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“Young men should prove theorems. Old men
should write books”
(attributed to Godfrey Harold HARDY,
British mathematician, 1877–1947)



Foreword

The new book of Gérard A. Maugin “Non-classical Continuum Mechanics: A
dictionary” is one of the most interesting contributions to Continuum Mechanics
of the recent years. The reason is very simple—the author is a witness of the
renaissance in the late fifties and sixties of the last century of continuum mechanics
theories based on the fundamental and pioneering ideas of Eugene & Francois
Cosserat (Eugene 1866–1931, François 1852–1914), Pierre Duhem (1861–1916),
Lord Kelvin (William Thomson 1824−1907) among others. In addition, he was
influenced by two great schools in continuum Mechanics: the French school
“organized” by Paul Germain and the American school (mostly related to the
Rational Continuum Mechanics) connected with the outstanding scientists like
Clifford A. Truesdell III (1919−2000), Walter Noll (born 1925), A. Cemal Eringen
(1921−2009), Raymond D. Mindlin (1906−1987) among them. From this time, we
have two directions of research

– The application of the Cosserat theory (and later other generalized theories) in
practical cases and

– The creation and establishment of new theories partly being generalizations
of the existing ones, partly being special cases (as usual connected with con-
straints which range of validity is usually unknown

At the moment we have hundreds of suggestions for new theories or improvements
of existing ones and thousands of papers focusing our attention on various items
of the theories. But up to now no systematization in this research field was pre-
sented and the present book is the first step in this direction.

The book consists of two parts:

– Part one: Prerequisites,
– Part two: The dictionary in alphabetic order

In the first part a brief introduction is given w.r.t. “What is classical continuum
mechanics?” and “What is generalized continuum mechanics (GCM)?”. The author
tried two show the difference between the two directions by some equations and
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statements since the terms “classical” and “non-classical” is not enough—it seems
that the distinction by the year of formulation the relevant theories is not sufficient
and one can see some ideas of, for example, Leonard Euler (1707−1783) are valid
for both directions. So the term “Generalized Continuum Mechanics” is introduced
since as usual one has more degrees of freedom in each material point of a gen-
eralized continuum in comparison with the classical one.

The dictionary contains some more than one hundred headings with explanations
of various length. This part cannot be complete since the book is only a first step. The
author of this foreword wishes all the best to Gérard A. Maugin. May he can collect
more information—even from the responses of the readers to this book—for a new
extended version of the book in a couple of years.

August 2016 Holm Altenbach
Magdeburg, Germany
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Preface

This short preface has a main purpose to explain how I came to the idea of the
present opus.

From my viewpoint, a short encyclopaedia or dictionary should give the basic
definitions, main historic developments, a short technical description, directions of
research, and a short selected but efficient bibliography for each item.1 It should
also point out unavoidable relationships between various entries, so that the
redaction of such a work requires some technical experience from its author and
also some benevolence and open mindedness. Because of my life story and
experience I believe to have acquired the required conspectus, but also inquisi-
tiveness, for this redaction in a selected subject matter, theories of continua that are
decidedly not classical.

My experience in writing concise technical reports on various facets of science
and technology goes back to a job I had to fulfil during my short stay in the French
Air Force (since the French Ministry of Defence—note it’s always “Defence”—had
paid some of my studies). To say the truth I had to write reports on ongoing
research in various countries from documents that were not always publicly
accessible. This proved to be a good training. Now in my professional scientific
career, which really started in 1968, I wrote an innumerable quantity of reports on
already published papers (for Mathematical Reviews, Applied Mechanics Reviews,
and Zentralblatt für Mathematik), more than seventy reviews (often as short essays)
of published books, and also an incredible number of assessments of papers pro-
posed for publication in many scientific journals relevant to continuum mechanics,
applied mathematics and mathematical physics. I had the weakness practically

1We are here faithful to d’Alembert’s preliminary discourse to the celebrated eighteenth-century
grand encyclopaedia of Diderot and d’Alembert when this author wrote (cf. p. 4 in the English
translation of “Preliminary discourse…” by R.N. Schwab, Bobbs-Merrill, Indianapolis, 1963):
“As an Encyclopédie, it is set to forth as well as possible the order and connection of the parts of
human knowledge. As reasoned Dictionary of the Sciences, Arts, and Trades, it is to contain the
general principles that form the basis of each science and each art, liberal or mechanical, and the
most essential facts that make up the body and substance of each”.
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to never refuse this duty for two reasons. One is that this duty provides an easy way
to keep aware of recent developments without having to investigate too much by
oneself in the ocean of publications, the other being that someone must do the job,
menial as it is, and it better be someone well informed, smart (here no false
modesty) and benevolent than someone inexperienced and grumpy. Of course, this
is not really creative work, but it is a way to remain a perpetual student. This is not
also high style literature, but not everyone is a born Marcel Proust. Anyway, as they
say: “Proust is too long and life is too short”. Smart editors-in-chief—from the UK,
the USA, Germany, and France (I don’t give names)—succeeded in exploiting my
somewhat naïve vanity by using arguments like: “Only you can look at this paper,
only you can make some sense out of this mess, etc” that reminds me of a song of
my youth “Only you—and you alone—can make the darkness bright” by the
famous vocal group of singers called the Fabulous Platters in the 1950s and 1960s.

More specifically, concerning the very subject matter of this book, it happened
that most of my creative scientific career—roughly the period 1970–2010—took
place in a time that witnessed the burgeoning of new ideas and new models to
describe the continuum mechanics of materials at different scales while my direct
masters had contributed to the emergence of a new generalized continuum
mechanics (GCM) in the 1960s and 1970s, and my own research took me to little
explored (at the time) fields such as a true nonlinear continuum mechanics of
electromagnetic solids, coupled linear and nonlinear waves in such fields, and
so-called configurational mechanics with the accompanying paraphernalia of
non-Riemannian geometry. I had the chance to witness some of these developments
in GCM at Princeton and in Summer schools held at the time. There were busy
years such as 1964 that saw the simultaneous publication of at least four different
expansions in GCM—by Toupin, Mindlin, Eringen, and Green and Naghdi—with
harsh confrontation between the different tenants in the late 1960s and early 1970s,
and new approaches to continuously dislocated bodies. The 1970s were also rich
with the development of nonlocal theories of various types. Other complex theories,
such as those of porous bodies, superfluids, liquid crystals, extended thermody-
namics, generalized thermo-elasticity, were also born. It is all these aspects in their
diversity and also in what they share in common that is the true subject matter of
this short book, with a will to help those confused readers and scientists new to the
field to apprehend it in the best, albeit concise, conditions. To some of them it will
open new horizons, to others it may correct some misinterpretations and favour a
revisited fruitful interest. In all it should satisfy the natural scientific curiosity of
many readers, who I expect to be perpetual students just like myself.

The work is presented in two parts. Part I includes prerequisites in classical
continuum mechanics, and elements of the mechanics of generalized continua. This
provides a necessary background and a general view of non-classical continuum
mechanics, especially in the form of generalized continuum mechanics. Part II
constitutes the dictionary per se in alphabetic order of the entries—so that there is
no real need for a subject index. This includes around a hundred entries with
numerous reference citations and cross references. These entries are of various sizes
and in-depth description extending from a few lines to several pages. For the most
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largely expanded ones, historical background is given (all original sources were
consulted but transcribed in a modern unifying notation) as well as basic formu-
lation, further progress, contemporary references, and cross references. I am sure
that this is not exhaustive and any gross error and absence of relevant items are due
only to my own focused idiosyncrasy and my negligence. I expect the reader to
forgive me as the field is open and infinite by its very definition.

Paris, France Gérard A. Maugin
June 2016
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Part I
Prerequisites



Chapter 1
What Is Classical Continuum Mechanics?

Preliminary note. Like in the rest of this book, although a direct intrinsic notation
(bold types) is used from time to time in equations where there is no ambiguity in
notation, an unsophisticated Cartesian (indicial) tensor notation is mostly used
because of the frequent occurrence of non-symmetric tensors and tensors of order
higher than two. Divergence is always taken on the first index of such objects.

Introduction

A clear-cut definition of non-classical continuum mechanics can be given only by a
negation, so that we need recall what is understood (by us) by “classical continuum
mechanics”.

We understand by “classical continuum mechanics” the kind of paradigm that
was born with the combination of ideas from Leonard Euler (1707–1783),
Joseph L. Lagrange (1736–1813), and Augustin L. Cauchy (1789–1857), and the
invention of the divergence theorem by George Green (1793–1841), and that
practically remained unaltered until rather recently. This is still the backbone of
what is taught to engineers all around the world even at the beginning of this
twenty-first century. These ideas are essentially the following ones: (i) the notion of
contiguity introduced by Euler together with the global statement of the balance of
linear and angular momenta; (ii) the generalization of Euler’s notion of pressure in
the notion of stress “tensor” by Cauchy, and (iii) the obvious necessity to apply
Green’s divergence theorem to transform the global balance laws of equilibrium or
motion. “Contiguity” by Euler means a local action by contact. “Cauchy” refers to
his 1822 astute introduction of the so-called Cauchy lemma that relates the unit
normal and the applied traction at a cut, yielding thus the birth of a “linear vector
function” (Gibbs) or “tensor” (Voigt) in modern terms1. A secondary working

1Historical developments are reported in Maugin (2013, 2014).

© Springer Nature Singapore Pte Ltd 2017
G.A. Maugin, Non-Classical Continuum Mechanics,
Advanced Structured Materials 51, DOI 10.1007/978-981-10-2434-4_1
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hypothesis is the supposed absence of a density of volume couple, resulting in the
symmetry of the introduced stress tensor (a fact rigorously proved by L.
Boltzmann). An externally applied body force is allowed and the inertial term
(acceleration) has the form prescribed by Newton, Lagrange and Cauchy, i.e., mass
density multiplied by acceleration. The only vector degree of freedom considered is
translation, giving rise to the notion of displacement. Everything occurs in
three-dimensional Euclidean physical space, with a time parametrization by an
absolute Newtonian time. Singular lines or points on the boundary of the body
should not exist. Any deviation from this paradigm in any form contributes to the
science of “generalized continuum mechanics” (Maugin 2011).

Balance Equations

More precisely, in the language of equations, using either a direct intrinsic for-
malism or a Cartesian tensor index notation, we have the following local equations
at each regular point in a body B at time t (See Truesdell and Toupin 1960; Eringen
1962, etc.; i, j = 1, 2, 3):

Local balance of linear momentum:

q
dv
dt

¼ q f þ div t or q
dvi
dt

¼ q fi þ @

@xj
tji; ð1:1Þ

Local balance of momentum of momentum (T = transpose):

t ¼ tT or tji ¼ tij; ð1:2Þ

where v ¼ vif g is the velocity, f ¼ fif g is the body force per unit mass, and
t ¼ tji

� �
is Cauchy’s stress tensor. The natural boundary condition associated with

(1.1) at the regular boundary @B of B reads

Td ¼ n:t or Td
i ¼ njtji; ð1:3Þ

where n ¼ nif g denotes the unit outward pointing normal to @B, and Td ¼ Td
i

� �
stands for the applied traction. Equation (1.3) is a statement of the Cauchy lemma
for stresses at a regular boundary. By multiplying scalarly (1.1) by v, one obtains

q
d
dt

1
2
v2

� �
¼ q f:vþ tijvi

� �
;j�tjivi; j: ð1:4Þ

Or by integration over the body B while accounting for the continuity equation
(conservation of mass),
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d
dt

Z
B

1
2
qv2dv ¼

Z
B

q f:v� tjivi; j
� �

dvþ
Z
@B

Td : v da; ð1:5Þ

while the global form of (1.1) reads

d
dt

Z
B

q v dv ¼
Z
B

q f dvþ
Z
@B

Tdda; ð1:6Þ

and the global expression of the balance of moment of momentum is

d
dt

Z
B

qv� xð Þ dv ¼
Z
B

qf � xð Þ dvþ
Z
@B

Td � x
� �

da: ð1:7Þ

Equation (1.5) may be called the theorem of the kinetic energy.
What is remarkable here is that the given equations are independent of the

precise behaviour of the material (within the given paradigm). This was the great
achievement of Cauchy (1828) as indicated by the very title of Cauchy’s contri-
bution; but see the caveat below.

Now we go one step further by introducing the two laws of thermodynamics in
global form. Of course they are of more recent extraction since they required the
formulation of such laws by the combined action of Kelvin, Joule, Helmholtz,
Mayer, Clausius, and Duhem in the nineteenth century.

First law of thermodynamics in global form:

d
dt

Z
B

q
1
2
v2 þ e

� �
dv ¼

Z
B

q f:vþ hð Þ dvþ
Z
@B

Td : v� q:n
� �

da; ð1:8Þ

Second law of thermodynamics in global form:

d
dt

Z
B

q g dv�
Z
B

q~g dv�
Z
@B

g:n da; ð1:9Þ

where e is the internal energy per unit mass, h is the body source of heat per unit
mass, q is the (in) flux of heat, g is the entropy density per unit mass, ~g is the body
source of entropy, and g is the (in) flux of entropy. In agreement with the results of
thermo-statics, it is agreed upon that

~g ¼ h
h
; g ¼ q

h
; ð1:10Þ

where h is the thermodynamic temperature such that h[ 0; inf h ¼ 0. The
inequality (1.9) is Clausius-Planck form improved by Duhem and Truesdell.
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On combining (1.5) and (1.9) we obtain the equation that may be a called the
theorem of the internal energy:

d
dt

Z
B

qe dv ¼
Z
B

qhþ tjivi; j
� �

dv�
Z
@B

q:n da; ð1:11Þ

the local form of which reads:

q
de
dt

¼ tjivi; j �r:qþ qh: ð1:12Þ

This eventually provides the equation of heat propagation.
By the same token the localization of (1.8) on account of (1.9) and (1.11) yields

a form of the second law of thermodynamics often called the Clausius-Duhem
inequality:

�q
dw
dt

þ g
dh
dt

� �
þ tjivi; j � g:rh� 0; ð1:13Þ

where we defined the Helmholtz free energy density w by

w ¼ e� gh; ð1:14Þ

Now we can say that we have completed the paradigm of pure classical con-
tinuum mechanics in a paradigm of classical thermo-mechanics of continua (as
presented in many contemporary textbooks). Equation (1.13) is conceived as a
constraint imposed on constitutive equations, i.e., the set of relations needed to
close the system of equations to be solved.

Caveat: There is a kind of very strong constitutive assumption hidden in the
formulation (1.11) through (1.13). We note that

pint ¼ �tjivi; j ¼ �tji Dij; Dij ¼ v i;jð Þ ð1:15Þ

is none other than the elementary power expanded by the internal “force” of
symmetric components tji. This essentially means in its inherent duality that this
internal force is determined primarily by the first gradient of displacement (in solid
mechanics) or the first gradient of the velocity (in media with viscosity). This is
referred to as a first-order gradient theory of continua (cf. Maugin 1980). In other
words, this corresponds to a theory of so-called “simple” materials according to
W. Noll (cf. Truesdell and Noll 1965).

The second expression in the first of (1.15) follows from the symmetry of the
stress. But another vision of this matter is as follows. The principle of virtual power
for the present paradigm of continuum mechanics can be enunciated thus:
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P�
inertia Bð Þ ¼ P�

ext B; @Bð ÞþP�
int Bð Þ; ð1:16Þ

where the vector field v* with dimension of a velocity field is a so-called virtual
field and we have defined the virtual power of inertial forces, externally applied
forces, and “internal forces” (here stresses) by

P�
inertia Bð Þ ¼

Z
B

q _v:v� dv; ð1:17Þ

P�
ext B; @Bð Þ ¼

Z
B

q f:v� dvþ
Z
@B

Td:v� da; ð1:18Þ

P�
int Bð Þ ¼ �

Z
B

tjiD
�
ij dv; ð1:19Þ

with

D�
ij �

1
2

v�i ;j þ v�j;i
� 	

ð1:20Þ

Each of these expressions is a linear continuous functional. But expression
(1.19) which concerns a constitutive quantity that must be objective (i.e., invariant
by rotations in the actual configuration) must be linear in an objective velocity field,
thus in the rate of strain only since this is the only part of the velocity gradient that
is objective. Also, there is no term directly linear in the velocity field (a
non-objective quantity) itself in (1.19) for the same reason. Hence the a priori
introduced co-factor (the stress) is necessarily symmetric; Of course, the expression
(1.19) vanishes identically for a virtual rigidifying velocity field for which D� ¼ 0
by virtue of Killing’s theorem.

For a real velocity field (no asterisk), (1.16) reduces to the theorem (1.5) of the
kinetic energy. Accordingly, this shows that instead of the global statements of the
balance of linear momentum and moment of momentum, (1.6) and (1.7), we may as
well consider (1.16) as an a priori statement in which the virtual power of internal
forces (stresses) accounts for the objectivity of the stress tensor. In contrast to the
Newton-Euler postulate of standard balance equations, this manner of constructing
the equations of continuum mechanics is that recommended all along the nineteenth
century in works by Piola, Kirchhoff, Helmholtz, Duhem, Poincaré, Hilbert, etc. In
the modern framework, following Hellinger (1914) and Germain (1973), it is the
best way not only for the formulation of classical continuum mechanics but also for
all types of generalized continuum mechanics because it emphasizes the structure of
the basic kinematics of the continuum, and thus, by duality, that of the field of
generalized internal forces (cf. Maugin 1980). Thus thermo-mechanics will be
based on the statements (1.16), (1.8) and (1.9).
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Finally, it should be noted that in writing (1.8) and (1.9), it was assumed that
both heat and entropy exchanges with the surroundings are of the contact type (i.e.,
flux) in the same way as the mechanical interaction of the Euler-Cauchy type
(stress). This follows the basic idea of Fourier who was influenced by Cauchy. For
the sake of further comparison it is salient to remind the most elementary classical
behaviours

Reminder: The Most Classical Behaviours of Classical
Continuum Thermo-Mechanics

Finite-Strain Thermoelasticity

In the general framework of nonlinear continuum mechanics (cf. Eringen 1967;
Maugin 1988; Truesdell and Noll 1965; Truesdell and Toupin 1960), one usually
distinguishes between the actual reference Kt at Newtonian time t and placement
x of coordinates xi; i ¼ 1; 2; 3 in Euclidean physical space E3 and a reference
configuration KR where material “particles” X are labelled by means of material
coordinates XK ;K ¼ 1; 2; 3 on a manifold M3. Only Cartesian systems of coordi-
nates are used here for the sake of simplicity. The deformation or motion is
described by a sufficiently regular time-parametrized mapping

x ¼ �x X; tð Þ or xi ¼ �xi X
K ; t

� �
: ð1:21Þ

Finite deformations are described by means of the object noted F such that

F ¼ @�x
@X

¼ rR�x ¼ FiK ¼ @�xi=@XK ¼ xi;K
� �

; J ¼ JF: ¼ detF[ 0: ðP:1:22Þ

so that the inverse motion X ¼ �X x; tð Þ is well defined. Important measures of
deformation C and E are given by

C ¼ FTF ¼ CKL ¼ xi;Kxi;L
� �

; E ¼ 1
2

C� 1Rð Þ ¼ EKL ¼ 1
2

CKL � dKLð Þ

 �

:

ð1:23Þ

It is easily proved that

_E ¼ FTDF; ð1:24Þ

where D is none other than the strain rate of components Dij (Cf. Eq. 1.15).
Then thermo-elasticity in finite strains is defined by a free energy w and material

heat-flux vector Q ¼ JF�1q such that
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W ¼ q0w ¼ W E; hð Þ; Q ¼ �Q rRh; h;Eð Þ; �Q 0; h;Eð Þ ¼ 0; ð1:25Þ

where the mass conservation between KR and Kt reads

q0 ¼ q J: ð1:26Þ

A standard exploitation of the Clausius-Duhem inequality (1.13)—in the manner
of Coleman and Noll—yields the constitutive equations

tji ¼ J�1 @W
@EKL

xi;Kxj;L ¼ tij; g ¼ � q�1
0

@W
@h

ð1:27Þ

and the dissipation restriction

QK h;K � 0: ð1:28Þ

It remains to specify the symmetry group of the considered material (here taken
as materially homogeneous). Various approximations can be deduced from (1.27)
and (1.28).

Linear Homogeneous Isotropic Elasticity

Let u ¼ uif g the elastic displacement and e ¼ eij ¼ u i;jð Þ ¼ ui;j þ uj;i
� �

=2
� �

the
infinitesimal strain. Then the internal energy W per unit volume, the Cauchy stress
tji, and the linearized balance of linear momentum are given by

W ¼ q0e ¼
1
2

k ekkð Þ2 þ 2l eij eij
h i

; ð1:29Þ

tji ¼ k ekkdij þ 2l eij; ð1:30Þ

tlk;l þ q0 fk � €ukð Þ ð1:31Þ

or

kþ 2lð Þr r:u� lr�r� uþ q0 f � €uð Þ ¼ 0; ð1:32Þ

where the Lamé coefficients k and l satisfy the inequalities

3kþ 2l� 0; l� 0; ð1:33Þ

q0 is the uniform constant matter density, and a superimposed dot denotes spatial
time differentiation.
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It must be noticed that the recovery of the displacement vector from a known
deformation requires the satisfaction of the so-called Navier-Saint-Venant com-
patibility conditions:

eijkepqrejp:kr ¼ 0 or r�r� e ¼ 0: ð1:34Þ

The last equation is written in the intrinsic formalism used by Kröner.

Linear Elastic Crystals

Then (1.21) is replaced by the general relation

tji ¼ Cjikl ekl; ð1:35Þ

with symmetry relations

Cjikl ¼ C jið Þ klð Þ ¼ Cklji ð1:36Þ

for the tensor of elasticities that involves at most twenty one distinct coefficients.

Eulerian Fluids

In this case

w ¼ w q�1; h
� �

; tji ¼ �p dji; p ¼ � @�w
@ q�1ð Þ ; g ¼ � @ �w

@h
; ð1:37Þ

where p is the thermodynamic pressure and g is the entropy density. At rest, the
fluid response is fully isotropic. This characterizes the Eulerian behaviour.

Newtonian-Stokesian Fluids

This is the standard viscous behaviour of isotropic fluids for which the Cauchy
stress is given by the linear representation

t ¼ �p 1þ kvDkk1þ 2lvD; D ¼ Dij ¼ 1
2

vi; j þ vj;i
� �
 �

; ð1:38Þ
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yielding the equation of linear momentum in the form

�rpþ kv þ 2lvð Þrr : v� lv r�r� vþ q ðf � _vÞ ¼ 0 ð1:39Þ

together with the continuity equation

_qþ qr:v ¼ 0; ð1:40Þ

and the inequalities

3kv þ 2lv � 0; lv � 0 ð1:41Þ

for the viscosity coefficients kv and lv.
A true Stokesian fluid is subjected to the constraint 3kv þ 2lv ¼ 0. For an in-

compressible fluid, the thermodynamic pressure p is replaced by the mechanical
pressure p which is none other than a Lagrange multiplier introduced to account for
the kinematic constraint

Dkk ¼ traceD ¼ r:v ¼ 0: ð1:42Þ

Fourier Heat Conduction and Linear Thermoelasticity
(Duhamel-Neumann)

In agreement with the Clausius-Duhem inequality a simple form of the heat con-
duction equation for isotropic thermal behaviour is given by Fourier’s law

q ¼ �vrh; v� 0: ð1:43Þ

Linear thermoelasticity is then described by this equation a nd a stress consti-
tutive relation that directly generalizes (1.30) in the form

tji ¼ ½k ekk þm h� h0ð Þ� dji þ 2l eij; ð1:44Þ

where h0 is a constant reference temperature and m is the stress-temperature
coefficient. The latter is related to the more usual dilatation coefficient a by the
relation m ¼ �a 3kþ 2lð Þ. In addition to Eq. (1.31) the temperature field h has to
satisfy the linearized (internal energy) equation:

q0C _h� m h0 _ekk ¼ vr2hþ q0h; ð1:45Þ

Reminder: The Most Classical Behaviours of … 11



where

C ¼ �h0
@2�w

@h2

����
e¼0;h¼h0

� 0: ð1:46Þ

This is the specific heat at constant strain whose positivity requires the free
energy to be concave in the temperature variable. In many problems the second
term in (1.45) is discarded and the pure temperature solution then is carried in the
equation of motion. This scheme can be deduced as an approximation from that for
finite-strain thermo-elasticity (see above).

Unfortunately, (1.43) and (1.46) yield a parabolic system and a resulting prop-
agation of heat at infinite speed, so that some more satisfactory description may be
required.

Main References for this chapter are: Maugin (1988, Chap. 1) and Nowacki
(1975).

Linear Piezoelectricity

Like linear thermo-elasticity, this is another example of coupled-field theory that
does not alter the essential hypotheses at the basis of classical continuum
mechanics. Suffice it to notice that within a quasi-electrostatic approximation and
assuming that the considered crystal admits no centre of symmetry—and thus
allows for the existence of piezoelectricity—the elastic constitutive relation (1.35)
is enriched by an electric-field E contribution to read

tji ¼ Cjikl ekl � ekjiEk; ð1:47Þ

with symmetry relations

Cjikl ¼ C jið Þ klð Þ ¼ Cklji; ekji ¼ ekij; ð1:48Þ

while the electric constitutive equation for the electric displacement D reads

Di ¼ eij Ej þ eikl ekl; eij ¼ eji: ð1:49Þ

The electric equations in a dielectric and in quasi-electrostatics reduce to

Di;i ¼ 0;r� E ¼ 0 ) E ¼ �r/: ð1:50Þ

Here tensors of components eij and ekij stand for the dielectric coefficients and
the piezoelectricity coupling constants. Note that in this simple linearized theory
there are no other electromagnetic interactions between matter and fields than
through Eqs. (1.47) and (1.49). In particular, there is neither “ponderomotive” force
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present in (1.47) nor “ponderomotive couple” in the local balance of angular
momentum, so that the Cauchy stress remains symmetric. Furthermore, even the
mathematical character of the resulting system is unchanged, so that we can qualify
piezoelectricity of a “weak” generalization compared to linear elasticity. The
generalization just rests in the replacement of three dependent variables (the
components of displacement) by four due to the addition of the electrostatic scalar
potential / [See Maugin (1988), Chap. 4].

Note: Here we do not speak about linear viscoelasticity and elasto-plasticity in
small strains or non-Newtonian fluids as these mechanical behaviours of great
interest do not alter the basic field equations of continuum mechanics, but they do
come into the thermo-mechanical picture through their typical irreversible proper-
ties [Cf. Maugin (1992)].

For nonlinear elastic and fluid behaviours we refer the reader to the many
existing treatises, in particular those of Truesdell and Toupin (1960) and Truesdell
and Noll (1965).
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Chapter 2
What Is Generalized Continuum
Mechanics (GCM)?

Introduction

We classify under the title “generalized continuum mechanics” all what is not
covered in the restricted framework of the Cauchy model exposed in the prereq-
uisite Chap. 1 under the title of “classical continuum mechanics”. In a structured
overview this generalization can be presented through the successive abandonment
of the basic working hypotheses of standard continuum mechanics of Cauchy: that
is, introduction of a density of bulk couple, of a rigidly rotating microstructure and
couple stresses (Cosserat continua or micropolar bodies, nonsymmetric stresses),
introduction of a truly deformable microstructure (micromorphic bodies), “weak”
nonlocalization with gradient theories and the notion of hyperstresses, and the
introduction of characteristic lengths, “strong” nonlocalization with space func-
tional constitutive equations and the loss of the Cauchy notion of stress, and finally
giving up the Euclidean and even Riemannian material background. We peruse
these steps in this overview, referring the reader to specialized entries for technical
details.

Asymmetric Stress

This asymmetry may be due to the existence of body couples; the only known
physical example of these couples relates to the case of electromagnetic deformable
continua where the volume magnetization is not aligned with the local magnetic
field M, or the dielectric polarization P is not aligned with the local electric field
creating thus couples per unit volume in the form of vector products M�H or
P� E in an obvious notation. Accounting for such terms in Eq. (1.7) will result in a
deviation from the symmetry condition (1.2) with the existence of a nonzero skew
part of the stress given by

© Springer Nature Singapore Pte Ltd 2017
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t ji½ � ¼ M½iHj� or P½iEj�: ð2:1Þ

In many materials this is strictly zero in reason of the proportionality of the field
M in H or of P in E. Also, the situation described by Eq. (2.1) may be only
transient as M may rapidly align with H or P with E. Of course interaction of
electromagnetic fields with deformable matter may be much more complicated than
that described by Eq. (2.1) involving both couple and force of electromagnetic
origin, and an import of a specific energy. For a full development of this aspect in
Galilean or relativistic dynamics we recommend the treatise of Eringen and Maugin
(1990; reprint 2012).

Surface Couples

This concept may be harder to imagine physically. But there is no opposition of
principle to introduce in strict parallel with an applied surface traction (in the
Cauchy model), an applied surface couple Cd per unit surface. This is an axial
vector. A reasoning à la Cauchy will yield the introduction of the notion of couple
stress m such that

njmji ¼ Cd
i : ð2:2Þ

The object of induced component mji still is “axial” in its second index
i. Accordingly, we can introduce a geometrical object with three indices, mjik, such
that

mkji ¼ mk½ji� ¼ mkpepji; ð2:3Þ

where epji is Levi-Civita alternating symbol. Inclusion of a surface contribution
involving the expression in Eq. (1.7) will transform the local statement of the
balance of moment of momentum (1.2) in the following more general form:

t ji½ � þmkji;k ¼ 0: ð2:4Þ

If in addition there exits a distribution of body couples per unit mass (rewritten
as a skewsymmetric tensor Cji ¼ �Cij), then Eq. (2.4) will be generalized to the
following local equilibrium of couples:

t ji½ � þ qCij þmkji;k ¼ 0: ð2:5Þ

Furthermore, if this additional effect is related to the existence of a true internal
degree of freedom (of rotation) giving rise to some spin, then an inertial term will be
added in the right-hand side of Eq. (2.5) that then becomes a true dynamic
equation:
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t ji½ � þ qCij þmkji;k ¼ q _Sji; ð2:6Þ

where Sij ¼ �Sji is a spin (i.e., an angular momentum).
Equation (2.5) was the equation to which the Cosserats (1909) were naturally

led—together with the static form of (1.1)—by applying an invariance requirement
(Euclidean action) that represents a pioneer’s application of group theory in con-
tinuum mechanics, and requires from translation and possible rotational degrees of
freedom of a material point to be on the same a priori footing. Of course, the
expression of constitutive equations in order to close the system of field equations
demands an elaboration of the associated generalized kinematics (see entry on
Cosserat continua). Furthermore, Eringen (1966) formulated a law of conservation
of micro-inertia that complements the usual conservation of mass in the dynamical
case. Equation (2.6) corresponds to a rewriting of the global conservation law in the
following generalized form:

d
dt

Z
B

q v� xþ sð Þ dv ¼
Z
B

q f � xþ cð Þ dvþ
Z
@B

Td � xþCd
� �

da; ð2:7Þ

where s and c are the axial vectors dual of the skew tensors S and C, respectively.

Eringen-Mindlin Micromorphic Model of Microstructured
Continua

In the previous section no mention of any microscopic definition of the newly
introduced quantities was given. But we can well imagine in agreement with the
original vision of Voigt, Duhem and the Cosserats that a material point that nor-
mally experiences a translation is now assimilated to a small rigid body that can
also rotate, and is thus able to respond to local couples. A more refined vision
would be to see this point itself as a small deformable body, hence exhibiting six
degrees of freedom in addition to translation. This corresponds to the model of
micromorphic media devised by Eringen and Suhubi in 1964; the model of mi-
crostructured media devised by Mindlin (1964) in the same year is equivalent
(representing a homogeneous deformation within the small body) (see entry on
Eringen-Mindlin model).

The local balance of equilibrium in a micromorphic body can be written as

lkij;k þ tji � sji þ lij ¼ 0; tji ¼ t jið Þ þ t ji½ �; s ji½ � ¼ 0; lji ¼ Cji þ l jið Þ ð2:8Þ

where lkji is the called the hyperstress tensor, sji is the so-called symmetric
micro-stress, and lij is the body-moment tensor of which the skew part represents a
body couple Cji ¼ �Cij:

Surface Couples 17

http://dx.doi.org/10.1007/978-981-10-2434-4_1


lkij;k þ tji � sji þ lij ¼ 0; tji ¼ t jið Þ þ t ji½ �; s ji½ � ¼ 0; lji ¼ Cji þ l jið Þ; ð2:9Þ

then the Cosserat or micropolar model is obtained by taking the skew part of the
first of Eq. (2.9) and setting mkji: ¼ lk½ji�.

Bodies with microstretch (Eringen 1969). This is a further reduction of the
model Eq. (2.9) obtained by noting mk the intrinsic dilatational stress or micro-
stretch vector; l the body microstretch force such that l ijð Þ ¼ l=3ð Þdij, and t and s are
intrinsic and micro scalar forces, so that we have

lklm ¼ 1
3
mkdlm � 1

2
elmrmkr; ð2:10Þ

hence

mkl;k þ elmntmn þCl ¼ 0; mk;k þ t � sþ l ¼ 0: ð2:11Þ

Note that an additional natural boundary condition involving the new
higher-order stresses lkij and mji must complement the standard Cauchy condition
of the Prequisite Chap. 1, e.g.,

nk lkij ¼ Cd
ij or nj mji ¼ Cd

i ; ð2:12Þ

where Cd
i is akin to a surface couple.

Finally, we note the further case of dilatational elasticity (Cowin and Nunziato
1983) [only the second of Eq. (2.11) is relevant]:

mk;k þ t � sþ l ¼ 0: ð2:13Þ

Here the additional natural boundary condition will be of the form

nk mk ¼ Md ; ð2:14Þ

where Md is akin to a tension.
All these equations are given here in Cartesian components in order to avoid any

misunderstanding that can be created by a direct intrinsic notation: lkij is a new
internal force having the nature of a third-order tensor. It has to start with no
specific symmetry in Eq. (2.8) and it may be referred to as a hyperstress. In the case
of Eq. (2.10) this quantity is skewsymmetric in its last two indices and a second
order tensor—called a couple stress—of components mji can be introduced having
axial nature with respect to its second index. The fields sji and lij are, respectively, a
symmetric second-order tensor and a general second-order tensor. The former is an
intrinsic interaction stress, while the latter refers to an external source of both stress
and couple according to the last of Eq. (2.9). Only the skew part of the later remains
in the special case of micropolar materials. The skewsymmetric Cji can be of
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electromagnetic origin, and more rarely of pure mechanical origin. Equations (2.10)
and (2.13) represent a kind of intermediate case between micromorphic and
micropolar materials. The case of dilatational elasticity in Eq. (2.13) appears as a
further reduction of that in Eq. (2.11). This will be useful in describing the
mechanical behaviour of media exhibiting a distribution of holes or cavities in
evolution.

Weakly Nonlocal Modelling

Cases examined in the preceding paragraphs do not question the notion of conti-
guity of Euler and Cauchy. They just add new fields of internal forces that still
satisfy the same contiguity argument. Totally different is the viewpoint that
envisages a more analytically precise definition of a classical quantity such as the
elastic displacement. This is best emphasized by extending the obvious limited
expansion of the power on internal forces considered in the first of Eq. (2.15) to
higher order spatial gradients of the velocity field, for instance as

pint ¼ �ðtjivi;j þmkjivi;jk þ � � �Þ; ð2:15Þ

where mkji ¼ m kjð Þi may be called a stress of higher order or hyperstress. This a
priori has at most eighteen independent components. In terms of the geometry of a
bounding surface (so-called natural boundary condition) this new concept will
require the consideration of the second-order geometrical description of the surface,
hence the curvature. This destroys the standard Euler-Cauchy notion of contiguity.
In pure elasticity, the effect of the contribution of the hyperstress will be of
importance wherever the strain is not spatially uniform, and obviously where one
observes a rapid variation of the elastic displacement, e.g. in boundary layers. This
vision is quite different from the one considered in the preceding section, since now
only one standard field, the displacement, or the velocity in the case of fluids, is
involved. The Euler-Cauchy framework maybe referred to as a first—gradient
theory—when referred to the expression of the power of internal forces. The theory
described by Eq. (2.15) with an expansion limited to second-order is called a
second-gradient theory. One can generalize this in principle to an nth-gradient
theory (cf. Maugin 1980). The second-gradient is well exposed in Germain (1973).
Such theories are often referred to as weakly nonlocal theories. The only compli-
cations are the statement of the relevant boundary conditions, and the obviously
large number of material coefficients to be measured, save in carefully selected
simple geometries. Analytically, the resulting problems will be stiffer than standard
ones, but they may be approached by some approximations such as singular per-
turbations (as exemplified by boundary-value problems involving matched
asymptotic expansions between inner and outer expansions).
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Historically, the roots of the gradient theories may probably be found in the
general presentation by G. Piola (in the 1840s–1860s), and more precisely in Barré
de Saint-Venant (1869) and the original works of Le Roux (1911, 1913). In the
1960s we note the works of Mindlin and co-workers and Toupin who revived this
approach in the modern framework (Mindlin and Eshel 1968; Mindlin and Tiersten
1962; Toupin 1962). Note that this modelling is sometimes mistaken for the
Cosserat model even by the best authors. This may come from the fact that if one
assumes in a Cosserat continuum that the rotational velocity of the microstructure is
constrained to follow the usual rate of rotation of the Cauchy continuum, then we
are led to a degenerate theory of the second-gradient type, which should be called
the constrained Cosserat continuum. This appears to be badly conditioned for
dynamical properties.

Strongly Nonlocal Modelling

Although the basic idea may be mentioned in Duhem (1893), a true development of
this modelling took place in the 1960s with the works of Kröner and Datta (1966),
Kunin (1966), and Rogula (1965). Later on Eringen and Edelen (1972) elaborated a
more abstract formulation. Synthesis works on the subject are by Kunin (1982) and
Eringen (2002). Technically, the Cauchy construct does not apply anymore since
contiguity is lost altogether. In principle, only the case of infinite bodies should be
considered as any cut would destroy the prevailing long-range ordering.
Constitutive equations become integral expressions over space, perhaps with a more
or less rapid attenuation with distance of the spatial kernel. This, of course, inherits
from the action-at-a-distance dear to the Newtonians, while adapting the disguise of
a continuous framework. This view is justified by the approximation of an infinite
crystal lattice: the relevant kernels can be justified through this discrete approach.
But this approach raises the matter of solving integro-differential equations—not
always a pleasant task—instead of partial-differential equations. What about
boundary conditions that are in essence foreign to this representation of
matter-matter interaction? There remains a possibility of the existence of a
“weak-nonlocal” limit by the approximation by gradient models. Typically one
would consider in the linear elastic case a stress constitutive equation in the form

tji xð Þ ¼
Z

all space

Cjikl x� x0j jð Þ ekl x0ð Þ d3x0; ð2:16Þ

where the constitutive functions Cjikl decreases markedly with the distance between
material points x′ and x, that are equivalent with an obvious reciprocity. Note that
standard local linear elasticity follows from Eq. (2.16) by considering the special case

20 2 What Is Generalized Continuum Mechanics (GCM)?



Cjikl x� x0j jð Þ ¼ C0
jikl d x� x0j jð Þ; ð2:17Þ

where d is Dirac’s delta generalized function, and the tensorial coefficient C0
jikl

depends at most on the point x alone (for inhomogeneous materials).
In one-dimensional space, a constitutive equation such as Eq. (2.16) will provide

a balance of linear momentum in the following integro-differential form:

q0
@2u
@ t2

� @

@ x

Zþ1

�1
E a x� x0j jð Þ @u x0; tð Þ

@x0
dx0

2
4

3
5 ¼ 0; ð2:18Þ

or

@2u
@ t2

� c20
@

@ x
a � @ u

@x

� �
¼ 0; ð2:19Þ

where the symbol � stands for the convolution product (in space) and we have set
c20 ¼ E=q0. One needs a sensible expression for the kernel (or influence function or
weight function) a.

The historical moment in the recognition of the usefulness of strongly nonlocal
theories was the EUROMECH colloquium on nonlocality organized by Dominik
Rogula in Warsaw in 1977. Note in conclusion to this point that any field theory can
be generalized to a nonlocal one while saving the notions of linearity and aniso-
tropy, but losing the usual notion of flux.

The Loss of Euclidean Structure

In classical continuum mechanics the arena of regular deformations is the physical
Euclidean space E3 which is assimilated to R3. That is fine for regular displacement
fields. But in some materials such as metals there exists a huge quantity of dislo-
cations, lines along which the displacement suffers a discontinuity measured by the
so-called Burgers vector. There also exist other kinds of singularities such as
disclinations (lines along which the rotation vector does not close up in a round
circuit), and cavities (vacancies in the case of crystals) or micro inclusions (foreign
atoms in the case of atoms). The existence of what may be called defects questions
the generally accepted idea to represent a material manifold—the set of material
points—as a simple Euclidean space. Something more sophisticated must be
envisaged. This was achieved in the second half of the twentieth century with no
unique answer. But the most frequent one seems to consider a more adapted
geometric background that will be non-Euclidean or even non-Riemannian. This is
exemplified by a manifold without curvature but with affine connection, or an
Einstein-Cartan space with both torsion and curvature, etc. With this one enters a
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true “geometrization” of continuum mechanics of which conceptual difficulties
compare favourably with those met in modern theories of gravitation. Pioneers in
the field in the years 1950–70 were Kondo (1955) in Japan, Kröner (1958) in
Germany, Bilby (1955) and his group in the UK, Stojanovic (1969) in what was
then Yugoslavia, and Noll (1967) and Wang (1967) in the USA. Main properties of
this type of approach are: (i) the relationship to the multiple decomposition of finite
strains (Bilby, Kröner, Lee) and (ii) the generalization of theories such as the theory
of volumetric growth or the theory of phase transitions within a unified approach to
local structural rearrangements (local evolution of reference).

Another complication may be the intrinsic difficulty to define analytically some
fields, in particular gradients, when the material itself is viewed as a fractal set. This
constitutes the last avatar of continuum mechanics with a possible relationship to
fractional derivatives (see the dictionary entry “Fractal continua”).

General references on generalized continuum mechanics are: Altenbach and
Eremeyev (2013), Altenbach et al. (2011, 2013), Maugin (2010, 2011), Maugin and
Metrikine (2010), and the historical proceedings (Kröner 1968).

Cross references in the dictionary part: Cosserat continua, Couple stress,
Directors theory, Electromagnetic continua, Eringen-Mindlin medium, Fractal
continua, Gradient elasticity, Higher-order gradient theories, Hyperstresses, Le
Roux elasticity, Micromorphic continua, Microstructure, Non-locality (strong),
Non-locality (weak).
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Chapter 3
A–B: From “Aifantis E.C” to “Biot’s
Poro-Elasticity”

Aifantis E.C

Elias C. Aifantis is a Greek born (1950) engineering scientist educated at the
National Technical University in Athens (NTUA, Greece) and with a PhD obtained
at the University of Minnesota. Most of his creative work has been devoted to
mixtures, gradient fluids, dissipative structures, dislocation motion, and gradient
theories of plasticity and elasticity. The expression “Aifantis elasticity model” is
coined after him.
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Anisotropic Fluids

According to the cannons of standard continuum mechanics formulated by
Truedsell and Noll in the 1950–1970 period, all fluids of which the kinematics and
mechanical behaviour are defined solely in terms of density and the velocity field at
actual time are necessarily isotropic. This rather reductive result follows from the
fact that fluids have no memory of any past configuration so that a strict application
of objectivity (invariance under rigid-body motions in the actual configuration)
yields an isotropic representation of the corresponding stress. A particular case is
that of Eulerian fluids for which the stress involves only a pressure, e.g., tij ¼ �pdij.
Newtonian fluids of which the stress is linear in the rate of deformation tensor also
obey this rule. This is also the case of non-Newtonian fluids which admit a non-
linear behaviour that can be expressed in terms of higher-order time derivatives of
the velocity gradient (e.g., by means of Rilvin-Ericksen tensors).

But there exist fluids that can flow although they clearly exhibit directional
properties. This is exemplified by fluid polymeric solutions, some dilute suspen-
sions of macromolecules, and some liquid crystals. This apparently antonymic
association of the words “liquid” and “crystals” means that such materials partake
of fluids (they can flow) and of crystals (they also possess some order akin to that of
crystals). This is their great originality. It is Jerald L. Ericksen (1960) who pio-
neered in this direction by proposing a theory of anisotropic fluids exploiting the
notion of director. This director here is noted n (not to be mistaken for a unit
normal). This should be a special case of the theory of oriented media (with
directors). We follow Ericksen (1960) and Stokes (1984, Chap. 4). Couple stresses
and heat effects are assumed to be absent. Then the local balance laws are those for
mass, linear momentum, angular momentum and energy. They read:

_qþ qr:v ¼ 0; ð3:1Þ

q _vi ¼ tji;j þ qfi; ð3:2Þ

q _ri ¼ eijktjk þ qli; ð3:3Þ

q _e ¼ tjiDij þ q xi _ri � _ks
� �� qk;k þ qh: ð3:4Þ

Here xi stands for the rotational velocity associated with the spin (or intrinsic
angular momentum), and ks is the kinetic energy (per unit mass) associated with the
microstructure represented by the director field. For a model of dumbell-shaped
particles, using an elementary approach, we can write:

ri ¼ n� _nð Þi; ks ¼ 1
2
_n: _n: ð3:5Þ
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An interesting vector quantity is the following objective time derivative (called
the Jaumann derivative) of n:

n̂ ¼ DJn :¼ _n� X:n ¼ _ni � Xijnj
� �

; ð3:6Þ

with

Xij ¼ v i;j½ � ¼ 1
2

vi;j � vj;i
� �

; Dij ¼ v i;jð Þ ¼ 1
2

vi;j þ vj;i
� �

: ð3:7Þ

One obtains then

q xi _ri � ksð Þ ¼ �qn̂i€ni:

On setting (cf. Ericksen 1960; a kind of balance equation without flux since there
are no couple stresses)

q€ni ¼ gi; ð3:8Þ

we can rewrite Eq. (3.4) as

q _e ¼ tjiDij � gin̂i � qk;k þ qh; ð3:9Þ

while (3.3) provides the expression of the skewsymmetric part of the stress as

t ij½ � ¼ n½igj� � 1
2
qeijklk: ð3:10Þ

It remains now to construct a set of constitutive equations for the fields tij and gi.
One is tempted to try linear equations in the independent variables Dij and n̂i. For

a naturally transversely isotropic behaviour with privileged direction given by
vector n itself, a theorem proved by Smith and Rivlin (1957) shows that the
contributing terms are expressible as linear combinations of ni and dij. Assuming
that directors n and −n are not distinguishable, this yields the following lengthy
expressions:

tij ¼ a0 þ a1Dkk þ a2Dklnknl þ a3n̂knkð Þdij þ a4 þ a5Dkk þ a6Dklnknl þ a7n̂knkð Þninj
þ a8Dij þ a9Diknknj þ a10Djknkni þ a11nin̂j þ a12njn̂i

ð3:11Þ

and

gi ¼ c0 þ c1Dkk þ c2Dklnknl þ c3n̂knkð Þni þ c4Diknk þ c5n̂i; ð3:12Þ
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where the coefficients a0s and c0s are still functions of density q and the length of
n via n2 ¼ nini. Expressions (3.11) and (3.12) must be compatible with the second
law of thermodynamics and also Eq. (3.10) that requires that

c4 ¼ a10 � a9; c5 ¼ a11 � a12

in the absence of body couples.
An invariant (objective) form of the internal energy reads

e ¼ e q; n2
� �

: ð3:13Þ

Then the elementary entropy production reads

qhc ¼ t ijð Þ þ q2
@w
@q

dij

� �
Dij � gi þ 2q

@w
@n2

ni

� �
n̂i � 0; ð3:14Þ

where w ¼ e� gh is the free energy density, g is the entropy density, and h is the
thermodynamic temperature here kept constant so that we can indifferently use e or
w as thermodynamic potential. The factors of Dij and n̂i in Eq. (3.14) are the
dissipative parts of the constitutive equations which could be written linear in the
corresponding rates. Ericksen has considered a much simplified theory of incom-
pressible fluids in which the director’s inertia is discarded so that gi ¼ 0. This
allows one to extract an expression for the objective time rate n̂i in the form

n̂i ¼ l1 þ l2Dklnknlð Þni þ l3Diknk; ð3:15Þ

where the coefficients are deduced from the c0s and still depend on n2.
Furthermore, in the absence of body couples and with gi ¼ 0; the stress tij

becomes symmetric. This reduces the number of independent coefficients in the
expression of the stress. Finally, if the director is of constant magnitude (taken
equal to one without loss in generality), it is shown that the two constitutive
equations finally read in a relatively simple form (Ericksen 1960; Stokes 1984,
Chap. 4):

tij ¼ �pdij þ k1 þ k2Dklnknlð Þninj þ 2k3Dij þ 2k4 Diknknj þDjknkni
� � ð3:16Þ

and

n̂i ¼ l3 Diknk � Dklnknlnið Þ; ð3:17Þ

where the coefficients k0s and l0s are pure constants. Equation (3.17) may be
viewed as the evolution equation for the vector variable ni considered as an internal
variable of thermodynamic state (cf. Maugin and Drouot 1983, p. 718). The above
deduced simplified equations were considered by Ericksen in a series of papers
dealing with typical flow solutions (simple shear, orientationally induced flow,
irrotational motion, Poiseuille flow, Couette flow) in the period 1960–1962.
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Of course, the modelling would have become much more complex had we
considered the possible existence of couple stresses, e.g., with an energy density
such as

w ¼ ~w q; n;rnð Þ: ð3:18Þ

Then one can define the following two fields:

bi ¼ �q
@~w
@ni

; mij ¼ q
@~w
@ni;j

6¼ mji: ð3:19Þ

The rotational invariance of function ~w [obtained by imposing on (3.18) an
infinitesimal rotation represented by a skewsymmetric tensor as an infinitesimal
generator of the rotation group] yields the mathematical constraint (Maugin and
Drouot 1983)

n½ibj� þmk½ink;j� þm½iknj�;k ¼ 0: ð3:20Þ

One can define a couple-stress tensor M by

M ¼ Mjik ¼ mj½ink� ¼ �Mjki
� �

: ð3:21Þ

But since the medium is not supposed to globally respond to such couple stresses
by virtue of the symmetry of the stress tensor, we have the constraint

divM ¼ 0 or mj½ink�
� �

;j¼ 0: ð3:22Þ

This allows one to show that the residual dissipation inequality reads

U ¼ t̂ijDji þ ~bin̂i � 0; ð3:23Þ

wherein

t̂jk ¼ ~tjk þmiðjni;kÞ; ~bi ¼ bi þmij;j;~tjk ¼ tjk þ pdjk: ð3:24Þ

This approach, not pursued here, would yield a theory with a vectorial internal
variable of state ni which has diffusive nature since its gradient is introduced [this
implies that the extra entropy flux is defined in a certain ad hoc way; see Maugin
and Drouot (1983)]. It may be more realistic to introduce an internal variable that is
a symmetric tensor. Then the theory is closer to the original proposal of Hand
(1961). This tensor may be the “conformation” of macromolecules in the so
described fluid solutions (See Entry: Solutions of macromolecules).
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Asymmetric Elasticity

This was the first expression used to describe continua where the Cauchy stress
tensor is not symmetric for some reason. Pioneering works in this direction are
those of French crystallographers (Laval 1957a, b, c) and Le Corre (1956). More
recent works that reached the scientific medium of continuum mechanics were
those of Grioli (1960) and Palmov (1964). Nowacki (1986) continued for some time
to refer to this material modelling by this expression. But in truth, it is nowadays
admitted that this expression is most often synonymous with Cosserat continua or
micropolar continua (in the classification of A.C. Eringen).
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Auxetic Materials

The word “auxetic” derives from the Greek word “auxetikos” which means “has a
tendency to increase”, itself deriving from the noun “auxesis” for “increase”. The
English wording seems to be due to K. Evans in 1991, but the first example of a
synthetic auxetic material was provided by Lakes (1987) from Iowa when he
presented a structure with negative Poisson’s ratio. This is indeed what charac-
terizes such materials. We remember that most natural materials have a Poisson
ratio m with value between zero and one half.

[In isotropic linear elasticity, Poisson’s ratio is defined by

m ¼ k
2 kþ lð Þ ; ð3:25Þ

in terms of Lamé’s coefficients k and l while thermodynamics implies that

3kþ 2l� 0; l� 0: ð3:26Þ

Thus most natural materials become thinner when they are stretched.
In contrast, auxeticmaterials become thicker perpendicular to an applied stretching

force. This strange un-natural property of auxetics can occur only because they present
a type of network with hinge-like structures. The latter flex when they are stretched.
Evans (1991) speaks of auxetic polymers while Lakes (1987) considers foams.
A similar phenomenon can be exhibited in composites with star-shaped inclusions
(cf. Theocaris et al. 1997). The prevalent cellular or periodic-composite structure
lends itself well to a homogenization procedure (cf. Theocaris and Stavroulakis 1998).
These nonclassical continua can have interesting engineering applications
(cf. Stavroulakis 2005). A comprehensive synthesis is given by Lim (2015).
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Biot’s Theory of Poro-elasticity

Maurice A. Biot (1905–1985) was a Belgian-American physicist who always
brought original solutions to problems of mechanics and/or physics. To him are due
original works in the theory of finite strains in elastic bodies, an incremental theory
of deformable solid mechanics, variational principles, irreversible thermodynamics,
and, most relevant to the present contribution, a theory of poro-elasticity (then
called “Biot’s theory”). The latter was a real extension of constitutive equations to
saturated poro-elastic solids (porous continua made of a connected elastic skeleton
and fluid entirely filling the remaining available space). He paid special attention to
the propagation of waves in such media, obtaining thus results that provided useful
measurement techniques in geophysical applications (Biot 1956a, b). Biot generally
is a follower of Terzaghi (Biot 1941). But, in 1955, he proposed an original theory
with a set of two coupled linear momentum equations for the fluid (subscript F) and
solid (subscript S) constituents with respective displacement fields uF and uS in the
following form:

q11€uS þ q12€uF þ b _uS � _uFð Þ ¼ divrS þ qSb; ð3:27Þ

q12€uS þ q22€uF þ b _uF � _uSð Þ ¼ rrþ qFb; ð3:28Þ

where the mass (or inertial) coupling quantity is such that q12\0; rS is the solid
elastic stress, b is the external force per unit mass of each constituent, and r ¼ �np
is the real fluid pressure if n is the porosity. Finally, the interacting constant b is
related to Darcy’s law by an expression of the type

b ¼ ln2

k
: ð3:29Þ

where k is the permeability and l is the viscosity. The strange coupling inertia terms
come from a kinetic energy that is jointly quadratic in the velocities _uS and _uF . The
coupling involving Darcy’s concept is deduced from a dissipation potential quad-
ratic in the relative velocity _uS � _uFð Þ—in the manner of Rayleigh and evoking a
friction phenomenon between two phases. Indeed, the set (3.27)–(3.28) really
follows from a Lagrangian-Hamiltonian variational principle with source terms in
the resulting Euler-Lagrange equations derived from the dissipation potential. The
inertial coupling term is very much like the mutual inductance term in Maxwell’s
dynamical theory of induction that he built in the Lagrangian way by analogy with a
generalized quadratic kinetic energy. This, at the time (1956), was a formidable
achievement and original development of Biot in the field of geophysical engi-
neering; all the more that Biot could give a reasonable meaning to the inertial
contributions in the left-hand side of Eqs. (3.27)–(3.28). Darcy’s law was a decisive
argument in the formulation.
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Interesting dynamic properties were deduced by Biot (1956a, b) from his model
(3.27)–(3.28) that is still considering small strains. But in one of his last papers Biot
(1972) formulated a theory of finite deformations in porous solids (still in his own
formalism and notation). Many subsequent works will reformulate Biot’s theories
in the modern nonlinear format of continuum thermo-mechanics, adding in fact
little to their physics and main properties. In the case of poroelastic solids infused
with compressible fluids, new results generalizing those of Biot were obtained by
Quiligotti et al. (2004).

An interesting, but seldom cited, paper was proposed by Frenkel (1944) before
most of the works by Biot. In modern notation Frenkel’s equations of the fluid and
solid phases of the porous medium are given by

qF
@vF
@t

¼ �nrpþ qFb� l
j

vF � vSð Þ; ð3:30Þ

qS
@vS
@t

¼ divrS � 1� nð Þrpþ qSbþ l
j

vF � vSð Þ; ð3:31Þ

where we identify the last terms in the right-hand side of these equations as due to
Darcy’s law.

To conclude this contribution we note Derski’s (1978) model where the mass
coupling of Biot between fluid and solid components is apparently neglected but it
is assumed that the density of the fluid component can be divided into two parts,
one part being the density of the free fluid qFf , moving with the velocity vF , and the
other part being the density qFs of the “trapped” fluid that moves with the velocity
of the solid skeleton vS. It was shown that Derski’s equations of momenta are
equivalent to those of Biot with the appropriate interpretation of densities in the
kinetic energy (See de Boer 2000, p. 305).
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Chapter 4
C: From “Capillarity” to “Couple Stress
(in Medium with Constrained Rotation)”

Capillarity

The original theory of capillarity was developed by Thomas Young (1773–1829)
and Pierre Simon de Laplace (1749–1827). It is Laplace who proposed the cele-
brated equation of capillarity. In both cases this theory was conceived as a
Newtonian like theory involving an inverse-square law of interaction between
“particles”. A marked interest in this theory was still exhibited in the late nineteenth
century and early twentieth century as shown by the lecture notes of Duhem (1903),
Poincaré (1895) and Hilbert (1906–1907); See also the remarkable book by
Bouasse (1924). It is interesting for researchers in continuum mechanics to note
how Hilbert (above all, a mathematician) exposed in a few pages a continuum
theory that relies on the existence of a surface energy. This in fact is not so brutal
since this author first considered that the energy across a thin layer of thickness 2d
varies like the normal derivative of the density across this layer, i.e., e ¼ a @q=@n
where a is a scalar coefficient. By integration this yields

E ¼ a
ZZ
F

df
Zþ d

�d

@q
@n

dl ¼ a
ZZ
F

q1 � q2ð Þdf ; ð4:1Þ

where F is a surface of element df between the two media in contact.
A more mathematical viewpoint consists in parametrizing the surface F in a
Gaussian way with squared line element ds2 ¼ e du2 þ 2f du dvþ g dv2. Then
df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eg� f 2

p
du dv ¼ h du dv. Therefore,

E ¼ c
ZZ
FO

h du dv; ð4:2Þ
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assuming that q1 � q2 is a constant along the surface F. The final Laplace equation
will be obtained by application of a Hamiltonian principle after appropriate defi-
nition of the variations of geometric and energy quantities:

p2 � p1 ¼ c
1
R1

þ 1
R2

� �
; ð4:3Þ

where p denotes the pressure, c is the coefficient of surface tension, and R1 and R2

are the principal curvature radii of the interface at the considered point.
To modern eyes this interest for the phenomenon of capillarity within continuum

mechanics may seem a bit strange. But it is a subject matter of actuality at the time
of Hilbert’s lectures as proved by the interest manifested by other great scientists
(e.g., Duhem, Poincaré) after a very interesting paper by Korteweg (1901) in the
Netherlands.
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Cellular Materials as Generalized Continua

Materials considered as cellular abound in nature but the most useful ones are those
obtained as man-made constructs. In the last category we count the 2D
honeycomb-like structures (with a 2D structure in the plane and uniformity along the
third direction) that have good mechanical properties combined to low weight.
Another man-made 3D example is provided by metallic foams with an obviously
much less regular geometric arrangement. Natural examples are represented by the
structure of trabecular bones, wood, coral and glass sponge. The shape and size of
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the cells are of utmost importance for the resulting mechanical properties, the rel-
ative density that varies from 0.001 to 0.3 (in the case of porous solids) being a
decisive factor. Cellular solids are the most studied ones (cf. Gibson and Ashby
1997), 3D metallic foams and 2D honeycomb-like structures being highlighted
because of their industrial applications. Scale relations govern their mechanical
properties (cf. Evans et al. 1998). A cellular solid is seen as an interconnected
network of solid struts or plates and forming edges and faces of cells. Foams are
more in the form of open more or less regular holes bounded by solid edges looking
like solid membranes over faces of polyhedral cells. Overall, they can be visualized
from regular periodic lattices (case of honeycomb-like structures) to random mul-
tiscale structures (case of foams); cf. Jeulin and Ostoja-Starzewski (2001). It was
soon realized that such materials with a rather well defined grid framework could be
macroscopically acknowledged as some generalized continua of the micropolar type
(Bazant and Christensen 1972). With a marked periodic structure this working
hypothesis is certainly justified as pondered by Kumar and McDowell (2004). This
was a general problem thoroughly considered by Forest (2006). As recalled by this
author, various homogenization techniques may be used to deduce manageable
continuous models for such cellular materials. Most of these models belong in non-
classical continuum mechanics including micropolar (cf. Kumar and McDowell
2004; Spadoni and Ruzzene 2012), micromorphic (cf. Forest 2006) and strain gra-
dient (cf. Auffray et al. 2010) ones, while being not limited to an elastic behaviour.
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Configurational Mechanics

“Configurational mechanics” is that part of continuum mechanics which deals with
the energy type of forces that drive material inhomogeneities in the form of extended
or abrupt defects (e.g., inclusions, dislocations, disclinations, fracture fronts, trans-
formation fronts). It is thus an integral part of the theory of material inhomogeneities
(cf. Maugin 1993, 2011). The interest for such a fruitful branch of continuum
thermo-mechanics is enhanced by the fact that its fundamental equations (balance of
so-called pseudo-momentum and of energy) apply simultaneously to all physical
effects present in a system, and thus to both usual degrees of freedom—also in their
higher-order gradient theory—and internal ones or other present fields—such as
electromagnetic fields and internal variables of state. This can easily be acknowl-
edged in the general theory offields and the allied application of invariance theorems
such as those proved of Emmy Noether (1918). The generality of the method is
exemplified by the following abstract example. Let /a; a ¼ 1; 2. . . a set offields that
depend on the classical parametrization of nonlinear continuum mechanics,
Newtonian time t and material co-ordinates XK ; K ¼ 1; 2; 3, i.e., /a ¼ /a XK ; tð Þ. In
the absence of dissipation we consider a variational formulation of the
Lagangian-Hamiltonian type, with Lagrangian density per unit volume

L ¼ L _/a; @/a=@XK
� �

ð4:4Þ

for a so-called first-order gradient theory. The resulting Euler-Lagrange equations,
also called field equations per se, are

@

@t
@L

@ _/a

� �
þ @

@XK

@L
@ @/a=@XKð Þ
� �

¼ 0; a ¼ 1; 2; . . .

Appealing to the invariance of L under time translation and translation in XK-
space and applying Noether’s theorem (see Chap. 4 in Maugin 2011), one obtains a
scalar conservation law in the explicit form of an energy equation

@H
@t

����
X
�rR:Q ¼ 0; ð4:5Þ

and a co-vectorial (material) balance law called the balance of pseudo-momentum as

@P
@t

����
X
�divRb ¼ 0; ð4:6Þ

where we defined the following canonical quantities:

• energy (Hamiltonian density):
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H : ¼
X
a

_/a @L=@ _/a
� �

� L; _/a � @/a=@t; ð4:7Þ

• energy flux vector:

Q ¼ QK : ¼�
X
a

_/a @L
@ @K/

að Þ

( )
; ð4:8Þ

• canonical (here material) momentum:

P ¼ PK : ¼�
X
a

@/a

@XK

@L
@ @/a=@tð Þ

( )
; ð4:9Þ

• canonical stress tensor:

b ¼ bKL : ¼� LdKL �
X
a

@/a

@XL

@L
@ @/a=@XKð Þ

 !( )
: ð4:10Þ

What must be principally gathered from the above is the essentially different
nature of the Euler-Lagrange equations for which one such equation is written for
each field—or in a more mechanical jargon, each degree of freedom—and of the
canonical equations of energy and momentum—e.g., (4.5) and (4.6)—which per-
tain to the whole physical system and by necessity consider all fields simultaneously
[note the summation over a in the definitions (4.7) through (4.10)].

The above-given formulation is called canonical because it does not depend on
the precise physical meaning of the fields /a. In classical small-strain elasticity the
/a’s are the three Cartesian displacement components ui; i ¼ 1; 2; 3 while

L ¼ 1
2
q0 _u

2 �W eð Þ; e ¼ eij ¼ 1
2

ui;j þ uj;i
� 	
 �

: ð4:11Þ

Then Equations the Euler-Lagrange equations and Eqs. (4.6) and (4.7) are given
by (cf. Maugin 2011, Sect. 3.2.1)

q0
@2ui
@t2

� @

@xj
rji ¼ 0; rji ¼ @W

@eij
; ð4:12Þ

@

@t
1
2
q0 _u

2 þW

� �
� @

@xj
rji _ui
� 	 ¼ 0; ð4:13Þ
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and

@

@t
pwi � @

@xj
bji ¼ 0 ð4:14Þ

where the “wave momentum” pwi and the “Eshelby material tensor” bji are given by

pwi ¼ �q0 _ujuj;i ð4:15Þ

and

bji ¼ � Ldji þ rjkuk;i
� 	

: ð4:16Þ

Equation (4.14) is very useful in many applications, including in fracture theory
where the celebrated J-integral follows from the volume integral of the second term.
In the presence of material inhomogeneities, thermal effects and dissipative pro-
cesses, source terms are present in the right hand side of Eqs. (4.13) and (4.14)—
see Maugin (2011) for all these developments. But in the present context it is of
greater interest to see how these equations are modified in some theories of non-
classical continuum mechanics on account of the canonical nature of the definitions
(4.7) through (4.10). First, these definitions are readily extended to the elasticity
with higher-order gradients such as the strain-gradient elasticity [cf. Maugin and
Trimarco (1992) in finite strains]. In the small-strain approximation of this theory,
(4.15) is left unchanged (there are no additional dynamic degrees of freedom) while
(4.16) is generalized to

bji ¼ � Ldji þ �rjpup;i þ 2mjpquq;pi
� 	þ mjpqup;i

� 	
;q; ð4:17Þ

wherein

rji ¼ �rji � @

@xk
mkji � dW

deij
; ð4:18Þ

with

�rji ¼ @W
@eij

; mkji ¼ @W

@ eji;k
� 	 ; W ¼ W eij; eij;k

� 	
: ð4:19Þ

But the formalism (4.7) through (4.10) also admits the inclusion of additional
dynamic degrees of freedom as they exist in the case of Cosserat or micropolar
continua. The finite-strain, finite-internal rotation case of configurational mechanics
was given by Maugin (1998). For the illustrative case of small strains and small
angle excursions of the rigid internal microstructure, in the absence of externally
applied body force and couple, we have first the basic field equations of linear and
angular momenta in the form (cf. Eringen 1968)
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q0
@2ui
@t2

� @

@xj
rji ¼ 0; ð4:20Þ

and

q0 jij
@2/j

@t2
� @mji

@xj
� eipqrpq ¼ 0; ð4:21Þ

where /j are the vector components of a small rotation angle, mji are the compo-
nents of the couple-stress tensor, and eipq is the alternating symbol. Obviously, the
Cauchy stress tensor of components rji is no longer symmetric. For the sake of
simplicity the micro-inertia j is taken isotropic: jji ¼ Idij. The elastic constitutive
equations are given by

r ¼ @ bW
@e

; m ¼ @ bW
@c

; W ¼ bW e; c
� �

ð4:22Þ

with strain measures e and c defined by

e :¼ ruð ÞT þ dual / ¼ eji ¼ ui;j � ejik/k

� 

; c :¼ r/ ¼ cji ¼ /i;j

� 

: ð4:23Þ

On account of the above introduced approximations, the canonical balance
equation of momentum takes on the following form for a homogeneous material

@

@t
pwi � @

@xj
bji ¼ 0; ð4:24Þ

wherein

pwi ¼ �q0 _ujuj;i þ I _/j/j;i

� �
; ð4:25Þ

and

bji ¼ � Ldji þ rjkuk;i þmjk/k;i

� 	
; ð4:26Þ

with a Lagrangian density now given by

L ¼ 1
2
q0 _u

2 þ 1
2
q0I _/k

_/k � bW : ð4:27Þ

Note that although (4.24) basically is an equation of linear momentum [resulting
from the invariance of the whole physical system under consideration by transla-
tions of the coordinate parametrization in space (i.e., material space in modern
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jargon)], both the wave momentum (4.24) and the Eshelby stress (4.26) involve the
internal degree of freedom of rotation on equal footing with the usual displacement.
Equations (4.24) through (4.26) follow directly from the canonical expression of
Noether’s theorem applied to the basic fields ui;/ið Þ with a visible summation over
terms generated by these two fields. This opens the path to the study of fracture and
the propagation of phase-transformation fronts in non-classical continuum
mechanics (cf. Maugin 1998, 2011). Other books dealing with configurational
forces are by Gurtin (2000) and Li and Wang (2008).

Caveat. Some authors have mistaken the equation of canonical (material)
momentum with a simple material version of the equation governing solely a
microstructure. This is erroneous as clearly emphasized above after Eq. (4.10) and
illustrated in Eqs. (4.24)–(4.27)—see also the flow chart in Maugin (1998) or
Fig. 9.1 in Maugin (2011, p. 260).
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Connection and Torsion

These two notions in a modern context of differential geometry are due to the
French geometer Elie Cartan (1869–1951). This scientist was interested in more
complex geometries than the Riemannian one that had just received a beautiful
application with the gravitation theory of Einstein (“General relativity”)—cf. Cartan
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(1922, 1923, 1925, 1935). Unlike standard Riemannian spaces with their Christoffel
symbols and Riemannian curvature, this non-Riemannian geometry considered a
connection defined independently of the metric and a possible “torsion” in addition
to, or independently of, any curvature. This is theoretically engaging but what about
physical applications? Cartan immediately thought of the possible geometric rep-
resentation of some rotational effects (but the physical spin of quantum mechanics
was not yet discovered) and he—an expert in group theory—certainly perceived of
some relationship with generalized continuum as he praised the original work of the
Cosserat brothers of 1909, where these authors placed rotational and translational
degrees of freedom on an equal footing in their variational formulation constrained
by some “Euclidean invariance”. Cartan could not imagine that his concepts would
find applications in the continuum mechanics of defective materials such as those
endowed with continuous distributions of dislocations and disclinations (i.e.,
plastically deformed bodies). Cartan’s affine connection and torsion play a funda-
mental role in the theories of finite-strain elasto-plasticity and the theory of material
growth as happens in soft biological tissues, and more generally in the geometric
theory of evolving structural rearrangements. Authors like K. Kondo, E. Kröner, B.
A. Bilby, W. Noll, C.C. Wang; M. Epstein and G.A. Maugin have been strongly
influenced by this geometric vision. A few examples of their works are provided by
Bilby et al. (1955), Ciarletta and Maugin (2011), Epstein and Maugin (1990, 2000),
Noll (1967), Wang (1967), and Yavari and Goriely (2012). A historical perspective
is given in Maugin (2014).
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Contiguity

The word “contiguity” (not to be confused with “continuity”) refers to the fact that
mechanical action on a point (the “element” of continuum mechanics) is due to its
direct environment. The first manifestation of this may be traced back to John
Bernoulli’s (1739) consideration that the fluid on one side of an infinitesimal slice
pressed normally upon that slice, so that Johann was close to the notion of internal
pressure and thus a concrete view of contiguity of action in continuum mechanics,
in a line that Leonhard Euler in the period 1749–1752 and Augustin L. Cauchy in
the period 1823–1828 will expand, yielding finally the notion of stress. Indeed,
pressure was seen as the action from all sides and from neighbouring elements of
fluid on an isolated element of fluid (a “particle”). In modern terms, it is isotropic
and, with Euler, will be viewed as normal force acting on an element of surface.
The notion of contiguity is thus definitely reached while pressure becomes a true
field that depends on both space and time in the general case of dynamics. Cauchy
obtained his (our) notion of stress by considering the possibility of an obliquely
applied force on an element of surface (cf. historical developments in Chaps. 2 and
3 in Maugin 2014). This is the very basis of classical continuum mechanics.

However, this notion of contiguity seems to be seriously questioned for the first
time by Duhem (1893). With his usual inquisitiveness this author asks whether
farther distant elements of the continuum, if not material points of the whole body,
are causes of the mechanical response at a particular point. In modern terms, one
would have to envisage a kind of non-local interaction, no longer by direct contact
even though closer points may have a stronger influence than distant ones. This
brings us to the modern vision of (strong) non-locality where space functionals have
to replace point-like constitutive equations. Peridynamics is the last avatar of this
notion. Some of these developments may find a vague ancestry in some posthu-
mously published work of 1854 by Gabrio Piola (see Piola 2014). Between the
contiguity (contact action) of Euler and Cauchy and the strongly non-local theory,
one may find a weakly non-local theory where the mechanical response is still
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point-like, but depending on further gradients of the displacement field or of den-
sity. Then one deals with gradient theories of which the merits can be compared to
those of the strongly non-local one (cf. Maugin 1979). Both weakly and strongly
non-local theories belong to non-classical continuum mechanics.
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Continua with Latent Microstructure

This denomination was coined by G. Capriz in a somewhat abstract framework and
applies to a general class of microstructured continua in which each point has
associated with it a set of “order parameters” (Note: This is not a good choice of
vocabulary) which may be interpreted as coordinates of an element in an appro-
priate manifold M of dimension m. Examples of such continua are provided by
continua with voids, liquids with non-diffusive bubbles, liquid crystals, Cosserat
continua, biaxial nematics, continua with vector microstructure, micromorphic
continua, bodies with continuous distribution of dislocations, superfluid helium.
M can be straightforwardly defined for each of these cases (cf. Capriz 1989). Apart
from the abstract and often useless mathematical formalism, this does not bring any
really new features, save for the unified presentation. The notion of “latent
microstructure” more precisely applies to the case where a constraint is applied to
the microstructure. By accounting for this constraint, only an indirect trace of the
microstructure remains—through contributions in the classical linear momentum
equation. Only the apparent placement remains to be determined, so that the
microstructure can be said to be “latent”. An example of such a situation is provided
by the case of a Cosserat continuum with constrained rotation (i.e., micro-rotation
velocity always equal to the macro-rotation velocity).
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Continuously Defective Materials

We are all familiar with the ideal picture of a perfect and regular atomic arrange-
ment of “atoms” in a crystal. But this is rather infrequent in nature except perhaps
with purest gems. Since industrial materials command a much lower price, most
materials present defects, in fact plenty of them. These defects are identified under
various names as dislocations, disclinations, point defects, vacancies, microcracks,
twin boundaries, stacking faults, etc. They are singular points, lines and surfaces
that are usually not allowed by the regularity assumptions at the basis of classical
continuum mechanics (where most fields are assumed of continuity class C2 in
order to apply operations of vector and tensor analysis). On the other hand,
structural defects are so numerous that in a continuum description one must
envisage continuous distributions of them, with a well defined density (such is the
case for dislocations that allow for the plasticity of many materials). We may then
speak of continuously defective materials. Special mathematical tools may have to
be introduced to cope with such situations. This includes generalized gradient
operators and elements of Riemannian and non-Riemannian geometries.

Cross references: Configurational mechanics, Connection and torsion, Defects
in GCM, Dislocations and disclinations, Gradient plasticity, Material inhomo-
geneities (theory of), Non-Euclidean geometry of defective materials.

Cosserat Continua

Following a pioneering work of E. & F. Cosserat (1909; see also Maugin 2014),
one usually refers as “Cosserat continua” those continua which, in addition to the
usual translational degree of freedom (displacement)—at each material point—of
the Euler-Cauchy-Navier theory of continuum mechanics, exhibit also an
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independent rotational degree of freedom that, by duality, generates couples both in
volume and at surfaces. The corresponding internal force field at surfaces (a torque
per unit area) is called couple stress. A consequence of the presence of such a field
is the loss of symmetry of the Cauchy stress. The newly introduced internal degree
of freedom is a field of a kind of rigid-body rotation. Cosserat continua are also
called polar or micropolar continua (cf. Eringen 1968, 1999) or else oriented
continua or still media with asymmetric stress (cf. Grioli 1960; Nowacki 1986).
Early works on Cosserat media are by Günther (1958), Neuber (1964), and
Schaeffer (1967). Other historical developments are reported in Maugin (2014).
Technical details are to be found in other entries (see cross references).
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Cosserat Continua (Experimental Confrontation)

Although one can easily identify media that deserve to be viewed as Cosserat
continua, the presence of rather numerous new material coefficients in their theo-
retical formulation poses a problem from the experimental viewpoint, i.e., the
estimate of these numerical values. One early attempt by means of an artificially
conceived elastic material (matrix with embedded foreign particles) was offered by
Gauthier and Jashman (1975) at the Colorado School of Mines. This was rather
inconclusive. But the most extended investigation of the subject seems to be by
Roderick S. Lakes in Wisconsin during an extended period (1980–1990s).
Favoured materials of study of this author in this context are natural porous bone,
metallic foams and cellular materials. These selected materials with microstructure
are shown experimentally to obey the Cosserat theory (in its micropolar form
rather) more closely than classical elasticity. The technical methods used in this
study involve holography in particular. The most relevant typical effects include the
size effect and the existence of length scales, enhanced toughness (reduction of
stress concentration at small holes), enhanced effect in torsion, negative Poisson
ratio, and frequency-dependence (i.e., dispersion) for some wave processes. The
Cosserat elasticity constants obtained in different experimental modalities have
been compared successfully for internal consistency.
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Cosserat Eugène and François

The two brothers Eugène COSSERAT (1866–1931) and François COSSERAT
(1852–1914) were, respectively, a mathematician-astronomer (an alumnus of the
Ecole Normale Supérieure in Paris and professor at the University of Toulouse in
the south west of France) and a civil engineer (who belonged to the prestigious
“Corps des Ponts et Chaussées” after graduating from the Ecole Polytechnique in
Paris). Apart from their own professional occupations, they joined efforts to ponder
fundamental points in the bases of continuum mechanics. Their main common
works in the field are a pioneering study of finite deformations in elasticity
(Cosserat E & F 1896) and a very original long memoir of 1909. In the last work
with a rather general title, “Théorie des corps déformables” (Cosserats 1909), that
was to become famous after its rediscovery by C.A. Truesdell, they offered a
pioneers’ vision of generalized continua (introduction of couple stresses). They
more or less were forced to consider the possible existence of internal couples by
imposing an invariance (so-called Euclidean invariance) in a Lagrangian-
Hamiltonian formulation, which invariance treats on an equal footing translations
and rotations. This gave rise to the possible existence of a new type of internal
force, the couple stress along with that of stress, and the possibility to have non-
symmetric stresses. This was a first application of an argument of elementary group
theory in continuum mechanics. This work sparked a study of such generalized
continua in the 1960s–1970s under different coinages: asymmetric elasticity,
Cosserat continua, polar media, oriented continua, micropolar media.
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Cosserat Point

To understand this a priori strange concept one must recall the role played by
«directors» in oriented media of various dimensions, in particular in the kinematic
description of slender objects such as shells and plates or rods, objects thin in one or
two of their dimensions, respectively. That is, in passing from a three-dimensional
body to a thin one along it thickness—correctly, an asymptotic procedure—such as
for a shell or a plate, one is tempted to introduce a kinematics that accounts for the
material point on this essentially two-dimensional (Cosserat) “surface” equipped
with a director d3 of varying length orthogonal to that surface and modelling the
deformation through the small thickness [a basic idea of the Cosserat brothers
(1909), but also Ericksen and Truesdell (1958), and Naghdi (1972)]. Similarly, in
describing the deformation of an object such as a rod or a filament obtained by
considering small deformation over the section of this essentially one dimensional
(Cosserat) “curve”, it seems attractive and natural to introduce two directors that
describe the deformation across the section [also a basic idea due to the Cosserat
brothers (1909), but taken over and entertained by many modern mechanicians such
as Antman (1972), and Green et al. (1974)]. Pursuing along the same line of
thought in reducing the essential physical dimension of a deformable object
(passing from three dimensions to a “Cosserat surface” and then a “Cosserat curve”)
while increasing simultaneously the number of needed directors, one naturally
arrives at the concept of a body that is a “Cosserat point”—a body “thin” in its three
dimensions—but that requires three (or more) directors for the description of its
small volume, more or less complicated, deformation. This type of approach, well
cultivated by Rubin and co-workers (cf. Rubin 1985, 2000), is motivated and
proved useful by its applicability to the numerical solution of continuum problems.
Is thus introduced the notion of 3D brick Cosserat-point elements. For instance, a
3D eight-noded brick element involving seven directors allows the account of
homogeneous and inhomogeneous deformations that include bending, torsion and
higher-order “hour glassing” (nonphysical zero energy mode of deformation that
produces zero strain and no stress). We refer the reader to Rubin and co-workers for
developments of the allied numerical schemes and fruitful applications.
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Couple Stress

In the same way as the traditional stress is the internal force response to a force per
unit area—according to Cauchy’s celebrated argument—, couple stress is the
internal force response to a torque per unit area, so that we can write in parallel the
two formulas (cf. Prerequisites):

Td ¼ n:r or Td
i ¼ njrji ð4:28Þ

and

Md ¼ n:l or Md
i ¼ njlji ð4:29Þ

where the couple stress tensor of components lji is axial on its second index i. Of

course while the applied traction Td is in duality with a displacement to produce a
work, the applied torque Md is in duality with a rotation. Whether this rotation is
independent or related to the macro-rotation based on the displacement is a debated
matter. The material realization of Md may be a problem, and even difficult to
conceive. But the strict parallelism between Eqs. (4.28) and (4.29) practically is a
logical necessity according to the pioneering work of the Cosserat brothers (1909)
where a physically accepted invariance (so-called Euclidean invariance) places
translational and rotational degrees of freedom on equal footing. The notion of
couple stress is a basic ingredient in many theories of nonclassical continua (cf.
Cosserat continua, micropolar continua, oriented media, etc.).
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Couple Stress (in Medium with Constrained Rotation)

This is the original theory of nonsymmetric stresses proposed by Mindlin and
Tiersten (1962) where, in addition to body forces ðfÞ and surface tractions ðTdÞ,
there are applied body couples ðcÞ and surface couples ðMdÞ. The latter act in
duality with the medium’s angular velocity (defined from the velocity field:
X ¼ r� v=2) so that no new kinematics need be introduced (i.e., no additional
internal degrees of freedom). The integral form of the balance equations of mass,
linear momentum, angular momentum and energy is given by the following set for
a simply connected material body V of regular bounding surface S ¼ @V equipped
with unit outward normal n:

d
dt

Z
V

q dV ¼ 0; ð4:30Þ

d
dt

Z
V

qv dV ¼
Z
S

TddSþ
Z
V

qf dV ; ð4:31Þ

d
dt

Z
V

x� qv dV ¼
Z
S

x� Td þMd
� 	

dSþ
Z
V

x� f þ cð Þq dV ; ð4:32Þ

d
dt

Z
V

q
1
2
v2 þ e

� �
dV ¼

Z
S

Td:vþMd:X
� 	

dSþ
Z
V

q f:vþ c:Xð ÞdV ; ð4:33Þ

where e is the internal energy per unit mass. Application of Cauchy’s tetrahedron
argument to the second and third equations yields the introduction of the classical
(force-) stress tensor r and the couple-stress tensor l by the relations

Td ¼ n:r; Md ¼ n:l: ð4:34Þ

The local forms of (4.31) and (4.32) are shown to read

rji;j þ qfi ¼ q
dvi
dt

or r:rþ qf ¼ q
dv
dt

ð4:35Þ
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and

lji;j þ qci þ eijkrjk ¼ 0; ð4:36Þ

where eijk is Levi-Civita’s alternating symbol. From the last equation we obtain the
antisymmetric part of the stress as

rAkl ¼
1
2
ejlklij;i þ

1
2
ejlkqci: ð4:37Þ

Hence (4.35) can be rewritten as

r:rS þ 1
2
r�r:lþ qf þ 1

2
r� qc ¼ q

dv
dt

; ð4:38Þ

where rS is the symmetric part of the stress such that r ¼ rS þ rA.
On defining the deviator

lDij ¼ lij �
1
2
lkkdij ð4:39Þ

and noting the identities

ejklvl;kj � 0; elmjlkk;jm � 0;

Equation (4.38) transforms to

r:rS þ 1
2
r�r:lD þ qf þ 1

2
r� qc ¼ q

dv
dt

; ð4:40Þ

while the localization of the energy balance (4.33) reduces to the following
remarkable form:

q
de
dt

¼ rSijDij þ lDijXj;i; Dij ¼ 1
2

vi;j þ vj;i
� 	

; Xj ¼ 1
2
ejklvl;k: ð4:41Þ

This exhibits the thermodynamic duality between rS and the rate of strain D on
the one hand and between the deviator lD and the gradient of the angular rotation
vector on the other.

In this state of generality it remains to specify the expression of the natural
boundary conditions which are none other than (4.34) on the regular boundary
S ¼ @V . These are obtained by substituting from the detailed expressions of r and
l. That is,

nir
S
ij þ

1
2
niekjil

D
lk;l �

1
2
niekji nll

D
lmnm

� 	
;ki¼ Td

i � 1
2
niekjiqck � 1

2
niekji nlM

d
l

� 	
;k; ð4:42Þ

Couple Stress (in Medium with Constrained Rotation) 55



and

elkjnknil
D
ij ¼ elkjnkM

d
j : ð4:43Þ

Along an edge (discontinuity line in the unit normal), the following jump
condition applies

n:lD:n
h i

¼ n½ �:Md: ð4:44Þ

Note that in usual conditions the scalar of the couple stress remains completely
indeterminate, and this results in an indeterminacy of rAki

Remark
It is clear that the present theory is a very special case of a second-gradient theory as
shown by the energy Eq. (4.41). The complexity of (4.42) casts doubts on the easy
applicability of this theory. But, overall, it is the presence of the body couple in the
final linear momentum equation that is perturbing (the situation is even worse when
an internal spin exists). Recently, Hadjesfandiari and Dargush (2011) have pro-
posed a consistent size-dependent couple-stress theory that claims to eliminate all
inconsistencies in earlier proposed generalized continuum mechanics of the local
type, where the couple stress now is necessarily symmetric (so as to avoid inde-
terminacy in the related boundary conditions).
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Chapter 5
D: From “Defects in GCM” to “Duhem
Pierre”

Defects in GCM

The observed frequent occurrence of structural defects of various types (disloca-
tions, disclinations, microcracks, etc) in elastic crystals coincides with the naturally
introduced framework of generalized continuum mechanics. This is all the more
supported by a historical perusal of the matter that the introduction of such gen-
eralized models of continua in the 1960s was often kindled by the will to come to
grips with unphysical singularity fields. One main question at the time was whether
these models could cope with—or eliminate—the physically inadmissible singu-
larities exhibited in some prototypical problems of classical continuum mechanics.
This concerns particularly models such as couple stresses, Cosserat continua,
micromorphic and micropolar continua, multipolar continua, gradient models, and
finally nonlocal ones. This is illustrated by a continuous quest for nonsingular
solutions in many of these models, the stress concentration around a hole, and
dislocation and crack-tip problems being emblematic. This quest started as early as
the first published detailed papers on generalized continuum mechanics (cf. Koiter
1964; Kaloni and Ariman 1967; Sternberg 1968), but was accelerated in the 1970
and 1980s with the expansion of nonlocal continuum mechanics (cf. Eringen 1976,
1977a, b, 1979; Ari and Eringen 1983; Kim and Eringen 1973; Eringen et al. 1977)
and the many works of Lazar and Maugin (2004a, b, 2005, 2006, 2007) and Lazar
et al. (2005, 2006) which had for main purpose to establish and illustrate firm
results and compare these results for various GCM theories. We can state that the
crop was not so encouraging in spite of many technicalities, except perhaps in cases
considering strong nonlocality (cf. Eringen 1979) or mixing the ideas of polar and
gradient theories.
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Density-Gradient Fluids

[See Entries: Capillarity, Gradient elasticity, Higher-order gradient theories,
Interstitial working, Korteweg fluids].

Differential Geometry in Nonclassical Continuum
Mechanics

It took some time to mechanicians—who were mostly analysts—of the continuum
in the nineteenth century to acknowledge the basic role played by differential
geometry in their science. Some elements—infinitesimal distance, metric, curvature
—of Riemannian geometry at most were involved. A more precise intervention of
this geometry transpires in now well accepted treatises (e.g., Marsden and Hughes
1983; Frenkel 1997, Appendix A). With nonclassical continuum mechanics more
recent advances such as non-Riemannian geometry, differential forms, connections
and torsion, and fibre bundles had to be introduced in order to apprehend more
inclusively the fundamental picture of the mechanics of defective bodies.
A predominant role in this evolution was due to mechanicians (K. Kondo, E.
Kröner, B.A. Bilby, W. Noll, C.C. Wang) who captured the significance of the
innovative works of Elie Cartan (1869–1951) who himself was much influenced by
those of Pfaff, Lie and Killing in the nineteenth century. This was permeated by an
incursion of group theoretical concepts that can be traced back to the original works
of the Cosserat brothers on generalized continua (so-called Cosserat continua).
Some very meaningful works are represented by Bilby et al. (1955 and subsequent
works), Kondo (1955), Kröner (1958), Noll (1967), Wang (1967). Recent trends are
illustrated by the book of Epstein (2010) and the works of Zubov (1997) and Yavari
and Goriely (2012). A historical perspective is given in Maugin (2014).
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Dilatational Elasticity

This is another name given to the theory of elasticity with voids (See Entry:
Materials with voids).

Dipolar Continua

Dipolar continua are stricto sensu continua that obey a special kind of generalized
continuum mechanics. They constitute a special class of multipolar continua, as
originally introduced by Green and Rivlin (1964), and further expanded by Mindlin
and Tiersten (1964). In such dipolar continua, each particle is composed of sub-
particles that interact by means of so-called dipolar forces (first order approxi-
mation). The continuum representation of such microstructured continua yields a
gradient-type of elasticity which, in dynamics, exhibits an additional inertia term
involving the Laplacian of the acceleration. Typically, in the absence of prescribed
body force and body couple, one obtains a local equation of linear momentum in
the following form:
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sij � mijk;k
� �

; j¼ q€ui � g€ui;j
� �

; j; ð5:1Þ

where

g ¼ qh2=3: ð5:2Þ

The last quantity is the inertia of the microstructure seen as a collection of
sub-particles of cubic shape (2h is the length of the cube edges). Here sij and mkij

are standard symmetric stresses and hyperstresses, respectively. In the simplified
framework proposed by Aifantis (1992), we will have macroscopically isotropic
materials constitutive equations of the form

sij ¼ kekkdij þ 2leij; mijk ¼ l2sij;k ð5:3Þ

where l is a length scale.
The main interest of the model (5.1) is the intervening of the additional inertia in

dynamic problems such as surface waves on an elastic microstructured substrate.
This was dealt with by Georgiadis and co-workers (e.g., Georgiadis and Velgaki
2003; Georgiadis et al. 2004).
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Directors’ Theory

[See Entries: Generalized continuum mechanics, Liquid crystals as continua, Liquid
crystals (Ericksen-Leslie theory), and, mainly, Oriented media (with directors)].
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Dislocations and Disclinations

Dislocations and disclinations are structural defects, i.e., they are the manifestation
of distortions in the perfect (periodic) ordering prevailing in a crystalline structure.
But this matter must be examined in both discrete-crystal and continuous pictures.
The mathematical notion was introduced by Volterra (1907)—without this
naming—as manifestation of a discontinuity in elastic displacement and was
illustrated by an astute thought experiment (“cut, displace, and glue back”). This
creates a disturbance of the mechanical fields in the neighbourhood of this dis-
continuity. However, it is in the discrete approach that a more vivid picture can be
obtained. For instance, for a so-called edge dislocation, it is the edge of the extra
half-plane of atoms introduced in a regular crystal lattice which is called the edge
dislocation. More generally, if we go along a circuit around the dislocation line of
unit tangent s, one observes a lack of closure that is a finite number of the basis
vectors of the lattice. This is called the Burgers vector usually noted b. This vector
is parallel to s for a screw dislocation and perpendicular to s for an edge dislocation.
In practice many dislocations are mixed (see e.g., Friedel 1964) when the line
direction and the Burgers vector are at any angle. The relationship of the notion of
dislocation (name given by Taylor) and the phenomenon of plasticity was estab-
lished almost simultaneously by three authors: G.I. Taylor, M. Polanyi and E.
Orowan (in particular Taylor 1934). They proposed that shear could be caused by
the propagation of elementary linear defects they called dislocations. The insight of
these scientists was all the more remarkable that the experimental proof of the
existence of dislocations as individual objects had to await the 1950s with the
invention of electronic microscopy.

Dislocations are observed to move under the influence of a change of the local
state of stresses caused by the application of external loads. Dislocations can move
by slip (in the plane formed by the Burgers vector and the line tangent) or by climb
(motion outside the slip plane). Their motion propagates the plastic deformation,
i.e., they ease the ductility of materials. They can interact between them, but also
with the lattice and point defects. In the case of the lattice that is periodic the
displacement of a dislocation needs to overcome energy barriers, a phenomenon
akin to friction. The corresponding friction force is called the Peierls-Nabarro
force. In the case of mobile point defects (foreign atoms, impurities), dislocations
attract them to form so-called Cottrell clouds. This hinders the motion of dislo-
cations. In turn this explains why pure metals are more ductile than alloys. When a
dislocation is strongly pinned on immobile atoms, one observes a curving of the
dislocation line ultimately forming a free circular dislocation and thereby a multi-
plication of dislocations. This is the mechanism of Frank-Read. The Portevin-
Lechatelier phenomenon, observed as oscillations on a traction curve, is related to
the successive pinning and unpinning of slowly moving dislocations on mobile
atoms at different sites. Dislocations can also interact with precipitates. In mathe-
matical terms dislocations can be viewed as topological defects akin to solitons.
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Disclinations in principle are related to a discontinuity in a rotation angle instead
of a displacement. They are particularly frequent in liquid crystals.

In the context of this book, the notion of geometrically necessary dislocations
(for short GNDs) is of importance. Indeed, if one envisages the bending of a regular
lattice, this can be realized only if dislocations are introduced to justify the angle
difference between the original atomic planes. These are GNDs. This lattice cur-
vature involves a gradient of strain, and will ultimately yields a necessary rela-
tionship between GNDs, plasticity and a strain-gradient theory. The basic relation
here is that originally introduced by the crystallographer-glaciologist Nye (1953)
between lattice curvature and the density tensor of dislocations. That is, if the
curvature tensor jij is defined as a small right-handed lattice rotation dh about the
i-axis for a unit change of position of magnitude dx in the j-direction, i.e.,

dhi ¼ jijdxj; ð5:4Þ

then Nye’s tensor aij relates the GND density to the lattice curvature in the fol-
lowing manner (cf. Arsenlis and Parks 1999; this is minus Nye’s original formula)

jij ¼ � aji � 1
2
akkdij

� �
: ð5:5Þ

This can be derived by evaluating the gradient of the displacement gradient

ui;k ¼ cik þ/ik þ eelik; ð5:6Þ

where the three contributions stand for the plastic slip tensor, the skew part of the
rotation tensor and the symmetric elastic strain tensor, and then noting that
/ik ¼ eilkhl—where hl is the lattice rotation vector, and finally forming the quantity

epjkui;kj � 0 ð5:7Þ

and evaluating the contribution epjkcik;j in terms of the plastic deformation and the
crystallographic shears (Schmidt’s formula) and the dislocation densities (cf.
Arsenlis and Parks 1999).
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Double Force

While studying self-equilibrated systems of forces and the superposition of forces
with non-common points of application, Ziegler (1995; pp. 71–73) specifies the
notion of double forces giving rise to both forces and couples. This notion appears
in the Green and Rivlin (1964b) theory of multipolar continua. Specializing to the
theory of dipolar continua (Green and Rivlin 1964a where there is only one dis-
placement vector field, but dipole forces are considered) as examined by Tiersten
and Bleustein (1974), this can be illustrated by the exploitation of the equation of
conservation of energy in global form

d
dt

Z
V

q
1
2
vivi þ e

� �
dV ¼

Z
V

q fivi þwjivi;j
� �

dV þ
Z
S

Td
i vi þDjivi;j

� �
dS: ð5:8Þ

Here fi and Td
i are standard body force (per unit mass) and standard

surface-traction vector per unit area. The new quantities are so-called double force
wji per unit mass and surface double force Dji per unit area. The last two quantities
are generally not symmetric and therefore accept a decomposition into symmetric
and skewsymmetric contributions such as

wji ¼ wðjiÞ þw½ji�;Dji ¼ DðjiÞ þD½ji�: ð5:9Þ

If the symmetric parts are identically zero, then setting

w½ji� ¼ wji ¼
1
2
ejikck; D½ji� ¼ Dji ¼ 1

2
ejikM

d
k ; ð5:10Þ

Equation (5.8) reduces to the couple-stress case where ck and Md
k are compo-

nents of couples per unit mass and unit surface, respectively. Then Eq. (5.8) above
reduces to Eq. (5.11) in the entry “Couple stress (in medium with constrained
rotation)”. Introduction of the classical ( force-) stress tensor r and the couple-
stress tensor l will follow by an application of the tetrahedron argument yielding
the Cauchy-like relations
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Td ¼ n:r; Md ¼ n:l: ð5:11Þ

It is then shown that r is not symmetric due to the existence of the couple c.
All becomes more complicated with nonvanishing symmetric parts of wji and

Dji. It can well be conceived that the symmetric and skewsymmetric parts of wji are
given in terms of another theory (e.g., in electromagnetic continua; see below). It
remains difficult to discuss, but formally, the role played by the symmetric part of
Dji. This is thoroughly discussed by Tiersten and Bleustein (1974, pp. 79–84) to
whom we refer.

[Remark: Electromagnetic continua. In such media considered in
quasi-electromagnetostatics, (i.e., neglecting electromagnetic inertia) it is shown
that the ponderomotive force and couple due to electromagnetic fields are given by
the expressions

f emi ¼ temji;j ; cemk ¼ ekjit
em
ji ; ð5:12Þ

where temji is a generally not symmetric stress tensor that is formally quadratic in the
components of the electromagnetic fields. It is a true dyadic in the sense of Gibbs.
Then the following identity is easily proved:

Z
V

f emi vidV ¼
Z
@V

Tem
i vidS�

Z
V

temji vi;jdV ; Tem
i ¼ njt

em
ji at @V : ð5:13Þ

Furthermore,

temji vi;j ¼ temðjiÞDij þ tem½ji�v½i;j� ¼ temðjiÞDij þ cemi Xi; ð5:14Þ

where

Dij ¼ vði;jÞ ¼ 1
2

vi;j þ vj;i
� �

; Xi ¼ eijkvk;j: ð5:15Þ

Thus the electromagnetic interactions with deformable matter can be represented
by a bulk double force (symmetric double force and a couple) and a surface force,
as exploited in the formulation of the mechanics of electromagnetic continua by
means of the principle of virtual power by the author (Maugin 1980, synthesizing
works of the 1970s)].
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Duhem Pierre

Pierre Duhem (1861–1916), probably one of the most powerful intellects of his
time, is a remarkable character. He combines in one person a brilliant and sharp
mind, a prolific writer and contributor to phenomenological physics, the champion
of energetics, a philosopher of science, and the true creator of the history of
medieval science. He was a pioneer in many facets of continuum physics. He may
be considered one of the founding fathers of generalized continuum mechanics, at
least in two instances, thanks to one of his first deeply thought writings (Duhem
1893). First, according to Truesdell, he is the one who mentioned the possibility to
introduce new internal degrees of freedom in the form of so-called “directors” (a
triad of rigid vectors at each material point in order to describe orientational
changes in some kind of internal rotation; cf. Ericksen and Truesdell 1958).
However, credit should also be granted to Woldemar Voigt (1850–1919) who may
have expressed a similar need in his study of crystals in 1887 that dealt with the
elasticity of crystals involving polarized molecules. Second, according to Edelen
(1976, p. 44), he may also be responsible for the idea of replacing the contiguity
hypothesis of Euler-Cauchy with something more general, that is, some nonlocality,
meaning by that expression the possible dependence of stress and body force at a
point on the state of the whole body. The notion of directors was exploited in the
kinematic description of anisotropic fluids and liquid crystals (Ericksen), as also for
the deformation of slender structural elements such as rods, plates and shells (cf.
Ericksen and Truesdell 1958), and jets in fluids (cf. works by Naghdi). Nonlocal
continuum mechanics now is a chapter that pervades the whole of continuum
mechanics, especially at a micro scale where scale effects are much relevant. The
life and scientific achievements of Duhem were described in detail by Manville
(1927) and Jaki (1984).
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Chapter 6
E: From “Edelen D.G.B.”
to “Extra-Entropy Flux”

Edelen D.G.B

Dominic G.B. Edelen (1929–2010) was an American mathematician with an
extremely wide spectrum of interests (general relativity, astrophysics, geometry,
exterior calculus, mathematical theory of defects, gauge theory, thermodynamics).
In the present context he is mostly known for his rational theory of nonlocal
continuum mechanics, sometimes in association with A.C. Eringen (Eringen and
Edelen 1972). His writings (Edelen 1962, 1969; Edelen and Lagoudas 1988; Edelen
and Laws 1971; Kadic and Edelen 1983) are characterized by a high degree of
sophistication.
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EDGE FORCES

On the surface of bodies that present singular lines (edges) one may imagine in all
generality the datum of lineal forces, also called edge forces. The standard con-
tinuum mechanics of Cauchy and others is not equipped to consider the existence of
such data. To introduce such edge forces, one must revisit the celebrated Cauchy’s
argument that usually envisages bounding surfaces with continuous tangent plane,
although this rarely happens in real situations. It is only recently that the matter was
solved mathematically in two papers of great interest by Dell’isola and Seppecher
(1995) and Noll and Virga (1990).
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Electric Quadrupoles

[See Entry: Ionic crystals (elasticity of)].

Electromagnetic Continua

For many engineers the continuum mechanics of electromagnetic stands like an
over complex and intricate field that belongs more to theoretical and/or applied
physics than to mechanical sciences. But modern applications have led to an
unavoidable consideration of this field. Bases had to be pondered and revisited in
the light of increasing physical knowledge and the whole had to be reformulated in
order to provide a more or less easily exploitable field. This necessary evolution and
resulting richness is illustrated by some treatises (e.g., Eringen and Maugin 1990;
Maugin 1988).

The complexity of the field is reflected in the multiplicity of possible
electro-magneto-mechanical interactions most of which in effect yielding a rather
nonclassical continuum mechanics. These interactions belong in different classes.
First, in a general nonlinear framework, there are direct interactions in the form of
body forces and couples. These are called “ponderomotive” quantities although
applied to volume elements of a body. They can be transformed into the notions of
(Maxwell) electromagnetic stresses and of nonsymmetric Cauchy stress. The
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second possibility is an energy kind of coupling that arises from a simultaneous
dependency of internal energy on mechanical and electromagnetic entities, i.e.,
deformations and electromagnetic fields. Well known couplings in this class are
piezoelectricity, electrostriction and magnetostriction that result from these cou-
plings depending on the assumed material symmetry. Finally, the account of some
microscopic properties (magnetic spin, permanent electric dipoles) will introduce
the notion of electromagnetic microstructure in interaction with the deformation
and stress fields. This is illustrated by the cases of ferromagnetism, micromag-
netism, ferroelectric and ionic deformable crystals as documented in detail in other
entries to this book and to which the reader is referred.
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Ericksen J.L

Jerald L. Ericksen (born 1924) is one of the most original and deep contributors to
the renewal of continuum mechanics in the second half of the twentieth century. He
made fundamental contributions to the mechanics of nonlinear solids and fluids (cf.
Rivlin-Ericksen tensors, Rivlin-Ericksen fluids, etc; cf. Ericksen and Rivlin 1954).
In the framework of nonclassical continuum mechanics, he was one of the most
creative and influential contributor with his introduction of anisotropic fluids
(Ericksen 1960), his modelling of liquid crystals (Ericksen 1961), and the appli-
cation of the director theory while dealing with plates and shells (Ericksne and
Truesdell 1958). A biography of Ericsken is given in Beatty and Hayes (Editors,
2005)—see also Ericksen (1979).
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Eringen A. Cemal

A. Cemal Eringen (1921–2009) was an American Turkish-born engineer-scientist
(cf. Maugin 2011). Educated as a mechanical engineer (PhD 1949 at the Brooklyn
Polytechnic with N. Hoff), he became interested in the foundations of continuum
thermo-mechanics and was one of the most articulated contributors to the theory of
generalized continuum mechanics in its various forms: micromorphic and
micropolar media (of which he coined the names) and nonlocal continuum
mechanics, media in interaction with electromagnetic fields (cf. Eringen and
Maugin 1990), theory of mixtures, liquid crystals, with applications in wave
propagation and the theory of structural defects (cracks, dislocations). In addition to
multiple original epoch making papers in the period 1962–1980, he has produced
referential syntheses on these various developments (e.g., Eringen 1999, 2001,
2002).
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Eringen-Mindlin Medium

This is sometimes the common name given to two closely related (but not identical
in their basic assumptions) theories of microstructured media, that of Eringen and
Suhubi (1964) and that of Mindlin (1964). The term “micromorphic media” fol-
lowing Eringen’s classification is now commonly accepted (cf. Eringen 1999). Such
media present a fully deformable microstructure at each material point, in addition
to the usual translational degree of freedom.
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Extended Thermodynamics

The classical theory of irreversible processes (cf. DeGroot andMazur 1962) aswell as
the rational mechanics of Coleman, Noll and Truesdell (cf. Truesdell 1984) admits the
validity of the thermostatic definitions of entropy and thermodynamic temperature,
and this in spite of the obvious more or less important deviation from thermodynamic
equilibrium. This seems in contradistinction with results from the kinetic theory. An
early proposal to remedy this deficiency was made by Machlup and Onsager (1953)
and consists in involving the dissipative fluxes (e.g., viscous stresses, heat flux,
electric conduction current) in the formulation of the entropy density. The definite step
in that direction was taken by Müller and Ruggeri (1993)—also Jou et al. (1993).

Let rD denotes the dissipative stress. Then the free energy density w, entropy
density g and entropy flux s will be given by general expressions

w ¼ w h;�; rD; q; J
� �

; ð6:1Þ

g ¼ gs þN rD; q; J
� �

; ð6:2Þ

s ¼ q
h
þ k rD; q; J

� �
: ð6:3Þ
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The vector k is referred to as the extra-entropy flux (see that Entry). It is
expected that both g and h will coincide with their thermostatic values when all
dissipative fluxes vanish. Because of the tensorial orders involved, the deviations
from the thermostatic definitions in Eqs. (6.1) and (6.2) are usually quadratic in the
dissipative fluxes. For instance, in an isotropic body, w and g will certainly contain
terms proportional to q:q and J:J, while k may in fact contain a term linear in q or
J, and perhaps a term jointly quadratic in rD and q.

This methodology will in principle apply to all types of continua, whether clas-
sical or not classical (e.g., Cosserat fluids) with the appropriate list of dissipative
fluxes. Moreover, these dissipative fluxes will themselves satisfy evolution-diffusion
equations inspired by higher-order kinetic-theory developments. This thoughtful
interaction between two different levels of description of physical reality is original
but would be rejected by tenants of pure phenomenology. However, this new
thermodynamic approach is certainly comforted by the fact that it allows a satis-
faction of causality, resulting in the end in hyperbolic systems of equations with a
bounded speed of propagation. This extended “rational” thermodynamics bears such
a strong print from the kinetic theory offluids that it is difficult to apply it to complex
solid-like behaviours exhibiting hysteresis such as plasticity. Another avenue must
be opened to cope with such cases. The thermodynamics with internal variables of
state (see that entry and Maugin 1999) seems to be the looked for framework.
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Extra-Entropy Flux

The notions of thermodynamic temperature and entropy are well defined only in
thermostatics (cf. Kestin 1966). However, in the “rational” thermodynamics
advocated by B.D. Coleman, W. Noll and C.A. Truesdell (cf. Truesdell 1984), it is
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a priori admitted that these notions also exist in the condition of thermodynamic
non-equilibrium, even far from equilibrium. Furthermore, it is currently admitted
that the imports of heat and entropy per unit mass and unit surface are related by the
simple equations

s ¼ h
h
; s ¼ q

h
; ð6:4Þ

where h and q are the body supply of heat per unit mass and the heat influx vector,
and s and s are the corresponding supply of entropy per unit mass and the entropy
influx vector while h[ 0; inf h ¼ 0, is the thermodynamic temperature (in
Kelvin units). But it is more than natural to hypothesize that outside thermodynamic
equilibrium the entropy influx will deviate from the expression recalled in the
second of (6.4) by a vector field k, called the extra-entropy flux, so that in lieu of
(6.4)2 there holds the more general relationship

s ¼ q
h
þ k; ð6:5Þ

where vector k has to be described by means of a constitutive relation typical of
non-equilibrium for each material. Expression (6.5) was proposed by Müller (1973)
who stated that the second of (6.4) is contradicted by kinetic theory. Vector k plays
an essential role in extended thermodynamics (see that Entry, and Müller and
Ruggeri 1993) and is of utmost importance in some theories of non-classical
continuum mechanics (cf. Maugin 1990; Morro 2006) where it allows for an
accommodation of non-classical contributions from the energy density.
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Chapter 7
F: From “Ferroelectric Crystals (Elasticity
of)” to “Fractal Continua”

Ferroelectric Crystals (Elasticity of)

This entry concerns the continuum mechanics of ferroelectric crystals. This
corresponds to the “electric” analogue of micromagnetism as an electric “ferroic”
state, although the physical properties of the essential field (electric polarization) are
quite different from those of the magnetization. In particular, it is a polar vector to
be contrasted with the axial nature of the magnetization: its microscopic definition
does not involve any time derivative, being based only on the notion of electric
charge and geometric distance. Ferroelectric crystals can exhibit local nonzero
electric polarization in the absence of applied electric field (cf. Lines and Glass
1972). They usually present strong interactions with the deformation field possibly
through piezoelectricity or electrostriction. Their basic structure is in domains.
Interaction between neighbouring electric dipoles and the resulting local ordering
requires considering the influence of polarization gradients, so that a weakly
nonlocal theory is to be envisaged from the electric viewpoint.

Modelling

We consider the case of the quasi-electrostatics of deformable dielectrics for the
sake of simplicity. We can envisage a generalized motion described by the func-
tions (compare to the micromagnetic case)

x ¼ �x X; tð Þ;p ¼ �p X; tð Þ; ð7:1Þ

where p is an electric polarization (polar vector) per unit mass in the deformed
configuration. The second function defines a polarization continuum, PC.
Accounting for a standard form of inertia for polarization (with coefficient dE per
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unit mass), one is tempted to write down a balance equation for PC for the whole
body B in a more or less standard form:

d
dt

Z
B

qdE _p dv ¼
Z
B

q EþEL
� �

dvþ
Z
@B

A da; ð7:2Þ

where E is the Maxwellian electrostatic field, and EL is a quantity akin to an electric
field and due to the possible interaction with the lattice continuum LC, whose
deformation is described by the first of (7.1). Finally, A, also akin to an electric field
or a surface electric polarization, accounts in the form of a contact action for
interactions between neighbouring electric dipoles that favour the ordering of
electric dipoles. Applying to this the Cauchy principle, we can introduce a second
order—nonsymmetric—tensor bE such that

A ¼ n:bE at @B: ð7:3Þ

Localization of (7.2) therefore yields the balance equation

dE€p ¼ EþEL þ q�1 divbE in B: ð7:4Þ

It is difficult to grant a true physical meaning to the balance (7.2) which strongly
resembles the balance law postulated, with the same degree of arbitrariness, in
anisotropic fluids (nematic liquid crystals) by Ericksen (1960)—See Entries:
Oriented media, Anisotropic fluids. One possible interpretation is that (7.4) is a
standard equation of motion for a unit (hypothetical) electric charge (but the
medium considered is a dielectric free of charges). In this interpretation LC and PC
may be viewed as two interpenetrating continua. Such an a priori interpretation was
advanced by Tiersten (1971). As to the surface condition (7.3) we can write it more
explicitly as

q�1n:bE ¼ pS; ð7:5Þ

where pS is a density of surface electric polarization (a polar vector).
The global balances of linear and angular momenta for the lattice continuum

naturally read as

d
dt

Z
B

qv dv ¼
Z
B

f þ femð Þdvþ
Z
@B

tðnÞda; ð7:6Þ

and
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d
dt

Z
B

r� qvð Þdv ¼
Z
B

r� f þ femð Þþ cðPC=LCÞ
� �

dvþ
Z
@B

r� tðnÞ
� �

da; ð7:7Þ

where fem is what remains of the general ponderomotive force for dielectrics in
quasi-electrostatics (cf. Maugin 1988) and cðPC=LCÞ is a couple due to interactions
between polarization and lattice continua. Then, artificial as this may look, the
balance of angular momentum for the PC is given by:

d
dt

Z
B

qp� _p dv ¼
Z
B

cem þ cðLC=PCÞ
� �

dvþ
Z
@B

p� AðnÞda; ð7:8Þ

This is complemented by the first law of thermodynamics for the combined
continuum:

d
dt

Z
B

q
1
2
v2 þ 1

2
dE _p

2 þ e

� �
dv ¼

Z
B

f:vþwem þ qhð Þdv

þ
Z
@B

tðnÞ:vþAðnÞ: _pþ qðnÞ
� �

da; ð7:9Þ

where e is the internal energy, and the second law of thermodynamics for the
combined continuum (g is the entropy density and h is the bulk input of heat while
h is the thermodynamic temperature):

d
dt

Z
B

qg dv�
Z
B

qh�1h dv�
Z
@B

h�1q:n da: ð7:10Þ

In these equations,

cem ¼ qp� E; cLC=PC ¼ qp� EL; AðnÞ ¼ n:bE ð7:11Þ

and wem is what remains of the electromagnetic energy contribution in the case of
dielectrics in quasi-electrostatics (cf. Maugin 1988).

On account of (7.4) and the local form of (7.6) the local forms of (7.7) and (7.8)
are easily established as

t½ji� ¼ qEL
½j pi� � bEp½jpi�;p ð7:12Þ

and
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q
d
dt
dE p� _pð Þi¼ c emi þ cðLC=PCÞi þ eijk pjbEpk

� �
;p
: ð7:13Þ

The rest of this approach consists in expressing (7.9) and (7.10). On introducing
objective time rates such as [cf. the case of micromagnetism—Eqs. (7.35), (7.36)]

p̂i ¼ DJpð Þi� _pi � Xijpj; bPij ¼ _pið Þ;j�Xikpk;j; ð7:14Þ

one can show that (7.9) and (7.10) lead to the following local forms of the energy
equation and of the Clausius-Duhem inequality:

q _e ¼ tr tSD
� �� qEL:p̂þ tr bE bPT

� �
�r:qþ qh; ð7:15Þ

�q _wþ g _h
� �

þ tr tSD
� �� qEL:p̂þ tr bE bPT

� �
� h�1q:rh� 0; ð7:16Þ

with

tji ¼ tSji þ t½ji�; t½ji� ¼ qEL
½j pi� � bEp½jpi�;p: ð7:17Þ

Together with Maxwell’s electrostatic equations for dielectrics,

r� E ¼ 0; r:D ¼ 0; D ¼ Eþ qp; ð7:18Þ

this concludes the formal construction of the theory before establishing constitutive
equations constrained by the inequality (7.16).

Approach via the Principle of Virtual Power

It is now clear that an approach exploiting directly the principle of virtual power for
the present theory will be very much like what is achieved for ferromagnets—see
Entry: Micromagnetism—except for the essential difference regarding the inertial
force of the polarization lattice PC. That is, with a general statement of the principle
in the form (cf. Maugin 1980)

P�
inert Bð Þ ¼ P�

int Bð ÞþP�
vol Bð ÞþP�

surf @Bð Þ; ð7:19Þ

we shall a priori write

P�
inert Bð Þ ¼

Z
B

q _v:v� þ qdE€pi _p
�
i

� �
dv; ð7:20Þ
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where we clearly distinguish between real fields (actual solutions of a problem) and
virtual ones (indicated with an upper right asterisk) at our disposal in this type of
variational formulation. In particular, for real fields, this yields

Pinert Bð Þ ¼ d
dt

Z
B

1
2
qv2 þ 1

2
qdE _p

2
� �

dv ¼ d
dt
K Bð Þ: ð7:21Þ

The other global virtual powers are directly written down as

P�
bulk Bð Þ ¼

Z
B

f þ femð Þ:v� þ qE: _pð Þ�ð Þdv; ð7:22Þ

P�
surf @Bð Þ ¼

Z
@B

tðnÞ þ temðnÞ
� �

:v� þ qpS: _pð Þ�
� �

da; ð7:23Þ

and

P�
int Bð Þ ¼ �

Z
B

tSjiv
�
i;j � qEL

i p̂
�
i þ bEji bP�

ij

� �
dv: ð7:24Þ

Here the last one is written as a linear continuous functional on a set of objective
virtual velocity fields built from vi; vi;j; _pi, and _pi;j. From the standard application of
the principle of virtual power for any volume and surface elements and for arbitrary
members of the set v�; _pð Þ�f g, one deduces the local equations of linear momentum
of the LC and the governing Eq. (7.4) of the PC, together with the accompanying
natural boundary conditions. Then Eqs. (7.5) and (7.16) follow in the usual way,
using the result (7.20). Equations (7.15) and (7.16) govern both recoverable and
dissipative phenomena associated with the two fields (7.1). In the absence of dis-
sipation, the field equations and associated boundary conditions can be deduced
from a Hamiltonian-Lagrangian variational principle written in the reference con-
figuration KR with a Lagrangian density per unit volume in the form

L ¼ 1
2
qRv

2 þ 1
2
qRdE _p

2 �W F ¼ rR�x; p;rR�pð Þ; ð7:25Þ

but one must add to this the electrostatic energy including both free-field and
electric-dipole energies:

eelec ¼ 1
2
E2 þ qRp:E: ð7:26Þ

The theory with main thermodynamic ingredients (7.15) and (7.16) was
proposed by Maugin and Pouget (1981) for the study of coupled
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polarization-deformation waves in a bulk or at surfaces (see Maugin 1988,
Chap. 7). Pouget et al. (1986a, b) have given a lattice-dynamics justification of the
above-proposed continuum equations. In particular, they gave an evaluation of the
inertial factor dE.

Analogy with Cosserat Continua

Applying the alternation symbol to Eq. (7.13) and using the identity

eklieipq ¼ dkpdlq � dkqdlp; ð7:27Þ

or, equivalently, taking the tensor product of (7.4) with p and then the skew part of
the result we obtain

q
d
dt

dE _p½ipj�
� � ¼ E½iPj� þ qEL

½ipj� � bEk½ipj�;k
� �

þ bEk½ipj�
� �

;k
; ð7:28Þ

or

q _Sij ¼ Cem
ij þ t½ji� þMkij;k; ð7:29Þ

where we accounted for (7.17) and we set

Sij ¼ dE _p½ipj�; Cem
ij ¼ E½iPj�; Mkij ¼ bEk½ipj�: ð7:30Þ

Simultaneously, (7.5) yields the associated natural boundary condition at @B:

nkMkij ¼ MðnÞij � pS½iPj�: ð7:31Þ

Equations (7.29) and (7.31) are in the canonical form of the local balance of
angular momentum for a Cosserat or micropolar continuum in Eringen’s classifi-
cation, but all terms have an electric origin. These equations were obtained by the
author (Maugin 1971, 1980, 2012). Nonlinear-wave applications are given in
Maugin et al. (1992).

Reduction to a Model Without Microstructure

When pure ferroelectric features are ignored or neglecting polarization inertia and
polarization-gradient effects Eq. (7.27) reduces to
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t½ij� ¼ E½iPj�: ð7:32Þ

This corresponds to the classical theory of nonlinear dielectrics as originally
built by Toupin (1956, 1963) and Eringen (1963)—see Chap. 7 in Eringen and
Maugin (1990, Vol. 1). This nonlinear theory in finite strains applies in particular to
electroelastic polymers with electrostriction as main electro-mechanical coupling
(See works by Dorfmann, Ogden, Bustamante, and others in the 2000s). The
skewsymmetric part of the stress vanishes when polarization and electric fields are
aligned. This occurs in isotropic bodies. Still the ponderomotive force is present.
However, if quadratic effects in the electric field are discarded altogether, corre-
sponding to a fully linear theory, then both ponderomotive force and couple dis-
appear leaving for only possible electromechanical couplings piezoelectricity,
material symmetry permitting (no centre of symmetry).

Antiferroelectric Materials

It is easily imagined that a theory of deformable antiferroelectrics (e.g., lead zir-
conate or sodium niobate) in which an antiparallel arrangement of permanent
electric dipoles can be devised by analogy with the theory of antiferromagnetics
(see Entry: Micromagnetism), i.e., by considering the polarization density p as
arising from the vector sum of two opposite polarization sub-lattices of equal
magnitude. Such a model was constructed by Soumahoro and Pouget (1994) who
also studied in detail its dynamical consequences.
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Ferroic States

The qualification of “ferroïc” applies to states of material substances that, at some
point or in small regions, exhibit a nonvanishing field such as magnetization in a
ferromagnet in the absence of applied field (magnetic field in the magnetic case).
This is possible only in so-called domains of limited spatial extension (cf.
Prirovoskii 1976), of which the assemblage forms, by statistic compensation in
magnitude and orientation, the whole material specimen. Accordingly, a true
“mono-domain” specimen cannot exist without the presence of closing domains at
its boundary. An applied field of given direction can modify this arrangement by
favouring the expansion of properly aligned domains at the expense of other
domains. The primitive example of such material behaviour is provided by ferro-
magnetism—the paradigmatic case. Other examples are provided by adding the
prefix “ferro” to other material responses, such as in “ferro-electric” materials and
“ferro-elastic” bodies, exhibiting local nonzero spontaneous electric polarization
(density of electric dipoles) in the former case, and nonzero spontaneous elastic
deformation in the latter case. Other fields such as temperature and deformation in
ferromagnetism, or magnetic field in a ferro-elastic can also alter the initial “ferro”
arrangement. The existence of such states is directly related to the existence of a
favourable material symmetry (cf. Kittel 1971; Aizu 1970). The spontaneous field
of interest then is naturally considered as a primitive independent variable in a
continuous field approach, the “effect” (spontaneous field) being possible in the
absence of the “cause” (applied field).
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Fractal Continua

One must distinguish between continuity of a function and its differentiability.
Many curves are continuous and present a well-defined slope everywhere except
perhaps at some singular points where this slope can suffer a finite discontinuity. In
classical continuum mechanics one is used to consider at the starting point
space-time functions (e.g., the placement) that admit continuous first and second
order derivatives almost everywhere, so that one can define unambiguously notions
such as acceleration and second gradient of the displacement. The considered
functions are said to be of class C2. This is the case of the mass density and other
material properties, save at the crossing of singular surfaces. Motion itself and its
velocity and acceleration may be discontinuous at such surfaces (e.g., at material
interfaces, in shock-wave theory or when studying acceleration waves). An alto-
gether different situation occurs with the appearance of the notion of fractal set,
largely due to Benoît Mendelbrot (1924–2010), a French-American engineer who
became a creative mathematician with multiple scientific interests and an efficient
populariser (see his wonderful book, Mandelbrot 1982). Mendelbrot was not the
creator of the very notion of fractal (he coined the term with an acute flair for
publicity). This was known as Julia set after the French mathematician Gaston Julia
(1893–1978). But with the aid of computers he provided illustrations of what could
be imagined but not visually represented before.

The notion of fractal relates to the fact that some functions, although themselves
continuous, have everywhere discontinuous derivatives. The resulting strange
object when the notion is applied to geometry (the field of Mendelbrot) exhibits the
feature to present a similar picture at all scales, that is, independently of any
magnification. Details keep the same appearance at all scales like a reduced-size
copy of the whole. It was soon realized by Mandelbrot and others that many
physical and biological objects present this invariance property, although a well
defined quantity called the Hausdorff dimension D (after Felix Hausdorff 1868–
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1942) correctly characterizes each class of fractal set. This dimension can be smaller
than that of the space in which the fractal geometric set is embedded, and it can be a
non integer.

Acknowledging the obvious existence of fractal geometric sets in materials, but
still wanting to be able to solve mechanical problems with boundary and initial
conditions, one needs an analytical way to account for the fractal feature in systems
of equations that previously were well defined in terms of classical partial
derivatives. At the time of writing this endeavour has been actively pursued but in
several possible directions and exploiting various techniques. One is thus led to
studying the notion of fractal continua. The main point will obviously be the
appropriate definition of derivatives.

One possible avenue to fulfil the programme is an application of a homoge-
nization method called dimensional regularization. This method was exploited by
V.E. Tarasov—a most active scientist in the field—to transform fractional integrals
over fractal sets into equivalent continuous integrals over Euclidean sets. This
enabled Tarasov (2005) to map a mechanical problem of a fractal onto a problem in
the Euclidean space in which the fractal is embedded. This approach yields the
looked for continuum equations for the conservation of mass, linear momentum and
energy. The method essentially uses a “product measure” that allows for the needed
transformation. This is primarily related to the notion of mass. For instance, for the
mass with power law mðRÞ � RD, where R is a length scale of measurement (say, a
resolution) and D\3 is the fractal dimension of mass, the fractional integral rep-
resenting the mass in the region w embedded in E3 is given by

m wð Þ ¼
Z
w

q Rð ÞdVD ¼
Z
w

q Rð Þc3 D;Rð ÞdV3; ð7:33Þ

where c3 is defined in terms of R, D and Euler’s gamma function. Other coefficients
c2 D;Rð Þ and c D; d;Rð Þ can be defined, in terms of which one can express the
generalized space and time derivatives such as

rD
k f ¼ c�1

3 D;Rð Þ @

@xk
c2 d;Rð Þf½ �; @

@xk
� rk; ð7:34Þ

d
dt

� �
D
f ¼ @f

@t
þ c D; d;Rð Þvkrkf ð7:35Þ

Ostoja-Starzewski et al. have emphasized the appropriate validity of Tarasov’s
transformation for isotropic fractal media. In order to improve on the case of
anisotropic fractal media, Li and Ostoja-Starzewski (2009) have proposed to
introduce the notion of product measures (one of each in each direction in
Euclidean space). With this they have at hand the whole machinery needed to
proceed to the construction of all differential operators and both Green-Gauss and
Reynolds theorems of continuum mechanics and the resulting balance equations as
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also the wave equation in fractal elasticity (cf. Ostoja-Starzewski et al. 2013). We
refer to these authors for the subtleties of the approach. In particular, for the sake of
illustration, we note the following formula for small strains:

eij ¼ 1
2

rD
j ui þrD

i uj
� �

¼ 1
2

1

cðjÞ1
rjui þ 1

cðiÞ1
riuj

" #
; ð7:36Þ

where cðkÞ1 is the product measure in the direction of xk . The authors pay a special
attention to the case of micropolar materials because the Cauchy stress is generally
not symmetric in fractal media, hence the possible importance of couple stresses.

In concluding, other approaches deserve to be mentioned. First of all, the
tremendous amount of works by Balankin and co-workers (summarized in the
synthetic contribution of Balankin 2013) would need more than a superficial
review, but it goes along the same path as what was just exposed. Next, Epstein and
Sniatycki (2006) have proposed an approach based on the notion of differential
spaces of Sikorski. This allows for the introduction of generalized forces and
stresses for fractal objects, exploiting an extended form of the principle of virtual
work and finally yielding a study of structural self-similarity in elasticity. This
seems to provide an efficient means to obtain effective properties in an inexpensive
numerical scheme. Finally, Michelitsch et al. (2009, 2012, 2014) have dealt more
deeply with the possible definition of differential operators—the basic problem in
fractal theory—by having recourse to considering lattice models with self-similar
harmonic interparticle interactions. This also leads to a self-similar Laplacian
operator that takes the form of a combination of fractional integrals in a continuum
limit. In the case of elasticity one obtains thus a Hooke law including a non-local
convolution with an elasticity modulus function as a power law. Interesting prop-
erties of wave propagation follow thereof.
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Chapter 8
G: From “Generalized Continuum
Mechanics” to “Green A.E.”

Generalized Continuum Mechanics (GCM)

[See Chap. 2 in Part One].

Generalized Internal Forces

These are all types of co-factors that one introduces when writing formally the
power expanded by all degrees of freedom and their spatial gradients of any order.
They need to be expressed by thermodynamically admissible constitutive equations.
In modern continuum thermodynamics, it is required that they should be objective
quantities if they are really “internal” (i.e., invariant by time-dependent rotations of
the actual frame). They include usual stresses, couple stresses, and hyperstresses of
various orders as also multipolar stresses of any order. They are indeed represen-
tative of the complexity of nonclassical continuum mechanics.

Cross references: Cosserat continua, Couple stress, Double force, Gradient
elasticity, Higher-order gradient theories, Hyperstresses (notion of), Micromorphic
continua, Mutipolar continua, Oriented media.

Generalized Thermo-Elasticity

The classical theory of heat conduction equipped with Fourier’s law provides a
parabolic equation—the celebrated heat equation—that yields an instantaneous
propagation of heat, i.e., an infinite speed of propagation of temperature. James C.
Maxwell was probably the first to note that dynamic heat processes should exhibit a
relaxation, hence a time scale. The well accepted theory of thermo-elasticity
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originally developed by Duhamel (1837) and Neumann (1885) in the nineteenth
century consisted in coupling together (small strain) elasticity and Fourier’s theory.
This kept the defect of Fourier’s theory in its dynamical framework since only the
mechanical-wave properties could be reproduced albeit with a differentiation
between isentropic and isothermal regimes. It is only in the 1940s–1950s that
Maxwell’s idea was revisited and appropriately generalized Fourier’s laws of heat
conduction were proposed by Cattaneo (1948; 1958) in Italy and Vernotte (1958) in
France. These authors indeed introduced a heat relaxation time as follows. They
complemented the local energy balance law in rigid bodies, i.e., with an obvious
notation in 1D,

q0C
@h
@t

þ @q
@x

¼ 0 ð8:1Þ

by the improved Fourier’s law

q ¼ �k
@h
@x

þ r
@2h
@x @t

: ð8:2Þ

On substituting from (8.2) into (8.1), one obtains the equation

s
@2h
@t2

þ @h
@t

¼ k
q0C

� �
@2h
@x2

; ð8:3Þ

where s ¼ r=k, with k[ 0, is a relaxation time, and a fourth-order mixed space and
time derivative has been discarded. The second-order time derivative in the
left-hand side of (8.3) plays the role of an inertia term and transforms the original
Fourier parabolic equation into a hyperbolic equation with attenuation. In the 3D
isotropic case, the Cattaneo-Vernotte system reads:

q0C
@h
@t

þ @qi
@xi

¼ 0; s
@qi
@t

þ qi ¼ �k
@h
@xi

: ð8:4Þ

It is in the 1960s–1970s that specialists of continuum mechanics thought of
accounting for such a possible heat-relaxation effect in the coupled theory of
thermo-elasticity [originally as given in books such as Parkus (1968), Hetnarski and
Eslami (2009) or Nowacki (1986)] thus giving rise to the notion of generalized
thermo-elasticity. This was achieved via a multitude of modellings of which we can
name a few: Lord and Shulman (1967), Fox (1969), Green and Lindsay (1972),
Green and Naghdi (1993), Gurtin and Pipkin (1968), Hetnarski and Ignaczak
(1999). Other modellings apply other concepts and generalize the
thermo-mechanical case to more complex mechanical descriptions and
electro-mechanical interactions. This is well described and documented in the
syntheses of Chandrasekharaiah (1986, 1998) and that of Joseph and Preziosi
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(1989), the first two chapters of Straughan’s (2011) book, and in many entries in the
Encyclopaedia of Thermal Stresses (Hetnarski 2014).

For the sake of example, we recall the linear anisotropic system of classical
thermoelasticity:

q0€ui ¼ cijkhuk;h
� �

; j þ aijh
� �

; j þ q0fi;

C _h ¼ aij _ui;j þ kikh;k
� �

; i þ q0r:
ð8:5Þ

with an obvious notation [cijkh = elasticity coefficients, aij = thermoelasticity
coefficients, kik = thermal conductivity tensor]. In the case of the linear Lord-
Shulman theory of generalized thermoelasticity, the following system replaces
(8.5):

q0€ui ¼ kþ lð Þuj;ij þ lDui � 3kþ 2lð Þah;i;
q0C s€hþ _h

� �
þ 3kþ 2lð Þah0 s€ekk þ _ekkð Þ ¼ kDhþ q0r;

ð8:6Þ

where apart from s all symbols are those of the classical theory.
In the case of the linearized anisotropic case of Green and Lindsay, the system

(8.5) is replaced by the following one:

q0€ui ¼ cijkhuk;h
� �

;j þ aij hþ a _h
� �h i

;j
þ q0fi;

q0 h€hþ d _h� aij _ui;j � bi _h;i
� �

¼ q0h
�1
0 rþ bi _hþ kijh;j

� �
;i
:

ð8:7Þ

Note that generalized thermoelasticity is active only in dynamics, as nothing is
altered in statics where no time scale is involved. In true dynamics it gives rise to
the notion of second sound, as indeed observed in some materials (solid Helium,
sodium fluoride, bismuth, etc.).
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Gradient Elasticity

It is quite natural in analysis to describe the behaviour of a function at a point with a
sufficient degree of approximation by considering the value of successive deriva-
tives as exemplified by the Cauchy expansion of a function; for instance, along a
curve, the slope, the curvature, etc. In space, the successive gradients would have to
be prescribed at a point. This in fact is part of the full field theory as illustrated in
the book of Rzewuski (1964) with an expanded functional Euler-Lagrange
derivative in the case of a variational formulation. Classical elasticity requires the
consideration of the gradient of displacement—in order to define the strain, the
thermodynamic dual of the classical (Cauchy) stress. This seems quite enough to
most engineers and scientists in what we called a first-gradient theory (as the lowest
case in a hierarchy; cf. Maugin 1980). But considering the influence of higher-order
gradients of the displacement in a refined theory of elasticity is not such a strange
idea. In fact, this was questioned by Barré de Saint-Venant (1869) and also by Piola
(1856; See Piola 2014). The first true application—based on the remark that torsion
introduces spatially non-uniform strains—is probably due to Le Roux (1911, 1913).
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Further developments had to await the 1960s with works by Mindlin and his
co-workers. No doubt that these works were inspired by the lattice-dynamics
approach to materials as introduced by Born and von Kármán (1912) early in the
twentieth century (See Born and Huang 1954). This approach provides a
finite-difference description with interactions—usually represented by elastic
springs (but this is only a powerful image)—between “particles” (mass points) that
are more or less neighbours in a regular (lattice) arrangement. Note that the notion
of lattice practically goes back to Cauchy himself. In the original Born-Kármán
theory only nearest neighbours are considered providing at first finite differences of
the second order only. Through a limit procedure known as the long-wavelength
limit, this recurs to the standard continuum elasticity that involves only the first
gradient of the elastic displacement in the potential or the second gradient of the
displacement in the local expression of the momentum balance. By the same pro-
cedure, accounting for more distant neighbours—such as second ones—will nat-
urally yield a theory of elasticity with higher-order gradients in the continuum limit.
This we called the Boussinesq paradigm (cf. Christov et al. 2007) after the first
example constructed by Boussinesq (1903) for elastic solids. Because of the
spatial—but necessarily limited—extension of the lattice description with farther
neighbours, this we also called “weak nonlocality” (cf. Maugin 1979), an approach
which permits one to remain within the application domain of partial differential
equations (as compared to “strong nonlocality”—see the corresponding entry—that
will involve functionals over space). Only second-gradients of displacements or
first-gradients of the strain are considered. One should note that the sign of the
higher-order spatial interactions and those of the fourth-order derivatives play an
important role in the discussion of stability of the resulting continuum model in the
sense of Hadamard. In particular, some models may yield an anomalous dispersion
of elastic waves in the crystal, although it is not reasonable to stretch the model to
too small wavelengths. This is thoroughly debated by, e.g., Mülhaus and Oka
(1996), Askes et al. (2008), and Askes and Aifantis (2011).

In a variational formulation, one would start with a Lagrangian volume density
in the form

L ¼ K �W ; ð8:8Þ

K ¼ 1
2
q _ui _ui; W ¼ W ui;j; ui;jk

� �
or W ¼ eW eij; eij;k

� � ð8:9Þ

with

eij ¼ uði;jÞ ¼ 1
2

ui;j þ uj;i
� �

: ð8:10Þ

The last form given in (8.9) accounts for the objectivity (material indifference) of
the potential energy W. Note that the kinetic energy K assumes its classical
expression. The derived local balance equation of linear momentum is obtained as
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q0
@2ui
@t2

� @

@xj
rji ¼ 0; ð8:11Þ

where the Cauchy stress is given by

rji ¼ �rji � @

@xk
mkji � dW

deij
; ð8:12Þ

with

�rji ¼ @W
@eij

¼ �rij; mkji ¼ @W
@ðeji;kÞ ¼ mkij; ð8:13Þ

and d=deij denotes a functional (Euler-Lagrange) derivative. The symmetric tensor
of components �rji may be called the intrinsic stress and is only part of the Cauchy
stress. The tensor of (at most, eighteen independent) components mkji is usually
referred as the hyperstress tensor. Mindlin and co-workers (Mindlin 1964; Mindlin
and Tiersten 1962; Mindlin and Eshel 1968) have proposed general quadratic
expressions for the energy W. The number of independent elasticity coefficients for
a body of general symmetry is much increased compared to standard elasticity and
this poses a serious problem for their numerical and experimental evaluation. This
is a drawback for this type of refined theory. That is why, for all practical purposes
in establishing the main consequences of the theory, Aifantis (1992) proposed the
following very convenient form of W in the linear case

W ¼ 1
2
�rjieij þ 1

2
d2

@

@xk
�rji
� � @

@xk
eji
� �

; ð8:14Þ

where d is a characteristic length. This means that once �rji is formally known, so is
the case of mkji, and then only d is a new material parameter compared to the
standard linear elasticity. The working hypothesis (8.14) is used so as to obtain the
simplest generalization of standard elasticity. This is sufficient to study the char-
acteristic singularities (dislocations, disclinations) and main wave properties in
elasticity problems. In particular, the presence of the characteristic length d results
in a dispersion of linear waves.

The direct approach using a global statement of fundamental balance laws is not
an obvious matter, in particular in formulating the required boundary conditions
that may apply at a regular boundary but also at singular lines along which one
observes a discontinuous tangent plane (not to speak of possible apices). An elegant
way to deal with this matter is to exploit the principle of virtual power as a basic
statement as in Germain (1973) because natural boundary conditions strictly unfold
in parallel with the bulk equations. In particular, in formulating the power of
internal forces in this formulation one can write for this quantity per unit volume
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pint ¼ � �rjivi;j þmkjivi;jk
� � ¼ � �rjiDij þmkjivi;jk

� �
; vi ¼ _ui; ð8:15Þ

where objectivity of internal forces has been enforced in the last expression. In
terms of the geometry of a bounding surface (so-called natural boundary condition)
the new concept represented by mkji requires the consideration of the second-order
geometrical description of the surface, hence the curvature. This destroys the
standard Euler-Cauchy notion of contiguity where only the unit normal is involved.
In pure elasticity, the effect of the contribution of the hyperstress will be of
importance wherever the strain is not spatially uniform, and obviously where one
observes a rapid variation of the elastic displacement, e.g. in boundary layers. Let
Dð:Þ :¼ np@pð:Þ the normal gradient operator at the boundary @B of unit outward
normal of components np, Dpð:Þ :¼ @p � npD the corresponding surface gradient
operator, ½::� the notation for a jump, and if sr denotes the unit tangent vector to an
oriented curve C on @B representing a singular line, the tractions boundary con-
ditions are found in the following rather complex form:

PðnÞ
q ¼ nprpq � Dp nrmrpq

� �þ Djnj
� �

nrnpmrpq at regular parts of @B; ð8:16Þ

Rn
q ¼ nrnpmrpq at regular parts of @B; ð8:17Þ

Eq ¼ nrkpmrpq
� 	

along C; ð8:18Þ

with kq ¼ erpqsrnp. In these equations,

PðnÞ
q :¼ tðnÞq þ Drnrð ÞnpT ðnÞ

pq � DpT
ðnÞ
pq ; ð8:19Þ

RðnÞ
q :¼ npT

ðnÞ
pq ; ð8:20Þ

Eq :¼ kpT
ðnÞ
pq

h i
; ð8:21Þ

where tðnÞq is a true force surface traction, and TðnÞ
pq is a true double force surface

traction (a notion issued from the mechanics of plates and shells). PðnÞ
q and RðnÞ

q are
only auxiliary forces while Eq is a line load applied long C. The mean curvature of
the surface is given by X ¼ �Djnj=2. The complexity of the above recalled
boundary conditions is obvious.

An expression such as (8.14), rustic as it is, allows one to provide exemplary
solutions to many problems such as those involving dislocations (cf. Lazar and
Maugin 2005). Note that the Cauchy stress r now reads

r ¼ 1� c2r2
� �

rc; ð8:22Þ

where rc is the usual stress tensor. We can say that this expression contains a
Helmholtz operator in factor of rc.
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Second-gradient models in finite strain have been devised by authors like Gurtin—
for dislocation theory—, Cleja-Tigoiu—for elasto-plasticity—, Sciarra et al. (2007)
—for porous media—and Ciarletta et al. (2012)—for the bio-mechanics of soft tis-
sues. In this case, on must replace the second of (8.9) by a more general expression

W ¼ W F;rRFð Þ; ð8:23Þ

per unit reference volume, where F denotes the gradient of the direct motion and
rR stands for the referential gradient.

Finally, form the standpoint of the basis principles of continuum mechanics, the
notion of gradient theory requires revisiting Cauchy’s approach by accounting for
the possible existence of discontinuities in the tangent plane to the bounding surface
and of possible edge forces [see the fundamental works of Noll and Virga (1990)
and Dell’isola and Seppecher (1995)].

In conclusion, very interesting features of the gradient model of elasticity are:

• The inevitable introduction of characteristic lengths;
• The appearance of so-called capillarity effects (surface tension) due to the

explicit intervening of curvature of surfaces;
• Correlative boundary layer effects;
• Dispersion of waves with a possible competition and balance between nonlin-

earity and dispersion, and the existence of solitonic structures,

and the eventual relationship with the Ginzburg-Landau theory of phase transitions.
But a rather unpleasant feature of this modelling is that the resulting mathe-

matical problems become more stiff than before with its higher-order space
derivatives, creating potential difficulties in dynamical computations unless one
constructs appropriate finite-difference schemes (as done by C.I. Christov and G.A.
Maugin in the 1990s). In analysis, it is wise to exploit the technique of matched
asymptotic expansions in order to avoid solving the stiff problem unnecessarily in
large parts of the body—outside boundary layers—, that are practically unaffected
by the gradient description.
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Gradient Plasticity

In some situations of deformation like in torsion, Le Roux (1911) emphasized the
role of nonuniform strains in elasticity, introducing thus a pioneer’s gradient theory
of elasticity. But in the framework of plasticity, it seems according to Nye (1953)
and Kubin and Mortensen (2003) that Friedel (1964) contains the first mention of a
hardening effect due to the plastic accommodation of elastic strain gradients by
dislocations. In words, Friedel (1964, p. 254) wrote that “… the minimum dislo-
cation density to produce the deformation [in the bending of a crystal to curvature c]
is given by q ¼ c=b [where b is Burgers vector]… This density […] intro-
duces short-range stresses on a scale comparable with the average distance l
between dislocations […]. Ones expects therefore a parabolic law r � r0 þ
ðl=2pÞðbcÞ1=2[…]. Similar but more elaborate equations can be given in the same
way for any type of macroscopic distorsion which is not a uniform shear”. These
are geometrically necessary dislocations (GNDs) in the sense of Nye (1953) and
Ashby (1970)—See Entry: Dislocations and disclinations. From this remark there
follows the conception of plasticity flow rules that involve not only the stress (like
in classical plasticity; cf. Maugin 1992) but also the gradient of the stress with a
characteristic length (Aifantis 1984, 1987)—of which the thermodynamic formu-
lation can be disputed; cf. Maugin (1990)—or a real expansion of a phenomeno-
logical theory of strain gradient in plasticity (Fleck and Hutchinson 1993, 1997,
2001) comforted by experiments on the torsion of very thin copper wires (cf. Fleck
et al. 1994), and made more “rational” and mathematical by Fleck and Willis
(2009). Other much relevant works are Muhlaus and Aifantis (1991), Gutkin and
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Aifantis (1999), and Gurtin and Anand (2009). Without dealing in detail with such
developments, we note the following essential concepts under the working
hypothesis of small strains.

The primary notion is that of Nye’s (1953) tensor of dislocation density, usually
noted aij in Cartesian components. In the discrete description, it is defined in terms
of the number of dislocations piercing a unit area and of their Burgers vectors. In
geometrical terms (Nye 1953) it is directly related to the curvature tensor jij by the
simple formula

aij ¼ jji � dijjkk; ð8:24Þ

which by inversion yields

jij ¼ aji � 1
2
dijakk: ð8:25Þ

In his celebrated work Kröner’s (1958) defines aji as minus the transposed of the
above one. By Burgers’ definition of Burgers vector and use of the Stokes theorem
we can also write

Bi ¼
Z
C

cijdxj ¼
Z
S

aijnjdS; ð8:26Þ

where C is a circuit traversed in the sense of a right-handed screw motion along the
unit normal n to the surface S encircled by C and cij is the local distortion, and

aij ¼ ejkpcip;k; ð8:27Þ

so that the local dislocation density tensor is proportional to a second gradient of the
displacement. This agrees with (8.24) since jij is a curvature. In Kröner’s synthetic
notation (8.27) can also be written as a � r� c. According to Fleck and
Hutchinson, this can also be related to the constrained continuum theory of couple
stresses. Indeed, the curvature is the spatial gradient of the material rotation of
vector of components hi, so that

jij ¼ hi;j ¼ 1
2
eipkuk;pj ¼ eipkekj;p: ð8:28Þ

Equations (8.25) and (8.28) are identical if we account for a transposition. From
(8.27) we note that @aij=@xi ¼ 0, what is a conservation law. The complete rela-
tionship of the theory of geometrical necessary dislocations and the constrained
couple stress theory of Toupin and others was established in Fleck and Hutchinson
(1993; also 1997). They go one step further by incorporating their approach in a
Mindlin type of gradient elasticity-plasticity by introducing the second gradient of
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the displacement gijk ¼ uk;ij ¼ gjik and the energy in terms of the usual strain and of
this gradient by the energy variation

dW ¼ rijdeij þ sijkdgijk; ð8:29Þ

from which there follow the constitutive equations

rij ¼ @W
@eij

; sijk ¼ @W
@gijk

; ð8:30Þ

where rij is the second-order symmetric stress and sijk is a third-order stress (or
hyperstress). Note that the notion of applied couples and double forces will nec-
essary appear at boundaries in addition to usual traction forces. For an incom-
pressible displacement field (a current hypothesis in elasto-plasticity), only the
“deviatoric” parts r0ij and s0ijk are retained. The associated space of relevant gen-
eralized stresses of vector R ¼ r0; s0ð Þ is therefore a five + eigh-

teen = 23-dimensional space, so is the space of dual strains E ¼ e0; g0
� �

. This

allows for the formulation of a generalized flow rule in the R-space and a varia-
tional inequality formulation in the Drucker-Hill form (cf. Fleck and Hutchinson
1997), a normality law:

rij � r�ij
� �

_epij þ sijk � s�ijk
� �

_gpijk � 0; ð8:31Þ

where the stress state r; sð Þ is associated with the plastic strain rate _ep; _gp
� �

and

r�s�ð Þ is any other stress state on or inside the yield surface. Equation (8.31) is a
direct generalization of the now classical variational inequation of elasto-plasticity
theory sometimes known as the Hill–Mandel maximal-dissipation principle (cf.
Maugin 1992, p. 55). Because of the presence of the third-order stress in the yield
criterion, a length scale is involved and is characteristic of the strain-gradient
theory.

A finite-strain theory has been expanded with a generalization of (8.27) in the
self-explaining form a � rR � Fp, where Fp is the plastic part in the multiplication
decomposition of the deformation gradient F ¼ FeFp, and rR denotes a referential
gradient. The corresponding theory rapidly acquires a high degree of complexity
with which we shall not deal.
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Granular Materials as Generalized Continua

Granular materials illustrated by coal, sand, rice, grinded coffee, sugar powder and
other kinds of powders are viewed as conglomerations of discrete solid particles
where the latter interact by friction. They can flow at more or less large speeds so
that globally they present fluid properties with typical internal friction and are thus
of fundamental rheological interest. The typical smaller size of grains is about one
micrometer. Although they do not constitute a single phase of matter, they lend
themselves to a continuum description with appropriate working hypotheses—the
only description envisaged in this entry. They are ubiquitous in nature, agriculture,
food processing and pharmaceutical industry. Historically, fruitful research on
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granular materials can be traced back to the remarkable work of Coulomb (1781) on
friction law that was indeed stated for such materials, and followed original works
by Amontons (1699). Basing on his meticulous observation of natural processes
(sand, dunes), Bagnold (1941) produced a remarkable work that pioneered the
physics of granular matter. Powders are characterized by the smallness of the
particle size and the corresponding property of being more cohesive. More on the
basic physics of granular material is to be found in books such as Duran (1999) and
Mester (2009) and journals devoted to the physics of grains and powders. Only the
continuum viewpoint is approached here although we note that stress in a granular
solid is not distributed uniformly; it is transmitted/conducted along a chain of
forces. What we retain as requirements in a continuous approach is that the resulting
continuum must be able to flow, to account for a time evolution of its internal
structure, and to exhibit a Coulomb friction like behaviour in statics.

From the viewpoint of the present entry, the pioneering works are those of
Goodman (1969), Goodman and Cowin (1972), Jenkins (1975), and Cowing and
Goodman (1976). In these works a primary role is played by an independent
kinematic variable called the volume distribution function noted m and such that at
any current point x in the continuum

0	 m x; tð Þ	 1: ð8:32Þ

The distribution mass density noted c is such that the classical mass density
function or bulk density q is given by

q ¼ cm: ð8:33Þ

Thus c corresponds to the mass density of the granules themselves while m
represents the granular volume distribution. This allows accounting for the concept
of dilatancy as introduced by O. Reynolds in 1885. The idea of generalized con-
tinuum is directly related to the introduction of m considered as an additional
independent kinematic variable. Accordingly, the following global balance relations
can be set forth:

• Balance of energy

d
dt

Z
V

q eþ 1
2
vivi þ 1

2
k _m _m

� �
dV ¼

Z
@V

nj tji þ hj _m� qj
� �

dSþ
Z
V

q fivi þ l _mþ hð ÞdV ;

ð8:34Þ

• Entropy inequality

d
dt

Z
V

qg dV �
Z
V

q
h
h
dV �

Z
@V

sjnjdS; ð8:35Þ

102 8 G: From “Generalized Continuum Mechanics” to “Green A.E.”



• Balance of equilibrated force

d
dt

Z
V

qk _m dV ¼
Z
@V

hjnjdSþ
Z
V

q lþ gð ÞdV ; ð8:36Þ

• Balance of equilibrated inertia

d
dt

Z
V

qk dV ¼ 0: ð8:37Þ

Here, e; g; tji; qj; fi; h and h have their usual meaning (cf. Chap. 1 in Part One).
The newly introduced quantities are the equilibrated inertia k, the equilibrated stress
vector hi, the external equilibrated body force l, and the intrinsic equilibrated body
force g. The power terms associated with m relate to the fact that this variable is a
priori independent from the standard motion. They look very much like terms
introduced in the Ericksen-Leslie theory of liquid crystals or in the theory of
continua with voids, or the generalized continuum theories proposed by Mindlin,
Green and Rivlin and others in the 1960s. Equation (8.37) is posited in this simple
form in order to complete the theory. In addition, the influx of entropy is left some
freedom by writing it as

sj ¼ h�1qj þ kj; ð8:38Þ

where kj are the components of the so-called extra entropy flux (see Entry:
Extra-entropy flux). By arguments of continuity and invariance (Green and Rivlin),
the following local balance equations are deduced from Eq. (8.34):

_qþ qr:v ¼ 0; ð8:39Þ

q _vi ¼ tji;j þ qfi; ð8:40Þ

tji ¼ tij; ð8:41Þ

in a very standard form for a one-phase continuum—and then (8.34)–(8.37) yield
the following field expressions after some manipulation (cf. Goodman and Cowin
1972, p. 255; but with our notation)

_k ¼ 0; ð8:42Þ

qk€m ¼ hi;i þ q lþ gð Þ; ð8:43Þ
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q _eþ p0ðiÞ ¼ qh� qi;i; ð8:44Þ

q _g� qhh�1 � sj;j; ð8:45Þ

where we defined the power of internal forces per unit volume by

pðiÞ ¼ � tjiDij � qg _mþ hi _mð Þi
� �

: ð8:46Þ

On introducing the free energy density w ¼ e� gh and accounting for (8.38)
one is led to the following form of the Clausius-Duhem inequality for the present
theory:

�q _wþ g _h
� �

� pðiÞ þ hkið Þ;i�sjh;j � 0: ð8:47Þ

This is practically in the classical form save for the more complex expression of
pðiÞ and the presence of the divergence term. The inequality (8.47) is exploited as a
constraint on the formulation of thermodynamically admissible constitutive equa-
tions. The critical point here is the possible dependence on the additional variables

m; _m; m;i; c; m0; ð8:48Þ

where m0 is the reference volume distribution. It is shown that

w ¼ w m0; m; m;i; c; h
� � ð8:49Þ

only, with the constraint due to rotational invariance

@w
@m;½i

m;j� ¼ 0: ð8:50Þ

Two kinds of pressure can be defined thus:

p ¼ c2m
@w
@c

; p̂ ¼ cm2
@w
@m

: ð8:51Þ

Furthermore, vector ki cannot depend on m0; c;Dij. But it can also be taken nil in
the isotropic case, so that vector hi takes the simplified form

hi ¼ q
@w
@m;i

¼ 2am;i; ð8:52Þ

and is therefore known if w is known. In these conditions the residual dissipation
inequality reads
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U ¼ tji þ pdji þ 2am;jm;i
� �

Dij � qg� p� p̂
m

� �
_m� sih;i � 0; ð8:53Þ

It governs viscosity, heat conduction, and the relaxation of m. We shall not
elaborate further along this line. But it is shown by Goodman and Cowin (1972,
p. 261) that the resulting equilibrium equations in the linear theory imbeds the
Mohr-Coulomb theory of limiting equilibrium in agreement with Sokolovskii
(1965). We refer to Goodman and Cowin (1972) for the case of granular materials
with incompressible granules and to Cowin and Goodman (1976) for a variational
formulation.

While we pointed out the similarity of the above sketched out theory with other
theories of generalized continua, it was unavoidable that granular materials be
approached by means of a Cosserat (or micropolar) continuum (cf. Kanatani 1979;
Ahmadi 1982, Sadovskaya and Sadovskii 2005) or a second-gradient theory (cf.
Yang and Misra 2012). A discrete scheme accounting for possible rotations of
granules, interactions and couple-stresses and its continuum limit are also con-
structed by Pavlov et al. (2006) but in 2D.
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Green A.E

One of the world masters in continuum mechanics in the second half of the
twentieth century, Albert E. Green (1912–1999), although educated in Cambridge,
spent most of his active career at Oxford. He developed fruitful co-operations with
Ronald S. Rivlin and Paul M. Naghdi. Apart from seminal contributions to linear
and nonlinear elasticity, he expanded influential works in generalized continuum
mechanics such as the multipolar theory, thermo-elasticity, and the theory of shells
and rods. Some of his numerous works are listed below. Green provided some
biographic information in Green (1974).
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Chapter 9
H–I: From “Higher-Order
Gradient Theories” to “Ionic
Crystals (Elasticity of)”

Higher-Order Gradient Theories

The idea of a gradient theory of the n-th order seems to be a natural one in general
field theory (cf. Rzewuski 1964). This consists in considering a priori a theory that
involves a potential W that depends on a field / x; tð Þ through its successive
gradients up to order n, i.e.,

W ¼ W /;/;i;/;ij;/;ijk; . . .
� �

: ð9:1Þ

Most of the field theories (in mechanics, electromagnetism, etc) proposed since
the early nineteenth century are of this type. In continuum mechanics, the basic field
is that of (vector) displacement between a reference configuration and an actual
configuration, whence (9.1) in principle translates to

W ¼ W ui; ui;j; ui;jk; . . .
� �

: ð9:2Þ

Classical continuum mechanics is a theory of the first-gradient of the elastic
displacement, so that (9.2) formally reduces to

W ¼ W ui; ui;j
� � ð9:3Þ

only (but a direct dependency on displacement ui is excluded by Galilean
invariance).

Perhaps that a more illustrative viewpoint is given by the consideration of a
power akin to the notion of principle of virtual power, where one writes the power
expanded per unit volume of deformable matter (as introduced in Maugin 1980)

P Bð Þ ¼
Z
B

fivi þ rjivi; j þmkjivi; jk þ � � �� �
dv; ð9:4Þ
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where mi ¼ _ui is the velocity field, and fi, rij, and mijk are tensor coefficients of
various orders. They may rightly be called a body force, a (nonsymmetric) stress,
and a hyperstress (symmetric in its first two indices). Such a representation may
probably be traced back to nineteenth-century authors [e.g., Piola (2014), Barré de
Saint-Venant (1869) or Duhem (1893)] although not so explicitly. The first
twentieth-century author to have toyed with the idea in elasticity seems to be Le
Roux (1911). As a matter of fact, the introduction of forces and their higher-order
tensor generalizations as cofactors in an expansion of the type (9.4)—usually
limited to the first gradient—became a routine among theoreticians (e.g., Kirchhoff,
Poincaré, Hilbert, Hellinger) of the late nineteenth and early twentieth century, at
least on the European continent, yielding a direct introduction of the notion of stress
without exploiting Cauchy’s argument.

Application to a realistic and solution-wise useful formulation of a modelling
such as (9.4) in contemporary nonclassical continuum mechanics, requires specific
attention concerning three particular points. First, while mathematical physicists
more than often consider a volume integral in (9.4) extending to infinity with all
fields and their derivatives going to zero at infinite distances, mechanical engineers
have to deal with bodies B that are of finite extension, and thus have to consider the
application of data (forces) on the corresponding more or less regular boundaries.
This means that (9.4) has to be postulated in conjunction with other integrals over
manifolds of smaller dimensions. In turn, the corresponding evaluation of the global
result will involve exploiting “divergence like” theorems (e.g., Green, Stokes, etc,
theorems). This is formally exemplified in nD in a work by Dell’isola et al. (2012).
But keeping with the physics of three-dimensional bodies is wise. In turn (second
point), this means that considering at most a second-gradient theory with respect to
the displacement is more than sufficient. Finally, in applying a formalism such as in
(9.4) in modern continuum mechanics, one may distinguish between forces that are
required to satisfy different invariances. This is particularly emphasized in Maugin
(1980) where one must distinguish between de facto external forces (such as fi—the
dual of the non-objective field vi) and true internal forces for which one must
construct constitutive equations that must be objective (i.e., invariant by
time-dependent rotation in the actual configuration). That is, for true internal forces,
the expression (9.4) must reduce to a linear functional on a set of objective gen-
eralized velocities; for a second-gradient—and up—theory, we would have

PintðBÞ ¼
Z
B

ðrðjiÞDij þmkjivi;jk þ � � �Þdv; ð9:5Þ

as only the symmetric part Dij ¼ vði;jÞ, the rate of strain, is objective.
The best known second-gradient theory of continua is the strain-gradient theory

of elasticity proposed by Mindlin and co-workers in the 1960s. But the notion of
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gradient theory can be extended to many continuum theories, whether mechanical
or not, where gradients of the original fields are introduced for a more accurate
continuum description (e.g., in electromagnetism, micromagnetism, theory of
polarization gradient, etc). Transition from the discrete to the continuum is exam-
ined by Triantafyllidis and Bardenhagen (1993) in 1D.

To conclude, the consideration of higher-order gradients is often referred to as
considering a weakly nonlocal theory of continua as the chosen gradient order
introduces length scales that characterize a rather limited spatial extension of
interactions between material points. This is well illustrated in lattice dynamics and
can be compared to truly nonlocal theories (as first discussed in Maugin 1979).
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Homogenization

In a general manner homogenization consists in replacing a heterogeneous material
by a somewhat equivalent homogeneous material. To perform such an operation
one must identify a representative volume element (RVE) that is most characteristic
of the structure of the material at a small scale where some properties and fields
vary rapidly. In most real cases the structure is not well ordered. But, remarkably
enough, assuming a rather (in most cases unrealistic—unless man-made) ideal
situation with a regular, e.g., periodic, pattern, one can conceive of an easily
implemented scheme that is both mathematically sound and practically very effi-
cient as proved by many cases—e.g., in porous media. The RVE then is a basic cell
of this convenient periodic arrangement while in the averaging technique the RVE
should contain enough statistical information about the heterogeneous medium in
order to be truly representative. Anyway, we are facing two spatial length scales,
those of the RVE (l) and of the macroscopic scale (L), typically in the ratio e ¼ l=L,
where e is an infinitesimally small quantity. In physical Euclidean space the
macroscopic domain X of interest is considered periodic and the rescaled unit cell is
Y ¼ ð0; 1Þ3 and the two coordinates (x macroscopically and y—fast variable—in
the cell) are given by

x 2 X; y ¼ x
e
2 Y : ð9:6Þ

The result of this parametrization is that the problem now is embedded in a
sequence of similar problems parametrized by a scaling e with expressions of the
type (asymptotic formal expansion, so-called Ansatz)

ve xð Þ ¼ v x; yð Þ ¼ v0 x; yð Þþ ev1 x; yð Þþ e2v2 x; yð ÞþO e3
� � ð9:7Þ

for all fields. Then homogenization amounts to performing an asymptotic analysis
when e tends to zero. The limit is the solution of the homogenized problem. This
mathematical technique is called asymptotic periodic homogenization (APH). It
was essentially developed in France, Russia and Italy by authors such as
Sanchez-Palencia (1980), Bensoussan et al. (1978), and Bakhvalov and Panasenko
(1989), within the framework of appropriate functional spaces.

For a typical exemplary diffusion problem—akin to elasticity—with rapidly
oscillating coefficients, we consider the partial differential equation:

r: A
x
e

� �
:rve

� �
¼ f; ð9:8Þ

where vector-valued function v stands for the elastic displacement. This is to be
replaced by the homogenized equation
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r: Ahom:rv
� � ¼ f; ð9:9Þ

where Ahom is the homogenized (constant in space) material tensor coefficient.
To arrive at this result and the expression of Ahom, one has to consider the formal

expansion (9.7) and substitute from it in Eq. (9.8) yielding thus a hierarchy of
problems. The effective coefficients Ahom are determined by solving a set of
boundary-value problems over the unit cell for the function v1ðx; yÞ. It is noted that
only the first two terms in (9.7) are justified; to go further one would have to
account for boundary-layer terms.

This homogenization technique is extremely valuable in the case of elastic com-
posites. But it also applies to that of porous media (see Entry “Porous media”). In
many cases the obtained homogenized material behaviour is of the same type as the
components of the original periodic material. Much more fruitful from the viewpoint
of this book is the case where this homogenization technique delivers a more complex
behaviour that falls within the theory of non-classical continuum mechanics (e.g.,
Cosserat continua). This was achieved by Forest and Sab (1998) and is exposed in
Forest (2006; in particular Figure 5.1) by polynomial expansion of the local dis-
placement within the appropriately chosen RVE with specific data over these cells.

References

Bakhvalov N. and Panasenko G., (1989). Homogenization: Averaging processes in
periodic media. Kluwer, Dordrecht.
Bensoussan A., Lions J.-L. and Papanicolaou G., (1978). Asymptotic analysis for
periodic structures. North-Holland, Amsterdam.
Forest S., (2006). Milieux continus généralisés et matériaux hétérogènes. Presses de
l’Ecole des Mines, Paris.
Forest S. and Sab K., (1998). Overall modelling of heterogeneous materials. Mech.
Res. Commun., 25(4): 449-454.
Sanchez-Palencia E., (1980). Non-homogeneous media and vibration theory,
Springer-Verlag, Berlin.

Cross references: Porous media (as seen in GCM).

Hyperstress (Notion of)

“Hyperstress” is the name usually given to internal forces of a higher-order tensor
order than the usual stresses. Thus they are the thermodynamic dual of a gradient of
displacement of order greater than one (in the expression of a work), or of a
gradient of order greater than one of the velocity (in the expression of a power)—
see Entry: “Higher-order gradient theories”. A hyperstress of order n is the internal
response to a surface applied “force” of order n� 1: In the second-gradient theory
(of the displacement field), the surface applied force is called a “double force”
surface traction—a notion issued from the theory of plates and shells—represented
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by the data of the components of a second-order tensor. The corresponding Cauchy
relation for the hyperstress at a surface is a complicated affair that necessarily
involves not only the unit normal but also its local variation and the curvature of the
surface at the surface point and whether the surface is regular at that point (for an
example, see Entry: “Gradient elasticity”).

Cross references: Double force, Gradient elasticity, Higher-order gradient
theories

Implicit Gradient Elasticity Models

These are formal models of gradient elasticity where—outside any energy con-
siderations, there is posited an implicit constitutive relation of the form

f r; e;r2e;r2r
� � ¼ 0; ð9:10Þ

between the stress r and the strain e. The idea seems to go back to Morgan (1966),
and more recently Rajagopal and Srivinisa (2009). The function f is taken as a
general linear isotropic function of its arguments. An example of relation (9.10) is
given by (Aifantis 2010)

1� l21r2
� �

r ¼ C 1� l22r2
� �

e; ð9:11Þ

where l1 and l2 are two characteristic lengths and C is the usual fourth-order tensor
of elasticity stiffnesses. Model (9.11) is not hyperelastic.
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Internal Degrees of Freedom

Here we understand by internal degrees of freedom the new observable and
controllable descriptors (independent fields) that are needed to complement the
classical motion in order to obtain a sufficiently accurate description of the
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deformation and kinematics of the medium. These new fields may be scalars,
vectors, or tensors of appropriate orders. In contrast to internal variables of ther-
modynamic states (cf. that Entry), it is important to note that these quantities are not
only measurable and observable, but also controllable by means of corresponding
applied “forces” in volume and at surfaces. They exist whether the response of the
system is thermodynamically reversible or not. Another essential property is to have
associated with them inertia, so that they play an important role in dynamics. We
illustrate these properties in the spirit of analytical mechanics by considering a
formulation of the type of the principle of virtual power (PVP). This principle states
for a body of volume B bounded by a regular surface @B that “the virtual power of
inertia forces is balanced by the power expanded by internal, volume and surface
forces”. Let qa; a ¼ 1; 2; . . .; n, denotes the set of these internal degrees of freedom
and _qa the corresponding rates (generalized velocities). Then the PVP can be stated
in the form (cf. Maugin 1980):

Pinertia Bð Þ ¼ Pinternal Bð ÞþPvol Bð ÞþPsurf @Bð Þ; ð9:12Þ

where [compare to Eq. (1.16) through (1.20) in the chapter on prerequisites]

Pinertia Bð Þ ¼
Z
B

q _v:vþ
X
a

Ia€qa _qa

 !
dV ; ð9:13Þ

Pinternal Bð Þ ¼ �
Z
B

tjivi;j þ
X
a

ga _qa þGaj _qa;j
� � !

dV ; ð9:14Þ

Pvol Bð Þ ¼
Z
B

q f:vþ
X
a

fa _qa

 !
dV ; ð9:15Þ

and

Psurf @Bð Þ ¼
Z
@B

Td:vþ
X
a

Td
a _qa

 !
dS: ð9:16Þ

Expression (9.14) was written without further ado, but in practice it must be
reduced to a linear continuous functional over a set of objective fields so that the
introduced co-factors are indeed internal forces that are also objective and in need
of constitutive equations. The way to construct this set from the set vi;j; _qa; _qa;j

� �
is

indicated in Maugin (1980). The result depends on the tensor character of the newly
introduced degrees of freedom. The fields fa and Td

a are the bulk and surface applied
“forces” that control these degrees of freedom in the same way as f and Td rep-
resents external body force and applied surface traction.
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The general framework (9.12)–(9.16) applies to a variety of modelling in non-
classical continuum mechanics [e.g., anisotropic fluids, asymmetric elasticity,
Cosserat continua, dipolar materials, ferroelectric crystals, micromagnetism, liquid
crystals, micromorphic continua, materials with voids, micropolar continua, ori-
ented media (with directors), etc]. It was limited here to a so-called first-order
gradient theory both for the classical motion and the internal degrees of freedom.
But it is readily generalized to higher-order gradient theory to the price, however, of
a possible difficult interpretation with boundary conditions. It is not difficult to
complement statement (9.12) with global statements of the first and second laws of
thermodynamics to reach a complete thermo-mechanical theory that admits both
reversible and irreversible phenomena and couples with the temperature field. An
alternate formulation to (9.12) is the statement of global balance laws for the
classical motion and the additional internal degrees of freedom. But the last
equation may have a debated physical significance (e.g., the balance for the director
field in Ericksen’s theory of anisotropic fluids), a problem that is eschewed with a
formulation (9.12) in the line of field theory.
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Internal Variables of State

Many careless authors assimilate internal variables of thermodynamic state—for
short internal variables, but sometimes also called hidden variables—and internal
degrees of freedom (see above for the definition of the latter). This, from our
viewpoint, is an unforgivable mistake. The idea of internal variables is probably
traced back to Duhem (1911; according to Truesdell), but probably more to
Bridgman (1943). A modern introduction is due to Coleman and Gurtin (1967). The
best modern analyst and advocate of this thermodynamics with internal variables
has been Joseph Kestin (see, e.g., Bataille and Kestin 1979). Maugin and Muschik
(1994) have specified and analysed many of its facets—see also Maugin (1999). Its
general features can be presented as follows.

Internal variables of state are introduced in addition to the usual observable
variables of state (e.g., deformation, temperature). They are supposed to account for
the complex internal microscopic processes that occur in the material and manifest
themselves at a macroscopic scale in the form of dissipation. They are of pure
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thermodynamic dissipative nature. Accordingly, being internal and not observable—
although certainly identifiable by a gifted physicist—they do not appear in the usual
statement of the first law of thermodynamics as they are not directly acted upon by
bulk or surface actions. But they do evolve under the action of external loads as a
result of complex processes that follow from a re-distribution of internal forces
(internal rearrangements of matter, etc). For instance, the local density of disloca-
tions (responsible for the macroscopic phenomenon of plasticity) evolves when a
system of standard forces (tractions) is applied to a body. In compliance with this,
the basic formulation of a theory of continua involving internal variables offers at
first no “visual” difference with a classical theory. In particular, in the classical
theory of the first gradient as sketched out in the Prerequisite Chap. 1, the basic
statements are those of the principle of virtual power and the first and second laws of
thermodynamics. That is, for a body B of regular boundary @B,Z

B

q _v:v dV ¼ �
Z
B

tjivi;j dV þ
Z
B

qf:v dV þ
Z
@B

Td :v dS; ð9:17Þ

d
dt

Z
B

q
1
2
v2 þ e

� 	
dV ¼

Z
B

q f:vþ hð ÞdV þ
Z
@B

Td :v� q:n
� �

dS; ð9:18Þ

d
dt

Z
B

qg dV �
Z
B

qs dV �
Z
@B

s:n dS; ð9:19Þ

where e is the internal energy per unit mass, g is the entropy per unit mass, h and
s are the heat and entropy supplies per unit mass, while q and s are the influxes of
heat and entropy through the surface of unit outward normal n. A theory of internal
variables that is essentially a thermodynamic theory is meaningless without the
statement (9.19), as nothing distinguishes this theory from a classical continuum
theory with valid statements (9.17) and (9.18). It is the inequality (9.19) that will
govern the irreversible thermodynamics related to the presence of the internal
variables. To progress further one needs to recall that the theory deviates the least
from the classical thermo-mechanical theory by assuming that s and s are related to
h and q by the (thermo-statics) relations

s ¼ h
h
; s ¼ q

h
; ð9:20Þ

where h is the thermodynamic temperature ðh[ 0; inf h ¼ 0Þ. These relations in
principle imply a small deviation from thermodynamic equilibrium, but this validity
is stretched outside equilibrium without much worry (this follows the hypotheses of
Coleman-Noll rational thermodynamics). Then one introduces the free (Helmholtz)
energy density w by w ¼ e� gh and shows that the combination of the localized
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form of Eq. (9.17) through (9.19) yields the now classical Clausius-Duhem
inequality in the form

�q _wþ g _h
� �

þ tjiDij � s:rh� 0: ð9:21Þ

The true original formulation of the theory comes with a specification of the
dependence of functions such as e and w, e.g., w v; að Þ where v stands for the usual
observable variables (deformation, temperature) and a for the ordered set of internal
variables. We refer the reader to Rice (1971) and Maugin (1992) for the application
to the theories of elasto-plasticity, viscoplasticity and damage, and Maugin and
Drouot (1983) for the application to solutions of macromolecules, and in a more
general physical framework to Maugin (1999). What are deduced from the ther-
modynamic reasoning applied to (9.21) are pure evolution equations (of a more or
less regular form) for the internal variables (e.g., plastic strain, damage variable,
conformation of macromolecules, etc). This is not non-classical continuum
mechanics per se according to our definition. However, it is observed that some
internal variables of state (e.g., concentration of some constituents) can be of a
diffusive nature. This implies—in the line of Valanis (1996)—the intervening of the
spatial gradient of the said variables so that we need to consider the following
caveat. That is, we can consider a free energy of a more general form w v; a;rað Þ.
The above scheme will be left unchanged but for a generalization of the second of
(9.20) to the form

s ¼ q
h
þ k; ð9:22Þ

where k may be called the extra entropy flux (a notion dealt with by Müller 1973).
Then (9.21) is shown to be replaced by the more general inequality

�q _wþ g _h
� �

þ tjiDij þr: h kð Þ � s:rh� 0: ð9:23Þ

Assuming that w ¼ w F; h; a;rað Þ, where F is the deformation gradient, this
equation yields the remaining dissipation inequality

tdisji Dij þA _a� s:rh� 0; ð9:24Þ

where we have set

g ¼ � @w
@h

; tdisji ¼ tji � telasji ; telasji ¼ q
@w
@FðiK

FjÞK ð9:25Þ

and (d=da denotes a variational Euler-Lagrange derivative)
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A ¼ �q
dw
da

¼ �q
@w
@a

�r:
@w

@ðraÞ
� 	

; k ¼ � q
h

@w
@ðraÞ _a: ð9:26Þ

The usual thermodynamic reasoning on the new dissipation inequality (9.24) will
yield an evolution-diffusion equation for the internal variable a (see Maugin 1990) if
_a is linear in the conjugated thermodynamic force A. This is very much like a
Landau-Ginzburg equation for the a field. Note that there is no change in the for-
mulation (9.17) of the principle of virtual power contrary to what was advanced by
some authors (e.g., Frémond and Nedjar 1993) and the thermodynamic dual ofrh in
the remaining dissipation inequality still is the entropy flux vector s. Also, the last of
Eq. (9.26) is not so original as such an extra entropy flux appears in the theory of
fluid mixtures with a identified as a concentration (cf. De Groot and Mazur 1962).

An additional important difference with the theory of additional internal degrees
of freedom is that where the latter can permit the exhibition of solitary wave and
solitons because of the possible simultaneous presence and competition of non-
linearity and dispersion, the theory with gradients of the internal variables will yield
dissipative structures because of the possible simultaneous presence and compe-
tition of nonlinearity and dissipation.
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Interstitial Working

“Interstitial working” is the name given by Dunn (1986)—also Dunn and Serrin
(1985)—to an additional energy flux of which the existence must be assumed at a
surface in order that the considered body enclosed in this surface be able to be a
non-simple one (in the sense of Noll) or, in other words, be a continuum of
higher-order gradient than one (e.g., second-order gradient model depending on the
gradient of the deformation gradient F, and higher). A priori, such a model will
admit a density of free energy in the form (this is only an example)

w ¼ ŵ F; h;rRF;r2
RF;rh; _F

� �
; ð9:27Þ

where r and rR are the usual gradient and referential gradient, respectively, _F is
the time derivative of F ¼ @x=@X, and h is the thermodynamic temperature
h[ 0; inf h ¼ 0ð Þ. The global balance equations are similar to those of the clas-
sical ones for mass, linear momentum, moment of momentum, and the entropy
inequality (See Chap. 1 of Prerequisites). The only change is the presence of an
additional term u ¼ uðX; t; nÞ in the statement of the first law of thermodynamics
which therefore reads:

d
dt

Z
B

q
1
2
v2 þ e

� 	
dV ¼

Z
B

q f:vþ hð ÞdV þ
Z
@B

Td:vþ u� q:n
� �

dS; ð9:28Þ

assuming regularity of the bounding surface @B. Here Td is the usual applied
surface traction, and q is the usual influx vector. The main question is to find a
plausible expression for u, when (9.27) is assumed, and the constraint of the second
law (Clausius-Duhem inequality) is enforced. Introduction of u in (9.28) means that
“we are allowing spatial interactions of longer range to engender a rate of supply
u of mechanical energy across every material surface in the body” (cf. Dunn and
Serrin 1985)—hence the name of “interstitial working”. This new quantity is
supposed to be objective. But while u appears together with the flux q:n in (9.28), it
does not a priori occur in the second law where the entropy flux s still has its
classical definition in terms of q and h, i.e., s ¼ q=h. A standard application of a
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Cauchy-type argument shows that u must be linear in the normal n, so that we can
write

u X; t;nð Þ ¼ u X; tð Þ:n; ð9:29Þ

where u may be called the interstitial work flux; it has to be objective. An alternate
formulation would keep only q in (9.28) but consider an entropy flux in the more
general form

s ¼ q
h
þ k ð9:30Þ

where the extra entropy flux k stands for an influx of entropy due to longer range
spatial interactions [compare to the case of gradient of internal variables in the
Entry: Internal variables, seen as a weakly non-local thermodynamic property].
Returning to the first formulation with u, the local Clausius-Duhem inequality is
obtained in the form:

�q _wþ g _h
� �

þ tjiDij þr:u� s:rh� 0: ð9:31Þ

Exploitation of this yields in particular that

@ŵ
@ðr2

RFÞ
¼ 0;

@ŵ

@ _F
¼ 0;

@ŵ
@ðrhÞ ¼ 0; ð9:32Þ

so that

w ¼ ŵ F; h;rRFð Þ; ð9:33Þ

only. The medium is at most a first-gradient model of the deformation gradient,
while u is represented by a general expression [cf. Equation (1.18) in Dunn and
Serrin (1985)]

u ¼ V F; h;rRFð Þ: _FþX F; h;rRF;r2
RF

� �
:rhþwE F; h;rRF;r2

RF
� �

: ð9:34Þ

Here V is a third-order tensor, X is a skew second-order tensor, and wE is a
vector that depends neither on _F nor onrh. Equation (9.34) tells that three possible
mechanisms can produce the interstitial-work flux, the first one being dynamic. The
Cartesian components of the stress tji are easily deduced in terms of the derivatives
of the energy (9.33) with respect to the components of F and its gradient rRF.

For fluids, it is shown that the free energy w reduces to

w ¼ w q; h;rqð Þ: ð9:35Þ
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This is of the Korteweg type (see the corresponding Entry). Simultaneously,
u acquires the form

u ¼ q
@w

@ðrqÞ _qþw; ð9:36Þ

where the second contribution vanishes if the material possesses a centre of sym-
metry (e.g., isotropy). The corresponding stress components are given by

tji ¼ �q2
@w
@q

þ q q
@w
@q;k

 !
;k

24 35dji � qq;j
@w
@q;i

: ð9:37Þ

We need not elaborate further on this modelling.
But it is of interest to note that with the occurrence of discontinuity lines (edges)

at surfaces, the problem is much more difficult. Dell’Isola and Seppecher (1995),
generalizing some argument of Noll (1973) and Noll and Virga (1990) on Cauchy’s
postulate have then established the relationship between edge contact forces, double
forces and interstitial working.
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Ionic Crystals (Elasticity of)

Electro-magneto-mechanical coupled effects of the first order are of various nature
and complexity for they necessarily involve appropriate symmetry properties of the
considered material. Thus, (inverse) piezoelectricity, discovered in 1881 by the
Curie brothers after their discovery of the “direct” piezoelectric effect (1880;
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appearance of electric charges at the boundary of a deformed body), provides a
strain that is linear in the applied electric field but only for certain allowed material
symmetries of crystals. This requires the absence of a centre of symmetry to allow
for a direct linear coupling between a stress (essentially a second-order tensor
variable) and an electric field (essentially a polar vector). But it happens that some
substances of great interest possess potential electro-mechanical couplings although
they exhibit a centre of symmetry. This is the case of so-called ionic crystals such
as alkali halides (e.g., NaCl, NaI, KCl, LiCl, LiBr,…). Ionic nonpolar solid
dielectrics in general contain more than one type of atoms, but no permanent
dipoles. Their structure is characterized by a regular three-dimensional alternation
of positive and negative ions, and hence the entire crystal has no permanent dipole
moment. However, in the presence of an external electric field, the positive ion
lattice will suffer a displacement relative too the negative ion lattice, resulting in
ionic polarization. What about linear electromechanical couplings in the presence of
a centre of symmetry? The idea was put forward by Mindlin (1968) that such
couplings may exist in centrosymmetric crystals, even in materials of highest
symmetry (e.g., centrosymmetric isotropy) on the condition that the gradient of
electric polarization be included as a variable in the stored energy of deformation
and polarization. This possibility is corroborated by the lattice dynamics of crystals
of the ionic type in the so-called long-wave approximation (Mindlin 1972a; Askar
1986; Askar and Lee 1974; Askar et al. 1970). This makes that an
electro-mechanical theory of elastic materials with polarization gradient will nec-
essarily look formally very much like the theory of elastic ferroelectrics although
the microscopic mechanisms at work in the two theories are quite different. Thus for
infinitesimal strains and weak electric fields, we can directly state the following
local governing equations for the linear theory of elastic dielectrics with polar-
ization gradients:

• Balance of linear momentum:

tji;j þ q0fi ¼ q0€ui; ð9:38Þ

• Balance of angular momentum:

tji ¼ tij; ð9:39Þ

• Balance law for electric polarization:

Ei þEL
i þ bEji;j ¼ dE=q0ð Þ€Pi; ð9:40Þ

• Maxwell’s equations for quasi-electrostatics:

r2/ ¼ r:P; ð9:41Þ
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at each regular point x in the body B, along with the following boundary con-
ditions at the regular boundary @B of unit outward normal n:

njtji ¼ Td
i ; ð9:42Þ

njbEji ¼ 0; ð9:43Þ

@/=@nð Þþ niPi ¼ 0: ð9:44Þ

In these equations P is the electric polarization per unit volume, E is the
Maxwellian electric field, / is the electric scalar potential, tji is a symmetric Cauchy

stress, Td is an applied traction, EL is a local electric field, and bEji are the Cartesian
components of a tensor that accounts for the presence of the polarization gradient.
Equations (9.41) and (9.44) follow from the reduced Maxwell equations

r� E ¼ 0 ) E ¼ �r/; r:D ¼ 0;D ¼ EþP: ð9:45Þ

There is neither ponderomotive force nor ponderomotive couple present in these
equations as a consequence of the absence of electric charges (the medium is a
dielectric) and of linearization.

Typically, the nondissipative constitutive equations are deduced from an energy
W per unit volume

W ¼ W eij;Pi;Pi;j
� �

; eij ¼ uði;jÞ ¼ 1
2

ui;j þ uj;i
� �

; ð9:46Þ

in the form

tji ¼ @W
@eij

; EL
i ¼ � @W

@Pi
; bEji ¼ q0

@W
@Pi;j

: ð9:47Þ

For instance, in the case of an isotropic crystal a (at most) quadratic represen-
tation of W will contain a (non-forbidden) term linear in r:P and coupling terms
jointly quadratic in the components of the strain and the polarization gradient. The
last terms will contribute to a stress linear in the polarization gradient, hence the
looked for original electro-mechanical coupling. As to the term linear in r:P, it is
of highest interest as it yields the notion of surface bond energy.

Indeed, as a matter of general philosophy, the introduction of polarization gra-
dients—a manifestation of a weakly nonlocal theory—yields effects that are typical
of all gradient-type theories. For instance, certain solutions in infinite media which
presented point singularities in the absence of gradients are now smoothed out with
the aid of gradients. Furthermore, where gradients are to be expected to be most
important, thus essentially nearby boundaries and strong transition zones (e.g., at
shock waves), there will occur boundary layer effects confined to a region of small
thickness. With this type of phenomena in mind we need to ponder the existence of
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surface bond energy. In effect, it must be realized that in order to separate an ionic
crystalline body into two parts along a surface S, a certain bond energy must be
overcome. Following Mindlin we can say that this is the energy that would be
needed to break the atomic bonds across S if the strain and polarization were
prevented from developing, for instance by some externally applied field. The
release of the latter field would result in a deformation and a polarization localized
in the vicinity of S, with a corresponding surface energy of polarization and
deformation. The latter energy is always shown to be negative. In all, the energy
required to separate an ionic-crystalline body into two parts along a surface S is the
so-called bond energy from which must be subtracted the absolute value of the
surface energy of deformation and polarization. The former is not accounted for in
usual continuum formulations, but it naturally arises in a lattice-dynamics approach,
and is evaluated in the present polarization-gradient theory as originally shown by
Mindlin. Indeed, if b0r:P is the linear term present in the expansion of W for a
centrosymmetric (cubic or isotropic) crystal, then the surface bond energy per unit
surface is calculated as

wS ¼ 1
2
b0 n:Pð Þj@B; b0\0: ð9:48Þ

Numerical values of b0 for different alkali halides have been determined by
Askar et al. (1970) This is also true of the other material coefficients that are
involved along with the polarization gradient.

Other effects typically accounted for by the theory of polarization gradient are
the explanation of the abnormal deviation of the capacitance of thin dielectric films
and the acoustical activity of ionic crystals. These are described and documented in
the review of Mindlin (1972b) and the book of Maugin (1988, Chap. 7). The
influence of structural defects (dislocations, plastic deformation) is studied and
reviewed in a book by Nowacki (2006) that synthesizes many of this author’s
works, including the coupling with thermal effects and the resulting
thermo-elasticity. A Hamiltonian-Lagrangian variational formulation was proposed
quite early by Suhubi (1969).

Remark on electric quadrupoles

The microscopic electric description considered in this entry views electric
macroscopic polarization as a polar vector. Its thermodynamic dual is akin to an
electric field EL

� �
. Its gradient has for thermodynamic dual bE (dimensionally, an

electric field multiplied by a length). However, another view consists in considering
macroscopic electric polarization as made of an electric dipole density P, per se, and
an electric quadrupole density, Q, so that P ¼ P� divQ (and in fact further
neglected electric multipoles)—a natural outcome of the Lorentz modelling as
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thoroughly studied in Eringen and Maugin (1990, Vol. I)—and then considering P
and Q as independent electric independent variables. The thermodynamic dual of Q
will then be a gradient of electric field. Such a description, envisaged by the author
in the early 1970s, also yields an electric continuum endowed with a microstructure
involving couple stresses. For instance, in quasi-electrostatics, we would have the
following expressions of the ponderomotive force and couple, (Maxwell) electric
stress, and electromagnetic energy source:

f emi ¼ PjEi;j þQjpEu;jp; c
em
i ¼ eijk PjEk þQmjEk;m

� � ð9:49Þ

and

temji ¼ DjEi þQjkEi;k � 1
2
E2dji; w

em ¼ f emj vj þ qEi _�pi þ qEi;jd Qji=q
� �

=dt: ð9:50Þ

More on these in the form of problems is to be found in pp. 87–89 in Eringen
and Maugin (1990, Vol. I). A formulation by the principle of virtual power is given
in Maugin (1980). This modelling has attracted little attention save in few inde-
pendent works by H. Demiray and B. Collet. But because of the necessary presence
of the gradient of the electric field (or the second gradient of the electrostatic
potential) in the energy density of this theory, the latter is prone to providing size
effects and exotic behaviours similar to those offered by the polarization-gradient
model.
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Chapter 10
K–L: From “Kelvin Continuum”
to “Long-Range Interactions”

Kelvin Continuum

Most engineers and scientists in continuum mechanics ignore that research in their
field was kindled in the nineteenth century by the search for a model of elastic
medium able to transmit light, the so-called “aether”. This followed the discovery
by Fresnel that light travels with vibrations orthogonal to the direction of propa-
gation, in contrast with usual acoustic waves that are longitudinally polarized. Even
the great Cauchy did not eschew this trend in the 1820s, but this led him to his
foundational paper in true continuum mechanics. The story is well told by
Whittaker (1951). The question was whether one can propose a model of “elas-
ticity” that allows for the propagation of transversely polarized waves. Some works
purporting to a solution were those of MacCullagh (1839), and William Thomson
(Lord Kelvin) in 1867. The first author devised a model of elastic continuum that
resists only to a rotation of the volume element. As to Kelvin, he in fact proposed a
model of quasi-rigid aether built from gyrostats and this indeed provides a model
medium that resists only to deformations caused by rotations. He became obsessed
with the idea of an aether built of vortices. This is reported by the Cosserat brothers
(Cosserat and Cosserat 1909), considered the initiators of generalized continuum
mechanics, as a first example of a medium responding to a density of couples in its
bulk. More on these vortices was pursued along this line by Larmor (1900) as a
general model of atoms at the dawn of the twentieth century (see also Greco,
undated).

The notion of Kelvin medium was revisited by mechanicians in St Petersburg in
the 1990s and early 2000s [Gavrilov (1996), Grekova and Zhilin (2001)] under the
supervision of P.A. Zhilin. They noticed that neither the rotation about the axis of
gyrostats nor the gradient of this rotation should be involved in the energy density,
what imposes constraints on the expression formula for the energy density. They
also emphasized an analogy with the theory of continua endowed with electronic
spin (seen as a minute gyroscope like in micromagnetism; see Maugin and Eringen
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1972). But contrary to the original Kelvin approach, the medium considered by
these authors shows also some resistance to translational deformations, so that it is
closer to a Cosserat/polar elastic medium (see also Grekova and Maugin 2005, for
an application to magnetic crystals).
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Kondo K

Kazuo Kondo (1911–2001) was a Japanese aeronautical engineer who introduced
in continuum mechanics notions of Riemannian geometry in order to deal with
structural defects that are responsible for plasticity (1952). He was much influenced
by his reading of Einstein’s gravitation theory and the work of the geometer E.
Cartan on non-Riemannian geometries. He extensively developed his original ideas
in a series of memoirs (Kondo, 1951–1962) that provide hard reading due to
Kondo’s specific style and the introduction of many neologisms (See Croll 2006,
for more on Kondo).
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Korteweg Fluids

Diederik Johannes Korteweg (1848–1941) was a Dutch mathematician whose fame
nowadays is mostly attached to the Korteweg-de Vries (KdV) equation of nonlinear
wave propagation in the form of solitons. As a disciple of Johannes Diederik van
der Waals (1837–1923), he was much interested in the thermodynamics of phase
transitions and criticality in fluid mixtures. In 1901, Korteweg (1901) proposed to
replace the usual jump condition at a surface separating homogeneous fluids of
different densities in the theory of capillarity (the celebrated Laplace equation) by
smooth constitutive equations for stresses arising in response to density gradients.
This introduced the Korteweg stress at an interface between two fluids. In modern
format, the free energy density of Korteweg fluid admits the general expression

w ¼ w q; h;rqð Þ; ð10:1Þ

where h is the thermodynamic temperature h[ 0; inf h ¼ 0ð Þ and q is the density.
The corresponding stress components of the Korteweg stress and entropy density
are given by

tji ¼ �q2
@w
@q

þ q q
@w
@q;k

 !
;k

24 35dji � qq; j
@w
@q;i

; g ¼ � @w
@h

: ð10:2Þ

If w is simply quadratic in rq, then the first of these takes on the form

tji ¼ �pdji � Cq; jq;i ð10:3Þ

An expression of this type is obtained by Rocard (1967) with a constant factor
C in his study of surface tension based on the kinetic theory of gases.
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Equation (10.1) belongs in a nonclassical continuum theory of the second
gradient (cf. Gouin 1988),rq for a fluid replacing the gradientrRF orrru for an
elastic solid in finite or small strains (remember that in general q ¼ q0J

�1 with
J ¼ detF). The theory (10.1)–(10.2) can be constructed in a general framework—
that admits the notion of interstitial working—as shown in Dunn and Serrin (1985).
Following Korteweg (1901), Casal (1961, 1963, 1972) adopted he viewpoint
expressed in (10.1) for his theory of internal capillarity. This line was pursued by
Seppecher (1987) in his doctoral thesis—also Gatignol and Seppecher (1986), and
Gouin (1988). As shown originally by Korteweg—see also Gouin (1988, p. 677)—
the Laplace equation is recovered when the layer where a substantial variation in
density takes place is very thin, and the difference in pressure is obtained as in
Laplace equation as proportional to the mean curvature and the surface tension is
given by an integral through the layer as

c ¼
Z

Layer

C
@q
@n

� �2

dx3; ð10:4Þ

where n is the direction normal to the surface. Of course, this relates to a surface
energy.

Truesdell and Noll (1865, p. 514) note that a most interesting aspect of
Korteweg’s theory is that it provides a correction to classical hydrostatics for
equilibrium figures of compressible fluids. Other works related to density-gradient
fluids in the Korteweg manner are by Blinowski (1975, 1979), Cahn and Hilliard
(1958, 1959), Aifantis and Serrin (1983), and Casal and Gouin (1985)—see also
Sonnet and Virga (2010) for a possible relationship with the theory of liquid
crystals. Another possible approach to the modelling of the Korteweg type of media
is to exploit the notion of extra-entropy flux as done by Morro (2006) following
Maugin (1990).
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Kröner Ekkehart

The German mathematical physicist Ekkehart Kröner (1919–2000) is one of the
most prominent figures in the field of crystal physics, the theory of structural
defects, and generalized continuum mechanics in the second part of the twentieth
century. After delayed studies due to the Second World War, he became a professor
first in Clausthal and then in Stuttgart. He was a very deep and rigorous thinker and
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a pioneer in the geometric theory of defective crystals introducing there notions
such as the incompatibility tensor and the Einstein tensor (Kröner 1958, 1968,
1981). He paved the way for many future studies in the statistical theory of elastic
crystals (Kröner 1972), the theory of homogenization, the nonlocal theory of
continua (Kröner 1968; Kröner and Datta 1966), and the birth of a true configu-
rational mechanics. His influence left a print on all developments in nonclassical
continuum mechanics in the last fifty years.
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Kunin I.A

Isaak A. Kunin (born 1928) is a Russian/American mathematical scientist for a long
time at Novosibirsk (1952–1979) and then at the University of Houston (1979–
2003). He is a pioneer (Kunin 1966, 1970) in the study of nonlocal interactions in
elasticity, in media with microstructure, and the consequences of these properties in
wave propagation. He authored a remarkable monograph on the subject (cf. Kunin
1982/1983) of which the English translation was edited by his friend E. Kröner.
More recently, he became interested in the gauge theory of materials with defects.
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Lattice Dynamics

The modelling by means of what is nowadays called lattice dynamics can be traced
back to the notion of finite difference considered in the late eighteenth century and in
one of Cauchy’s original works on elasticity (Cauchy 1828). But the real break-
through came with the work of Max Born and Theodor von Kármán (1912). The idea
is to consider a regularly ordered lattice of mass points interacting between each
other by means of forces. The latter can be of the linear spring type in the simplest
case, and only nearest neighbours feel these mutual interactions. Generalizations
include nonlinear forces of interaction and interactions between more distant
neighbours (ideally, going to infinite distances of separation). Simple modelling
considers one-dimensional (1D) periodic chains of such “atoms”, although 2D and
3D lattices are not forbidden but then requires the consideration of some symmetry
in the spatial arrangement of atoms since this is supposed to apply to crystals. The
word “atom” is used for convenience to denote lattice mass points but without any
modern atomic connotation.

In 1D, if un denotes the displacement of atom labelled n from its rest position,
the second-order difference d2 (or three-point difference) for similar elastic restoring
between nearest neighbours to the left and the right is given by

d2 ¼ un�1 � 2un þ unþ 1: ð10:5Þ

The corresponding force per unit volume a3—where a is the distance between
neighbouring atoms at rest—reads

F ¼ k
a

� �
d2
a2

ð10:6Þ

with k a spring constant representative of elastic restoring and q ¼ m=a3 is the mass
density of the corresponding medium with m the mass of individual identical atoms.
In the so-called long-wavelength kð Þ limit when each u remains small with respect
to k � a, the second factor in (10.6) becomes exactly the second-order space
derivative @2u=@x2 of a displacement u, considered as a continuous function of time
and of the space coordinate x along the chain axis. One obtains thus a 1D dynamical
representation of the linear momentum equation in elasticity with an elasticity
coefficient E ¼ k=a. This methodology—that does not aim at reproducing exactly a
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true microscopic picture—is very convenient in constructing dynamical models of
continua and is well documented in now classic books (e.g., Born and Huang 1954;
Kosevich 1988; Maradudin et al. 1971).

If one accounts for the next-next neighbour interaction, then one is led to con-
sidering the following five-point differences

d4 ¼ un�2 � 4un�1 þ 6un � 4unþ 1 þ unþ 2: ð10:7Þ

In passing to the long-wavelength limit this will result in the presence of a
fourth-order space derivative @4u=@x4 of the continuous displacement in the con-
tinuum model. This will correspond to a Boussinesq kind of elasticity also called
gradient elasticity. One can pursue this more refined modelling as shown by
Christov et al. (1996) to the price of having to solve analytically and numerically
stiff partial differential equations with higher-order space derivatives.

This fruitful heuristic methodology can be generalized to include rotating
“particles” in the chain (cf. Pavlov et al. 2006) with a view to describing the
dynamics of some granular materials, a microstructure at each “point” (with
dumbbell particles represented by trusses; cf. Askar 1986), lattices with elec-
tromechanical interactions in ionic crystals (cf. Askar et al. 1970), lattices offering a
sensible schematization of ferroelectric crystals exhibiting permanent electric
dipoles (cf. Pouget et al. 1986a, b), and diatomic lattices with chains containing two
types of atoms (particles) in each cell (cf. Askar 1986; Flytzanis et al. 1986). At this
point, it must be recalled that the lattice dynamics of nonlinear elastic chains has
played a crucial role in the discovery of solitons in the celebrated numerical
experiment of Pasta, Ulam and Fermi at Los Alamos in 1955. Since then many
models exhibiting more or less exact soliton behaviour have been constructed on a
lattice dynamical basis with different types of nonlinear interactions and various
ranges of spatial interactions (see Maugin 1999). The Toda lattice (Toda 1970) with
exponentially decreasing interaction potential is such a fruitful model. Recently, a
lattice model has been proposed to study fractal elastic materials (cf. Michelitsch
et al. 2009a, b) with interparticle interactions of all length scales.

In all, although not always appreciated by purists of continuum mechanics,
lattice dynamics offers an efficient tool to justify or to construct many models of
nonclassical continuum mechanics, in particular as it concerns dispersion and
nonlinear properties or the combination and/or competition of both.
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Le Roux Elasticity

This expression applies to a type of elasticity developed by J. (Jean-Marie) Le Roux
(1863–1949) in the period 1910–1914. This is an original work for this period, in
which we recognize the seeds of the theory of gradient elasticity. Le Roux received
his doctoral degree in 1895 (Le Roux 1895) and obtained a professorship of applied
mathematics at the University of Rennes in Western France (Bretagne = Brittany)
only in 1902 and then stayed there until 1933. A specialist of linear partial
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differential equations, he realized in 1910 that some problems of the continuum
mechanics of deformable solids such as torsion (cf. Le Roux 1911), involve non-
homogeneous strains and, therefore, the corresponding theory should include from
the start not only strains in the classical sense but also their spatial gradient, or more
generally the gradient of the displacement gradient. Accordingly, in a variational
formulation, one should consider to start with a Hamiltonian-Lagrangian formu-
lation of the type

d
Z
B

W ui; j; ui; jk
� �

dV ¼ 0: ð10:8Þ

The equilibrium equation at each regular material point becomes the
Euler-Lagrange equation

@

@xj

@W
@ui; j

� @

@xk

@W
@ui; jk

� �� �
¼ 0: ð10:9Þ

There remains to settle the question of boundary conditions.
Some ideas akin to Le Roux’s one may be found in the unpublished works of

Gabrio Piola (see Piola 2014), and also in a note of Barré de Saint-Venant (1869).
Strangely enough, although Le Roux was much appreciated by H. Poincaré as an
analyst, and Le Roux applied some of the ideas of the Cosserat brothers (Cosserat and
Cosserat 1896) in the case of finite deformations (Le Roux 1913),—where he also
introduced a relationship with Christoffel’s symbols—Le Roux’s works did not find
much response in France. But he seems to have been popular to some extent in Eastern
European countries (Russia, Poland, East part of Germany, Czechoslovakia—in
particular, see citations by Nowacki 1986). Now we can claim that Le Roux’s works
anticipated works of the 1960s and 1970s, in particular by R.D. Mindlin and his
co-workers in the USA (Mindlin 1964; Mindlin and Eshel 1968), and may thus be
considered one of the creators of gradient elasticity, an example of weakly nonlocal
theory of continua.

Caveat: In his old age, Le Roux was unfortunate to misunderstand and harshly
criticize Einstein’s theory of relativity (Le Roux 1933).
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Liquid Crystals as Continua

Liquid crystals—almost an oxymoron—is a denomination that applies to substances
that can flow, like liquids, but can also exhibit a kind of ordering, like crystals, i.e.,
the exhibition of some kind of long range orientational order. This dual response of
course depends on specific physical conditions such as the range of temperature so
that these substances can present several phases. They present so-called mesophases.
Microscopically, liquid crystals exhibit molecules in the form of rods or disks.
Discovered by Friedrick Reinitzer in 1885 with transition properties shown by Otto
Lehman at the end of the nineteenth century, they were classified by Georges Friedel
(1865–1933) in 1922 in a memoir of some two hundred pages! Two large classes are
thus distinguished: nematic (from the Greek word meaning “thread”) and smectic. In
the first case the mass centres of the molecules are distributed randomly in three
dimensions (no long-range order in positions of the centre of mass of molecules) but
still the molecules have a tendency to align parallel. In smectics, this parallel
alignment exists but molecules are arranged in equidistant planes. Cholesteric liquid
crystals correspond to the case where the elongated molecules of the nematic phase
are organized into adjacent planes with a slight rotation between planes, hence
exhibiting a kind of stratification. This gives a kind of helical structure that may also
be called chiral nematic phase.

Macroscopically, liquid crystals may be viewed as continua with specific
properties due to the presence of elongated molecules, and thus locally preferred
directional properties. This idea was exploited in the first continuum description of
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such crystals by Oseen (1933) who introduced what is now called a unit director
n as representative of a local average orientation of a bunch (assimilated to a
material point) of elongated molecules. Frank (1958) took over Oseen’s approach,
so that the latter can be referred to as the Oseen-Frank (O-F) theory. The associated
energy depends on the gradient of n, i.e., we can write

W ¼ W q; h;rnð Þ; ð10:10Þ

since n2 ¼ 1 ¼ const: The simplest dependency on rn can be expressed in three
terms:

r:n; n: r� nð Þ; n� r� nð Þ; ð10:11Þ

and a quadratic “elastic” energy reads

2W ¼ k11 r:nð Þ2 þ k22 n:r� nð Þ2 þ k33 n� r� nð Þ½ �2: ð10:12Þ

The three contributions correspond to different types of deformation called,
respectively, pure splay, pure twist, and pure bend. The three coefficients are of the
same order of magnitude so that an often considered simpler model reads

W ¼ 1
2
kni; jni; j: ð10:13Þ

For chiral liquid crystals one can directly replace the variable n: r� nð Þ by
n: r� nð Þþ q0, where q0 is related to the pitch P0 of the cholesteric helix by
q0 ¼ 2p=P0. This “elastic” theory of liquid crystals is particularly powerful for
modelling liquid-crystal devices and lipid layers.

Liquid crystals present physically and industrially interesting couplings with
thermal effects and electromagnetic fields. Their flow behaviour is markedly dif-
ferent from that of standard Newtonian fluids, and of course liquid crystals differ at
rest from Eulerian fluids by virtue of their directional properties. The best general
reference to the physics of liquid crystals remains the book by de Gennes and Prost
(1993)—see also Chandrasekhar (1992) and the very informative course by
Andrienko (2006).
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Liquid Crystals (Ericksen-Leslie Theory)

J.L. Ericksen (born 1924) and his co-worker F.M. Leslie (1935–2000) have
incorporated the theory of liquid crystals into the general theory of anisotropic or
oriented media (with directors) and extended the Oseen-Frank theory so as to
include the dissipative viscous behaviour. The departure point by Ericksen (1960,
1961) is the standard approach through global balance laws, one of which is a rather
strange balance law for the dynamics of a single director n set as

d
dt

Z
B

q _ndv ¼
Z
@B

k:tmdSþ
Z
B

qGdv ð10:14Þ

where, exceptionally, k denotes the unit normal. This is perfectly analogous to the
classical equation of linear momentum

d
dt

Z
B

q _x dv ¼
Z
@B

k:tMdSþ
Z
B

qf dv ð10:15Þ

Another way to ponder the same system is to write down the following global
balances of linear and angular momenta and of energy (here also the unit normal is
noted k so as to avoid any misunderstanding with the director field n):

d
dt

Z
B

q _xþ _nð Þdv ¼
Z
@B

k: tM þ tm
� �

dSþ
Z
B

q f þGð Þdv; ð10:16Þ

d
dt

Z
B

q x� _xþ n� _nð Þdv ¼
Z
@B

x� k:tM
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dSþ
Z
B
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ð10:17Þ

and

d
dt

Z
B

q eþ 1
2

_x2 þ _n2
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Z
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k:q dSþ
Z
B

qq dv ð10:18Þ
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where q stands for the influx of total energy, i.e.,

q ¼ _x:tM þ _n:tm � qh; ð10:19Þ

where qh relates only to heat. Similarly for q,

q ¼ f: _xþG: _nþ h: ð10:20Þ

Here G is an externally applied “force” acting on the director field (e.g., via a
magnetic field), and C is an externally applied couple density.

The artificiality of this construct must be underlined although it exploits a strict
analogy between the classical continuum and the field of director.

From Eqs. (10.17) and (10.18) one deduces the following two equations:

t M½kl� ¼ n½k;ptml�p þ qCkl ð10:21Þ

and

q _e ¼ tMkl _xk;l þ tmkl _nk;l � qk;k þ qh: ð10:22Þ

We prefer to exploit the most elegant and very efficient, albeit also formal,
method of the principle of virtual power as generalized by Maugin (1980). For this
we introduce the following objective time derivatives (Maugin 1980, Paragraph 7.3):

Dij ¼ v i; jð Þ ¼ 1
2

vi; j þ vj;i
� �

; n̂i ¼ ðDJnÞi :¼ _ni � Xijnj; N̂ij :¼ _ni; j � Xiknk; j

ð10:23Þ

with

Xij ¼ v i;j½ � ¼ 1
2

vi; j � vj;i
� �

: ð10:24Þ

Then the principle of virtual power for a continuum theory with degrees of
freedom the actual position x and the director n, and accounting for their first spatial
gradients, reads:

P�
að Þ ¼ P�

intð Þ þP�
volð Þ þP�

ðsurf Þ; ð10:25Þ

where a right asterisk indicates the application of virtual velocity fields, and the
various powers of acceleration, internal forces, body forces and surface forces for a
body B of regular boundary @B of unit outward normal k are given by

P�
að ÞðBÞ ¼

Z
B

q _viv
�
i þ I€ni _n

�
i

� �
dv; ð10:26Þ
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P�
intð Þ Bð Þ ¼ �

Z
B

rjiD
�
ij � gin̂

�
i þ pjiN̂

�
ij

� �
dv; ð10:27Þ

P�
surfð Þ @Bð Þ ¼

Z
@B

Td :v� þTn: _n�
� �

ds; ð10:28Þ

P�
volð Þ Bð Þ ¼

Z
B

q f:v� þG: _n�ð Þdv: ð10:29Þ

These are linear continuous functionals with the property that (10.27) is written
on a set of objective velocities so that P�

intð Þ vanishes identically for a generalized

rigid-body motion given by the vanishing of the three quantities defined in (10.23).
Note that n̂�i and N̂�

ij are defined in terms of _n�i , _n�i
� �

; j and X�
ij. Application for

sufficiently continuous fields, arbitrary virtual velocities and any elements of vol-
ume and surface yields the following local field equations:

tji; j þ qfi ¼ q _vi in B; ð10:30Þ

pji; j þ gi þ qGi ¼ qI€ni in B; ð10:31Þ

kjtji ¼ Td
i on @B; ð10:32Þ

kjpji ¼ Tn
i on @B; ð10:33Þ

with a Cauchy stress defined by

tji ¼ rji þ g½inj� � pk½inj�;k: ð10:34Þ

On taking the vector product of (10.31) with n, we also obtain the equation

qI€n½inj� ¼ qG½i þ g½i þ pk½i;k
� �

nj� in B; ð10:35Þ

while (10.33) yields at @B

kkpk½inj� ¼ Tn
½i nj�: ð10:36Þ

Equation (10.34) is a kind of canonical decomposition of the Cauchy stress in
symmetric and skewsymmetric parts with

t ji½ � ¼ g½inj� � pk½inj�;k ð10:37Þ
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In the original theory of anisotropic fluids of Ericksen (1960) where the gradient
of n is not introduced, this reduces to (cf. Equation (10.23) in Entry “Anisotropic
fluids”)

t ji½ � ¼ g½inj�: ð10:38Þ

Returning to the general case of Eq. (10.25) the corresponding statement of the
first law of thermodynamics (for real velocity fields) reads

d
dt

Z
B

q eþ 1
2

v2 þ I _n2
� �� �

dv ¼
Z
B

q f:vþG: _nþ qhð Þdvþ
Z
@B

Td:vþTn: _n� q:k
� �

ds:

ð10:39Þ

Combination of this with the principle (10.25) written for real fields provides
after localization the local equation for the internal energy e in the form

q_e ¼ rjiDij � gin̂i þ pjiN̂ij
� �� qk;k þ qh: ð10:40Þ

Further combination of this with the local form of the second law of thermo-
dynamics and introduction of the free energy density w ¼ e� gh lead to the
so-called Clausius-Duhem inequality:

�q _wþ g _h
� �

þ rjiDij � gin̂i þ pjiN̂ij
� �� qk=hð Þh;k � 0: ð10:41Þ

This constrains the constitutive equations for the set

w; g; rji; gi; pji; qk: ð10:42Þ

The thermodynamically recoverable parts of these are deduced from the free
energy

w ¼ w q; h; ni; ni; j
� �

: ð10:43Þ

On obtains thus

rji ¼ �pdij; gi ¼ �q
@w
@ni

; pji ¼ q
@w
@ni; j

; p ¼ � @w
@q�1 ; ð10:44Þ

and so

tRji ¼ �pdij � q
@w
@n½i

nj� � q
@w
@nk;½i

nj�;k ð10:45Þ
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The dissipative parts of the constitutive equations satisfy the remaining dissi-
pation inequality:

U ¼ rDji Dij � gDi n̂i þ pDji N̂ij

� �
� qk=hð Þh;k � 0: ð10:46Þ

But the rotational invariance of w materializes in the following constraint

@w
@n½i

nj� þ @w
@nk;½i

nk;j� þ @w
@n½i;k

nj�;k ¼ 0: ð10:47Þ

On account of this result and of the expanded form of N̂ij, it is shown that (10.44)
can be rewritten in the form

tRji ¼ �pdij � q
@w
@nk;i

nk; j: ð10:48Þ

This is sometimes referred to as Ericksen’s tensor for liquid crystals at rest (i.e.,
hydrostatics). This of course shows that liquid crystals do not satisfy Euler’s
hydrostatics.

In the hydrodynamics of liquid crystals that accounts for viscosity and director
relaxation in orientation (neglecting the dissipative part theoretically associated
with tensor pij—that accounts for the long-range orientation ordering), we have to
formulate meaningful equations for rDji and gDi in accord with (10.45). This was
achieved by Leslie (1968) for nematics for which one refers to “nematodynamics”.
We refer to this author and Chap. 5 in de Gennes and Prost (1995). This is also
strongly correlated with, if not identical to, Eqs. (10.24) and (10.25) in the Entry
“Anisotropic fluids”. Experiments allowing the measure of the Leslie coefficients
are described in the book of de Gennes and Prost, Chap. 5.

If the director n is of constant unit length one must account for the constraints
n2 ¼ 1 and rnð Þ:n ¼ 0 by introducing Lagrange multipliers, a scalar a and a
vector b.

Interaction With Electromagnetic Fields

Liquid crystals are prone to interacting with electromagnetic fields in the following
manners. First the externally applied force G introduced in Eqs. (10.29) and (10.31)
may be due to a magnetic field, thus in fact causing a couple as shown in (10.35)
when it is not aligned with n. Second, a magnetic field orthogonal to n and
exceeding a critical value makes the optical properties of the liquid crystal to
change abruptly. This is known as Frederiks transition in nematics. Also, the
dielectric susceptibility of a nematic is anisotropic resulting in the existence of
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ordinary and extraordinary refractive indexes so that the medium is birefringent.
This can lead to multicoloured images in the examination of liquid crystals under
polarized white light. Finally, in cholesteric liquid crystals light is reflected with a
wavelength proportional to the pitch. But the latter depends on the temperature so
that the reflected colour also depends on the temperature (cf. liquid-crystal ther-
mometers). This is one among many applications of liquid crystals.
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Liquid Crystals (Eringen-Lee theory)

The theory of micropolar continua much contributed by A.C. Eringen and his
co-workers lends itself quite naturally to a phenomenological approach to liquid
crystals; this is particularly obvious if we remember the representation of the
internal degree of rotation of micropolar theory by orthogonal transformations by
means of the Gibbs picture that exploits a rotation vector / and a unit direction
n (See the entry “Micropolar continua”). This approach to liquid crystals was
expanded with some relative success by Eringen and some co-workers (e.g.,
James D. Lee) in the late 1960s and early 1970s (See, e.g., Lee and Eringen 1971a,
b, c). This is reviewed in detail in Eringen (2001, Chap. 12). Here this is not
expanded. What must be noted, however, is the essential role played by the notion
of wryness (some kind of “contortion”) in the elasticity behaviour and that of the
generalized time rates in the case of hydrodynamics. It can be shown that this
Eringen-Lee (E-L) theory reduces to the Oseen-Frank-Ericksen theory with
appropriate approximations (cf. Eringen 2001, pp. 169–181, also Eringen 1993,
1997; Rymarz 1990).
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Liquid Crystals (Landau-De Gennes theory)

The Oseen-Frank-Ericksen-Leslie theory that involves a director n only is satis-
factory in the solution of problems of statics and in nematodynamics. But to
describe realistically the phase transition between an isotropic phase and an ani-
sotropic phase the introduction of an order parameter that characterizes this tran-
sition is necessary (cf. De Gennes and Prost 1993). This order parameter cannot be
a vector because liquid crystals possess a centre of symmetry. Suppose that the
molecules composing the nematic crystal are rigid and rod-like. Let n að Þ a unit
vector along the axis of molecule labelled að Þ. A natural order parameter then is a
second-order tensor

Sij xð Þ ¼ 1
N

X
a

n að Þ
i n að Þ

j � 1
3
dij

� �
: ð10:49Þ

Here the summation is over all N molecules in a small but macroscopic volume
at point x. This tensor is symmetric and traceless. It vanishes in the isotropic phase
as shown by a probabilistic argument applied to the orientation of the elongated
molecules. Otherwise, it is very sensitive to the direction of the average orientation
of the molecules. For a uniaxial nematic phase (axial symmetry of the orientational
molecular distribution function), the tensor (10.49) reduces to the simple form

Sij ¼ S ninj � 1
3
dij

� �
: ð10:50Þ

Here the scalar S measures the degree of alignment of the elongated molecules.
In the spirit of the Landau theory of phase transitions (after Lev D. Landau,

1908–1968), the free energy function W is considered as an analytic function of the
order parameter. A possible expression is given by the following expansion limited
to the fourth order in Sij:
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W ¼ Wiso þ 1
2
ASijSij � 1

3
BSijSjkSki þ 1

4
CSijSijSklSkl; ð10:51Þ

where the traceless property has been taken into account in writing the last con-
tribution. Here Wiso is the free energy of the isotropic phase, and coefficients A,
B and C may still depend on pressure and temperature. The phase transition takes
place near the temperature at which A vanishes. Thus one writes

A ¼ A0 h� h�ð Þ: ð10:52Þ

Coefficients B and C may be assumed constant without much loss.
For nematic liquid crystals where Sij varies slowly in space, terms including the

spatial gradient of Sij should be added to expression (10.51), e.g., an elastic (or
weakly non-local) contribution with elasticity coefficients L1 and L2:

Welas ¼ 1
2
L1Sij;kSij;k þ 1

2
L2Sij; jSik;k: ð10:53Þ

The coefficients are easily related to those in the Oseen-Frank energy by k11 ¼
k33 ¼ 9S2b L1 þ L2=2ð Þ=2 and k22 ¼ 9S2bL1=2, where Sb is the bulk nematic order
parameter.

For a uniaxial liquid crystal, using (10.50) for the order parameter, from (10.51)
we obtain the expression

W ¼ Wiso þ 1
3
AS2 � 2

27
BS3 þ 1

9
CS4: ð10:53Þ

This can be used to discuss the phase transition in the Landau tradition. Other
phase-transition theories exploiting more microscopic notions and statistical theory
have been proposed by. Maier and Saupe (1958) in the period 1958–1960 (a
particularly successful theory) and Onsager (1949). This is outside the scope of the
present contribution.
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Long-Range Interactions

Classical continuum mechanics is based on the notion of contiguity, i.e., trans-
mission of internal forces by contact action. This resulted from Euler’s and
Cauchy’s innovative works. This is in contrast with action-at-a-distance of which
the most popular example is provided by gravitation. This is carried into classical
continuum in the form of the body force. But even here there is some ambiguity
brought by Laplace with the notion of potential / and the fact that the body force
may be written as

fi ¼ �/;i ¼ �Uji; j;Uji ¼ /dji; ð10:54Þ

and the consideration of gravitation as a field theory (this will in fact culminate in
Einstein’s theory of gravitation which is a continuum theory per se; see Chap. 3 in
Maugin 2014). The situation is also ambiguous in electromagnetic continua (see
that Entry) where the interaction of electromagnetic fields with deformable matter
can alternately be viewed as a body force (the action-at-a-distance view) and a
contact action by means of the Maxwell stress or its generalization (cf. Maugin
1988). By some strange face-about, the notion of action-at-a-distance was
re-introduced in continuum mechanics in basic discussions by Duhem (1893)—as
cited by Edelen (1976)—and then fully formalized in works by Kunin et al. (1968),
Edelen and Eringen in the period 1965–1980 (cf. Eringen 2002) in the non-local
theory of continua [See Entry: Non-locality (strong)]. In this theory the transmis-
sion of internal forces occurs between not only neighbouring points but also
between distant material points in the body. This exemplifies the notion of long-
range interactions and the necessarily associated notion of characteristic length
(e.g., radius of sphere of interaction, coherence length, etc.). A new field theory was
thus opened where integro-differential equations replace “nice” partial differential
equations. Whether this is a clear advantage as a more physically justified vision or
a drawback and unnecessary complication is a discussed matter (cf. Maugin 1979).
Anyway, this new trend has been very attractive to many mechanicians with some
mathematical dexterity. This notion of long-range interaction has also permeated
the lattice dynamics (see that Entry) where interactions between far “neighbours”
have been considered (e.g., between second-nearest neighbours) often with a view
to justifying the non-local continuum theory (cf. Kunin 1982–3). Peridynamics also
is a modern manifestation of this trend.
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Chapter 11
M: From “Material Growth (Theory of)”
to “Micromagnetism in Elastic Solids”

Material Growth (theory of)

Material growth can occur in the bulk—so-called volumetric growth—or by
accretion at a surface. Here we consider only the first kind. That is, we are con-
cerned with a single continuum with mass balance law (in a reference configura-
tion) written as

@

@t
q0 X; tð Þ

����
X
6¼ 0: ð11:1Þ

The nonvanishing right-hand side in this equation suggests that some external
source is present such as occurs in biological growth where nutrients provide this
source. Thus, in agreement with the formulation of standard processes in continuum
mechanics, the following equation may hold for mass in the reference configuration
KR of a nonlinear deformable body:

@

@ t
q0 X; tð Þ

����
X
¼ P0 þrR : M; ð11:2Þ

where P0 is a scalar source, M is a material vector such as a flux, and rR is a
referential gradient. The modelling problem consists in formulating possible
expressions for P0 and M on a consistent thermodynamic basis. In this approach
growth is seen as a special type of local structural rearrangement which consists in
pushing in more “material particles” of the same type at a given material point.
These are not foreign ones. They just look the same as those previously there. The
result of this is the change of matter density in the reference configuration as stated
in (11.2). But, as shown by Epstein and Maugin (2000), this equation is too general
to be accepted in a classical theory for continua that considers only the first gradient
of deformation; we must assume that M � 0, so that (11.2) reduces to
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@

@ t
q0 X; tð Þ

����
X
¼ P0: ð11:3Þ

Following some ideas of elasto-plasticity (Lee 1969), the deformation gradient
F is considered as the multiplicative composition of an elasticity “gradient” Fe and
a growth “gradient” Fg—but none of these two is a true gradient:

F ¼ Fe Fg: ð11:4Þ

This follows the line of works by Takamizawa and Matsuda (1990), Rodriguez
et al. (1994), Taber (1995), and more recent authors. This theory fits well in the
configurational mechanics of materials (cf. Gurtin 1999; Maugin 2011, Chap. 10)
in which K ¼ F�1

g may be called a transplant and from which can be defined a
connection in a geometric interpretation. We denote the inhomogeneity velocity
gradient in the reference configuration KR by

LK :¼ _K : K�1 ¼ @

@ t
F�1
g

� �����
:

X
:Fg: ð11:5Þ

Because the density in the reference crystal qc ¼ q0JK ; JK ¼ detK is fixed,
computing the time derivative of the reference density q0, one obtains

@

@ t
q0

����
X
¼ qc

@

@t
J�1
K

� �
¼ �q0 trLK ; ð11:6Þ

Thus, in this simplified theory,

P0 ¼ �q0 trLK : ð11:7Þ

This means that no separate time evolution has to be specified for the volumetric
source P0 if we know the time evolution of the transplant K or of Fg. Furthermore,
the time evolution of the determinant of K, JK ¼ detK, tells us whether there is
actually growth (negative time derivative) or resorption (positive time derivative).
Accordingly, growth occurs at time t for negative trLK , while JK itself is a measure
of accumulated growth from the time origin. If K is nonspherical, then there is a
rotation and/or a distortion in addition to growth or resorption.

Finally, the phenomenon of growth is associated with dissipation. This is shown
by uncovering the driving force behind growth and exploiting the Clausius-Duhem
inequality in the usual manner. While the thermo-elastic behaviour is derived from
the energy density, the residual dissipation inequality reduces to

U ¼ tr M : LKð Þ � h�1Q : rRh � 0; ð11:8Þ
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where

M ¼ T:F ð11:9Þ

is the so-called Mandel stress tensor (a part of the Eshelby stress of configurational
mechanics) and Q is the material heat (in)flux. Thus we can say that the Mandel
stress is the driving force behind growth as it is formally the driving force behind
many bulk structural rearrangements. Leaving aside a conduction law of the Fourier
type this yields a relationship between M and LK. If the latter involves one or
several characteristic times, then the material finally behaves as a generally non-
linear, heat conducting, viscoelastic material, in agreement with Cowin’s (1996)
proposal. The full theory, applications and numerics are given in Maugin (2011,
Chap. 10).

Now back to Eq. (11.2) where M is a diffusion flux (not to be mistaken for the
Mandel stress). Epstein and Maugin (2000) have shown that a standard theory of
continua [dealing only with the deformation gradient (so-called “simple” materials)]
cannot accommodate the presence of the last term in the evolution-diffusion
Eq. (11.2). The technical reason for that is that this would yield a gradient of the
energy, and thus a term linear in the second gradient of the deformation in the
Clausius-Duhem inequality while the body is not equipped to respond to this kind
of effect. Accordingly a solution consists in considering a second-gradient theory in
finite strains in the line of higher-order gradient theories. Such an approach,
obviously somewhat complicated, was proposed by Ciarletta and Maugin (2011)
also Ciarletta et al. (2012), and in principle allows for a good, albeit complex,
phenomenological theory of material growth and remodelling, as happens in
biomechanics, on account of mass transport and morphogenetic species. It neces-
sarily involves first-order and second-order transplants (local structural rearrange-
ments) and two material connections on the material manifold from the geometric
viewpoint. It is shown that the evolution of these structural changes or “material
inhomogeneities” is governed by Eshelby-like stress and hyperstress tensors.
A thermodynamically admissible set of constitutive equations was proposed being
illustrated by a set of convincing applications. In such a theory for which we refer
the reader to original works, the free energy density is given by an expression

w F;rRF; ca; h;Xð Þ ¼ det Fg
� �

w0 Fe;Qe; ca; hð Þ; ð11:10Þ

where the introduced material isomorphism can be seen as a symmetry group of the
strain energy so that Fe and Qe are defined by

Fe ¼ F : F�1
g ;Qe ¼ rRF : F�1

g ;F�1
g

h i
� Fe : Qg: F�1

g ;F�1
g

h i
; ð11:11Þ
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where Qg ¼ rRFg, and the ca’s are the concentrations ca x; tð Þ—per unit volume—
of passive scalars that drive both growth (e.g., nutrients, growth factor) and mass
transport phenomena (e.g., migration signals, morphogens) with a ¼ 1; 2; . . . the
generic species. For these an evolution-diffusion equation in the form

_ca �rR:Jca ¼ na F;rRFð Þ; ð11:12Þ

holds where na is the absorption rate of the a-th species.
Similarly, M will be of the form

M F;rRF; ca; h;Xð Þ ¼ detFg
� �

F�1
g :M0 Fe;Qe; ca; hð Þ: ð11:13Þ

The evolution equations for both transplants of first and second order are con-
strained by the residual dissipation inequality (cf. Ciarletta and Maugin 2011).
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Material Inhomogeneities (Theory of)

The expression “material inhomogeneity” refers to the fact that material properties
(density, elasticity coefficient, other material coefficients) of a body may vary more or
less continuously depending on the material point and this, even in the absence of
external loading and of motion. Accordingly, the property of material homogeneity
or inhomogeneity of a body is reflected by the translational invariance or
non-invariance of the physical system under consideration on the material manifold
(i.e., the set of material “points”). Mathematically, this is materialized in the equation
known as the balance of pseudomomentum or material momentum which is gener-
ated by an infinitesimal translation on the material manifold (cf. Maugin 1993). This
is the arena of so-called configurational forces (cf. Maugin 2011). This applies to all
field theories and thus in both classical and non-classical continuum mechanics.
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Materials with Voids

This expression is more particularly reserved to a class of materials introduced in a
thermomechanical background by Cowin and Nunziato (1983). This class may be
considered a very particular case of micromorphic continua, in which an internal
degree of freedom of the dilatation type (hence described by a pure scalar variable
/) is attached to each material point. This may also be referred to as dilatational
elasticity or else, it can be viewed as a special case of microstretch elasticity (cf.
Eringen 1999) in which the internal-rotation component is discarded. The new
equation that governs this internal dilatational deformation reads (case of
quasi-statics)

mk;k þ r� sþ l ¼ 0: ð11:14Þ

with an associated natural boundary condition in the form

nkmk ¼ Md; ð11:15Þ

where Md is akin to a tension. The vector field of components mk may be called the
dilatational stress or microstretch vector and the scalar fields r and s can be
identified as the spherical parts of second order symmetric tensors and may be
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referred to as intrinsic and micro-scalar forces, and l as the body microstretch force
in the spirit of Eringen’s micromorphic continua (See Entry: Micromorphic con-
tinua). This will be useful in describing the mechanical behaviour of media
exhibiting a distribution of holes or cavities in evolution, e.g., a body containing
non-interconnected spherical holes (thus not exactly a porous medium). This theory
is related to Capriz’s (1989) theory of microstructure. In the dynamical case an
inertial term describing the time change of the radius r of the holes must be added in
the right-hand side of (11.15). This looks much like the evolution of spherical
bubbles in some bubbly fluids.
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Mesoscopic Theory of Complex Continua

The so-called mesoscopic theory intends to go beyond classical continuum
mechanics by extending the usual space-time x; tð Þ description of dependent vari-
ables to a mesoscopic space (hence of dimension four plus the number of meso-
scopic variables). Let m 2 M the set of those variables that is an element of a
suitable manifold M on which integration can be defined. A statistical notion, the
mesoscopic distribution function f m; x; tð Þ, is introduced such that

f m; x; tð Þ � f :ð Þ; :ð Þ � m; x; tð Þ 2 M � R3 � R1: ð11:16Þ

This function f describes the distribution of m in a volume element around point
x at time t. It is normalized, i.e.

Z
f m; x; tð ÞdM ¼ 1: ð11:17Þ

Generalizing the usual local balance law for a quantity A, we now have to
consider balance laws in the following a priori form:

@

@t
A :ð Þþrx:½v :ð ÞA :ð Þ � S :ð Þ� þrm:½w :ð ÞA :ð Þ � R :ð Þ� ¼ R :ð Þ: ð11:18Þ
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Here rx and rm are the nabla gradient operators in physical (x) space and in M,
respectively. The fields v and w are the classical velocity field and the mesoscopic
change velocity (noted u by Muschik et al.). We can state the following
self-explaining definition:

m; x; tð Þ ! mþw :ð ÞDt; xþ v :ð ÞDt; tþDtð Þ

The fields S, R and R must be identified. As examples of Eq. (11.18) we have
the following local mesoscopic balance equations for mass and linear momentum:

@

@t
q :ð Þþrx:½v :ð Þ q :ð Þ� þrm:½w :ð Þq :ð Þ� ¼ 0; ð11:19Þ

and

@

@t
q :ð Þv :ð Þ½ � þrx:½v :ð Þq :ð Þv :ð Þ � t :ð Þ� þrm:½w :ð Þq :ð Þv :ð Þ � s� ¼ k :ð Þ ð11:20Þ

Here t is the Cauchy stress (but function of m; x; tð Þ) and s is the analogous
stress but onM; finally, k is the applied force density [also function of m; x; tð Þ]. An
equation of angular momentum can be written down in the same formalism,
involving possibly a couple stress [function of m; x; tð Þ], and an analogue acting on
the mesoscopic variable m. Usual macroscopic quantities will be obtained by
integration over the mesoscopic variables. For instance, for mass and usual velocity
field,

q x; tð Þ ¼
Z

q :ð Þ dM; v x; tð Þ ¼
Z

f ð:Þ v :ð ÞdM; ð11:21Þ

where q :ð Þ ¼ q x; tð Þ f :ð Þ. The latter describes the mass density of all molecules
contained in a volume element for which the value of the mesoscopic variable is
m. Then the definition given in the first of (11.21) is analogous to a formula of
mixture theory which states that the mass density of the mixture is the sum of the
mass densities of their constituents. In this vision it may be said that the mesoscopic
theory is akin to a mixture theory having a continuous index to describe the various
species (cf. Muschik et al. 2004 for this illuminating analogy).

The mass balance is obtained in the usual form

@

@t
q x; t:ð Þþrx:½v x; tð Þ q x; tð Þ� ¼ 0; ð11:22Þ

because

Z
rm:½. . .�dM ¼ 0; ð11:23Þ
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In turn, the macroscopic mass balance induces a differential equation for the
mesoscopic distribution function (Muschik et al. 1999):

@

@t
f :ð Þþrx:½v :ð Þf :ð Þ� þrm:½w :ð Þf :ð Þ� þ f :ð Þ @

@t
þ v :ð Þf :ð Þrx

	 

ln q x; tð Þ ¼ 0:

ð11:24Þ

This is an integro-differential equation for f since q x; tð Þ is defined by the first of
(11.21).

The mesoscopic approach can be applied to Cosserat continua. But the most
straightforward and rich application (which may in fact have triggered this devel-
opment) is to nematic liquid crystal (Blenk et al. 1992; Ehrentraut et al. 1997;
Muschik et al. 1999, 2004). In such media the variable m is the mean orientation
given by the director n of unit length for a crystal consisting of uniaxial molecules.
Accordingly, M is the two-dimensional unit sphere S2. The mesoscopic distribution
function f now becomes an orientation distribution function f n; x; tð Þ. The n can be
represented in terms of an angle and a unit vector of direction n0 (note that n0
and � n0 belong to the same rotation) in quaternion formalism. This results in a
symmetry for f. The mesoscopic change velocity w is an element of the tangent
space to S3 (in this formalism), so that it satisfies the orthogonality condition

n0:w ¼ 0: ð11:25Þ

With this one can proceed to the construction of the mesoscopic balance
equations for nematic liquid crystals (cf. Blenk et al. 1992; Ehrentraut et al. 1997;
Muschik et al. 1999, 2004). The mesoscopic equations of balance of angular
momentum and spin play a fundamental role in this theory. The mesoscopic bal-
ances of energy and entropy are also needed for a fully expanded
thermo-mechanical theory. This rather technical but straightforward development is
clearly exposed in Muschik et al. (2004).

A final remark concerns the construction of representative order parameters that
are needed in the discussion of phase transitions. This systematic construction
indeed requires the exploitation of the mesoscopic background in which the
mesoscopic distribution function necessarily intervenes. A hierarchy of such
parameters can be defined as moments of this distribution function, e.g.,

a x; tð Þ ¼
Z

f :ð Þm dM; ð11:26Þ

a2 x; tð Þ ¼
Z

f :ð Þmm dM; ð11:27Þ

a4 x; tð Þ ¼
Z

f :ð Þmmmm dM; etc: ð11:28Þ
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where the double underlining means the fully symmetric (traceless for a2) part of
the underlined tensor product. Balance laws for the order parameters can be con-
structed. This is achieved by Muschik et al., in particular for the Landau type of
second-order alignment tensor for liquid crystals with unaxial molecules. But a
closing hypothesis is needed as the fourth-order non-traceless moment a4 is
involved in the equation determining a2. A simple ansatz used to avoid this diffi-
culty reads (cf. Muschik et al. 2004):

Z
S2

f :ð Þ nn nn d2n ¼
Z
S2

f :ð Þ n n d2n
Z
S2

f :ð Þ n n d2n: ð11:29Þ
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Metamaterials

In principle, “metamaterials” are materials that go beyond the usual notion of
materials, i.e., those produced by Nature. They are in fact artificial structures with
properties defined by their structure rather than their composition; they are designed
so as to exhibit properties of which values cannot be found in Nature. This trend
was first illustrated by optical metamaterials that exhibit a negative refraction index
(as shown by Victor Veselago in 1967). Insofar as mechanical materials are con-
cerned, this new scheme practically touches the domain of acoustic materials since
they are the true acoustic properties that are most often altered, providing for
instance negative effective bulk modulus (Lee et al. 2009a), negative effective mass
density (Lee et al. 2009b), negative longitudinal and volume compressibility (cf.
Nicolaou and Motter 2012), and obviously auxetic materials (with negative
Poisson’s ratio: see the Entry “Auxetic materials”), etc. There are even
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metamaterials of the a priori solid type that behave like fluids (Page 2011), as they
have a finite bulk modulus but a vanishing shear modulus. These are called meta-
fluids and are illustrated by so-called “pentamode structures” [cf. Milton and
Cherkaev (1995)]. General introductory references are Engheta and Ziolkowski
(2006) and Zoudhi et al. (2008). Mechanical metamaterials achieve the desired
effects by incorporating structural elements of sub-wavelength sizes, i.e., that are of
smaller length than the wavelength of the waves they affect. Some of the modelling
of three-dimensional composites of metal/non-metallic inclusions that are periodi-
cally or randomly embedded in a low permittivity matrix can be modelled by
analytical methods akin to homogenization techniques, such as mixing formulas or
scattering-matrix methods. In the case of solids, we refer to the works of Theocaris
and Stavroulakis in the Entry “Auxetic materials”.
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Micromagnetism in Elastic Solids

Micromagnetics or micromagnetism is, in spite of its name, a macroscopic theory of
magnetic materials but one that accounts for some features of these materials at a
microscopic (quantum) scale, namely, magnetic spin and Heisenberg’s exchanges
forces. Without this peculiarity, some macroscopic effects (ferromagnetism itself)
would not exist. This theory was fashionable in the 1960s–1970s when theorists
from various horizons, electrical engineering (W.F. Brown Jr, F.R. Morgnenthaler),
continuum mechanics (H.F. Tiersten, G.A. Maugin) and solid state physics (C.
Kittel, A.I Akhiezer) combined efforts to examine the applicability of such an
approach to wave conversion between mechanical and magnetic effects. Indeed,
one would like to account for possible significant couplings between the dynamics
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of magnetic spin and crystal deformation, essentially in ferromagnetic bodies. We
recall elements of this theory by following Tiersten’s (1964, 1965) works and the
formalism and rational developments by Maugin (1971, 1988, Chap. 6; Eringen and
Maugin 1990, Chap. 9). Because of its ferroïc nature (see the entry on “ferroics”),
the theory must consider magnetization as a primitive independent variable (its
local value may not be zero in the absence of applied magnetic field). Furthermore,
quasi-magnetostatics of non-electrically polarized insulators only are considered
for the sake of simplicity but also as most realistic cases.

Continuum Modelling

Using the standard notation of nonlinear continuum mechanics we may consider to
start with the following generalized motion for deformable magnetized bodies of
the ferroïc type:

x ¼ �x X; tð Þ; l ¼ �l X; tð Þ; ð11:30Þ

where the first of these denotes the classical finite deformation at Newtonian time
t between the reference configuration KR and the actual configuration Kt. Here x is
the placement of Euclidean coordinates xi; i ¼ 1; 2; 3, and X denotes the material
point of coordinates XK ;K ¼ 1; 2; 3 in material space. Borrowing the denomination
introduced by Tiersten (1964), we may say that the first of (11.30) describes the
time evolution of the lattice continuum or LC (standard matter in the macroscopic
description), while the second of (11.30) provides the time evolution of the mag-
netization density or l (magnetic or electronic) spin continuum or SC, with the
gyromagnetic relation (see Entry: Ponderomotive couple)

s ¼ c�1l:

The two continua should be treated on an equal footing in the vision of gen-
eralized continuum mechanics (GCM). But they do not respond exactly to the same
kind of loads while we must also envisage interactions between these two “con-
tinua”. In particular, the spin continuum cannot translate with respect to the lattice
continuum. It, therefore, “expands” and “contracts” with the lattice continuum and,
accordingly, its volumetric behaviour is governed by the usual continuity equation.
As usual, the lattice continuum is assumed to be able to respond to volume and
surface forces—hence exhibits stresses—and to volume couples, so that stress is not
expected to be symmetric. We assume that it is not equipped with any mechanism
to respond to surface couples, so that it does not exhibit couple stresses of
mechanical origin. The balance of linear (physical) momentum simply says that
whatever force of magnetic origin—e.g., the reduced ponderomotive force of
electromagnetism in deformable bodies—is applied to a point in the spin contin-
uum, it is directly transferred to the lattice continuum at the same point. The spin
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continuum, by its very nature, can respond only to couples, which may be either of
the volume or of the surface type. Accordingly, we consider that the ponderomotive

couple (See that entry, Eq. (11.35); here fM ¼ q l)

cem ¼ fM � B ¼ ql� B ð11:31Þ

is directly applied to the spin continuum.
In so far as the interactions between lattice and spin continua are concerned, they

must necessarily be of the couple type since the spin continuum is sensitive only to
that type of interaction. Following Tiersten (1964), we naturally assume that
this couple is due to a local magnetic induction BL—to be given a constitutive
equation—so that we can apply the “recipe” [compare (11.31)]

c LC=SCð Þ ¼ M� BL ¼ q l� BL: ð11:32Þ

Angular momentum being conserved (exchanged) between the two continua, an
equal and opposite couple

c SC=LCð Þ ¼ �c LC=SCð Þ ¼ BL �M ¼ qBL � l ð11:33Þ

is exerted on the unit volume of the lattice continuum.
Finally, in order to account for ferromagnetic (Heisenberg) exchange forces of

quantum origin (interactions between neighbouring spins) that cause magnetic
ordering but fall off rapidly with distance, we can represent these “forces” in a
continuum description by a contact action in much the same manner as the stress
vector for a Cauchy deformable continuum, except that this “surface exchange
contact force” must also obey the “recipe” of a magnetic couple (the density q is
included in A):

c LC-surfaceð Þ ¼ l� A; ð11:34Þ

where A is an axial vector that depends on the local unit normal n to the surface and
can be written in the same way as the classical stress vector (Cauchy principle), i.e.,

A ¼ A nð Þ ¼ A x; t; nð Þ ¼ n:B̂ x; tð Þ; ð11:35Þ

so that (11.34) yields the following surface couple density acting on the spin
continuum:

c SC-surfaceð Þ ¼ l� A ¼ l� n:B̂
� �

: ð11:36Þ

Because of this very expression we can surmise that only the portion of
A orthogonal toM is effectively defined. Thus, without loss in generality we can set
forth the following condition:
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A:M ¼ n:B̂:M ¼ 0 ð11:37Þ

at any point at the surface of the body. A similar orthogonality condition can be
imposed on BL but at any point inside the body.

Global Balance Laws

Collecting now the various proposed expressions, we can write down the global
balance laws at time t in Kt for a magnetic body of volume B and regular bounding
surface @B [for the sake of simplicity we ignore any discontinuity surface within the
body; for the equations at discontinuity surfaces, see Maugin (1988)]:

Balance of mass for the combined continuum:

d
dt

Z
B

q dv ¼ 0; ð11:38Þ

Balance of linear momentum for the LC:

d
dt

Z
B

q v dv ¼
Z
B

f þ femð Þdvþ
Z
@B

t nð Þda; ð11:39Þ

Balance of angular momentum for the LC:

d
dt

Z
B

r� q vð Þdv ¼
Z
B

r� f þ femð Þþ c SC=LCð Þ
� �

dvþ
Z
@B

r� t nð Þ
� �

da ; ð11:40Þ

Balance of angular momentum for the SC:

d
dt

Z
B

q c�1 l dv ¼
Z
B

cem þ c LC=SCð Þ
� �

dvþ
Z
@B

l� A nð Þda; ð11:41Þ

First law of thermodynamics for the combined continuum:

d
dt

Z
B

q
1
2
v2 þ e

� �
dv ¼

Z
B

f:vþwem þ q hð Þdvþ
Z
@B

t nð Þ:vþA nð Þ: _l� q nð Þ
� �

da;

ð11:42Þ

Second law of thermodynamics for the combined continuum:
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d
dt

Z
B

q g dv�
Z
B

q h�1h dv�
Z
@B

h�1 q nð Þ da: ð11:43Þ

In these equations, t nð Þ is the surface traction, f is a body mechanical force (e.g.,
gravity), e is the internal energy per unit mass, η is the entropy per unit mass, h is
the body heat source, q nð Þ is the heat influx. Classically [compare (11.35)],

t nð Þ ¼ n:t; q nð Þ ¼ n:q; ð11:44Þ

where t is the Cauchy stress and q is the heat-(in)flux vector.

Local Balance Laws

Standard localization of these global equations on account of the assumed conti-
nuity of all fields yields the following local equations at any point in B:

_qþ qr:v ¼ 0; ð11:45Þ

q _v ¼ div tþ f þ fem; ð11:46Þ

eijk tjk þ qBL
j lk

� �
¼ 0; ð11:47Þ

c�1 _li ¼ l� BþBL þ q�1div B̂
� �� �

i þ q�1eijk B̂pk lj;p; ð11:48Þ

q _eþ d
dt

1
2
v2

� �� �
¼ tji vi;j þ tkj;k vj þ f:v

� �þ B̂kj _lj;k þ B̂kj;k _lj þwem þ qh�r:q;

ð11:49Þ

and

q _g� h�1qh� h�1r:q� q:r h�1� �
; ð11:50Þ

where the divergence of nonsymmetric tensors is to be taken on the first index, and
a superimposed dot denotes the classical material time derivative.

Equations (11.49), (11.47), (11.19) and (11.50) are transformed thus. In (11.49),
we must account for the kinetic energy theorem obtained by taking the inner
product of the motion Eq. (11.46) by v:

q
d
dt

1
2
v2

� �
¼ tkj;kvj þ f:v

� �þ fem: v; ð11:51Þ
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while wem is given in Eringen and Maugin (1990)—but reduced to the case of
quasi-magnetostatics. Therefore, (11.49) reads

q _̂e ¼ tji vi;j þ qB: _lþ B̂kj _ljk þ B̂kj;k _lj þ qh�r:q; ê ¼ e� emag � eþ l:B:

ð11:52Þ

But in a magnetic domain where magnetization has reached satura-
tion,l: l ¼ l2 ¼ l2S, we must have li _li ¼ 0; lili;K ¼ 0, so that _l must be of the
purely precessional form

_l ¼ x� l: ð11:53Þ

As a consequence the last contribution in (11.48) must vanish:

B̂k½jli�;k ¼ 0: ð11:54Þ

On account of this one checks that

div B̂
� �

: _l ¼ �q BþBL
� �

: _l; ð11:55Þ

because

x ¼ �cBeff ; Beff ¼ BþBL þ q�1divB̂: ð11:56Þ

This may be viewed as a continuum generalization of the celebrated Larmor
precession equation xLarmor ¼ �cB for an isolated electron in a magnetic induction
B (see Entry: Ponderomotive couple).

Finally, (11.52) transforms to the following form using an intrinsic notation
(T = transpose):

q _̂e ¼ tr t rvð ÞT� �� qBL: _lþ tr B̂ r _lð ÞT� ��r:qþ qh: ð11:57Þ

In the same conditions (11.50) provides the following Clausius-Duhem
inequality:

�q _̂wþ g _h
� �

þ tr t rvð ÞT� �� qBL: _lþ tr B̂ r _lð ÞT� �� h�1q:rh� 0; ð11:58Þ

wherein the free energy density has been defined by

ŵ ¼ ê� gh: ð11:59Þ

Equation (11.58) nowadays plays an essential role in the construction of con-
stitutive equations that we need for the set of quantities
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ŵ; g; t;BL; B̂; q
n o

: ð11:60Þ

Equation (11.58) represents a constraint imposed by thermodynamic irre-
versibility (in particular in the so-called Coleman-Noll exploitation that is adopted
here). In this formulation we usually look for the expression of so-called objective
(or materially indifferent) entities. To that purpose we should rewrite (11.58) in
terms of such quantities. This is achieved as follows. On the one hand we note from
(11.47) that the skewsymmetric part of t is given by

t½ ji� ¼ ql½jB
L
i� ð11:61Þ

and we can write

t ¼ tS þ tA; i.e.; tji ¼ t jið Þ þ t½ji�: ð11:62Þ

We introduce the following objective time rates (cf. Maugin 1980):

Dij ¼ 1
2

vi;j þ vj;i
� � ð11:63Þ

and

m̂i ¼ DJlð Þi� li � Xijlj; M̂ij ¼ _lið Þ;j�X iklk;j; ð11:64Þ

with

Xij ¼ 1
2

vi;j � vj;i
� �

: ð11:65Þ

The quantities defined in (11.63) and (11.64) are indeed objective. The first of
(11.64) is none other than a so-called Jaumann derivative. The second of (11.64) is
not exactly the Jaumann derivative of the gradient of l, but it is closely related to it
modulo a term involving the rate of strain (11.64). On account of these we show
that

tr t rvð ÞT� �� qBL: _lþ tr B̂ r _lð ÞT� � � tr tSD
� �� qBL: m̂þ tr B̂ M̂

T
� �

;

ð11:66Þ

whence the looked for reduced useful expression for (11.57) and (11.58).
In summary, for the present modelling the local field equations at any regular

material point in the body B are provided by Eqs. (11.45), (11.46), (11.53), (11.57)
and the reduced form of Maxwell’s equations (magnetostatics, no conduction)
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r�H ¼ 0; r:B ¼ 0; H ¼ B� q l; ð11:67Þ

in which the Cauchy stress t is given by Eqs. (11.61) and (11.62), and the effective
magnetic induction Beff is given by (11.56). Equation (11.57) will eventually
provide the heat-propagation equation while the inequality (11.58) constrains the
constitutive behaviour. Interestingly enough, we note that the energy Eq. (11.42)
does not contain any contribution due to the spin lattice inertia by virtue of the
d’Alembertian nature of this quantity [cf. (11.53)]—more on this point in the
following two paragraphs.

Approach via the Principle of Virtual Power

In modern continuum mechanics, an elegant and powerful means of constructing
field equations and associated natural boundary conditions is provided by an
algebraically structured formulation of the (d’Alembert) principle of virtual power
as exposed at length in Maugin (1980). In this somewhat abstract formulation this
principle is enunciated in the following form for global powers over the body B and
its boundary @B: The virtual power of inertial forces is, at each instant of time,
balanced by the total virtual power of “internal forces” and that of externally
applied forces both in the bulk and at the surface, the word “force” being under-
stood in a generalized manner. Inertial forces have an expression provided by
physics, internal forces need to be given constitutive equations, and external forces
are prescribed in form and perhaps in value. In mathematical terms (See the chapter
on the classical theory in Part One):

P�
inert Bð Þ ¼ P�

int Bð ÞþP�
extern B; @Bð Þ; ð11:68Þ

where an asterisk will denote the value of an expression is a so-called virtual
velocity field (itself noted with an asterisk). In the present case, the generalized
kinematical description of the model (11.30) provides the basic virtual velocity field
by

v� ¼ v�i ; _lið Þ�¼ x� � lð Þi

 �

; ð11:69Þ

where x� is a virtual precessional velocity of the SC. Thus

P�
inert Bð Þ ¼

Z
B

q _v:v� þ c�1 _l:x�� �
dv; ð11:70Þ

where we clearly distinguish between real fields (no asterisks; actual solutions of a
problem) and virtual ones (noted with an asterisk; at our disposal in this type of
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variational formulation). In particular, for real fields, because of (11.53), (11.69)
yields

Pinert Bð Þ ¼ d
dt

Z
B

1
2
q v2

� �
dv ¼ d

dt
K Bð Þ; ð11:71Þ

where K Bð Þ is the total kinetic energy of the traditional motion.
The total power of external forces is obviously given by the following

expression:

P�
extern B; @Bð Þ ¼ P� Bð ÞþP� @Bð Þ ð11:72Þ

wherein

P� Bð Þ ¼
Z
B

f þ femð Þ:v� þ qB: _lð Þ�ð Þdv; ð11:73Þ

and

P� @Bð Þ ¼
Z
@B

t nð Þ þ temnð Þ
� �

:v� þA: _lð Þ�
� �

da; ð11:74Þ

where temnð Þ is an eventual magnetic surface traction related to the possible existence

of a magnetic field outside B (see Maugin 1988, Chap. 6).
Finally, the global virtual power of internal forces is constructed as follows. First

a “gradient order” is selected for the kinematics associated with internal forces.
Generalizing classical continuum mechanics (which is a first order gradient theory
of displacement) we consider a first-order gradient theory based on (11.69). That is,

V ¼ vi; vi;j; _li; _li;j

 �

: ð11:75Þ

But internal forces must be objective, i.e., frame indifferent, or invariant under
changes of observer in the actual configuration (superimposition of a rigid body
motion of dimension 6). Accordingly, one must extract from the 24-dimensional
space spanned by (11.75) a set of objective quantities, this set Vobj, a quotient space,
being necessarily of dimension 24 − 6 = 18. We have shown elsewhere (Maugin
1980) how to systematically construct such quotient spaces. In the present case a
good set is given by

Vobj ¼ Dij; m̂i; M̂ij

 �

; ð11:76Þ

where it happens that the quantities thus formally introduced have already been
defined in (11.63)–(11.65). Then the power P�

inter is written as a continuous linear
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form on the set V�
obj, introducing thus formally internal forces tS;�qBL; B̂


 �
as

co-factors of the elements of V�
obj. That is (signs are chosen for convenience),

P�
int Bð Þ ¼ �

Z
B

tSjiv
�
i;j � qBL

i m̂
�
i þ B̂jiM̂

�
ij

� �
dv: ð11:77Þ

Collecting the various contributions and assuming that the obtained global
expression is valid for any element of volume and surface and any virtual velocity
field (11.69) we obtain the local equations

q _v ¼ div tþ f þ fem in B; ð11:78Þ

and

c�1 _l ¼ � Beff � l
� �

in B; ð11:79Þ

with the nonsymmetric stress t given by

tji ¼ tSji � qBL
½jli� ð11:80Þ

on account of the constraint (11.54), and Beff given by the second of (11.56).
Simultaneously, we obtain the natural boundary conditions (not given here—see
Maugin 1988, Chap. 6) for t and A.

It is readily checked that Eqs. (11.78) and (11.79), together with (11.80) and
(11.56) are identical to the equations deduced in the foregoing paragraph. Pursuing
along the same line, and considering the principle (11.68) for real velocity fields, on
account of (11.71) we obtain the global equation of kinetic energy in the form:

d
dt
K Bð Þ ¼ Pint Bð ÞþPextern B; @ Bð Þ: ð11:81Þ

This is to be combined with the global statement of the first law of thermody-
namics (11.42) to deduce the global form of the internal-energy theorem. By
localization this will yield (11.57) with the already transformed expression
involving the objective internal forces. The exploitation of the inequality (11.58) is
unchanged.

The present formulation—formal as it is—has certain advantages, one of which
being the account of the d’Alembert-inertia couple in the expression (11.69). But
more interestingly, it provides a direct modelling of more general ferroïc cases such
as in ferrimagnets and antiferromagnets.
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Hamiltonian Variational Formulation

The above-given formulation is valid for both deformable solid and fluid beha-
viours and also in the presence of dissipative processes such as viscosity (via D) and
spin-lattice relaxation (via m̂). In the absence of dissipative processes and for an a
priori known behaviour—e.g., elasticity—it is possible to approach the present
theory via a Hamiltonian variational principle. For this type of approach to elastic
ferromagnets we refer to Tiersten (1965), Brown (1966), and Maugin and Eringen
(1972). Note that in order to account for the d’alembertian nature of the magnetic
spin inertia one must introduce an already varied term for this effect.

Ferrimagnetic and Antiferromagnetic Materials

The magnetic description considered in the foregoing paragraphs often is insuffi-
cient and not realistic enough for many magnetic materials such as ferrites. Louis
Néel (Nobel prize in physics 1970 for this matter) introduced in the early 1940s a
model in which the most general description of the magnetization field in a mag-
netically ordered crystal below its magnetic-phase-transition temperature consists in
the vector resultant of the sum of n magnetization fields la; a ¼ 1; 2; . . .; n per unit
mass—referred to as magnetic sub-lattices—arising at each point from n different
ionic species having different spectroscopic splitting factors, thus various gyro-
magnetic ratios ca, so that the total magnetic spin per unit mass is not necessarily
aligned with the total magnetization. This model proved to be efficient in
accounting for the unusual magnetic properties (e.g., susceptibility) of ferrites—iron
oxides—for which Néel coined the behaviour name ferrimagnetism. Simple anti-
ferromagnetism is the special case for which only two magnetic sub-lattices subsist,
of equal magnitude and opposite direction, allowing for the absence of global
magnetization in the absence of applied magnetic field. But the magnetic response
is quite different from that of classical ferromagnetism when a magnetic field is
applied (see Eringen and Maugin 1990, Vol. I, pp. 110–111). The resulting
dynamics is also much more involved yielding a multiplicity of magnon branches in
the case of ferrimagnetism. Models of elastic ferrimagnetic and antiferromagnetic
solids have been proposed by Maugin and Sioké-Rainaldy in the 1970s and 1980s,
together with the accompanying coupled wave-like studies.

Analogy with Cosserat Continua

Returning to the ferromagnetic case, we note that the spin-precession Eq. (11.79)
deals with axial vectors. Accordingly, we can introduce dual skewsymmetric
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tensors by applying the alternation symbol ekli to its i-component. On account of the
well known formula

eklieipq ¼ dkpdlq � dkqdlp; ð11:82Þ

this operation results in the equation

1
2
q c�1ekli _li ¼ q l½kBl� þ ql½kB

L
l� þ l½kB̂ml�

� �
;m
�l½k;m B̂ml�: ð11:83Þ

But we note that the last term in the right-hand of this equation vanishes
identically because of the constraint (11.54), while the resulting penultimate term is
none other that the skew part of the Cauchy stress according to (11.80), and the first
term is none other than the ponderomotive couple written as a skew tensor (dual of
the axial vector cem). Thus Eq. (11.83) reads

q _Skl ¼ Mpkl;p þ t½kl� þCkl; ð11:84Þ

wherein

Skl ¼ 1
2
c�1eklili; Mpkl ¼ l½kB̂pl�; Ckl ¼ Cem

kl ¼ ekli ~c
em
i : ð11:85Þ

Equation (11.84) is in the canonical form of the balance equation of angular
momentum in Cosserat or micropolar continua except that all contributions here
have a magnetic origin, the gyromagnetic relation for the inertial term Skl,
Heisenberg exchange forces for the couple stress tensor Mpkl, the applied coupled
Cij, and the skew part of the nonsymmetric Cauchy stress. Equation (11.84) and the
accompanying boundary condition were deduced by Maugin in his PhD thesis
(Princeton 1971).

Reduction to a Model Without Microstructure (Paramagnetic
and Soft-ferromagnetic Bodies)

When true ferromagnetic effects (gyromagnetic effect, Heisenberg exchange forces)
are discarded, Eq. (11.84) reduces to

t½kl� ¼ Cem
½kl� ¼ �M½kBl� ¼ B½kMl�: ð11:86Þ

This applies to the simpler cases of nonlinear paramagnetic and
soft-ferromagnetic bodies. The resulting theory applies, in particular, to
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magnetoelastic polymers as recently developed (on this subject, one can refer to the
Udine course of 2009; Ogden and Steigman, Editors, 2010; and also Chap. 8, Vol.
I, Eringen and Maugin 1990). Whenever field and magnetization are aligned (case
of magnetically isotropic bodies) or in a purely linear theory in which one discards
the right-hand side of (11.86) as being second order in the fields, the skew part of
the stress is zero. The only remaining magneto-mechanical coupling in the first case
remains magnetostriction for any symmetry, while in the second case only piezo-
magnetism may exist, under severe symmetry conditions however.
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From “Micromorphic Continua” to “Multipolar Continua (Green-Rivlin)”
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Micromorphic Continua

This is the name granted by Eringen (e.g., in Eringen 1999) to a large class of continua
in his classification of models of generalized continuum mechanics. In a general way
this qualification applies to continua in which eachmaterial “point” is endowedwith a
deformable microstructure, in addition to the usual degree of freedom of translation
provided by the displacement field. This modelling includes in particular models
devised by Eringen and Suhubi (1964) and Mindlin (1964), and also multipolar
continua (Green and Rivlin 1964) andmedia with a set of deformable directors at each
material point. The general idea may be traced back to Duhem (1893) and Voigt
(1887). The continuum is called a Cosserat or micropolar continuum when the
microstructure is rigid, and therefore accounts only for a possible internal rotation.
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Micromorphic Fluids

These are micromorphic continua with a fluid-like behaviour. Contrary to micro-
stretch fluids, the whole microdeformation of micromorphic continua (see that
entry) is kept in the kinematic description. They were originally introduced by
Eringen (1964) with additional notions on micro-inertia (its conservation) in
Eringen (1966).

We remind the reader [see Entry: “Microstructured continuum theory
(Eringen)”] that the following two local field equations (in all twelve components)
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must be considered as the expression of the laws of linear momentum and moment
of momentum:

tkl;k þ qfl ¼ q _vl; ð11:87Þ

mklm;k þ tml � sml þ q llm ¼ q _rlm; ð11:88Þ

where fl and llm are densities of prescribed body vector force and (symmetric and
skewsymmetric) tensor forces, tkl is the nonsymmetric Cauchy stress, mklm is the
hyperstress tensor, and sml stands for an intrinsic symmetric stress.
Equations (11.87) and (11.88) are to be complemented by the conservation laws of
mass and micro-inertia. These read

_qþ qr:v ¼ 0; ð11:89Þ
d ikl
dt

� ikrmlr þ ilr mkrð Þ ¼ 0: ð11:90Þ

Here ikl ¼ ilk is the micro-inertia tensor, mkr is the microgyration tensor, and the
moment of moment/spin tensor _rlm is related to the gyration tensor through the
equation

_rlm ¼ ijm
d mlj
dt

þ mli mij

� �
: ð11:91Þ

The rates of strains are given by expressions

akl ¼ vl;k � mlk; bklm ¼ mkl;m; ckl ¼ 1
2

mkl þ mlkð Þ ¼ clk: ð11:92Þ

Both akl and bklm admit symmetric and skewsymmetric parts in their indices
k and l. The same holds true for tkl and mpkl. The local internal-energy equation and
the Clausius-Duhem inequality read

q _e ¼ tklakl þ sklclk þmkm blmk � qk;k þ q h; ð11:93Þ

�q _wþ g _h
� �

þ tklakl þ sklclk þmkmblmk � qk=hð Þ h;k � 0: ð11:94Þ

With a free energy density of the form

w ¼ w h; q�1; ikl
� �

; ð11:95Þ

the thermodynamically recoverable parts of the constitutive behaviour are obtained
as
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g ¼ � @w
@h

; tRkl ¼ �p dkl;m
R
klm ¼ 0; sRkl ¼ �pdkl � pkl; ð11:96Þ

with the “pressures”

p ¼ � @w
@q�1 ; pkl ¼ �q

@w
@irk

irl þ @w
@irl

irk

� �
: ð11:97Þ

The dissipative contributions (indexed with a superscript D) and heat conduction
will have to satisfy the following remaining dissipation inequality:

tDklakl þ sDklclk þmD
kmblmk � qk=hð Þ h;k � 0: ð11:98Þ

There is no need here to expand the long expressions of these dissipative parts
even for the relatively simple case of linear isotropic thermo-viscous fluids (see
Eringen 2001, pp. 283–285). When substituted for in the field equations, the
resulting long coupled expressions provide a system of twenty equations for twenty
unknown fields, this high number demonstrating thus the intractability of the
modelling in general. But with some reasonable approximations this kind of
involved modelling seems to provide satisfactory descriptions of some physical
situations and solutions to exemplary problems. This is the case of the flow of dilute
suspensions, blood flow in narrow arteries, and perhaps some possible approach to
turbulence. The reader is referred to Eringen (2001, Chap. 17), Kang and Eringen
(1976), Kirwan and Newman (1969), and Eringen (1972) for these applications.

For the sake of completeness should be mentioned the theory of macromolecule
solutions by Maugin and Drouot (1983) where the notion of tensor internal variable
of state (this is purely “dissipative”) replaces that of the internal degree of freedom of
micromotion, in the absence of micro-inertia, and also the theory of microstructured
bodies proposed by Capriz (1989) which seems well adapted to an approach of
microstructured continua with voids and bubbles or dilatant granules. In the theory
of Maugin and Drouot (1983), the microdeformation is replaced by the “confor-
mation” of macromolecules that swim in the liquid carrier. Chapter 5 in Stokes
(1984) is also a relevant reference with a readable introduction to the subject.
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Micropolar Continua (Cf. Cosserat Continua)

«Micropolar continua» is the denomination given by A.C. Eringen to a subclass of
“micromorphic” bodies, in which the additionally introduced internal deformation
at each material point reduces to a pure rotation. This is another naming for
“Cosserat continua” or “polar continua” or “oriented media” (with a triad of rigidly
rotating “directors” of unit length). Such media respond to couple stresses.
Accordingly, the primary kinematics of these continua is described by the classical
(macro-) motion and a micro-motion v such that in components (with the standard
notation of nonlinear continuum mechanics between a reference configuration and
the actual configuration)

xk ¼ �xk XK ; tð Þ; vkK ¼ �vkK XK ; tð Þ; ð11:99Þ

where v reduces to a proper orthogonal transformation such that

vT ¼ v�1; det v ¼ þ 1: ð11:100Þ

The most efficient representation of the micromotion is given by Gibbs’ equation
(Gibbs 1901; also Eringen 1999, Sect. 1.3) revived by Kafadar and Eringen (1971):

vkl ¼ vkK dKl ¼ cos/dkl � sin/ eklmnm þ 1� cos /ð Þ nknl; ð11:101Þ

where

/ ¼ /k/kð Þ1=2; nk ¼ /k=/: ð11:102Þ

Here / is the angle of rotation about the axis of rotation n, and dKl denotes the
director cosines of spatial and material frames.

The gyration tensor mkl is such that
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_vkK ¼ mkl vlK ð11:103Þ

The associated microgyration vector mm is such that

mlk ¼ �elkmmm; mm ¼ � 1
2
emlkmlk: ð11:104Þ

It is shown that this vector is related to the rate of rotation vector _/ and _n via the
equation

mm ¼ _/ nm þ sin / _nm þ 1� cos /ð Þ n� _nð Þm¼ Kmp
_/p; ð11:105Þ

with

Kmp ¼ sin /
/

dmp � 1� cos/

/2 empq/q þ 1� sin /
/

� �
/m /p

/2 : ð11:106Þ

Deformation rates are given by

akl ¼ vl;k � mlk ¼ vl;k � eklmmm; bkl ¼ mk;l: ð11:107Þ

Linear Strain Measures

With a rotation tensor /kK defined by

/kK ¼ vkK � dkK ; ð11:108Þ

in the linear approximation we have

vkK ffi dkl þ/klð Þ dlK ; ð11:109Þ

and we obtain linear strain tensors in the form

ekl ¼ ul;k � eklm/m; ckl ¼ /k;l: ð11:110Þ

This is useful in dealing with linear micropolar elasticity (see that entry). The
fully nonlinear theory of micropolar elasticity is of rare use except in solving
problems such as the (Euler’s) elastica (cf. Kafadar 1972). The theory of
micropolar fluids is much exploited in many flow problems (see the entry “mi-
cropolar fluids”).
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Micropolar Elasticity

This is the theory of elastic solids deduced from a mechanics of generalized con-
tinua which has for basis the theory of micromorphic continua when the micro-
motion is reduced to a pure rotation. This is the naming given by A.C.Eringen, one
of its most active proponents in the period 1964–1980. It was the object of a
formidable reception with a huge quantity of papers dealing with various problems
in media thought to correspond to such a description. However, it is basically the
same as the theory of (elastic) Cosserat continua, also called polar continua or
theory of oriented media or still theory of asymmetric elasticity by other authors.
Such media respond to couple stresses. Historical papers in the field are by Aero
and Kuvshinskii (1960) and Palmov (1964). Some of the ideas can be traced back to
Pierre Duhem and Woldemar Voigt in the 1890s. A crystal clear exposition of the
bases of the theory was given by Eringen in 1968. Another influential book was the
one by Nowacki (1986). A more recent exposition is offered in Eringen’s (1999,
Chap. 5) synthesis. A sound introduction to the fully nonlinear theory is to be found
in the paper of Kafadar and Eringen (1971) by using Gibbs’ representation of
orthogonal transformations. But, obviously, most papers and applications have been
devoted to the case of small deformations and small rotations of the internal
structure of material points as can be expected in solid crystals to which the theory
clearly applies.

The primary kinematics of these continua is described by the classical (macro-)
motion and a micro-motion v such that in components (with the standard notation
of nonlinear continuum mechanics between a reference configuration and the actual
configuration)

xk ¼ �xk XK ; tð Þ; vkK ¼ �vkK XK ; tð Þ; ð11:111Þ

where v reduces to an orthogonal transformation such that

vT ¼ v�1; det v ¼ þ 1: ð11:112Þ

The most efficient representation of the micromotion is given by Gibbs’ equation
(Gibbs 1901; also Eringen 1999, Sect. 1.3) revived by Kafadar and Eringen (1971):
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vkl ¼ vkK dKl ¼ cos/dkl � sin/ eklmnm þ 1� cos /ð Þ nknl; ð11:113Þ

where

/ ¼ /k/kð Þ1=2; nk ¼ /k=/: ð11:114Þ

Here / is the angle of rotation about the axis of rotation of unit direction n, and
dKl denotes the director cosines of spatial and material frames.

The gyration tensor mkl is such that

_vkK ¼ mkl vlK ð11:115Þ

The associated microgyration vector mm is such that

mlk ¼ �elkmmm; mm ¼ � 1
2
emlkmlk: ð11:116Þ

It is shown that this vector is related to the rate of rotation vector _/ and _n via the
equation

mm ¼ _/ nm þ sin / _nm þ 1� cos/ð Þ n� _nð Þm¼ Kmp
_/p: ð11:117Þ

with

Kmp ¼ sin /
/

dmp � 1� cos/

/2 empq/q þ 1� sin /
/

� �
/m /p

/2 : ð11:118Þ

Lagrangian measures of finite deformations are deduced from (11.111) as

CKL ¼ xk;Kxk;L; CKL ¼ xk;KvkL; CKLM ¼ v�1
Kk vkL;M : ð11:119Þ

The first of these is the standard Cauchy-Green strain, the second may be called
the Cosserat strain, and the last is referred to as the wryness tensor (by the unusual
term “wryness” one understands something like “distortion”, “contortion” or
“twist”). As a consequence, from (11.112) we note that

C ¼ CC
T
; ð11:120Þ

so that an energy density function W ¼ W CKL;CKL;CKLM
� �

can be replaced by an
expression

W ¼ W CKL;CKLM
� �

: ð11:121Þ

Because of the skewsymmetry built in the tensor object CKLM , this can be
replaced by the object
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CQL ¼ � 1
2
eQPKCKPL ð11:122Þ

simply directly noted C. Thus (11.121) is also replaced by

W ¼ eW C;C
� �

: ð11:123Þ

The local coupled balance laws of linear and angular momenta in the actual
configuration are given by the two equations

tlk;l þ q fk � _vkð Þ ¼ 0; ð11:124Þ

mlk;l þ ekmntmn þ q lk � _rkð Þ ¼ 0; ð11:125Þ

where mlk, lk and _rk stand for the couple-stress tensor, the applied couple density
and the density of internal-spin rate while tlk is the nonsymmetric stress tensor. In
addition we have the local statement of conservation of mass q and micro-inertia
jkl(that we do not recall here) so that

_rk ¼ d
dt

jklmlð Þ; ð11:126Þ

where ml is the gyration (rate) vector introduced in (11.116). The local energy
balance in the absence of thermal effects can be written as

q _e ¼ tlk vk;l � elkm mm
� �þmlkmk;l: ð11:127Þ

Equations (11.124), (11.125) and (11.127) admit a re-writing in the material
(Piola-Kirchhoff) form as

TKi;K þ q0 fi � _við Þ ¼ 0; ð11:128Þ

MKi;K þ eipqxp;LTLq þ q0 li � _rið Þ ¼ 0 ð11:129Þ

and (W ¼ q0e)

_W ¼ TKiapixp;K þMKibijxj;K ; ð11:130Þ

wherein (Piola transformations)

TKi ¼ JXK;j tji; MKi ¼ JXK;jmji; J ¼ q0=q; ð11:131Þ
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and (rates of deformations)

api ¼ vi;p � epimmm; bij ¼ mi;j ð11:132Þ

From (11.130) and a direct computation of the time rates of C and C,

_CKL ¼ xj;K aij viL; _CKL ¼ xj;Kbij viL; ð11:133Þ

there will follow the two constitutive equations

TKi ¼ @ eW
@CKL

viL; MKi ¼ @ eW
@CLK

viL; ð11:134Þ

and thus

tji ¼ q0
q
xj;QTQi ¼ q0

q
xl;K

@ eW
@CKL

viL; mji ¼ q0
q
xj;K

@ eW
@CLK

viL: ð11:135Þ

These are quite general and, of course, of limited use. One r are exploitation of
these equations in 2D is by Kafadar (1972) concerning the problem of the elastica
(large deformation and finite internal rotation).

Theory for Small Strains and Small Internal Rotation Angles

This is also called the “linear theory” of micropolar elasticity. To reach this useful
approximation we first set eC ¼ C� IR, and note that for small angle /,
Eq. (11.113) yields

vkl ¼ vkK dKl ffi dkl � eklm/m; /m ¼ /nm; ð11:136Þ

so that

eCKLdKidLj ffi eij :¼ uj;i � eijk /k; ð11:137Þ

where ui are the components of the usual displacement. Similarly,

CLKdLidKj ffi /i;j ¼ cij: ð11:138Þ

Then Eqs. (11.135) provide the “small strain” constitutive equations
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tji ¼ @ Ŵ
@eji

; mji ¼ @ Ŵ
@/j;i

; ð11:139Þ

with W ¼ Ŵ eij; cij
� �

reduced to a quadratic function of its two arguments. For
example, for isotropy,

W ¼ 1
2

k ekkell þ lþ jð Þekl ekl þ l eklelk þ a/k;k/l;l þ b/k;l/l;k þ c /k;l/k;l

� �
;

ð11:140Þ

where k; l; j and a; b; c are the six remaining material coefficients in this modelling
of elasticity. Necessary and sufficient conditions for the energy density W to be
nonnegative are

3kþ 2lþ j� 0; 2lþ j� 0; j� 0;

3aþ bþ c� 0; c� b� � c; c� 0:
ð11:141Þ

Coefficients k and l would be the Lamé coefficients in the absence of rotating
microstructure. In the same conditions the inertial terms of Eqs. (11.124) and
(11.125) reduce to

_vi ¼ €ui; _ri ¼ j€/i; ð11:142Þ

where j is a constant inertia factor.
On substituting from (11.139) and (11.140) in Eqs. (11.124) and (11.125) we

finally obtain the following two coupled equations of motion written in direct
intrinsic notation

kþ 2lþ jð Þrr:u� lþ jð Þr �r� uþ jr� /þ q0 f � �uð Þ ¼ 0; ð11:143Þ

aþ bþ cð Þrr:/� cr�r� /þ jr� u� 2j/þ q0 l� j€/
� �

¼ 0: ð11:144Þ

Accompanying boundary conditions at a regular boundary will involve data in
the components of the functions u and / or the normal components of the stress and
couple-stress tensors.

As a special case one can construct a theory of indeterminate couple-stresses
where the micro-rotation is slaved to the macro-rotation (deduced from the curl of
the elastic displacement). This, as we know, yields an unsatisfactory dynamical
theory (cf. Eringen 1968, Sect. XXIII).

Several books offer static solutions of boundary-value problems for linear
micropolar elasticity (cf. Eringen 1968, 1999, Chap. 5; Nowacki 1986). Dynamical
solutions involving bulk and surface modes are also studied in many works
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including in the original paper of Eringen and Suhubi of 1964. Variational prin-
ciples, uniqueness and reciprocity theorems have been established (e.g., by D. Iesan
in Romania with co-operations with R. Quintanilla and A. Scalia) as also funda-
mental solutions (by L. Dragos)—see also Dyszlewicz (2004). Conservation laws
(in the manner of E. Noether) associated with the balance laws have been discussed
by various authors (e.g., Pucci and Saccomandi 1990; Maugin 1998; Eringen 1999,
Sect. 5.10); the related crack and fracture problems, propagation of transformation
surfaces, dislocations and disclinations have been examined in papers and books
(e.g., Maugin 2010, Chap. 9). Nonlinear waves (with small deformations but finite
microrotations) were studied by Maugin and Miled (1986), Erbay and Suhubi
(1989) and others. Micropolar plates and shells are the object of thorough studies
(e.g., by V.A. Eremeyev and H. Altenbach—see Altenbach and Eremeyev, Eds,
2013). In all we can say that micropolar elasticity has received almost as much due
attention as standard elasticity.

However, two questions are of utmost importance. One is whether the contin-
uum models of of micropolar elasticity can be deduced in some way from some
microscopic model. Such a derivation was presented by Askar and Cakmak (1968)
where in fact the microscopic medium was modelled by man-made structure-grid
frameworks (see also Aksar 1986). This is rather astute albeit phenomenological at
the utmost. Another possibility is to start from a lattice where rotations of molecules
are allowed in addition to the translation of material points to which they are
attached. This was expanded by Askar (1972, 1986) and Pouget et al. (1986) for
elastic crystals that exhibit molecular groups. The identification with continuum
equations is obtained in a so-called long-wavelength limit. It delivers plausible
values for constitutive constants except perhaps for the micro-inertia. A more recent
2D model is by Pavlov et al. (2006). A completely different type of approach
exploits the technique of homogenization in periodic media and yields possible
models of generalized continua although the initial microscopic vision involves
only standard models (cf. Forest 2006).

The second naturally raised question concerns the possibility to reach significant
values of the material coefficients of micropolar elasticity by means of statical or
dynamical experiments. The early dynamical (wave) experiments by Gauthier and
Jashman (1975) using a man-made model material (epoxy matrix with uniformly
distributed “rigid” aluminium inclusions; also Jashman and Gauthier 1980) were
rather inconclusive.

The numerous experiments by Rod S. Lakes and co-workers in Wisconsin seem
to be more reliable (see Lakes 1995). They use naturally structured animal bones.
They exhibit a size effect that helps determining characteristic lengths necessarily
involved in the micropolar model. They produce an enhancement of toughness in
the experiment examining the stress concentration at a circular hole. As it should,
the micropolar solid exhibits a new kind of wave associated with the micro-rotation
(cf. Lakes 1995; much more on the website of R.S. Lakes). Of course the difficulty
of carrying these experiments should not be overlooked; but they are absolutely
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necessary to give sound credentials to a theory that appears too farfetched to many
engineers, but is also more and more currently accepted by materials scientists
despite the scarcity of reliable experimental results.
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Micropolar Fluids

This is the theory of fluids deduced from a mechanics of generalized continua which
has for basis the theory of micromorphic continua where the micromotion is
reduced to a pure rotation. It was the object of a formidable reception with thou-
sands of papers dealing with various flows including in liquid crystals with rigid
molecules, magnetic fluids, clouds with dust, muddy fluids, and biological fluids.

The balance laws of general micropolar fluids at any regular point in the flow are
as follows (cf. Eringen 1966, 2001, Chap. 9):

Conservation of mass

_qþ qr : v ¼ 0; ð11:145Þ

Conservation of micro-inertia

d jkl
dt

þ ekprjlp þ elpr jkp
� �

mr ¼ 0; ð11:146Þ

Balance of linear momentum

tkl;k þ q fl � _vlð Þ ¼ 0; ð11:147Þ
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Balance of moment of momentum

mkl;k þ elmn tmn þ q ll � _rlð Þ ¼ 0; ð11:148Þ

Balance of energy

�q _eþ tkl akl þmkl blk � qk;k þ qh ¼ 0: ð11:149Þ

This is complemented by the local statement of the second aw of thermody-
namics in the usual form:

q _gþ qk=hð Þ;k�q h=h� 0: ð11:150Þ

In these equations tkl is the nonsymmetric Cauchy stress, mkl is the couple stress
tensor, e is the internal energy density, ll is the applied body couple (if any), qk is
the heat (in)flux, h is the energy source density, g is the entropy density, h is the
thermodynamic temperature h[ 0; inf h ¼ 0ð Þ, and rl is the internal spin density
(or angular momentum) such that

_rl ¼ d
dt

jlk mkð Þ; ð11:151Þ

where jlk is the micro-inertia density that must satisfy the conservation law (11.146)
in parallel with the conservation of mass (11.145). In addition,

akl ¼ vl;k � mlk ¼ vl;k � eklmmm; bkl ¼ mk;l ð11:152Þ

are the relevant deformation-rate tensors.
Inequality (11.150) is viewed as a constraint imposed on the constitutive

equations needed to close the system of field equations. For isotropic micropolar
fluids, one takes jkl ¼ j dkl with dj=dt ¼ 0, and we can introduce the free energy
density w and a dissipation potential U

w ¼ e� gh ¼ w q�1; j; h
� �

; ð11:153Þ

and

U ¼ U akl; bkl; h;k; h; q
�1; j

� �
: ð11:154Þ

Exploitation of the Clausius-Duhem inequality

�q _wþ g _h
� �

þ tklakl þmklblk � qk h;k=h
� �� 0 ð11:155Þ

will yield the following constitutive equations:
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g ¼ � @w
@h

; tkl ¼ �p dkl þ tDkl; p ¼ � @w
@q�1 ; ð11:156Þ

and

tDkl ¼
@U
@akl

; mkl ¼ mD
kl ¼

@U
@blk

; qk ¼ � @U

@ h;k=h
� � : ð11:157Þ

Examples of linear dissipative constitutive equations for “thermo-microfluids”
are given by the following expressions (Eringen 1972, 2011, p 14):

tDkl ¼ kv ammdkl þ lv þ jvð Þakl þ lv alk; ð11:158Þ

mD
kl ¼ a=hð Þeklm h;m þ av bmmdkl þ bv bkl þ cvblk; ð11:159Þ

qk ¼ K h;k=hþ a eklm mm;l; ð11:160Þ

with various scalar coefficients that have to check a set of inequalities in order to
satisfy the non-negativeness of the dissipation function. These inequalities read (see
Eqs. 11.9.4.12 in Eringen 2011)

3kv þ 2lv þ jv � 0; 2lv þ jv � 0; jv � 0;

3av þ bv þ cv � 0; cv þ bv � 0; K cv � bvð Þ� 2 a2;

K � 0; cv � bv � 0when a ¼ 0

ð11:161Þ

The first two of these reduce to the classical inequalities for viscosities in the
absence of microstructure.

Equations (11.158) and (11.159) exhibit a possible original coupling between
heat conduction and the viscosity effects related to the microstructure.

In the absence of heat effects, the local balance equations for isotropic
micropolar fluids are given by the following set at any regular point in the fluid:

_qþ qr:v ¼ 0; ð11:162Þ
d j
dt

¼ 0; ð11:163Þ

�rpþ kv þ 2lv þ jvð Þrr:v� lv þ jvð Þr �r� vþ jvr� mþ q ðf � _vÞ ¼ 0;

ð11:164Þ

av þ bv þ cvð Þrr:m� cvr�r� mþ jv r� v� 2jvmþ q l� j
dm
dt

� �
¼ 0:

ð11:165Þ
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Typically associated boundary conditions involve a combination of data in
velocities v and m and normal components of the stress tensor and couple-stress
tensor. The conditions v ¼ 0 and m ¼ 0 at a boundary mean strict adherence. More
involved boundary conditions involve both the gyration velocity m and the gradient
of the usual velocity field v (cf. Kirwan 1986). The above set equations have been
the subject of many applications (including generalization of standard flow prob-
lems for Newtonan viscous fluids). This is well documented in Eringen (2011,
Chap. 9); Stokes [1984, Chap. 6 (Caution: different notation)], and the reviews of
Ariman, Turk and Sylvester (1973, 1974); and Cowin (1974). Historical papers on
the matter were by Aero et al. (1965) and Cowin (1968). Mathematical properties of
the system of equations for micropolar fluids are studied in Lukaszewicz (1998).
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Microstretch Continua

This class of continua was introduced by Eringen (1969) in the context of fluids. In
Eringen’s vision of microcontinuum theory this class is intermediate between
micromorphic continua and micropolar (Cosser at) ones, in that it retains not only
an internal rotation but also a scalar internal degree of elongation (as if a single
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director was deformable in length). That is, we consider the general local balance
equations of micromorphic bodies (cf. the Eringen-Mindlin micromorphic model of
microstructured continua)

tkl;k þ q fl � _vlð Þ ¼ 0 ð11:166Þ

and

lkij;k þ tji � sji þ q lij � q _rij ¼ 0; ð11:167Þ

with

tji ¼ t jið Þ þ t ji½ �; s ji½ � ¼ 0; lji ¼ Cji þ l jið Þ ð11:168Þ

where lkji is called the hyperstress tensor, sji is the so-called symmetric micro-
stress, and lij is a density of body-moment tensor of which the skew part represents
a density of body couple Cji ¼ �Cij. Then the Cosserat or micropolar model is
obtained by taking the skew part of (11.167) and setting mkji: ¼ lk½ji� the
couple-stress tensor. The microstretch continuum is a further reduction of the model
(11.167) obtained by noting mk the intrinsic dilatational stress or microstretch
vector; l the body microstretch force such that l ijð Þ ¼ l=3ð Þdij, and t and s are
intrinsic and micro scalar forces, so that we have

lklm ¼ 1
3
mkdlm � 1

2
elmrmkr: ð11:169Þ

Hence (11.167) provides the following two equations for the couple stress and
the microstretch

mkl;k þ elmntmn þ qCl ¼ q _rl; mk;k þ t � sþ q l ¼ q _r; ð11:170Þ

where Cl and rl stand for the axial vectors associated with the skewsymmetric
tensors Cji and r ji½ �. Note that an additional natural boundary condition involving
the new higher-order stresses lkij and mji must complement the standard Cauchy
condition of the Prequisite Chap. 1, e.g.,

nk lkij ¼ Cd
ij or nj mji ¼ Cd

i ; ð11:171Þ

where Cd
i is akin to a surface couple. Similarly, a new boundary condition should

involve the normal component of the vector mk , e.g.,

nkmk ¼ Md; ð11:172Þ

where Md is akin to a tension. The fields / (a scalar not to be mistaken for the angle
introduced in other sections) and the vector of components ck ¼ 3/;k will
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complement the kinematic description needed in the second of (11.170). In small
stretches _r ¼ j0€/ where j0 is a scalar.

Finally, we note the further case of dilatational elasticity (Cowin and Nunziato
1983) [only the second of (11.170) is relevant]:

mk;k þ t � sþ q l ¼ q j0€/: ð11:173Þ

for which (11.172) is still valid.

Constitutive Equations

For this we need some energy considerations. In a general heat conducting
thermo-microstretch continuum the equation of the internal energy will read (cf.
Eringen 1999, p. 251):

q _e ¼ tklakl þmklbkl þmkm;k þ s� tð Þm� qk;k þ qh; ð11:174Þ

where we have defined the following time rates:

akl ¼ vl;k � eklpmp; bkl ¼ ml;k; ckl ¼ m dkl; m ¼ 1
3j
dj
dt
; ð11:175Þ

where j represents the microvolume change with microdeformations (i.e., j ¼ det v
if v is the initial microdeformation).

The local Clausius-Duhem inequality will follow by combining (11.174) with
the local entropy inequality

q _gþ qk=hð Þ;k�q h=h� 0; ð11:176Þ

and introducing the free energy density wherein g;w; h stand for the densities of
entropy, free energy w ¼ e� ghð Þ, and the thermodynamic temperature
(inf h ¼ 0; h[ 0).

Microstretch Elasticity

We consider only the small-strain case (cf. Eringen 1999, p. 67, for finite strains).
Then the relevant measures of deformation are given by
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ekl ¼ ul;k � eklm /m; ckl ¼ /k;l; ck ¼ 3/;k; e ¼ 3/: ð11:177Þ

There exist direct relationships between expressions (11.175) and the time-rate
of change of these deformations. With W ¼ q0e, in the absence of thermal effects,
(11.174) yields the following constitutive equations:

tkl ¼ @W
@ekl

; mkl ¼ @W
@clk

; mk ¼ @W
@/;k

; s� t ¼ @W
@/

; ð11:178Þ

while Eqs. (11.170) read

tkl;k þ q0 fl � €ulð Þ ¼ 0; ð11:179Þ

mkl;k þ elmntmn þ q0 ll � jlm€/m

� �
¼ 0; ð11:180Þ

mk;k þ t � sþ q0 l� 1
2
j0€/

� �
¼ 0: ð11:181Þ

For a quadratic energy and the special case of isotropy, it is shown that the
constitutive Eqs. (11.178) acquire the following form (cf. Eringen 1999, Sect. 6.1):

tkl ¼ k0 /þ k ur;r
� �

dkl þ l uk;l þ ul;k
� �þ j ul;k � eklr/r

� �
; ð11:182Þ

mkl ¼ a/r;rdkl þ b/k;l þ c/l;k þ b0elkm /;m; ð11:183Þ

mk ¼ a0/;k þ b0eklm/l;m; ð11:184Þ

s� t ¼ k1/þ k0uk;k: ð11:185Þ

These can be compared to the constitutive equations of the micropolar case.
They exhibit the additional coefficients k0, k1, a0 and b0. What is changed from the
inequalities that guarantee the non-negativeness of the energy is given by 	 the
following three inequalities:

3kþ 2lþ j� 3k20=k1; a0 � 0; k1 � 0; ð11:186Þ

where the first one is obtained by replacing k by k� k20=k1.
Finally, the local field Eqs. (11.179) through (11.181) lead to the following set:

k0r/þ kþ 2lþ jð Þrr:u� lþ jð Þr �r� uþ jr� /þ q0 f � �uð Þ ¼ 0;

ð11:187Þ
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aþ bþ cð Þrr:/� cr�r� /þ jr� u� 2j/þ q0 l� j€/
� �

¼ 0;

ð11:188Þ

a0r2/� k1/� k0r:uþ q0 l� 1
2
j0€/

� �
¼ 0: ð11:189Þ

These must be complemented by appropriate initial conditions and boundary
conditions. Harmonic bulk and surface wave solutions have been given by Eringen
(1999, Sects. 6.3 and 6.6). This author also gives a modelling by means of a lattice
approach from which he deduces estimates for the values of the newly introduced
continuum coefficients in terms of the diatomic lattice parameters.

Full thermo-elastic equations are reported by Eringen (1999, pp. 254–255).
The above results also apply to the theory of dilatational elasticity (Cowin and

Nunziato 1983) where the internal-rotation component is discarded.

Microstretch Fluids

It seems that many fluid-like materials may accept a valid description by means of a
microstretch fluid. Such a description must be based on an exploitation of ther-
modynamic equations, in particular the energy Eq. (11.174) and the rates of strain
(11.175). Let w ¼ e� gh ¼ w q�1; jkl; j0; hð Þ. The constitutive equations for the
recoverable behaviour are easily shown to be of the form

g ¼ � @w
@h

; tRkl ¼ �p dkl; m
R
kl ¼ 0;mR

k ¼ 0; s� tð ÞR¼ �p0; ð11:190Þ

where

p ¼ � @w
@q�1 ; p0 ¼ �2q

@w
@jkl

jkl þ @ w
@j0

j0

� �
; ð11:191Þ

the last defined quantity being a thermodynamic micropressure.
The dissipative parts (noted with a right superscript D) and heat conduction will

satisfy the following remaining dissipation inequality:

tDklakl þmD
klblk þmD

k m;k þ s� tð Þ Dm� qkh;k=h� 0: ð11:192Þ

There is no need here to expand the whole theory (cf. Eringen 1999, Chap. 3).
Linear representations of the dissipative contributions for an isotropic fluid can be
proposed in the following form:
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tDkl ¼ k0mþ kvapp
� �

dkl þ lv þ jvð Þ akl þ lvalk; ð11:193Þ

mD
kl ¼ b0emlk m;m þ avbppdkl þ bvbkl þ cvblk; ð11:194Þ

mD
k ¼ a0 m;k þ b0eklmblm; ð11:195Þ

s� tð ÞD¼ k1mþ k0akk; ð11:196Þ

where coupling with temperature gradient is discarded. The introduced coefficients
have to satisfy a set of inequalities in order to obtain a non-negative dissipation (see
Eringen 2001, p. 243).

An interesting special case corresponds to isothermal situations for a macro-
scopically inviscid fluid, and neglect of microrotational effects and of the micro-
stretch viscosity a0. The surviving local field equations are

@v
@t

þr: qvð Þ ¼ 0; ð11:197Þ

@j
@t

þ j;kvk � 2jm ¼ 0; ð11:198Þ

�rpþ k0 rm� q
dv
dt

¼ 0; ð11:199Þ

p0 � k1m� k0r:v� 1
2
q j

dm
dt

¼ 0: ð11:200Þ

To the price of many approximations, Eringen (1990) has shown that this system
could yield the equation of linear momentum for a bubbly liquid in the form

@2v
@t2

¼ c2err:vþ drr:
@v
@t

þ err:
@2v
@t2

; ð11:201Þ

where d and e are appropriately defined coefficients, and ce is the sound speed
(supposed to be constant for the sake of simplicity in the deduction) in a bubbly
liquid. Equation (11.201) has the same look as the equation obtained by
Wijngaarden (1972) by means of a hydrodynamic model.

Another possible application of microstretch fluids is the description of blood
flow in small arteries (cf. Eringen 2001, pp. 250–252).
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Microstructure

Microstructure is the observed fact that many, if not all, materials examined at the
naked eye or with the help of an optical microscope, or even at a lower scale by
more powerful magnification means, are obviously made of grains, molecules,
parts, small regions, domains, and other substructures, so that these materials are
not materially uniform and are certainly more complex in their mechanical response
than a continuous assembly of material “points”. In spite of this early observation,
the first developments of continuum mechanics equipped with the simplest ana-
lytical tools considered these materials as uniform and homogeneous as a gross but
sufficient and useful simplification, allowing thus for relatively easy computations.

But with progress in observational means and also a will to go further than the
continuum description using a single vector field—the displacement with smoothly
varying properties—and finally a real need in civil and mechanical engineering one
had to envisage the truly non-uniform structure or a better approximation of the
generalized kinetic description. The simplest path on this road is the consideration
of the powerful idea of averaging, to start with, a volumetric averaging. This has
the advantage to yield an effective replacement continuum that belongs to classical
continuum mechanics with appropriately defined effective material coefficients.
Most of classical continuum mechanics, applied whether to solid or fluid types of
materials, was formulated this way. The justification for this approach is to be found
in the fact that length scales considered (in the application of external loads stati-
cally or dynamically (then the wave length)) are much larger than the identified
micro-scale. Improvement was brought by the consideration of stochastic processes,
like in the mechanics of polycrystals with random-like arrangement or of fluid
solutions in the case of suspensions. Of course the structural complexity of some
materials is easily recognized in materials like liquid crystals or solutions of
macromolecules, or else in grain-like solid materials (e.g., concrete). A modern
re-evaluation of this technique is that of homogenization, which can be given a
strict mathematical justification, especially in so-called asymptotic periodic
homogenization (APH). Of course the question is more pregnant when the external
stimuli have a length scale that approaches or even matches—resonates with—the
identified scale of the microstructure. Each “grain” of the microstructure may then
be excited. If one wants to keep a continuum description because of its clear
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advantages in analysis, then one needs to account for the microstructure through
astutely introduced additional kinematic descriptors in a true field theory. In the
end, this boils down to attributing additional degrees of freedom—beyond the
classical translational ones—to the “points” of the material continuum; We are then
facing a true oxymoron, that of “structured point”. Nonetheless, this can be
achieved without much second thoughts or guilt feeling in a variety of ways as
described in many entries in this dictionary (see cross references). This is the best
and potentially rich materialization of non-classical continuum mechanics. In
addition, to make things more complex, one may have to account for a
microstructure of another nature, such as electromagnetic properties.

Cross references: Cellular materials as generalized continua, Continua with
latent microstructure, Cosserat continua, Generalized continuum mechanics,
Electromagnetic continua, Ferroelectric crystals (elasticity of), Generalized con-
tinuum mechanics, Homogenization, Internal degrees of freedom (dynamics),
Liquid crystals as continua, Micromagnetism in elastic solids, Micromorphic con-
tinua, Micromorphic fluids, Micropolar continua, Micropolar elasticity, Micropolar
fluids, Microstretch continua, Microstructured continuum theory (Eringen),
Microstructured continuum theory (Mindlin), Microstructured fluids, Multipolar
continua, Oriented media (with directors), Solutions of macromolecules.

Microstructured Continuum Theory (Eringen)

(Note: Divergence of tensors is taken on the first index).

This is a theory of microstructured continuum, also known as the theory of mi-
cromorphic continua, proposed by Eringen and Suhubi in 1964—on the basis of a
microscopic space-averaging procedure—and further developed in all detail (finite
strains, approximations, special cases, applications) in the course of years (cf.
Eringen 1968, 2000). Although a complete nonlinear theory was expanded, here we
are satisfied with elements of the theory of small perturbations (sometimes called
the “linear” theory). The displacement field of Cartesian components u0i in a
macrovolume V 0 is the sum of the usual (macro) displacement ui and a linear
function of the internal coordinates nk , i.e.,

u0i x; n; tð Þ ¼ ui x; tð Þþ vik x; tð Þ nk: ð11:202Þ

where the object vik in general has nine components. The natural measures of
strains are defined as (Eringen’s notation)

ekl ¼ ul;k � /lk; ekl ¼ 1
2

/kl þ/lkð Þ; cklm ¼ /kl;m ð11:203Þ

where /lk is the small deviation of vlk from the unit dlk. With an energy density per
unit volume of the form
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W ¼ W eij; eij; cijk
� �

; ð11:204Þ

the relevant constitutive equations for micro-elastic solids are given by

tij ¼ @W
@eij

6¼ tji; sji ¼ @W
@eij

¼ sij; mkij ¼ @W
@cijk

: ð11:205Þ

These are involved in the following two local field equations (in all, twelve
components) that may be considered the expression of the laws of linear momentum
and moment of momentum:

tkl;k þ qfl ¼ q€ul; ð11:206Þ

mklm;k þ tml � sml þ qllm ¼ q _rlm; ð11:207Þ

where fl and llm are densities of prescribed body vector and (symmetric and
skewsymmetric) tensor forces, and

_rlm ¼ imj€/lj; ð11:208Þ

if imj is some kind of inertia (here supposed to be constant; but in general there exist
conservation laws of mass and inertia, the latter having been formulated by Eringen
in 1964).

The associated natural boundary conditions at the boundary of the material
volume read

nktkl ¼ Td
l ; nkmklm ¼ Md

lm; ð11:209Þ

where Td
l is an applied (vector) traction, while Md

lm is an applied (tensor without
specific symmetry) traction.

The presented theory is very much like Mindlin’s (1964) theory of a
microstructured continuum [see the entry “Microstructured continuum theory
(Mindlin)”] if we note that the above introduced vij is like the “transposed” of
Mindlin’ s wij(i.e., vij ¼ wji) and we have the following identifications (with the
convention: “Eringen” ,“Mindlin”):

eji , cji; cklm , jlkm; ð11:210Þ

tij , rij þ sij; tml � sml , slm ; mklm , lkml: ð11:211Þ

The symmetric tensor of components sml may be called the micro-stress.
For further use, we note the following decompositions in the Eringen-Suhubi

theory:
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eji ¼ e jið Þ þ e ji½ �; e jið Þ ¼ edji þ eji; ejj � 0; ð11:212Þ

e ijð Þ ¼ e dij þ�eij;�ejj � 0; ð11:213Þ

ckij ¼ ck dij þ ck ij½ � þ �ck ijð Þ; ck :¼ ckjj=3; ð11:214Þ

mkij ¼ mk ij½ � þ 1
3
mkdij þ �mk ijð Þ: ð11:215Þ

These emphasize the shear and dilatational parts in the various strain measures
and the hyperstress mkij.

The compatibility conditions for recovering the initially introduced displace-
ments from the strain measures are given by

ekpq epl;q þ clpq
� � ¼ 0;

ekpq clmp;q ¼ 0; ð11:216Þ

2ekl;m � cklm � clkm ¼ 0:

Special cases

A. Micropolar continua:

In this case the general micro-deformation vij reduces to a pure rotation hence an
orthogonal tensor such that

v�1 ¼ vT ; det v ¼ 1: ð11:217Þ

The small deviation /lk introduced in (11.203) reduces to a skew-symmetric
tensor, with which we can associate an axial vector of components /i such that

/i ¼
1
2
eilk/kl; /kl ¼ �eklm/m: ð11:218Þ

Then the first and third of (11.203) yield

ekl ¼ u l;kð Þ þ u l;k½ � þ elkm/m ¼ u l;kð Þ þ eklm xm � /mð Þ; cklm ¼ ekln /n;m ð11:219Þ

with a macro-rotation defined by
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xm ¼ 1
2
emlkuk;l: ð11:220Þ

In this theory the micro-stress sij vanishes identically. Considering the skew part
of Eq. (11.207) and associating axial vectors with the skew parts of the remaining
tensors, we obtain local equations of linear and angular momenta in the form:

tkl;k þ qfl ¼ q€ul; ð11:221Þ

mkn;k þ enmltml þ q ln ¼ q _rn ¼ qi€/n; ð11:222Þ

with an isotropic inertia, and

mkn ¼ enmlmk lm½ �; ln ¼ enmll lm½ �; _rn ¼ enml _r ln½ �; ð11:223Þ

so that mkn here is a true couple-stress, ln is a true body couple, and _rn is a true spin
(angular momentum rate). The natural boundary conditions reduce accordingly with
true applied surface traction and applied surface couple only.

If we impose the kinematic constraint that xn ¼ /n always, then ekl reduces to
the usual symmetric part of the displacement gradient, while cklm will reduce to a
special expression of the second gradient of the usual displacement. This is called
the constrained theory of Cosserat (or micropolar) continua.

B. Continua with microstretch

This is a modelling introduced by Eringen (1969). It is obtained by setting to zero
the shear parts of the micro-fields in Eqs. (11.212)–(11.215), leaving only gov-
erning equations for mk ij½ � and mk i.e., in quasi-statics equations of the type

mkl;k þ elmntmn þ qll ¼ 0; mk;k þ t � sþ ql ¼ 0; ð11:224Þ

with an obvious interpretation for ll (body couple) and the scalar forces t, s and l.

C. Dilatation elasticity

This is also called elasticity with voids. It was proposed by Cowin and Nunziato
(1983). It consists in keeping only the dilatation [emphasized in the decompositions
(11.212)–(11.215)] of the microstructure in addition to the macro-displacement,
hence only the second of (11.224) is relevant,

mk;k þ t � sþ ql ¼ 0; ð11:225Þ

complementing the usual local equilibrium equation.

Remark The full theory with finite strains and finite internal motion is to be found
in Eringen and Suhubi (1964) and Eringen (1999).
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Microsctructured Continuum Theory (Mindlin)

(Note: Divergence of tensors is taken on the first index).

In this theory expanded by R.D. Mindlin in 1964 the total displacement field u0i of a
micro point is expanded as a power series in the micro-coordinates and retaining
only the first two terms yielding

u0iðx0; x; tÞ ¼ ui x; tð Þþ x0kwki x; tð Þ; ð11:226Þ

where the internal coordinate x0k is measured from the mass centre of the
micro-volume V 0 while the two contributions in (11.226) can be interpreted as the
ordinary macro-displacement and the micro-displacement. Macro- and
micro-strains are defined by (Mindlin’s notation)

eij ¼ 1
2

ui;j þ uj;i
� �

; w ijð Þ ¼
1
2

wij þwji

� �
: ð11:227Þ

Furthermore, the relative deformation and the micro-deformation gradient are
defined by

cij ¼ uj;i � wij; jijk ¼ wji;k: ð11:228Þ

The following compatibility conditions apply:
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emik enljekl;ij ¼ 0; ð11:229Þ

emij jjkl;i ¼ 0; ð11:230Þ

ejk þxjk � cjk
� �

;i
¼ jijk: ð11:231Þ

The kinetic energy per unit of macro-volume is defined by

K ¼ 1
2V 0

Z
V 0

q0 _u0i _u0i dV 0: ð11:232Þ

On using (11.226), this is evaluated as

K ¼ 1
2
q _ui _ui þ 1

2
Ikl _wkj

_wlj; ð11:233Þ

on account of the definitions

q ¼ 1
V 0

Z
V 0

q0 dV 0; Ikl ¼ 1
V 0

Z
V 0

q0 x0k x
0
l dV

0; ð11:234Þ

and the condition of mass centre

Z
V 0

q0x0kdV 0 ¼ 0: ð11:235Þ

Field Equations

They can be deduced by means of a Hamiltonian principle with prescribed surface
data (Mindlin 1964) and an internal energy density

e ¼ �e eij; cij; jijk
� � ð11:236Þ

for small macro- and micro-strains. The twelve stress equations of motion are
obtained as

rij; i þ sij;i þ q fj ¼ q€uj; ð11:237Þ

lijk;i þ sjk þ qUjk ¼ Ilj€wlk; ð11:238Þ

with the constitutive equations
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rij ¼ q
@e
@eij

; sij ¼ q
@e
@cij

; lijk ¼ q
@e
@jijk

; ð11:239Þ

while the associated twelve natural boundary conditions read

ni rij þ sij
� � ¼ Td

j ; nilijk ¼ Md
jk: ð11:240Þ

Here fi and Ujk are externally applied densities of forces and “double” forces”. Td
j

and Md
jk are the corresponding applied surface forces. Note that only rij is a sym-

metric stress. The new (nonsymmetric) tensor sij measures the relative influence of
macro- and micro- deformations and may be called the micro-stress. But this ter-
minology may be misleading. A whole theory can be expanded once the expression
of the energy e is prescribed for a given material symmetry. For a quadratic energy,
Mindlin (1964) originally noted that only 903 independent material coefficients (out
of 1764) at most are involved. This is a lot indeed! This greatly reduces to a more
reasonable number of 18 in the case of centrosymmetric isotropy.
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Microstructured Fluids

This is essentially the same as “micromorphic fluids” (see that entry).

Mindlin R.D

Raymond D. Mindlin (1906–1978) was a New Yorker who obtained all his
diplomas and spent most of his professional career at Columbia University in New
York. Although he achieved international renown with his initial works in solving
difficult problems of elasticity (e.g., Mindlin 1936) and performing pioneering
experiments in photo-mechanics, he became one of the best specialists of the theory
of vibrations in plates, and expanded with success several of the branches of
generalized continuum mechanics, including the mechanics of granular materials,
the classical piezoelectricity of structures applied to signal processing (cf. Mindlin
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2007), so-called gradient elasticity (cf. Mindlin and Eshel 1968), the elasticity of
microstructured solids (cf. Mindlin 1964), the theory of elastic dielectric crystals
with polarization gradient (cf. Mindlin 1968) and crystal-lattice dynamics (cf.
Mindlin 1972). He is acknowledged as one of the most innovative engineering
scientist in the field of generalized continuum mechanics (see a description of most
of his influential works in Herrmann Editor 1974), and his collected works in
Mindlin (1989).
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Mixtures (Mechanics of)

Rational bases for the thermo-mechanical continuum theory of mixtures were for-
mulated by Truesdell (1957). There followed in the 1960s–1970s a multitude of
works in the same line, among these, Kelly (1964), Green and Naghdi (1965, 1971),
Eringen and Ingram (1965, 1967), Bowen (1967, 1976), Müller (1968), and Atkin
and Craine (1976).

The theory of mixtures uses the concept of volume fraction n of a species (or
constituent), defined by

n ¼ volume occupied by one species
total volume

: ð11:241Þ

De Boer (2000, p. 31) attributes the introduction of this important concept
(Woltman 1794). to the German hydraulician Reinhard Woltman (1757–1837). The
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general thermodynamic theory of mixtures is a complicated affair that still poses
fundamental questions, for example: (i) should a temperature be introduced for each
constituent (same question for entropy); (ii) should global thermodynamic laws, in
particular the second one, be defined for each constituent or for the global medium;
(iii) how the stress condition at a boundary should be formulated since only one
global applied traction can be specified while the mixture involves partial stresses?
The only constraint on which all authors agree is that by summation over the
constituents one obtains the thermo-mechanical equations that govern a unique
standard continuum. The notions proper to the theory of mixtures are those of
volume fractions, partial pressures and stresses, and interaction forces between
species. The original role of the latter must be emphasized. The theory is particu-
larly complicated when species exchange not only momentum but also mass as
when chemical reactions occur. The theory is not expanded here so that we refer the
readers to the already mentioned contributions. More recent references are Grinfeld
(1991) and Rajagopal and Tao (1995). For reactive situations and combustion
problems in fluids, see Prud’homme (1988, 2010). In this dictionary we consider
only the application to porous media (see the corresponding entry) in the absence of
chemical reactions and mass transfer.
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Multipolar Continua (Green-Rivlin)

In the fever of research for generalized continuum mechanics that occurred in the
first half of the 1960s, A.E. Green and R.S. Rivlin (1964) proposed a kind of
original approach that used the notion of multipoles. This notion is well known in
gravitation theory.

Multipolar body forces can be defined through the power they expand; e.g. for a
whole body of volume V,

P Vð Þ ¼
Z
V

qfij1...jbvij1...jbdV ð11:242Þ

defines the body force 2b-pole of the bþ 1ð Þth kind per unit mass where vij1...jb are
velocities associated with the multipolar displacement fields (or simple 2b-pole
displacement fields) noted xij1...jb . The latter form a set of kinematic variables which
may be changed independently of the classical motion xi. Then, if vij1...jb;i1...ia
denotes the ath space gradient of vij1...jb , the body force 2aþ b-pole of the bþ 1ð Þth
kind per unit mass is introduced in the body power

P Vð Þ ¼
Z
V

qfij1...jb:i1...iavij1...jb;i1...iadV : ð11:243Þ

Of course, fij1...jb:i1...ia may be considered completely symmetric in the indices
i1; . . .; ia.

For b ¼ 0, (11.242) provides the power expanded by a classical body force
vector of components fi. Still for b ¼ 0, but a ¼ 1, (11.243) provides the expression

P Vð Þ ¼
Z
V

qfijvi;j dV ; ð11:244Þ

so that fij are the components of a (non-necessarily symmetric) stress per unit mass.
For a ¼ 2, (11.243) yields the expression
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P Vð Þ ¼
Z
V

qfijkvi;jk dV ; ð11:245Þ

and the object fijk ¼ fikj may be called a hyperstress per unit mass, and so on.
Summing over the various gradient orders for b ¼ 0 we will obtain an expression in
the form of an expansion

P Vð Þ ¼
Z
V

qfivi þ rjivi;j þmjikvi;jk þ 
 
 
� �
dV ð11:246Þ

where we have set rji ¼ qfij and mkji ¼ q fijk ¼ mjki. We recognize in (11.246) an
expression of the type considered by Mindlin (1964) in his gradient theory of
elasticity—See also Eq. (11.245) in Entry: Higher-order gradient theories.

But Green and Rivlin (1964) go further by considering the notion of multipolar
surface forces and stresses. This is where things become a little messy. In parallel
with (11.242), but for a regular surface S, Green and Rivlin envisage powers of the
form

P Sð Þ ¼
Z
S

tij1...jb:i1...iavij1...jb;i1...iadS: ð11:247Þ

defining thus a surface force tij1...jb:i1...ia called the surface force 2aþ b-pole of the
ðbþ 1Þth kind per unit area. This last quantity is associated with a surface whose
unit normal at the point is nk .When this nk is a unit normal to the xk-plane through
the point we denote the corresponding tensor by rkij1...jb:i1...ia . These are the com-
ponents of a surface stress tensor 2aþ b-pole of the ðbþ 1Þth kind on an element of
area at the point normal to the xk-axis. For a ¼ b ¼ 0, we recover the classical
stress tensor rki and traction Td

i ¼ nkrki since (11.247) then reads

P Sð Þ ¼
Z
S

nkrkividS: ð11:248Þ

For b ¼ 0; a ¼ 1, we shall obtain an expression

P Sð Þ ¼
Z
S

nkrkijvi;jdS: ð11:249Þ

where the (non-necessarily) symmetric quantity nkrkij is called a surface double
force (See Entry: Double force).

It is clear that the general model elaborated upon by Green and Rivlin rapidly
becomes extremely complicated, and probably much too much so, as we haven’t
seen any useful application of this general model during the fifty years that followed
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its inception. It is even surprising that Rivlin, usually much more pragmatic than
this, went so far in this formalism. As a matter of fact, Green and Rivlin went as far
as stating the material form (Piola- Kirchhoff), exploiting irreversible thermody-
namics (the Clausius-Duhem inquality), and associating a kinetic energy with the
multipolar displacement xij1...jb . Their paper remains only as a historical landmark.
What we retain from it, however, is the case of a single displacement field and the
notion of surface double force for the so-called dipolar model (see that entry), in
which case elasticity theory is the one expanded by Mindlin (1964).
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Chapter 12
N: From “Naghdi P.M.” to “Nowacki W.”

Naghdi P.M

One of the world masters in continuum mechanics from the USA in the second half
of the twentieth century, Paul M. Naghdi (1924–1994)—originally from Iran—
spent most of his active career at Berkeley. He has touched upon all aspects of
generalized continuum mechanics, often in co-operation with Albert E. Green from
Oxford. In particular, he developed original views on continuum thermo-dynamics
(Green and Naghi 1977, 1993, 1995), the theory of mixtures (Green and Naghdi
1965), and the theory of polar materials using the director approach (e.g., in
Cosserat surfaces; cf. Green and Naghdi 1967; Naghdi 1972). A selected list of
references is given below. Biographical elements on Naghdi are given by his former
students Casey and Crochet (1995).
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Naghdi P.M., (1972). The theory of shells and plates, Handbuch der Physijk, Ed.
Flügge S., Bd. Via/2, pp. 425-640, Springer-Verlag, Berlin.

Cross references: Cosserat continua, Dipolar materials, Directors theory,
Green A.E., Oriented media (with directors).

Non-euclidean Geometry of Defective Materials

[See entries: Connection and torsion, Defects in GCM, Dislocations and disclina-
tions, Non-holonomic continua].

Non-holonomic Continua

We agree to call non-holonomic continua those continua in which the classical
compatibility conditions for strains are not satisfied. These are the conditions ini-
tially proposed by Navier and Barré de Saint-Venant in small strains that a strain
must satisfy to be unequivocally integrated into a displacement. An everywhere
dislocated material—that is, a material with a very high density of dislocations
(discontinuities of displacement), a practically necessary thermodynamic require-
ment—is an example of such continua. Remember that in classical continuum
mechanics it is assumed that all material bodies are embedded in a Euclidean space.
Following Maugin (1993, Chap. 3), this space may be characterized by the exis-
tence of a global Cartesian covering over the whole space. In this global Cartesian
system the components of a vector remain unaltered in a parallel transport (e.g.,
around a closed contour). The criterion of holonomy on the material manifold is
that the system of material coordinates XK ;K ¼ 1; 2; 3 provides a global or holo-
nomic (i.e., integrable) system of coordinates. The position vector R of a material
point is a continuous and single-valued function of the XK 0

s. In other words, with
GK ;K ¼ 1; 2; 3, a set of basis vectors, dR ¼ GKdX

K is an exact differential, or
equivalently, the integral of this along a closed contour C is path-independent, i.e.,

I
C

dR ¼
I
C

GKdX
K ¼ 0: ð12:1Þ

On using Stokes’ theorem, this yields locally

CL
JK � CL

Kj

� �
GL ¼ 0; ð12:2Þ
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where

CL
JK Gð Þ :¼ @GK

@XJ
:GL ¼ @2R

@XJ@XK
:GL ð12:3Þ

are connection coefficients (here Christoffel symbols of the second kind since
material space is Euclidean) and GL; L ¼ 1; 2; 3 denotes a reciprocal basis.
Equation (12.2) is valid for any GL so that we must have

CL
JK Gð Þ ¼ CL

KJ Gð Þ: ð12:4Þ

and the system XK ;K ¼ 1; 2; 3 is said to be holonomic. A second criterion is that of
vanishing curvature. This is established by requiring that the change in the com-
ponents of a vector, say A, should be zero after parallel transport around a closed
circuit C, i.e.,

I
C

CL
JKA

KdXJ ¼ 0: ð12:5Þ

Since

@AL

@XJ
¼ �CL

JKA
K ; ð12:6Þ

after application of Stokes’ theorem and localization condition (12.5) for any vector
A implies the following geometric condition:

R...L
JMK ¼ 0; ð12:7Þ

where the components to this Riemann-Christoffel curvature tensor are defined by

R...L
JMK ¼ @CL

MK

@XJ
� @CL

JK

@XM
þCL

JNC
N
MK � CL

MNC
N
JK : ð12:8Þ

In 3D, due to the skewsymmetry of this tensor in the indices J and M and
considering the totally covariant curvature tensor

RJKMQ ¼ GOLR
...L
JKM ; GQL ¼ GQ:GL; ð12:9Þ

which is also skewsymmetric in indices M and Q, we can introduce a second-order
tensor (called Einstein tensor) such that

SAB ¼ 1
4
eAJKeBMQRJKMQ; ð12:10Þ
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where eAJK is the alternating symbol. In small trains, (12.10) reduces to

Sab ¼ �eajkebli
@2eki
@xj@xl

: ð12:11Þ

The requirement that this vanishes is none other than the Navier-Saint-Venant
condition of compatibility [Equations (P1.34) in Chap. 1 in Part One].

Non-holonomy is defined by the lack of satisfaction of the above enunciated
conditions, hence its prevailing role in the theory of continuous distributions of
dislocations (cf. Kröner’s theory and the introduction of the incompatibility tensor;
Kröner 1958). Then an affine connection (as defined by the geometer E. Cartan) and
a torsion tensor can still be defined. Other much relevant works in this context are
the series of papers started by Bilby et al. (1955) and works by Noll (1967) and
Wang (1967).
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Nonlinear Waves in Generalized Continua

Classical continuum mechanics in the sense of Chap. 1 in Part One (Prerequisites)
admits the propagation of nonlinear waves (simple waves, shock waves, propa-
gating phase-transition fronts) when some nonlinearity is active. This is the case in
nonlinear elastic bodies and also in compressible fluids. The deformation or motion
then is strongly coupled with thermal properties. We refer to Maugin (1999) and
Maugin et al. (1992; with electro-magneto-elastic interactions) for general features
of such propagation and illustrative examples—also Ani and Maugin (1988).
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Generalized continua of various types also admit such wave-propagation phe-
nomena with the appropriate dose of nonlinearity. But these continua (Cosserat
continua, gradient elasticity, strongly nonlocal continua, and some
electro-magneto-deformable bodies) all involve one or several characteristic lengths.
This means that they are prone to the phenomenon of dispersion. Nonlinearity and
dispersion are two ingredients that may compete and balance one another to favour
the existence of other dynamical phenomena of high interest, namely, solitary waves
and solitons. This is true in Cosserat continua and oriented elastic solids (e.g., Erbay
and Suhubi 1989; Erbay et al. 1991; Erofeev and Potapov 1993; Kunin 1982;Maugin
andMiled 1986a; Potapov and Pavlov 1995; Potapov et al. 1998; Pouget andMaugin
1989), gradient continua (e.g., Christov and Maugin 1995; Christov et al. 1996;
Maugin and Cadet 1991; Pouget 1990), nonlinear elastic crystals with magnetic or
electric microstructure (e.g., Kivshar andMalomed 1990;Maugin 1986;Maugin and
Miled 1986b; Pouget and Maugin 1984, 1985), and nonlocal continua (e.g., Kunin
1982, Vol.2). Historically, the work of Frenkel and Kontorova (1938) was the first
one to relate the mechanics of deformation (with dislocations) to a nonlinear dis-
persive equation recognized later on as the celebrated sine-Gordon equation of
soliton theory—more on the historical development in time in Maugin (2011).
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Nonlocal Damage

Although of recent introduction in continuum mechanics, damage is now classi-
cally understood as the irreversible loss of elasticity due to the decrease of areas that
transmit internal forces, through the appearance and subsequent growth of
micro-cracks and micro-cavities. This occurs in the condition of creep (increase of
strain in time while the load remains constant). Damage is a particularly important
phenomenon in materials of civil engineering (e.g., concrete). Initial ideas for its
modelling are due to Kachanov (1958) and Rabotnov (1963). A thermomechanical
theory exploiting the notion of internal variable of state was presented by Lemaître
(1985) and Lemaître and Chaboche (1985) and met a great success. It considers a
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local theory in which the damage variable is a scalar D (for the sake of simplicity)
such that 0�D� 1, where D ¼ 0 corresponds to a virgin element and D ¼ 1
corresponds to a fully damaged element (i.e., fracture). In small strain isotropic
elasticity and one-dimensional setting, the energy density per unit volume can be
proposed as

W e;Dð Þ ¼ 1
2

1� Dð ÞE eelas
� �2

: ð12:12Þ

Within the framework of the theory with internal variables of state, the associ-
ated thermodynamic force for damage Y is such that

Y ¼ � @W
@D

� 1
2
E eelas
� �2

;U ¼ Y _D� 0 ; ð12:13Þ

where U is the dissipation that an evolution law of damage should respect, and the
first of (12.13) shows that the driving force is none other than the elastic energy of
the undamaged specimen. Anisotropic three-dimensional generalizations for the
material, tensor generalization for the damage variable, and coupling with other
irreversible effects (plasticity, viscoplasticity, porosity) have been proposed in a
multitude of works (in particular, see Chaboche 1988; Krajcinovic 1989; Lemaître
and Chaboche 1985; Lemaître 1996; Voyiadjis and Kattan 2005). Rather different
approaches are presented by Grabacki (1989) and Rabier (1989). Though, all these
are purely local from the view point of continuum mechanics.

An altogether different viewpoint and more deeply analyzed survey of the
phenomenon were expanded by Bazant and his co-workers (in particular,
Pijaudier-Cabot and Bazant 1987). While (12.12) reflects the notion of contiguity as
accepted in classical continuum mechanics, the multiple reasons why damage
should be viewed as a nonlocal phenomenon were clearly exposed by Bazant
(1991). First, it should be realized that the formation and growth of a micro-crack
depends on the strain energy stored in a nonzero volume of the material sur-
rounding the micro-crack. The release of this energy drives the growth of this
micro-crack. A micromechanical analysis then reveals that damage is a function of
the spatially averaged fracturing strain of the macroscopic smoothing continuum.
Thus damage is nonlocal. One has thus shown that

D � F eh ið Þ; ð12:14Þ

where eh i is an average (nonlocal) strain. The latter can be defined as a statistical
average of the form

e xð Þh i ¼ 1
Ve

Z
Ve

a x� sð Þe sð ÞdV sð Þ; ð12:15Þ
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where Ve � l3 is the representative volume element (of size l) and a x� sð Þ is a
weight function that ensues from statistical averaging over all values of l. A second
argument relates to the interactions among micro-cracks examined as a superpo-
sition of a number of problems of elasticity. A result of this analysis is that the
weight function for spatial integration (or summation in a discrete approximation) is
not a fixed material property because the micro-crack system evolves with the
progress of loading and is affected by the presence of a boundary and the shape of
this boundary. In partial conclusion, interactions also imply nonlocality. Finally, a
role is played by microstructural inhomogeneities such as in concrete specimens
which can be represented by a randomly generated configuration of hard aggregate
pieces—interacting via central forces—with a prescribed distribution embedded in
a relatively soft matrix (here, mortar). What is most interesting in this deeply
thought analysis is that only the damage variable (i.e., the fracturing strain) need be
considered as nonlocal while all other mechanical fields can be accepted in their
usual local description. This was indeed implemented in the celebrated paper of
Pijaudier-Cabot and Bazant (1987) where only those variables that control strain
softening are subjected to a nonlocal treatment while the elastic part of the strain is
treated as local. This “simplification” eschews the occurrence of formerly met
spurious mesh sensitivity and incorrect convergence features in computations. Here
the usual local damage energy release rate is replaced with its spatial average over
the representative volume element whose size is a characteristic property of the
material. This looks a bit far from the more formal developments of Eringen’s
theory of (strong) nonlocality—see that entry—but some results of Eringen and
co-workers (e.g., Eringen and Ari 1983) on the crack problem in nonlocal elasticity
are accounted for in some part of the reasoning.

To be complete we cite the stress-based nonlocal damage model of Giry et al.
(2011), the work of Xia et al. (1987), and the variational formulation of Challamel
(2010).

Weak Nonlocality

In the spirit of weak nonlocality (see that entry), damage can also be approached
with the notion of gradient of damage. This was achieved by Markov (1995) and
Frémond and Nedjar (1996)—but see the remarks on the related thermodynamics of
internal variables of state and their gradients in Maugin (1990); See also variational
formulations by Lorentz and Andrieux (1999) and Pham and Marigo (2010).
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Nonlocality (as Opposed to Contiguity)

Nonlocality or action at a distance is defined in contrast with contiguity or action by
contact. The latter in fact is strongly correlated with a continuum vision since it
underlines the fact that across a surface drawn in a body there is direct action of the
matter on one side with the matter on the other side. In classical physics this is
illustrated by the two cases of mechanical action via the notion of stresses (pressure
in the case of non-viscous fluids) and heat flux. In contrast, nonlocality or action at
a distance was first concerned with the interaction between distant point masses as
illustrated by Newton’s law of gravitation. In practice this is not limited to a region
of space; the whole space is involved, but the very form of Newton’s law (inverse
square law for the force, inverse of distance for the potential) indicates a stronger
influence of closer points. R. Boscovich (1711–1787) proposed that if attraction is
certainly active at large distances between two particles, the interaction becomes of
the repulsive type at short distances, thus avoiding a problem of infinities.
Nonetheless, the Newtonian model became some kind of dogma or paradigm with
an application to electrostatics (with Coulomb) between electric charges, electro-
magnetism (with Ampère) between elementary currents, and even capillarity (with
Laplace), so that this permeated through the whole field of physics of the period
with the powerful notion of potential, a rather evasive mathematical notion but that
suits well our modern vision of mathematical physics.

The discussion between contact and at-a-distance actions may have continued
uninterrupted during the whole nineteenth century especially insofar as passing at
the limit from a discrete description of matter to a continuous one. But in continuum
mechanics the notion of contiguity seems to be seriously questioned for the first
time by Pierre Duhem (1893)—as emphasized by Edelen (1976, p. 44). Duhem
asked whether farther distant elements of the continuum, if not material points of
the whole body, are causes of the mechanical response at a particular point. In
modern terms, one would have to envisage a kind of non-local interaction, no
longer by direct contact even though closer points may have a stronger influence
than distant ones. Some of these developments may find a vague ancestry in some
posthumously published work of 1854 by Gabrio Piola (see Piola 2014).
Nonlocality of this type was introduced in different fields of physics in the 1940s to
the 1960s (crystal optics, radiation, superconductivity) as exemplified by the book
of Agranovich and Ginzburg (1984). These works emphasize the necessary
occurrence of characteristic lengths (such as a coherence length) and thus the
importance of dispersion from the point of view of wave propagation.

A blossoming of nonlocal mechanical continuum theories occurred in the 1970s,
especially with the works of E. Kröner, B.K. Datta, B.K.D. Gairola, I.A. Kunin, D.
Rogula, D.G.B. Edelen and A.C. Eringen (synthesized in Eringen 2002). Like
Newton’s theory of gravitation, these nonlocal theories in principle apply to the
whole space and the notion of stress is not primary if ever likely to exist since any
cut by a surface would destroy the nonlocality. For practical aspects, however, it is
desirable to limit this action at-a-distance to some reasonable spatial range (a kind
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of sphere of influence) while noting the obvious rather rapid decrease of the action
with distance. This is also true in lattice dynamics which is often called as a support
for nonlocality in crystals (cf. Kunin 1982; Eringen 2002) where interaction
between non-immediate neighbours has to be limited to a certain range (rarely more
than second nearest neighbours) except in fractal approaches where there is no
privileged spatial scale (see works by T. Michelitsch et al.).

This brings us to the modern vision of (strong) non-locality where space func-
tionals have to replace point-wise constitutive equations. But between the conti-
guity of Euler and Cauchy and the strongly non-local theory, one may find a weakly
non-local theory where the mechanical response is still point-wise, but depending
on further gradients of the displacement field or of density at the same point. Then
one deals with gradient theories (or non-simple materials) of which the merits can
be compared to those of the strongly non-local one (cf. Maugin 1979). Both weakly
and strongly non-local theories belong to non-classical continuum mechanics.
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Nonlocality (Strong)

One distinguishes between “strong” nonlocality and “weak” nonlocality. Here we
consider the former. Original works in this field are due to Kröner and Datta (1966)
in elastostatics, Gairola (also in Kröner’s environment), Kunin (1966), Rogula
(1965), Edelen and Laws (1971), and Edelen and Eringen (1972) and many other
works by these two authors. Detailed reviews and books are due to Kunin (1982)
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and Eringen (2002). The essence of nonlocal linear elasticity was reviewed in
Chap. 2 of Part One in the present book [in particular, see Equations (P2.18) and
(P2.19) in the 1D case]. This approach requires the solution of integro-differential
equations and the a priori knowledge of a kernel that provides an idea of the
influence of more or less distant points x0ð Þ on the mechanical response at a selected
material point xð Þ with the natural understanding that distant points influence much
less than close points (fast decrease with distance), and the possible existence of a
cut-off distance that defines a limited zone of influence. Examples of such kernels
are:

• a triangular kernel with finite support (Eringen 1972a):

a x0 � xj jð Þ ¼ 1
a

1� x0 � xj j
a

� �
for

x0 � xj j
a

� 1 and 0 otherwise; ð12:16Þ

where a is a typical lattice spacing;
• Exponentially decreasing kernel:

a x0 � xj jð Þ ¼ a0 exp � k2

l2
x0 � xj j2

� �
; ð12:17Þ

where a0 and k are constants and l is a constant internal characteristic length.
• Oscillatory decreasing function:

a x; mð Þ ¼ 1
p
sin mxð Þ

x
; 0\m\1: ð12:18Þ

• Bessel function of imaginary argument:

a xj jð Þ ¼ 2pl2
� ��1

K0 xj j=lð Þ; 0\l\1: ð12:19Þ

Note that kernels such as (12.16) are suggested by wave studies in crystal lattices
and the presence of characteristic lengths generally favours dispersion in wave
propagation.

The introduction of such nonlocal theories was mildly appreciated at the
beginning of these studies—looking down at these as useless exercises, but in time
it gained a tremendous interest, so that it seemed that everything had to become
“nonlocal” (including, plasticity, Cosserat theory, electromagnetic bodies, damage,
friction, etc.) with the unlimited enthusiasm of new converts for the involved
scientists. The unexpected liking for such developments may have been kindled by
the fact that nonlocality avoids the singular behaviour of solutions in the classical
problem of the crack tip (cf. Eringen and Kim 1974a, b; Eringen et al. 1977;
Eringen and Ari 1983) and of the infinities at the core of dislocations (cf. Eringen
1977a, b). All these problems are solved in an infinite space or with a kernel with
limited support.
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It is Edelen and Eringen who proposed a rather formal (“rational”) approach to
strong nonlocality in a series of papers (Edelen 1969; Edelen and Laws 1971;
Edelen and Eringen 1972). This is rather technical and unfortunately afflicted by a
heavy formalism. The only notion that may be of general interest is that of nonlocal
residuals. It is rightly emphasized by these authors that localization of global
balance laws poses a problem in the nonlocal theory if we admit that only global
balance laws are posited to be true. In classical continuum mechanics the global
balance laws are posited to be valid—for sufficiently regular continuous fields—for
any volume and surface elements. This is the so-called localization argument. This
is hindered by strong nonlocality for which, for example, an attempt at localization
for linear momentum will yield the “local” equations (cf. Eringen 2002, pp. 20–21):

tkl;k þ q fl � _vlð Þ ¼ qf̂l in V � r; ð12:20Þ

tkl � qvl vk � ukð Þ½ �nk ¼ F̂l on r; ð12:21Þ

where r is a discontinuity surface moving at velocity of components uk and
equipped with unit normal nk. Here tkl has the usual meaning of a locally defined
stress. The residuals in the right-hand side of (12.20) and (12.21) are subjected to
the constraint

Z
V�r

qf̂l dvþ
Z
r

F̂l da ¼ 0: ð12:22Þ

If we keep the form (12.20), we will need constitutive equations for both volume
and surface residuals. This is tantamount to including surface physics in the domain
of continuum mechanics.

An equation of local “conservation” of energy with energy residual can then be
deduced.

But Equations such as (12.20) can also be given a classical outlook by
introducing

qf̂l ¼ �t̂kl;k; Tkl ¼ tkl þ t̂kl; ð12:23Þ

so that (12.20) now reads

Tkl;k þ q fl � _vlð Þ ¼ 0; ð12:24Þ

but then Tkl is a nonlocal field of which the constitutive equation must reflect the
nonlocal character, hence a space-integral form as presented in Chap. 2 of Part One.
A similar manipulation can be effected on the energy equation; this will make
appear a surface energy.

To conclude we first note that nonlocal fluid mechanics was also expanded (see
Eringen 2002). Peridynamics (see that entry) is the last avatar of the strong nonlocal
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theory. Nonlocal damage was introduced in 1987 (cf. Bazant and co-workers at the
entry: Nonlocal damage) and nonlocal friction by Duvaut (1982). What is more
exciting is the relationship established between nonlocality and fractional calculus
(cf. Carpinteri et al. 2009; Atanakovic and Stankovic, 2009; and recent works by
Michelitsch et al. 2013—initially based on the notion of fractal lattices).
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Nonlocality (Weak)

It is reasonable to assume that the zone of marked influence introduced in the case
of strong nonlocality is fairly small, perhaps of the order of a few lattice spaces in a
solid crystal or a short coherence distance in fluids. Accordingly, the idea to replace
this spatial functional formulation of strong nonlocality by the influence of the very
first spatial gradients of the independent fields (e.g., the deformation) at a point
seems to be salient. This naturally yields the notion of gradient theories illustrated
by the notions of hyperstress, Le Roux theory of elasticity, Mindlin’s gradient
elasticity, capillarity, and surface tension [see the corresponding entries] while
allowing a return to a treatment of mathematical problems by means of partial
differential equations, with possible necessary special attention paid to boundary
conditions. The relative interest between, and comparative practical convenience of,
strong and weak nonlocalities can be discussed (cf. Maugin 1979).
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Nowacki W

Witold Nowacki (1911–1986) was a Polish applied mathematician-civil engineer
who became one of the most articulate and active contributors to several facets of
generalized continuum mechanics with a specific interest in dynamical aspects,
including: thermo-elasticity, electro-magneto-mechanical interactions, and oriented
(micropolar) continua. As one of the twentieth-century masters of Polish
mechanics, he was extremely influential in his native country and abroad with
books having received a large diffusion (e.g., Nowacki 1975, 1983, 1986a, b).
Witold Nowacki has published an autobiography (Nowacki 1986c).
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Chapter 13
O–P: From “Oriented Media
(with Directors)” to “Porous Media
as Seen in GCM”

Oriented Media (with Directors)

These are continuous media described by a classical motion and a set of unit
“directors” attached to each material point that evolves in time forming a
deformable or rigid triad. In the rigid case, the kinematics of these directors will
describe a kind of internal rotation, or orientation (an additional degree of freedom).
They have no real precise material meaning except perhaps in crystals and plasticity
and dislocated bodies where they would be related to crystallographic directions.
According to C.A. Truesdell, it seems that the basic idea goes back Pierre Duhem
(1893). Such objects were considered (without this specific name) by the Cosserat
brothers (1909) in the description of the deformation of material plates and fila-
ments, adapting geometrical ideas of Darboux (the mobile triad). The idea was
taken over by Ericksen and Truesdell (1958) in their deformation theory of rods and
shells, and by other authors such as Toupin (1964) and Naghdi (1972) or Hayart
(1966). Exploiting the concept of a unique director, Ericksen singlehandedly
expanded a theory of anisotropic fluids that was to develop in a universally
accepted theory of nematic liquid crystals (Ericksen 1960). Later on this was to be
generalized by Frank M. Leslie (from Scotland) and him to include dissipative
effects. In the framework of solid mechanics, we note the little known works of
Stojanovic (1969) and his co-workers in Yugoslavia. A more recent work
exploiting the notion of directors in nonlinear dynamics is by Pouget and Maugin
(1989). Maugin and Eringen (1972) had proposed an attempt at a four-dimensional
covariant formulation in order to describe relativistic continua with spin (exploiting
thus the notion of tetrad in space-time).

Let dk; k ¼ 1; 2; 3 denotes the set of three directors that depend on the material
point X and time. In the case of a rigid triad of unit directors (case of a Cosserat
continuum), we have the following constrains:
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dk:dl ¼ dkl; dk:dk kfixedð Þ ¼ 1: ð13:1Þ

But this is not necessarily the case. In general, the equation satisfied by the
directors mimics that of the usual motion, so that we have the following field
equations at a current point x in a regular body:

• Balance of linear momentum:

q€xi ¼ tji; j þ qfi; ð13:2Þ

• Field equation for the director field:

qikl€dli ¼ hkji;j þ qkki; ð13:3Þ

• Balance of momentum of momentum (cf. Stojanovic 1969; summation over k
applies here)

t ji½ � ¼ mkij;k þ dk½i;khk j�k þ qLij; ð13:4Þ

where mkij is a couple-stress tensor, and fi and Lij are densities of body force and
couple, respectively. The factor ikl is a kind of symmetric inertia tensor.

A more classical form of the equation of balance of angular momentum is
obtained by introducing a rate of angular momentum _sij, a total couple stress lkij
and an extrinsic couple lij by

_sij ¼ ikl€dk½idl j�; ð13:5Þ

lkij ¼ mkij þ hkk½idkj�; ð13:6Þ

lij ¼ Lij þ dk½ikkj�; ð13:7Þ

and taking the tensor product of (13.3) with dk and then the skew part of the result.
One obtains thus the following equation:

q_sij ¼ lkij;k � t ij½ � þ qlij: ð13:8Þ

This is the standard dynamic form of the balance of angular momentum in many
theories of generalized continua (e.g. Toupin 1964). In an elastic body mkij and hkki
are primarily determined by the dependence of the energy density on the second
gradient of the classical motion and the gradient of the director field, respectively.

It must be acknowledged that this theory had a rather limited legacy save per-
haps in relation with an approach to dislocated bodies (e.g., in Stojanovic 1969;
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Eringen and Clauss 1970), the dynamics of granular media, and the theory of
Cosserat surfaces (Green et al. 1965).
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Peridynamics

Introduction

The word “peridynamics” is a neologism created from the Greek word “peri”
meaning “the surrounding” and “dynamics” that needs no explanation. It in fact is a
special version of the nonlocal theory of continua (see Entry: Non-locality
(strong)). As such, it will replace the usual partial differential equations by
integro-differential equations. In truth, it essentially provides a bridge between
standard local continuum models and nonlocal atomistic models. It is an extension
of classical continuum mechanics suitable for modelling discontinuous phenomena
such as discontinuous displacement (e.g., in fracture). The main idea is to avoid the
difficulty presented by the existence of field singularities such as happens in the
study of fracture for which the partial differential equations of classical mechanics
are not well equipped. It directly provides an efficient numerical method to deal
with these cases. The early developments of this approach are principally due to a
small group of authors around Stewart A. Silling (among them, Richard B.
Lehoucq, F. Bobaru, W Hu, Y.D. Ha, and E. Askari) starting in year 2000 [cf.
Silling (2000), Silling and Askari (2005), Silling et al. (2007), Silling and Lehoucq
(2010)].

The Main Idea

We consider an equation of motion of the continuum in the vector form

q xð Þ€u x; tð Þ ¼ Fint þ qb x; tð Þ ð13:9Þ

where the “internal (body) force” is given by a space integral expression

Fint x; tð Þ ¼
Z
B

f u x0; tð Þ � u x; tð Þ; x0 � x; xð ÞdVx0 : ð13:10Þ

Here x and x′ are two points in the body B, and u and u′ are the corresponding
displacements. The vector-valued function f depends on both relative displacement
and relative position. The initiators of this approach have introduced a special
wording such as “pairwise force function” for f and “bond” for the interaction
between points x and x′. It is reasonable to introduce a critical distance of inter-
actions. This is called the “horizon” (but this is not a very good denomination; the
radius of the sphere of influence on point x would be more appropriate). Since x and
x′ play symmetric roles, we have (equality of action and reaction)
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f u� u0; x� x0; x0ð Þ ¼ �f u0 � u; x0 � x; xð Þ; ð13:11Þ

while the balance of angular momentum requires that

x0 þ u0ð Þ � xþ uð Þð Þ � f ðu0 � u; x0 � x; xÞ ¼ 0: ð13:12Þ

If we call bond elongation the scalar

e :¼ x0 þ u0ð Þ � xþ uð Þj j � x0 � xj j; ð13:13Þ

it might be physically justified to introduce a maximum value emax at which there
occurs a breakage of the bond. This phenomenon of bond breakage and the
resulting load redistribution in the body is the process by which a crack expands
according to this modelling. This appears to be a very efficient method in the
numerical simulation of such a process. Various sophistications have been intro-
duced to improve the method. For instance, the notion of “peridynamic states” has
been introduced to eschew the oversimplification that bonds respond independently
of all the others in the body. This consists in considering that the force density f in
each bond in fact depends on the stretches in all the bonds connected to its end-
points, and this in addition to its own stretch. The long synthesis by Silling and
Lehoucq (2010) is the most instructive one, having been written by the main
original contributors to peridynamics. An introduction to practical peridynamics
with examples of computations is given in a book by Gerstle (2016) that can serve
as a textbook.

Fields of Applications: Brittle fracture, Modelling of membranes and fibres,
kinetics of phase transformations, fracture of nano-fibre networks, molecular
dynamics, multi-scale modelling, study of crack nucleation, of crack branching,
transient heat conduction, phonon dispersion, etc.
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Polarization Gradient

[See Entry: Ionic crystals (elasticity of)].

Ponderomotive Couple

A magnetic dipole m placed in a magnetic field H is subjected to a torque

c ¼ m�H: ð13:14Þ

This is obviously illustrated by the alignment of a compass needle with the local
earth magnetic field. The alignment takes place so as to minimize the energy
E ¼ �m:H. In a continuous body (13.14) translates to a density of volume couple

CM ¼ M�H; ð13:15Þ

where M is a volume density of magnetization. It was soon realized that the
existence of such a couple would cause an asymmetry of the stress tensor in a
magnetizable elastic body. As noted by Hayart (1966, p. 3), this was remarked by
Bouasse (1931) in his course on the strength of materials.

In an electrically polarized continuum with polarization P per unit volume, a
density of volume couple

CP ¼ P� E ð13:16Þ

may exist when the averaged electric dipole is not exactly aligned with the local
electric field E. Thus, globally, in an electromagnetic continuum we may have a
density of body couples of the form

Cem ¼ M�HþP� E: ð13:17Þ

Because there hold the definitions (here written in so-called Lorentz-Heaviside
units)

B ¼ HþM;D ¼ EþP; ð13:18Þ

where B is the magnetic induction and D is the electric displacement, Eq. (13.17)
can also be written as

Cem ¼ M� BþP� D: ð13:19Þ

Couple (13.7) or (13.19) is usually called the ponderomotive couple in parallel
with an electromagnetic body force fem called the ponderomotive force. The
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adjective “ponderomotive” may not be spot on as it recalls the notion of point, but it
is traditional. Both expressions of Cem and fem can be established by computing
volume or statistical averages in a modelling that starts from a set of electric charges
such as in a famous evaluation made by H.A. Lorentz (1853–1928) in his celebrated
“theory of electrons” (not the electrons of modern physics)—cf. Lorentz (1909);
Eringen and Maugin (1990).

In simple phenomenological (macroscopic) physics, M and P are given con-
stitutive equations of the form

M ¼ M H; :ð Þ;P ¼ P E; :ð Þ; ð13:20Þ

where the missing independent variable may be temperature and/or strain. In an
isotropic body whereM and P are strictly proportional to H and E, respectively, the
couple (13.19) vanishes identically. This may be the case in fluids (e.g., in
magneto-hydrodynamics and electro-hydrodynamics). But this is not true in gen-
eral, so that the local balance of angular momentum with stress tensor t will read in
components (in the absence of internal spin and couple stresses)

eklmtlm ¼ �Cem
k or t ji½ � ¼ � 1

2
ejikC

em
k ; ð13:21Þ

or

t ji½ � ¼ M½iBj� þP½iEj�; ð13:22Þ

where t ji½ � denotes the skewsymmetric (or antisymmetric) part of the stress tensor
defined by

t ji½ � ¼ 1
2

tji � tij
� �

; ð13:23Þ

and eijk is Levi-Civitta’s alternating symbol.
Equation (13.21) or (13.22) provides the simplest example of a nonclassical

stress expression in so-called generalized continuum mechanics.

Remark
At a microscopic scale magnetic moment m and magnetic spin s are related by the
gyromagnetic ratio ce and s satisfies a gyroscopic like equation

_s ¼ X� s ð13:24Þ

where X ¼ �ceB is Larmor’s precessional velocity. In the macroscopic phe-
nomenological theory called micromagnetism, Eq. (13.24) generalizes to a con-
tinuum equation of the same form, i.e.
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_M ¼ X�M;X ¼ �cBeff ; ð13:25Þ

where c is an effective gyromagnetic ratio and Beff is an effective magnetic
induction which, in particular, involves the magnetic induction B, so that the couple
(13.15) is involved in Eq. (13.25). In turn, this will necessarily be coupled with the
skew part of the stress tensor in a deformable body (see the entry
“micromagnetism”).
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Porous Media (as Seen in GCM)

A porous medium can be seen as a heterogeneous body made of two constituents, the
matrix and the interconnected voids filled of a liquid or really empty. When the voids
are completely filled in the medium is said to be fluid-saturated. One may think of
representing this global medium by assuming that the constituents are interpene-
trating and in fact co-existent in certain relative proportions at each point but without
real mass exchange between them. Then an averaging can be envisaged that will
provide macroscopic laws of, say, a poro-elastic medium. Such an approach was
used early in the mechanics of composites and obviously in mixtures of fluids. In
more recent times, a rather mathematical way to deduce basic laws of porous media
is the technique of homogenization (See the entry “Homogenization”).

In most cases the structure is not well ordered as a porous medium obviously
presents a random distribution of pores, themselves of various sizes (for this aspect,
see Adler 1992). But, remarkably enough, assuming a rather (in most cases unre-
alistic—unless man-made) ideal situation with a regular, e.g., periodic, pattern of
pores, one can conceive of an easily implemented scheme that is both mathemat-
ically sound and practically very efficient as proved by the case of porous media.
The representative volume element (RVE) then is a basic cell of this convenient
periodic arrangement while in the averaging technique the RVE should contain
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enough statistical information about the heterogeneous medium in order to be truly
representative. Anyway, we are facing two spatial length scales, those of the RVE
(l) and of the macroscopic scale (L), typically in the ratio e ¼ l=L, where e is an
infinitesimally small quantity. In physical Euclidean space the macroscopic domain
X of interest is considered periodic, the rescaled unit cell is Y ¼ 0; 1ð Þ3, and the two
coordinates (x macroscopically and y—fast variable—in the cell) are given by

x 2 X; y ¼ x
e
2 Y : ð13:26Þ

The result of this parametrization is that the problem now is embedded in a
sequence of similar problems parametrized by a scaling e with expressions of the
type (asymptotic formal expansion, so-called Ansatz)

ve xð Þ ¼ v x; yð Þ ¼ v0 x; yð Þþ ev1 x; yð Þþ e2v2 x; yð ÞþO e3
� � ð13:27Þ

for all fields, e.g., the velocity field v. Then homogenization amounts to performing
an asymptotic analysis when e tends to zero. The limit is the solution of the
homogenized problem. This mathematical technique is called asymptotic periodic
homogenization (APH). Application of the APH to porous media was first given by
Lévy and Sanchez-Palencia (1975) and Ene and Sanchez-Palencia (1975) by
applying the APH scheme to the steady Stokes equation for an incompressible
viscous fluid with vanishing velocity v on the boundary S of X, i.e.,

rpe � e2lr2ve ¼ f;r:ve ¼ 0; vejS¼ 0; ð13:28Þ

a set of equations which admits a unique solution in the appropriate functional
spaces for ve and pe. The authors deduced the Darcy-Hagen law

q ¼ � k
l

rp� qgð Þ ð13:29Þ

where q is the flux or discharge per unit area, p is the pressure, rp is the pressure
gradient, g is the gravity vector, k is the permeability, and l is the dynamic vis-
cosity. The so-called Darcy velocity is defined as

vDarcy ¼ q
A
¼ vporen; ð13:30Þ

where q is the filtration flux (discharge per unit area), A is the filtration surface, and
n is called porosity (sometimes noted /) given by

n ¼ volume of void ðporesÞ
total volume

: ð13:31Þ
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Lévy (1983) went further by studying the Stokes flow through a swarm of fixed
(non-connected) particles and justified thus Brinkman’s law in the form

6plac v ¼ �rp0 þ lr2vþ f ð13:32Þ

by a technique of matched asymptotic expansions involving a boundary layer
around the particles. Notice that this model is a strange one for a porous medium
because of the lack of connectivity between particles (the same remark applies to
Brinkman’s work).

[The original Brinkman (1947) law reads

l
k
v ¼ �rpþ kr2v; ð13:33Þ

where k is called effective viscosity].
Another generalization is due to Forchheimer (1901) when the fluid velocity is

large enough, yielding a nonlinear generalization of Darcy’s law in the form

l
k
vþ a vj jv ¼ �rp: ð13:34Þ

This equation can be said to be nonlinear and to account for inertial effects.
In a convective flow where the viscosity varies considerably with temperature, it

may be necessary to combine Eqs. (13.33) and (13.34). Higher order nonlinear
terms can also be added in the left-hand side of (13.35). All these equations are
valid for incompressible fluids for which r:v ¼ 0. There also exist anisotropic
generalizations that involve a second-order tensor of permeability k instead of the
scalar k. Finally, in the same line of thought as what was proposed for heat con-
duction by Cattaneo and Vernotte in the 1940s–1950s to give a finite speed to the
heat propagation phenomenon (See the entry “Generalized thermo-elasticity”), for
very short times Eq. (13.29)—without gravity—can be improved to read

s
@v
@t

þ v ¼ � k
l
rp; ð13:35Þ

where s is a very small time constant. Such a form will result in a hyperbolic
groundwater flow equation, perhaps not of much practical use (cf. Cattaneo’s
modelling applied to porous media in Straughan 2011, pp.238–240).

The question of the validity of the various approximations obtained in the
homogenization procedure (Lévy, Sanchez-Palencia, Auriault et al.), calls for a
thorough examination of the respective domains of validity in terms of
non-dimensional numbers (scales). For this we refer the reader to Auriault (2009)
who underlines the case of so-called “poor separation of scales”, i.e., when e, if we
may say so, is not so small (Auriault et al. 2005). In this analysis, Brinkman’s law is
shown to be invalid for connected porous matrices so that this casts some doubt on
the real physical meaning of Brinkman’s modelling for porous media.
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Porous Media and the Theory of Mixtures

It is easily conceived that a porous medium may be considered a mixture, but a
mixture reduced to two constituents or two phases, a solid one (the matrix) and a
fluid one likely to flow through the interstices left by the solid with interconnected
pores. This is the view adopted by, e.g., Rajagopal and Tao (1995). This is the
continuum theory of mixtures for which Clifford Truesdell (1957) provided the first
thermodynamically based rational theory. There followed in the 1960s–1970s a
multitude of works in the same line.

The theory of mixtures uses the concept of volume fraction, an example of
which is given by Eq. (13.31) in the case of porous media. The general thermo-
dynamic theory of mixtures is a complicated affair that still poses fundamental
questions, for example: (i) should a temperature be introduced for each constituent
(same question for entropy); (ii) should global thermodynamic laws, in particular
the second one, be defined for each constituent or for the global medium; (iii) how
the stress condition at a boundary should be formulated since only one global
applied traction can be specified while the mixture involves partial stresses? The
only constraint on which all authors agree is that by summation over the con-
stituents one obtains the thermo-mechanical equations that govern a standard
unique continuum. We shall not delve into this generality as temperature effects are
altogether ignored in the rest of this section. We prefer to examine the advances
made by a few remarkable contributors during the period 1910–1960. In this period
that preceded the full implementation of nonlinear continuum thermomechanics, we
can identify the breakthroughs made by four specialists, civil engineers or physi-
cists, who brought new constructive ideas in the mechanics of porous media, and
more generally to soil mechanics, with many potential applications to the con-
struction of dams, the exploration and exploitation of oil resources, etc. These
remarkable scientists are: Paul Fillunger (1883–1937); Karl von Terzaghi (1883–
1963), Maurice A. Biot (1905–1985), and Gerhard Heinrich (1902–1983), among
whom three (that is, save Biot) were affiliated with the Technical University of
Vienna (Wien, Austria). For a full exposition of their works we refer to De Boer
(2000). Both Fillunger and Terzaghi were outstanding professors but with very
different personalities who entered into a dramatic conflict. But while Terzaghi
(1923), often considered the father of soil mechanics as a science, and much more
internationally known than Fillunger, proposed a rather intuitive law for the vertical
consolidation of porous media in a simple (parabolic) form reminiscent of Fourier’s
and Fick’s laws, Fillunger (1936) published an approach that would perfectly fit in a
modern presentation in the way of the theory of mixtures. Considering a
one-dimensional setting for the ease in presentation and the case of incompressible
fluid and solid components, Fillunger wrote the local equations of conservation of
linear momentum and mass (no exchange of mass between the two constituents
with a rigid solid constituent) as the following system in his notation:
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@v1
@t

þ v1
@v1
@z

¼ 1
q1

�Z � @p1
@z

� �
;

@v2
@t

þ v2
@v2
@z

¼ 1
q2

Z � @p2
@z

� �
;

@q1
@t

þ @

@z
q1v1ð Þ ¼ 0;

@q2
@t

þ @

@z
q2v2ð Þ ¼ 0;

ð13:36Þ

where subscripts 1 and 2 refer to the fluid and solid constituents, respectively, and Z
is an interaction force. If n is the porosity, p ¼ p1 þ p2 the total pressure in terms of
the partial pressures, and c1 and c2 are the specific weights, we have

p1 ¼ np; p2 ¼ 1� nð Þp; ð13:37Þ

and

1
q1

¼ g
nc1

;
1
q2

¼ g
1� nð Þc2

: ð13:38Þ

This allows us to transform the last two of Eqs. (13.36) to the form

@n
@t

þ @

@z
nv1ð Þ ¼ 0; � @n

@t
þ @

@z
1� nð Þv2 ¼ 0: ð13:39Þ

Finally, the system is closed on account of Darcy’s law here simply written as

Z ¼ nv1
k

; ð13:40Þ

where k is the permeability. Of course, it is Darcy’s law that is instrumental in the
final argument. The above given system can be extended to the case of a deformable
solid matrix and to three dimensions of space. It contains the quintessence of the
theory of mixtures applied to porous media, and thus is extremely modern.
Heinrich, also an Austrian engineer and professor of mechanics at TH Wien, was a
direct disciple of Fillunger and formulated with Desoyer (1961) the proper
three-dimensional formulation.

The work of Biot on porous media is quite original and is examined in its own
entry as it provides a true nonclassical modelling.

The modern thermo-mechanics of porous media is expanded in books such as
De Boer (2000), Ehlers (2010), Wilmanski (1998, 2003), Rajagopal and Tao (1995)
and Coussy (1995, 2010). These works apply the now admitted methodology, in
particular with the implementation of the Clausius-Duhem inequality as a constraint
imposed on the constitutive equations. The deduced constitutive equations thus
obtained can be rather cumbersome and sometimes of an unnecessary complexity
and generality. Noteworthy are the original works of Wilmanski (1996, 2005a)
where this author considers an equation governing the porosity and also the notion
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of tortuosity in the continuum framework. As to the work of Shriram and Rajagopal
(2014), it exploits the rational thermodynamics of mixtures and the criterion of
maximal rate of entropy production, and reproduces the Darcy, Brinkman and
Forchheimer laws with appropriate working hypotheses.

The present contribution would not be complete without acknowledging the role
played by porosity in the plastic behaviour of some materials, in particular among
geomaterials and even inmetals with growing cavities. The resulting effect of porosity
is an alteration in the yield criterion, whether of theMises or Coulomb type. In the case
of metals, porosity intervenes in the ductile fracture of these materials. The break-
through work of Gurson (1977) can be mentioned in this context, as also improve-
ments on his proposal by other authors, e.g., Cologanu et al. (1997). Finally, we note a
growing interest in so-called microporomechanics (cf. Dormieux et al. 2006).
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Chapter 14
Q–R: From “Quasi-crystals (Elasticity of)”
to “Rogula R.D.”

Quasi-crystals (Elasticity of)

Introduction

The elasticity of quasi-crystals belongs in a class by itself although it may be
approached from two different sides that we shall rapidly survey. Without entering
the technicalities of condensed matter physics, we note that quasi-crystals experi-
mentally discovered in certain alloys in 1982 by D. Shechtman (Nobel Prize 2011)
and with an initial symmetry theory proposed in 1984 (see Lubensky 1988; Fan
2011, Trebin 2003; for the history and main structural and physical properties)
present a challenge for their modelling as deformable continua. It is acknowledged
that they present some aperiodicity (or quasi-periodicity along certain directions or
in planes) which is their main characteristic symmetry property. This allows for the
acceptance of symmetries (e.g., five-fold orientational symmetry) that were
heretofore forbidden but are now revealed in diffraction experiments for certain
alloys. Furthermore, their strange symmetry behaviour is macroscopically repre-
sented by the co-existence of two elementary excitations (in the sense of Lev D.
Landau), a rather classical one, known as phonons (the typical vibrations of reg-
ular—periodic—crystal lattices) in physical—so-called parallel—space and a new
internal one—in so-called orthogonal space—referred to as phason that corre-
sponds to a relative motion of the constituent density waves of condensed matter
physics (in other words, the internal rearrangements of an environment—cf. Gähler
et al. 2003). Phenomenologically, one displacement is associated with each of these
but whereas one interpretation favours a vision somewhat parallel for the two
displacements with particular structural disorder or structure fluctuations associated
with the phasons (here referring to Bak’s vision), another interpretation sees the
phasons as diffusive with large diffusive time (Lubensky et al.). These two possi-
bilities can be examined from the point of view of the phenomenological
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(continuum) thermomechanics of continua, keeping also in mind the importance of
the role played by defects and some non-linearities in such crystals.

General Field Equations

Only a Cartesian tensor notation (with its usual conventions) that is accessible to all,
engineers and physicists, is used. We are interested in the dynamics of elastic
quasi-crystals so that inertia and evolution in time are taken into account, depending
on the selected model. Two such models are here referred to as the “Bak” (inspired)
model and the “Lubensky” (inspired) model according to the main authors of these
two possibilities (Bak 1985a, b), in the first case; and Lubensky and co-workers
(1985, 1988) in the second case.

A. The “Bak” dynamic model

In this case the equations of linear momentum associated with both phonons and
phasons have a standard form with inertial terms, i.e., in Cartesian tensor notation

@

@xj
rji þ fi ¼ q

@2ui
@t2

ðphononsÞ; ð14:1Þ

@

@xj
Hji þ gi ¼ q

@2wi

@t2
ðphasonsÞ; ð14:2Þ

where rji is the symmetric stress tensor for “phonons”, Hji is the generally non-
symmetric stress tensor for “phasons”, fi and gi are the corresponding (if any)
external forces per unit volume, ui is the standard elastic displacement vector, wi is
the “phason” displacement vector, and q is the matter density. In the absence of
dissipative effects, the two stresses are derived from a volume energy density
W eij;wij
� �

by

rji ¼ @W
@eij

;Hji ¼ @W
@wij

; ð14:3Þ

where

eij ¼ eði;jÞ :¼ 1
2

ui;j þ uj;i
� �

; wij :¼ wi;j: ð14:4Þ

Here wij is not reduced to its symmetric part since the “phason” field gradient is
not subjected to rotational invariance, having in fact two indices that refer to
directions in two different spaces (the internal or orthogonal space and the physical
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space). In this framework the global medium may be viewed as the interaction—via
the strain energy function—between two continua that are essentially elastic. Only
the peculiarity of the second definition in (14.4)—cf. the already noted absence of
symmetrization—and the application of material symmetry conditions will clearly
distinguish the behaviour of one component from the other. The theory can be
deduced from a standard Lagrangian-Hamiltonian variational principle fundamen-
tally based on the expression (T is a time interval, and B stands for a regular
three-dimensional body)

d
Z
T

Z
B

Ld3x dt ¼ 0; L ¼ K �W ; ð14:5Þ

in the absence of external body forces, and

K ¼ 1
2
q _ui _ui þ 1

2
q _wi _wi; ð14:6Þ

where a superimposed dot denotes the partial time derivative.

B. The “Lubensky” dynamic model

In this case Eqs. (14.1) and (14.2) are replaced by the equations

@

@xj
rji þ fi ¼ q

@2ui
@t2

ðphononsÞ; ð14:7Þ

@

@xj
Hji þ gi ¼ j

@wi

@t
ðphasonsÞ; ð14:8Þ

where the stress tensors are still given by constitutive equations. (14.3) with defi-
nitions (14.4), and j is the reciprocal of the kinetic coefficient for the phason field.
The system (14.7), (14.8) couples a wave equation with an evolution-diffusion
equation so that we can expect a dynamic response quite different from that
derivable from the set (14.1), (14.2). Moreover, system (14.7), (14.8) is no longer
derivable from a Lagrangian-Hamiltonian variational formulation. Another type of
approach involving irreversible thermodynamics is necessary to justify this system
on a continuum basis. This can be formally accommodated within the thermody-
namics of continua which involves so-called internal variables of state (see the
corresponding entry), the phason displacement being here a vectorial internal
variable of state (not an internal degree of freedom). The related “internal” variables
are not directly controllable by external forces (thus gi should vanish) and it simply
contributes to the expression of the free energy of the system while its evolution is
governed by the second law of thermodynamics. To formulate this approach one
needs to return to the general equations of a continuum with special caution con-
cerning the entropy flux. A priori no internal variable of state shows up in the basic
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equations. We consider only small deformations and an obvious notation. We have
the following local equations:

• the local balance of linear and angular momenta:

@

@xj
rji þ fi ¼ q

@2ui
@t2

; rij ¼ rij; ð14:9Þ

• the first law of thermodynamics:

@

@t
KþEð Þ � @

@xj
rji _ui � qj
� � ¼ qh; ð14:10Þ

• the second law of thermodynamics:

@

@t
S� @si

@xi
� q

h
h
; ð14:11Þ

where E is the internal energy per unit volume, qj and si stand for the heat flux
vector and entropy flux vector, respectively, and S is the entropy per unit volume.
Finally, h is the thermodynamic temperature ðh[ 0; inf h ¼ 0Þ. Here,

K ¼ 1
2
q _ui _ui ð14:12Þ

only, and

si ¼ ki þ qi
h
: ð14:13Þ

Vector ki is called the extra entropy flux; it vanishes in most continuum theories
save in the presence of diffusive processes (cf. Maugin 1999), which will be the
case in this paragraph.

Introducing the free energy per unit volume W by W ¼ E � hS, and accounting
for (14.9), (14.12) and (14.13), combination of (14.10) and (14.11) yields the
following Clausius-Duhem inequality:

� _W þ S _h
� �

þ rji _eij þ hkið Þ;i�sih;i � 0: ð14:14Þ

Now we introduce the dependence of the free energy on both observable and
internal variables of state by considering the function

W ¼ W eij;wi;wi;j; h
� �

: ð14:15Þ
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Substituting from this into (14.14) we obtain for the latter sufficient conditions
for its satisfaction as

rji ¼ @W
@eij

; S ¼ � @W
@h

; ð14:16Þ

and

Ai _wi � sih;i � 0; ð14:17Þ

with

Ai � � dW
dwi

:¼ � @W
@wi

� @

@xj

@W
@wi;j

� �
; ki ¼ � 1

h
@W
@wi;j

_wj: ð14:18Þ

A frequent working hypothesis in T.I.V is to split the remaining dissipation
inequality (14.17) in two parts related to heat conduction and entropy production
due to the internal variable, yielding thus

sih;i � 0; Ai _wi � 0: ð14:19Þ

The first of these will eventually yield Fourier’s law of heat conduction. As to
the second, a simple evolution-diffusion model is obtained by takingW independent
of wi but quadratic in the gradient of this variable and assuming that Ai is directly
proportional to _wi—and thus guaranteeing the satisfaction of the second of (14.19).
One obtain thus

@Hji

@xj
¼ j

@wi

@t
; Hji � @W

@wi;j
; j� 0: ð14:20Þ

We have thus formally—but within thermodynamical admissibility—obtained
the basic equations of the thermoelasticity of quasicrystals in the “Lubensky”
format of the so-called elasto-hydrodynamics of such materials. This can obviously
be discussed since this is purely phenomenological and the true “quasi-crystal”
nature of the studied material will be made evident only after specifying W and
imposing appropriate symmetry conditions.

Nonlinearity and Plasticity of Quasicrystals

Nonlinearity usually calls for a formulation in finite strains and the introduction of
geometrical nonlinearities together with physical nonlinearities. This is not the case
here where we are satisfied with physical nonlinearities only. This primarily means
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a potential energy that is not quadratic in the relevant (small) deformation measures.
Note that Eq. (14.3) are still formally valid in this case in the absence of irre-
versibilities. Should we know the mechanical response curves, we could in fact
define the associated free energy by the formula proposed by Fan (2011, p. 295)

W eij;wi;j
� � ¼

Zeij

0

rjideij þ
Zwi;j

0

Hjidwij: ð14:21Þ

This does not tell much about the exact constitutive equations, save for the fact
that the existence of a potential requires the absence of dissipation and the
reversibility of the path in generalized stress-strain space.

However, for many engineers (see Chap. 1 in Maugin 1992) nonlinearity is
synonymous with plasticity, i.e., an inherently dissipative behaviour marked by
unloading along response curves that differ from those of the loading phases, and
thus exhibiting a kind of hysteresis (of course, in the absence of unloading, nobody
can say that the body is not “simply” nonlinear elastic, even though of a special
type!). The accompanying thermo-mechanical description of true plasticity is
necessarily much more involved and, in spite of the presence and importance of
structural defects in quasicrystals (cf. Levine et al. 1985), we do not know yet if
there is real need for a mathematical theory of plasticity of quasicrystals expanded
along the lines given in Maugin (1992) for usual crystals. Such proposal is sketched
out by Fan (2011, Sect. 14.2). This formulation proposing in parallel “plastic”
evolution equations for both generalized strains eij and wij � wi;j, and including the
effect of the phason stress Hij on the generalized effective stress used to define the
yield surface, may be surmised by analogy in the “Bak” inspired formulation, but it
is doubtful in the “Lubensky” formulation where the phason displacement wi itself
already satisfies an evolution-diffusion equation.

Conclusion

In the foregoing paragraphs we have tried to elucidate some of the critical points
concerning the continuum thermodynamics of quasicrystals at the little cost of the
implementation of now currently accepted formalisms. However, the main point
remains that of the explicit writing of the coupled generalized “Hooke” constitutive
equations when the relevant energy is simply jointly quadratic in the deformation
measures (14.4), i.e., when Eq. (14.3) result in the linear relations

rji ¼ Cjilkelk þRjilkwk;l; Hji ¼ Kjilkwk;l þRlkjiekl; ð14:22Þ

wherein
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Cjilk ¼ CðjiÞðlkÞ ¼ Clkji; Kjilk ¼ Klkji; Rjilk ¼ RðjiÞlk: ð14:23Þ

Specific expressions of the tensor coefficients for various material symmetries
admitting the existence of quasicrystal symmetries are documented in Fan (2011;
Chaps. 5 and 6) and references therein. Fortunately, only a few nonzero coefficients
are necessary in many of the applications for so-called “one-dimensional”
quasi-crystals (that are nonetheless three-dimensional structures, standard symmetry
still applying in a plane orthogonal to this peculiar direction).

What remains unclear is the physical significance of a quantity such as the
prescribed force of component gi—when it exists—and of the “natural” boundary
condition (involving the normal vector component njHji) for the phason field. The
work of Cimmelli (2002) does not help to answer this query. It is claimed by some
authors (e.g., Ding et al. 1995) that the gi force is related to the first gradient of the
phason eigen-distortion and phonon eigen-distortion, but this is outside continuum
mechanics.

It can also be noted that there exists strong disagreement—accompanied by
harsh comments—between tenants of various physical interpretations of dynamical
properties of quasi-crystals [e.g., opposite schools represented by Coddens (2006)
and Francoual et al. (2003) and further discussions by these authors]. Furthermore,
a third model viewing the phason basic equation as a true wave equation but with a
dissipative term (and thus finally yielding a kind of telegraphy equation) was
proposed by Agiasofitou and Lazar (2014) while phonons remain giving rise to
undamped elastic waves.
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Relaxed Micromorphic Continua

The expression “relaxed micromorphic continua” has been recently introduced by a
group of authors, mainly P. Neff and A. Madeo, in the 2010s (cf. the synthetic view
in Neff et al. 2014). The authors rightly note that a theory of anisotropic continua of
the micromorphic type such as in Eringen-Mindlin media with intrinsically
non-symmetric force stresses, would involve, even in linear form, an incredible
number of material coefficients, rendering the theory practically un-exploitable. It
was proposed to relax the general theory to one with symmetric Cauchy force
stresses and curvature response only due to dislocation energy. The resulting
framework is very close to that of the Claus-Eringen model (cf. Claus and Eringen
1969; Eringen and Claus 1970) but with symmetric force stresses and in the
absence of mixed coupling terms.
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Rivlin R.S

Ronald S. Rivlin (1905–2005), a British-American applied mathematician, was one
of the most creative contributors to the revival of continuum mechanics in the
1940–1970 period. His contributions span all of solid and fluid mechanics with
particular attention paid to finite deformations, nonlinear elasticity (e.g., the
Mooney-Rivlin energy) and non-Newtonian fluid mechanics (Reiner-Rivlin fluids,
Rivlin-Ericksen fluids). He contributed to non-classical continuum mechanics,
together with A.E. Green, with a rather complex theory of multipolar continua.
Rivlin (1996) has produced an interesting autobiography.
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Rogula D

Dominik Rogula (born 1940) is a Polish mechanician who pioneered the theory of
strong nonlocality in continuum mechanics, i.e., accounting for the possibility of
long-rang interaction in contrast to the contiguity hypothesis introduced by Euler
and Cauchy (cf. Rogula 1965). He was instrumental in the popularization of the
concept of this strong nonlocality that necessarily yields dispersion of elastic waves
as it introduces the notion of spatial scale (cf. Rogula 1965, 1976). This he did in
correlation with the concept of structural defect (e.g., dislocations).
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Chapter 15
S–T: From “Solitons (in on-Classical
Continua)” to “Truesdell C.A.”

Solitons (in Non-classical Continua)

Many non-classical continua offer an ideal frame for the exhibition of non-linear
waves akin to so-called solitons. The reason for this is that they often present dis-
persion (existence of length-scales). Combination or balance of this property with
non-linearity favours the existence of this dynamic phenomenon: that is, the propa-
gation of strongly localized nonlinear signals that propagate over long distances
without alteration in their shape and a possible “particle-like” interaction with their
fellows. This is the case in gradient elasticitywith an appropriate dose of non-linearity,
and more generally, in what we called the Boussinesq paradigm—wave systems
endowedwith non-linearity and dispersion of various orders (cf. Christov et al. 2007).
Note that non-linearity is not enough to warrant the existence of such waves. That is, a
non-linear classical continuous medium may favour the existence of wave dynamic
phenomena such as shock waves, but not of solitons for they are missing in their
internal structure the dispersive element. Examples of soliton solutions in
non-classical continua of the solid type are provided in works by Maugin and Miled
(1986), Erbay (1996), Erbay et al. (1992) for micropolar media, Erofeev and Potapov
(1993) in media with couple stresses, Pouget and Maugin (1989) for oriented media
with directors, and Maugin and Cadet (1991) in martensitic alloys. An overview is
given in a book (Maugin 1999) and a historical perspective is drawn inMaugin (2011).

References

Christov C.I., Maugin G.A. and Porubov A.V., (2007). On Boussinesq’s Paradigm
in nonlinear wave propagation, Invited Contribution to Special Issue on J.V.
Boussinesq of C. R. Mécanique (Acad. Sci. Paris), 335: 9/10, 521-535.
Erbay S., (1996). Solitons in micropolar crystals. In: Continuum models and dis-
crete systems, Ed. K. Markov, pp. 404-411, World Scientific, Singapore.
Erbay S., Erbay H.A. and Dost S., (1992). Nonlinear wave interactions in a
micropolar elastic medium, Wave Motion, 16: 163-172.

© Springer Nature Singapore Pte Ltd 2017
G.A. Maugin, Non-Classical Continuum Mechanics,
Advanced Structured Materials 51, DOI 10.1007/978-981-10-2434-4_15

245



Erofeev V.I. and Potapov A.I., (1993). Longitudinal strain waves in nonlinearly
elastic media with couple stresses. Int. J. Non-linear Mech., 28: 483-488.
Maugin G.A., (1999). Nonlinear waves in elastic crystals. Oxford University Press,
UK.
Maugin G.A., (2011), Solitons in elastic solids (1938-2010). Invited “historical
review” in: Mechanics Research Communications, 38: 341-349.
Maugin G.A. and Cadet S., (1991). Existence of solitary waves in martensitic
alloys. Int. J. Engng. Sci., 29: 243-258.
Maugin G.A. and Miled A., (1986). Solitary waves in micropolar elastic crystals.
Int. J.Engng. Sci., 24: 1477-1499.
Pouget J. and Maugin G.A., (1989). Nonlinear dynamics of oriented solids-II.
J. Elasticity, 22: 157-183.

Cross references: Cosserat continua, Couple stress, Gradient elasticity, Lattice
dynamics, Micropolar continua, Micropolar elasticity, Nonlinear waves in gener-
alized continua, Oriented media (with directors).

Solutions of Macromolecules

Introduction

Here we are concerned with a phenomenological and thermodynamical approach to
dilute solutions of polymers with the ultimate view to comprehend such phenomena
as the dynamics of the deformation of macromolecules in the fluid carrier, the
damping of turbulence by polymers, hence the reduction of friction in turbulent
regimes, and the stress-induced diffusion of macromolecules. Known approaches to
the mechanical properties of macromolecule solutions divide in two large classes,
the first one involving “kinetic-theory” arguments, hence statistical features, and the
second one being purely phenomenological and having, in principle, no recourse to
microscopic features but perhaps for some intuitive notions (see below). The first of
these is illustrated by the magisterial books of Bird et al. (1977a, b) while the
second one could be illustrated by the works of Hand (1962), Lhuillier and
Ouibrahim (1980), Maugin and Drouot (1983, 1991) and others—also Maugin
(1999, Chap. 6). Obviously, all authors—whatever their approach—are aware of
the presence of some microstructure in the solution. Macromolecules are, in gen-
eral, to be modelled by deformable “particles” of which the instantaneous shape and
orientation constitute a microstructure in the sense granted, say, by Eringen in
so-called micromorphic continua (see that Entry). Many chemical physicists are
interested in the flow-induced changes in the microstructure, that is, the influence of
a prescribed flow of the surrounding carrier fluid (more than often a usual
Newtonian fluid) on the shape and orientation of this microstructure. In this vision,
the macromolecule is considered as a test particle since it is influenced by, but does
not influence itself, the macroscopic flow. For very dilute solutions, where the mean
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distance between deformable particles is much larger than the spatial scale of
variation in the fluid flow, it is easily conceived that this one-way influence can be
studied for one isolated particle of a certain type (spheroid, ellipsoid, rod-like
particle). This provides a splendid problem to hydrodynamicists. For not so dilute
solutions the situation becomes much more complex, neighbouring particles
interacting possibly with one another and yielding eventually some kind of ordering
akin to a nematic phase in the case of elongated particles (cf. liquid-crystal—
Ericksen-Leslie theory). Anyhow, it is now the equation which governs the evo-
lution in the deformation of the particle which then is of interest and the carrier’s
flow behaviour or the behaviour of the overall mixture must intervene in this
equation. On the other hand, one may be interested in the overall flow changes due
to the presence of macromolecules (their deformability in particular). The two
effects may be mixed. Then the main question in a phenomenological theory will be
what kind of descriptor should one introduce to describe the evolution of the
microstructure?

Microstructure and Conformation

Being entangled in an intricate manner, long polymeric chains in their equilibrium
configuration K0 may be assumed to roughly have the shape of a spherical ball
(so-called spherically coiled conformation, of radius r0 of the order of 20 Å) under
the influence of Brownian agitation. These “spheres” will slightly deform but will
keep an essentially three-dimensional sphere (spheroid, ellipsoid) in the presence of
a weakly elongational flow of the surrounding fluid in a configuration Kt, while they
will more or less take a one-dimensional (rod-like) structure (with a length of the
order of 2500 Å) in strongly elongational flows. Let r be, for instance, the directed
distance between extreme monomers in a molecule chain in Kt. In the first case, a
second-order moment (lowest harmonic departure from sphericity), hence a sym-
metric second-order tensor, must be introduced to describe the three-dimensional
deformability of the molecules. Such a tensor, an inertia per unit mass, may be
defined as

R :¼ r� rh i ¼ RT : ð15:1Þ

But at K0, r0h i ¼ 0, and R0 ¼ r201=3, so that a good relative measure of the
deformation of molecules is given by

C ¼ R� R0 or K ¼ 3
R
r20

� 1
� �

: ð15:2Þ

This is called the conformation. In the continuum theory that we approach here
this will be considered as an internal variable of state, so that it does not appear a
priori in the basic conservation laws of the global continuum and it will simply
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contribute to the free energy and be governed by the second law of thermodynamics
(See Entry: Internal variable of state). Let c the ratio of the mass density qP of
polymer molecules to the solvent density qS, so that the concentration in macro-
molecules is given by

c ¼ qP=q; qP ¼ q� qS: ð15:3Þ

The local field and thermodynamic equations which govern the macroscopic
fluid considered as a mixture with prevalent solvent mass at the current point x at
time t in Kt read:

_qþ qr:v ¼ 0; ð15:4Þ

q _cþr:J ¼ 0; ð15:5Þ

q _vi ¼ tji;j þ qfi; ð15:6Þ

tji ¼ tij; ð15:7Þ

q _e ¼ tjidij �r:qþ qh; ð15:8Þ

together with the Clausius-Duhem inequality

�q _wþ g _h
� �

þ tjiDij þr: hkð Þ � S:rh� 0; ð15:9Þ

where J is a diffusion flux, t is Cauchy’s symmetric stress, and k is an extra-entropy
flux (see that entry) such that

k ¼ S� h�1q ð15:10Þ

if S is the entropy (in) flux. The volumetric behaviour of the macroscopic fluid is
assumed to be the same as that of the solvent, and is therefore considered incom-
pressible, so that

Dii ¼ r:v ¼ 0: ð15:11Þ

Constitutive Relations

The two main equations of the theory will be the constitutive equation for the stress
that will slightly deviate from that of a Newtonian incompressible fluid, i.e.,
formally
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t ¼ 2gv cð ÞDþ tP :; :;Cð Þ; ð15:12Þ

and the evolution equation for the internal variable a priori written as

DC ¼ A h;D; :;Cð Þ; ð15:13Þ

where D is a kind of time derivative to be specified. In particular, we impose that
both Eqs. (15.12) and (15.13) be objective, i.e., form invariant under rotation of the
actual frame. It is shown that the contributions tP and A are not independent. An
appropriate choice of the D derivative that is objective is provided by a Jaumann
(co-rotational) derivative such that

DJCð Þij¼ _Cij � XikCkj � XjkCki; Xij ¼ 1
2

vi;j � vj;i
� �

: ð15:14Þ

so that (15.13) will be replaced by

Ĉ :¼ DJC ¼ ~A h;D; :;Cð Þ: ð15:15Þ

The free energy has the following functional dependence:

w ¼ ~w h; c;Cð Þ; ð15:16Þ

so that one can define

~g ¼ � @~w
@h

; l ¼ @~w
@c

; a ¼ �q
@~w
@C

¼ aT : ð15:17Þ

On assuming that

g ¼ ~g;~t ¼ tþ p1; k ¼ � l=hð ÞJ; ð15:17Þ

where ~t is the stress tensor deprived of its mechanical pressure contribution, the
Clausius-Duhem inequality (15.9) reduces to the following residual dissipation
inequality:

U ¼ trace ~tDþ a~A
� �� J:rlþ S:rhð Þ� 0: ð15:18Þ

The latter governs the phenomena of viscosity, relaxation of C, diffusion of
polymer macromolecules, and heat conduction. The last of (15.17) has been chosen
so as to eliminate a divergence term in the inequality.

Then the theory is completed in the following way. First a more specific
expression must be given to ~w. Because of rotational invariance the latter must
satisfy the constraint
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ai½jCk�i ¼ 0: ð15:19Þ

This requires that ~w depends on C only through its three elementary invariants
Ca, i.e.,

w ¼ �w h; c;Cað Þ; a ¼ I; II; III: ð15:20Þ

Next, in the inequality (15.18) the fluxes are given by the set ~t; ~A; J; S
� 	

while
the conjugated forces are given by the set D; a;�rl;�rhf g. On noting that a is
even while D is odd under time reversal, the a priori admissible linear isotropic
dissipative contributions are given by

tD ¼ 2gvD; AD ¼ fðtraÞ1þ ja; ð15:21Þ

J ¼ � DrlþArhð Þ; S ¼ � KrhþArlð Þ; ð15:22Þ

where the various scalar coefficients have to satisfy a set of inequalities (cf. Maugin
and Drouot 1983, p. 712). But there is more than that in the expression (15.18) as
astutely remarked by Lhuillier and Ouibrahim (1980). There is the possibility of
existence of so-called gyroscopic contributions—our coinage—tG and AG such that
we have the following orthogonality condition (in the appropriate
twelve-dimensional space) between generalized “forces” and “velocities”—hence
the qualification of “gyroscopic”:

UG :¼ trace tGDþ aAG
� � ¼ 0: ð15:23Þ

with

tG ¼ �t D; a;C; h; cð Þ; AG ¼ �A D; a;C; h; cð Þ; ð15:24Þ

where the last three arguments—which in fact define the laws of state (15.16)–
(15.17)—here are parameters. Simple examples of relations (15.24) are given by

tG ¼ ka� b Caþ aCð Þ; AG ¼ �kDþ b CDþDCð Þ; ð15:25Þ

where k and b are scalars which depend at most on h, c, and the nonvanishing
elementary invariants of C. Their sign is not constrained by any thermodynamic
inequality, but they are the same coefficients in both contributions as otherwise they
would not be consistent with the orthogonality condition (15.23). On account of
(15.21) and assuming some kind of Hookean elasticity H for the macromolecules in
terms of C, we are led to Eqs. (15.12)–(15.13) in the following form:
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t ¼ �p1þ 2gv þ 2bHC; ð15:26Þ

DC :¼ DJC� b CDþDCð Þ ¼ � 1
sC

C� kD; ð15:27Þ

where sC is a relaxation time and DC is an admissible objective derivative of C. It is
a kind of Gordon-Showalter (1972) derivative where b plays the role of a slip
coefficient. As to coefficient k it can ultimately be related to the osmotic pressure of
the solution.

This case illustrates here the power of the theory of internal variables of state in
constructing a useful physically justified model of complex continuum akin to a
micromorphic one. Note that in the case of strong elongational flows, the full tensor
C need not be considered. One can be satisfied with considering only the direction k
associated with the flow direction and to replace the dependency of the theory on
R defined in (15.1) by that on the quantity Rkk with

Rk ¼ k: R:kð Þ ¼ r:kð Þ2
D E

: ð15:28Þ

The resulting theory will be one with an internal variable of state represented by
a vector field as described in Maugin and Drouot (1983, Sect. 5), a theory very
close to one of anisotropic fluids.

Finally, we note that Drouot and Berrajaa (1993, 1996) have introduced some
weak nonlocality in the above sketched out theory by transforming the evolution
equation for the conformation into an evolution-diffusion equation accounting for
the spatial gradient of the conformation. This allows one to study boundary-layer
effects at walls.
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Superfluids

Superfluidity is a surprising state of matter that materializes in the non-viscous
flow of liquid Helium (Helium II or 4He) with zero entropy and no dissipation
through extremely narrow channels, at very low temperature, while viscosity is
exhibited above a certain phase-transition temperature (the so-called lambda point
at 2.2 K). The phenomenon was discovered simultaneously by Pyotr Kapitsa
(1894–1984, NP 1978) and John F. Allen in 1937. Soon afterwards theoretical
explanations were proposed by several authors, among them Fritz London and
Laszlo Tisza in 1938 and 1940. Although a quantum mechanical support is to be
found in the theory of Bose-Einstein condensation—clearly, outside the scope of
the present work—the idea emerged that a sufficiently good description would be
based on a hydrodynamical model considering a mixture of two fluids, a fluid
called normal component, and a fluid called superfluid component. This was a
masterpiece achievement by the famous Russian physicist Lev D. Landau (in
1941) who received the Nobel Prize in 1962 for this exploit (but he contributed
many other works to theoretical physics). In truth, Landau’s theory is a phe-
nomenological and semi-microscopic theory. Its great success is that it forecasts
the propagation of two types of waves. One of these corresponds to usual sound
waves that are associated with fluctuations in the density, and another one, called
second sound, that is associated with fluctuations in entropy or temperature. The
existence of the latter was confirmed in experiments by Vasilii Peskhov in
1944–47. The story is well told in the expert review by Donnelly (2009).
Following this author, indexing with s and n quantities that refer to the superfluid
and normal fluid components, one can deduce from Tisza’s two-fluid model,
linearized equations for the two-fluid motion in the form:

qn
@vn
@t

¼ � qn
q
rpþ gr2vn þ qsSrh; ð15:29Þ

qs
@vs
@t

¼ � qs
q
rp� qsSrh; ð15:30Þ
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where q ¼ qn þ qs, p is the pressure, g is the viscosity, S is entropy and h is
temperature. Neglecting the viscous term in (15.29), some manipulations lead to
two wave equations in the following form:

@2q
@t2

¼ r2p;
@2S
@t2

¼ qs
qn

S2r2h; ð15:31Þ

from which there follows the two velocities

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p=@qð ÞS

q
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

qnCp
hS2

r
; ð15:32Þ

where Cp is the specific heat. The second of these—that strongly depends on
temperature with c2 going to zero as h goes to zero—is the second-sound velocity
given by Landau. Such heat pulses travel at a velocity of the order of 20 m/s in
Helium II at about 1.8 K. Main physical properties of, and basic models for,
superfluid helium are given in books by pioneers in the field (Kalatnikov 1965;
Wilks 1967; Putterman 1974), and in more recent syntheses (Annett 2005; Guénault
2003; Tilley and Tilley 1990).

Two-Fluid Model and Internal Momentum

It is clear that neither an Eulerian fluid model nor a Navier-Stokes viscous one is
appropriate for the description of the strange behaviour of superfluids at low
temperature, whence the idea of considering such fluids as if they were mixtures of
two fluids (London, Tisza, Landau). The normal one has finite, although small,
viscosity and carries all the entropy, while the superfluid one has no viscosity or
entropy and can flow without dissipation. The corresponding velocity vs satisfies
the irrotationality condition r� vs ¼ 0. The superfluid can be seen as a back-
ground fluid that is at absolute zero. There are two kinds of quasiparticles, phonons
and “rotons” (according to Landau). The “rotons” are connected to the vortex
density—hence their name—but Landau’s equations are strictly valid only in
helium flow without vortices (Landau’s equations were improved in 1961 by
Bekarevich and Kalatnikov to account for vortex motion as can occur in superfluid
in rotation according to R.P. Feynman in 1951). Landau’s equation for vs reads

@vs
@t

þr lþ 1
2
v2s

� �
¼ 0; ð15:33Þ

and obviously guarantees that the condition r� vs ¼ 0 is kept in time in ideal
situations if true initially. As a matter of fact, the non-dissipative
Landau-Kalatnikov equations in the case of irrotationality of the superfluid com-
ponents are given by Eq. (15.33) and the following equations:
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@q
@t

þr: qnvn þ qsvsð Þ ¼ 0; ð15:34Þ

@

@t
qnvn þ qsvsð Þþr: p1þ qnvn � vn þ qsvs � vsð Þ ¼ 0; ð15:35Þ

@S
@t

þr: Svnð Þ ¼ 0: ð15:36Þ

It is possible to transform this set of Eqs. (15.33)–(15.36) into a new set where
(15.35) no longer appears explicitly, and which looks much more symmetric; that is
(Putterman 1974),

@q
@t

þr: qvs þ SAð Þ ¼ 0 ð15:36Þ

@vs
@t

þr lþ 1
2
v2s

� �
¼ 0; ð15:37Þ

@A
@t

þr hþ vn:Að Þ ¼ vn � r� Að Þ; ð15:38Þ

@S
@t

þr: Svnð Þ ¼ 0; ð15:39Þ

where vector A is defined by

A ¼ qn
S

vn � vsð Þ: ð15:40Þ

The latter is related to an internal momentum P by

A ¼ P=S; P � qn vn � vsð Þ: ð15:41Þ

Lhuillier et al. (1975b) have proposed a variational formulation for the above
recalled set taking account of vortex dynamics and a superfluid component that is
no longer irrotational. In a very thoughtful paper, the same authors (Lhuillier et al.
1975a) have indeed proposed a model of superfluid helium with an internal
momentum P in presence of vortices and dissipative processes governed by the
classical theory of irreversible processes. Their main arguments in an astute con-
struct are to start from elementary excitations of Landau and to make an efficient
use of Galilean transformations. In their model the fluid considered is characterized
by a unique velocity field (say, vs) so that the total linear momentum reads
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J ¼ qvs þP: ð15:42Þ

An evolution equation (in fact a balance equation) for P is needed to close the
system of equations. In this scheme entropy is transported at velocity vs þ c. The
Landau model is recovered with the identification mentioned in the second part of
(15.41) and

c ¼ vn � vs: ð15:44Þ

Accordingly, Landau’s model can be considered as a model with internal
momentum but with a law of irrotationality for vs replacing the conservation law for
the internal momentum. The linearized (about q0 and S0) acoustic approximation of
the Lhuillier et al. equations reads (cf. Lhuillier et al. 1975a, p. 783)

@q
@t

þr: q0vs þPð Þ ¼ 0; ð15:45Þ

@vs
@t

þrl ¼ 0; ð15:46Þ

@P
@t

þ S0rh ¼ 0; ð15:47Þ

@S
@t

þ S0r: vs þ cð Þ ¼ 0; ð15:48Þ

to be compared to the system (15.29)–(15.30). This indeed yields an acoustic mode
with vibrations of pressure and a second mode (second sound) with vibrations of
temperature and internal momentum. One advantage of the Lhuillier et al. model is
that it explains the presence of friction forces that are experimentally observed.

An approach to superfluidity via extended thermodynamics was proposed by
Greco and Müller (1984) but, in our opinion, is not convincing. As a matter of fact,
their approach is one, among others, that allows for the existence of thermal or heat
waves (cf. Straughan 2011) at finite speed.
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Surface Tension

The first clear appearance of the notion of surface tension undoubtedly is in the
original theory of capillarity as developed by Thomas Young (1773–1829) and
Pierre Simon de Laplace (1749–1827). It is Laplace who proposed the celebrated
equation of capillarity in the form.

p2 � p1 ¼ c
1
R1

þ 1
R2

� �
; ð15:49Þ

where p denotes the pressure, c is the coefficient of surface tension, and R1 and R2

are the principal curvature radii of the interface at the considered point. Since the
pressure, like a stress, is energy per unit volume, surface tension is energy per unit
area. The original derivation of Eq. (15.49) was in the spirit of Newton’s attraction
theory and involved an inverse-square law of interaction between “particles”. It is
only in the twentieth century that continuum theories were proposed by introducing
the idea of material surfaces endowed with an elastic surface energy density (cf.
Gurtin and Murdoch 1975). This formed the basis for a modern theory of capil-
larity. By invoking smoothly but rapidly varying densities, hence a gradient of
density, this theory is very close to the theory of Korteweg fluids, density-gradient
fluids, and gradient elasticity (see these Entries). The notion of surface energy can
also be considered in an approach to structures made of a bulk material covered
with a strictly adhering very thin elastic layer, called a “lid” in several works. This,
in turn, provides interesting properties to propagating surface acoustic waves (e.g.,
existence of a dispersive monomode of the shear-horizontal type)—see, e.g.,
Murdoch (1976), Maugin and Hadouaj (1991)—and alterations to Rayleigh surface
waves [cf. Vlasie-Beloncle and Rousseau (2006)]. The continuum model originally
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expanded by Casal (1963) finds its best applications in the study of fluid interfaces
and contact lines [cf. Gatignol and Seppecher 1986) and Seppecher (1987)].
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Toupin R.A

Richard A. Toupin (born 1926) is an American physicist-applied mathematician—
mechanician who spent most of his career at IBM. Although the author of seminal
works dealing with fundamental problems of continuum mechanics, he is mostly
worldwide known for his epoch-making contributions to various aspects of gener-
alized continuum mechanics including nonlinear elastic electrically polarized
materials (Toupin 1956), gradient theory and couple-stress theory (Toupin 1962,
1964), and obviously his monumental contribution—together with C.A. Truesdell—
to the Encyclopaedia of Physics (Handbuch der Physik 1960).
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Cross references: Cosserat continua, Couple stress, Couple stress (as medium
with constrained rotation), Electromagnetic continua, Generalized continuum
mechanics, Gradient elasticity, Higher-order gradient theories, Hyperstress (notion
of).

Truesdell C.A

Clifford A. Truesdell (1919–2000) was an American applied mathematician who,
through his scientific and historic studies (e.g., Truesdell 1952), is considered to be
the most articulated contributor to the formulation of modern continuum mechanics.
He introduced a rigorous and well documented presentation, the spirit of which is
fully expanded in his phenomenal contributions to the Handbuch der Physik
together with Toupin (1960) and Noll (1965), and his unconditional support to
rational thermo-dynamics (due mostly to B.D. Coleman and W. Noll; cf. Truesdell
1969). In the framework of nonclassical continuum mechanics, he is thought to be
responsible for unearthing ideas advanced by P. Duhem and the Cosserat brothers
in the period 1890–1910. He thus re-introduced the fruitful idea of “directors” in the
study of slender structural elements together with Ericsken (1958). A biography of
Truesdell was produced by Ignatieff and Willig (1999).
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Conclusion

The present book is an original one, in both subject matter and form. The subject
matter is the large variety of non-classical theories of continua that burgeoned in the
second half of the twentieth century and led to some understandable confusion and
difficulty in discriminating among the wealth of proposed theories. Thoughtful as it
is, the book ambitions to bring some order, comparison and clarification among
these numerous theories and a quantity of sometimes fuzzy concepts. Its practical
aim is to provide a handy compendium and help those confused readers and also
scientists new to the field to apprehend it in the best, albeit concise, conditions. For
convenience and to favour easy consultation, a format of “dictionary” (alphabetic
ordering) has been adopted with about a hundred entries after two more classical
chapters of reminding prerequisites. These entries are of various sizes and in depth
description extending from a few lines to several pages. For the most largely
expanded ones, historical background is given as well as basic formulation, further
progress, contemporary references, and enlightening cross references. Typical
entries cover anisotropic fluids, Cosserat media, micromorphic elasticity, couple
stress, gradient theories, directors’ theories, electromagnetic continua of various
types, internal degrees of freedom, internal variables of state, interstitial working,
Korteweg fluids, liquid crystals, materials with voids, metamaterials, superfluids,
quasi-crystals, and general notions such as contiguity, non-locality, fractality,
homogenization, and a wealth of other relevant subjects. In producing this unique
tool for the large scientific community of students and professionals in mechanics,
applied mathematics, and materials science, the author has exploited his long-time
experience as an often called referee, reviewer of papers and books, editor in
specialized journals and proceedings, and as a direct witness of original develop-
ments, and himself an enthusiastic and never tired contributor to the field.
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