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where we have introduced the following (quasistatic) Eshelby stresses:

 b 1 T F T Fe
SF e e e SF eW W: . ,= − = ∂ ∂/  (10.172)

and

 b 1 T F T F: . , .= − = ∂( ) ∂W J WR t
SF /  (10.173)

This establishes the relationship between the notions of chemical potential 
and Eshelby stress in the present setting. The results (10.170) through (10.173) 
are due to Wu (2002) in the perspective of treating bicrystal interfaces. This 
appears to open a path where finite deformation and atomic diffusion seem 
to merge in a unified theory (Wu, 2004). At this point we close our brief 
excursion in a difficult but promising field.
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11
Electromagnetic Materials

Object of the Chapter

Where we see why Eshelby used the name “Maxwell elasticity stress” for what 
we now call Eshelby stress, and where a multifield theory exhibits in its splen-
dor both the usefulness and ambiguity of the canonical formulation of momen-
tum and energy, along with a rich field of applications in complex materials.

11.1 Maxwell Could Not know Noether’s Theorem but …

11.1.1 The Notions of Maxwell Stress and electromagnetic Momentum

Maxwell’s equations in vacuum (in their Heaviside outfit) are composed of 
two groups, first the two equations

 ∇ × + = ∇ =E
B

0 B
1

0
c t
∂
∂

, . ,  (11.1)

which govern the electric field E and the magnetic induction B, and from 
which there exist the electromagnetic potentials (φ, A) such that

 B A E
A

= ,∇ × = −∇ −ϕ ∂
∂

1
c t

,  (11.2)

where c is the velocity of light in a vacuum. The second group of Maxwell’s 
equations in a vacuum is given by

 ∇ × − = ∇H
D

0 D
1
c t
∂
∂

, . =0,  (11.3)

where H B= −µ0
1  is the magnetic field and D = ε0E is the electric displacement. 

The vacuum magnetic permeability μ0 and the vacuum dielectric constant 
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ε0 are such that μ0ε0 = c –2. In spite of the commonly used vocabulary, in the 
field theory of electromagnetism, the “fields” that appear, primarily in a 
Hamiltonian–Lagrangian formulation, are the potentials (φ, A), so that the 
Lagrangian density per unit volume should read

 L L
t t

= ∇ ∂
∂

∇ ∂
∂







ϕ ϕ ϕ
, , , , ,A A

A
 (11.4)

for a “first-order gradient” theory. But electromagnetism is a gauge theory 
so that the zeroth-order gradients (φ, A) themselves cannot appear as such, 
and the remaining space and time derivatives appear only in the form of 
the combinations (11.2) so that the true Lagrangian of electromagnetism in 
vacuum reads

 Lemf = −( )1
2

2 2E B ,  (11.5)

a form given—in appropriate electromagnetic units—by Waldemar Voigt (of 
crystal fame) and interpreted in mechanical terms as the difference between 
“kinetic” and “potential” energies. The remarkable results of Maxwell (obvi-
ously not written in the present formalism) are two identities, a scalar one and 
a vectorial one, respectively,

 
∂
∂t

c
1
2

02 2E B H+( ) − ∇ ×( ) =. E  (11.6)

and

 
∂
∂

ε µ ε
t c

0
0

1
0

2 21
2

E B B B E E E B 1 0×( ) −∇ ⊗ + ⊗ − +( )( ) =−. ,  (11.7)

which we nowadays identify as the local conservation of energy and a local 
conservation of electromagnetic momentum. We can rewrite (11.6) and (11.7) as

 
∂
∂

− ∇ = ∂
∂

− =H
t t

emf
em

emf
emfdiv. , ,Q

P
b 00  (11.8)

wherein

 
H c

c
emf em emf

emf emf

= +( ) = × = ×

≡ =

1
2

12 2

0

E B Q E H P D B

b t

, , ,

µ−− ⊗ + ⊗ −1
0B B E E 1ε Hemf .

 (11.9)

Equations 11.6 and 11.7 are identities obtained by multiplying the basic equa-
tions (11.1) and (11.3) by appropriate factors and adding up the two results. 
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Nowadays, (11.6) is recognized as a degenerate form of the so-called Poynting–
Umov theorem (in the absence of electricity conduction), and Equation 11.7 is a 
very special case of an identity that provides an expression for the so-called 
ponderomotive force (here in the absence of free charges, currents, magnetiza-
tion, and electric polarization; see later on). Here Qem = c2P emf. The tensor temf 
is the so-called Maxwell stress tensor in a vacuum. But (11.6) and (11.7), in a 
modern view, express the invariance of the physical system of electromag-
netic fields in a vacuum under time translation (parameter t = Newtonian 
time) and space translations (parameters {xi, i = 1,2,3} = standard Euclidean 
coordinates). It is readily checked that (11.8) would follow from the applica-
tion of Noether’s theorem to the Lagrangian (11.5). Hence (11.8)2 is the bal-
ance of canonical momentum, a concept that exists in all field theories. Now 
we unhesitatingly understand why Eshelby first referred to his tensor b as 
the Maxwell stress tensor of elasticity. Note that in the preceding there are no 
ambiguities between the fields (electromagnetic potentials) and the space-
parametrization. The case of electromagnetic fields in matter is a much more 
complicated affair that, even until now, offers no unique solution because 
there exists in principle a multiplicity of generalizations of (11.7) with differ-
ent nonzero right-hand sides (see, e.g., Trimarco and Maugin, 2001).

11.1.2 Lorentz Force on a Point Charge

Equation 11.7 or 11.82 shows that a linear momentum may be attributed to 
the electromagnetic field in fact only when both electric and magnetic fields 
coexist, that is, in the framework of true electrodynamics. What about the 
interaction with more standard mechanics? The simplest relevant problem 
is that of a point electric charge q of mass m0 acted on by an electromagnetic 
field. According to H.A. Lorentz (1853–1928) the force exerted on this point 
particle is given by

 f x E E x E x x B xe t q q t t
c

t, ; , , , , ,( ) = ( ) = ( ) + × ( )1   (11.10)

where E, called the electromotive intensity, is none other than the electric field 
in the frame of the moving point (at velocity x). Newton’s motion equation 
for m0 therefore reads

 
d
dt

m q0v E v x( ) = =, .  (11.11)

On substituting from (11.10)2 and the representations (11.2) that are valid 
since the equations (11.1) are valid everywhere, we can rewrite (11.11) as

 
d
dt

q
q
c

tp A v= − ∇ + ∇( )ϕ . ,  (11.12)
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an equation that is derivable as the Euler–Lagrange equation deduced from 
the Lagrangian

 L L m q t
q
c

t= ( ) = − ( ) + ( )v A v x v A x, , , . , ,ϕ ϕ1
2 0

2  (11.13)

such that the total linear momentum is given by

 p
v

v At L
m

q
c

= ∂
∂

= +0 ,  (11.14)

thus combining both mechanical and electromagnetic parts. The same prop-
erty, but in a much more complex form, will appear in an electromagnetic con-
tinuum with a possible distinction between material and spatial  coordinates, 
so that both physical and material electromagnetic linear momenta may be 
present. As we shall see, the latter is not necessarily the pulled back of the 
former on the material manifold.

11.2  Electromagnetic Fields in Deformable 
Continuous Matter

While referring to specialized treatises such as Eringen and Nelson (1979), 
Maugin (1988), and Maugin (1990), we first emphasize the used notation. 
The fields noted E, B, D, H, P, and M are the usual electromagnetic fields 
(electric field, magnetic induction, electric displacement, magnetic field, 
electric polarization, and magnetization, the latter two per unit volume 
of the actual configuration Kt) as measured in a fixed laboratory frame RL 
at time t. The same quantities with a superimposed bar are measured in a 
frame RC(x,t) comoving with the element of matter, still in the actual con-
figuration; the already introduced electromotive intensity is such a quan-
tity. The same quantities with a superimposed hat (caret), for example, Ê, 
will be the corresponding properly defined material fields. Here there is a 
remarkable property: While physical space is neutral from that viewpoint 
(being equipped with a Euclidean metric always reducible to a diagonal 
one with units), the material manifold will automatically (if we may say so) 
make a distinction between vector and covectors, essentially according to 
whether, in vectorial  analysis, we take their divergence or their curl, and 
this should be obvious from the very form of Maxwell’s equations, which 
must remain form-invariant in the Piola–Kirchhoff transformation of the 
various geometric objects (fields). The presentation here is not relativistic, a 
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so-called Galilean formulation of electrodynamics being sufficient for our 
present purpose with engineering applications (aficionados and true ama-
teurs may find a concise relativistic invariant formulation in Chapter 16 of 
Eringen and Maugin [1990] and in works by the present author, e.g., Maugin 
[1978a, 1978b]).

11.2.1 Maxwell’s equations in general Matter in RL

In so-called Lorentz–Heaviside units (neither factor 4π nor μ0 and ε0), with 
D = E + P and H = B – M, Maxwell’s equations at spatial point (x,t) read

 ∇ × + ∂
∂

= ∇ =E
B

0 B
1

0
c t x

, . ,  (11.15)

and

 ∇ × − ∂
∂

= ∇ =H
D

J D
1 1
c t c

q
x

f, . ,  (11.16)

where J is the electric current vector and qf is the density of free electric 
charges. By taking the divergence of the first of (11.16), we have the conserva-
tion of electric charges as

 
∂
∂

+ ∇ =
q

t
f

x

. ,J 0  (11.17)

while on taking the divergence of the first of (11.15), we find that if the sec-
ond of (11.15) holds initially, then it holds in time. Note that the time deriva-
tives involved in (11.15) through (11.17) are Eulerian time derivatives from 
the point of view of continuum mechanics.

11.2.2 Maxwell’s equations in Terms of Comoving Field in RC(x,t)

We define the following fields in RC(x,t):

 E E v B D E P P P= + × = + =1
c

, ,  (11.18a)

and

 
B B v E H H v D B M

M M v P J J v

= − × = − × = −

= + × = −

1 1

1

c c

c
q f

, ,

, .

 (11.18b)
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These would be “Galilean” transformations if it weren’t for the fact that v is 
not a uniform velocity. The lack of symmetry between the transformations 
for the fields P and M kindled research into special relativity (Lorentz invari-
ance) early in the twentieth century. Here J  is the so-called conduction current 
since the convection current has been subtracted from J.

We let the reader check by way of exercise that (11.15) and (11.16) transform 
to the following set:

 ∇ × + = ∇ =E B 0 B
1

0
c

* , .  (11.19)

and

 ∇ × − = ∇ =H D J D
1
c

q f* , . .  (11.20)

This somewhat strange formulation involves fields in both RL and RC(x,t). 
Here the asterisk indicates a so-called convected time derivative defined for 
any vector M(x,t) by

 M
M

M v v M
M

v M M v* : . . .= ∂
∂

+ ∇ × ×( ) + ∇( ) = ∂
∂

− ∇( ) + ∇(
t tx X

)).  (11.21)

The importance of this type of derivative (essentially a Lie derivative) will 
soon appear.

11.2.3 Maxwell’s equations in the Material Framework

We introduce the material electromagnetic fields by (cf. Maugin, 1988)

 ˆ . , ˆ . ˆ , ˆ . , ˆ .B F B E E F V B D F D H H F= = − × = = +− −J
c

JF F
1 11 11

c
V D× ˆ ,  (11.22)

and

 Π ≡ = = = =− −ˆ . , ˆ . , , ˆ . ,P F P M M F J F JJ Q J q JF f F f F
1 1  (11.23)

where V is the true material velocity (based on the inverse motion)  introduced 
in Chapter 2. Of course, some of these, if not all, are in fact Piola transforma-
tions (compare to (2.29)). In such a transformation we ask the reader to check 
that the following holds true, for example,

 Π Π= ⇒ ∂
∂

=− −J
t

JF
X

FF P F P1 1. . * .  (11.24)
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On account of the definitions (11.22) and (11.23) and the reciprocal of (11.24), 
the following form of Maxwell’s equations is easily established:

 ∇ × + ∂
∂

= ∇ =R

X

Rc t
ˆ

ˆ
, . ˆE

B
0 B

1
0  (11.25)

and

 ∇ × − ∂
∂

= ∇ =R

X

R fc t c
Qˆ

ˆ
ˆ, . ˆ ˆ .H

D
J D

1 1
 (11.26)

These are formally identical to (11.15) and (11.16) but written with purely 
material fields and the (X,t) space–time parametrization. The usual relations 
D = E + P and H = B – M translate to the material framework as

 ˆ . ˆ , ˆ . ˆ ˆ , . .D C E P H C B M E E F= + = − ≡( )− −J JF F
1 1 

To our knowledge the first formulation of the type of (11.25) and (11.26)—but 
in statics—was given by Walker et al. (1965); McCarthy (1968) also contrib-
uted, but the final results is due to Lax and Nelson (1976; also Nelson, 1979). 
In particular, (11.25), just like (11.15), suggests that there exist “material” elec-
tromagnetic potentials ϕ̂  and Â such that

 ˆ . , ˆ .ϕ ϕ= − =v A A F AT  (11.27)

and reciprocally

 ϕ ϕ= − = −ˆ . ˆ , . ˆV A A F AT  (11.28)

while the two parts of (11.26) yield the conservation of charges in the form

 
∂
∂

+ ∇ =
ˆ

. ˆ .
Q

t
f

X

R J 0  (11.29)

11.2.4  Ponderomotive Force and electromagnetic 
Stresses and Momentum

Now we should enunciate the generalization of (11.10) to the case of a gen-
eral continuum that may present a density of free charges, may conduct 
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electricity, and may be both magnetized and electrically polarized. This is 
often referred to as evaluating the so-called ponderomotive force, and the con-
comitant ponderomotive couple and expense of energy. These much-looked-for 
expressions are sometimes postulated as materializing the result of macro-
scropic experimental results. A deeper physical approach consists in averag-
ing over a volume, or more subtly in phase space, the action of Lorentz forces 
(11.10) acting on a stable cloud of electric particles in motion and defining 
during this procedure the macroscopic fields qf, J , P, and M in terms of 
microscopic entities. This was achieved within the framework of relativistic 
statistical physics by de Groot and Suttorp (1972), and in classical physics 
(using volume averages) by Dixon and Eringen (1965) and then Maugin and 
Eringen (1977) in its final form. The ponderomotive force thus obtained per 
unit volume of Kt reads (in the absence of electric conduction)

 f E P B P E B Mem = + × + ∇( ) + ∇( )q
cf
1

* . . ,  (11.30)

which written entirely in terms of fields in RL yields the highly farfetched 
expression

 f E v B E P B M
P Bem = + ( ) × + ∇( ) + ∇( ) + ×


q

c
q

c
d
dtf f

1
. .

ρ
ρ




.  (11.31)

These are entirely equivalent, but the former is more condensed, while the 
latter shows a greater symmetry in polarization and magnetization effects 
(electric conduction can be added by replacing P* by P J* +  and qfv by J, 
respectively, in (11.30) and (11.31)), while the last contribution in (11.31) 
hints at the existence of an electromagnetic linear momentum. In this line 
of thought, however, we have the following results of Collet and Maugin 
(1974):

A nonsymmetric electromagnetic stress in matter tem, an electromagnetic 
linear momentum pem, a Maxwell free-field symmetric stress tf, and a non-
symmetric interaction stress tinter can be introduced in such a way that from 
(11.30) or (11.31), there follow these identities:

 

f t p t p t

t

em em em inter

in

div div div= − ∂
∂

= − ∂
∂





 +t t

f f ,

tter em em( ) = − =A
fc p p, ,  (11.32)

where cem is the torque (skew tensor) exerted by the electromagnetic fields on 
matter, per unit volume, evaluated simultaneously with the force (11.30). We 
have defined the following quantities:

 t E E B B E B 1 p E Bf f

c
= ⊗ + ⊗ − +( ) = ×1

2
12 2 , ,  (11.33)
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 t P E B M M B 1inter = ⊗ − ⊗ + ( ). .  (11.34)

In a vacuum,

 q f = ≡ ≡ ≡0, , , ,P 0 M 0 t 0inter  (11.35)

and the identity (11.32) reduces to (11.7) up to the system of electromagnetic 
units.

11.2.5 equations of Motion in Cauchy Format

Classical continua responding to general electromagnetic effects such as 
those introduced in foregoing paragraphs are generalized continua in the 
sense that they are a priori endowed with a nonsymmetric Cauchy stress. The 
only changes compared to the local equations (2.81b) and (2.82) in the Cauchy 
format are that these are replaced by

 ∂
∂

+∇ ⊗ −( ) = +
t x

p p v f f. ,σ ρ em  (11.36)

 σ σ σA
T≡ −( ) =1

2
cem.  (11.37)

On account of the identities (11.32), we can also introduce a total linear physi-
cal momentum Ptot and a new (symmetric) stress tensor tE such that

 p p p t ttot inter= + = +f E, .σ  (11.38)

Equations 11.36 and 11.37 are then rewritten as

 ∂
∂

+∇ ⊗ − +( )( ) = ( ) ≡
t x

E f E
Ap p v t t f t 0tot . , .ρ  (11.39)

This is a most interesting formulation because only symmetric stresses are 
now involved just like in a classical continuum. Apparently, neither magne-
tization nor electric polarization is involved here. But this is only apparent, 
first of all because the accompanying boundary value problem still involves 
the initial Cauchy stress. Second, magnetization and electric polarization are 
hidden in the functional dependence of the strain energy function via tE, 
and this will yield the most interesting electro- and magneto-mechanical 
couplings such as piezoelectricity, electrostriction, and magnetostriction. Of 
course, energy arguments should be developed in parallel with the equations 



338 Configurational Forces

of motion, in particular on account of an electromagnetic energy source that 
is evaluated together with the ponderomotive force and couple (cf. Maugin 
and Eringen, 1977). However, we do not need this for the moment.

11.2.6 equations of Motion in Piola–Kirchhoff Format

We can introduce first Piola–Kirchhoff stresses associated with tE and tf and 
the Piola transform of Pf by

 T F t T F t p F pE
F

E f
F

f f
F

fJ J J= = =− − −1 1 1. , . , ˆ . ,  (11.40)

so that just like in pure elasticity, by multiplying (11.39) by JF and doing some 
manipulations, we obtain the Piola–Kirchhoff form of the local balance of 
physical momentum at any regular material point X as

 ∂
∂

− + + ⊗( ) =
t R

X
R

E F fp T T p v ftot div ˆ ,ρ0  (11.41)

while the symmetry of TE with respect to F replaces the local balance of 
angular momentum, that is,

 T F F TE T E T= ( ) ,  (11.42)

and we have set

 p v
E B

R c
tot = + ×



ρ

ρ0
1

.  (11.43)

Maxwell’s equations are already entirely written in the material frame-
work, viz. (11.25) and (11.26). What about the canonical projection of (11.41) 
on the material manifold? If we were to pursue the same line of approach 
to canonical momentum as in Section 3.1, that is, through a straightfor-
ward but obviously now very cumbersome computation, we would apply 
F to the right of (11.41) and apply the possible commutations with space 
and time derivatives. We shall not do that and rather content ourselves 
with the nondissipative case by examining variational formulations of the 
electrodynamics of continua and their consequences insofar as canonical 
conservation laws are concerned. Of course, the cases of quasielectrostatics 
or quasimagnetostatics, the two most relevant cases for  engineering applica-
tions (except for high-frequency waves) are much simpler in that (11.41) 
then reduces to

 divR
E fT T f 0+( ) + =ρ0 ,  (11.44)

where, usually, either electric polarization or magnetization alone is present.



Electromagnetic Materials 339

11.3 Variational Principle Based on the Direct Motion

11.3.1 Prerequisite

Before considering the case of full matter, let us consider the case where the 
Lagrangian is none other than the one usually considered in vacuum but now 
written per unit volume of matter, that is, a simple Lagrangian expressed on 
the basis of (11.5), which we write first as

 L0
2 21

2
emf E B E B, ,( ) = −( )  (11.45)

per unit of actual volume in Kt. Per unit of undeformed volume this yields

 L J LR F
emf emfE B F, ; .( ) = 0  (11.46)

Recalling that, or setting,

  E E F B F B: . , . ,= ≡ −JF
1  (11.47)

this yields

 L J JR F F
emf = −− −1

2
1
2

1 1   E C E B C B. . . . ,  (11.48)

an expression obtained by Nelson (1979) up to the notation. This expres-
sion tells us how LR

emf depends on the deformation gradient. Of course, this 
function cannot depend explicitly on X. In particular, for quasielectrostatics, 
there remains only the first contribution in the right-hand side of (11.48), and 
Maugin and Epstein (1991) have proved that computing the material gradient 
of LR

emf, one obtains the following identity:

 ∇ − ∂
∂






= − ∂

R R R
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R R R
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emf

emf
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div div
F

F 1.
∂∂






≡

F
F 0.  (11.49)

This means that the material divergence of the Eshelby stress tensor of free 
electromagnetic fields is not balanced by any material force (inhomogeneity 
force). This is checked directly by computing the following two quantities:
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and subtracting the second result from the first. The following more general 
result can be checked (full dynamic electromagnetic case):

 ∂
∂

− ≡
t X

RP b 0emf emfdiv ,  (11.50)

where

 P
V

b 1 T F Temf
emf

emf emf emf emf: , , := ∂
∂

= − +( ) =L
LR

R R −− ∂
∂
LR

emf

F
.  (11.51)

In plain words, free electromagnetic fields do not, by themselves, develop any 
inhomogeneity force. This property encapsulates the essential  difference 
in nature between the pervasive pure field contributions and those that per-
tain to true material fields (e.g., magnetization and electric polarization). 
Accordingly, the usual Maxwell stress tensor introduced in (11.9) cannot 
contribute to the balance of material momentum. Along the same line, the 
electromagnetic material momentum has to be different from the pull back 
of the electromagnetic momentum in vacuum.
Another prerequisite concerns the fact that the first group of Maxwell’s 
equations—say (11.15) or (11.25)—is automatically taken care of by the intro-
duction of the electromagnetic potentials. Thus a variational formulation 
will necessarily involve independent variations of ϕ̂ and Â and either mate-
rial or Eulerian variations of the motion. Accordingly, for the whole system 
consisting of matter plus electromagnetic fields, we may have to consider 
Lagrangian densities such as

 L L LR= ( ) + ( )emf md   E B F V v F E B X, , , , , , ;  (11.52)

for a Lagrangian per unit volume in KR and a direct-motion description, and

 
  L J L J L LF F R= = + ( ) 

− − −1 1 1emf mi V F E B X, , , ;  (11.53)

for a Lagrangian per unit volume of Kt and an inverse-motion description, 
where

 L Wmd = ( ) − ( )1
2 0

2ρ X v F E B X, , ;   (11.54)

and

 L Wmi = ( ) − ( )−1
2 0

1ρ X V C V F E B X. . , , ; .   (11.55)

It is understood that the local interactions of matter and electromagnetic 
fields, which give rise to magnetization and electric polarization, are con-
tained in W or W , from which we shall derive these notions.
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11.3.2 The Variational Principle Per Se

The Hamiltonian action considered reads

 A dt L L dVR

Bt R

χ; , .E B{ } = +( )∫∫ emf md  (11.56)

Then we have the following fundamental results (Maugin, 1990; Maugin, 
Epstein, et al., 1992b; Maugin, Epstein et al., 1992a, 1992b):

T HEOREM 11 .1 :  From a material variation accompanied by proper varia-
tions of the electromagnetic potentials of the action (11.56), there follows the 
second group of Maxwell’s equations (11.26) in the absence of electricity con-
duction, the equation of motion (11.39) in the absence of body force, and the 
general constitutive equations

 T
F E

M
B

E W W W= ∂
∂

= − ∂
∂

= − ∂
∂

, , ˆΠ    (11.57)

with the

COROLL A Ry 11 . 2 :  By applying Noether’s theorem to (11.56) for material 
space translations X, we obtain the balance of material momentum for the 
system matter plus field in matter as

 
∂
∂

− =
P

b f
tot

tot inhdiv
t

X

R ,  (11.58)

where we have defined the following entities:

 P P P P C V P Btot mech emm mech emm= + = = ×, . , ,ρ0
1
c
Π  (11.59)

 b 1 S Ctot md= − +( )L R . ,  (11.60)

where

 S S C E C M B M B 1= − ( )⊗ + ( )⊗ − ( )− −E
R

1 1. . ˆ ˆ . ,  Π  (11.61)

and

 S
C E

M
B

C E B XE W W W
W W= ∂

∂
= − ∂

∂
= − ∂

∂
= ( )2 , , ˆ , , , ; ,Π  

   (11.62)
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 f
X

inh
md

expl

= ∂
∂
L

.  (11.63)

The last of (11.62) provides an objective (materially indifferent) form of the 
energy W. The material electromagnetic momentum defined by the last of 
(11.59) exists only in electrodynamics, but it in fact exists only if the mate-
rial is electrically polarized and placed in a magnetic field. It is not the pull 
back, changed of sign, of the electromagnetic momentum defined by (11.43). 
Concerning the stress involved in the total Eshelby stress, the general form 
of the effective second Piola–Kirchhoff stress (11.61) is of great interest. Its 
electromagnetic contribution is essentially a second Piola–Kirchhoff stress 
built from the interaction “Cauchy-like” stress tinter introduced (11.34). This 
again means, like in the prerequisite Section 11.3.1, that free fields are filtered 
out by the material manifold, the latter retaining only those terms that con-
tain a true material quantity, such as magnetization or electric polarization 
(of course, in the presence of  electromagnetic fields, E and B). Because of its 
length and technical aspect, the proof of Theorem 11.1 and Corollary 11.2 is 
reported in the Appendix to this chapter.

11.4 Variational Principle Based on the Inverse Motion

In this case we should start from the Hamiltonian action

 A dt Ldv
t Bt

χ−{ } = ∫ ∫1 , , ,E B


 (11.64)

where the Lagrangian density 

L is given by (11.53) and Bt is the actual vol-

ume in Kt. Then we have the

COROLL A Ry 11 . 3 :  From a straightforward δx (at fixed actual placement x) 
variation accompanied by proper variation δϕ̂ and δÂ of the Hamiltonian 
action (11.64), there follow (11.58) and (11.26)—without charge and cur-
rent—together with the general constitutive equations. Then the applica-
tion of Noether’s theorem for x-translation in physical space (homogeneity 
of physical space) will yield (11.41)—in the absence of external body force 
(that is other than electromagnetic in nature).

We leave the proof of this to the reader. Of course, the second part of 
this corollary (Noether’s theorem) can also be established by direct com-
putation from the Euler–Lagrange variational equation of motion, which 
a priori reads
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∂







− ∂
∂

∂
∂







− ∂
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−

  
L

t
L L

x
X V F

expl

div
1


= 0.  (11.65)

This is the primitive form of (11.58).
Here we do not deal with other invariances such as rotation and dilatation 

in material space, since this will not be exploited further. However, we note 
that the material law obtained by taking the inner product of the balance of 
material momentum by X plays a valuable role in the proof of uniqueness 
for certain boundary-value problems concerning electroelasticity (Knops 
and Trimarco, 2006). Also, we should note that the invariance of both of the 
previously recalled variational formulations under time translation will yield 
two equivalent forms of the energy equation.

But we can give elements of the canonical Hamiltonian formulation since 
this is typically based on the inverse-motion description (compare the pure 
elastic case in Section 4.3). We have to consider the motion χ–1 and the χ–1-
dependent “fields”:

 ˆ ˆ , , , ˆ ˆ , , .ϕ ϕ χ χ= ( )( ) = ( )( )− −1 1x A A xt t t t  (11.66)

The associated generalized velocities are

 V A
A=

∂
∂

= ∂
∂

= ∂
∂

−χ
ϕ ϕ1

t t tx x xfixed fixed

, ˆ * :
ˆ

, ˆ * :
ˆ

ffixed

.  (11.67)

On account of (2.40), we note that

 ˆ *
ˆ

. ˆ , ˆ *
ˆ

.ϕ ϕ ϕ= ∂
∂

+ ∇( ) = ∂
∂

+
t tX

R

Xfixed fixed

V A
A

V ∇∇( )R
ˆ .A  (11.68)

Then the generalized momenta are given by

 





 
P

V
P P

A
A≡ ∂

∂
= ≡ ∂

∂
≡ ≡ ∂

∂
= −L

P
L L

c
Jtot , ˆ *

, ˆ *
ϕ ϕ

0
1

FF
−1 ˆ .D  (11.69)

The first set of Hamilton’s canonical equations reads

 V
P

A
PA

= = =δ
δ

ϕ δ
δ

δ
δϕ




 
H H

P
H

, ˆ * , ˆ * ,  (11.70)
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with Hamiltonian

 
   H J W JF F= ( ) + ( ) +− −1

0
11

2
1
2

ρ X V C V F E B X E C. . , , ; . −− −+







1 11
2

. . . .  E B C BJF  (11.71)

Then we have to check the second set of Hamilton’s canonical equations:

 
∂
∂

= − ≡ ∂
∂

= −
   
P

X
P

A
A

tot

t
H H

t
H

x x

δ
δ

δ
δϕ

δ
δ

, ˆ , ˆ *
.0  (11.72)

The second of these is none other than

 div
∂

∂ ∇( )





= ∇ =−


H

J q e dF Rˆ
. ˆ , . . .

ϕ
1 0D  (11.73)

The last of (11.72) is
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∂

−





= ∂
∂ ∇( )









 =− −

t c
J

H
JF

x
F

1 1 1ˆ
ˆD
A

div


ddivR
R

H∂
∂ ∇( )









ˆ .

A
 (11.74)

The computation of the right-hand side of this equation then yields

 − ∂
∂

= −∇ ×−1 1

c
J

tF

X

R

ˆ
ˆ ,

D
H  (11.75)

hence the first of (11.26) with vanishing conduction current. It remains to 
check that JF times the first of (11.72) is none other than (11.58). We leave this 
to the reader. An introduction to the formalism of Lie–Poison brackets is 
given in Maugin (1993, Chapter 8).

11.5 Geometric Aspects and Material Uniformity

Some of the considerations of Section 6.1 carry directly to the electromag-
netic case, in particular to the case of electroelastostatics (Maugin and Epstein, 
1991), in which case the Lagrangian density is reduced to

 L W= − ( )1
2

2E F E Xˆ , ; .  (11.76)
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The field E is Eulerian and, therefore, not affected by a change in reference 
configuration. The “geometric” definition of the Eshelby stress holds good 
and yields

 b
k

k F E X 1
F

Ftot = − ∂
∂

= ( ) − ∂
∂

W
W

WT
R

ˆ , ;
ˆ

. ,  (11.77)

where ˆ ( , )W J W= −
k Fk E1 . But on account of objectivity Ŵ  becomes a function 

such as 
 W T( , ˆ . ; )C F F E E E F X= = =  so that

 
∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= − −
ˆ

: . : .
W W W E T

F C
C
F E

E
F

S F EF

 




Π 1 ,,  (11.78)

and thus

 b 1 S F F EF F 1 S E Ctot = − + = − − ⊗ ( )(− −
   W WR

E T
R

E. . . . .Π Π1 1 )). .C  (11.79)

In the equivalent case of magnetoelastostatics a similar reasoning would yield 
the following result:

 b C M X 1 S C B M B Mtot /= ( ) − − ⊗ = ∂ ∂
   

W WR
E, ˆ ; . ˆ , ˆ .  (11.80)

Note that the case of electroelastostatics was studied from the variational 
point of view by Pak and Herrmann (1986a, 1986b) with a view to fracture 
studies, while the case of soft ferromagnets for which (11.80) holds good was 
established by Sabir and Maugin (1996). The expressions in (11.79) and (11.80) 
are but special cases of the general  electrodynamic case (11.60) through 
(11.62). The typical contribution in ∏ ⊗ Ẽ in (11.79)—P ⊗ E in the actual 
framework of small strains—provides an electric correction to the electro-
elastic Peach–Koehler force, which, generalizing the classical formula (3.65), 
will read, according to Minagawa (1991):

 f b E PPK−( ) = − ⊗( )( ) ×E . .σ τ  (11.81)

From (11.80) we deduce without computation that in magnetoelasticity we 
will have the result

 f b M BPK−( ) = + ⊗( )( ) ×M . ,σ τ  (11.82)

where we recall that b is the Burgers vector (not to be mistaken for the 
Eshelby stress).
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11.6 Remark on Electromagnetic Momenta

Even written in a single frame (the actual one), the electromagnetic (physi-
cal) momentum pf (cf. (11.33)) and the material electromagnetic momentum 
(cf. Equation 11.59) differ from one another since they then read

 p p E B P P Bf

c c
= ≡ × = ×emf emm1 1

, .  (11.83)

Of course we immediately have in our system of (Lorentz–Heaviside) units

 p P D Bemf emm+ = ×1
c

.  (11.84)

Early in the twentieth century various proposals were made for a possible 
expression of the electromagnetic linear momentum in matter (see the dis-
cussion in Eringen and Maugin, 1990), among them the so-called Minkowski’s 
(1908) proposal,

 
p D BM c= × ,  (11.85)

and Abraham’s (1909) proposal,

 p E HA

c
= ×1

.  (11.86)

In a linear isotropic, nonmagnetized, dielectric of dielectric constant ε we 
have

 D E B H= = = ( )−ε ε µ ε µ0 0
2

0 0
1

, , ,c  (11.87)

so that

 p pM An n= ≅2 2, ,ε  (11.88)

where the last relation, due to Maxwell, is only approximate with a refractive 
index n.

But in the preceding we have many candidates for the electromagnetic-field 
momentum. Basing on various arguments, some authors (Pauli in 1921; Jones 
and Richards, 1954; Brevik, 1970) favor Minkowski’s proposal, while others 
(Pauli, 1921; Penfield and Haus, 1967; de Groot and Suttorp, 1972; Robinson, 
1975) would prefer Abraham’s. More modern authors including Livens (1962), 
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Maugin and Eringen (1977), Nelson (1990), and Tiersten (1990) recognize in 
the first of (11.83) what should a priori be a good candidate, recalling simul-
taneously that all depends on the decomposition considered in a result such 
as (11.32), which is not unique for a given  electromagnetic body force fem. 
Blount (1971) seems to be the first to have proposed a distinction between 
the true physical linear momentum of electromagnetic fields and the pseudo-
momentum (here called the material momentum), relating these two concepts 
to the invariance of physical laws under translation of spatial and material 
coordinates, respectively. This is our point of view, shared by Nelson (1990). 
According to Blount (1971) Abraham’s momentum corresponds to the true 
physical momentum and Minkowski’s momentum is identified with the 
pseudomomentum. In our case, (11.83) yields

 p P p pemf emm+ = ≅1
2

2

2c
n
c

M A ,  (11.89)

and this ought to be compared to the purely mechanical analog given by 
(see (3.26))

 p P P+ = f ,  (11.90)

where Pf is Brenig’s field (or wave) momentum. According to this analogy, 
Pemf is the physical momentum of electromagnetic fields (in agreement with 
the way we introduced it), Pemm is the material momentum (in agreement with 
the manner we constructed it), and the Minskowski and Abraham momenta 
are to be related to the notion of field or wave momentum.

To conclude this point we note a series of works by a group from Zürich 
(Gurevich and Thellung, 1990, 1992; Schoeller and Thellung, 1992). These 
authors identify what they call the quasimomentum (our pseudomomentum 
or canonical momentum) of elasticity and electromagnetism by evaluating 
the quantities that appear jointly with the known quasimomentum of pho-
nons (or crystal momentum in the quantum theory of solids), of which they 
know the expression, that is, a covector of components of the form

 P d N kJ k J
phonons( ) = ∫ ξ  ,

where kJ is the Jth component of a wave vector, N is the phonon distribu-
tion function, and ∫dξk denotes integration over the phonon vectors k and 
summation over the various phonon branches. The canonical balances of 
momentum and energy are derived, as they should be, in parallel, present-
ing elastic, electromagnetic, and phonon contributions. The electromag-
netic quasimomentum identified by these authors is none other than the 
Minkowski electromagnetic momentum (see our earlier discussion follow-
ing (11.89) and (11.90)).
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11.7 Balance of Canonical Momentum and Material Forces

Although the general framework is not so relevant from the applicative 
viewpoint, some general feeling can be gathered from some results in fore-
going sections. This is the case of the material momentum equation (11.58). 
Integrated over a regular material volume V, this yields

 
d
dt

V V VEP B F( ) = ( ) + ( )inh ,  (11.91)

with

 P P B N b F fV dV V dA V
V

E

V

( ) = ( ) = ( ) =∫ ∫
∂

tot tot inh in, . , hhdV
V
∫  (11.92)

Of particular interest here is the surface contribution, which can be rewrit-
ten as

 B N T C E M B NE
E

P

V

V P Q dA( ) = − + − ( ){ }
∂
∫   . ˆ . ,  (11.93)

where we have defined a pressure-like term P, a surface traction TE, and a 
surface electric charge density due to electric polarization, QP, by

 P L QE E
P: ˆ . , : . , : . .= − + = =md M B T N S N  Π  (11.94)

Several important cases are as follows. For a nonmagnetizable mate-
rial (vanishing magnetization in a comoving frame), we obviously have 
M̂ 0= , so that (11.93) reduces to a form relevant to the case of electroelastic 
materials:

  B N T C EE
E

P

V

V L Q dA( ) = − − +{ }
∂
∫  . .  (11.95)

In quasistatics, but keeping both magnetization and electric polarization, we 
obtain an approximation valid for both electroelasticity and magnetoelasticity:

 B N T 1 E M A NE
E

R P R R

V

V W Q( ) = − +( ) − ∇ − ∇ ×( ){ }
∂

 . ˆ ˆ ˆ .2 ϕ∫∫ dA,  (11.96)

where E is the finite strain expressible in terms of the displacement gradi-
ent, and ϕ̂ and Â are the material electromagnetic potentials. The expression 
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(11.96) gives in advance an idea of what the J-integral generalized to elec-
troelasticity or magnetoelasticity will be. This shows an essential difference 
between electric and magnetic processes because there is no magnetic equiv-
alent here to the notion of polarization surface charge.

For a homogeneous material and for homogeneous boundary conditions 
or vanishing fields at infinity (in the case of an integration over the whole 
material space), (11.91) reduces to a pure conservation of the total mate-
rial (canonical) momentum. This is what happens in certain problems of 
propagation dealing with solitons (see Chapter 12). More on the canonical 
Hamilton formalism associated with the general electrodynamic case is 
found in Maugin (1993, pp. 192–193). Instead of dealing with this mundane 
subject, we prefer to revisit the problem posed by electroelastic solids in 
finite strains (and its analog in magnetoelastic bodies) because of its many 
applications in electromechanical devices and in the industry of electronic 
components.

11.8 Electroelastic Bodies and Fracture

11.8.1 general equations

For many applications it is sufficient to consider a quasistatic approxima-
tion to the general equations presented in Section 11.2. In particular, accel-
eration terms are discarded in the basic equation of motion, magnetization 
is ignored as well as couplings between electric and magnetic phenomena 
(although there exist magneto-electric materials of great interest), and most 
of the time the material is assumed to be a dielectric; that is, it does not con-
duct electricity and is free of charges. Under these conditions the basic field 
equations at any regular material point X are reduced to

Balance of linear (physical) momentum in its equilibrium form (com-•	
pare to (11.41)):

 divR
E FT T 0+( ) =  (11.97)

Reduced Faraday equation (compare to (11.25)):•	

 ∇ × =R Ê 0  (11.98)

Reduced Gauss equation (cf. (11.26•	 2)):

 ∇ =R .D̂ 0  (11.99)
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where (11.97) introduces the first Piola–Kirchhoff stresses associated with 
elasticity and the “free” electromagnetic fields, while Ê and D̂ are material 
electric fields. Because we are in quasielectrostatics, we have the relations 
(compare to (11.23) through (11.26))

 ˆ . , ˆ . , . , ˆ . ˆ ,E E F D F D F P D C E= = = = +− − −J J JF F F
1 1 1Π Π  (11.100)

where E, D, and P are the standard fields in a laboratory frame. Equation 
11.98 implies the existence of the material electrostatic potential ϕ̂ such that

 ˆ ˆ .E = −∇Rϕ  (11.101)

Because of our special interest in fracture and the evaluation of energy-
release rates, the equation of energy associated with (11.97) through (11.99) is 
most relevant. To that purpose we note that

 T E E F E E E F EF
FJ= ⊗ − ( ) =− −1

2
1 1ˆ . , : . .  (11.102)

It is checked that

 divR
F

RT E= − ∇( ). ,Π  (11.103)

where we recognize in the quantity within parentheses a so-called polariza-
tion charge density.

With an objective energy density for a homogeneous material, per unit 
reference volume,

 W W= ( )C E, ˆ ,

we have the mechanical and electric constitutive equations

 S
C E

= ∂
∂

= − ∂
∂

2
W W

, ˆ ,Π  (11.104)

corresponding to the energy equation (no dissipation of any kind)

   
W = ( ) −1

2
tr S C E. . ˆ .Π  (11.105)

We can as well consider the so-called electric enthalpy:

 W W= − 1
2

ˆ . ,E E  (11.106)
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so that, on account of the last of (11.100), instead of (11.104), we have

 S
C

D
E

= ∂
∂

= − ∂
∂

2
 W W

, ˆ
ˆ .  (11.107)

It is the multiplicity of possible electromechanical energies that causes some 
problems in the sequel. Indeed, starting from the field equations (11.97) 
through (11.99) and the energy equation (11.105), we can deduce some identi-
ties that will be useful for the evaluation of  energy-release rates. All these are 
obtained at regular material points. For instance, (11.105) can first be rewrit-
ten as

   
W E= ( ) −tr T F E. . ˆ .Π  (11.108)

But this can be transformed to

 
d
dt

W E
R

T   + = ∇( )( ) + −( )ˆ . ˆ . . ˆ . ˆ .D E T v E E E Etr
1
2

 (11.109)

But we can write

 tr trT v T T v T vE
R

T
R

E F F
R

T
. . . . ,∇( )( ) = ∇ +( )( ) − ∇( )( )  (11.110)

and also prove that

 tr T v E E E EF
R

T
. . ˆ . ˆ .∇( )( ) = −( )1

2
   (11.111)

The nontrivial proof of this is given in the Appendix to Dascalu and Maugin 
(1994). On combining (11.109) through (11.111), we obtain that, after introduc-
tion of the electric potential and enthalpy,

 
d
dt

W R
E F = ∇ +( ) +( ). . ˆ ˆ .T T v Dϕ  (11.112)

This is a remarkable form of the energy equation because it is written as 
a strict conservation law. The dual material contravector to ˆ ˆD ϕ, − ∂ ∂ˆ ˆϕ D/ t, is 
the Poynting vector of quasielectrostatics (see Maugin, 1988, p. 238). In con-
trast, we can write it in another form, also totally admissible, by considering 
(11.111) and noting that

 
d
dt

hR
F1

2
ˆ . . . ˆ ,E E T v E






= ∇ +( ) +ϕ elec  (11.113)
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where we have set

 h R
F

R
elec div= ( ) + ∇( )T v E. . ˆ .ϕ  (11.114)

From (11.112) takes on the form

 
d

dt
W hR

E= ∇ +( ) +. . ˆ ,T v Π ϕ elec  (11.115)

which is not in the form of a strict conservation law but emphasizes the con-
sideration of the electric polarization as compared to that of the electric dis-
placement. These two forms will necessarily have different consequences 
insofar as the evaluation of the corresponding energy-release rate of fracture 
is concerned.

11.8.2 evaluation of the energy-release rate in electroelastic Fracture

The proofs will follow exactly those of the pure elastic case, and, therefore, 
details are not repeated, the reader being referred to the original research 
papers (here essentially Dascalu and Maugin, 1994). For instance, in the first 
case, where we start from the local energy equation (11.112), with the notation 
of Section 8.4, we obtain the following global energy balance in the presence 
of the straight-through crack:

 
d
dt

WdA G dS
B

E F

S

 ∫ + = +( ) + ( ){ }crack N T T v D N. . ˆ ˆ .ϕ∫∫ ,  (11.116)

where S is the boundary of B – C, C is the crack, and we have defined the 
energy-release rate by

 G W E Fcrack lim= ( ) + +( ) + ( ){ }∫  V N N T T v D N. . . ˆ ˆ .ϕ
Γ

ddΓ Γas → 0.  (11.117)

Clearly, the latter involves not only the flux of electric enthalpy but also the 
full contributions of coupled and free electric fields. We can say that this is a 
“natural” formulation. If instead we start with the identity (11.115), we shall 
obtain the global energy balance as

 
d
dt

WdA G dS h
B

E

S
∫ ∫+ = + ( ){ } +* . . ˆ .crack eleN T v Nϕ Π ccdA

B
∫ ,  (11.118)

with an energy-release rate given by

 G W dSE
* . . . ˆ .crack lim as= ( ) + + ( ){ } →∫ V N N T v Nϕ Π Γ

Γ

00.  (11.119)
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Notice that the stress contribution related to the free electric field is not 
involved in this formula. To obtain (11.118) we assumed that the integrals 
in this relation are convergent. For some linear piezoelectric materials (Pak, 
1990; Sosa and Pak, 1990) or in the case of linearized electrostriction, as 
shown by Dascalu and Maugin (1994), the behavior of the solution at the 
tip shows that the term helec is of order r–2, so that the last integral in (11.118) 
generally diverges. However, if helec = 0, then the preceding computation 
holds good. If we examine the definition (11.114), we can show that this is 
nothing but

 h
tR

elec = − ∇( ) ∂
∂

. ,Π ϕ
 (11.120)

where φ is the electrostatic potential in the actual configuration. Thus, as 
∂φ/∂t cannot be forced to vanish, the condition of vanishing helec can be real-
ized only if we impose the constraint

 ∇ =R . ,Π 0  (11.121)

as a sufficient condition. This can be achieved in some concrete electroelastic 
problem (cf. Dascalu and Maugin, 1994).

11.8.3 electroelastic Path-independent integrals

Now we express the energy-release rates obtained in the preceding in terms 
of contour integrals that do not depend on the integration path, an essential 
property for easy computation. These integrals were obtained first by Pak 
and Herrmann (1986a, 1986b) and Maugin and Epstein (1991). To do this we 
need an estimate of the degree of singularity of electromechanical fields in 
the neighborhood of the crack tip. Suppose that both the displacement u and 
the electric potential ϕ̂ have a regular time behavior as observed from the 
crack tip. So, just as in pure elasticity (Gurtin, 1979; Nguyen Quoc Son, 1980), 
this assumption allows us to write

  u V u w V= − ∇ + = − ∇ +. , ˆ . ˆ ,R Rϕ ϕ ψ  (11.122)

where w and ψ have no singular behavior at the crack tip. Then the terms in 
Gcrack containing these fields will vanish for Γ → 0. This allows us to show 
that Gcrack takes on the form

 

G . W dSR
E F T

R
crack lim= −∇ +( ) −∇ ( ){ }∫V N u T T N D N . . ˆ ˆ .ϕ

Γ

aas Γ→ 0.  (11.123)
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The same technique applied to G*
crack yields

 G . W dSR
E T

R* . . .crack lim as= − ∇ ( ) − ∇ ( ){ }V N u T N Nϕ Π Γ →→∫ 0
Γ

.  (11.124)

In this relation we can replace ∇Ru by F making the assumption that

 lim asN T. dSE

Γ

Γ∫ = →0 0,  (11.125)

an assumption that is verified when TE behaves like r–1/2 near the tip, just like 
in classical elasticity (cf. Pak, 1990; Sosa and Pak, 1990; Dascalu and Maugin, 
1994). Then (11.124) reads

 G . W T E F T
R

crack lim= − +( ) − ∇ ( ){ }V N F T T N D N . . ˆ ˆ .ϕ
Γ
∫∫ →dS as Γ 0.  (11.126)

But we restrict the analysis to the case of a straight-through crack along the 
X1-axis and thus

 V E= ( )l t 1 .  (11.127)

Now we formulate electroelastic J-integrals. For a piecewise smooth, nonin-
tersecting path Γ that begins and ends on the crack and surrounds the tip of 
the crack, we define

 J WN
X X

E FΓ( ) = − +( ) ∂
∂

− ( ) ∂∂







1
1 1

N T T
u

D N. . ˆ .
ϕ̂
∫ dS

Γ

.  (11.128)

If J does not depend on Γ, then (11.126) yields

 G Jlcrack = ,  (11.129)

the familiar dissipation form of the product of a “force” and a “velocity.” 
The J-integral (11.128) was obtained by Pak and Herrmann (1986b) using the 
Eshelby theory of inhomogeneities. Their argument for the path indepen-
dence stems from the relation

 divRb 0= ,  (11.130)

with an electromechanical Eshelby stress given by

 b 1 T T u D= − +( ) ∇( ) − ⊗∇W R
E F

R
T

R. ˆ ˆ .ϕ  (11.131)
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Here also, the path independence requires that some conditions hold true 
along the faces of the crack. These conditions are

 N D N T T 0. ˆ , . ;± ±= +( ) =0 E F  (11.132)

that is, neither electric charges nor tractions exist along the crack. If, how-
ever, we deal with paths that start and end at the same point along the crack, 
then only the jumps in (11.132) are required to vanish.

To deal with G*
crack, we define another J-integral, J*, by

 J WN
X

dSE* . . . .
ˆ

,= − − ( ) ∂
∂







∫ 1 1

1

N S C E NΠ
Γ

ϕ
 (11.133)

which was obtained by Maugin and Epstein (1991) using the same method 
as Eshelby but remarking that an identity verified by the free electric fields 
permits us to work with the following electroelastic Eshelby stress tensor 
(compare (11.79)):

 b 1 S C* . ˆ ,= − − ⊗∇W R
E

RΠ ϕ  (11.134)

for which

 divRb 0* ,=  (11.135)

at all regular material points X. For the path independence of J* we must 
have

 N T 0 N. , . ,E( ) = =± ±Π 0  (11.136)

on the faces of the crack. The same conditions, but for the jumps, are valid 
when the contour of J* starts and ends at the same point.

11.8.4  An Application: Antiplane Crack in a Dielectric 
with induced Piezoelectricity

This problem was examined by Dascalu and Maugin (1995a, 1995b) with a 
view to determining whether the conditions (11.132) and (11.136) hold good 
in realistic situations. This concerns mode III fracture, for which the sin-
gular part of the solution, the only one of interest in the evaluation of the 
J-integrals, can be obtained in a closed form. We consider an electroelastic 
material with a center of symmetry (in fact an isotropic body), so that it 
cannot a priori exhibit piezoelectricity (cf. Maugin, 1988). The first electro-
elastic coupling of interest is electrostriction. But for small electric fields E 
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superimposed on a bias electric field E0 = (0, 0, E03) that breaks the symme-
try of the material, we obtain a field induced piezoelectricity effect such that 
we have the constitutive equations (Ani and Maugin, 1989, p. 608; only one 
type of indices is used)

 T C u E Eij
E

ijkl k l mnij n m= −, ,λ 0  (11.137a)

 T E E E Eij
F

i j i j ij= + − ( )0 0 0E E. ,δ  (11.137b)

 Πm mn n mnij n i jE E u= +χ λ 0 , ,  (11.137c)

 ˆ ,,E E E um m ij mn mi nj ni mj n i j= + − −( )δ δ δ δ δ δ 0  (11.137d)

with material constitutive tensors (for isotropy) given by

 
Cijkl ij kl jk il jl ik mn mn

mn

= + +( ) =λδ δ µ δ δ δ δ χ χδ

λ

, ,

iij mn ij ni mj nj mic d= + +( )δ δ δ δ δ δ ,
 (11.137e)

where λ and μ are Lamé coefficients, χ is the electric susceptibility, and c 
and d are the only two surviving electrostriction coefficients for an isotropic 
body (see Maugin, 1988).

The problem considered relates to out-of-plane displacements and in-plane 
electric fields such that

 u u u u x x E E E E x x1 2 3 1 2 3 3 1 1 1 20 0 0= = = ( ) = = = ( ), , ; , , , , EE E x x2 2 1 2= ( ), .

Introducing the electrostatic potential ϕ̂ ϕ= , the field equations yield (Δ is 
the 2D Laplacian)

 µ ϕ ε ϕ∆ ∆ ∆ ∆u e e u+ = − =0 0, ,  (11.138)

where e = (d – 1)E03 and ε = 1 + χ are the effective piezoelectric coefficient and 
the electric permeability, respectively. These must be such that e2 + με ≠ 0, 
so that both u and φ are harmonic functions. We consider a straight-through 
crack with the origin of coordinates situated at the crack tip and the crack C 
lies along the negative x1-axis. The boundary conditions (11.132) read

 µ ϕ εϕu e eu, , , ,, .2 2 2 20 0+ = − =



Electromagnetic Materials 357

With u and φ harmonic functions, these are equivalent to vanishing Neumann 
conditions. The singular part of the electroelastic solution has a standard 
form (“singularity of the Laplacian”; cf. (8.1))

 u K
r

2
K

r
2

S E= =2 2
π

θ ϕ
π

θ
sin sin, ,  (11.139)

where (r, θ) are polar coordinates, and the scalars KS and KE are the strain 
and electric field intensity factors. We let the reader evaluate the various 
electric and stress fields, as well as the J-integrals. It is found (Dascalu and 
Maugin, 1994) that

 J K K eK KS E E S= ( ) − ( ){ } −1
2

2 2µ ε ,  (11.140)

 J K K dE K KS E E S* ,= ( ) − ( ){ } −1
2

2 2
03µ χ  (11.141)

so that

 J J K E K KE E S− = − ( ) +* .
1
2

2
03  (11.142)

This difference represents the contribution of the free electric field to crack 
propagation. With E03 = 0, this shows that the electric field may have a nega-
tive contribution to the energy-release rate. This agrees with Pak (1990) and 
Deeg (1980), whose results show that crack arrestment can be produced by 
the electric field effect on the propagation. Considering a similar problem 
for a transversely isotropic piezoelectric material of hexagonal class 6 mm, 
Pak found a similar form of the solution. The reason is that equations similar 
to Equation 11.138 hold true but with real electroelastic–piezoelectric coef-
ficients for that symmetry:

 µ ε ε→ → →c e eE e
44 15 11, , ,  (11.143)

with the standard notation of piezoelectricity (cf. Maugin, 1988, Chapter 4; 
Maugin, 1993, pp. 200–202). For PZT-5H ceramics, the critical crack extension 
force Jcr was found to be of the order of 5 N/m (Deeg, 1980).

To be more complete we should cite McMeeking (1989, 1991) for a nice dis-
cussion about other problems such as the possible breakdown of a deformable 
dielectric through crack extension. Also, we recall the original work of Parton 
(1976) on the elliptic crack in a dielectric (see also Parton and Kudryavtsev, 
1988), the thorough investigation of stress intensity factors in elastic dielec-
trics by Kurlandzka (1988), the work of Belokopitova and Filshtinski (1979), 



358 Configurational Forces

and that of Park and Sun (1995) and Suo et al. (1992). A thorough mathemati-
cal discussion concerning the propagation of an electrically conducting crack 
in a dielectric was given by Dascalu and Maugin (1995c). There, the contro-
versy concerning the choice of path-independent integrals is identified as a 
controversy between two different formulations of the electroelasticity equa-
tions. The obtained results actually represent an argument in favor of the 
theory that views the action of electromagnetic fields as occurring via contact 
forces rather than at-a-distance forces (an old discussion in electromagnetic 
continua; see Maugin, 1988). We cannot quote the multitude of analytical 
works dealing with cracks of different types in linear piezoelectricity. These, 
interesting as they are from the solution viewpoint and for technological 
applications, especially in electronic equipment, do not bring any new con-
tributions from the conceptual viewpoint. Direct computational approaches 
are also numerous, and we cite only our own finite-element works (Benkaci 
and Maugin, 2001a, 2001b) for the consideration of energy-domain integrals, 
3D computations, and evaluations of electroelastic J-integrals for various 
crack modes. Concerning the dynamic fracture of piezoelectric materials, there 
exist only a few works, one of which is that of Dascalu and Maugin (1995c), 
which generalizes to the piezoelectric case a purely elastic problem treated 
by Kostrov (1966), Eshelby (1969), and Brock (1974), that of the extension of the 
crack lips symmetrically in the direction of the crack line: Only the accelera-
tion term is kept in the mechanical equation; for the antiplane fracture of a 
transversely isotropic piezoelectric solid, the stress and electric field inten-
sity factors are obtained for short times of extension, and the use of a Griffith-
type propagation criterion leads to a differential equation for the crack-tip 
trajectory that can be numerically solved only depending on the electric field 
applied at infinity. That paper also considers two different energy-release 
rates based on two different formulations of the balance of energy, but again 
these two rates are shown to be equivalent in the given circumstances.

11.8.5 Note on Linear Piezoelectricity

In this case all terms that are quadratic in the fields are disregarded in the 
fields and constitutive equations (cf. Chapter 5 in Maugin, 1988). The elec-
tromechanical couplings reduce to those of pure constitutive origin, that is, 
the linear dependence of the “elastic stress” on the small-amplitude electric 
field, and the reciprocal dependence of the electric displacement on the small 
strain, which we can express by the linear equations

 T DE
ij ijkl k l kij k i ij j ikl kC u e E D E e u→ = − → = +σ ε, ,, ˆ

ll  (a)

with the field equations reduced to

 ρ σ ϕ0 0 0u Di ij j i i= ∇ × = → = −∇ =, ,, , .E E  (b)
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The tensorial coefficients ekij = ekji are those of piezoelectricity—the only 
remaining electromechanical coupling of pure constitutive origin—and this 
exists, we remind the reader, only if the material does not possess a center of 
symmetry.

Accordingly, the J-integral of electroelastic quasistatic fracture reduces to 
the simple formula

 J WN d= − −( )∫ 1 1 1n u n D. . . ,, ,σ ϕ Γ
Γ

 (c)

where W is jointly quadratic in (∇u)S and E, the parallel role of u and φ is 
obvious, and the Eshelby stress plays well its role of capturing the gradients 
of these two fields, so that the form of (c) is canonical and was obviously given 
before the present developments were worked out.

11.9 Transition Fronts in Thermoelectroelastic Crystals

Here we consider a more general framework than in the preceding sec-
tion by allowing the presence of thermal effects and of a density of electric 
charges. The last ingredient may have some importance in electroelastic bod-
ies that may contain these charges, such as in piezoelectric semiconductors. 
Furthermore, they allow for interesting developments in the case of transi-
tion zones such as phase-transition fronts.

11.9.1 general equations

Still in the framework of electrostatics we have

Maxwell’s electrostatic equations:•	

 ∇ × = ∇ =R R fQˆ , . ˆ ˆE 0 D  (11.144)

Conservation of mass:•	

 
∂
∂

=
t X

ρ0 0  (11.145)

Balance of linear (physical) momentum:•	

 
∂
∂

− =
t X

Rp T fdiv em  (11.146)
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Balance of energy:•	

 
∂
∂

+ −





− ∇ + −( ) =
t

E Q hf
X

R
e e1

2 0
2ρ ϕv T v S Qˆ ˆ . .  (11.147)

Balance of entropy:•	

 θ ∂
∂

+ ∇ =S
t X

R .Q 0  (11.148)

This presentation (Maugin, 1988) isolates the electric force fem, incorporates 
the action of the free charge in the total energy, and emphasizes the notions 
of Poynting vector Se and electric energy source he with

 f E S
Dem = + ∇( ) = − ∂
∂

= − ∂
∂

ˆ . , ˆ
ˆ

, ˆ ˆ
,Q

t
h Q

tf R
e

X

e
f

X

Π ϕ ϕ
 (11.149)

together with

 ˆ , ˆ . , . . ˆ , ˆ ˆ .D E E E F E F E C E E= + = = = = −∇− −Π J JF F R
1 1 ϕ  (11.150)

The following identities can be proved (Maugin, 1988; Dascalu and Maugin, 
1994):

 f T T Eem emdiv div= = − ∇( )R R
F

f RQ, ˆ . ,Π  (11.151)

 T D E E E F T E E E E Fem = ⊗ − ( ) = ⊗ − ( )− −ˆ ˆ . , ˆ . ,
1
2

1
2

1 1F  (11.152)

and

 tr T v E
E E

EF
R

F

X Xt t
. .

ˆ
. ˆ ,∇( )( ) = ∂

∂
− ∂
∂











1
2

 (11.153)

 ∇ = − ∇R f RQ. ˆ . ,E Π  (11.154)

 
d
dt t

HR
F

X

1
2

ˆ . . .
ˆ

,E E T v E





= −∇ + ∂

∂








 +

ϕ
 (11.155)
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 H
t

Q
tR

F
R

X
f R

x

= + ∇( ) ∂
∂

= − ∇( ) ∂∂v T E. .
ˆ ˆ . .div
ϕ ϕΠ  (11.156)

Here ϕ ϕ ϕ= ( )( ) = ( )ˆ , , ,X x xt t t  is the Eulerian electrostatic potential such 
that

 
∂
∂

= ∂
∂

+ ∇ϕ ϕ ϕ
t tx X

R

ˆ
. . ˆ .V

Equation 11.146 can also be written as a strict conservation law in the form

 
∂
∂

− =
t X

Rp T 0div tot ,  (11.157)

wherein

 T T T T Ttot em= + = +E F .  (11.158)

11.9.2 Constitutive relations

We recall that SE is the second (material and symmetric) Piola–Kirchhoff 
stress associated with TE and that W denotes the free energy per unit refer-
ence volume, W = E – Sθ, so that the Clausius–Duhem inequality reads

 − +( ) + ( ) + − ∇ ≥−   W S E
Rθ θ θ1

2
01tr S C E Q. ˆ . .Π  (11.159)

or

 − +( ) + ( ) − − ∇ ≥−   
W S E

Rθ θ θ1
2

01tr S C E Q. . ˆ . ,Π  (11.160)

with

 W W E E= − = − ( ) −ˆ . , ˆ . .E S S E CΠ Π 1  (11.161)

Still another possibility is provided with (Maugin and Trimarco, 1997)

 − +( ) + ( ) − − ∇ ≥−ˆ ˆ . ˆ . ˆ . ,
   

W S E
Rθ θ θ1

2
01tr S C D E Q  (11.162)

wherein

 ˆ ˆ . , ˆ ˆ . .W W JE E
F= + = + ( ) − ⊗− −1

2
1
2

1 1E E S S E E C E E  (11.163)
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With the choice of free energy

 ˆ ˆ , ˆ , ; ,W W= ( )C E Xθ  (11.164)

the usual argument of thermodynamic admissibility yields the constitutive 
equations

 ˆ
ˆ

, ˆ
ˆ

ˆ ,
ˆ

,S
C

D
E

E W W
S

W= ∂
∂

= − ∂
∂

= − ∂
∂

2
θ

 (11.165)

while there remains the residual dissipation inequality

 Q C E X, ˆ , , ; . .θ θ θ∇( ) ∇ ≤R R 0  (11.166)

11.9.3 Canonical Balance Laws

These are the balance laws of energy and momentum associated with the 
space–time parametrization (X,t). Since there are already several equiva-
lent forms of the local balance of energy, the most sensible one is that 
obtained via the equation of mechanical energy, obtained by the inner 
product of (11.157) with v, and then combining with (11.158)2 to yield

 
∂
∂

+





− ∇ +( ) + ∂
∂

−


t
E

tX
R

E F
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1
2 0

2ρ ϕ
v T T v D Q. . ˆ ˆ











= − ∂

∂
ˆ ˆ

,Q
tf

X

ϕ
 (11.167)

where

 E W S= + −θ ˆ . ˆ .D E  (11.168)

Equation 11.167 has the advantage that, although not in a strict conservative 
form, it emphasizes the analogy between the roles played by the “veloci-
ties” v = ∂ ∂χ/ |t X and ∂ ∂ϕ̂/ |t X, hence between the elastic displacement and 
the electrostatic potential (which we know may form a useful four-dimen-
sional Euclidean vector in some computations; cf. Maugin, Pouget et al., 
1992). It obviously takes the form of a strict conservation law in the absence 
of free charges. Equation 11.147 is immediately recovered from (11.167) by 
noting that

 ∇ = ∂
∂

−( ) + ∇ ∂
∂









 =R

e
f R

Xt
Q

t
E. ˆ . ˆ ˆ ˆ . ˆ ˆ

,S E D Dϕ ϕ
EE + ˆ . ˆ .E D  (11.169)
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The second canonical balance law, that of material momentum, is obtained 
in strict parallel with (11.167) now following a routine procedure. The 
result is

 
∂
∂

− = + +P
b f f f

t X
R

ediv inh th ,  (11.170)

where we have set

 P p F C V b 1 T T F D E= − = = − + +( ) − ⊗( ). . , . ˆ ˆ ,ρ0 L R
E Fth  (11.171)

 L W Lth inh th
exp

/= ( ) − ( ) = ∂ ∂( )1
2 0

2ρ θX v C E X f X, ˆ , ; ,
ll
,  (11.172)

 f f Eth = ∇ = −S QR
e

fθ, ˆ ˆ .  (11.173)

The really new quantity here is the last material force, fe, which is none other 
than the pull back of the original volume force due to free charges, changed 
of sign. It is of interest to evaluate its power in a material motion, that is, the 
quantity fe.V. On account of (11.156) we have the following remarkable result 
(Maugin and Trimarco, 1997):

 P Q
t tB

e e
f

x X

: . ˆ ˆ
.= = ∂

∂
− ∂
∂









f V

ϕ ϕ
 (11.174)

This really exemplifies the fictitious nature of some material forces such as fe, 
as their power vanishes identically when the distinction between actual and 
reference configurations is lost.

11.9.4 Jump relations at a Front

We consider from the start a homothermal singular surface with no disloca-
tions so that we have the following two conditions of continuity:

 θ[ ] = [ ] =0, .V 0 at Σ  (11.175)

Now, without further explanation (see Chapter 7), we can apply the thumb 
rule to replace the partial differential operators ∇R and ∂ ∂/ |t X applied to func-
tions f(X, t) by the jump operators N.[..] and −VN [..] and to introduce unknown 
surface source terms for those equations that are not strict conservations 
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laws at regular material points. Thus we have the following roster of jump 
equations in the present case:

 N E 0 N D×   =   =
ˆ , . ˆ ,Qe

Σ  (11.176)

 VN ρ0 0[ ] = ,  (11.177)

 N V p T T 0. ,⊗ + +[ ] =E F  (11.178)

 N V v T T v D Q. . ˆ ˆ1
2

2 +




+ +( ) + ∂

∂
−










E

t
E F

X

ϕ


= he

Σ ,  (11.179)

 N V P b f 0. ,⊗ +[ ]+ =Σ  (11.180)

 N V Q. ,S qθ −[ ] − =Σ 0  (11.181)

and

 N V Q. ,S − ( )[ ] = ≥/θ σΣ 0  (11.182)

where a set of unknown surface sources is present in (11.179) through (11.182). 
These must be all consistent in order to respect the second law of thermo-
dynamics expressed by the inequality in (11.182). The consistency between 
(11.181) and (11.182) already requires that

 q tΣ Σ≥ ( )0 at .  (11.183)

We do not give all the details of the derivation, which follows the same pat-
tern as in previous sections (see, e.g., Section 7.5). Accordingly, on one hand 
we compute

 P VNΣ Σ: . . . . ,= = − [ ] − [ ]f V P V N b V  (11.184)

from which there follows that

  q V Q
t t

hN
e

x X

e
Σ Σ Σ= − + ∂

∂
− ∂
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− +  
∂

HugoPT
ϕ ϕ̂

( . ˆN D
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∂









 ≥t x

0  (11.185)
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or

 q V Q
t

h
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e

X

e

x
Σ Σ Σ= − − ∂

∂
− + ∂

∂









HugoPT

ˆ
. ˆϕ ϕ

N D










 ≥ 0,  (11.186)

where we have introduced the Hugoniot–Gibbs functional (which depends 
on the value of fields on both “sides” of Σ):

 HugoPT : . . . ˆ ,= − +( ) ∂
∂

− ∂
∂







W
N N

E FN T T N D
χ ϕ

 (11.187)

where ∂/∂N denotes the normal derivative. The expression (11.186) deserves 
the following comments. First, only the normal component of V is involved, 
thus emphasizing the local normal growth of one phase with respect to the 
other. The other two contributions in (11.186) are peculiar. We notice that 
application of a gauge condition at Σ(t) for quasielectrostatics processes 
requires that

 
∂
∂












=ϕ

t x

0.  (11.188)

This condition is formally analogous to the coherency condition (11.175)2. 
Therefore, it could be referred to as the electric coherency condition. Then from 
(11.186) there remains

 q V Q
t

hN
e

X

e
Σ Σ Σ= − − ∂

∂
− ≥HugoPT

ˆ
.

ϕ
0  (11.189)

The formally introduced surface heat he
Σ may be viewed as some kind of 

latent heat characteristic of the examined electroelastic crystal.
Had we considered a dielectric material to start with, we would have 

introduced neither he
Σ nor Qe

Σ, and so (11.186) would reduce to the “simple” 
expression

 θ σΣ Σ Σ Σ= = ≥q f VN 0,  (11.190)

where the scalar driving force fΣ is introduced through the following surface 
balance of scalar material forces:

 f tΣ Σ+ = ( )Hugo atPT 0 .  (11.191)
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This emphasizes the different ontological nature of the two scalar material 
forces as HugoPT is a (functional) field quantity, while fΣ is a thermodynamic 
force determined by the application of the theory of irreversible thermody-
namics to the pair of conjugate variables ( , )f VNΣ , yielding eventually a kinetic 
relation of the type

 V V fN = ( )
Σ Σ;θ  (11.192)

respecting the inequality (11.190).
Returning to the more general case in Equation 11.189, we note that the 

expression

 P Q
t

e e

X
Σ Σ= − ∂

∂
ϕ̂

 (11.193)

has formally the same structure as the bulk power (11.174) because, if a 
gauge condition of the type ∂ ∂ =ϕ/ t

x
0 holds at all material points, the lat-

ter reduces to

 P Q
tB

e
f

X

= − ∂
∂

ˆ
,

ϕ
 (11.194)

whose the similarity with (11.193) is obvious. Quantities such as (11.193) will 
naturally appear if, at Σ, we have possible recombinations of charge, as this 
phenomenon occurs at junctions in electroelastic semiconductors (classical 
jump conditions for these are given in Daher and Maugin [1986b, 1988]).

REM A R k 11 .1 :  Concerning works in the line of the presentation in this chap-
ter, we note Jiang Qing (1994), but he is erroneous. In the line of further gen-
eralization to the case of more complex electroelastic materials, we first note 
that the most promising way of expressing the electric constitutive equation 
was provided in the 1960s and 1970s by R.A. Toupin, H.F. Tiersten, and the 
present author, via a local bulk balance equation

 E E 0+ =L ,  (11.195)

where E is the Maxwellian electric field (i.e., the one appearing in Maxwell’s 
equation) and EL is a local electric that, in a crystal, represents phenomeno-
logically the interactions between the crystal lattice and the electric polariza-
tion field and for which a constitutive equation is given. There is, therefore, 
some similarity between a balance equation such as (11.195) in the bulk and 
a surface balance equation such as (11.191). The latter will be more involved 
if the interface possesses its own energy and elasticity, and maybe some 
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inertia (mass) adding surface divergence and inertial terms. Similarly, in 
more complex electroelastic materials such as elastic  ferroelectrics and elas-
tic ionic crystals (see Chapter 7 in Maugin, 1988, and also Maugin, Pouget et 
al., 1992), Equation 11.195 is augmented by a divergence term related to the 
gradient of electric polarization and an inertia term, reading in a generic 
form as

 E E E P+ + =L ddiv
  ,  (a)

where 

E basically accounts for the gradient of electric polarization (a term 

representative of ferroelectric ordering in the case of ferroelectrics, of the 
shell–shell interaction in ionic crystals), and the right-hand side is obviously 
related to some “acceleration” effect with an “inertia” d, P being  considered as 
an additional observable field related to the electric microstructure. Equation 
(a) is the basis for dynamic studies such as that of polaritons and also elec-
tric solitons (Maugin and Pouget, 1980; Pouget and Maugin, 1984; Maugin, 
Pouget et al., 1992). With the appropriate energy considerations, the left-hand 
side of (a) can be shown to be nothing but the functional derivative of an 
electric enthalpy H with respect to electric polarization, for example,

 E E E E
P P P

eff div: .
( )

= + + ≡ − = − ∂
∂

− ∇ ∂
∂ ∇







L H H H δ
δ  .  (b)

The corresponding canonical equations of energy and momentum that are 
useful in fracture and phase-transition front progress have been established 
by Maugin and Restuccia (2004). We do not report these since we shall deal 
at some length in the following with the magnetic analog in elastic ferro-
magnets. However, recent progress has been achieved in the study of fer-
roelectric domain walls and their interactions with defects in ferroelectrics. 
For this purpose, one does not need to consider polarization gradients 
(which play a prominent role in thin layers of strong gradients presenting 
no discontinuity per se). In this case, a ferroelectric domain wall separating 
two domains of spatially uniform electric polarization is acted on by a driv-
ing force that is the sum over the wall of a material force akin to a pressure, 
such as

 T dAN N N= = [ ]∫ τ τ
wall

wall
, . . ,N b N  (c)

with, in the quasistatics of small strains (see (11.187) and (11.171))2,

 b 1 u D D
E

= − ∇( ) − ⊗∇ = ∂
∂

= − ∂
∂

H
H HTσ ϕ σ
ε

. , , .  (d)
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Let VN be the normal velocity of the wall. Thermodynamic admissibility (sat-
isfaction of the second law at the wall) applies with a kinetic relation of the 
(over-)simplified form (Schrade et al., 2006):

 

V T T T T T T

T T

N T N N N

T N

= −( ) ≥ = <

= +( )

µ

µ

0 0 0

0

0for for

and fo

, ,

rr T TN ≤ − 0 ,  (e)

where the parameters μT and T0 are material parameters to be calibrated 
such that the material response is consistent with reported homogeneous 
defect-free cases. Such kinetics is exploited in the study of the interaction of 
domain walls with electrode defects at the surface of a sample or a polariza-
tion defect represented by a small region of frozen polarization (Schrade 
et al., 2006). Polarization gradients can also be reintroduced but with P, then 
the remanent polarization, considered as an internal variable of state (in fact, 
an order parameter for the electric behavior according to the Landau theory; 
see Maugin, 1999), in which case the dissipation inequality reduces to

 
 E P. .≥ 0  (f)

A simple relation à la Ginzburg–Landau in the form

  
P E

P P
= = − ∂

∂
− ∇ ∂

∂ ∇






τ τ H H
.

( )
 (g)

will do, with a scalar coefficient τ playing the role of a relaxation time mea-
suring the distance from thermodynamic equilibrium. This model was 
exploited by Schrade et al. (2007) to study numerically the domain evolution 
in ferroelectrics with domain walls of nonvanishing thickness.

11.10 The Case of Magnetized Elastic Materials

11.10.1 introductory remark

Various classes of magnetizable elastic materials exist, among which one 
identifies the paramagnetic and soft-ferromagnetic bodies, and the so-called 
hard ferromagnets (see Maugin, 1988). Within the working hypothesis of 
quasimagnetostatics in insulators, the first two classes are treated on the 
basis of Maxwell’s magnetostatic equations (in the Laboratory frame):

 ∇ = ∇ × = = −. , , .B H 0 H B M0  (11.196)
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This translates into the material form as

 ∇ = ∇ × =R R. ˆ , ˆ ,B H 00  (11.197)

with

 ˆ . , ˆ . , ˆ . , ˆ . ˆ ˆ .B F B H H F M M F H C B M= = = = −− −J JF F
1 1  (11.198)

The coupling between the crystal lattice and the magnetization field is repre-
sented by a local bulk balance equation, comparable to (11.195), that is,

 B B 0+ =L ,  (11.199)

where B is the Maxwellian field appearing in the first of Equation 11.196 and 
BL is the local magnetic induction for which one needs a constitutive equa-
tion in terms of magneto-mechanical fields. Because of (11.197), there exists a 
quasistatic magnetic potential φ in the actual configuration or ϕ̂ in the mate-
rial framework, so that

 H H= −∇ = −∇ϕ ϕ, ˆ ˆ .R  (11.200)

Then the perspicacious reader has already noticed that we can practically 
translate all that we did in the quasielectrostatic case to this magnetic case. 
This was indeed achieved by Sabir and Maugin (1996), who gave the canoni-
cal equations of energy and material momentum for this case and corre-
sponding J-integrals for magnetoelastic fracture, noting that, just like in the 
electric case, there is a plurality of formulations of the energy conservation 
and, therefore, the possibility to construct different J-integrals. This applies 
in particular to materials with high magnetostrictive coupling (piezomag-
netism being a rare event) such as TERFENOL-D. We refer the reader to these 
authors for such developments.

Much more interesting from the conceptual viewpoint is the case of elastic 
(hard) ferromagnets because such materials exemplify the problem of for-
mulating canonical balance laws in media equipped with a microstructure, 
here a magnetic one, which is equivalent to considering additional internal 
degrees of freedom in a continuum (compare to Chapter 9). Here, this is 
materialized by the fact that Equation 11.199 is replaced by a true dynamic 
equation containing a flux. In addition, the new internal degree of freedom, 
represented by the precession of a spin, is peculiar in the sense that it has a 
gyroscopic nature, having no closed form for its kinetic energy in classical 
physics (the phenomenon is inherently quantum mechanical). It is a so-called 
d’Alembertian inertia couple that does not expend power (see Maugin, 1988, 
Chapter 6). This is an interesting challenge for the formulation of canonical 
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balance laws in the material framework. This was achieved by Fomethe and 
Maugin (1996) with applications to the propagation of ferromagnetic phase-
transition fronts and ferromagnetic domain walls (Fomethe and Maugin, 
1997b; Maugin and Fomethe, 1997).

11.10.2 The equations governing elastic Ferromagnets

Working within the framework of the quasimagnetostatics of insulators for 
which (11.196) through (11.198) hold good, it is also assumed that the magne-
tization per unit mass, the vector μ in the actual configuration, has reached 
saturation, so that we have

 µ µ µ µ µ µ ρ2 2= = = ( ) =. , , / ,S tX M  (11.201)

so that

 µ µ µ µ. , . , = ∇( ) =0 0R  (11.202)

wherein

 µ
µ

=
∂ ( )

∂
X,

.
t

t
X

 (11.203)

Then, in addition to (11.197), we have the following field equations in the 
Piola–Kirchhoff format:

 
∂
∂

=
t X

ρ0 0,  (11.204)

 
∂
∂

− =p
T f

t X
R

Mdiv ,  (11.205)

 
∂
∂

+ −





− ∇ + −( ) =
t

E
X

R
1
2

00
2

0ρ ρ µ µv B T v B Q. . . .

 ,,  (11.206)

and

 
∂
∂

− × = = −µ ω µ ω γ
t X

0 B, ,eff  (11.207)
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where (11.204) through (11.206) are traditional, and (11.207) is the precession 
equation of the magnetic spin density in which γ is the so-called gyromagnetic 
ratio of the material, T is the standard first  Piola–Kirchhoff stress (defined 
from the Cauchy stress), fM is the magnetic force in the quasimagnetostatic 
approximation, Beff is the effective magnetic induction felt by the magnetiza-
tion field, and 


B is a two-point tensor field associated with spin–spin interac-

tions (so-called ferromagnetic exchange effects), such that

 T F T F t= / =− −J JF
M

F
M1 1. , . ,σ  (11.208)

 f T t B B B M B M B 1M
R

M M= = ⊗ − ⊗ − −( )div , . ,
1
2

2  (11.209)

 B B B B B B B B Feff div div= + + = + + =− − −L L
R FJρ ρ1

0
1 1  

, .. .

B  (11.210)

With a free energy per unit reference volume

 W E S W R= − = ∇( )θ θ µ µF X, , , ; ,  (11.211)

a thermodynamic study based on the exploitation of the relevant Clausius–
Duhem inequality shows that the following constitutive equations are 
obtained:

 T
F

B B= ∂
∂

= − ∂
∂

= − ∂
∂

= ∂
∂ ∇( )

−W
S

W W WL

R

, , , ,
θ

ρ
µ µ0

1


 (11.212)

while there remains heat conduction Q satisfying the second law in the form

 Q Q X 0. , .,.,., ; .∇ ≤ ∇ →( ) =R Rθ θ0 0  (11.213)

Heat conduction being the only dissipative process considered at this point, 
the balance of entropy has the now-traditional form

 θ ∂
∂

+ ∇ =S
t X

R . .Q 0  (11.214)

Note. Equation 11.207 obviously fulfills the constraint (11.201). It also justifies 
the naming of d’Alembertian inertia couple for the magnetic spin inertia, 
since in computing the power of the mechanical couple ( )− −γ µ1   we obviously 
have

 γ µ ω−( ) ≡1 0 . . (11.215)
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Accordingly, there is no kinetic energy in closed form for the spin inertia 
(at least in the framework of classical continuum mechanics), and this has 
consequences for the next point examined here.

11.10.3 Canonical Balance of Material Momentum

This has been established by Fomethe and Maugin (1996) in the following 
form using the same method as for other cases in previous sections and 
chapters:

 
∂
∂

− = + +P
b f f f

t X
Rdiv inh th fer ,  (11.216)

wherein

 P p F C V= − =. . ,ρ0  (11.217)

 b 1 T F B= − + + ∇( )( )L R R
Tth . . ,


µ  (11.218)

 L W Wth inh
expl

/= − + = ∂ ∂( )1
2 0

2
0ρ ρ µv B f X. , ,  (11.219)

 f f Bth fer eff= ∇ = ∇( )S R R
Tθ ρ µ, . .0  (11.220)

Here the originality of this case is most obvious. Although we are deal-
ing with a material with an internal degree of freedom of rotation (preces-
sion to be more precise), the kinetic energy and the Lagrangian density do 
not contain a related inertial term. This latter, with its peculiar gyroscopic 
nature, materializes in the presence of an additional material force in the 
right-hand side of (11.216). This is the “force” ffer. Fomethe and Maugin (1996, 
Appendix), via a somewhat tedious but definitive and clear-cut computa-
tion, have shown that the canonical balance covariant law (11.216) is exactly 
consistent with the canonical energy balance (11.206). They did this by com-
puting the inner product of (11.216) with the material velocity and showing 
that the result is none other than (11.206), with the particular enlightening 
intermediate result

 f V Bfer eff. . ,= ∂
∂

ρ µ
0 t X

 (11.221)

with the timelike component complementing the material force ffer in a four-
dimensional formulation (the time derivative ∂ ∂/ t

X
 replacing the material 
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gradient ∇R). This consistency being checked, one can now establish the set of 
jump relations that will govern ferromagnetoelastic transition fronts.

11.10.4 Phase-Transition Fronts in Thermoelastic Ferromagnets

With the conditions (11.175) being fulfilled at the propagating discontinuity 
surface Σ(t), the jump relations of the present theory are established follow-
ing the same method as in previous sections for other cases, save for the 
complexity of some calculations. We report only the results as obtained by 
Fomethe and Maugin (1997a, 1997b):

 N B N H 0. ˆ , ˆ ,  = ×   =0  (11.222)

 VN ρ0 0[ ] = ,  (11.223)

 N V p T T 0. ,⊗ + +[ ] =M  (11.224)

 N V v B T v B Q. . . .
1
2 0

2
0ρ ρ µ µ+ −




+ + −( )





E

 == 0,  (11.225)

which exhibit no source terms, and the set

 N V P b f 0. ,⊗ +[ ]+ =Σ  (11.226)

 N V Q. ,S qθ −[ ] − =Σ 0  (11.227)

 N V Q. .S − ( )[ ] = ≥/θ σΣ 0  (11.228)

Furthermore, the jump relation associated with the precession equation 
(11.207) reads

 N B 0. ,
( ) × +  =

−µ γ µ1 VN  (11.229)

or the stronger conditions

 N B 0. ,

  + [ ] =λ µΣ  (11.230)

where λΣ is an unknown multiplier.



374 Configurational Forces

The continuity conditions

 θ[ ] = [ ] =0, V 0  (11.231)

are imposed. It follows from the first of these that σ θΣ Σ Σ= −1q . Finally, in the 
discrete vision, if the same lattice sites (particles) belong to the two lattices 
(no dislocations; this is here accounted for by the second of (11.231)), then the 
“particles” at Σ(t) must have a magnetic spin that evolves in the same way 
as seen from each side of the interface. Thus an extra kinematic condition is 
needed that is necessarily of the form (note the analogy with the second of 
(11.231)) on account of the initial definition of V):

 
∂ ( )

∂












=

µ x
0

,
.

t
t

x

 (11.232)

On account of (11.222) through (11.232), Maugin and Fomethe (1997) have 
proved the following results:

 P VNΣ Σ Σf f V( ) = = −. HugoPT
fer  (11.233)

and

 q P
t tx x

Σ Σ= −  
∂
∂

= − + ⊗( )[ ] ∂
∂

+N B N b V P
X

N. . . . .
 µ

BB 
∂
∂









. ,

µ
t x

 (11.234)

the latter exhibiting a symmetry between the effects of mechanics and fer-
romagnetism. The Hugoniot–Gibbs functional here is given by

 HugoPT
fer tot: . . . . . . .= + − − ∇( )W Rρ τ µ0 M B N T F N N B N


  ,  (11.235)

where τ = ρ–1.
In the case where the strong condition (11.230) applies, then on account of 

the saturation condition, we have the orthogonality relation

 µ
µ[ ]⋅ ∂ ( )
∂

≡
x,

,
t

t
0 (11.236)

and the second term in qΣ vanishes, so that we are reduced to a more classical 
result (compare to other chapters):

 θ σΣ Σ Σ Σ Σ Σ= = ≥ + = ( )q f V f tN 0 0, .Hugo atPT
fer  (11.237)
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One is then led to construct a kinetic relation between VN and fΣ that respects 
the second law of thermodynamics expressed by the inequality sign in 
(11.237).

Soft Ferromagnets and Paramagnets

The case of soft ferromagnets or paramagnets can be recovered from the pres-
ent case by neglecting magnetic-spin inertia and magnetic ordering, which 
are characteristic of hard ferromagnets. Thus, we have to set 


B 0= , and the 

first of (11.207) will be reduced to the “equilibrium” form (11.199). Considering 
small strains, (11.235) now takes the reduced form

 HugoPT
s.fer = − −[ ]W B M N T F N. . . . ,  (11.238)

where

 B
M

T
F

F M= ∂
∂

= ∂
∂

= − ∂
∂

= ( )W W
S

W
W W, , , , , .

θ
θ  (11.239)

The first two contributions in the jump in (11.238) can be transformed thus. 
Setting

 W W W WF H H B M B M H M H, , . .θ( ) = + −( ) = − + = − +1
2

1
2

1
2

2 2 2 2





,  (11.240)

and introducing the magnetic scalar potential φ, the strain ε, and the elastic 
displacement u, we immediately show that (11.238) takes on the following 
form:

 HugoPT
s.fer = ( ) − ∇ − ∇( )



W

Tε θ ϕ, , . . . . ,H M N T u N  (11.241)

with the constitutive equations

 M
H

T= ∂
∂

= ∂
∂

= − ∂
∂

W W
S

W
, , .

ε θ
 (11.242)

An equivalent formulation is

 HugoPT
s.fer = ( ) − ∇ − ∇( )





W
Tε θ ϕ, , . . . . ,H B N T u N  (11.243)

with

 B
H

T= ∂
∂

= ∂
∂

= − ∂
∂

  W W
S

W
, , .

ε θ
 (11.244)
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We recognize in the formulas (11.241) and (11.243) the structure of the two 
possible Eshelby stresses and the two J-integrals introduced previously in 
the study of the fracture of elastic paramagnets and soft ferromagnets (Sabir 
and Maugin, 1996). The transformation (11.240) was originally introduced in 
Maugin (1971, p. 85c)—also in Abd-Alla and Maugin (1987).

11.10.5 Domain Walls in Ferromagnets

The remarkable feature about the results (11.233) is that, although they most 
often describe a kinematics on the material manifold, they also apply to the 
case of rigid bodies, where, then, Σ(t) reduces to a transition in magnetic prop-
erties only. Indeed, for rigid bodies (11.233) reduces to

 Hugofer = ( ) − − ∇( ) W M B M N B N, . . . . .θ µ


 (11.245)

We can also use a free energy

 ˆ , , ,W WM M Mθ θ( ) = ( ) − 1
2

2  (11.246)

so that (11.245) also reads

 Hugofer = ( ) − − ∇( ) 
ˆ , . . . . .W M H M N B Nθ µ


 (11.247)

In particular, this relation holds through a magnetic domain wall that sepa-
rates two magnetic domains, when the wall is viewed as an interface of van-
ishingly small thickness, a magnetic domain being a region of the material 
where magnetization has reached a spatially uniform state. Then we may 
inquire about the possible propagation of a magnetic domain wall under 
the application of a magnetic field of sufficient strength. This, indeed, with 
an irreversible motion of the wall, is the basic mechanism of the irrevers-
ible magnetization of macroscopic ferromagnetic samples, which gives rise 
to magnetic hysteresis. Let us show that the basic ideas are contained in the 
phenomenological description given in the preceding. To that purpose we 
consider the case of a so-called 180° domain wall through which magnetiza-
tion, of the same amplitude MS but in the opposite direction on both sides 
and parallel to the wall, rotates by 180° (but we do not see this rotation in the 
flattened wall and so just observe a jump from a distance—only a zoom on 
the wall would evidence this rotation—see Figure 11.1). Accordingly we do 
not pay attention to whether the wall is of the Bloch type (out-of-plane rota-
tion) or of the Néel type (in-plane rotation) as this detail is irrelevant. Let us 
apply in thought a magnetic field Happl parallel to the wall and in the direc-
tion of the magnetization on the minus side V– of the wall. Physical common 
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sense says that the domain on the minus side V–, being already favorably ori-
ented, should grow at the expense of the domain V +. As the magnetization 
has reached saturation in both domains with the same magnitude MS and 
is spatially uniform in each domain, and both domains have, therefore, the 
same energy density, the Hugoniot–Gibbs driving force of interest in (11.247) 
reduces to the very simple expression

 Hugofer appl appl= −[ ] = −[ ] =H M H M. . ,2M HS  (11.248)

where Happl is the amplitude of the applied field. As MS is a characteris-
tic property of the ferromagnet under examination and we consider a flat 
domain wall, we can as well replace the normal velocity VN  by the time rate 
of change of the residual magnetization MR and Hugofer and its opposite fΣ 
by a quantity akin to a magnetic field. We simply have to divide the energies 
by 2MS and note that, per unit area of Σ(t) and unit time, VN  generates a mag-
netization equal to M VS N× . Thus the application of the formalism (11.248) 
and (11.233), and an analogy with the evolution equation in elastoplasticity 
(cf. Maugin, 1992b), provide an admissible evolution equation for irreversible 
magnetization due to the displacement of one wall (in a  one-dimensional 
model) in the form

D1

D2

δ

Σ

Figure 11.1
Domain wall seen as a sharp discontinuity surface and blowup showing the wall structure 
(in-plane rotation of a 180° Néel wall).
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   M
F
H

R

H H

= − ∂
∂

≥
=

λ λ
appl

, ,0  (11.249)

where F is a dissipation potential, λ  is a multiplier, and the minus sign origi-
nates from the fact that we use directly Hugofer / 2MS as a dissipative driving 
force rather than fΣ. As an example, we may consider Néel’s (1942, 1943) cel-
ebrated process of irreversible magnetization, where magnetic domain walls 
move in a landscape of energy barriers, or a distribution of pinning magnetic 
field HA, the latter providing the threshold that the applied field must reach 
to detach a wall from its anchoring and allowing for its subsequent motion 
(practically a jump being given the quasi-instantaneity of the process) to the 
next anchoring site. This argument yields for (11.249) the following elemen-
tary evolution equation of irreversible magnetization:

  M H M H HR R A= ( ) =sign for and otherwisappl appl , 0 ee.  (11.250)

We have thus recovered the semimicroscopic magnetization model devised 
by Sabir and Maugin (1988) by analogy with elastoplasticity. Although they 
did not use the present Eshelbian concepts, these authors indeed had the 
volume energy 2MSHappl as the driving force of irreversible magnetization. 
At this point it must be recalled that the macroscopic irreversible magneti-
zation for a multidomain sample is then obtained by statistical average over 
an ensemble of magnetic domains of various orientations. Furthermore, 
according to the preceding vision the motion of domain walls between 
obstacles is instantaneous. This is the so-called Barkhausen effect, which 
materializes in a magnetic-flux emission by the jerky motion of domain 
walls. A more realistic vision should grant a characteristic (but short) 
time to the transition of a magnetic domain wall between two anchoring 
sites, hence some kind of internal viscosity. This supports a view of mag-
netization processes that is closer in spirit to that of viscosplasticity (cf. 
Maugin, 1992b). This was indeed formulated by Sabir and Maugin (1988) 
and the analogy with the viscoplasticity of Bingham fluids is fully drawn 
in Maugin (1999).

Appendix A11.1: Proof of Theorem 11.1 and Corollary 11.2

First, we show that (11.26) follows from the action (11.56). There is no •	
shame in using components when it proves more convenient than 
the intrinsic notation. The Euler–Lagrange equations generated by 
the fields ϕ̂  and Â read
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In the present case
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if we set

 ˆ . , , ˆ ˆ .D C E E M B= + = −∂ ∂ = −∂ ∂−J W WF
1  Π Π / /  (A11.8)
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 Furthermore, with the definition

 ˆ . ˆ ˆ ,H C B M= −−JF
1  (A11.9)

 and accounting for the results (A11.3) through (A.11.8), we obtain the 
equations (11.26).
Next we consider the equation of motion that follows from the •	
Euler–Lagrange equation:
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Here we have
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and
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Thus (cf. (11.43))
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 We further note that L depends on F through the C–1 and C present 
in Lemf, and explicitly in W and implicitly via E  and B  also in W. We 
recommend to the reader to go through all the steps. Thus,
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with
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and
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Thus,
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with

 T C E E B B Femf emf= ( )⊗ + ⊗ −− −J HF
1 1. ,   (A11.18)

 T E B M M B Finter : ˆ ˆ . ,= ⊗ − ⊗ + ( ) −Π 1  (A11.19)

 T T T T T T= − = +E finter emm inter, ,  (A11.20)

so that we obtain two equivalent forms of the balance of linear 
(physical) momentum in the Piola–Kirchhoff format:

 ∂
∂

+( ) − + + ⊗( ) =
t R R

f

X
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E f fp p T T p v 0div ˆ ,  (A11.21)

and
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f
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fp p T T p v 0div emm ˆ ,  (A11.22)

wherein

 T F t T F temm emm inter inter= =− −J JJ F
1 1. , . .  (A11.23)

Proof of Corollary 11.2: •	 We could derive this result by direct but 
painstaking computation from (A11.21) or (A11.22). It is simpler to 
use the general formulas deduced from Noether’s theorem in field 
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theory (Section 4.2 for a first-order gradient theory). To do this, we 
need in particular to evaluate the following quantities:
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noting that the identity (11.50) holds true for the free electromag-
netic fields. We check that
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so that
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We impose objectivity on W so that the latter will depend on F only 
through a material strain measure such as C. Gathering all contribu-
tions we indeed obtain the result (11.58) since we can write
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In the original paper (Maugin, 1990), the contribution ( ˆ . )M B 1 R, 
which obviously results from the last contribution in (A11.27), was 
gathered with W in the isotropic contribution to btot so that there 
appeared a kind of Legendre–Fenchel transformation on the strain–
interaction energy such as

 ˆ , , ; ˆ . , , ˆ ; ,W WC E B X M B C E M X    ( ) + = ( )  (A11.28)

together with the dual constitutive relations
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This is often an artifact of some thermodynamic presentations in 
electromagnetic materials (see the discussion in Chapter 3 in Maugin 
[1988]).



383

12
Application to Nonlinear Waves

Object of the Chapter

Where waves, which made the great Shakespeare ponder the world of 
nature, are shown to have fundamental properties that relate to the already 
introduced notions and make the best use of notions of the accompanying 
apparatus as they share properties with particles in a dualism that solitonic 
systems illustrate perfectly.

12.1 Wave Momentum in Crystal Mechanics

12.1.1 Definition

As a preliminary, we remind the reader of the small-strain formulation of 
Section 3.2. In particular, we have the following in the framework of pure 
elasticity theory: 
Balance of physical (linear) momentum:

 ρ
∂
∂

σ σ ∂
∂ε

ε0

2

2

u
0 u

t
W

S
− = ≡ ∇( )div , = , ,  (12.1)

where σ is the symmetric Cauchy stress tensor, ε is the infinitesimal stress, 
and W(ε) is the strain energy per unit volume. Here, we now longer distin-
guish between actual and reference configurations. This does not mean, 
however, that the balance of field momentum reduces to the same as the bal-
ance of linear momentum because the former is, of necessity, an equation 
with the same degree of nonlinearity (or singularity) as the energy  equation. 
Therefore, it remains an equation that is at least quadratic in the fields 
σ and ε. Any “linearization” of this equation is a misconception of the role of 
that equation (for such a case, see Müller, 1999). Accordingly, the balance of 
field momentum remains Equation 3.27 with (see also Potapov et al., 2005)
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 P
t

f = − ∇( )ρ ∂
∂0 u
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. ,  (12.2)

 b 1 uf T
L= − + ∇( )( )σ. ,  (12.3)
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W= 





− ( )1
2 0

2

ρ ∂
∂

εu
,  (12.4)

where W(ε) need not be restricted to a quadratic function in ε since, if we 
neglect geometric nonlinearities here, we may keep physical nonlinearities 
(expressions of a higher order than quadratic for W, even nonconvex ones). 
In this framework Pf is also referred to as the crystal momentum for an elastic 
crystal, after the pioneering work of Brenig (1955). As a matter of fact, for 
quantified elastic waves under the name of phonons (these are special types 
of so-called quasiparticles that are quantum-mechanically associated with 
definite types, here elastic, of vibrations), this is the momentum that directly 
quantifies to de Broglie’s formula:

 P f = k,  (12.5)

where   is Planck’s reduced constant, and k is the wave vector. Notice that 
in the nonlinear framework, the wave vector is a covariant vector (since it is 
the dual of material position X), and thus we understand the proportionality 
relation between the naturally covariant vector P or Pf and k (see Maugin, 
1993, pp. 35–37 and Chapter 9). Because of its role in wave propagation, Pf is 
also referred to as the wave momentum, Pw. Here we discuss this matter in the 
purely elastic case, but such considerations can be extended to more compli-
cated cases, coupled systems, and so on. In the following, this is considered 
by way of example in the framework of nonlinear wave propagation asso-
ciated with some remarkable systems of partial differential equations, in 
particular those demonstrating both nonlinearity and dispersion. Because 
of the mathematical difficulties involved, most, if not all, examples are one-
dimensional in space. Accordingly, the following remark is spot on. 

12.2.2 Beware of One-Dimensional Systems!

If we consider the case of linear isotropic homogeneous elasticity in one 
dimension of space with Hooke’s modulus E and characteristic wave speed 
c = (E/ρ0)1/2, the balance of linear physical momentum yields the ubiquitous 
wave equation 

 u c utt xx− =2 0,  (12.6)
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in an obvious notation. The corresponding energy equation reads
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From its very definition, the balance of canonical (here field) momentum 
reads
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The last two equations can also be written in the following remarkable 
form:
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Even more remarkably, this shows that both H and Pf satisfy the original 
wave equation (12.6) since by elimination between the two equations (12.9), 
one obtains

 H c H P c Ptt xx
f

tt

f

xx
− = ( ) − ( ) =2 20 0, .  (12.10)

Interesting as it is, however, this result is misleading, for it is an artifact of the 
one-dimensional formulation. In effect, the energy equation is normally a sca-
lar one, while the balance of momentum is covectorial. The misleading sym-
metry induced by the one-dimensional nature between these two equations 
was noticed by W.D. Hayes (1974, pp. 23–24) when he wrote down the Equation 
12.9 as two quadratic-invariant equations deduced from (12.6) (without the 
present Eshelbian framework and the consequences in Equation 12.10). Hayes 
simply comments that the “freedom of generating new solutions by differen-
tiation or integration must be kept in mind, as these generate new conserva-
tion laws.” This is what happens in the theory of solitonic structures. 

12.2 Conservation Laws in Soliton Theory

An often-cited exemplary equation in this context is the so-called Boussinesq 
equation, which has origins in both fluid mechanics and crystal mechanics 
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(cf. Christov et al., 2007). In appropriate units, this may be considered as the 
field equation of elasticity deduced from a second-gradient of displacement 
elasticity or strain-gradient elasticity (see Section 4.3.3). It is a one- dimensional 
(in space) dispersive but nondissipative nonlinear model deduced from the 
following Lagrangian and energy densities:

 L u W u u W u u ut x xx x x xx= − ( ) = + +


1
2

1
2

2
3

2 2 3 2 2, , ε εδ 


.   (12.11)

The resulting Euler–Lagrangian equation is the following nonlinear disper-
sive wave equation (the celebrated Boussinesq equation):

 u u u utt xx x xxxx− +( ) − =1 02ε εδ ,  (12.12)

where ε is an infinitesimally small parameter characteristic of the nonlinear-
ity and δ is a length characteristic of a weak nonlocality (dispersion) of the 
modeling. This equation is none other than the field equation (balance of 
linear physical momentum) 
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with
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The energy equation is easily established, while the balance of field momen-
tum is given by
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t
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x
bf eff 0,  (12.15)

with

 P u u b L u u m u mf
x t x xx x x

= − = − + +( ) − ( ), .eff σ 2  (12.16)

Integrating this over the whole real line R, we obtain the global conservation 
of field momentum as 

 
dP R

dt
b P R P dxf

R

( )
= [ ] ( ) =−∞

+∞ ∫eff , : .  (12.17)
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This is a Newtonian equation of motion in which the jump between the two 
end values of the effective Eshelby “tensor,” here a scalar, plays the role of 
a driving force. A material inhomogeneity or an additional externally pre-
scribed term in the right-hand side of (12.13) will also bring additional driv-
ing forces in the right-hand side of (12.17)1. 

But it happens that the Boussinesq equation (12.12), like many equations 
belonging to the same class (what we called the Boussinesq paradigm; cf. 
Christov et al., 2007), possesses strongly localized nonlinear solutions (kinks 
for u and humps for ut) with appropriate space and time derivatives vanish-
ing at infinities. Thus Equation 12.17 reduces to the equation of an inertial 
motion for these solutions:

 
dP R

dt
dH R

dt
H R Hdx

R

( )
=

( )
= ( ) = ∫0 0and , : .  (12.18)

If an external force perturbing density μf(x) were acting in the right-hand 
side of (12.12), μ being a small parameter, then the first of (12.18) would be 
perturbed in the following way:

 
dP
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u f x dxx
R

= − ( )∫ε2 ,  (12.19)

where we took μ = 0(ε), and one has to find from (12.19) the modulation of 
the parameters of the localized nonlinear wave due to the perturbation.

The Boussinesq equation has acquired much of its celebrity through the 
derived equation called the Korteweg–de Vries (KdV) equation, which is in 
fact the one-directional wave equation deduced from (12.12) by means of 
the so-called reductive perturbation method (cf. Newell, 1985; Maugin, Pouget 
et al., 1992). After appropriate nondimensionalization this equation reads
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where c0 and k0 are characteristic speed and wave number. This equation 
(Korteweg, de Vries, Boussinesq, and Rayleigh) admits exact solitary-waves 
solutions in the form of a hump, u(x → ± ∞) = 0, of the type

 v v sech
x ct2= −



0 ∆

,  (12.21)
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under the condition that speed c and amplitude v0 be related by

 v c c ck v c k0
2

0 0
2

0
2

0 0
23 2 6= = = =, ,∆ ∆/ hence / const.  (12.22)

Accordingly, the faster the wave, the narrower its profile. We also note that 
the wavelike solution is supersonic as c > c0. We also remark that a simple-
wave trial solution of the type u u x ct≈ −( )  in (12.12) would have resulted in 
a kink-like solution in the form of a tanh solution (of which (12.21) is a deriva-
tive). The existence of such solutions is due to a strict compensation between 
nonlinear effects (steepening of a solution to form a shock; signals with higher 
amplitude would go faster) and dispersive ones (broadening of the signal 
due to differing speeds of propagation for various Fourier components).

Not only does Equation 12.20 admit exact localized solutions such as 
(12.21) but such solutions, although truly nonlinear, in some sense practically 
superimpose each other linearly since two such solutions traveling in oppo-
site direction interact without further perturbation than a change in phase, 
recovering their individuality after encounter (collision). This is the property 
of being solitonic per se in a strict mathematical sense. In nonexactly solito-
nic systems, the interactions of “individuals” are usually accompanied by 
the production of radiation. As a matter of fact, the pioneers (and creators) 
of soliton theory, such as Kruskal and Zabusky (1966) and Kruskal (1974) for 
the KdV equation, soon realized that systems of equations prone to the pure 
solitonic type of dynamic behavior admit new conservation laws in addi-
tion to the usual ones. It was further shown that for exactly integrable sys-
tems (those indeed admitting true soliton solutions), an infinite number of 
conservation laws exist, and special algorithms were developed to generate 
these conservation laws (in this regard, see, e.g., Ablowitz and Segur, 1981, 
Section 1.6; Calogero and Degasperis, 1982, Chapter 5). If the field equa-
tions used to describe solitons are derived in a field-theoretic context from a 
Lagrangian (or Hamiltonian), then these new conservation laws correspond 
to symmetry properties and result from the application of Noether’s theorem 
(Fokas, 1979). However, only a few of these conservation laws can bear an 
easily grasped physical significance. The reader may now have realized 
where we want to lead him since those easily meaningfully interpreted con-
servation laws are those that pertain to our Eshelbian or canonical frame-
work (this we fully realized and applied in the years 1990–1992, having, of 
course, buried in the back of our mind the courses and seminars we took 
with M.D. Kruskal and W.D. Hayes at Princeton some 20 years before). These 
conservation laws are those that are more critically related to the particle-
like features of true solitons—which are thus kinds of quasiparticles—in the 
course of so-called elastic collision or interactions. Canonical momentum is 
one of these features. Other such features are mass and energy, these three 
quantities forming, if possible, a true point mechanics, the type of which 
depends on the starting system of partial differential equations. Newtonian 
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and Lorentzian–Einsteinian point mechanics are examples of such mechan-
ics. Others can be created that no direct evidence could bring to the fore. 

Of course, a duality between soliton-like solutions of some systems issued 
from quantum physics and elementary particles was rapidly established 
by nuclear and high-energy physicists (see Rebbi and Soliani, 1984). We 
must also remember the attempts of L. de Broglie and D. Bohm to reconcile 
quantum physics and a causal interpretation by introducing, in a nonlinear 
framework, the notion of pilot wave guiding the amplitude of the probability 
(|ψ|2) of presence of a particle as a wave of singularity for which conservation 
laws and a hydrodynamic analogy play an essential role (see Holland, 1993, 
pp. 113–124, and also Jammer, 1974). It is possible that the present develop-
ments bear some relationship to this, but we emphasize that we are mostly 
interested in macroscopic problems issued from engineering sciences and 
phenomenological physics (e.g., in the crystalline state). 

12.3  Examples of Solitonic Systems 
and Associated Quasiparticles

Here we follow essentially the contribution of Maugin and Christov (2002).

12.3.1 Korteweg–de Vries equation

The KdV equation (12.20) can also be itself written as a conservation law 
(here with a different normalization):
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A straightforward application of the powerful algorithm proposed by 
Ablowitz and Segur (1981, p. 56) yields the following next-order conserva-
tion law:
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But in early studies of the KdV equation (cf. Miura, 1974), when such algo-
rithms did not exist, it was proposed to consider the following conservation 
law:
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We have shown (Maugin and Christov, 2002) that the difference between 
(12.24) and (12.25) is also none other than a conservation law. This shows 
that there exists an infinity of conservation laws associated with (12.23) and 
containing the contribution v2 in the conserved quantity. Here, also, a false 
symmetry between successive conservation laws can be built, being merely 
an arteiact of the one-dimensionality in space of the considered system. For 
instance, one can build a conservation law where the conserved quantity 
is nothing but the flux present in (12.23) (cf. Maugin and Christov, 2002). 
However, the first conserved quantity in (12.23) suggests that we introduce 
the potential u  of v by v ux= , so that we can introduce the conserved mass 
M0 by

 M vdx u
R

0 = = [ ]∫ −∞
+∞

,  (12.26)

where [..] denotes the difference (the “jump”) between values of the enclo-
sure at the two infinities along the real line. That is, alternatively, M0 may 
be qualified as the “difference of potential” or “voltage” of the solution. This 
seems to be a satisfactory gross “measure” of the solution. It would then 
seem that v2 would be a good local measure of the energy. But this is not true. 
Indeed, it is shown that the KdV equation derives, as a Hamiltonian system, 
from the total Hamiltonian

 H R v v dxx
R

( ) = − −



∫ 3 21

2
.  (12.27)

while Bhatnagar (1979, p. 126) indeed reports the following conservation 
law:
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This is the third conservation law in the hierarchy following along the line 
of (12.23) and (12.25). Applying the canonical definition of momentum to the 
auxiliary (potential) field u  already introduced in (12.26), we have 

 P R u u dxx t
R

( ) = − ∫ ,  (12.29)
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and noting that u  satisfies the following nonlinear evolution equation 
(NEE)

 u u ut x xxx+ + =3 02 ,  (12.30)

we obtain

 P R v vv dxxx
R

( ) = +( )∫ 3 2 .  (12.31)

The corresponding local conservation of canonical momentum would be 
obtained by noting that the second derivative of (12.23), with respect to x, 
reads
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and combining this in some way linearly with (12.25) for traveling wave solu-
tions. This is not extremely useful, and the introduction of the “potential” u  
is tantamount to saying that, insofar as the quasiparticle description of one-
directional wave equations such as (12.23) is concerned, the basic form is to 
be found in the original two-directional wave equation, here the Boussinesq 
(BO) equation. That is why we next examine the BO equation in its “good” 
or improved guise.

12.3.2 “good” Boussinesq equation 

This is a nonlinear dispersive wave equation of the form

 u u u utt xx xx xx
− − −( ) =2 0.  (12.33)

The essential difference with (12.12) is the change in sign in front of the 
fourth-order space derivative. The reason for that is the bad linear disper-
sive behavior exhibited by the original equation (so-called anomalous dis-
persion). Equation 12.33 also corresponds to a one-dimensional model of 
strain- gradient elasticity. Upon introduction of auxiliary variables q and w, 
this can be rewritten as the following Hamiltonian system (see Sanz-Serna 
and Calvo, 1994):

 u q w u q w w wt x x t x xx= = = + −, , ,2  (12.34)
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in which the first two are mere definitions of q and w. The mass M, 
momentum P, and energy E of soliton solutions of (12.33) or (12.34) are 
given by

 M udx
R

= ∫ ,  (12.35)

 P R uqdx
R

( ) = − ∫ ,  (12.36)

and

 E R q w u u dx
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( ) = + + +
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As the system considered is exactly integrable, the quantities just defined 
are strictly conserved. But their expressions may look somewhat awk-
ward. However, introducing the potential u  by u ux=  with the condition 
u x → −∞( ) = 0 , it is verified that

 M u u q uq u u q ut x t t= [ ] = = =−∞
+∞

, , , ,
1
2

1
2

2 2  (12.38)

so that M has the same interpretation as in the KdV case, while P and E indeed 
take their canonical definitions in terms of the potential u . Simultaneously, 
in terms of elasticity theory, it is u  that has the meaning of a displacement 
while u is a strain per se. But accepting the general philosophy of continuum 
mechanics, we can also consider Equation 12.33 as a field equation issued 
from second-grade nonlinear elasticity and multiply it by ux and integrate by 
parts to arrive at the equation of field momentum (cf. (12.13))
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12.3.3 generalized Bousssinesq equation

There are several ways to generalize the BO equation, obviously leading to 
nonexactly integrable systems. One such system is obtained while study-
ing the ferroelastic phase transition as a dynamic process in elastic crys-
tals (Maugin, 1987; Pouget, 1988). Here we examine the generalization of this 
modeling proposed by Christov and Maugin (1993) when approaching the 
difference scheme of lattice dynamics in a more accurate way than usually 
done. With s = vx a shear strain, from a lattice-dynamics approach and a long-
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wavelength limit, while neglecting coupling with other strain components, 
one obtains the following type of equation: 

 s c s F s s stt T xx xx xxxx xx
− − ( ) − +( ) =2 0β ,  (12.40)

where F is a polynomial in s starting with second degree (e.g., a noncon-
vex function admitting three minima), cT is a characteristic speed, and β is 
a positive scalar. It can be said that both the nonlinearity and dispersion 
have been increased compared to the classical BO equation (cf. Bogdan et 
al., 1999). Equation 12.40 is stiff in the sense that it involves a sixth-order 
space derivative, a situation that obviously imposes rather strong limit con-
ditions at infinity or at the ends of a finite interval in numerical simulations. 
In spite of its apparent complexity (12.40) admits solitary-wave solutions 
(Christov and Maugin, 1993) that involve the ubiquitous sech function (but 
at the fourth power) for a single value of the phase speed—the existence 
of different solitary-wave solutions with a continuous spectrum for c was 
shown numerically (Christov et al., 1996). But it is true that for a velocity too 
close to cT these solutions are not able to preserve their shape and eventually 
transform into pulses that, in turn, exhibit a self-similar (kind of “big bang”) 
behavior as long as the amplitude of the pulse decreases while its support 
increases (a phenomenon analogous to a red shift). These pulses practically 
pass through each other without changing qualitatively their shapes—save 
the red-shifting—with perfect conservation of “mass” and “energy,” so that 
these pulses may qualitatively be claimed to be “solitons” (Christov and 
Maugin, 1993). 

The “mass,” “momentum,” and “energy” of the system (12.40) can be 
defined thus. Let F(s) = –dU(s)/ds. First, we rewrite Equation 12.40 as a 
Hamiltonian system by introducing the triplet (s, q, w) such that Equation 12.40 
is equivalent to 

 s q w s q c s F s w wt xx xx t T xx= = = + ( ) − +, , .2 β  (12.41)

Then we have
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 P R sq dx v v dxx
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R

( ) = − = −∫ ∫ ,  (12.43)

 E R c s q U s s w dxT x x
R

( ) = + − ( ) + +( )∫1
2

22 2 2 2 2β ,  (12.44)
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that is,

 E R c s v U s s s dxT t x xx
R

( ) = + − ( ) + + ( )( )∫1
2

22 2 2 2 2β .  (12.45)

Here we have assumed that vt (–∞) = 0, so that the transformations indicated 
in the second of (12.43) and (12.45) hold good. Then the following global bal-
ance laws hold:
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For solitary-wave solutions, the driving force F  is in fact equal to zero by virtue 
of the asymptotic conditions. That force F , for a long but finite interval of sim-
ulation on R, is felt only when the solitons “hit” the boundaries and rebound 
from them. Yet the energy remains unchanged. A strongly implicit conserva-
tive finite-difference scheme is used in numerical simulations in order to always 
preserve both M and E. More on the quasiparticle mechanics corresponding to 
(12.42) through (12.44) can be found in Christov et al. (1996). This particle-like 
behavior is dominated by an anti-Lorentzian character (i.e., while mass varies 
with the speed, all kinetic quantities go to zero—and not infinity—at a critical 
speed). A numerical fit has allowed us to uncover this new “point-mechanics,” 
which reduces to a Newtonian one for small speeds; that is, then M ≈ M0 and 
P ≈ M0c for a definite M0. This is true for solutions of the monotonous sech-
like shapes (solutions) and also so-called Kawahara solitons (localized soliton 
humplike solutions that acquire oscillatory tails on both sides). 

So far we considered only mechanical systems with only one degree of 
freedom, even though all in kinds of generalized elasticity theory. Because 
of the additive definition of the canonical entities (remember the summation 
over α in Chapter 4), the consideration of several degrees of freedom in pure 
mechanics or in a coupled-field theory is rather simple. This we show in the 
next section. 

12.3.4 Mechanical System with Two Degrees of Freedom

When the small coupling between the v degree of freedom of the previous 
example and the longitudinal displacement u and elongation strain e = ux is 
kept (cf. Maugin and Cadet, 1991)—but remember that the ferroelastic phase 
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transition is driven through s, e being only a secondary subsystem—then we 
have the following coupled wave system:

 s c s s s se stt T xx xx xx
− + − + +( ) =2 3 5 2 0γ α ,  (12.48a)

 e c e stt L xx xx
− + ( ) =2 2 0γ ,  (12.48b)

 s v e u v u Rx x= = ( ) ∈, , , ,2  (12.48c)

where γ is a coupling coefficient and cL is a second characteristic speed larger 
than cT. This system looks formidable. Still it admits exact analytical solitary-
wave solutions that do represent the various transitions possible between 
austenite and two martensitic variants of opposite shear. The sixth-order 
space derivatives have been discarded. With the quadruplet (s,q,e,r) we can 
rewrite the system (12.48) as the following Hamiltonian system: 

 s q e c rtt xx t L x= =, , (12.49a,b)

 q c s s s se sT xx= − + − −2 3 5 2γ α ,  (12.49c)

 r c e c st L x L x
= − ( )( )γ/ 2 .  (12.49d)

The associated total “mass,” “momentum,” and “energy” are given by 

 M sdx v
R

= = [ ]∫ −∞
+∞

,  (12.50)

 P R sq c e dxx L r
R

( ) = +( )∫ ,  (12.51)

E R q c r c s c e es sx L x T L( ) = +( ) + +( ) − −1
2

2
1
2

2 2 2 2 2 2 2 2γ 44 6 21
3

+ + ( )



∫ s s dxx

R
α .  (12.52)

With the definition (12.51), which we let the reader show to be true in agree-
ment with the canonical definition, with ad hoc conditions at infinity, we 
obtain a global balance of field momentum in the inhomogeneous form 

 
d
dt

P R F s c ex L( ) = = − +[ ]−∞
+∞

: .
1
2

2 2 2α  (12.53)
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This shows which conditions should apply to have conservation of field 
momentum strictly enforced so as to have an inertial motion of the possi-
ble shapes exhibited by the considered system if we work on a necessarily 
bounded finite interval in a numerical simulation (see Christov and Maugin, 
1995). 

12.4 Sine Gordon Equation and Associated Equations 

12.4.1 Standard Sine gordon equation

This is the one-dimensional (in space) partial differential equation

 u u utt xx− + =sin 0,  (12.54)

where both nonlinarity and dispersion are contained in the sin function. 
This ubiquitous equation, which can also be written as Enneper’s equation of 
surface geometry as

 u uξζ − =sin 0  (12.55)

by introducing right- and left-running characteristic coordinates ξ, ζ = x ± t, 
appears in many fields of physics, especially while studying the structure of 
magnetic domain walls (this can be done on the basis of the spin equation 
(12.207) in the absence of magneto-mechanical couplings) and Josephson 
junctions (Christiansen and Olsen, 1982). From the mechanical viewpoint, 
such an equation can be obtained while studying the torsion of some bars 
(Wesolowski, 1983) and, above all, as an elementary model of dislocation 
motion in the so-called Frenkel–Kontorova model (1938)—a linear atomic 
chain placed in a sinusoidal potential landscape. This remarkable equation 
is exactly integrable (i.e., admits true soliton solutions) and is Lorentz invari-
ant. It admits single subsonic solitary-wave solutions of the following kink 
form:

 u x t u, ,( ) = ( ) = ± −( )( )−ξ γ ξ ξ4 1
0tan exp  (12.56)

wherein

 ξ γ= − = −( ) <−
x ct c c, , .

/
1 12 1 2

 (12.57)
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Viewed as an elastic system, (12.54) is derivable from the following Lagrangian–
Hamiltonian framework where the sinusoidal term should be interpreted as 
the action of an external source (the already mentioned periodic substrate of 
the Frenkel–Kontorova modeling) since the classical elastic energy cannot 
depend explicitly on u:

 L u u u p
L
ut x

t

= − − −( ) = ∂
∂

1
2

1
2

12 2 cos , ,  (12.58)

 H pu L p u ut x= − = +( ) + ( )1
2

2 22 2 2sin ,/  (12.59)

with Hamiltonian equations

 u
H
p

p p
H
u

u ut t xx= ∂
∂

= = − = −, .
δ
δ

sin  (12.60)

A kink (2π solution in u) or an antikink (–2π solution) may be considered as a 
quasiparticle with rest mass M0, momentum P, and energy E given by

 M E0 8 0= = ( ),  (12.61)

 P P R u u dx c Mc
M c

c
x t

R
= ( ) = −( ) = = =

−( )∫ 8
1

0

2 1 2
γ

/
,  (12.62)

 E E R Hdx E c
R

= ( ) = = = ( )∫ 8γ ,  (12.63)

with the classical relationship between the triplet (M0, P, E) typical of 
Lorentzian point-mechanics (the characteristic speed of relativity, the light 
velocity in vacuum, here is one):

 E c M P c2
0
2 2( ) = + ( ),   (12.64)

while for Newtonian point mechanics we would have

 E P M P M c= =2
0 02/ , .  (12.65)
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Equations 12.62 and 12.64 apply the canonical definitions of Chapter 4, and 
the given estimates are based on the form of the kink solutions (12.56). 
Here the amplitude of the solution is independent of the speed: We have 
a so-called topological soliton. Because of this the solutions (12.56) exist 
in statics, and they can, therefore, represent the structure of a magnetic 
domain wall at rest. However, a quantity sometimes called the “charge” 
and defined by

 q u dx ux
R

= ( ) = [ ] = ±−
−∞
+∞∫2

1
2

1
1π

π
  (12.66)

can be introduced that pertains to the sense of “rotation” of u through the 
solitonic structure, hence its “helicity.”

Of course, for a fixed c, the three quantities M, P, and E are strictly con-
served, that is, for kink and antikink solutions; in particular, we have a 
standard inertial equation of motion for a relativistic quasiparticle: 

 
dP
dt

d
dt

M c
c

=
−






=0

21
0.  (12.67)

12.4.2 Sine gordon–d’Alembert Systems

While studying magnetic domain walls in elastic ferromagnets (Maugin and 
Miled, 1986a) on the basis of the equations set forth in Section 11.10.2, we 
were led to introducing systems of the following type:

 φ φ φ η φ η φtt xx x tt T xx x
u u c u− − = − = − ( )sin cos , sin2 .  (12.68)

Here ϕ is twice the angle of rotation (of magnetic spins in a plane parallel to 
the x-axis of propagation and the polarization of the transverse elastic dis-
placement u; the so-called Néel wall in ferromagnetism), cT is a characteristic 
(transverse) elastic speed, and η is representative of a magnetostrictive mag-
neto-mechanical coupling. A similar problem arises in the ferroelectricity of 
deformable crystals of the polar type where η is then related to electrostric-
tion in electroelasticity (cf. Pouget and Maugin, 1984). The system in (12.68) 
couples linearly a sine–Gordon equation and a linear wave equation and 
thus deserves its name (coined by Kivshar and Malomed, 1989). Accordingly, 
this system is not exactly integrable from the point of view of soliton theory 
because the u-subsystem induces radiations during soliton interactions (cf. 
Pouget and Maugin, 1985b), but exact one-soliton solutions are known to 
exist analytically (Pouget and Maugin, 1984). 
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From our viewpoint in this book, ignoring the physical origin of the 
function ϕ, we may consider (12.68) as a two-degrees-of-freedom nonlin-
ear elastic dispersive system with displacement components u and ϕ. We 
can then exploit the canonical formalism of Chapter 4, while noting the 
additive property over field components of the canonical expressions. We 
write thus

 L u W ut t x x= +( ) − ( )1
2

2 2φ φ φ, , ,  (12.69)

 W c u ux T x x= +( ) + − +( )1
2

12 2 2φ η φ φsin cos ,  (12.70)

 H p u p L p u pu t t u t t= + − = =φ φφ φ, , ,  (12.71)

 σ µ
φ

= ∂
∂

= ∂
∂

W
u

W

x x

, ,  (12.72)

and

 P u u b L uf
x t x t x x= − +( ) = − + +( )φ φ σ µφ, .  (12.73)

Therefore, the following local and global balances of field (wave) momentum 
hold, in the now-canonical form

 
∂
∂

− ∂
∂

= ( ) = [ ] ( ) =−∞
+∞ ∫P

t
b
x

d
dt

P R b P R P dx
f

f

R
0 , , : .  (12.74)

For solitary-wave solutions for which all derivatives vanish at infinity, b 
vanishes at infinity, and P(R) is strictly constant for a fixed velocity. Exact 
solutions are given in Pouget and Maugin (1984) and the interactions of indi-
viduals (with accompanying radiation) are exhibited in Pouget and Maugin 
(1985b). Elastic systems with a kind of micropolar internal structure (micro-
structure of the rotational type) exhibit solitonic solutions with a similar 
dynamic behavior (cf. Maugin and Miled, 1986b; Pouget and Maugin, 1989a, 
1989b). The quasiparticle dynamics remains essentially Lorentzian but with 
perturbations due to the wave component u. 
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12.5 Nonlinear Schrödinger Equation and Allied Systems

12.5.1 The Standard Cubic Nonlinear Schrödinger equation

Another well-known exactly integrable equation (cf. Calogero and 
Degasperis, 1982) is the cubic Schrödinger equation (sometimes called NLS 
without specializing to the cubic case). This reads in one-dimensional (space) 
setting:

 ia a a at xx+ + =2 0
2λ ,  (12.75)

where a(x, t) is a complex-valued amplitude and λ is a real scalar parameter. 
This is a somewhat universal (canonical) equation that governs the slowly 
varying complex amplitude of the envelope of a carrier wave (fast oscilla-
tions) in a dispersive, weakly nonlinear medium. Thus we were able to show 
that this is the case for shear horizontal (SH) surface elastic waves propagat-
ing on top of a thin film glued on a more rigid nonlinear elastic substrate 
although the quantum origin of Equation 12.75 is also obvious. This equa-
tion admits so-called bright and dark solitons as solutions (of which the exact 
form here is quite irrelevant; see Maugin, Pouget et al., 1992, for these), for 
which, to start with, the mass M, canonical momentum P(R), and energy E(R) 
are given by (cf. Drazin and Johnson, 1989)

 M a dx
R

= ∫ 2
,  (12.76)

 P R i aa a a dxt t
R

( ) = −( )∫ * * ,  (12.77)

 E R a a dxx
R

( ) = −( )∫ 1
2

2 4λ ,  (12.78)

where the asterisk indicates the complex conjugate. The quantum physicist 
will recognize in Equation 12.76 the total probability of presence of a parti-
cle of wave function a according to Max Born’s interpretation (this should 
be normalized to one). In our mechanical frame of mind, this, without nor-
malization, may be called the number of surface phonons or also the wave action. 
The canonical momentum P was introduced in the causal reinterpretation 
of quantum mechanics (see Holland, 1993, p. 113) by treating a as a classical 
but complex-valued field. Remarkably, the point mechanics associated with 
Equations 12.76 through 12.78 is Newtonian; that is, if c is the  propagation 
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velocity of bright solitons, we have the following Newtonian relations among 
the triplet (M, P, E):

 P Mc E P M= =, .2 2/  (12.79)

This is shown by substituting the bright-soliton solution obtained by 
Zakharov and Shabat (1972) in the set (12.76) through (12.78). 

12.5.2 Zakharov and generalized Zakharov Systems

The Zakharov (Z) system obtained in optical propagation couples linearly, in 
one dimension of space, a complex-valued field a and a real-value field n, as 
follows (Zakharov, 1972):

 ia a na n c n at xx tt T xx
xx

+ = − = ( ), ,2 2
2  (12.80)

where cT is the characteristic speed of the n subsystem, and the coupling 
parameter has been set equal to one. Since the n subsystem is linear in n, the 
dispersion comes from the a subsystem and the nonlinearity from the cou-
pling. For the one-soliton solution (traveling wave), it is clear that the system 
(12.80) is equivalent to a NLS equation (12.75). The mass M may be defined just 
as in this case, and the canonical momentum, recalling the additive nature of 
field momentum for several degrees of freedom, is obtained by combining 
expressions of the type (12.77) and the standard form for n. Thus, 

 M a dx P R i aa a a n n dxt t x t
RR

= ( ) = −( ) −( )∫∫ 2
, .* *  (12.81)

We shall come back to the energy E for a more complex case (in the follow-
ing). The Zakharov system, just like the cubic NLS, is exactly integrable and 
admits multiple soliton solutions. 

The generalized Zakharov (GZ) system was obtained by not neglecting the cou-
pling between the SG component and the so-called Rayleigh component (polar-
ized in the sagittal plane) in the previously mentioned surface wave problem 
(Maugin, Hadouaj, et al., 1992). With n = ux, where u stands for the elastic com-
ponent in the sagittal plane and an appropriate scaling, this system reads

 ia a a a an n c n at xx tt xx
xx

+ + + = − + ( ) =2 2 0 0
2

0
2 2λ µ, ,  (12.82)

where dispersion has two sources, self-dispersion and dispersion caused by 
the coupling. 
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Complicated as it is, the system (12.82) admits exact analytical solitary-
wave solutions of the bright-soliton type for a accompanied by a solitary 
wave in n, but obviously it is not exactly integrable. Noting again the 
additional character of some canonical definitions, the mass M, canonical 
momentum P, and energy E of soliton-like solutions will be of the following 
form: 

 M a dx
R

= ∫ 2
,  (12.83)

 P R i aa a a u u dxt t x t
R

( ) = −( ) −( )∫ * * ,  (12.84)

 E R a a u a u c u dxx t x
R

( ) = − − + +( )( )−∫ 1
2

2
2 4 2 1 2

0
2 2λ µ .  (12.85)

Here, M, the “number of surface phonons” (in our specific application) or 
the total wave action, is the same as for the NLS equation and for the Z sys-
tem, while P obviously is formally the same as for the Z system. The sys-
tem (12.82) was studied in great detail by Maugin, Pouget et al. (1992) and 
Hadouaj et al., (1992a, 1992b). In particular, the integration of (12.82) for the 
exact solitary-wave solution given by these authors provides the looked-for 
relationship between the momentum P, the “mass” M, and the speed c of the 
quasiparticles associated via (12.83) through (12.85) with such localized wave 
solutions, in the original form

 P M c Mc M c
c c

c c
,( ) = +

+ −( )
−( )






−
2
3

3 0
2 2 1

0
2 2 2

µ
λ µ




.  (12.86)

Here one may identify a typical “Newtonian” first contribution Mc, which 
is that obtained for the pure cubic NLS equation (cf. (12.79)), and a neither 
Newtonian nor Lorentzian contribution due to the μ  coupling. Accordingly, 
for small c’s, this quasiparticle behaves almost like a Newtonian particle, 
but assuming μ > 0, λ > 0, there exists a window in speeds between c0 and 

c c*
/≡ + ( )( )0

2 1 2µ λ/  for which no propagation is possible, the “Newtonian” 
behavior being recovered for high speeds, while the behavior looks more 
like a Lorentzian one for a speed approaching c0 from below. This strange 
dynamic behavior is illustrated in the original papers. 

A further physically motivated generalization of the Z system may also 
appear in studying the nonlinear elastic problems of surface waves on a crys-
tal, when an additional discrete (weakly nonlocal) effect can be felt in the 
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direction of propagation x. One then has to contemplate the coupling of a GZ 
system with a Boussinesq-like subsystem, yielding the system

 2 3 2 0
2

ia a a a nat xx+ + − =λ ,  (12.87a)

 n c c a n ntt xx xx
xx

− + + +( ) =0
2 2 2 0,  (12.87b)

in which, to our knowledge, exact analytic one-soliton solutions are known 
only in the λ = 0 case. 

12.6 Driving Forces Acting on Solitons

We have already seen examples of “configurational” forces driving soliton 
solutions in noninertial motion. Such forces are a priori exhibited in the 
right-hand side of Equations 12.171, 12.19, 12.47, 12.53, and 12.742, but apart 
from the case of (12.19), these equations are rendered inertial (i.e., with con-
stant momentum) by the vanishing values of the source terms. Here we are 
interested in cases such as (12.79) where the source term comes from the 
perturbing actions in the original physical system described by partial dif-
ferential equations. These sources may be external sources, inhomogeneities 
placed on the path of the wave, and additional terms due to the modeling 
of the material (e.g., additional viscosity, additional coupling). Examples of 
perturbed systems are

Perturbed Boussinesq equation:•	

 u u u u utt xx x xxxx xxxt− + − =( ) ,1 2ε εδ γ  (12.88)

 where the perturbation is due to viscosity
Perturbed sine Gordon equation:•	

 φ φ φ ε φtt xx f x− + = ( )sin , ,... ,  (12.89)

 of which an example is given by

 φ φ φ φtt xx F t− − = − ( ) ( )sin cos /2 ,  (12.90)
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 where the perturbation is due to an applied magnetic torque result-
ing from an applied magnetic field of time-varying intensity in the 
magnetic model
Perturbed GZ system: •	

 ia a a a an n c n a nt xx tt T xx
xx

x+ + + = − = − ( ) +2 2 0
2 2 2λ µ γ, xxt ,  (12.91)

 where the perturbation is due to viscosity in the n-subsystem such 
that nxxt = uxxxt

In the case (12.88), the balance of field momentum will read

 
d
dt

P R u u dxx xxxt
R

( ) = −∫ γ .  (12.92)

In the case of (12.90) or with the same perturbation applied to the sine 
Gordon system, we will have balances of canonical energy and momentum 
perturbed as 

 
d
dt

E R F t dx
d
dt

P R F tt
R

x( ) = − ( ) ( ) ( ) = ( )∫ φ φ φcos /2 c, oos /2φ( )∫R
dx.  (12.93)

Finally, in the case of (12.91),

 
d
dt

P R n n dxt x
R

( ) = ( )∫4γ µ/ .  (12.94)

We take a closer look at the cases (12.93) and (12.94). The method we are 
applying is none other than the method of “balance equations” as exposed 
by Malomed (1985) and exploited by Pouget and Maugin (1985a) and Kivshar 
and Malomed (1989) for nonexactly integrable systems. That is, the variations 
(modulations, perturbations) of the global energy and momentum of solitary-
wave solutions are established in terms of the perturbations by leaving free 
some typical parameter (e.g., the speed) of the exact solitary-wave solution 
and finding its variation (in the form of an ordinary differential equation 
in terms of the perturbations). The ideal solitary wave that was propagating 
inertially in the absence of perturbation will be slowed down, accelerated, or 
even modulated in time, depending on the cause of the perturbation. To find 
the modulation of the velocity, by virtue of the consistency between energy 
and momentum, we can apply the method to either of these two balance 
laws. Of course, “conservation” would be a more exact qualification than 
“balance” in the present book. 
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For example, Pouget and Maugin (1985a), and then Sayadi and Pouget (1990), 
apply the method to the energy equation (12.93)1. In particular, since soliton 
solutions at rest exist for this system, a function F(t) = FH(t – t0), where F is 
a constant and H is a Heaviside function, will simulate a suddenly applied 
magnetic field that will affect the soliton (the magnetic domain wall in the 
magnetic image) position by putting it in motion if it was previously at rest. It 
will alter the speed, and at a higher order it will modify the shape, as phonon 
radiations will take place. Because of the Lorentzian invariance of the pure 
sine Gordon equation, the result, as shown by Pouget and Maugin (1985a), is 
practically a uniformly accelerated motion in a constant field of force, governed 
by the “relativistic” equation 

 
d
dt

c t

c t
F

F
( )
− ( )






= =

1 22
ˆ ,  (12.95)

where, now, c = dxsol/dt is variable in time, and xsol is the center of “mass” of 
the now-moving kink. Equation 12.95 classically integrates to 

 x t x F F t( ) = + +( )−
0

1 2 2
1 2

1ˆ ˆ .
/

 (12.96)

A direct numerical check on the discrete system equivalent to the sine-
Gordon system shows that this is an excellent approximation (Pouget and 
Maugin, 1985a). Thus we have an approximate, but sufficiently accurate, 
dynamic representation of the starting motion of a magnetoelastic domain 
wall under the action of a suddenly applied magnetic field. 

In the case of (12.94) pertaining to the perturbed motion of a solution of 
the generalized Zakharov system, using the known unperturbed one-soliton 
solution (cf. Maugin and Hadouaj, 1991) in the right-hand side of (12.94), it is 
shown (Hadouaj et al., 1992a, 1992b) that this forced equation of momentum 
follows:

 
d
dt

P R F
M c c c

c c
( ) = = −

+ −( )
−(

−
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µ λ µ3
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0
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2

.  (12.97)

This represents the dissipation-induced rate of change of field momentum. 
It should be noted that the “mass” of the solution given by Equation 12.83 is 
formally left unaltered by dissipation and is computed to be given by

 M c c= + −( )( )− −
4 0

2 2 1 1
η λ µ ,  (12.98)



406 Configurational Forces

where η is the amplitude of the solution, which is, therefore, proportional to 
M for a fixed speed c. As a consequence, we can state that the damped GZ sys-
tem still conserves the “mass,” but of course, the amplitude is affected where 
the speed c varies in time while keeping the relationship (12.98). Extracting 
the amplitude from Equation 12.98

 η λ µt
M

c c t( ) = + − ( )( )( )−

4 0
2 2 1

,  (12.99)

this provides one of the looked-for equations (once we know c) for an initially 
prescribed M. Of course the solitary-wave solution, when it exists, is slowed 
down by viscosity γ considered as a small parameter. For a certain range of 
initial speeds and “masses” (amplitudes), the qualitative discussion of (12.97), 
on account of the P(c) curve, shows that a new scenario of solitonic behavior 
is exhibited, a so-called perestroika of the solution, which has been corrobo-
rated by direct simulation on the associated discrete system (Hadouaj and 
Maugin, 1992). Its shows that in such nonlinear dispersive systems a weak 
dissipation may cause a violent rearrangement of the dynamic solutions. This 
is enough to emphasize the interest in the global canonical conservation laws 
of solitonic systems.

12.7  A Basic Problem of Materials Science: 
Phase-Transition Front Propagation

12.7.1 Some general Words

A full understanding of the phenomenon of the propagation of phase-
 transition fronts in deformable crystals—metals, alloys—is one of the essen-
tial problems of contemporary materials science and mechanics at both 
theoretical and  application levels. This unique problem can be examined at 
three different scales: (i) a microscopic scale (lattice dynamics) in the absence 
of thermodynamic irreversibility, (ii) a mesoscopic scale (exploitation of con-
tinuum thermomechanical equations in a structured front), and (iii) a mac-
roscopic scale, that of engineering applications. The first scale, inspired by the 
Landau–Ginzburg theory, although discrete to start with, deals with nonlin-
ear localized waves (solitonic structures: solitary wave, soliton complexes) 
where nonlinearity and dispersion (discreteness) are the main ingredients. 
The developments given in the present chapter deal with such wave dynam-
ics. The second scale involves nonlinearity, dispersion, and dissipation (vis-
cosity). The third scale is that one at which the front is seen as an irreversibly 
driven singular surface—as examined in Chapter 7—and where macroscopic 
thermodynamics (theory of irreversible processes) and numerical methods 
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such as finite-element and finite-volume methods are used in conjunction 
with a criterion of progress. 

The three scales are reconciled by the fact that all solutions satisfy the same 
Hugoniot conditions sufficiently far away from the front, whether structured 
as a solitonic or dissipative structure, or without thickness such as a singu-
lar surface. This multilevel, multiphysics approach gathers the viewpoints 
of condensed-matter physicists (microscale), applied mathematicians (mesos-
cale), and engineers (macroscale), and even that of the theoretical physicist via 
the inclusive notion of quasiparticles (this chapter) and the underlying and 
pervasive invariant-theoretical framework. In all cases the notion of driving 
force is involved, being either set equal to zero or being very active indeed. 

12.7.2 Microscopic Condensed Matter–Physics Approach: Solitonics

The first approach considered is that dealing with the microscale of lattice 
dynamics in a perfect lattice, so that there is no dissipation and effects of tem-
perature are not involved, except perhaps in the phase-transition parame-
ter. Following works by Falk (1983), Pouget (1988), and Maugin and Cadet 
(1991), this allows one to readily obtain a dynamic representation of a phase 
boundary (here a kink) as a solitonic structure for a two-degrees-of-freedom, 
but essentially one-dimensional system. The reason for this is that, unless 
one wants to study the lateral stability of this system, the “theorem of the flea” 
applies: At its scale the “flea” sees only the first-order geometric description 
of the transition layer, hence essentially the normal direction to a layer of 
constant thickness. Notice that the continuum model obtained in the long-
wavelength limit is that of a nonlinear elastic body with first gradients of strains 
taken into account but no dissipation. This long-wave limit is admissible 
because the transition layer between two phases, although thin (perhaps a 
few lattice spacings), is nonetheless large enough. Numerical simulations 
can be performed directly on the lattice. The elastic potential is nonconvex in 
general. To exemplify this approach, we consider a one-dimensional (x), two-
degrees-of-freedom, lattice with transverse (main effect) and longitudinal 
(secondary effect) displacements from the initial position. In the so-called 
long-wave limit where the discrete dependent variables (strains) sn and en vary 
slowly from one lattice site to the next and they can be expanded about the 
reference configuration (na,0), the discrete equations yield a system of two 
(nondimensionalized) coupled partial—in (x,t)—differential equations (with 
an obvious notation for partial x and t derivatives), which is none other than 
the system of equations (12.48), where, we remind the reader, s and e are the 
shear and elongation strains, γ is a coupling coefficient, and α is a nonlocal-
ity parameter. Parameters cT and cL are the characteristic speeds of the linear 
elastic system. This corresponds to stresses and energy density given by

 σ σ σ σS S x e S
x

m
W
e

W
s

m
W
s

= − = ∂
∂

= ∂
∂

= ∂
∂

, , ,  (12.100)
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and

 W s e s c s s s c e s e sx T L x, ,( ) = − + + − +1
2

1
2

1
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22 2 4 6 2 2 2γ α(( )





2
.  (12.101)

In other words, Equation 12.48a and b are none other than the x-derivatives 
of the balance of (physical) linear momentum for a continuum made of a 
nonlinear, homogeneous elastic material with strain gradients—with both 
nonlinearity and strain gradients relating only to the shear deformation. As 
already noticed this apparently complicated system still admit exact dynamic 
solutions of the solitonic type. A thorough discussion of the existence of 
solitary-wave-like solutions—such solutions connecting two different or 
equivalent minimizers (i.e., two phases) of the potential energy—was given 
by Maugin and Cadet (1991), to whom we refer the reader. The remarkable 
fact is that such complicated solutions are shown (by computation) to satisfy 
the following (temperature-independent) HUGONIOT condition between 
states at infinity:

 Hugo : , fixed= ( ) −[ ] =W s e sSσ 0,  (12.102)

where σ s  is the shear strain without strain-gradient effect, and W  is the elas-
tic energy with such effects similarly neglected. Obviously, gradient effects 
play a significant role only within the rapid transition zone that the kink 
solution represents, while outside this zone the state is practically spatially 
uniform, although different on both sides of the localized front. Here we 
have used the following definitions for the jump and mean value of any 
quantity a:

 a a a a a a[ ] = +∞( ) − −∞( ) = +∞( ) + −∞( )( ): , :
1
2

 (12.103)

Equation 10.102 is typical of the absence of dissipation during the transition, in 
general a working hypothesis that is not realistic. Furthermore, it can in fact 
be rewritten as the celebrated Maxwell’s rule of equal areas. 

Under the same conditions the corresponding dynamic solitary-wave-like 
solution satisfies the quasiparticle inertial motion

 
d
dt

P R( ) = 0,  (12.104)

with vanishing driving force in the right-hand side—Equation 12.53 with 
a vanishing right-hand side because of the asymptotic behavior of the 
solutions. 
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12.7.3 Macroscopic engineering Thermodynamic Approach

This is a local viewpoint exposed in Chapter 7, which refers to the fact that it 
is assumed at each instant of time that the thermoelastic solution is known 
by any means—analytical but very frequently numerical—on both sides of 
the singular surface Σ so that one can compute a driving force acting on Σ. 
Further progress of Σ must not contradict the second law of thermodynam-
ics. The latter, therefore, governs the local evolution of Σ, which is generally 
dissipative, although no microscopic details are made explicit to justify the 
proposed expressions. The approach is thermodynamic and incremental (in 
total analogy with modern plasticity). All physical mechanisms responsible 
for the phase transformation are contained in the phenomenological-macroscopic 
relationship given by the local criterion of progress of Σ. Without going into 
details, which can be found in several papers (Maugin and Trimarco, 1995; 
Maugin, 1997, 1998), and considering from the outset the finite-strain frame-
work, we remind the reader that at any regular point in the body (i.e., on both 
sides of Σ), we have the balance of (physical) linear momentum and the future 
heat equation written in the Piola–Kirchhoff form for a heat-conducting ther-
moelastic material (in general, W(F,θ) is different on both sides of Σ, and gen-
erally nonconvex in its first argument and concave in the second one—the 
thermodynamic temperature θ). But while each phase is materially homoge-
neous, the presence of Σ is a patent mark of a loss of translational symmetry 
on the overall body, hence the consideration of a global material inhomoge-
neity. The field equation capturing this breaking of symmetry is the jump 
relation associated with the equation of momentum on the material manifold, 
that is, what we have called the balance of material momentum in previous 
chapters. This jump equation, together with that for entropy, governs the 
phase-transition phenomenon at Σ. These equations a priori read

 N b V P f 0 N V Q. , . ,+ ⊗[ ] + = − ( )[ ] = ≥Σ ΣS /θ σ 0  (12.105)

where the last inequality is a statement of the second law of thermodynamics 
at Σ, N is the unit normal to Σ oriented from the minus to the plus side, and we 
defined the jumps and mean values at Σ by (compare to (12.103)):

 a a a a a a[ ] = − = +( )+ − + −: , :
1
2

,  (12.106)

where a± are the uniform limits of a in approaching Σ on its two faces along 
N. V  is the material velocity of Σ, S is the entropy density, θ is the thermody-
namic temperature; P is the material momentum, and b is the Eshelby stress 
tensor. We have shown that for a coherent homothermal front we have

 f VΣ Σ Σ Σ. = = ≥f VN θ σ 0  (12.107)
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and

 f WSΣ = − = [ ] = −[ ]Hugo HugoPT PT, : . . . .N b N N T F N. ,  (12.108)

where bS is the quasistatic part of b (although the computation is made with-
out neglecting inertia). If this inertia is really neglected, then we have follow-
ing reduction:

 HugoPT = − ( )[ ]W tr .T F .  (12.109)

In this canonical formalism the driving force fΣ happens to be purely nor-
mal, but it is constrained to satisfy, together with the propagation speed 
VN , the surface dissipation inequality indicated in the last of (12.107). In 
other words, any relationship between these two quantities must be such 
that the inequality (12.107) is verified. This is the basis of the formula-
tion of a thermodynamically admissible criterion of progress for Σ. Indeed, we 
should look for a relationship V g fN = ( )Σ  that satisfies the last of (12.107). 
For illustrative purposes we may consider the cartoonesque case where the 
phase-transition process does not involve any characteristic time (just like 
rate-independent plasticity), in which case the dissipation in (12.107) must 
be homogeneous of degree one only in VN ; the threshold type of progress 
criterion corresponds to this. That is, V I N fN f C∈ = ( )∂ Σ , where If is the indi-
cator function of the closed segment F = [–fc, + fc]—a convex set—and NC is 
the “cone of outward normals” to this convex set, with the symbol ∂ denot-
ing the so-called subgradient (see Maugin, 1992, Appendix). If we “force” 
the system evolution to be such that there is effective progress of the front 
at X ∈ Σ while there is no dissipation, then we must necessarily enforce the 
following condition:

 f WΣ = ≡ −[ ] =0 0i.e., Hugo . .PT N T F N. .  (12.110)

Because temperature (θΣ) is fixed, and the thickness of the front is taken as 
zero, so that uniform states are reached immediately on both sides of Σ, 
(12.110) is none other than the condition of “Maxwell” (12.102) in the one-
dimensional pure-shear case. Thus a macroscopic approach dear to the 
engineer has allowed us to obtain, in general, a more realistic (in general, 
dissipative) progress of the front. The case of Section 12.7.2 then appears 
as a “zoom”—in the nondissipative case—on the situation described in 
the present section since the front acquires, through this zoom magni-
fication (asymptotics), a definite, although small, thickness and a struc-
ture while rejecting the immediate vicinity of the zero-thickness front to 
infinities. The next approach allows one to introduce both a thickness and 
dissipation.
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12.7.4 Mesoscopic Applied-Mathematics Approach: Structured Front

Here the front of phase transformation is looked upon as a mixed 
“viscous-dispersive” structure at a “mesoscale.” We refer to this as the 
 applied-mathematician approach. This dialectical approach, in which one 
applies macroscopic concepts at a smaller scale to obtain an improved phe-
nomenological description, is finally fruitful. Here we follow Truskinowsky 
(1994), to whom we refer the reader for details. We therefore consider a one-
dimensional model (along the normal to the structured front—“theorem of 
the fly”), and we envisage a competition between viscosity (i.e., a simple case 
of dissipation) and some weak nonlocality accounted for through a strain-
gradient theory (compare Section 12.7.2). The critical nondimensional param-
eter that compares these two effects is defined by

 ω η ε= / .  (12.111)

where η is the viscosity and ε ≈ L2 is the nonlocality parameter (size effect). 
Progressive-wave solutions u u x V tN= = −( )ξ  of the continuous system that 
relate two minimizers (uniform solutions at infinities that minimize W ) 
over a distance of the order of δ ε=  are discussed in terms of this param-
eter. The mathematical problem reduces to a nonlinear eigenvalue problem of 
which the specification of the points of the discrete spectrum constitutes 
the looked-for kinetic relation V g fN = ( );ε , where f = − +∞( )σ σ  plays the 
role of driving force. As a matter of fact the speed of propagation VN  satis-
fies the Rankine–Hugoniot equation V sN

2 = [ ] [ ]σ / , where strain gradients and 
viscosity play no role and the jumps are taken between asymptotic values 
at infinity (cf. (12.103)). The evolution obtained for the kinetic law is strongly 
nonlinear function and evolves with the value of the parameter ω.

12.7.5  Theoretical Physics Approach: Quasiparticle 
and Transient Motion

The approach of Section 12.7.3 simply accepts the value of VN , whatever its 
evolution, as it is computed from the full field solution at each instant of time 
and each material point X ∈ Σ. In contrast, the approaches of Sections 12.7.2 
and 12.7.4 provide progressive-wave solutions, that is, waves that are steady 
in the sense that the propagation speed, although a property of the solution 
(and not only of the material as in linear-wave propagation), does not vary in 
time along the propagation path. This is a type of inertial motion. What about 
a noninertial motion? To look at such a case, we view the problem in the frame-
work of Sections 12.5 and 12.6. The localized—but with nonzero thickness—
dynamic solutions of Section 12.7.2 are looked on as global entities behaving 
like mass particles in motion in the appropriate point mechanics, that is, as so-
called quasiparticles or, as we like to say, wavicles. All perturbing effects such 
as dissipation, inhomogeneities, and so on will then be treated as perturbing 
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forces acting on the inertial motion, which thus becomes noninertial. To under-
stand this viewpoint, it is sufficient to envisage the presence of a viscous 
(more generally, dissipative) contribution in the right-hand side of the clas-
sical balance of linear momentum. As indicated in Section 12.5 this results 
in the presence of an additional material force f f FD D

inh = − .  in the right-hand 
side of the canonical momentum equation. The latter equation is used, after 
integration over the path of the wave, to treat the material force as a perturba-
tion on the solution in the absence of fD. The essential problem consists then 
in identifying the point mechanics that is associated with a particular system 
of partial differential equations on account of some of its exact integrals. This 
point mechanics—that is, a coherent system of relations between the mass, 
momentum, and energy of a point particle—can be completely new and a 
priori unforeseeable. In particular, a perturbative approach of the canonical, 
quasiparticle type was suggested by Fomethe and Maugin (1997) to study the 
varied motion of a phase-transition front under the action of a temperature 
gradient (since the latter creates a material thermal force; cf. Chapter 5). 

12.7.6 Thermodynamically Based Continuous Automaton 

Recently, in order to treat numerically the progress of phase-transition fronts 
in thermoelasticity, Berezovski and the author (cf. Berezovski and Maugin, 
1999, etc.) have introduced a numerical strategy that, while based on the 
thermodynamic, no-thickness singular surface of Section 12.7.3 (engineering 
approach), allows for the automatic application of the criterion of transforma-
tion during the progression while providing simultaneously a more reason-
able (nonlinear) kinetic law, which is here part of the solution. 

This is a performing finite-volume method (FVM) adapted so as to include 
the balance of material momentum and its jump at the phase boundary. This 
is all the more appropriate given that the fixed FVM cells thus considered 
may also be viewed as the elementary blocks of a thermodynamics of so-
called discrete systems in the manner of Schottky (1961; cf. Muschik, 1990). In 
this thermodynamics the state in one discrete system (e.g., one of the com-
puting cells) is defined in terms of its environment, which may or may not be 
in thermodynamic equilibrium. Contact thermodynamic quantities (e.g., contact 
temperature, contact stresses, contact velocity) are introduced to character-
ize the state of the discrete system (in fact defined at the boundary surface 
of a cell in the FVM). This idea of making a cell’s state depend on that of 
its neighbors is tantamount to introducing a strategy for the propagation of 
the thermodynamic state, hence the notion of cellular automaton (Berezovski, 
1997). Although discretization here is based on continuous balance laws, we 
may refer to this method as that of continuous cellular automata. The strat-
egy referred to in the preceding is essential in the case of the dynamics of a 
phase-transition front. It is along this line of thought that many recent works 
developed (Berezovski, 1997; Berezovski and Maugin, 1999a, 1999b). In this 
new scheme, all thermomechanical balance laws are expressed for each cell 
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(see Chapter 13 in this book), and the bulk quantities within each cell are 
related to the contact ones through the thermodynamics of discrete systems. 
Thereby a high-performance wave-propagation algorithm is exploited—
combining Lax–Wendroff and Godunov’s ideas (Berezovski and Maugin, 
1999)—that yields extremely good results in the simulation of the rapid 
progression of sharp wave fronts in 2D thermoelasticity under the exter-
nal action of an applied stress shock. The thermodynamic justification of 
the scheme is given in Berezovski and Maugin (2004). The kinetic relation 
obtained by computing separately the driving force and the velocity of the 
front compares favorably with that deduced from the mesoscopic approach 
recalled in Section 12.7.4. 

Appendix A12.1: Eshelbian kinematic-Wave Mechanics

A12.1.1 Some Words of introduction

Since the space–time parametrization (X,t) provides the natural background 
for the canonical thermomechanics of continua (Chapter 5) and the accompa-
nying theory of motion of defects, one may naturally wonder what happens 
in the dual space–time manifold spanned by a material wave vector k and an 
angular frequency ω since a space–time invariant phase is defined by ϕ = k.X 
– ωt. The observation of the invariance of this scalar quantity was an essen-
tial tool in the intellectual construct of Louis de Broglie that yielded quantum 
wave mechanics, with further works by this author, Erwin Schrödinger, and 
others in the 1920s (cf. Holland, 1993). This strictly applies to a monochro-
matic linear wave process. Dispersion may be envisaged but no nonlinear-
ity. However, the kinematic-wave theory, due essentially to Lighthill (1965a, 
1965b), Whitham (1965, 1974a, 1974b), and Hayes (1970a, 1970b, 1973), allows 
one to introduce a more inclusive definition of wave vector and angular 
frequency from a general space–time-dependent phase function. The cited 
authors also noticed the interest of variational formulations and the exploita-
tion of basic theorems of field theory (the theory of the averaged Lagrangian) 
in the solution of nonlinear wave problems with almost monochromatic fea-
tures but including some degree of dispersion and nonlinearity, with refine-
ments by Benney and Newell (1967) and Newell (1985). Very few applications 
have followed in fluid mechanics where this started, probably due to the 
difficulty of grasping some of the basic ideas. This is even truer in wave-like 
phenomena in deformable solids, where the only available problem solu-
tion seems to be the one given by the author and a coworker (Maugin and 
Hadouaj, 1991) in a complicated nonlinear surface wave problem. 

In this appendix, which follows essentially Maugin (2007), exploiting 
the noticed duality between the parametrization (X,t) and the wave-like 
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entity (k,ω) and remembering the basic structure of variational continuum 
mechanics in finite strains (the ideal paragon case, Chapter 4), we examine 
the related wave-kinematics in the theory of the averaged Lagrangian theory 
of Whitham and Hayes and show how, via the application of Noether’s theo-
rem, such notions as those of wave action, material wave momentum (quite 
similar to the wave momentum of de Broglie), and an Eshelby “wave” material 
tensor emerge naturally with corresponding continuum conservation laws 
of wave action, material wave momentum, and wave energy. One can even 
show the existence of a Hamilton–Jacobi equation. By way of application the 
case of one-dimensional dispersive weakly nonlocal elasticity is considered 
with the possibility of the existence of modulated localized nonlinear solu-
tions akin to bright solitons. This work has been preceded by reflections on 
the relative nature of waves (phonons) in the Eulerian and material descrip-
tions (Maugin, 1993, pp. 34–38)—works in cooperation with C. Trimarco, 
further elaboration in Potapov et al. (2005), and first considerations on wave-
kinematics in Maugin (2003). Recent works by Kienzler and Herrmann (2004) 
and Herrmann and Kienzler (2005) go in the same direction. 

A12.1.2 Kinematic-Wave Theory and elasticity 

First, the reader is reminded that the phase of a plane linear wave in a con-
tinuum is defined in the material description by

 ϕ ϕ ω ωX k k X, , .t t( ) = ( ) = − ,  (A12.1)

where k is the material wave vector and ω is the associated circular fre-
quency. But in the kinematic-wave theory a general phase function 

 ϕ ϕ= ( )X,t .  (A12.2)

is introduced, from which the material wave vector k and the frequency ω 
are defined by

 k
X

= = ∇ = −∂ϕ
∂

ϕ ω ∂ϕ
∂R t

, ,  (A12.3)

From this there follows at once the two equations (curl-free nature of k, and 
conservation of the wave vector)

 ∇ × =R k 0  (A12.4)

 
∂
∂

ωk
0

t R+ ∇ = .  (A12.5)
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In particular, the equations (A12.3) are trivially satisfied for plane wave 
solutions for which the last of (A12.1) holds true. For an inhomogeneous rheon-
omic linear behavior with dispersion we have the dispersion relation

 ω = ( )Ω k X; ,t .  (A12.6)

Accordingly, the conservation of wave vector (A12.5) becomes

 
∂
∂

∂
∂

∂
∂

k
V k

X
V

kt g R g+ ∇ = − =.
expl

Ω Ω
, ,  (A12.7)

and thus the Hamiltonian system (Maugin, 2003)

 
D
Dt

D
Dt

X
k

k
X

= = −∂
∂

∂
∂

Ω Ω
,

expl

,  (A12.8)

where we have set

 
D
Dt t g R≡ + ∇∂

∂
V . .  (A12.9)

Simultaneously we have the Hamilton–Jacobi equation (compare (A12.3)2)

 
∂ϕ
∂

∂ϕ
∂t

t+ =




=Ω X k

X
, ; 0.  (A12.10)

If we now consider a wave in an inhomogeneous rheonomic dispersive non-
linear material, the frequency will also depend on the amplitude. Let a denote 
the n-vector of Rn that characterizes this small, slowly varying amplitude of a 
complex system (in general with several degrees of freedom). Thus, now, 

 ω = ( )Ω k X a, , ,t .  (A12.11)

Accordingly, the second of Hamilton’s equations (A12.8) will now read 
(Maugin, 2003)

 
D
Dt R

Tk
X

A a A
a

= − + ∇( ) = −∂
∂

∂
∂

Ω Ω

expl

. , : .  (A12.12)
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The relationship with the developments in Chapter 4 follows from the 
remarkable considerations of Whitham on a so-called averaged Lagrangian. 
For a wave motion depending on the phase (A12.2) and with all character-
istic quantities varying slowly over space–time (derivatives of a, ω, and k 
are small in an appropriate mathematical sense and can thus be neglected), 
Whitham proposes to replace the initial variational problem (4.1) by one per-
taining to the averaged Lagrangian, that is, 

 δ
π

ϕ
π

 Ld dt L LdX = = ∫∫ 0
1

2 0

2

, ,  (A12.13)

with 

  L L
t

t= = = −





∂ϕ
∂

∂ϕ
∂

ω
X

k a X, , ; , ,   (A12.14)

where the fields are the amplitude a and the phase φ. Accordingly, the associ-
ated field (variational) equations 

 
∂
∂

L
a

0= ,   (A12.15)

 
∂
∂

S
t R− ∇ =.W 0,   (A12.16)

for the variational (i.e., field) equations, and the canonical energy and momen-
tum equations

 
∂
∂

∂
∂


 


 H

t
h

tR R− ∇ = − =. , div inhQ
P

b f   (A12.17)

follow from Noether’s theorem for the translational invariance under t and 
X, where we have set

 
 

S
L L

: , := =∂
∂ω

∂
∂

W
k

,  (A12.18)

     


H S L h
L
t

= − = = −ω ω ∂
∂

, ,
expl

Q W ,  (A12.19)
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P k b 1 W k f

X
= = − − ⊗( ) =S L

L
R, , inh

expl

∂
∂

.  (A12.20)

Dimensionally, S  is an action and may be called the wave action, while (A12.16) 
may be referred to as a strict conservation law for the wave action in which 
W is the action flux. Note that in continuum mechanics the action density S 
would be given in terms of the canonical momentum P and Hamiltonian H 
by S = P.X – Ht; compare the discussion in Maugin (2003). But here in the pre-
ceding the material covector P  may be called the material wave momentum 
(notice that its formula reminds us of the quantum wave-mechanics relation-
ship due to de Broglie:  P k= , where h is the reduced elementary quantum 
of action [Planck’s constant]), and b , the associated flux, may be called the 
material wave Eshelby stress. This tensor is not symmetric unless W is pro-
portional to k. 

The Equation A12.17 are a consequence of Noether’s identity. But the wave 
action conservation equation (A12.16) plays here the central role (equivalent 
to the balance of linear physical momentum,

 
∂
∂
p
t R− =div T 0,  (A12.21)

for hyperelasticity). Indeed, in the same way as the analogs for elasticity in 
(4.80) and (4.81) can be deduced from (A12.21) by right scalar multiplication 
by v and F, respectively, and some further manipulations on account of the 
expression for L, Equations A12.171–2 can be deduced from Equation A12.16 
by scalar and tensorial multiplication, respectively, by ω and k on account 
of the functional dependency assumed for L  and (A12.15). This we show 
explicitly for the second (covectorial) equation. Indeed, we have

 0 W k
k k

W= − ∇( )







=
( ) − −∂

∂
∂
∂

∂
∂

 
S

t

S

t
S

tR R. div ⊗⊗( )+ ∇( )k W k. R .  (A12.22)

But

  S
t

S R
∂
∂

ωk = − ∇  (A12.23)

and

 W k
k

k
k

k. . .∇( ) = ∇ = ∇( )R R R
TL L∂

∂
∂
∂

 
,   (A12.24)
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where we used the definitions of ω and k in terms of the phase. Furthermore, 
from the total material gradient of L , we obtain that 

 

∂
∂

∇( ) = ∇ − ∂
∂

− ∂
∂

∇ − ∂
∂




  L
L

L L L
R

T
R Rk

k
X a

. .
expl ω

ω ∇∇( )

= ( ) − ∂
∂

− ∇

R
T

R R RL
L

S

a

1
X

div
expl




 ω.

 (A12.25)

Accordingly, combining (A12.23) through (A12.25) in (A12.22) yields 

 0 W k
P

b
X

= − ∇( )







= − −∂
∂

∂
∂

∂
∂

 


S
t t

L
R R. div

expll

 (A12.26)

with the definitions (A12.20). As a matter of fact, here one of Noether’s identi-
ties is none other than  
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∂
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∂
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− − −


. div
expl

W k
P
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X










≡ 0.  (A12.27)

A12.1.3 Application to Nonlinear Dispersive Waves in elastic Crystals

For the sake of example we consider a one-dimensional nonlinear elastic 
bulk motion in a dispersive crystal. With ut and uX replacing v and F, we have 
the following rheonomic Lagrangian density:

 L u E u u E ut X X XX= − −




+ ( )1

2
1
2

1
6

1
20

2 2 4 2 2ρ β δ  (A12.28)

where ρ0 is a fixed density, E is an elasticity coefficient, β is coefficient of non-
linearity for elasticity (it may be of any sign), and δ is a characteristic (intrinsic) 
length. The model (A12.28) belongs in the class of models described by (4.119), 
for which (4.121) through (4.130)) apply. The elastic component is not necessar-
ily longitudinal (i.e, along x). The variational field equation (4.121) reads

 u c u u c utt E XX X E XXXX− −( ) − =2 2 2 21 0β δ ,  (A12.29a)

in which we recognize a modified Boussinesq (crystal) equation (compare to 
the standard Boussinesq equation (12.12); see Christov et al. [2007] for the so-
called “Boussinesq paradigm”). Here cE = (E/ρ0)1/2 is the linear elastic speed. 
The crystal is cut in such a way that no cubic term appears in the  expression 
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(A12.28) so that the first nonquadratic term is quartic. In appropriate nondi-
mensional form (A12.29a) is rewritten as

 u u u utt XX X XXXX− −( ) − =1 02 2β δ .   (A12.29b)

In the linear case, trying a solution u = aexp(iφ), with φ = KX – ωt, we 
deduce from (A12.29) the following “linear” dispersion relation:

 D K K KL ω ω δ, :( ) = − −( ) =2 2 2 21 0.  (A12.30)

It is readily checked that the averaged Lagrangian is given by

 L Ld D K aL= = ( )∫1
2 0

2
2

π
ϕ ω

π

, .  (A12.31)

Accordingly, the associated Euler–Lagrange variational equations (A12.15) 
and (A12.16) for the amplitude a and the phase φ read (for a ≠ 0)

 D KL ω ,( ) = 0  (A12.32)

and 

 
∂ ω
∂

∂
∂

a
t

Ka
X

2 2

0
( )

+
( )

= ,   (A12.33)

which are the linear dispersion relation and the conservation of wave action, 
respectively.

Now we look for the influence of the elastic nonlinearity. First, following 
Newell (1985) or Maugin and Hadouaj (1991), we construct an amplitude-
dependent dispersion relation (remember Equation 3.11). For this purpose 
we consider the following asymptotic solution with slow space x and time 
T variables:

 u X t a i u u x X T t, , ,( ) = ( ) + + + = =exp .... ,ϕ ε ε ε ε1
2

2  (A12.34)

where ε is an order parameter and the phase is defined in a general way by 
(A12.2) and (A12.3). We immediately have
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∂

ω ∂
∂ϕ

ε ∂
∂

∂
∂

∂
∂ϕ

ε ∂
∂t T X

K
x

= − + = +, .  (A12.35)

On substituting (A.12.34) and (A12.35) in (A12.3) and (A12.29), at the order 
zero in ε we obtain (DL ≠ 0)
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∂
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ν
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2
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u+ = ,  (A12.36)

where

 u a i
a

D KL
0

2
2

= ( ) = − ( )exp ,
,

νϕ ν
β
ω

.  (A12.37)

The zeroth-order solution is only 2π periodic with no smaller period when 
ν2 = 1, that is, when there holds the following amplitude-dependent dispersion 
relation:

 D K a D K aNL Lω ω β, ; : ,( ) = ( ) + =2 0.  (A12.38)

Alternatively, this equation may be considered as providing the slowly vary-
ing amplitude in terms of ω, K, and the material parameters. However, fol-
lowing Newell (1985) or Maugin (1999, Appendix A6) and in anticipation of 
more generality, it is worthwhile to view (A12.38) as a first (zeroth) approxi-
mation and write the general dispersion relation in the perturbed form of a 
“dispersive” nonlinear dispersion relation:

 D K a a a D K a g gNL x T NLω ω ε ε, ; , , ,... : , ; .( ) = ( ) + + +1
2

2 ...( ) = 0,  (A12.39)

where the ellipsis in the arguments of DNL on the left-hand side stand for 
higher-order space and time derivatives in the slow variables. The first-or-
der term in the expansion of (A12.34) indeed yields u0 = aexp(iφ). The next 
order yields g1 = 0, u1 = 0, and none other than the wave-action conservation 
(A12.34). The fact that u1 vanishes is not surprising since the quartic nonlin-
earity of the initial potential is a third-harmonic generator. At order two, we 
will obtain that g2 must be given by 
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Gathering these results in (A12.49) we finally have the following “wave-
like” equation for the dispersive nonlinear dispersion relation:
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∂

∂
∂
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=−K K a a
T x
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We have thus constructed a set of partial differential equations for the 
unknown triad (ω, K a), a system that consists of Equations A12.33, A12.34, 
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and A12.41. The general solution of this is impracticable. That is why an 
interesting approximation consists in considering an almost monochro-
matic regime (ω0, K0) whose point belongs to the linear dispersion relation in 
Equation A12.32—that is, when β and ε vanish. But in the nonlinear case we 
have to consider couples (ω, K) in the neighborhood of this working point. 
On account of the representation (A12.3) we shall therefore write

 K K x T= + = −0 0εφ ω ω εφ, ,  (A12.42)

where ϕ is the perturbation phase. Moreover, we introduce a moving coordi-
nate ξ and a new scaling by 

 ξ ω τ ε ε= − = →x T T a a0 ' ,, ,  (A12.43)

where a prime denotes the derivative with respect to K at K0. Then (A12.34) 
and (A12.41) first yield the following two equations:
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Then using (A12.43) these two equations provide two first-order time dif-
ferential equations:

 2 1 2 00 0
2ω ω φ φτ ξ ξ ξξaa a a a+ −( ) +( ) + =' h.o.t.  (A12.46)

and

 1 20
2 1 2 2 4

0−( ) −( ) − +( ) + +−ω φ β δφ ω φξξ ξ ξ τ' a a a h.o.t.. = 0,  (A12.47)

where h.o.t. stands for higher-order terms. These two equations therefore 
yield (ω0 ≠ 0)

 a a aτ ξ ς ξξ
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ω
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−
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,  (A12.48)
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and
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Finally, introducing a complex amplitude A = aexp(iϕ), (A12.48) and (A.12.49) 
combine to give a single nonlinear Schrödinger equation (NLS equation; the 
asterisk denotes complex conjugacy):

 iA pA q A Aτ ξξ+ + 2 = 0.  (A12.50)

with the definitions

 p q= ′′ =1
2 20

0

ω β
ω

, .  (A12.51)

Here ω0′′ is the curvature of the linear dispersion relation at the working point 
(ω0, K0) . As already mentioned (A12.50) is a canonical equation of the theory 
of envelope waves; that is, it always obtains but with different values of p 
and q. According to the celebrated result of Zakharov and Shabat (1972), this 
equation admits stable “bright” envelope solitons as solutions whenever the 
product pq is positive, that is, when the product of the curvature of the linear 
dispersion relation and of the quartic nonlinearity parameter is positive. If the 
curvature is negative, then the material must be selected to have a negative 
parameter β to allow for the propagation of these “bright” solitons. Thus the 
choice of the working point and of the specific material is crucial for the exis-
tence of this wave phenomenon. Now, solutions of this type should not come 
here as a surprise—except for the exploited methodology, which is seldom 
used in solid mechanics—because the original modified Boussinesq equa-
tion has associated with it an evolution equation (one-directional equation 
deduced by means of the so-called reductive perturbation method), which is 
a modification of the traditional Korteweg–deVries equation, and the latter 
itself will provide modulated envelope waves in the appropriate conditions 
of slow variation of the modulation of a small amplitude almost monochro-
matic signal (Benney and Newell, 1967; Ostrovsky and Potapov, 1999). 

A12.1.4 return to the Notion of eshelby Stress

Now, before concluding, we briefly return to the notion of Eshelby stress. 
The model (12.29) fits into the second-gradient scheme of Equations 4.119, 
4.121, and 4.125. According to (4.49) and after a short computation, the mate-
rial Eshelby stress (here reduced to a scalar) is 
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and the balance of material (or field) momentum (here a strict conservation law) 
reads 
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Here some of the groupings of terms are misleading and due to the specific 
one-dimensional nature of the problem (see our remark in Section 12.1.2). But 
now if we try to think in terms of the averaged Lagrangian, in the linear (but 
dispersive) case the latter will be provided by (A12.14) in which DL is given 
by the left-hand side of (A12.30). On using the definitions in (A12.17) we shall 
find that the general balance of wave momentum is given by
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where the ellipsis in the left-hand side stands for unknown terms due to the 
nonlinear nature of the full problem. Noting P u u Kat X= − ≈ ω 2  in the zeroth 
approximation we obviously identify the analogies between Equations A12.53 
and A12.54. To go further in the exploitation of (A12.54) we would have to find 
the missing nonlinear terms and enforce the already indicated perturbation 
of the dispersion relation, introduce an averaged Lagrangian that depends 
also on the time derivative and space derivative of the amplitude, and apply 
the almost monochromatic approximation (A12.42). 

By way of conclusion, we note that Equation A12.50 itself partakes of the 
wave–particle dualism in the sense that, via a new application of the canoni-
cal formalism, a quasiparticle having Newtonian mechanics as its “point 
particle” mechanics (see Section 12.5) can be associated with that equation. 
The “point mass” involved in this mechanics is none other than the “wave 
action” or “number of phonons” defined by

 M A dX
R

= ∫ 2
 (A12.55)

on the real line R. Thus, successive application of the wave–mechanics dual-
ism, averaged Lagrangian method, and perturbation techniques led us again 
to some kind of particle–wave dualism. Although quantization in the linear 
wave case with the concept of phonons applies directly, here the path has 
been long and indirect. Further elaboration of analytical continuum mechan-
ics is needed to warrant further progress along this line. Some analogies 
between canonical continuum mechanics and continuum wave-kinematics 
may still be noted. For instance, for homogeneous systems, if the action flux 
W is either zero or everywhere tangential to the material body B at its surface 
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∂B, integration over material space of Equations A12.16 and A12.172 yields the 
global balance equations

 
d
dt

SdV
d
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dV L dA
BBB

  = + =∫∫∫ 0, P N 0
∂

;  (A12.56)

that is, total wave action is conserved and total material wave momentum is 
driven by the flux of averaged Lagrangian, in the same way as total physical 
momentum is conserved and total material momentum is driven by the flux 
of physical Lagrangian in material mechanics for a vanishing or tangential 
applied traction at the boundary. This is one of the analogies that can be eas-
ily established.
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13
Numerical Applications

Object of the Chapter

Where we find out that the Eshelby canonical stress is not only a theoretical 
concept but that its introduction kindled the improvement of various numer-
ical methods, not the least being the ubiquitous finite-element method, while 
the finite-difference method and the finite-volume method gain in accuracy 
and practicality thanks to its consideration.

13.1 Introduction

It is usually, and correctly, remarked that at all regular material points, the 
balance of material momentum in pure mechanics is “equivalent” to the bal-
ance of physical momentum. The reason for this is that at all such points, 
the former can be deduced from the latter by some algebraic and analytic 
operations allowed by the smoothness of the fields. That is, at such points the 
balance of material momentum is an identity. However, it is not exactly true 
that both equations of momentum are operationally equivalent, being then 
only two different “projections” on different manifolds of the same equation, 
because they cannot play the same role in problem solving. This is due to the fact 
that, whether we like it or not, applied forces—which are real physical forces 
in the Newtonian–Euler–Cauchy sense—are prescribed in physical space (a 
world to which they belong by definition) so that they intervene in problem 
solving in the equations (field equations and boundary conditions) expressed 
in that space. Therefore, initial-value boundary-value problems are, of neces-
sity, solved, analytically or numerically, in physical space. The question then 
arises of the usefulness of the balance of material momentum at regular mate-
rial points, its role in capturing singularities being clear at singular points 
(cf. foregoing chapters). This usefulness resides in the redundancy between 
the two (essentially vectorial) equations as it can be exploited thus. While 
the balance of physical momentum—and other equations governing other 
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fields than deformation—are used in direct problem solving, the balance of 
material momentum (or its “equilibrium” form where this applies) is to be 
exploited either in the form of a criterion to be satisfied by the already obtained 
point-wise field solution (e.g., in fracture, phase-transition, anelasticity, etc.) 
or as a way of checking globally the accuracy and quality of the obtained 
solution. This is very similar to the exploitation of the energy balance in the 
numerics of hyperbolic systems where the accuracy of the adopted scheme is 
measured by a global energy criterion (i.e., one asks whether the scheme con-
serves energy). In the following we focus attention on such an application of 
the balance of material momentum in various numerical techniques, noting 
in passing that the notion of momentum is vectorial, and therefore “direc-
tional,” and thus richer than that of energy (a scalar), which addresses only 
magnitude. Three numerical techniques are briefly examined in the light of 
recent advances. These are the known techniques—also called methods—of 
(i) finite differences (hence the finite-difference method (FDM)), which is 
the oldest one, introduced initially for solving the Laplacian and wave-like 
problems (essentially hyperbolic problems); (ii) finite elements (hence the 
finite-element method (FEM)), conceived in the 1960s, which have a strong 
engineering flavor initially due to the aeronautical structural-mechanics 
background although very much related to the principle of virtual work and 
the notions of generalized functions (test functions), and (iii) finite volumes 
(hence the finite-volume method (FVM)), which carry with them the spirit of 
balance laws and thus are intimately related to continuum physics. Dynamics 
is the preferred realm of the first and third techniques, which we shall exam-
ine first, while the FEM has found favor among many engineers in solving 
equilibrium mechanical situations because of the existence of many handy 
ready-to-use packages. However, it seems to be the one that most benefited 
from the new notion of material forces in recent developments, and therefore 
it will be examined at a little greater length.

13.2 Finite-Difference Method

The finite-difference method (FDM) is the numerical realm of nonlinear hyper-
bolic systems. This discretization method finds its origin in analysis and the 
approximation of space derivatives of various orders by finite differences. 
Most often the method has to be especially designed (hence we speak of dif-
ferent numerical schemes) for the system of partial differential equations under 
consideration. That is why FDM is often considered as an art with its tech-
nicalities such as implicit and explicit schemes, the choice of steps (integer, 
half, mixed), the comparison between steps in space and time (the so-called 
Courant number), and so on. The school of Courant (Lax, Wendroff, etc.) in the 
United States and that of Godunov and Yanenko in Russia are responsible for 
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its successes in treating problems including sharp field discontinuities such as 
shock waves in fluids. The accuracy of the devised FDM schemes is measured 
by their ability to more or less conserve the global energy of the system. That 
is, in the present case, the numerical simulation of nonlinear-wave propaga-
tion is performed on the FDM discretized version of the field equations. For 
a conservative system it is checked whether the global (space integral) version 
of the energy equation holds good for the numerically obtained solution. The 
result of this check is expressed by announcing that for example, “energy is 
conserved up to x%,” values of the order of 0.1 percent or 10–3 being quite nor-
mal. From that viewpoint, checking that the global version of the here redun-
dant material—or canonical or field- momentum—balance law holds good for 
the numerical solution obtained is also a valid criterion for the accuracy of the 
FDM scheme, except that, because of the vectorial nature of that equation, the 
check is made along three different axes instead of that of the conservation of 
a single scalar entity as is the case for the energy equation. This places energy 
and canonical momentum on equal footing or, as we like to say, on the same 
ontological level. In particular, for systems of field equations, both canonical equa-
tions and accuracy criteria concern the global physical system and not only one 
degree of freedom in spite of the 3D vectorial nature of canonical momentum. 
Thus, following Christov and Maugin (1995), we may speak of FDM schemes 
that more or less conserve both energy and canonical momentum.

As exemplified by cases examined in Chapter 12, with the introduction of 
localized nonlinear waves of the solitary-wave type (kinks, humps, bound 
states, soliton complexes) in nonlinear dispersive systems of field equations, 
the exploitation of the canonical momentum balance law is even more fruitful. 
This is easily understood by examining two specific questions. First, in a gen-
eral way, for such systems, the field equations present both nonlinearities and 
high-order space or mixed derivatives. This is the case when treating an elastic 
crystal in which both nonconvexity of the strain energy and a weak nonlocal-
ity (gradient effects) are taken into account (e.g., in shape-memory alloys). An 
example of such systems is the following 1-D generalized Boussinesq equa-
tion (cf. Maugin and Christov, 2002) where subscripts t and x stand for partial 
derivatives, s is a strain (e.g., one shear component), F(s) is a polynomial in s 
starting with second degree, and β is a positive or negative parameter:

 s c s F s s stt T xx xx xxxx xx
− − ( ) − +[ ] =2 0β .  (13.1)

A stiff mathematical system such as this one, although one-dimensional in 
space, requires devising a high-performance FDM scheme (see, e.g., Christov 
and Maugin, 1995). This means that FDM is also an art. We do not write here 
the field-momentum balance equation that corresponds to the field equation 
(13.1) because its formal expression suffices for our general purpose. Imagine 
that we have obtained analytically (with some luck) or numerically strongly 
localized solitary-wave-like solutions of (13.1) that we call “shapes” S. These 
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usually correspond to spatially uniform solutions at infinity. First, the writ-
ing of the global form—by integration over the real line R in the absence of 
applied force—of the field or wave–momentum equation provides theoreti-
cally an equation of the following type:

 
d
dt

PdX
R

P
0 P= = ∫; : .  (13.2)

This is a Newtonian-like equation of inertial motion for the “shape” S. There 
is no term in the right-hand side of Equation 13.21 because all field deriva-
tives go to zero at infinity for these solutions S, which, therefore, are steadily 
progressing. As a matter of fact, imposing the vanishing of the right-hand 
side of (13.2)1 reveals the natural limit conditions on higher-order field deriva-
tives, which classical types of boundary conditions do not consider. But in the 
numerical simulation of the steady propagation of “shapes” S, we have to work 
either on a periodic landscape arrangement or on a finite space interval. The 
satisfaction of these conditions is a necessity for the realization of the inertial 
motion globally governed by (13.2). Otherwise, the nonzero values at the inter-
val boundaries will in fact create a perturbing driving force that will accelerate 
or slow down the supposedly steadily moving shape, with a motion equation

 
d
dt
P

F 0= ≠driving  (13.3)

then replacing (13.2)1. Making Fdriving zero or minimal in some sense is a jus-
tified endeavor. But it is clear that the same scheme—Equations 13.21 and 
13.3—can also be exploited to treat the influence of nonzero applied forces (or 
any term that can be viewed as a perturbation on the inertial motion of unde-
formed “shapes” present in the right-hand sides of the basic field equations to 
start with). Then the initial “shape” solutions are found—with some freedom 
left to some of their parameters—on the basis of the homogeneous form of 
these equations. Equation 13.3, where the right hand-side is then given by the 
space-integrated, materially convected form of this perturbing force, provides 
the time-evolution equation of these gross parameters (e.g., speed) in solutions 
(transient nonlinear localized wave forms) that cannot be obtained through any 
other known method. Examples of application of this technique have been pre-
sented in the preceding chapter—see also Christov et al. (1996), Maugin (1999), 
and Maugin and Christov (2002). Note that, as mentioned in the introduction 
to this chapter, and in accordance with the general philosophy of this presen-
tation, the field equations, per se, serve one purpose, while the energy and/
or canonical momentum equations serve another. Note by way of conclusion 
that (13.2) and (13.3) do not presuppose that the point mechanics (relationships 
between mass, momentum, velocity, and energy) satisfied by the “shapes” in 
question is Newtonian. These relationships are part of the problem as shown 
in the examples of nonlinear-wave propagation treated in Chapter 12.
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13.3 Finite-Volume Method—Continuous Cellular Automata

The finite-volume method (FVM) considers a fixed grid and cells, rather than 
discrete points, as discrete elements. It directly reflects the notion of conserva-
tion laws, which apply to these cells. The continuum theories of physics clearly 
emphasize the notions of balance laws and conservation laws. Therefore, the 
FVM seems, at the price of some adjustments, appropriate for the treatment 
of dynamic problems issuing from continuum mechanics. This is all the more 
true given that cells thus considered may also be viewed as the elementary 
blocks of the thermodynamics of so-called discrete systems in the manner of 
Schottky (cf. Muschik, 1990). In this thermodynamics the state in one discrete 
system (e.g., one of the above cells) is defined in terms of its environment, 
which may or may not be in thermodynamic equilibrium. Contact thermody-
namic quantities (e.g., contact temperature, contact stresses) are introduced to 
characterize the state of the discrete system (in fact defined at the boundary 
surface of a cell in the FVM). This idea of making a cell’s state depend on that 
of its neighbors is tantamount to introducing a strategy for the propagation 
of the thermodynamic state. This is akin to introducing the notion of cellular 
automaton, although discretization here is based on continuum balance laws, 
so that we may refer to this method as that of continuous cellular automata. The 
strategy referred to in the preceding is essential in some dynamic thermome-
chanical problems such as that of the propagation of a phase-transition front. It 
is along this line of thought that recent works develop.

To illustrate the notion of the FVM, it is interesting to give a very few ele-
ments of that type of approach, for instance, in linear isotropic but materially 
inhomogeneous thermoelasticity, where the basic field equations are those 
given in Section 2.3. All thermomechanical balance laws must be expressed 
for each cell, and the bulk quantities within each cell are related to the contact 
ones through the thermodynamics of discrete systems. A high-performance 
wave-propagation algorithm can be exploited—using or astutely mixing 
Lax–Wendroff and Godunov’s ideas (cf. Berezovski and Maugin, 2001)—that 
yields extremely good results in the simulation of the rapid progression of 
sharp wave fronts in 2D elasticity or thermoelasticity (cf. Berezovski and 
Maugin, 2001, 2002). Here, the balance of linear (physical) momentum, the 
time-rate of change of the Hooke–Duhamel constitutive equation, and the 
heat-propagation equation read as follows at any regular material point x in 
the absence of body force and heat source:
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where ρ0 is the density of matter, σ is Cauchy’s stress, λ and μ are Lamé 
coefficients, m = –α(3λ + 2μ) is the thermoelastic coupling coefficient if α is 
the dilatation coefficient, C is the heat capacity, and k is the heat-conduction 
coefficient; T here denotes the small deviation of temperature. The material 
inhomogeneity is explicitly indicated by the x-dependence of some of these 
coefficients. Note that even the (Hooke–Duhamel) constitutive equation is 
rewritten as a kind of local conservation law (13.5). By integration over a cell 
or finite-volume element V of Equations 13.4 through 13.6, we obtain the fol-
lowing system of FVM balance equations:
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where we have set

 H V Vijk ik j jk i≡ ( ) +( )1 2/ δ δ  (13.11)

and source terms due to material inhomogeneities (labeled “inh”) and ther-
moelastic couplings (labeled “te”) are given by

 ϕ ϕ ϕij ij ij= +te inh ,  (13.12)
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In the preceding, Vi (trace of vi at the boundary) and Σij (trace of σij at the 
boundary) are the “contact” velocity and Cauchy stress defined at the FV 
element boundary of unit outward normal ni. Θ denotes the “contact tem-
perature.” Contact and bulk quantities are related by thermodynamic con-
straints, which express the continuity of some partial derivatives of the 
internal energy (cf. Berezovski and Maugin, 1999), such as the following one 
for the stress—labels (1) and (2) refer to two neighboring cells:
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The reader is referred to Berezosvki (1997) and Berezovski and Maugin (2001, 
2002) for the application to the numerics of smooth elastic and thermoelas-
tic 2D wave propagation. What about the application to the propagation of 
phase-transition fronts where, of necessity, a criterion of progress (change 
of thermoelastic phase as the front progresses) is involved? This must nec-
essarily exploit the balance of canonical momentum in a form adapted to the 
continuous-cellular automaton formalism. As a matter of fact, in the present 
case, this additional balance law reads, at each regular material point:
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where we have set (W is the free energy per unit volume)
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The two source terms in (13.17) are due, respectively, to true material inho-
mogeneities and pseudo-inhomogeneities caused by thermal effets; pi

w, the 
purely quadratic part of canonical momentum, is the wave or crystal momen-
tum, and bji

w  is the corresponding part of the Eshelby stress tensor, with ui the 
infinitesimal displacement. The integral of (13.17) over a VE cell yields
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where

 Φ i
w

i i
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f f dV= +( )∫ inh th ,  (13.21)

and Bji
w  is the “contact” Eshelby stress tensor. Together with the Eshelby ten-

sor of the neighboring cell, the Eshelby stress bji
w  satisfies the following time-

evolution equation and thermodynamic constraint:
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where the minus sign in (13.23) originates from the fact that the Eshelby 
stress expends power in the “inverse-motion” velocity field. A short algebra 
allows one to show that the volume-element integral of (13.22) yields the fol-
lowing expression:

 

∂
∂

ρ δ
∂t

b dV V n dAji
w

ji jk k i
VV

+





= − ( )∫∫ 1
2 0

2v Σ ++

+ −






− +σ
∂
∂

∂
∂

δ
∂σ
∂

∂
∂

∂σ
pq

p

q
ji

jk k

i

v

x
C

T
t t

u
x

jjk

i
k

V x
v dV

∂




∫ .

 (13.24)

The integrand in the left-hand volume integral is none other than the “quasi-
static” Eshelby stress, which indeed governs the phase transition, as already 
seen in Chapter 7. The criterion of progress must, therefore, exploit Equations 
13.23 and 13.24. This technique has been used repeatedly by Berezovski, 
Maugin, and coworkers in propagation involving phase transformations as 
well as simply continuously inhomogeneous materials or randomly inhomo-
geneous materials (e.g., Berezovski, Engelbrecht and Maugin, 2003, 2008).

NOT E:  The “balance laws” rewritten in the preceding over a cell element 
are in a form ready for discretization since they are of the general form in 
FVM: The time derivative of a volume average computed at the center of a 
cell is balanced by flux terms evaluated at the boundary of the cell element 
and source terms again evaluated at the center of each cell element. If cells 
are labeled by means of integers, their flat boundaries are labeled by half 
integers. In the reduced one-dimensional case, this reminds us of known 
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finite-difference schemes using the notion of half-integer numeration (leap-
frog steps and so on).

Numerical Illustrations

E X A M PLE 1 :  Wave interaction with martensitic inclusion (all figures after 
Maugin and Berezovski, 2009). This is a 2D propagation problem that pro-
vides the simulation of the wave interaction with a martensitic inclusion in an 
 austenite environment (see Section 12.7 for this general nonlinear wave prob-
lem). The initial shape of the martensitic inclusion is shown in Figure 13.1. 
(This is a cylinder of long length orthogonally to the plane of the figure.) 
The pulse loading is applied at a part of the left boundary of the compu-
tation domain by prescribing a time variation of a normal component of 
the stress tensor. The snapshot of the stress distribution at 30 time steps 
(Figure 13.2) shows the form of the pulse after its departure and short-time 
propagation in the austenite. Upper and bottom boundaries are stress free, 
and the right boundary is assumed to be rigid. The material properties of 
austenite and martensite correspond to Cu-14.44Al-4.19Ni shape-memory 
alloy (Escobar and Clifton, 1993). In the austenitic phase, the density is 
equal to 7100 kg/m3, the elastic modulus E is 120 GPa, the shear wave 
velocity has the value of 1187 m/s, and the dilatation coefficient is 6.75·10−6 
1/K. For the martensitic phase, E is 60 GPa, and the shear wave veloc-
ity is 1055 m/s, with the same density and dilatation coefficient as in the 
preceding.
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Figure 13.1
(See color insert following page 434.) Initial shape of martensitic inclusion (dark zone).
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The next figure, Figure 13.3, shows the interaction of the pulse with the 
martensitic inclusion. Due to the difference in material properties of mar-
tensite and austenite, the velocity of the wave in martensite is less than in 
austenite. Simultaneously, the phase transformation process is induced at 
the boundary between martensite and austenite (Figure 13.4). The final stage 
of the interaction is presented in Figure 13.5 in terms of the stress distribu-
tion. The changed shape of the martensitic inclusion after the interaction 
with the stress pulse is shown in Figure 13.6. One can see the growth of 
the martensitic inclusion in all directions, but the growth in the rear side of 
the inclusion (right part in the figure) is more than in its front side (left part 
on the figure). Note that in this simulation the FVM discretization is rather 
coarse but sufficient to exhibit the main effects.

E X A M PLE 2 : Plate under stepwise constant loading (all figures after Maugin 
and Berezovski, 2009). Now we consider the application of a constant veloc-
ity stepwise loading only at a part of the left boundary of a plate, with the 
upper and bottom boundaries being stress free. At the right boundary we 
apply a nonreflective boundary condition (Figure 13.7). Calculations are per-
formed for the Cu–Zn (25.63 wt. %)-Al (4.2 wt. %) shape-memory alloy (Goo 
and Lexcellent, 1997). The corresponding mechanical properties are the fol-
lowing: The density has the value of 8228 kg/m3, the Young modulus values 
in austenite and in martensite are 67.25 GPa and 32 GPa, respectively, and 
Poisson’s ratio is 0.33 in both phases.
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Figure 13.2
(See color insert following page 434.) Initial pulse shape.
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In an elastic material, the stepwise loading with constant velocity leads 
to a stepwise constant stress distribution. However, due to the martensitic 
transformation, here we obtain a more complicated distribution of the stress 
inside the plate. Snapshots of wave fronts and the corresponding location 
of the phase boundary at different time instants are shown in Figures 13.8 
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Figure 13.3
(See color insert following page 434.) Contour plot of stress distribution at 80 time steps.
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Figure 13.4
(See color insert following page 434.) Shape of martensitic inclusion at 80 time steps.
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through 13.10. As one can see, the propagation of stress waves, their reflec-
tions from upper and bottom boundaries, and the interaction with the mov-
ing phase-transition front form the shape of the front itself. This shows clearly 
how the loading conditions affect the propagation of the phase-transition 
front in the two-dimensional case. Approximately after 240 ms, the whole 
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Figure 13.5
(See color insert following page 434.) Contour plot of stress distribution at 120 time steps.
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Figure 13.6
(See color insert following page 434.) Final shape of martensitic inclusion.
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plate will be transformed into the martensitic state, and further it will be 
deformed elastically.

13.4 Finite-Element Method

13.4.1 general Principle

To illustrate our purpose in this section, we remind the reader of the basic 
equations of equilibrium, energy, and material momentum in finite-strain 
elasticity (applied body force f0; corresponding material force F0 = –f0 .F):

 divRT f 0+ =0 ,  (13.25)

Figure 13.7
(See color insert following page 434.) Nonplane loading of a plate.

(a)

(b)

Figure 13.8
(See color insert following page 434.) Snapshot of wave distribution and front location in 
Cu–Zn–Al plate at 25 microseconds. Red color (lighter in black and white) corresponds to high 
stress and blue color (darker in black and white) to low stress values.
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∂
∂
W
t R

X

T v f v= ∇ ( ) +. . .0 ,  (13.26)

 divRb F 0+ =0 ,  (13.27)

respectively. At all regular material points X we have the following Ericksen–
Noether identity:

(a)

(b)

Figure 13.9
(See color insert following page 434.) Snapshot of wave distribution and front location in 
Cu–Zn–Al plate at 125 microseconds.

(a)

(b)

Figure 13.10
(See color insert following page 434.) Snapshot of wave distribution and front location in 
Cu–Zn–Al plate at 225 microseconds.
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 div . divR RT f F b F 0+( ) + +( ) =0 0 .  (13.28)

Note that Equation 13.25, valid at all regular points X in Ωt, and the associ-
ated natural boundary condition at ∂Ωt,

 N T t. = 0 ,  (13.29)

are equivalent to the following weak formulation (principle of virtual power 
with inertia discarded):

 P P Pi c v( ) ( ) ( )+ + =* * * 0,  (13.30)

where

 P d P dS Pi R
T

c v( ) ( ) ( )= − ∇( ) = =* * *: * , . * , .T v t v f vΩ 0 0 **d
ttt

Ω
ΩΩΩ ∫∫∫ ∂

.  (13.31)

Equation 13.30 holds for all sufficiently smooth vectorial test functions 
(physical velocity fields) v*. In classical elastic engineering computations, 
when true material inhomogeneities or defects (field singularities) are absent, 
the finite-element method (FEM) is based on a discretization of Equation 13.30 
by introducing interpolations of test functions. Imagine that the computation 
is also made in the absence of applied body forces (f0 = 0). Then divR T = 0 is 
solved by the FEM, and this yields a solution that depends on the location of 
nodes of the FEM net on the material manifold. Knowing such an FEM field 
solution, the quantities b and divR b can be evaluated, and this may yield

 div say err
Rb 0 f≠ ( ) ;  (13.32)

that is, there may exist a spatial distribution of spurious material forces ferr, 
where there should be none according to the Ericksen–Noether identity. 
Equation 13.32 says something about the faithfulness of the FEM grid, and 
the question naturally arises of the tailoring of a finite-element grid in such 
a way that these spurious configurational forces are made to vanish. They are 
configurational forces, as they do depend on the location of nodes on the mate-
rial manifold. One may think to release the inner material nodes (or make 
them float) so as to make these spurious material forces vanish, or at the least 
minimize them. This idea stems from M. Braun (1997), G.A. Maugin (2000), 
and P. Steinmann (2001) and steinmann et al. (2001). In particular, the first 
author has shown that a distribution of practically vanishing configurational 
nodal forces could be obtained. Figure 13.11 (from Braun, 1997, who started 
it all after reading our book (Maugin, 1993)) exhibits the two finite-element 
meshes with fixed and floating nodes for a simple problem of plane elasticity 
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solved by triangular finite elements. In the left picture a fixed mesh is pre-
scribed. Then the nodes are allowed to float into new positions, shown in 
the right part of the picture, where the configurational forces are (nearly) 
zero. To preserve the shape of the body the boundary nodes should be kept 
fixed or at least confined to the fixed boundary, while the inner nodes have 
been released to take a position free of configurational forces. This is the 
essence of the method. Of course, the boundary nodes still perceive configu-
rational forces, which are normal to the boundary and prevent the body from 
shrinking. Simultaneously, the total energy is reduced in the process and, 
therefore, becomes closer to the minimum attained by the exact solution. 
Unfortunately, this optimization procedure may be accompanied by the for-
mation of badly shaped elements, which may not improve the finite-element 

(a)

(b)

Figure 13.11
Finite elements with (a) fixed nodes—deformed configuration—and (b) floating nodes. In b, 
the internal nodes are free, and the boundary nodes are shifted along the boundary. (Courtesy 
of Braun, M., Universität Duisburg-Essen; After Braun, M., Proc. Est. Acad. Sci. Phys. Math., 
Figure 3, 46, 24–31, 1997.)
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solution altogether. In the process of the preceding FEM, since all required 
quantities are already computed in this optimization procedure, a particu-
larly economical and rapid means of computing the energy-release rate is 
offered. To see this, multiply (13.28) by F–1 to the right, multiply the result 
scalarly by the test function v*, and account for (13.30) to obtain the following 
expression (compare to (3.17)):

 − ∇( ) + + =∫∫∫ b V N b V F V: * . . * . *R
T

d dS d
ttt

Ω Ω
ΩΩΩ

0 0
∂

,  (a)

for all virtual material velocity fields V* = –F–1.v*. This is formally equivalent 
to (13.30). But one should note that the second term in (a) does not correspond 
to a prescribed surface stress. Because of this, equation (a) is not applicable as 
such, that is, as a weak formulation of the original boundary-value problem. 
Rather, we note that for any velocity field we have

 N b V N V t v. . * . * . *dS WdS d
t tt

= ( ) +∫ ∫∫∂ ∂Ω ΩΩ
Ω0 ,  (b)

so that we obtain the following original result (note that N is directed 
outward):

 G W dS dt R
T

R
t t

Ω Ω
Ω Ω

; * : . * : * :V N V b V T v( ) = ( ) = ∇( ) − ∇∫ ∫ ** .( )∫ T
d

t

Ω
Ω

 (c)

For a self-equilibrated (Piola–Kirchhoff) stress field (f0 = 0, t0 = 0), we have

 T v: *∇( ) ≡∫ R
T

d
t

Ω
Ω

0,  (13.33)

so that (c) reduces to the following formula for the flux of elastic energy out-
ward the material volume Ωt for a material velocity field V*:

 G dt R
T

t

Ω Ω
Ω

; * : * .V b V( ) = ∇( )∫  (13.34)

The quantity G is usually called an energy-release rate (compare to the general 
definition involving the influx of the Hamiltonian density in Equation 8.25).

Equation 13.34 can be generalized to more involved cases including addi-
tional degrees of freedom (e.g., a microstructure such as in micropolar 
elastic bodies; Maugin, 1998) or nonsimple elastic media accounting for the 
second gradient of strain (so-called second-gradient theory; cf. Maugin and 
Trimarco, 1992).
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13.4.2 implementation

We consider the quasistatics of inhomogeneous bodies acted on by external 
body forces. Consequently, the equilibrium form of the balance of material 
momentum reads

 div inh inh

expl
R

W
b g 0 g u f f f

X
+ = = − ∇( ) + = − ∂

∂
, : . , .0  (13.35)

Introducing (material-vectorial) test functions η, we can write the weak for-
mulation of the first of these as

 G g dV b dVi i i ji i j
BB

η η η( ) = = ∫∫: ,  (13.36)

where we use only lowercase Latin indices, and there appears no surface 
contribution as we shall consider only stationary boundaries, that is, bound-
aries that remain the same for all times. Consequently, the test function η 
vanishes at the material boundary ∂B. Note the identity of (13.36) and (13.34). 
Now, the standard discretization procedure of the FEM is implemented (see, 
e.g., Wriggers, 2001). An element-wise interpolation of the test function η and 
its gradient is introduced by

 η η η ηi
I

i
I

I

i j j
I

i
I

I

N N= =∑ ∑, ,, ,  (13.37)

where the ηI are the nodal values of the test function and the NI are the shape 
functions. Evaluating, then, (13.36) for each element of area Ωe, and the result 
being true for any test function, we obtain the nodal configurational force GI 
with components

 G N g d b N di
I I

i ji j
I

e e

= =∫ ∫Ω Ω
Ω Ω

, .  (13.38)

This can be used to evaluate GI in every integration point once the standard 
problem in physical space is solved, that is, once the nodal displacements ui 
are known, so that ∇u, W, and b can be evaluated in every integration point. 
Then the contributions from each element at a node have to be assembled to 
give the discrete value of the configurational force at that node, that is,

 G GI
e
N I

e
e= ( )=∪ 1 Ω .  (13.39)

In the case where there are no physical body forces, a direct interpretation 
of the discrete configurational force GI is possible. Indeed, for a linear elastic 
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material, the elastic potential ∏h of a body discretized with finite elements 
is given by

 Πh = −1
2

U kU U P. . ,  (13.40)

where U is the vector of the global node displacements, P is the vector of the 
global node forces, and k is the stiffness matrix. Consequently, the discrete 
equivalence of Equation 13.352 defines the discrete values of the configura-
tional forces as

 G
xi

I
h

i
I

=
∂
∂
Π

,  (13.41)

where xI stands for the node positions. Of course, GI should vanish for a 
homogeneous material, so that (13.41) can be used to obtain a better finite-
element discretization, when the finite-element mesh is changed in such a 
way as to make GI tend to zero everywhere, a strategy that will be illustrated 
in the sequel.

It was also remarked by some authors (Steinmann, 2000; Steinmann et al., 
2001; Mahnken, 2007) that in the neighborhood of some critical points—e.g., 
the crack tip—it may be advantageous to sum the configurational nodal 
forces of the FEM discretization over a finite region Ω, so that an additional 
summation over nodes will be applied to (13.39), that is,

 G GI

n

N

e
N I

e
n

pe

e= ( )
=

=∑
1

1∪ Ω ,  (13.42)

where Npe is the number of nodes lying in the domain Ω, this domain being 
possibly not directly related to the original discretization, a fact that can be 
exploited advantageously in adaptively refined finite-element meshes (see 
the following).

13.4.3 First example: Homogeneous Block under Pressure

This very simple example illustrates pedagogically the effect of displacing 
nodes by considering the case of displacing one node only. The body is a 
homogeneous linear elastic isotropic block (with artificially equal Lamé 
coefficients, λ = μ) under uniform pressure on part of its top side; cf. Mueller 
and Maugin (2002) and Figure 13.12a). To simulate the frictionless support 
of the block, only the vertical displacements on the bottom edge are fixed. 
The extremely simple discretization with four-node displacement elements 
is shown in Figure 13.12b. With an assumed plane strain state, the obtained 
distribution of nodal-configuration forces is shown in Figure 13.13. Of course, 
relatively large configurational forces are necessary to keep particles in a 
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fixed place at the boundary while almost zero spurious configurational forces 
appear at internal points since the body is homogeneous (and they should 
theoretically be strictly zero). Now we envisage displacing only one node, in 
fact changing the vertical x2-coordinate of the second central node from the 
top (the “relevant” node in Figure 13.12b). This change is made in the range 
0.5 < x2/l < 1.0, where l is the height of the block. The result of this change is 
shown in Figure 13.4 as concerns the configurational force G2 at this node in 
comparison with the numerical estimate of the expression (13.41). The results 
coincide as expected. From this simple analysis there follows the existence 
of a specific x2 position of the relevant node at which the potential energy 
∏h is extremized and G2 vanishes. Here this corresponds to a value x2 = 0.9l 
approximately. In summary, due to the noncontinuous strain approxima-
tion in the finite element, nodal configurational forces occur although they 
should not. This indicates that the standard equilibrium field equations are 
not exactly solved. This hinders achieving a better approximation by displac-
ing the nodes. This displacement can be made according to the simplest rule, 
that of the steepest descent such that the new points are deduced from the 
previous ones by the operation

 x x GI I Ic→ − ,  (13.43)

P0
Relevant node

λ = µ

(a)
(b)

x2

l

l/2

l

Figure 13.12
Homogeneous block under pressure: (a) Setting, (b) discretization. (From Mueller, R., Kolling, S., 
and Gross, D., Int. J. Numer. Methods Eng., 53, 1557–74, 2002. With permission.)



Numerical Applications 445

where c is a sufficiently small chosen value. Equation 13.43 is the simplest 
update rule or “kinetic relation” for the “evolution” of the position of nodes. 
Here it is without a time scale, having simply an incremental but oriented 
(vectorial) nature. The rule (13.43) can be applied to all interior nodes, but a 
different strategy may apply to nodes on the boundary if this boundary is 
to remain unchanged. We may forbid any position change in any direction, 
or we may accept only changes in the tangential direction to the boundary. 

Figure 13.13
Homogeneous block under pressure: Distribution of nodal configurational forces. (From Mueller, 
R., Kolling, S., and Gross, D., Int. J. Numer. Methods Eng., 53, 1557–74, 2002. With permission.)

–0.225

–0.226

–0.227

–0.228

–0.229

–0.23

–0.231

(a)

0.5 0.55 0.6 0.65 0.750.7 0.850.8 0.95 10.9
x2
l

Πhµ
p2

0l2

(b) 0.025

0.015

0.005

–0.005

–0.015
–0.02

–0.01

0

0.01

0.02

0.5 0.55 0.6 0.65

G2 (direct)
G2 (num.diff.)

0.750.7 0.850.8 0.95 10.9
x2
l

G2µ
p0l

Figure 13.14
Homogeneous block under pressure: (a) Total potential vs. x2-coordinate of relevant node 
position, (b) comparison between G2 and numerical differentiation of ∏h. (From Mueller, R., 
Kolling, S., and Gross, D., Int. J. Numer. Methods Eng., 53, 1557–74, 2002. With permission.)
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The resulting changed meshes are exhibited in Figure 13.15. If the boundary 
nodes are allowed to move in the tangential direction (see the side faces), the 
system has a higher degree of freedom to relax the configurational stresses, 
hence a higher reduction of the potential energy, as shown in Figure 13.16.

13.4.4 Second example: Clamped Block under Tension

This considers the same elastic material as in the first example and serves 
to illustrate the difference between a very fine finite-element mesh and a 
coarse one that applies the proposed node-updating technique. The loading 
corresponds to one edge loaded with a tensile stress σ0 (see Figure 13.17a). 
A numerical reference solution is obtained with a very fine finite-element 
mesh involving 10,000 elements and 10,201 nodes. The result is the σ22 stress 
distribution exhibited in Figure 13.17b. Then a regular coarse mesh of 36 ele-
ments and 49 nodes is implemented to evaluate the same stress distribution, 
but the node-updating technique is applied, allowing the boundary nodes 
to move in the tangential direction, while the nodes on the edge where the 
load is applied are kept fixed. Remarkably enough (Figure 13.18), the iterative 
update aligns the mesh along the contour lines of the stress distribution. It is 
observed that the value of the displacement approaches the reference solu-
tion of the fine mesh as the coarse mesh is continuously updated, but this 
limit cannot be reached as it seems that the coarse mesh is unable to come 
arbitrarily close the “exact” reference solution.

These examples bring up the following remarks. Due to the requirement 
that the test function for the material force balance vanishes at the bound-
ary, discrete material forces occur at the boundary as reaction forces to this 
constraint. Inside the body that is supposed to be homogeneous, discrete 

(a) (b)

Figure 13.15
Homogeneous block under pressure, stationary state of updated meshes: (a) Fixed nodes, 
(b) tangentially free nodes. (From Mueller, R., Kolling, S., and Gross, D., Int. J. Numer. Methods 
Eng., 53, 1557–74, 2002. With permission.)
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material forces should identically vanish. But this is not exactly the case. 
The reason for this is that material forces are basically energetic quantities, 
since the Eshelby stress tensor is computed from strain energy, stresses, and 
strains. But in a standard finite-element discretization only the displace-
ments are approximated continuously (i.e., in C0 class), which is not the case 
for their derivatives, and therefore the resulting strains and strain energy 
are not continuous. Accordingly, discontinuities between the elements lead 
to numerically caused material forces. As a result a strategy of adaptation of 
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Figure 13.16
Homogeneous block underpressure: Energy change during update iterations. (From Mueller, 
R., Kolling, S., and Gross, D., Int. J. Numer. Methods Eng., 53, 1557–74, 2002. With permission.)
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Figure 13.17
(See color insert following page 434.) Homogeneous block under tension: (a) Setting, (b) fine 
discretization with σ22 distribution. (From Mueller, R., Kolling, S., and Gross, D., Int. J. Numer. 
Methods Eng., 53, 1557–74, 2002. With permission.)
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Figure 13.18
(See color insert following page 434.) Homogeneous block under tension: (a) Initial coarse 
mesh with σ22 distribution, (b) update mesh with σ22 distribution. (From Mueller, R., Kolling, S., 
and Gross, D., Int. J. Numer. Methods Eng., 53, 1557–74, 2002. With permission.)
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the meshing must be implemented. The material forces themselves provide a 
basis to assign new mesh sizes. This is realized by the introduction of refine-
ment factors, rI, from which new nodal values of the mesh size are defined by 
the rule (compare to (13.43))

 h h rI I I
new old→ .

The rule for determining this refinement factor as well as other technicalities 
such as an extrapolation scheme for nodes on the boundary are discussed in 
Mueller et al. (2004). In particular, the influence of the boundary-node refine-
ment on the numerics of the problem of a notch stretched in hyperelasticity 
is examined in that paper, showing that the proposed extrapolation captures 
better the high gradients in the vicinity of the notch tip.

13.4.5 Third example: inhomogeneous Cantilever Beam

Here the inhomogenity in fact is a square hole as depicted in Figure 13.19a. 
This illustrates the relation between a defect, in this case the hole, and the 
associated material (or configurational) forces. The beam is clamped on the 
left side and loaded by a vertical displacement on the opposite side. This 
resembles a cantilever beam, hence the naming. Figure 13.19b gives the dis-
tribution of the σ11 stress component together with the starting position of 
the hole. This stress distribution is similar to the distribution of the bending 
stress known from the technical beam theory. As the hole is initially placed 
in the vertical center near the neutral phase, it disturbs the stress distribution 
only slightly. The resulting material force on the hole is evaluated by comput-
ing the sum

 G Ghole

hole

=
=
∑ K

K

N

1

,  (13.44)

where Nhole is the set of nodes located on the boundary of the hole. Parodying 
(13.43) we may propose a simple “kinetic relation” in the form

 X X Ghole
new

hole
old

hole= − c ,  (13.45)

where c is chosen such that

 X Xhole
new

hole
old const.− = =b  (13.46)

This can be interpreted as a motion of the hole with “constant velocity” 
or an evolution without time scale. It should be noted that this example is 
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purely academic in the sense that no physical process has been specified 
yet. In particular, if the hole is interpreted as an oversimplified model of a 
vacancy or a void, then one may think of diffusion or corrosion processes 
that allow the hole to move through the material body. Figure 13.19c illus-
trates this possible motion—path trajectory—as being that of an inhomoge-
neity being driven out of the body by the material forces. Here, after each new 
position of the hole reached by application of (13.45) a new finite-element 
mesh is generated to avoid any deterioration of the discretization. After 12 
iterations the calculation is stopped as the hole reaches the boundary and 
the automatic mesh generation breaks down. If one tries different starting 
points for the hole position, the material forces will always act in such a 
way as to try to drive the inhomogeneity out of the body, thus rendering the 
body “more homogeneous.” For instance, a slightly shifted-down starting 
point will result in a trajectory where the hole leaves the body at the lower 
boundary.

Initial shape

(a)

(c)

(b)

4 iterations

8 iterations 12 iterations

Ghole
w

Figure 13.19
(See color insert following page 434.) (a) Cantilever beam, (b) distribution of σ11 stress. 
(Adapted from Mueller, R. and Maugin, G.A., Comput. Mech., 29, 52–60, 2002.) (c) Material forces 
and trajectory of the square hole “leaving” the cantilever beam from the top. The result is a 
more homogeneous body.



Numerical Applications 451

13.4.6 Fourth example: Crack Propagation using Material Forces

This 2D simulation resembles a compact-tension (CT) specimen that is loaded 
by a dead displacement w along the x2 direction (see setting in Figure 13.20). 
A state of plane strains is assumed. A circular hole is introduced in the speci-
men out of the x1-axis in order to break the symmetry of the setting and 
simulate a localized inhomogeneity as a void. This allows one to study the 
interaction of material forces at the crack tip with the material forces caused 
by this special type of inhomogeneity. The initial distribution of material 
forces G is plotted in Figure 13.20b. As now usual, large material (configu-
rational) forces are observed where the displacement boundary conditions 
are applied and at the crack tip. In the close vicinity of the crack tip, material 
forces occur due to the inaccurate approximation of the solution with large 
gradients in this region. These forces should vanish since the body is theo-
retically homogeneous at those points. In the situation of Figure 13.20b the 
hole is placed relatively far from the crack tip. Crack propagation is assumed 
to take place according to the simple rule (compare to (13.45))

 X X Gcrack tip
new

crack tip
old

crack tip= − c .  (13.47)

Here the proportionality constant c of this schematic “kinetic relation” has 
to be chosen in an appropriate way; that is, the crack propagation has to be 
sufficiently small and, at the same time, large enough to ensure a proper 
mesh generation for the new geometry. Here no threshold for crack initiation 
is introduced (we are satisfied with qualitative results). Such crack-initiation 

w

X2

X1

Gcrack-tip

Figure 13.20
(See color insert following page 434.) 2D crack propagation in presence of a hole: (a) Setting, 
(b) material force distribution. (Adapted from Mueller, R. and Maugin, G.A., Comput. Mech., 29, 
52–60, 2002.)
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criteria as well as other criteria (e.g., maximal circumferential stress) for the 
propagation direction can be found in the technical literature (e.g., Gross, 
1996). All simplifications being accounted for, two quite different initial situ-
ations have been analyzed (Mueller and Maugin, 2002). In the first situation, 
when the crack is placed sufficiently far away from the hole, the crack “has 
sufficient time” to orient toward and finally reach the hole, although in the 
simulation the automatic mesh generation fails when the crack reaches the 
very vicinity of the hole (Figure 13.21). In the second situation, when the crack 
tip is closer to the hole, while the crack is necessarily “irresistibly attracted” 
by the hole (material with a weaker—in fact vanishing—elasticity), the crack 
tip does not change direction rapidly enough to reach the hole, and it misses 
it, creating a possibly dangerous situation with a ligament (see Figure 13.22). 
We show only snapshots but an animated film of these propagations can be 
produced (ask the author).

The problem of the refinement of the mesh in the vicinity of a crack tip 
cannot be overlooked. It has been examined in detail by Mueller et al. (2004); 
see also Rütter and Stein (2005). The transformation to domain integrals was 
recently reexamined by Mahnken (2007). This is accompanied by the addi-
tional summation mentioned in (13.42).

The hole introduced in the preceding may be replaced by an inclusion of 
softer (this is the case of the hole) or harder elasticity than the matrix in 
which the crack tends to expand. This problem can be studied in terms of 
three parameters, which are the inclusion size, the anisotropy ratio, and the 
stiffness ratio. Kolling et al. (2002) have given the relevant results. In terms 
of the stiffness ratio and the distance (nondimensionalized as b/r) between 
inclusion and the crack tip, we have the results sketched out in Figure 13.23, 
which provides both the material force (driving force on the crack tip) and 
the distribution of material forces over the boundary of the inclusion. Here 
the latter is aligned with the direction of the crack. Due to the presence 
of the crack, there exists a resultant driving force Rτ on the inclusion. This 
force here is equivalent to the J-integral (with opposite sign) because a vir-
tual movement of the inclusion toward the crack results in the same energy 
change as a movement of the crack tip toward the inclusion. For a short dis-
tance to the crack and a hard inclusion, the driving force is significant—it 
is an attraction—but it decreases rapidly for a larger distance and for a soft 
inclusion, respectively. In particular, the elastic energy tends to zero for a 
very soft inclusion while it converges to a finite limit value for a very hard 
inclusion. Furthermore, if we assume the velocity of the inclusion toward the 
crack tip to be small compared to its shape evolution, then we can also obtain 
the equilibrium shape of the inclusion for different stiffness and anisotropy 
ratios at a fixed distance by applying the considerations of Section 7.8.1 due to 
Schmidt and Gross (1997). The interpretation of these results is that, indepen-
dent of the anisotropy ratio, the hard inclusion always shows a tendency to 
move toward the crack tip. A possible agglomeration of inclusion-like defects 
may thus take place near the crack tip. If no migration of the hard inclusion is 
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Figure 13.21
(See color insert following page 434.) 2D crack propagation in the presence of a hole in the 
deformed configuration: Distribution of σ22 stresses, (a) initial position of crack tip, (b) final 
position of crack tip, and (c) crack path meeting the hole. (Adapted from Mueller, R. and 
Maugin, G.A., Comput. Mech., 29, 52–60, 2002.)
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Figure 13.22
(See color insert following page 434.) 2D crack propagation in the presence of a hole in the 
deformed configuration: Distribution of σ22 stresses, (a) initial position of crack tip, (b) final 
position of crack tip, and (c) crack path missing the hole. (Adapted from Mueller, R. and 
Maugin, G.A., Comput. Mech., 29, 52–60, 2002.)
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assumed, then the equilibrium shape has a characteristic distortion toward 
the crack tip.

13.4.6.1 3D Crack Propagation

This is illustrated by Figure 13.24, which gives (Figure 13.24a) the distribution 
of σ33 stress in the load direction (vertical displacement on the top surface) 
and the material forces in the ligament (Figure 13.24b) for a typical specimen. 
There obviously is a high-stress concentration at the crack tip. Large dis-
crete material forces appear along the tip line, and this is shown by the cut 
along the ligament in Figure 13.24b. If the material forces are large enough to 
force the crack front to move, the latter will move in the negative direction of 
the material forces, thus yielding a crack expansion. For the movement of the 
crack front, only the component normal to the crack front is relevant, thus 
resulting in crack propagation that is more pronounced in the middle than 
on the free surface. This is observed experimentally and predicted by dam-
age models of the Gurson type. Spectacular colored 3D simulations are given 
in Kuhl (2004) with applications to biomechanical structures. Other works 
aiming at a refinement of the FEM are by Miehe et al. (2007), Thoutireddy 
(2004), and Thoutireddy and (2003), and with special attention to the extended 
FEM (X-FEM), for example, by Andriyana (2006) and Legrain (2006).
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Figure 13.23
Crack-inclusion interaction: Material force (J-integral) versus distance between inclusion and 
crack tip and influence of the stiffness ratio. (From Kolling, S., Baaser, H., and Gross, D., Int. 
J. Fract., 118, 229–38, 2002. With permission.)
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13.4.7 Fifth example: Layer on a Base Material

This example is due to Mueller, Kolling et al. (2002). Various cases must be 
considered depending on whether the layer is softer than the bulk mate-
rial (case i) or stiffer than the bulk material (case ii). A remote stress σ0 is 
applied to the bulk material; the bonding between base material and layer is 
assumed to be perfect. The setting is shown in Figure 13.25a. The resulting 
σ11 stress distributions in the deformed configuration for the two cases are 
shown in Figure 13.25b and c. The different stress states at the bonding inter-
face for the two types of  stiffness ratios cause different configurational forces 
to occur. These are shown in Figure 13.15d and e. In case i, the configura-
tional forces on the interface point into the layer material. But in case ii, if the 
layer is stiffer, the direction of the configurational forces is toward the base 
material; that is, this agrees with a previously made general statement on the 
direction of material inhomogeneity forces: The configurational forces at the 
interface act as driving force on the material inhomogeneity. If the interface 
were mobile due to some transport mechanism (diffusion, phase transition), 
it would move in the direction opposite to the configurational force in order 
to reduce the total potential.

13.4.8  Sixth example: Misfitting inhomogeneity 
in Two-Phase Materials

We have already reported on the theoretical aspects of this problem in 
Section 7.8.1. In this morphology problem the main ingredient is the varia-
tion of potential energy given by
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Figure 13.24
3D cracked specimen: (a) Distribution of σ33 stress, (b) material forces in the ligament. (Adapted 
from Mueller, R. and Maugin, G.A., Comput. Mech., 29, 52–60, 2002.)
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 δ τ δΠ = −
∂∫ n
B

nds,  (13.48)

where δn denotes a shape variation of the interface along its outward unit 
normal vector n, and the generalized thermodynamic driving force τn is 
given by the normal jump of the Eshelby stress at the interface of the pre-
cipitate, that is,

 τn = [ ]n b n. . .  (13.49)

We remind the reader that an analytical solution can be found to this if the 
matrix is assumed to be isotropic and infinite (this is the celebrated Eshelby 
inclusion problem; cf. Eshelby, 1957). In the general case, however, one must 
resort to numerics to obtain the equilibrium shapes of the precipitate. This 
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Figure 13.25
(See color insert following page 434.) Inhomogeneous substrate problem: (a) Setting, (b) stress 
distribution for soft layer, (c) stress distribution for stiff layer, (d) configurational forces for soft 
layer, and (e) configurational force for stiff layer. (From Mueller, R., Kolling, S., and Gross, D., 
Int. J. Numer. Methods Eng., 53, 1557–74, 2002. With permission.)
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was achieved by Schmidt and Gross (1997). Special attention must be paid to 
the numerical scheme. To that purpose one must note the definition (13.41) 
of the discrete values GI of the configurational forces. Accounting for (13.48), 
the variation of the potential yields

 δ δ δ τ δΠ Π= ∂
∂

= = −
∂∫x

x G x
I

I I I
n

B
nds. . ,  (13.50)

in terms of the nodal coordinates xI. To obtain discrete values of the continu-
ous normal variation δn, linear shape functions NI(s) are introduced such 
that δn = NI(s)δnI. Furthermore, the configurational force GI itself is projected 
in its normal direction by using δxI = n δnI because of the preferred direction 
of τn. Thus,

 G xI I
n

I

B

IN s n ds. ,δ τ δ= − ( )
∂∫  (13.51)

hence for any δnI (Mueller et al., 2002),

 G N s dsn
I I

n
I

B
≡ = − ( )

∂∫G n. .τ  (13.52)

A typical distribution of material forces acting along the interface of the pre-
cipitate is shown in Figure 13.26 for an isotropic inhomogeneity (inclusion) 
in an anisotropic matrix (for which no analytical solution exists) comparing 
two techniques for computing τn. This shows a tendency to a cubic equilib-
rium shape, a fact corroborated by shape optimization where the cuboidal 
shape extremizes the total free energy (see Mueller and Gross, 1998; Schmidt 
and Gross, 1997).

13.4.9 Note on Topological Optimization

In recent works dealing with the technical subject of topological optimization 
and the sensitivity analysis of variational design (see Barthold, 2005; Barthold 
and Materna, 2007; Materna and Barthold, 2007a, 2007b), it was noticed that 
the variational approach using the notion of “topological derivative” was 
akin to a “configurational derivative” yielding the notion of Eshelby stress 
tensor. This is easily understood if we remember that, technically and on 
the classical example of optimization of weight, the method used consists 
in introducing successive appropriate “holes” to make the structure lighter. 
The notion of topological derivative in this optimization framework is due 
to Sokolowski and Zhochowski (1999). It certainly is related to the notion of 
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“Hadamard derivative” (cf. Clarke, 1983) introduced early in the  twentieth 
century by Jacques Hadamard (1907) for functional variations involving 
variations of integration domains. We do not dwell further in this technical 
matter, but it is instructive to note the necessary appearance of material forces 
along the boundary of an optimized hook—cf. Figure 13.27—due to Materna 
and Barthold, 2007.

13.5 Conclusive Remarks

We do not dwell further on the technical aspects of numerical schemes 
because this relates to a real scientific profession by itself. What has been 
implemented here is the basic idea that the coexistence of two equations shar-
ing a similar ontological status, the balance of physical linear  momentum or 
its equilibrium form on the one hand and the balance of canonical  momentum 
or its equilibrium form on the other hand, favors a strategy by which the sec-
ond type of equations is typically used in the study of the motion of defects 
(this last notion being granted in a generous manner) by applying a “kinetic 
law” once the classical solution is known. Not only do the various numerical 
techniques need to be exploited in order to implement this strategy, but they 
themselves benefit from the spirit of Eshelbian mechanics. In particular, they 
can exploit the notion of driving force to check the accuracy of some of the 
techniques (case of finite differences), but they also directly apply some of 
the very concepts, such as that of adaptivity, that parody the “kinetic laws” 

(a) (b)

Figure 13.26
Distribution of the driving force along the arc length of the interface of an isotropic inclusion 
in an anisotropic matrix: (a) τn computed via Gn, (b) τn computed via a standard finite-element 
method. (From Mueller, R., Kolling, S., and Gross, D., Int. J. Numer. Methods Eng., Figure 14, 53, 
1557–74, 2002. With permission.)
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i = 6 ||G (s)|| = 0.2684
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Figure 13.27
Three steps of iteration of a problem of topological optimization: Shape optimization of a 
“hook” of most efficient material distribution with respect to the overall stiffness of the struc-
ture with a constraint of constant volume exhibiting material forces along the boundary. 
(Courtesy of Materna, D., and Barthold, F.J., Int. J. Fract., 147, 133–55, 2007.)
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of physical processes. This is the most surprising development, which shows 
the application of notions originating from mathematical physics (invari-
ances and Noether’s theorem) not only to practical problems—which consti-
tutes a normal spinoff of theoretical concepts—but also to the improvement 
of the numerical techniques themselves.

To conclude on an engineering note and pay a tribute to the scientist who 
did much, although without much fuss, in the application of the concept 
of material forces to engineering design and the FEM we may illustrate 
our point with the problem of optimization of a truss, following M. Braun 
(Braun, 2005, 2007): Figure 13.28a shows the basic structure in its reference 

(a)

(b)

(c)

(d)

Figure 13.28
Optimization of a truss exploiting configurational forces. (Courtesy of Prof. M. Braun, 
Duisburg, Germany, who prepared this exemplary figure especially for the present book.)
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configuration KR. Figure 13.28b shows the same structure, in its actual con-
figuration Kt, supported and with its actual (physical) loading. Figure 13.28c 
shows the same basic structure but back in its reference configuration after 
loading. Configurational supports are introduced at the bottom to keep the 
bottom row (boundary) fixed in KR, while the computation by material pull 
back of material forces at the other joints from the physical force distribu-
tion found in Figure 13.28b yields the indicated arrows. Finally—in Figure 
13.28c— relocatable nodes are moved, resulting in an optimized structure 
(Figure 13.28d) supported and loaded, in the actual configuration, with prac-
tically vanishing configurational forces at these nodes. The strain energy is 
reduced by more than 80% compared to the basic structure under the same 
load as depicted in Figure 13.28b. Then we recognize the good old railroad 
bridges as designed by smart civil engineers in the nineteenth century.
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14
More on Eshelby-Like 
Problems and Solutions

Object of the Chapter

Where we see once more that it is not so much the notion of energy and 
its invariance that matters but the existence of something akin to a poten-
tial and some basic mathematical properties discovered a long time ago by 
Cauchy and Riemann.

14.1 Introduction

In this short concluding chapter we discover that contour integrals exist 
in other theories than solid mechanics and electromagnetics, including in 
heat and electricity conductions and in classical problems of aerodynamics. 
Such a general framework that favors analogies useful in problem solving in 
different disciplines concurs with the existence of a true world of material-
 configurational forces and their overwhelming importance in many prob-
lems of mechanics, physics, and materials science.

14.2  Analogy: Path-Independent Integrals in 
Heat and Electricity Conductions

In contemporary continuum mechanics (see Chapter 1, but also Maugin, 1992, 
1999), for example, in elastoplasticity, it is often admitted that the whole con-
stitutive theory may be based on the considerations of two potentials—poten-
tial-like scalars sometimes referred to as pseudopotentials, for instance, the 
free energy density W often considered in preceding chapters, and a (pseudo) 
potential of dissipation, say D, from which one derives the thermodynamically 
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reversible and irreversible parts of the constitutive behavior, respectively. 
The notion of dissipation potential goes back to Lord Rayleigh. If this is the 
case, then many reasonings made concerning the free energy, insofar as the 
theories of material inhomogeneity and fracture are concerned, also apply to 
the dissipation potential. The essential operations then are the computation 
of the material gradients of both W and D while accounting for the classical 
equations (e.g., balance of momentum and energy), and the integration over a 
material region including a singularity of the relevant field. To illustrate this 
viewpoint, we consider such coupled electric–heat conductions as may occur 
in good conductors such as metals. Although we keep the same notation as 
before, deformation is discarded to alleviate the formulation. 

In the absence of body heat and electric-charge sources, at each regular 
point in the material body we have the following quasistatic equations that 
govern temperature and electric potential, respectively:

 ∇ = ∇ =. , . ,S J0 0  (14.1)

where S is the entropy flux and J is the conduction electric current. These 
two fields jointly satisfy the remaining entropy inequality

 Φ : . . ,= − ∇ ≥J E S θ 0  (14.2)

where E is the electric field. In quasistatics E = –∇φ, so that (14.2) takes a more 
symmetric form in electric and heat conductions:

 − = ∇ + ∇ ≤Φ J S. . .ϕ θ 0  (14.3)

This analogy between electric and heat conduction has been known since the 
1840s thanks to W. Thomson (later Lord Kelvin). The inequality (14.3) is at 
the basis of a discussion of coupled conduction effects. Following old ideas of 
Rayleigh and Maxwell but also modern continuum mechanics (H. Ziegler, P. 
Germain), consider the case where the dissipative phenomena contributing 
to (14.2) or (14.3) are derivable from a potential of dissipation. For instance, 
assume the existence of a nonnegative potential D(E, ∇θ, θ, X), convex in E 
and ∇θ, homogeneous of degree n, where the homogeneity property holds 
for the first two arguments, such that

 J
E

S= ∂
∂

= − ∂
∂ ∇( )

D D
, .

θ
 (14.4)

Then (14.3) is automatically fulfilled. It is intentional that we let D depend 
explicitly on the temperature field θ and the material point X, the latter indi-
cating that the body is materially inhomogeneous from the point of view of 
heat and electricity conductions. The equations (14.4) are general statements 
of conduction laws. In particular, they are indeed Ohm’s and Fourier’s laws 
when D is a homogeneous function of degree two in E and ∇θ. 
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To place the role of material inhomogeneities in evidence, it is natural to 
compute the gradient of D. We let the reader check that the result of this 
operation, on account of the field equations (14.1), reads as a covectorial “con-
servation” law (Maugin, 1996):

 div inh th
Rd h h 0+ + = ,  (14.5)

in which we have defined the following mixed material tensor d and two 
covectors:

 d 1 S J 1= + ⊗ ∇ + ⊗ ∇ = − ∂
∂ ∇( ) ⊗ ∇ − ∂

∂ ∇( ) ⊗ ∇D D
D Dθ ϕ
θ

θ
ϕ

ϕ,  (14.6)

 h
X

inh

expl

: ,= − ∂
∂
D

 (14.7)

 hth : , : .= ∇ = − ∂
∂

R R
Dθ
θ

 (14.8)

Of course we realize immediately that (14.5) and the definitions are perfectly 
analogous to the quantities defined in the balance of material momentum in 
its quasistatic form in the presence of temperature effects. The tensor d may 
be referred to as the Eshelby dissipation-momentum tensor (Maugin, 1996) or 
the material conduction (stress) tensor (Epstein, 1992) in the absence of electric 
conduction and inhomogeneity; that is, when (14.5) and (14.6) reduce to

 div th
R Dd h 0 d 1 S+ = = + ⊗ ∇, .θ  (14.9)

Epstein (1992) derived this equation by the method introduced in the theory 
of material uniformity.

Now, applying a direct analogy with what we did for mechanical fields, 
we can characterize field singularities in temperature or electric potential 
by the tool just constructed. For instance, in heat conduction governed by 
Fourier’s law in isotropic bodies, the standard singularity of heat-conduction 
problems is that of the Laplacian, and therefore the same order of singular-
ity as that of the 2D elasticity problem (cf. brittle fracture in Maugin, 1992). 
Hence the components of the covector divR d are not integrable at the tip A of 
a straight-through crack; that is, θ behaves like r  in local polar coordinates 
centered at A. Accordingly, the quantity defined by

 T dV V AR

V

= ( ) ≠ →∫lim div ase d1 0. ,  (14.10)
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where e1 is a unit vector in the direction of extension of the crack, can be used 
as an indicator of the singularity of the temperature field. It plays the same 
role in heat conduction as the J-integral in mechanics. For an isotropic body 
with a linear conduction behavior, we have

 D = ∇ ∇ = − ∇ ≥1
2

0χ θ θ χ θ χ. , , ,S  (14.11)

from which there follows from (14.10) a contour integral in the (X1, X2) 
plane:
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where N1 = N.e1 along the contour Γ. This can alternately be expressed in 
terms of S or Q.

The same reasoning can be performed with electricity conduction where 
the physical meaning of the resulting expression is perhaps more transpar-
ent. In this case the starting point is the conservation of charge equation 
(14.1)2. For a pure electric conductor that is materially homogeneous, the pre-
ceding formulation reduces to

 divR Dd 0 d 1 J E= = − ⊗, : ,  (14.13)

since E = –∇φ. For a linear isotropic electric conductor, we naturally take

 D R R= = = = = −1
2 2

2
2

1σ
σ

σ σE
J

J E E J, , , ( ).  (14.14)

The field singularity at the tip A of the crack C is that of the Laplacian; that is, 
φ behaves like r  and the components of E like 1/ r . We call B the contour 
integral given by

 B DN d= − ( )( )( )∫ 1 1N J E e. . Γ
Γ

 (14.15)

in the 2D problem as it presents itself in a thin conducting plate (cf. Mukherjee 
et al., 1982; Huy and Ruina, 1985). Equation 14.15 can be expressed either in 
terms of the current J or in terms of the electrostatic potential via its gradient 
(i.e., the voltage or difference of potential). In terms of currents, it reads

 B N QJ d= −( )∫1
2

22
1 1σ

J Γ
Γ

,  (14.16)
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where Q = N.J is a time rate of surface charge at Γ. By analogy with the technical 
use of the J-integral of fracture, the expression (14.16) could be used as a critical 
quantity relating to the breakage (sudden rupture in conduction at a critical 
level) of conductors, hence the symbolism B for the contour integral of interest. 
This idea is presented by Parton and Kudryavtsev (1988, Section 8.4, p. 494 on) 
although the introduction of such a critical quantity by these authors has noth-
ing to do with the theory of inhomogeneities outlined in the preceding. The 
same authors in fact also propose an expression equivalent to (14.12) for heat 
conduction by mere analogy (see their Equations 54.10 or 52.10), that is,

 T N
S

d= − ( )



∫ S

N S
2

1
1

2χ χ
. .Γ

Γ

 (14.17)

They in fact follow the formal analogies between path-independent integrals 
of elasticity (J-integral) and the electrostatics of conductors and heat conduc-
tion that were apparently first noticed by Hoening (1984) and Saka and Abe 
(1985), whereas we based the reasoning on the canonical covectorial conser-
vation equation (14.5) in the general spirit of the present book.

14.3 The Eshelbian Nature of Aerodynamic Forces

Following Atilgan (1997), we consider the irrotational steady flow of a perfect 
fluid past a rigid body of arbitrary cylindrical shape. The body S has regular 
boundary C orthogonally to the cylindrical direction e3. As a matter of fact 
the body is translated with constant velocity V∞. The total fluid force acting 
on the body is given by the surface integral

 F n= ∫ . ,σdA
S

 (14.18)

where the Cauchy stress σ is due to the local pressure p, that is, σ = –p1, and 
(14.18) is a Newtonian type of force given by

 F n= −∫ p dA
S

.  (14.19)

This stress flux, called total traction, will vanish in the limit as S shrinks to 
zero. In this form, therefore, it is not a good indicator of the presence of a 
singularity that is normally created by the rigid body in the fluid. But we 
can call for the Bernoulli theorem between a point at infinity upstream and 
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a local point at S, that is, for steady flows (see any book on fluid mechanics 
such as the classic one by Karamcheti [1966/1980])

 p S px V q q∈( ) = − −∞ ∞ρ ρ. ,
1
2

2  (14.20)

where the velocity field has been written as v = V∞ + q and, because of irro-
tationality, the perturbing velocity q is such that q = ∇φ, where φ is a poten-
tial. At S, the boundary condition v.n = 0 holds true. On substituting from 
(14.20) and keeping only the relevant terms we obtain the following expres-
sion orthogonally to the direction of motion of the solid S (equivalently, the 
direction of V∞ chosen as axis e1):

 F K V
X

n dC
C

= − ( ) ∂
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∞∫ ρ ϕ

1
2 ,  (14.21)

which is a contour integral in which n2 = n.e2 and K = ρq2/2 = ρ(∇φ)2/2; it is 
written per unit length of the cylinder (one would say per unit span in air-
foil theory). The expression (14.21) reminds us of the J-integral if K, φ, and 
the flux ρV∞ are replaced (one-to-one correspondence!) by the quadratic elas-
tic potential energy, the elastic displacement, and the traction, respectively. 
This provides the analogy of the force F1 with a configurational force such 
as the integral of fracture. Furthermore, in fluid mechanics (cf. Karamcheti, 
1966/1980), introducing the circulation Γ by

 Γ = ∫ v s. ,d
C
  (14.22)

it is shown that (14.21) reads in vectorial form

 F V e e= − × =∞ ∞ρ ρΓ Γ3 2V ,  (14.23)

which is along e2 for V∞ set along e1. Accordingly, to have a nonzero force, the 
circulation must not vanish as we would shrink C to zero. This, obviously, 
calls for a singular flow field, which is none other than a vortex, while we 
note that the value obtained via (14.21) is unaltered inasmuch as the contour 
includes the body. Therefore, two aspects, path-independence and the exist-
ence of a singular field, are shared by the fluid-mechanics integral (14.21) and 
path-independent integrals of fracture. Cherepanov (1977) first emphasized 
this analogy and reported on useful invariant integrals in hydrodynamics. 

The analogy can be pursued between vortex distributions in aerodynam-
ics and dislocation distributions in defect solid mechanics. To show this we 
consider a flat plate (infinite in the direction e3) at small incidence angle α (on 
axis e1) in a uniform flow. The fluid disturbance field due to the presence of 
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the plate is represented by a vortex distribution γ(x1), which is a circulation 
per unit length of the plate of width 2c and thus may be called a circulation 
density (cf. Karamcheti, 1966/1980, Chapter 17 on thin airfoil theory). This is 
located at x2 = 0 on the interval x1 ∈ [–c, + c]. The kinematic boundary con-
dition at the plate requires the total velocity field (sum of the uniform flow 
velocity and the perturbance contributed by the vortices) to have vanishing 
normal component at the plate. This condition provides a celebrated integral 
equation in the form (see (17.69) in Karamcheti [1966/1980], with a change in 
notation)
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Such an integral equation is completely analogous to an integral equation 
given by Bilby and Eshelby (1968) in a modeling that determines a disloca-
tion density in fracture mechanics. The analogy is established by replacing 
the vortex line by a dislocation line, the circulation density by the dislocation 
density, and the uniform flow by the transverse stress. The solution of (14.24), 
which originally provided a dislocation density but now is applied to the 
circulation density, is given by Bilby and Eshelby (1968) as
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and the total circulation is obtained by summing over the circulation den-
sity, that is,

 Γ = ( ) =
−

+

∫ γ ξ ξd K
c

c

.  (14.26)

The total fluid force acting on the thin plate is now determined by apply-
ing the formula (14.23), and the result is obviously orthogonal to V∞, and 
this mathematically explains the mystery of lift in aeronautics! But then 
two questions remain, the answers to which also have analogies in fracture 
mechanics. These questions are (i) where is the point of application of the 
force (14.23), and (ii) what is the magnitude of this Eshelbian-like force? In the 
preceding example one has to determine the constant K. For this we would 
need the value of the circulation density at the end points of the interval of 
integration. Equation 14.25 implies that this should be either infinite or zero. 
The condition of uniform flow around the “airfoil” (our flat plate) is satisfied 
only if the shape of the cross section is rounded with a vertical slope at the 
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end point or is flat (zero slope) like a cusp. The same conclusion is reached 
for the geometric representation of cracks in fracture mechanics. In this case 
there may exist large short-range but nonlocal forces at the crack tip (cf. the 
Barenblatt model in Maugin, 1992) giving rise to barriers, while in the fluid 
case the velocity vanishes, implying an equilibrium distribution for γ(x1). 
Accordingly, one can choose to fix one end point, say x1 = –c with γ(–c) = 0, 
and then deduce the value of K by applying (14.25). This is known as apply-
ing the so-called Kutta condition in ideal-fluid aerodynamics (potential-flow 
theory). The result of this computation is

 K V
c
c

d V
c

c

= −
+
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+

∞∫2
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ξ π α
/

,  (14.27)

from which there follows the remarkably simple formula 

 F V= ∞( ) .ρ πα2  (14.28)

This derivation shows that the magnitude of the force exerted by the fluid 
on the “airfoil” can be determined only by “locking” (Atilgan’s expression) 
the point vortex at the end point. In turn, this suggests that the application 
point of the said force is at the fixed vortex point, in the same way as the force 
on a crack is located at the tip (crack end) where the crack is sucked in the 
material. This interpretation, where the force acting on a fixed singularity 
provides the lift of the airfoil, is in contradiction with the standard inter-
pretation, where the lift is applied at the aerodynamic center (the center of 
pressure; cf. Karamcheti, 1966/1980, pp. 515–516).

We may conclude this section by noting another integral equation that 
intervenes in both fracture mechanics and aerodynamics. In evaluating 
the so-called stress-intensity factor at the crack tip in a celebrated work 
by Westergaard (1939), which exploits the complex-variable technique, one 
has to solve the integral equation (cf. Maugin, 1992, p. 317, with change in 
notation)
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∫g x
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where 2c is the width of a straight crack set along the x-axis and the crack is 
acted on by a normal symmetric load such that σ σ22 22

+ −= = − ( )g x  for |x| ≤ c, 
y = 0±, and zero otherwise. The integral (14.29) is extended to the complex 
plane (x is replaced by z), and one has to find a solution that is sufficiently 
regular outside the crack segment, vanishes at infinity, and provides a real 
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part that is none other than g(x). The integral equation (14.29) with complex 
z was introduced by Sedov (1934) in an airfoil problem. Recently, Ben Amar 
and Rice (2002) have returned to the question of contour integrals in fluid 
mechanics in their study of the growth of fingers and the problem of elec-
tromigration (see also references therein). 

14.4 The World of Configurational Forces

It is time to conclude after such a long excursion in what we may really call 
the world of configurational forces. What mechanicians would call Eshelbian 
mechanics or the theory of material and configurational forces appears to be 
a systematic application of the concepts of invariance or lack of invariance 
under groups of transformations that concern essentially, for a mechanician, 
the parametrization in space and time. In this framework, material homo-
geneity is the main material property that is given its proper importance at 
a moment of development in materials science where this is duly taken into 
account because of a concomitant development of techniques of measurement 
and observation. We can thus say that the conjunction between this interest 
and the development of Eshelby’s ideas is spot on. This is achieved pragmati-
cally without the shadows of mystery that have sometimes blurred the subject 
matter. In a previous book (Maugin, 1993), we tried to delineate the obvious 
differences between standard Newtonian forces and so-called Eshelbian 
forces, the main actors on the present stage. Some authors, not fully real-
izing the efficiency of the concepts, have emitted doubts about their reality 
and their usefulness, playing Cassandras. In this line we may cite authors in 
fluid mechanics (Andrew and McIntyre, 1978; McIntyre, 1981), thermodynam-
ics (Mueller, 1999; Buratti et al., 2003), and solid mechanics (Podio-Guidugli, 
2002). Some inquisitive physicists have rightly questioned the nature of pseu-
domomentum (our material or canonical momentum)—see Peierls (1979, 1985, 
1991)—and we answered those in Maugin (1997) in a nontechnical format. 

But it is now clear that all concepts such as those of Eshelby stress and wave 
momentum acquire a precise mathematical definition when a good space–
time parametrization is employed (that of modern continuum mechanics, 
even in relativistic continuum mechanics). A great scientist like Peierls would 
have realized at once the community of thought between his own reasoning 
and Eshelby’s, had he known the original papers of Eshelby in mechanics 
and the theory of defects. Witness of this is the typical argument (thought 
experiment) envisioned by Peierls in his examination of wave momentum in 
transparent media, which practically is a paraphrase of Eshelby’s reasoning 
exposed on Chapter 3 here (“the system is still invariant under the follow-
ing transformation: (a) displace the flow pattern as above, (b) displace the 
immersed object by some amount, (c) displace the fluid around the object so 
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as to clear the space into which the object has moved, and to fill the void it 
has left”). This is the intellectual reconstruction of the Jones–Richard experi-
ment as reported by Peierls (1985, pp. 243–244). Quite symmetrically, the lack 
of interest of many (if not all) engineers in the modern bases of physics (prin-
ciples of invariance, variational principles, Noether’s theorem, the systematic 
reasoning in both space and time) has delayed a true understanding of the 
matter and its now rapidly developing range of applications. In their classi-
cal book inspired by Hilbert, Morse and Feshbach (1953) had remarked on 
some additional conservation laws in the theory of one-dimensional struc-
tural members, but we had to await the works of Herrmann, Kienzler, and 
Braun to exploit these in useful engineering situations. Even so, a modern 
book like Gurtin’s (1999) does not touch this matter of invariance and, in spite 
of an attractive and ambitious title, does not fulfill its program by restrict-
ing the applications essentially to fracture and the propagation of interfaces, 
not acknowledging the role of canonical conservation laws in the whole of 
physics at the usual ontological level of the first principle of thermodynamics. 
What we gather from the lengthy exposition in the present book is that many 
properties and fields of interest cover the whole of phenomenological physics 
but in a necessarily modern guise, and we retain in a pragmatic vision free of 
any mysticism the following rich and enlightening features:

The conceptual and applicative differences between classical bal-•	
ance laws and additional conservation laws.
The fact that the new conservation laws concern, like energy, the •	
whole physical system under consideration and not only degrees of 
freedom separately.
The deep relationship with the notion of local structural •	
rearrangement.
The theoretical equivalence of standard material inhomogeneities •	
with mathematical “inhomogeneities” (singularities) and pseudo-
inhomogeneities (in particular large classes of dissipative behaviors 
that deviate from pure elasticity and pure Eulerian fluidity).
The role played by the newly introduced entities in the design of cri-•	
teria of progress (motion of dislocation, extension of fracture, propa-
gation of phase-transition fronts, growth of damage and plasticity 
zones and of living material; breakage of electric conductors); and 
criteria of accuracy in numerical schemes (in finite elements, finite 
differences, etc.). 

The last point mentioned, that dealing with criteria, is of utmost importance. 
In effect, many problems in engineering and phenomenological physics 
may now be solved by means of numerical tools, given the impossibility of 
reaching analytical solutions. But the practitioner must know when to stop 
or continue the computation at each point or globally, and such a criterion 
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that yields a definite decision can be based only on these conservation laws, 
which have not yet been exploited to obtain the momentaneous solution, 
which itself is based on the solution of the more traditional balance laws in 
the form of boundary-value problems often expressed in a weak variational 
form. In a less engineering-like vision, the intimate relationship of the pres-
ent approach with the theory of structural defects (because of the third and 
fourth points listed) need not be emphasized. This mixes arguments of both 
analysis (singularity problems) and geometry (choice of the most representa-
tive manifold), which gives a modern but difficult touch to the theory. We 
limited ourselves to applications in solid-like materials, avoiding nonclassical 
(i.e., quantum) effects. But we have remarked on analogies between singular-
ity problems and their approaches in various sciences (defects in materials 
science, flow defects—vortices—in fluid mechanics), so that we note in con-
clusion the natural extension of the concepts of conservation laws such as 
those of canonical momentum, energy, and spin to more recently formulated 
theories, such as that of vortices in nonlinear fields (cf. Pismen, 1999). 
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