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Foreword

This modernized English translation grew out of my old simultaneous interest in
the mathematics itself and in the metaphysical thoughts governing its continued
development. I owe to the books of Robert Hermann, Peter Olver, Thomas Hawkins,
and Olle Stormark my introduction to Lie’s original vast field.

Up to the end of the 18th Century, the universal language of Science was Latin,
until its centre of gravity shifted to German during the 19th Century, while nowa-
days — needless to say — English is widespread. Being intuitively convinced that
Lie’s original works contain much more than what has been modernized up to now,
three years ago I started to learn German from scratch just in order to read Lie, with
two main goals in mind:

� to complete and modernize the Lie-Amaldi classification of finite-
dimensional local Lie group holomorphic actions on spaces of complex dimensions
1, 2 and 3 for various applications in complex and Cauchy-Riemann geometry;

� to better understand the roots of Élie Cartan’s achievements.

Then it gradually appeared to me that Lie’s mathematical thought is universal
and transhistorical, hence it deserves per se to be translated. The present adapted
English translation follows an earlier monograph1 written in French and specially
devoted to Engel and Lie’s treatment of the so-called Riemann-Helmholtz problem
in Volume III of the Theorie der Transformationsgruppen.

A few observations are in order concerning the chosen format. For several rea-
sons, it was essentially impossible to directly translate the first few chapters in which
Lie’s intention was to set up the beginnings of the theory in the highest possible gen-
erality, especially in order to eliminate the axiom of inverse, an aspect never dealt
with in modern treatises. As a result, I decided in the first four chapters to reorganize
the material and to reprove the relevant statements, nevertheless retaining all of the
embraced mathematical content. But starting with Chap. 5, Engel and Lie’s expo-
sition is so smooth, so rigorous, so understandable, so systematic, so astonishingly
well organized — so beautiful for thought — that a pure translation is essential.

1 Merker, J.: Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz, Hermann Éditeur
des Sciences et des Arts, Paris, xxiii+325 pp, 2010.

vii



viii Foreword

Lastly, the author is grateful to Gautam Bharali, Philip Boalch, Egmont Porten,
and Masoud Sabzevari for a few fine suggestions concerning the language and for
misprint chasing, but is of course solely responsible for the lack of idiomatic En-
glish.

Paris, École Normale Supérieure, Joël Merker
16 March 2010
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Part I
Modern Presentation



Chapter 1
Three Principles of Thought
Governing the Theory of Lie

Let x = (x1, . . . ,xn) be coordinates on an n-dimensional real or complex euclidean
space C

n or R
n, considered as a source domain. The archetypal objects of Lie’s

Theory of Continuous Transformation Groups are point transformation equations:

x′
i = fi(x1, . . . xn; a1, . . . ,ar) (i=1 ···n),

parametrized by a finite number r of real or complex parameters (a1, . . . ,ar), namely
each map x′ = f (x; a) =: fa(x) is assumed to constitute a diffeomorphism from
some domain1 (Translator’s note: By a domain, we will always mean a connected,
nonempty open set.) in the source space into some domain in a target space of the
same dimension equipped with coordinates (x′

1, . . . ,x
′
n). Thus, the functional deter-

minant:

det Jac( f ) =

∣
∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x1

· · · · · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · · · · ∂ fn
∂xn

∣
∣
∣
∣
∣
∣
∣
∣

= ∑
σ∈Permn

sign(σ)
∂ f1

∂xσ(1)

∂ f2

∂xσ(2)
· · · ∂ fn

∂xσ(n)

does not vanish at any point of the source domain.

§ 15. ([1], pp. 25–26) [The concepts of transformation x′ = f (x) and of trans-
formation equations x′ = f (x; a) are of a purely analytic nature.] However, these
concepts are given a graphical interpretation [ANSCHAULICH AUFFASUNG]
when the concept of an n-times extended space [RAUM] is introduced.

If we interpret x1, . . . ,xn as the coordinates of the points [PUNKTCOORDI-
NATEN] of such a space, then a transformation x′

i = fi(x1, . . . ,xn) appears as a
point transformation [PUNKTTRANSFORMATION]; consequently, this transfor-
mation can be interpreted as an operation such that every point xi is transferred
at the same time into the new position x′

i. One expresses this as follows: the

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_1
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4 1 Three Principles of Thought Governing the Theory of Lie

transformation in question is an operation via which the points of the space
x1, . . . ,xn are permuted with each other.

Before introducing the continuous group axioms in Chap. 3 below, the very first
question to be settled is: how many different transformations x′

i = fi(x; a) corre-
spond to the ∞r different systems of values (a1, . . . ,ar)? Some parameters might
indeed be superfluous, hence they should be removed from the outset, as will be
achieved in Chap. 2. For this purpose, it is crucial to formulate explicitly, once and
for all, three principles of thought concerning the admission of hypotheses that hold
throughout the theory of continuous groups developed by Lie.

General Assumption of Analyticity

Curves, surfaces, manifolds, groups, subgroups, coefficients of infinitesimal trans-
formations, etc., all mathematical objects of the theory will be assumed to be ana-
lytic, i.e. their representing functions will be assumed to be locally expandable in
convergent, univalent power series defined in a certain domain of an appropriate Rm.

Principle of Free Generic Relocalization

Consider a local mathematical object which is represented by functions that are an-
alytic in some domain U1, and suppose that a certain “generic” nice behavior holds
on U1\D1 outside a certain proper closed analytic subset D1 ⊂ U1; for instance:
the invertibility of a square matrix composed of analytic functions holds outside the
zero-locus of its determinant. Then relocalize the considerations in some subdomain
U2 ⊂ U1\D1.

D1

D2 U3

U2

U3

U1 U2

Fig. 1.1 Relocalizing finitely many times in neighborhoods of generic points

Then, in U2, further reasoning may necessitate avoiding another proper closed an-
alytic subset D2, hence to relocalize the considerations in some subdomain U3 ⊂
U2\D2, and so on. Most proofs of the Theorie der Transformationsgruppen, and
especially the classification theorems, allow such relocalizations a great number of
times, often without mention, such an act of thought being considered as implicitly



1 Three Principles of Thought Governing the Theory of Lie 5

clear, and free relocalization being justified by the necessity of initially studying
generic objects.

Giving no Name to Domains or Neighborhoods

Without providing a systematic notation, Lie and Engel commonly wrote the neigh-
borhood [der UMGEBUNG] (of a point), similarly as one speaks of the neighbor-
hood of a house, or of the surroundings of a town, whereas contemporary topology
conceptualizes a (say, sufficiently small) given neighborhood amongst an infinity.
Contrary to what the formalistic, twentieth-century mythology sometimes says, Lie
and Engel did emphasize the local nature of the concept of transformation group
in terms of narrowing down neighborhoods; we shall illustrate this especially when
presenting Lie’s attempt to economize the axiom of inverse. Certainly, it is true that
most of Lie’s results are stated without specifying domains of existence, but in fact,
it is quite plausible that Lie soon realized that giving no name to neighborhoods,
and avoiding superfluous denotation, is efficient and expeditious in order to perform
far-reaching classification theorems.

Therefore, adopting the economical style of thought in Engel-Lie’s treatise,
our “modernization-translation” of the theory will, while nevertheless providing
frequent reminders, presuppose that:

• mathematical objects are analytic;

• relocalization is freely allowed;

• open sets are often small, usually unnamed, and always connected.

Introduction ([1], pp. 1–8)

—————–

If the variables x′
1, . . . ,x

′
n are determined as functions of x1, . . . ,xn by n equa-

tions, solvable with respect to x1, . . . ,xn:

x′
i = fi(x1, . . . ,xn) (i=1 ···n),

then one says that these equations represent a transformation [TRANSFORMA-
TION] between the variables x and x′. In the sequel, we will have to deal with
such transformations; unless the contrary is expressly mentioned, we will re-
strict ourselves to the case where the fi are analytic [ANALYTISCH] functions
of their arguments. However, because a not negligible portion of our results are
independent of this assumption, we will occasionally indicate how various de-
velopments take shape by taking into consideration functions of this sort.

When the functions fi(x1, . . . ,xn) are analytic and are defined inside a com-
mon region [BEREICH], then according to the known studies of CAUCHY,
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WEIERSTRASS, BRIOT and BOUQUET, one can always delimit, in the manifold
of all real and complex systems of values x1, . . . ,xn, a region (x) such that all
functions fi are univalent in the complete extension [AUSDEHNUNG] of this re-
gion, and so that, in the neighborhood [UMGEBUNG] of every system of values
x0

1, . . . ,x
0
n belonging to the region (x), the functions behave regularly [REGULÄR

VERHALTEN], that is to say, they can be expanded in ordinary power series with
respect to x1 − x0

1, . . . , xn − x0
n with only whole positive powers.

For the solvability of the equations x′
i = fi(x), a unique condition is necessary

and sufficient, namely the condition that the functional determinant:

∑± ∂ f1

∂x1
· · · ∂ fn

∂xn

should not vanish identically. If this condition is satisfied, then the region (x)
defined above can specially be defined so that the functional determinant does
not take the value zero for any system of values in (x). Under this assumption,
if one lets the x gradually take all systems of values in the region (x), then the
equations x′

i = fi(x) determine, in the domain [GEBIETE] of the x′, a region
of such a nature that x1, . . . ,xn, in the neighborhood of every system of values
x′

1
0, . . . ,x′

n
0 in this new region, behave regularly as functions of x′

1, . . . ,x
′
n, and

hence can be expanded as ordinary power series of x′
1 − x′

1
0, . . . , x′

n − x′
n

0. It is
well known that from this, it does not follow that the xi are univalent functions
of x′

1, . . . ,x
′
n in the complete extension of the new region; but when necessary,

it is possible to narrow down the region (x) defined above so that two different
systems of values x1, . . . ,xn of the region (x) always produce two, also different,
systems of values x′

1 = f1(x), . . . , x′
n = fn(x).

Thus, the equations x′
i = fi(x) establish a univalent invertible relationship

[BEZIEHUNG] between regions in the domain of the x and regions in the domain
of the x′; to every system of values in one region, they associate one and only
one system of values in the other region, and conversely.

If the equations x′
i = fi(x) are solved with respect to the x, then in turn, the

resulting equations:

xk = Fk(x′
1, . . . ,x

′
n) (k=1 ···n)

again represent a transformation. The relationship between this transformation
and the initial one is evidently a reciprocal relationship; accordingly, one says:
the two transformations are inverse to one another. From this definition, it visi-
bly follows:

If one first executes the transformation:

x′
i = fi(x1, . . . ,xn) (i=1 ···n)

and then the transformation inverse to it:
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x′′
i = Fi(x′

1, . . . ,x
′
n) (i=1 ···n),

then one obtains the identity transformation:

x′′
i = xi (i=1 ···n).

Here lies the real definition of the concept [BEGRIFF] of two transformations
inverse to each other.

In general, if one executes two arbitrary transformations:

x′
i = fi(x1, . . . ,xn), x′′

i = gi(x′
1, . . . ,x

′
n) (i=1 ···n)

one after the other, then one obtains a new transformation, namely the following
one:

x′′
i = gi

(

f1(x), . . . , fn(x)
)

(i=1 ···n).

In general, this new transformation naturally changes when one changes the
order [REIHENFOLGE] of the two transformations; however, it can also happen
that the order of the two transformations is indifferent. This case occurs when
one has identically:

gi
(

f1(x), . . . , fn(x)
) ≡ fi

(

g1(x), . . . ,gn(x)
)

(i=1 ···n) ;

we then say, as in the process of the Theory of Substitutions [VORGANG DER

SUBSTITUTIONENTHEORIE]: the two transformations:

x′
i = fi(x1, . . . ,xn) (i=1 ···n)

and:
x′

i = gi(x1, . . . ,xn) (i=1 ···n)

are interchangeable [VERTAUSCHBAR] with one another. —

A finite or infinite family [SCHAAR] of transformations between the x and the
x′ is called a group of transformations or a transformation group when any two
transformations of the family executed one after the other give a transformation
which again belongs to the family.1

1

A transformation group is called discontinuous when it consists of a discrete
number of transformations, and this number can be finite or infinite. Two trans-
formations of such a group are finitely different from each other. The discon-
tinuous groups belong to the domain of the Theory of Substitutions, so in the
sequel, they will remain out of consideration.

1 Sophus LIE, Gesellschaft der Wissenschaften zu Christiania 1871, p. 243. KLEIN, Vergle-
ichende Betrachtungen über neuere geometrische Forschungen, Erlangen 1872. LIE, Göttinger
Nachrichten 1873, 3. Decemb.
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The discontinuous groups stand in opposition to the continuous transforma-
tion groups, which always contain infinitely many transformations. A transfor-
mation group is called continuous when it is possible, for every transformation
belonging to the group, to indicate certain other transformations which differ
only infinitely little from the transformation in question, and when by contrast,
it is not possible to reduce the complete totality [INBEGRIFF] of transformations
contained in the group to a single discrete family.

Now, amongst the continuous transformation groups, we again consider
two separate categories [KATEGORIEN] which, in the nomenclature [BENEN-
NUNG], are distinguished as finite continuous groups and as infinite continuous
groups. To begin with, we can only give provisional definitions of the two cate-
gories, and these definitions will be apprehended precisely later.

A finite continuous transformation group will be represented by one system
of n equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n),

where the fi denote analytic functions of the variables x1, . . . ,xn and of the arbi-
trary parameters a1, . . . ,ar. Since we have to deal with a group, two transforma-
tions:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar)

x′′
i = fi(x′

1, . . . ,x
′
n, a1, . . . ,ar),

when executed one after the other, must produce a transformation which belongs
to the group, hence which has the form:

x′′
i = fi

(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

= fi(x1, . . . ,xn, c1, . . . ,cr).

Here, the ck are naturally independent of the x and so, are functions of only the
a and the b.

Example. A known group of this sort is the following:

x′ =
x+a1

a2 x+a3
,

which contains the three parameters a1, a2, a3. If one executes the two transfor-
mations:

x′ =
x+a1

a2 x+a3
, x′′ =

x′ +b1

b2 x′ +b3

one after the other, then one obtains:

x′′ =
x+ c1

c2 x+ c3
,

where c1, c2, c3 are defined as functions of the a and the b by the relations:
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c1 =
a1 +b1 a3

1+b1 a2
, c2 =

b2 +a2 b3

1+b1 a2
, c3 =

b2 a1 +b3 a3

1+b1 a2
.

The following group with n2 parameters aik is also well known:

x′
i =

n

∑
k=1

aik xk (i=1 ···n).

Here, if one sets:

x′′
ν =

n

∑
i=1

bν i x′
i (i=1 ···n),

then we have:

x′′
ν =

1···n
∑
i, k

bν i aik xk =
n

∑
k=1

cνk xk,

where the cνk are determined by the equations:

cνk =
n

∑
i=1

bν i aik (ν , k=1 ···n).−

In order to arrive at a usable definition of a finite continuous group, we first
want to somehow reshape the definition of finite continuous groups. On the
occasion, we shall use a proposition from the theory of differential equations
which we will return to later in a more comprehensive way (cf. Chap. 10).

Let the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

represent an arbitrary continuous group. According to the proposition in ques-
tion, it is then possible to define the functions fi through a system of differential
equations, insofar as they depend upon the x. To this end, one only has to differ-
entiate the equations x′

i = fi(x,a) with respect to x1, . . . ,xn sufficiently often and
then to set up all equations that may be obtained by elimination of a1, . . . ,ar.
If one has gone sufficiently far by differentiation, then by elimination of the a,
one obtains a system of differential equations for x′

1, . . . ,x
′
n, whose most gen-

eral system of solutions is represented by the initial equations x′
i = fi(x,a) with

the r arbitrary parameters. Now, since by assumption the equations x′
i = fi(x,a)

define a group, it follows that the concerned system of differential equations
possesses the following remarkable property: if x′

i = fi(x1, . . . ,xn, b1, . . . ,br) is
a system of solutions of it, and if x′

i = fi(x,a) is a second system of solutions,
then:

x′
i = fi

(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

(i=1 ···n)

is also a system of solutions.
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From this, we see that the equations of an arbitrary finite continuous trans-
formation group can be defined by a system of differential equations which
possesses certain specific properties. Firstly, from two systems of solutions of
the concerned differential equations one can always derive, in the way indicated
above, a third system of solutions: it is precisely in this that we have to deal
with a group. Secondly, the most general system of solutions of the concerned
differential equations depends only upon a finite number of arbitrary constants:
this circumstance expresses that our group is finite.

Now, we assume that there is a family of transformations x′
i = fi(x1, . . . ,xn)

which is defined by a system of differential equations of the form:

Wk

(

x′
1, . . . ,x

′
n,
∂x′

1

∂x1
, . . . ,

∂ 2x′
1

∂x2
1

, . . .

)

= 0 (k=1, 2 ···).

Moreover, we assume that this system of differential equations possesses the
first of the two mentioned properties, but not the second; therefore, if x′

i =
fi(x1, . . . ,xn) and x′

i = gi(x1, . . . ,xn), then x′
i = gi

(

f1(x), . . . , fn(x)
)

is also a sys-
tem of solutions of these differential equations, and the most general system of
solutions of them does not only depend upon a finite number of arbitrary con-
stants, but also upon higher sorts of elements, as for example, upon arbitrary
functions. Then the totality of all transformations which satisfy the concerned
differential equations evidently again forms a group, and in general, a continu-
ous group, though no more a finite one, but one which we call infinite continu-
ous.

Straightaway, we give a few simple examples of infinite continuous transfor-
mation groups.

When the differential equations which define the concerned infinite group
reduce to the identity equation 0 = 0, then the transformations of the group
read:

x′
i =Πi(x1, . . . ,xn) (i=1 ···n)

where the Πi denote arbitrary analytic functions of their arguments.
The equations:

∂x′
i

∂xk
= 0 (i �=k ; i, k=1 ···n)

also define an infinite group, namely the following one:

x′
i =Πi(xi) (i=1 ···n),

where again the Πi are absolutely arbitrary.

Furthermore, it is to be observed that the concept of an infinite continuous
group can be understood more generally than what has been said here. Actu-
ally, one could call infinite continuous any continuous group which is not finite.
However, this definition does not coincide with the one given above.
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For instance, the equations:

x′ = F(x), y′ = F(y)

in which F , for the two cases, denotes the same function of its arguments, rep-
resent a group. This group is continuous, since all its transformations are rep-
resented by a single system of equations; in addition, it is obviously not finite.
Consequently, it would be an infinite continuous group if we interpreted this
concept in the more general sense indicated above. But on the other hand, it is
not possible to define the family of the transformations:

x′ = F(x), y′ = F(y)

by differential equations that are free of arbitrary elements. Consequently, the
definition stated first for an infinite continuous group does not apply to this
case. Nevertheless, we find it suitable to consider only the infinite continuous
groups which can be defined by differential equations and hence, we always set
as fundamental our first, tight definition.

We wish to emphasize that the concept of “transformation group” is still
not exhausted by the difference between discontinuous and continuous groups.
Rather, there are transformation groups which are subordinate to neither of these
two classes but which have something in common with each of them. In the
sequel, we must at least occasionally treat this sort of group. Provisionally, two
examples will suffice.

The totality of all coordinate transformations of a plane by which one trans-
fers an ordinary right-angled system of coordinates to another forms a group
which is neither continuous nor discontinuous. Indeed, the group in question
contains two separate categories of transformations between which a continu-
ous transition is not possible: firstly, the transformations by which the old and
the new systems of coordinates are congruent, and secondly, the transformations
by which these two systems are not congruent.

The first transformations have the form:

x′ −a = x cosα− y sinα, y′ −b = x sinα+ y cosα,

while the analytic expression of the second transformations reads:

x′ −a = x cosα+ y sinα, y′ −b = x sinα− y cosα.

Each of these systems of equations represents a continuous family of transfor-
mations, hence the group is not discontinuous; but it is also not continuous,
because both systems of equations taken together provide all transformations
of the group; thus, the transformations of the group decompose into two dis-
crete families. If one imagines the x,y plane in ordinary space and if one adds
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z as a third right-angled coordinate, then one can imagine the totality of coordi-
nate transformations of the plane z = 0 is a totality of certain movements [BE-
WEGUNGEN] of the space, namely the movements for which the plane z = 0
keeps its position. Correspondingly, these movements separate into two classes,
namely the class which only translates the plane into itself and the class which
rotates the plane.

As a second example of such a group, one can take the totality of all projec-
tive and dualistic transformations of the plane.

—————–

According to these general remarks on the concept of a transformation group,
we turn ourselves to the consideration of the finite continuous transforma-
tion groups which constitute the object of the following studies. These stud-
ies are divided into three volumes [ABSCHNITTE]. The first volume treats fi-
nite continuous groups in general. The second volume treats the finite con-
tinuous groups whose transformations are so-called contact transformations
[BERÜHRUNGSTRANSFORMATIONEN]. Lastly, in the third volume, certain
general problems of group theory will be carried out in great detail for a small
number of variables.
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Chapter 2
Local Transformation Equations
and Essential Parameters

Abstract Let K=R or C, throughout. As said in Chap. 1, transformation equations
x′

i = fi(x; a1, . . . ,ar), i = 1, . . . ,n, which are local, analytic diffeomorphisms of Kn

parametrized by a finite number r of real or complex numbers a1, . . . ,ar, constitute
the archetypal objects of Lie’s theory. The preliminary question is to decide
whether the fi really depend upon all parameters, and also, to get rid of superfluous
parameters, if there are any.

Locally in a neighborhood of a fixed x0, one expands fi(x; a)=∑α∈Nn U i
α(a)(x−

x0)α in power series and one looks at the infinite coefficient mapping U∞ : a �−→
(

U i
α(a)

)1�i�n
α∈Nn from K

r to K
∞, which is expected to faithfully describe the de-

pendence with respect to a in question. If ρ∞ denotes the maximal, generic and
locally constant rank of this map, with of course 0 � ρ∞ � r, then the answer says
that locally in a neighborhood of a generic a0, there exist both a local change of
parameters a �→ (

u1(a), . . . ,uρ∞(a)
)

=: u decreasing the number of parameters
from r down to ρ∞, and new transformation equations:

x′
i = gi

(

x; u1, . . . ,uρ∞
)

(i=1 ···n)

depending only upon ρ∞ parameters which give again the old ones:

gi
(

x; u(a)
) ≡ fi(x; a) (i=1 ···n).

At the end of this brief chapter, before giving a precise introduction to the local Lie
group axioms, we present an example due to Engel which shows that the axiom of
inverse cannot be deduced from the axiom of composition, contrary to one of Lie’s
Idées fixes.

2.1 Generic Rank of the Infinite Coefficient Mapping

Thus, we consider local transformation equations:

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_2
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x′
i = fi(x1, . . . ,xn;a1, . . . ,ar) (i=1 ···n).

We want to illustrate how the principle of free generic relocalization described above
on p. 4 helps to get rid of superfluous parameters ak. We assume that the fi are
defined and analytic for x belonging to a certain (unnamed, connected) domain of
K

n and for a belonging to some domain of Kr.
Expanding the fi of x′

i = fi(x;a) in power series with respect to x − x0 in some
neighborhood of a point x0:

fi(x;a) = ∑
α∈Nn

U i
α(a)(x− x0)α ,

we get an infinite number of analytic functions U i
α =U i

α(a) of the parameters that
are defined in some uniform domain of K

r. Intuitively, this infinite collection of
coefficient functions U i

α(a) should show how f (x;a) depends on a.
To make this claim precise, we thus consider the map:

U∞ : K
r 
 a �−→ (

U i
α(a)

)1�i�n
α∈Nn ∈ K

∞.

For the convenience of applying standard differential calculus in finite dimensions,
we simultaneously consider all of its κ-th truncations:

Uκ : K
r 
 a �−→ (

U i
α(a)

)1�i�n
|α|�κ ∈ K

n (n+κ)!
n! κ! ,

where (n+κ)!
n! κ! is the number of multiindices α ∈N

n whose length |α| :=α1+ · · ·+αn

satisfies the upper bound |α| � κ . We call Uκ , U∞ the (in)finite coefficient map-
ping(s) of x′

i = fi(x; a).
The Jacobian matrix of Uκ is the r × (

n (n+κ)!
n! κ!

)

matrix:

(
∂U i

α
∂a j

(a)
)|α|�κ,1�i�n

1� j�r
,

its r rows being indexed by the partial derivatives. The generic rank of Uκ is the
largest integer ρκ � r such that there is a ρκ ×ρκ minor of JacUκ which does not
vanish identically, but all (ρκ + 1)× (ρκ + 1) minors do vanish identically. The
uniqueness principle for analytic functions then insures that the common zero-set of
all ρκ ×ρκ minors is a proper closed analytic subset Dκ (of the unnamed domain
where the U i

α are defined), so it is stratified by a finite number of submanifolds of
codimension � 1 ([8, 2, 3, 5]), and in particular, it has empty interior, hence it is
intuitively “thin”.

So the set of parameters a at which there is a least one ρκ ×ρκ minor of JacUκ
which does not vanish is open and dense. Consequently, “for a generic point a”, the
map Uκ is of rank � ρκ at every point a′ sufficiently close to a (since the corre-
sponding ρκ ×ρκ minor does not vanish in a neighborhood of a), and because all
(ρκ + 1)× (ρκ + 1) minors of JacUκ were assumed to vanish identically, the map
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Uκ happens to be in fact of constant rank Uκ in a (small) neighborhood of every
such generic a.

Insuring constancy of a rank is one important instance of why free relocaliza-
tion is useful: a majority of theorems of the differential calculus and of the clas-
sical theory of (partial) differential equations hold under specific local constancy
assumptions.

As κ increases, the number of columns of JacUκ increases, hence ρκ1 � ρκ2 for
κ1 � κ2. Since ρκ � r is bounded, the generic rank of Uκ becomes constant for all
κ � κ0 bigger than some sufficiently large κ0. Thus, let ρ∞ � r denote this maximal
possible generic rank.

Definition 2.1. The parameters (a1, . . . ,ar) of given point transformation equations
x′

i = fi(x;a) are called essential if, after expanding fi(x;a) =∑α∈Nn U i
α(a)(x−x0)α

in power series at some x0, the generic rank ρ∞ of the coefficient mapping a �−→
(

U i
α(a)

)1�i�n
α∈Nn is maximal, equal to the number r of parameters: ρ∞ = r.

Without entering into technical details, we make a remark. It is a consequence
of the principle of analytic continuation and of some reasonings with power se-
ries that the same maximal rank ρ∞ is enjoyed by the coefficient mapping a �→
(

U ′i
α(a)

)1�i�n
α∈Nn for the expansion of fi(x;a) = ∑α∈Nn U ′i

α(a)(x − x′
0)
α at another,

arbitrary point x′
0. Also, one can prove that ρ∞ is independent of the choice of coordi-

nates xi and of parameters ak. These two facts will not be needed, and the interested
reader is referred to [9] for proofs of quite similar statements holding true in the
context of Cauchy-Riemann geometry.

2.2 Quantitative Criterion
for the Number of Superfluous Parameters

It is not very practical to compute the generic rank of the infinite Jacobian matrix
JacU∞. To check essentiality of parameters in concrete situations, a helpful criterion
due to Lie is (iii) below.

Theorem 2.1. The following three conditions are equivalent:

(i) In the transformation equations

x′
i = fi(x1, . . . ,xn; a1, . . . ,ar) = ∑

α∈Nn

U i
α(a)(x− x0)α (i=1 ···n),

the parameters a1, . . . ,ar are not essential.

(ii) (By definition) The generic rank ρ∞ of the infinite Jacobian matrix:

JacU∞(a) =
(∂U i

α
∂a j

(a)
)α∈Nn,1�i�n

1� j�r
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is strictly less than r.

(iii) Locally in a neighborhood of every (x0,a0), there exists a not identically zero
analytic vector field on the parameter space:

T =
n

∑
k=1

τk(a)
∂
∂ak

which annihilates all the fi(x;a):

0 ≡ T fi =
n

∑
k=1

τk
∂ fi

∂ak
= ∑
α∈Nn

r

∑
k=1

τk(a)
∂U i

α
∂ak

(a)(x− x0)α (i=1 ···n).

More generally, if ρ∞ denotes the generic rank of the infinite coefficient mapping:

U∞ : a �−→ (

U i
α(a)

)1�i�n
α∈Nn ,

then locally in a neighborhood of every (x0,a0), there exist exactly r −ρ∞, and no
more, analytic vector fields:

Tμ =
n

∑
k=1

τμk(a)
∂
∂ak

(μ=1 ···r−ρ∞),

with the property that the dimension of Span
(

T1
∣
∣
a, . . . , Tr−ρ∞

∣
∣
a

)

is equal to r −ρ∞
at every parameter a at which the rank of U∞ is maximal, equal to ρ∞, such that the
derivations Tμ all annihilate the fi(x;a):

0 ≡ Tμ fi =
r

∑
k=1

τμk(a)
∂ fi

∂ak
(x;a) (i=1 ···n; μ=1 ···r−ρ∞).

Proof. Just by the chosen definition, we have (i) ⇐⇒ (ii). Next, suppose that condi-
tion (iii) holds, in which the coefficients τk(a) of the concerned nonzero derivation
T are locally defined. Recalling that the Jacobian matrix JacU∞ has r rows and an
infinite number of columns, we then see that the n annihilation equations 0 ≡ T fi,
when rewritten in matrix form as:

0 ≡ (

τ1(a), . . . ,τr(a)
)(∂U i

α
∂a j

(a)
)α∈Nn,1�i�n

1� j�r

just say that the transpose of JacU∞(a) has nonzero kernel at each a where the
vector T

∣
∣
a =

(

τ1(a), . . . ,τr(a)
)

is nonzero. Consequently, JacU∞ has rank strictly
less than r locally in a neighborhood of every a0, hence in the whole a-domain. So
(iii) ⇒ (ii).

Conversely, assume that the generic rank ρ∞ of JacU∞ is < r. Then there exist

ρ∞< r “basic” coefficient functions U i(1)
α(1), . . . ,U

i(ρ∞)
α(ρ∞) (there can be several choices)

such that the generic rank of the extracted map a �→ (

U
i(l)
α(l)

)

1�l�ρ∞ equals ρ∞ al-
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ready. We abbreviate:

ul(a) :=U
i(l)
α(l)(a) (l=1 ···ρ∞).

The goal is to find vectorial local analytic solutions
(

τ1(a), . . . ,τr(a)
)

to the infinite
number of linear equations:

0 ≡ τ1(a)
∂U i

α(a)
∂a1

(a)+ · · ·+ τr(a)
∂U i

α(a)
∂ar

(a) (i=1 ···n ; α∈N
n).

To begin with, we look for solutions of the finite, extracted linear system of ρ∞
equations with the r unknowns τk(a):

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 ≡ τ1(a)
∂u1

∂a1
(a)+ · · ·+ τρ∞(a)

∂u1

∂aρ∞
(a)+ · · ·+ τr(a)

∂u1

∂ar
(a)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 ≡ τ1(a)
∂uρ∞
∂a1

(a)+ · · ·+ τρ∞(a)
∂uρ∞
∂aρ∞

(a)+ · · ·+ τr(a)
∂uρ∞
∂ar

(a).

After possibly renumbering the variables (a1, . . . ,ar), we can assume that the left
ρ∞×ρ∞ minor of this system:

Δ(a) := det
( ∂ul

∂am
(a)

)1�l�ρ∞

1�m�ρ∞

does not vanish identically. However, it can vanish at some points, and while en-
deavoring to solve the above linear system by an application of the classical Cramer
rule, the necessary division by the determinant Δ(a) introduces poles that are unde-
sirable, for we want the τk(a) to be analytic. So, for any μ with 1 � μ � r −ρ∞, we
look for a solution (rewritten as a derivation) in the specific form:

Tμ := −Δ(a) ∂
∂aρ∞+μ

+ ∑
1�k�ρ∞

τμk(a)
∂
∂ak

(μ=1 ···r−ρ∞),

in which we introduce in advance a factor Δ(a) designed to compensate the un-
avoidable division by Δ(a). Indeed, such a Tμ will annihilate the ul :

0 ≡ Tμu1 ≡ ·· · ≡ Tμuρ∞

if and only its coefficients are solutions of the linear system:
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⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δ(a)
∂u1

∂aρ∞+μ
(a) ≡ τμ1(a)

∂u1

∂a1
(a)+ · · ·+ τμρ∞(a)

∂u1

∂aρ∞
(a)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Δ(a)
∂uρ∞
∂aρ∞+μ

(a) ≡ τμ1(a)
∂uρ∞
∂a1

(a)+ · · ·+ τμρ∞(a)
∂uρ∞
∂aρ∞

(a).

Cramer’s rule then yields the unique solution:

τμk(a) =
1

Δ(a)

∣
∣
∣
∣
∣
∣
∣

∂u1
∂a1

(a) · · · Δ(a) ∂u1
∂aρ∞+μ

(a) · · · ∂u1
∂aρ∞

(a)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
∂uρ∞
∂a1

(a) · · · Δ(a) ∂uρ∞
∂aρ∞+μ

(a) · · · ∂uρ∞
∂aρ∞

(a)

∣
∣
∣
∣
∣
∣
∣

(k=1 ···r),

where, as predicted, the overall factor Δ(a) of the k-th column compensates the
division by the determinant Δ(a) of this system, so that the Tμ indeed all have
analytic coefficients.

Clearly, T1, . . . ,Tr−ρ∞ are linearly independent at all (generic) points a where
Δ(a) �= 0. It remains to show that the Tμ also annihilate all other coefficient func-
tions U i

α .
Thus, let (i,α) �= (i(1),α(1)), . . . ,(i(ρ∞),α(ρ∞)). By the very definition of ρ∞,

the generic rank of any r × (1+ρ∞) extracted subJacobian matrix:

⎛

⎜
⎝

∂U i
α

∂a1
(a) ∂u1

∂a1
(a) · · · ∂uρ∞

∂a1
(a)

· · · · · · · · · · · ·
∂U i

α
∂ar

(a) ∂u1
∂ar

(a) · · · ∂uρ∞
∂ar

(a)

⎞

⎟
⎠

must always be equal to ρ∞, the generic rank of its last ρ∞ columns. Consequently,
in a neighborhood of every point a at which its top right ρ∞×ρ∞ minor Δ(a) does
not vanish, the first column is a certain linear combination:

∂U α
i

∂ak
(a) = λ1(a)

∂u1

∂ak
(a)+ · · ·+λρ∞(a)

∂uρ∞
∂ak

(a) (i=1 ···n ; α∈N
n ; k=1 ···r)

of the last ρ∞ columns in question, where, again thanks to an appropriate applica-
tion of Cramer’s rule, the coefficients λl(a) are analytic in the concerned generic
neighborhood, for their denominator Δ(a) is �= 0 there. It then follows immediately
by appropriate scalar multiplication and summation that:

r

∑
k=1

τμk(a)
∂U i

α
∂ak

(a) ≡ λ1(a)
r

∑
k=1

τμk(a)
∂u1

∂ak
(a)+ · · ·+λρ∞(a)

r

∑
k=1

τμk(a)
∂uρ∞
∂ak

(a)

≡ λ1(a)Tμ u1 + · · ·+λρ∞(a)Tμ uρ∞
≡ 0 (i=1 ···n ; α∈N

n).

But since these analytic equations hold on the dense open set where Δ(a) �= 0, we
deduce by continuity that the equations:
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0 ≡ T1U
i
α ≡ ·· · ≡ Tr−ρ∞U

i
α (i=1 ···n ; α∈N

n)

do hold everywhere, as desired. In conclusion, we have shown the implication (ii)
⇒ (iii), and simultaneously, we have established the last part of the theorem. �
Corollary 2.1. Locally in a neighborhood of every generic point a0 at which
the infinite coefficient mapping a �→ U∞(a) has maximal, locally constant rank
equal to its generic rank ρ∞, there exist both a local change of parameters
a �→ (

u1(a), . . . ,uρ∞(a)
)

=: u decreasing the number of parameters from r down to
ρ∞, and new transformation equations:

x′
i = gi

(

x; u1, . . . ,uρ∞
)

(i=1 ···n)

depending only upon ρ∞ parameters which give again the old ones:

gi
(

x; u(a)
) ≡ fi(x; a) (i=1 ···n).

Proof. Choose ρ∞ coefficients U
i(l)
α(l)(a) =: ul(a), 1 � l � ρ∞, with Δ(a) :=

det
( ∂ul(a)
∂am

(a)
)1�l�ρ∞

1�m�ρ∞ �≡ 0 as in the proof of the theorem. Locally in some small

neighborhood of any a0 with Δ(a0) �= 0, the infinite coefficient map U∞ has
constant rank ρ∞, hence the constant rank theorem provides, for every (i,α), a
certain function V i

α of ρ∞ variables such that:

U i
α(a) ≡ V i

α
(

u1(a), . . . ,uρ∞(a)
)

.

Thus, we can work out the power series expansion:

fi(x;a) = ∑α∈Nn U i
α(a)(x− x0)α

= ∑α∈Nn V i
α(u1(a), . . . ,uρ∞(a))(x− x0)α

=: gi(x,u1(a), . . . ,uρ∞(a))

which yields the natural candidate for gi(x; u). Lastly, one may verify that any
Cauchy estimate for the growth decrease of U i

α(a) as |α| → ∞ insures a similar
Cauchy estimate for the growth decrease of b �→ V i

α(u), whence each gi is analytic,
and in fact, termwise substitution was legitimate. �
Definition 2.2. The transformation equations x′

i = fi(x1, . . . ,xn;a1, . . . ,ar),
i = 1, . . . ,n, are called r-term if all the parameters (a1, . . . ,ar) are essential.

2.3 The Axiom of Inverse and Engel’s Counterexample

Every analytic diffeomorphism of an n-times extended space permutes all the points
in a certain differentiable, invertible way. Although they act on a set of infinite cardi-
nality, diffeomorphisms can thus be regarded as a kind of analog of the substitutions
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on a finite set. In fact, in the years 1873–80, Lie’s Idée fixe was to build, in the
geometric realm of n-dimensional continua, a counterpart of the Galois theory of
substitutions of roots of algebraic equations ([6]).

As above, let x′ = f (x; a1, . . . ,ar) =: fa(x) be a family of (local) analytic dif-
feomorphisms parametrized by a finite number r of parameters. For Lie, the basic,
single group axiom should just require that such a family be closed under composi-
tion, namely that one always has fa

(

fb(x)
) ≡ fc(x) for some c depending on a and

on b. More details on this definition will given in the next chapter, but at present, we
ask whether one can really economize the other two group axioms: existence of an
identity element and existence of inverses.

Lemma 2.1. If H is any subset of some abstract group G with CardH < ∞ which is
closed under group multiplication:

h1h2 ∈ H whenever h1, h2 ∈ H,

then H contains the identity element e of G and every h ∈ H has an inverse in H, so
that H itself is a true subgroup of G.

Proof. Indeed, picking arbitrary h ∈ H, the infinite sequence h,h2,h3, . . . ,hk, . . . of
elements of the finite set H must become eventually periodic: ha = ha+n for some
a � 1 and for some n � 1, whence e = hn, so e ∈ H and hn−1 is the inverse of h. �

For more than thirteen years, Lie was convinced that a purely similar property
should also hold with G = Diffn being the (infinite continuous pseudo)group of
analytic diffeomorphisms and with H ⊂ Diffn being any continuous family closed
under composition. We quote a characteristic excerpt of [7], pp. 444–445.

As is known, one shows in the theory of substitutions that the permutations of a
group can be ordered into pairwise inverse couples of permutations. Now, since
the distinction between a permutation group and a transformation group only
lies in the fact that the former contains a finite and the latter an infinite number
of operations, it is natural to presume that the transformations of a transforma-
tion group can also be ordered into pairs of inverse transformations. In previous
works, I came to the conclusion that this should actually be the case. But because
in the course of my investigations in question, certain implicit hypotheses have
been made about the nature of the functions appearing, I think that it is necessary
to expressly add the requirement that the transformations of the group can be
ordered into pairs of inverse transformations. In any case, I conjecture that this
is a necessary consequence of my original definition of the concept [BEGRIFF]
of transformation group. However, it has been impossible for me to prove this
in general.

In his first year working with Lie (1884), Engel proposed the following coun-
terexample. Consider the family of transformation equations:
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x′ = ζ x,

where x, x′ ∈ C and the parameter ζ ∈ C is restricted to |ζ | < 1. Of course, this
family is closed under any composition, say: x′ = ζ1 x and x′′ = ζ2 x′ = ζ1ζ2x, with
indeed |ζ2 ζ1| < 1 when |ζ1|, |ζ2| < 1, but neither the identity element nor any in-
verse transformation belongs to the family. However, the requirement |ζ | < 1 here
is too artificial: in fact the family trivially extends as the complete group

(

x′ =
ζ x

)

ζ∈C of dilations of the line. Engel’s idea was to appeal to a Riemann map ω
having {|ζ | = 1} as a boundary of nonextendability. The map used by Engel is the
following.1 (Translator’s note: In the treatise [4], this example is presented at the
end of Chap. 9, see below p. 179.) Let odk denote the number of odd divisors (in-
cluding 1) of any integer k � 1. The theory of holomorphic functions in one complex
variables yields the following.

Lemma 2.2. The infinite series:

ω(a) := ∑
ν�1

aν

1−a2ν = ∑
ν�1

(

aν +a3ν +a5ν +a7ν + · · ·)= ∑
k�1

odk ak

converges absolutely in every open disc Δρ = {z ∈C : |z|< ρ} of radius ρ < 1 and
defines a univalent holomorphic function Δ →C from the unit disc Δ := {|z|< 1} to
C which does not extend holomorphically across any point of the unit circle ∂Δ :=
{|z| = 1}.

In fact, any other similar Riemann biholomorphic map ζ �−→ω(ζ ) =: λ from the
unit disc Δ onto some simply connected domainΛ :=ω(Δ) having fractal boundary
which is not a Jordan curve, e.g. the Von Koch Snowflake Island, would do the job.2

(Translator’s note: A concise presentation of Carathéodory’s theory may be found
in Chap. 17 of [10].) Denote then by λ �−→ χ(λ ) =: ζ the inverse of such a map
and consider the family of transformation equations:

(

x′ = χ(λ )x
)

λ∈Λ .

By construction, |χ(λ )| < 1 for every λ ∈Λ . Any composition of x′ = χ(λ1)x and
of x′′ = χ(λ2)x′ is of the form x′′ = χ(λ )x, with the uniquely defined parameter λ :=
ω
(

χ(λ1)χ(λ2)
)

, hence the group composition axiom is satisfied. However, there is
again no identity element, and again, no transformation has an inverse. Furthermore,
crucially (and lastly), there does not exist any extension of the family to a larger
domain Λ̃ ⊃ Λ together with a holomorphic extension χ̃ of χ to Λ̃ so that χ̃

(

Λ̃
)

contains a neighborhood of {1} (in order to include the identity) or a fortiori a
neighborhood of Δ (in order to include inverses of transformations x′ = χ(λ )x with
λ ∈Λ close to ∂Λ ).
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Observation

In Vol. I of the Theorie der Transformationsgruppen, this example appears only in
Chap. 9, on pp. 163–165, and it is written in small characters. In fact, Lie still be-
lieved that a deep analogy with substitution groups should come out as a theorem.
Hence the structure of the first nine chapters insist on setting aside, whenever pos-
sible, the two axioms of existence of identity element and of existence of inverses. To
do justice to this great treatise, we shall translate in Chap. 9 how Master Lie man-
aged to produce Theorem 26 on p. 177, which he considered to provide the sought
analogy with finite group theory, after taking Engel’s counterexample into account.
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Chapter 3
Fundamental Differential Equations
for Finite Continuous Transformation Groups

Abstract A finite continuous local transformation group in the sense of Lie is a
family of local analytic diffeomorphisms x′

i = fi(x; a), i = 1 . . . ,n, parametrized by
a finite number r of parameters a1, . . . ,ar that is closed under composition and under
taking inverses:

fi
(

f (x; a); b)
)

= fi
(

x; m(a,b)
)

and xi = fi
(

x′; i(a)
)

,

for some group multiplication map m and for some group inverse map i, both local
and analytic. Also, it is assumed that there exists an e = (e1, . . . ,er) yielding the
identity transformation fi(x; e) ≡ xi.

Crucially, these requirements imply the existence of fundamental partial differ-
ential equations:

∂ fi

∂ak
(x; a) = −

r

∑
j=1
ψk j(a)

∂ fi

∂a j
(x; e) (i=1 ···n, k=1 ···r)

which, technically speaking, are cornerstones of the basic theory. What matters here
is that the group axioms guarantee that the r × r matrix (ψk j) depends only on a
and it is locally invertible near the identity. Geometrically speaking, these equations
mean that the r infinitesimal transformations:

Xa
k

∣
∣
x =

∂ f1

∂ak
(x; a)

∂
∂x1

+ · · ·+ ∂ fn

∂ak
(x; a)

∂
∂xn

(k=1 ···r)

corresponding to an infinitesimal increment of the k-th parameter computed at a:

f (x;a1, . . . ,ak + ε, . . . ,ar)− f (x; a1, . . . ,ak, . . . ,ar) ≈ εXa
k

∣
∣
x

are linear combinations, with certain coefficients −ψk j(a) depending only on the
parameters, of the same infinitesimal transformations computed at the identity:

c© Springer-Verlag Berlin Heidelberg 2015
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Xe
k

∣
∣
x =

∂ f1

∂ak
(x; e)

∂
∂x1

+ · · ·+ ∂ fn

∂ak
(x; e)

∂
∂xn

(k=1 ···r).

Remarkably, the process of removing superfluous parameters introduced in the pre-
vious chapter applies to local Lie groups without the necessity of relocalizing around
a generic a0, so that everything can be achieved around the identity e itself, without
losing it.

3.1 The Concept of a Local Transformation Group

Let K=R or C, let n � 1 be an integer and let x = (x1, . . . ,xn)∈K
n denote variables

of an n-times extended space. We shall constantly employ the sup-norm:

|x| := max
1�i�n

|xi|,

where | · | denotes the absolute value on R, or the modulus on C. For various “radii”
ρ > 0, we shall consider the precise open sets centered at the origin that are defined
by:

Δ n
ρ :=

{

x ∈ K
n : |x| < ρ};

in case K = C, these are of course standard open polydiscs, while in case K = R,
these are open cubes.

On the other hand, again1 (Translator’s note: When x ∈R
n is real, while studying

local analytic Lie group actions x′
i = fi(x;a) below, we will naturally require that

a ∈ R
r also be real (unless we complexify both x and a). When x ∈ C

n, we can
assume a is either real or complex.) with K = R or C, let r � 1 be another integer
and introduce parameters a = (a1, . . . ,ar) in K

r, again equipped with the sup-norm:

|a| := max
1�k�r

|ak|.

For various σ > 0, we similarly introduce the precise open sets:

�r
σ :=

{

a ∈ K
r : |a| < σ}.

3.1.1 Transformation Group Axioms

Let
x′

i = fi(x1, . . . ,xn;a1, . . . ,ar) (i=1 ···n)

be local transformation equations, as presented in Chapter 1. To fix the local charac-
ter, the fi(x;a) will be assumed to be defined when |x| < ρ1 and when |a| < σ1, for
some ρ1 > 0 and for some σ1 > 0. We shall assume that for the parameter a := e,



3.1 The Concept of a Local Transformation Group 25

equal to the origin 0 ∈ K
r, the transformation corresponds to the identity, so that:

fi(x1, . . . ,xn : 0, . . . ,0) ≡ xi (i=1 ···n).

Consequently, for the composition of two successive such transformations
x′ = f (x;a) and x′′ = f (x′;b) to be well defined, it suffices to shrink ρ1 to ρ2 with
0 < ρ2 < ρ1 and σ1 to σ2 with 0 < σ2 < σ1 in order to insure that:

| f (x;a)| < ρ1 for all |x| < ρ2 and all |a| < σ2.

This is clearly possible thanks to f (x;0) = x. Now, we can present the local trans-
formation group axioms, somehow with a rigorous control of existence domains.

Δn
ρ2 �r

σ2

× x′ = f (x;a)

K
nK

r Δn
ρ1�r

σ1
K

n Δn
ρ1

00 0
a

Fig. 3.1 Local transformation group in terms of cubes

Group composition axiom. For every x ∈ Δ n
ρ2

, and a,b ∈ �r
σ2

, an arbitrary com-
position:

(1) x′′ = f
(

f (x;a);b
)

= f (x;c) = f (x;m(a,b))

always identifies to an element f (x;c) of the same family, for a unique parameter
c = m(a,b) given by an auxiliary group-multiplication local analytic map:

m : �n
σ1

×�n
σ1

−→ K
r

which satisfies m
(

�r
σ2

×�r
σ2

) ⊂ �r
σ1

and m(a,e) ≡ m(e,a) ≡ a.
For a,b,c ∈ �n

σ3
with 0 < σ3 < σ2 < σ1 small enough so that three successive

compositions are well defined, the associativity of diffeomorphism composition
yields:

f
(

x;m(m(a,b),c)
)

= f
(

f ( f (x;a);b);c
)

= f
(

x;m(a,m(b,c))
)

,

whence, thanks to the assumed uniqueness of c = m(a,b), we obtain the group
associativity: m

(

m(a,b),c
)

= m
(

a,m(b,c)
)

for such restricted values of a,b,c.
Contrary to what his opponents sometimes claimed, e.g. Study, Slocum and oth-

ers, Lie was conscious of the necessity of emphasizing the local character of trans-
formation groups that is often required in applications. Amongst the first 50 pages of
the Theorie der Transformationsgruppen, at least 15 pages (written in small char-
acters) are devoted to rigorously discussing when and why domains of definition
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should be shrunk. We translate for instance a relevant excerpt ([1], pp. 15–16) in
which the symbol (x), due to Weierstrass and introduced by Engel and Lie just be-
forehand, denotes a region of the coordinate space and (a) a region of the parameter
space, with the fi analytic there.

Here one has to observe that we have fixed the behavior of the functions
fi(x;a) only inside the regions (x) and (a).

Consequently, we have permission to substitute the expression x′
ν = fν(x,a)

in the equations x′′
i = fi(x′,b) only when the system of values x′

1, . . . ,x
′
n lies in

the region (x). That is why we are compelled to add the following assumption to
those already imposed on the regions (x) and (a): it shall be possible to indicate,
inside the regions (x) and (a), respective subregions ((x)) and ((a)) of such a
nature that the x′

i always remain in the region (x) when the xi run arbitrarily
in ((x)) and when the ak run arbitrarily in ((a)); we express this briefly as: the
region x′ = f

(

((x))((a))
)

shall entirely fall into the region (x).
According to these assumptions, if we choose x1, . . . ,xn in the region ((x))

and a1, . . . ,ar in the region ((a)), then we can execute the substitution x′
k =

fk(x,a) in the expression fi(x′
1, . . . ,x

′
n, b1, . . . ,bn); that is to say, when x0

1, . . . ,x
0
n

is an arbitrary system of values in the region ((x)), the expression:

fi
(

f1(x,a), . . . , fn(x,a), b1, . . . ,bn
)

can be expanded, in the neighborhood of the system of values x0
k , as an ordi-

nary power series in x1 −x0
1, . . . ,xn −x0

n; the coefficients of this power series are
functions of a1, . . . ,ar, b1, . . . ,br and behave regularly, when the ak are arbitrary
in ((a)) and the bk are arbitrary in (a).

Existence of an inverse-element map. There exists a local analytic map:

i : �r
σ1

−→ K
r

with i(e) = e (namely i(0) = 0) such that for every a ∈ �r
σ2

:

e = m(a, i(a)
)

= m
(

i(a),a
)

whence in addition: x = f
(

f (x;a); i(a)
)

= f
(

f (x; i(a));a),

for every x ∈ Δ n
ρ2

.

3.1.2 Some Conventions

In the sequel, the diffeomorphism x �→ f (x;a) will occasionally be written x �→
fa(x). Also, we shall sometimes abbreviate m(a,b) by a ·b and i(a) by a−1. Also, a
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finite number of times, it will be necessary to further shrink ρ2 and σ2. This will be
done automatically, without emphasizing it.

3.2 Changes of Coordinates and of Parameters

In the variables x1, . . . ,xn, let the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an r-term group be presented. Then there are various means to derive from
these equations other equations which again represent an r-term group.

On one hand, in place of the a, we can introduce r arbitrary independent
functions of them:

ak = βk(a1, . . . ,ar) (k=1 ···r)

as new parameters. By resolution with respect to a1, . . . ,ar, one can obtain:

ak = γk(a1, . . . ,ar) (k=1 ···r)

and by substitution of these values, one may set:

fi(x1, . . . ,xn, a1, . . . ,ar) = fi(x1, . . . ,xn, a1, . . . ,ar).

Then if we set:

βk(b1, . . . ,br) = bk, βk(c1, . . . ,cr) = ck (k=1 ···r),

the composition equations:

fi
(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

= fi(x1, . . . ,xn, c1, . . . ,cr)

take, without effort, the form:

fi
(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

= fi(x1, . . . ,xn, c1, . . . ,cr),

from which it results that the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

with the r essential parameters a1, . . . ,ar represent in the same way an r-term
group.

Certainly, the equations of this new group are different from those of the
original group, but these equations obviously represent exactly the same trans-
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formations as the original equations x′
i = fi(x,a). Consequently, the new group

is fundamentally identical to the old one.

On the other hand, we can also introduce new independent variables
y1, . . . ,yn in place of the x:

yi = ωi(x1, . . . ,xn) (i=1 ···n),

or, if resolved:
xi = wi(y1, . . . ,yn) (i=1 ···n).

Then, we have to set:

x′
i = wi(y′

1, . . . ,y
′
n) = w′

i, x′′
i = wi(y′′

1 , . . . ,y
′′
n) = w′′

i ,

and we hence obtain, in place of the transformation equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar),

the following ones:

wi(y′
1, . . . ,y

′
n) = fi(w1, . . . ,wn, a1, . . . ,ar),

or, by resolution:

y′
i = ωi

(

f1(w,a), . . . , fn(w,a)
)

= Fi(y1, . . . ,yn, a1, . . . ,ar).

It is easy to prove that the equations:

y′
i = Fi(y1, . . . ,yn, a1, . . . ,ar) (i=1 ···n)

with the r essential parameters a1, . . . ,ar again represent an r-term group. In
fact, the known equations:

fi
(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

= fi(x1, . . . ,xn, c1, . . . ,cr)

are transferred, after the introduction of the new variables, to:

fi
(

f (w,a), b
)

= fi(w1, . . . ,wn, c1, . . . ,cr),

which can also be written:

fi(w′
1, . . . ,w

′
n, b1, . . . ,br) = fi(w1, . . . ,wn, c1, . . . ,cr) = w′′

i ;

but from this, it follows by resolution with respect to y′′
1 , . . . ,y

′′
n that:

y′′
ν = ων

(

f1(w′,b), . . . , fn(w′,b)
)

= ων
(

f1(w,c), . . . , fn(w,c)
)

,
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or, what is the same:

y′′
ν = Fν(y′

1, . . . ,y
′
n, b1, . . . ,br) = Fν(y1, . . . ,yn, c1, . . . ,cr),

that is to say: there exist the equations:

Fν
(

F1(y,a), . . . , Fn(y,a), b1, . . . ,br
)

= Fν(y1, . . . ,yn, c1, . . . ,cr),

whence it is indeed proved that the equations y′
i = Fi(y,a) represent a group.

Lastly, we can naturally introduce at the same time new parameters and new
variables in a given group; it is clear that in this way, we likewise obtain a new
group from the original group.

Now we set up the following definition:

Definition. Two r-term groups:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

y′
i = fi(y1, . . . ,yn, b1, . . . ,br) (i=1 ···n)

in the same number of variables are similar [ÄHNLICH] to each other as soon as
one converts into the other by the introduction of appropriate new variables and
of appropriate new parameters.

Obviously, there is an unbounded number of groups which are similar to a
given one; but all these unboundedly numerous groups are known simultane-
ously with the given one. For this reason, as it shall also happen in the sequel,
we can consider that two mutually similar groups are not essentially distinct
from each other.

Above, we spoke about the introduction of new parameters and of new vari-
ables without dealing with the assumptions by which we can ascertain that all
group-theoretic properties essential for us are preserved here. We offer a few
words concerning this point.

For it to be permitted to introduce, in the group x′
i = fi(x1, . . . ,xn, a1, . . . ,ar),

the new parameters ak = βk(a1, . . . ,ar) in place of the a, the ak must be
univalent functions of the a in the complete region (a) defined earlier on,
and they must behave regularly everywhere in it; the functional determinant
∑±∂β1/∂a1 · · · ∂βr/∂ar should vanish nowhere in the region (a), and lastly,
to two distinct systems of values a1, . . . ,ar of this region, there must always be
associated two distinct systems of values a1, . . . ,ar. In other words: in the re-
gion of the ak, one must be able to delimit a region (a) on which the systems
of values of the region (a) are represented in a univalent way by the equations
ak = βk(a1, . . . ,ar).

On the other hand, for the introduction of the new variables yi =
ωi(x1, . . . ,xn) to be allowed, the y must be univalent and regular func-
tions of the x for all systems of values x1, . . . ,xn which come into con-
sideration after establishing the group-theoretic properties of the equations
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x′
i = fi(x1, . . . ,xn, a1, . . . ,ar); inside this region, the functional determinant
∑±∂ω1/∂x1 · · · ∂ωn/∂xn should vanish nowhere, and lastly, to two distinct
systems of values x1, . . . ,xn of this region, there must always be associated two
distinct systems of values y1, . . . ,yn. The concerned system of values of the x
must therefore be represented univalently onto a certain region of systems of
values of the y.

If one introduced, in the group x′
i = fi(x,a), new parameters or new vari-

ables without the requirements just explained being satisfied, then it would be
conceivable in any case that important properties of the group, for instance the
group composition property itself, would be lost; a group with the identity trans-
formation could convert into a group which does not contain the identity trans-
formation, and conversely.

But in certain circumstances, the matter is only to study the family of trans-
formations x′

i = fi(x,a) in the neighborhood of a single point a1, . . . ,ar or
x1, . . . ,xn. This study will often be facilitated by introducing new variables or
new parameters which satisfy the requirements mentioned above in the neigh-
borhood of the concerned points.

In such a case, one does not need to deal with the question of whether the
concerned requirements are satisfied in the whole extension of the regions (x)
and (a).

Now, if we have a family of ∞r transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar)

which forms an r-term group, then there corresponds to this family a family
of ∞r operations by which the points of the space x1, . . . ,xn are permuted. Evi-
dently, any two of these∞r operations, when executed one after the other, always
produce an operation which again belongs to the family.

Thus, if we actually call a family of operations of this sort a group operation
[OPERATIONSGRUPPE], or shortly, a group, then we can say: every given r-
term transformation group can be interpreted as the analytic representation of
a certain group of ∞r permutations of the points x1, . . . ,xn.

Conversely, if a group of ∞r permutations of the points x1, . . . ,xn is given,
and if it is possible to represent these permutations by analytic transformation
equations, then the corresponding ∞r transformations naturally form a transfor-
mation group.

Now, if one imagines that a determined group-operation is given, and in ad-
dition, that an analytic representation of it is given — hence if one has a trans-
formation group —, then this representation has in itself two obvious incidental
characters [ZUFÄLLIGKEIT].

The first incidental character is the choice of the parameters a1, . . . ,ar. It
stands to reason that this choice has in itself absolutely no influence on the
group-operation when we introduce in place of the a the new parameters
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ak = βk(a1, . . . ,ar). Only the analytic expression for the group-operation will
be a different one on this occasion; therefore, this expression represents a trans-
formation group as before.

The second incidental character in the analytic representation of our group-
operation is the choice of the coordinates in the space x1, . . . ,xn. Every permu-
tation of the points x1, . . . ,xn is fully independent of the choice of the system
of coordinates to which one refers the points x1, . . . ,xn; only the analytic repre-
sentation of the permutation changes with the concerned system of coordinates.
Naturally, the same holds for any group of permutations. From this, it results
that by introducing new variables, that is to say, by a change of the system of
coordinates, one obtains, from a transformation group, again a transformation
group, for the transformation equations that one receives after the introduction
of the new variables represent exactly the same group-operation as that of the
initial transformation group, so that they form in turn a transformation group.

Thus, the analytic considerations of the previous paragraphs are now ex-
plained in a conceptual way. Above all, it is at present clear why two similar
transformation groups are to be considered as not essentially distinct from each
other; namely, for the reason that they both represent analytically one and the
same group-operation.

3.3 Geometric Introduction of Infinitesimal Transformations

Now, for reasons of clarity, we shall present in advance the basic geometric way in
which infinitesimal transformations can be introduced, a way which is knowingly
passed over in silence in the great treatise [1].

Letting ε denote either an infinitesimal quantity in the sense of Leibniz, or a
small quantity subjected to Weierstrass’ rigorous epsilon-delta formalism, for fixed
k ∈ {1,2, . . . ,r}, we consider all the points:

x′
i = fi

(

x; e1, . . . ,ek + ε, . . . ,en
)

= xi +
∂ fi

∂ak
(x;e)ε+ · · · (i=1 ···n)

that are infinitesimally pushed from the starting points x = f (x;e) by adding the tiny
increment ε to only the k-th identity parameter ek. One may reinterpret this common
spatial move by introducing the vector field (and a new notation for its coefficients):

Xe
k :=

n

∑
i=1

∂ fi

∂ak
(x;e)

∂
∂xi

:=
n

∑
i=1
ξki(x)

∂
∂xi

,

which is either written as a derivation in modern style, or considered as a column
vector:

τ ( ∂ f1
∂ak

, · · · , ∂ fn
∂ak

)
∣
∣
∣
x
= τ(ξk1, . . . ,ξkn

)
∣
∣
∣
x



32 3 Fundamental Differential Equations for Finite Continuous Transformation Groups

based at x, where τ(·) denotes a transposition, yielding column vectors. Then x′ =
x+ ε Xe

k + · · · , or equivalently:

x′
i = xi + ε ξki + · · · (i=1 ···n),

where the omitted terms “+ · · ·” are of course an O(ε2), so that from the geometrical
viewpoint, x′ is infinitesimally pushed along the vector Xe

k

∣
∣
x up to a length ε .

Xe

e a1

a2

a3

e

a3

a2

a1

λ

p

p
11 x+ ε Xe

1

Xe
1

x+ ε Xe

Fig. 3.2 Infinitesimal displacement x′ = x+ ε Xe of all points

More generally, still starting from the identity parameter e, when we add to e an
arbitrary infinitesimal increment:

(

e1 + ε λ1, . . . ,ek + ε λk, . . . ,er + ε λr
)

,

where τ(λ1, . . . ,λr)
∣
∣
e is a fixed, constant vector based at e in the parameter space, it

follows by linearity of the tangential map, or else just by the chain rule in coordi-
nates, that:

fi(x; e+ ε λ ) = xi +
n

∑
k=1

ε λk
∂ fi

∂ak
(x;e)+ · · ·

= xi + ε
n

∑
k=1

λk ξki(x)+ · · · ,

so that all points x′ = x+ ε X + · · · are infinitesimally and simultaneously pushed
along the vector field:

X := λ1 Xe
1 + · · ·+λr Xe

r

which is the general linear combination of the r previous basic vector fields Xe
k ,

k = 1, . . . ,r.
Occasionally, Lie wrote that such a vector field X belongs to the group, x′ =

f (x;a), to mean that X itself comes with the infinitesimal translation x′ = x+ ε X
it is supposed to perform (dots should now intuitively be suppressed), and hence
accordingly, Lie systematically called such an X an infinitesimal transformation,
viewing x′ = x+ ε X as just a case of x′ = f (x,a). Another fundamental and very
deep reason why Lie said that X belongs to the group x′ = f (x,a) is that he showed
that local transformation group actions are in one-to-one correspondence with the
purely linear vector spaces:

VectK
(

X1,X2, . . . ,Xr
)
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of infinitesimal transformations, which in fact also inherit a crucial additional al-
gebraic structure directly from the group multiplication law. Without anticipating
too much, let us come to the purely analytic way how Engel and Lie introduce the
infinitesimal transformations.

3.4 Derivation of Fundamental Partial Differential Equations

So we have defined the concept of a purely local Lie transformation group, insisting
on the fact that composition and inversion are both represented by some precise
local analytic maps defined around the identity. The royal road towards the famous
theorems of Lie is to differentiate these finite data, namely to infinitesimalize.

We start with the group composition law (1) which we rewrite as follows:

x′′ = f
(

f (x;a);b
)

= f (x;a ·b) =: f (x;c).

Here, c := a ·b depends on a and b, but instead of a and b, following [1], we want to
consider a and c to be the independent parameters, namely we rewrite b = a−1 ·c =:
b(a,c) so that the equations:

fi
(

f (x;a); b(a,c)
) ≡ fi(x;c) (i=1 ···n)

hold identically for all x, all a and all c. Next, we differentiate these identities with
respect to ak, defining f ′

i ≡ fi(x′;b) and x′
j ≡ f j(x;a):

∂ f ′
i

∂x′
1

∂x′
1

∂ak
+ · · ·+ ∂ f ′

i

∂x′
n

∂x′
n

∂ak
+
∂ f ′

i

∂b1

∂b1

∂ak
+ · · ·+ ∂ f ′

i

∂br

∂br

∂ak
≡ 0 (i=1 ···n).

Here of course again, the argument of f ′ is
(

f (x,a);b(a,c)
)

, the argument of
x′ is (x;a) and the argument of b is (a,c). Thanks to x′′(x′;e) ≡ x′, the matrix
∂ f ′

i
∂x′

k

(

f (x;e);b(e,e)
)

is the identity In×n. So using Cramer’s rule,2 (Translator’s note:

— and possibly also shrinking ρ2 and σ2 if necessary, and likewise below, without
further mention.) for each fixed k, we can solve the preceding n linear equations

with respect to the n unknowns
∂x′

1
∂ak

, . . . , ∂x′
n

∂ak
, obtaining expressions of the form:

(2)

∂x′
ν

∂ak
(x; a) = Ξ1ν(x′,b)

∂b1

∂ak
(a,c)+ · · ·+Ξrν(x′,b)

∂br

∂ak
(a,c)

(ν=1 ···n ;k=1 ···r),

with some analytic functions Ξ jν(x′,b) that are independent of k.

On the other hand, in order to substitute the
∂b j
∂ak

, we differentiate with respect to
ak the identically satisfied identities:
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cμ ≡ mμ
(

a,b(a,c)
)

(μ=1 ···r).

We therefore get:

0 ≡ ∂mμ

∂ak
+

r

∑
π=1

∂mμ

∂bπ

∂bπ
∂ak

(μ=1 ···r).

But since the matrix ∂mμ
∂bπ

is the identity Ir×r for
(

a,b(a,c)
)∣
∣
(a,c)=(e,e) = (e,e), just

because m(e,b) ≡ b, Cramer’s rule again enables one to solve this system with
respect to the r unknowns ∂bπ

∂ak
, yielding expressions of the form:

∂bπ
∂ak

(a,c) =Ψkπ(a,c),

for certain functions Ψkπ , defined on a possibly smaller parameter product space
�r
σ2

×�r
σ2

. Again putting (a,c) = (e,e) in the same system before solving it, we get
in fact (notice the minus sign):

(∂bπ
∂ak

(e,e)
)1�π�r

1�k�r
= −Ir×r,

so thatΨkπ(e,e) = −δπk .

We can therefore now insert in (2) the gained valueΨkπ of ∂bπ
∂ak

, obtaining (and
quoting [1], p. 29) the following crucial partial differential equations:

(2’)
∂x′
ν

∂ak
(x;a) =

r

∑
π=1

Ψkπ(a,b)Ξπν(x′,b) (ν=1 ···n, k=1 ···r)

These equations are of utmost importance [ÄUSSERST WICHTIG], as we will
see later.

Here, we have replaced c by c = c(a,b) = a ·b, whence b
(

a,c(a,b)
) ≡ b, and we

have reconsidered (a,b) as the independent variables.

3.4.1 Restricting Considerations to a Single System of Parameters

Setting b := e in (2’) above, the partial derivatives of the group transformation equa-
tions x′

i = x′
i(x;a) with respect to the parameters ak at (x;a):
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(2”)
∂x′

i

∂ak
(x;a) =

r

∑
j=1
ψk j(a)ξ ji

(

x′(x;a)
)

(i=1 ···n, k=1 ···r),

appear to be linear combinations, with certain coefficients ψk j(a) :=Ψk j(a,e) de-
pending only upon a, of the quantities ξ ji(x′) :=Ξ ji(x′,b)

∣
∣
b=e. But in fact we already

know these quantities.

3.4.2 Comparing Different Frames
of Infinitesimal Transformations

Indeed, setting a = e above, thanks to ψk j(e) = −δ j
k , we get immediately:

ξki(x) = ξki
(

x′(x;e)
)

= − ∂x′
i

∂ak
(x;e),

whence the ξki(x) just coincide with the coefficients of the r infinitesimal transfor-
mations already introduced on p. 31 (with an overall opposite sign) and written as
derivations:

(3)
Xe

k

∣
∣
x =

∂ f1

∂ak
(x;e)

∂
∂x1

+ · · ·+ ∂ fn

∂ak
(x;e)

∂
∂xn

=: −ξk1(x)
∂
∂x1

−·· ·−ξkn(x)
∂
∂xn

(k=1 ···r).

Now at last, after having reproduced some rather blind computations by which Lie
expresses his brilliant synthetic thoughts, the crucial geometric interpretation of the
twice-boxed partial differential equations can be unveiled.

K
n K

n

Xa
k := ∂ f

∂ak

∣
∣
a

Xe
k := ∂ f

∂ak

∣
∣
e

∂ f
∂ak

∣
∣
a = ∑−ψk j(a)

∂ f
∂a j

∣
∣
e

fa(·)
x

x

Xe
k

∣
∣
x

Xe
k

∣
∣

fa(x) Xe
k

∣
∣

fa(x)
Xa

k

∣
∣

fa(x)

fa(x)
fa(x)

Fig. 3.3 Geometric interpretation of the fundamental differential equations

Instead of differentiating with respect to ak only at (x;e), we must in principle, for
reasons of generality, do the same at any (x;a), which yields the vector fields:
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Xa
k

∣
∣

fa(x)
:=
∂ f1

∂ak
(x;a)

∂
∂x1

+ · · ·+ ∂ fn

∂ak
(x;a)

∂
∂xn

(k=1 ···r),

and then the fundamental partial differential equations say that such new r infinites-
imal transformations:

Xa
k

∣
∣

fa(x)
= −ψk1(a)Xe

1

∣
∣

fa(x)
−·· ·−ψkr(a)Xe

r

∣
∣

fa(x)

are just linear combinations, with coefficients depending only upon the group pa-
rameters, of the r infinitesimal transformations Xe

1 , . . . ,X
e
r computed at the special

parameter e, and considered at the a-pushed points fa(x).
Finally, since the matrix ψk j(a) has an inverse that we will denote, as in [1], by

α jk(a) which is analytic in a neighborhood of e, we can also write the fundamental
differential equations in the reciprocal form, useful in the sequel:

(4) ξ ji
(

x′(x;a)
)

=
r

∑
k=1

α jk(a)
∂x′

i

∂ak
(x;a). (i=1 ···n ; j=1 ···r).

3.5 Essentializing the Group Parameters

As we have seen in the previous chapter, the (needed) suppression of illusory param-
eters in the transformation group equations x′

i = fi(x;a) = ∑α∈Nn U i
α(a)xα might

require us to relocalize considerations to some neighborhood of some generic a0,
which might possibly not include the identity e. Fortunately, this does not occur:
the group property ensures that the rank of the infinite coefficient map U∞ : a �−→
(

U i
α(a)

)1�i�n
α∈Nn is constant around e.

Proposition 3.1. For a finite continuous local Lie transformation group x′
i =

fi(x;a) = ∑α∈Nn U i
α(a)xα expanded in a power series with respect to x, the

following four conditions are equivalent:

(i) The parameters (a1, . . . ,ar) are not essential, namely the generic rank of a �−→
(

U i
α(a)

)1�i�n
α∈Nn is strictly less than r.

(ii) The rank at all a near the identity e = 0 (and not only the generic rank) of a �−→
(

U i
α(a)

)1�i�n
α∈Nn is strictly less than r.

(iii) There exists a vector field T = ∑r
k=1 τk(a) ∂

∂ak
having analytic coefficients τk(a)

which vanishes nowhere near e and annihilates all coefficient functions: 0 ≡
T U i

α for all i and all α .

(iv) There exist constants e1, . . . ,er ∈ K not all zero such that, if

Xk =
∂ f1

∂ak
(x;e)

∂
∂x1

+ · · ·+ ∂ fn

∂ak
(x;e)

∂
∂xn

(k=1 ···n)
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denote the r infinitesimal transformations associated to the group, then:

0 ≡ e1 X1 + · · ·+ er Xr.

Proof. Suppose that (iv) holds, namely via the expressions (3):

0 ≡ −e1 ξ1i(x)−·· ·− er ξri(x) (i=1 ···n).

By applying the linear combination ∑r
j=1 e j(·) to the partial differential equa-

tions (4), the left member thus becomes zero, and we get n equations:

0 ≡
r

∑
j=1

r

∑
k=1

e j θ jk(a)
∂x′

i

∂ak
(x;a) (i=1 ···n)

which just say that the not identically zero vector field:

T :=
r

∑
k=1

( r

∑
j=1

e j θ jk(a)
)
∂
∂ak

satisfies 0 ≡ T f1 ≡ ·· · ≡ T fn, or equivalently 0 ≡ T U i
α for all i and all α . Since

the matrix θ(a) equals −Ir×r at the identity e, the vectors T
∣
∣
a are nonzero for all a

in a neighborhood of a. In conclusion, (iv) implies (iii), and then straightforwardly
(iii) ⇒ (ii) ⇒ (i).

It remains to establish the reverse implications: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). As a
key fact, the generic rank in (i) happens to be constant.

Lemma 3.1. There exist two∞×∞matrices
(

Coeff
β
α(a)

)β∈Nn

α∈Nn and
(

Coeff
β
α(a)

)β∈Nn

α∈Nn

of analytic functions of the parameters a1, . . . ,ar which enjoy appropriate Cauchy
convergence estimates,3 (Translator’s note: — that are automatically satisfied and
hence can be passed over in silence —) the second matrix being the inverse of the
first, such that:

U i
α
(

m(a,b)
) ≡ ∑

β∈Nn

Coeff
β
α(a)U i

β (b) (i=1 ···n; α∈N
n),

and inversely:

U i
α(b) ≡ ∑

β∈Nn

Coeff
β
α(a)U i

β
(

m(a,b)
)

(i=1 ···n; α∈N
n).

As a consequence, the rank of the infinite coefficient mapping a �−→ (

U i
α(a)

)1�i�n
α∈Nn

is constant in a neighborhood of e.

Proof. By definition, the composition of x′ = ∑α∈Nn Uα(a)xα and of x′′
i =

∑β∈Nn U i
β (b)(x

′)β yields x′′
i = fi

(

x; m(a,b)
)

and we must therefore compute the
composed Taylor series expansion in question, which we place in the right-hand
side:
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∑
α∈Nn

U i
α
(

m(a,b)
)

xα ≡ ∑
β∈Nn

U i
β (b)

(

∑
α∈Nn

Uα(a)xα
)β

.

To this end, we use the general formula for the expansion of a k-th power:

(

∑
α∈Nn

cα xα
)k

= ∑
α∈Nn

xα
{

∑
α1+···+αk =α

cα1 · · ·cαk

}

of a scalar power series. Thus splitting x′β = (x′
1)
β1 · · ·(x′

n)
βn into scalar powers, we

may start to compute the desired expansion:

Composition = ∑
(β1,...,βn)

U i
β (b)

(

∑
α1∈Nn

U 1
α1(a)xα

1
)β1

· · ·
(

∑
αn∈Nn

U n
αn(a)xα

n
)βn

= ∑
(β1,...,βn)

U i
β (b)

[

∑
α1∈Nn

xα
1
{

∑
α1

1+···+α1
β1
=α1

U 1
α1

1
(a) · · ·U 1

α1
β1

(a)
}]

· · ·

· · ·
[

∑
αn∈Nn

xα
n
{

∑
αn

1+···+αn
βn
=αn

U n
αn

1
(a) · · ·U n

αn
βn
(a)

}]

.

To finish off, if we apply the expansion of a product of n power series:
(

∑α1 c1
α1 xα

1
)

· · ·
(

∑αn cn
αn xα

n
)

= ∑xα
{

∑α1+···+αn =α c1
α1 · · ·cn

αn

}

,

we then obtain straightforwardly:

∑
α∈Nn

U i
α
(

m(a,b)
)

xα = ∑
α∈Nn

xα
{

∑
(β1,...,βn)

U i
β (b) ∑

α1+···+αn =α
(

∑
α1

1+···+α1
β1

=α1

U 1
α1

1
(a) · · ·U 1

α1
β1

(a)
)

· · ·
(

∑
αn

1+···+αn
βn

=αn

U n
αn

1
(a) · · ·U n

αn
βn
(a)

)}

.

By identifying the coefficients of xα in both sides and by abbreviating just as
Coeff

β
α(a) the ∑α1+···+αn =α of the products of the n long sums appearing in the

second line, we have thus found the first family of equations. The second one is
obtained quite similarly simply by expanding the identities:

fi(x; b) ≡ fi
(

f (x; i(a)); m(a,b)
)

(i=1 ···n).

The two families of equations thus found must clearly be inverses of each other.
To show that the rank at e of a �→ U∞(a) is the same as it is at any a near e, we

apply ∂
∂bk

∣
∣
b=e to both the first and the second family of equations, which gives:
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r

∑
l=1

∂U i
α

∂al
(a)

∂ml

∂bk
(a,e) ≡ ∑

β∈Nn

Coeffβα(a)
∂U i

β

∂bk
(e)

∂U i
α

∂bk
(e) ≡ ∑

β∈Nn

Coeff
β
α(a)

( r

∑
l=1

∂U i
β (a)

∂al

∂ml

∂bk
(a,e)

)

(k=1 ···r; i=1 ···n; α∈N
n).

Of course, the appearing r × r matrix:

M(a) :=
(∂ml

∂bk
(a,e)

)1�l�r

1�k�r

has nonzero determinant at every a, because left translations b �→ m(a,b) of the
group are diffeomorphisms. Thus, if for each fixed i we denote by JacUi

∞(a) the

r ×∞ Jacobian matrix
( ∂U i

α
∂ak

(a)
)α∈Nn

1�k�r, the previous two families of identities when
written in matrix form:

M(a)JacUi
∞(a) ≡ Coeff(a)JacUi

∞(a)

JacUi
∞(e) ≡ Coeff(a)M(a)JacUi

∞(a)

show that the rank of Jaci
∞(a) must be equal to the rank of Jaci

∞(e). This completes
the proof of the auxiliary lemma. �

Thus, (i) of the proposition implies (ii) and moreover, the last part of the theorem
on p. 15 yields annihilating analytic vector fields T1, . . . ,Tr−ρ∞ on the parameter
space with dimVect

(

T1
∣
∣
a, . . . ,Tρ∞

∣
∣
a

)

= r −ρ∞ constant for all a near e. So (i) ⇒
(ii) ⇒ (iii). Finally, assuming (iii), namely:

0 ≡ T fi(x;a) =
r

∑
k=1

τk(a)
∂x′

i

∂ak
(x;a) (i=1 ···n)

with T
∣
∣
e �= 0, and replacing ∂x′

i
∂ak

by its value (2”) given by the fundamental differ-
ential equations, we get:

0 ≡
r

∑
j=1

r

∑
k=1

τk(a)ψk j(a)ξ ji
(

x′(x;a)
)

(i=1 ···n).

Setting a to be the identity element in these equations and introducing the r constants
(recall here that ψk j(e) = −δ j

k ):

c j := ∑r
k=1 τk(e)ψk j(e) = −τ j(e) ( j=1 ···r)

that are not all zero, since T
∣
∣
e �= 0, we get equations:

0 ≡ c1 ξ1i(x)+ · · ·+ cr ξri(x) (i=1 ···n)
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which, according to (3), are the coordinatewise expression of (iv). This completes
the proof of the proposition. �

3.6 The First Fundamental Theorem

Thanks to this proposition and to the corollary on p. 15, no relocalization is neces-
sary to get rid of superfluous parameters in finite continuous transformation groups
x′ = f (x;a1, . . . ,ar). Thus, without loss of generality parameters can (and surely
will) always be assumed to be essential. We can now translate Theorem 3 on pp. 33–
34 of [1] which summarizes all the preceding considerations, and we add some
technical details if this theorem is to be interpreted as a local statement (though Lie
has something different in mind, cf. the next section). As above, we assume im-
plicitly for simplicity that the group x′ = f (x; a) is local and contains the identity
transformation x′ = f (x; e) = x, but the theorem is in fact valid with less restrictive
assumptions, see Sect. 3.9 and especially Proposition 3.4.

Theorem 3. If the n equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

represent a finite continuous group, whose parameters a1, . . . ,ar are all essen-
tial, then x′

1, . . . ,x
′
n, considered as functions of a1, . . . ,ar, x1, . . . ,xn satisfy cer-

tain differential equations of the form:

(5)
∂x′

i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n; k=1 ···r),

which can also be written as:

(6) ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak
(i=1 ···n; j=1 ···r).

Here, neither the determinant of the ψk j(a), nor that of the α jk(a) vanishes
identically;4 (Translator’s note: The functions ξ ji(x) are, up to an overall minus
sign, just the coefficients of the r infinitesimal transformations obtained by dif-
ferentiation with respect to the parameters in the identity: ξ ji(x) = − ∂ fi

∂a j
(x; e),

i = 1, . . . ,n, j = 1, . . . ,n. Furthermore, with the purely local assumptions we
made above, we in fact have ψk j(e) = −δ j

k , so the mentioned determinants do
not vanish for all a in a neighborhood of e.) in addition, it is impossible to
indicate r quantities e1, . . . ,er independent of x′

1, . . . ,x
′
n [constants] and not all

vanishing such that the n expressions:

e1 ξ1i(x′)+ · · ·+ er ξri(x′) (i=1 ···n)

vanish simultaneously.
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Furthermore, the latter property is clearly equivalent to the nonexistence of con-
stants e1, . . . ,er not all zero such that:

0 ≡ e1 X1 + · · ·+ er Xr,

that is to say: the r infinitesimal transformations X1, . . . ,Xr are linearly independent.
This property was shown to derive from essentiality of parameters, and Theorem 8
p. 75 below will establish a satisfactory converse.

Thus in the above formulation, Engel and Lie implicitly introduce the r infinites-
imal transformations:

Xk :=
n

∑
i=1
ξki(x1, . . . ,xn)

∂
∂xi

(k=1 ···r)

of an r-term continuous group not as partial derivatives at the identity element with
respect to the parameters (which would be the intuitively clearest way):

Xe
k :=

n

∑
i=1

∂ fi

∂ak
(x; e)

∂
∂xi

≡ −Xk,

but rather indirectly as having coefficients ξki(x) stemming from the fundamental
differential equations (5); in fact, we already saw in (3) that both definitions agree
modulo sign. Slightly later in the treatise, the introduction is given explicitly.

Proposition. ([1], p. 67) Associated to every r-term group x′
i = fi(x1, . . . ,xn,

a1, . . . ,ar), there are r infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

which stand in such a relationship that equations of the form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n)

hold true, that can be solved with respect to the ξ ji:

ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak
.

The gist of Lie’s theory is to show that the datum of an r-term continuous (lo-
cal) transformation group is equivalent the datum of r infinitesimal transformations
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X1, . . . ,Xr associated in this way. The next few chapters are devoted to exposing
this (well known) one-to-one correspondence between local Lie groups and Lie al-
gebras of local analytic vector fields (Chap. 9), by following, by summarizing and
by adapting the original presentation, but without succumbing to the temptation of
overformalizing some alternative coordinate-free reasonings with the help of some
available contemporary views, because this would certainly impoverish the depth of
Lie’s original thought.

3.7 Fundamental Differential Equations
for the Inverse Transformations

According to fundamental Theorem 3 on p. 40 above, a general r-term continu-
ous transformation group x′

i = fi(x;a1, . . . ,ar) satisfies partial differential equations:
∂ fi/∂ak = ∑r

j=1 ψk j(a)ξ ji( f1, . . . , fn) that are used everywhere in basic Lie theory.
For the study of the adjoint group in Chap. 16 below, we also need to know how to
precisely write the fundamental differential equations that are satisfied by the group
of inverse transformations:

xi = fi
(

x′; i(a)
)

(i=1 ···n),

and this is easy. Following a well known path, we begin by differentiating these
equations with respect to the parameters ak:

∂xi

∂ak
=

r

∑
l=1

∂ fi

∂al

(

x′; i(a)
) ∂ il
∂ak

(a) (i=1 ···n ; k=1 ···r).

Naturally, here we replace the ∂ fi/∂al by their values ∑r
j=1 ψl j ξ ji given by the

fundamental differential equations of Theorem 3, and we obtain a double sum:

∂xi

∂ak
=

r

∑
l=1

r

∑
j=1
ψl j

(

i(a)
)

ξ ji
(

f (x′; i(a)
) ∂ il
∂ak

(a)

=:
r

∑
j=1
ϑk j(a)ξ ji(x) (i=1 ···n; k=1 ···r),

which we contract to a single sum by simply introducing the following new r × r
auxiliary matrix of parameter functions:

ϑk j(a) :=
r

∑
l=1

ψl j
(

i(a)
) ∂ il
∂ak

(a) (k, j=1 ···r),

whose precise expression in terms of i(a) will not matter anymore. It now remains

to check that this matrix
(

ϑk j(a)
)1� j�r

1�k�r is invertible for all a in a neighborhood of
the identity element e = (e1, . . . ,er). In fact, we claim that:
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ϑk j(e) = δ
j

k ,

which will clearly assure the invertibility in question. Firstly, we remember from
Theorem 3 on p. 40 that ψl j(e) =−δ j

l . Thus secondly, it now only remains to check

that ∂ il
∂ak

(e) = −δ l
k .

To check this, we differentiate with respect to ak the identities: e j ≡ m j
(

a, i(a)
)

,
j = 1, . . . ,r, which hold by definition, and we get:

0 ≡ ∂m j

∂ak
(e,e)+

r

∑
l=1

∂m j

∂bl
(e,e)

∂ il
∂ak

(e) ( j=1 ···r).

Alternatively, by differentiating the two families of r identities a j ≡ m j(a,e) and
b j ≡ m j(e,b) with respect to ak and with respect to bl , we immediately get two
expressions:

∂m j

∂ak
(e,e) = δ j

k and
∂m j

∂bl
(e,e) = δ j

l

which, when inserted into the above, yield the announced ∂ il
∂ak

(e)=−δ l
k . Sometimes,

we will write g(x; a) instead of f
(

x; i(a)
)

. As a result:

Lemma 3.2. The finite continuous transformation group x′
i = fi(x;a) and its inverse

transformations xi = gi(x′;a) := fi
(

x′; i(a)
)

both satisfy fundamental partial differ-
ential equations of the form:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂x′
i

∂ak
(x; a) =

r

∑
j=1
ψk j(a)ξ ji

(

x′(x;a)
)

(i=1 ···n ; k=1 ···r),

∂xi

∂ak
(x′; a) =

r

∑
j=1
ϑk j(a)ξ ji

(

x(x′;a)
)

(i=1 ···n ; k=1 ···r),

whereψ and ϑ are two r×r matrices of analytic functions with −ψk j(e) =ϑk j(e) =
δ j

k , and where the functions ξ ji appearing in both systems of equations:

ξ ji(x) := − ∂ fi

∂x j
(x;e) (i=1 ···n; j=1 ···r)

are, up to an overall minus sign, just the coefficients of the r infinitesimal transfor-
mations

Xe
1 =

∂ f
∂a1

(x; e), . . . . . . ,Xe
r =

∂ f
∂ar

(x; e)

obtained by differentiating the finite equations with respect to the parameters at the
identity element.
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Theorem 4. If, in the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of a group with the r essential parameters a1, . . . ,ar, one considers the xi as
functions of a1, . . . ,ar and of x′

1, . . . ,x
′
n, then there exist differential equations of

the form:

∂xi

∂ak
=

r

∑
j=1
ϑk j(a1, . . . ,ar)ξ ji(x1, . . . ,xn) (i=1 ···n ; k=1 ···r).

3.8 Transfer of Individual Infinitesimal Transformations
by the Group

With x = g(x′; a) denoting the inverse of x′ = f (x; a), we now differentiate with
respect to ak the identically satisfied equations:

x′
i ≡ fi

(

g(x′; a); a) (i=1 ···n),

which just say that an arbitrary transformation of the group followed by its inverse
gives the identity transformation, and we immediately get:

0 ≡
n

∑
ν=1

∂ fi

∂xν

∂gν
∂ak

+
∂ fi

∂ak
(i=1 ···n; k=1 ···r).

Thanks to the above two systems of partial differential equations, we may then re-
place ∂gν/∂ak by its value from the second equation of the lemma above, and also
∂ fi/∂ak by its value from the first equation in the same lemma:

(7)
0 ≡

n

∑
ν=1

{ r

∑
j=1
ϑk j(a)ξ jν(g)

} ∂ fi

∂xν
+

r

∑
j=1
ψk j(a)ξ ji( f )

(i=1 ···n; k=1 ···r).

In order to bring these equations to a more symmetric form, following [1] pp. 44–
45, we fix k and we multiply, for i = 1 to n, the i-th equation by ∂

∂x′
i
, we apply the

summation ∑n
i=1, we use the fact that, via the diffeomorphism x �→ fa(x) = x′, the

coordinate vector fields transform as:

∂
∂xν

=
n

∑
i=1

∂ fi

∂xν

∂
∂x′

i
,
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which just means in contemporary notation that:

( fa)∗
( ∂
∂xν

)

= ∑n
i=1

∂ fi
∂xν

∂
∂x′

i
(ν=1 ···n),

and we obtain, thanks to this observation, completely symmetric equations:

0 ≡
n

∑
j=1
ϑk j(a)

n

∑
ν=1

ξ jν(x)
∂
∂xν

+
r

∑
j=1
ψk j(a)

r

∑
ν=1

ξ jν(x′)
∂
∂x′
ν

(k=1 ···r),

in which the push-forwards ( fa)∗
(

∂/∂xν
)

are now implicitly understood. It is
easy to see that exactly the same equations, but with the opposite push-forwards
(ga)∗

(

∂/∂x′
ν
)

, can be obtained by subjecting to similar calculations the reverse,
identically satisfied equations: xi ≡ gi

(

f (x; a); a
)

. Consequently, we have obtained
two families of equations:

(8)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ≡
n

∑
j=1
ϑk j(a)

n

∑
ν=1

ξ jν(x)
∂
∂xν

∣
∣
∣
∣
x �→ga(x′)

+
r

∑
j=1
ψk j(a)

r

∑
ν=1

ξ jν(x′)
∂
∂x′
ν
,

0 ≡
n

∑
ν=1

ϑk j(a)
n

∑
ν=1

ξ jν(x)
∂
∂xν

+
r

∑
j=1
ψk j(a)

r

∑
ν=1

ξ jν(x′)
∂
∂x′
ν

∣
∣
∣
∣
x′ �→ fa(x)

(k=1 ···r),

in which we represent push-forwards of vector fields by the symbol of variable
replacement x �→ ga(x′) in the first line, and similarly in the second line, by x′ �→
fa(x).

Theorem 5. If the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

with the r essential parameters a1, . . . ,ar represent an r-term transformation
group, if, moreover, F(x′

1, . . . ,x
′
n) denotes an arbitrary function of x′

1, . . . ,x
′
n and

lastly, if the ξ jν(x), ψk j(a), ϑk j(a) denote the same functions of their arguments
as in the two Theorems 3 and 4, then the relations:

r

∑
j=1
ϑk j(a)

n

∑
ν=1

ξ jν(x)
∂F
∂xν

+
r

∑
j=1
ψk j(a)

n

∑
ν=1

ξ jν(x′)
∂F
∂x′
ν
= 0

(k=1 ···r)

hold true after the substitution x′
1 = f1(x,a), . . . , x′

n = fn(x,a).
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3.8.1 A Synthetic, Geometric Counterpart of the Computations

To formulate an adequate interpretation of the above considerations, we must intro-
duce the two systems of r infinitesimal transformations (1 � k � r):

Xk :=
n

∑
i=1
ξki(x)

∂
∂xi

and X ′
k :=

n

∑
i=1
ξki(x′)

∂
∂x′

i
,

where the second ones are defined to be exactly the same vector fields as the first
ones, but considered on x′-space. In fact, this target, auxiliary space x′ has to be
considered to be the same space as x-space, because the considered transformation
group acts on a single space. So we can also assume that X ′

k coincides with the value
of Xk at x′ and we shall sometimes switch to another notation:

X ′
k ≡ Xk

∣
∣
x′ .

Letting now α and ϑ̃ be the inverse matrices of ψ and of ϑ , namely:

r

∑
k=1

αlk(a)ψk j(a) = δ
j

l ,
r

∑
k=1

ϑ̃lk(a)ϑk j(a) = δ
j

l ,

we can multiply the first (resp. the second) line of (8) by αlk(a) (resp. by ϑ̃lk(a))
and then sum over k = 1, . . . ,r in order to obtain the resolved equations:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≡
r

∑
k=1

r

∑
j=1
αlk(a)ϑk j(a)Xj +X ′

l (k=1 ···r),

0 ≡ Xl +
r

∑
k=1

r

∑
j=1
ϑ̃lk(a)ψk j(a)X ′

j (k=1 ···r),

in which we have suppressed the push-forward symbols. We can readily rewrite
such equations in the contracted form:

Xk =
r

∑
j=1
ρ jk(a)X ′

j and X ′
k =

r

∑
j=1
ρ̃ jk(a)Xj

(k=1 ···r),

by introducing two appropriate auxiliary r×r matrices ρ jk(a) :=−∑r
l=1 ϑ̃kl(a)ψl j(a)

and ρ̃ jk(a) := −∑r
l=1 αkl(a)ϑl j(a) of analytic functions (whose precise expression

does not matter here) which depend only upon a and which, naturally, are inverses
of each other. A diagram illustrating what we have achieved at this point is welcome
and intuitively helpful.

Proposition 3.2. If, in each one of the r basic infinitesimal transformations of the
finite continuous transformation group x′ = f (x; a)= fa(x) having the inverse trans-
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(x′
1, . . . ,x

′
n)K

n (x1, . . . ,xn) K
n

X ′
1

X ′
r

...X1

Xr

...

fa(·) fa(x)

x′x
f ∗
a
(

X ′
k) = ∑ ρ̃ jk(a)Xj

ga(·) g∗
a(Xk) = ∑ ρ jk(a)X ′

j
ga(x′)

Fig. 3.4 Transfer of infinitesimal transformations by the group

formations x = ga(x′), namely if in the vector fields:

Xk =
n

∑
i=1
ξki(x)

∂
∂xi

(k=1 ···r), ξki(x) := − ∂ fi
∂ak

(x; e),

one introduces the new variables x′ = fa(x), that is to say: replaces x by ga(x′)
and ∂

∂xi
by ∑n

ν=1
∂ fν
∂xi

(x; a) ∂
∂x′
ν

, then one necessarily obtains a linear combination

of the same infinitesimal transformations X ′
l = ∑

n
i=1 ξki(x′) ∂

∂x′
i

at the point x′ with

coefficients depending only upon the parameters a1, . . . ,ar:

( fa)∗
(

Xk
∣
∣
x

)

= (ga)∗
(

Xk
∣
∣
ga(x′)

)

=
r

∑
l=1

ρlk(a1, . . . ,ar)Xl
∣
∣
x′ (k=1 ···r).

Of course, through the inverse change of variable x′ �→ fa(x), the infinitesimal trans-
formations X ′

k are subjected to similar linear substitutions:

(ga)∗
(

X ′
k

∣
∣
x′
)

= ( fa)∗
(

X ′
k

∣
∣

fa(x)

)

=
r

∑
l=1

ρ̃lk(a)Xl
∣
∣
x (k=1 ···r).

3.8.2 Transfer of General Infinitesimal Transformations

Thanks to the linearity of the tangent map, we deduce that the general infinitesimal
transformation of our group:

X := e1 X1 + · · ·+ er Xr,

coordinatized in the basis
(

Xk
)

1�k�r by means of some r arbitrary constants
e1, . . . ,er ∈ K, then transforms as:

(ga)∗
(

e1 X1 + · · ·+ er Xr
∣
∣
ga(x′)

)

=
r

∑
k=1

ek

r

∑
l=1

ρlk(a)Xl
∣
∣
x′

=: e′
1(e; a)X1

∣
∣
x′ + · · ·+ e′

r(e; a)Xr
∣
∣
x′
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and hence we obtain that the change of variables x′ = fa(x) caused by a general
transformation of the group acts linearly on the space �K

r of its infinitesimal trans-
formations:

e′
k(e; a) :=

r

∑
l=1

ρkl(a)el (k=1 ···r),

by just multiplying the coordinates el by the matrix ρkl(a). Inversely, we have:

ek(e′; a) =
r

∑
l=1

ρ̃kl(a)e′
l (k=1 ···r),

where ρ̃(a) is the inverse matrix of ρ(a).

Proposition 4. ([1], p. 81) If the equations x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) repre-

sent an r-term group and if this group contains the r independent infinitesimal
transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r),

then after the introduction of the new variables x′
i = fi(x,a), the general in-

finitesimal transformation:

e1 X1( f )+ · · ·+ er Xr f

keeps its form in so far as, for every system of values e1, . . . ,er, there is a relation
of the form:

r

∑
k=1

ek Xk( f ) =
r

∑
k=1

e′
k X ′

k( f ),

where e′
1, . . . ,e

′
r are independent linear homogeneous functions of e1, . . . ,er with

coefficients which are functions of a1, . . . ,ar.

3.8.3 Towards the Adjoint Action

Thanks to the linearity of the tangent map, we deduce that the general transformation
of our group:

X := e1 X1 + · · ·+ er Xr,

coordinatized in the basis
(

Xk
)

1�k�r by means of some r arbitrary constants
e1, . . . ,er ∈ K, then transforms as:
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(ga)∗
(

e1 X1 + · · ·+ er Xr
∣
∣
ga(x′)

)

=
r

∑
k=1

ek

r

∑
l=1

ρlk(a)Xl
∣
∣
x′

=: e′
1(e; a)X1

∣
∣
x′ + · · ·+ e′

r(e; a)Xr
∣
∣
x′

and hence we obtain that the change of variables x′ = fa(x) performed by a general
transformation of the group then acts linearly on the space � K

r of its infinitesimal
transformations:

e′
k(e; a) :=

r

∑
l=1

ρkl(a) · el (k=1 ···r),

by just multiplying the coordinates el by the matrix ρkl(a).
Nowadays, the adjoint action is defined as an action of an abstract Lie group on

its Lie algebra. But in Chap. 16 below, Lie defines it in the more general context of a
transformation group, as follows. Employing the present terminology, one considers
the general infinitesimal transformation X

∣
∣
x′ = e1 X1 + · · ·+ erXr

∣
∣
x′ of the group as

being based at the point x′, and one computes the adjoint action Ad fa
(

X
∣
∣
x′
)

of fa

on X
∣
∣
x′ by differentiating at t = 0 the composition:5 (Translator’s note: One term

groups (t,x) �−→ exp(tX)(x) are introduced in Chap. 4.)

fa ◦ exp(tX)◦ f −1
a

which represents the action of the interior automorphism associated to fa on the
one-parameter subgroup (t,w) �−→ exp(tX)(x) generated by X :

Ad fa
(

X
∣
∣
x′
)

:=
d
d t

(

fa ◦ exp(tX)(·)◦ f −1
a (x′)

)∣
∣
∣
t=0

= ( fa)∗
d
d t

(

exp(tX)
(

f −1
a (x′)

))
∣
∣
∣
t=0

= ( fa)∗
(

X
∣
∣

f −1
a (x′)

)

= (ga)∗
(

X
∣
∣
ga(x′)

)

= (ga)∗
(

e1 X1 + · · ·+ er Xr
∣
∣
ga(x′)

)

= e′
1(e; a)X1

∣
∣
x′ + · · ·+ e′

r(e; a)Xr
∣
∣
x′ .

We thus recover exactly the linear action e′
k = e′

k(e; a1, . . . ,ar) boxed above. A dia-
gram is welcome: from the left, the point x is sent by fa to x′ = fa(x)— or inversely
x = ga(x′)—, the vector X |x = ∑ ek Xk

∣
∣
ga(x′) is sent to (ga)∗

(

X
∣
∣
ga(x′)

)

by means of

the differential ( fa)∗ = (ga)∗ and Lie’s theorem says that this transferred vector is
a linear combination of the existing vectors Xk|x′ based at x′, with coefficients de-
pending on the e j and on the a j.
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(ga)∗
(

X
∣
∣
ga(x′)

)

X
∣
∣
x′

Tx′Kn

X
∣
∣
ga(x′)

ga
ga(x′)

x′
fa

Fig. 3.5 Differentiating the action of an interior automorphism

3.9 Substituting the Axiom of Inverse
for a Differential Equations Assumption

Notwithstanding the counterexample discovered by Engel in 1884 (p. 21), in his
systematic treatise Lie wanted to avoid employing both the axiom of inverse and
the axiom of identity as much as possible. As a result, the first nine fundamental
chapters of [1] regularly emphasize what can be derived from only the axiom of
composition.

In this section, instead of purely local hypotheses valuable in small polydiscs
(Sect. 3.1), we present the semi-global topological hypotheses accurately made by
Lie and Engel at the very beginning of their book. After a while, they emphasize

that the fundamental differential equations ∂x′
i

∂ak
= ∑r

j=1 ψk j(a)ξ ji(x′), which can be
deduced from only the composition axiom, should assume the position of being the
main continuous group assumption. A central technical theorem states that if some
transformation equations x′ = f (x; a) with essential parameters satisfy differential

equations ∂x′
i

∂ak
= ∑r

j=1 ψk j(a)ξ ji(x′), for x and a running in appropriate domains
X ⊂ K

n and A ⊂ K
r, then every transformation x′ = f (x; a) whose parameter

a lies in a small neighborhood of some fixed a0 ∈ A can be obtained by firstly
performing the initial transformation x = f (x; a0) and then secondly by performing
a certain transformation:

x′
i = exp

(

tλ1X1 + · · ·+ tλrXr
)

(xi) (i=1 ···n)

of the one-term group (Chap. 4 below) generated by some suitable linear combina-
tion λ1X1 + · · ·+λrXr of the n infinitesimal transformations Xk := ∑n

i=1 ξki(x) ∂
∂xi

.
This theorem will be of crucial use when establishing the so-called Second Funda-
mental Theorem: To any Lie algebra of local analytic vector fields is associated a
local Lie transformation group containing the identity element (Chap. 9 below).

Also postponed to Chap. 9 below, Lie’s answer to Engel’s counterexample will
show that, starting from transformation equations x′ = f (x; a) that are only assumed
to be closed under composition, one can always capture the identity element and all
the inverses of transformations near the identity by appropriately changing coordi-
nates in the parameter space (Theorem 26, p. 177).
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3.9.1 Specifying Domains of Existence

Thus, we consider K-analytic transformation equations x′
i = fi(x; a) defined on a

more general domain than a product Δ n
ρ ×�r

σ of two small polydiscs centered at the
origin. Here is how Lie and Engel specify their domains of existence on p. 14 of [1],
and these domains might be global.

§ 2. In the transformation equations:

(1) x′
i = fi(x1, . . . ,xn; a1, . . . ,ar) (i=1 ···n),

let all the parameters a1, . . . ,ar now be essential.

Since the fi are analytic functions of their arguments, in the domain [GE-
BIETE] of all systems of values x1, . . . ,xn and in the domain of all systems of
values a1, . . . ,ar, we can choose a region [BEREICH] (x) and, respectively, a
region (a) such that the following holds:

Firstly. The fi(x, a) are single-valued [EINDEUTIG] functions of the n+ r
variables x1, . . . ,xn, a1, . . . ,ar in the complete extension [AUSDEHNUNG] of the
two regions (x) and (a).

Secondly. The fi(x, a) behave regularly in the neighborhood of every system
of values x0

1, . . . ,x
0
n, a0

1, . . . ,a
0
r , hence are expandable in ordinary power series

with respect to x1 − x0
1, . . . , xn − x0

n, as soon as x0
1, . . . ,x

0
n lies arbitrarily in the

domain (x), and a0
1, . . . ,a

0
r lies arbitrarily in the domain (a).

Thirdly. The functional determinant:

∑± ∂ f1

∂x1
· · · ∂ fn

∂xn

vanishes for no combination of systems of values of xi and of ak in the two
domains (x) and (a), respectively.

Fourthly. If one gives to the parameters ak in the equations x′
i = fi(x, a) any

of the values a0
k in the domain (a), then the equations:

x′
i = fi(x1, . . . ,xn; a0

1, . . . ,a
0
r ) (i=1 ···n)

always produce two different systems of values x′
1, . . . ,x

′
n for two different sys-

tems of values x1, . . . ,xn of the domain (x).
We assume that the two regions (x) and (a) are chosen in such a way that

these four conditions are satisfied. If we give to the variables xi in the equations
x′

i = fi(x, a) all possible values in (x) and to the parameters ak all possible values
in (a), then in their domain, the x′

i run throughout a certain region, which we can
denote symbolically by the equation x′ = f

(

(x)(a)
)

. This new domain has the
following properties:
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Firstly. If a0
1, . . . ,a

0
r is an arbitrary system of values of (a) and x′

1
0, . . . ,x′

n
0 an

arbitrary system of values of the subregion x′ = f
(

(x)(a0)
)

, then in the neigh-

borhood of the system of values x′
i
0, a0

k , the x1, . . . ,xn can be expanded in ordi-

nary power series with respect to x′
1 − x′

1
0, . . . ,x′

n − x′
n

0, a1 −a0
1, . . . ,an −a0

n.
Secondly. If one gives to the ak fixed values a0

k in the domain (a), then in
the equations:

x′
i = fi(x1, . . . ,xn; a0

1, . . . ,a
0
r ) (i=1 ···n),

the quantities x1, . . . ,xn will be single-valued functions of x′
1, . . . ,x

′
n, which be-

have regularly in the complete extension of the region x′ = f
(

(x)(a0)
)

.

Referring to the excerpt p. 26, we may rephrase these basic assumptions as fol-
lows. The fi(x; a) are defined for (x,a) belonging to the product:

X ×A ⊂ K
n ×K

r

of two domains X ⊂ K
n and A ⊂ K

r. These functions are K-analytic in both vari-
ables, hence expandable in Taylor series at every point (x0,a0). Furthermore, for
every fixed a0, the map x �→ f (x; a0) is assumed to constitute a K-analytic diffeo-
morphism of X ×{a0} onto its image. Of course, the inverse map is also locally
expandable in power series, by virtue of the K-analytic inverse function theorem.

To insure that the composition of two transformations exists, one requires that
there exist nonempty subdomains:

X 1 ⊂ X and A 1 ⊂ A ,

with the property that for every fixed a1 ∈ A 1:

f
(

X 1 ×{a1}) ⊂ X ,

so that for every such an a1 ∈ A 1 and for every fixed b ∈ A , the composed map:

x �−→ f
(

f (x; a1); b
)

is well defined for all x ∈ X 1 and moreover, is a K-analytic diffeomorphism onto
its image. In fact, it is even K-analytic with respect to all the variables (x,a1,b) in
X 1 ×A 1 ×A . Lie’s fundamental and unique group composition axiom may then
be expressed as follows.

(A1) There exists a Kr-valued K-analytic map ϕ = ϕ(a,b) defined in A 1 ×A 1 with
ϕ
(

A 1 ×A 1
) ⊂ A such that:

f
(

f (x; a); b
) ≡ f

(

x; ϕ(a,b)
)

for all x ∈ X 1, a ∈ A 1, b ∈ A 1.
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Here are two further specific unmentioned assumptions that Lie presupposes, still
with the goal of admitting neither the identity element, nor the existence of inverses.

(A2) There is a Kr-valued K-analytic map (a,c) �−→ b= b(a,c) defined for a running
in a certain (nonempty) subdomain A 2 ⊂ A 1 and for c running in a certain
(nonempty) subdomain C 2 ⊂ A 1 with b

(

A 2 ×C 2
) ⊂ A 1 which solves b in

terms of (a,c) in the equations ck = ϕk(a,b), namely which satisfies identically:

c ≡ ϕ(a, b(a,c)
)

for all a ∈ A 2, c ∈ C 2.

Conversely, ϕ(a,b) solves c in terms of (a,b) in the equations bk = bk(a,c),
namely more precisely: there exists a certain (nonempty) subdomain A 3 ⊂ A 2

(⊂A 1) and a certain (nonempty) subdomain B3 ⊂A 1 with ϕ
(

A 3 ×B3
)⊂C 2

such that one has identically:

b ≡ b
(

a, ϕ(a,b)
)

for all a ∈ A 3, b ∈ B3.

Example. In Engel’s counterexample of the group x′ = χ(λ )x with a Riemann
uniformizing map ω : Δ → Λ as on p. 21 having inverse χ : Λ → Δ , these three
requirements are satisfied, and in addition, we claim that one may even take X =
K and A 1 = A = Λ , with no shrinking, for composition happens to hold in fact
without restriction in this case. Indeed, starting from the general composition:

x′′ = χ(λ2)x′ = χ(λ2)χ(λ1)x,

that is to say, from x′′ = χ(λ2)χ(λ1)x, in order to represent it in the specific form
x′′ = χ(λ3)x, it is necessary and sufficient to solve χ(λ3) = χ(λ1)χ(λ2), hence we
may take for ϕ:

λ3 = ω
(

χ(λ1)χ(λ2)
)

=: ϕ(λ1,λ2),

without shrinking the domains, for the two inequalities |χ(λ1)|< 1 and |χ(λ2)|< 1
readily imply that |χ(λ1)χ(λ2)| < 1 too so that ω

(

χ(λ1)χ(λ2)
)

is defined. On the
other hand, for solving λ2 in terms of (λ1,λ3) in the above equation, we are naturally
led to define:

b(λ1,λ3) := ω
(

χ(λ3)
/

χ(λ1)
)

,

and then b = b(λ1,λ3) is defined under the specific restriction that |χ(λ3)| <
|χ(λ1)|.

However, the axiom (A2) still happens to be incomplete for later use, and one
should add the following axiom in order to also be able to solve a in c = ϕ(a,b).

(A3) There is a Km-valued K-analytic map (b,c) �−→ a= a(b,c) defined in B4 ×C 4

with B4 ⊂ A 1 and C 4 ⊂ A 1, and with a
(

B4 ×C 4
) ⊂ A 1, such that one has

identically:
c ≡ ϕ(a(b,c), b

)

for all b ∈ B4, c ∈ C 4.

Conversely, ϕ(a,b) solves c in the equations ak = ak(b,c), namely more pre-
cisely: there exist B5 ⊂ B4 and A 5 ⊂ A 1 with ϕ

(

A 5 ×B5
) ⊂ C 4 such that
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one has identically:

a ≡ a
(

b, ϕ(a,b)
)

for all a ∈ A 5, b ∈ B5,

and furthermore in addition, with a
(

B5 ×C 4
) ⊂ A 2 and with b

(

A 5 ×C 4
) ⊂

B4 such that one also has identically:

b ≡ b
(

a(b,c), c
)

for all b ∈ B5, c ∈ C 4

a ≡ a
(

b(a,c), a
)

for all a ∈ A 5, c ∈ C 4.

The introduction of the numerous (nonempty) domains A 2, C 2, A 3, B3, B4,
C 4, A 5, B5 which appears slightly unnatural and seems to depend upon the order
in which the solving maps a and b are considered can be avoided by requiring from
the beginning only that there exist two subdomains A 3 ⊂ A 2 ⊂ A 1 such that one
has uniformly:

c ≡ ϕ(a, b(a,c)
)

for all a ∈ A 3, c ∈ A 3

c ≡ ϕ(a(b,c), b
)

for all b ∈ A 3, c ∈ A 3

b ≡ b
(

a(b,c), c
)

for all b ∈ A 3, c ∈ A 3

b ≡ b
(

a, ϕ(a,b)
)

for all a ∈ A 3, b ∈ A 3

a ≡ a
(

b(a,c), c
)

for all a ∈ A 3, c ∈ A 3

a ≡ a
(

b, ϕ(a,b)
)

for all a ∈ A 3, b ∈ A 3.

We will adopt these axioms in the next subsection. Importantly, we would
like to point out that, although b(a,c) seems to represent the group product
a−1 · c = m

(

i(a), c
)

, the assumption (A2) neither reintroduces inverses, nor the
identity element, it just means that one may solve b by means of the implicit function
theorem in the parameter composition equations ck = ϕk(a1, . . . ,ar, b1, . . . ,br).

3.9.2 The Group Composition Axiom and Fundamental
Differential Equations

As mentioned earlier, the fundamental Theorem 3, p. 40, concerning differential
equations satisfied by a transformation group was in fact stated and proved in [1]
under semi-global assumptions essentially equivalent to the ones we just formulated
above with A 3 ⊂ A 2 ⊂ A 1, so now, we can restitute it.

Proposition 3.4. Under these assumptions, there is an r × r matrix of functions
(ψk j(a))

1� j�r
1�k�r which is K-analytic and invertible in A 3, and there are certain

functions ξ ji(x), K-analytic in X , such that the following differential equations:
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(2)
∂x′

i

∂ak
(x; a) =

r

∑
j=1
ψk j(a)ξ ji(x′) (i=1 ···n ; k=1 ···r)

are identically satisfied for all x ∈ X 1 and all a ∈ A 3 after replacing x′ by f (x; a).
Here, the functions ξ ji(x′) are defined by choosing arbitrarily some fixed b0 ∈ A 3

and by setting:

ξ ji(x′
1, . . . ,x

′
n) =

[
∂x′

i

∂b j

]

b=b0
=

[ r

∑
k=1

∂x′
i

∂ak

∂ak

∂b j

]

b=b0
,

and moreover, in the equations inverse to (2):

ξ ji(x′) =
r

∑
k=1

α jk(a)
∂x′

i

∂ak
(x; a),

the (inverse) coefficients α jk(a) are defined by:

α jk(a) =
[
∂ak

∂b j

]

b=b0
.

Proof. The computations which we have already conducted on p. 33 for a purely
local transformation group can be performed in a similar way here. In brief, using
b = b(a,c) from (A2), we consider the identities:

fi
(

f (x; a); b(a,c)
) ≡ fi(x; c) (i=1 ···n)

and we differentiate them with respect to ak; if we use the shorthand f ′
i ≡

fi
(

x′;b(a,c)
)

and x′
j ≡ f j(x;a), this gives:

n

∑
ν=1

∂ f ′
i

∂x′
ν

∂x′
ν

∂ak
+

r

∑
j=1

∂ f ′
i

∂b j

∂b j

∂ak
≡ 0 (i=1 ···n).

By the diffeomorphism assumptions, the matrix
( ∂ f ′

i
∂x′
ν
(x′; b)

)1�ν�n
1�i�n has a K-analytic

inverse for all (x′,b)∈X ×A , so an application of Cramer’s rule yields a resolution
of the form:

∂x′
ν

∂ak
(x; a) = Ξ1ν

(

x′,b(a,c)
) ∂b1

∂ak
(a,c)+ · · ·+Ξrν

(

x′,b(a,c)
) ∂br

∂ak
(a,c)

(ν=1 ···n ; k=1 ···r).

Here of course, a, c ∈ A 3. Then we replace c by ϕ(a,b), with a, b ∈ A 3, we con-
fer to b any fixed value, say b0 (recall that the identity e is not available), and we
get the desired differential equations with ξ ji(x′) := Ξ ji(x′,b0) and with ψk j(a) :=
∂b j
∂ak

(a,b0). Naturally, the invertibility of the matrix ψk j(a) comes from (A2).
Next, we multiply each equation just obtained (changing indices):
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(2’)
∂x′

i

∂ak
(x; a) ≡

r

∑
ν=1

∂bν
∂ak

(a,c)Ξν i
(

x′, b(a,c)
)

by ∂ak
∂bl

(b,c), where l ∈ {1, . . . ,r} is fixed, we consider (b,c), instead of (a,c), as
the 2r independent variables while a = a(b,c), and we sum with respect to k for
k = 1, . . . ,r:

r

∑
k=1

∂x′
i

∂ak

∂ak

∂bl
=

r

∑
ν=1

r

∑
k=1

∂ak

∂bl

∂bν
∂ak

Ξν i.

Now, the chain rule and the fact that ∂ak/∂bl is the inverse matrix of ∂bν/∂ak

enables us to simplify both sides (interchanging members):

(3)
r

∑
k=1

∂x′
i

∂ak

∂ak

∂bl
=
∂x′

i

∂bl
= Ξli.

Specializing b := b0 ∈ A 3, we get the announced representation:

ξ ji(x′) = Ξ ji(x′, b0) = ∂x′
i/∂b j

∣
∣
b=b0

,

and by identification, we also obtain at the same time the representation α jk(a) =
∂ak/∂b j

∣
∣
b=b0

. �

We end up by observing that, similarly as we did on p. 33, one could proceed to
some further computations, although it would not really be needed for the proposi-
tion. We may indeed differentiate the equations:

cμ ≡ ϕμ
(

a(b,c), b) (μ=1 ···r)

with respect to bl , and for this, we translate a short passage of [1], p. 20.

Hence one has:

r

∑
k=1

∂ϕμ
∂ak

∂ak

∂bl
+
∂ϕμ
∂bl

= 0 (μ, l=1 ···r),

whence we obtain:

∂ak

∂bl
= −

∑± ∂ϕ1
∂a1

· · · ∂ϕk−1
∂ak−1

∂ϕk
∂bl

∂ϕk+1
∂ak+1

· · · ∂ϕr
∂ar

∑± ∂ϕ1
∂a1

· · · ∂ϕr
∂ar

= Alk(a1, . . . ,ar, b1, . . . ,br).

When we insert these values into (3), we obtain the equations:

(3’) Ξli(x′,b) =
r

∑
k=1

Alk(a, b)
∂x′

i

∂ak
(i=1 ···n ; l=1 ···r).
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Of course by identification with (3), we must then have Alk(a, b) = ∂ak/∂bl here.
In conclusion, we have presented the complete thought of Lie and Engel, who did
not necessarily consider the axioms of groups to be strictly local.

3.9.3 The Differential Equations Assumption
and its Consequences

Now, we would like to emphasize that instead of axioms (A1-2-3), in his answer to
Engel’s counterexample and in several other places as well, Lie says that he wants
to set as a fundamental hypothesis the existence of a system of differential equations
as the one above, with an invertible matrix ψk j(a).

§ 17. ([1], pp. 67–68) For the time being, we want to refrain from assum-
ing that the equations x′

i = fi(x1, . . . ,xn, a1, . . . ,ar) should represent an r-term
group. Rather, concerning the equations (1), we want only to assume: firstly,
that they represent a family of ∞r different transformations, hence that the r pa-
rameters a1, . . . ,ar are all essential, and secondly, that they satisfy differential
equations of the specific form (2).

So renaming the domain A 3 considered above simply as A 1, we will funda-
mentally assume in Sect. 4.6 of Chap. 4 that differential equations of the specific
form (2) hold for all x ∈ X 1 and all a ∈ A 1, forgetting completely about compo-
sition, and most importantly, assuming neither the existence of the identity element,
nor the existence of inverse transformations. At first, as explained by Engel and Lie,
one can easily deduce from such new economical assumptions two basic nondegen-
eracy conditions.

Lemma 3.3. Consider transformation equations x′
i = fi(x; a) defined for x ∈X and

a ∈ A having essential parameters a1, . . . ,ar which satisfy differential equations of
the form:

(2)
∂x′

i

∂ak
(x; a) =

r

∑
j=1
ψk j(a)ξ ji(x′) (i=1 ···n ; k=1 ···r),

for all x ∈ X 1 and all a ∈ A 1. Then the determinant of the ψk j(a) does not vanish
identically and furthermore, the r infinitesimal transformations:

X ′
k =

n

∑
i=1
ξki(x′)

∂
∂x′

i
(k=1 ···r)

are independent of each other.
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Proof. If the determinant of the ψk j(a) vanished identically, there would exist
a locally defined (for a running in the locus where ψk j(a) is of maximal, lo-
cally constant rank) nonzero K-analytic vector

(

τ1(a), . . . ,τr(a)
)

in the kernel
of ψk j(a). Consequently, after multiplying (2) by τk(a), we would derive the

equations: ∑r
k=1 τk(a)

∂x′
i

∂ak
(x; a) ≡ 0 which would then contradict the essentiality of

parameters, according to the theorem on p. 15.
As a result, for any a belonging to the open set where detψk j(a) �= 0, we can

locally invert the differential equations (2) and write them down in the form:

ξ ji(x′) =
r

∑
k=1

α jk(a)
∂x′

i

∂ak
(x; a) (i=1 ···n; j=1 ···r).

If there existed constants e′
1, . . . ,e

′
r not all zero with e′

1X ′
1+ · · ·+e′

rX
′
r = 0, we would

then deduce the relation:

0 ≡
r

∑
k=1

r

∑
j=1

e′
jα jk(a)

∂x′
i

∂ak
(x; a)

which would again contradict the essentiality of parameters. �

3.9.4 Towards Theorem 26

At the end of the next chapter in Sect. 4.6, we shall be in a position to pursue the
restoration of further refined propositions towards Lie’s Theorem 26 (translated in
Chap. 9, p. 177) which will fully answer Engel’s counterexample. In brief, and by
anticipation, this theorem states the following.

Let x′
i = fi(x; a1, . . . ,ar) be a family of transformation equations which is only

assumed to be closed under composition, a finite continuous transformation group,
in the sense of Lie. According to Proposition 3.4 above, there exists a system of
fundamental differential equations of the form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a) ·ξ ji(x′) (i=1 ···n ;k=1 ···r)

which is identically satisfied by the functions fi(x,a), where the ψk j are certain
analytic functions of the parameters (a1, . . . ,ar). If one introduces the r infinitesimal
transformations:

n

∑
i=1
ξki(x)

∂ f
∂xi

=: Xk( f ) (k=1 ···r),

and if one forms the so-called canonical finite equations:

x′
i = exp

(

λ1X1 + · · ·+λkXk
)

(x)
=: gi(x; λ1, . . . ,λr) (i=1 ···n)
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of the r-term group which is generated by these r infinitesimal transformations —
see the next Chap. 4 for expX(x)— then this group contains the identity element,
namely g(x; 0), and its transformations are ordered as inverses by pairs, namely:
g(x; −λ ) = g(x; λ )−1. Lastly, the Theorem 26 in question states that in these finite
equations x′

i = gi(x; λ ), it is possible to introduce new local parameters a1, . . . ,ar in
place of λ1, . . . ,λr so that the resulting transformation equations:

x′
i = gi

(

x; λ1(a), . . . ,λr(a)
)

=: f i(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

represent a family of ∞r transformations which embraces, possibly after analytic
extension, all the ∞r initial transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar).

In this way, Lie not only answers Engel’s counterexample x′ = χ(λ )x by saying
that one has to restitute the plain transformations x′ = ζ x by appropriately changing
coordinates in the parameter space, but also, Lie really establishes the conjecture
he suspected (quotation p. 20), modulo the fact that the conjecture was not true
without a suitable change of coordinates in the parameter space. To our knowledge,
no modern treatise restitutes this theorem of Lie, although a great deal of the first
170 pages of the Theorie der Transformationsgruppen is devoted to economizing the
axiom of inverse. We finish this chapter with a quotation ([1], pp. 81–82) motivating
the introduction of one-term groups exp(tX)(x) in the next chapter.

3.9.5 Metaphysical Links with Substitution Theory

We conclude this chapter with a brief quotation motivating what will follow.

The concepts and the propositions of the theory of continuous transformation
groups often have their analogues in the theory of substitutions,1 that is to say,
in the theory of discontinuous groups. In the course of our studies, we will
not emphasize this analogy every time, but we will more often remember it
by translating the terminology of the theory of substitutions into the theory of
transformation groups, and this shall take place as far as possible.

Here, we want to point out that the one-term groups in the theory of transfor-
mation groups play the same rôle as the groups generated by a single substitu-
tion in the theory of substitutions.

In a way, we shall consider the one-term groups, or their infinitesimal trans-
formations, as the elements of the r-term group. In the studies concerning r-term
groups, it is, almost in all circumstances, advantageous to direct at first the at-
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tention towards the infinitesimal transformations of the concerned group and to
choose them as the object of study.
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Chapter 4
One-Term Groups
and Ordinary Differential Equations

Abstract The flow x′ = exp(tX)(x) of a single, arbitrary vector field X =
∑n

i=1 ξi(x) ∂
∂xi

with analytic coefficients ξi(x) always generates a one-term (local)
continuous transformation group satisfying:

exp
(

t1X
)(

exp
(

t2X
)

(x)
)

= exp
(

(t1 + t2)X
)

(x),

and:
[exp(tX)(·)]−1 = exp(−tX)(·).

In a neighborhood of any point at which X does not vanish, an appropriate local
diffeomorphism x �→ y may straighten X to just ∂

∂y1
, hence its flow becomes y′

1 =
y1 + t, y′

2 = y2, . . . ,y′
n = yn.

In fact, in the analytic category (only), computing a general flow exp(tX)(x)
amounts to adding the differentiated terms appearing in the formal expansion of
Lie’s exponential series:

exp(tX)(xi) = ∑
k�0

(tX)k

k!
(xi) = xi + t X(xi)+ · · ·+ tk

k!
X
( · · ·(X

(

X
︸ ︷︷ ︸

k times

(xi)
)) · · ·)+ · · · ,

that have been studied extensively by Gröbner in [3].
The famous Lie bracket is introduced by looking at the way a vector field X =

∑n
i=1 ξi(x) ∂∂xi

is perturbed, to first order, while introducing the new coordinates x′ =
exp(tY )(x) =: ϕ(x) provided by the flow of another vector field Y :

ϕ∗(X) = X ′ + t
[

X ′, Y ′]+ · · · ,

with X ′ = ∑n
i=1 ξi(x′) ∂

∂x′
i

and Y ′ = ∑n
i=1 ηi(x′) ∂

∂x′
i

denoting the two vector fields in

the target space x′ having the same coefficients as X and Y . Here, the analytical
expression of the Lie bracket is:

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_4
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[

X ′, Y ′]=
n

∑
i=1

( n

∑
l=1

ξl(x′)
∂ηi

∂x′
l
(x′)−ηl(x′)

∂ξi

∂x′
l
(x′)

)
∂
∂x′

i
.

An r-term group x′ = f (x; a) satisfying his fundamental differential equations
∂x′

i
∂ak

= ∑r
j=1 ψk j(a)ξ ji(x′) can, alternatively, be viewed as being generated by its

infinitesimal transformations Xk =∑n
i=1 ξki(x) ∂

∂xi
in the sense that the totality of the

transformations x′ = f (x; a) is identical with the totality of all transformations:

x′
i = exp

(

λ1 X1 + · · ·+λr Xr
)

(xi)

= xi +
r

∑
k=1

λk ξki(x)+
1...r

∑
k, j

λk λ j

1 ·2
Xk(ξ ji)+ · · · (i=1 ···n)

obtained as the time-one map of the one-term group exp
(

t∑ λiXi
)

(x) generated by
the general linear combination of the infinitesimal transformations.

A beautiful idea of analyzing the (diagonal) action x(μ)
′
= f

(

x(μ); a
)

induced
on r-tuples of points

(

x(1), . . . ,x(r)
)

in general position enables Lie to show that
for every collection of r linearly independent vector fields Xk = ∑n

i=1 ξki(x) ∂
∂xi

, the

parameters λ1, . . . ,λr in the finite transformation equations x′ = exp
(

λ1 X1 + · · ·+
λr Xr

)

(x) are all essential.

4.1 Mechanical and Mental Images

§ 15. ([2]) The concept of infinitesimal transformation and likewise that of one-
term group gain a certain graphical nature when one makes use of geometric and
mechanical images.

In the infinitesimal transformation:

x′
i = xi +ξi(x1, . . . ,xn)δ t (i=1 ···n),

or in:

X( f ) =
n

∑
i=1
ξi
∂ f
∂xi

,

we interpret the variables x as Cartesian coordinates of an n-times extended
space. Then the transformation can obviously be interpreted in such a way
that each point of coordinates x1, . . . ,xn is transferred to an infinitesimally
neighbouring point of coordinates x′

1, . . . ,x
′
n. So the transformation attaches

to every point at which not all the ξi vanish a certain direction of progress
[FORTSCHREITUNGSRICHTUNG], and along this direction of progress, a cer-
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tain infinitely small line [STRECKE]; the direction of progress is determined by
the proportion: ξ1(x) : ξ2(x) : · · · : ξn(x); the infinitely small line has the length:
√

ξ 2
1 + · · ·+ξ 2

n δ t. If at a point x1, . . . ,xn all the ξ are zero, then no direction of
progress is attached to the point by the infinitesimal transformation.

If we imagine that the whole space is filled with a compressible fluid, then we
can interpret the infinitesimal transformation X( f ) simply as an infinitely small
movement [BEWEGUNG] of this fluid, and δ t as the infinitely small time inter-
val [ZEITABSCHNITT] during which this movement proceeds. Then evidently,
the quantities ξ1(x) : · · · : ξn(x) are the components of the velocity of the fluid
particle [FLÜSSIGKEITSTHEILCHENS] which is located precisely at the point
x1, . . . ,xn.

The finite transformations of the one-term group X( f ) come into being
[ENTSTEHEN] by repeating infinitely many times [DURCH UNENDLICHMA-
LIGE WIEDERHOLUNG] the infinitesimal transformation x′

i = xi + ξi δ t. In or-
der to arrive at a finite transformation, we must hence imagine that the infinitely
small movement represented by the infinitesimal transformation is repeated dur-
ing infinitely many time intervals δ t; in other words, we must follow the move-
ment of the fluid particle during a finite time interval. To this end, it is necessary
to integrate the differential equations of this movement, that is to say the simul-
taneous system:

dx′
1

dξ1(x′)
= · · · = dx′

n

ξn(x′)
= d t.

A fluid particle which, at the time t = 0, is located at the point x1, . . . ,xn will,
after a lapse of time t, reach the point x′

1, . . . ,x
′
n; so the integration must be

executed in such a way that for t = 0, one has: x′
i = xi. In reality, we found

earlier the general form of a finite transformation of our group exactly in this
manner.

The movement of our fluid is one which is a so-called stationary movement,
because the velocity components dx′

i/d t are free of t. From this, it follows that
in one and the same point, the movement is the same at each time, and con-
sequently that the whole process of movement always takes the same course,
whatever the time at which one starts to consider it. The proof that the finite
transformations produced by the infinitesimal transformation X( f ) constitute a
group already lies fundamentally in this observation.

If we consider a determined fluid particle, say the one which, at the time t = 0
is located at the point x0

1, . . . ,x
0
n, then we see that it moves on a curve which

passes through the point x0
1, . . . ,x

0
n. So the entire space is decomposed only in

curves of a constitution such that each particle remains on the curve on which it
is located. We want to call these curves the integral curves [BAHNCURVEN] of
the infinitesimal transformation X( f ). Obviously, there are ∞n−1 such integral
curves.

For a given point x0
1, . . . ,x

0
n, it is easy to display the equations of the integral

curve passing through it. The integral curve is nothing but the locus of all points
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in which the point x0
1, . . . ,x

0
n is transferred, when the ∞1 transformations:

x′
i = xi +

t
1
ξi(x)+ · · · (i=1 ···n)

of the one-term group are executed on it. Consequently, the equations:

x′
i = x0

i +
t
1
ξi(x0)+

t2

1 ·2

(

X(ξi)
)

x=x0
+ · · · (i=1 ···n)

represent the integral curve in question, when one considers t as an independent
variable.

4.2 Straightening of Flows and the Exponential Formula

Let x′
i = fi(x; a) be a one-term local transformation group, with a ∈ K (= R or

C) a scalar and with the identity e corresponding to the origin 0 ∈ K as usual. Its
fundamental differential equations (p. 35):

dx′
i

da
= ψ(a)ξi(x′

1, . . . ,x
′
n) (i=1 ···n)

then consist of a complete first order PDE system. But by introducing the new pa-
rameter:

t = t(a) :=
∫ a

0
ψ(a1)da1,

we immediately transfer these fundamental differential equations to the time-
independent system of n ordinary differential equations:

(1)
dx′

i

d t
= ξi(x′

1, . . . ,x
′
n) (i=1 ···n),

the integration of which amounts to computing the so-called flow of the vector field
X := ∑n

i=1 ξi(x) ∂
∂xi

.
With the same letters fi, we will write fi(x; t) instead of fi(x; a(t)). Of course,

the (unique) solution of the system (1) with the initial condition x′
i(x; 0) = xi is

nothing but x′
i = fi(x; t): the flow was in fact known from the beginning. Further-

more, uniqueness of the flow and the fact that the ξi are independent of t both imply
that the group composition property corresponds just to addition of time parameters
([1, 4]):

fi
(

f (x; t1); t2) ≡ fi(x; t1 + t2) (i=1 ···n).

It is classical that one may (locally) straighten X to ∂
∂yn

.

Theorem 4.1. Every one-term continuous transformation group:

x′
i = fi(x1, . . . ,xn; t) (i=1 ···n)
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satisfying differential equations of the form:

d fi

d t
= ξi( f1, . . . , fn) (i=1 ···n)

is locally equivalent, through a suitable change of variables yi = yi(x), to a group
of translations:

y′
1 = y1 + t, . . . . . . , y′

2 = y2, y′
n = yn.

y1

0

x̂

x1y10

ŷ

Φ(y)y

=:Φ(y)

y =Φ−1(x)

x = f (0, ŷ; y1)

Fig. 4.1 Straightening a flow by means of a diffeomorphism

Proof. We may suppose from the beginning that the coordinates x1, . . . ,xn had been
chosen so that ξ1(0) = 1 and ξ2(0) = · · ·= ξn(0) = 0. In an auxiliary space y1, . . . ,yn

drawn on the left of the figure, we consider all points
(

0, ŷ
)

:=(0,y2, . . . ,yn) near the
origin lying on the coordinate hyperplane which is complementary to the y1-axis,
and we introduce the diffeomorphism:

y �−→ x = x(y) := f
(

0, ŷ; y1
)

=:Φ(y),

defined by following the flow up to time y1 from
(

0, ŷ
)

; this is indeed a diffeo-

morphism fixing the origin thanks to ∂Φ1
∂y1

(0) = ∂ f1
∂ t (0) = ξ1(0) = 1, to ∂Φk

∂y1
(0) =

∂ fk
∂ t (0) = ξk(0) = 0 and to Φk(0, ŷ) ≡ ŷk for k = 2, . . . ,n. Consequently, we get that

the (wavy) flow represented on the right figure side has been straightened on the left
side to be just a uniform translation directed by the y1-axis, because by substituting:

x′ = f
(

0, ŷ′; y′
1

)

= f
(

0, ŷ; y1 + t
)

= f
(

f
(

0, ŷ; y1
)

; t
)

= f (x; t),

we recover the uniquely defined flow x′ = f (x; t) when assuming that ŷ′ = ŷ and
y′

1 = y1 + t. �

Theorem 6. If a one-term group:

x′
i = fi(x1, . . . ,xn, a) (i=1 ···n)

contains the identity transformation, then its transformations are interchange-
able [VERTAUSCHBAR] with one another and they can be ordered as inverses
by pairs. Every group of this sort is equivalent to a group of translations:
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y′
1 = y1, . . . , y′

n−1 = yn−1, y′
n = yn + t.

4.2.1 The Exponential Analytic Flow Formula

In fact, because we have universally assumed analyticity of all data, the solution
x′ = x′(x; t) to the PDE system (1) can be sought by expanding the unknown x′ in a
power series with respect to t:

x′
i(x; t) = ∑

k�0

Ξik(x) tk = xi + t ξi(x)+ · · · (i=1 ···n).

So, what are the coefficient functions Ξik(x)? Differentiating (1) once and twice
more, we get for instance:

d2x′
i

d t2 =
n

∑
k=1

∂ξi

∂xk

dx′
k

d t
=

n

∑
k=1

∂ξi

∂xk
ξk = X(ξi) (i=1 ···n)

d3x′
i

d t3 =
n

∑
k=1

∂X(ξi)
∂xk

dx′
k

d t
=

n

∑
k=1

∂X(ξi)
∂xk

ξk = X
(

X(ξi)
)

,

etc., and hence generally by a straightforward induction:

dkx′
i

d tk = X
( · · ·(X

︸ ︷︷ ︸

k−1 times

(ξi)
) · · ·)= X

( · · ·(X
(

X
︸ ︷︷ ︸

k times

(x′
i)
)) · · ·),

for every nonnegative integer k, with the convention X0xi = xi. Setting t = 0, we
therefore get:

k! Ξik(x) ≡ X
( · · ·(X

(

X
︸ ︷︷ ︸

k times

(xi)
)) · · ·).

Thus rather strikingly, computing a flow boils down in the analytic category to sum-
ming up differentiated terms.

Proposition 4.1. The unique solution x′(x; t) to a local analytic system of ordinary

differential equations
dx′

i
d t = ξi(x′

1, . . . ,x
′
n) with initial condition x′

i(x; 0) = xi is pro-
vided by the power series expansion:

(2) x′
i(x; t) = xi + t X(xi)+ · · ·+ tk

k!
X
( · · ·(X

(

X
︸ ︷︷ ︸

k times

(xi)
)) · · ·)+ · · · (i=1 ···n),

which can also be written, quite adequately, by means of an exponential denotation:
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(2’) x′
i = exp

(

t X
)

(xi) = ∑
k�0

(t X)k

k!
(xi) (i=1 ···n).

4.2.2 Action on Functions

Letting f = f (x1, . . . ,xn) be an arbitrary analytic function, we might compose f
with the above flow:

f ′ := f (x′
1, . . . ,x

′
n) = f

(

x′
1(x; t), . . . ,x′

n(x; t)
)

,

and we should then expand the result in a power series with respect to t:

f ′ =
(

f ′)
t=0 +

t
1!

( d f ′
d t

)

t=0 +
t2

2!

( d2 f ′
d t2

)

t=0 + · · · .

Consequently, we need to compute the differential quotients d f ′
d t , d2 f ′

d t2 , . . . , and if we

set ξ ′
i := ξi(x′

1, . . . ,x
′
n) and X ′ := ∑n

i=1 ξ ′
i
∂
∂x′

i
,

d f ′

d t
=

n

∑
i=1
ξ ′

i
∂ f ′

∂x′
i
= X ′( f ′),

d2 f ′

d t2 = X ′
( n

∑
i=1
ξ ′

i
∂ f ′

∂x′
i

)

= X ′(X ′( f ′)
)

,

and so on. After setting t = 0, the x′
i become xi, the f ′ becomes f , the X ′( f ′) becomes

X( f ), and so on, whence we obtain the expansion:1 (Translator’s note: Changing t
to −t exchanges the rôles of x′ = exp(tX)(x) and of x = exp(−tX)(x′), hence we
also have:

(3a) f (x1, . . . ,xn) = f (x′
1, . . . ,x

′
n)−

t
1!

X( f )+ · · ·+(−1)k tk

k!
X
( · · ·(X( f )

) · · ·)+ · · · .

(3) f (x′
1, . . . ,x

′
n) = f (x1, . . . ,xn)+

t
1!

X( f )+ · · ·+ tk

k!
X
( · · ·(X

︸ ︷︷ ︸

k times

( f )
) · · ·)+ · · · .

§ 13. ([2]) Amongst the ∞1 transformations of the one-term group (2), those
whose parameter t has an infinitely small value, say the value δ t, play an im-
portant role. We now want to consider more precisely these “infinitely small” or
“infinitesimal” transformations of the group.
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If we take into account only the first power of δ t, whereas we ignore the
second and all the higher ones, then we obtain from (2) the desired infinitesimal
transformation in the form:

(4) x′
i = xi +ξi(x1, . . . ,xn)δ t (i=1 ···n);

on the other hand, if we use the equation (3), we get the last n equations con-
densed in the single one:

f ′ = f +X( f )δ t,

or written in greater length:

f (x′
1, . . . ,x

′
n) = f (x1, . . . ,xn)+δ t

n

∑
i=1
ξi
∂ f
∂xi

.

It is convenient to introduce a specific name for the difference x′
i − xi, that is to

say, for the expression ξi δ t. Occasionally, we want to call ξiδ t the “increase”
[ZUWACHS], or the “increment” [INCREMENT], or also the “variation” [VARI-
ATION] of xi, and write: δxi. Then we can also represent the infinitesimal trans-
formation in the form:

δx1 = ξ1 δ t, . . . , δxn = ξn δ t.

Correspondingly, we will call the difference f ′ − f , or the expression X( f )δ t
the increase, or the variation of the function f (x1, . . . ,xn) and we shall write:

f ′ − f = X( f )δ t = δ f .

It stands to reason that the expression, completely alone:

X( f ) =
n

∑
i=1
ξi
∂ f
∂xi

already fully determines the infinitesimal transformation δxi = ξi δ t, when one
understands by f (x1, . . . ,xn) some undetermined function of its arguments. In-
deed, all the n functions ξ1, . . . ,ξn are individually given at the same time with
X( f ).

This is why we shall introduce the expression X( f ) = δ f
δ t as being the symbol

of the infinitesimal transformation (4), so we will really speak of the “infinitesi-
mal transformation X( f )”. However, we want to point out that the symbol of the
infinitesimal transformation (4) is essentially determined only up to an arbitrary
remaining constant factor. In fact, when we multiply the expression X( f ) by any
finite constant c, then the resulting expression cX( f ) is also to be considered as
the symbol of the infinitesimal transformation (4). Indeed, according to the con-
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cept of an infinitely small quantity, it makes no difference when we substitute
in (4) the infinitely small quantity δ t by cδ t.

The introduction of the symbol X( f ) for the infinitesimal transformation (4)
presents many advantages. Firstly, it is very convenient that the n equations
x′

i = xi +ξi δ t of the transformation are replaced by the single expression X( f ).
Secondly, it is convenient that in the symbol X( f ), we have to deal with only
one series of variables, not with the two series: x1, . . . ,xn and x′

1, . . . ,x
′
n. Lastly

and thirdly, the symbol X( f ) establishes the connection between infinitesimal
transformations and linear partial differential equations; because in the latter
theory, expressions such as X( f ) do indeed play an important role. We shall go
into more detail later concerning this connection (cf. Chap. 6).

The preceding developments show that a one-term group with the identity
transformation always comprises a well determined infinitesimal transformation
x′

i = xi +ξi δ t, or briefly X( f ). But it is also clear that conversely, the one-term
group in question is perfectly determined, as soon as one knows its infinitesimal
transformation. Indeed, the infinitesimal transformation x′

i = xi + ξi δ t is, so to
speak, only another way of writing the simultaneous system (1) from which are
derived the equations (2) of the one-term group.

Thus, since every one-term group with the identity transformation is com-
pletely determined by its infinitesimal transformation, we shall, for the sake of
convenience, introduce the following terminology.

Every transformation of the one-term group:

x′
i = xi +

t
1
ξi +

t2

1 ·2
X(ξi)+ · · · (i=1 ···n)

is obtained by repeating infinitely many times the infinitesimal transformation:

x′
i = xi +ξi δ t or X( f ) = ξ1

∂ f
∂x1

+ · · ·+ξn
∂ f
∂xn

.

Or yet more briefly:

The one-term group in question is generated by its infinitesimal transforma-
tions.

In contrast to the infinitesimal transformation X( f ), we call the equations:

x′
i = xi +

t
1
ξi +

t2

1 ·2
X(ξi)+ · · ·

the finite equations of the one-term group in question.
Now, we may enunciate briefly as follows the connection found earlier be-

tween the simultaneous system (1) and the one-term group (2’):

Proposition 1. Every one-term group which contains the identity transforma-
tion is generated by a well determined infinitesimal transformation.
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And conversely:

Proposition 2. Every infinitesimal transformation generates a completely de-
termined one-term group.

4.3 Exponential Change of Coordinates and the Lie Bracket

Let X = ∑n
i=1 ξi(x) ∂

∂xi
be an infinitesimal transformation which generates the one-

term group x′ = exp(tX)(x). What happens if the variables x1, . . . ,xn are subjected
to an analytic diffeomorphism yν = ϕν(x) which naturally transfers X to the vector
field:

Y := ϕ∗(X) =
n

∑
ν=1

X(yν)
∂
∂yν

=:
n

∑
ν=1

ην(y1, . . . ,yn)
∂
∂yν

in the new variables y1, . . . ,yn?

Proposition 4.4. The new one-term group y′ = exp(tY )(y) associated to Y = ϕ∗(X)
can be recovered from the old one x′ = exp(tX)(x) thanks to the formula:

exp(tY )(y) = ϕ
(

exp(tX)(x)
)∣
∣
x=ϕ−1(y).

Proof. Since we work in the analytic category, we are allowed to deal with power
series expansions. Through the introduction of the new variables yν = ϕν(x), an
arbitrary function f (x1, . . . ,xn) is transformed to the function F = F(y) defined by
the identity:

f (x) ≡ F
(

ϕ(x)
)

.

With x′ = exp(tX)(x) by assumption, we may also define y′
ν := ϕν(x′) so that:

F(y′)
∣
∣
y′=ϕ(x′) = f (x′).

On the other hand, the Jacobian matrix of ϕ induces a transformation between vec-
tor fields; equivalently, this transformation X �→ ϕ∗(X) =: Y can be defined by the
requirement that for any function f :

Y (F)
∣
∣
y=ϕ(x) = X( f ).

By a straightforward induction, it follows for any integer k � 1 that we have:

Y
(

Y (F)
)∣
∣
y=ϕ(x) = X

(

X( f )
)

, . . . . . . , Y k(F)
∣
∣
y=ϕ(x) = Xk( f ).

Consequently, in the expansion (3) of f (x′) = f
(

exp(tX)(x)
)

with respect to the
powers of t, we may perform replacements:
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F(y′)
∣
∣
y′=ϕ(x′) = f (x′) = ∑

k�0

tk

k!
Xk( f ) = ∑

k�0

tk

k!
Y k(F)

∣
∣
y=ϕ(x).

Removing the two replacements |y′=ϕ(x′) and |y=ϕ(x), we get an identity in terms of
the variables y and y′:

F(y′) = ∑
k�0

tk

k!
Y k(F),

which, because the function f — and hence F too — was arbitrary, shows that y′
must coincide with exp(tY )(y), namely:

y′
i = ∑

k�0

tk

k!
Y k(yi) (i=1 ···n).

Consequently, after replacing here y′ by ϕ(x′) and y by ϕ(x), we obtain:

ϕ
(

exp(tX)(x)
)

= ϕ(x′) = y′ = ∑
k�0

tk

k!
Y k(y)

∣
∣
y=ϕ(x) = exp(tY )(y)

∣
∣
y=ϕ(x),

and this is the same relation between flows as the one stated in the proposition, but
viewed in x-space. �

Proposition 3. If, after the introduction of the new independent variables:

yi = ϕi(x1, . . . ,xn) (i=1 ···n),

the symbol:

X( f ) =
n

∑
i=1
ξi
∂ f
∂xi

of the infinitesimal transformation:

x′
i = xi +ξi δ t (i=1 ···n)

receives the form:

X( f ) =
n

∑
ν=1

X(yν)
∂ f
∂yν

=
n

∑
ν=1

ην(y1, . . . ,yn) = Y ( f ),

then the finite transformations generated by X( f ):

x′
i = xi +

t
1
ξi +

t2

1 ·2
X(ξi)+ · · · (i=1 ···n)

are given, in the new variables, the form:
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y′
i = yi +

t
1
ηi +

t2

1 ·2
Y (ηi)+ · · · (i=1 ···n),

where the parameter t has the same value in both cases.

4.3.1 Flows as Changes of Coordinates

Suppose we are given an arbitrary infinitesimal transformation:

X =
n

∑
i=1
ξi(x)

∂
∂xi

.

For later use, we want to know how X transforms through the change of coordinates
represented by the flow diffeomorphism:

x′
i = exp(tY )(xi) = xi +

t
1
ηi +

t2

1 ·2
Y (ηi)+ · · · (i=1 ···n)

of another infinitesimal transformation:

Y =
n

∑
i=1
ηi(x1, . . . ,xn)

∂
∂xi

.

At least, we would like to control how X transforms modulo second order terms in
t. By definition, X is transformed to the vector field:

ϕ∗(X) =
n

∑
i=1

X(x′
i)
∂
∂x′

i
,

where the expressions X(x′
i) should still be expressed in terms of the target coordi-

nates x′
1, . . . ,x

′
n. Replacing x′

i by its above expansion and neglecting the second and
higher powers of t, we thus get:

X(x′
i) = X(xi)+ t X(ηi)+ · · · (i=1 ···n).

To express the first term of the right-hand side in terms of the target coordinates,
we begin by inverting x′ = exp(tY )(x), getting x = exp(−tY ′)(x′), with of course
Y ′ := ∑n

i=1 ηi(x′) ∂
∂y′

i
denoting the same field as Y but written in x′-space, and we

compute X(xi) as follows:
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X(xi) = ξi(x) = ξi
(

exp(−tY ′)(x′)
)

= ξi
(

x′
1 − tη1(x′), . . . . . . ,x′

n − tηn(x′)
)

= ξi(x′)− t
n

∑
l=1

∂ξi

∂x′
l
(x′)ηl(x′)+ · · ·

= ξi(x′)− t Y ′(ξi(x′)
)

+ · · · (i=1 ···n).

If we now abbreviate ξ ′
i := ξi(x′) and η ′

i := ηi(x′), because O(t2) is neglected, no
computation is needed to express the second term in terms of x′:

t X(ηi) = t X ′(η ′
i )−·· · (i=1 ···n),

and consequently by adding we get:

X(x′
i) = ξ ′

i + t
(

X ′(η ′
i )−Y ′(ξ ′

i )
)

+ · · · (i=1 ···n).

As the n coefficients X ′(η ′
i )−Y ′(ξ ′

i ), either one recognizes the coefficients of the
Lie bracket:

[

X ′, Y ′]=
[ n

∑
i=1
ξi(x′)

∂
∂x′

i
,

n

∑
i=1
ηi(x′)

∂
∂x′

i

]

:=
n

∑
i=1

(

X ′(η ′
i )−Y ′(ξ ′

i )
) ∂
∂x′

i
,

between X ′ := ∑n
i=1 ξi(x′) ∂

∂x′
i

and Y ′ := ∑n
i=1 ηi(x′) ∂

∂x′
i
, or one chooses to define

once and for all the Lie bracket in such a way. In fact, Engel and Lie mainly intro-
duce brackets in the context of the Clebsch-Frobenius theorem, Chap. 5 below. Now
let us state the obtained result in a self-contained manner.

Lemma 4.1. ([2], p. 141) If, in the infinitesimal transformation X = ∑n
i=1 ξi(x) ∂

∂xi
of the space x1, . . . ,xn, one introduces as new variables:

x′
i = exp(tY )(xi) = xi + t Y (xi)+ · · · (i=1 ···n),

those induced by the one-term group generated by another infinitesimal transforma-
tion Y = ∑n

i=1 ηi(x) ∂
∂xi

, then setting X ′ := ∑n
i=1 ξi(x′) ∂

∂x′
i

and Y ′ := ∑n
i=1 ηi(x′) ∂

∂x′
i
,

one obtains a transformed vector field:

ϕ∗(X) = X ′ + t
[

X ′, Y ′]+ · · · ,

with a first order perturbation which is the Lie bracket
[

X ′, Y ′].

4.4 Essentiality of Multiple Flow Parameters

Now we again consider r arbitrary vector fields with analytic coefficients defined on
a certain, unnamed domain of Kn which contains the origin:
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Xk =
n

∑
i=1
ξki(x1, . . . ,xn)

∂
∂xi

(k=1 ···r).

Although the collection X1, . . . ,Xk does not necessarily stem from an r-term group,
each individual Xk nonetheless generates the one-term continuous transformation
group x′ = exp(tXk)(x) with corresponding infinitesimal transformations x′

i = xi +
ε ξki(x); this is the reason why we shall henceforth sometimes alternatively refer to
such general vector fields Xk as being infinitesimal transformations.

Definition 4.1. The r infinitesimal transformations X1, . . . ,Xr will be called inde-
pendent (of each other) if they are linearly independent, namely if the n equations:

0 ≡ e1 ξ1i(x)+ · · ·+ er ξri(x) (i=1 ···n)

in which e1, . . . ,er are constants, imply e1 = · · · = er = 0.

For instance, Theorem 3 on p. 40 states that an r-term continuous local trans-
formation group x′

i = fi(x; a1, . . . ,ar) whose parameters ak are all essential always

gives rise to the r infinitesimal transformations Xk :=− ∂ f
∂ak

(x; e), k = 1, . . . ,r, which
are independent of each other.

Introducing r arbitrary auxiliary constants λ1, . . . ,λr, one may consider the one-
term group generated by the general linear combination:

C := λ1 X1 + · · ·+λr Xr,

of X1, . . . ,Xr, namely the flow:

x′
i = exp(tC)(xi) = xi +

t
1

C(xi)+
t2

1 ·2
C
(

C(xi)
)

+ · · ·

= xi + t
r

∑
k=1

λk ξki + t2
1...r

∑
k, j

λk λ j

1 ·2
Xk(ξ ji)+ · · ·

=: hi(x; t,λ1, . . . ,λr) (i=1 ···n).

If the Xk ≡ − ∂ f
∂ak

(x; e) stem from an r-term continuous group x′
i = fi(x; a1, . . . ,ar),

a natural question is then to compare the above integrated finite equations
hi(x; t,λ1, . . . ,λr) to the original transformation equations fi(x; a1, . . . ,ar). Before
studying this question together with Lie and Engel, we focus our attention on a
subquestion whose proof shows a beautiful, synthetical, geometrical idea: that of
extending the action jointly to finite sets of points.

At first, without assuming that the Xk stem from an r-term continuous group, it is
to be asked (subquestion) whether the parameters λ1, . . . ,λr in the above integrated
transformation equations x′

i = hi(x; λ1, . . . ,λr) are all essential. In the formula above,
we observe that the r + 1 parameters only appear in the form t λ1, . . . , t λr, hence
because the λk are arbitrary, there is no loss of generality in setting t = 1. We shall
then simply write hi(x; λ1, . . . ,λr) instead of hi(x; 1,λ1, . . . ,λr).
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Theorem 8. If the r independent infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

are independent of each other, and if furthermore λ1, . . . ,λr are arbitrary pa-
rameters, then the totality of all one-term groups λ1 X1( f )+ · · ·+λr Xr( f ) forms
a family of transformations:

(5) x′
i = xi +

r

∑
k=1

λk ξki +
1...r

∑
k, j

λk λk

1 ·2
Xk(ξ ji)+ · · · (i=1 ···n),

in which the r parameters λ1, . . . ,λr are all essential, hence a family of ∞r dif-
ferent transformations.

Proof. Here exceptionally, we observed a harmless technical error in Engel-Lie’s
proof ([2], pp. 62–65) concerning the link between the generic rank of X1

∣
∣
x, . . . ,Xr

∣
∣
x

and a lower bound for the number of essential parameters.2 (Translator’s note: On
page 63, it is said that if the number r of the independent infinitesimal transforma-
tions Xk is � n, then the r ×n matrix

(

ξki(x)
)1�i�n

1�k�r of their coefficients is of generic
rank equal to r, although this claim is contradicted with n = r = 2 by the two vector
fields x ∂

∂x + y ∂
∂y and xx ∂

∂x + xy ∂
∂y . Nonetheless, the ideas and the arguments of the

written proof (which does not really need such a fact) are perfectly correct.)
However, Lie’s main idea is clever and pertinent: it consists in the introduction

of exactly r (the number of λk’s) copies of the same space x1, . . . ,xn whose coor-

dinates are labelled as x(μ)1 , . . . ,x(μ)n for μ = 1, . . . ,r and to consider the family of
transformation equations induced by the same transformation equations:

x(μ)i

′
= exp(C)

(

x(μ)i

)

= hi
(

x(μ); λ1, . . . ,λr
)

(i=1 ···n; μ=1 ···r)

on each copy of space, again with t = 1. Geometrically, one thus observes how the
initial transformation equations x′

i = hi(x; λ1, . . . ,λr) act simultaneously on r-tuples
of points. Written in greater length, these transformations read:

(5’)
x(μ)i

′
= x(μ)i +

r

∑
k=1

λk ξ
(μ)
ki +

1...r

∑
k, j

λk λ j

1 ·2
X (μ)

k

(

ξ (μ)ji

)

+ · · ·

(i=1 ···n; μ=1 ···r),

where we have of course set: ξ (μ)ki := ξki(x(μ)) and X (μ)
k :=∑n

i=1 ξki(x(μ)) ∂
∂x(μ)i

. Such

an idea also reveals itself to be fruitful in other contexts.
According to the theorem stated on p. 15, in order to check that the parameters

λ1, . . . ,λr are essential, one only has to expand x′ in a power series with respect to
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the powers of x at the origin:

x′
i = ∑

α∈Nn

U i
α(λ )xα (i=1 ...n),

and to show that the generic rank of the infinite coefficient mapping λ �−→
(

U i
α(λ )

)1�i�n
α∈Nn is maximal, possibly equal to r. Correspondingly and immediately,

we get the expansion of the r-times copied transformation equations:

(5”) x(μ)i

′
= ∑
α∈Nn

U
i,(μ)
α (λ )(x(μ))α (i=1 ...n; μ=1 ...r),

with, for each μ = 1, . . . ,r, the same coefficient functions:

U
i,(μ)
α (λ ) ≡ U i

α(λ ) (i=1 ...n; α∈N
n; μ=1 ...r).

So the generic rank of the corresponding infinite coefficient matrix, which is just an
r-times copy of the same mapping λ �−→ (

U i
α(λ )

)1�i�n
α∈Nn , is neither increasing nor

decreasing.

Thus, the parameters λ1, . . . ,λr for the transformation equations x′ = h(x; λ ) are
essential if and only if they are essential for the diagonal transformation equations
x(μ)

′
= h

(

x(μ); λ
)

, μ = 1, . . . ,r, induced on the r-fold copy of the space x1, . . . ,xn.

Therefore, we are left with the task of showing that the generic rank of the r-times

copy of the infinite coefficient matrix λ �−→ (

U
i,(μ)
α (λ )

)1�i�n, 1�μ�r
α∈Nn is equal to r.

We shall in fact establish more, namely that the rank at λ = 0 of this map already
equals r, or equivalently, that the infinite constant matrix:

(
∂U i,(μ)

α
∂λk

(0)
)1�i�n,α∈Nn,1�μ�r

1�k�r
,

whose r lines are labelled with respect to partial derivatives, has rank equal to r.
To prepare this infinite matrix, if we differentiate the expansions (5’) which iden-

tify to (5”) with respect to λk at λ = 0, and if we expand the coefficients of our
infinitesimal transformations:

ξki(x(μ)) = ∑
α∈Nn

ξkiα (x(μ))α (i=1 ...n; k=1 ...r; μ=1 ...r)

with respect to the powers of x1, . . . ,xn, we obtain a more suitable expression of it:

(
∂U i,(μ)

α
∂λk

(0)
)1�i�n,α∈Nn,1�μ�r

1�k�r
≡

((

ξkiα
)1�i�n,α∈Nn

1�k�r · · · (ξkiα
)1�i�n,α∈Nn

1�k�r

)

=:
(

J∞Ξ(0) · · · J∞Ξ(0)
)

.
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As argued up to now, it thus suffices to show that this matrix has rank r. Also,
we observe that this matrix identifies with the infinite jet matrix J∞Ξ(0) of Taylor
coefficients of the r-fold copy of the same r ×n matrix of coefficients of the vector
fields Xk:

Ξ(x) :=

⎛

⎝

ξ11(x) · · · ξ1n(x)
· · · · · · · · ·
ξr1(x) · · · ξrn(x)

⎞

⎠ .

This justifies the symbol J∞ introduced above. Now, we can formulate an auxiliary
lemma which will enable us to conclude the result.

Lemma 4.2. Let n � 1, q � 1, m � 1 be integers, let x ∈ K
n and let:

A(x) =

⎛

⎝

a11(x) · · · a1m(x)
· · · · · · · · ·

aq1(x) · · · aqm(x)

⎞

⎠

be an arbitrary q×m matrix of analytic functions:

ai j(x) = ∑
α∈Nn

ai jα xα (i=1 ...q; j=1 ...m)

that are all defined in a fixed neighborhood of the origin in K
n, and introduce the

q×∞ constant matrix of Taylor coefficients:

J∞A(0) :=
(

ai jα
)1� j�m,α∈Nn

1�i�q

whose q lines are labelled by the index i. Then the following inequality between
(generic) ranks holds true:

rkJ∞A(0) � genrkA(x).

Proof. Here, our infinite matrix J∞A(0) will be considered as acting by left multi-
plication on horizontal vectors u = (u1, . . . ,uq), so that uJ∞A(0) is an ∞×1 matrix,
namely an infinite horizontal vector. Similarly, A(x) will act on horizontal vectors
of analytic functions (u1(x), . . . ,ur(x)).

Supposing that u = (u1, . . . ,uq) ∈ K
q is any nonzero vector in the kernel of

J∞A(0), namely: 0 = uJ∞A(0), or else in greater length:

0 = u1 a1 jα + · · ·+uq aq jα ( j=1 ...m; α∈N
n),

we then immediately deduce, after multiplying each such equation by xα and by
summing over all α ∈ N

n:

0 ≡ u1 a1 j(x)+ · · ·+uq aq j(x) ( j=1 ...m),

so that the same constant vector u = (u1, . . . ,uq) also satisfies 0 ≡ uA(x). It follows
that the dimension of the kernel of J∞A(0) is smaller than or equal to the dimension



78 4 One-Term Groups and Ordinary Differential Equations

of the kernel of A(x) (at a generic x): this is just equivalent to the above inequality
between (generic) ranks. �

Now, for each q = 1,2, . . . ,r, we want to apply the lemma with the matrix A(x)
being the q-fold copy of matrices

(

Ξ(x(1)) · · · Ξ(x(q))), or equivalently in greater
length:

Ξq
(

x̃q
)

:=

⎛

⎜
⎝

ξ (1)11 · · · ξ (1)1n ξ (2)11 · · · ξ (2)1n · · · · · · ξ (q)11 · · · ξ (q)1n
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ξ (1)r1 · · · ξ (1)rn ξ (2)r1 · · · ξ (2)rn · · · · · · ξ (q)r1 · · · ξ (q)rn

⎞

⎟
⎠ ,

where we have used the abbreviation:

x̃q :=
(

x(1), . . . ,x(q)
)

.

Lemma 4.3. It is a consequence of the fact that X1,X2, . . . ,Xr are linearly indepen-
dent of each other that for every q = 1,2, . . . ,r, one has:

genrk
(

Ξ
(

x(1)
)

Ξ
(

x(2)
) · · · Ξ

(

x(q)
))

� q.

Proof. Indeed, for q = 1, it is at first clear that genrk
(

Θ(x(1))
)

� 1, just because not
all the ξki(x) vanish identically.

We next establish by induction that, as long as they remain < r, generic ranks
increase by at least one unit at each step:

genrk
(

Ξq+1
(

x̃q+1
))

� 1+genrk
(

Ξq
(

x̃q
))

,

a fact which will immediately yield the lemma.
Indeed, if on the contrary, the generic ranks stabilized, and were still < r,

then locally in a neighborhood of a generic, fixed x̃0
q+1, both matrices Ξq+1

and Ξq would have the same, locally constant rank. Consequently, the solutions
(

ϑ1(x̃q) · · · ϑr(x̃q)
)

to the (kernel-like) system of linear equations written in matrix
form:

0 ≡ (

ϑ1(x̃q) · · · ϑr(x̃q)
)

Ξq
(

x̃q
)

,

which are analytic near x̃0
q thanks to an application of Cramer’s rule and thanks to

constancy of rank, would automatically also be solutions of the extended system:

0 ≡ (

ϑ1(x̃q) · · · ϑr(x̃q)
)(

Ξq(x̃q) Ξ(x(q+1))
)

,

whence there would exist nonzero solutions (ϑ1, . . . ,ϑr) to the linear dependence
equations:

0 =
(

ϑ1 · · · ϑr
)

Ξ
(

x(q+1))
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which are constant with respect to the variable x(q+1), since they only depend upon

x̃q. This contradicts the assumption that X (q+1)
1 , . . . ,X (q+1)

r are independent of each
other. �

Lastly, we may form a chain of (in)equalities that are now obvious consequences
of the lemma and of the assertion:

rank
(

J∞Ξ(0) · · · J∞Ξ(0)
)

= rankJ∞Ξr(0) � genrkΞr
(

x̃r
)

= r,

and since all ranks are � r, we get the promised rank estimate:

r = rank
(

J∞Ξ(0) · · · J∞Ξ(0)
)

,

which finally completes the proof of the theorem. �
In order to help fix in our memory the trick of extending the group action to an

r-fold product of the base space, we also translate a summarizing proposition which
is formulated on p. 66 of [2].

Proposition 5. If the r infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ...r)

are independent of each other, if furthermore:

x(μ)1 , . . . ,x(μ)n (μ=1 ...r)

are r different systems of n variables, and if lastly one uses the abbreviation:

X (μ)
k ( f ) =

n

∑
i=1
ξki

(

x(μ)1 , . . . ,x(μ)n
) ∂ f

∂x(μ)i

(k,μ=1 ...r),

then the r infinitesimal transformations:

Wk( f ) =
r

∑
μ=1

X (μ)
k ( f ) (k=1 ...r)

in the nr variables x(μ)i satisfy no relation of the form:

n

∑
k=1

χk
(

x(1)1 , . . . ,x(1)n , . . . . . . ,x(r)1 , . . . ,x(r)n
)

Wk( f ) ≡ 0.

Also, we remark for later use as in [2], p. 65, that during the proof of Theorem 8
above, it did not really matter that the equations (5) represented the finite equations
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of a family of one-term groups. In fact, we only considered the terms of first order
with respect to λ1, . . . ,λr in the finite equations (5), and the crucial Lemma 4.3 em-
phasized during the proof was true under the only assumption that the infinitesimal
transformations X1, . . . ,Xr were mutually independent. Consequently, Theorem 8
can be somewhat generalized as follows.

Proposition 4. If a family of transformations contains the r arbitrary parame-
ters e1, . . . ,er and if its equations, when they are expanded with respect to pow-
ers of e1, . . . ,er, are of the form:

x′
i = xi +

r

∑
k=1

ek ξki(x1, . . . ,xn)+ · · · (i=1 ···n),

where the neglected terms in e1, . . . ,er are of second and of higher order, and
lastly, if the functions ξki(x) have the property that the r infinitesimal transfor-
mations made up with them:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

are independent of each other, then those transformation equations represent ∞r

different transformations, or what is the same: the r parameters e1, . . . ,er are
essential.

4.5 Generation of an r-Term Group by its One-Term Subgroups

After these preparations, we may now come back to our question formulated on
p. 74: how to compare the equations x′

i = fi(x; a) of a given finite continuous trans-
formation group to the equations:

x′
i = exp

(

t λ1 X1 + · · ·+ t λr Xr
)

(xi)

=: hi
(

x; t,λ1, . . . ,λr
)

(i=1 ...n)

obtained by integrating the general linear combination of its r infinitesimal trans-
formations Xk = − ∂ fi

∂ak
(x; e)? Sometimes, such equations will be called as in [2] the

canonical finite equations of the group.
Abbreviating λ1 X1 + · · · + λr Xr as the infinitesimal transformation C :=

∑n
i=1 ξi(x) ∂

∂xi
, whose coefficients are given by:

ξi(x) :=
n

∑
j=1
λ j ξ ji(x) (i=1 ...n),
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then by definition of the flow x′
i = exp(tC)(x), the functions hi satisfy the first order

system of ordinary differential equations dhi
d t = ξi(h1, . . . ,hn), or equivalently:

(6)
dhi

d t
=

r

∑
j=1
λ j ξ ji(h1, . . . ,hn) (i=1 ...n),

with of course the initial condition h(x;0,λ ) = x at t = 0. On the other hand, ac-
cording to Theorem 3 on p. 40, we remember that the fi satisfy the fundamental
differential equations:

(7) ξ ji( f1, . . . , fn) =
r

∑
k=1

α jk(a)
∂ fi

∂ak
(i=1 ...n; j=1 ...r).

Proposition 4.8. If the parameters a1, . . . ,ar are the unique solutions ak(t,λ ) to the
system of first order ordinary differential equations:

dak

d t
=

r

∑
j=1
λ jα jk(a) (k=1 ...r)

with initial condition a(0,λ ) = e being the identity element, then the following iden-
tities hold:

fi
(

x; a(t,λ )
) ≡ exp

(

t λ1 X1 + · · ·+ t λr Xr
)

(xi) = hi
(

x; t,λ1, . . . ,λr
)

(i=1 ...n)

and they show how the hi are recovered from the fi.

Proof. Indeed, multiplying the equation (7) by λ j and summing over j for j equals
1 up to r, we get:

r

∑
k=1

∂ fi

∂ak

r

∑
j=1
λ jα jk(a) =

r

∑
j=1
λ j ξ ji( f1, . . . , fn) (i=1 ...n).

Thanks to the assumption concerning the ak, we can replace the second sum of the
left-hand side by dak

d t , which yields identities:

r

∑
k=1

∂ fi

∂ak

dak

d t
≡

r

∑
j=1
λ j ξ ji( f1, . . . , fn) (i=1 ...n)

in the left-hand side of which we recognize just a plain derivation with respect to t:

d fi

d t
=

d
d t

[

fi
(

x; a(t,λ )
)] ≡

r

∑
j=1
λ j ξ ji( f1, . . . , fn) (i=1 ...n).

But since f
(

x; a(0,λ )
)

= f (x; e) = x has the same initial condition x at t = 0
as the solution h

(

x; t,λ
)

to (6), the uniqueness of solutions to systems of first
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order ordinary differential equations immediately gives the asserted coincidence
f
(

x; a(t,λ )
) ≡ h

(

x; t,λ
)

. �

4.6 Applications to the Economy of Axioms

We now come back to the end of Chap. 3, Sect. 3.9, where the three standard group
axioms (composition; identity element; existence of inverses) were superseded by
the hypothesis of existence of differential equations. We recall that in the proof of
Lemma 3.3, a relocalization was needed to assure that detψk j(a) �= 0. For the sake
of clarity and of rigor, we will, in the hypotheses, explicitly mention the subdomain
A 1 ⊂ A where the determinant of the ψk j(a) does not vanish.

The following (apparently technical) theorem which is a mild modification of
the Theorem 9 on p. 72 of [2], will be used in an essential way by Lie to derive his
famous three fundamental theorems in Chap. 9 below.

Theorem 9. If, in the transformation equations defined for (x,a) ∈ X ×A :

(1) x′
i = fi(x1, . . . ,xn; a1, . . . ,ar) (i=1 ···n),

the r parameters a1, . . . ,ar are all essential and if in addition, certain differential
equations of the form:

(2)
∂x′

i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n ; k=1 ···r)

are identically satisfied by x′
1 = f1(x; a), . . . ,x′

n = fn(x; a), where the matrix
ψk j(a) is holomorphic and invertible in some nonempty subdomain A 1 ⊂ A ,
and where the functions ξ ji(x′) are holomorphic in X , then by introducing the
r infinitesimal transformations:

Xk :=
n

∑
i=1
ξki(x)

∂
∂xi

,

it holds true that every transformation x′
i = fi(x; a) whose parameters a1, . . . ,ar

lie in a small neighborhood of some fixed a0 ∈ A 1 can be obtained by firstly
performing the transformation:

xi = fi(x1, . . . ,xn; a0
1, . . . ,a

0
r ) (i=1 ···n),

and then secondly, by performing a certain transformation:

x′
i = exp

(

tλ1X1 + · · ·+ tλrXr
)

(xi) (i=1 ···n)
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of the one-term group generated by some suitable linear combination of the Xk,
where t and λ1, . . . ,λr are small complex numbers.

This technical statement will be especially useful later to show that whenever r
infinitesimal transformations X1, . . . ,Xr form a Lie algebra, the composition of two
transformations of the form x′ = exp

(

tλ1X1+ · · ·+tλrXr
)

is again of the same form,
hence the totality of these transformations truly constitutes a group.

Proof. The arguments are essentially the same as those developed at the end of
the previous section (p. 81) for a genuinely local continuous transformation group,
except that the identity parameter e (which does not necessarily exist here) should
be replaced by a0.

For the sake of completeness, let us give the proof. First, we fix a0 ∈ A 1 and
we introduce the solutions ak = ak(t,λ1, . . . ,λr) of the following system of ordinary
differential equations:

dak

d t
=

r

∑
j=1
λ jα jk(a) (k=1 ···r),

with initial condition ak(0,λ1, . . . ,λr) = a0
k , where λ1, . . . ,λr are small complex pa-

rameters and where, as before, α jk(a) denotes the inverse matrix of ψ jk(a), which
is holomorphic in the whole of A1.

Secondly, we introduce the local flow:

exp
(

tλ1X1 + · · ·+ tλrXr
)

(x) =: h
(

x; t,λ
)

of the general linear combination λ1X1 + · · ·+λrXr of the r infinitesimal transfor-
mations Xk = ∑n

i=1 ξki(x) ∂
∂xi

, where x is assumed to run in A 1. Thus by its very
definition, this flow integrates the ordinary differential equations:

dhi

d t
=

r

∑
j=1
λ j ξ ji(h1, . . . ,hn) (i=1 ···n)

with the initial condition h
(

x; 0,λ
)

= x.
Thirdly, we first solve the ξ ji in the fundamental differential equations (2) using

the inverse matrix α:

ξ ji( f1, . . . , fn) =
r

∑
k=1

α jk(a)
∂ fi

∂ak
(i=1 ···n ; j=1 ···r).

Then we multiply by λ j, we sum and we recognize dak
d t , which we then substitute:
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r

∑
j=1
λ j ξ ji( f1, . . . , fn) =

r

∑
k=1

∂ fi

∂ak

r

∑
j=1
λ jα jk(a)

=
r

∑
k=1

∂ fi

∂ak

dak

d t

=
d
d t

[

fi
(

x; a(t,λ )
)]

(i=1 ···n).

So the fi
(

x; a(t,λ )
)

satisfy the same differential equations as the hi
(

x; t,λ
)

, and in
addition, if we set x equal to f (x; a0), both collections of solutions will have the
same initial value for t = 0, namely f (x; a0). In conclusion, by observing that the fi

and the hi satisfy the same equations, the uniqueness property enjoyed by first order
ordinary differential equations yields the identity:

f
(

x; a(t,λ )
) ≡ exp

(

t1λ1X1 + · · ·+ tλrXr
)(

f (x; a0)
)

expressing that every transformation x′ = f (x; a) for a in a neighborhood of a0

appears to be the composition of the fixed transformation x = f (x; a0) followed by
a certain transformation of the one-term group exp

(

tλ1X1 + · · ·+ tλrXr
)

(x). �

§ 18. We now apply the preceding general developments to the peculiar case
where the ∞r transformations x′

i = fi(x1, . . . ,xn, a1, . . . ,ar) constitute an r-term
group.

If the equations (1) represent an r-term group, then according to Theorem 3
p. 40, there are always differential equations of the form (2); so we do not need
to specially enunciate this requirement.

Moreover, we observe that all infinitesimal transformations of the form

∑n
i=1

{

∑r
j=1 λ jξ ji(x)

}
∂ f
∂xi

can be linearly expressed by means of the following

r infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r),

since all the infinitesimal transformations (9) are contained in the expression:

r

∑
k=1

λk Xk( f ).

Here, as we have underscored already in the introduction of this chapter, the
infinitesimal transformations X1( f ), . . . ,Xr( f ) are independent of each other.

Consequently, we can state the following theorem concerning arbitrary r-
term groups:

Theorem 10. To every r-term group:
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x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

are associated r independent infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(i=1 ···n),

which stand in the following relationship to the finite transformations of the
group: if x′

i = fi(x1, . . . ,xn; a0
1, . . . ,a

0
r ) is any transformation of the group, then

every transformation x′
i = fi(x,a) whose parameter lies in a certain neigh-

borhood of a0
1, . . . ,a

0
r can be obtained by firstly executing the transforma-

tion xi = fi(x1, . . . ,xn, a0
1, . . . ,a

0
r ) and secondly a certain transformation x′

i =
ωi(x1, . . . ,xn) of a one-term group, the infinitesimal transformation of which
has the form λ1X1( f )+ · · ·+λrXr( f ), where λ1, . . . ,λr denote certain suitably
chosen constants.

If we not only know that the equations x′
i = fi(x,a) represent an r-term group,

but also that this group contains the identity transformation, and lastly also that
the parameters a0

k represent a system of values of the identity transformation
in the domain ((ak)), then we can still say more. Indeed, if we in particular
choose for the transformation xi = fi(x,a0) the identity transformation, we then
realize immediately that the transformations of our group are nothing but the
transformations of those one-term groups that are generated by the infinitesimal
transformations:

λ1 X1( f )+ · · ·+λr Xr( f ).

Thus, if we use the abbreviation:

r

∑
k=1

λk Xk( f ) =Ck( f ),

then the equations:

x′
i = xi +

t
1

C(xi)+
t2

1 ·2
C
(

C(xi)
)

+ · · · (i=1 ···n)

represent the∞r transformations of the group. The fact that the r+1 parameters:
λ1, . . . ,λr, t appear is just fictitious here, for they are indeed only found in the r
combinations λ1t, . . . ,λrt. We can therefore quietly set t equal to 1. In addition,
if we remember the representation of a one-term group by a single equation
given in eq. (3) on p. 67, then we realize that the equations of our r-term group
may be condensed into the single equation:

f (x′
1, . . . ,x

′
n) = f (x1, . . . ,xn)+C( f )+

1
1 ·2

C
(

C( f )
)

+ · · · .
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That it is possible to order the transformations of the group as inverses in pairs
thus hardly requires a mention.

We can briefly state the above result on r-term groups with identity transfor-
mation as follows.

Theorem 11. If an r-term group:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

contains the identity transformation, then its ∞r transformations can be orga-
nized in ∞r−1 families of ∞1 transformations in such a way that each family
amongst these ∞r−1 families consists of all the transformations of a certain
one-term group with the identity transformation. In order to find these one-term
groups, one forms the known equations:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n ;k=1 ···r),

which are identically satisfied after substituting x′
i = fi(x,a). One further sets:

n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

= Xk( f ) (k=1 ···r),

hence the expression:
r

∑
k=1

λk Xk( f )

where the r arbitrary parameters λ1, . . . ,λr represent the infinitesimal trans-
formations of these ∞r−1 one-term groups, and their finite equations have the
form:

x′
i = xi +

r

∑
k=1

λk ξki(x)+
1...r

∑
k, j

λk λ j

1 ·2
Xk(ξ ji)+ · · · (i=1 ···n).

The totality of all these finite transformations is identical with the totality of all
transformations of the group x′

i = fi(x,a). Furthermore, the transformations of
this group can be ordered as inverses in pairs.

§ 19. In general, if an r-term group contains all transformations of some
one-term group and if, in the sense discussed earlier, this one-term group is
generated by the infinitesimal transformation X( f ), then we say that the r-term
group contains the infinitesimal transformation X( f ). Now, we have just seen
that every r-term group with the identity transformation can be brought to the
form:
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f (x′
1, . . . ,x

′
n) = f (x1, . . . ,xn)+

r

∑
k=1

λk Xk( f )

+
1

1 ·2

1···r
∑
k, j

λk λ j Xk
(

Xj( f )
)

+ · · · ,

where λ1, . . . ,λr denote arbitrary constants, while X1( f ), . . . ,Xr( f ) stand for
mutually independent infinitesimal transformations. So we can say that every
such r-term group contains r independent infinitesimal transformations.

We are very close to showing that an r-term group cannot contain more than
r independent infinitesimal transformations.

In order to clarify this point, we want to consider directly the question of
when the infinitesimal transformation:

Y ( f ) =
n

∑
i=1
ηi(x1, . . . ,xn)

∂ f
∂xi

is contained in the r-term group with the r independent infinitesimal transfor-
mations X1( f ), . . . ,Xr( f ).

If Y ( f ) belongs to the r-term group in question, then the same is also true of
the transformations:

x′
i = xi +

τ
1
ηi(x)+

τ2

1 ·2
Y (ηi)+ · · · (i=1 ···n)

of the one-term group generated by Y ( f ). Hence if we first execute an arbitrary
transformation of this one-term group and then an arbitrary transformation:

x′′
i = x′

i +
r

∑
k=1

λk ξ ′
ki +

1···r
∑
k, j

λk λ j

1 ·2
X ′

j

(

ξ ′
ki

)

+ · · ·

of the r-term group, we must then obtain a transformation which also belongs
to the r-term group. By a calculation, we find that this new transformation has
the form:

x′′
i = xi + τ ηi(x)+

r

∑
k=1

λk ξki(x)+ · · · (i=1 ···n),

where all the omitted terms are of second and of higher order with re-
spect to λ1, . . . ,λr,τ . For arbitrary λ1, . . . ,λr,τ , this transformation must be-
long to the r-term group. Now, if the r + 1 infinitesimal transformations
X1( f ), . . . ,Xr( f ),Y ( f ) were independent of each other, then according to Propo-
sition 4, p. 80, the last written equations would represent ∞r+1 transformations;
but this is impossible, for the r-term group contains in general only ∞r trans-
formations. Consequently, X1( f ), . . . ,Xr( f ),Y ( f ) are not independent of each
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other, but since X1( f ), . . . ,Xr( f ) are so, then Y ( f ) must be a linear combination
of X1( f ), . . . ,Xr( f ), hence have the form:

Y ( f ) =
r

∑
k=1

lk Xk( f ),

where l1, . . . , lr denote appropriate constants. That is to say, the following holds:

Proposition 2. If an r-term group contains the identity transformation, then it
contains r independent infinitesimal transformations X1( f ), . . . ,Xr( f ) and ev-
ery infinitesimal transformation contained in it is of the form λ1X1( f )+ · · ·+
λr Xr( f ), where λ1, . . . ,λr denote constants.

We even saw above that every infinitesimal transformation of the form
λ1X1( f ) + · · ·+ λrXr( f ) belongs to the group; hence in future, we shall call
the expression λ1X1( f )+ · · ·+λrXr( f ) with the r arbitrary constants λ1, . . . ,λr

the general infinitesimal transformation of the r-term group in question.
From the preceding considerations we also obtain the following, certainly

special, but nevertheless important:

Proposition 2. If an r-term group contains the m � r mutually independent
infinitesimal transformations X1( f ), . . . ,Xr( f ), then it also contains every in-
finitesimal transformation of the following form: λ1 X1( f ) + · · · + λmXm( f ),
where λ1, . . . ,λm denote completely arbitrary constants.

Of course, the work done so far gives us the means to determine the in-
finitesimal transformations of an r-term group x′

i = fi(x, a) with the identity
transformation. But it is possible to reach the objective more rapidly.

Let the identity transformation of our group go with the parameters:
a0

1, . . . ,a
0
r , and let a0

1, . . . ,a
0
r lie in the domain ((a)), so that the determinant

∑±ψ11(a0) · · ·ψrr(a0) is hence certainly different from zero. Now, we have:

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji

(

f1(x,a), . . . , fn(x,a)
) ≡ ∂

∂ak
fi(x, a),

hence when one sets ak = a0
k :

r

∑
j=1
ψk j(a0)ξ ji(x1, . . . ,xn) ≡

[
∂
∂ak fi(x, a)

]

a=a0
.

We multiply this equation by ∂ f
∂xi

and we sum for i from 1 to n, which then gives:

r

∑
j=1
ψk j(a0)Xj( f ) =

n

∑
i=1

[
∂
∂ak

fi(x, a)
]

a=a0

∂ f
∂xi

(k=1 ···r)
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Now, since X1( f ), . . . ,Xr( f ) are independent infinitesimal transformations and
since in addition the determinant of the ψk j(a0) is different from zero, the right-
hand sides of the latter equations represent r independent infinitesimal transfor-
mations of our group.

The following method is even somewhat simpler.

One sets ak = a0
k + δ tk, where it is understood that δ t1, . . . ,δ tr are infinitely

small quantities. Then:

x′
i = fi

(

x1, . . . ,xn, a0
1 +δ t1, . . . ,a

0
r +δ tr

)

= xi +
r

∑
k=1

[
∂
∂ak

fi(x, a)
]

a=a0
δ tk + · · · ,

where the omitted terms are of second and of higher order with respect to the δ tk.
Here, it is now immediately apparent that our group contains the r infinitesimal
transformations:

x′
i = xi+

[
∂
∂ak

fi(x,a)
]

a=a0

δ tk (i=1 ···n)

(k=1 ···r)

However, the question of whether these r infinitesimal transformations are in-
dependent of each other requires in each individual case a specific examination,
if one does not know from the beginning that the determinant of the ψ does not
vanish for ak = a0

k .

Example. We consider the general projective group:

x′ =
x+a1

a2x+a3

of the once-extended manifold.

The infinitesimal transformations of this group are obtained very easily by
means of the following method. Indeed, one has a0

1 = 0, a0
2 = 0, a0

3 = 1, hence
we have:

x′ =
x+δ t1

xδ t2 +1+δ t3
= x+δ t1 − xδ t3 − x2 δ t2 + · · · ,

that is to say, our group contains the three mutually independent infinitesimal
transformations:

X1( f ) =
d f
dx

, X2( f ) = x
d f
dx

, X3( f ) = x2 d f
dx

.

The general infinitesimal transformation of our group has the form:
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(

λ1 +λ2x+λ3x2) d f
dx

,

hence we obtain its finite transformations by integrating the ordinary differential
equation:

dx′

λ1 +λ2x′ +λ3x′2 = d t,

adding the initial condition: x′ = x for t = 0.
In order to carry out this integration, we bring the differential equation to the

form:
dx′

x′ −α − dx′

x′ −β = γ d t,

by setting:

λ1 =
αβγ
α−β , λ2 = −α+β

α−β γ, λ3 =
γ

α−β ,

whence:

2α = −λ2

λ3
+

√

λ 2
2 −4λ1λ3

λ3
, 2β = −λ2

λ3
−

√

λ 2
2 −4λ1λ3

λ3
,

γ =
√

λ 2
2 −4λ1λ3.

By integration, we find:

l(x′ −α)− l(x′ −β ) = γ t + l(x−α)− l(x−β ),

or:
x′ −α
x′ −β = eγt

x−α
x−β ,

and now there is absolutely no difficulty in expressing α,β ,γ in terms of
λ1,λ2,λ3, in order to obtain the ∞3 transformations of our three-term group
arranged in ∞2 one-term groups, exactly as enunciated in Theorem 11.

Furthermore, a simple known form of our group is obtained if one keeps the
two parameters α and β , while one introduces the new parameter γ instead of
eγt ; then our group appears in the form:

x′ −α
x′ −β = γ

x−α
x−β .
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Part II
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Chapter 5
Complete Systems of Partial Differential
Equations

Abstract Any infinitesimal transformation X = ∑n
i=1 ξi(x) ∂

∂xi
can be consid-

ered as the first order analytic partial differential equation Xω = 0 with the
unknown ω . After a relocalization, a renumbering and a rescaling, one may sup-
pose ξn(x) ≡ 1. Then the general solution ω happens to be any (local, analytic)
function Ω

(

ω1, . . . ,ωn−1
)

of the (n−1) functionally independent solutions de-
fined by the formula:

ωk(x) := exp
(− xnX

)

(xk) (k=1 ···n−1).

What about first order systems X1ω = · · · = Xqω = 0 of such differential equa-
tions? Any solution ω also trivially satisfies Xi

(

Xk(ω)
)− Xk

(

Xi(ω)
)

= 0. But
it appears that the subtraction in the Jacobi commutator Xi

(

Xk(·)
)− Xk

(

Xi(·)
)

kills all the second-order differentiation terms, so that one may freely add such
supplementary first-order differential equations to the original system, contin-
uing again and again, until the system, still denoted by X1ω = · · · = Xqω = 0,
becomes complete in the sense of Clebsch, namely satisfies, locally in a neigh-
borhood of a generic point x0:

(i) for all indices i,k = 1, . . . ,q, there are appropriate functions χikμ(x) such

that Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

= χik1(x)X1( f )+ · · ·+χikq(x)Xq( f );
(ii) the rank of the vector space generated by the q vectors X1

∣
∣
x, . . . ,Xq

∣
∣
x is

constant equal to q for all x near the central point x0.
Under these assumptions, it is shown in this chapter that there are n − q func-

tionally independent solutions x(q)1 , . . . ,x(q)n−q of the system that are analytic near
x0 such that any other solution is a suitable function of these n−q fundamental
solutions.

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_5
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A First Order Scalar Partial Differential Equation

As a prologue, we ask what are the general solutions ω of a first order partial
differential equation Xω = 0 naturally associated to a local analytic vector field
X =∑n

i=1 ξi(x) ∂
∂xi

. Free relocalization always being allowed in Lie’s theory, we
may assume, after possibly renumbering the variables, that ξn does not vanish
in a small neighborhood of some point at which we center the origin of the
coordinates. Dividing then by ξn(x), it is equivalent to seek functions ω that are
annihilated by the differential operator:

X =
n−1

∑
i=1

ξi(x)
ξn(x)

∂
∂xi

+
∂
∂xn

,

still denoted by X and which now satisfies X(xn) ≡ 1. We recall that the corre-
sponding system of ordinary differential equations which defines curves that are
everywhere tangent to X , namely the system:

dx1

d t
=
ξ1

(

x(t)
)

ξn
(

x(t)
) , . . . . . . ,

dxn−1

d t
=
ξn−1

(

x(t)
)

ξn
(

x(t)
) ,

dxn(t)
d t

= 1,

with initial condition for t = 0 being an arbitrary point of the hyperplane {xn =
0}:

x1(0) = x1, . . . . . . ,xn−1(0) = xn−1, xn(0) = 0

is solvable and has a unique vectorial solution (x1, . . . ,xn−1,xn) which is ana-
lytic in a neighborhood of the origin. In fact, xn(t) = t by an obvious integration,
and the (n − 1) other xk(t) are given by the marvelous exponential formula al-
ready shown on p. 67:

xk(t) = exp(tX)(xk) =∑
l�0

tl

l!
Xl(xk) (k=1 ···n−1).

We then set t := −xn in this formula (the minus sign will be crucial) and we
define the (n−1) functions that are relevant to us:

ωk(x1, . . . ,xn) := xk(−xn) = exp
(− xnX

)

(xk)

=∑
l�0

(−1)l (xn)l

l!
Xl(xk).

Proposition 5.1. The (n−1) so defined functions ω1, . . . ,ωn−1 are functionally
independent solutions of the partial differential equation Xω = 0 with the rank

of their Jacobian matrix
( ∂ωk
∂xi

)1�k�n−1
1�i�n being equal to n − 1 at the origin. Fur-

thermore, for every other solution ω of Xω = 0, there exists a local analytic
function Ω =Ω

(

ω1, . . . ,ωn−1
)

defined in a neighborhood of the origin in K
n−1
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such that:
ω(x) ≡Ω(

ω1(x), . . . ,ωn−1(x)
)

.

Proof. Indeed, when applying X to the above series defining the ωk, we see
that all the terms cancel out, thanks to an application of Leibniz’ formula in the
form:

X
[

(xn)l X l(xk)
]

= l (xn)l−1 Xl(xk)+(xn)l X l+1(xk).

Next, the assertion that the map x �−→ (

ω1(x), . . . ,ωn−1(x)
)

has rank n − 1 is
clear, for ωk(x1, . . . ,xn−1,0) ≡ xk by construction. Finally, after straightening X
to X ′ := ∂

∂x′
n

in some new coordinates (x′
1, . . . ,x

′
n) thanks to the theorem on p. 64,

the general solution ω ′(x′) to X ′ω ′ = 0 is trivially any functionΩ ′(x′
1, . . . ,x

′
n−1)

of x′
1 ≡ ω ′

1, . . . ,x
′
n−1 ≡ ω ′

n−1. �

C h a p t e r 5

The Complete Systems

We assume that the theory of the integration of an individual first order linear
partial differential equation:

X( f ) =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

= 0,

or of the equivalent simultaneous system of ordinary differential equations:

dx1

ξ1
= · · · = dxn

ξn
,

is known; nonetheless, as an introduction, we compile without demonstration a few
related propositions. Based on these propositions, we shall very briefly derive the
theory of the integration of simultaneous first order linear partial differential equa-
tions. In the next chapter, we shall place in a new light [IN EIN NEUES LICHT SET-
ZEN] this theory due in the main wholly to JACOBI and to CLEBSCH, by explaining
more closely the connection between the concepts [BEGRIFFEN] of “linear partial
differential equation” and of “infinitesimal transformation”, a connection that we
have already mentioned earlier (Chap. 4, p. 69).

§ 21. One can suppose that ξ1, . . . ,ξn behave regularly in the neighborhood of a
determinate system of values x0

1, . . . ,x
0
n, and also that ξn(x0

1, . . . ,x
0
n) is different from

zero. Under these assumptions, one can determine x1, . . . ,xn−1 as analytic functions
of xn in such a way that by substitution of these functions, the simultaneous system:
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dx1

dxn
=
ξ1

ξn
, . . . ,

dxn−1

dxn
=
ξn−1

ξn

is identically satisfied, and that in addition x1, . . . ,xn−1 for xn = x0
n take certain pre-

scribed initial values [ANFANGSWERTHE] x′
1, . . . ,x

′
n−1. These initial values have to

be interpreted as the integration constants.
The equations which, in the concerned way, represent x1, . . . ,xn−1 as functions of

xn are called the complete integral equations of the simultaneous system; they can
receive the form:

xk = x′
k +(x0

n − xn)Pk
(

x′
1 − x0

1, . . . ,x
′
n−1 − x0

n−1,x
0
n − xn

)

(k=1 ···n−1),

where the Pk denote ordinary power series in their arguments. By inverting the
relation between x1, . . . ,xn−1,xn and x′

1, . . . ,x
′
n−1,x

0
n, one again obtains the integral

equations, resolved with respect to only the initial values x′
1, . . . ,x

′
n−1:

x′
k = xk +(xn − x0

n)Pk
(

x1 − x0
1, . . . ,xn − x0

n

)

= ωk(x1, . . . ,xn)
(k=1 ···n−1).

Here, the functions ωk are the so-called integral functions of the simultaneous sys-
tem, since the differentials of these functions:

dωk =
n

∑
i=1

∂ωk

∂xi
dxi (k=1 ···n−1)

all vanish identically by virtue of the simultaneous system, and every function of
this sort is called an integral function of the simultaneous system. But every such
integral function is at the same time a solution of the linear partial differential equa-
tion X( f ) = 0, whence ω1, . . . ,ωn−1 are solutions of X( f ) = 0, and in fact, they
are obviously independent. In a certain neighborhood of x0

1, . . . ,x
0
n these solutions

behave regularly; in addition, they reduce for xn = x0
n to x1, . . . ,xn−1 respectively;

that is why they are called the general solutions of the equation X( f ) = 0 relative to
xn = x0

n.
If one knows altogether n−1 independent solutions:

ψ1(x1, . . . ,xn), . . . . . . ,ψn−1(x1, . . . ,xn)

of the equation X( f ) = 0, then the most general solution of it has the form
Ω(ψ1, . . . ,ψn−1), where Ω denotes an arbitrary analytic function of its arguments.

§ 22. If a function ψ(x1, . . . ,xn) satisfies the two equations:

X1( f ) = 0, X2( f ) = 0,
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then it naturally also satisfies the two differential equations of second order:

X1
(

X2( f )
)

= 0, X2
(

X1( f )
)

= 0,

and in consequence of that, also the equation:

X1
(

X2( f )
)−X2

(

X1( f )
)

= 0,

which is obtained by subtraction from the last two written ones.
If now one lets:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1,2),

then:

X1
(

X2( f )
)−X2

(

X1( f )
)

=
n

∑
i=1

{

X1(ξ2i)−X2(ξ1i)
} ∂ f
∂xi

,

because all terms which contain second order differential quotients are canceled.
Thus, the following holds:

Proposition 1. If a function ψ(x1, . . . ,xn) satisfies the two differential equations of
first order:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1,2),

then it also satisfies the equation:

X1
(

X2( f )
)−X2

(

X1( f )
)

=
n

∑
i=1

{

X1(ξ2i)−X2(ξ1i)
} ∂ f
∂xi

= 0,

which, likewise, is of first order.

It is of great importance to know how the expression X1
(

X2( f )
)− X2

(

X1( f )
)

behaves when, in place of x1, . . . ,xn, new independent variables y1, . . . ,yn are intro-
duced.

We agree that by introduction of the y, we obtain:

Xk( f ) =
n

∑
i=1

Xk(yi)
∂ f
∂yi

=
n

∑
i=1
ηki(y1, . . . ,yn)

∂ f
∂yi

= Yk( f )

(k=1,2).

Since f denotes here a completely arbitrary function of x1, . . . ,xn, we can substitute
X1( f ) or X2( f ) in place of f , so we have:

X1
(

X2( f )
)

= Y1
(

X2( f )
)

= Y1
(

Y2( f )
)

X2
(

X1( f )
)

= Y2
(

X1( f )
)

= Y2
(

Y1( f )
)

,
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and consequently:

X1
(

X2( f )
)−X2

(

X1( f )
)

= Y1
(

Y2( f )
)−Y2

(

Y1( f )
)

.

Thus we have the

Proposition 2. If, by the introduction of a new independent variable, the expres-
sions X1( f ) and X2( f ) are transferred to Y1( f ) and respectively to Y2( f ), then the
expression X1

(

X2( f )
)−X2

(

X1( f )
)

is transferred to Y1
(

Y2( f )
)−Y2

(

Y1( f )
)

.

This property of the expression X1
(

X2( f )
)− X2

(

X1( f )
)

will frequently be used
in the course of our study. The same proposition can be stated more briefly: the
expression X1

(

X2( f )
)−X2

(

X1( f )
)

behaves invariantly through the introduction of
a new variable.

We now consider the q equations:

(1) X1( f ) = 0, . . . . . . ,Xq( f ) = 0,

and we ask about its possible joint solutions.
It is conceivable that between the expressions Xk( f ), there are relations of the

form:

(2)
q

∑
k=1

χk(x1, . . . ,xn)Xk( f ) ≡ 0.

If this were the case, then certain amongst our equations would be a consequence
of the remaining ones, and they could easily be left out while taking for granted
the solution of the stated problem. Therefore it is completely legitimate to make the
assumption that there are no relations of the form (2), hence that the equations (1)
are solvable with respect to q of the differential quotients ∂ f

∂xi
. When we refer to

the equations (1) as independent of each other, it is to be understood in this sense.1

(Translator’s note: This is a typical place where a relocalization is in general re-
quired in order to insure that the vectors X1

∣
∣
x, . . . ,Xq

∣
∣
x are locally linearly indepen-

dent, and the authors, as usual, understand it mentally.)
According to what has been said above about the two equations X1( f ) = 0 and

X2( f ) = 0, it is clear that the possible joint solutions of our q equations also satisfy
all equations of the form:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

= 0.

Two cases can occur.
Firstly, the equations obtained this way can be a consequence of the former, when

for every i and k � q, a relation of the following form:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
= χik1(x1, . . . ,xn)X1( f )+ · · ·+χikq(x1, . . . ,xn)Xq( f )
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holds. With CLEBSCH, we then say that the q independent equations X1( f ) = 0, . . . ,
Xq( f ) = 0 form a q-term complete system [q-GLIEDRIG VOLLSTÄNDIG SYSTEM].

However, in general the second possible case will occur; amongst the new formed
equations:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

= 0,

will be found a certain number which are independent of each other, and from the q
presented ones. We add them, say:

Xq+1( f ) = 0, . . . . . . ,Xq+s( f ) = 0

to the q initial equations and we now treat the obtained q+ s equations exactly as
the original q equations. So we continue; but since we cannot come to more than
n equations Xi( f ) = 0 that are independent of each other, we must finally reach a
complete system which consists of n or fewer independent equations. Therefore we
have the proposition:

Proposition 3. The determination of the joint solutions of q given linear partial
differential equations of first order X1( f ) = 0, . . . ,Xq( f ) = 0 can always be reduced,
by differentiation and elimination, to the integration of a complete system.

We now assume that X1( f ) = 0, . . . , Xq( f ) = 0 form a q-term complete system.
Obviously, these equations may be replaced by q other equations:

Yk( f ) =
q

∑
j=1
ψk j(x1, . . . ,xn)Xj( f ) = 0 (k=1 ···q).

In the process, it is only required that the determinant of the ψk j does not vanish
identically, whence the Xj( f ) can also be expressed linearly in terms of the Yk( f ).
Visibly, relations of the form:

(3) Yi
(

Yk( f )
)−Yk

(

Yi( f )
)

=
q

∑
j=1
ωik j(x1, . . . ,xn)Yj( f )

then hold true; so the equations Yk( f ) = 0 also form a q-term complete system and
hence are totally equivalent to the equations Xk( f ) = 0.

As has been pointed out for the first time by CLEBSCH, some ψk j are always
available for which all the ωik j vanish. In order to show this in the simplest way,
we select with A. MAYER the ψk j so that the Yk( f ) = 0 appear to be resolved with

respect to q of the differential quotients, for instance with respect to ∂ f
∂xn

, . . . , ∂ f
∂xn−q+1

:

(4) Yk( f ) =
∂ f

∂xn−q+k
+

n−q

∑
i=1
ηki

∂ f
∂xi

(k=1 ···q).

Then the expressions Yi
(

Yk( f )
)−Yk

(

Yi( f )
)

will all be free of ∂ f
∂xn−q+1

, . . . , ∂ f
∂xn

, and

consequently they can have the form ∑ j ωik j Yj( f ) only if all the ωik j vanish. Thus:



102 5 Complete Systems of Partial Differential Equations

Proposition 4. If one solves a q-term complete system:

X1( f ) = 0, . . . . . . ,Xq( f ) = 0

with respect to q of the differential quotients, then the resulting equations:

(4) Yk( f ) =
∂ f

∂xn−q+k
+

n−q

∑
i=1
ηki

∂ f
∂xi

= 0 (k=1 ···q)

stand pairwise in the relationships:

(5) Yi
(

Yk( f )
)−Yk

(

Yi( f )
)

= 0 (i,k=1 ···q).

§ 23. We now imagine that a given q-term complete system is brought to the
above-mentioned form:

(4) Yk( f ) =
∂ f

∂xn−q+k
+

n−q

∑
i=1
ηki

∂ f
∂xi

= 0 (k=1 ···q).

It will be shown that this system possesses n − q independent solutions, for the
determination of which it suffices to integrate q individual linear partial differential
equations one after the other.

At first, we integrate the differential equation:

Yq( f ) =
∂ f
∂xn

+
n−q

∑
i=1
ηqi

∂ f
∂xi

= 0;

amongst its n−1 independent solutions x′
1, . . . ,x

′
n, the following q−1, namely:

x′
n−q+1 = xn−q+1, . . . . . . ,x

′
n−1 = xn−1

are known at once. If the n−1 expressions x′
1, . . . ,x

′
n−1 together with the quantity xn

which is independent of them, are introduced as new variables, then our complete
system receives the form:

Yq( f ) =
∂ f
∂xn

= 0, Yk( f ) =
∂ f

∂x′
n−q+1

+
n−q

∑
i=1
η ′

ki
∂ f
∂x′

i
= 0

(k=1 ···q−1).

Now, since the expressions Yi
(

Yk( f )
)−Yk

(

Yi( f )
)

behave invariantly through the
introduction of new variables (cf. Proposition 2 of this chapter), they must now again
also vanish, from which it follows that all η ′

ki must be functions of only x′
1, . . . ,x

′
n−1,

and be free of xn. The initial problem of integration is therefore reduced to finding
the joint solutions of the q−1 equations:
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Y ′
k( f ) =

∂ f
∂x′

n−q+k
+

n−q

∑
i=1
η ′

ki(x
′
1, . . . ,x

′
n−1)

∂ f
∂x′

i
= 0

(k=1 ···q−1),

and in fact these equations, which depend upon only n − 1 independent vari-
ables, namely x′

1, . . . ,x
′
n−1, again stand pairwise in the relationships: Y ′

i

(

Y ′
k( f )

)−
Y ′

k

(

Y ′
i ( f )

)

= 0.
We formulate this result in the following way.

Proposition 5. The joint solutions of the equations of a q-term complete system in n
variables can also be defined as the joint solutions of the equations of a (q−1)-term
complete system in n − 1 variables. In order to be able to set up this new complete
system, one only has to integrate a single linear partial differential equation of first
order in (n−q+1) variables.

The new complete system again appears in resolved form; we can hence at once
continue our above-mentioned process and by applying it (q − 1) times, we obtain
the following:

Proposition 6. The joint solutions of the equations of a q-term complete system in
n variables can also be defined as the solutions of a single linear partial differential
equation of first order in n − q + 1 variables. In order to be able to set up this
equation, it suffices to integrate q−1 individual equations of this sort one after the
other.

From this it follows easily:

Proposition 7. A q-term complete system in n independent variables always pos-
sesses n−q independent solutions.

But conversely, the following also holds:

Proposition 8. If q independent linear partial differential equations of first order in
n independent variables:

X1( f ) = 0, . . . . . . ,Xq( f ) = 0

have exactly n−q independent solutions in common, then they form a q-term com-
plete system.

For the proof, we remark that according to the preceding, the equations:

X1( f ) = 0, . . . . . . ,Xq( f ) = 0

determine a complete system with q or more terms; now, if this complete system
contained more than q independent equations, then it would possess not n − q, but
only a smaller number of independent solutions; under the assumptions of the propo-
sition, it is therefore q-term, that is to say, it is constituted by the equations X1( f ) =
0, . . . , Xq( f ) = 0 themselves.
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If n−q independent functions ω1, . . . ,ωn−q of x1, . . . ,xn are presented, then one
can always set up q independent linear partial differential equations which are iden-
tically satisfied by all ω . Indeed, if we take for granted that the determinant:

∑± ∂ω1

∂x1
. . .
∂ωn−q

∂xn−q

does not vanish identically, which we can achieve without restriction, then the q
equations:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ f
∂x1

· · · ∂ f
∂xn−q

∂ f
∂xn−q+k

∂ω1
∂x1

· · · ∂ω1
∂xn−q

∂ω1
∂xn−q+k

· · · · · ·
∂ωn−q
∂x1

· · · ∂ωn−q
∂xn−q

∂ωn−q
∂xn−q+k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (k=1 ···q)

are differential equations of that kind; because after the substitution f =ω j, they go
to an identity, and because they are independent of each other, as their form shows.
According to the last proposition, these equations form a q-term complete system.
Thus:

Proposition 9. If n−q independent functions of n variables x1, . . . ,xn are presented,
then there always exists a determinate q-term complete system in x1, . . . ,xn of which
these functions constitute a system of solutions.

§ 24. However, for our goal, it does not suffice to have proved the existence of
the solutions to a complete system, it is on the contrary rather necessary to deal
more closely with the analytic properties of these solutions.

For this purpose, we shall assume that in the presented q-term complete system:

Yk( f ) =
∂ f

∂xn−q+k
+

n−q

∑
i=1
ηki

∂ f
∂xi

= 0 (k=1 ···q),

the analytic functions ηki behave regularly in the neighborhood of:

x1 = · · · = xn = 0.

As quantities x′
1, . . . ,x

′
n−1, we now choose amongst the solutions of the equation:

∂ f
∂xn

+
n−q

∑
i=1
ηqi

∂ f
∂xi

= 0

the formerly defined general solutions of this equation, relative to xn = 0.
We know that these general solutions x′

1, . . . ,x
′
n−1 are ordinary power series with

respect to x1, . . . ,xn in a certain neighborhood of x1 = · · · = xn = 0, and that for
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xn = 0, they reduce to x1, . . . ,xn−1 respectively. The solutions already mentioned
above:

x′
n−q+1 = xn−q+1, . . . . . . ,x

′
n−1 = xn−1

are therefore general solutions.
Conversely, according to the observations in § 21, x1, . . . ,xn−1 are also analytic

functions of x′
1, . . . ,x

′
n−1,xn and they behave regularly in the neighborhood of the

system of values x′
1 = · · · = x′

n−1 = xn = 0. Now, since in the new complete system
Y ′

k( f ) = 0, the coefficients η ′
ki behave regularly as functions of x1, . . . ,xn, they will

also be ordinary power series with respect to x′
1, . . . ,x

′
n−1,xn in a certain neighbor-

hood of x′
1 = 0, . . . ,x′

n−1 = 0, xn = 0, and in fact they will be, as we know, free of
xn.

Next, we determine the general solutions of the equation:

∂ f
∂x′

n−1
+

n−q

∑
i=1
η ′

q−1,i
∂ f
∂x′

i
= 0

relative to x′
n−1 = 0. These solutions, which we may call x′′

1 , . . . ,x
′′
n−2, behave

regularly as functions of x′
1, . . . ,x

′
n−1 in the neighborhood of x′

1 = · · · = x′
n−1 = 0

and are hence also regular in the neighborhood of x1 = · · · = xn = 0, as functions
of x1, . . . ,xn. After the substitution x′

n−1 = 0, the functions x′′
1 , . . . ,x

′′
n−2 reduce to

x′
1, . . . ,x

′
n−2, whence they reduce to x1, . . . ,xn−2 after the substitution xn−1 = xn = 0.

The coefficients of the next (q − 2)-term complete system are naturally ordinary
power series in x′′

1 , . . . ,x
′′
n−2.

After iterating these considerations q times, we obtain at the end n − q indepen-

dent solutions: x(q)1 , . . . ,x(q)n−q of our complete system. These are ordinary power se-

ries with respect to the x(q−1)
i in a certain neighborhood of x(q−1)

1 = · · ·= x(q)n−q+1 = 0,
and just in the same way, also series with respect to the xi in a certain neighbor-

hood of x1 = · · · = xn = 0. For x(q−1)
n−q+1 = 0, the x(q)1 , . . . ,x(q)n−q reduce respectively to

x(q−1)
1 , . . . ,x(q−1)

n−q and hence to x1, . . . ,xn−q for xn−q+1 = · · ·= xn = 0. Therefore one
has:

x(q)i = xi +Pi(x1, . . . ,xn) (i=1 ···n−q),

where the Pi all vanish for xn−q+1 = · · · = xn = 0.

We call the solutions x(q)1 , . . . ,x(q)n−q of our complete system its general solutions
relative to xn−q+1 = 0, . . . , xn = 0.

We may state the gained result in a somewhat more general form by introducing
a general system of values: x0

1, . . . ,x
0
n in place of the special one:

x1 = x2 = · · · = xn = 0.

Then we can say:

Theorem 12. Every q-term complete system:
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∂ f
∂xn−q+k

+
n−q

∑
i=1
ηki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1 ···q)

whose coefficients ηki behave regularly in the neighborhood of x1 = x0
1, . . . , xn =

x0
n possesses n − q independent solutions x(q)1 , . . . ,x(q)n−q which behave regularly in

a certain neighborhood of x1 = x0
1, . . . , xn = x0

n and which in addition reduce to
x1, . . . ,xn−q respectively after the substitution xn−q+1 = x0

n−q+1, . . . , xn = x0
n.

The main theorem of the theory of complete systems has not been stated in this
precise version, either by JACOBI, or by CLEBSCH. Nevertheless, this theorem is im-
plicitly contained in the work of CAUCHY, WEIERSTRASS, BRIOT and BOUQUET,
KOWALEVSKY and DARBOUX, which treat the question of existence of solutions to
given differential equations.

§ 25. The theory of a single linear partial differential equation:

X( f ) =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

= 0

stands, as already said, in the closest connection with the theory of the simultaneous
system:

dx1

ξ1
= · · · = dxn

ξn
.

Moreover, something completely analogous also takes place for systems of linear
partial differential equations.1

Consider q independent linear partial differential equations of first order which,
however, need not constitute a complete system. For the sake of simplicity, we imag-
ine that the equations are solved with respect to q of the differential quotients:

(4’) Yk( f ) =
∂ f

∂xn−q+k
+

n−q

∑
i=1
ηki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1 ···q).

If ω(x1, . . . ,xn) is a general solution of these equations, then:

∂ω
∂xn−q+k

≡ −
n−q

∑
i=1
ηki
∂ω
∂xi

(k=1 ···q),

whence:

dω =
n−q

∑
i=1

∂ω
∂xi

{

dxi −
q

∑
k=1

ηki dxn−q+k

}

.

1 This connection has been explained in detail for the first time by BOOLE. Cf. also A. MAYER
concerning unrestricted integrable differential equations, Math. Ann. Vol. V.
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Consequently, the differential dω vanishes identically by virtue of the n − q total
differential equations:

(6) dxi −
q

∑
k=1

ηki dxn−q+k = 0 (i=1 ···n−q).

But one calls every function of this nature an integral function of this system of total
differential equations. Thus we can say:

Every joint solution of the q linear partial differential equations (4’) is an integral
function of the system of n−q total differential equations (6).

But conversely also, every integral function of the system (6) is a joint solution of
the equations (4’).

Indeed, if w(x1, . . . ,xn) is an integral function of (6), then the expression:

dw =
n

∑
i=1

∂w
∂xi

dxi

vanishes identically by virtue of (6), that it is to say, one has:

q

∑
k=1

{
∂w

∂xn−q+k
+

n−q

∑
i=1
ηki
∂w
∂xi

}

dxn−q+k ≡ 0,

and from this it is evident that w satisfies the equations (4) identically.
But now, the integration of the system (6) is synonymous to the finding

[AUFFINDUNG] of all its integral functions; for, what does it mean to integrate
the system (6)? Nothing else, as is known, but to determine all possible functions
ρ1, . . . ,ρn−q of x1, . . . ,xn which make the expression:

n−q

∑
i=1
ρi(x1, . . . ,xn)

{

dxi −
q

∑
k=1

ηki dxn−q+k

}

become a complete differential, hence to be the differential of an integral function.
In other words:

The integration of the system (4’) of q linear partial differential equations is
accomplished if one integrates the system of the n−q total differential equations (6),
and conversely.

This connection between the two systems (4’) and (6) naturally presupposes that
they (respectively) possess integral functions; however, there still exists a certain
connection also when there are no joint solutions to (4’), and hence too, no integral
functions for (6). This will be considered on another occasion (Chap. 6, p. 120).

Since the equations (4’) have at most n − q independent solutions in com-
mon, the system (6) has at most n − q integral functions. If it possess precisely
n − q such independent solutions, the system (6) is called unrestrictedly inte-
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grable [UNBESCHRÄNKT INTEGRABEL]; so this case occurs only when the q
equations (4’) form a q-term complete system.

We suppose that the system (6) is unrestrictedly integrable, or what is the same,
that all the expressions Yk

(

Yj( f )
)−Yj

(

Yk( f )
)

vanish identically. Furthermore, we
imagine that the n−q general solutions:

ω1(x1, . . . ,xn), . . . , ωn−q(x1, . . . ,xn)

of the complete system (4’) relative to:

xn−q+1 = x0
n−q+1, . . . ,xn = x0

n

are determined. Then the equations:

ω1(x1, . . . ,xn) = a1, . . . , ωn−q(x1, . . . ,xn) = an−q

with the n−q arbitrary constants a1, . . . ,an−q are called the complete integral equa-
tions of the system (6). These integral equations are obviously solvable with respect
to x1, . . . ,xn−q, for ω1, . . . ,ωn−q reduce to x1, . . . ,xn−q (respectively) for:

xn−q+1 = x0
n−q+1, . . . , xn = x0

n.

Hence we obtain:

xi = ψi
(

xn−q+1, . . . ,xn, a1, . . . ,an−q
)

(i=1 ···n−q).

One can easily see that the equations (6) become identities after the substitution
x1 = ψ1, . . . , xn−q = ψn−q. Indeed, we at first have:

xi −ψi
(

xn−q+1, . . . ,xn, ω1, . . . ,ωn−q
) ≡ 0 (i=1 ···n−q);

so if we introduce xi −ψi in place of f in Yk( f ), we naturally again obtain an iden-
tically vanishing expression, and since all Yk(ω1), . . . ,Yk(ωn−q) are identically zero,
we get:

ηki(x1, . . . ,xn)− ∂
∂xn−q+k

ψi
(

xn−q+1, . . . ,xn, ω1, . . . ,ωn−q
) ≡ 0

(k=1 ···q; i=1 ···n−q).

If we make the substitution x1 = ψ1, . . . , xn−q = ψn−q here, we obtain:

ηki
(

ψ1, . . . ,ψn−q, xn−q+1, . . . ,xn
)− ∂

∂xn−q+k
ψi

(

xn−q+1, . . . ,xn,

a1, . . . ,an−q
) ≡ 0.

We multiply this by dxn−q+k, we sum with respect to k from 1 to q and we then
realize that the expression:



§ 26. 109

dxi −
q

∑
k=1

ηki(x1, . . . ,xn)dxn−q+k

effectively vanishes identically after the substitution x1 = ψ1, . . . , xn−q = ψn−q. If
we add that, from the equations ωi = ai, we can always determine the ai so that
the variables x1, . . . ,xn−q take prescribed initial values x1, . . . ,xn−q for xn−q+1 =
x0

n−q+1, . . . , xn = x0
n, then we can say:

If the system of total differential equations (6) is unrestrictedly integrable, then
it is always possible to determine analytic functions x1, . . . ,xn−q of xn−q+1, . . . ,xn

in such a way that the system (6) is identically satisfied and that x1, . . . ,xn−q take
prescribed initial values for xn−q+1 = x0

n−q+1, . . . , xn = x0
n.

§ 26. For reasons of convenience, we introduce a few abbreviations which will
be useful in the future.

Firstly, the parentheses around the f in X( f ) shall from now on be frequently
omitted.

Further, since expressions of the form X
(

Y ( f )
)−Y

(

X( f )
)

will always occur
more frequently [IMMER HAÜFIGER], we want to write:

X
(

Y ( f )
)−Y

(

X( f )
)

= XY f −Y X f =
[

X , Y
]

;

also, we shall often employ the following language [REDEWEISE BEDIENEN]: the
expression, or the infinitesimal transformation

[

X , Y
]

arises as the “composition”
[ZUSAMMENSETZUNG], or the “combination” [COMBINATION], of X f and Y f .

The following observation is also pertinent here:
Between any three expressions X f ,Y f ,Z f there always exists the following iden-

tity:

(7)
[[

X , Y
]

, Z
]

+
[[

Y, Z
]

, X
]

+
[[

Z, X
]

, Y
] ≡ 0.

This identity is a special case of the so-called Jacobi identity, which we shall get to
know later. Here, we want to content ourselves with verifying the correctness of the
special identity (7); later at the concerned place (cf. Volume 2), we shall enter into
the sense of the Jacobi identity.

One has obviously:
[[

X , Y
]

, Z
]

= XY Z f −Y XZ f −ZXY f +ZY X f ;

if one permutes X f ,Y f ,Z f circulary and then sums the three obtained relations, one
gets rid of all the terms on the right-hand side, and one obtains the identity pointed
out above.

This special Jacobi identity turns out to be extremely important in all research on
transformation groups.
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The above simple verification of the special Jacobi identity was given for the first
time by ENGEL.

—————–



Chapter 6
New Interpretation of the Solutions of a
Complete System

If, in the developments of the preceding chapter, we interpret the expression X( f ) as
the symbol of an infinitesimal transformation, or what is the same, as the symbol of a
one-term group, then all that has been said receives a new sense. If on the other hand,
we interpret the variables x1, . . . ,xn as point coordinates [PUNKTCOORDINATEN] in
a space of n dimensions, the results obtained also receive a certain graphical nature
[ANSCHAULICHKEIT].

The goal of the present chapter is to present these two aspects in detail and then
to put them in association; but for that, the introduction of various new concepts
turns out to be necessary.1

§ 27. Let x′
i = fi(x1, . . . ,xn) be a transformation in the variables x1, . . . ,xn and let

Φ(x1, . . . ,xn) be an arbitrary function; now, if by chance this function is constituted
in such a way that the relation:

Φ
(

f1(x), . . . , fn(x)
)

=Φ(x1, . . . ,xn)

holds identically, then we say: the function Φ(x1, . . . ,xn) admits [GESTATTET] the
transformation x′

i = fi(x1, . . . ,xn), or: it allows [ZULÄSST] this transformation;
we also express ourselves as follows: the function Φ(x1, . . . ,xn) remains invariant
through the mentioned transformation, it behaves as an invariant with respect to
this transformation.

If a functionΦ(x1, . . . ,xn) admits all the∞r transformations x′
i = fi(x1, . . . ,xn, a1, . . . ,ar)

of an r-term group, we say that it remains invariant by this group, and that it admits
this group; at the same time, we call Φ an absolute invariant, or briefly an invariant
of the group.

Here, we restrict ourselves to one-term groups. So consider a one-term group:

1 The formations of concepts [BEGRIFFSBILDUNGEN] presented in this chapter have been de-
veloped by Lie in the Memoirs of the Scientific Society of Christiania 1872, 1873, 1874 and 19
February 1875. Cf. also Math. Ann. Vols. VIII, IX and XI.
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X( f ) =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

,

the finite transformations of which have the form:

x′
i = xi +

t
1
ξi +

t2

1 ·2
X(ξi)+ · · · (i=1 ···n).

We ask for all invariants of this group.
If Φ(x1, . . . ,xn) is such an invariant, then for every t, the equation:

Φ
(

x1 + tξ1 + · · · , . . . . . . , xn + tξn + · · ·)=Φ(x1, . . . ,xn)

must hold identically. If we expand here the left-hand side in a series of powers of t
according to the general formula (7) in Chap. 4, p. 67, then we obtain the condition:

Φ(x1, . . . ,xn)+
t
1

X(Φ)+
t2

1 ·2
X
(

X(Φ)
)

+ · · · ≡Φ(x1, . . . ,xn)

for every t. From this, it immediately follows that the expression X(Φ) must vanish
identically, if Φ admits our one-term group; as a result, we thus have a necessary
criterion for the invariance of the function Φ by the one-term group X( f ).

As we saw earlier (cf. p. 68), the expression X(Φ) determines the increase
[ZUWACHS] that the function Φ undergoes by the infinitesimal transformation
X( f ). Now, since this increase δΦ = X(Φ)δ t vanishes together with X(Φ), it is
natural to introduce the following language: when the expression X(Φ) vanishes
identically, we say that the function Φ admits the infinitesimal transformation
X( f ).

Thus, our result above can also be enunciated as follows:

For a function Φ of x1, . . . ,xn to admit all transformations of the one-term group
X( f ), it is a necessary condition that it admits the infinitesimal transformation X( f )
of the concerned group.

However, it is easy to see that this necessary condition is at the same time suffi-
cient. Indeed, together with X(Φ), all the expressions X

(

X(Φ)
)

, X
(

X
(

X(Φ)
))

, etc.
also vanish identically, and consequently, the equation:

Φ(x′
1, . . . ,x

′
n) =Φ(x1, . . . ,xn)+

t
1

X(Φ)+ · · ·

reduces to Φ(x′) = Φ(x) for every value of t, hence with that, it is proved that the
function Φ(x) admits all transformations of the one-term group X( f ). Now, since
the functions Φ(x1, . . . ,xn) for which the expression X(Φ) vanishes identically are
nothing but the solutions of the linear partial differential equation X( f ) = 0, we can
now state the following theorem.

Theorem 13. The solutions of the linear partial differential equation:
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X( f ) =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

= 0

are invariant by the one-term group X( f ), and in fact, they are the only invariants
by X( f ).

Of course, it should not be forgotten that the invariants of the one-term group
X( f ) are also at the same time the invariants of any one-term group of the form:

ρ(x1, . . . ,xn)
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

= ρ X( f ),

whatever ρ is as a function of its arguments.
This simply follows from the fact that one can multiply the equation X( f ) = 0

which defines the invariants in question by any arbitrary function ρ of x1, . . . ,xn.
We can also express this fact as follows: if a function of x1, . . . ,xn admits the in-
finitesimal transformation X( f ), then at the same time, it admits every infinitesimal
transformation ρ(x1, . . . ,xn)X( f ).

One sees that the two concepts of one-term group X( f ) and of infinitesimal trans-
formation X( f ) are more special [SPECIELLER] than the concept of linear partial
differential equation X( f ) = 0.

On the basis of the above developments, we can now express in the following
way our former observation that the joint solutions of two equations Xi( f ) = 0 and
Xk( f ) = 0 simultaneously satisfy the third equation Xi

(

Xk( f )
)−Xk

(

Xi( f )
)

= 0.

Proposition 1. If a function of x1, . . . ,xn admits the two infinitesimal transforma-
tions Xi( f ) and Xk( f ) in these variables, then it also admits the infinitesimal trans-
formation Xi

(

Xk( f )
)−Xk

(

Xi( f )
)

.

Expressed differently:

Proposition 2. If a function of x1, . . . ,xn admits the two one-term groups Xi( f ) and
Xk( f ), then it also admits the one-term group Xi

(

Xk( f )
)−Xk

(

Xi( f )
)

.

If ψ1, . . . ,ψn−q is a system of independent solutions of the q-term complete sys-
tem X1( f )= 0, . . . ,Xq( f )= 0, thenΩ(ψ1, . . . ,ψn−q) is the general form of a solution
of this complete system, whence Ω(ψ1, . . . ,ψn−q) generally admits every infinites-
imal transformation of the form:

(1) χ1(x1, . . . ,xn)X1( f )+ · · ·+χq(x1, . . . ,xn)Xq( f ),

whatever functions χ1, . . . ,χq one can choose. It is even clear that aside from
the ones written just now, there are no infinitesimal transformations by which all
functions of the form Ω(ψ1, . . . ,ψn−q) remain invariant; for we know that the
q-term complete system X1( f ) = 0, . . . , Xq( f ) = 0 is characterized by its solutions
ψ1, . . . ,ψn−q.

Naturally, the functions Ω also admit all finite transformations of the one-term
group (1). Furthermore, one can indicate all finite transformations through which
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all functions Ω(ψ1, . . . ,ψn−q) remain simultaneously invariant. The form of these
transformations is obviously:

ψk(x′
1, . . . ,x

′
n) = ψk(x1, . . . ,xn) (k=1 ···n−q)

U j(x′
1, . . . ,x

′
n, x1, . . . ,xn) = 0 ( j=1 ···q),

where the U j are subjected to the condition that a transformation really arises. More-
over, the x′

k and the xk must also stay inside a certain region.
We want to say that the system of equations:

π1(x1, . . . ,xn) = 0, . . . , πm(x1, . . . ,xn) = 0

admits the transformation x′
i = fi(x1, . . . ,xn) when the system of equations:

π1(x′
1, . . . ,x

′
n) = 0, . . . , πm(x′

1, . . . ,x
′
n) = 0

is equivalent to π1(x) = 0, . . . , πm(x) = 0 after the substitution x′
i = fi(x1, . . . ,xn),

hence when every system of values x1, . . . ,xn which satisfies the m equations
πμ(x) = 0 also satisfies the m equations:

π1
(

f1(x), . . . , fn(x)
)

= 0, . . . , πm
(

f1(x), . . . , fm(x)
)

= 0.

With the introduction of this definition, it is not even necessary to assume that
the m equations π1 = 0, . . . ,πm = 0 are independent of each other, though this as-
sumption will always be made in the sequel, unless the contrary is expressly stated.

From the preceding, we immediately get the following

Proposition 3. If W1,W2, . . . ,Wm (m � n − q) are arbitrary solutions of the q-term
complete system X1( f ) = 0, . . . ,Xq( f ) = 0 in the n independent variables x1, . . . ,xn

and if furthermore a1, . . . ,am are arbitrarily chosen constants, then the system of
equation:

W1 = a1, . . . , Wm = am

admits any one-term group of the form:

q

∑
k=1

χk(x1, . . . ,xn)Xk( f ),

where it is understood that χ1, . . . ,χq are arbitrary functions of their arguments.

§ 28. In the previous section, we have shown in a new light the theory of the
integration of linear partial differential equations, in such a way that we brought to
connection the infinitesimal transformations and the one-term groups. At present,
we want to take another route, we want to attempt to make accessible the clear,
illustrated conception of this theory of integration (and of what is linked with it), by
means of manifold considerations [MANNIGFALTIGKEITSBETRACHTUNGEN].
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If we interpret x1, . . . ,xn as coordinates in an n-times extended space Rn, then the
simultaneous system:

dx1

ξ1
= · · · = dxn

ξn

receives a certain illustrative sense; namely it attaches to each point x1, . . . ,xn of the
Rn a certain direction [RICHTUNG].

The integral equations of the simultaneous system determine n − 1 of the vari-
ables x1, . . . ,xn, hence for instance x1, . . . ,xn−1, as functions of the n-th: xn and of
the initial values x1, . . . ,xn; consequently, after a definite choice of initial values,
these integral equations represent a determinate once-extended manifold which we
call an integral curve of the simultaneous system. Every such integral curve comes
into contact [BERÜHRT], in each one of its points, with the direction attached to the
point.

There is in total ∞n−1 different integral curves of the simultaneous system, and
in fact, through every point of the Rn, there passes in general one integral curve.

If ψ1, . . . ,ψn−1 are independent integral functions of the simultaneous system,
then all the integral curves are also represented by means of the n−1 equations:

ψk(x1, . . . ,xn) =Ck (k=1 ···n−1),

with the n−1 arbitrary constants C1, . . . ,Cn−1. If one sets an arbitrary integral func-
tion Ω(ψ1, . . . ,ψn−1) to be equal to an arbitrary constant:

Ω(ψ1, . . . ,ψn−1) = A,

then one obtains the equation of ∞1 (n − 1)-times extended manifolds, which are
entirely constituted of integral curves and in fact, every such manifold is consti-
tuted of ∞n−2 different integral manifolds. Lastly, if one sets in general m � n − 1
independent integral functions Ω1, . . . ,Ωm to be equal to arbitrary constants:

Ωμ(ψ1, . . . ,ψn−1) = Aμ (μ=1 ···m),

then one obtains the analytic expression of a family of ∞m (n − m)-times extended
manifolds, each one of which consists of ∞n−m−1 integral curves.

The integral functions of our simultaneous system are at the same time the solu-
tions of the linear partial differential equations:

n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

= X( f ) = 0.

Occasionally, we also call the integral curves of the simultaneous system the
characteristics of the linear partial differential equation X( f ) = 0, if we again take
up the terminology introduced by MONGE for n = 3. Using this terminology, we
can also say: every solution of the linear partial differential equation X( f ) = 0 rep-
resents, when it is set equal to a constant, a family of ∞1 manifolds which consists
of ∞n−2 characteristics of X( f ) = 0.
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Now, we imagine that we are given two linear partial differential equations, say
X1( f ) = 0 and X2( f ) = 0.

It is possible that the two equations have characteristics in common. This case
happens when there is an identity of the form:

χ1(x1, . . . ,xn)X1( f )+χ2(x1, . . . ,xn)X2( f ) ≡ 0,

without χ1 and χ2 both vanishing. Then obviously every solution of X1( f ) = 0 also
satisfies X2( f ) = 0 and conversely.

If the two equations X1( f ) = 0 and X2( f ) = 0 have distinct characteristics, then
they do not have all their solutions in common; then the question is whether they
in general possess solutions in common, or, as we can now express: whether the
characteristics of X1( f ) = 0 can be gathered as manifolds which consist of charac-
teristics of X2( f ) = 0.

This question can be answered directly when one knows the characteristics of
the two equations X1( f ) = 0 and X2( f ) = 0; however, we do not want to halt here.
In the sequel, we shall restrict ourselves to expressing in the language of the theory
of manifolds [MANNIGFALTIGKEITSLEHRE] the former results which have been
deduced by means of the analytic method [DURCH ANALYTISCHE METHODEN].

Let the q mutually independent equations:

X1( f ) = 0, . . . , Xq( f ) = 0

form a q-term complete system and let ψ1, . . . ,ψn−q be independent solution of it.
Then the equations:

ψ1(x1, . . . ,xn) =C1, . . . , ψn−q(x1, . . . ,xn) =Cn−q

with the n − q arbitrary constants Ck represent a family of ∞n−q q-times extended
manifolds, each one of which consists of ∞q−1 characteristics of each individual
equation amongst the q equations X1( f ) = 0, . . . ,Xq( f ) = 0. We call these ∞n−q

manifolds the characteristic manifolds of the complete system.
If one sets any n−q−m independent functions of ψ1, . . . ,ψn−q equal to arbitrary

constants:

Ω1(ψ1, . . . ,ψn−q) = A1, . . . , Ωn−q−m(ψ1, . . . ,ψn−q) = An−q−m,

then one gets the analytic expression of a family of ∞n−q−m (q+m)-times extended
manifolds, amongst which each individual one consists of ∞m characteristic mani-
folds.

The equations of the ∞n−q characteristic manifolds show that every point of Rn

belongs to one and to only one characteristic manifold. Consequently, we can say
that the whole Rn is decomposed [ZERLEGT] into ∞n−q q-times extended mani-
folds, hence that our complete system defines a decomposition [ZERLEGUNG] of
the space.

Conversely, every decomposition of Rn into ∞n−q q-times extended manifolds:
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ϕ1(x1, . . . ,xn) = A1, . . . , ϕn−q(x1, . . . ,xn) = An−q

can be defined by means of a q-term complete system; for ϕ1, . . . ,ϕn−q are neces-
sarily independent functions, whence according to Proposition 9, p. 104, there is a
q-term complete system the most general solution of which is an arbitrary function
of ϕ1, . . . ,ϕn−q; this complete system then defines the decomposition in question.

An individual linear partial differential equation X( f ) = 0 attaches to every point
of Rn a certain direction. If one has several such equations, for instance the following
ones, which can be chosen in a completely arbitrary way:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1 ···q),

then each one of these equations associates to every point of the space a direction
of progress [FORTSCHREITUNGSRICHTUNG]. For instance, the q directions associ-
ated to the point x0

1, . . . ,x
0
n are determined by:

δx0
1 : δx0

2 : · · · : δx0
n = ξk1(x0) : ξk2(x0) : · · · : ξkn(x0)

(k=1 ···q).

We call these q directions in the chosen point independent of each other if none of
them can be linearly deduced from the remaining ones, that is to say: if it is not
possible to indicate q numbers λ1, . . . ,λq which do not all vanish although the n
equations:

λ1ξ 0
1i + · · ·+λqξ 0

qi = 0 (i=1 ···n)

are satisfied.
From this, it follows that the q equations X1( f ) = 0, . . . ,Xq( f ) = 0 associate to

every point in general position q independent directions when they are themselves
mutually independent, thus when the equation:

q

∑
k=1

χk(x1, . . . ,xn)Xk( f ) = 0

can be identically satisfied only for χ1 = 0, . . . , χq = 0.
If one wants to visualize geometrically what is understood by “independent di-

rections”, one should best start in ordinary, thrice-extended space R3; for it is then
obvious. At a point of R3 one calls two directions independent of each other when
they are generally distinct; three directions are independent when they do not fall in
the same plane passing through the point; there are in general no more than three
mutually independent directions at a point of R3.

Accordingly, q directions at a point of Rn are independent of each other if and
only if, when collected together, they are not contained in any smooth manifold
through this point which has fewer than q dimensions.

Every possible common solution of the q equations:
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X1( f ) = 0, . . . , Xq( f ) = 0

also satisfies all equations of the form:

(2)
q

∑
k=1

χk(x1, . . . ,xn)Xk( f ) = 0.

The totality of all these equations associates a whole family of directions to
any point of Rn. If we assume from the beginning that the equations X1( f ) =
0, . . . , Xq( f ) = 0 are mutually independent, we do not restrict the generality of
the investigation; thus through the equations (2), we are given a family of ∞q−1

different directions which are attached to each point x1, . . . ,xn. One easily sees that
these ∞q−1 directions at every point form a smooth bundle, and hence determine a
smooth q-times extended manifold passing through this point, namely the smallest
smooth manifold through the point which contains the q independent directions of
the q equations X1( f ) = 0, . . . ,Xq( f ) = 0.

Every possible joint solution of the equations:

X1( f ) = 0, . . . , Xq( f ) = 0

also satisfies all equations of the form:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

= 0.

These equations also attach to any point x1, . . . ,xn certain directions, but in general,
the directions in question will only exceptionally belong to the above-mentioned
bundle of ∞q−1 directions at the point x1, . . . ,xn. It is only in one case that at each
point of the space, the directions attached to all equations:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

= 0

belong to the bundle in question, namely only if for every k and j there exists a
relation of the form:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

=
q

∑
s=1
ωk js(x1, . . . ,xn)Xs( f ),

that is to say, when the equations X1( f ) = 0, . . . , Xq( f ) = 0 coincidentally form a
q-term complete system. —

We can also define by the equations:

δx1 : · · · : δxn =
q

∑
k=1

χk(x)ξk1(x) : · · · :
q

∑
k=1

χk(x)ξkn(x)

(k=1 ···q)
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the bundle of directions which is determined at every point x1, . . . ,xn by the
equations X1 f = 0, . . . , Xq f = 0. By eliminating from this the arbitrary functions
χ1, . . . ,χq, or, what is the same, by setting equal to zero all the determinants in q+1
columns of the matrix: ∣

∣
∣
∣
∣
∣
∣
∣

dx1 dx2 · · dxn

ξ11 ξ12 · · ξ1n

· · · · ·
ξq1 ξq2 · · ξqn

∣
∣
∣
∣
∣
∣
∣
∣

we obtain a system of n − q independent total differential equations. This system
attaches to every point x1, . . . ,xn exactly the same smooth bundle of ∞q−1 directions
as did the equations (2). It follows conversely that the totality of the linear partial
differential equations (2) is also completely determined by the system of total dif-
ferential equations just introduced.

The formulas become particularly convenient when one replaces the q equations
X1( f ) = 0, . . . , Xq( f ) = 0 by q other equations which are resolved with respect to q

of the differential quotients ∂ f
∂xi

, for instance by the following q equations:

Yk( f ) =
∂ f

∂xn−q+k
+

n−q

∑
i=1
ηki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1 ···q).

The totality of all the equations (2) is equivalent to the totality of all the equations:

q

∑
k=1

χk(x1, . . . ,xn)Yk( f ) = 0;

hence the directions which are attached to the point x1, . . . ,xn are also represented
by the equations:

dx1 : · · · : dxn−q : dxn−q+1 : · · · : dxn =

=
q

∑
k=1

χkηk1 : · · · :
q

∑
k=1

χkηk,n−q : χ1 : · · · : χq.

If we therefore eliminate χ1, . . . ,χq, we obtain the following system of total differ-
ential equations:

(3) dxi −
q

∑
k=1

ηki(x)dxn−q+k = 0 (i=1 ···n−q).

We have already seen in the preceding chapter, from p. 106 up to p. 107, that there
is a connection between the system of linear partial differential equations Y1( f ) =
0, . . . , Yq( f ) = 0 and the above system of total differential equations. But at that
time, we limited ourselves to the special case where the q equations:

Y1( f ) = 0, . . . , Yq( f ) = 0
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have solutions in common, and we showed that the determination of these joint
solutions amounts to the integration of the above total differential equations.

However, in the developments carried out just now, the integrability of
the concerned system of differential equations is out of the question. With
that, the connection between the system of linear partial differential equations
Y1( f ) = 0, . . . , Yq( f ) = 0 and the system of total differential equations (3) is
completely independent of the integrability of these two systems; this connection
is just based on the fact that the two systems attach a single and the same smooth
bundle of ∞q−1 directions.

To conclude, we make the following remark which seems most certainly obvious,
but nevertheless has to be done: if the q equations X1 f = 0, . . . , Xq f = 0 constitute a
q-term complete system, then at each point x1, . . . ,xn, the characteristic manifold of
the complete system comes into contact with the ∞q−1 directions that all equations
of the form (2) attach to this point.

§ 29. Lastly, it is advisable to combine the manifold-type considerations [MAN-
NIGFALTIGKEITSBETRACHTUNGEN] of the previous section with the developments
of § 27. Before we do that, we continue to pursue some further manifold consider-
ations.

Every transformation x′
i = fi(x1, . . . ,xn) can be interpreted as an operation which

exchanges [VERTAUSCHT] the points of Rn, as it transfers each point x1, . . . ,xn to
the new position x′

1 = f1(x), . . . , x′
n = fn(x) (Chap. 1, p. 3).

A system of m independent equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωm(x1, . . . ,xn) = 0

represents an (n − m)-times extended manifold of Rn. We say that this man-
ifold admits the transformation x′

i = fi(x1, . . . ,xn) if the system of equations
Ω1 = 0, . . . ,Ωm = 0 admits this transformation. According to § 27 this is
the case when every system of values x1, . . . ,xn which satisfies the equations
Ω1(x) = 0, . . . ,Ωm(x) = 0 satisfies at the same time the equations:

Ω1
(

f1(x), . . . , fn(x)
)

= 0, . . . , Ωm
(

f1(x), . . . , fn(x)
)

= 0.

Hence we can also express ourselves as follows:

The manifold:

Ω1(x1, . . . ,xn) = 0, . . . , Ωm(x1, . . . ,xn) = 0

admits the transformation:

x′
1 = f1(x1, . . . ,xn), . . . , x′

n = fn(x1, . . . ,xn)

if every point x1, . . . ,xn of the manifold is transferred by this transformation to a
point x′

1, . . . ,x
′
n which likewise belongs to the manifold.
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In Chapter 3, p. 62 sq., we saw that through every point x1, . . . ,xn of Rn in general
position there passes an integral curve [BAHNCURVE] of the infinitesimal transfor-
mation:

X( f ) =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

.

There, we defined this integral curve as the totality of all the positions that the point
x1, . . . ,xn can take by means of all the ∞1 transformations of the one-term group
X( f ); furthermore, the point x1, . . . ,xn on the integral curve in question could be
chosen completely arbitrarily. From this, it results that, through every transformation
of the one-term group X( f ), every point x1, . . . ,xn stays on the integral curve passing
through it, whence every integral curve of the infinitesimal transformation X( f )
remains invariant by the ∞1 transformations of the one-term group X( f ). The same
naturally holds true for every manifold which consists of integral curves.

But the integral curves of the infinitesimal transformation X( f ) are nothing else
than the integral curves of the simultaneous system:

dx1

ξ1
= · · · = dxn

ξn

hence from this it again follows that the above-mentioned characteristics of the lin-
ear partial differential equation X( f ) = 0 coincide with the integral curves of the
infinitesimal transformation X( f ).

Earlier on (Chap. 4, p. 62), we emphasized that an infinitesimal transformation
X f attaches to every point x1, . . . ,xn in general position a certain direction of
progress, namely the one which comes into contact with the integral curve passing
through. Obviously this direction of progress coincides with the direction that the
equation X f associates to the point in question.

Several, say q, infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···q)

determine q different directions of progress at each point x1, . . . ,xn in general posi-
tion; in accordance with the preceding, we call these directions of progress indepen-
dent of each other if the equations X1 f = 0, . . . , Xq f = 0 are mutually independent.

From this, it follows immediately that the q infinitesimal transformations
X1 f , . . . ,Xq f attach precisely h � q independent directions of progress when all the
(h+1)× (h+1) determinants of the matrix:

∣
∣
∣
∣
∣
∣

ξ11 · · ξ1n

· · · ·
ξq1 · · ξqn

∣
∣
∣
∣
∣
∣

vanish identically, without all its h×h determinants doing so. —
What we have to say in addition here can be summarized as a statement.
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Proposition 4. If q infinitesimal transformations X1 f , . . . ,Xq f of the n-times
extended space x1, . . . ,xn are constituted in such a way that the q equations
X1 f = 0, . . . , Xq f = 0 are independent of each other, then X1 f , . . . ,Xq f attach to
every point x1, . . . ,xn in general position q independent directions of progress;
moreover, if the equations X1 f = 0, . . . , Xq f = 0 form a q-term complete system,
then X1 f , . . . ,Xq f determine a decomposition of the space into ∞n−q q-times
extended manifolds, the characteristic manifolds of the complete system. Each one
of these manifolds comes into contact in each of its points with the directions that
X1 f , . . . ,Xq f associate to the point; each such manifold can be engendered by the
∞q−1 integral curves of an arbitrary infinitesimal transformation of the form:

χ1(x1, . . . ,xn)X1 f + · · ·+χq(x1, . . . ,xn)Xq f ,

where it is understood that χ1, . . . ,χq are arbitrary functions of their arguments;
lastly, each one of the discussed manifolds admits all the transformations of any
one-term group:

χ1 X1 f + · · ·+χq Xq f .

—————–



Chapter 7
Determination of All Systems of Equations
Which Admit Given Infinitesimal
Transformations

First, we shall define what we mean by the phrase that the system of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0

admits the infinitesimal transformation X( f ). Then, we shall settle the extremely
important problem of determining all systems of equations which admit given in-
finitesimal transformations.1

But beforehand, we observe the following:
We naturally consider only such system of equations:

Ω1 = 0, . . . , Ωn−m = 0

that are satisfied by certain systems of values x1, . . . ,xn; at the same time, we always
restrict ourselves to systems of values x1, . . . ,xn in the neighborhood of which the
functions Ω1, . . . ,Ωn−m behave regularly. In addition, we want once and for all to
agree on the following: unless the contrary is expressly allowed, every system of
equations Ω1 = 0, . . . ,Ωn−m = 0 which we consider should be constituted in such a
way that not all (n−m)× (n−m) determinants of the matrix:

(1)

∣
∣
∣
∣
∣
∣
∣

∂Ω1
∂x1

· · ∂Ω1
∂xn

· · · ·
∂Ωn−m
∂x1

· · ∂Ωn−m
∂xn

∣
∣
∣
∣
∣
∣
∣

vanish by means of Ω1 = 0, . . . ,Ωn−m = 0. It is permitted to make this assumption,
since a system of equations which does not have the demanded property can always
be brought to a form which does satisfy the stated requirement.

§ 30. In the variables x1, . . . ,xn, let an infinitesimal transformation:

1 Cf. LIE, Scientific Society of Christiania 1872–74, and also Math. Ann. Vol. XI, Vol. XXIV,
pp. 542–544.
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X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

be given. In our studies which relate to such an infinitesimal transformation, we shall
always restrict ourselves to systems of values for which the ξi behave regularly.

If a system of equations Ω1 = 0, . . . ,Ωn−m = 0 admits all finite transformations:

x′
i = xi + eXxi + · · · (i=1 ···n)

of the one-term group X f , then the system of equations:

Ωk
(

x1 + eXx1 + · · · , . . . , xn + eXxn + · · ·)= 0

(k=1 ···n−m),

or, what is the same, the system:

Ωk + eXΩk + · · · = 0 (k=1 ···n−m)

must be equivalent to the system of equations:

Ω1 = 0, . . . , Ωn−m = 0

for all values of e. To this end it is obviously necessary that all XΩk vanish for the
system of values ofΩ1 = 0, . . . ,Ωn−m = 0, hence that the increment XΩkδ t thatΩk

undergoes by the infinitesimal transformation x′
i = xi + ξiδ t vanishes by means of

Ω1 = 0, . . . ,Ωn−m = 0.
These considerations lead us to set up the following definition:

A system of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0

admits the infinitesimal transformation X f as soon as all the n − m expressions
XΩk vanish by means1 (Translator’s note: An example appearing on p. 128 below
illustrates this condition.) of the system of equations.

Then on the basis of this definition, the following obviously holds:

Proposition 1. If a system of equations admits all transformations of the one-term
group X f , then in any case, it must admit the infinitesimal transformation X f .

In addition, we immediately realize that a system of equations which admits the
infinitesimal transformation X f allows at the same time every infinitesimal transfor-
mation of the form χ(x1, . . . ,xn)X f , provided of course that the function χ behaves
regularly for the system of values which comes into consideration in the concerned
system of equations.

Without difficulty, one can see that the above definition is independent of the
choice of coordinates, so that every system of equations Ω1 = 0, . . . ,Ωn−m = 0
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which admits the infinitesimal transformation X f in the sense indicated above, must
also admit it, when new independent variables y1, . . . ,yn are introduced in place of
the x. The fact that this really holds true follows immediately from the behavior of
the symbol X f after the introduction of new variables. Here as always, it is assumed
that the y are ordinary power series in the x, and that the x are ordinary power
series in the y, for all the systems of values x1, . . . ,xn and y1, . . . ,yn coming into
consideration.

It now remains to show that the definition set up above is also independent of the
form of the system of equations Ω1 = 0, . . . ,Ωn−m = 0. Only when we will have
proved this fact shall the legitimacy of the definition really be established.

Now, in order to be able to carry out this proof, we first provide a few general
results which are already important and which will later find several applications.

Suppose that the system of equationsΩ1 = 0, . . . ,Ωn−m = 0 admits the infinites-
imal transformation X f . Since not all m × m determinants of the matrix (1) vanish
by means of Ω1 = 0, . . . ,Ωn−m = 0, we can assume that the determinant:

∑± ∂Ω1

∂x1
. . .
∂Ωn−m

∂xn−m

belongs to the nonvanishing ones. Then it is possible to resolve the equationsΩk = 0
with respect to x1, . . . ,xm, and this naturally delivers a system of equations:

x1 = ϕ1(xn−m+1, . . . ,xn), . . . , xn−m = ϕn−m(xn−m+1, . . . ,xn)

which is analytically equivalent to the system Ω1 = 0, . . . ,Ωn−m = 0. Therefore, if
by the symbol [ ] we denote the substitution x1 = ϕ1, . . . , xn−m = ϕn−m, we have:

[

Ω1
] ≡ 0, . . . ,

[

Ωn−m
] ≡ 0;

and moreover, the fact that the system of equations Ω1 = 0, . . . ,Ωn−m = 0 admits
the infinitesimal transformation X f is expressed by the identities:

[

XΩ1
] ≡ 0, . . . ,

[

XΩn−m
] ≡ 0.

Now, let Φ(x1, . . . ,xn) be an arbitrary function which behaves regularly for the
system of values x1, . . . ,xn coming into consideration. Then one has:

[

XΦ
]

=
n

∑
i=1

[

Xxi
]
[
∂Φ
∂xi

]

,

and on the other hand:

[

X [Φ ]
]

=
n−m

∑
k=1

[

Xϕk
]
[
∂Φ
∂xk

]

+
m

∑
μ=1

[

Xxn−m+μ
]
[

∂Φ
∂xn−m+μ

]

,

whence:
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(2)
[

XΦ
]

=
[

X [Φ ]
]

+
n−m

∑
k=1

[

X(xk −ϕk)
]
[
∂Φ
∂xk

]

.

If in place of Φ we insert one after the other the functions Ω1, . . . ,Ωn−m, and if we
take into account that

[

Ω j
]

and also X
[

Ω j
]

plus
[

X [Ω j]
]

vanish identically, then we
find:

[

XΩ j
]

=
n−m

∑
k=1

[

X(xk −ϕk)
]
[
∂Ω j

∂xk

]

( j=1 ···n−m).

Now, because
[

XΩ j
]

vanishes identically in any case, while the determinant:

∑±
[
∂Ω1

∂x1

]

. . .

[
∂Ωn−m

∂xn−m

]

does not vanish identically, it follows that:
[

X(xk −ϕk)
] ≡ 0 (k=1 ···n−m),

whence the equation (2) takes the form:

(3)
[

XΦ
] ≡ [

X [Φ ]
]

.

This formula, which is valid for any functionΦ(x1, . . . ,xn), will be very useful later.
Here, we need it only in the special case where Φ vanishes by means of Ω1 =
0, . . . ,Ωn−m = 0; then

[

Φ
]

is identically zero and likewise
[

X [Φ ]
]

; our formula
hence shows that

[

XΦ
]

also vanishes identically. We can express this result as fol-
lows:

Proposition 2. If a system of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0

admits the infinitesimal transformation:

X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

and if V (x1, . . . ,xn) is a function which vanishes by means of this system of equa-
tions, then the function XV also vanishes by means of Ω1 = 0, . . . ,Ωn−m = 0.

Now, if V1 = 0, . . . ,Vn−m = 0 is an arbitrary system analytically equivalent to:

Ω1 = 0, . . . , Ωn−m = 0,

then according to the proposition just stated, all the n − m expressions XVk vanish
by means of Ω1 = 0, . . . ,Ωn−m = 0 and hence they also vanish by means of V1 =
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0, . . . ,Vn−m = 0; in other words: the system of equations V1 = 0, . . . ,Vn−m = 0 also
admits the infinitesimal transformation X f .

Finally, as a result, it is established that our above definition for the invariance
of a system of equations by an infinitesimal transformation is also independent of
the form of this system of equations. Therefore, the introduction of this definition is
completely natural [NATURGEMÄSS].

We know that a system of equations can admit all transformations of the one-
term group X f only when it admits the infinitesimal transformation X f . But this
necessary condition is at the same time sufficient; indeed, it can be established that
every system of equations which admits the infinitesimal transformation X f gener-
ally allows all the transformations of the one-term group X f .

In fact, let the system of equation Ω1 = 0, . . . ,Ωn−m = 0 admit the infinitesimal
transformation X f ; moreover, let x1 = ϕ1, . . . , xn−m = ϕn−m be a resolved form for
the system of equations Ω1 = 0, . . . ,Ωn−m = 0; lastly, let the substitution xμ = ϕμ
again be denoted by the symbol

[ ]

.
Under these assumptions, we have at first

[

Ωk
] ≡ 0, then

[

XΩk
] ≡ 0 and from

Proposition 2 just stated we obtain furthermore:
[

XXΩk
] ≡ 0,

[

XXXΩk
] ≡ 0, · · · .

Consequently, the infinite series:

Ωk +
e
1

XΩk +
e2

1 ·2
XXΩk + · · ·

vanishes identically after the substitution xμ = ϕμ , whichever value the parameter e
can have. So for any e, the system of equations:

Ωk + eXΩk + · · · = 0 (k=1 ···n−m)

will be satisfied by the systems of values of the system of equations Ω1 =
0, . . . ,Ωn−m = 0, and according to what has been said earlier, this simply means
that the system of equations:

Ω1 = 0, . . . , Ωn−m = 0

admits all transformations:

x′
i = xi + eXxi + · · · (i=1 ···n)

of the one-term group X f . With that, the assertion made above is proved; as a result,
we have the

Theorem 14. The system of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0
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admits all transformations of the one-term group X f if and only if it admits the
infinitesimal transformation X f , that is to say, when all the n−m expressions XΩk

vanish by means of Ω1 = 0, . . . ,Ωn−m = 0.

This theorem is proved under the assumption, which we always make unless oth-
erwise stated, that not all (n−m)×(n−m) determinants of the matrix (1) vanish by
means ofΩ1 = 0, . . . ,Ωn−m = 0. In addition, as already said, both the Ωk and the ξi

must behave regularly for the systems of values x1, . . . ,xn coming into consideration.
It can be seen that Theorem 14 no longer holds true when this assumption on the

determinant of the matrix (1) is not fulfilled. Indeed, we consider for instance the
system of equations:

Ω1 = x2
1 = 0, . . . , Ωn−m = x2

n−m = 0,

by means of which all the (n−m)× (n−m) determinants of the matrix (1) vanish.
We find for these equations: XΩk = 2xk Xxk, hence all the XΩk vanish by means of
Ω1 = 0, . . . ,Ωn−m = 0, whatever form X f has. Consequently, if Theorem 14 were
also true here, then the system of equations:

x2
1 = 0, . . . , x2

n−m = 0

would admit any arbitrary one-term group X f , which obviously is not the case.
From this we conclude the following: when the system of equations Ω1 =

0, . . . ,Ωn−m = 0 brings to zero all the (n − m) × (n − m) determinants of the
matrix (1), the vanishing of all the XΩk by means of Ω1 = 0, . . . ,Ωn−m = 0 is of
course necessary in order that this system of equations admits the one-term group
X f , but however, it is not sufficient.

Nevertheless, in the course of research we are often led to systems of equations
for which one has no means to decide whether the repeatedly mentioned requirement
is met. Then how should one recognize that the system of equations in question
admits, or does not admit, a given one-term group?

In such circumstances, there is a criterion which is frequently of great help and
which we now want to develop.

Let:
Δ1(x1, . . . ,xn) = 0, . . . , Δs(x1, . . . ,xn) = 0

be a system of equations. We assume that the functions Δ1, . . . ,Δs behave regularly
inside a certain region B, in the neighborhood of those systems of values x1, . . . ,xn

which satisfy the system of equations. However, we assume nothing about the be-
havior of the functional determinants of the Δ ’s; we no longer demand that our s
equations are independent of each other, so the number s can even be larger than n
in certain circumstances.

Moreover, let:

X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi



§ 30. 129

be an infinitesimal transformation and suppose that amongst the system of values
x1, . . . ,xn for which ξ1, . . . ,ξn behave regularly, there exist some which satisfy the
equations Δ1 = 0, . . . , Δs = 0 and which in addition belong to the domain B.

Now, if under these assumptions the s expressions XΔσ can be represented as:

XΔσ ≡
s

∑
τ=1

ρστ(x1, . . . ,xn)Δτ(x1, . . . ,xn) (σ=1 ···s),

and if at the same time all the ρστ behave regularly for the concerned system of
values of:

Δ1 = 0, . . . , Δs = 0,

then our system of equations admits every transformation:

x′
i = xi +

e
1

Xxi + · · · (i=1 ···n)

of the one-term group X f .
The proof of that is very simple. We have:

Δσ (x′
1, . . . ,x

′
n) = Δσ (x1, . . . ,xn)+

e
1

XΔσ + · · · ;

but we have:

XXΔσ ≡
s

∑
τ=1

{

Xρστ +
s

∑
π=1

ρσπ ρπτ
}

Δτ ,

where in the right-hand side the coefficients of the Δ again behave regularly for
the system of values of Δ1 = 0, . . . , Δs = 0. In the same way, the XXXΔσ express
linearly in terms of Δ1, . . . ,Δs, and so on. In brief, we find:

Δσ (x′
1, . . . ,x

′
n) =

s

∑
τ=1

ψστ(x1, . . . ,xn, e)Δτ(x) (σ=1 ···s),

where the ψστ are ordinary power series in e and behave regularly for the system
of values of Δ1 = 0, . . . , Δs = 0. From this, it results that every system of values
x1, . . . ,xn which satisfies the equations Δ1(x) = 0, . . . , Δs(x) = 0 also satisfies the
equations:

Δσ
(

x1 +
e
1

Xx1 + · · · , . . . , xn +
e
1

Xxn + · · ·
)

(σ=1 ···s)

so that the system of equations Δ1 = 0, . . . , Δs = 0 really admits the one-term group
X f .

As a result, we have the

Proposition 3. If, in the variables x1, . . . ,xn, a system of equations:

Δ1(x1, . . . ,xn) = 0, . . . , Δs(x1, . . . ,xn) = 0
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is given, for which it is not assumed that its equations are mutually independent,
and even less that the s× s determinants of the matrix:

∣
∣
∣
∣
∣
∣
∣

∂Δ1
∂x1

· · ∂Δ1
∂xi1· · · ·

∂Δs
∂x1

· · ∂Δs
∂xn

∣
∣
∣
∣
∣
∣
∣

vanish or do not vanish by means of Δ1 = 0, . . . , Δs = 0, then this system of equa-
tions surely admits all the transformations of the one-term group X f when the s
expressions XΔσ can be represented in the form:

XΔσ ≡
s

∑
τ=1

ρστ(x1, . . . ,xn)Δτ (σ=1 ···s),

and when at the same time the ρστ behave regularly for those systems of values
x1, . . . ,xn which satisfy the system of equations Δ1 = 0, . . . , Δs = 0.

§ 31. In the preceding section, we have shown that the determination of all
systems of equations which admit the one-term group X f amounts to determining
all systems of equations which admit the infinitesimal transformation X f . Hence
the question arises to ask for [ES ENTSTEHT DAHER DIE FRAGE NACH] all
systems of equations Ω1 = 0, . . . ,Ωn−m = 0 (m � n) which admit the infinitesimal
transformation:2 (Translator’s note: (in the sense of the definition on p. 124))

X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

.

This question will be answered in the present section.
Two cases must be distinguished, namely either not all functions ξ1, . . . ,ξn vanish

by means of:
Ω1 = 0, . . . , Ωn−m = 0

or the equations ξ1 = 0, . . . , ξn = 0 are a consequence of:

Ω1 = 0, . . . , Ωn−m = 0.

To begin with, we treat the first case.
Suppose, to fix ideas, that ξn does not vanish by means ofΩ1 = 0, . . . ,Ωn−m = 0.

Then the concerned system of equations also admits the infinitesimal transforma-
tion:

Y f =
1
ξn

X f =
ξ1

ξn

∂ f
∂x1

+ · · ·+ ξn−1

ξn

∂ f
∂xn−1

+
∂ f
∂xn

.

If now x0
1, . . . ,x

0
n is a system of values which satisfies the equations Ωk = 0 and for

which ξn does not vanish, then we may think that the general solutions of X f = 0 rel-
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ative to xn = x0
n, or, what is the same, of Y f , are determined; these general solutions,

that we may call y1, . . . ,yn−1, behave regularly in the neighborhood of x0
1, . . . ,x

0
n

and are independent of xn. Hence if we introduce the new independent variables
y1, . . . ,yn−1, yn = xn in place of the x, this will be an allowed transformation. Doing
so, Y f receives the form ∂ f

∂yn
, and the system of equations Ω1 = 0, . . . ,Ωn−m = 0 is

transferred to a new one:

Ω 1(y1, . . . ,yn) = 0, . . . , Ω n−m(y1, . . . ,yn) = 0

which admits the infinitesimal transformation ∂ f
∂yn

.

From this, it follows that the system of equations Ω k = 0 is not solvable with
respect to yn. Indeed, if it were solvable with respect to yn, and hence yielded yn −
ϕ(y1, . . . ,yn−1) = 0, then the expression:

Y (yn −ψ) = ∂
∂yn

(yn −ψ) = 1

would vanish by means of Ω 1 = 0, . . . ,Ω n−m = 0, which is nonsensical. Conse-
quently, yn can at most appear purely formally in the equationsΩ k = 0, that is to say,
these equations can in all circumstances be brought to a form such as they represent
relations between y1, . . . ,yn−1 alone.3 (Translator’s note: For instance, the system of
two equations y1yn = 0 and y1 = 0 invariant by ∂

∂yn
amounts to just y1 = 0.) Here,

the form of these relations is subjected to no further restriction.
If we now return to the initial variables, we immediately realize that the system

of equations Ωk = 0 can be expressed by means of relations between the n − 1 in-
dependent solutions y1, . . . ,yn−1 of the equation X f = 0. This outcome is obviously
independent of the assumption that ξn itself should not vanish by means of Ωk = 0;
we therefore see that every system of equations which admits the infinitesimal trans-
formation X f and which does not annihilate ξ1, . . . ,ξn is represented by relations
between the solutions of X f = 0. On the other hand, we know that completely ar-
bitrary relations between the solutions of X f = 0 represent a system of equations
which admits not only the infinitesimal transformation, but also all transformations
of the one-term group X f (Chap. 6, Proposition 3, p. 113). Consequently, this con-
firms the previously established result that our system of equations Ωk = 0 admits
the one-term group X f .

We now come to the second of the above two distinguished cases; naturally, this
case can occur only when there are in general systems of values x1, . . . ,xn for which
all the n functions ξi vanish.

If x0
1, . . . ,x

0
n is an arbitrary system of values for which all ξi vanish, then the

transformation of our one-term group:

x′
i = xi +

e
1
ξi +

e2

1 ·2
Xξi + · · · (i=1 ···n)
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reduces after the substitution xi = x0
i to:

x′
1 = x0

1, . . . , xn = x0
n,

and we express this as: the system of values x0
1, . . . ,x

0
n remains invariant by all trans-

formations of the one-term group X f . For this reason, it follows that every system
of equations of the form:

ξ1 = 0, . . . , ξn = 0, ψ1(x1, . . . ,xn) = 0, ψ2(x1, . . . ,xn) = 0, . . . ,

admits the one-term group X f , whatever systems of values x1, . . . ,xn are involved
in it. But such a form embraces4 (Translator’s note: In Lie’s thought, a first system
of equations embraces (verb: UMFASSEN) a second system of equations when the
first zero-set is larger than the second one, so that the first system implies the sec-
ond one, at least locally and generically, and perhaps after some allowed algebraic
manipulations. Nothing more precise concerning this notion will appear later, and
certainly nothing approaching either the Nullstellensatz or some of the concepts of
the so-called theory of complex spaces.) [UMFASST] all systems of equations which
bring ξ1, . . . ,ξn to zero; so as a result, the second of the two previously distinguished
cases is settled.

We summarize the obtained result in the following

Theorem 15. There are two sorts of systems of equations which admit the infinites-
imal transformation:

X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

,

and hence in general admit all transformations of the one-term group X f . The sys-
tems of equations of the first sort are represented by completely arbitrary relations
between the solutions of the linear partial differential equation X f = 0. The systems
of equations of the second sort have the form:

ξ1 = 0, . . . , ξn = 0, ψ1(x1, . . . ,xn) = 0, ψ2(x1, . . . ,xn) = 0, . . . ,

in which the ψ are absolutely arbitrary, provided of course that there are systems of
values x1, . . . ,xn which satisfy the equations in question.

We now make a brief remark on this.
Let C1, . . . ,Cn−m be arbitrary constants, and let Ω1, . . . ,Ωn−m be functions of x,

which however are free of the C; lastly, suppose that each system of equations of the
form:

Ω1(x1, . . . ,xn) =C1 . . . , Ωn−m(x1, . . . ,xn) =Cn−m

admits the infinitesimal transformation X f , which is free of C. Under these assump-
tions, the n−m expression XΩk must vanish by means of:

Ω1 =C1, . . . , Ωn−m =Cn−m,
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and certainly, for all values of the C. But since the XΩk are all free of the C, this
is only possible when the XΩk vanish identically, that is to say, when the Ωk are
solutions of the equation X f = 0. Thus, the following holds.

Proposition 4. If the equations:

Ω1(x1, . . . ,xn) =C1, . . . , Ωn−m(x1, . . . ,xn) =Cn−m

with the arbitrary constants C1, . . . ,Cn−m represent a system of equations which
admits the infinitesimal transformation X f , then Ω1, . . . ,Ωn−m are solutions of the
differential equation X f , which is free of the C.

§ 32. At present, we consider q arbitrary infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···q)

and ask for the systems of equations Ω1 = 0,Ω2 = 0, . . . which admit all these
infinitesimal transformations.

As always, we restrict ourselves here to systems of values x1, . . . ,xn for which all
the ξki behave regularly.

At first, it is clear that every sought system of equations also admits all infinites-
imal transformations of the form:

q

∑
k=1

χk(x1, . . . ,xn)Xk f ,

provided that χ1, . . . ,χq behave regularly for the systems of values x1, . . . ,xn which
satisfy the system of equations. From the previous section, we moreover see that
each such system of equations also admits all finite transformations of the one-term
groups that arise from the discussed infinitesimal transformations.5 (Translator’s
note: In fact, Proposition 3, p. 129, gives a more precise statement.)

Furthermore, we remember Chap. 6, Proposition 1, p. 113. At that time, we saw
that every function of x1, . . . ,xn which admits the two infinitesimal transformations
X1 f and X2 f also admits the transformation X1X2 f −X2X1 f . Exactly the same prop-
erty also holds true for every system of equations which admits the two infinitesimal
transformations X1 f and X2 f .

In fact, assume that the system of equations:

Ωk(x1, . . . ,xn) = 0 (k=1 ···n−m)

admits the two infinitesimal transformations X1 f and X2 f , so that all the expres-
sions X1Ω j and X2Ω j vanish by means of the system Ω1 = 0, . . . ,Ωn−m = 0. Then
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according to Proposition 2, p. 126, the same holds true for all expressions X1X2Ω j

and X2X1Ω j, so that each X1X2Ω j − X2X1Ω j vanishes by means of the system of
equations Ω1 = 0, . . . ,Ωn−m = 0. As a result, we have the

Proposition 5. If a system of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0

admits the two infinitesimal transformations X1 f and X2 f , then it also admits the
infinitesimal transformation X1X2 f −X2X1 f .

We now apply this proposition similarly as we did earlier in Proposition 1 on
p. 99, where the question was to determine the joint solutions of q given equations
X1 f = 0, . . . , Xq f = 0. At that time, we reduced the stated problem to the determi-
nation of the solutions of a complete system. Now, we proceed as follows.

We form all infinitesimal transformations:

XkXj f −XjXk f =
[

Xk, Xj]

and we ask whether the linear partial differential equations [Xk, Xj] = 0 are a conse-
quence of X1 f = 0, . . . , Xq f = 0. If this is not the case, then we add all transforma-
tions [Xk, Xj] to the infinitesimal transformations X1 f , . . . ,Xq f ,2 which is permitted,
since every system of equations which admits X1 f , . . . ,Xq f also admits [Xk, Xj]. At
present, we treat the infinitesimal transformations taken together:

X1 f , . . . , Xq f , [Xk, Xj] (k, j=1 ···q)

exactly as we did at first with X1 f , . . . ,Xq f , that is to say, we form all infinitesimal
transformations:

[[Xk, Xj], Xl ], [[Xk, Xj], [Xh, Xl ]],

and we ask whether the equations obtained by setting these expressions equal to zero
are a consequence of Xk f = 0, [Xk, Xj] = 0 (k, j = 1, . . . ,q). If this is not the case,
we add all the found infinitesimal transformations to Xk f , [Xk, Xj] (k, j = 1, . . . ,q).

We continue in this way, and so at the end we must obtain a series of infinitesimal
transformations:

X1 f , . . . , Xq f , Xq+1 f , . . . , Xq′ f (q′ �q)

which is constituted in such a way that every equation:

[Xk, Xj] = 0 (k, j=1 ···q′)

is a consequence of X1 f = 0, . . . , Xq′ f = 0. The equations:

X1 f = 0, . . . , Xq′ f = 0

2 In practice, one will in general not add all infinitesimal transformations [Xk, Xj], but only a
certain number amongst them.
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then define a complete system with q′ or fewer terms. Hence we have the

Theorem 16. The problem of determining all systems of equations which admit q
given infinitesimal transformations X1 f , . . . ,Xq f can always be led back to the de-
termination of all systems of equations which, aside from X1 f , . . . ,Xq f , admit cer-
tain further infinitesimal transformations:

Xq+1 f , . . . , Xq′ f (q′ �q),

where now the equations:

X1 f = 0, . . . , Xq f = 0, Xq+1 f = 0, . . . , Xq′ f = 0

define a complete system which has as many terms as there are independent equa-
tions in it.

Thus we can from now on limit ourselves to the following more special problem:

Consider q infinitesimal transformations in the variables x1, . . . ,xn:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···q)

with the property that amongst the q equations:

X1 f = 0, . . . , Xq f = 0,

there are exactly p � q equations which are mutually independent, and with the
property that any p independent ones amongst these q equations form a p-term
complete system which belongs to X1 f = 0, . . . ,Xq f = 0. We seek all systems of
equations in x1, . . . ,xn which admit the infinitesimal transformations X1 f , . . . ,Xq f .

It is clear that we can suppose without loss of generality that X1 f , . . . ,Xq f are
independent of each other as infinitesimal transformations. Furthermore, we notice
that under the assumptions of the problem, the (p+1)× (p+1) determinants of the
matrix:

(4)

∣
∣
∣
∣
∣
∣

ξ11 · · ξ1n

· · · ·
ξq1 · · ξqn

∣
∣
∣
∣
∣
∣

all vanish identically, whereas not all p× p determinants do.
The first step towards the solution of our problem is to distribute the systems of

equations which admit the q infinitesimal transformations X1 f , . . . ,Xq f in two sepa-
rate classes [IN ZWEI GETRENNTE CLASSEN]; here, as a principle of classification,
we take the behavior of the p× p determinants of (4).

In the first class, we include all systems of equations by means of which not all
p× p determinants of the matrix (4) vanish.
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In the second class, we include all systems of equations by means of which the
p× p determinants in question all vanish.

We now examine the two classes one after the other.
§ 33. Amongst the q equations X1 f = 0, . . . , Xq f = 0, we choose any p equations

which are independent of each other; to fix ideas, let X1 f = 0, . . . , Xp f = 0 be such
equations, so that not all p× p determinants of the matrix:

(5)

∣
∣
∣
∣
∣
∣

ξ11 · · ξ1n

· · · ·
ξp1 · · ξpn

∣
∣
∣
∣
∣
∣

vanish identically. We now seek, amongst the systems of equations Ω1 =
0, . . . ,Ωn−m = 0 of the first species, those which do not cancel the independence
of the equations X1 f = 0, . . . , Xp f = 0, hence those which do not annihilate all
p × p determinants of the matrix (5). Here, we want at first to make the special
assumption that a definite p × p determinant of the matrix (5), say the following
one:

D =

∣
∣
∣
∣
∣
∣

ξ1,n−p+1 · · ξ1n

· · · ·
ξp,n−p+1 · · ξpn

∣
∣
∣
∣
∣
∣

neither vanishes identically, nor vanishes by means of Ω1 = 0, . . . ,Ωn−m = 0.
Under the assumptions made, there are identities of the form:

Xp+ j f ≡
p

∑
π=1

χ jπ(x1, . . . ,xn)Xπ f ( j=1 ···q− p).

For the determination of the functions χ jπ , we have here the equations:

p

∑
π=1

ξπν χ jπ = ξp+ j,ν (ν=1 ···n; j=1 ···q− p);

now since the determinant D does not vanish by means of Ω1 = 0, . . . ,Ωn−m = 0,
we realize that the χ jπ behave regularly for the system of values of Ω1 =
0, . . . ,Ωn−m = 0, so that we can, under the assumptions made, leave out the
infinitesimal transformations Xp+1 f , . . . ,Xq f ; because, if the system of equations
Ω1 = 0, . . . ,Ωn−m = 0 admits the transformations X1 f , . . . ,Xp f , then it also
automatically admits Xp+1 f , . . . ,Xq f .

We replace the infinitesimal transformations X1 f , . . . ,Xp f by p other infinitesi-
mal transformations of the specific form:

Yπ f =
∂ f

∂xn−p+π
+

n−p

∑
i=1

ηπi(x1, . . . ,xn)
∂ f
∂xi

(π=1 ··· p).
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We are allowed to do this, because for the determination of Y1 f , . . . ,Yp f we obtain
the equations:

p

∑
π=1

ξ j,n−p+π Yπ f = Xj f ( j=1 ··· p),

which are solvable, and which provide for the Yπ expressions of the form:

Yπ f =
p

∑
j=1
ρπ j(x1, . . . ,xn)Xj f (π=1 ··· p),

where the coefficients ρπ j behave regularly for the systems of values of:

Ω1 = 0, . . . , Ωn−m = 0.

Hence if the system of equations Ωk = 0 admits the infinitesimal transformations
X1 f , . . . ,Xp f , it also admits Y1 f , . . . ,Yp f , and conversely.

Let x0
1, . . . ,x

0
n be any system of values which satisfies the equations Ω1 =

0, . . . ,Ωn−m = 0 and for which the determinant D is nonzero. Then the ηπi behave
regularly in the neighborhood of x0

1, . . . ,x
0
n. Now, the equations Y1 f = 0, . . . , Yp f = 0

constitute a p-term complete system just as the equations X1 f = 0, . . . , Xp f = 0,
hence according to Theorem 12, p. 105, they have n − p general solutions
y1, . . . ,yn−p which behave regularly in the neighborhood of x0

1, . . . ,x
0
n and which

reduce to x1, . . . ,xn−p (respectively) for xn−p+1 = x0
n−p+1, . . . , xn = x0

n.
Thus, if we set yn−p+1 = xn−p+1, . . . , yn = xn, we can introduce y1, . . . ,yn as new

variables in place of the x. At the same time, the infinitesimal transformations Yπ f
receive the form:

Y1 f =
∂ f

∂yn−p+1
, . . . , Yp f =

∂ f
∂yn

;

but the system of equations Ωk = 0 is transferred to:

Ω 1(y1, . . . ,yn) = 0, . . . , Ω n−m(y1, . . . ,yn) = 0,

and now these new equations must admit the infinitesimal transformations
∂ f

∂yn−p+1
, . . . , ∂ f

∂yn
. From this, it follows that the equations Ω k = 0 are not solvable

with respect to any of the variables yn−p+1, . . . ,yn, that they contain these variables
at most fictitiously and that they can be reshaped so as to represent only relations
between y1, . . . ,yn−p alone.

If we now return to the original variables x1, . . . ,xn, we then see that the equa-
tions Ω1 = 0, . . . ,Ωn−m = 0 are nothing but relations between the solutions of the
complete system Y1 f = 0, . . . , Yp f = 0, or, what is the same, of the complete system
X1 f = 0, . . . , Xp f = 0. Moreover, this result is independent of the assumption that
the determinant D should not vanish by means of Ω1 = 0, . . . ,Ωn−m = 0; thus it
always holds true when not all p× p determinants of the matrix (5) vanish by means
of Ω1 = 0, . . . ,Ωn−m = 0.

Consequently, we can state the following theorem:
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Theorem 17. If q infinitesimal transformations X1 f , . . . ,Xq f in the variables
x1, . . . ,xn provide exactly p � q independent equations when equated to zero, say
X1 f = 0, . . . , Xp f = 0, and if the latter equations form a p-term complete system,
then every system of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0

which admits the q infinitesimal transformations X1 f , . . . ,Xq f without cancelling
the independence of the equations:

X1 f = 0, . . . , Xp f = 0,

is represented by relations between the solutions of the p-term complete system
X1 f = 0, . . . , Xp f = 0.

Thanks to this theorem, the determination of all systems of equations which be-
long to our first class is accomplished. In place of X1 f = 0, . . . , Xp f = 0, we only
have to insert in the theorem one after the other all the systems of p independent
equations amongst the q equations X1 f = 0, . . . , Xq f = 0.

§ 34. We now come to the second class of systems of equations which admit
the infinitesimal transformations X1 f , . . . ,Xq f , namely to the systems of equations
which bring to zero all p× p determinants of the matrix (4).

Here, a series of subcases must immediately be distinguished. Namely it is possi-
ble that aside from the p× p determinants of the matrix (4), the system of equations:

Ω1 = 0, . . . , Ωn−m = 0

also brings to zero all (p−1)× (p−1) determinants, all (p−2)× (p−2) determi-
nants, and so on.

Hence we see that to every sought system of equations is associated a determinate
number h < p with the property that the concerned system of equations brings to
zero all p × p, all (p − 1)× (p − 1), . . . , all (h+ 1) . . .(h+ 1) determinants of the
matrix (4), but not all h×h determinants. Thus, we must go in detail through all the
various possible values 1,2, . . . , p−1 of h and for each one of these values, we must
set up the corresponding systems of equations that are admitted by X1 f , . . . ,Xq f .

Let h be any of the numbers 1,2, . . . , p − 1. A system of equations which brings
to zero all (h+ 1)× (h+ 1) determinants of the matrix (4), but not all the h × h
determinants, contains in any case all equations which are obtained by equating
to zero all (h+ 1)× (h+ 1) determinants Δ1, . . . ,Δs of (4). Now, if the equations
Δ1 = 0, . . . , Δs = 0 were not satisfied by the systems of values x1, . . . ,xn for which
the ξki(x) behave regularly, or else, if the equations Δ1 = 0, . . . , Δs = 0 brought to
zero all h × h determinants of (4), then this would be a sign that there is absolutely
no system of the demanded nature to which is associated the chosen number h. So
we assume that neither of these two cases occurs.
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At first, it is to be examined whether the system of equations Δ1 = 0, . . . , Δs = 0
is reducible. When this is the case, one should consider every irreducible6 (Trans-
lator’s note: This means smooth after stratification and not decomposable further
in an invariant way.) [IRREDUCIBEL] system of equations which comes from Δ1 =
0, . . . , Δs = 0, and which does not bring to zero all h×h determinants of (4).

Let W1 = 0, . . . ,Wl = 0 be one of the found irreducible systems of equations, and
suppose that it has already been brought to a form such that not all l × l determinants
of the matrix: ∣

∣
∣
∣
∣
∣
∣

∂W1
∂x1

· · ∂W1
∂xn

· · · ·
∂Wl
∂x1

· · ∂Wl
∂xn

∣
∣
∣
∣
∣
∣
∣

vanish by means of W1 = 0, . . . ,Wl = 0. Thus we must determine all systems of
equations which are admitted by X1 f , . . . ,Xq f , which contain the equations W1 =
0, . . . ,Wl = 0 and which at the same time do not bring to zero all h×h determinants
of (4). When we execute this for each individual irreducible system obtained from
Δ1 = 0, . . . , Δs = 0, we find all systems of equations which admit X1 f , . . . ,Xq f and
to which is associated the number h.

In general, the system of equations W1 = 0, . . . ,Wl = 0 will in fact not admit the
infinitesimal transformations X1 f , . . . ,Xq f . To a system of equations which contains
W1 = 0, . . . ,Wl = 0 and which in addition admits X1 f , . . . ,Xq f there must belong in
any case the equations:

XkWλ = 0, XjXkWλ = 0 (k, j=1 ···q; λ =1 ··· l),

and so on. We form these equations and we examine whether they are contradictory
with each other, or with W1 = 0, . . . ,Wl = 0, and whether they possibly bring to zero
all h×h determinants of (4). If one of these two cases occurs, then there is no system
of equations of the demanded constitution; if none occurs, then the independent
equations amongst the equations:

Wλ = 0, XkWλ = 0, XjXkWλ = 0, . . . (λ=1 ··· l; j,k=1 ···q)

represent a system of equations which is admitted by X1 f , . . . ,Xq f . Into this system
of equations, which can naturally be reducible, we put all systems of equations
which admit X1 f , . . . ,Xq f , which contain the equations W1 = 0, . . . ,Wl = 0, but
which embrace no smaller system of equations of the same nature.

The corresponding systems of equations are obviously the smallest systems of
equations which are admitted by X1 f , . . . ,Xq f and which bring to zero all (h+1)×
(h+1) determinants of (4), though not all the h×h determinants.

Let now:

(6) W1 = 0, . . . , Wn−m = 0 (n−m� l)

be one of the found irreducible systems of equations; then the question is to add,
in the most general way, new equations to this system so that one obtains a system
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of equations which is admitted by X1 f , . . . ,Xq f but which does not bring to zero all
h×h determinants of (4).

Since not all h×h determinants of (4) vanish by means of:

(6) W1 = 0, . . . , Wn−m = 0,

we can assume that for instance the determinant:

Δ =

∣
∣
∣
∣
∣
∣

ξ1,n−h+1 · · ξ1n

· · · ·
ξh,n−h+1 · · ξhn

∣
∣
∣
∣
∣
∣

belongs to the nonvanishing ones and we can set ourselves the problem of deter-
mining all systems of equations which are admitted by X1 f , . . . ,Xq f and which at
the same time do not make Δ equal to zero. When we carry out this task for ev-
ery individual h × h determinant of (4) which does not vanish already by means
of (6), we then evidently obtain all the sought systems of equations which embrace
W1 = 0, . . . ,Wn−m = 0.

The independence of the equations X1 f = 0, . . . , Xh f = 0 is, under the assump-
tions made, not canceled by W1 = 0, . . . ,Wn−m = 0, and in fact, for the systems of
values of (6), there are certain relations of the form:

Xh+ j f =
h

∑
k=1

ψ jk(x1, . . . ,xn)Xk f ( j=1 ···q−h)

where the ψ jk are to be determined by the equations:

ξh+ j,ν =
h

∑
k=1

ψ jk ξkν ( j=1 ···q−h; ν=1 ···n).

Since all (h + 1)× (h + 1) determinants of (4) vanish by means of (6) while Δ
does not, the functions ψ jk are perfectly determined and they behave regularly for
the systems of values of (6). Without loss of generality, we are hence allowed to
leave out the infinitesimal transformations Xh+1 f , . . . ,Xq f ; because every system of
equations which contains the equations (6), which at the same time does not bring
to zero the determinant Δ , and lastly, which is admitted by X1 f , . . . ,Xh f , is also
automatically admitted by Xh+1 f , . . . ,Xq f .

One can easily see that no relation between xn−h+1, . . . ,xn alone can be derived
from the equations (6). Indeed, if one obtained such a relation, say:

xn −ω(xn−h+1, . . . ,xn−1) = 0,

then the h expressions:

Xk(xn −ω) = ξkn −
h−1

∑
j=1

∂ω
∂xn−h+ j

ξk,n−h+ j (k=1 ···h)
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would vanish by means of (6). From this, we draw the conclusion that the number
n−m is in any case not larger than n−h and that the equations (6) can be resolved
with respect to n−m of the variables x1, . . . ,xn−h, say with respect to x1, . . . ,xn−m:

(7) xk = ϕk(xn−m+1, . . . ,xn) (k=1 ···n−m) (n−m�n−h).

We can therefore replace the system (6) by these equations.
Every system of equations which contains the equations (6) or equivalently the

equations (7) can obviously be brought to a form such that, aside from the equa-
tions (7), it contains a certain number of relations:

Vj(xn−m+1, . . . ,xn) = 0 ( j=1,2, ···)

between xn−m+1, . . . ,xn alone. Now, if the system of equations in question is sup-
posed to admit the infinitesimal transformations X1 f , . . . ,Xh f , then all the expres-
sions XkVj must vanish by means of (7) and of V1 = 0, . . . ; or, if we again denote by
the symbol

[ ]

the substitution x1 = ϕ1, . . . , xn−m = ϕn−m: the expressions:

[

XkVj
]

=
m

∑
μ=1

[

ξk,n−m+μ
] ∂Vj

∂xn−m+μ
(k=1 ···h; j=1,2, ···)

vanish by means of V1 = 0, . . . . But we can also express this as follows: the system
of equations V1 = 0, . . . in the variables xn−m+1, . . . ,xn must admit the h reduced
infinitesimal transformations:

Xk f =
m

∑
μ=1

[

ξk,n−m+μ
] ∂ f
∂xn−m+μ

(k=1 ···h)

in these variables. In addition, the system of equations V1 = 0, . . . should naturally
not bring to zero the determinant

[

Δ
]

.
Conversely, every system of equations V1 = 0, . . . which possesses the property

just discussed provides, together with (7), a system of equations which does not
make Δ zero and which in addition admits X1 f , . . . ,Xh f and also Xh+1 f , . . . ,Xq f as
well.

As a result, our initial problem is reduced to the simpler problem of determining
all systems of equations in m < n variables which admit the h � m infinitesimal
transformations X1 f , . . . ,Xh f and for which the determinant:

∑±[

ξ1,n−h+1
] · · ·[ξh,n−h+h

]

is not made zero.
We summarize what has been done up to now in the following

Theorem 18. If q infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···q)
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are constituted in such a way that all (p+ 1)× (p+ 1) determinants, but not all
p× p determinants of the matrix:

∣
∣
∣
∣
∣
∣

ξ11 · · ξ1n

· · · ·
ξq1 · · ξqn

∣
∣
∣
∣
∣
∣

vanish identically, and that any p independent equations amongst the equations
X1 f = 0, . . . , Xq f = 0 form a p-term complete system, then one finds in the fol-
lowing manner all systems of equations in x1, . . . ,xn which admit X1 f , . . . ,Xq f and
which at the same time bring to zero all (h+1)× (h+1) determinants of the above
matrix, but not all h×h determinants: by forming determinants [DURCH DETERMI-
NANTENBILDUNG], one seeks at first the smallest system of equations for which all
(h+1)× (h+1) determinants of the matrix vanish, but not all h × h determinants.
If there exists a system of this sort, and if W1 = 0, . . . ,Wl = 0 is one such, then one
forms the equations XkWi = 0, XjXkWi = 0, . . . , and one determines in this way the
possibly existing smallest system of equations which embraces W1 = 0, . . . ,Wl = 0,
which is admitted by X1 f , . . . ,Xq f and which does not make equal to zero all h× h
determinants of the matrix; if W1 = 0, . . . ,Wn−m = 0 (n−m � l) is such a system of
equations, which does not bring to zero for instance the determinant:

Δ =∑±ξ1,n−h+1 · · ·ξh,n−h+h,

then h � m and the equations W1 = 0, . . . ,Wn−m = 0 can be resolved with respect to
n−m of the variables x1, . . . ,xn−h, say as follows:

xk = ϕk(xn−m+1, . . . ,xn) (k=1 ···n−m).

Lastly, one determines all systems of equations in the m variables xn−m+1, . . . ,xn

which admit the h reduced infinitesimal transformations:

Xk f =
m

∑
μ=1

ξk,n−m+μ(ϕ1, . . . ,ϕn−m, xn−m+1, . . . ,xn)
∂ f

∂xn−m+μ

=
m

∑
μ=1

[

ξk,n−m+μ
] ∂ f
∂xn−m+μ

(k=1 ···h)

and which do not bring to zero the determinant:

[

Δ
]

=∑±[

ξ1,n−h+1
] · · ·[ξh,nh+h

]

.

Each one of these systems of equations represents, after adding the equations x1 =
ϕ1, . . . , xn−m = ϕn−m, a system of equations of the demanded constitution. By car-
rying out the indicated developments in all possible cases, one obtains all systems
of equations of the demanded constitution.

It frequently happens that one already knows a system of equations U1 = 0,U2 =
0, . . . ,Un−s = 0 which admits the infinitesimal transformations X1 f , . . . ,Xq f and
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which brings to zero all (h+1)× (h+1) determinants of the matrix (4), and which
nevertheless does not bring to zero the h × h determinant Δ . Then one can ask for
all systems of equations which comprise the equations U1 = 0, . . . ,Un−s = 0 and
which likewise do not bring Δ to zero.

The determination of all these systems of equations can be carried out
exactly as in the special case above, where the smallest system of equations
W1 = 0, . . . ,Wn−m = 0 of the relevant nature was known, and where one was
looking for all systems of equations which were admitted by X1 f , . . . ,Xq f , which
comprised the system W1 = 0, . . . ,Wn−m = 0 and which did not bring Δ to zero.

Indeed, in exactly the same way as above, one first shows that h � s and that the
equations U1 = 0, . . . ,Un−s = 0 can be resolved with respect to n−s of the variables
x1, . . . ,xn−h, say as follows:

xk = ψk(xn−s+1, . . . ,xn) (k=1 ···n−s).

Now, in order to find the sought systems of equations, one forms the h reduced
infinitesimal transformations:

X̂k f =
s

∑
σ=1

ξk,n−s+σ
(

ψ1, . . . ,ψn−s, xn−s+1, . . . ,xn)
∂ f

∂xn−s+σ

=
s

∑
σ=1

̂ξk,n−s+σ
∂ f

∂xn−s+σ
(k=1 ···h)

and next, one determines all systems of equations in the s variables xn−s+1, . . . ,xn

which admit X̂1 f , . . . , X̂h f and which do not bring to zero the determinant:

Δ̂ =∑± ̂ξ1,n−h+1 · · · ̂ξh,n−h+h.

By adding these equations one after the other to the equations x1 − ψ1 =
0, . . . , xn−s − ψn−s = 0, one obtains all systems of equations of the demanded
constitution.

It is not necessary to explain more precisely what has been just said.
§ 35. The problem which was set up at the beginning of § 32 is now basically

settled. Indeed, thanks to the latter theorem, this problem is reduced to the deter-
mination of all systems of equations in the m variables xn−m+1, . . . ,xn which admit
the h infinitesimal transformations X1 f , . . . ,Xh f . But this is a problem of the same
type as the original one, which is simplified only inasmuch as the number m of the
variables is smaller than n.

Now, concerning the reduced problem, the same considerations as those regard-
ing the initial problem can be made use of. That is to say: if the equations X1 f =
0, . . . , Xh f = 0 do not actually form an h-term complete system, then one has to set
up for k, j = 1, . . . ,h the infinitesimal transformations [Xk, X j] and to ask whether
the independent equations amongst the equations Xk f = 0, [Xk, X j] = 0 for a com-
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plete system, and so on, in brief, one proceeds just as for the original problem. The
only difference in comparison to the former situation is that from the beginning
one looks for systems of equations which do not cancel the independence of the
equations:

X1 f = 0, . . . , Xh f = 0,

and especially, which do not bring the determinant
[

Δ
]

to zero.
Exactly as above for the original problem, the reduced problem can be dealt

with in parts, and be partially reduced to a problem in fewer variables, and so forth.
Briefly, one sees that the complete resolution of the original problem can be attained
after a finite number of steps.

We therefore need not address this issue further, but we want to consider in more
detail a particularly important special case.

Let as above the system of equations:

(7’) x1 −ϕ1(xn−m+1, . . . ,xn) = 0, . . . , xn−m −ϕn−m(x1, . . . ,xn) = 0

be constituted in such a way that it admits the infinitesimal transformations
X1 f , . . . ,Xq f and assume that it brings to zero all (h+1)× (h+1) determinants of
the matrix (4), while it does not bring to zero the determinant Δ . In comparison, by
the system of equations (7’), we want to understand not just the smallest one, but a
completely arbitrary one of the demanded constitution.

Amongst the equations X1 f = 0, . . . , Xq f = 0, assume that any p independent
equations amongst them, say for instance X1 f = 0, . . . , Xp f = 0, form a p-complete
system; thus in any case, there are relations of the form:

[Xk, Xj] =
q

∑
σ=1

ωk jσ (x1, . . . ,xn)Xσ f (k, j=1 ···q).

For the systems of values of (7’) there remain only h equations:

X1 f = 0, . . . , Xh f = 0

that are independent of each other, whereas Xh+1 f , . . . ,Xq f can be represented in
the form:

Xh+ j f =
h

∑
τ=1

ψ jτ(x1, . . . ,xn)Xτ f ( j=1 ···q−h),

where the ψ jk behave regularly for the concerned system of values.
Now, we want to make the specific assumption that all the coefficients ωk js also

behave regularly for the system of values of (7); then evidently for the concerned
system of values, equations of the form:

[Xk, Xj] =
h

∑
σ=1

{

ωk jσ +
q−h

∑
τ=1

ωk jh+τ ψτσ
}

Xσ f
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hold true. In this special case one can indicate in one stroke all systems of equations
which embrace the equations (7’), which admit X1 f , . . . ,Xq f and which do not bring
Δ to zero. This should now be shown.

For all systems of values x1, . . . ,xn which satisfy the equations (7’), there are
relations of the form:

[Xk, Xj] =
h

∑
σ=1

wk jσ (x1, . . . ,xn)Xσ f (k, j=1 ···h).

Here, the wk jσ behave regularly and likewise the functions [wk js], if by the symbol
[ ] we denote as before the substitution:

x1 = ϕ1, . . . , xn−m = ϕn−m.

We decompose the above relations into the following:

Xkξ jν −Xjξkν =
h

∑
s=1

wk js(x1, . . . ,xn)ξsν

(k, j=1 ···h; ν=1 ···n),

and they naturally hold identically after the substitution [ ], so that we have:

(8)
[

Xkξ jν
]− [

Xjξkν
] ≡

h

∑
s=1

[wk js] [ξsν ].

But now the system of equations xk −ϕk = 0 admits the infinitesimal transformations
X1 f , . . . ,Xh f , so the relation (3) derived on p. 126:

[

XkΦ
] ≡ [

Xk[Φ ]
]

holds true, in whichΦ(x1, . . . ,xn) is a completely arbitrary function of its arguments.
We can write this relation somewhat differently, if we remember the infinitesimal
transformations:

Xk f =
m

∑
μ=1

[ξk,n−m+μ ]
∂ f

∂xn−m+μ
(k=1 ···h);

indeed, one evidently has:
[

Xk[Φ ]
] ≡ Xk[Φ ],

whence:
[

XkΦ
] ≡ Xk[Φ ].

From this, it follows that the identities (8) can be replaced by the following ones:

Xk[ξ jν ]−X j[ξkν ] ≡
h

∑
s=1

[wk js] [ξsν ].
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In other words, there are identities of the form:

[Xk, X j] = XkX j f −X jXk f ≡
h

∑
s=1

[wk js]Xs f ,

that is to say, the equations X1 f = 0, . . . , Xh f = 0 form an h-term complete system
in the m independent variables xn−m+1, . . . ,xn.

Now, we recall the observations that we have linked up with Theorem 18. They
showed that our problem stated above comes down to determining all systems of
equations in xn−m+1, . . . ,xn which admit X1 f , . . . ,Xh f and do not cancel the inde-
pendence of the equations X1 f = 0, . . . , Xh f = 0. But since in our case the equations
X1 f = 0, . . . , Xh f = 0 form an h-term complete system, we can at once apply The-
orem 17. Thanks to it, we see that the sought systems of equations in xn−m+1, . . . ,xn

are represented by relations between the solutions of the complete system X1 f =
0, . . . , Xh f = 0.

Consequently, if we add arbitrary relations between the solutions of this complete
system to the equations xk = ϕk, we obtain the general form of a system of equations
which admits the infinitesimal transformations X1 f , . . . ,Xq f , which comprises the
equations xk = ϕk and which does not bring Δ to zero.

It appears superfluous to formulate as a proposition the result obtained here in its
full generality. By contrast, it is useful for the sequel to expressly state the following
theorem, which corresponds to the special case q = p = h.

Theorem 19. If a system of n−m independent equations in the variables x1, . . . ,xn

admits the h infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···h)

and if at the same time the determinant:

Δ =∑±ξ1,n−h+1 · · ·ξh,n−h+h

neither vanishes identically, nor vanishes by means of the system of equations, then
h � m and the system of equations can be resolved with respect to n − m of the
variables x1, . . . ,xn−h, say as follows:

x1 = ϕ1(xn−m+1, . . . ,xn), . . . , xn−m = ϕn−m(xn−m+1, . . . ,xn).

Now if, for the systems of values x1, . . . ,xn of these equations, all the expressions
[Xk, Xj] can be represented in the form:

[Xk, Xj] =
h

∑
s=1

wk js(x1, . . . ,xn)Xs f (k, j=1 ···h),

where the wk js behave regularly for the concerned systems of values, then one finds
as follows all systems of equations which comprise the equations:
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x1 −ϕ1 = 0, . . . , xn−m −ϕn−m = 0,

which admit the infinitesimal transformations X1 f , . . . ,Xh f and which do not bring
to zero the determinant Δ : one sets up the h reduced infinitesimal transformations:

Xk f =
m

∑
μ=1

ξk,n−m+μ
(

ϕ1, . . . ,ϕn−m, xn−m+1, . . . ,xn
) ∂ f
∂xn−m+μ

(k=1 ···h);

then the h mutually independent equations X1 f = 0, . . . , Xh f = 0 form an h-term
complete system in the independent variables xn−m+1, . . . ,xn; if:

u1(xn−m+1, . . . ,xn), . . . , um−h(xn−m+1, . . . ,xn)

are independent solutions of this complete system, then:

x1 −ϕ1 = 0, . . . , xn−m −ϕn−m = 0, Φi(u1, . . . ,um−h) = 0

(i=1,2, ···)

is the general form of the sought system of equations; here the Φi are understood to
be arbitrary functions of their arguments.

§ 36. The analytical developments of the present chapter receive a certain clar-
ity and especially a better transparency when one applies the ideas and concepts
from the theory of manifolds [DIE VORSTELLUNGEN UND BEGRIFFSBILDUNGEN

DER MANNIGFALTIGKEITSLEHRE]. We now want to do that. The sequel stands in
comparison to §§ 30 to 35 in exactly the same relationship as Chap. 6 stands in
comparison to Chap. 5.

Every system of equations in the variables x1, . . . ,xn represents a manifold of
the n-times extended manifold Rn. If the system of equations admits the one-term
group X f , then according to the previously introduced terminology, the correspond-
ing manifold also admits X f ; so if a point x1, . . . ,xn belongs to the manifold, then all
points into which x1, . . . ,xn is transferred by all the transformations of the one-term
group X f also lie in the same manifold.

If now x0
1, . . . ,x

0
n is any point of the space, two cases can occur: either ξ1, . . . ,ξn

do not all vanish for xi = x0
i , or the quantities ξ1(x0), . . . ,ξn(x0) are all equal to

zero. In the first case, the point x0
1, . . . ,x

0
n takes infinitely many positions via the

∞1 transformations of the one-term group X f , and as we know, the totality of these
positions is invariant by the one-term group X f and it constitutes an integral curve of
the infinitesimal transformation X f . In the second case, x0

1, . . . ,x
0
n keeps its position

through all transformations of the one-term group X f ; the integral curve passing
through x0

1, . . . ,x
0
n shrinks to the point itself.

So if a manifold admits the one-term group X f and if it consists in general of
points for which ξ1, . . . ,ξn do not all vanish, then it is constituted of integral curves
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of the infinitesimal transformation X f . By contrast, if the manifold in question con-
sists only of points for which ξ1, . . . ,ξn all vanish, then each point of the manifold
keeps its position through all transformations of the one-term group X f . Evidently,
every smaller manifold contained in this manifold then also admits the one-term
group X f .

With these words, the conceptual content [DER BEGRIFFLICHE INHALT] of The-
orem 15 is clearly stated, and in fact fundamentally, the preceding considerations
can be virtually regarded as providing a new demonstration of Theorem 15.

We still have to explain what it means conceptually for a system of equations
Ω1 = 0, . . . ,Ωn−m = 0 to admit the infinitesimal transformation X f .

To this end, we remember that the infinitesimal transformation X f attaches to
each point x1, . . . ,xn at which not all ξ vanish the completely determined direction
of progress:

δx1 : · · · : δxn = ξ1 : · · · : ξn,

while it attaches no direction of progress to a point for which ξ1 = · · · = ξn = 0. We
can therefore say:

The system of equations Ω1 = 0, . . . ,Ωn−m = 0 admits the infinitesimal
transformation X f when the latter attaches to each point of the manifold
Ω1 = 0, . . . ,Ωn−m = 0 either absolutely no direction of progress, or a direction of
progress which satisfies the n−m equations:

∂Ωk

∂x1
δx1 + · · ·+ ∂Ωk

∂xn
δxn (k=1 ···n−m),

hence which comes into contact with the manifold.

This definition is visibly independent both of the choice of the variables and of
the form of the system of equations:

Ω1 = 0, . . . , Ωn−m = 0.

Theorem 14 can now be given the following visual interpretation:

If the infinitesimal transformation X f attaches to each point of a manifold either
absolutely no direction of progress, or a direction of progress which comes into
contact with the manifold, then the manifold admits all transformations of the one-
term group X f .

In conclusion, if we introduce the terminology: “the manifoldΩ1 = 0, . . . ,Ωn−m =
0 admits the infinitesimal transformation X f ", we can express Theorem 14 as fol-
lows.

A manifold admits all transformations of the one-term group X f if and only if it
admits the infinitesimal transformation X f .

In §§ 32 and 34, we gave a classification of all systems of equations which admit
the q infinitesimal transformations X1 f , . . . ,Xq f . There, we took as a starting point
the behavior of the determinants of the matrix (4):
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∣
∣
∣
∣
∣
∣

ξ11 · · ξ1n

· · · ·
ξq1 · · ξqn

∣
∣
∣
∣
∣
∣

.

We assumed that all (p+ 1)× (p+ 1) determinants of this matrix vanished identi-
cally, whereas the p × p determinants did not. We then included in the same class
all systems of equations by means of which all (h+1)× (h+1) determinants of the
matrix vanish, but not all h×h determinants; in the process, the integer h could have
the p+1 different values: p, p−1, . . . ,2,1,0.

Already in Chap. 6 we observed that, under the assumptions just made, the q
infinitesimal transformations:

X1 f , . . . ,Xq f

attach exactly p independent directions of progress to any point x1, . . . ,xn in gen-
eral position. It stands to reason in the corresponding way that X1 f , . . . ,Xq f attach
exactly h independent directions of progress to a point x1, . . . ,xn, when the h × h
determinants of the above matrix do not all vanish at the point in question, while
by contrast all (h+ 1)× (h+ 1) determinants are zero. Now, since every system
of equations which admits the infinitesimal transformations X1 f , . . . ,Xq f represents
a manifold having the same property, our previous classification of the systems of
equations immediately provides a classification of the manifolds. Indeed, amongst
the manifolds which admit X1 f , . . . ,Xq f we include in the same class those sys-
tems to the points of which are associated the same number h � p of independent
directions of progress by the infinitesimal transformations X1 f , . . . ,Xq f .

If a manifold admits the infinitesimal transformations X1 f , . . . ,Xq f , then at each
one of its points, it comes into contact with the directions of progress that are at-
tached to the point by X1 f , . . . ,Xq f . Now, if X1 f , . . . ,Xq f determine precisely h
independent directions at each point of the manifold, then the manifold must obvi-
ously have at least h dimensions. Hence we can state the proposition:

Proposition 6. If q infinitesimal transformations X1 f , . . . ,Xq f attach precisely h in-
dependent directions of progress to a special point x0

1, . . . ,x
0
n, then there is in any

case no manifold of smaller dimension than h which contains the point x0
1, . . . ,x

0
n

and which admits the q infinitesimal transformations X1 f , . . . ,Xq f .

This proposition is essentially just another formulation of a former result. In-
deed, in § 34 we considered the systems of equations which admit X1 f , . . . ,Xq f and
which at the same time leave only h mutually independent equations amongst the
q equations X1 f = 0, . . . , Xq f = 0. On that occasion, we saw that such a system of
equations consists of at most n − h independent equations, so that it represents a
manifold having at least h dimensions.

—————–



Chapter 8
Complete Systems Which Admit
All Transformations
of a One-term Group

If, in a q-term complete system:

Xk f =
r

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···q)

one introduces new independent variables x′
1 =F1(x1, . . . ,xn), . . . ,x′

n =Fn(x1, . . . ,xn),
then as was already observed earlier (cf. Chap. 5, p. 102), one again obtains a
q-term complete system in x′

1, . . . ,x
′
n. Naturally, this new complete system has in

general a form different from the initial one; nonetheless, it can also happen that
the two complete systems do not essentially differ in their form, when relationships
of the form:

Xk f =
q

∑
j=1
ψk j(x′

1, . . . ,x
′
n)

n

∑
i=1
ξ ji(x′

1, . . . ,x
′
n)
∂ f
∂x′

i
(k=1 ···q)

hold, where of course the determinant of the ψk j does not vanish identically. In this
case, we say: the complete system:

X1 f = 0, . . . , Xq f = 0

admits the transformation x′
i = Fi(x1, . . . ,xn), or: it remains invariant through this

transformation.
By making use of the abbreviated notations:

ξki(x′
1, . . . ,x

′
n) = ξ ′

ki,
n

∑
i=1
ξ ′

ki
∂ f
∂x′

i
= X ′

k f ,

we can set up the following definition:

The q-term complete system:

c© Springer-Verlag Berlin Heidelberg 2015
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Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1 ···q)

admits the infinitesimal transformation x′
i = Fi(x1, . . . ,xn) if and only if, for every k,

there is a relation of the form:1

(1) Xk f =
q

∑
j=1
ψk j(x′

1, . . . ,x
′
n)X ′

j f .

The sense of this important definition is best elucidated [VERDEUTLICHEN] by
means of a simple example.

The two equations:

X1 f =
∂ f
∂x1

= 0, X2 f =
∂ f
∂x2

= 0

in the three variables x1,x2,x3 form a two-term complete system. By introducing the
new variables:

x′
1 = x1 + x2, x′

2 = x1 − x2, x′
3 = x3

in place of the x, we obtain the new complete system:

∂ f
∂x1

=
∂ f
∂x′

1
+
∂ f
∂x′

2
= 0,

∂ f
∂x2

=
∂ f
∂x′

1
− ∂ f
∂x′

2
= 0

which is equivalent to the system ∂ f
∂x′

1
= 0, ∂ f

∂x′
2
= 0. So there are relations of the

form:
X1 f = X ′

1 f +X ′
2 f , X2 f = X ′

1 f −X ′
2 f ,

whence the complete system ∂ f
∂x1

= 0, ∂ f
∂x2

= 0 admits the transformation: x′
1 = x1 +

x2, x′
2 = x1 − x2.

§ 37. Let the q-term complete system X1 f = 0, . . . , Xq f = 0 admit the transfor-
mation x′

i = Fi(x1, . . . ,xn), so that for every f there are relations of the form (1).
Now, if ϕ(x1, . . . ,xn) is a solution of the complete system, the right-hand side of (1)
vanishes identically after the substitution f = ϕ(x′

1, . . . ,x
′
n), whence the left-hand

side also vanishes identically after the substitution f = ϕ
(

F1(x), . . . ,Fn(x)
)

; conse-
quently, like ϕ(x) itself, ϕ

(

F1(x), . . . ,Fn(x)
)

also constitutes a solution, or, in other
terms: the transformation x′

i = Fi(x) transfers every solution of the complete system
X1 f = 0, . . . , Xq f = 0 to a solution of the same complete system.

However, conversely the following also holds true: if every solution of the q-term
complete system X1 f = 0, . . . , Xq f = 0 is transferred, by means of a transformation
x′

i = Fi(x1, . . . ,xn), to a solution, then the complete system admits the transformation

1 Lie, Scientific Society of Christiania, February 1875.
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in question. Indeed, by the introduction of the variables xi in place of the variables
x′

i, the equations X ′
1 f = 0, . . . , X ′

q f = 0 convert into a q-term complete system which
has all its solutions in common with the q-term system X1 f = 0, . . . , Xq f = 0; but
from this it follows that relations of the form (1) hold, hence that the complete
system X1 f = 0, . . . , Xq f = 0 really admits the transformation x′

i = Fi(x).
From this, it follows that a q-term complete system admits the transformation

x′
i = Fi(x1, . . . ,xn) if and only if this transformation transfers every solution of the

complete system into a solution. Naturally, for this to hold, it is only necessary
that the transformation transfers to solutions any n−q independent solutions of the
system.

Next, the present line of thought will completely correspond to the one followed
in Chaps. 6 and 7 if we now ask the question: how can one show that a q-term
complete system X1 f = 0, . . . , Xq f = 0 admits all transformations of the one-term
group Y f ? Indeed, this question actually belongs to general research on differential
equations which admit one-term groups, and that is why this question will also be
taken up again in a subsequent chapter of this part, in the chapter on differential
invariants, and on the basis of the general theory developed there, it will be settled.
But first, we need criteria by means of which we can recognize whether or not a
given complete system admits all transformations of a given one-term group. This
is why we now want to derive such criteria, with somewhat simpler expedients.

Let us denote any n − q independent solutions of the q-term complete system
X1 f = 0, . . . , Xq f = 0 by ϕ1, . . . ,ϕn−q. If now the complete system admits all trans-
formations:

x′
i = xi +

t
1

Y xi +
t2

1 ·2
YY xi + · · · (i=1 ···n)

of the one-term group Y f , then the n−q independent functions:

ϕk
(

x+ t Y x+ · · ·)= ϕk(x)+
t
1

Yϕk +
t2

1 ·2
YYϕk + · · ·

(k=1 ···n−q)

must also be solutions of the system, and for every value of t. From this, we deduce
that the n − q expressions Yϕk are in any case solutions of the system, hence that
relations of the form:

(2) Yϕk = ωk(ϕ1, . . . ,ϕn−q) (k=1 ···n−q)

must hold. This condition is necessary; but at the same time it is also sufficient, since
if it is satisfied, then all YYϕk, YYYϕk, . . . , will be functions of ϕ1, . . . ,ϕn−q only,
whence the expressions ϕk(x+ t Y x+ · · ·) will be solutions of the complete system,
and from this it follows that this system effectively admits all transformations of the
one-term group Y f .

Consequently, the following holds.

Proposition 1. A q-term complete system X1 f = 0, . . . , Xq f = 0 with the n−q inde-
pendent solutions ϕ1, . . . ,ϕn−q admits all the transformations of the one-term group:
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Y f =
n

∑
i=1
ηi(x1, . . . ,xn)

∂ f
∂xi

,

if and only if n−q relations of the form:

Yϕk = ωk(ϕ1, . . . ,ϕn−q) (k=1 ···n−q)

hold.

This said, the criterion obtained is practically applicable only when the complete
system is already integrated. However, it is very easy to deduce from this criterion
another one which does not presuppose that one knows the solutions of the complete
system.

If in the identity:

Xk
(

Y ( f )
)−Y

(

Xk( f )
) ≡

n

∑
i=1

(

Xkηi −Yξki
) ∂ f
∂xi

one sets in place of f any solution ϕ of the complete system, then one obtains:

Xk
(

Y (ϕ)
) ≡

n

∑
i=1

(

Xkηi −Yξki
)∂ϕ
∂xi

.

Now, if the complete system allows all transformations of the one-term group
Y f , then by the above, Y (ϕ) is also a solution of the system, hence the left-hand
side of the last equation vanishes identically; naturally, the right-hand side does the
same, so every solution of the complete system also satisfies the q equations:

n

∑
i=1

(

Xkηi −Yξki
) ∂ f
∂xi

= 0;

but from this it follows that q identities of the form:

n

∑
i=1

(

Xkηi −Yξki
) ∂ f
∂xi

≡
q

∑
j=1
χk j(x1, . . . ,xn)Xj f (k=1 ···q)

hold.
On the other hand, we assume that identities of this form exist and we again

understand by ϕ any solution of the complete system. Then it follows immediately
that the q expressions Xk

(

Y ( f )
)−Y

(

Xk( f )
)

vanish identically after the substitution
f = ϕ; but from that, we get: Xk

(

Y (ϕ)
) ≡ 0, that is to say Yϕ is a solution of the

system, so there exist n−q relations of the form:

(2) Yϕk = ωk(ϕ1, . . . ,ϕn−q) (k=1 ···n−q),

and they show that the complete system admits all transformations of the one-term
group Y f .
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As a result, we have the

Theorem 20. 2 A q-term complete system:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

= 0 (k=1 ···q)

in the variables x1, . . . ,xn admits all transformations of the one-term group:

Y f =
n

∑
i=1
ηi(x1, . . . ,xn)

∂ f
∂xi

if and only if all Xk
(

Y ( f )
) − Y

(

Xk( f )
)

can be expressed linearly in terms of
X1 f , . . . ,Xq f :

(3)
[Xk, Y ] = Xk

(

Y ( f )
)−Y

(

Xk( f )
)

=
q

∑
j=1
χk j(x1, . . . ,xn)Xj f

(k=1 ···q).

The existence of relations of the form (3) is therefore necessary and sufficient in
order that the system X1 f = 0, . . . , Xq f = 0 admits all transformations of the one-
term group Y f . For various fundamental reasons, it is also desirable to prove the
necessity of the relation (3) by means of a direct method.

The transformations of the one-term group Y f have the form:

x′
i = xi +

t
1
ηi +

t2

1 ·2
Yηi + · · · (i=1 ···n).

If we now introduce the new variables x′
1, . . . ,x

′
n in the expressions Xk f by means of

this formula in place of x1, . . . ,xn, we obtain:

Xk f =
n

∑
i=1

Xkx′
i
∂ f
∂x′

i
.

Here, the Xkx′
i still have to be expressed in terms of x′

1, . . . ,x
′
n. By leaving out the

second and the higher powers of t, we immediately get:

(4) Xkx′
i = Xkxi + t Xkηi + · · · .

Furthermore, one has (cf. Chap. 4, Eq. (3a), p. 67):

Xkxi = ξki(x) = ξ ′
ki −

t
1

Y ′ξ ′
ki + · · ·

t Xkηi = t X ′
kη

′
i −·· · .

Hence we have:
2 Lie, Gesellschaft d. W. zu Christiania, 1874.
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Xkx′
i = ξ ′

ki + t
(

X ′
kη

′
i −Y ′ξ ′

ki

)

+ · · · ,
and lastly:

(5) Xk f = X ′
k f +

t
1

(

X ′
kY

′ f −Y ′X ′
k f

)

+ · · · ,

where the omitted terms are of second or of higher order in t.
Now, if the complete system X1 f = 0, . . . , Xq f = 0 admits all transformations of

the one-term group Y f , then the system of q equations:

Xk f +
t
1
[Xk, Y ]+ · · · = 0 (k=1 ···q)

must be equivalent to X1 f = 0, . . . , Xq f = 0 and this, for all values of t. Con-
sequently, the coefficients of t must in any case be expressible by means of
X1 f , . . . ,Xq f , that is to say, relations of the form (3):

Xk
(

Y ( f )
)−Y

(

Xk( f )
)

= [Xk, Y ] =
q

∑
j=1
χk j(x1, . . . ,xn)Xj f

(k=1 ···q)

must exist.
As a result, we have shown directly that the existence of these relations is neces-

sary; but, being content with what has already been said, we do not want to prove
its sufficiency.

We want to speak of complete systems which admit an infinitesimal transforma-
tion Y f in the same way as we spoke of the systems of equations:

Ω1(x1, . . . ,xn) = 0, . . . , Ωn−m(x1, . . . ,xn) = 0

which do the same. We shall say: the q-term complete system X1 f = 0, . . . , Xq f = 0
admits the infinitesimal transformation Y f when relations of the form (3) hold.

With the use of this language, we can also express Theorem 20 as follows:

The q-term complete system X1 f = 0, . . . , Xq f = 0 admits all transformations of
the one-term group Y f if and only if it admits the infinitesimal transformation Y f .

When a complete system admits all transformations of a one-term group, we say
briefly that it admits this one-term group.

The conditions of Theorem 20 are in particular satisfied when Y f has the form:

Y f =
q

∑
j=1
ρ j(x1, . . . ,xn)Xj f ,

where it is understood that the ρ j are arbitrary functions of the x. Indeed, there al-
ways exist relations of the form (3) and in addition, it holds that Yϕ ≡ 0. This is
in accordance with the developments of Chap. 6, p. 113, which showed that ev-



§ 38. 157

ery solution Ω(ϕ1, . . . ,ϕn−q) of the complete system X1 f = 0, . . . ,Xq f = 0 remains
invariant by the transformations of all one-term groups of the form ∑ρ jXj f .

On the other hand, if an infinitesimal transformation Y f which does not have the
form ∑ρ j(x)Xj f satisfies the conditions of Theorem 20, then the finite transforma-
tions of the one-term group Y f do not leave invariant each individual solution of the
complete system, but instead, they leave invariant the totality of all these solutions.

Amongst the infinitesimal transformations that are admitted by a given complete
system X1 f = 0, . . . , Xq f = 0, there are those of the form ∑ ρ j(x)Xj f which are
given simultaneously with the complete system, and which, for this reason, have to
be considered as trivial. By contrast, one cannot in general indicate the remaining
infinitesimal transformations that the system admits before one has integrated the
system.

As we have seen above, when the complete system X1 f = 0, . . . , Xq f = 0 admits
the infinitesimal transformation Y f , every solutionΩ(ϕ1, . . . ,ϕn−q) of the complete
system is transferred to a solution by every transformation:

x′
i = xi +

t
1

Y xi + · · · (i=1 ···n)

of the one-term group Y f . Hence if we interpret the x and the x′ as coordinates for
the points of an n-times extended space and the transformation just written as an
operation by which the point x1, . . . ,xn takes the new position x′

1, . . . ,x
′
n, and if we

recall in addition that, with the constants a1, . . . ,an−q, the equations ϕ1 = a1, . . . ,
ϕn−q = an−q represent a characteristic manifold of the complete system X1 f = 0, . . . ,
Xq f = 0 (cf. Chap. 6, p. 116), then we realize immediately that the transformations
of the one-term group Y f send every characteristic manifold of the complete system
to a characteristic manifold. The characteristic manifolds of our complete system are
therefore permuted with each other by the transformations of the one-term group
Y f , hence they form, as we shall express it, a family [SCHAAR] which is invariant
by the one-term group Y f . Since the mentioned characteristic manifolds determine,
according to Chap. 6, p. 116, a decomposition of the space, we can also say that this
decomposition remains invariant by the one-term group Y f .

§ 38. We present a few simple statements concerning complete systems which
admit one-term groups:

Proposition 2. If a q-term complete system admits every transformation of the two
one-term groups Y f and Z f , then it also admits every transformation of the one-
term group Y

(

Z( f )
)−Z

(

Y ( f )
)

= [Y, Z].

Let Xk f = 0 be the equations of the complete system. One then forms the Jacobi
identity:

[

[Y, Z], Xk
]

+
[

[Z, Xk], Y
]

+
[

[Xk, Y ], Z
]

= 0,
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and one takes into consideration that [Y, Xk] and [Z, Xk] can, according to the as-
sumption, be expressed linearly in terms of X1 f , . . . ,Xq f , hence one realizes that the
same property is enjoyed by

[

[Y, Z], Xk]. As a result, our proposition is proved.

Proposition 3. If the equations A1 f = 0, . . . , Aq f = 0 and likewise the equations
B1 f = 0, . . . , Bs f = 0 form a complete system, then a complete system is also formed
by the totality of all possible equations C f = 0 which the two complete systems
share, in the sense that relations of the form:

C f =
q

∑
j=1
α j(x1, . . . ,xn)A j f =

s

∑
k=1

βk(x1, . . . ,xn)Bk f

hold. If the two complete systems Ak f = 0 and Bk f = 0 admit a certain one-term
group X f , then the complete system of equations C f = 0 also admits this group.

Proof. Amongst the equations C f = 0, one can select exactly, say m but not more,
equations:

C1 f = 0, . . . , Cm f = 0

which are independent of each other. Next, there exist for every μ = 1, . . . ,m rela-
tions of the form:

Cμ f =
q

∑
j=1
αμ j(x)A j f =

s

∑
k=1

βμk(x)Bk f ;

consequently, every Cμ
(

Cν( f )
)−Cν

(

Cμ( f )
)

= [Cμ ,Cν ] can be expressed both in
terms of the A f and in terms of the B f , that is to say, every [Cμ ,Cν ] can be expressed
linearly in terms of C1 f , . . . ,Cm f . As a result, the first part of our proposition is
proved. Further, every [X ,Cμ ] can be expressed both in terms of the A f and in terms
of the B f , hence there exist relations of the form:

[X ,Cμ ] =
m

∑
ν=1

γμν(x1, . . . ,xn)Cν f (μ=1 ···m).

This is the second part of the proposition.
If two complete systems A1 f = 0, . . . , Aq f = 0 and B1 f = 0, . . . , Bs f = 0 are

given, then all possible solutions that are common to the two systems can be defined
by means of a complete system which, under the guidance of Chap. 5, p. 101, one
can derive from the equations:

A1 f = 0, . . . , Aq f = 0, B1 f = 0, . . . , Bs f = 0.

What is more, the following holds.

Proposition 3. If the two complete systems A1 f = 0, . . . , Aq f = 0 and B1 f = 0, . . . ,
Bs f = 0 admit the one-term group X f , then the complete system which defines the
common solution of all the equations Ak f = 0 and Bk f = 0 also admits the one-term
group X f .
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Proof. The identity:
[

[A j, Bk], X
]

+
[

[Bk, X ], A j
]

+
[

[X , A j], Bk
]

= 0

shows that all
[

[A j, Bk], X
]

can be expressed linearly in terms of the A f , of the B f
and of the [A, B]. Hence, when the equations [A j, Bk] = 0, together with the A f = 0
and the B f = 0, already produce a complete system, the assertion of our proposition
is proved. Otherwise, one treats the system of the equations A f = 0, B f = 0, [A, B] =
0 exactly in the same way as the system A f = 0, B f = 0 just considered, that is to
say: one forms the Jacobi identity with X f for any two expressions amongst the A f ,
B f , [A, B], and so on.

Propositions 3 and 4 can be given a simple conceptual sense when x1, . . . ,xn are
interpreted as coordinates for the points of a space Rn.

First, we recall that the ∞n−q q-times extended characteristic manifolds Mq of the
complete system A1 f = 0, . . . , Aq f = 0 form a family that remains invariant by the
one-term group X f . Next, we remark that the ∞n−s s-times extended characteristic
manifolds Ms of the complete system B1 f = 0, . . . , Bs f = 0 also form such an
invariant family.

Let us agree that the number s is at least equal to q. Then every Ms in general
position will decompose into a family of ∞s−q+h (q−h)-extended manifolds, those
in which it is cut by the Mq, where one understands that h is a determined number
amongst 0,1, . . . ,q. Therefore in this way, the whole Rn is decomposed into a family
of ∞n−q+h (q − h)-extended manifolds. Naturally, the totality of these manifolds
remain invariant by the one-term group X f , for it is the cutting of the totality of all
Mq with the totality of all Ms, and these two totalities are, as already said, invariant
by the group X f .

The considered (q − h)-times extended manifolds are nothing but the character-
istic manifolds of the complete system C f = 0 which appears in Proposition 3, and
under the assumptions made, this complete system is (q−h)-term.

On the other hand, one can ask for the smallest manifolds which consist both of
Mq and of Ms. When there are manifolds of this kind, the totality of them naturally
remains invariant by the one-term group X f ; they are the characteristic manifolds
of the complete system which is defined in Proposition 4.

—————–



Chapter 9
Characteristic Relationships
Between the Infinitesimal Transformations of a
Group

In Chap. 3 and in Chap. 4 (Proposition 1, p. 41) it has been shown that to every r-
term group, there belong r independent infinitesimal transformations which stand in
a characteristic relationship to the group in question. Now, we want at first to derive
certain important relations which exist between these infinitesimal transformations.
Afterwards, we shall prove the equally important proposition that r independent in-
finitesimal transformations which satisfy the concerned relations always determine
an r-term group with the identity transformation.

§ 39. Instead of considering an r-term group, we presently want to take the some-
what more general point of view of considering a family of ∞r different transforma-
tions:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

which satisfy differential equations of the form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n)

(i=1 ···n; k=1 ···r).

We then know (cf. Chap. 3, p. 57) that the r infinitesimal transformations:

X ′
k( f ) =

n

∑
i=1
ξki(x′)

∂ f
∂x′

i
(k=1 ···r)

are independent of each other, and that the determinant of the ψk j(a) do not van-
ish identically; consequently, as we did earlier, we can also write down the above
differential equations as:

c© Springer-Verlag Berlin Heidelberg 2015
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(1)
ξ ji(x′

1, . . . ,x
′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak

(i=1 ···n; j=1 ···r).

Here naturally, the determinant of the α jk(a) does not vanish identically.
If on the other hand, we imagine that the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

are solved with respect to x1, . . . ,xn:

xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n),

then we can very easily derive certain differential equations that are satisfied by
F1, . . . ,Fn. We simply differentiate the identity:

Fi
(

f1(x, a), . . . , fn(x, a), a1, . . . ,ar
) ≡ xi

with respect to ak; then we have:

n

∑
ν=1

∂Fi(x′,a)
∂x′
ν

∂ fν(x,a)
∂ak

+
∂Fi(x′,a)
∂ak

≡ 0,

provided that one sets x′
ν = fν(x, a) everywhere. We multiply this identity by α jk(a)

and we sum it for k from 1 to r; then on account of:

r

∑
k=1

α jk(a)
∂ fν(x,a)
∂ak

≡ ξ jν( f1, . . . , fn),

we obtain the following equations:

n

∑
ν=1

ξ jν(x′
1, . . . ,x

′
n)
∂Fi

∂x′
ν
+

r

∑
k=1

α jk(a1, . . . ,ar)
∂Fi

∂ak
= 0

(i=1 ···n; j=1 ···r).

According to their derivation, these equations hold identically when one makes
the substitution x′

ν = fν(x, a) in them; but since they do not contain x1, . . . ,xn, they
must actually hold identically, that is to say: F1, . . . ,Fn are all solutions of the fol-
lowing linear partial differential equations:

(2)
Ω j(F) =

n

∑
ν=1

ξ jν(x′)
∂F
∂x′
ν
+

r

∑
μ=1

α jμ(a)
∂F
∂aμ

= 0

( j=1 ···r).

These r equations contain n+ r variables, namely x′
1, . . . ,x

′
n and a1, . . . ,ar; in addi-

tion, they are independent of each other, for the determinant of the α jμ(a) does not
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vanish identically, and hence a resolution with respect to the r differential quotients
∂F
∂a1

, . . . , ∂F
∂ar

is possible. But on the other hand, the equations (2) have n indepen-
dent solutions in common, namely just the functions F1(x′, a), . . . ,Fn(x′, a) whose
functional determinant with respect to the x′:

∑± ∂F1

∂x′
1
. . .
∂Fn

∂x′
n
=

1

∑± ∂ f1
∂x1

. . . ∂ fn
∂xn

does not vanish identically, because the equations x′
i = fi(x, a) represent transforma-

tions by assumption. Therefore, the hypotheses of Proposition 8 in Chap. 5, p. 103,
are met by the equations (2), that is to say, these equations constitute an r-term
complete system.

If we set:
r

∑
k=1

α jk(a)
∂F
∂ak

= A j(F)

and furthermore:
n

∑
ν=1

ξ jν(x′)
∂F
∂x′
ν
= X ′

j(F),

in accordance with a designation employed earlier, then the equations (2) receive
the form:

Ω j(F) = X ′
j(F)+A j(F) = 0 ( j=1 ···r).

As we know, the fact that they constitute a complete system is found in their
expressions: certain equations of the form:

Ωk
(

Ω j(F)
)−Ω j

(

Ωk(F)
)

=
r

∑
s=1
ϑk js(x′

1, . . . ,x
′
n,a1, . . . ,ar)Ωs(F)

(k, j=1 ···r)

must hold identically,1 (Translator’s note: These are identities between vector
fields.) whatever F is as a function of x′

1, . . . ,x
′
n, a1, . . . ,ar. But since these identities

can also be written as:

X ′
k

(

X ′
j(F)

)−X ′
j

(

X ′
k(F)

)

+Ak
(

A j(F)
)−A j

(

Ak(F)
)

=

=
r

∑
s=1
ϑk js X ′

s(F)+
r

∑
s=1
ϑk js As(F),

we can immediately split them into two identities:

(3)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

X ′
k

(

X ′
j(F)

)−X ′
j

(

X ′
k(F)

)

=
r

∑
s=1
ϑk js X ′

s(F)

Ak
(

A j(F)
)−A j

(

Ak(F)
)

=
r

∑
s=1
ϑk js As(F),
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and here, the second series of equations can yet again be decomposed as:

Ak
(

α jμ
)−A j

(

αkμ
)

=
r

∑
s=1
ϑk jsαsμ (k, j,μ=1 ···r).

Now, because the determinant of the αsμ does not vanish identically, then the ϑk js

in these last conditions are completely determined, and it follows that the ϑk js can
only depend upon a1, . . . ,ar, whereas they are in any case free of x′

1, . . . ,x
′
n. How-

ever, it can be established that the ϑk js are also free of a1, . . . ,ar. For, if in the first
series of the identities (3), we consider F as an arbitrary function of only x′

1, . . . ,x
′
n,

then we obtain by differentiating with respect to aμ the following identically satis-
fied equations:

0 ≡
r

∑
s=1

∂ϑk js

∂aμ
X ′

s(F) (k, j,μ=1 ···r).

But since X ′
1(F), . . . ,X ′

r(F) are independent infinitesimal transformations, and since

in addition the
∂ϑk js
∂aμ

do not depend upon x′
1, . . . ,x

′
n, then all the

∂ϑk js
∂aμ

vanish identi-

cally; that is to say, the ϑk js are also free of a1, . . . ,ar, they are numerical constants.
Thus, we have the

Theorem 21. If a family of ∞r transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

satisfies certain differential equations of the specific form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n; k=1 ···r)

and if one writes these differential equations in the form:

ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak
(i=1 ···n; j=1 ···r),

which is always possible, then there exist between the 2r independent infinitesimal
transformations:

X ′
j(F) =

n

∑
i=1
ξ ji(x′

1, . . . ,x
′
n)
∂F
∂xi

( j=1 ···r)

A j(F) =
r

∑
μ=1

α jμ(a1, . . . ,ar)
∂F
∂aμ

( j=1 ···r)

relationships of the form:
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(4)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

X ′
k

(

X ′
j(F)

)−X ′
j

(

X ′
k(F)

)

=
r

∑
s=1

ck js X ′
s(F) (k, j=1 ···r),

Ak
(

A j(F)
)−A j

(

Ak(F)
)

=
r

∑
s=1

ck js As(F) (k, j=1 ···r),

where the ck js denote numerical constants. In consequence of that, the r equations:

X ′
j(F)+A j(F) = 0 (k=1 ···r),

which are solvable with respect to ∂F
∂a1

, . . . , ∂F
∂ar

, constitute an r-term complete sys-
tem in the n+ r variables x′

1, . . . ,x
′
n, a1, . . . ,ar; if one solves the n equations x′

i =
fi(x, a) with respect to x1, . . . ,xn:

xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n),

then F1(x′, a), . . . , Fn(x′, a) are independent solutions of this complete system.

This theorem can now be immediately applied to all r-term groups, whether or
not they contain the identity transformation.

When applied to the case of an r-term group with the identity transformation, the
theorem gives us certain relationships which exist between the infinitesimal trans-
formations of this group. We therefore obtain the important

Theorem 22. If an r-term group in the variables x1, . . . ,xn contains the r indepen-
dent infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r),

then there exist between these infinitesimal transformations pairwise relationships
of the form:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

=
r

∑
s=1

ck js Xs( f ),

where the ck js denote numerical constants.1

From this follows in particular the important

Proposition 1. If a finite continuous group contains the two infinitesimal transfor-
mations:

X( f ) =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

, Y ( f ) =
n

∑
i=1
ηi(x1, . . . ,xn)

∂ f
∂xi

,

then it also contains the infinitesimal transformation:

1 Lie, Math. Ann. Vol. 8, p. 303; Göttinger Nachr. 1874.
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X
(

Y ( f )
)−Y

(

X( f )
)

.

§ 40. Conversely, we imagine that r independent infinitesimal transformations
in x′

1, . . . ,x
′
n:

X ′
j(F) =

n

∑
i=1
ξ ji(x′

1, . . . ,x
′
n)
∂F
∂x′

i
( j=1 ···r)

are presented, which stand pairwise in relationships of the form:

X ′
k

(

X ′
j(F)

)−X ′
j

(

X ′
k(F)

)

=
r

∑
s=1

ck js X ′
s(F),

where the ck js are numerical constants. In addition, we imagine that r infinitesimal
transformations in a1, . . . ,ar:

A j(F) =
r

∑
μ=1

α jμ(a1, . . . ,ar)
∂F
∂aμ

( j=1 ···r)

are given, which satisfy analogous relations in pairs of the form:

Ak
(

A j(F)
)−A j

(

Ak(F)
)

=
r

∑
s=1

ck js As(F),

with the same ck js and whose determinant ∑±α11(a) · · ·αrr(a) does not vanish
identically. We will show that under these assumptions, the infinitesimal transfor-
mations X ′

1(F), . . . ,X ′
r(F) generate a completely determined r-term group with the

identity transformation.
To this end, we form the equations:

Ω j(F) = X ′
j(F)+A j(F) = 0 ( j=1 ···r),

which, according to the assumptions made, constitute an r-term complete system;
indeed, there exist relations of the form:

Ωk
(

Ω j(F)
)−Ω j

(

Ωk(F)
)

=
r

∑
s=1

ck jsΩs(F)

and in addition, the equations Ω1(F) = 0, . . . , Ωr(F) = 0 are solvable with respect
to ∂F

∂a1
, . . . , ∂F

∂ar
.

Now, let a0
1, . . . ,a

0
r be a system of values of the a, in a neighborhood of which

the α jk(a) behave regularly and for which the determinant ∑±α11(a0) · · ·αrr(a0)
is different from zero. Then according to Theorem 12, Chap. 5, p. 105, the com-
plete system Ω j(F) = 0 possesses n solutions F1(x′, a), . . . ,Fn(x′, a) which reduce
to x′

1, . . . ,x
′
n respectively for ak = a0

k ; they are the so-called general solutions of the
complete system relative to ak = a0

k . We imagine that these general solutions are
given, we form the n equations:
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xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n),

and we resolve them with respect to x′
1, . . . ,x

′
n, which is always possible, for

F1, . . . ,Fn are obviously independent of each other, as far as x′
1, . . . ,x

′
n are

concerned. The equations obtained in this way:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

represent, as we shall now show, an r-term group and in fact naturally, a group with
the identity transformation; because for ak = a0

k , one gets x′
i = xi.

At first, we have identically:

(5)

n

∑
ν=1

ξ jν(x′)
∂Fi

∂x′
ν
+

r

∑
μ=1

α jμ(a)
∂Fi

∂aμ
= 0

(i=1 ···n; j=1 ···r).

On the other hand, by differentiating xi = Fi(x′, a) with respect to aμ , one obtains
the equation:

0 =
n

∑
ν=1

∂Fi

∂x′
ν

∂x′
ν

∂aμ
+
∂Fi

∂aμ
(i=1 ···n; μ=1 ···r),

which holds identically after the substitution x′
ν = fν(x, a). We multiply this equa-

tion by α jμ(a) and we sum for μ from 1 to r, hence we obtain an equation which,
after using (5), becomes:

n

∑
ν=1

∂Fi

∂x′
ν

( r

∑
μ=1

α jμ(a)
∂x′
ν

∂aμ
−ξ jν(x′)

)

= 0

(i=1 ···n; μ=1 ···r).

But since the determinant ∑± ∂F1
∂x′

1
. . . ∂Fn

∂x′
n

does not vanish identically, we therefore

obtain:
r

∑
μ=1

α jμ(a)
∂x′
ν

∂aμ
= ξ jν(x′),

a system that we can again resolve with respect to the ∂x′
ν

∂aμ
, for the determinant of

the α jμ(a) does not vanish. Thus, we obtain finally that equations of the form:

(6)

∂x′
ν

∂aμ
=

r

∑
j=1
ψμ j(a1, . . . ,ar)ξ jν(x′

1, . . . ,x
′
n)

(ν=1 ···n; μ=1 ···r)

hold true, which naturally reduce to identities after the substitution x′
ν = fν(x, a).
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At this point, the demonstration that the equations x′
i = fi(x, a) represent an r-

term group is not at all difficult.
Indeed, it is at first easy to see that the equations x′

i = fi(x, a) represent∞r distinct
transformations, hence that the parameters a1, . . . ,ar are all essential. Indeed, oth-
erwise all functions f1(x, a), . . . , fn(x, a) would satisfy a linear partial differential
equation of the form (cf. p. 15):

r

∑
k=1

χk(a1, . . . ,ar)
∂ f
∂ak

= 0,

where the χk are free of x1, . . . ,xn. On account of (6), we would then have:

1...r

∑
k, j

χk(a)ψk j(a)ξ jν( f1, . . . , fn) ≡ 0 (ν=1 ···n),

whence, since X ′
1(F), . . . ,X ′

r(F) are independent infinitesimal transformations:

r

∑
k=1

χk(a)ψk j(a) = 0 ( j=1 ···r) ;

but from this, it follows immediately that: χ1(a) = 0, . . . , χr(a) = 0, because the
determinant of the ψk j(a) does not vanish identically.

Thus, the equations x′
i = fi(x, a) effectively represent a family of ∞r different

transformations. But now this family satisfies certain differential equations of the
specific form (6); hence we can immediately apply Theorem 9 of Chap. 4 on p. 82.
According to it, the following holds true: if a1, . . . ,ar is a system of values of the
a for which the determinant ∑±ψ11(a) · · ·ψrr(a) does not vanish, and the ψk j(a)
behave regularly, then every transformation x′

i = fi(x, a) whose parameters a1, . . . ,ar

lie in a certain neighborhood of a1, . . . ,ar can be obtained by firstly executing the
transformation:

xi = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

and then a transformation:

x′
i = xi +

r

∑
k=1

λk ξki(x)+ · · · (i=1 ···n)

of a one-term group λ1 X1( f )+ · · ·+λr Xr( f ), where it is understood that λ1, . . . ,λr

are appropriate constants. If we set in particular ak = a0
k , we then get xi = xi, hence

we see that the family of the ∞r transformations x′
i = fi(x, a) coincides, in a certain

neighborhood of a0
1, . . . ,a

0
r , with the family of the transformations:

(7)
x′

i = xi +
r

∑
k=1

λk ξki(x)+ · · ·

(i=1 ···n).
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If, on the other hand, we choose arbitrary a1, . . . ,ar in a certain neighborhood of
a0

1, . . . ,a
0
r , then the transformation xi = fi(x, a) always belongs to the family (7). But

if we first execute the transformation xi = fi(x, a) and then an appropriate transfor-
mation:

x′
i = xi +

r

∑
k=1

λk ξki(x)+ · · ·

of the family (7), then by what has been said above, we obtain a transformation x′
i =

fi(x, a), where a1, . . . ,ar can take all values in a certain neighborhood of a1, . . . ,ar.
In particular, if we choose a1, . . . ,ar in the neighborhood of a0

1, . . . ,a
0
r mentioned

earlier on, which is always possible, then again the transformation x′
i = fi(x, a) also

belongs to the family (7); Consequently,2 (Translator’s note: The present goal is
mainly to establish that if r infinitesimal transformations X1, . . . ,Xr stand pairwise
in the relationships

[

Xk, Xj
]

= ∑r
j=1 ck js Xs, where the ck js are constants, then the

totality of transformations x′ = exp
(

λ1X1+ · · ·+λrXr
)

(x) constitutes an r-term con-
tinuous local Lie group; Theorem 24 below will conclude such a fundamental state-
ment. In particular, the exponential family x′ = exp

(

λ1X1 + · · ·+λrXr
)

(x) will be
shown (after appropriate shrinkings) to be closed under composition, a property that
we may abbreviate informally by exp◦exp ≡ exp.

However, Theorem 9 on p. 82 only says that f ◦ exp ≡ f , or in greater detail:

(∗)

(

x = f
(

x; a
)

a near a0

)

◦
(

x′ = exp
(

λ X
)

(x)
λ near 0

)

≡
(

x′ = f (x; a)
a near a

)

.

But if we now apply this statement where a = a0 is the system of values introduced
while solving the complete system Ω1(F) = · · · =Ωr( f ) = 0, then by construction,
a0 yields the identity transformation x = f (x; a0) = x and we hence get in particular:

(

x′ = exp
(

λ X
)

(x)
λ near 0

)

≡
(

x′ = f (x; a)

a near a0

)

.

We can therefore replace the two occurrences of the family f (x; a) in (∗) by expo-
nentials to see that the exponential family is indeed closed under composition, as
was claimed in the text.) we see that two transformations of the family (7), when
executed one after the other, once again yield a transformation of this family. As a
result, this family, and naturally also the family x′

i = fi(x, a) which identifies with
it, forms an r-term group, a group which contains the identity transformation and
whose transformations can be ordered as inverses in pairs. We can state the obtained
result as follows:

Theorem 23. If r independent infinitesimal transformations:

X ′
k( f ) =

n

∑
i=1
ξki(x′

1, . . . ,x
′
n)
∂ f
∂x′

i
(k=1 ···r)

in the variables x′
1, . . . ,x

′
n satisfy conditions in pairs of the form:
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X ′
k

(

X ′
j( f )

)−X ′
j

(

X ′
k( f )

)

=
r

∑
s=1

ck js X ′
s( f ),

if furthermore r independent infinitesimal transformations:

Ak( f ) =
r

∑
μ=1

αkμ(a1, . . . ,ar)
∂ f
∂aμ

(k=1 ···r)

in the variables a1, . . . ,ar satisfy the analogous conditions:

Ak
(

A j( f )
)−A j

(

Ak( f )
)

=
r

∑
s=1

ck js As( f )

with the same ck js, and if, in addition, the determinant ∑±α11(a) · · ·αrr(a) does
not vanish identically, then one obtains in the following way the equations of an
r-term group: one forms the r-term complete system:

X ′
k( f )+Ak( f ) = 0 (k=1 ···r)

and one determines its general solutions relative to a suitable system of values ak =
a0

k . If xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) are these general solutions, then the equations

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) which arise from resolution represent an r-term con-

tinuous transformation group. This group contains the identity transformation and
for each one of its transformations, also the inverse transformation; it is generated
by the ∞r−1 infinitesimal transformations:

λ1 X ′
1( f )+ · · ·+λr X ′

r( f ),

where λ1, . . . ,λr denote arbitrary constants. By introducing new parameters in place
of the ak, the equations of the group can therefore be brought to the form:

x′
i = xi +

r

∑
k=1

λk ξki(x)+
1...r

∑
k, j

λk λ j

12
Xj(ξki)+ · · · (i=1 ···n).

Obviously, the equations xi = Fi(x′, a) appearing in this theorem represent a
group, and in fact, just the group x′

i = fi(x, a).
§ 41. The hypotheses which are made in the important Theorem 23 can be sim-

plified in an essential way.
The theorem expresses that the 2r infinitesimal transformations Xk( f ) and Ak( f )

determine a certain r-term group in x-space; but at the same time, there is a rep-
resentation of this group which is absolutely independent of the Ak( f ); indeed, ac-
cording to the cited theorem, the group in question identifies with the family of∞r−1

one-term groups λ1 X1( f )+ · · ·+λr Xr( f ), and this family is already completely de-
termined by the Xk( f ) alone. This circumstance brings us to the conjecture that the
family of ∞r−1 one-term groups λ1 X1( f )+ · · ·+ λr Xr( f ) always forms an r-term
group if and only if the independent infinitesimal transformations X1( f ), . . . ,Xr( f )
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stand pairwise in relations of the form:

(8) Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

= [Xk, Xj] =
r

∑
s=1

ck js Xs( f ).

According to Theorem 22, this condition is necessary for the ∞r−1 one-term groups
∑ λk Xk( f ) to form an r-term group. Thus our conjecture amounts to the fact that
this necessary condition is also sufficient.

This presumption would be brought to certainty if we could produce, for ev-
ery system of the discussed nature, r independent infinitesimal transformations in
(a1, . . . ,ar):

Ak( f ) =
r

∑
μ=1

αkμ(a1, . . . ,ar)
∂ f
∂aμ

(k=1 ···r)

which satisfy the corresponding relations:

Ak
(

A j( f )
)−A j

(

Ak( f )
)

=
r

∑
s=1

ck js As( f ),

while, however, the determinant ∑±α11 · · ·αrr does not vanish identically, or ex-
pressed differently, while no relation of the form:

r

∑
k=1

χk(a1, . . . ,ar)Ak( f ) = 0

holds identically.
With the help of Proposition 5 in Chap. 4, p. 79, we can now in fact always

manage to produce such a system of infinitesimal transformations Ak( f ). In a similar
way, we set:

X (μ)
k ( f ) =

n

∑
i=1
ξki

(

x(μ)1 , . . . ,x(μ)n
) ∂ f

∂x(μ)i

,

and we make up the r infinitesimal transformations:

Wk( f ) =
r

∑
μ=1

X (μ)
k ( f ).

According to the stated proposition, these infinitesimal transformations have the
property that no relation of the form:

r

∑
k=1

ψk
(

x′
1, . . . ,x

′
n,x

′′
1 , . . . ,x

′′
n , · · · · · · ,x(r)1 , . . . ,x(r)n

)

Wk( f ) = 0

holds. Now, since in addition we have:

Wk
(

Wj( f )
)−Wj

(

Wk( f )
)

=
r

∑
s=1

ck js Ws( f ),



172 9 Characteristic Relationships Between the Infinitesimal Transformations of a Group

the r equations, independent of each other:

W1( f ) = 0, · · · · · · ,Wr( f ) = 0

form an r-term complete system in the rn variables x′
1, . . . ,x

′
n, · · · ,x(r)1 , . . . ,x(r)n .

This complete system possesses r(n − 1) independent solutions, which can be
called u1,u2, . . . ,urn−r. Hence, if we select r functions y1, . . . ,yr of the rn quantities

x(μ)i that are independent of each other and independent of u1, . . . ,urn−r, we can

introduce the y and the u as new independent variables in place of the x(μ)i . By this,
we obtain:

Wk( f ) =
r

∑
π=1

Wk(yπ)
∂ f
∂yπ

+
rn−r

∑
τ=1

Wk(uτ)
∂ f
∂uτ

,

or, since all Wk(uτ) vanish identically:

Wk( f ) =
r

∑
π=1

ωkπ(y1, . . . ,yr,u1, . . . ,urn−r)
∂ f
∂yπ

,

where W1( f ), . . . ,Wr( f ) are linked by no relation of the form:

r

∑
k=1

ϕk(y1, . . . ,yr, u1, . . . ,urn−r)Wk( f ) = 0.

This property of the Wk( f ) naturally also remains true when we confer to the uτ
appropriate fixed values u0

τ . If we then set ωkπ(y,u0) = ω0
kπ(y), the r independent

infinitesimal transformations in the independent variables y1, . . . ,yr:

Vk( f ) =
r

∑
π=1

ω0
kπ(y1, . . . ,yr)

∂ f
∂yπ

stand pairwise in the relationships:

Vk
(

Vj( f )
)−Vj

(

Vk( f )
)

=
r

∑
s=1

ck js Vs( f )

and in addition, are linked by no relation of the form:

r

∑
k=1

ϕk(y1, . . . ,yr)Vk( f ) = 0.

Consequently, the Vk( f ) are infinitesimal transformations of the required consti-
tution. So we can immediately apply Theorem 23, p. 169, to the 2r infinitesimal
transformations X1( f ), . . . ,Xr( f ), V1( f ), . . . ,Vr( f ) and as a result, we have proved
that the ∞r−1 one-term groups ∑ λk Xk( f ) constitute an r-term group. Therefore the
following holds true:

Theorem 24. If r independent infinitesimal transformations:
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Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

stand pairwise in the relationships:

(8) Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

= [Xk, Xj] =
r

∑
s=1

ck js Xs( f ),

where the ck js are constants, then the totality of the ∞r−1 one-term groups:

λ1 X1( f )+ · · ·+λr Xr( f )

forms an r-term continuous group, which contains the identity transformation and
whose transformations are ordered as inverses in pairs.2

When we have r independent infinitesimal transformations:

X1( f ), . . . ,Xr( f )

which match the hypotheses of the above theorem, we shall henceforth say that
X1( f ), . . . ,Xr( f ) generate an r-term group, and we shall also virtually speak of the
r-term group X1( f ), . . . ,Xr( f ).

§ 42. Let X1( f ), . . . ,Xr( f ) be an r-term group in the variables x1, . . . ,xn and
Y1, . . .Ym( f ) be an m-term group in the same variables. The relations between the
Xk( f ) and the Yμ( f ) respectively may have the form:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

=
r

∑
s=1

ck js Xs( f ) = [Xk, Xj]

Yμ
(

Yν( f )
)−Yν

(

Yμ( f )
)

=
m

∑
s=1

c′
μνs Ys( f ) =

[

Yμ , Yν
]

(k, j=1 ···r; μ,ν=1 ···m).

Now, it can happen that these two groups have certain infinitesimal transformations
in common. We suppose that they have exactly l independent such transformations
in common, say:

Zλ ( f ) =
r

∑
k=1

gλk Xk( f ) =
m

∑
μ=1

hλμ Yμ( f ) (λ=1 ··· l),

where the gλk and the hλμ denote constants. Then every other infinitesimal transfor-
mation contained in the two groups can be linearly deduced from Z1( f ), . . . ,Zl( f ).

2 Lie, Math. Annalen Vol. 8, p. 303, 1874; Göttinger Nachrichten, 1874, p. 533 and 540; Archiv
for Math. og Naturv. Christiania 1878.
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However, if we form the expressions:

Zλ
(

Zν( f )
)−Zν

(

Zλ ( f )
)

= [Zλ , Zν ] ,

we realize that they can be deduced linearly from X1( f ), . . . ,Xr( f ) and also from
Y1( f ), . . . ,Ym( f ), hence they are common to the two groups. Consequently, relations
of the form:

Zλ
(

Zν( f )
)−Zν

(

Zλ ( f )
)

= [Zλ , Zν ] =
l

∑
s=1

dλνs Zs( f )

hold true, that is to say Z1( f ), . . . ,Zl( f ) generate an l-term group.
As a result, we have the

Proposition 2. If the two continuous groups: X1( f ), . . . ,Xr( f ) and Y1( f ), . . . ,Ym( f )
in the same variables have exactly l and not more independent infinitesimal trans-
formations in common, then these transformations generate, as far as they are con-
cerned, an l-term continuous group.

§ 43. If the equations x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) represent a family of∞r trans-

formations and if in addition they satisfy differential equations of the specific form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n; k=1 ···r),

then as we know, the r infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

are independent of each other, and in addition, according to Theorem 21 on p. 164,
they are linked together through relations of the form:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

= [Xk, Xj] =
r

∑
s=1

ck js Xs( f ).

Hence the family of the ∞r−1 one-term groups:

λ1 X1( f )+ · · ·+λr Xr( f )

forms an r-term group with the identity transformation. Consequently, we can state
Theorem 9 on p. 82 as follows:

Theorem 25. If a family of ∞r transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)
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satisfies certain differential equations of the form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n ; k=1 ···r),

and if a0
1, . . . ,a

0
r is a system of values of the a for which the ψk j(a) behave regularly

and for which in addition, the determinant:

∑±ψ11(a) · · ·ψrr(a)

is different from zero, then every transformation x′
i = fi(x, a) whose parameters

a1, . . . ,ar lie in a certain neighborhood of a0
1, . . . ,a

0
r can be thought to be produced

by performing firstly the transformation xi = fi(x, a0) and secondly, a completely
determined transformation:

x′
i = xi +

r

∑
k=1

λk ξki(x)+ · · · (i=1 ···n)

of the r-term group which, under the assumptions made, is generated by the r inde-
pendent infinitesimal transformations:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r).

The above theorem is then of special interest when the equations x′
i = fi(x,a)

represent an r-term group which does not contain the identity transformation, at
least in the domain ((a)). In this case, we will derive a few important conclusions.

Thus, let x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) be an r-term group without identity trans-

formation, and assume that the two transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar)

x′′
i = fi(x′

1, . . . ,x
′
n, b1, . . . ,br)

executed one after the other produce the transformation:

x′′
i = fi(x1, . . . ,xn, c1, . . . ,cr) = fi

(

x1, . . . ,xn, ϕ1(a,b), . . . ,ϕr(a,b)
)

.

Here, if we employ the previous notation, x1, . . . ,xn lie arbitrarily in the domain
((x)), a1, . . . ,ar and b1, . . . ,br in the domain ((a)), while the positions of the x′

i, x′′
i

and of the ck are determined by the indicated equations. In addition, there are still
differential equations of the specific form:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n)

(i=1 ···n ;k=1 ···r).
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In what follows, a0
1, . . . ,a

0
r and likewise b0

1, . . . ,b
0
r should now denote a deter-

mined point [STELLE] of the domain ((a)) and ϕk(a0,b0) should be equal to c0
k . By

contrast, by a1, . . . ,ar we want to understand an arbitrary point in the domain (a),
so that the equations:

xi = fi(x1, . . . ,xn, a1, . . . ,ar)

should represent any transformation of the given group.
Every transformation of the form xi = fi(x,a) can be obtained by performing at

first the transformation x′
i = fi(x,a0) and afterwards a certain second transformation.

In order to find the latter transformation, we solve the equations x′
i = fi(x,a0) with

respect to x1, . . . ,xn:
xi = Fi(x′

1, . . . ,x
′
n, a0

1, . . . ,a
0
r )

and we introduce these values of the xi in xi = fi(x,a). In this way, we obtain for the
sought transformation an expression of the form:

(9) xi =Φi
(

x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n) ;

we here do not write down the a0
k , because we want to consider them as numerical

constants.
The transformation (9) is well defined for all systems of values ak in the domain

(a) and its expression can be analytically continued to the whole domain of such
systems of values; this follows from the hypotheses that we have made previously
about the nature of the functions fi and Fi.

We now claim that for certain values of the parameters ak, the transformations
of the family xi =Φi(x′, a) belong to the initially given group x′

i = fi(x,a), whereas
by contrast, for certain other values of the ak, they belong to the group X1 f , . . . ,Xr f
with identity transformation.

We establish as follows the first part of the claim just stated. We know that the
two transformations:

x′
i = fi(x1, . . . ,xn, a0

1, . . . ,a
0
r ), xi = fi(x′

1, . . . ,x
′
n, b1, . . . ,br)

executed one after the other produce the transformation xi = fi(x,c), where ck =
ϕk(a0,b); here, we may set for b1, . . . ,br any system of values of the domain ((a)),
while the system of values c1, . . . ,cr then lies in the domain (a), in a certain neigh-
borhood of c0

1, . . . ,c
0
r . But according to what has been said earlier, the transformation

xi = fi(x,c) is also obtained when the two transformations:

x′
i = fi(x1, . . . ,xn, a0

1, . . . ,a
0
r ), xi =Φi(x′

1, . . . ,x
′
n, a1, . . . ,ar)

are executed one after the other and when one chooses ak = ck. Consequently, the
transformation xi = Φi(x′,a) is identical, after the substitution ak = ϕk(a0,b), to
the transformation xi = fi(x′,b), that is to say: all transformations xi = Φi(x′,a)
whose parameters ak lie in a certain neighborhood of c0

1, . . . ,c
0
r , defined through the

equation ak = ϕk(a0,b), belong to the presented group x′
i = fi(x,a).
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In order to establish the second part of our claim stated above, we recall Theo-
rem 25. If a1, . . . ,ar lie in a certain neighborhood of a0

1, . . . ,a
0
r , then according to

this theorem, the transformation xi = fi(x,a) can be obtained by first performing the
transformation:

x′
i = fi(x1, . . . ,xn, a0

1, . . . ,a
0
r )

and then a completely determined transformation:

(10) xi = x′
i +

r

∑
k=1

λk ξki(x′)+ · · ·

of the r-term group that is generated by the r independent infinitesimal transforma-
tions:

Xk( f ) =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r).

From earlier considerations (cf. Chap. 4, proof of Theorem 9, p. 82), we know
in addition that one finds the transformation (10) in question when one chooses
in an appropriate way a1, . . . ,ar as independent functions of λ1, . . . ,λr and when
one then determines by resolution λ1, . . . ,λr as functions of a1, . . . ,ar. But on the
other hand, we also obtain the transformation xi = fi(x,a) when we at first execute
the transformation x′

i = fi(x,a0) and afterwards the transformation xi = Φi(x′,a).
Consequently, the transformation xi = Φi(x′,a) belongs to the group generated by
X1 f , . . . ,Xr f as soon as the system of values a1, . . . ,ar lies in a certain neighborhood
of a0

1, . . . ,a
0
r . Expressed differently: the equations xi = Φi(x′,a) are transferred

to the equations (10) when a1, . . . ,ar are replaced by the functions of λ1, . . . ,λr

discussed above.
With these words, our claim stated above is completely proved.
Thus the transformation equations xi = Φi(x′,a) possess the following impor-

tant property: if in place of the ak, the new parameters b1, . . . ,br are introduced by
means of the equations ak = ϕk(a0,b), then for a certain domain of the variables,
the equations xi =Φi(x′,a) take the form xi = fi(x′,b); on the other hand, if in place
of the ak, the new parameters λ1, . . . ,λr are introduced, then for a certain domain,
the equations xi =Φi(x′,a) convert into:

xi = x′
i +

r

∑
k=1

λk ξki(x′)+ · · · (i=1 ···n).

Here lies an important feature of the initially given group x′
i = fi(x,a). Namely,

when we introduce in the equations x′
i = fi(x,a) the new parameters a1, . . . ,ar in

place of the ak by means of ak =ϕk(a0,a), then we obtain a system of transformation
equations x′

i = Φi(x,a) which, by performing in addition its analytic continuation,
represents a family of transformations to which belong all transformations of some
r-term group with identity transformation.

We can also express this as follows.
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Theorem 26. Every r-term group x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) which is not gener-

ated by r independent infinitesimal transformations can be derived from an r-term
group with r independent infinitesimal transformations in the following way: one
first sets up the differential equations:

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a)ξ ji(x′) (i=1 ···n ;k=1 ···r),

which are satisfied by the equations x′
i = fi(x,a), then one sets:

n

∑
i=1
ξki(x)

∂ f
∂xi

= Xk( f ) (k=1 ···r)

and one forms the finite equations:

x′
i = xi +

r

∑
k=1

λk ξki(x)+ · · · (i=1 ···n)

of the r-term group with identity transformation which is generated by the r inde-
pendent infinitesimal transformations X1 f , . . . ,Xr f . Then it is possible, in these fi-
nite equations, to introduce new parameters a1, . . . ,ar in place of λ1, . . . ,λr in such
a way that the resulting transformation equations:

x′
i =Φi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

represent a family of∞r transformations which embrace, after analytic continuation,
all the ∞r transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar)

of the group.

§ 44. Without difficulty, it can be shown that there exist groups which do not
contain the identity transformation and also whose transformations are not ordered
as inverses by pairs.

The equation:
x′ = ax

with the arbitrary parameter a represents a one-term group. If one executes two
transformations:

x′ = ax, x′′ = bx′

of this group one after the other, then one gets the transformation:

x′′ = abx,
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which belongs to the group as well. From this, it results that the family of all trans-
formations of the form x′ = ax, in which the absolute value of a is smaller than 1,
constitutes a group too.3 (Translator’s note: In the sought economy of axioms, what
matters is only closure under composition.) Obviously, this family does not contain
the identity transformation, nor can its transformations be ordered as inverses by
pairs.

Hence, if there existed an analytic expression which represented only those trans-
formations of the form x′ = ax in which the absolute value of a is smaller than 1, then
with it, we would have a finite continuous group without the identity transformation
and without inverse transformations.

Now, an analytic expression of the required constitution can effectively be indi-
cated.

It is known that the function:4 (Translator’s note: A presentation of this passage
has been anticipated in Sect. 2.3.)

∞

∑
ν=1

aν

1−a2ν

can be expanded, in the neighborhood of a = 0, as an ordinary power series with
respect to a which converges as long as the absolute value |a| of a is smaller than 1.
The power series in question has the form:

∞

∑
μ=1

kμ aμ = ω(a),

where the kμ denote whole numbers depending on the index μ . Hence if we inter-
pret the complex values of a as points in a plane, then ω(a), as an analytic func-
tion of a, is defined in the interior of the circle of radius 1 which can be described
[BESCHREIBEN] around the point a = 0.

Furthermore, it is known that the function ω(a) is not defined for a whose abso-
lute value equals 1, so that the circle in question around the point a = 0 constitutes
the natural boundary for ω(a), across which this function cannot be analytically
continued.

We now set ω(a) = λ , and moreover, let |a0| < 1 and ω(a0) = λ 0; then we
can solve the equation ω(a) = λ with respect to a, that is to say, we can represent
a as an ordinary power series in λ − λ 0 in such a way that it gives: a = a0 for
λ = λ 0 and that the equation ω(a) = λ is identically satisfied after substitution of
this expression for a.

Let a = χ(λ ); then χ(λ ) is an analytic function which takes only values whose
absolute value are smaller than 1; this holds true not only for the found function
element which is represented in the neighborhood of λ = λ 0 by an ordinary power
series in λ −λ 0, but also for every analytic continuation of this function element.

Hence if we set:
x′ = χ(λ )x,
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we obtain the desired analytic expression for all transformations x′ = ax in which
|a| is smaller than 1. If now we have:

x′ = χ(λ1)x, x′′ = χ(λ2)x′,

then:
x′′ = χ(λ1)χ(λ2)x ;

but this equation can always be brought to the form:

x′′ = χ(λ3)x ;

indeed, we have |χ(λ1)χ(λ2)|< 1; so if we set χ(λ1)χ(λ2) = α , we simply obtain:
λ3 = ω(α).

With this, it is shown that the equation x′ = χ(λ )x with the arbitrary parameter λ
represents a group. This group is continuous and finite, but lastly, it does not contain
the identity transformation, nor can its transformations be ordered as inverses by
pairs. Our purpose: the proof that there are groups of this kind, is attained with it.
Furthermore, it is easy to see that in a similar manner, one can form arbitrarily many
groups having this constitution.

Remarks. In his early work on finite continuous transformation groups, LIE at-
tempted to show that every r-term group contains the identity transformation plus
infinitesimal transformations, and is generated by the latter (cf. notably the two ar-
ticles in Archiv for Math. og Naturvid., Bd. 1, Christiania 1876). However, he soon
realized that in his proof he had made certain implicit assumptions about the consti-
tution of the occurring functions; as a consequence, he restricted himself expressly
to groups whose transformations can be ordered as inverses by pairs and he showed
that in any case, the mentioned statement was correct for such groups (Math. Ann.
Vol. 16, p. 441 sq.).

Later, in the year 1884, ENGEL succeeded in constructing a finite continuous
group which does not contain the identity transformation and whose transformations
do not order as inverses by pairs; this is the group described in the preceding section.

Finally, LIE found that the equations of an arbitrary finite continuous group with
r parameters can in any case be derived, after the introduction of new parameters
and analytic continuation, from the equations of an r-term group which contains the
identity transformation and r independent infinitesimal transformations, while its
finite transformations can be ordered as inverses by pairs (Theorem 26).

§ 45. In Chap. 4, p. 86, we found that every r-term group which contains r inde-
pendent infinitesimal transformations has the property that its finite transformations
can be ordered as inverses by pairs. On the other hand, it was mentioned at the end
of the previous section that this statement can be reversed, hence that every r-term
group whose transformations order as inverses by pairs, contains the identity trans-
formation and is produced by r infinitesimal transformations. We will indicate how
the correctness of this assertion can be seen.
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Let the equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,an) (i=1 ···n)

with r essential parameters a1, . . . ,ar represent an r-term group with inverse trans-
formations by pairs. By resolution with respect to x1, . . . ,xn, one can obtain:

xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n).

When the system of values ε1, . . . ,εr lies in a certain neighborhood of ε1 = 0, . . . ,
εr = 0, we can execute the two transformations:

xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar)

x′′
i = fi(x1, . . . ,xn, a1 + ε1, . . . , ar + εr)

one after the other and we thus obtain a transformation:

x′′
i = fi

(

F1(x′,a), . . . ,Fn(x′,a), a1 + ε1, . . . , ar + εr
)

which likewise belongs to our group and which can be expanded in a power series
with respect to ε1, . . . ,εr:

(11) x′′
i = x′

i +
r

∑
k=1

εk

[
∂ fi(x,a)
∂ak

]

x=F(x′,a)
+ · · · .

If we set all εk equal to zero here, then we get the identity transformation, which
hence appears in our group. If on the other hand we choose all the εk infinitely small,
we obtain transformations of our group which differ infinitely little from the identity
transformation.

For brevity, we set:

(12)

[
∂ fi(x,a)
∂ak

]

x=F(x′,a)
= ηki(x′,a),

so that the transformation (11) is of the form:

x′′
i = x′

i +
r

∑
k=1

εkηki(x′,a)+ · · · (i=1 ···n).

Then, in the variables x′
1, . . . ,x

′
n, we form the r infinitesimal transformations:

Y ′
k f =

n

∑
i=1
ηki(x′,a)

∂ f
∂x′

k
(k=1 ···r),

which are certainly independent from each other for undetermined values of the ak.
Indeed, in the contrary case, there would be r quantities ρ1, . . . ,ρr, not all vanishing,
which would not depend upon x′

1, . . . ,x
′
n such that the equation:
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r

∑
k=1

ρk Y ′
k f = 0

would be identically satisfied; then the n relations:

r

∑
k=1

ρkηki(x′,a) = 0 (i=1 ···n)

would follow and in turn, these relations would, after the substitution x′
i = fi(x,a),

be transferred to:
r

∑
k=1

ρk
∂ fi(x,a)
∂ak

= 0 (i=1 ···n) ;

but such relations cannot exist, since according to the assumption, the parameters
are essential in the equations x′

i = fi(x,a) (cf. Chap. 2, p. 16).
From this, we then conclude that Y ′

1 f , . . . ,Y ′
r f also remain independent from each

other, when one inserts for a1, . . . ,ar some determined system of values in general
position. If a1, . . . ,ar is such a system of values, we want to write:

ηki(x′,a) = ξki(x′) ;

then the r infinitesimal transformations:

X ′
k f =

n

∑
i=1
ξki(x′)

∂ f
∂x′

i
(k=1 ···r)

are also independent of each other. It remains to show that our group is generated
by the r infinitesimal transformations X ′

k f .
We execute two transformations of our group one after the other, namely firstly

the transformation:

x′′
i = x′

i +
r

∑
k=1

εkηki(x′,a)+ · · · ,

and secondly the transformation:

x′′′
i = x′′

i +
r

∑
k=1

ϑkηki(x′′,a)+ · · ·

= x′′
i +

r

∑
k=1

ϑk ξki(x′′)+ · · · .

If, as up to now, we only take into consideration the first-order terms, we then obtain
in the indicated way the transformation:

x′′′
i = x′

i +
r

∑
k=1

εkηki(x′,a)+
r

∑
k=1

ϑk ξki(x′)+ · · · ,
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which belongs naturally to our group, and this, inside a certain region for all values
of the parameters a, ε , ϑ .

If there were, amongst the infinitesimal transformations Y ′
1 f , . . . ,Y ′

r f , also a cer-
tain number independent of X ′

1 f , . . . ,X ′
r f , then the last written equations would,

according to Chap. 4, Proposition 4, p. 80, represent at least ∞r+1 different trans-
formations, whereas our group nevertheless contains only ∞r different transforma-
tions. Consequently, each transformation Y ′

k f must be linearly expressible in terms
of X ′

1 f , . . . ,X ′
r f , whatever values the a assume. By considerations similar to those

of Chap. 2, p. 39, one now realizes that r identities of the form:

Y ′
k f ≡

r

∑
j=1
ψk j(a1, . . . ,ar)X ′

j f (k=1 ···r)

hold true, where the ψk j behave regularly in a certain neighborhood of ak = ak;
in addition, the determinant of the ψk j does not vanish identically, since otherwise
Y ′

1 f , . . . ,Y ′
r f would no longer be independent infinitesimal transformations.

At present, it is clear that the ηki(x′,a) can be expressed as follows in terms of
the ξ ji(x′):

ηki(x′,a) ≡
r

∑
j=1
ψk j(a)ξ ji(x′).

Finally, if we recall the equations (12) which define the functions ηki(x′,a), we
realize that the differential equations:

(13)

∂x′
i

∂ak
=

r

∑
j=1
ψk j(a)ξ ji(x′)

(i=1 ···n ; k=1 ···r)

are identically satisfied after the substitution x′
i = fi(x,a).

As a result, it has been directly shown that every group with inverse transforma-
tions by pairs satisfies certain differential equations of the characteristic form (13);
thus, we have reached the starting point for the developments of Chap. 3, Sect. 3.9.

Now, if it were possible to prove that, for the parameter values a0
1, . . . ,a

0
r of the

identity transformation, the determinant of the ψk j(a) has a value distinct from zero,
then it would follow from the stated developments that the group x′

i = fi(x,a) is gen-
erated by the r infinitesimal transformations X1 f , . . . ,Xr f . But now, it is not in the
nature of things that one can prove that the determinant ∑±ψ11(a0) · · ·ψrr(a0) is
distinct from zero. One can avoid this difficulty as follows.5 (Translator’s note: For
(local) continuous finite transformation groups containing the identity transforma-
tion, this property has already been seen in Sect. 3.4.)

One knows that the equations:
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(14)
x′

i = xi +
r

∑
k=1

εk ξki(x)+ · · ·

(i=1 ···n)

represent transformations of our group x′
i = fi(x,a) as soon as the εk lie in a certain

neighborhood of ε1 = 0, . . . , εr = 0; furthermore, one can show that one obtains in
this way all transformations x′

i = fi(x,a), the parameters of which lie in a certain
neighborhood of a0

1, . . . ,a
0
r . Now, if one puts the equations (14) at the foundation,

one easily realizes that the x′, interpreted as functions of the ε and of the x, satisfy
differential equations of the form:

∂x′
i

∂εk
=

r

∑
j=1
χk j(ε1, . . . ,εr)ξ ji(x′

1, . . . ,x
′
n)

(i=1 ···n ; k=1 ···r),

where now the determinant of the χk j(ε) for ε1 = 0, . . . , εr = 0 does not vanish. In
this way, one finally comes to the following result:

Every r-term group with transformations inverse by pairs contains the identity
transformation, and in addition r independent infinitesimal transformations by
which it is generated.

§ 46. Consider r independent infinitesimal transformations:

Xk f =
n

∑
ν=1

ξkν(x1, . . . ,xn)
∂ f
∂xν

(k=1 ···r)

which satisfy relations in pairs of the form:

(8)
Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
[

Xi, Xk
]

=
r

∑
s=1

ciks Xs( f )

(i,k=1 ···r),

with certain constants ciks, so that according to Theorem 24, p. 172, the totality of
all one-term groups of the form:

λ1X1( f )+ · · ·+λrXr( f )

constitutes an r-term group. We will show that, as far as they are concerned, the
constants ciks in the above relations are then tied up together with certain equations.

To begin with, we have
[

Xi, Xk
]

= −[

Xk, Xi
]

, from which it follows immediately
that: ciks = −ckis. When the number r is greater than 2, we find still other rela-
tions. Indeed, in this case, there is the Jacobi identity (Chap. 5, § 26, p. 7) which
holds between any three Xi f , Xk f , Xj f amongst the r infinitesimal transformations
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X1 f , . . . ,Xr f :
[[

Xi, Xk
]

, Xj
]

+
[[

Xk, Xj
]

, Xi
]

+
[[

Xj, Xi
]

, Xk
]

= 0

(i,k, j=1 ···n).

By making use of the above relation (8), we obtain:

r

∑
s=1

{

ciks
[

Xs, Xj
]

+ ck js
[

Xs, Xi
]

+ c jis
[

Xs, Xk
]}

= 0,

and then by repeated applications of this relation:

1···r
∑
s,τ

{

ciks cs jτ + ck js csiτ + c jis cskτ

}

Xτ f = 0.

But since the infinitesimal transformations Xτ f are independent of each other, this
equation decomposes into the following r equations:

(15)

r

∑
s=1

{

ciks cs jτ + ck js csiτ + c jis cskτ
}

= 0

(τ=1 ···r).

Thus the following holds.

Theorem 27. 3 If r independent infinitesimal transformations X1 f , . . . ,Xr f are con-
stituted in such a way that they satisfy relations in pairs of the form:

(8)
Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
[

Xi, Xk
]

=
r

∑
s=1

ciks Xs( f )

(i,k=1 ···r),

with certain constants ciks, so that the totality of all ∞r−1 one-term groups of the
form:

λ1 X1( f )+ · · ·+λr Xr( f )

forms an r-term group, then between the constants ciks, there exist the following
relations:

(16)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

cikτ + ckiτ = 0
r

∑
s=1

{

ciks cs jτ + ck js csiτ + c jis cskτ
}

= 0

(i,k, j,τ=1 ···r).

3 Lie, Archiv for Math. og Naturv. Bd. 1, p. 192, Christiania 1876.
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The equations (16) are completely independent of the number of the variables
x1, . . . ,xn in the infinitesimal transformations X1( f ), . . . ,Xr( f ). Hence from the pre-
ceding statement, we can still conclude what follows:

Even if the number n of the independent variables x1, . . . ,xn can be chosen in
a completely arbitrary way, one nevertheless cannot associate to every system of
constants ciks (i,k,s=1 ···r) r independent infinitesimal transformations:

Xk( f ) =
n

∑
ν=1

ξkν(x1, . . . ,xn)
∂ f
∂xν

(k=1 ···r)

which pairwise satisfy the relations:

[

Xi, Xk
]

=
r

∑
s=1

ciks Xs( f ) (i,k=1 ···r).

Rather, for the existence of such infinitesimal transformations, the existence of the
equations (16) is necessary; but it is also sufficient, as we will see later.

—————–

Unless the contrary is specially notified, in all the subsequent studies, we shall
restrict ourselves to the r-term groups which contain r independent infinitesimal
transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

,

and so, which are generated by the same transformations. Here, we shall always
consider only systems of values x1, . . . ,xn for which all the ξki behave regularly.

Further, we stress once more that in future, we shall often call an r-term
group with the independent infinitesimal transformations X1 f , . . . ,Xr f “the group
X1 f , . . . ,Xr f ”. Amongst the various forms the finite equations of the r-term group
X1 f , . . . ,Xr f can be given, we shall call:

x′
i = xi +

r

∑
k=1

ek ξki(x)+ · · · (i=1 ···n)

“a canonical form” of the group.

—————–



Chapter 10
Systems of Partial Differential Equations
the General Solution of Which
Depends Only Upon a Finite Number
of Arbitrary Constants

In the variables x1, . . . ,xn, z1, . . . ,zm let us imagine that a system of partial differ-
ential equations of arbitrary order is given. Aside from x1, . . . ,xn, z1, . . . ,zm, such a
system can only contain differential quotients of z1, . . . ,zm with respect to x1, . . . ,xn,
so that we have hence to consider x1, . . . ,xn as independent of each other, while
z1, . . . ,zm are to be determined as functions of x1, . . . ,xn in such a way that the sys-
tem be identically satisfied.

Our system of differential equations shall not be completely arbitrary, but it will
possess certain special properties. We want to assume that, in the form in which it
is presented, it satisfies the following conditions.

Firstly. If s is the order of the highest differential quotient occurring in the system,
then by resolution of the equations of the system, all s-th order differential quotients
of z1, . . . ,zm with respect to x1, . . . ,xn are supposed to be expressible in terms of the
differential quotients of the first order up to the (s−1)-th, and in terms of z1, . . . ,zm,
x1, . . . ,xn. By contrast, it shall not be possible to express in this way all differential
quotients of order (s−1) in terms of those of lower order and in terms of z1, . . . ,zm,
x1, . . . ,xn.

Secondly. By differentiating the given system once with respect to the individ-
ual variables x1, . . . ,xn and by combining the obtained equations, we obtain only
relations between x1, . . . ,xn, z1, . . . ,zm and the differential quotients of order (s−1)
which already follow from the given system.

We make these special assumptions about the form of the given system for rea-
sons of convenience. Naturally, all subsequent considerations can be applied on the
whole to every system of partial differential equations which can, through differen-
tiations and elimination, be given the form just described.

According to the known theory of differential equations, it follows without diffi-
culty that every system of differential equations which possesses the properties just
discussed is integrable and that the most general functions z1, . . . ,zm of x1, . . . ,xn

which satisfy the system depend only on a finite number of constants.
We now want to give somewhat different reasons to this proposition, by reducing

the discussed problem of integration to the problem of finding systems of equations

c© Springer-Verlag Berlin Heidelberg 2015
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which admit a certain number of given infinitesimal transformations; on the basis of
the developments of Chap. 7, we can indeed solve the latter problem straightaway.

On the other hand, we will also show that the mentioned proposition can be
inverted: we will show that every system of equations:

zμ = Zμ(x1, . . . ,xn, a1, . . . ,ar) (μ=1 ···m)

which contains a finite number r of arbitrary parameters ak represents the most
general system of solutions for a certain system of partial differential equations.

For us, this second proposition is the more important; we shall use it again in the
next chapter.

Therefore, it appears to be desirable to derive the two propositions in an indepen-
dent way, without marching into the theory of total differential equations.

§ 47. Let the number of differential quotients of order k of z1, . . . ,zm with respect
to x1, . . . ,xn be denoted by εk. For the differential quotients of order k themselves,

we introduce the notation p(k)i , where i has to run through the values 1,2, . . . ,εk; but

we reserve the right to simply write z1, . . . ,zm instead of p(0)1 , . . . , p(0)ε0
. Lastly, we

also set:
∂ p(k)i

∂x j
= p(k)i j ,

so that p(k)i j denotes one of the εk+1 differential quotients of order (k+1).
According to these definitions, we can write as follows:

(1)

{
W1(x, z, p(1), . . . , p(s−1)) = 0, . . . , Wq(x, z, p(1), . . . , p(s−1)) = 0

p(s−1)
i j = Pi j(x, z, p(1), . . . , p(s−1)) (i=1 ···εs−1 ; j=1 ···n)

the system of differential equations to be studied.
We assume here that the equations W1 = 0, . . . , Wq = 0 are independent of each

other. The nεs−1 equations p(s−1)
i j = Pi j are independent of the W = 0, but they are

not independent of each other, because indeed the nεs−1 expressions p(s−1)
i j do not

represent only distinct differential quotients of order s. However, for what follows
the above notation is more convenient than if we had written the system of equa-
tions (1) in the form:

W1 = 0, . . . , Wq = 0, p(s)i = Pi(x, z, p(1), . . . , p(s−1)) (i=1 ···εs).

Now, by hypothesis, our system of equations (1) has the property that by differ-
entiating it once with respect to the x, no new relation between the x, z, p(1), . . . ,
p(s−1) is produced. All relations between the x, z, p(1), . . . , p(s−1) which come out
by differentiating (1) once must therefore be a consequence of W1 = 0, . . . , Wq = 0.



§ 47. 189

Obviously, we find the relations in question by differentiating (1) with respect
to the n variables x1, . . . ,xn and afterwards, by taking away all differential quotients
of order (s+ 1), and by substituting all differential quotients of order s by means
of (1).

By differentiation of Wk = 0 and then by elimination of the differential quotients
of order s, we obtain the equations:

∂Wk

∂xν
+

m

∑
i=1

p(0)iν
∂Wk

∂ zi
+

ε1

∑
i=1

p(1)iν
∂Wk

∂ p(1)i

+ · · ·+

+
εs−2

∑
i=1

p(s−2)
iν

∂Wk

∂ p(s−2)
i

+
εs−1

∑
i=1

Piν
∂Wk

∂ p(s−1)
i

= 0

(k=1 ···q ; ν=1 ···n).

By the above, these equations are a consequence of W1 = 0, . . . , Wq = 0. In other
words: the system of equations W1 = 0, . . . , Wq = 0 in the variables x, z, p(1), . . . ,
p(s−1) admits the n infinitesimal transformations:

(2)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ων f =
∂ f
∂xν

+
m

∑
i=1

p(0)iν
∂ f
∂ zi

+ · · ·+

+
εs−2

∑
i=1

p(s−2)
iν

∂ f

∂ p(s−2)
i

+
εs−1

∑
i=1

Piν
∂ f

∂ p(s−1)
i

(ν=1 ···n)

in these variables (cf. Chap. 7, p. 124).
If on the other hand, one differentiates the equations p(s−1)

i j = Pi j with respect to
xν and then eliminates all differential quotients of order s, then one obtains:

∂
∂xν

p(s−1)
i j =

∂ 2

∂xν∂x j
p(s−1)

i =Ων(Pi j).

One still has to take away all the differential quotients of order (s+ 1) from these
equations. One easily realizes that only the following equations come out:

(3)
Ων(Pi j)−Ω j(Piν) = 0

(ν , j=1 ···n ; i=1 ···εs−1),

which likewise must therefore be a consequence of W1 = 0, . . . , Wq = 0.
With this, the properties of the system (1) demanded in the introduction are for-

mulated analytically.
Now, we imagine that an arbitrary system of solutions:

z1 = ϕ1(x1, . . . ,xn), . . . , zm = ϕm(x1, . . . ,xn)
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of the differential equations (1) is presented. By differentiating this system we obtain
that the p(1), . . . , p(s−1), p(s) are represented as functions of x1, . . . ,xn:

p(1)i1
= ϕ(1)

i1
(x1, . . . ,xn), . . . , p(s−1)

is−1
= ϕ(s−1)

is−1
(x1, . . . ,xn), p(s−1)

is−1,ν =
∂ϕ(s−1)

is−1

∂xν
(ik =1,2 ···εk ; ν=1 ···n),

and when we insert these expressions, and the expressions for z1, . . . ,zm, into the
equations (1), we naturally receive nothing but identities. From this, it follows that
the equations W1 = 0, . . . , Wq = 0 in their turn convert into identities after the sub-
stitution:

(4)
zμ = ϕμ(x1, . . . ,xn), p(1)i1

= ϕ(1)
i1

(x1, . . . ,xn), . . . , p(s−1)
is−1

= ϕ(s−1)
is−1

(x1, . . . ,xn)

(μ=1 ···m ; ik =1 ···εk) ;

clearly, we can also express this as follows: the system of equations (4) embraces
[UMFASST] the equations W1 = 0, . . . , Wq = 0.

Furthermore, we claim that the system of equations (4) admits the infinitesimal
transformations Ω1 f , . . . ,Ωn f discussed above.

Indeed, at first, all the expressions:

Ων(zμ −ϕμ) = p(0)μν − ∂ϕμ
∂xν

,

Ων(p(1)i1
−ϕ(1)

i1
) = p(1)i,ν − ∂ϕ(1)

i1

∂xν
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Ων
(

p(s−2)
is−2

−ϕ(s−2)
is−2

)

= p(s−2)
is−2ν −

∂ϕ(s−2)
is−2

∂xν

vanish by means of (4), since the equations (4) come from zμ −ϕμ = 0 by differen-
tiation with respect to x1, . . . ,xn. But the expressions:

Ων
(

p(s−1)
is−1

−ϕ(s−1)
is−1

)

= Pis−1ν −
∂ϕ(s−1)

is−1

∂xν

also vanish by means of (4), since the equations:

p(s−1)
is−1ν = Pis−1ν

are, as already said above, identically satisfied after the substitution:

zμ = ϕμ , p(1)i1
= ϕ(1)

i1
, . . . , p(s−1)

is−1
= ϕ(s−1)

is−1
, p(s−1)

is−1ν =
∂ϕ(s−1)

is−1

∂xν
.
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As a result, our claim stated above is proved.
Conversely, imagine now that we are given a system of equations of the form (4)

about which moreover we know neither whether it admits the infinitesimal transfor-
mations Ω1 f , . . . ,Ωn f , nor whether it embraces the equations W1 = 0, . . . , Wq = 0.

Clearly, the equations (4) in question are all created by differentiating the equa-
tions zμ = ϕμ with respect to x1, . . . ,xn. In addition, since under the given assump-
tions, the equations:

Ων
(

p(s−1)
is−1

−ϕ(s−1)
is−1

)

= Pis−1ν −
∂ϕ(s−1)

is−1

∂xν
= 0

are a consequence of (4) and likewise, of the equations W1 = 0, . . . , Wq = 0, then the
system of equations (1) will be identically satisfied when one executes the substi-

tution (4) in it, and then sets p(s−1)
iν = ∂ϕ(s−1)

i
∂xν

. Consequently, the equations zμ = ϕμ
represent a system of solutions for the differential equations (1).

From this, we see: every solution zμ = ϕμ of the differential equations (1) pro-
vides a completely determined system of equations of the form (4) which admits
the infinitesimal transformations Ω1 f , . . . ,Ωn f and which embraces the equations
W1 = 0, . . . , Wq = 0; conversely, every system of equations of the form (4) which
possesses the properties just indicated provides a completely determined system
of solutions for the differential equations (1). Consequently, the problem of deter-
mining all systems of solutions of the differential equations (1) is equivalent to the
problem of determining all systems of equations of the form (4) which admit the in-
finitesimal transformations Ω1 f , . . . ,Ωn f and which in addition embrace the equa-
tions W1 = 0, . . . , Wq = 0. If one knows the most general solution for one of these
two problems, then at the same time, the most general solution of the other system
is given.

But we can solve this new problem on the basis of the developments of Chap. 7,
p. 133 sq.

According to Chap. 7, Proposition 5, p. 134, every sought system of equations
also admits, simultaneously with Ω1 f , . . . ,Ωn f , all infinitesimal transformations of
the form Ων

(

Ω j( f )
)−Ω j

(

Ων( f )
)

. By computation, one verifies that:

Ων
(

Ω j( f )
)−Ω j

(

Ων( f )
)

=
εs−1

∑
i=1

{

Ων(Pi j)−Ω j(Piν)
} ∂ f

∂ p(s−1)
i

(ν , j=1 ···n),

since the expressions:

Ων(p(k)i j )−Ω j(p(k)iν )

all vanish identically, as long as k is smaller than s−1. But now, we have seen above
that the equations (3):

Ων(Pi j)−Ω j(Piν) = 0

are a consequence of W1 = 0, . . . , Wq = 0. Consequently, for the systems of values
x, z, p(1), . . . , p(s−1) of the system of equations W1 = 0, . . . , Wq = 0, there exist
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relations of the form:

Ων
(

Ω j( f )
)−Ω j

(

Ων( f )
)

=
n

∑
τ=1

ων jτ
(

x, z, p(1), . . . , p(s−1)) ·Ωτ f (ν , j=1 ···n),

where the functions ων jτ are all equal to zero and behave regularly for the systems
of values of W1 = 0, . . . , Wq = 0.

In addition, it is still to be underlined that amongst the n×n determinants of the
matrix: ∣

∣
∣
∣
∣
∣
∣

1 0 · · · 0 p(0)11 · · · p(s−2)
εs−2,1

P11 · · · Pεs−1,1

· · · · · · · · · · · · · · · ·
0 0 · · · 1 p(0)1n · · · p(s−2)

εs−2,n P1n · · · Pεs−1,n

∣
∣
∣
∣
∣
∣
∣

,

one has the value 1, and thus it cannot be brought to zero for any of the sought
systems of equations.

From this, we see that we have in front of us the special case that is handled
by Theorem 19 in Chap. 7, p. 146. With the help of this theorem, we can actually
set up all systems of equations which admit Ω1 f , . . . ,Ωn f and which embrace the
equations W1 = 0, . . . , Wq = 0. There is no difficulty in identifying such systems of
equations which can be given the form (4).

From one system of equations which admits the infinitesimal transformations
Ω1 f , . . . ,Ωn f , one can never derive a relation between the variables x1, . . . ,xn. This
follows from the mentioned theorem and can also easily be seen directly. As a result,
it is possible to solve the equations W1 = 0, . . . , Wq = 0 with respect to q, amongst
ε0 + ε1 + · · ·+ εs−1, of the quantities z, p(1), . . . , p(s−1). When we do that, we re-
ceive q of the ∑εk variables z, p(1), . . . , p(s−1) expressed by means of the ∑εk − q
remaining variables and by means of x1, . . . ,xn.

Thanks to these preparations, we can form the reduced infinitesimal transforma-
tions that are considered in the mentioned theorem. We obtain them when we leave
out all differential quotients of f with respect to the q considered variables amongst
z, p(1), . . . , p(s−1) and afterwards, by substituting, in the remaining terms, each one
of the q variables with its expression by means of the ∑εk − q remaining variables
and the x.

The n reduced infinitesimal transformations so obtained, which we can denote
by Ω 1 f , . . . ,Ω n f , contain n − q+∑ εk independent variables and in addition stand
pairwise in the relationships:

Ων
(

Ω j( f )
)−Ω j

(

Ων( f )
) ≡ 0 (ν , j=1 ···n),

according to the mentioned theorem.
Consequently, the n mutually independent equations Ω 1 f = 0, . . . , Ω n f = 0

form an n-term complete system with the ∑ εk − q independent solutions: u1, u2,
. . . , u∑εk−q. If these solutions are determined, then one can indicate all systems of
equations which admit the infinitesimal transformations Ω1 f , . . . ,Ωn f and which
embrace the equations W1 = 0, . . . ,Wq = 0. The general form of a system of this
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kind is: W1 = 0, . . . , Wq = 0 together with arbitrary relations between the ∑ εk − q
solutions u.

However now, the matter is not about all systems of equations of this kind, but
only about those which can be brought to the form (4). Every system of equations
of this constitution contains exactly ∑ εk equations, hence can be given the form:

(5) W1 = 0, . . . , Wq = 0, u1 = a1, . . . , u∑εk−q = a∑εk−q,

where the a denotes constants. But every system of the form just indicated can be
solved with respect to the ∑ εk variables z, p(1), . . . , p(s−1), since it admits the in-
finitesimal transformations Ω1 f , . . . , Ωn f . If we perform the resolution in question,
we then obtain a system of equations:

(5’)

zμ = Zμ(x1, . . . ,xn, a1,a2, . . .), p(1)i1
=Π (1)

i1
(x1, . . . ,xn, a1,a2, . . .),

· · · p(s−1)
is−1

=Πis−1(x1, . . . ,xn, a1,a2, . . .)

(μ=1 ···m ; ik =1 ···εk)

which satisfies all the stated requirements: it admits the infinitesimal transforma-
tions Ω1 f , . . . ,Ωn f , it embraces the equations W1 = 0, . . . , Wq = 0, and it is of the
form (4). At present, when we consider the ∑ εk − q constants a as arbitrary con-
stants, we therefore obviously have the most general system of equations of the
demanded constitution.

From this, it follows that according to what has been said, the equations:

(6) zμ = Zμ(x1, . . . ,xn, a1,a2, . . .) (μ=1 ···m)

represent a system of solutions for the differential equations (1) and in fact, the
most general system of solutions. We now claim that in this system of solutions, the
∑ εk −q arbitrary constants a are all essential.

To prove our claim, we recall that the equations (5’) can be obtained from the
equations zμ = Zμ by differentiation with respect to x1, . . . ,xn, provided that the
p(1), p(2), . . . are again interpreted as differential quotients of the z with respect to
the x. Now, if the ∑ εk −q parameters a in the equations (6) were not essential, then
the number of parameters could be lowered by introducing appropriate functions of
them. But with this, according to the preceding, the number of parameters in the
equations (5’) would at the same time be lowered, and this is impossible, since the
equations (5’) can be brought to the form (5), from which it follows immediately that
the parameters a in (5’) are all essential. This is a contradiction, so the assumption
made a short while ago is false and the parameters a in the equations (6) are all
essential.

We can hence state the following proposition.

Proposition 1. If a system of partial differential equations of order s of the form:

Fσ

(

x1, . . . ,xn, z1, . . . ,zm,
∂ z1

∂x1
, . . . ,

∂ 2z1

∂x2
1

, . . . ,
∂ szm

∂xs
n

)

= 0 (σ=1,2, ···)
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possesses the property that all differential quotients of order s of the z with respect
to the x can be expressed by means of the differential quotients of lower order, by
means of z1, . . . ,zm and by means of x1, . . . ,xn, while the corresponding property
does not hold in any case for the differential quotients of order (s − 1), and if in
addition, by differentiating it once with respect to the x, the system produces only
relations between x1, . . . ,xn, z1, . . . ,zn and the differential quotients of the first order
up to the (s−1)-th which follow from the system itself, then the most general system
of solutions:

zμ = ϕμ(x1, . . . ,xn) (μ=1 ···m)

of the concerned system of differential equations contains only a finite number of ar-
bitrary constants. The number of these arbitrary constants is equal to ε0+ε1+ · · ·+
εs−1 −q, where εk denotes the number of differential quotients of order k of z1, . . . ,zm

with respect to x1, . . . ,xn and where q is the number of independent relations which
the system in question yields between x1, . . . ,xn, z1, . . . ,zn and the differential quo-
tients up to order (s − 1). One finds the most general system of solutions zμ = ϕμ
itself by integrating an n-term complete system in n−q+ε0+ · · ·+εs−1 independent
variables.

For the proof of the above proposition, we imagined the equations W1 = 0, . . . ,
Wq = 0 solved with respect to q of the quantities z, p(1), . . . , p(s−1). In principle, it
is completely indifferent with respect to which amongst these quantities the equa-
tions are solved; but now, since the equations W1 = 0, . . . , Wq = 0 are differential
equations and since the p(1), p(2), . . . denote differential quotients, it is advisable to
undertake the concerned resolution in a specific way, which we now explain.

At first, we eliminate all differential quotients p(1), p(2), . . . , p(s−1) from the
equations W1 = 0, . . . , Wq = 0; then we obtain, say, ν0 independent equations be-
tween the x and z alone, and so we can represent ν0 of the z as functions of the
ε0 −ν0 = m−ν0 remaining ones, and of the x.

We insert the expressions for these ν0 quantities z in the equations W1 = 0, . . . ,
Wq = 0, which now reduce to q − ν0 mutually independent equations. Afterwards,
from these q−ν0 equations, we remove all the differential quotients p(2), . . . , p(s−1)

and we obtain, say ν1 mutually independent equations by means of which we can
express ν1 of the quantities p(1) in terms of the ε1 −ν1 remaining ones, in terms of
the ε0 −ν0 of the z and in terms of x1, . . . ,xn.

If we continue in the described way, then at the end, the system of equations
W1 = 0, . . . , Wq = 0 will be resolved, and to be precise, it will be resolved with
respect to νk amongst the εk differential quotients p(k), where it is understood that k
is any of the numbers 0, 1, 2, . . . , s−1. Here, the concerned νk amongst the p(k) are
each time expressed in terms of the εk − νk remaining ones, in terms of certain of
the differential quotients: p(k−1), . . . , p(1), p(0), and in terms of the x. Naturally, the
sum ν0 +ν1 + · · ·+νs−1 has the value q. Lastly, it can be shown that νk is always
smaller than εk. Indeed at first, νs−1 is certainly smaller than εs−1, because we have
assumed that in our system of differential equations, not all differential quotients of
order (s − 1) can be expressed in terms of those of lower order, and in terms of the
x. But if any other numbers νk were equal to εk, we would have:
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p(k)i = Fi(x, z, p(1), . . . , p(k−1)) (i=1,2 ···εk) ;

now, since the system of equations W1 = 0, . . . , Wq = 0 admits the infinitesimal
transformations Ω1 f , . . . ,Ωn f , then all systems of equations:

p(k)iν =Ων(Fi) (i=1 ···εk ; ν=1 ···n)

would be consequences of W1 = 0, . . . , Wq = 0, so one would also have νk+1 = εk+1

and in the same way νk+2 = εk+2, . . . , νs−1 = εs−1, and this is impossible according
to what has been said.

Once we have resolved the equations W1 = 0, . . . , Wq = 0, then with this at the
same time, the system of differential equations (1) is resolved in a completely de-
termined way, namely with respect to νk of the εk differential quotients of order k,
where it is understood that k is any of the numbers 0, 1, 2, . . . , s. At each time, the
νk differential quotients of order k are expressed in terms of the εk −νk remaining
ones of order k, in terms of those of lower order, and in terms of the x.

If one knows all the numbers εk and νk, then one can immediately indicate the
number of arbitrary constants in the most general system of solutions of the dif-
ferential equations (1). Indeed, according to the above proposition, this number is
equal to:

ε0 + ε1 + · · ·+ εs−1 −q = (ε0 −ν0)+(ε1 −ν1)+ · · ·+(εs−1 −νs−1).

§ 48. Conversely, consider a system of equations of the form:

(7)
zμ = Zμ(x1, . . . ,xn, a1, . . . ,ar)

(μ=1 ···m),

in which x1, . . . ,xn are interpreted as independent variables, and a1, . . . ,ar as ar-
bitrary parameters. The r parameters a1, . . . ,ar whose number is finite can all be
assumed to be essential.

We will prove that there is a system of partial differential equations which is free
of a1, . . . ,ar whose most general solution is represented by the equations (7).

By differentiating the equations (7) with respect to x1, . . . ,xn, we obtain the equa-
tions of the form:

(71) p(1)i = Z(1)
i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···ε1)

(72) p(2)i = Z(2)
i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···ε2),

and so on.
Now, by means of the equations (7), a certain number, say ν0, of the a can be

expressed in terms of the r − μ0 remaining ones, and in terms of the x and the z.
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By taking the equations (7) and (71) together, we can express μ0 + μ1 of the a in
terms of the r − μ0 − μ1 remaining ones, in terms of the p(1), the z and the x. In
general, if we take the equations (7), (71), . . . , (7k) together, we can then express
μ0 + μ1 + · · ·+ μk of the quantities a in terms of the r − μ0 − ·· · − μk remaining
ones and in terms of the p(k), p(k−1), . . . , p(1), z, x. Here, μ0, μ1, . . . are entirely
determined positive whole numbers.

Naturally, the sum μ0+μ1+ · · ·+μk is at most equal to r; furthermore, the num-
ber μ0 is in any case different from zero, because we can assume that r is bigger
than zero. Consequently, there must exist a whole number s � 1 having the property
that μ0, μ1, . . . , μs−1 are all different from zero, but the number μs vanishes. Then
if the said quantities amongst a1, . . . ,ar are determined from the equations (7), (71),
. . . , (7s−1) and if their values are inserted into the equations (7s), then one obtains
only equations which are free of a1, . . . ,ar; because in the contrary case, one could
determine more than μ0 + · · ·+μs−1 of the quantities a from the equations (7), (71),
. . . , (7s), so one would have μs > 0, which is not the case according to the above.

As a result, by eliminating a1, . . . ,ar from the equations (7), (71), . . . , (7s), we
obtain the following equations:

Firstly, εs equations which express all the εs differential quotients p(s) in terms
of the p(s−1), . . . , p(1), z, x, and:

Secondly: ε0 −μ0+ε1 −μ1+ · · ·+εs−1 −μs−1 mutually independent equations
between the x, z, p(1), . . . , p(s−1).

It is easy to see that the so obtained system of differential equations of order s
possesses all properties which were ascribed in Proposition 1, p. 193, to the differ-
ential equations Fσ

(

x, z, ∂ z
∂x , . . .

)

.
Indeed, all εs differential quotients of order s are functions of the differential

quotients of lower order, and of the x; however, the corresponding property does not
hold true for the differential quotients of order (s − 1), because the number μs−1

discussed above is indeed different from zero. Lastly, by differentiation with respect
to the x and by combination of the obtained equations, we obtain only relations
between the x, z, p(1), . . . , p(s−1) which follow from the above-mentioned relations.
Indeed, the equations (7), (71), . . . , (7s−1) and the ones which follow from them
are the only finite relations through which the quantities a1, . . . ,ar, x, z, p(1), . . . ,
p(s−1) are linked; hence when we eliminate the a, we obtain the only finite relations
which exist between the x, z, p(1), . . . , p(s−1), namely the ε0 −μ0+ · · ·+εs−1 −μs−1

relations mentioned above.
Proposition 1, p. 193, can therefore easily be applied to our system of differential

equations of order s. The numbers νk defined at that time are equal to εk − μk, and
hence in the present case the number q has the value:

ε0 −μ0 + · · ·+ εs−1 −μs−1,

and therefore the most general system of solutions of our differential equations con-
tains precisely μ0+μ1+ · · ·+μs−1 arbitrary constants. Now, since on the other hand
the equations (7) also represent a system of solutions for our differential equations,
and a system with the r essential parameters a1, . . . ,ar as arbitrary constants, it fol-
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lows that the number μ0 + · · ·+μs−1, which is at most equal to r, must be precisely
equal to r. In other words: the equations (7) represent the most general system of
solutions of our differential equations.

As a result, we have the

Proposition 2. If z1, . . . ,zm are given functions of the variables x1, . . . ,xn and of a
finite number of parameters a1, . . . ,ar:

zμ = Zμ(x1, . . . ,xn, a1, . . . ,ar) (μ=1 ···m),

then there always exists an integrable system of partial differential equations which
determines the z as functions of the x, and whose most general solutions are repre-
sented by the equations zμ = Zμ(x, a).

If we compare this proposition with Proposition 1, p. 193, we immediately obtain
the

Proposition 3. If an integrable system of partial differential equations:

Fσ

(

x1, . . . ,xn, z1, . . . ,zm,
∂ z1

∂x1
, . . . ,

∂ 2z1

∂x2
1

, . . .

)

= 0 (σ=1,2 ···)

is constituted in such a way that its most general solutions depend only on a finite
number of arbitrary constants, then by means of differentiation and of elimination,
it can always be brought to a form which possesses the following two properties:
firstly, all differential quotients of a certain order, say s, can be expressed in terms of
those of lower order, and in terms of z1, . . . ,zm, x1, . . . ,xn, whereas the corresponding
property does not, in any case, hold true for all differential quotients of order (s −
1). Secondly, by differentiating once with respect to the x, we only obtain relations
between the x, z and the differential quotients of orders 1 up to (s−1) which follow
from the already extant equations.

Furthermore, the developments of the present section provide a simple method
for answering the question of how many parameters a1, . . . ,ar are essential amongst
the ones of a given system of equations:

zμ = Zμ(x1, . . . ,xn, a1, . . . ,ar) (μ=1 ···m).

Indeed, in order to be able to answer this question, we only need to compute the
whole numbers μ0, μ1, . . . , μs−1 defined above; the sum μ0 + μ1 + · · ·+ μs−1 then
identifies the number of essential parameters amongst a1, . . . ,ar, because the equa-
tions zμ = Zμ(x,a) represent the most general solutions of a system of differential
equations the most general solutions of which, according to the above developments,
contain precisely μ0 + · · ·+μs−1 essential parameters.

—————–



Chapter 11
The Defining Equations
for the Infinitesimal Transformations of a Group

In Chap. 9, we have reduced the finding of all r-term groups to the determination
of all systems of r independent infinitesimal transformations X1 f , . . . ,Xr f which
satisfy relations of the form:

XiXk f −XkXi f = [Xi, Xk] =
r

∑
s=1

ciks Xs f ,

with certain constants ciks. Only later will we find means of treating this reduced
problem; temporarily, we must restrict ourselves to admitting systems X1 f , . . . ,Xr f
of the concerned nature and to studying their properties.

In the present chapter we begin with an application of the developments of the
preceding chapter; from this chapter, we conclude that the general infinitesimal
transformation:

e1 X1 f + · · ·+ er Xr f

of a given r-term group X1 f , . . . ,Xr f can be defined by means of certain linear partial
differential equations, which we call the defining equations of the group. From that,
further conclusions will then be drawn.1

§ 49. Consider r infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

which generate an r-term group. Then the general infinitesimal transformation of
this group has the form:

1 LIE, Archiv for Mathematik og Naturvidenskab Vol. 3, Christiania 1878 and Vol. 8, 1883;
Gesellschaft der Wissenschaften zu Christiania 1883, No. 12.
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n

∑
i=1
ξi
∂ f
∂xi

=
n

∑
i=1

r

∑
k=1

ek ξki
∂ f
∂xi

,

where the ek denote arbitrary constants. For the ξi, we obtain from this the expres-
sions:

(1) ξi =
r

∑
k=1

ek ξki(x) (i=1 ···n),

in which the ξki(x) are given functions of x1, . . . ,xn.
Now, according to Proposition 2 of the preceding chapter, the expressions

ξ1, . . . ,ξn just written are the most general system of solutions of a certain system
of partial differential equations which is free of the arbitrary constants e1, . . . ,er.
In order to set up this system, we proceed as in the introduction to § 48; we
differentiate the equations (1) with respect to every variable x1, . . . ,xn, next we
differentiate in the same way the obtained equations with respect to x1, . . . ,xn,
and so on. Then when we have computed all differential quotients of the ξ up to
a certain order (considered in more detail in § 48), we take away from the found
equations the arbitrary constants e1, . . . ,er and we obtain in this way the desired
system of differential equations, the most general solutions of which are just the
expressions ξ1, . . . ,ξn.

We can always arrange that all equations of the discussed system in the ξi and in
their differential quotients are linear homogeneous; indeed, from any two systems
of solutions:

ξkν , ξ jν (ν=1 ···n),

one can always derive another system of solutions ekξkν + e jξ jν of the concerned
differential equations with two arbitrary constants ek and e j.

The system of differential equations which define ξ1, . . . ,ξn therefore has the
form:

n

∑
ν=1

Aμν(x1, . . . ,xn)ξν +
1···n
∑
ν , π

Bμνπ(x1, . . . ,xn)
∂ξν
∂xπ

+ · · · = 0,

where the A, B, . . . , are free of the arbitrary constants e1, . . . ,er.
We briefly [KURTZWEG] call these differential equations the defining equations

of the group, since they completely define the totality of all infinitesimal transforma-
tions of this group and therefore, they define the group itself.

What has been said can now be illustrated precisely by means of a couple of
examples.

In the general infinitesimal transformation:

ξ1
∂ f
∂x1

+ξ2
∂ f
∂x2

of the six-term linear group:
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x′
1 = a1 x1 +a2 x2 +a3

x′
2 = a4 x1 +a5 x2 +a6,

ξ1 and ξ2 have the form:

ξ1 = e1 + e2 x1 + e3 x2, ξ2 = e4 + e5 x1 + e6 x2.

From this, we find that the defining equations of the group are the following:

∂ 2ξ1

∂x2
1

= 0,
∂ 2ξ1

∂x1∂x2
= 0,

∂ 2ξ1

∂x2
2

= 0,

∂ 2ξ2

∂x2
1

= 0,
∂ 2ξ2

∂x1∂x2
= 0,

∂ 2ξ2

∂x2
2

= 0.

The known eight-term group:

x′
1 =

a1 x1 +a2 x2 +a3

a7 x1 +a8 x2 +1
, x′

2 =
a4 x1 +a5 x2 +a6

a7 x1 +a8 x2 +1

of all projective transformations of the plane serves as a second example. Its general
infinitesimal transformation:

ξ1 = e1 + e2 x1 + e3 x2 + e7 x2
1 + e8 x1x2

ξ2 = e4 + e5 x1 + e6 x1 + e7 x1x2 + e8 x2
2

will be defined by means of relations between the differential quotients of second
order of the ξ , namely by means of:

∂ 2ξ1

∂x2
1

−2
∂ 2ξ2

∂x1∂x2
= 0,

∂ 2ξ2

∂x2
2

−2
∂ 2ξ1

∂x1∂x2
= 0,

∂ 2ξ1

∂x2
2

= 0,
∂ 2ξ2

∂x2
1

= 0.

By renewed differentiation, one finds that all third-order differential quotients of ξ1

and of ξ2 vanish.
§ 50. Conversely, when does a system of linear homogeneous differential equa-

tions:
n

∑
ν=1

Aμν(x)ξν +
1···n
∑
ν , π

Bμνπ(x)
∂ξν
∂xπ

+ · · · = 0 (μ=1,2 ···)

define the general infinitesimal transformation of a finite continuous group?
Naturally, the first condition is that the most general solutions ξ1, . . . ,ξn of the

system depend only on a finite number of arbitrary constants. Let this condition be
fulfilled. Then according to Proposition 3, p. 197, of the preceding chapter, it is
always possible, by differentiation and elimination, to bring the system to a certain
specific form in which all differential quotients of the highest, say the s-th, order can
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be expressed in terms of those of lower order, and in terms of x1, . . . ,xn, whereas the
corresponding property does not, in any case, hold true for all differential quotients
of order (s − 1); in addition, differentiating once with respect to the x produces
no new relation between x1, . . . ,xn, ξ1, . . . ,ξn and the differential quotients of first
order up to the (s−1)-th. We assume that the system is of this form and we imagine
that it has been solved in the way indicated on p. 194; then for k = 0,1, . . . ,s, we
obtain at each time that a certain number of differential quotients, say νk, amongst
the εk of the k-th order differential quotients of the ξ , are represented as linear
homogeneous functions of the remaining differential quotients of k-th order, and of
certain differential quotients of (k − 1)-th, . . . , first, zeroth order, with coefficients
which depend only upon x1, . . . ,xn, where νs = εs, but else, νk is always smaller than
εk.

As was shown in the preceding chapter, p. 195, under the assumptions made, the
most general system of solutions ξ1, . . . ,ξn of our differential equations comprises
precisely:

(ε0 −ν0)+(ε1 −ν1)+ · · ·+(εs−1 −νs−1) = r

arbitrary constants; this most general system of solutions can be deduced from r
particular systems of solutions ξ1i, . . . ,ξri with the help of r constants of integration
as follows:

ξi =
r

∑
k=1

ek ξki (i=1 ···n),

and here, the particular systems of solutions in question must only be such that the
r expressions:

n

∑
i=1
ξ1i
∂ f
∂xi

, . . . ,
n

∑
i=1
ξri
∂ f
∂xi

represent as many independent infinitesimal transformations.
Now according to Theorem 24, p. 172, for ξ1

∂ f
∂x1

+ · · ·+ξn
∂ f
∂xn

to be the general
infinitesimal transformation of an r-term group, a certain condition is necessary and
sufficient, namely: when ξk1, . . . ,ξkn and ξ j1, . . . ,ξ jn are two particular systems of
solutions, then the expression:

n

∑
ν=1

(

ξkν
∂ξ ji

∂xν
−ξ jν

∂ξki

∂xν

)

(i=1 ···n)

must always represent a system of solutions. As a result, we have the

Theorem 28. If ξ1, . . . ,ξn, as functions of x1, . . . ,xn, are determined by certain lin-
ear and homogeneous partial differential equations:

n

∑
ν=1

Aμν(x)ξν +
1···n
∑
ν , π

Bμνπ(x)
∂ξν
∂xπ

+ · · · = 0 (μ=1,2 ···),

then the expression ξ1
∂ f
∂x1

+ · · ·+ξn
∂ f
∂xn

represents the general infinitesimal transfor-
mation of a finite continuous group if and only if: firstly the most general system of
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solutions of these differential equations depends only on a finite number of arbitrary
constants, and secondly from any two particular systems of solutions ξk1, . . . ,ξkn

and ξ j1, . . . ,ξ jn, by the formation of the expression:

n

∑
ν=1

(

ξkν
∂ξ ji

∂xν
−ξ jν

∂ξki

∂xν

)

(i=1 ···n),

one always obtains a new system of solutions.

If ξ1
∂ f
∂x1

+ · · ·+ξn
∂ f
∂xn

really is the general infinitesimal transformation of a finite
group, then naturally, the above differential equations are the defining equations of
this group.

If the defining equations of a finite group are given, the numbers ν0, ν1, . . . , νs−1

discussed earlier on can be determined by differentiation and by elimination; the
number:

r = (ε0 −ν0)+(ε1 −ν1)+ · · ·+(εs−1 −νs−1)

indicates how many parameters the group contains.
In the first one of the two former examples, one has:

s = 2, ν0 = 0, ν1 = 0, ε0 = 2, ε1 = 4,

and therefore r = 6. In the second example, one has:

s = 3, ν0 = 0, ν1 = 0, ν2 = 4, ε0 = 2, ε1 = 4, ε2 = 6,

whence r = 8.
§ 51. Now, let again:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

be independent infinitesimal transformations of an r-term group. We imagine that
the defining equations of this group are set up and are brought to the form discussed
above, hence resolved with respect to νk of the εk differential quotients of order k of
the ξ (k = 0,1, . . . ,s); here, as said earlier on, νk is always < εk, except in the case
k = s, in which νs = εs.

The coefficients in the resolved defining equations are visibly rational functions
of the ξ together with their differential quotients of first order, up to th s-th. Now,
since as a matter of principle (cf. p. 187), we restrict ourselves to systems of values
x1, . . . ,xn for which all ξki behave regularly, then the coefficients will in general
also behave regularly for the systems of values x1, . . . ,xn coming into consideration,
but obviously only in general: there can well exist points x1, . . . ,xn in which all
ξki indeed behave regularly, but in which not all coefficients of the solved defining
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equations do so. In what follows, one must always take heed of this distinction
between the different points x1, . . . ,xn.

Let x0
1, . . . ,x

0
n be a point for which all coefficients in the solved defining equa-

tions behave regularly; then ξ1, . . . ,ξn are, in a certain neighborhood of x0
1, . . . ,x

0
n,

ordinary power series with respect to the xk − x0
k :

ξi = g0
i +

n

∑
ν=1

g′
iν (xν − x0

ν)+
1···n
∑
ν , π

g′′
iνπ (xν − x0

ν)(xπ − x0
π)+ · · · ,

where, always, the terms of the same order are thought to be combined together.
Here, the coefficients g0, g′, . . . must be determined in such a way that the given
differential equations are identically satisfied after insertion of the power series ex-
pansions for ξ1, . . . ,ξn.

If we now remember that our group is r-term, then we immediately realize that on
the whole, r of the coefficients g0, g′, . . . remain undetermined, hence that certain
amongst the initial values which the ξ and its differential quotients take for x1 = x0

1,
. . . , xn = x0

n, can be chosen arbitrarily. Now, since our differential equations show
that all differential quotients of order s and of higher order can be expressed in terms
of the differential quotients of orders zero up to (s−1), and in terms of x1, . . . ,xn, it
follows that exactly r amongst the initial values g0, g′, g′′, . . . , g(s−1) can be chosen
arbitrarily, or, what amounts to the same: the ε0 + ε1 + · · ·+ εs−1 mentioned initial
values must be linked together by certain ∑ εk −r independent relations. At present,
we want to set up these relations.

Our system of differential equations produces all relations which exist, at an
arbitrary x, between the ξ and their differential quotients of first order up to the (s−
1)-th. Hence, when we make the substitution xi = x0

i in our differential equations, we
obtain certain relationships by which the initial values g0, g′, . . . , g(s−1) are linked
together. In this manner, we obtain ν0 linear homogeneous relations between the
g0 alone, furthermore ν1 relations between the g′ and certain g0, and in general νk

relations between the g(k) and certain g(k−1), . . . , g′, g0. The relations in question
are resolved, and to be precise, they are resolved with respect to ν0 of the g0, with
respect to ν1 of the g′, and so on, and in total, there are ∑ νk =∑ εk − r independent
relations. Now, since according to what has been said, there do not exist more than
∑ εk − r independent relations between g0, g′, . . . , g(s−1), we have therefore found
all relations by means of which these ∑ εk initial values are linked together; at the
same time, we obtain ν0 + · · ·+ νs−1 of the quantities g0, . . . ,gs−1 represented as
linear homogeneous functions of the ∑(εk − νk) = r remaining ones, which stay
entirely arbitrary.

We use the preceding observations in order to draw conclusions from them about
the constitution of a particular system of solutions to our differential equations.

At first, it can be shown that there does not exist a particular system of solutions
ξ1, . . . ,ξn whose power series expansion with respect to the xi −x0

i begins with terms
of order s or yet higher order. Indeed, in the power series expansion of such a system
of solutions, the coefficients g0, g′, . . . , g(s−1) would all be equal to zero, so all g(s),



§ 51. 205

g(s+1), . . . would also vanish and the system of solutions would therefore reduce to:
ξ1 = 0, . . . , ξn = 0. This system of solutions certainly satisfies the given differential
equations, but alone it does not deliver an infinitesimal transformation of our group,
and is therefore useless.

However, there is a certain number of particular systems of solutions ξ1, . . . ,ξn

whose power series expansions begin with terms of order lower than the s-th, let us
say with terms of k-th order. The coefficients g0, g′, . . . , g(k−1) can then all be chosen
equal to zero; so the existing relations between these are all satisfied, and there
remains only νk relations between the g(k), νk+1 relations between the g(k+1) and
certain g(k), . . . , and lastly, νs−1 relations between the g(s−1) and certain g(s−2), . . . ,
g(k). As a result, there are in sum still (εk −νk)+ · · ·+(εs−1 −νs−1) of the constants
g(k), . . . , g(s−1) which can be chosen arbitrarily, and when one disposes of these
constants in such a way that not all the εk quantities g(k) vanish, then one always
obtains a particular system of solutions ξ1, . . . ,ξn whose power series expansions
with respect to the xi − x0

i contain terms of the k-th order, but no terms of lower
order.

If ξ1, . . . ,ξn is a particular system of solutions of our differential equations, then
the infinitesimal transformation:

ξ1
∂ f
∂x1

+ · · ·+ξn
∂ f
∂xn

belongs to our group. From what has been said above, it follows that this group
always contains infinitesimal transformations whose power series expansion with
respect to the xi − x0

i begins with terms of order k, only as soon as k is one of the
numbers 0, 1, 2, . . . , s−1. By contrast, there are no infinitesimal transformations in
the group whose power series expansions begin with terms of order s or of higher
order. Naturally, all of this is proved only under the assumption that the coefficients
of the resolved differential equations behave regularly at the point x0

1, . . . ,x
0
n.

In order to meet, at least to some extent, the requirements for conciseness of the
expression, we henceforth want to say: an infinitesimal transformation is of the k-th
order in the xi −x0

i when its power series expansion with respect to the xi −x0
i begins

with terms of order k. Then we can enunciate the preceding result as follows:
If x0

1, . . . ,x
0
n is a point for which the coefficients in the resolved defining equations

of the group X1 f , . . . ,Xr f behave regularly, then the group contains certain infinites-
imal transformations of zeroth order in the xi − x0

i , certain of the first order, and in
general, certain of the k-th order, where k means one arbitrary number amongst 0,
1, . . . , s−1; by contrast, the group contains no infinitesimal transformation of order
s or of higher order in the xi − x0

i .
It is clear that two infinitesimal transformations of different orders in the xi − x0

i
are always independent of each other. Actually, when determining whether several
given infinitesimal transformations are independent of each other or not, the consid-
eration of the terms of lowest order in their power series expansions already settles
the question many times; indeed, if the terms of lowest order, taken for themselves,
determine independent infinitesimal transformations, then the given infinitesimal
transformations are also independent of each other.
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The general expression of an infinitesimal transformation which belongs to our
group and which is of order k with respect to the xi − x0

i contains, as we know,
(εk − νk) + · · ·+ (εs−1 − νs−1) = ρk arbitrary and essential constants, namely the
εk − νk which can be chosen arbitrarily amongst the g(k), the εk+1 − νk+1 arbitrar-
ily amongst the g(k+1), and so on; however here, the arbitrariness of these εk − νk

quantities g(k) is restricted inasmuch as not all g(k) are allowed to vanish simultane-
ously. From this, it follows that ρk independent infinitesimal transformations of our
group can be exhibited which are of order k in the xi − x0

i ; but it is easy to see that
from these ρk infinitesimal transformations, one can derive in total ρk+1 independent
transformations which are of the (k+1)-th order, or yet of higher order. The general
expression of an infinitesimal transformation which is linearly deduced from these
ρk transformations indeed contains exactly the same arbitrary constants as the gen-
eral expression of an infinitesimal transformation of order k in the xi − x0

i , with the
only difference that in the first expression, all the εk − νk available g(k) can be set
equal to zero, which always gives an infinitesimal transformation of order (k+ 1)
or of higher order. Consequently, amongst these ρk infinitesimal transformations of
order k, there are only ρk+1 −ρk = εk −νk which are independent of each other and
out of which no infinitesimal transformation of (k+ 1)-th order or of higher order
in the xi − x0

i can be linearly deduced.
We recapitulate the present result in the

Theorem 29. To every r-term group X1 f , . . . ,Xr f in n variables x1, . . . ,xn is asso-
ciated a completely determined whole number s � 1 of such a nature that, in the
neighborhood of a point x0

i for which the coefficients of the resolved defining equa-
tions behave regularly, the group contains certain infinitesimal transformations of
zeroth, of first, . . . , of (s−1)-th order in the xi −x0

i , but none of s-th or of higher or-
der. In particular, one can always select r independent infinitesimal transformations
of the group such that, for each one of the s values 0, 1, . . . , s − 1 of the number
k, exactly εk − νk mutually independent infinitesimal transformations of order k in
the xi − x0

i are extant out of which no infinitesimal transformation of order (k+ 1)
or of higher order can be linearly deduced. At the same time, the number νk can be
determined from the defining equations for the general infinitesimal transformation
ξ1

∂ f
∂x1

+ · · ·+ξn
∂ f
∂xn

of the group, and from εk, which denotes the number of all dif-
ferential quotients of order k of the ξ1, . . . ,ξn with respect to x1, . . . ,xn and is always
larger than νk.

Example. Earlier on, we have already mentioned the equations:

∂ 2ξ1

∂x2
1

=
∂ 2ξ1

∂x1∂x2
=
∂ 2ξ1

∂x2
2

=
∂ 2ξ2

∂x2
1

=
∂ 2ξ2

∂x1∂x2
=
∂ 2ξ2

∂x2
2

= 0

as the defining equations of the six-term linear group:

x′
1 = a1 x1 +a2 x2 +a3, x′

2 = a4 x1 +a5 x2 +a6.

These defining equations have already been presented in the resolved form; all
the appearing coefficients are equal to zero, hence they behave regularly. Amongst
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the infinitesimal transformations of the group, we can select the following six mu-
tually independent ones:

∂ f
∂x1

,
∂ f
∂x2

, (x1 − x0
1)
∂ f
∂x1

, (x2 − x0
2)
∂ f
∂x1

, (x1 − x0
1)
∂ f
∂x2

, (x2 − x0
2)
∂ f
∂x2

;

the first two of them are of zeroth order, and the last four are of first order in the
xi − x0

i .

For calculations with infinitesimal transformations, the expressions of the form:

X
(

Y ( f )
)−Y

(

X( f )
)

= [X , Y ]

play an important rôle. So if X f and Y f are expanded in the neighborhood of the
point x0

i with respect to powers of xi − x0
i , the related question is how does the

transformation [X , Y ] behave at this point?
Let the power series expansion of X f begin with terms of order μ , let that of Y f

begin with terms of order ν , that is to say, let:

X f =
n

∑
k=1

(ξ (μ)k + · · ·) ∂ f
∂xk

, Y f =
n

∑
j=1

(η(ν)
j + · · ·) ∂ f

∂x j
,

where the ξ (μ) and the η(ν) denote homogeneous functions of order μ and of order
ν , respectively, in the xi − x0

i , while the terms of higher order in the xi − x0
i are left

out. Under these assumptions, the power series expansion for [X , Y ] is, if one only
considers terms of the lowest order, the following:

[X , Y ] =
n

∑
j=1

{ n

∑
k=1

(

ξ (μ)k

∂η(ν)
j

∂xk
−η(ν)

k

∂ξ (μ)j

∂xk

)

+ · · ·
}
∂ f
∂x j

.

So the terms of lowest order in [X , Y ] are of order μ+ν−1 and they stem solely
from the terms of orders μ and ν in X f and in Y f , respectively.

Theorem 30. If X f and Y f are two infinitesimal transformations whose power se-
ries expansions with respect to the powers of x1 − x0

1, . . . , xn − x0
n begin with terms

of orders μ and ν , respectively, then the power series expansion of the infinitesimal
transformation XY f −Y X f = [X , Y ] begins with terms of order (μ+ν− 1) which
are entirely determined by the terms of orders μ and ν in X f and in Y f , respec-
tively. If these terms of order (μ+ν− 1) vanish, then concerning the power series
expansion of [X , Y ], it can only be said that it starts with terms of order (μ+ν), or
of higher order.

If the two numbers μ and ν are greater than one, then the number μ + ν − 1 is
larger than both of them. This remark is often of great utility for calculations with
infinitesimal transformations of various orders.
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For the derivation of Theorem 30, it is not assumed that the two infinitesimal
transformations X f and Y f belong to a group; the only assumption is that both X f
and Y f can be expanded in powers of xk − x0

k .
§ 52. Let the defining equations of an r-term group be given in the form de-

scribed earlier, hence resolved with respect to νk of the εk differential quotients of
order k of ξ1, . . . ,ξn. Moreover, let x0

i be a point in which the coefficients of the
resolved defining equations behave regularly.

Under these assumptions, we can expand the infinitesimal transformations of
our group in ordinary power series of the xi − x0

i . We even know that our group
contains a completely determined number of independent infinitesimal transforma-
tions, namely ε0 −ν0, which are of zeroth order in the xi − x0

i and out of which no
infinitesimal transformation of first order or of higher order can be linearly deduced;
moreover, the group contains a completely determined number of independent in-
finitesimal transformations, namely ε1 −ν1, of first order in the xi −x0

i out of which
none of second order or of higher order can be linearly deduced, and so on.

Shortly, our group associates to every point of the indicated nature a series of s
whole numbers ε0 −ν0, ε1 −ν1, . . . , εs−1 −νs−1 and these whole numbers are the
same for all points of this kind.

Now, there can also be points xi in special position, hence points in the neighbor-
hood of which the coefficients of the resolved defining equations no longer behave
regularly, while by contrast, all infinitesimal transformations of the group can be
expanded in ordinary power series in the xi − xi. If x1, . . . ,xn is a determined point
of this sort, then naturally, there is in our group a completely determined number of
infinitesimal transformations of zeroth order in the xi − xi out of which no infinites-
imal transformation of higher order can be linearly deduced, and so on.

Consequently, our group also associates to every point in special position a deter-
mined, obviously finite series of whole numbers; frequently, to two different points
in special position there will also be associated two different series of whole num-
bers.

The matter is best clarified with an example.
The defining equations of the two-term group ∂ f

∂x1
, x2

2
∂ f
∂x1

read in the resolved
form are:

ξ2 = 0,
∂ξ1

∂x1
= − ∂ξ2

∂x1
=
∂ξ2

∂x2
,= 0

∂ 2ξ1

∂x2
1

=
∂ 2ξ1

∂x1∂x2
= 0,

∂ 2ξ1

∂x2
2

=
1
x2

∂ξ1

∂x2
,

∂ 2ξ2

∂x2
1

=
∂ 2ξ2

∂x1∂x2
=
∂ 2ξ2

∂x2
2

= 0.

The coefficients appearing here behave regularly for all points x1,x2 located in
the finite, except only for the points of the line x2 = 0.
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First, let us consider a point x0
1, x0

2 with nonvanishing x0
2. We have s = 2, and

moreover ε0 = 2, ε1 = 4, ν0 = 1, ν1 = 3, hence to the point x0
1,x

0
2 are associated

the two numbers 1,1. All infinitesimal transformations of the group can be linearly
deduced from the two:

∂ f
∂x1

,
(

x2 − x0
2 +

1
2x0

(x2 − x0
2)

2
) ∂ f
∂x1

amongst which the first is of zeroth order in the xi −x0
i , and the second of first order.

Next, let us consider a point x1,x2 = 0.
To such a point, the group associates the three numbers 1,0,1, since amongst its

infinitesimal transformations there are none of first order in the xi − xi, but one of
second order, hence of s-th order, namely: x2

2
∂ f
∂x1

. —

If x0
1, . . . ,x

0
n is a point for which the coefficients of the resolved defining equa-

tions behave regularly, then according to Theorem 29, the group certainly contains
infinitesimal transformations of zeroth, of first, . . . , of (s−1)-th orders in the xi −x0

i ,
but none of s-th or of higher order. Now, our example discussed just now shows that
for a point xi in which not all the coefficients in question behave regularly, no general
statement of this kind holds anymore: the group can very well contain infinitesimal
transformations of s-th order in the xi − xi, and perhaps also some of higher order;
on the other hand, it can occur that for one number k < s, the group actually contains
no infinitesimal transformation of k-th order in the xi − xi.

If x0
1, . . . ,x

0
n denotes an arbitrary point in which all the ξ behave regularly, then

as already said, the infinitesimal transformations of our group can be classified ac-
cording to their orders in the xi − x0

i . It is of great importance that this classification
is maintained when in place of the x, new variables y1, . . . ,yn are introduced. Of
course, the concerned change of variables must, in the neighborhood of the point
x0

1, . . . ,x
0
n, possess the following properties: y1, . . . ,yn must firstly be ordinary power

series in the xi − x0
i :

(2) yk = y0
k +

n

∑
i=1

aki (xi − x0
i )+ · · · (k=1 ···n) ;

and secondly, x1, . . . ,xn must also be representable as ordinary power series in the
yk − y0

k and in fact, so that every xi for y1 = y0
1, . . . , yn = y0

n must take the value x0
i .

If the first of these two requirements is satisfied, it is known that the second is then
always satisfied, when the determinant ∑±a11 · · ·ann is different from zero.

Now, in order to prove that the discussed classification is maintained after the
transition to the variables y1, . . . ,yn, we need only show that every infinitesimal
transformation of μ-th order in the xi − x0

i converts, by the introduction of the new
variables yk − y0

k , into an infinitesimal transformation of μ-th order in the yk − y0
k .

But this is not difficult.
The general form of an infinitesimal transformation of the μ-th order in the xi −x0

i
is:
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X f =
n

∑
j=1

(ξ (μ)j + · · ·) ∂ f
∂x j

;

here, ξ (μ)1 , . . . ,ξ (μ)n denote entire rational functions1 (Translator’s note: GANZE RA-
TIONALE FUNCTIONEN, that is to say, polynomials.) which are homogeneous of
order μ and do not all vanish; the terms of orders (μ+1) and higher are left out.

By the introduction of y1, . . . ,yn we obtain:

X f =
n

∑
k=1

Xyk
∂ f
∂yk

;

here at first, the Xyk are ordinary power series in the xi − x0
i :

Xyk =
n

∑
j=1

ak j ξ
(μ)
j + · · ·

and they begin with terms of order μ . These terms of order μ do not all vanish, since
otherwise one would have:

n

∑
j=1

ak j ξ
(μ)
j = 0 (k=1 ···n),

which is impossible, because the determinant ∑±a11 · · ·ann is different from zero,

and because ξ (μ)1 , . . . ,ξ (μ)n do not all vanish. Now, if in Xy1, . . . ,Xyn we express the
xi in terms of the yi, we obtain n ordinary power series in the yi − y0

i . These power
series likewise begin with terms of order μ which do not all vanish. Indeed, one
obtains the terms of order μ in question by substituting, in the n expressions:

n

∑
j=1

ak j ξ
(μ)
j (k=1 ···n),

the x for the y by means of the equations:

yk = y0
k +

n

∑
i=1

aki (xi − x0
i ) (k=1 ···n) ;

but since the n shown expressions do not all vanish, they also do not all vanish after
introduction of the y.

Consequently, the infinitesimal transformation X f is transferred, by the introduc-
tion of the y, to an infinitesimal transformation which is of order μ in the yi − y0

i .
But this was to be shown.

As a result, we have the

Proposition 1. If, in an infinitesimal transformation X f which is of order μ in x1 −
x0

1, . . . , xn − x0
n, one introduces new variables:
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yk = y0
k +

n

∑
i=1

aki(xi − x0
i )+

1···n
∑
i, j

aki j (xi − x0
i )(x j − x0

j)+ · · ·

(k=1 ···n),

where the determinant ∑±a11 · · ·ann is different from zero, then X f converts into
an infinitesimal transformation of order μ in y1 − y0

1, . . . , yn − y0
n.

From this, we immediately obtain the somewhat more specific

Proposition 2. If, in the neighborhood of the point x0
1, . . . ,x

0
n, an r-term group con-

tains exactly τμ independent infinitesimal transformations of order μ in the xi − x0
i

out of which none of higher order can be linearly deduced, and if new variables:

yk = y0
k +

n

∑
i=1

aki(xi − x0
i )+ · · · (k=1 ···n),

are introduced in this group, where the determinant ∑±a11 · · ·ann is different from
zero, then in turn in the neighborhood of the point y0

k , the new group which one finds
in this way contains exactly τμ independent infinitesimal transformations of order
μ in the yk − y0

k out of which none of higher order can be linearly deduced.

One therefore sees: the series of whole numbers which the initial group associates
to the point x0

1, . . . ,x
0
n is identical to the series of whole numbers which the new

groups associates to the point y0
1, . . . ,y

0
n.

§ 53. If one knows the defining equations of an r-term group and if one has
resolved them in the way discussed earlier on, then as we have seen, one can im-
mediately identify the numbers εk − νk defined above. For every point x0

1, . . . ,x
0
n

in which the coefficients of the resolved defining equations behave regularly, one
therefore knows the number of all independent infinitesimal transformations of the
group which are of order k in the xi − x0

i and which possess the property that out
of them, no infinitesimal transformation of order (k+ 1) or of higher order can be
linearly deduced.

Naturally, one can compute the numbers in question also for the points x0
1, . . . ,x

0
n

in which the coefficients of the resolved defining equations do not behave regularly.
For that, the knowledge of the defining equations already suffices, however it is
incomparably more convenient when r arbitrary independent infinitesimal transfor-
mations are already given, which is what we will assume in the sequel. Then one
proceeds as follows.

At first, one determines how many independent infinitesimal transformations of
order k or higher in the xi − x0

i the group contains. To this end, one expands the
general infinitesimal transformation:

e1 X1 f + · · ·+ er Xr f

with respect to the powers of the xi − x0
i and then in the n expressions:
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e1 ξ1i + · · ·+ er ξri (i=1 ···n),

one sets equal to zero all coefficients of zeroth, of first, . . . , of (k − 1)-th order. In
this way, one obtains a certain number of linear homogeneous equations between
e1, . . . ,er; one then easily determines how many independent infinitesimal transfor-
mations are extant amongst these equations by calculating certain determinants; if
r −ωk is the number of independent equations, then it follows that the group con-
tains exactly ωk independent infinitesimal transformations of order k or higher in the
xi − x0

i . So obviously, ωk −ωk+1 is the number of independent infinitesimal trans-
formations of order k out of which no infinitesimal transformation of higher order
can be linearly deduced.

It is almost unnecessary to make the observation that the operations just indicated
also remain applicable to every point x0

1, . . . ,x
0
n for which the coefficients of the

resolved defining equations behave regularly.
Somewhat more precisely, we want to occupy ourselves with the infinitesimal

transformations ∑ e j Xj f of the group X1 f , . . . ,Xr f whose power series expansion
in the xi −x0

i contain only terms of the first and higher orders, but none of the zeroth.
At first, we shall examine how many independent infinitesimal transformations of
this nature there are and we shall show how one can set them up in a simple manner.
Here, by x0

1, . . . ,x
0
n, we understand a completely arbitrary, though determined, point.

Evidently, such infinitesimal transformations are characterized by the fact that
they, and also the one-term groups generated by them, leave at rest the point xi = x0

i
(cf. Chap. 7, p. 147), or, what amounts to the same, by the fact that they are the
only ones amongst the infinitesimal transformations ∑ e j Xj f which do not attach
any direction to the point xi = x0

i .
Analytically, the most general transformation ∑ e j Xj f of the concerned consti-

tution will be determined by the equations:

e1 ξ1i(x0
1, . . . ,x

0
n)+ · · ·+ er ξri(x0

1, . . . ,x
0
n) = 0 (i=1 ···n).

Now, if in the matrix:

(3)

∣
∣
∣
∣
∣
∣

ξ11(x0) · · ξ1n(x0)
· · · ·

ξr1(x0) · · ξrn(x0)

∣
∣
∣
∣
∣
∣

,

all (r+1)×(r+1) determinants vanish, but not all h×h determinants, then h of the
quantities e1, . . . ,er can be represented as linear homogeneous functions of the r−h
remaining ones, which are completely arbitrary. As a result, we obtain the following
simple but important result:

Proposition 3. If all (h+1)× (h+1) determinants of the matrix:
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξr1(x) · · ξrn(x)

∣
∣
∣
∣
∣
∣
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vanish for x1 = x0
1, . . . , xn = x0

n, but not all h×h determinants vanish, then the r-term
group:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

contains exactly r − h independent infinitesimal transformations which, when ex-
panded in power series in x1 − x0

1, . . . , xn − x0
n, contain no term of zeroth order —

which, in other words, leave at rest the point x0
1, . . . ,x

0
n.

At the same time, we also obtain the following

Proposition 4. When all (h+1)× (h+1) determinants of the matrix:
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξr1(x) · · ξrn(x)

∣
∣
∣
∣
∣
∣

are set to zero, then the resulting equations determine the locus of all points
x1, . . . ,xn which admit2 (Translator’s note: — in the sense that the manifold
constituted of such a point is left invariant, i.e. at rest —) at least r −h independent
infinitesimal transformations of the group X1 f , . . . ,Xr f ; amongst the found points,
those which do not bring to zero all h × h determinants of the matrix admit exactly
r −h independent infinitesimal transformations of the group.

Earlier on (p. 149), we have underlined that the infinitesimal transformations
X1 f , . . . ,Xr f associate to a determined point x1, . . . ,xn precisely h independent di-
rections when all (h+ 1)× (h+ 1) determinants of the matrix (3) vanish, while by
contrast not all h × h determinants do. From this, we see that the found result can
also be expressed as follows.

Proposition 5. If an r-term group X1 f , . . . ,Xr f of the space x1, . . . ,xn contains ex-
actly r − h independent infinitesimal transformations which leave at rest a deter-
mined point x0

1, . . . ,x
0
n, then the infinitesimal transformations of the group associate

to this point exactly h independent directions.

Now we continue one step further to set up all infinitesimal transformations
∑ e j Xj f which leave at rest a determined point x0

1, . . . ,x
0
n.

We assume that in the matrix (3), all (h+ 1)× (h+ 1) determinants vanish, but
not all h×h determinants, and specifically, that in the smaller matrix:

∣
∣
∣
∣
∣
∣

ξ11(x0) · · ξ1n(x0)
· · · ·

ξh1(x0) · · ξhn(x0)

∣
∣
∣
∣
∣
∣

,

not all h×h determinants are equal to zero.
Under these assumptions, there are obviously no infinitesimal transformations of

the form e1 X1 f + · · ·+ eh Xh f which leave at rest the point x0
1, . . . ,x

0
n; by contrast,

the r −h infinitesimal transformations:
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Xh+k f +λk1 X1 f + · · ·+λkh Xh f (k=1 ···r−h)

do leave it at rest, as soon as one chooses the constants λ in an appropriate way,
which visibly is possible only in one way. Given this, r−h independent infinitesimal
transformations are found whose power series expansions contain no term of order
zero; naturally, out of these r − h transformation, every other transformation of the
same constitution can be linearly deduced. From this, it follows that amongst the
infinitesimal transformations of our group which are of zeroth order in the xi −
x0

i , there are only h independent transformations out of which no transformation
of first order or of higher order can be linearly deduced; of course, X1 f , . . . ,Xr f
are transformations of zeroth order of this nature; hence they attach to the point
x0

1, . . . ,x
0
n exactly h independent directions.

With these words, we have the

Proposition 6. If the r infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

of an r-term group of the space x1, . . . ,xn are constituted in such a way that for x1 =
x0

1, . . . , xn = x0
n, all (h+1)× (h+1) determinants, but not all h×h determinants, of

the matrix: ∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξr1(x) · · ξrn(x)

∣
∣
∣
∣
∣
∣

vanish, and especially, if not all h×h determinants of the matrix:
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξh1(x) · · ξhn(x)

∣
∣
∣
∣
∣
∣

are zero for xi = x0
i , then firstly: all infinitesimal transformations:

e1 X1 f + · · ·+ eh Xh f

are of zeroth order in the xi − x0
i and they attach to the point x0

1, . . . ,x
0
n exactly h

independent directions, and secondly: one can always choose h(r−h) constants λk j,
but only in one way, so that in the r −h independent infinitesimal transformations:

Xh+k f +λk1 X1 f + · · ·+λkh Xh f (k=1 ···r−h)

all terms of zeroth order in the xi − x0
i are missing; then out of these r −h infinites-

imal transformations, one can linearly deduce all infinitesimal transformations of
the group X1 f , . . . ,Xr f which are of the first order in the xi − x0

i , or of higher order.

For the sequel, it is useful to state this proposition in a somewhat more specific
way.
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We want to assume that all (q+1)× (q+1) determinants of the matrix:

(4)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξr1(x) · · ξrn(x)

∣
∣
∣
∣
∣
∣

vanish identically, but that this is not the case for all q × q determinants and , in
particular, that not all q×q determinants of the matrix:

(5)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξq1(x) · · ξqn(x)

∣
∣
∣
∣
∣
∣

are identically zero.
Under these assumptions, it is impossible to exhibit q not all vanishing functions

χ1(x), . . . ,χq(x) which make identically equal to zero the expression χ1(x)X1 f +
· · ·+χq(x)Xq f . By contrast, one can determine q(r −q) functions ϕ jk(x) so that the
r −q equations:

Xq+ j f = ϕ j1(x1, . . . ,xn)X1 f + · · ·+ϕ jq(x1, . . . ,xn)Xq f

( j=1 ···r−q)

are identically satisfied; indeed, every ϕ jk will be equal to a quotient whose nu-
merator is a certain q × q determinant of the matrix (4) and whose denominator is
a not identically vanishing q × q determinant of the matrix (5) (cf. the analogous
developments in Chap. 7, p. 136).

Now, let x0
1, . . . ,x

0
n be a point in general position, or more precisely, a point for

which not all q × q determinants of (5) vanish. Then the expressions ϕ jk(x0) are
determined, finite constants, and at the same time, the r − q infinitesimal transfor-
mations:

Xq+ j f −ϕ j1(x0)X1 f −·· ·−ϕ jq(x0)Xq f ( j=1 ···r−q)

belong to our group. These infinitesimal transformations are clearly independent
of each other and in addition, they possess the property that their power series ex-
pansions with respect to the xi − x0

i lack all zeroth order terms. Hence according to
Proposition 3, p. 212, every infinitesimal transformation of our group whose power
series expansion with respect to the xi − x0

i only contains terms of first order or of
higher order must be linearly expressible by means of the r − q infinitesimal trans-
formations just found.

Thus, the following holds true.

Proposition 7. If the first q of the infinitesimal transformations X1 f , . . . ,Xr f of an
r-term group are not linked by linear relations of the form:

χ1(x1, . . . ,xn)X1 f + · · ·+χq(x1, . . . ,xn)Xq f = 0,
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while Xq+1 f , . . . ,Xr f can be linearly expressed in terms of X1 f , . . . ,Xq f :

Xq+ j f ≡
q

∑
k=1

ϕ jk(x1, . . . ,xn)Xk f ( j=1 ···r−q),

then in the neighborhood of every point x0
1, . . . ,x

0
n in general position, the group con-

tains exactly q independent infinitesimal transformations, for example X1 f , . . . ,Xq f ,
which are of zeroth order and out of which no infinitesimal transformation of first
order or of higher order in the xi − x0

i can be linearly deduced. By contrast, in
the neighborhood of x0

i , the group contains exactly r − q independent infinitesimal
transformations, for instance:

Xq+ j f −
q

∑
k=1

ϕ jk(x0
1, . . . ,x

0
n)Xk f ( j=1 ···r−q),

which contain no terms of zeroth order in the xi − x0
i , hence which leave at rest the

point x0
1, . . . ,x

0
n.

We have pointed out above more precisely what is to be understood, in this propo-
sition, for a point in general position.

—————–



Chapter 12
Determination of All Subgroups of an r-term
Group

If all the transformations of a ρ-term group are contained in a group with more than
ρ parameters, say with r parameters, then the ρ-term group is called a subgroup of
the r-term group.

The developments of Chap. 4 have already given us examples of subgroups of
an r-term group; indeed, every r-term group contains ∞r−1 one-term subgroups.
In the present chapter, we will first describe a few specific methods which enable
us to find subgroups of a given group. Then we consider the question of how one
should proceed in order to determine all subgroups of a given group. We obtain
the important result that the determination of all continuous subgroups of an r-term
group can always be achieved by resolution of algebraic equations.

§ 54. In the preceding chapter, we imagined the infinitesimal transformations of
a given r-term group expanded with respect to powers of the xi − x0

i , where it is
understood that x0

i is a system of values for which all these transformations behave
regularly.

For the infinitesimal transformations of the group, there resulted in this way a
classification which will now lead us towards the existence of certain subgroups.
However, the considerations of this section find an application only to groups which
in any case for certain points x0

i , contain not only infinitesimal transformations of
zeroth order, but also some of higher order in the xi − x0

i . In the neighborhood of
the point x0

1, . . . ,x
0
n, let an r-term group of the space x1, . . . ,xn contain exactly ωk

independent infinitesimal transformations:

Y1 f , . . . ,Yωk f ,

whose power series expansions with respect to the xi − x0
i start with terms of order

k or of higher order.
We want to assume that k � 1. Then if we combine two infinitesimal transforma-

tions Yi f and Yj f , we obtain (Theorem 30, p. 207) an infinitesimal transformation
[Yi, Yj] of order (2k − 1) or higher, hence at least of order k. Consequently, [Yi, Yj]
must be linearly expressible in terms of the Y f :

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_12
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[Yi, Yj] =
ωk

∑
ν=1

di jν Yν f ,

or, what is the same: the Y1 f , . . . ,Yωk f generate an ωk-term subgroup of the given
group. Hence the following holds true.

Proposition 1. If an r-term group of the space x1, . . . ,xn contains, in the neighbor-
hood of x0

1, . . . ,x
0
n, exactly ωk independent infinitesimal transformations of order k

or of higher order and if k � 1 here, then these ωk infinitesimal transformations
generate an ωk-term subgroup of the group in question.

If the point x0
1, . . . ,x

0
n is procured so that, for it the coefficients of the resolved

defining equations of the group X1 f , . . . ,Xr f behave regularly, thenωk has the value:

(εk −νk)+ · · ·+(εs−1 −νs−1)

(cf. Chap. 11, p. 206).
The case k = 1 is particularly important, hence we want to dwell on it.
If:

Xj f =
n

∑
i=1
ξ ji(x1, . . . ,xn)

∂ f
∂xi

( j=1 ···r)

are independent infinitesimal transformations of the r-term group, then according to
Chap. 11, p. 212 sq., one finds the number ω1 by examining the determinants of the
matrix: ∣

∣
∣
∣
∣
∣

ξ11(x0) · · ξ1n(x0)
· · · ·

ξr1(x0) · · ξrn(x0)

∣
∣
∣
∣
∣
∣

.

Moreover, we recall (cf. p. 212 sq.) that all infinitesimal transformations of the
group which contain only terms of first order or of higher order in the xi − x0

i are
characterized by the fact that they leave at rest the point x0

1, . . . ,x
0
n. Hence if k = 1,

we can also enunciate the above proposition as follows.

Proposition 2. If, in a group of the space x1, . . . ,xn, there are precisely ω1

independent infinitesimal transformations which leave invariant a determined
point x0

1, . . . ,x
0
n, then these transformations generate an ω1-term subgroup of the

concerned group.

It is clear that in the variables x1, . . . ,xn, there are no more than n infinitesimal
transformations which are of zeroth order in the xi − x0

i and out of which no in-
finitesimal transformation of first order or of higher order can be linearly deduced.
From this, we conclude that every r-term group in n < r variables contains at least
r −n independent infinitesimal transformations which are of first or higher order in
the xi − x0

i . We therefore have the

Proposition 3. Every r-term group in n < r variables contains subgroups with at
least r −n parameters.
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From Proposition 7 of the preceding chapter (p. 215), we finally obtain for the
points x0

1, . . . ,x
0
n in general position the

Proposition 4. If the infinitesimal transformations X1 f , . . . ,Xq f , . . . ,Xr f of an r-
term group in the space x1, . . . ,xn are constituted in such a manner that X1 f , . . . ,Xq f
are linked by no linear relation of the form:

χ1(x1, . . . ,xn)X1 f + · · ·+χq(x1, . . . ,xn)Xq f ≡ 0,

while by contrast Xq+1 f , . . . ,Xr f can be expressed linearly in terms of X1 f , . . . ,Xq f :

Xq+ j f ≡ ϕ j1(x1, . . . ,xn)X1 f + · · ·+ϕ jq(x1, . . . ,xn)Xq f

( j=1 ···r−q),

and if in addition x0
1, . . . ,x

0
n is a point in general position, then the r−q infinitesimal

transformations:

Xq+ j f −
q

∑
μ=1

ϕ jμ(x0
1, . . . ,x

0
n)Xμ f ( j=1 ···r−q)

are all of first or higher order in the xi − x0
i and they generate an (r − q)-term sub-

group whose transformations are characterized by the fact that they leave invariant
the point x0

1, . . . ,x
0
n.

By a point in general position, as on p. 215, we understand here a point which
does not bring to zero all q×q determinants of the matrix:

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξq1(x) · · ξqn(x)

∣
∣
∣
∣
∣
∣

.

§ 55. Here we also want to draw attention to a somewhat more general method
which often leads, in a very simple way, to the determination of certain subgroups
of a given group. This method is founded on the following

Theorem 31. If the r-term group X1 f , . . . ,Xr f contains some infinitesimal transfor-
mations for which a given system of equations:

Ωi(x1, . . . ,xn) = 0 (i=1,2 ···)

remains invariant, and if every infinitesimal transformation of this nature can be
linearly deduced from the m infinitesimal transformations:

Yk f =
r

∑
ν=1

hkν Xν f (k=1 ···m),
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then Y1 f , . . . ,Ym f generate an m-term subgroup of the group X1 f , . . . ,Xr f .

The correctness of this theorem follows almost immediately from Proposition 5
in Chap. 7, p. 134. Indeed, according to this proposition the systemΩi = 0 admits all
infinitesimal transformations of the form [Yk, Yj]. Since the [Yk, Yj] also belong to the
group X1 f , . . . ,Xr f , then under the assumptions made, none of these infinitesimal
transformations can be independent of Y1 f , . . . ,Ym f , hence on the contrary, there
must exist relations of the form:

[Yk, Yj] =
m

∑
μ=1

hk jμ Yμ f ,

that is to say, the Yk f generate a group.
Clearly, we can also state the above theorem as follows.

Proposition 5. If, amongst the infinitesimal transformations of an r-term group in
the variables x1, . . . ,xn, there are precisely m independent transformations by which
a certain manifold of the space x1, . . . ,xn remains invariant, then these m infinitesi-
mal transformations generate an m-term subgroup of the r-term group.

The simplest case is the case where the invariant system of equations represents
an invariant point, so that it has the form:

x1 = x0
1, . . . , xn = x0

n.

The subgroup which corresponds to this system of equations is of course gener-
ated by all infinitesimal transformations whose power series expansions with respect
to the xi − x0

i start with terms of first order, or of higher order. Thus, we arrive here
at one of the subgroups that we have already found in the preceding section.

As a second example, we consider a subgroup of the eight-term general projective
group of the plane. The equation of a nondegenerate conic section admits exactly
three independent infinitesimal projective transformations of the plane; hence these
three infinitesimal transformations generate a three-term subgroup of the general
projective group.

Lastly, yet another example, obtained from the ten-term group of all conformal
point transformations of R3. In this group, there are exactly six independent in-
finitesimal transformations which leave invariant an arbitrarily chosen sphere. These
transformations generate a six-term subgroup of the ten-term group.

Theorem 31 is only a special case of the following more general

Theorem 32. If, in the variables x1, . . . ,xn, an arbitrary group is given, finite or infi-
nite, continuous or not continuous, then the totality of all transformations contained
in it which leave invariant an arbitrary system of equations in x1, . . . ,xn, also forms
a group.

The proof of this theorem is very simple. Any two infinitesimal transformations
of the group which, when executed one after the other, leave invariant the system
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of equations give a transformation which again belongs to the group and which at
the same time leaves invariant the system of equations. As a result, the proof that
the totality of transformations defined in the theorem effectively forms a group is
produced.

Instead of a system of equations, one can naturally also consider a system of
differential equations, and then the theorem would still remain valid.

Furthermore, if the given group is continuous, then the subgroup which is defined
through the invariant system of equations can very well be discontinuous.

§ 56. Now that we have become acquainted with some methods which enable us
to find individual subgroups of a given group, we turn to the more general problem
of determining all continuous subgroups of a given r-term group X1 f , . . . ,Xr f .

Some m arbitrary independent infinitesimal transformations:

Yμ f =
r

∑
ρ=1

hμρ Xρ f (μ=1 ···m)

of our group generate an m-term subgroup if and only if all:

[Yμ , Yν ] =
1···r
∑
ρ, σ

hμρ hνσ [Xρ , Xσ ]

are expressible only by means of Y1 f , . . . ,Ym f . If we insert here the values:

[Xρ , Xσ ] =
r

∑
τ=1

cρστ Xτ f ,

then:

[Yμ , Yν ] =
1···r
∑
ρστ

hμρ hνσ cρστ Xτ f ,

and it is demanded that these equations take the form:

[Yμ , Yν ] =
m

∑
π=1

lμνπ Yπ f =
r

∑
τ=1

m

∑
π=1

lμνπ hπτ Xτ f .

For this to hold, it is necessary and sufficient that the equations:

(1)

1···r
∑
ρ, σ

hμρ hνσ cρστ =
m

∑
π=1

lμνπ hπτ

(μ,ν=1 ···m ; τ=1 ···r)

can be satisfied; for this to be possible, all the (m+1)× (m+1) determinants of the
matrix:
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(2)

∣
∣
∣
∣
∣
∣

∑1···r
ρ, σ hμρhνσcρσ1 h11 · hm1

· · · ·
∑1···r
ρ, σ hμρhνσcρσr h1r · hmr

∣
∣
∣
∣
∣
∣

must vanish.
As a result, we have a series of algebraic equations for the determination of the

mr unknowns hπρ . But because Y1 f , . . . ,Ym f should be independent infinitesimal
transformations, one should from the beginning exclude every system of values hπρ
which brings to zero all m×m determinants of the matrix:

∣
∣
∣
∣
∣
∣

h11 · · hm1

· · · ·
h1r · · hmr

∣
∣
∣
∣
∣
∣

.

If the hπρ are determined so that all these conditions are satisfied, then for every
pair of numbers μ , ν , the equations (1) reduce to exactly m equations that determine
completely the unknown constants lμν1, . . . , lμνm. Therefore, every system of solu-
tions hπρ provides an m-term subgroup, and it is clear that in this way, one finds all
m-term subgroups.

With this, we have a general method for the determination of all subgroups of a
given r-term group; however in general, this method is practically applicable only
when the number r is not too large; nonetheless it shows that the problem of deter-
mining all these subgroups necessitates only algebraic operations, which is already
a very important result.

Theorem 33. The determination of all continuous subgroups of a given r-term
group X1 f , . . . ,Xr f necessitates only algebraic operations; the concerned opera-
tions are completely determined in terms of the constants ciks in the relationships:1

[Xi, Xk] =
r

∑
s=1

ciks Xs f (i,k=1 ···r).

In specific cases, the determination of all subgroups of a given group will of-
ten be facilitated by the fact that one knows from the beginning certain subgroups
and actually also certain properties of the concerned group; naturally, there is also
a simplification when one has already settled the corresponding problem for one
subgroup of the given group. In addition, we shall see later that the matter is not
actually of setting up all subgroups, but rather, that it suffices to identify certain of
these subgroups (cf. the studies on types of subgroups, Chap. 23).

§ 57. Let the m independent infinitesimal transformations:

Yμ f =
r

∑
k=1

hμk Xk f (μ=1 ···m)

1 LIE, Archiv for Mathematik of Naturv., Vol. 1, Christiania 1876.
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generate an m-term subgroup of the r-term group X1 f , . . . ,Xr f . Then the general
infinitesimal transformation of this subgroup is:

m

∑
μ=1

αμ Yμ f =
m

∑
μ=1

r

∑
k=1

αμ hμk Xk f ,

where the αμ denote arbitrary parameters.
As a consequence of this, all infinitesimal transformations e1 X1 f + · · ·+ er Xr f

of the r-term group which belong to the m-term subgroup Y1 f , . . . ,Ym f are defined
by the equations:

ek =
m

∑
μ=1

αμ hμk (k=1 ···r).

Hence if we imagine here that the m arbitrary parameters αμ are eliminated, we
obtain exactly r −m independent linear homogeneous equations between e1, . . . ,er,
so that we can say:

Proposition 6. If e1 X1 f + · · ·+ er Xr f is the general infinitesimal transformation
of an r-term group, then the infinitesimal transformations of an arbitrary m-term
subgroup of this group can be defined by means of r −m independent linear homo-
geneous relations between e1, . . . ,er.

The infinitesimal transformations which are common to two distinct subgroups
of an r-term group X1 f , . . . ,Xr f generate in turn a subgroup; indeed, according to
Chap. 9, Proposition 2, p. 174, the infinitesimal transformations common to the
two groups generate a group, which, naturally, is contained in X1 f , . . . ,Xr f as a
subgroup.

Now, if we assume that one of the two groups is m-term, and the other μ-term,
then their common infinitesimal transformations will be defined by means of r −
m+r−μ linear homogeneous equations between the e, some equations which need
not, however, be mutually independent.

From this, we conclude that amongst the common infinitesimal transformations,
there are at least r − (2r − m − μ) = m+ μ − r which are independent. Therefore,
we have the statement:

Proposition 7. If an r-term group contains two subgroups with m and μ param-
eters, respectively, then these two subgroups have at least m+ μ − r independent
infinitesimal transformations in common. The infinitesimal transformations of the
r-term group which are actually common to the two subgroups generate in turn a
subgroup.

This proposition can evidently be generalized:
Actually, if amongst the infinitesimal transformations e1 X1 f + · · ·+ er Xr f of an

r-term group, two families are sorted, the one by means of r−m linear homogeneous
equations, the other by means of r−μ such equations, then there are at least m+μ−
r independent infinitesimal transformations which are common to the two families.

—————–



Chapter 13
Transitivity, Invariants, Primitivity

The concepts of transitivity and of primitivity which play such a broad rôle in the
theory of substitutions, shall be extended [AUSGEDEHNT] here to finite continuous
transformation groups. In passing, let us mention that these concepts can be ex-
tended to all groups, namely to finite groups and infinite groups, and to continuous
groups and non-continuous groups.1

§ 58. A finite continuous group in the variables x1, . . . ,xn is called transitive
when, in the space (x1, . . . ,xn), there is an n-times extended domain inside which
each point can be transferred to any other point by means of at least one transfor-
mation of the group. One calls intransitive every group which is not transitive.

According to this definition, an r-term group:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

is transitive when in general,1 (Translator’s note: As usual (cf. Chap. 1), one
reasons generically, hence the concept of transitivity is essentially considered for
(sub)domains and for generic values of the x and of the x′.) to every system of values
x1, . . . ,xn, x′

1, . . . ,x
′
n at least one system of values a1, . . . ,ar can be determined so

that the equations x′
i = fi(x, a) are satisfied by the concerned values of x, a, x′.

In other words: The equations x′
i = fi(x, a) of a transitive group can be resolved

with respect to n of the r parameters a1, . . . ,ar. If by contrast such a resolution is
impossible, and if rather, from the equations x′

i = fi(x, a) of the group, one can

1 After LIE had integrated a few differential equations with known continuous groups in 1869, in
1871 and in 1872, he stated in conjunction with KLEIN the problem of translating the concepts of
the theory of substitutions as far as possible into the theory of continuous transformation groups.
LIE settled this problem in detail; on the basis of the presentation and of the concepts exhibited
here, as early as 1874, he developed the fundamentals of a general theory of integration of com-
plete systems which admit known infinitesimal transformations (Verh. d. G. d. W. zu Christiania,
1874). He reduced this problem to the case where the known infinitesimal transformations generate
a finite continuous group which is imprimitive, since its transformations permute the characteris-
tic manifolds of the complete system. Amongst other things, he determined all cases where the
integration of the complete system can be performed by means of quadratures.

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_13
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derive equations which are free of the parameters a and which contain only the
variables x1, . . . ,xn, x′

1, . . . ,x
′
n, then the group is not transitive, it is intransitive.

From this, we see that every transitive group of the space x1, . . . ,xn contains at
least n essential parameters.

If a transitive group in n variables has exactly n essential parameters, then in
general, it contains one, but only one, transformation which transfers an arbitrary
point of the space to another arbitrary point; hence in particular, aside from the
identity transformation, it contains no transformation which leaves invariant a point
in general position. We call simply transitive [EINFACH TRANSITIV] every group of
this nature.

The general criterion for transitivity and, respectively, for intransitivity of a group
given above is practically applicable only when one knows the finite equations of
the group. But should there not be a criterion the application of which would require
only the knowledge of the infinitesimal transformations of the group? We will show
that such a criterion can indeed be exhibited. At the same time, we will find means
in order to recognize how many and which relations there are between the x and the
x′ only for an intransitive group with known infinitesimal transformations.

Let us be given r independent infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

which generate an r-term group. This group, the finite equations of which we can
imagine written down in the form:

Φi = −x′
i + xi +

r

∑
k=1

ek ξki(x)+ · · · (i=1 ···n),

is, according to the preceding, transitive if and only if the n equations Φ1 = 0, . . . ,
Φn = 0 are solvable with respect to n of the r parameters e1, . . . ,er. Consequently,
for the transitivity of our group, it is necessary and sufficient that not all n×n deter-
minants of the matrix:

(1)

∣
∣
∣
∣
∣
∣
∣

∂Φ1
∂e1

· · ∂Φn
∂e1· · · ·

∂Φ1
∂er

· · ∂Φn
∂er

∣
∣
∣
∣
∣
∣
∣

vanish identically. From this, it follows that the group is certainly transitive when
the corresponding determinants do not all vanish for e1 = 0, . . . ,er = 0, hence when
not all n×n determinants of the matrix:

(2)

∣
∣
∣
∣
∣
∣

ξ11 · · · ξ1n

· · · · ·
ξr1 · · · ξrn

∣
∣
∣
∣
∣
∣
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are identically zero.
As a result, we have found a sufficient condition for the transitivity of our group.

We now want to study what happens when this condition is not satisfied.
So, let all n×n determinants of the above-written matrix (2) be identically zero;

in order to embrace all possibilities in one case, we in addition want to assume that
all determinants of sizes (n−1), (n−2), . . . , (q+1) vanish identically, whereas not
all q×q determinants do this.

Under these circumstances, it is certain that not all q × q determinants of the
matrix (1) vanish, hence we can conclude that from the n equations Φ1 = 0, . . . ,
Φn = 0, at most n−q equations between the x and x′ only that are free of e1, . . . ,er

and are mutually independent can be deduced.
But now, under the assumptions made, the r equations X1 f = 0, . . . , Xr f = 0 re-

duce to q < n independent ones, say to: X1 f = 0, . . . , Xq f = 0, while Xq+1 f , . . . ,Xr f
can be expressed as follows:

Xq+ν f ≡ ϕν1(x)X1 f + · · ·+ϕνq(x)Xq f (ν=1 ···r−q).

Consequently, for all values of i and k, one will have:

[Xi, Xk] =
q

∑
j=1

(

cik j +
r−q

∑
ν=1

cik,q+ν ϕν j

)

Xj f ,

that is to say: the q equations X1 f = 0, . . . , Xq f = 0 form a q-term complete sys-
tem with n−q independent solutions, which can be denoted by Ω1(x), . . . ,Ωn−q(x).
These solutions admit every infinitesimal transformation of the form e1 X1 f + · · ·+
er Xr f , hence every infinitesimal transformation, and in consequence of that, also
every finite transformation of our r-term group X1 f , . . . ,Xr f (cf. Chap. 6, p. 113).
Analytically, this is expressed by saying that between the variables x and x′, which
appear in the transformation equations of our group, the following n − q equations
free of the e are extant:

Ω1(x′
1, . . . ,x

′
n) =Ω1(x1, . . . ,xn), . . . . . . , Ωn−q(x′

1, . . . ,x
′
n) =Ωn−q(x1, . . . ,xn).

Above, we said that between the x and the x′ alone, there could exist at most n−q
independent relations, and therefore we have found all the relations in question.

In particular, we realize that the group X1 f , . . . ,Xr f is intransitive as soon as all
n × n determinants of the matrix (2) vanish identically. With this, it is shown that
the sufficient condition found a short while ago for the transitivity of the group
X1 f , . . . ,Xr f is not only sufficient, but also necessary.

We formulate the obtained results as propositions. At the head, we state the

Theorem 34. The r-term group X1 f , . . . ,Xr f of the space x1, . . . ,xn is transitive
when amongst the r equations X1 f = 0, . . . ,Xr f = 0, exactly n mutually independent
ones are found, and it is intransitive in the opposite case.

Then we have the following proposition:
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Proposition 1. From the finite equations:

x′
i = fi(x1, . . . ,xn; a1, . . . ,ar) (i=1 ···n)

of an r-term group with the infinitesimal transformations X1 f , . . . ,Xr f , one can elim-
inate the r parameters a1, . . . ,ar only when the group is intransitive; in this case, one
obtains between the x and the x′ a certain number of relations that can be brought
to the form:

Ωk(x′
1, . . . ,x

′
n) =Ωk(x1, . . . ,xn) (k=1,2 ···) ;

here, Ω1(x), Ω2(x), . . . is a system of independent solutions of the complete system
which is determined by the r equations X1 f = 0, . . . , Xr f = 0.

In Chap. 6, p. 112, we saw that the solutions of the linear partial differential
equations X f = 0 are the only invariants of the one-term group X f ; accordingly, the
common solutions of the equations X1 f = 0, . . . , Xr f = 0 are the only invariants of
the group X1 f , . . . ,Xr f . We can hence state the proposition:

Proposition 2. If the r-term group X1 f , . . . ,Xr f of the space x1, . . . ,xn is transitive,
then it has no invariant; if it is intransitive, then the common solutions of the equa-
tions X1 f = 0, . . . , Xr f = 0 are its only invariants.

In order to get straight [KLARSTELLEN] the conceptual sense [BEGRIFFLICHEN

SINN] of the obtained analytic results, we now want to interpret x1, . . . ,xn as point
coordinates of a space of n dimensions.

Let the complete system mentioned in the theorem be q-term and let the number
q be smaller than n, so that the group X1 f , . . . ,Xr f is intransitive. Let the functions
Ω1(x1, . . . ,xn), . . . , Ωn−q(x1, . . . ,xn) be independent solutions of the complete sys-
tem in question, and let C1, . . . ,Cn−q denote arbitrary constants. Then the equations:

Ω1 =C1, . . . , Ωn−q =Cn−q

decompose the whole space into∞n−q different q-times extended subsidiary domains
[THEILGEBIETE] which all remain invariant by the group X1 f , . . . ,Xr f . Every point
of the space belongs to a completely determined subsidiary domain and can be trans-
ferred only to points of the same subsidiary domain by transformations of the group.
Still, the points of a subsidiary domain are transformed transitively, that is to say, ev-
ery point in general position in the concerned subsidiary domain can be transferred
to any other such point by means of at least one transformation of the group.

If x1, . . . ,xn is a point in general position, then we also call the functions
Ω1(x), . . . ,Ωn−q(x) the invariants of the point x1, . . . ,xn with respect to the group
X1 f , . . . ,Xr f . The number of these invariants indicates the degree of intransitivity of
our group, since the larger the number of invariants is, the smaller is the dimension
number of the subsidiary domains, inside which the point x1, . . . ,xn stays through
the transformations of the group.

Relative to a transitive group, a point in general position clearly has no invariant.
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The theorem stated above enables us to determine whether a given group
X1 f , . . . ,Xr f is transitive or not. At present, one can give various other versions of
the criterion contained there for the transitivity or the intransitivity of a group.

First, with a light change of terminology, we can say:
An r-term group X1 f , . . . ,Xr f in x1, . . . ,xn is transitive if and only if amongst its

infinitesimal transformations, there are exactly n — say X1 f , . . . ,Xn f — which are
linked by no relation of the form:

χ1(x1, . . . ,xn)X1 f + · · ·+χn(x1, . . . ,xn)Xn f = 0,

whereas Xn+1 f , . . . ,Xr f is expressed as follows in terms of X1 f , . . . ,Xn f :

Xn+ j f = ϕ j1(x)X1 f + · · ·+ϕ jn(x)Xn f

( j=1 ···r−n).

If there are no infinitesimal transformations of this constitution, then the group is
intransitive.

Now, if we remember that every infinitesimal transformation Xk f attaches a di-
rection to each point of the space x1, . . . ,xn, and if we add what has been said in
Chap. 6, p. 117, concerning the independence of such directions which pass through
the same point, then we can also state as follows the criterion for the transitivity of
a group:

Proposition 4. A group X1 f , . . . ,Xr f in the variables x1, . . . ,xn is transitive when it
contains n infinitesimal transformations which attach to every point in general posi-
tion n independent directions; if the group contains no infinitesimal transformation
of this constitution, then it is intransitive.

On the other hand, let us recall the discussions in Chap. 11, p. 215, where we
imagined the infinitesimal transformations of the group expanded with respect to
the powers of the xi −x0

i in the neighborhood of a point x0
i in general position. Since

a transitive group X1 f , . . . ,Xr f in the variables x1, . . . ,xn contains n infinitesimal
transformations, say: X1 f , . . . ,Xn f which are linked by no relation χ1(x)X1 f + · · ·+
χn(x)Xn f = 0, we obtain the following proposition:

Proposition 5. An r-term group X1 f , . . . ,Xr f in the n variables x1, . . . ,xn is transi-
tive if, in the neighborhood of a point x0

i in general position, it contains exactly n
independent infinitesimal transformations of zeroth order in the xi −x0

i out of which
no infinitesimal transformation of first order or of higher order can be linearly de-
duced. If the number of such infinitesimal transformations of zeroth order is smaller
than n, then the group is intransitive.

From this, one sees that one need only know the defining equations of the group
X1 f , . . . ,Xr f in order to settle its transitivity or its intransitivity.

Finally, we can also state the first part of Proposition 5 as follows:
The group X1 f , . . . ,Xr f is transitive when in the neighborhood of a point x0

i in
general position, it contains exactly r −n independent infinitesimal transformations
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whose power series expansions with respect to the xi − x0
i start with terms of first

or of higher order, hence when the group contains exactly r − n, and not more,
independent infinitesimal transformations which leave invariant a point in general
position. —

If one only knows the infinitesimal transformations X1 f , . . . ,Xr f of an intransi-
tive group then, as we have seen, one finds the invariants of the group by integrating
the complete system X1 f = 0, . . . ,Xr f = 0. Now, it is of great importance that this
integration is not necessary when the finite equations of the group are known, so
that in this case, the invariants of the group are found instead by plain elimination.

In order to prove this, we imagine that the finite equations of an intransitive group
are given:

x′
i = fi(x1, . . . ,xn a1, . . . ,ar) (i=1 ···n),

and then we eliminate the parameters a1, . . . ,ar from them. According to the pre-
ceding, it must be possible to bring the n−q independent equations obtained in this
way:

(3) Wμ(x1, . . . ,xn, x′
1, . . . ,x

′
n) = 0 (μ=1 ···n−q),

to the form:

(4) Ωμ(x′
1, . . . ,x

′
n) =Ωμ(x1, . . . ,xn) (μ=1 ···n−q),

where the Ωμ(x) are the sought invariants. Hence, when we solve the equations (3)
with respect to n−q of the variables x′

1, . . . ,x
′
n:

x′
μ =Πμ(x1, . . . ,xn, x′

n−q+1, . . . ,x
′
n) (μ=1 ···n−q),

which is always possible, then we obtain n − q functions Π1, . . . ,Πn−q in which
the variables x1, . . . ,xn occur only in the combinations Ω1(x), . . . ,Ωn−q(x). Conse-
quently, the n−q expressions:

Πμ(x1, . . . ,xn, αn−q+1, . . . ,αn) (μ=1 ···n−q)

in which αn−q+1, . . . ,αn denote constants, represent invariants of our group, and in
fact clearly, n−q independent invariants. —

The following therefore holds true.

Theorem 35. If one knows the finite transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an intransitive group, then one can find the invariants of this group by means of
elimination.
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§ 59. When we studied how a point in general position behaves relative to the
transformations of an r-term group, we were naturally led to the concepts of tran-
sitivity and of intransitivity [WURDEN WIR MIT NOTHWENDIGKEIT AUF DIE BE-
GRIFFE TRANSITIVITÄT UND INTRANSITIVITÄT GEFÜHRT]. We obtained in this
way a division [EINTHEILUNG] of all r-term groups of a space of n dimensions in
two different classes, exactly the same way as in the theory of substitutions; but at
the same time, we also obtained a division of the intransitive groups, namely ac-
cording to the number of the invariants that a point in general position possesses
with respect to the concerned group.

Correspondingly to the process of the theory of substitutions, we now can also
go further and study the behavior of two or more points in general position relative
to an r-term group. This gives us a new classification of the groups of Rn.

Let:
yi = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

be an r-term group and let X1 f , . . . ,Xr f be r independent infinitesimal transforma-
tions of it.

At first, we want to consider two points x′
1, . . . ,x

′
n and x′′

1 , . . . ,x
′′
n and to seek their

invariants relative to our group, that is to say: we seek all functions of x′
1, . . . ,x

′
n,

x′′
1 , . . . ,x

′′
n which remain invariant by the transformations of our group.

To this end, we write the infinitesimal transformations Xk f once in the x′ under
the form X ′

k f and once in the x′′ in the form X ′′
k f ; then simply, the sought invariants

are the invariants of the r-term group:

(5) X ′
k f +X ′′

k f (k=1 ···r)

in the variables x′
1, . . . ,x

′
n, x′′

1 , . . . ,x
′′
n .

If J1(x), . . . ,Jρ1(x) are the invariants of the group X1 f , . . . ,Xr f , then without ef-
fort, the 2ρ1 functions:

J1(x′), . . . ,Jρ1(x
′), J1(x′′), . . . ,Jρ1(x

′′)

are invariants, and in fact, independent invariants of the group (5); but in addition,
there can be a certain number, say ρ2, of invariants:

J′
1(x

′
1, . . . ,x

′
n, x′′

1 , . . . ,x
′′
n), . . . , J′

ρ2
(x′

1, . . . ,x
′
n, x′′

1 , . . . ,x
′′
n)

which are mutually independent and are independent of the above 2ρ1 invariants.
So in this case, two points in general position have 2ρ1 +ρ2 independent invariants
relative to the group X1 f , . . . ,Xr f , amongst which however, only ρ2 have to be con-
sidered as essential, because each one of the two points already has ρ1 invariants for
itself. Under these assumptions, from the equations:

y′
i = fi(x′

1, . . . ,x
′
n, a1, . . . ,ar), y′′

i = fi(x′′
1 , . . . ,x

′′
n , a1, . . . ,ar)

(i=1 ···n)
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there result the following relations free of the a:

Jk(y′) = Jk(x′), Jk(y′′) = Jk(x′′) (k=1 ···ρ1)

J′
j(y

′, y′′) = J′
j(x

′, x′′) ( j=1 ···ρ2).

Therefore, if we imagine that the quantities x′
1, . . . ,x

′
n and y′

1, . . . ,y
′
n are chosen

fixed, then the totality of all positions y′′
1 , . . . ,y

′′
n which the point x′′

1 , . . . ,x
′′
n can take

are determined by the equations:

Jk(y′′) =Jk(x′′), J′
j(y

′,y′′) = J′
j(x

′,x′′)

(k=1 ···ρ1 ; j=1 ···ρ2) ;

so there are ∞n−ρ1−ρ2 distinct positions of this sort.
In a similar way, one can determine the invariants that three, four and more points

have relative to the group. So one finds a series of whole numbers ρ1, ρ2, ρ3, . . .
which are characteristic of the group and which are independent of the choice of
variables. If one computes these numbers one after the other, one always comes to
a number ρm which vanishes, while at the same time all numbers ρm+1, ρm+2, . . .
are equal to zero.

We do not want pursue this behavior any further, but it must be observed that
analogous results hold for every family of ∞r transformations, whether or not this
family constitutes a group.

§ 60. We saw above that an intransitive group X1 f , . . . ,Xr f decomposes the en-
tire space (x1, . . . ,xn) into a continuous family of q-times extended manifolds of
points:

Ω1(x1, . . . ,xn) =C1, . . . , Ωn−q(x1, . . . ,xn) =Cn−q

which all remain invariant by the transformations of the group. Here, the Ω denote
independent solutions of the q-term complete system which is determined by the
equations X1 f = 0, . . . ,Xr f = 0.

Each point of the space belongs to one and to only one of the ∞n−q manifolds
Ω1 = a1, . . . , Ωn−q = an−q, so in the sense provided by Chap. 6, p. 116, we are
dealing with a decomposition of the space. This decomposition remains invariant
by all transformations of the group X1 f , . . . ,Xr f ; and at the same time, each one of
the individual subsidiary domains in which the space is decomposed stays invariant.

It can also happen for transitive groups that there exists a decomposition of the
space into ∞n−q q-times extended manifolds Ω1 = a1, . . . , Ωn−q = an−q which re-
main invariant by the group. But naturally, each individual manifold amongst the
∞n−q manifolds need not remain invariant, since otherwise the group would be in-
transitive; these ∞n−q manifolds must rather be permuted by the group, while the
totality of them remains invariant.

Now, a group of Rn is called imprimitive [IMPRIMITIV] when it determines at
least one invariant decomposition of the space by ∞n−q q-times extended manifolds;
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a group for which there appears absolutely no invariant decomposition is called
primitive [PRIMITIV]. That the values q = 0 and q = n are excluded hardly requires
mention here.

Intransitivity is obviously a special case of imprimitivity: every intransitive group
is also imprimitive. On the other hand, every primitive group is necessarily transi-
tive.

Now, in order to obtain an analytic definition of the imprimitivity of an r-term
group X1 f , . . . ,Xr f , we need only recall that every decomposition of the space into
∞n−q q-times extended manifolds y1 = const., . . . , yn−q = const. is analytically de-
fined by the q-term complete system Y1 f = 0, . . . , Yq f = 0, the solutions of which
are the yk. The fact that the concerned decomposition remains invariant by the group
X1 f , . . . ,Xr f amounts to the fact that the corresponding q-term complete system ad-
mits all transformations of the group.

The q-term complete system Yk f = 0 admits our group as soon as it admits the
general one-term group λ1 X1 f + · · ·+λr Xr f . According to Theorem 20, Chap. 8,
p. 155, this is the case when, between the Xi f and the Yk f , there exist relationships
of the following form:

[Xi, Yk] =
q

∑
ν=1

ψikν(x)Yν f .

Consequently, it is a necessary and sufficient condition for the imprimitivity of
the group X1 f , . . . ,Xr f that there exists a q-term complete system:

Y1 f = 0, . . . , Yq f = 0 (q<n)

which stands in such relationships with the Xk f .
Furthermore, the group X1 f , . . . ,Xr f can also be imprimitive in several ways,

that is to say, there can exist many, and even infinitely many systems that the group
admits.

Later, we will develop a method for constructing all complete systems which
remain invariant by a given group. Hence in particular, we will also be able to deter-
mine whether the group in question is primitive or not. Naturally, the latter question
requires a special examination only for transitive groups.

Now, we make a brief remark.
Let the equations:

y1 =C1, . . . , yn−q =Cn−q

represent a decomposition of the space x1, . . . ,xn which is invariant by the group
X1 f , . . . ,Xr f . Then if we introduce y1, . . . ,yn−q together with q other appropriate
functions z1, . . . ,zq of x1, . . . ,xn as new independent variables, the infinitesimal
transformations Xk f receive the specific form:

Xk f =
n−q

∑
μ=1

ωkμ(y1, . . . ,yn−q)
∂ f
∂yμ

+
q

∑
j=1
ζk j(y1, . . . ,yn−q, z1, . . . ,zq)

∂ f
∂ z j

(k=1 ···r).
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Now, according to Chap. 12, p. 220, all infinitesimal transformations e1 X1 f +
· · ·+ er Xr f which leave invariant a determined manifold y1 = y0

1, . . . , yn−q = y0
n−q

generate a subgroup. If we want to find the infinitesimal transformations in question,
then we only have to seek all systems of values e1, . . . ,er which satisfy the n − q
equations:

r

∑
k=1

ekωkμ(y0
1, . . . ,y

0
n−q) = 0 (μ=1 ···n−q).

If r > n − q, then there are always systems of values e1, . . . ,er of this constitution,
and consequently in this case, the group X1 f , . . . ,Xr f certainly contains subgroups
with a least r −n+q parameters.

Furthermore, it is clear that the r reduced [VERKÜRZTEN] infinitesimal transfor-
mations:

Xk f =
n−q

∑
μ=1

ωkμ(y1, . . . ,yn−q)
∂ f
∂yμ

(k=1 ···r)

in the n − q variables y1, . . . ,yn−q generate a group; however, this group possibly
contains not r, but only a smaller number of essential parameters. Clearly, the cal-
culations just indicated amount to the determination of all infinitesimal transfor-
mations e1 X1 f + · · ·+ er Xr f which leave invariant the point y0

1, . . . ,y
0
n−q of the

(n−q)-times extended space y1, . . . ,yn−q.

—————–



Chapter 14
Determination of All Systems of Equations
Which Admit a Given r-term Group

If a system of equations remains invariant by all transformations of an r-term group
X1 f , . . . ,Xr f , we say that it admits the group in question. Every system of equations
of this form admits all transformations of the general one-term group ∑ ek Xk f , and
therefore in particular, all ∞r−1 infinitesimal transformations ∑ ek Xk f of the r-term
group.

Now on the other hand, we have shown earlier on that every system of equations
which admits the r infinitesimal transformations X1 f , . . . ,Xr f and therefore also,
all ∞r−1 infinitesimal transformations ∑ ek Xk f , allows at the same time all finite
transformations of the one-term group ∑ ek Xk f , that is to say, all transformations of
the group X1 f , . . . ,Xr f (cf. Theorem 14, p. 127). Hence if all systems of equations
which admit the r-term group X1 f , . . . ,Xr f are to be determined, this shall be a
problem which is completely settled by the developments of Chap. 7. Indeed, the
problem of setting up all systems of equations which admit r given infinitesimal
transformations is solved in complete generality there.

However, if the X1 f , . . . ,Xr f which are considered here generate an r-term group
then this leads to a major simplification in comparison to the general case. Hence it
appears to be completely legitimate to independently settle the special case where
the Xk f generate a group.

The treatment of the addressed problem turns out to be essentially the same
whether or not one knows the finite equations of the concerned group. In the
first case, no integration is required. But in the second case, one generally needs
integration; however, some operations which were necessary for the general
problem in Chapter 7 can be dropped.

We shall treat these two cases, above all because of the applications, but also in
order to afford a deeper insight into the problem; in fact, the concerned develop-
ments mutually complement one another.1

Lastly, let us mention that from now on, we shall frequently translate the common
symbolism of the theory of substitutions into the theory of transformation groups.

1 LIE, Math. Ann. Vol. XI, pp. 510–512, Vol. XVI, p. 476. Archiv for Math. og Nat., Christiania
1878, 1882, 1883. Math. Ann. Vol. XXIV.

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_14
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So for example, we denote by S, T , . . . individual transformations, and by S−1, T −1,
. . . the corresponding inverse transformations. By ST , we understand the transfor-
mation which is obtained when the transformation S is executed first, and then the
transformation T . From this, it follows that expressions of the form SS−1, T T −1

mean the identity transformation.
§ 61. We consider an arbitrary point P of the space. The totality of all positions

that this point takes by the ∞r transformations of the group forms a certain manifold
M; we shall show that this manifold admits the group, or in other words, that every
point of M is transferred to a point again of M by every transformation of the group.

Indeed, let P′ be any point of M, and let P′ come from P by the transformation S
of our group, what we want to express by means of the symbolic equation:

(P)S = (P′).

Next, if T is a completely arbitrary transformation of the group, then by the execu-
tion of T , P′ is transferred to:

(P′)T = (P)ST ;

but since the transformation ST belongs to the group as well, (P)ST is also a point
of M, and our claim is therefore proved.

Obviously, every manifold invariant by the group which contains the point P
must at the same time contain the manifold M. That is why we can also say: M is
the smallest manifold invariant by the group to which the point P belongs.

But still, there is something more. It can be shown that with the help of transfor-
mations of the group, every point of M can be transferred to any other point of this
manifold. Indeed, if P′ and P′′ are any two points of M and if they are obtained from
P by means of the transformations S and U , respectively, one has the relations:

(P)S = (P′), (P)U = (P′′) ;

from the first one, it follows:

(P′)S−1 = (P)SS−1 = (P) ;

hence with the help of the second one, we get:

(P′)S−1 U = (P′′),

that is to say, by the transformation S−1U which likewise belongs to the group,
the point P′ is transferred to the point P′′. As a result, the assertion stated above is
proved.
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From this, we realize that the manifold M can also be defined as the totality of
all positions which any of its other points, not just P, take by the ∞r transformations
of the group.

Consequently, the following holds true.

Theorem 36. If, on a point P of the space (x1, . . . ,xn), one executes all ∞r trans-
formations of an r-term group of this space, then the totality of all positions that
the point takes in this manner forms a manifold invariant by the group; this man-
ifold contains no smaller subsidiary domain invariant by the group, and it is itself
contained in all invariant manifolds in which the point P lies.

If one assumes that the finite equations x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) of the

r-term group are known, then without difficulty, one can indicate for every point
x0

1, . . . ,x
0
n the smallest invariant manifold to which it belongs. Indeed, by the above,

the manifold in question consists of the totality of all positions x1, . . . ,xn that the
point x0

1, . . . ,x
0
n takes by the transformations of the group; but evidently, the totality

of these positions is represented by the n equations:

xi = fi(x0
1, . . . ,x

0
n, a1, . . . ,ar) (i=1 ···n)

in which the parameters a are to be interpreted as independent variables. If one
eliminates the a, one obtains the sought manifold represented by equations between
the x alone.

Here, it is to be recalled that in the equations xi = fi(x0,a), the a are not com-
pletely arbitrary; indeed, all systems of values a1, . . . ,ar for which the determinant:

∑±
[
∂ f1(x,a)
∂x1

]

x=x0
· · ·

[
∂ fn(x,a)
∂xn

]

x=x0

vanish are excluded from the beginning, because we always use only transforma-
tions which are solvable. From this, it follows that in certain circumstances, one
obtains, by elimination of the a, a manifold which contains, aside from the points to
which x0

1, . . . ,x
0
n is transferred by the solvable transformations of the group, yet other

points; then as one easily sees, the latter points in turn form an invariant manifold.

Furthermore, it is to be remarked that the discussed elimination can take different
shapes for different systems of values x0

k ; indeed, the elimination of the a need not
always lead to the same number of relations between the x, which again means that
the smallest invariant manifolds in question need not all have the same dimension
number.

If, amongst all smallest invariant manifolds of the same dimension number, one
takes infinitely many such invariant manifolds according to an arbitrary analytic
rule, then their totality also forms an invariant manifold. In this way, all invariant
manifolds can obviously be obtained.

So we have the

Theorem 37. If one knows the finite equations of an r-term group X1 f , . . . ,Xr f in
the variables x1, . . . ,xn, then without integration, one can find all invariant systems
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of equations invariant by the group, or, what is the same, all manifolds invariant by
it.

§ 62. In Chap. 12, p. 219, we have seen that an r-term group Gr in x1, . . . ,xn

associates to every point of the space a completely determined subgroup, namely the
subgroup which consists of all transformations of Gr which leave the point invariant.

Let the point P be invariant by an m-term subgroup of Gr, but by no subgroup
with more terms; let S be the general symbol of a transformation of this m-term
subgroup, so that one hence has: (P)S = (P). Moreover, let T be a transformation
which transfers the point P to the new position P′:

(P)T = P′.

Now, if T is an arbitrary transformation of Gr which transfers P to P′ as well, we
have:

(P)T = (P′) = (P)T,

hence we have:
(P)TT −1 = (P).

From this, it is evident that TT −1 belongs to the transformations S, hence that:

T = ST

is the general form of a transformation of the same constitution as T. Now, since
there are precisely ∞m transformations S, we see that:

Gr contains exactly ∞m transformations which transfer P to P′.

On the other hand, if we ask for all transformations S′ of Gr which leave invariant
the point P′, then we have to fulfill the condition (P′)S′ = (P′). From it, we see that:

(P)T S′ = (P)T and (P)T S′ T −1 = (P),

and consequently T S′ T −1 is a transformation S, that is to say S′ has the form:

S′ = T −1 ST.

One easily sees here that S can be a completely arbitrary transformation of the
subgroup associated to the point P; as a result, our group contains exactly ∞m dif-
ferent transformations S′, and in turn now, they obviously form an m-term subgroup
of Gr.

The results of this section obtained up to now can be summarized as follows.

Proposition 1. If an r-term group Gr of Rn contains exactly ∞m and not more trans-
formations S which leave the point P invariant, and if in addition it contains at least
one transformation T which transfers the point P to the point P′, then it contains on



§ 62. 239

the whole ∞m different transformations which transfer P to P′; the general form of
these transformations is: ST . In addition, Gr contains exactly ∞m transformations
which leave invariant the point P′; their general form is: T −1 ST .

From the second part of this proposition, it follows that the points which admit
exactly ∞m transformations of our group are permuted by the transformations of the
group, while their totality remains invariant.

Hence the following holds true.

Theorem 38. The totality of all points which admit the same number, say ∞m, and
not more transformations of an r-term group, remains invariant by all transforma-
tions of the group.

We have proved this theorem by applying considerations which are borrowed
from the theory of substitutions. But at the same time, we want to show how one
can conduct the proof in case one abstains from such considerations, or from a more
exact language.

A point x0
1, . . . ,x

0
n which allows ∞m transformations of the r-term group:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

admits precisely m independent infinitesimal transformations of this group. Hence
the group contains, in the neighborhood of x0

1, . . . ,x
0
n, exactly m independent in-

finitesimal transformations whose power series expansions with respect to the xi −x0
i

begin with terms of first order or of higher order. Now, if we imagine that new vari-
ables:

xi = x0
i +

n

∑
k=1

αki (xk − x0
k)+ · · · (i=1 ···n)

∑ ± α11 · · · αnn �= 0,

are introduced in the group, then according to Chap. 11, p. 210, we obtain a new
group in the xi which, in the neighborhood of x0

i , contains in the same way exactly
m independent infinitesimal transformations of first order or of higher order. In par-
ticular, if we imagine that the transition from the xi to the xi is a transformation of
the group X1 f , . . . ,Xr f , then the group in the xi is simply identical to the group:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

(cf. Chap. 3, p. 46). In other words, if, by a transformation of our group, the point
x0

i is transferred to the point x0
i , then this point also admits precisely m indepen-

dent infinitesimal transformations of the group. But with this, Theorem 38 is visibly
proved.

From Theorem 38 we see immediately that the following proposition also holds
true:
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Proposition 2. The totality of all points x1, . . . ,xn which admit m or more indepen-
dent infinitesimal transformations of the r-term group X1 f , . . . ,Xr f remains invari-
ant by this group.

If we associate this proposition with the developments in Chap. 11, Proposi-
tion 4, p. 213, we obtain a new important result. At that time, we indeed saw that the
points x1, . . . ,xn which admit m or more independent infinitesimal transformations
e1 X1 f + · · ·+ er Xr f of the r-term group X1 f , . . . ,Xr f are characterized by the fact
that all (r−m+1)×(r−m+1) determinants of a certain matrix are brought to zero.
At present, we recognize that the system of equations which is obtained by equating
to zero these (r − m+ 1)× (r − m+ 1) determinants admits all transformations of
the group X1 f , . . . ,Xr f . As a result, we have the

Theorem 39. If r independent infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

generate an r-term group, then by equating to zero all (r − m+ 1)× (r − m+ 1)
determinants of the matrix:

(1)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n

· · · ·
ξr1(x) · · ξrn

∣
∣
∣
∣
∣
∣

,

one always obtains a system of equations which admits all transformations of the
group X1 f , . . . ,Xr f ; this holds true for every number m � r, provided only that there
actually exist systems of values x1, . . . ,xn which bring to zero all the (r − m+ 1)×
(r −m+1) determinants in question.

Later in the course of this chapter (§§ 66 and 67, p. 249 and 251 resp.), we will
give two different purely analytic proofs of the above important theorem. Temporar-
ily, we observe only the following:

Theorem 39 shows that there is an essential difference between the problem of
Chap. 7, p. 138 up to 147, and the problem of the present chapter.

If X1 f , . . . ,Xr f generate an r-term group, then by equating to zero all (r − m+
1)× (r−m+1) determinants of the matrix (1), one always obtains an invariant sys-
tem of equations, only as soon as all these determinants really can vanish at the same
time. But this is no longer true when it is only assumed about the Xk f that, when
set to zero, they constitute a complete system consisting of r, or fewer equations. In
this case, it is certainly possible that there are invariant systems of equations which
embrace the equations obtained by equating to zero the determinants in question,
but it is not at all always the case that one obtains an invariant system of equations
by equating to zero these determinants, just like that. To get this, further operations
are rather necessary in general, as is explained in Chap. 7, p. 139 sq.

In the last section of this chapter, p. 253, we will study this point in more detail.
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§ 63. In the preceding section, we saw that, from the infinitesimal transforma-
tions of an r-term group, one can derive without integration certain systems of equa-
tions which remain invariant by the concerned group. Now, we will show how one
finds all systems of equations which admit an r-term group with given infinitesimal
transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r).

We assume that amongst the r equations X1 f = 0, . . . , Xr f = 0, exactly q mutually
independent are extant, hence that in the matrix (1), all (q+1)×(q+1) determinants
vanish identically, but not all q×q determinants.

Exactly as in Chap. 7, p. 135 and 138, we can then distribute in q+ 1 different
classes the systems of equations which admit the r infinitesimal transformations
X1 f , . . . ,Xr f . In one and the same class, we include the systems of equations by
virtue of which all (p+ 1)× (p+ 1) determinants of the matrix (1) vanish, but not
all p × p determinants, where it is understood that p is one of the q+ 1 numbers
q, q−1, . . . , 1, 0. If we prefer to apply the terminology of the theory of manifolds,
we must say: to one and the same class belong the invariant manifolds whose points
admit the same number, say exactly r − p, of infinitesimal transformations e1 X1 f +
· · ·+ er Xr f . To every point of such a manifold, the infinitesimal transformations
X1 f , . . . ,Xr f attach exactly p independent directions, which in turn are in contact
with the manifold (cf. Chap. 123, p. 149).

The usefulness of this classification is that it makes it possible to consider each
individual class and to determine the systems of equations which belong to it, or,
respectively, the manifolds.

If the number p equals q, then the determination of all invariant systems of equa-
tions which belong to the concerned class is achieved by Theorem 17 in Chap. 7,
p. 137. Every such system of equations can be represented by relations between the
common solutions of the equations X1 f = 0, . . . , Xr f = 0. Since these r equations
determine a q-term complete system, they will of course possess common solutions
only when q is smaller than n.

At present, we can disregard the case p = q. Hence we assume from now on that
p is one of the numbers 0, 1, . . . , q−1 and we state the problem of determining all
manifolds invariant by the group X1 f , . . . ,Xr f which belong to the class defined by
the number p.

The first step for solving this problem is the determination of the locus of all
points for which all (p+1)×(p+1) determinants of the matrix (1) vanish, whereas
not all p × p determinants do. Indeed, the corresponding locus clearly contains all
manifolds invariant by the group which belong to our class; furthermore, according
to Theorem 38, p. 239, this locus itself constitutes an invariant manifold.

In order to find the sought locus, we at first study the totality of all points for
which all (p+1)× (p+1) determinants of the matrix (1) vanish, that is to say, we
calculate all the (p+ 1)× (p+ 1) determinants of the matrix in question — they
can be denoted Δ1, Δ2, . . . , Δρ — and we set them equal to zero:
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Δ1 = 0, . . . , Δρ = 0.

The equations so obtained then represent a manifold which, according to Theo-
rem 39, p. 240, is invariant by the group and which contains the sought locus.

If there is in fact no system of values x1, . . . ,xn which brings to zero all the Δ , or
if the (p+ 1)× (p+ 1) determinants can vanish only in such a way that all p × p
determinants also vanish at the same time, then it is clear that actually no mani-
fold invariant by the group X1 f , . . . ,Xr f belongs to the class which is defined by
p. Consequently, we see that not all of our q+ 1 classes need to be represented by
manifolds which belong to it.

We assume that for the p chosen by us, neither of the two exceptional cases just
discussed occurs, so that there really are systems of values x1, . . . ,xn for which all
(p+ 1)× (p+ 1) determinants of the matrix (1), but not all p × p determinants,
vanish.

As we have already observed, the manifold Δ1 = 0, . . . , Δρ = 0 remains invariant
by the group X1 f , . . . ,Xr f . Now, if this manifold is reducible, it therefore consists
of a discrete number of finitely many different manifolds, so it decomposes without
difficulty into as many different individual invariant manifolds. Indeed, the group
X1 f , . . . ,Xr f is generated by infinitesimal transformations; hence when it leaves in-
variant the totality of finitely many manifolds, then each individual manifold must
stay at rest.1 (Translator’s note: In fact, the argument is that each stratum is kept
invariant because the group acts close to the identity.)

Let M1, M2, . . . be the individual irreducible, and so invariant by the group, man-
ifolds into which the manifold Δ1 = 0, . . . , Δρ = 0 decomposes. Then amongst these
manifolds, there may possibly be some at all points of which all p× p determinants
of the matrix (1) also vanish. When we exclude all manifolds of this special con-
stitution, we still keep certain manifolds M1, M2, . . . , the totality of which clearly
forms the locus of all points for which all (p+ 1)× (p+ 1) determinants of the
matrix (1) vanish, but not all p× p determinants.

With this, we have found the sought locus; at the same time, we see that this
locus can consist of a discrete number of individual invariant manifolds M1, M2, . . .
which, naturally, all belong to the class defined by p.

Clearly, each manifold invariant by our group which belongs to the class defined
by p is contained in one of the manifolds M1, M2, . . . So in order to find all such
manifolds, we need only to examine each individual manifold M1, M2, . . . and
to determine the invariant manifolds contained in them which belong to the said
class. According to a remark made earlier on (Chap. 7, Proposition 6, p. 149), each
invariant manifold belonging to the class p is at least p-times extended.

§ 64. The problem to which we have been led at the end of the preceding section
is a special case of the following general problem:
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Suppose the equations of an irreducible manifold M which remain invariant by
the transformations of the r-term group X1 f , . . . ,Xr f are given. In general, the in-
finitesimal transformations X1 f , . . . ,Xr f attach exactly p independent directions to
the points of the manifold with which they are naturally in contact, and the manifold
is at least p-times extended. We seek all invariant subsidiary domains contained in
M, to the points of which the transformations X1 f , . . . ,Xr f attach exactly p inde-
pendent directions.

We now want to solve this problem.
We imagine the equations of M presented in the resolved form:

xs+i = ϕs+i(x1, . . . ,xs) (i=1 ···n−s),

but here it should not be forgotten that by the choice of a determined resolution,
we exclude all systems of values x1, . . . ,xn for which precisely this resolution is not
possible. It is conceivable that we exclude in this manner certain invariant subsidiary
domains of M which are captured by another resolution.

The case p = 0 requires no special treatment, because obviously, the manifold M
then consists only of invariant points.

In order to be able to solve the problem for the remaining values of p, we must
begin by mentioning a few remarks that stand in close connection to the analytic
developments in Chap. 7, p. 140 and 142, and which in principle already have great
importance.

Since the manifold M remains invariant by the transformations of our group, its
points are permuted by the transformations of the group. Hence, if we disregard all
points lying outside of M, then our group X1 f , . . . ,Xr f determines a certain group
of transformations of the points of M. However, this new group need not contain r
essential parameters, since it can happen that a subgroup of the group X1 f , . . . ,Xr f
leaves all points of M individually fixed.

We first summarize what has been said:

Theorem 40. The points of a manifold that remains invariant by an r-term group of
the space (x1, . . . ,xn) are in their turn transformed by a continuous group with r or
fewer parameters.

Since we have assumed that the invariant manifold M is irreducible, we can con-
sider it as being a space in itself. The analytic expression of the transformation group
by which the points of this space are transformed must therefore be obtained by cov-
ering the points of M by means of a related coordinate system and by establishing
how these coordinates are transformed by the group X1 f , . . . ,Xr f .

Under the assumptions made, the group which transforms the points of M can be
immediately indicated. Indeed, we need only to interpret x1, . . . ,xs as coordinates of
the points of M, and in the finite equations x′

i = fi(x,a) of the group X1 f , . . . ,Xr f , to
replace the xs+1, . . . ,xn by ϕs+1, . . . ,ϕn and to leave out x′

s+1, . . . ,x
′
n; then we obtain

the equations of the concerned group, which are the following:

x′
i = fi(x1, . . . ,xs, ϕs+1, . . . ,ϕn; a1, . . . ,ar) (i=1 ···n).
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One could convince oneself directly that one really has to consider a group in the
variables x1, . . . ,xn. For that, one would only need to execute two transformations
one after another2 (Translator’s note: Recall from Chaps. 4 and 9 that only closure
under composition counts for Lie.) in the form just written, and then to take account
of two facts: firstly, that the transformations x′

i = fi(x1, . . . ,xn, a1, . . . ,ar) form a
group, and secondly that the system of equations xs+i = ϕs+i admits this group.

If on the other hand we wanted to know the infinitesimal transformations of the
group in x1, . . . ,xs, then we would only need to leave out the terms with ∂ f/∂xs+1,
. . . , ∂ f/∂xn in the Xk f and to replace xs+1, . . . ,xn by the ϕ in the remaining terms.
One finds the r infinitesimal transformations:

Xk f =
s

∑
ν=1

ξkν(x1, . . . ,xs, ϕs+1, . . . ,ϕn)
∂ f
∂xν

(k=1 ···r),

which, however, need not be independent of each other.
We will verify directly that the reduced infinitesimal transformations Xk f gen-

erate a group. The concerned computation is mostly similar to the one executed in
Chap. 7, p. 145.

At that time, we indicated the execution of the substitution xs+i = ϕs+i by means
of the symbol [ ]. So we have at first:

Xk f =
s

∑
ν=1

[ξkν ]
∂ f
∂xν

.

Furthermore as before, we see via Eq. (3) of Chap. 7, p. 126, that:

Xk[Ω ] ≡ [XkΩ ],

where it is understood that Ω is a completely arbitrary function of x1, . . . ,xn. From
this, we get:

[Xk, X j] =
s

∑
ν=1

{

[Xkξ jν ]− [Xjξkν ]
} ∂ f
∂xν

;

and since relations of the form:

[Xk, Xj] =
r

∑
π=1

ck jπ Xπ f ,

or, what is the same, of the form:

Xkξ jν −Xjξkν =
r

∑
π=1

ck jπ ξπν

hold true, then we obtain simply:
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[Xk, X j] =
r

∑
π=1

ck jπ Xπ f .

As a result, it is proved in a purely analytic way that X1 f , . . . ,Xr f really generate
a group.

The infinitesimal transformations X1 f , . . . ,Xr f of the space x1, . . . ,xn attach ex-
actly p independent directions dx1 : · · · : dxn to every point in general position on
the manifold M, and these directions, as is known, are in contact with the manifold.
It can be foreseen that the infinitesimal transformations X1 f , . . . ,Xr f of the space
x1, . . . ,xs, or what is the same, of the manifold M, also attach to every point x1, . . . ,xs

in general position exactly p independent directions dx1 : · · · : dxs. We shall verify
that this is really so.

Under the assumptions made, after the substitution xs+i = ϕs+i, all (p+ 1)×
(p+ 1) determinants of the matrix (1) vanish, but not all p × p determinants, and
therefore, amongst the r equations:

(2) [ξk1]
∂ f
∂x1

+ · · ·+[ξkn]
∂ f
∂xn

(k=1 ···r),

exactly p independent ones are extant. From this, it follows that amongst the r equa-
tions Xk f = 0, there are at most p independent ones; our problem is to prove that
there are exactly p. This is not difficult.

Since the system of equations xs+i −ϕs+i = 0 admits the infinitesimal transfor-
mations Xk f , we have identically:

[Xk(xs+i −ϕs+i)] ≡ 0,

or if written in greater length:

[ξk,s+i] ≡
s

∑
ν=1

[ξkν ]
∂ϕs+i

∂xν
.

Hence, if by χ1, . . . ,χr we denote arbitrary functions of x1, . . . ,xs, we then have:

r

∑
k=1

χk [ξk,s+i] ≡
r

∑
k=1

χk Xkϕs+i.

Now, if there are r functions ψ1, . . . ,ψr of x1, . . . ,xn not all vanishing such that
the equation:

r

∑
k=1

ψk(x1, . . . ,xs)Xk f ≡ 0

is identically satisfied, then we have:

r

∑
k=1

ψk [ξk,s+i] ≡
r

∑
k=1

ψk Xkϕs+i ≡ 0,
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and consequently also:

r

∑
k=1

ψk(x1, . . . ,xs)
n

∑
ν=1

[ξkν ]
∂ f
∂xν

≡ 0.

As a result, it is proved that amongst the equations:

X1 f = 0, . . . , Xr f = 0,

there are exactly as many independent equations as there are amongst the equa-
tions (2), that is to say, exactly p independent ones.

At present, we are at last in a position to settle the problem posed at the beginning
of the section, on p. 243.

The problem is the determination of certain subsidiary domains invariant by the
group X1 f , . . . ,Xr f in the invariant manifold M, namely the subsidiary domains to
the points of which the infinitesimal transformations X1 f , . . . ,Xr f attach exactly p
independent directions. According to the preceding, these subsidiary domains can be
defined as certain manifolds of the space x1, . . . ,xs; as such, they are characterized by
the fact that they admit the group X1 f , . . . ,Xr f and that, to their points, are attached
exactly p independent directions by the infinitesimal transformations X1 f , . . . ,Xr f .
Consequently, our problem amounts to the following:

In a space M of s dimensions, let the group X1 f , . . . ,Xr f be given, whose in-
finitesimal transformations attach, to the points of this space in general position,
exactly p � s independent directions. We seek all invariant manifolds contained in
M having the same constitution.

But we have already solved this problem above (p. 241); only then we had the
group X1 f , . . . ,Xr f in place of the group X1 f , . . . ,Xr f , the number n in place of the
number s, the number q in place of the number p. Thus, the wanted manifolds are
represented by means of relations between the solutions of the p-term complete sys-
tem that the equations X1 f = 0, . . . , Xr f = 0 determine. If one adds these relations
to the equations of M, then one obtains the equations of the invariant subsidiary
domains of M in terms of the initial variables x1, . . . ,xn.

Naturally, there are invariant subsidiary domains in M of the demanded sort only
when s is larger than p, and there are none, when the numbers s and p are equal to
one another.

With this, we therefore have the following important result:

Theorem 41. If an s-times extended manifold of the space x1, . . . ,xn admits the r-
term group X1 f , . . . ,Xr f and if, to the points of this manifold, the infinitesimal trans-
formations attach exactly p independent directions which then surely fall into the
manifold,3 (Translator’s note: Act of “intrinsicness”: directions attached to M in-
side the ambient space in fact happen to be intrinsically attached to M.) then s � p;
in case s > p, the manifold decomposes into ∞s−p p-times extended subsidiary do-
mains, each of which admits the group X1 f , . . . ,Xr f .
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At the same time, the problem to which we were led at the end of the preceding
section (p. 243) is also completely solved, and with this, the determination of all
systems of equations that the group X1 f , . . . ,Xr f admits is achieved. In view of
applications, we put together once more the required guidelines [MASSREGELN].

Theorem 42. If the r independent infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

generate an r-term group and if at the same time, all (q+1)× (q+1) determinants
of the matrix: ∣

∣
∣
∣
∣
∣

ξ11 · · · ξ1n

· · · · ·
ξr1 · · · ξrn

∣
∣
∣
∣
∣
∣

vanish identically, whereas not all q × q determinants do, then one finds as follows
all systems of equations, or, what is the same, all manifolds that the group admits.

One distributes the systems of equations or the manifolds in question in q+ 1
different classes by including in the same class the systems of equations by virtue
of which4 (Translator’s note: This just means systems of equations including the
equations of (p+ 1)× (p+ 1) minors.) all (p+ 1)× (p+ 1) determinants of the
above matrix, but not all p × p determinants, vanish, where it is understood that p
is one of the numbers q, q−1, . . . , 1, 0.

Then in order to find all invariant systems of equations which belong to a de-
termined class, one forms all (p+1)× (p+1) determinants Δ1, Δ2, . . . , Δρ of the
matrix and one sets them equal to zero. If there is no system of values x1, . . . ,xn

which brings to zero all the ρ determinants Δi at the same time, then in fact, the
class which is defined by the number p contains no invariant manifold; and the
same evidently also holds for the classes with numbers p − 1, p − 2, . . . , 1, 0. On
the other hand, if all systems of values x1, . . . ,xn which make Δ1, . . . ,Δρ equal to
zero would at the same time bring to zero all p× p determinants of the matrix, then
also in this case, the class with the number p would not be present as manifolds. If
neither of these two cases occurs, then the system of equations:

Δ1 = 0, . . . , Δρ = 0

represents the manifold M invariant by the group inside which all invariant mani-
folds with the class number p are contained. If M decomposes into a discrete number
of manifolds M1, M2, . . . , then these manifolds remain individually invariant, but in
each one of them, infinitely many invariant subsidiary domains can yet be contained
which belong to the same class as M. In order to find these subsidiary domains, one
sets the equations of, say M1, in resolved form:

xs+i = ϕs+i(x1, . . . ,xs) (i=1 ···n−s),
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where the whole number s is at least equal to p. Lastly, one forms the r equations:

Xk f =
s

∑
ν=1

ξkν(x1, . . . ,xs, ϕs+1, . . . ,ϕn)
∂ f
∂xν

= 0,

and one computes any s− p independent solutions:

ω1(x1, . . . ,xs), . . . , ωs−p(x1, . . . ,xs)

of the p-term complete system determined by these equations. The general analytic
expression for the sought invariant subsidiary domains of M1 is then:

xs+i −ϕs+i(x1, . . . ,xn) = 0, ψ j(ω1, . . . ,ωs−p) = 0

(i=1 ···n−s ; j=1 ···m),

where the m � s− p relations ψ j = 0 are completely arbitrary. —
Naturally, M2, . . . must also be treated in the same manner as M1. In addition,

for p, one has to insert one after the other all the q+1 numbers q, q−1, . . . , 1, 0.

§ 65. In order to apply the preceding results to an example, we consider the
three-term group:

X1 f =
∂ f
∂y

+ x
∂ f
∂ z

, X2 f = y
∂ f
∂y

+ z
∂ f
∂ z

,

X3 f = (−z+ xy)
∂ f
∂x

+ y2 ∂ f
∂y

+ yz
∂ f
∂ z

of ordinary space. The group is transitive, because the determinant:

Δ =

∣
∣
∣
∣
∣
∣

0 1 x
0 y z

−z+xy y2 yz

∣
∣
∣
∣
∣
∣

= −(z− xy)2

does not vanish identically. From this, we conclude that the surface of second de-
gree: z − xy = 0 remains invariant by the group, and else that no further surface
does.

For the points of the surface z − xy = 0, and only for these points, all the 2 × 2
subdeterminants of Δ vanish, while its 1×1 subdeterminants cannot vanish simulta-
neously. From this, it follows that the invariant surface decomposes into∞1 invariant
curves, but that apart from these, no other invariant curves exist, while there are ac-
tually no invariant points.

In order to find the ∞1 curves on the surface z − xy = 0, we choose x and y as
coordinates for the points of the surface and we form, according to the instructions
given above, the reduced infinitesimal transformations in x,y:
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X1 f =
∂ f
∂y

, X2 f = y
∂ f
∂y

, X3 f = y2 ∂ f
∂y

.

The three equations Xk f = 0 reduce to a single one whose solution is x. There-
fore, the sought curves are represented by the equations:

z− xy = 0, x = const.,

that is to say, all individuals of a family of generatrices on the surface of second
degree remain invariant.

§ 66. Here, we give one of the two new proofs promised on p. 240 for the im-
portant Theorem 39.

As before, we denote by Δ1(x), . . . ,Δρ(x) all the (p+1)× (p+1) determinants
of the matrix:

(3)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξr1(x) · · ξrn(x)

∣
∣
∣
∣
∣
∣

.

In addition, we assume that there are systems of values x1, . . . ,xn which bring to
zero all the ρ determinants Δ . Then it is to be proved that the system of equations:

Δ1(x) = 0, . . . , Δρ(x) = 0

admits all transformations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of the r-term group X1 f , . . . ,Xr f .
According to Chap. 6, p. 114, this only amounts to proving that the system of

equations:
Δ1(x′) = 0, . . . , Δρ(x′) = 0

is equivalent, after the substitution x′
i = fi(x, a), to the system of equations:

Δ1(x) = 0, . . . , Δρ(x) = 0;

here, it is completely indifferent whether or not the equations Δ1 = 0, . . . , Δρ = 0
are mutually independent.

In order to prove that our system of equations really possesses the property in
question, we proceed as follows:

In Chap. 3, p. 48,5 (Translator’s note: The matrix denoted ρ̃(a) is denoted here
by ω(a).) we have seen that by virtue of the equations x′

i = fi(x,a), a relation of the
form:



250 14 Determination of Invariant Systems of Equations

(4)
r

∑
k=1

e′
k X ′

k f =
r

∑
k=1

ek Xk f

holds, in which the e′
k are related to the ek by the r equations:

e j = −
1···r
∑
π, k

ϑk j(a)απk(a)e′
π =

r

∑
π=1

ω jπ(a)e′
π .

If we insert the above expression of the ek in (4) and if we compare the coefficients
of the two sides, we obtain r relations:

X ′
k f =

r

∑
j=1
ω jk(a)Xj f (k=1 ···r)

which clearly reduce to identities as soon as one expresses the x′ in terms of the x
by means of the equations x′

i = fi(x,a).
By inserting the function x′

i in place of f in the equations just found, we obtain
the equations:

X ′
kx′

i = ξki(x′) =
r

∑
j=1
ω jk(a)Xjx

′
i

=
r

∑
j=1
ω jk(a)

n

∑
ν=1

ξ jν(x)
∂ fi(x,a)
∂xν

which express directly the ξki(x′) as functions of the x and a. Thanks to this, we are
in a position to study the behavior of the equations Δ(x′) = 0 after the substitution
x′

i = fi(x,a).
The determinants Δ1(x′), . . . ,Δρ(x′) are made up from the matrix:

∣
∣
∣
∣
∣
∣

ξ11(x′) · · ξ1n(x′)
· · · ·

ξr1(x′) · · ξrn(x′)

∣
∣
∣
∣
∣
∣

in the same way as the determinants Δ1(x), . . . ,Δρ(x) are made up from the ma-
trix (3). Now, if we imagine that the values found a while ago:

ξki(x′) =
r

∑
j=1
ω jk Xjx

′
i

are inserted in the matrix just written and then that the determinants Δ(x′) are com-
puted, we realize the following: the determinants Δσ (x′) have the form:

Δσ (x′) =
ρ

∑
τ=1

χστ(a)Dτ (σ=1 ···ρ),
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where the χστ are certain determinants formed with the ω jk(a), while D1, . . . ,Dρ
denote all the (p+1)× (p+1) determinants of the matrix:

∣
∣
∣
∣
∣
∣

X1x′
1 · · X1x′

n
· · · ·

Xrx′
1 · · Xrx′

n

∣
∣
∣
∣
∣
∣

.

Lastly, if the replace each Xkx′
i by its value:

Xkx′
i =

n

∑
ν=1

ξkν(x)
∂ fi(x,a)
∂xν

,

we obtain for the determinants Dτ expressions of the form:

Dτ =
ρ

∑
μ=1

ψτμ(x,a)Δμ(x),

where the ψτμ are certain determinants formed with the ∂ fi(x,a)
∂xν

.

With this, it is proved that, after the substitution x′
i = fi(x,a), the Δσ (x′) take the

form:

Δσ (x′) =
1···ρ
∑
τ , μ

χστ(a)ψτμ(x,a)Δμ(x) (σ=1 ···ρ).

Now, since the functions χστ(a), ψτμ(x,a) behave regularly for all systems
of values x,a coming into consideration, it is clear that the system of equations
Δσ (x′) = 0 is equivalent, after the substitution x′

i = fi(x,a), to the system of equa-
tions Δσ (x) = 0, hence that the latter system of equations admits all transformations
x′

i = fi(x,a). But this is what was to be proved.
§ 67. Theorem 39 is so important that it appears not to be superfluous to produce

yet a third proof of it.
According to Proposition 3 of Chap. 7 (p. 129), the system of equations Δ1 = 0,

. . . , Δρ = 0 certainly admits all transformations of the r-term group X1 f , . . . ,Xr f
when there exist relations of the form:

XkΔσ =
ρ

∑
τ=1

ωστ(x1, . . . ,xn)Δτ (k=1 ···r ; σ=1 ···ρ)

and when in addition the functions ωστ behave regularly for the systems of values
which satisfy the equations Δ1 = 0, . . . , Δρ = 0. Now, it is in our case not more
difficult to prove that the system of equations Δσ = 0 satisfies this property. But in
order not to be too extensive, we want to execute this proof only in a special case.
In this way, one will clearly see how to treat the most general case.
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We will firstly assume that our group is simply transitive. So it contains n inde-
pendent infinitesimal transformations and in addition, the determinant:

Δ =

∣
∣
∣
∣
∣
∣

ξ11(x) · · · ξ1n(x)
· · · · ·

ξn1(x) · · · ξnn(x)

∣
∣
∣
∣
∣
∣

does not vanish identically.
Furthermore, we will restrict ourselves to establishing that there are n relations

of the form:
XiΔ = ωi(x1, . . . ,xn)Δ (i=1 ···n),

so that the equation Δ = 0 admits all transformations of the group. By contrast, we
will not consider the invariant systems of equations which are obtained by equating
to zero all subdeterminants of the determinant Δ .

If we express the (n − 1)× (n − 1) subdeterminants of Δ as partial differential
quotients of Δ with respect to the ξμν , we obtain for XiΔ the expression:

XiΔ =
1···n
∑
μ, ν

Xi ξμν
∂Δ
∂ξμν

.

Now, X1 f , . . . ,Xn f generate an n-term group, so there are relations of the form:

[Xi, Xμ ] =
n

∑
s=1

ciμs Xs f ,

or, in more detail:

Xi ξμν −Xμ ξiν =
n

∑
s=1

ciμs ξsν .

Consequently, for Xi ξμν , we obtain the following expression:

Xi ξμν =
n

∑
s=1

(

ξμs
∂ξiν
∂xs

+ ciμs ξsν

)

.

If, in this expression, we insert the equation above for XiΔ , then we get:

XiΔ =
1···n
∑
μ, ν , s

(

ξμs
∂ξiν
∂xs

+ ciμs ξsν

)
∂Δ
∂ξμν

.

Here according to a known proposition about determinants, the coefficients of
∂ξiν/∂xs and of ciμs can be expressed in terms of Δ . Namely, one has:
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n

∑
μ=1

ξμs
∂Δ
∂ξμν

= εsν Δ ,

n

∑
ν=1

ξsν
∂Δ
∂ξμν

= εsμΔ ,

where the quantities επρ vanish as soon as π and ρ are different from each other,
while εππ always has the value 1. Using these formulas, we obtain:

XiΔ = Δ
{1···n
∑
ν , s
εsν
∂ξiν
∂xs

+
1···n
∑
μ, s
εsμ ciμs

}

,

and from this, it follows lastly that:

(5) XiΔ = Δ
n

∑
s=1

(
∂ξis

∂xs
+ ciss

)

(i=1 ···n).

Since, as always, only systems of values x1, . . . ,xn for which all ξki(x) behave
regularly are taken into consideration, then clearly, the factor of Δ in the right-hand
side behaves regularly for the considered systems of values x1, . . . ,xn. Hence, if the
equation Δ = 0 can be satisfied by such systems of values x1, . . . ,xn, then according
to Proposition 3, p. 129, it admits all transformations of the group X1 f , . . . ,Xn f .

§ 68. As was already underlined on p. 235, the developments of the present
chapter have great similarities with those of Chap. 7, p. 135 sq. Therefore, it is
important to be conscious of the differences between the two theories.

We have already mentioned the first difference on page 240. It consists in what
follows:

When the r independent infinitesimal transformations X1 f , . . . ,Xr f generate an r-
term group, then each system of equations Δ1 = 0, . . . , Δρ = 0 obtained by forming
determinants as mentioned more than enough admits all infinitesimal transforma-
tions X1 f , . . . ,Xr f . By contrast, when the r infinitesimal transformations are only
subjected to the restriction that the independent equations amongst the equations
X1 f = 0, . . . , Xr f = 0 form a complete system, then in general, none of the systems
of equations Δ1 = 0, . . . , Δρ = 0 needs to admit the infinitesimal transformations
X1 f , . . . ,Xr f .

Amongst certain conditions, one can in fact also be sure from the beginning, in
the second one of the two cases just mentioned, that a system of equations Δ1 = 0,
. . . , Δρ = 0 obtained by forming determinants admits the infinitesimal transforma-
tions X1 f , . . . ,Xr f .

Let the r independent infinitesimal transformations X1 f , . . . ,Xr f be constituted
in such a way that the independent equations amongst the r equations X1 f = 0, . . . ,
Xr f = 0 form a complete system, so that there are relations of the form:
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(6)
[Xi, Xk] = γik1(x1, . . . ,xn)X1 f + · · ·+ γikr(x1, . . . ,xn)Xr f

(i, k=1 ···r).

Let the (p+1)× (p+1) determinants of the matrix:

(7)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1n(x)
· · · ·

ξr1(x) · · ξrn(x)

∣
∣
∣
∣
∣
∣

be denoted by Δ1, . . . ,Δρ . If there are systems of values x1, . . . ,xn for which all
determinants Δ1, . . . ,Δρ vanish and if all functions γik j(x1, . . . ,xn) behave regularly
for these systems of values, then it can be shown that the system of equations Δ1 = 0,
. . . , Δρ = 0 admits the infinitesimal transformations X1 f , . . . ,Xr f .

In what follows, this proposition plays no rôle; it will therefore suffice that we
prove it only in a special simple case; the proof for the general proposition can be
executed in an entirely similar way.

We want to assume that r = n and that the n equations X1 f = 0, . . . , Xn f = 0 are
mutually independent; in addition, let p = n−1. The mentioned matrix then reduces
to the not identically vanishing determinant:

Δ =∑±ξ11 · · ·ξnn,

and it contains only a single (p+ 1)× (p+ 1) determinant, namely itself. We will
show that the equation Δ = 0 then certainly admits the infinitesimal transformations
X1 f , . . . ,Xr f when the functions γik j in the equations:

[Xi, Xk] =
n

∑
j=1
γik j Xj f (i, k=1 ···n)

behave regularly for the systems of values x1, . . . ,xn which bring Δ to zero.
According to Chap. 7, Proposition 3, p. 129, we need only to show that each XkΔ

can be represented in the form ωk(x1, . . . ,xn)Δ and that the ωk behave regularly
for the systems of values of Δ = 0. This proof succeeds in the same way as in the
preceding section. We simply compute the expressions XkΔ and we find in the same
way as before:

XkΔ = Δ
n

∑
ν=1

{
∂ξkν
∂xν

+ γkνν(x1, . . . ,xn)
}

(k=1 ···n).

The computation necessary for that is exactly the previous one, although the
constants cik j are replaced by the functions γik j(x); but still, that there occurs no
difference has its reason in the fact that in the preceding sections, no use was made
of the constancy property of the cik j.

Clearly, the factors of Δ in the right-hand side of the above equations behave
regularly for the systems of values of Δ = 0, hence we see that the equation Δ = 0
really admits the infinitesimal transformations X1 f , . . . ,Xn f .
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A second important difference between the case of an r-term group X1 f , . . . ,Xr f
and the more general case of Chap. 7 comes out as soon as one already knows a
manifold M which admits all infinitesimal transformations X1 f , . . . ,Xr f .

We want to assume that X1 f , . . . ,Xr f attach exactly p independent directions to
the points of M and especially, that X1 f , . . . ,Xp f determine p independent direc-
tions. Under these assumptions, for the points of M, there are relations of the form:

Xp+k f = ϕk1(x1, . . . ,xn)X1 f + · · ·+ϕkp(x1, . . . ,xn)Xp f

(k=1 ···r− p),

where the ϕk j behave regularly; on the other hand, there is no relation of the form:

χ1(x1, . . . ,xn)X1 f + · · ·+χp(x1, . . . ,xn)Xp f = 0.

Now, if X1 f , . . . ,Xr f generate an r-term group, then for the points of M, all
[Xi, Xk] can be represented in the form:

[Xi, Xk] =
p

∑
j=1
ψik j(x1, . . . ,xn)Xj f (i, k=1 ···r),

and here, the ψik j behave regularly. By contrast, if X1 f , . . . ,Xr f only possess the
property that the independent equations amongst the equations X1 f = 0, . . . , Xr f = 0
form a complete system, then such a representation of the [Xi, Xk] for the points of
M is not possible in all cases; but it is always possible when the functions γik j in the
equations (6) behave regularly for the systems of values x1, . . . ,xn on M. We have
already succeeded in making use of this condition in Chap. 7, p. 144 sq.

—————–



Chapter 15
Invariant Families of Infinitesimal
Transformations

We study in this chapter the general linear combination:

e1 X1 + · · ·+ eq Xq

of q � 1 given arbitrary local infinitesimal transformations:

Xk =
n

∑
i=1
ξki(x)

∂
∂xi

(k=1 ···q)

having analytic coefficients ξki(x) and which are assumed to be independent of
each other. When one introduces new variables x′

i = ϕi(x1, . . . ,xn) in place of the
xl , every transformation Xk of this general combination receives another form,
but it may sometimes happen under certain circumstances that the complete
family in its wholeness remains unchanged, namely that there are functions e′

k =
e′

k(e1, . . . ,eq) such that:

ϕ∗
(

e1 X1 + · · ·+ eq Xq
)

= e′
1(e)X ′

1 + · · ·+ e′
q(e)X ′

q,

where, as in previous circumstances, the X ′
k = ∑

n
i=1 ξki(x′) ∂∂x′

i
denote the same

vector fields, but viewed in the target space x′
1, . . . ,x

′
n.

Definition 15.1. The family e1 X1 + · · ·+ eq Xq of infinitesimal transformations
is said to remain invariant after the introduction of the new variables x′ = ϕ(x)
if there are functions e′

k = e′
k(e1, . . . ,eq) depending on ϕ such that:

(1) ϕ∗
(

e1 X1 + · · ·+ eq Xq
)

= e′
1(e)X ′

1 + · · ·+ e′
q(e)X ′

q;

alternatively, one says that the family admits the transformation which is repre-
sented by the concerned change of variables.

Proposition 2. Then the functions e′
k(e) in question are necessarily linear:

c© Springer-Verlag Berlin Heidelberg 2015
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e′
k =

q

∑
j=1
ρk j e j (k=1 ···q),

with the constant matrix
(

ρk j
)1� j�q

1�k�q being invertible: ek = ∑
q
j=1 ρ̃k j e′

j .

Proof. Indeed, through the change of coordinates x′ = ϕ(x), if we write that the
vector fields Xk are transferred to:

ϕ∗(Xk) =
n

∑
i=1

Xk(x′
i)
∂
∂x′

i
=:

n

∑
i=1
ηki(x′

1, . . . ,x
′
n)
∂
∂x′

i
(k=1 ···q),

with their coefficients ηki =ηki(x′) being expressed in terms of the target coordi-
nates, and if we substitute the resulting expression into (1), we get the following
linear relations:

(1’)
q

∑
k=1

e′
k ξki(x′) =

q

∑
k=1

ekηki(x′) (i=1 ···n).

The idea is to substitute here for x′ exactly the same number q of different sys-
tems of fixed values:

x(1)1 , . . . ,x(1)n ,x(2)1 , . . . ,x(2)n , . . . . . . ,x(q)1 , . . . ,x(q)n

that are mutually in general position and considered as constant. In fact, ac-
cording to the proposition on p. 79, or equivalently, according to the assertion
formulated just below the long matrix located on p. 78, the linear independence
of X1, . . . ,Xq insures that for most such q points, the long q×qn matrix in ques-
tion: ⎛

⎜
⎝

ξ (1)11 · · · ξ (1)1n ξ (2)11 · · · ξ (2)1n · · · · · · ξ (q)11 · · · ξ (q)1n
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ξ (1)q1 · · · ξ (1)qn ξ (2)q1 · · · ξ (2)qn · · · · · · ξ (q)q1 · · · ξ (q)qn

⎞

⎟
⎠

has rank equal to q, where we have set ξ (ν)ki := ξxi
(

x(ν)
)

. Consequently, while
considering the values of ξki

(

x(ν)
)

and of ηki
(

x(ν)
)

as constant, the linear sys-
tem above is solvable with respect to the unknowns e′

k and we obtain:

e′
k =

q

∑
j=1
ρk j e j (k=1 ···q),

for some constants ρk j. In addition, we claim that the determinant of the matrix
(

ρk j
)1� j�q

1�k�q is in fact nonzero. Indeed, the linear independence of X1, . . . ,Xq be-
ing obviously equivalent to the linear independence of ϕ∗(X1), . . . ,ϕ∗(Xq), the
other corresponding long matrix:
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⎛

⎜
⎝

η(1)
11 · · · η(1)

1n η(2)
11 · · · η(2)

1n · · · · · · η(q)
11 · · · η(q)

1n
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
η(1)

q1 · · · η(1)
qn η(2)

q1 · · · η(2)
qn · · · · · · η(q)

q1 · · · η(q)
qn

⎞

⎟
⎠

then also has rank equal to q and we therefore can also solve symmetrically:

ek =
q

∑
j=1
ρ̃k j e′

j (k=1 ···q),

with coefficients ρ̃k j which necessarily coincide with the elements of the inverse
matrix. �

As usual, we understand by:

Xk f =
n

∑
i=1
ξki
∂ f
∂xi

(k=1 ···q)

independent infinitesimal transformations; temporarily, this shall be the only as-
sumption which we make about the Xk f .

We consider the family of ∞q−1 infinitesimal transformations which is repre-
sented by the expression:

e1 X1 f + · · ·+ eq Xq f

with the q arbitrary parameters e1, . . . ,eq. When we introduce, in this expression,
new independent variables x′ in place of the x, then each infinitesimal transforma-
tions in our family takes another form; evidently, we then obtain in general a com-
pletely new family of ∞q−1 infinitesimal transformations. However, in certain cir-
cumstances, it can happen that the new family does not essentially differ in its form
from the original family, when for arbitrary values of the e, there is a relation of the
form:

(1)
q

∑
k=1

ek

n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

=
q

∑
k=1

e′
k

n

∑
i=1
ξki(x′

1, . . . ,x
′
n)
∂ f
∂x′

i
,

in which the e′
k do not depend upon the x, but only upon e1, . . . ,eq.

If there is such a relation, which we can also write briefly as:

(2)
q

∑
k=1

ek Xk f =
q

∑
k=1

e′
k X ′

k f ,

then we say: the family of infinitesimal transformations ∑ ek Xk f remains invariant
after the introduction of the new variables x′, or: it admits the transformation which
is represented by the concerned change of variables.
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§ 69. Let the family of the ∞q−1 infinitesimal transformations ∑ ek Xk f remain
invariant through the transition to the variables x′, so that there is a relation of the
form:

(2)
q

∑
k=1

ek Xk f =
q

∑
k=1

e′
k X ′

k f ,

in which the e′ are certain functions of only the e. To begin with, we study this rela-
tionship of dependence between the e and the e′; in this way, we reach the starting
point for the more precise study of such families of infinitesimal transformations.

The expressions Xk f can be written as:

Xk f =
n

∑
i=1

Xk x′
i
∂ f
∂x′

i
,

or, when one expresses the Xk x′
i in terms of the x′, as:

Xk f =
n

∑
i=1
ηki(x′

1, . . . ,x
′
n)
∂ f
∂x′

i
.

If we insert these values in the equation (2), we can equate the coefficients of the
∂ f/∂x′

i in the two sides, and so we obtain the following linear relations between the
e and the e′:

(2’)
q

∑
k=1

e′
k ξki(x′) =

q

∑
k=1

ekηki(x′) (i=1 ···n).

According to our assumption, it is possible to enter for the e′ functions of the e
alone so that the equations (2’) are satisfied for all values of the x′. It can be shown
that the concerned functions of the e are completely determined.

Since the equations (2’) are supposed to hold true for all values of the x′, then they
must also be satisfied when we replace x′

1, . . . ,x
′
n by any other system of variables.

We want to do this, and to write down the equations (2’) in exactly q different

systems of variables x′
1, . . . ,x

′
n, x′′

1 , . . . ,x
′′
n , · · · , x(q)1 , . . . ,x(q)n :

q

∑
k=1

e′
k ξki(x(ν)) =

q

∑
k=1

ekηki(x(ν)) (i=1 ···n)

(ν=1 ···q).

The equations so obtained are solvable with respect to e′
1, . . . ,e

′
q, because under

the assumptions made, according to the developments of Chap. 4, p. 78, not all q×q
determinants of the matrix:
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∣
∣
∣
∣
∣
∣
∣

ξ ′
11 · · ξ ′

1n ξ ′′
11 · · ξ ′′

1n · · · ξ (q)1n
· · · · · · · · · · · ·
ξ ′

q1 · · ξ ′
qn ξ ′′

q1 · · ξ ′′
qn · · · ξ (q)qn

∣
∣
∣
∣
∣
∣
∣

vanish.
In addition, since the mentioned equations are certainly compatible with each

other,1 (Translator’s note: — and since, furthermore, the lemma on p. 78 insures that,

with a suitable choice of generic fixed points x′
1, . . . ,x

′
n, x′′

1 , . . . ,x
′′
n , · · · , x(q)1 , . . . ,x(q)n ,

the rank of the considered matrix of ξ ’s is maximal equal to q —) we obtain the e′
represented as linear homogeneous functions of the e:

e′
k =

q

∑
j=1
ρk j e j (k=1 ···q).

Here naturally, the ρk j are independent of the x′, x′′, . . . , x(q) and hence are abso-
lute constants; the determinant of the ρk j is different from zero, because visibly the
ek can, in exactly the same way, be represented as linear homogeneous functions of
the e′.

Although, under the assumptions made, the family of infinitesimal transforma-
tions ∑ ek Xk f remains invariant after the introduction of the x′, in general, its in-
dividual transformations are permuted. However, there always exists at least one
infinitesimal transformation ∑ e0

k Xk f which remains invariant, since the condition
which the coefficients e0

k of such an infinitesimal transformation:

q

∑
k=1

e0
k Xk f = ω

q

∑
k=1

e0
k X ′

k f

must satisfy can be replaced by the q equations:

ω e0
k =

q

∑
j=1
ρk j e0

j (k=1 ···q)

and these last equations can always be satisfied without all the e0
k being zero.

For a closer illustration of what has been said, an example is more suitable.
In the family of the ∞3 transformations:

e1
∂ f
∂x1

+ e2
∂ f
∂x2

+ e3

(

x2
1
∂ f
∂x1

+ x1x2
∂ f
∂x2

)

+ e4

(

x1x2
∂ f
∂x1

+ x2
2
∂ f
∂x2

)

,

we introduce new variables by setting:

x′
1 = a1 x1 +a2x2, x′

2 = a3 x1 +a4 x2.

At the same time, the family receives the new form:
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e′
1
∂ f
∂x′

1
+ e′

2
∂ f
∂x′

2
+ e′

3

(

x′
1

2 ∂ f
∂x′

1
+ x′

1x′
2
∂ f
∂x′

2

)

+ e′
4

(

x′
1x′

2
∂ f
∂x′

1
+ x′

2
2 ∂ f
∂x′

2

)

,

where e′
1, . . . ,e

′
4 are expressed as follows:

e′
1 = a1 e1 +a2 e2, e′

2 = a3 e1 +a4 e2, e′
3 =

a4 e3 −a3 e4

a1a4 −a2a3
, e′

4 =
a1 e4 −a2 e3

a1a4 −a2a3
.

Consequently, the family remains invariant in the above sense. If one wanted to
know which individual infinitesimal transformations of the family remain invariant,
one would only have to determine ω from the equation:

∣
∣
∣
∣

a1 −ω a2

a3 a4 −ω
∣
∣
∣
∣
·
∣
∣
∣
∣

a1ω−1 a2

a3 a4ω−1

∣
∣
∣
∣
= 0,

and to choose e1, . . . ,e4 so that e′
k = ω ek; the concerned systems of values of the ek

provide the invariant infinitesimal transformations.
Now, by coming back to the general case, we want to specialize in a certain di-

rection the assumptions made above. Namely, we assume that the transition from
the x to the x′ is a completely arbitrary transformation of a determined group. Cor-
respondingly, we state the following question:

Under which conditions does the family ∑ ek Xk f remain invariant through every
transformation x′

i = fi(x1, . . . ,xn, t) of the one-term group Y f , that is to say, under
which conditions does a relation:

q

∑
k=1

ek Xk f =
q

∑
k=1

e′
k X ′

k f ,

hold for all systems of values e1, . . .eq, t, in which the e′
k, aside from upon the e j,

only depend upon t?

When, in order to introduce new variables in Xk f , we apply the general transfor-
mation:

x′
i = xi + t Y xi + · · · (i=1 ···n)

of the one-term group Y f , we obtain according to Chap. 4, p. 73:

Xk f = X ′
k f + t

(

X ′
kY

′ f −Y ′X ′
k f

)

+ · · · ;

hence also inversely:

(3) X ′
k f = Xk f + t[Y, Xk]+ · · · ,

which is more convenient for what follows.
Now, if every infinitesimal transformation Xk f + t[Y, Xk]+ · · · should belong to

the family e1X1 f + · · ·+ eqXq f , and in fact so for every value of t, then obviously
every infinitesimal transformation [Y, Xk] would also be contained in this family.
As a result, certain necessary conditions for the invariance of our family would be
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found, some conditions which amount to the fact that q relations of the form:

(4) [Y, Xk] =
q

∑
j=1

gk j Xj f (k=1 ···q)

should hold, in which the gk j denote absolute constants.
If the family of infinitesimal transformations:

e1 X1 f + · · ·+ eq Xq f

is constituted so that for every k, a relation of the form (4) holds true, then we want
to say that the family admits the infinitesimal transformation Y f . By adopting this
terminology, we can state the result just obtained as follows:

If the family of infinitesimal transformations:

e1 X1 f + · · ·+ eq Xq f

admits all transformations of the one-term group Y f , then it also admits the in-
finitesimal transformation Y f .

But the converse also holds true, as we will now show.
We assume that the family of transformations ∑ ek Xk f admits the infinitesimal

transformation Y f , hence that relations of the form (4) hold true. If now the fam-
ily ∑ ek Xk f is supposed to simultaneously admit all finite transformations of the
one-term group Y f , then it must be possible to determine e′

1, . . . ,e
′
q as functions of

e1, . . . ,eq in such a way that the equation:

q

∑
k=1

e′
k X ′

k f =
q

∑
k=1

ek Xk f

is identically satisfied, as soon as one introduces the variable x in place of x′ in the
X ′

k f . Consequently, if X ′
k f takes the form:

X ′
k f =

n

∑
i=1
ζki(x1, . . . ,xn, t)

∂
∂xi

after the introduction of the x, then one must be able to determine the e′
k so that the

expression:
q

∑
k=1

e′
k X ′

k f =
q

∑
k=1

n

∑
i=1

e′
k ζki(x1, . . . ,xn, t)

∂ f
∂xi

is free of t, hence so that the differential quotient:

∂
∂ t

q

∑
k=1

e′
k X ′

k f =
n

∑
i=1

∂ f
∂xi

∂
∂ t

q

∑
k=1

e′
k ζki(x1, . . . ,xn, t)
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vanishes;2 (Translator’s note: Indeed, differentiation with respect to t of e1 X1+ · · ·+
er Xr yields: 0 ≡ ∂

∂ t ∑
q
k=1 ek Xk.) but at the same time, the e must still also satisfy the

initial condition: e′
k = ek for t = 0.

In order to be able to show that under the assumptions made there really are func-
tions e′ of the required constitution, we must first calculate the differential quotient:

∂
∂ t

X ′
k f =

n

∑
i=1

∂ζki(x1, . . . ,xn, t)
∂ t

∂ f
∂xi

;

for this, we shall take an indirect route.
Above, we saw that X ′

k f can be expressed in the following way in terms of
x1, . . . ,xn and t:

X ′
k f = Xk f + t[Y, Xk]+ · · · ,

when the independent variables x′ entering the X ′
k are determined by the equations

x′
i = fi(x1, . . . ,xn, t) of the one-term group Y f . So the desired differential quotient

can be obtained by differentiation of the infinite power series in t lying in the right-
hand side, or differently enunciated: it is the coefficient of τ1 in the expansion of the
expression:

Xk f +(t + τ)[Y, Xk]+ · · · =
n

∑
i=1
ξki(x′′

1 , . . . ,x
′′
n)
∂ f
∂x′′

i
= X ′′

k f

with respect to powers of τ . Here, the x′′ mean the quantities:

x′′
i = fi(x1, . . . ,xn, t + τ).

However, the expansion coefficient [ENTWICKELUNGSCOEFFICIENT] discussed
just above appears at first as an infinite series of powers of t; nevertheless, there is
no difficulty in finding a finite closed expression for it.

As we know, the transition from the variables x to the variables x′
i = fi(x1, . . . ,xn, t)

occurs through a transformation of the one-term group Y f , and to be precise,
through a transformation with the parameter t. One comes from the x to the
x′′

i = fi(x1, . . . ,xn, t + τ) through a transformation of the same group, namely
through the transformation with the parameter t + τ . But this transformation can
be substituted for the succession of two transformations, of which the first one
possesses the parameter t, and the second one the parameter τ; consequently, the
transition from the x′ to the x′′ is likewise obtained through a transformation of the
one-term group Y f , namely through the transformation whose parameter is τ:

x′′
i = fi(x′

1, . . . ,x
′
n,τ).

From this, we conclude that the series expansion of X ′′
k f with respect to powers

of τ reads:
X ′′

k f = X ′
k f + τ[Y ′, X ′

k]+ · · · .
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As a result, we have then found a finite closed expression for the expansion coeffi-

cient mentioned a short while ago; the sought differential quotient
∂ (X ′

k f )
∂ t is hence:

(5)
∂
∂ t

X ′
k f = [Y ′, X ′

k] = Y ′ X ′
k f −X ′

k Y ′ f .

Naturally, this formula holds generally, and one can also choose as the
two infinitesimal transformations Xk f and Y f . However, in our specific case,
X1 f , . . . ,Xq f ,Y f are not absolutely arbitrary, but they are linked together through
the relations (4). So under the assumptions made above, we obtain:

(6)
∂ (X ′

k f )
∂ t

=
q

∑
ν=1

gkν X ′
ν f (k=1 ···q).

Now, if we form the differential quotient of ∑ e′
k X ′

k f with respect to t, we obtain:

∂
∂ t

q

∑
k=1

e′
k X ′

k f =
q

∑
k=1

de′
k

d t
X ′

k f +
q

∑
k=1

e′
k

q

∑
ν=1

gkν X ′
ν f

=
q

∑
k=1

{de′
k

d t
+

q

∑
ν=1

gνk e′
ν

}

X ′
k f .

Obviously, this expression vanishes only when the e′
k satisfy the differential equa-

tions:

(7)
de′

k

d t
+

q

∑
ν=1

gνk e′
ν = 0 (k=1 ···q).

But from this the e′
k can be determined as functions of t in such a way that for t = 0,

each e′
k converts into the corresponding ek; in addition, the e′ are linear homoge-

neous functions of the e.
If one puts the values of the e′ in question in the expression ∑ e′

k X ′
k f and returns

afterwards from the x′ to the initial variables x1, . . . ,xn, then ∑ e′
k X ′

k will be inde-
pendent of t, that is to say, it will be equal to ∑ ek Xk f . Consequently, the family of
infinitesimal transformations ∑ ek Xk f effectively remains invariant by the change
of variables in question.

As a result, we can state the following theorem:

Theorem 43. A family of ∞q−1 infinitesimal transformations e1 X1 f + · · ·+ eq Xq f
remains invariant, through the introduction of new variables x′ which are defined by
the equations of a one-term group:

x′
i = xi + t Y xi + · · · (i=1 ···n),

if and only if, between Y f and the Xk f there are q relations of the form:



266 15 Invariant Families of Infinitesimal Transformations

(4) [Y, Xk] =
q

∑
ν=1

gkν Xν f (k=1 ···q),

in which the gkν denote constants. If these conditions are satisfied, then by the con-
cerned change of variables, ∑ ek Xk f receives the form ∑ e′

k X ′
k f , where e′

1, . . . ,e
′
q

determine themselves through the differential equations:

de′
k

d t
+

q

∑
ν=1

gνk e′
ν = 0 (k=1 ···q),

by taking account of the initial conditions: e′
k = ek for t = 0.1

If one performs the integration of which the preceding theorem speaks, hence
determines e′

1, . . . ,e
′
r from the differential equations:

de′
k

d t
= −

q

∑
ν=1

gνk e′
ν (k=1 ···q)

taking as a basis the initial conditions: e′
k = ek for t = 0, then one obtains equations

of the form:

e′
k =

q

∑
j=1

dk j(t)e j (k=1 ···q).

It is clear that these equations represent the finite transformations of a certain one-
term group, namely the one which is generated by the infinitesimal transformation:

q

∑
k=1

{ q

∑
ν=1

gνk eν
} ∂ f
∂ek

(cf. Chap. 4).

From the theorem just stated, we want to derive an important proposition which
is certainly closely suggested.

If the family of ∞q−1 infinitesimal transformations e1 X1 f + · · ·+eq Xq admits the
two infinitesimal transformations y1 f and Y2 f , then it also admits at the same time
each transformation c1 Y1 f + c2 Y2 f which is linearly deduced from Y1 f and Y2 f ;
this follows immediately from the fact that the infinitesimal transformation:

[

c1 Y1 f + c2 Y2 f , Xk f
]

= c1 [Y1, Xk]+ c2 [Y2, Xk]

can, in our case, be linearly expressed in terms of the Xi f . But our family e1 X1 f +
· · ·+ eq Xq f also admits the infinitesimal transformation [Y1, Y2]. Indeed, one forms
the Jacobi identity:

[

[Y1, Y2], Xk
]

+
[

[Y2, Xk], Y1
]

+
[

[Xk, Y1], Y2
]

= 0,

1 LIE, Archiv for Mathematik og Naturvidenskab Vol. 3, Christiania 1878.
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and one takes into account that [Y1, Xk] and [Y2, Xk] can be linearly expressed in
terms of the Xi f , so one realizes that this is also the case for

[

[Y1, Y2], Xk
]

.
By combining these two observations, one obtains the announced

Proposition 1. If the most general infinitesimal transformation which leaves invari-
ant a family of ∞q−1 infinitesimal transformations:

e1 X1 f + · · ·+ eq Xq f

can be linearly deduced from a bounded number of infinitesimal transformations,
say from Y1 f , . . . ,Ym f , then the Yk f generate an m-term group.

This proposition can be further generalized; indeed, it is evident that the totality
of all finite transformations which leave invariant the family ∑ ek Xk f always forms
a group.

§ 70. Let the conditions of the latter theorem be satisfied, namely let the family
of the ∞q−1 infinitesimal transformations ∑ ek Xk f be invariant by all transforma-
tions of the one-term group Yf .

Now, according to Chap. 4, p. 70, the following holds true: if, after the introduc-
tion of new variables, the infinitesimal transformation X f is transferred to Z f , then
at the same time, the transformations of the one-term group X f are transferred to
the transformations of the one-term group Z f . So we deduce that under the assump-
tions of Theorem 43, not only the family of the ∞q−1 infinitesimal transformations
e1 X1 f + · · ·+ er Xr f remains invariant, but also the family of the ∞q−1 one-term
groups generated by these infinitesimal transformations, and naturally also, the to-
tality of the ∞q finite transformations which belong to these one-term groups.

But we want to go a step further: we want to study how the analytic expression
of the individual finite transformations of the one-term groups e1X1 f + · · ·+ eq Xq f
behave, when the new variables:

x′
i = xi + t Y xi + · · ·

are introduced in place of the x.
The answer to this question is given by Proposition 3 in Chap. 4, p. 71. Indeed,

from this proposition, it easily results that, after the introduction of the new variables
x′, every finite transformation:

(8)
xi = xi +

1···q
∑
k

ek Xk xi +
1···q
∑
k, j

ek e j

1 ·2
Xk Xj xi + · · ·

(i=1 ···n)

receives the form:
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(9) x′
i = x′

i +
1···q
∑
k

e′
k X ′

k x′
i +

1···q
∑
k, j

e′
k e′

j

1 ·2
X ′

k X ′
j x′

i + · · · ,

where the connection between the ek and the e′
k is prescribed through the relation:

(10)
q

∑
k=1

ek Xk f +
q

∑
k=1

e′
k X ′

k f .

Consequently, we see directly that the concerned family of ∞q finite transformations
in the new variables x′ are of exactly the same form as in the initial variables x. But in
addition, we remark that a finite transformation which has the parameters e1, . . . ,eq

in the x possesses, after the introduction of the new variables x′, the parameters
e′

1, . . . ,e
′
q.

Now, as just said, the connection between the e and the e′ through the iden-
tity (10) is completely prescribed; hence this identity is absolutely sufficient when
the question is to determine the new form which an arbitrary finite transformation (8)
takes after the transition to the x′.

In order to be as clear as possible, we shall interpret ∑ ek Xk f virtually as the
symbol of the finite transformation:

x′
i = xi +

q

∑
k=1

ek Xk xi + · · · (i=1 ···n),

where the absolute3 (Translator’s note: — namely the values themselves, but not
the ‘absolute values’ |ek| in the modern sense —) values of the ek then come into
consideration, not only their ratio. Then we can simply say:

After the introduction of the new variables x′, the finite transformation ∑ ek Xk f
is transferred to the finite transformation ∑ e′

k X ′
k f .

In the later studies of this chapter, the symbol ∑ ek Xk f will sometimes be em-
ployed as the symbol of a finite transformation, and sometimes as the symbol of
an infinitesimal transformation. Hence in each individual case, we shall underline
which one of the two interpretations of the symbol is meant.

§ 71. Let the family of the ∞q transformations e1 X1 f + · · ·+ eq Xq f remain in-
variant by all transformations of the one-term group Y f . It can happen that Y f itself
is an infinitesimal transformation of the family ∑ ek Xk f ; indeed, the case where Y f
is an arbitrary one of the ∞q−1 infinitesimal transformations ∑ ek Xk f is of special
interest. This will occur if and only if between the Xk f , there are relations of the
form:

[Xi, Xk] =
q

∑
s=1

giks Xs f .
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Hence from the theorem of the preceding section, we obtain the following more
special theorem in which we permit ourselves to write r instead of q and ciks instead
of giks.

Theorem 44. For a family of ∞r finite transformations:

e1 X1 f + · · ·+ er Xr f or: xi =Pi(x1, . . . ,xn, e1, . . . ,er)

to remain invariant by every transformation which belongs to it — so that, after the
introduction of the new variables:

x′
i =Pi(x1, . . . ,xn, h1, . . . ,hr), x′

i =Pi(x1, . . . ,xn, h1, . . . ,hr)

in place of the x and the x, it takes the form:

x′
i =Pi(x′

1, . . . ,x
′
n, l1, . . . , lr)

where the l only depend upon e1, . . . ,er and h1, . . . ,hr — it is necessary and sufficient
that the X f stand pairwise in the relationships:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

where the ciks are absolute constants.

This theorem states an important property that the family of the ∞r finite trans-
formations ∑ ek Xk f possesses as soon as relations of the form [Xi, Xk] exist. It is
noteworthy that, for the proof of this theorem, we have used the results of the pre-
ceding chapter only for the smallest part; moreover, we have used no more than a
few developments of Chaps. 2, 3, 4 and 8. Namely, one should observe that we have
made no use of Theorem 24, Chap. 9, p. 172.

If one assumes that the latter theorem is known, then one can shorten the
proof of Theorem 44 as follows: one shows at first, as above, that the relations
[Xi, Xk] = ∑ ciks Xs f are necessary; then from Theorem 24, p. 172, it follows
that the ∞r−1 infinitesimal transformations ∑ ek Xk f generate an r-term group. If
x′

i = Pi(x1, . . . ,xn, h1, . . . ,hr) are the finite equations of this group, then according
to Theorem 5, p. 45, there is an identity of the form:

r

∑
k=1

ek Xk f =
r

∑
k=1

e′
k X ′

k f ;

with this, the proof of Theorem 44 is produced.
One does not even need to refer to Theorem 5, p. 45, but one can conclude in the

following way:
The equations x′

i =Pi(x,h) of our group, when resolved, give a transformation
of the form:

xi =Pi
(

x′
1, . . . ,x

′
n, χ1(h), . . . ,χr(h)

)

,
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that is to say, the transformation which is inverse to the transformation with the
parameters h1, . . . ,hr. Now, if one imagines that these values of the xi are inserted
into the equations xi = Pi(x,e) and if one takes into consideration that one has to
deal with a group, then one realizes that there exist certain equations of the form:

xi =Pi
(

x′
1, . . . ,x

′
n, ψ1(h,e), . . . ,ψr(h,e)

)

.

Lastly, if one inserts these expressions for the xi in the equations x′
i = Pi(x,h),

then one obtains:
x′

i =Pi(x′
1, . . . ,x

′
n, l1, . . . , lr).

This is the new form that the transformations xi =Pi(x,e) take after the introduction
of the new variables x′. Here evidently, the l are functions of only the e and the h,
exactly as is claimed in Theorem 44, p. 269.

As a result, the connection which exists between Theorem 24, p. 172, and Theo-
rem 44 of the present chapter is clarified.

§ 72. In order to be able to state the gained results more briefly, or, if one wants,
more clearly, we will, as earlier on, translate the symbolism of the theory of substi-
tutions into the theory of transformation groups.

We shall denote all finite transformations e1 X1 f + · · ·+ erXr f by the common
symbol T , and the individual transformations by marking an appended index, so
that for instance the symbol T(a) denotes the finite transformation:

a1 X1 f + · · ·+ar Xr f .

Using this terminology, we can state Theorem 24, p. 172, as follows:

Proposition 2. If r independent infinitesimal transformations X1 f , . . . ,Xr f stand
pairwise in relationships of the form:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

then the family of all finite transformations ∑ ek Xk f , or T(e), also contains, simul-
taneously with the two transformations T(a) and T(b), the transformation T(a) T(b);
hence there is a symbolic equation of the form:

T(a) T(b) = T(c),

in which the parameters c are functions of the a and of the b.

Correspondingly, from Theorem 44 of the present chapter, we obtain the fol-
lowing proposition, which, however, does not exhaust the complete content of the
theorem:
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Proposition 3. If r independent infinitesimal transformations X1 f , . . . ,Xr f stand
pairwise in the relationships [Xi, Xk], then the family of the ∞r finite transformations
∑ ek Xk f , or T(e), also contains, simultaneously with the transformations T(a) and

T(b), the transformation T −1
(a) T(b) T(a), whence there exists an equation of the form:

T −1
(a) T(b) T(a) = T(c′)

in which the parameters c′ are functions of the a and of the b.

Obviously, the existence of the symbolic relation: T −1
(a) T(b) T(a) = T(c′) is a conse-

quence of the former relation: T(a) T(b) = T(c), hence the latter proposition is also a
consequence of the preceding one, as we already have seen in the previous sections.

Finally, by combining the two Theorems 44 and 24, p. 172, we obtain the follow-
ing curious result.

Theorem 45. If a family of ∞r finite transformations: a1 X1 f + · · · + ar Xr f , or
shortly T(a), possesses the property that the transformation T −1

(a) T(b) T(a) always
belongs to the family, whatever values the parameters a1, . . . ,ar, b1, . . . ,br can
have, then the family of ∞r transformations in question forms an r-term group, that
is to say: T(a) T(b) is always a transformation which also belongs to the family.

§ 73. If the transformation T −1
(a) T(b) T(a) coincides with the transformation T(b), a

fact that we express by means of the symbolic equation:

T −1
(a) T(b) T(a) = T(b),

then we say: the transformation T(b) remains invariant by the transformation T(a).
But in this case, we also have:

T −1
(b) T(a) T(b) = T(a),

that is to say, the transformation T(a) remains invariant by the transformation T(b);
on the other hand:

T(a) T(b) = T(b) T(a)

is an equation which expresses that the two transformations T(a) and T(b) are inter-
changeable with one another.

We already remarked in Theorem 6, p. 65, that the transformations of an arbitrary
one-term group are interchangeable by pairs. At present, we can also settle the more
general question of when the transformations of two different one-term groups X f
and Y f are interchangeable one with another.

In the general finite transformation eX f of the one-term group X f , we introduce
the new variables x′

i which are defined by the finite equations x′
i = xi + t Y xi + · · · of

the one-term group Y f . The transformations of our two one-term groups will then
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be interchangeable if and only if every transformation of the form eX f remains
invariant after the introduction of the x′, whence eX f is equal to eX ′ f .

According to Theorem 43, p. 265, for the existence of an equation of the form:

eX f = e′ X f ,

it is necessary and sufficient that the infinitesimal transformations X f and Y f satisfy
a relation:

[Y, X ] = gX f ;

at the same time, the e′ determines itself through the differential equation:

de′

d t
+ge′ = 0.

But in our case, e′ is supposed, for every value of t, to be equal to e, hence
e′ absolutely does not depend on t, that is to say, the differential quotient de′/d t
vanishes, and with it, the quantity g too. At the same time, this condition is evidently
necessary and sufficient. Consequently, the following holds true:

Proposition 4. The finite transformations of two one-term groups X f and Y f are
interchangeable with one another if and only if the expression [X , Y ] vanishes iden-
tically.

It stands to reason to call interchangeable two infinitesimal transformations X f
and Y f which stand in the relationship [X , Y ] ≡ 0.

If we introduce this terminology, we can say that the finite transformations of
two one-term groups are interchangeable by pairs if and only if the infinitesimal
transformations of the two groups are so.

Moreover, from the latter proposition follows the

Theorem 46. The finite transformations of an r-term group X1 f , . . . ,Xr f are pair-
wise interchangeable if and only if all expressions [Xi, Xk] vanish identically, or
stated differently, if and only if the infinitesimal transformations X1 f , . . . ,Xr f are
interchangeable by pairs2.

§ 74. From the general developments of §§ 69 and 70, we will now draw a few
further consequences that are of importance.

We again assume that the r independent infinitesimal transformations X1 f , . . . ,Xr f
stand pairwise in the relationships:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

2 LIE, Gesellschaft der Wissenschaften zu Christiania 1872; Archiv for Mathematik og Naturvi-
denskab Vol. 8, p. 180, 1882; Math. Annalen Vol. 24, p. 557, 1884.
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whence according to Theorem 24 of Chap. 9, p. 172, the ∞r finite transforma-
tions ∑ ek Xk f form an r-term group. Now, if the family of transformations ∑ ek Xk f
remains invariant by all transformations of a one-term group Y f , then according to
Theorem 43, p. 265, there exist r equations of the form:

(4) [Y, Xk] =
r

∑
s=1

gks Xs f .

These equations show that the r+ 1 infinitesimal transformations X1 f , . . . ,Xr f ,
Y f generate an (r+1)-term group to which X1 f , . . . ,Xr f belongs as an r-term sub-
group.

In addition, it is clear that the relations (4) do not essentially change their form
when one inserts in place of Y f a completely arbitrary infinitesimal transformation
of the (r+1)-term group.

Hence, if x′
i = ψi(x1, . . . ,xn, a1, . . . ,ar+1) are the finite equations of the (r+ 1)-

term group, then the family of finite transformations ∑ ek Xk f remains invariant
when one introduces in the same way the new variables x′ in place of the x, that is
to say, only the parameters vary in the analytic expression of the r-term group.

A similar property would hold true if, instead of the single transformation Y f ,
one had several, say m, such transformations all of which satisfied relations of the
form (4); in addition, we want to add the assumption that these m infinitesimal
transformations Y1 f , . . . ,Ym f , together with X1 f , . . . ,Xr f , generate an (r+m)-term
group. Then if we introduce new variables in the group X1 f , . . . ,Xr f by means
of an arbitrary transformation of the (r + m)-term group, the family of finite
transformations of our r-term group remains invariant, although the parameters are
changed in their analytic representation.

We want to express this relationship between the two groups by saying shortly:
if the r-term group X1 f , . . . ,Xr f remains invariant by all transformations of the (r+
m)-term group, it is an invariant subgroup of it.

If we translate the terminology commonly used in the theory of substitutions, we
can also interpret the definition of invariants subgroups as follows:

If T is the symbol of an arbitrary transformation of the (r +m)-term group G,
and if S is an arbitrary transformation of a subgroup of G, then this subgroup is
invariant in G when the transformation T −1 ST also always belongs to the subgroup
in question.

In what has been said above, the analytic conditions for the invariance of a sub-
group are completely exhibited; so we need only to summarize them once again:

Theorem 47. If the r-term group X1 f , . . . ,Xr f is contained in an (r+m)-term group
X1 f , . . . ,Xr f , Y1 f , . . . ,Ym f , then it is an invariant subgroup of it when every [Yi, Xk]
is expressible in terms of X1 f , . . . ,Xr f linearly with constant coefficients.

On can state Theorem 47 in the following more general version — though only
in a formal sense:
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Proposition 5. If the totality of all infinitesimal transformations e1 X1 f + · · · +
em Xm f forms an invariant family in the r-term group X1 f , . . . ,Xm f , . . . ,Xr f , then
X1 f , . . . ,Xm f generate an m-term invariant subgroup of the r-term group.

Indeed, since all [Xi, Xk], in which i � m, can be linearly deduced from
X1 f , . . . ,Xm f , then in particular the same holds true of all [Xi, Xk] in which both i
and k are � m. As a result, X1 f , . . . ,Xm f generate an m-term subgroup to which
Theorem 47 can immediately be applied.

First, a few examples of invariant subgroups.

Proposition 6. 3 If the r independent infinitesimal transformations X1 f , . . . ,Xr f
generate an r-term group, then the totality of all infinitesimal transformations
[Xi, Xk] also generates a group; if the latter group contains r parameters, then it is
identical to the group X1 f , . . . ,Xr f ; if it contains fewer than r parameters, then it is
an invariant subgroup of the group X1 f , . . . ,Xr f ; if one adds to the [Xi, Xk] arbitrar-
ily many mutually independent infinitesimal transformations e1 X1 f + · · ·+ er Xr f
that are also independent of the [Xi, Xk], then one always obtains again an invariant
subgroup of the group X1 f , . . . ,Xr f .

It is clear that the [Xi, Xk] can at most generate an r-term group, since they all
belong to the group X1 f , . . . ,Xr f ; the fact that they effectively generate a group
comes immediately from the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

for one indeed has:

[

[Xi, Xk], [Xj, Xl ]
]

=
1···r
∑
s,σ

ciks c jlσ [Xs, Xσ ].

The claim that the group generated by the [Xi, Xk] in the group X1 f , . . . ,Xr f is
invariant becomes evident from the equations:

[

Xj, [Xi, Xk]
]

=
r

∑
s=1

ciks [Xj, Xs].

The last part of the proposition does not require any further explanation.
The following generalization of the proposition just proved is noteworthy:

Proposition 7. If m infinitesimal transformations Z1 f , . . . ,Zm f of the r-term group
X1 f , . . . ,Xr f generate an m-term subgroup of this group, and if the subgroup in
question is invariant in the r-term group, then the subgroup which is generated by
all the infinitesimal transformations [Zμ , Zν ] is also invariant in the r-term group.

3 In the Archiv for Mathematik og Naturvidenskab Vol. 8, p. 390, Christiania 1883, LIE observed
that the [Xi, Xk] form an invariant subgroup. KILLING had realized this independently in the year
1886.
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The proof of this is very simple. Under the assumptions of the proposition, there
are relations of the form:

[Xk, Zμ ] =
m

∑
λ=1

hkμλ Zλ f (k=1 ···r ; μ=1 ···m),

where the hkμλ are constants. Next, if we form the Jacobi identity (cf. Chap. 5,
p. 109):

[

Xk, [Zμ , Zν ]
]

+
[

Zμ , [Zν , Xk]
]

+
[

Zν , [Xk, Zμ ]
]

= 0,

and if we insert in it the expressions written above for [Zμ , Xk] and [Zν , Xk], we
obtain the equations:

[

Xk, [Zμ , Zν ]
]

=
m

∑
λ=1

{

hkνλ [Zμ , Zλ ]−hkμλ [Zν , Zλ ]
}

,

from which it follows that the subgroup of the group X1 f , . . . ,Xr f generated by the
[Zμ , Zν ] is invariant in the former group. But this is what was to be proved. —

Let the r-term group X1 f , . . . ,Xr f , or shortly Gr, contain an (r−1)-term invariant
subgroup and let Y1 f , . . . ,Yr f be r independent infinitesimal transformations of Gr

selected in a such a way that Y1 f , . . . ,Yr−1 f is this invariant subgroup. Then there
exist relations of the form4 (Translator’s note: Indeed, the invariance yields such
relations for all i = 1, . . . ,r −1 and all k = 1, . . . ,r, and also by skew-symmetry for
all i = 1, . . . ,r and all k = 1, . . . ,r −1; then only [Yn, Yn] remains, which, anyway, is
zero.):

[Yi, Yk] = cik1 Y1 f + · · ·+ cik,r−1Yr−1 f (i, k=1 ···r),

whence all [Yi, Yk] and also all [Xi, Xk] can be linearly deduced from only
Y1 f , . . . ,Yr−1 f . From this, we conclude that every (r − 1)-term invariant subgroup
of Gr contains all the infinitesimal transformations [Xi, Xk] and so, we realize that
the following proposition holds true:

Proposition 8. In the r-term group X1 f , . . . ,Xr f , there is an (r − 1)-term invariant
subgroup if and only if the infinitesimal transformations [Xi, Xk] generate a group
with fewer than r parameters; if there are, amongst the [Xi, Xk] exactly r1 < r mu-
tually independent infinitesimal transformations, then one obtains all (r − 1)-term
invariant subgroups of the group X1 f , . . . ,Xr f by adding to the [Xi, Xk] in the most
general way r − r1 −1 infinitesimal transformations e1 X1 f + · · ·+ er Xr f which are
mutually independent and are independent of the [Xi, Xk].

Proposition 1 in Chap. 12, p. 218, provides us with another example of an invari-
ant subgroup.

Namely, if, in the neighborhood of a point x0
1, . . . ,x

0
n, a group contains infinites-

imal transformations of first or of higher order in the xi − x0
i , then each time, all

infinitesimal transformations of order k (k > 0) and higher generate a subgroup.
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Now, by bracketing [KLAMMEROPERATION], two infinitesimal transformations of
respective orders k and k+ν produce a transformation [X , Y ] of the order 2k+ν−1.
Because k is > 0, one has 2k+ν−1 � k+ν , hence [X , Y ] must be linearly express-
ible in terms of the infinitesimal transformations of orders k+ν and higher. In other
words: all the infinitesimal transformations of orders k + ν and higher generate a
group which is invariant in the group generated by the infinitesimal transformations
of orders k and higher. And as said, all of that holds true under the only assumption
that the number k is larger than zero.

In particular, if the numbers k and k+ ν can be chosen in such a way that the
group contains no infinitesimal transformation of orders (2k+ν−1) and higher in
the neighborhood of x0

1, . . . ,x
0
n, then the expression [X , Y ] must vanish identically.

Hence the following holds true:

Proposition 9. If, in the neighborhood of a point x0
1, . . . ,x

0
n, a group contains no in-

finitesimal transformation of (s+1)-th order, or of higher order, and if, by contrast,
it contains transformations of k-th order, where k satisfies the condition 2k −1 > s,
then all infinitesimal transformations of the group which are of the k-th order and
of higher order generate a group with pairwise interchangeable transformations.

Here, the point x0
1, . . . ,x

0
n absolutely need not be such that the coefficients of the

resolved defining equations of the group (cf. Chap. 11, p. 204 sq.) behave regu-
larly. —

Consequently [CONSEQUENTERWEISE] one must say that each finite continu-
ous group contains two invariant subgroups, namely firstly itself and secondly the
identity transformation. One realizes this by setting m, in Theorem 47, firstly equal
to r, and secondly equal to zero; in the two cases the condition for the invariance
of the subgroup X1 f , . . . ,Xr f is satisfied by itself, only as soon as X1 f , . . . ,Xr f ,
Y1 f , . . . ,Ym f is an (r+m)-term group.

The groups which contain absolutely no invariant subgroup, disregarding the two
which are always present, are of special importance. That is why these groups are
also supposed to have a special name, and they should be called simple [EINFACH].
In contrast to this, a group is called compound [ZUSAMMENGESETZT] when, aside
from the two invariant subgroups indicated above, it also contains other invariant
subgroups.

In conclusion, here are two further propositions concerning invariant subgroups:

Proposition 10. The transformations which are common to two invariant subgroups
of a group G form in the same way a subgroup which is invariant in G.

The transformations in question certainly form a subgroup of G (cf. Chap. 9,
Proposition 2, p. 174); this subgroup must be invariant in G, since by all transforma-
tions of G, it is transferred to a group which belongs to the two invariant subgroups,
that is to say, to itself.

Proposition 11. If two invariant subgroups Y1 f , . . . ,Ym f and Z1 f , . . . ,Zp f of a
group G have no infinitesimal transformations in common, then all expressions
[Yi, Zk] vanish identically, that is to say, every transformation of one subgroup is
interchangeable with every other transformation of the other subgroup.
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Indeed, under the assumptions made, every expression [Yi, Zk] must be ex-
pressible with constant coefficients both in terms of Y1 f , . . . ,Ym f and in terms of
Z1 f , . . . ,Zp f ; but since the two subgroups have no infinitesimal transformations in
common, then the conclusion is nothing else but that all expressions [Yi, Zk] vanish
identically. The rest follows from Proposition 4, p. 263.

§ 75. There are r-term groups for which one can select r independent infinitesi-
mal transformations: Y1 f , . . . ,Yr f so that for every i < r, the i independent infinites-
imal transformations Y1 f , . . . ,Yi f generate an i-term group which is invariant in the
(i+1)-term group Y1 f , . . . ,Yi+1 f . Then between Y1 f , . . . ,Yr f , there are relations of
the form:

(11)
[Yi, Yi+k] = ci,i+k,1 Y1 f + · · ·+ ci,i+k,i+k−1Yi+k−1 f

(i=1 ···r−1; k=1 ···r− i).

In the integration theory of those systems of differential equations which admit finite
groups, it follows that the groups of the specific constitution just defined occupy a
certain outstanding position in comparison to all other groups.4

Later, in the chapter on linear homogeneous groups, we will occupy ourselves
more precisely with this special category of groups; at present, we want only to
show in which way one can determine whether a given r-term group X1 f , . . . ,Xr f
belongs, or does not belong, to the category in question.

In order that it be possible to choose, amongst the infinitesimal transformations
e1 X1 f + · · ·+ er Xr f , r mutually independent ones: Y1 f , . . . ,Yr f which stand in re-
lationships of the form (11), there must above all exist an (r − 1)-term invariant
subgroup in Gr: X1 f , . . . ,Xr f . Thanks to Proposition 8, p. 275, we are in a posi-
tion to determine whether this is the case: according to this proposition, the group
X1 f , . . . ,Xr f contains an (r −1)-term invariant subgroup only when the group gen-
erated by all [Xi, Xk] contains fewer than r parameters, say r1; if this condition is
satisfied, then one obtains all (r − 1)-term invariant subgroups of Gr by adding to
the [Xi, Xk] in the most general way r−r1 −1 infinitesimal transformations e1 X1 f +
· · ·+ er Xr f that are mutually independent and are independent of the [Xi, Xk].

However, not every r-term group which contains an (r − 1)-term invariant sub-
group belongs to the specific category defined above; for it to belong to this cate-
gory, it must contain an (r −1)-term invariant subgroup, which in turn must contain
an (r − 2)-term invariant subgroup, and again the latter subgroup must contain an
(r −3)-term invariant subgroup, and so on.

From this, we see how we have to proceed with the group X1 f , . . . ,Xr f : amongst
all (r − 1)-term invariant subgroups of Gr, we must select those which contain at
least an (r − 2)-term invariant subgroup and we must determine all their (r − 2)-
term invariant subgroups; according to what precedes, this presents no difficulty.

4 LIE, Ges. der Wiss. zu Christiania, 1874, p. 273. Math. Ann. Vol. XI, p. 517 and 518. Archiv
for Math. og Nat. Vol. 3, 1878, p. 105 sq., Vol. 8, 1883.
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Afterwards, amongst the found (r −2)-term subgroups, we must select those which
contain (r −3)-term invariant subgroups, and so forth.

It is clear that in this manner, we arrive at the answer to the question which
we have asked about the group X1 f , . . . ,Xr f . Either we realize that this group does
not belong to the discussed specific category, or we find r independent infinitesi-
mal transformations Y1 f , . . . ,Yr f of our group which are linked by relations of the
form (11).

In certain circumstances, the computations just indicated will be made more dif-
ficult by the fact that the subgroups to be studied contain arbitrary parameters which
specialize themselves in the course of the computations. So we will indicate yet an-
other process which also leads to an answer to our question, but which avoids all
computations with arbitrary parameters.

We assume that amongst the [Xi, Xk], one finds exactly r1 � r which are
independent and that all [Xi, Xk] can be linearly deduced from X ′

1 f , . . . ,X ′
r1

f , and
furthermore correspondingly, that all [X ′

i , X ′
k] can be linearly deduced from the

r2 � r1 independent transformations X ′′
1 f , . . . ,X ′′

r2
f , all [X ′′

i , X ′′
k ] from the r3 � r2

independent X ′′′
1 f , . . . ,X ′′′

r3
f , and so on. Then according to Proposition 6, p. 274,

X ′
1 f , . . . ,X ′

r1
f generate an r1-term invariant subgroup Gr1 of Gr: X1 f , . . . ,Xr f ,

and furthermore X ′′
1 f , . . . ,X ′′

r2
f generate an r2-term invariant subgroup Gr2 of Gr1 ,

and so forth; briefly, we obtain a series of subgroups Gr1 , Gr2 , Gr3 , . . . , of Gr in
which each subgroup is contained in all the preceding ones and is invariant in
the immediately preceding one, in all cases. But now, according to Proposition 7,
p. 274, Gr2 is at first invariant not only in Gr1 , but also in Gr, and furthermore,
according to the same proposition, Gr3 is not only invariant in Gr2 , but also in Gr1

and even in Gr itself, and so forth. One sees that in the series of groups: Gr, Gr1 ,
Gr2 , . . . , each individual group is contained in and is invariant in all the preceding
groups.

In the series of whole numbers r, r1, r2, . . . , there is none which is larger than
the preceding one, and on the other hand, none which is smaller than zero. Conse-
quently, there must exist a positive number q of such a nature that rq+1 is equal to
rq, while for j < q, it always holds true that: r j+1 < r j. Evidently, one then has:

rq = rq+1 = rq+2 = · · · ,

so actually:
rq+k = rq (k=1,2 ···).

Now, there are two cases to be distinguished, according to whether the number
rq has the value zero, or is larger than zero.5 (Translator’s note: In this case, rq � 2
in fact, for a one-term group is always solvable.)

In the case rq = 0, it is always possible, as we will show, to select r independent
infinitesimal transformations Y1 f , . . . ,Yr f of Gr which stand in relationships of the
form (11).

Indeed, we choose as Yr f , Yr−1 f , . . . , Yr1+1 f any r − r1 infinitesimal transfor-
mations e1 X1 f + · · ·+ er Xr f of Gr that are mutually independent and are indepen-



§ 75. 279

dent of X ′
1 f , . . . ,X ′

r1
f ; as Yr1 f , Yr1−1 f , . . . , Yr2+1 f , we choose any r1 − r2 infinites-

imal transformations e′
1X ′

1 f + · · ·+ e′
r1

X ′
r1

f of Gr1 that are mutually independent
and are independent of X ′′

1 f , . . . ,X ′′
r2

f , etc.; lastly, as Yrq−1 f , Yrq−1−1 f , . . . , Y1 f , we

choose any rq−1 independent infinitesimal transformations e(q−1)
1 X (q−1)

1 f + · · ·+
e(q−1)

rq−1 X (q−1)
rq−1 f of Grq−1 . In this way, we obviously obtain r mutually independent

infinitesimal transformations Y1 f , . . . ,Yr f of our Gr; about them, we claim that for
every i < r, the i transformations Y1 f , . . . ,Yi f generate an i-term group which is in-
variant in the (i+1)-term group: Y1 f , . . . ,Yi+1 f . If we succeed in proving this claim,
then we will also have proved that Y1 f , . . . ,Yr f stand in the relationships (11).

Let j be any of the numbers 1,2, . . . ,q. Then it is clear that the r j mutually
independent infinitesimal transformations Y1 f , . . . ,Yr j f generate an r j-term group,
namely the group Gr j defined above; certainly, it must be remarked that in the case
j = q, Gr j reduces to the identity transformation.

As we have already remarked earlier, according to Proposition 6, p. 274, Gr j

is invariant in the group Gr j−1 ; but from this proposition, one can conclude even
more, namely one can conclude that we always obtain an invariant subgroup of
Gr j−1 when, to the infinitesimal transformations Y1 f , . . . ,Yr j f of Gr j , we add any
infinitesimal transformations of the group Gr j−1 that are mutually independent and
are independent of Y1 f , . . . ,Yr j f . Now, since Yr j+1 f , . . . ,Yr j−1 f belong to Gr j−1 , and
furthermore, since they are mutually independent and independent of Y1 f , . . . ,Yr j f ,
then it follows that each of the following systems of infinitesimal transformations:

Y1 f , . . . ,Yr j f , Yr j+1 f , . . . ,Yr j−1−2 f ,Yr j−1−1 f

Y1 f , . . . ,Yr j f , Yr j+1 f , . . . ,Yr j−1−2 f

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Y1 f , . . . ,Yr j f , Yr j+1 f , Yr j+2 f

Y1 f , . . . ,Yr j f , Yr j+1 f

generates an invariant subgroup of Gr j−1 .
In this way, between the two groups Gr j−1 and Gr j , there are certain groups — let

us call them Γr j−1−1, Γr j−1−2, . . . , Γr j+1 — which interpolate them and which possess
the following properties: each one of them has a number of terms exactly one less
than that of the group just preceding it in the series, each one of them is contained
in Gr j−1 and in all the groups preceding it in the series, and each one of them is
invariant in Gr j−1 , hence also invariant in all the groups preceding it in the series,
and in particular, invariant in the group immediately preceding it. It then follows
that Gr j is contained in the Γr j+1 as an invariant subgroup.

What has been said holds for all values: 1,2, . . . ,q of the number j, and conse-
quently, we have effectively proved that Y1 f , . . . ,Yr f are independent infinitesimal
transformations of the group X1 f , . . . ,Xr f such that, for any i < r, Y1 f , . . . ,Yi f
always generate an i-term group which is invariant in the (i + 1)-term group
Y1 f , . . . ,Yi+1 f . But this is what we wanted to prove.
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The case where the whole number rq defined above vanishes is now settled, so it
still remains to consider the case where rq is larger than zero. We shall show that it
is impossible in this case to select r infinitesimal transformations Y1 f , . . . ,Yr f in the
group X1 f , . . . ,Xr f which stand in relationships of the form (11).

If rq > 0, then the rq-term group Grq which is generated by the rq independent

infinitesimal transformations X (q)
1 f , . . . ,X (q)

rq f certainly contains no (rq − 1)-term
invariant subgroup. Indeed, since rq+1 = rq, then amongst the infinitesimal trans-

formations [X (q)
i , X (q)

k ], one finds exactly rq that are mutually independent, whence
by taking account of Proposition 8, p. 275, the property of the group Grq just stated
follows.

At present, we assume6 (Translator’s note: (reasoning by contradiction)) that
in the group X1 f , . . . ,Xr f , there are r independent infinitesimal transformations
Y1 f , . . . ,Yr f which are linked by relations of the form (11), and we denote by Gi

the i-term group which, under this assumption, is generated by Y1 f , . . . ,Yi f .
According to p. 279, the group Grq is invariant in the group X1 f , . . . ,Xr f , but as

we saw just now, it contains no (rq −1)-term invariant subgroup. Now, since each Gi

contains an (i−1)-term invariant subgroup, namely the group Gi−1, it then follows
immediately that Grq cannot coincide with the group Grq , and at the same time, it
also follows that there exists an integer number m which is at least equal to rq and is
smaller than r, such that Grq is contained in none of the groups Grq , Grq+1 , . . . , Gm,
while by contrast, it is contained in all groups: Gm+1, Gm+2, . . . , Gr.

As a result, we have an m-term group Gm and an rq-term group Grq which are
both contained in the (m+ 1)-term group Gm+1 as subgroups, and to be precise,
which are both evidently contained in it as invariant7 (Translator’s note: Since, as
we saw, Grq is invariant in Gr = Gr, it is then trivially invariant in Gm+1 ⊂ Gr.)
subgroups. According to Chap. 12, Proposition 7, p. 223, the transformations com-
mon to Gm and to Grq form a group Γ which has at least rq − 1 parameters, and
which, according to Chap. 15, Proposition 10, p. 276, is invariant in Gm+1. Now,
since under the assumptions made, Grq is not contained in Gm, it follows that Γ is
exactly (rq −1)-term and is at the same time invariant in Grq .

This is a contradiction, since according to the preceding, Grq contains absolutely
no invariant (rq −1)-term subgroup. Consequently, the assumption which we took as
a starting point is false, namely the assumption that in the group X1 f , . . . ,Xr f , one
can indicate r independent infinitesimal transformations Y1 f , . . . ,Yr f which stand
mutually in relationships of the form (11). From this, we see that in the case rq > 0,
there are no infinitesimal transformations Y1 f , . . . ,Yr f of this constitution.

In the preceding developments, a simple process has been provided by means of
which one can realize whether a given r-term group X1 f , . . . ,Xr f belongs, or does
not belong, to the specific category defined on page 277.

Proposition 12. 5 If X1 f , . . . ,Xr f are independent infinitesimal transformations of
an r-term group, if X ′

1 f , . . . ,X ′
r1

f (r1 � r) are independent infinitesimal transforma-

5 In this proposition, r1 naturally has the same meaning as on p. 278, and likewise r2, r3, etc.
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tions from which all [Xi, Xk] can be linearly deduced, if furthermore X ′′
1 f , . . . ,X ′′

r2
f

(r2 � r1) are independent infinitesimal transformations from which all [X ′
i , X ′

k] can
be linearly deduced, and if one defines in a corresponding way r3 � r2 mutually
independent infinitesimal transformations X ′′′

1 f , . . . ,X ′′′
r3

f , and so on, then the X ′ f
generate an r1-term group, the X ′′ f an r2-term group, the X ′′′ f an r3-term group,
and so on, and to be precise, each one of these groups is invariant in all the preced-
ing groups, and also in the group X1 f , . . . ,Xr f . — In the series of numbers r, r1, r2,
. . . there is a number, say rq, which is equal to all the subsequent numbers: rq+1,
rq+2, . . . , while by contrast the numbers r, r1, . . . , rq are all distinct from one an-
other. Now, if rq = 0, then it is always possible to indicate, in the group X1 f , . . . ,Xr f ,
r mutually independent infinitesimal transformations Y1 f , . . . ,Yr f such that for every
i < r, the transformations Y1 f , . . . ,Yi f generate an i-term group which is invariant
in the (i+1)-term group: Y1 f , . . . ,Yi+1 f , so that there exist relations of the specific
form:

[Yi, Yi+k] = ci,i+k,1 Y1 f + · · ·+ ci,i+k,i+k−1Yi+k−1 f

(i=1 ···r−1; k=1 ···r− i).

However, if rq > 0, it is not possible to determine r independent infinitesimal trans-
formations Y1 f , . . . ,Yr f in the group X1 f , . . . ,Xr f having the constitution defined
above.

—————–



Chapter 16
The Adjoint Group

Let x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) be an r-term group with the r infinitesimal trans-

formations:

Xk f =
n

∑
i=1
ξki(x)

∂ f
∂xi

(k=1 ···r).

If one introduces the x′
i as new variables in the expression ∑ ek Xk f , then as has been

already shown in Chap. 3, Proposition 4, p. 48, one gets for all values of the ek an
equation of the form:

r

∑
k=1

ek Xk f =
r

∑
k=1

e′
k X ′

k f .

Here, the e′
k are certain linear, homogeneous functions of the ek with coefficients

that depend upon a1, . . . ,ar:

(1) e′
k =

r

∑
j=1
ρk j(a1, . . . ,ar)e j.

If one again introduces in ∑ e′
k X ′

k f the new variables x′′
i = fi(x, b), then one

obtains:
r

∑
k=1

e′
k X ′

k f =
r

∑
k=1

e′′
k X ′′

k f ,

where:

(1’) e′′
k =

r

∑
j=1
ρk j(b1, . . . ,br)e′

j.

But now, because the equations x′
i = fi(x, a) represent a group, the x′′ are conse-

quently linked with the x through relations of the form x′′
i = fi(x, c) in which the c

depend only upon a and b:

ck = ϕk(a1, . . . ,ar, b1, . . . ,br).
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Hence if one passes directly from the x to the x′′, one finds:

r

∑
k=1

ek Xk f =
r

∑
k=1

e′′
k X ′′

k f ,

and to be precise, one has:

(1”) e′′
k =

r

∑
j=1
ρk j(c1, . . . ,cr)e j =

r

∑
j=1
ρk j

(

ϕ1(a,b), . . . ,ϕr(a,b)
)

e j.

From this, it can be deduced that the totality of all transformations e′
k = ∑ ρk j(a)e j

forms a group. Indeed, by combination of the equations (1) and (1’) we get:

e′′
k =

1···r
∑
j, ν
ρk j(b1, . . . ,br)ρ jν(a1, . . . ,ar)eν ,

which must naturally coincide with the equations (1”) and in fact, for all values of
the e, of the a and of the b. Consequently, there are the r2 identities:

ρkν
(

ϕ1(a,b), . . . ,ϕr(a,b)
) ≡

r

∑
j=1
ρ jν(a1, . . . ,ar)ρk j(b1, . . . ,br),

from which it results that the family of the transformations e′
k = ∑ ρk j(a)e j effec-

tively forms a group.
To every r-term group x′

i = fi(x, a) therefore belongs a fully determined linear
homogeneous group:

(1) e′
k =

r

∑
j=1
ρk j(a1, . . . ,ar)e j (k=1 ···r),

which we want to call the adjoint group1 [ADJUNGIRTE GRUPPE] of the group
x′

i = fi(x, a).
We consider for example the two-term group x′ = ax+b with the two independent

infinitesimal transformations: d f
dx , x d f

dx . We find:

e1
d f
dx

+ e2 x
d f
dx

= e1 a
d f
dx′ + e2 (x′ −b)

d f
dx′ = e′

1
d f
dx′ + e′

2 x′ d f
dx′ ,

whence we obtain for the adjoint group of the group x′ = ax+b the following equa-
tions:

e′
1 = ae1 −be2, e′

2 = e2,

which visibly represent a group.
The adjoint group of the group x′

i = fi(x, a) contains, in the form found
above, precisely r arbitrary parameters: a1, . . . ,ar. But for every individual group

1 LIE, Archiv for Math., Vol. 1, Christiania 1876.
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x′
i = fi(x, a), special work is required to investigate whether the parameters

a1, . . . ,ar are all essential in the adjoint group. Actually, we shall shortly see that
there are r-term groups whose adjoint group does not contain r essential parameters.

Furthermore, in all circumstances, one special transformation appears in the ad-
joint group of the group x′

i = fi(x, a), namely the identity transformation; for if
one sets for a1, . . . ,ar in the equations (1) the system of values which produces the
identity transformation x′

i = xi in the group x′
i = fi(x, a), then one obtains the trans-

formation: e′
1 = e1, . . . ,e′

r = er, which hence is always present in the adjoint group.
However, as we shall see, it can happen that the adjoint group consists only of the
identity transformation: e′

1 = e1, . . . ,e′
r = er.

§ 76. In order to make accessible the study of the adjoint group, we must above
all determine its infinitesimal transformations. We easily reach this end by an ap-
plication of Theorem 43, Chap. 15, p. 265; but we must in the process replace the
equations x′

i = fi(x, a) of our group by the equivalent canonical equations:

(2) x′
i = xi +

t
1

r

∑
k=1

λk Xk xi + · · · (i=1 ···n),

which represent the ∞r−1 one-term subgroups of the group x′
i = fi(x, a). According

to Chap. 4, p. 81, the ak are defined here as functions of t and λ1, . . . ,λr by the
simultaneous system:

(3)
dak

d t
=

r

∑
j=1
λ jα jk(a1, . . . ,ar) (k=1 ···r).

By means of the equations (2), we therefore have to introduce the new variables
x′

i in ∑ ek Xk f and we must then obtain a relation of the form:

r

∑
k=1

ek Xk f =
r

∑
k=1

e′
k X ′

k f .

The infinitesimal transformation denoted by Y f in Theorem 43 on p. 265 now reads
as: λ1 X1 f + · · ·+λr Xr f ; we therefore obtain in our case:

Y
(

Xk( f )
)−Xk

(

Y ( f )
)

=
r

∑
ν=1

λν [Xν , Xk]

=
r

∑
s=1

{ r

∑
ν=1

λν cνks

}

Xs f .

Consequently, we obtain the following differential equations for e′
1, . . . ,e

′
r:

(4)
de′

s

d t
+

r

∑
ν=1

λν
r

∑
k=1

cνks e′
k = 0 (s=1 ···r).
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We consider the integration of these differential equations as an executable op-
eration, for it is known that it requires only the resolution of an algebraic equation
of r-th degree. So if we perform the integration on the basis of the initial condition:
e′

k = ek for t = 0, we obtain r equations of the form:

(5) e′
k =

r

∑
j=1
ψk j(λ1t, . . . ,λrt)e j (k=1 ···r),

which are equivalent to the equations (1), as soon as the ak are expressed as functions
of λ1t, . . . ,λrt in the latter.

From this, it follows that the equations (5) represent the adjoint group too. But
now we have derived the equations (5) in exactly the same way as if we would have
wanted to determine all finite transformations which are generated by the infinitesi-
mal transformations:

r

∑
ν=1

λν
1···r
∑
k, s

ckνs ek
∂ f
∂es

=
r

∑
ν=1

λν Eν f

(cf. p. 51 above). Consequently, we conclude that the adjoint group (1) consists of
the totality of all one-term groups of the form λ1 E1 f + · · ·+λr Er f .

If amongst the family of all infinitesimal transformations λ1 E1 f + · · ·+ λr Er f
there are exactly ρ transformations and no more which are independent,
say E1 f , . . . ,Eρ f , then all the finite transformations of the one-term groups
λ1 E1 f + · · ·+ λr Er f are already contained in the totality of all finite transforma-
tions of the ∞ρ−1 groups λ1 E1 f + · · ·+ λρ Eρ f . The totality of these ∞ρ finite
transformations forms the adjoint group: e′

k = ∑ ρk j(a)e j, which therefore contains
only ρ essential parameters (Chap. 4, Theorem 8, p. 75).

According to the preceding, it is to be supposed that E1 f , . . . ,Eρ f are linked
together by relations of the form:

[Eμ , Eν ] =
ρ

∑
s=1

gμνs Es f ;

we can also confirm this by a computation. By a direct calculation, we obtain:

Eμ
(

Eν( f )
)−Eν

(

Eμ( f )
)

=
1···r
∑
σ , k, π

(

cπμk ckνσ − cπνk ckμσ
)

eπ
∂ f
∂eσ

.

But between the ciks, there exist the relations:

r

∑
k=1

(

cπμk ckνσ + cμνk ckπσ + cνπk ckμσ
)

= 0,

which we have deduced from the Jacobi identity some time ago (cf. Chap. 9, The-
orem 27, p. 185). If we then use for this that cνπk = −cπνk and ckπσ = −cπkσ , we
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can bring the right-hand side of our equation for [Eμ , Eν ] to the form:

r

∑
k=1

cμνk

1···r
∑
σ , π

cπkσ eπ
∂ f
∂eσ

,

whence we get:

[Eμ , Eν ] =
r

∑
k=1

cμνk Ek f .

Lastly, under the assumptions made above, the right-hand side can be expressed by
means of E1 f , . . . ,Eρ f alone, so that relations of the form:

[Eμ , Eν ] =
ρ

∑
s=1

gμνs Es f

really hold, in which the gμνs denote constants.
Before we continue, we want to recapitulate in cohesion [IM ZUSAMMENHANGE

WIEDERHOLEN] the results of the chapter obtained up to now.

Theorem 48. If, in the general infinitesimal transformation e1 X1 f + · · ·+ er Xr f of
the r-term group x′

i = fi(x, a), one introduces the new variables x′ in place of the x,
then one obtains an expression of the form:

e′
1 X ′

1 f + · · ·+ e′
r X ′

r f ;

in the process, the e′ are linked to the e by equations of the form:

e′
k =

r

∑
j=1
ρk j(a1, . . . ,ar)e j (k=1 ···r),

which represent a group in the variables e, the so-called adjoint group of the group
x′

i = fi(x, a). This adjoint group contains the identity transformation and is gener-
ated by certain infinitesimal transformations; if, between X1 f , . . . ,Xr f , there exist
the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f (i,k=1 ···r),

and if one sets:

Eμ f =
1···r
∑
k, j

c jμk e j
∂ f
∂ek

(μ=1 ···r),

then λ1 E1 f + · · ·+λr Er f is the general infinitesimal transformation of the adjoint
group and between E1 f , . . . ,Er f , there are at the same time the relations:

[Ei, Ek] =
r

∑
s=1

ciks Es f (i,k=1 ···r).
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If two r-term groups X1 f , . . . ,Xr f and Y1 f , . . . ,Yr f are constituted in such a way
that one simultaneously has:

[Xi, Xk] =
r

∑
s=1

ciks Xs, [Yi, Yk] =
r

∑
s=1

ciks Ys f ,

with the same constants ciks in the two cases, then both groups obviously have the
same adjoint group. Later, we will also see that in certain circumstances, certain
groups which do not possess an equal number of terms can nonetheless have the
same adjoint group.

§ 77. Now, by what can one recognize how many independent infinitesimal
transformation there are amongst E1 f , . . . ,Er f ?

If E1 f , . . . ,Er f are not all independent of each other, then there is at least one
infinitesimal transformation∑ gμ Eμ f which vanishes identically. From the identity:

r

∑
μ=1

gμ
1···r
∑
k, j

c jμk e j
∂ f
∂ek

≡ 0,

we get:
r

∑
μ=1

gμ c jμk = 0

for all values of j and k, and consequently the expression:

[

Xj,
r

∑
μ=1

gμ Xμ f

]

=
r

∑
k=1

{ r

∑
μ=1

gμ c jμk

}

Xk f

vanishes, that is to say: the infinitesimal transformation ∑ gμ Xμ f is interchange-
able with all the r infinitesimal transformations Xj f . Conversely, if the group
X1 f , . . . ,Xr f contains an infinitesimal transformation ∑ gμ Xμ f which is inter-
changeable with all the Xk f , then it follows in the same way that the infinitesimal
transformation ∑ gμ Eμ f vanishes identically.

In order to express this relationship in a manner which is as brief as possible, we
introduce the following terminology:

An infinitesimal transformation ∑ gμ Xμ f of the r-term group X1 f , . . . ,Xr f is
called an excellent infinitesimal transformation of this group if it is interchangeable
with all the Xk f .

Incidentally, the excellent infinitesimal transformations of the group X1 f , . . . ,Xr f
are also characterized by the fact that they keep their form through the introduction
of the new variables x′

i = fi(x, a), whichever values the parameters a1, . . . ,ar take.
Indeed, if the infinitesimal transformation ∑ gμ Xμ f is excellent, then according to
Chap. 15, p. 259, there is a relation of the form:
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∑ gμ Xμ f = ∑ gμ X ′
μ f .

In addition, the cited developments show that each finite transformation of the
one-term group ∑ gμ Xμ f is interchangeable with every finite transformation of the
group X1 f , . . . ,Xr f .

According to what has been said above, to every excellent infinitesimal trans-
formation of the group X1 f , . . . ,Xr f , there corresponds a linear relation between
E1 f , . . . ,Er f . If ∑ gμ Xμ f is an excellent infinitesimal transformation, then there
exists between the E f simply the relation: ∑ gμ Eμ f = 0. Consequently, between
E1 f , . . . ,Er f there are exactly as many independent relations of this sort as there
are independent excellent infinitesimal transformations in the group X1 f , . . . ,Xr f . If
there are exactly m and not more such independent transformations, then amongst
the infinitesimal transformations E1 f , . . . ,Er f there are exactly r −m and not more
which are independent, and likewise, the adjoint group contains the same number
of essential parameters.

We therefore have the

Theorem 49. The adjoint group e′
k = ∑ ρk j(a)e j of an r-term group X1 f , . . . ,Xr f

contains r essential parameters if and only if none of the ∞r−1 infinitesimal trans-
formations ∑ gμ Xμ f are excellent inside the group X1 f , . . . ,Xr f ; by contrast, the
adjoint group has fewer than r essential parameters, namely r −m, when the group
X1 f , . . . ,Xr f contains exactly m and not more independent excellent infinitesimal
transformations.2

Let us take for example the group:

∂ f
∂x1

, . . . ,
∂ f
∂xr

(r �n).

Its infinitesimal transformations are all excellent, since all ciks are zero. So all r
expressions E1 f , . . . ,Er f vanish identically, and the adjoint group reduces to the
identity transformation.

On the other hand, let us take the four-term group:

x
∂ f
∂x

, y
∂ f
∂x

, x
∂ f
∂y

, y
∂ f
∂y

.

This group contains a single excellent infinitesimal transformation, namely:

x
∂ f
∂x

+ y
∂ f
∂y

;

its adjoint group is hence only three-term.

If the group X1 f , . . . ,Xr f contains the excellent infinitesimal transformation
∑ gμ Xμ f , then ∑ gμ Xμ f is a linear partial differential equation which remains

2 LIE, Math. Ann. Vol. XXV, p. 94.
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invariant by the group; in consequence of that, the group is imprimitive (cf. p. 233).
From this, we conclude that the following proposition holds:

Proposition 1. If the group X1 f , . . . ,Xr f in the variables x1, . . . ,xn is primitive, then
it contains no excellent infinitesimal transformation.

If we combine this proposition with the latter theorem, we obtain the

Proposition 2. The adjoint group of an r-term primitive group contains r essential
parameters.

Later, we shall give a somewhat more general version of the last two propositions
(cf. Chapter 24 on systatic groups).

According to the preceding, the infinitesimal transformations of an r-term group
X1 f , . . . ,Xr f and those of the adjoint group E1 f , . . . ,Er f can be mutually ordered
in such a way that, to every infinitesimal transformation ∑ ek Xk which is not excel-
lent there corresponds a nonvanishing infinitesimal transformation ∑ ek Ek f , while
to every excellent infinitesimal transformation ∑ ek Xk f is associated the identity
transformation in the adjoint group. In addition, if one takes account of the fact that
the two systems of equations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f , [Ei, Ek] =
r

∑
s=1

ciks Es f

have exactly the same form, then one could be led to the presumption that the adjoint
group cannot contain excellent infinitesimal transformations. Nevertheless, this pre-
sumption would be false; which is shown by the group ∂ f/∂x2, x1 ∂ f/∂x2, ∂ f/∂x1

whose adjoint group consists of two interchangeable infinitesimal transformations
and therefore contains two independent excellent infinitesimal transformations.

§ 78. The starting point of our study was the remark that the expression
∑ ek Xk f takes the similar form ∑ e′

k X ′
k f after the introduction of the new variables

x′
i = fi(x,a). But now, according to Chap. 15, p. 268, the expression ∑ ek Xk f

can be interpreted as the symbol of the general finite transformation of the group
X1 f , . . . ,Xr f ; here, the quantities e1, . . . ,er are to be considered as the parameters
of the finite transformations of the group X1 f , . . . ,Xr f . Consequently, we can also
say: after the transition to the variables x′, the finite transformations of the group
X1 f , . . . ,Xr f are permuted with each other, while their totality remains invariant.
Thanks to the developments of the preceding section, we can add that the concerned
permutation [VERTAUSCHUNG] is achieved by a transformation of the adjoint
group.

But when a “permutation of the finite transformations ∑ ek Xk f ” is spoken of, the
interpretation fundamentally lies in the fact that one imagines these transformations
as individuals [INDIVIDUEN]; we now want to pursue this interpretation in some
detail.

Every individual in the family ∑ ek Xk f is determined by the associated values of
e1, . . . ,er; for the sake of graphic clarity, we hence imagine the ek as right-angled
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point coordinates of an r-times extended manifold. The points of this manifold then
represent all finite transformations ∑ ek Xk f ; hence, they are transformed by our
known linear homogeneous group:

e′
k =

r

∑
j=1
ρk j(a)e j.

At the same time, the origin of coordinates e1 = 0, . . . , er = 0, i.e. the image-point
[BILDPUNKT] of the identity transformation x′

i = xi, obviously remains invariant.
Every finite transformation e0

k belongs to a completely determined one-term
group, whose transformations are defined by the equations:

e1

e0
1

= · · · = er

e0
r

;

but according to our interpretation, these equations represent a straight line through
ek = 0, that is to say:

Every one-term subgroup of the group X1 f , . . . ,Xr f is represented, in the space
e1, . . . ,er, by a straight line which passes through the origin of coordinates ek = 0;
conversely, every straight line through the origin of coordinates represents such a
one-term group.

Every other subgroup of the r-term group X1 f , . . . ,Xr f consists of one-term
subgroups and these one-term groups are determined by the infinitesimal trans-
formations that the subgroup in question contains. But according to Chap. 11,
Proposition 6, p. 223, the infinitesimal transformations of a subgroup of the group
X1 f , . . . ,Xr f can be defined by means of linear homogeneous equations between
e1, . . . ,er; these equations naturally also define the one-term groups which belong to
the subgroup, hence they actually define the finite transformations of the subgroup
in question. Expressed differently:

Every m-term subgroup of the group X1 f , . . . ,Xr f is represented, in the space
e1, . . . ,er, by a straight2 (Translator’s note: The “straight” character just means
that the manifold in question is a linear subspace of the space e1, . . . ,er.) [EBEN]
m-times extended manifold which passes through the origin of coordinates: e1 = 0,
. . . , er = 0.

Of course, the converse does not hold true in general; it occurs only very excep-
tionally that every straight manifold through the origin of coordinates represents a
subgroup.

The adjoint group e′
k = ∑ ρk j(a)e j now transforms linearly the points ek. If an

arbitrary point ek remains invariant by all transformations of the group, and in con-
sequence of that, also every point mek = Const.ek, then according to the preceding,
this means that the transformations of the one-term group ∑ ek Xk f are interchange-
able with all transformations of the group X1 f , . . . ,Xr f .

Every invariant subgroup of the group X1 f , . . . ,Xr f is represented by a straight
manifold containing the origin of coordinates which keeps its position through all
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transformations e′
k = ∑ ρk j(a)e j. On the other hand, every manifold through the

origin of coordinates which remains invariant by the adjoint group represents an
invariant subgroup of X1 f , . . . ,Xr f (cf. Chap. 15, Proposition 5, p. 273).

Now, let M be any straight manifold through the origin of coordinates which rep-
resents a subgroup of Gr: X1 f , . . . ,Xr f . If an arbitrary transformation of the adjoint
group is executed on M, this gives a new straight manifold which, likewise, rep-
resents a subgroup of Gr. Obviously, this new subgroup is equivalent [ÄHNLICH],
through a transformation of Gr, to the initial one, and if we follow the process of the
theory of substitutions, we can express this as follows: the two subgroups just dis-
cussed are conjugate [GLEICHBERECHTIGT]3 (Translator’s note: Literally in Ger-
man: they are equal, they are considered on the same basis, or they have the same
rights.) inside the group X1 f , . . . ,Xr f .

The totality of all subgroups which, inside the group Gr, are conjugate to the sub-
group which is represented by M is represented by a family of straight manifolds,
namely by the family that one obtains as soon as one executes on M all transforma-
tions of the adjoint group. Two different manifolds of this family naturally represent
conjugate subgroups.

From this we conclude that every invariant subgroup of Gr is conjugate only to
itself inside Gr.

Since the family of all subgroups g which are conjugate to a given one results
from the latter by the execution of all transformations e′

k = ∑ ρk j(a)e j, then this
family itself must be reproduced by all transformations e′′

k = ∑ ρk j(b)e′
j. This is

because if one executes the transformations e′
k = ∑ ρk j(a)e j and e′′

k = ∑ ρk j(a)e′
j

one after the other, then one obtains the same result as if one would have applied all
transformations:

e′′
k =∑ρk j(c)e j (ck =ϕk (a, b))

to the initially given subgroup; in the two cases, one obtains the said family.
Now, if all conjugate subgroups g have a continuous number of mutually com-

mon transformations, then the totality of all these transformations are represented
by a straight manifold in the space e1, . . . ,er. Naturally, this straight manifold re-
mains invariant by all transformations of the adjoint group and hence, according to
what was said above, it represents an invariant subgroup of Gr. Consequently, the
following holds true.

Theorem 50. If the subgroups of a group Gr which are conjugate inside Gr to a
determined subgroup have a family of transformations in common, then the totality
of these transformations forms a subgroup invariant in Gr.

§ 79. We distribute [EINTHEILEN] the subgroups of an arbitrary r-term group Gr

into different classes which we call types [TYPEN] of subgroups of Gr. We include
in the same type the groups which are mutually conjugate inside Gr; groups which
are not conjugate inside Gr belong to different types.
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If one knows any subgroup of Gr, then at once, one can determine all subgroups
which belong to the same type. Thanks to this fact, the enumeration [AUFZÄH-
LUNG] of the subgroups of a given group is essentially facilitated, since one clearly
does not have to write down all subgroups, but rather, one needs only to enumerate
the different types of subgroups by indicating a representative for every type, hence
a subgroup which belongs to the type in question.

We also speak of different types for the finite transformations of a group. We in-
clude in the same type two finite transformations: e0

1 X1 f + · · ·+e0
r Xr f and e1 X1 f +

· · ·+er Xr f of the r-term group X1 f , . . . ,Xr f if and only if they are conjugate inside
Gr, that is to say: when the adjoint group contains a transformation which transfers
the point e0

1, . . . ,e
0
r to the point e1, . . . ,er. It is clear, should it be mentioned, that in

the concerned transformation e′
k = ∑ γk j e j of the adjoint group the determinant of

the coefficients γk j should not vanish.
At present, we want to take up again the question concerning the types of sub-

groups of a given group, though not in complete generality; instead, we want at least
to show how one has to proceed in order to find the extant types of one-term groups
and of finite transformations.

At first, we ask for all types of finite transformations.
Let e0

1 X1 f + · · ·+ e0
r Xr f be any finite transformation of the group X1 f , . . . ,Xr f .

If, on the point e0
1, . . . ,e

0
r , we execute all transformations of the adjoint group, we ob-

tain the image-points [BILDPUNKTE] of all the finite transformations of our group
which are conjugate to ∑ e0

k Xk f and thus, belong to the same type as ∑ e0
k Xk f . Ac-

cording to Chap. 14, p. 237, the totality of all these points forms a manifold invariant
by the adjoint group and to be precise, a so-called smallest invariant manifold, as
was said at that time.

We can consider the finite equations of the adjoint group as known; consequently,
we are in a position to indicate without integration the equations of the just men-
tioned smallest invariant manifold (cf. Chap. 14, Theorem 37, p. 237). Now, since
every such smallest invariant manifold represents the totality of all finite transforma-
tions which belong to a certain type, then with this, all types of finite transformations
of our group are found. As a result, the following holds true.

Proposition 3. If an r-term group x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) with the r indepen-

dent infinitesimal transformations X1 f , . . . ,Xr f is presented, then one finds in the
following way all types of finite transformations e1 X1 f + · · ·+ er Xr f of this group:
one sets up the finite equations e′

k = ∑ ρk j(a)e j of the adjoint group of the group
X1 f , . . . ,Xr f and one then determines, in the space of the e, the smallest mani-
folds which remain invariant by the adjoint group; these manifolds represent the
demanded types.

With all of that, one does not forget that only the transformations of the adjoint
group for which the determinant of the coefficients does not vanish are permitted.
Concerning this point, one may compare with what was said in Chap. 14, p. 237.

Next, we seek all types of one-term subgroups, or, what is the same: all types of
infinitesimal transformations of our group.
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Two one-term groups ∑ e0
k Xk f and ∑ ek Xk f are conjugate inside Gr when there

is, in the adjoint group, a transformation which transfers the straight line:

e1

e0
1

= · · · = er

e0
r

to the straight line:
e1

e1
= · · · = er

er
;

these two straight lines passing through the origin of coordinates are indeed the im-
ages of the one-term subgroups in question. Hence if we imagine that all transfor-
mations of the adjoint group are executed on the first one of these two straight lines,
we obtain all straight lines passing through the origin of coordinates that represent
one-term subgroups which are conjugate to the group ∑ e0

k Xk f . Naturally, the total-
ity of all these straight lines forms a manifold invariant by the adjoint group, namely
the smallest invariant manifold to which the straight line: e1/e0

1 = · · · = er/e0
r be-

longs. It is clear that this manifold is represented by a system of equations which is
homogeneous in the variables e1, . . . ,er.

Conversely, it stands to reason that every system of equations homogeneous in the
e which admits the adjoint group represents an invariant family of one-term groups.
Now, since every system of equations homogeneous in the e is characterized to be
homogeneous by the fact that it admits all transformations of the form:

(6) e′
1 = λ e1, . . . , e′

r = λ er,

it follows that we obtain all invariant families of one-term groups by looking up
at all manifolds of the space e1, . . . ,er which, aside from the transformations of
the adjoint group, also admit all transformations of the form (6). In particular, if
we seek all smallest invariant manifolds of this constitution, we clearly obtain all
existing types of one-term subgroups.

The transformations (6) form a one-term group whose infinitesimal transforma-
tions read:

E f =
r

∑
k=1

ek
∂ f
∂ek

.

If we add E f to the infinitesimal transformations E1 f , . . . ,Er f of the adjoint group,
we again obtain the infinitesimal transformations of a group; indeed, the expres-
sions [Ek, E] all vanish identically, as their computation shows. Visibly, everything
amounts to the determination of the smallest manifolds which remain invariant by
the group E1 f , . . . ,Er f ,E f . But according to the instructions in Chap 14, p. 237,
this determination can be accomplished, since together with the finite equations of
the adjoint group, the finite equations of the group just mentioned are also known
without effort. Hence we have the

Proposition 4. If an r-term group x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) with the r indepen-

dent infinitesimal transformations X1 f , . . . ,Xr f is presented, then one finds as fol-
lows all types of one-term subgroups of this group, or what is the same, all types
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of infinitesimal transformations E1 f , . . . ,Er f : one sets up the infinitesimal transfor-
mations of the adjoint group of the group X1 f , . . . ,Xr f , then one computes the finite
equations of the group which is generated by the r+1 infinitesimal transformations
E1 f , . . . ,Er f and:

E f =
r

∑
k=1

ek
∂ f
∂ek

and lastly, one determines, in the space e1, . . . ,er, the smallest manifolds invariant
by the group just defined; these manifolds represent the demanded types.

In the preceding, it is shown how one can determine all types of finite trans-
formations and all types of one-term subgroups of a given r-term group. Now in a
few words, we will consider somewhat more precisely the connection which exists
between these two problems; we will see that the settlement of one of these two
problems facilitates the settlement of the other.

On the first hand, we assume that we already know all types of finite trans-
formations of the group X1 f , . . . ,Xr f , so that all smallest manifolds of the space
e1, . . . ,er which admit the adjoint group E1 f , . . . ,Er f are known to us. Then how
must one proceed in order to find the smallest manifolds invariant by the group E f ,
E1 f , . . . ,Er f ?

It is clear that every manifold invariant by the group E f , E1 f , . . . ,Er f also admits
the adjoint group; consequently, every sought manifold must either be one of the
already known manifolds, or it must contain at least one of the known manifolds.
Hence in order to find all the sought manifolds, we only need to take the known
manifolds one after the other and for each of them, to find the smallest manifold
invariant by the group E f , E1 f , . . . ,Er f in which it is contained.

Let:

(7) W1(e1, . . . ,er) = 0, . . . , Wm(e1, . . . ,er) = 0,

or shortly M, be one of the known manifolds which admits the adjoint group
E1 f , . . . ,Er f . Now, how can one find the smallest manifold which admits the group
E f , E1 f , . . . ,Er f and which in addition comprises the manifold M?

The sought manifold necessarily contains the origin of coordinates e1 = 0, . . . ,
er = 0 and moreover, it consists in nothing but straight lines passing through it,
hence it certainly contains the manifold M′ which is formed of the straight lines
between the points of M and the origin of coordinates. Now, if we can prove that M′
admits the infinitesimal transformations E f , E1 f , . . . ,Er f , then at the same time, we
have proved that M′ is the sought manifold.

Visibly, the equations of M′ are obtained by eliminating the parameter τ from the
equations:

(8) W1(e1 τ, . . . ,er τ) = 0, . . . , Wm(e1 τ, . . . , er τ) = 0.

Consequently, M′ can be interpreted as the totality of all the ∞1 manifolds that are
represented by the equations (8) with the arbitrary parameter τ . But the totality of
the manifolds (8) obviously admits the infinitesimal transformation E f , since the∞1
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systems of equations (8) are permuted with each other by the finite transformations:

e′
1 = λ e1, . . . , e′

r = λ er

of the one-term group E f . Furthermore, it is easy to see that each of the individual
systems of equations (8) allows the infinitesimal transformations E1 f , . . . ,Er f . In-
deed, because the system of equations (7) allows the infinitesimal transformations:

Eμ f =
1···r
∑
k, j

c jμk e j
∂ f
∂ek

(μ=1 ···r)

then the system (8) with the parameter τ admits the transformations:

1···r
∑
k, j

c jμk e j τ
∂ f

∂ (ekτ)
= Eμ f ,

that is to say, it admits E1 f , . . . ,Er f themselves, whichever value τ takes.
From this, we conclude that the totality of the ∞1 manifolds (8) admits the in-

finitesimal transformations E f , E1 f , . . . ,Er f , hence that the manifold M′ which co-
incides with this totality really is the sought manifold; as said, this manifold is an-
alytically represented by the equations which are obtained by elimination of the
parameter τ .

If we imagine that for every manifold M, the accompanying manifold M′ is
formed, then according to the above, we obtain all types of one-term subgroups of
the group X1 f , . . . ,Xr f . —

On the other hand, we assume that we know all types of one-term subgroups of
the group X1 f , . . . ,Xr f , and we then seek to determine from them all types of finite
transformations of these groups.

All smallest manifolds invariant by the group E f , E1 f , . . . ,Er f are known to
us and we must seek all smallest manifolds invariant by the group E1 f , . . . ,Er f .
But now, since every sought manifold is contained in one of the known manifolds,
we only have to consider for itself each individual known manifold and to find the
manifolds of the demanded constitution that are located in each such manifold.

Let the q-times extended manifold M be one of the smallest manifolds invariant
by the group E f , E1 f , . . . ,Er f . Then for the points of M (cf. Chap. 14, p. 247), all
the (q+1)× (q+1) determinants, but not all q×q determinants, of the matrix:

(9)

∣
∣
∣
∣
∣
∣
∣
∣

e1 · · · er

∑r
k=1 ck11 ek · · · ∑r

k=1 ck1r ek

· · · · ·
∑r

k=1 ckr1 ek · · · ∑r
k=1 ckrr ek

∣
∣
∣
∣
∣
∣
∣
∣

vanish.
Now, the question whether M decomposes in subsidiary domains which remain

invariant by the group E1 f , . . . ,Er f is settled by the behavior of the q×q subdeter-
minants of the determinant:
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Δ =

∣
∣
∣
∣
∣
∣

∑r
k=1 ck11 ek · · · ∑r

k=1 ck1r ek

· · · · ·
∑r

k=1 ckr1 ek · · · ∑r
k=1 ckrr ek

∣
∣
∣
∣
∣
∣

.

If, for the points of M, not all the subdeterminants in question vanish, then no
decomposition of M in smaller manifolds invariant by the adjoint group takes place.

By contrast, if the concerned subdeterminants all vanish for the points of M, then
M decomposes into ∞1 (q−1)-times extended subsidiary domains invariant by the
group E1 f , . . . ,Er f ; that there are exactly ∞1 such subsidiary domains follows from
the fact that surely for the points of M, not all (q−1)× (q−1) subdeterminants of
Δ vanish, for otherwise, all the q × q determinants of the matrix (9) would vanish
simultaneously. Naturally, one can set up without integration the equations of the
discussed subsidiary domains, since the finite equations of the group E1 f , . . . ,Er f
are known.

—————–

In the present chapter, up to now we have always considered the finite transfor-
mations of the group X1 f , . . . ,Xr f only as individuals and we have interpreted them
as points of an r-times extended space.

There is another standpoint which is equally legitimate. We can also consider as
individuals the one-term subgroups, or, what amounts to the same, the infinitesimal
transformations of our group, and interpret them as points of a now (r − 1)-times
extended space. Then clearly, we must understand the quantities e1, . . . ,er as homo-
geneous coordinates in this space.

Our intention is not to pursue these views; above all, by considering what was
said earlier on, it appears for instance evident that every m-term subgroup of the
group X1 f , . . . ,Xr f is represented, in the (r−1)-times extended space, by a smooth4

(Translator’s note: Namely, the projectivization of a linear subspace (Lie subalge-
bra) or “straight” [EBEN] manifold (cf. 291).) [EBEN] manifold of m − 1 dimen-
sions. We only want to derive a simple proposition which follows by taking as a
basis the new interpretation and which can often be useful for conceptual research
on transformation groups.

We imagine that the general finite transformation:

x′
i = xi +

t
1

r

∑
k=1

λ 0
k Xk xi + · · · (i=1 ···n)

of the one-term group λ 0
1 X1 f + · · ·+λ 0

r Xr f is executed on the infinitesimal trans-
formation: e0

1 X1 f + · · ·+ e0
r Xr f of our r-term group, that is to say, we imagine that,

in place of x1, . . . ,xn, the new variables x′
1, . . . ,x

′
n are introduced in the expression

e0
1 X1 f + · · ·+e0

r Xr f . According to p. 285, the infinitesimal transformation: e0
1 X1 f +

· · ·+ e0
r Xr f is transferred at the same time to the ∞1 infinitesimal transformations:

e1 X1 f + · · ·+er Xr f of our group, where e1, . . . ,er are certain functions of e0
1, . . . ,e

0
r

and t that determine themselves through the differential equations:
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(4’)
des

d t
= −

r

∑
ν=1

λ 0
ν

r

∑
k=1

cνks ek (s=1 ···r),

with the initial conditions: e1 = e0
1, . . . , er = e0

r for t = 0.
Since every infinitesimal transformation of our group is represented by a point of

the (r−1)-times extended space mentioned a short while ago, we can also obviously
say: If all ∞1 transformations of the one-term group: λ 0

1 X1 f + · · ·+λ 0
r Xr f are exe-

cuted on the infinitesimal transformation: e0
1 X1 f + · · ·+e0

r Xr f , then the image-point
of this infinitesimal transformation moves on a certain curve of the space e1, . . . ,er.

Now, there is a very simple definition for the tangent to this curve at the point
e0

1 : · · · : e0
r . Namely, the equations of the tangent in question have the form:

es

1···r
∑
ν , k

cνkτ λ 0
ν e0

k − eτ
1···r
∑
ν , k

cνksλ 0
ν e0

k = 0

(s, τ=1 ···r),

whence the point whose homogeneous coordinates have the values:

es =
1···r
∑
ν , k

cνksλ 0
ν e0

k (s=1 ···r)

obviously lie on the tangent. But this point is visibly the image-point of the infinites-
imal transformation:

[ r

∑
ν=1

λ 0
ν Xν f ,

r

∑
k=1

e0
k Xk f

]

=
r

∑
s=1

{1···r
∑
ν , k

cνksλ 0
ν e0

k

}

Xs f

which is obtained by combination of the two infinitesimal transformations∑ λ 0
ν Xν f

and ∑ e0
k Xk f . Consequently, we have the

Proposition 5. If one interprets the ∞r−1 infinitesimal transformations e1 X1 f +
· · · + er Xr f of an r-term group X1 f , . . . ,Xr f as points of an (r − 1)-times ex-
tended space by considering e1, . . . ,er as homogeneous coordinates in this
space, then the following happens: If all transformations of a determined one
term group: λ 0

1 X1 f + · · · + λ 0
r Xr f are executed on a determined infinitesimal

transformation e0
1 X1 f + · · ·+ e0

r Xr f , then the image-point of the transformation
e0

1 X1 f + · · ·+e0
r Xr f describes a curve, the tangent of which at the point e0

1 : · · · : e0
r

may be obtained by connecting, through a straight line, this point to the image-point
of the infinitesimal transformation [∑ λ 0

ν Xν f , ∑ e0
k Xk f ]; on the other hand, if all

transformations of the one-term group ∑ e0
k Xk f are executed on the infinitesimal

transformation ∑ λ 0
ν Xν f , then the image-point of the transformation ∑ λ 0

ν Xν f
describes a curve, the tangent of which one obtains by connecting, through a
straight line, this point to the image-point of the infinitesimal transformation
[∑ e0

k Xk f , ∑ λ 0
ν Xν f ].
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Chapter 17
Composition and Isomorphism

Several problems that one can raise concerning an r-term group X1 f , . . . ,Xr f re-
quire, for their solution, only the knowledge of the constants ciks in the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f .

For instance, we have seen that the determination of all subgroups of the group
X1 f , . . . ,Xr f depends only on the constants ciks and that exactly the same also holds
true for the determination of all types of subgroups (cf. Theorem 33, p. 222 and
Chap. 16, p. 291 and 292).

It is evident that the constants ciks actually play the rôle of certain properties of
the group X1 f , . . . ,Xr f . For the totality of these properties, we introduce a specific
terminology, we call them the composition [ZUSAMMENSETZUNG] of the group,
and we thus say that the constants ciks in the relations:

(1) [Xi, Xk] =
r

∑
s=1

ciks Xs f

determine the composition of the r-term group X1 f , . . . ,Xr f .
§ 80. The system of the ciks which determines the composition of the

r-term group X1 f , . . . ,Xr f is in turn not completely determined. Indeed, the
individual ciks receive in general other numerical values when one chooses, in
place of X1 f , . . . ,Xr f , any other r independent infinitesimal transformations
e1 X1 f + · · ·+ er Xr f .

From this, it follows that two different systems of ciks can represent, in certain
circumstances, the composition of one and the same group. But how can one recog-
nize that this is the case?

We start from the relations:

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_17
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(1) [Xi, Xk] =
r

∑
s=1

ciks Xs f (i, k=1 ···r)

which exist between r determined independent infinitesimal transformations
X1 f , . . . ,Xr f of our group. We seek the general form of the relations by which
r arbitrary independent infinitesimal transformations X1 f , . . . ,Xr f of the group
X1 f , . . . ,Xr f are linked.

If the concerned relations have the form:

(2) [Xi,Xk] =
r

∑
s=1

c′
iksXs f ,

then the system of the constants c′
iks is the most general one which represents the

composition of the group X1 f , . . . ,Xr f . Hence we are concerned only with the com-
putation of the c′

iks.
Since X1 f , . . . ,Xr f are supposed to be arbitrary independent infinitesimal trans-

formations of the group X1 f , . . . ,Xr f , we have:

Xk f =
r

∑
j=1

hk j Xj f (k=1 ···r),

where the constants hk j can take all the possible values which do not bring to zero
the determinant:

D = ∑ ± h11 · · ·hrr.

By a calculation, we obtain:

[Xi,Xk] =
1···r
∑
j, π

hi j hkπ [Xj, Xπ ] =
1···r
∑

j, π, s
hi j hkπ c jπs Xs f ;

on the other hand, it follows from (2) that:

[Xi,Xk] =
1···r
∑
π, s

hπs c′
ikπ Xs f .

If we compare these two expressions with each other for [Xi,Xk] and if we take
account of the fact that the X1 f , . . . ,Xr f are independent infinitesimal transforma-
tions, we obtain the relations:

(3)
r

∑
π=1

hπs c′
ikπ =

1···r
∑
j, π

hi j hkπ c jπs (s=1 ···r).

Under the assumptions made, these equations can be solved with respect to the
c′

ikπ , hence one has:1 (Translator’s note: Implicitly here, one sees a standard way to
represent the matrix which is the inverse of (hk j).)
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(4)
c′

ikρ =
1
D

r

∑
s=1

{
∂D
∂hρs

1···r
∑
j, π

hi j hkπ

}

c jπs

(i, k, ρ=1 ···r).

With these words and according to the above, we have found the general form of
all systems of constants which determine the composition of the group X1 f , . . . ,Xr f .
At the same time, we have at least theoretical means to decide whether a given sys-
tem of constants ciks determines the composition of the group X1 f , . . . ,Xr f ; namely,
such a system obviously possesses this property if and only if one can choose the
parameters hk j in such a way that c′

iks = ciks. —
If two r-term groups are given, we can compare their compositions. Clearly,

thanks to the above developments, we are in a position to decide whether the two
groups have one and the same composition, or have different compositions. Here,
we do not need to pay heed to the number of variables.

We say that two r-term groups which have one and the same composition are
equally composed [GLEICHZUSAMMENGESETZT].

If:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

are independent infinitesimal transformations of an r-term group and if:

Yk f =
m

∑
μ=1

ηkμ(y1, . . . ,ym)
∂ f
∂yμ

(k=1 ···r)

are independent infinitesimal transformations of a second r-term group, and in ad-
dition, if there are relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

then obviously, these two groups are equally composed when, and only when,
amongst the infinitesimal transformations e1 Y1 f + · · ·+ er Yr f of the second group,
one can indicate r mutually independent transformations Y1 f , . . . ,Yr f such that
the relations:

[Yi, Yk] =
r

∑
s=1

ciksYs f

hold identically.
If the relations holding between Y1 f , . . . ,Yr f have the form:

[Yi, Yk] =
r

∑
s=1

ciks Ys f ,
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then we can say: the two groups are equally composed when and only when it is
possible to choose the parameters hk j in the equations (4) in such a way that every
c′

iks is equal to the corresponding ciks.

One can also compare the compositions of two groups which do not have the
same number of parameters. This is made possible by the introduction of the general
concept: isomorphism [ISOMORPHISMUS].

The r-term group X1 f , . . . ,Xr f :

[Xi, Xk] =
r

∑
s=1

ciks Xs f

is said to be isomorphic [ISOMORPH] to the (r−q)-term group: Y1 f , . . . ,Yr−q f when
it is possible to choose r infinitesimal transformations:

Yk f = hk1 Y1 f + · · ·+hk,r−q Yr−q f

(k=1 ···r)

in the (r −q) so that not all (r −q)× (r −q) determinants of the matrix:
∣
∣
∣
∣
∣
∣
∣
∣

h11 · · h1,r−q

· · · ·
· · · ·

hr1 · · hr,r−q

∣
∣
∣
∣
∣
∣
∣
∣

vanish, and so that at the same time, the relations:

[Yi, Yk] =
r

∑
s=1

ciksYs f

hold identically.1

Let there be an isomorphism in this sense and let Y1 f , . . . ,Yr f be already chosen
in the indicated way. Then if we always associate to the infinitesimal transformation
e1 X1 f + · · ·+ er Xr f of the r-term group the infinitesimal transformation:

e1Y1 f + · · ·+ er Yr f

of the (r − q)-term group, whichever values the constants e1, . . . ,er may have, then
the following clearly holds true: when Y1 f is the transformation of the (r −q)-term
group which is associated to the transformation Ξ1 f of the other group, and when,
correspondingly, Y2 f is associated to the transformation Ξ2 f , then the transforma-
tion [Ξ1, Ξ2] always corresponds to the transformation [Y1, Y2]. We express this
more briefly as follows: through the indicated correspondence of the infinitesimal
transformations of the two groups, the groups are isomorphically related one to an-

1 Cf. Volume III, [1], p. 701, remarks.
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other. Visibly, this isomorphic condition is completely determined when one knows
that, to X1 f , . . . ,Xr f , are associated the transformations Y1 f , . . . ,Yr f , respectively.

One makes a distinction between holoedric and meroedric isomorphisms. The
holoedric case occurs when the number q, which appears in the definition of the
isomorphism, has the value zero; the meroedric case when q is larger than zero.
Correspondingly, one says that the two groups are holoedrically, or meroedrically,
isomorphic one to another.

Visibly, the property of being equally composed [DIE EIGENSCHAFT DES GLE-
ICHZUSAMMENGESETZTSEINS] of two groups is a special case of isomorphism;
namely, two equally composed groups are always holoedrically isomorphic, and
conversely.

Two meroedrically isomorphic groups are, for example, the two:

∂ f
∂x1

, x1
∂ f
∂x1

, x2
1
∂ f
∂x1

,
∂ f
∂x2

and:
∂ f
∂y1

, y1
∂ f
∂y1

, y2
1
∂ f
∂y1

,

with, respectively, four and three parameters. We obtain that these two groups are
meroedrically isomorphic when, to the four infinitesimal transformations:

X1 f =
∂ f
∂x1

, X2 f = x1
∂ f
∂x1

, X3 f = x2
1
∂ f
∂x1

, X4 f =
∂ f
∂x1

+
∂ f
∂x2

of the first, the following four, say, are associated:

Y1 f =
∂ f
∂y1

, Y2 f = y1
∂ f
∂y1

, Y3 f = y2
1
∂ f
∂y1

, Y4 f =
∂ f
∂y1

.

In the theory of substitutions, one also speaks of isomorphic groups, although
the notion of isomorphism happens to be apparently different from the one here.2

Later (cf. Chap. 21: The Group of Parameters) we will convince ourselves that nev-
ertheless, the concept of isomorphism following from our definition corresponds
perfectly to the concept which one obtains as soon as one translates the definition of
the theory of substitution directly into the theory of finite continuous groups.

At present, we shall at first derive a few simple consequences from our definition
of isomorphism.

In the preceding chapter, we have seen that to every r-term group X1 f , . . . ,Xr f
is associated a certain linear homogeneous group, the adjoint group, as we have
named it. From the relations which exist between the infinitesimal transformations
of the adjoint group (cf. Chap. 16, p. 287), it becomes immediately evident that the
group X1 f , . . . ,Xr f is isomorphic to its adjoint group; however, the two groups are
holoedrically isomorphic only when the group X1 f , . . . ,Xr f contains no excellent

2 Camille JORDAN, Traité des substitutions, Paris 1870.
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infinitesimal transformation, because the adjoint group is r-term only in this case,
whereas it always contains less than r parameters in the contrary case. Thus:

Theorem 55. To every r-term group X1 f , . . . ,Xr f is associated an isomorphic linear
homogeneous group, namely the adjoint group; this group is holoedrically isomor-
phic to the group X1 f , . . . ,Xr f only when the latter contains no excellent infinitesi-
mal transformation.

We do not consider here the question of whether to every r-term group which
contains excellent infinitesimal transformations one can also associate an holoedri-
cally isomorphic linear homogeneous group. Yet by an example, we want to show
that this is in any case possible in many circumstances, also when the given r-term
group contains excellent infinitesimal transformations.

Let the r-term group X1 f , . . . ,Xr f contain precisely r −m independent excellent
infinitesimal transformations, and let X1 f , . . . ,Xr f be chosen in such a way
that Xm+1 f , . . . ,Xr f are excellent infinitesimal transformations; then between
X1 f , . . . ,Xr f , there exist relations of the form:

[Xμ , Xν ] = cμν1 X1 f + · · ·+ cμνr Xr f

[Xμ , Xm+k] = [Xm+k, Xm+ j] = 0

(μ, ν=1 ···m ; k, j=1 ···r−m).

In the associated adjoint group E1 f , . . . ,Er f , there are only m independent in-
finitesimal transformations: E1 f , . . . ,Em f , while Em+1 f , . . . ,Er f vanish identically,
and hence E1 f , . . . ,Em f are linked together by the relations:

[Eμ , Eν ] = cμν1 E1 f + · · ·+ cμνm Em f .

In particular, if all cμ,ν ,m+1, . . . ,cμνr vanish, one can always indicate an r-
term linear homogeneous group which is holoedrically isomorphic to the group
X1 f , . . . ,Xr f . In this case namely, X1 f , . . . ,Xm f actually generate an m-term group
to which the group E1 f , . . . ,Em f is holoedrically isomorphic. Hence if we set:

Em+1 f = er+1
∂ f
∂er+1

, . . . , Er f = e2r−m
∂ f

∂e2r−m
,

then the r independent infinitesimal transformations:

E1 f , . . . , Em f , Em+1 f , . . . , Er f

obviously generate a linear homogeneous group which is holoedrically isomorphic
to the group X1 f , . . . ,Xr f .

But also in the cases where not all cμ,ν ,m+1, . . . ,cμνr vanish, one can often easily
indicate a holoedrically isomorphic linear homogeneous group. As an example, we
use the three-term group X1 f , X2 f , X3 f :

[X1, X2] = X3 f , [X1, X3] = [X2, X3] = 0,
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which contains an excellent infinitesimal transformation, namely X3 f ; it is holoedri-
cally isomorphic to the linear homogeneous group:

E1 f = α3
∂ f
∂α1

, E2 f = α1
∂ f
∂α2

, E3 f = α3
∂ f
∂α2

.

As we have seen in Chap. 9, p. 185, the constants ciks in the equations:

(1) [Xi, Xk] =
r

∑
s=1

ciks Xs f

satisfy the relations:

(5)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ciks + ckis = 0
r

∑
ν=1

{

cikν cν js + ck jν cν is + c jiν cνks
}

= 0

(i, k, j, s=1 ···r).

With the help of these relations, in Chap. 16, p. 287, we succeeded in proving
that the r infinitesimal transformations:

(6) Eμ f =
1···r
∑
k, j

c jμk e j
∂ f
∂ek

(μ=1 ···r)

of the group adjoint to the group X1 f , . . . ,Xr f stand pairwise in the relationships:

(7) [Eμ , Eν ] =
r

∑
s=1

cμνs Es f .

But for this proof of the relations (7), we have used no more than the fact that
the ciks satisfied the equations (5), namely we have made no use of the fact that we
knew r infinitesimal transformations X1 f , . . . ,Xr f which were linked together by
the relations (1). Thanks to the cited developments, it is hence established that the r
infinitesimal transformations (6) always stand in the relationships (7) when the ciks

satisfy the equations (5).
Consequently, if we know a system of ciks which satisfies the relations (5),

we can immediately indicate r linear homogeneous infinitesimal transforma-
tions E1 f , . . . ,Er f , namely the transformations (6), which stand pairwise in the
relationships:

[Ei, Ek] =
r

∑
s=1

ciks Es f .

It is evident that the so obtained infinitesimal transformations E1 f , . . . ,Er f gen-
erate a group, and to be precise, a group with r or fewer parameters; clearly, they
generate a group with exactly r parameters only when they are mutually indepen-
dent, hence when it is impossible that the equations:
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g1 E1 f + · · ·+gr Er f = 0,

or the r2 equivalent equations:

g1 c j1k +g2 c j2k + · · ·+gr c jrk ( j, k=1 ···r)

are satisfied by not all vanishing quantities g1, . . . ,gr.
As a result, we have the

Theorem 52. 3 When the constants ciks (i, k, s=1 ···r) possess values such that all re-
lations of the form:

(5)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ciks + ckis = 0
r

∑
ν=1

{

cikν cν js + ck jν cν is + c jiν cνks
}

= 0

(i, k, j, s=1 ···r)

are satisfied, then the r linear homogeneous infinitesimal transformations:

Eμ f =
1···r
∑
k, j

c jμk e j
∂ f
∂ek

(μ=1 ···r)

stand pairwise in the relationships:

[Ei, Ek] =
r

∑
s=1

ciks Es f (i, k=1 ···r),

and hence, they generate a linear homogeneous group. In particular, if the ciks are
constituted so that not all r×r determinants, the horizontal series of which have the
form:

∣
∣c j1k c j2k · · · c jrk

∣
∣ ( j, k=1 ···r),

vanish, then E1 f , . . . ,Er f are independent infinitesimal transformations and they
generate an r-term group whose composition is determined by the system of the ciks,
and which contains no excellent infinitesimal transformation. In all other cases, the
group generated by E1 f , . . . ,Er f has fewer than r parameters.

§ 81. The results of the preceding section suggest the presumption that actually,
every system of ciks which satisfies the relations (5) represents the composition of
a certain r-term group. This presumption corresponds to the truth [DIESE VER-
MUTHUNG ENTSPRICHT DER WAHRHEIT], for the following holds.2 (Translator’s
note: This is the so-called Third Fundamental Theorem of Lie’s theory, cf. Vol. III.)

3 LIE, Archiv for Math. og Nat. Vol. 1, p. 192, Christiania 1876.
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Proposition 1. If the constants ciks (i, k, s=1 ···r) possess values such that the rela-
tions:

(5)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ciks + ckis = 0
r

∑
ν=1

{

cikν cν js + ck jν cν is + c jiν cνks
}

= 0

(i, k, j, s=1 ···r)

are satisfied, then there are always, in a space of the appropriate number of dimen-
sions, r independent infinitesimal transformations X1 f , . . . ,Xr f which stand pair-
wise in the relationships:

[Xi, Xk] =
r

∑
s=1

ciks Xs f

and hence generate an r-term group of the composition ciks.

For the time being, we suppress the proof of this important proposition, in order
not to be forced to digress for a long while, and we will perform this proof only in
the next volume. Of course, until then, we will make the least possible use of this
proposition.

From Proposition 1, it results that the totality of all possible compositions of r-
term groups is represented by the totality of all systems of ciks which satisfy the
equations (5). If one knows all such systems of ciks, then with this, one knows at the
same time all compositions of r-term groups.

But now, as we have seen on p. 303, there are in general infinitely many systems
of ciks which represent one and the same composition; if a system of ciks is given
which represents a composition, then one finds all systems of c′

iks which represent
the same composition by means of the equations (4), in which it is understood that
the hk j are arbitrary parameters. Hence, when one knows all systems of ciks which
satisfy the equations (5), more work required in order to find out which of these
systems represent different compositions. In order to be able to execute this research,
we must at first consider more closely the equations (4).

For the moment, we disregard the fact that the ciks are linked together by some
relations; rather, we consider the ciks, and likewise the c′

iks, as variables independent
of each other. On the basis of this conception, it will be shown that the equations (4)
represent a continuous transformation group in the variables ciks.

In order to prove the claimed property of the equations (4), we will directly exe-
cute one after the other two transformations (4), or, what is the same, two transfor-
mations:

(3)

r

∑
π=1

hπs c′
ikπ =

1···r
∑
j, π

hi j hkπ c jπs

(i, k, s=1 ···r).
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To begin with, we therefore transfer the ciks to the c′
iks by means of the transfor-

mation (3) and then the c′
iks to the c′′

iks by means of the transformation:

(3’)
r

∑
π=1

h′
πs c′′

ikπ =
1···r
∑
j, π

h′
i j h′

kπ c′
jπs.

In this way, we obtain a new transformation, the equations of which are obtained
when the c′

iks are taken away from (3) and (3’). It is to be proved that this new
transformation has the form:

(3”)
r

∑
π=1

h′′
πs c′′

ikπ =
1···r
∑
j, π

h′′
i j h′′

kπ c′
jπs,

where the h′′ are functions of only the h and the h′.
We multiply (3’) by hsσ and we sum with respect to s; then we receive:

1···r
∑
π, s

h′
πs hsσ c′′

ikπ =
1···r
∑

j, π, s
h′

i j h′
kπ hsσ c′

jπs,

or, because of (3):

1···r
∑
π, s

h′
πs hsσ c′′

ikπ =
1···r
∑

j, π, τ , ρ
h′

i j h′
kπ h jτ hπρ cτρσ .

This is the discussed new transformation; it converts into (3”) when one sets:

h′′
πσ =

r

∑
s=1

h′
πs hsσ .

As a result, it is proved that the transformations (4) effectively form a group.
Now, we claim that the transformations of this group leave invariant the equa-

tions (5).
Let ciks be a system of constants which satisfies the relations (5), hence according

to Proposition 1, which represents the composition of a certain r-term group. Then
as we know, the system of the c′

iks which is determined by the relations (4) represents
in the same way a composition, namely the same composition as the one of the
system of the ciks; consequently, the c′

iks also satisfy relations of the form (5). Thus,
the transformations (4) transfers every system ciks which satisfies (5) to a system
c′

iks having the same constitution, that is to say, they leave invariant the system of
equations (5), which is what we claimed.

At present, we interpret the r3 variables ciks as point coordinates in a space of r3

dimensions.
In this space, a certain manifold M which is invariant by the transformations of

the group (4) is sorted by the equations (5). Every point of M — as we can say —
represents a composition of r-term groups, and conversely, every possible compo-
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sition of r-term groups is represented by certain points of M. Two different points
of M represent one and the same composition when there is, in the group (4), a
transformation which transfers the first point to the other.

Hence, if P is an arbitrary point of M, then the totality of all positions that the
point P takes by the transformations of the group (4) coincides with the totality of all
points which represent the same composition as P. We know from before (Chap. 14,
p. 237) that this totality of points forms a manifold invariant by the group (4), and
to be precise, a so-called smallest invariant manifold.

From this, it follows that one has to proceed as follows in order to find all differ-
ent types of r-term groups:

One determines all smallest manifolds located in M that remain invariant by the
group (4); on each such manifold, one chooses an arbitrary point ciks: the systems
of values ciks which belong to the chosen points then represent all types of different
compositions of r-term groups.

Since the finite equations of the group (4) are here, the determination of the small-
est invariant manifolds has to be considered as an executable operation; it requires
only the resolution of algebraic equations.

We therefore have the

Theorem 53. The determination of all essentially different compositions of r-term
groups requires only algebraic operations.

§ 82. Now, let X1 f , . . . ,Xr f be an r-term group Gr of the composition:

[Xi, Xk] =
r

∑
s=1

ciks Xs f .

Furthermore, let Y1 f , . . . ,Yr−q f be an (r−q)-term group isomorphic to Gr, and to be
precise, meroedrically isomorphic, so that q is therefore larger than zero. We want
to denote this second group shortly by Gr−q.

Let the two groups be, in the way indicated on p. 304 and 305, isomorphically
related to one another; so in Gr−q, let r infinitesimal transformations Y1 f , . . . ,Yr f
be chosen which stand in the relationships:

[Yi, Yk] =
r

∑
s=1

ciksYs f ,

where Y1 f , . . . ,Yr−q f are mutually independent, whereas Yr−q+1 f , . . . ,Yr f are de-
fined by the identities:

(8)
Yr−q+k f ≡ dk1Y1 f + · · ·+dk,r−qYr−q f

(k=1 ···q).

Under the assumptions made, one obviously has:
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[

Y j f , Yr−q+k f −
r−q

∑
μ=1

dkμ Yμ f

]

≡ 0

( j=1 ···r ; k=1 ···q),

or:
r

∑
s=1

{

c j,r−q+k,s −
r−q

∑
μ=1

dkμ c jμs

}

Ys f ≡ 0.

If we replace here Yr−q+1 f , . . . ,Yr f by their values (8), we obtain linear relations
between Y1 f , . . . ,Yr−q f ; but obviously, such linear relations can hold only when the
coefficients of every individual Y1 f , . . . ,Yr−q f take the value zero.

From the vanishing of these coefficients, it follows that the rq expressions:

[

Xj f , Xr−q+k f −
r−q

∑
μ=1

dkμ Xμ f

]

=
r

∑
s=1

{

c j,r−q+k,s −
r−q

∑
μ=1

dkμ c jμs

}

Xs f

can be linearly deduced from the q infinitesimal transformations:

(9) Xr−q+k f −
r−q

∑
μ=1

dkμ Xμ f (k=1 ···q).

Expressed differently: the q independent infinitesimal transformations (9) generate
a q-term invariant subgroup of the group X1 f , . . . ,Xr f .

Theorem 54. If the (r − q)-term group Y1 f , . . . ,Yr−q f is isomorphic to the r-term
group: X1 f , . . . ,Xr f , and if Y1 f , . . . ,Yr f are infinitesimal transformations of the
(r −q)-term group such that firstly Y1 f , . . . ,Yr−q f are mutually independent while
by contrast, Yr−q+1, . . . ,Yr f can be linearly deduced from Y1 f , . . . ,Yr−q f :

Yr−q+k f ≡ dk1Y1 f + · · ·+dk,r−qYr−q f (k=1 ···q),

and secondly such that, simultaneously with the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

the analogous relations:

[Yi, Yk] =
r

∑
s=1

ciksYs f

hold, then the q infinitesimal transformations:

Xr−q+k f −dk1 X1 f −·· ·−dk,r−q Xr−q f (k=1 ···q)

generate a q-term invariant subgroup of the group X1 f , . . . ,Xr f .

Gr: X1 f , . . . ,Xr f and Gr−q: Y1 f , . . . ,Yr−q f are, as we know, isomorphically re-
lated when, to every infinitesimal transformation of the form: e1 X1 f + · · ·+ er Xr f ,
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we associate the infinitesimal transformation:

r

∑
k=1

ek Yk f =
r−q

∑
k=1

{

ek +
q

∑
j=1

er−q+ j d jk

}

Yk f .

Through this correspondence, the transformations of Gr which belong to the q-
term group (9) are the only ones which correspond to the identically vanishing in-
finitesimal transformation of Gr−q. Consequently, in general, to every one-term sub-
group of Gr, there corresponds a completely determined one-term subgroup of Gr−q,
and it is only to the one-term subgroups of the group (9) that there correspond no
one-term subgroups of Gr−q, for the associated one-term groups indeed reduce to
the identity transformation. Conversely, to one and the same one-term subgroup
h1Y1 f + · · ·+ hr−qYr−q f of Gr−q, there correspond in total ∞q different one-term
subgroups of Gr, namely all the groups of the form:

r−q

∑
k=1

hk Xk f +
q

∑
j=1
λ j

{

Xr−q+ j f −
r−q

∑
μ=1

d jμ Xμ f

}

,

where λ1, . . . ,λq denote arbitrary constants.
Now, a certain correspondence between the subgroups of Gr and the subgroups

of Gr−q actually takes place.
If m arbitrary mutually independent infinitesimal transformations:

lμ1 X1 f + · · ·+ lμr Xr f (μ=1 ···m)

generate an m-term subgroup of Gr, then the m infinitesimal transformations:

r

∑
k=1

lμk Yk f =
r−q

∑
k=1

{

lμk +
q

∑
j=1

lμ,r−q+ j d jk

}

Yk f

(μ=1 ···m)

obviously generate a subgroup of Gr−q. This subgroup is at most m-term, and in
particular, it is 0-term, that is to say, it consists of only the identity transformation
when the m-term subgroup of Gr is contained in the q-term group (9), and in fact
clearly, only in this case.

Conversely, if m′ arbitrary infinitesimal transformations:

lμ1Y1 f + · · ·+ lμ,r−qYr−q f (μ=1 ···m′)

generate an m′-term subgroup of Gr−q: Y1 f , . . . ,Yr−q f , then the m′ infinitesimal
transformations:

lμ1X1 f + · · ·+ lμ,r−q Xr−q f (μ=1 ···m′),

together with the q transformations:
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Xr−q+k f −dk1 X1 f −·· ·−dk,r−q Xr−q f (k=1 ···q)

always generate an (m′ +q)-term subgroup of Gr.
From this, we see that to every subgroup of Gr corresponds a completely de-

termined subgroup of Gr−q which, in certain circumstances, consists of only the
identity transformation; and moreover, we see that to every subgroup of Gr−q cor-
responds at least one subgroup of Gr. If we know all subgroups of Gr and if we
determine all the subgroups of Gr−q corresponding to them, we then obtain all sub-
groups of Gr−q. Thus, the following holds.

Proposition 2. If one has isomorphically related an r-term group of which
one knows all subgroups of an (r − q)-term group, then one can also indicate
straightaway all subgroups of the (r −q)-term group.

Let X1 f , . . . ,Xr f , or shortly Gr, be an r-term group of the composition:

[Xi, Xk] =
r

∑
s=1

ciks Xs f .

We want to study what different compositions that a group meroedrically iso-
morphic to Gr can have.

Up to now, we know only the following: If Gr can be isomorphically related to
an (r −q)-term group, then there is in Gr a completely determined q-term invariant
subgroup which corresponds to the identity transformation in the (r−q)-term group.
Now, we claim that this proposition can be reversed in the following way: If Gr

contains a q-term invariant subgroup, then there is always an (r − q)-term group
Gr−q which is isomorphic to Gr and which can be isomorphically related to Gr in
such a way that the q-term invariant group inside Gr corresponds to the identity
transformation3 (Translator’s note: The notion of quotient group will in fact not
come up here; instead, Lie uses Proposition 1 above.) in Gr−q.

For reasons of convenience, we imagine that the r independent infinitesimal
transformations X1 f , . . . ,Xr f are chosen so that Xr−q+1 f , . . . ,Xr f generate the said
invariant subgroup. Then our claim clearly amounts to the fact that, in arbitrary
variables y1,y2, . . . , there are r infinitesimal transformations Y1 f , . . . ,Yr f which
satisfy the following two conditions: firstly, Yr−q+1 f , . . . ,Yr f vanish identically,
while Y1 f , . . . ,Yr−q f are mutually independent, and secondly, the relations:

(10) [Yi, Yk] = cik1Y1 f + · · ·+ cikr Yr f (i, k=1 ···r)

must hold identically.
Since Xr−q+1 f , . . . ,Xr f generate a subgroup invariant in Gr, all cik1, cik2, . . . ,

cik,r−q in which at least one of the two indices i and k is larger than r − q, are
equal to zero. Thus, if in the relations (10), we set equal to zero all the infinitesimal
transformations Yr−q+1 f , . . . ,Yr f , then all relations for which not both i and k are
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smaller than r − q+ 1 will be identically satisfied, and we keep only the following
relations between Y1 f , . . . ,Yr−q f :

(11) [Yi, Yk] = cik1Y1 f + · · ·+ cik,r−qYr−q f (i, k=1 ···r−q).

So, we need only to prove that there are r − q independent infinitesimal trans-
formations Y1 f , . . . ,Yr−q f which are linked together by the relations (11), or, what
is the same: that there is an (r − q)-term group, the composition of which is repre-
sented by the system of constants ciks (i, k, s=1 ···r−q).

In order to prove this, we start from the fact that, for i,k, j = 1, . . . ,r − q, the
Jacobi identity:

[

[Xi, Xk], Xj
]

+
[

[Xk, Xj], Xi
]

+
[

[Xj, Xi], Xk
]

= 0,

holds, and it can also be written as:

r−q

∑
μ=1

{

cikμ [Xμ , Xj]+ ck jμ [Xμ , Xi]+ c jiμ [Xμ , Xk]
}

+
q

∑
π=1

[

Xr−q+π f , cik,r−q+π Xj f + ck j,r−q+π Xi f + c ji,r−q+π Xk f
]

= 0.

If we develop here the left-hand side and if we take into consideration that the
coefficients of X1 f , . . . ,Xr−q f must vanish, we obtain, between the constants ciks

which appear in (11), the following relations:

r−q

∑
μ=1

{

cikμ cμ jν + ck jμ cμiν + c jiμ cμkν

}

= 0

(i, k, j, ν=1 ···r−q).

These relations show that the ciks (i, k, s=1 ···r−q) determine a composition in the sense
defined earlier on. As was observed on p. 309, there surely are (r −q)-term groups
the composition of which is determined by the ciks (i, k, s=1 ···r−q).

As a result, the claim stated above is proved. If we then add what we had already
known for a while, we obtain the4

Proposition 3. If one knows all invariant subgroups of the r-term group X1 f , . . . ,Xr f :

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

then one can indicate all compositions which a group isomorphic to the group
X1 f , . . . ,Xr f can have.

In order to set up the concerned compositions, one must proceed as follows:

4 We will show later that the cited Proposition 1, p. 309 is not at all indispensable for the devel-
opments of the text. Cf. LIE, Archiv for Math. og Nat. Vol. 10, p. 357, Christiania 1885.
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If the q > 0 independent infinitesimal transformations:

gμ1 X1 f + · · ·+gμr Xr f (μ=1 ···q)

generate a q-term invariant subgroup of the group: X1 f , . . . ,Xr f , or shortly Gr, then
one sets:

gμ1Y1 f + · · ·+gμr Yr f = 0 (μ=1 ···q),

one solves with respect to q of the r expressions Y1 f , . . . ,Yr f , and one eliminates
them from the relations:

[Yi, Yk] =
r

∑
s=1

ciksYs f .

Between the r − q expressions remaining amongst the expressions Y1 f , . . . ,Yr f ,
one then obtains relations which define the composition of an (r − q)-term group
isomorphic to Gr. If one proceeds in this way for every individual subgroup of Gr,
one obtains all the desired compositions.

Since every group is its own invariant subgroup, it follows that to every r-term
group Gr is associated a meroedrically isomorphic group, namely the group which
is formed by the identity transformation. If Gr is simple (cf. Chap. 15, p. 276),
then the identity transformation is evidently the only group which is meroedrically
isomorphic to it.

§ 83. In this section, we consider an important case in which groups occur that
are isomorphic to a given group.

Let the r-term group:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

of the space x1, . . . ,xn be imprimitive, and let:

u1(x1, . . . ,xn) = const., . . . , un−q(x1, . . . ,xn) = const.

be a decomposition of the space into ∞n−q q-times extended manifolds invariant by
the group.

According to Chap. 7 and to Chap. 13, p. 233, the n − q mutually independent
functions u1, . . . ,un−q satisfy relations of the form:

Xk uν = ωkν(u1, . . . ,un−q) (k=1 ···r ; ν=1 ···n−q),

hence the r expressions:

n−q

∑
ν=1

Xk uν
∂ f
∂uν

=
n−q

∑
ν=1

ωkν(u1, . . . ,un−q)
∂ f
∂uν

= Xk f

(k=1 ···r)
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represent as many infinitesimal transformations in the variables u1, . . . ,un−q. We
claim that X1 f , . . . ,Xr f generate a group isomorphic4 (Translator’s note: This no-
tion of reduced group X1 f , . . . ,Xr f appearing here is central in the general algo-
rithm, devised by LIE and developed later in Vol. III, towards the classification of all
imprimitive transformation groups, and it also appropriately unveils the true mathe-
matical causality of the nowadays seemingly unusual notion of isomorphism which
was introduced earlier on, p. 304.) to the group X1 f , . . . ,Xr f .

For the proof, we form:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
n−q

∑
ν=1

(

Xiωkν −Xkωiν
) ∂ f
∂uν

=
n−q

∑
ν=1

(

Xiωkν −Xkωiν
) ∂ f
∂uν

;

now, we have:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
r

∑
s=1

ciks Xs f ,

or, when we insert uν in place of f :

Xiωkν −Xkωiν =
r

∑
s=1

ciks Xs uν =
r

∑
s=1

ciksωsν ,

hence, after inserting the found values of Xiωkν −Xkωiν , we obtain:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
r

∑
s=1

n−q

∑
ν=1

ciksωsν
∂ f
∂uν

,

or, what amounts to the same:

[Xi, Xk] =
r

∑
s=1

ciks Xs f .

But this is what was to be proved.
The group X1 f , . . . ,Xr f has a very simple conceptual meaning.
From the definition of imprimitivity, it follows that the totality of the ∞n−q man-

ifolds u1 = const., . . . , un−q = const. remains invariant by the group X1 f , . . . ,Xr f ,
hence that the ∞n−q manifolds are permuted by every transformation of this group.
Consequently, to every transformation of the group X1 f , . . . ,Xr f , there corresponds
a certain permutation of our ∞n−q manifolds, or, what is the same, a transformation
in the n − q variables u1, . . . ,un−q. It is clear that the totality of all the so obtained
transformations in the variables u form a group, namely just the group which is
generated by X1 f , . . . ,Xr f .

Naturally, the group X1 f , . . . ,Xr f need not be holoedrically isomorphic to the
initial group, but evidently, it is only meroedrically isomorphic to it when, amongst
the infinitesimal transformations e1 X1 f + · · ·+ er Xr f , there is at least one which
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vanishes identically without e1, . . . ,er being all zero, hence when at least one
amongst the infinitesimal transformations e1 X1 f + · · ·+ er Xr f leaves individually
invariant each one of our ∞n−q manifolds.

Thus, we have the

Proposition 4. If the r-term group X1 f , . . . ,Xr f of the space x1, . . . ,xn is imprimitive
and if the equations:

u1(x1, . . . ,xn) = const., . . . , un−q(x1, . . . ,xn) = const.

represent a decomposition of the space into ∞n−q q-times extended manifolds, then
the infinitesimal transformations:

n−q

∑
ν=1

Xk uν
∂ f
∂uν

=
n−q

∑
ν=1

ωkν(u1, . . . ,un−q)
∂ f
∂uν

= Xk f

(k=1 ···r)

in the variables u1, . . . ,un−q, generate a group isomorphic to the group X1 f , . . . ,Xr f
which indicates in which way the ∞n−q manifolds are permuted by the transfor-
mations of the group X1 f , . . . ,Xr f . If, amongst the infinitesimal transformations
e1 X1 f + · · ·+ er Xr f , there are exactly r −ρ independent ones which leave individ-
ually invariant each one of the ∞n−q manifolds, then the group X1 f , . . . ,Xr f is just
ρ-term.

Using Theorem 54, p. 312, we obtain the

Proposition 5. If the group X1 f , . . . ,Xr f of the space x1, . . . ,xn is imprimitive and
if:

u1(x1, . . . ,xn) = const., . . . , un−q(x1, . . . ,xn) = const.

is a decomposition of the space in∞n−q q-times extended manifolds, then the totality
of all infinitesimal transformations e1 X1 f + · · ·+ er Xr f which leave individually
invariant each one of these manifolds generates an invariant subgroup of the group
X1 f , . . . ,Xr f .

At present, we consider an arbitrary r-term group X1 f , . . . ,Xr f which leaves in-
variant a manifold of the space x1, . . . ,xn.

According to Chap. 14, p. 243, the points of this manifold are in turn transformed
by a group, the infinitesimal transformations of which can be immediately indicated
when the equations of the manifold are in resolved form. Indeed, if the equations of
the manifold read in the following way:

x1 = ϕ1(xn−m+1, . . . ,xn), . . . , xn−m = ϕn−m(xn−m+1, . . . ,xn),

and if xn−m+1, . . . ,xn are chosen as coordinates for the points of the manifold,
then the infinitesimal transformations of the group in question are of the form (cf.
Chap. 14, p. 244):
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Xk f =
m

∑
μ=1

ξk,n−m+μ(ϕ1, . . . ,ϕn−m, xn−m+1, . . . ,xn)
∂ f

∂xn−m+μ

(k=1 ···r).

What is more, as we have already proved at that time, the following relations
hold:

[Xi, Xk] =
r

∑
s=1

ciks Xs f .

From this, we see that the group X1 f , . . . ,Xr f is isomorphic to the group
X1 f , . . . ,Xr f ; in particular, it is meroedrically isomorphic to it when, amongst the
infinitesimal transformations:

e1 X1 f + · · ·+ er Xr f ,

there is at least one transformation which vanishes identically, so that at least one
amongst the infinitesimal transformations e1 X1 f + · · ·+ er Xr f leaves fixed every
individual point of the manifold.

We can therefore complement Theorem 40 in Chap. 14, p. 243, as follows:

Proposition 6. If the r-term group X1 f , . . . ,Xr f in the variables x1, . . . ,xn leaves
invariant the manifold:

x1 = ϕ1(xn−m+1, . . . ,xn), . . . , xn−m = ϕn−m(xn−m+1, . . . ,xn),

then the reduced infinitesimal transformations:

Xk f =
m

∑
μ=1

ξk,n−m+μ(ϕ1, . . . ,ϕn−m, xn−m+1, . . . ,xn)
∂ f

∂xn−m+μ

(k=1 ···r)

in the variables xn−m+1, . . . ,xn generate a group isomorphic to the r-term group
which indicates in which way the points of the manifold are permuted by the trans-
formations of the group X1 f , . . . ,Xr f . If, amongst the infinitesimal transformations
e1 X1 f + · · ·+ er Xr f , there are exactly r − ρ independent transformations which
leave invariant every individual point of the manifold, then the group X1 f , . . . ,Xr f
is just ρ-term.

In addition, the following also holds true.

Proposition 7. If the r-term group X1 f , . . . ,Xr f of the space x1, . . . ,xn leaves invari-
ant a manifold, then the totality of all infinitesimal transformations e1 X1 f + · · ·+
er Xr f which leave fixed every individual point of this manifold generate an invariant
subgroup of the r-term group.

—————–
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Let:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

be an r-term intransitive group of the Rn, and one which contains only a discrete
number of invariant subgroups.

The complete system which is determined by the equations:

X1 f = 0, . . . , Xr f = 0

is q-term under these assumptions, where q < n, and it possesses n−q independent
solutions. Hence we can imagine that the variables x1, . . . ,xn are chosen from the
beginning in such a way that xq+1, . . . ,xn are solutions of the complete system; if we
do this, then because ξk,q+ j = Xk xq+ j, all ξk,q+1, . . . ,ξkr vanish.

Evidently, each one of the ∞n−q q-times extended manifolds:

xq+1 = aq+1, . . . , xn = an

now remains invariant by the group X1 f , . . . ,Xr f ; but their points are permuted and
according to Chap. 14, p. 243, by a group. If we choose x1, . . . ,xq as coordinates
for the points of the manifold, then the infinitesimal transformations of the group in
question will be:

Xk f =
q

∑
i=1
ξki(x1, . . . ,xq, aq+1, . . . ,an)

∂ f
∂xi

(k=1 ···r)

Whether this group is r-term or not remains temporarily uncertain, and in any
case, it is isomorphic to the group X1 f , . . . ,Xr f .

If the group X1 f , . . . ,Xr f is ρ-term (ρ � r), then the group X1 f , . . . ,Xr f contains
an (r −ρ)-term invariant subgroup which leaves fixed every individual point of the
manifold xq+1 = aq+1, . . . ,xn = an (cf. Propositions 6 and 7). This invariant sub-
group cannot change with the values of aq+1, . . . ,an, since otherwise, there would be
in the group X1 f , . . . ,Xr f a continuous series of invariant subgroups, and this would
contradict our assumption. Consequently, there exists in the group X1 f , . . . ,Xr f an
(r −ρ)-term invariant subgroup which leaves fixed all points of an arbitrary mani-
fold amongst the ∞n−q manifolds:

xq+1 = aq+1, . . . , xn = an,

hence which actually leaves fixed all points of the space x1, . . . ,xn. But now, the
identity transformation is the only one which leaves at rest all points of the space
x1, . . . ,xn, so one has r −ρ = 0 and ρ = r, that is to say: the group X1 f , . . . ,Xr f is
holoedrically isomorphic to the group X1 f , . . . ,Xr f .

As a result, the following holds true.
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Proposition 8. If X1 f , . . . ,Xr f are independent infinitesimal transformations of an
r-term group with the absolute invariants Ω1(x1, . . . ,xn), . . . , Ωn−q(x1, . . . ,xn), and
if there is only, in this group, a discrete number of invariant subgroups, then the
points of an arbitrary invariant domain:Ω1 = a1, . . . ,Ωn−q = an−q are transformed
by a group holoedrically isomorphic to the group X1 f , . . . ,Xr f .
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Chapter 18
Finite Groups, the Transformations of Which
Form Discrete Continuous Families

So far, we have only occupied ourselves with continuous transformation groups,
hence with groups which are represented by one system of equations of the form:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n).

In this chapter, we shall also briefly treat the finite groups which cannot be repre-
sented by a single system of equations, but which can only be represented by several
such systems; these are the groups about which we have already mentioned in the
Introduction, p. 11.1

Thus, we imagine that a series of systems of equations of the form:

(1)
x′

i = f (k)i

(

x1, . . . ,xn, a(k)1 , . . . ,a(k)rk

)

(i=1 ···n)
(k=1,2 ···)

is presented, in which each system contains a finite number rk of arbitrary param-

eters a(k)1 , . . . ,a(k)rk , and we assume that the totality of all transformations which are
represented by these systems of equations forms a group.

Since each of the systems of equations (1) represents a continuous family of
transformations, our group consists of a discrete number of continuous transforma-
tions. It is clear that every continuous family of transformations of our group either
coincides with one of the families (1), or must be contained in one of these fami-
lies. Of course, we assume that none of the families (1) is contained in one of the
remaining families.

It is our intention to develop the foundations of a general theory of the sorts of
groups just defined, but for reasons of simplicity we will introduce a few restrictions,
which, incidentally, are not to be considered as essential.

Firstly, we make the assumption that the transformations of the group (1) are
ordered as inverses by pairs. Hence, although the transformations of the family:

1 LIE, Verhandlungen der Gesellschaft der Wissenchaften zu Christiania, Nr. 12, p. 1, 1883.
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x′
i = f (k)i

(

x1, . . . ,xn, a(k)1 , . . . ,a(k)rk

)

(i=1 ···n)

are not already ordered as inverses by pairs, the totality of the associated inverse
transformations is supposed to form a family which belongs to the group, hence
which is contained amongst the families (1).

Secondly, we assume that the number of the families (1) is finite, say equal to
m. However, when the propositions we derive are also true for infinitely many fam-
ilies (1), we will occasionally point out that this is the case.

§ 84. To the two assumptions about the group (1) which we have made in the
introduction of the chapter, we want to temporarily add the third assumption that all
families of the group should contain the same number, say r, of essential parameters.
In the next section, we show that this third assumption follows from the first two,
and hence is superfluous.

Let:
x′

i = f (k)i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

be one of the m families of ∞r transformations of which our group consists, so k is
any of the numbers 1, . . . ,m.

By resolution of the equations written above, we obtain a family of transforma-
tions:

xi = F(k)
i (x′

1, . . . ,x
′
n, a1, . . . ,ar) (i=1 ···n)

which, under the assumptions made, equally belongs to the group.
Therefore, when the two transformations:

xi = F(k)
i (x′

1, . . . ,x
′
n, a1, . . . ,ar)

x′′
i = f (k)i (x1, . . . ,xn, a1 +h1, . . . ,ar +hr)

(i=1 ···n)

are executed one after the other, we again obtain a transformation of our group,
namely the following one:

(2) x′′
i = f (k)i

(

F(k)
1 (x′,a), . . . ,F(k)

n (x′,a), a1 +h1, . . . ,ar +hr
)

(i=1 ···n).

Here, we expand the right-hand side with respect to powers of h1, . . . ,hr and we
find:

x′′
i = f (k)i

(

F(k)(x′,a), a
)

+
r

∑
j=1

h j

[
∂ f (k)i (x,a)
∂a j

]

x=F(k)(x′,a)
+ · · · ,

where all the omitted terms in h1, . . . ,hr are of second and higher order. But if we
take into account that the two transformations:

xi = F(k)
i (x′,a), x′

i = f (k)i (x,a) (i=1 ···n)

are inverse to each other, and if in addition, we adopt the abbreviation:
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(3)

[
∂ f (k)i

∂a j x=F(k)(x′,a)

]

= η(k)
ji (x′

1, . . . ,x
′
n, a1, . . . ,ar),

then we see that the transformation just found has the form:

(4) x′′
i = x′

i +
r

∑
j=1

h jη
(k)
ji (x′,a)+ · · · (i=1 ···n).

It is easy to see that there are no functions χ1(a), . . . ,χr(a) independent of
x′

1, . . . ,x
′
n which satisfy the n equations:

r

∑
j=1
χ j(a1, . . . ,ar)η

(k)
ji (x′,a) = 0 (i=1 ···n)

identically, without all vanishing. Indeed, if one makes the substitution x′
ν =

f (k)ν (x,a) in these equations, one obtains the equations:

r

∑
j=1
χ j(a)

∂ f (k)i (x,a)
∂a j

= 0 (i=1 ···n),

which must also be satisfied identically; but according to Chap. 2, Theorem 2.2,
p. 15, this is impossible, because the parameters a1, . . . ,ar in the transformation

equations x′
i = f (k)i (x,a) are essential.

From this, we conclude that the r infinitesimal transformations:

(5)
n

∑
i=1
η(k)

ji (x′
1, . . . ,x

′
n, a1, . . . ,ar)

∂ f
∂x′

i
( j=1 ···r)

are always mutually independent when a1, . . . ,ar is a system of values in general
position.

By a0
1, . . . ,a

0
r , we want to understand a system of values in general position and

we want to set:
η(1)

ji (x′, a0) = ξ ji(x′
1, . . . ,x

′
n),

by conferring the special value 1 to the number k. We will show that all infinites-
imal transformations (5) can be linearly deduced from the r mutually independent
infinitesimal transformations:

X ′
j f =

n

∑
i=1
ξ ji(x′

1, . . . ,x
′
n)
∂ f
∂x′

i
( j=1 ···r),

whichever value k has as one of the integers 1, 2, . . . , m and whichever value
a1, . . . ,ar has.

The proof here has great similarities with the developments in Chap. 4, p. 87 sq.
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We execute two transformations of our group one after the other, namely first the
transformation:

(6) x′′
i = x′

i +
r

∑
j=1

h j ξ ji(x′)+ · · · (i=1 ···n)

which results from the transformation (4) when one sets k = 1 and a1 = a0
1, . . . ,

ar = a0
r , and then, the transformation:

x′′′
i = x′′

i +
r

∑
j=1
ρ jη

(k)
i j (x′′,a)+ · · · (i=1 ···n)

which, likewise, is of the form (4). In this way, we obtain the following transforma-
tion belonging to our group:

x′′′
i = x′

i +
r

∑
j=1

h j ξ ji(x′)+
r

∑
j=1
ρ jη

(k)
ji (x′,a)+ · · ·

(i=1 ···n),

where the omitted terms are of second and higher order in the 2r quantities
h1, . . . ,hr, ρ1, . . . ,ρr.

Disregarding the a, the 2r arbitrary parameters h1, . . . ,hr, ρ1, . . . ,ρr appear in the
latter transformation, whereas our group can contain only transformations with r
essential parameters. From Proposition 4 of Chap. 4, p. 80, it therefore follows that,
amongst the 2r infinitesimal transformations: (5) and X ′

1 f , . . . ,X ′
r f , only r can be

in existence that are mutually independent. But because X ′
1 f , . . . ,X ′

r f are mutually
independent, the infinitesimal transformations (5) must be linearly expressible in
terms of X ′

1 f , . . . ,X ′
r f , for all values 1, 2, . . . , m of k and for all values of the a.

At present, thanks to considerations analogous to those in Chap. 3, we realize
that identities of the form:

n

∑
i=1
η(k)

ji (x′,a)
∂ f
∂x′

i
≡

r

∑
π=1

ψ(k)
jπ (a1, . . . ,ar)X ′

π f

(k=1 ···m ; j=1 ···r)

hold, where the ψ(k)
jπ are completely determined analytic functions of a1, . . . ,ar.

Lastly, if we remember the equations (3) which can evidently also be written as:

η(k)
ji

(

f (k)1 (x,a), . . . , f (k)n (x,a), a1, . . . ,ar
) ≡ ∂ f (k)i (x,a)

∂a j
,

and if we compare these equations to the identities:

η(k)
ji (x′,a) ≡

r

∑
π=1

ψ(k)
jπ (a)ξπi(x′),
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we then obtain the identities:

(7)

∂ f (k)i (x,a)
∂a j

≡
r

∑
π=1

ψ(k)
jπ (a1, . . . ,ar)ξπi

(

f (k)1 (x,a), . . . , f (k)n (x,a)
)

The functions ξπi here are independent of the index k, but by contrast, the ψ(k)
jπ

are not.
Thus, we have the

Theorem 55. If the m systems of equations:

x′
i = f (k)i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

(k=1 ···m),

in each of which the r parameters a1, . . . ,ar are essential, represent all transforma-
tions of a group (and if at the same time, all these transformations can be ordered
as inverses by pairs),2 then there are r independent infinitesimal transformations:

Xj f =
n

∑
i=1
ξ ji(x1, . . . ,xn)

∂ f
∂xi

( j=1 ···r)

which stand in such a relationship to the group that each family:

x′
i = f (k)i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

satisfies differential equations of the form:

(7’)

∂ f (k)i

∂a j
=

r

∑
π=1

ψ(k)
jπ (a1, . . . ,ar)ξπi(x′

1, . . . ,x
′
n)

(i=1 ···n ; j=1 ···r).

From this, it follows at first that, according to Theorems 21, p. 164 and 24, p. 172,
the r infinitesimal transformations X1 f , . . . ,Xr f generate an r-term group.

Furthermore, it is clear that Theorem 25 in Chap. 9, p. 174, finds an application

to each one of the families x′
i = f (k)i (x,a): every transformation x′

i = f (k)i (x,a) whose
parameters a1, . . . ,ar lie in a certain neighborhood of a1, . . . ,ar can be obtained by

executing firstly the transformation xi = f (k)i (x, a) and then, a certain transformation
of the r-term group X1 f , . . . ,Xr f .

Now, since our group contains all transformations of the form (6):

2 As one easily realizes, Theorem 55 still remains correct when the words in brackets are deleted.
(Compare with the developments of Chaps. 3, 4 and 9.)
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x′′
i = x′

i +
r

∑
j=1

h j ξ ji(x′)+ · · · (i=1 ···n)

and since one of these transformations is the identity transformation, namely the one
with the parameters h1 = 0, . . . , hr = 0, then the identity transformation must occur

in one of the families x′
i = f (k)i (x,a). Consequently, one amongst these families is

just the r-term group X1 f , . . . ,Xr f . Of course, this is the only r-term group generated

by infinitesimal transformations which is contained in the group x′
i = f (k)i (x,a).

As a result, we have established the following theorem:

Theorem 56. Every group:

x′
i = f (k)i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

(k=1 ···m)

having the constitution indicated in the preceding theorem contains one, and only
one, r-term group with transformations inverse by pairs. This r-term group is gen-
erated by the infinitesimal transformations X1 f , . . . ,Xr f defined in the previous the-

orem, its ∞r transformations form one of the m families x′
i = f (k)i (x,a) and in ad-

dition, they stand in the following relationship with respect to each one of the re-

maining m−1 families: If xi = f (k)i (x,a) is an arbitrary transformation of the fam-

ily x′
i = f (k)i (x,a), then every other transformation of this family whose parame-

ters a1, . . . ,ar lie in a certain neighborhood of a1, . . . ,ar can be obtained by exe-

cuting firstly the transformation xi = f (k)i (x, a), and then, a certain transformation
x′

i = ωi(x1, . . . ,xn) of the r-term group X1 f , . . . ,Xr f .

For example, we consider the group consisting of the two families of ∞1 trans-
formations that are represented by the two systems of equations:

x′ = x cosa− y sina, y′ = x sina+ y cosa

x′ = x cosa+ y sina, y′ = x sina− y cosa.

For the two families, one obtains by differentiation with respect to a:

dx′

da
= −y′,

dy′

da
= x′,

so that in the present case, the functions ψ(k)
jπ mentioned in Theorem 55 are inde-

pendent of the index k.
The first one of the above two families is a one-term group which is generated

by the infinitesimal transformation y∂ f/∂x − x∂ f/∂y. The general transformation
of the second family will be obtained when one executes firstly the transformation:

x = x, y = −y,

and then the transformation:
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x′ = x cosa− y sina, y′ = x sina+ y cosa

of the one-term group y∂ f/∂x − x∂ f/∂y, hence the general transformation of the
first family. —

It should not go unmentioned that the two Theorems 55 and 56 also remain valid
when the concerned group consists of an infinite number of discrete continuous
families which all contain the same number of essential parameters. —

Before we go further, we make a few important remarks.
Let:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

be an r-term continuous group which does not contain the identity transforma-
tion. Then according to Theorem 25, Chap. 9, p. 174, there is an r-term group
X1 f , . . . ,Xr f with the identity transformation and with pairwise inverse transfor-
mations which stands in the following relationship to the group x′

i = fi(x,a), or
shortly G: If one executes firstly a transformation xi = fi(x, a) of G and then a
transformation:

x′
i = xi +

r

∑
k=1

ek Xk xi + · · · (i=1 ···n)

of the group X1 f , . . . ,Xr f , then one always obtains a transformation of G.
Now, one can easily prove that one then also always obtains a transformation of G

when one firstly executes a transformation of the group X1 f , . . . ,Xr f and afterwards
a transformation of the group G. We do not want to spend time in order to produce
this proof in detail, and we only want to remark that for this proof, one may employ
considerations completely similar to those of Chap. 4 (Cf. Theorem 58).

Now, if we take these two relationships between G and the group X1 f , . . . ,Xr f
and in addition, if we take into account that we have to deal with two groups, then
we realize immediately that the transformations of the group G and of the group
X1 f , . . . ,Xr f , when combined, again form a group, but to be precise, a group the
transformations of which cannot be ordered as inverses by pairs.

At present, we also attract into the circle of our considerations the family of
transformations:

x′
i = Fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

which are inverses of the transformations x′
i = fi(x,a). According to Theorem 21

(Translator’s note: This theorem simply states that if transformation equations x′
i =

f (x,a) are stable by composition, the same holds for the inverse transformations
xi = Fi(x′,a) modulo possible shrinkings of domains.) ([1], p. 19), this family of
transformations also forms a group, that may be called G′. We shall show that the
transformations of the three groups G, G′, X1 f , . . . ,Xr f , when taken together, again
form a group, and naturally, a group with pairwise inverse transformations.
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Let T be the general symbol of a transformation of G, whence T −1 is the general
symbol of a transformation of G′; by S, it will always be understood a transformation
of the group X1 f , . . . ,Xr f .

We already know that all transformations T and S taken together form a group
and that the transformations T −1 taken for themselves do the same. From this, we
realize the existence of relations which have the following form:

Tα Tβ = Tγ , Sλ Sμ = Sν , T −1
β T −1

α = T −1
γ

Tα Sλ = Tπ , Sλ Tα = Tρ .

We can also write the second series of these relations as follows:

S−1
λ T −1

α = T −1
π , T −1

α S−1
λ = T −1

ρ .

Now, since the group of the S consists of pairwise inverse transformations, it is
immediately clear that the T −1 together with the S form a group. Moreover, we
have:

T −1
α Tπ = T −1

α Tα Sλ = Sλ ,

Tα T −1
ρ = Tα T −1

α S−1
λ = S−1

λ ,

and therefore, the totality of all S, T , T −1 also forms a group.
With these words, we bring the promised proof: the transformations of the three

groups G, G′, X1 f , . . . ,Xr f form a group together, and naturally, a group with pair-
wise inverse transformations.

§ 85. At present, we take up a standpoint more general than in the previous
section. We drop the special assumption2 (Translator’s note: (i.e. the third one))
made there and we only maintain the two assumptions which were set out in the
Introduction.

Thus, we consider a group G which consists of m discrete families with, respec-
tively, r1, r2, . . . , rm essential parameters and which, for each of its transforma-
tions, also contains the inverse transformation. We will prove that the numbers r1,
r2, . . . , rm are all mutually equal. Then from this, it follows that the assumption:
r1 = r2 = · · · = rm made in the previous section was not a restriction.

We execute two transformations of the group one after the other, firstly a trans-
formation:

x′
i = f (k)i (x1, . . . ,xn, a1, . . . ,ark) (i=1 ···n)

of a family with rk parameters, and secondly a transformation:

x′′
i = f ( j)

i (x′
1, . . . ,x

′
n, b1, . . . ,br j) (i=1 ···n)

of a family with r j parameters.
In this way, we find a transformation:
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x′′
i = f ( j)

i

(

f (k)1 (x,a), . . . , f (k)n (x,a), b1, . . . ,br j

)

which belongs to our group and which formally contains rk + r j arbitrary parame-
ters. Now, if the largest number amongst the numbers r1, r2, . . . , rm has the value r,
then amongst these rk + r j arbitrary parameters, there are no more than r which are
essential, but also no fewer essential ones than indicated by the largest of the two
numbers rk and r j. So in particular, if both numbers rk and r j are equal to r, then the
last written transformation contains exactly r essential parameters. Consequently,
all families of our group which contain exactly r essential parameters already form
a group Γ when taken together.

Now, we can immediately apply Theorem 56 of the previous section to the group
Γ . From this, we see that Γ and hence also G contains an r-term group:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

which is generated by r independent infinitesimal transformations. Thus, if we first
execute the transformation x′

i = fi(x,a) and then the transformation:

(8) x′′
i = f ( j)

i (x′
1, . . . ,x

′
n, b1, . . . ,br j),

we again obtain a transformation of the group G, namely the following one:

(9) x′′
i = f ( j)

i

(

f1(x,a), . . . , fn(x,a), b1, . . . ,br j

)

(i=1 ···n).

Of the r + r j parameters of this transformation, exactly r are essential, so the
equations just written represent a continuous family of ∞r transformations of the
group G. But since the group x′

i = fi(x,a) contains the identity transformation, there
are special values of the parameters a1, . . . ,ar for which the functions f1(x,a), . . . ,
fn(x,a) reduce to x1, . . . ,xn, respectively. Consequently, the family of the ∞r j trans-
formations (8) is contained in the family of the ∞r transformations (9). According
to the remarks made in the introduction of the chapter, this is possible only when
the two families coincide, hence when r j is equal to r.

As a result, it is proved that the numbers r1, r2, . . . , rm are all equal to one another.
Consequently, we have the

Theorem 57. If a group whose transformations are pairwise inverse to one another
consists of m continuous families of transformations and if each one of these families
contains only a finite number of arbitrary parameters, then the families all have the
same number of essential parameters.

Furthermore, this theorem still remains valid when the number of the families
of which the group consists is infinitely large, when each of these infinitely many
families contains just a finite number ρk of arbitrary parameters and when at the
same time, amongst all the numbers ρk, a largest one is extant.
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§ 86. As up to now, let G consist of m discrete, continuous families of ∞r trans-
formations; in addition, we assume that the transformations of G are mutually in-
verse by pairs.

According to Theorem 57 in the preceding section, there is in the group G one
and only one r-term group generated by r independent infinitesimal transformations.
Now, if S is the symbol of the general transformation of this r-term group and T is
the symbol of an arbitrary transformation of G, then in the same way:

T −1 ST

is the symbol of the general infinitesimal transformation of an r-term group gener-
ated by infinitesimal transformations. Since this new group is contained in G, it must
coincide with the group of all S; according to the terminology [TERMINOLOGIE] in-
troduced in Chap. 15, p. 273, we can also express this as: the discussed r-term group
remains invariant by every transformation T . Thus the following holds true.

Theorem 58. If a group G with pairwise inverse transformations consists of several
families of transformations, then the largest group generated by infinitesimal trans-
formations which is contained in G remains invariant by every transformation of
G.

From this theorem, it follows how one can construct groups which consist of
several continuous families of ∞r transformations.

Let X1 f , . . . ,Xr f be an r-term group in the variables x1, . . . ,xn and again let S be
the symbol of the general transformation of this group.

Now, when a group with pairwise inverse transformations contains all transfor-
mations of the r-term group X1 f , . . . ,Xr f , and in addition contains a finite number,
say m−1, of discrete families of ∞r transformations, then in consequence of Theo-
rem 56, p. 328, it possesses the form:

(10) T0 S, T1 S, . . . , Tm−1S.

Here, T0 means the identity transformation and T1, . . . ,Tm−1 are, according to
the last theorem, constituted in such a way that their totality leaves invariant all
transformations S. This property of the Tν is expressed analytically by the fact that
for every transformation Sk of the group X1 f , . . . ,Xr f , a relation of the form:

T −1
ν Sk Tν = S j

exists, where the transformation S j again belongs to the group X1 f , . . . ,Xr f . Inci-
dentally, such a relation also holds true when ν is equal to zero, for indeed one then
has Sk = S j.

Since T1, . . . ,Tm−1 themselves belong to the transformations (10), the totality of
all transformations (10) can then be a group only when all transformations Tμ Tν
also belong to this totality. Hence, aside from the above relations, the Ti must also
satisfy relations of the form:
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Tμ Tν = Tπ Sτ ,

where μ and ν denote arbitrary numbers amongst the numbers 1, 2, . . . , m−1, while
π runs through the values 0, 1, . . . , m−1. If one of the numbers μ , ν , say μ , is equal
to zero, then actually, there is already a relation of the form indicated, since indeed
Tπ = Tν and Sτ is, like T0, the identity transformation.

On the other hand, if the transformations Tμ possess the properties indicated,
then for all values 0, 1, . . . , m−1 of the two numbers μ and ν , there exist relations
of the form:

Tμ Sk Tν Sl = Tμ Tν S j Sl = Tπ Sτ S j Sl = Tπ Sρ ,

and therefore, the totality of all transformations (10) forms a group. It is easy to see
that in any case and in general, the transformations of such a group order as inverses
by pairs.

At present, it is yet to be asked how the transformations Tμ must be constituted
in order that the m families (10) are all distinct from each other.

Obviously, all the families (10) are distinct from each other when no transforma-
tion of the group belongs simultaneously to two of these families. On the other hand,
if any two of these families, say: Tμ S and Tν S, have a transformation in common,
then they are identical, because from the existence of a relation of the form:

Tμ Sk = Tν Sl ,

it immediately follows that:
Tν = Tμ Sk S−1

l ,

hence the family of the transformations Tν S has the form:

Tμ Sk S−1
l S,

that is to say, it is identical to the family: Tμ S.
Thus, for the m families (10) to be distinct from each other, it is necessary and

sufficient that no two of the transformations T0, T1, . . . , Tm−1 be linked by a relation
of the form:

Tν = Tμ S j (ν �=μ).

We summarize the result obtained in the

Theorem 59. If S is the symbol of the general transformation of the r-term group
X1 f , . . . ,Xr f , and if moreover, T1, . . . ,Tm−1 are transformations which leave invari-
ant the group X1 f , . . . ,Xr f and which, in addition, are linked together and jointly
with the identity transformation T0 by relations of the form:

Tμ Tν = Tπ S,

but not by relations of the form:

Tν = Tμ S j (ν �=μ),
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then the totality of all transformations:

T0 S, T1 S, . . . , Tm−1 S

form a group with pairwise inverse transformations which consists of m discrete
continuous families of ∞r transformations and which, at the same time, contains
all transformations of the group X1 f , . . . ,Xr f . If one chooses the transformations
T1, . . . ,Tm−1 in all possible ways, then one obtains all groups having the constitution
indicated.

In the next chapter, we give a general method for the determination of all trans-
formations which leave invariant a given group X1 f , . . . ,Xr f .

If one has two different systems of transformations T1, . . . ,Tm−1, say T1, . . . ,Tm−1

and T ′
1 , . . . ,T

′
m−1, then obviously, the two groups:

T0 S, T1 S, . . . , Tm−1 S

T0 S, T ′
1 , . . . , T ′

m−1 S

are always distinct when and only when it is not possible to represent each one of
the transformations T ′

1 , . . . ,T
′

m−1 in the form:

T ′
μ = Tiμ Skμ .

Needless to say, one can frequently arrange that the m transformations T0, T1, . . . ,
Tm−1 already form a discontinuous group for themselves.

Example. The n infinitesimal transformations:

∂ f
∂x1

, . . . ,
∂ f
∂xn

generate an r-term group. The totality of all transformations that leave this group
invariant forms a finite continuous group which is generated by the n+n2 infinites-
imal transformations:

∂ f
∂xi

, xi
∂ f
∂xk

(i, k=1 ···n)

Now, if amongst the ∞nn transformations:

x′
i = ai1 x1 + · · ·+ain xn (i=1 ···n)

of the group:

xi
∂ f
∂xk

(i, k=1 ···n),

one chooses m arbitrary transformations that form a discontinuous group as trans-
formations T0, T1, . . . , Tm−1, and if one sets for S the general transformation:
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x′
1 = x1 +a1, . . . , x′

n = xn +an

of the group ∂ f/∂x1, . . . , ∂ f/∂xn, then one always obtains a group which consists
of m discrete families and which comprises all ∞n transformations of the group
∂ f/∂x1, . . . , ∂ f/∂xn.

Naturally, Theorem 58, p. 332, also holds true when the group G consists of
infinitely many families of ∞r transformations. Hence if one wants to construct such
a group, one only has to seek infinitely many discrete transformations:

T1, T2, . . .

which leave invariant the group X1 f , . . . ,Xr f and which, in addition, satisfy pairwise
relations of the form:

Tμ Tν = Tπ Sτ ,

but by contrast, which are neither mutually, nor together with the identity transfor-
mation, linked by relations of the form:

Tμ = Tν S j.

The totality of all transformations:

T0 S, T1 S, T2 S, . . .

then forms a group G which comprises the group X1 f , . . . ,Xr f and which consists
of infinitely many different families of ∞r transformations.

But the transformations of the group G found in this way are in general not
ordered as inverses by pairs; in order that they enjoy this property, each one of
the transformations T1, T2, . . . , must also satisfy, aside from the relations indicated
above, relations of the form:

T −1
μ = Tkμ S jμ .

§ 87. Now, we make a few observations about the invariant subgroups as we
have considered them in the previous three sections.

Let G be a group which consists of the m discrete families:

x(k)i = f (k)i

(

x1, . . . ,xn,a
(k)
1 , . . . ,a(k)r

)

(i=1 ···n)
(k=1 ···m)

of ∞r transformations and which, for each of its transformations, also contains the
inverse transformation. In particular, let:

x′
i = f (1)i (x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)
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be the r-term group generated by r infinitesimal transformations: X1 f , . . . ,Xr f
which is contained in G.

In accordance with Chap. 6, p. 111, we say that every function which admits all
transformations of G, hence which satisfies the m equations:

U
(

x(k)1 , . . . ,x(k)n
)

= U(x1, . . . ,xn) (k=1 ···m),

is an invariant of G. We want to show how one can find the invariants of G.

Evidently, every invariant of G is at the same time an invariant of the r-term
group X1 f , . . . ,Xr f and therefore, it is a solution of the complete system which is
determined by the equations:

X1 f = 0, . . . , Xr f = 0.

If this complete system is n-term, then the group X1 f , . . . ,Xr f and therefore also
the group G possess in fact no invariant. So, we assume that the said complete
system is (n − q)-term and we denote by u1, . . . ,uq any q of its solutions that are
independent.

According to Theorem 58, the group X1 f , . . . ,Xr f remains invariant by all trans-
formations of G; consequently, the (n−q)-term complete system determined by the
equations:

X1 f = 0, . . . , Xr f = 0

also admits all transformations of G. Consequently (cf. Chap. 8, p. 153), the solu-
tions u1, . . . ,uq of this complete system satisfy relations of the form:

(11)
u j
(

x(k)1 , . . . ,x(k)n
)

= ω(k)
j

(

u1(x), . . . ,uq(x), a(k)1 , . . . ,a(k)r
)

( j=1 ···q ; k=1 ···m).

It can be shown here that the functions ω(k)
j are all free of the parameters

a(k)1 , . . . ,a(k)r .

By a(k)1 , . . . ,a(k)r , we want to denote an arbitrary fixed system of values. If the

system of values a(k)1 , . . . ,a(k)r lies in a certain neighborhood of a(k)1 , . . . ,a(k)r , then
according to Theorem 56, p. 328, the transformation:

x(k)i = f (k)i

(

x1, . . . ,xn, a(k)1 , . . . ,a(k)r
)

can be obtained by executing firstly the transformation:

x(k)i = f (k)i

(

x1, . . . ,xn, a(k)1 , . . . ,a(k)r
)

and then, a certain transformation:

x(k)i = f (1)i

(

x(k)1 , . . . ,x(k)n , α1, . . . ,αr
)
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of the group X1 f , . . . ,Xr f . So we have:

x(k)i = f (1)i

(

f (k)1 (x, a(k)), . . . , f (k)n (x, a(k)), α1, . . . ,αr
)

.

Now, u1, . . . ,uq are invariants of the group X1 f , . . . ,Xr f and therefore, they sat-
isfy relations of the form:

u j
(

x(k)1 , . . . ,x(k)n
)

= u j
(

x(k)1 , . . . ,x(k)n
)

.

On the other hand, we have:

u j
(

x(k)1 , . . . ,x(k)n
)

= ω(k)
j

(

u1(x), . . . ,uq(x)
)

,

where the ω(k)
j depend only upon u1, . . . ,uq and contain no arbitrary parameters,

since a(k)1 , . . . ,a(k)r are numerical constants, indeed. Thus we obtain:

(11’) u j
(

x(k)1 , . . . ,x(k)n
)

= ω(k)
j

(

u1(x), . . . ,uq(x)
)

,

and with this, it is proved that the functions ω(k)
j in the equations (11) are effectively

free of the parameters a(k)1 , . . . ,a(k)r .
According to what has bee said above, every invariant U(x1, . . . ,xn) of the group

G satisfies m equations of the form:

U
(

x(k)1 , . . . ,x(k)n
)

= U(x1, . . . ,xn) (k=1 ···m) ;

but since it is in addition a function of only u1, . . . ,uq, say:

U(x1, . . . ,xn) = J(u1, . . . ,uq),

then at the same time, it satisfies the m relations:

(12)
J
(

ω(k)
1 (u1, . . . ,uq), . . . , ω

(k)
q (u1, . . . ,uq)

)

= J(u1, . . . ,uq)
(k=1 ···m).

Conversely, every function J(u1, . . . ,uq) that satisfies the m functional equations
just written is obviously an invariant of the group G. Consequently, in order to find
all invariants of G, we only need to fulfill these functional equations in the most
general way.

The problem of determining all solutions of the functional equations (12) is vis-
ibly identical to the problem of determining all functions of u1, . . . ,uq which admit
the m transformations:

(13)
u′

j = ω
(k)
j (u1, . . . ,uq) ( j=1 ···q)

(k=1 ···m).
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But these m transformations form a discontinuous group, as one realizes without dif-
ficulty from the group property [GRUPPENEIGENSCHAFT] of G. Thus, the problem
stated at the outset of the section leads back to a problem of the theory of discontin-
uous groups.

We summarize the obtained result in the

Theorem 60. If a group G (whose transformations are pairwise inverse) consists of
several discrete families of ∞r transformations:

x(k)i = f (k)i

(

x1, . . . ,xn, a(k)1 , . . . , a(k)r
)

(i=1 ···n)
(k=1, 2 ···),

then all invariants of G are at the same time also invariants of the r-term continuous
group: X1 f , . . . ,Xr f determined by G. If one knows the invariants of the latter group,
hence if one knows any q arbitrary independent solutions u1, . . . ,uq of the (n − q)-
term complete system which is determined by the equations:

X1 f = 0, . . . , Xr f = 0,

then one finds the invariants of G in the following way: one first forms the relations:

u j
(

x(k)1 , . . . ,x(k)n
)

= ω(k)
j

(

u1(x), . . . ,uq(x)
)

( j=1 ···q)

(k=1, 2 ···),

which, under the assumptions made, exist, and in which the ω(k)
j depend only upon

the two indices j and k; afterwards, one determines all functions of u1, . . . ,uq which
admit the discontinuous group formed by the transformations:

u′
j = ω

(k)
j (u1, . . . ,uq) ( j=1 ···q)

(k=1, 2 ···).

The concerned functions are the invariants of the group G.

A similar theorem clearly holds true when the group G consists of infinitely many
continuous families of transformations.

One can propose to oneself the problem of finding all invariants that a given
family of transformations:

x′
i = ϕi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

possesses, or all invariants that are common to several such families.3 The family,
respectively the families, can here be completely arbitrary and they need not belong
to a finite group.

3 Cf. LIE, Berichte der K. Sächs. Ges. d. W., 1. August 1887.
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We do not intend to treat this problem exhaustively; let it only be remarked that
the concerned invariants are solutions, though not arbitrary solutions, of a certain
complete system that can easily be indicated. Indeed, since the sought invariants,
aside from the given transformations, also obviously admit the associated inverse
transformations, then one can very easily set up certain infinitesimal transformations
by which they also remain invariant. In general, these infinitesimal transformations
contain arbitrary elements, and in particular, certain parameters; when set equal to
zero, these infinitesimal transformations provide linear partial differential equations
which must be satisfied by the sought invariants. Now, it is always possible to set
up the smallest complete system which embraces all these differential equations.
If one knows a system of solutions u1, u2, . . . of this complete system, then one
forms an arbitrary function Ω(u1,u2, . . .) of them, one executes on it the general
transformation of the given family and one determines Ω in the most general way
in order that Ω behaves invariantly.

References

1. Engel, F.; Lie, S.: Theorie der transformationsgruppen. Erster Abschnitt. Unter Mitwirkung
von Dr. Friedrich Engel, bearbeitet von Sophus Lie, Verlag und Druck von B.G. Teubner,
Leipzig und Berlin, xii+638 pp. (1888). Reprinted by Chelsea Publishing Co., New York, N.Y.
(1970)

—————–



Chapter 19
Theory of the Similarity [AEHNLICHKEIT] of
r-term Groups

It is often of the utmost importance to answer the question whether a given r-term
group x′

i = fi(x1, . . . ,xs, a1, . . . ,ar) of s-times extended space is similar [ÄHNLICH]
to another given r-term group y′

i = Fi(y1, . . . ,ys, b1, . . . ,br) of the same space, hence
whether one can introduce, in place of the x and of the a, new variables: y1, . . . ,ys

and new parameters: b1, . . . ,br so that the first group converts into the second group
(Chap. 3, p. 29). If one knows, in a given case, that such a transfer of one of the
groups to the other is possible, then a second question raises itself: how can one
accomplish the concerned transfer in the most general way?

In the present chapter, we provide means for answering the two questions.
To begin with, we show that the first of the two questions can be replaced by the

following more simple question: under which conditions does there exist a transfor-
mation:

yi =Φ(x1, . . . ,xs) (i=1 ···s)

of such a nature that r arbitrary independent infinitesimal transformations of the
group x′

i = fi(x,a) are transferred to infinitesimal transformations of the group y′
i =

Fi(y,b) by the introduction of the variables y1, . . . ,ys? We settle this simpler question
by setting up certain conditions which are necessary for the existence of a transfor-
mation yi = Φi(x) of the demanded constitution, and which also prove to be suf-
ficient. At the same time, we shall see that all possibly existing transformations
yi =Φi(x) of the demanded constitution can be determined by integrating complete
systems. With that, the second of the two questions stated above will then also be
answered.

§ 88. Let the two r-term groups: x′
i = fi(x,a) and y′

i = Fi(y,b) be similar to each
other and, to be precise, let the first be transferred to the second when the new
variables yi =Φi(x1, . . . ,xs) are introduced in place of x1, . . . ,xs, and when the new
parameters bk = βk(a1, . . . ,ar) are introduced in place of a1, . . . ,ar. Furthermore,
let:
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Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

be r arbitrary independent infinitesimal transformations of the group x′
i = fi(x,a);

by the introduction of the new variables y1, . . . ,ys, let them take the form:

Xk f =
s

∑
i=1

Xk yi
∂ f
∂yi

=
s

∑
i=1

yki(y1, . . . ,ys)
∂ f
∂yi

=Yk f

(k=1 ···r).

We decompose the transition from the group x′
i = fi(x,a) to the group y′

i =Fi(y,b)
in a series of steps.

First, we bring the group x′
i = fi(x,a) to the canonical form:

(1) x′
i = xi +

r

∑
k=1

ek ξki(x1, . . . ,xs)+ · · · (i=1 ···s)

by introducing for a1, . . . ,ar certain (needless to say) perfectly determined functions
of e1, . . . ,er. Then evidently, we must obtain from (1) the equations y′

i = Fi(y,b)
when we introduce the new variables y1, . . . ,ys in place of the x, and when in addi-
tion, we insert for e1, . . . ,er some completely determined functions of b1, . . . ,br.

But now, according to Chap. 4, p. 71, after the introduction of the variables
y1, . . . ,ys, the equations (1) take the form:

(1’) y′
i = yi +

r

∑
k=1

ek yki(y1, . . . ,ys)+ · · · (i=1 ···s),

hence the equations (1’) must become identical to the equations y′
i = Fi(y,b) when

one expresses e1, . . . ,er in terms of b1, . . . ,br in the indicated way. Consequently, the
equations (1’) are a form of the group y′

i = Fi(y,b), and to be precise, a canonical
form, as an examination teaches us [WIE DER AUGENSCHEIN LEHRT]. In other
words: Y1 f , . . . ,Yr f are independent infinitesimal transformations of this group.

Thus, if after the introduction of the new variables y1, . . . ,ys and of the new pa-
rameters b1, . . . ,br, the r-term group x′

i = fi(x1, . . . ,xs, a1, . . . ,ar) converts into the
group y′

i = Fi(y1, . . . ,ys, b1, . . . ,br), then the infinitesimal transformations of the first
group convert into the infinitesimal transformations of the second group, also after
the introduction of the variables y1, . . . ,ys.

Obviously, the converse also holds true: if the two groups x′
i = fi(x,a) and y′

i =
Fi(y,b) stand in the mutual relationship that the infinitesimal transformations of the
first are transferred to the infinitesimal transformations of the second after the intro-
duction of the new variables y1, . . . ,ys, then one can always transfer the group x′

i =
fi(x,a) to the group y′

i =Fi(y,b) by means of appropriate choices of the variables and
of the parameters. Indeed, by the introduction of the y, the canonical form (1) of the
group x′

i = fi(x,a) is transferred to the canonical form (1’) of the group y′
i = Fi(y,b).

As a result, we have the



§ 89. 343

Theorem 61. Two r-term groups in the same number of variables are similar to
each other if and only if it is possible to transfer any r arbitrary independent in-
finitesimal transformations of the first to infinitesimal transformations of the second
by the introduction of new variables.

When the question is to examine whether the two r-term groups x′
i = fi(x,a) and

yi = Fi(y,b) are similar to each other, then one needs only to consider [INS AUGE

FASSEN] the infinitesimal transformations of the two groups and to ask whether they
can be transferred to each other.

From the above, one can immediately draw another more important conclusion.
We know that between the infinitesimal transformations X1 f , . . . ,Xr f of the

group x′
i = fi(x,a), there exist relations of the form:

Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

= [Xi, Xk] =
r

∑
σ=1

cikσ Xσ f .

According to Chap. 5, Proposition 2, p. 100, after the introduction of the new vari-
ables y1, . . . ,ys, these relations receive the form:

Yi
(

Yk( f )
)−Yk

(

Yi( f )
)

= [Yi,Yk] =
r

∑
σ=1

cikσYσ f ,

so the r independent infinitesimal relations Y1 f , . . . ,Yr f of the group y′
i = Fi(y,b)

are linked together by exactly the same relations as the infinitesimal transformations
X1 f , . . . ,Xr f of the group x′

i = fi(x,a).
According to the terminology introduced in Chap. 17, p. 303 and 305, we can

therefore say:

Theorem 62. If two r-term groups in the same number of variables are similar to
each other, then they are also equally composed, or, what is the same, holoedrically
isomorphic.

At the same time, it is clear that the transformation yi =Φi(x1, . . . ,xs) establishes
a holoedrically isomorphic relationship between the two groups: x′

i = fi(x,a) and
y′

i = Fi(y,b) since it associates to the r independent infinitesimal transformations
X1 f , . . . ,Xr f of the first group the r independent transformations Y1 f , . . . ,Yr f of
the other, and since through this correspondence, the two groups are obviously re-
lated to each other in a holoedrically isomorphic way.

§ 89. At present, we imagine that two arbitrary r-term groups in the same number
of variables are presented; let their infinitesimal transformations be:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

and:
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Zk f =
s

∑
i=1
ζki(x1, . . . ,xs)

∂ f
∂yi

(k=1 ···r).

We ask: are these two groups similar to each other, or not?
Our answer to this question must obviously fall in the negative sense as soon as

the two groups are not equally composed; indeed, according to Theorem 62, only
equally composed groups can be similar to each other. Consequently, we need only
to occupy ourselves with the case when the two groups are equally composed; the
question of whether this case really happens may always be settled thanks to an
algebraic discussion [ALGEBRAISCHE DISCUSSION].

Accordingly, we assume from now on that the two presented groups are equally
composed.

According to Theorem 61, the two equally composed groups X1 f , . . . ,Xr f
and Z1 f , . . . ,Zr f are similar to each other if and only if there is a transformation
yi =Φi(x1, . . . ,xs) of such a constitution that X1 f , . . . ,Xr f convert into infinitesimal
transformations of the group Z1 f , . . . ,Zr f after the introduction of the new variables
y1, . . . ,ys. If we combine this with the remark at the end of the previous section, we
realize that the two groups are similar to each other if and only if a holoedrically
isomorphic relation can be established between them so that it is possible, by
the introduction of appropriate new variables: yi = Φi(x1, . . . ,xs) to transfer the r
infinitesimal transformations X1 f , . . . ,Xr f precisely to the infinitesimal transfor-
mations Y1 f , . . . ,Yr f of the group Z1 f , . . . ,Zr f that are associated through the
isomorphic relation.

The next step that we must climb towards the answer to the stated question is
therefore to relate the two groups in the most general holoedrically isomorphic way.

In the group Z1 f , . . . ,Zr f , we choose in the most general way r independent
infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

such that together with the relations:

(2) [Xi, Xk] =
r

∑
σ=1

cikσ Xσ f ,

there are at the same time the relations:

(2’) [Yi, Yk] =
r

∑
σ=1

cikσ Yσ f .

If this occurs — and only algebraic operations are required for it —, then we asso-
ciate the infinitesimal transformations Y1 f , . . . ,Yr f to X1 f , . . . ,Xr f , respectively, and
we obtain that the two groups are holoedrically isomorphically related to each other
in the most general way.
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In the present chapter, by the gk j, we understand everywhere the most general
system of constants which satisfies the requirement just stated.

Here, it is to be remarked that in general, the gk j depend upon arbitrary elements,
once upon arbitrary parameters and then upon certain arbitrarinesses [WILLKÜR-
LICHKEITEN] which are caused by the algebraic operations that are necessary for
the determination of the gk j; indeed, it is conceivable that there are several discrete
families of systems of values gk j which are of the demanded constitution.

At present, the question is whether, amongst the reciprocal isomorphic relation-
ships between the two groups found in this way, there is one which has the property
indicated above. In other words: is it possible to specialize the arbitrary elements
which occur in the coefficients gk j in such a way that X1 f , . . . ,Xr f can be trans-
ferred to Y1 f , . . . ,Yr f , respectively, by means of the introduction of appropriate new
variables: yi =Φi(x1, . . . ,xs)?

When, but only when, this question has been answered, one may conclude that
the two groups X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f are similar to each other.

Let X1 f , . . . ,Xn f (n � r) be linked together by no linear relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χn(x1, . . . ,xs)Xn f = 0,

while by contrast, Xn+1 f , . . . ,Xr f can be linearly expressed in terms of X1 f , . . . ,Xn f :

(3)
Xn+k f ≡ ϕk1(x1, . . . ,xs)X1 f + · · ·+ϕkn(x1, . . . ,xs)Xn f

(k=1 ···r−n).

Now, if the transformation yi = Φi(x1, . . . ,xs) is constituted in such a way that,
after introducing the y, X1 f , . . . ,Xr f are transferred to certain infinitesimal trans-
formations Y1 f , . . . ,Yr f which belong to the group Z1 f , . . . ,Zr f , then naturally,
Y1 f , . . . ,Yn f are not linked together by a linear relation of the form:

ψ1(y1, . . . ,ys)Y1 f + · · ·+ψn(y1, . . . ,ys)Yn f = 0;

by contrast, we visibly obtain for Yn+1 f , . . . ,Yr f expressions of the form:

Yn+k f ≡
n

∑
ν=1

ϕkν(y1, . . . ,ys)Yν f (k=1 ···r−n),

in which the ϕkν(y) come into existence after the introduction of the variables y in
place of the x, so that the n(r −n) equations:

ϕkν(y1, . . . ,ys) = ϕkν(x1, . . . ,xs)

are hence identities after the substitution: yi =Φi(x1, . . . ,xs).
From this, we conclude that:

If there is no linear relation between X1 f , . . . ,Xn f , while Xn+1 f , . . . ,Xr f can be
expressed linearly in terms of X1 f , . . . ,Xn f by virtue of the relations (3), then the two
equally composed groups X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f can be similar only when
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the arbitrary elements in the coefficients gk j defined above can be chosen in such a
way that the infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

possess the following properties: firstly, Y1 f , . . . ,Yn f are linked by no linear relation,
while by contrast, Yn+1 f , . . . ,Yr f are linearly expressible in terms of Y1 f , . . . ,Yn f :

(3’) Yn+k f ≡
n

∑
ν=1

ψkν(y1, . . . ,ys)Yν f (k=1 ···r−n),

and secondly, the n(r −n) equations:

(4) ϕkν(x1, . . . ,xs)−ψkν(y1, . . . ,ys) = 0 (k=1 ···r−n ; ν=1 ···n),

are compatible with each other and they give relations neither between the x alone
nor between the y alone.

These conditions are necessary for the similarity between the two equally com-
posed groups X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f . We claim that the same conditions are
sufficient. Put more precisely, we claim: when the said conditions are satisfied, then
there is always a transformation yi = Φi(x1, . . . ,xs) which transfers the infinitesi-
mal transformations X1 f , . . . ,Xr f to, respectively, Y1 f , . . . ,Yr f , so the two groups
X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f are similar to each other.

The proof of this claim will be produced as we develop a method which leads to
the determination of a transformation having the indicated constitution.

Our more present standpoint is therefore the following:
In the s variables x1, . . . ,xs, let an r-term group:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

be presented, the composition of which is determined by the relations:

[Xi, Xk] =
r

∑
σ=1

cikσ Xσ f .

Between X1 f , . . . ,Xn f , there is at the same time no linear relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χn(x1, . . . ,xs)Xn f = 0,

while by contrast Xn+1 f , . . . ,Xr f express themselves in terms of X1 f , . . . ,Xn f :

(3) Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···n−r).
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Furthermore, let us be given an r-term group:

Zk f =
s

∑
i=1
ζki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r)

which is equally composed with the group X1 f , . . . ,Xr f , and let r independent in-
finitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f =
s

∑
i=1
ηki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r)

in this group be chosen in such a way that firstly, the relations:

[Yi, Yk] =
r

∑
σ=1

cikσ Yσ f

are identically satisfied, and such that secondly, Y1 f , . . . ,Yn f are linked together by
no relation of the form:

ψ1(y1, . . . ,ys)Y1 f + · · ·+ψn(y1, . . . ,ys)Yn f = 0,

while by contrast Yn+1 f , . . . ,Yr f express themselves in the following way:

(3’) Yn+k f ≡
n

∑
ν=1

ψkν(y1, . . . ,ys)Yν f (k=1 ···n−r),

and such that, lastly, the n(r −n) equations:

(4) ϕkν(x1, . . . ,xs)−ψkν(y1, . . . ,ys) = 0 (k=1 ···r−n ; ν=1 ···n)

are compatible with each other and give relations neither between the x alone, nor
between the y alone.

To seek a transformation:

(5) yi =Φi(x1, . . . ,xs) (i=1 ···s)

which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively.

We can add:

The sought transformation is constituted in such a way that the equations (4) are
identities after the substitution: y1 =Φ1(x), . . . , ys =Φs(x).

With these words, the problem which is to be settled is enunciated.
§ 90. Before we attack in its complete generality the problem stated at the end

of the preceding section, we want to consider a special case, the settlement of which



348 19 Theory of the Similarity of r-term Groups

turns out to be substantially simpler; we mean the case n = r which, obviously, can
occur only when s is at least equal to r.

Thus, let the whole number n defined above be equal to r.
It is clear that in this case, neither between X1 f , . . . ,Xr f , nor between

Z1 f , . . . ,Zr f does there exists a linear relation. From this, it follows that the r
infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

satisfy by themselves the conditions indicated on p. 346, without it being necessary
to specialize further the arbitrary elements contained in the gk j. Indeed, firstly there
is no linear relation between Y1 f , . . . ,Yr f , and secondly, the equations (4) reduce
to the identity 0 = 0, hence they are certainly compatible with each other and they
produce relations neither between the x alone, nor between the y alone.

Thus, if the claim stated on p. 346 is correct, our two r-term groups must be
similar, and to be precise, there must exist a transformation yi =Φi(x1, . . . ,xs) which
transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively. We seek to determine such a
transformation.

When we introduce the variables y1, . . . ,ys in Xk f by means of the transforma-
tion:

(5) yi =Φi(x1, . . . ,xs) (i=1 ···s),

we obtain:

Xk f =
s

∑
i=1

Xk yi
∂ f
∂yi

=
s

∑
i=1

XkΦi
∂ f
∂yi

;

so by comparing to:

Yk f =
s

∑
i=1
ηki(y1, . . . ,ys)

∂ f
∂yi

=
s

∑
i=1

Yk yi
∂ f
∂yi

,

we realize that the transformation (5) transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respec-
tively, if and only if the r s equations:

(6) Yk yi −XkΦi = 0 (k=1 ···r ; i=1 ···s)

become identities after the substitution: y1 =Φ1(x), . . . , ys =Φs(x).
Now, if we set:

Xk f +Yk f =Ωk f (k=1 ···r),

we have:
Ωk(yi −Φi) = Yk yi −XkΦi ;

thus, when the equations (5) represent a transformation having the constitution de-
manded, the r s expressionsΩk(yi −Φi) all vanish by means of (5), or, what amounts
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to the same: the system of equations (5) admits the r infinitesimal transformations
Ω1 f , . . . ,Ωr f (cf. Chap. 7, p. 124 sq.).

On the other hand, the following obviously holds true: every system of equations
solvable with respect to x1, . . . ,xs of the form (5) which admits the r infinites-
imal transformations Ω1 f , . . . ,Ωr f represents a transformation which transfers
X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively.

At present, if we take into account that the r infinitesimal transformations
Ω1 f , . . . ,Ωr f stand pairwise in the relationships:

[Ωi,Ωk] = [Xi, Xk]+ [Yi, Yk] =
r

∑
σ=1

cikσ Ωσ f ,

and therefore generate an r-term group in the 2s variables x1, . . . ,xs, y1, . . . ,ys, we
can thus say:

The totality of all transformations (5) which transfer X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f ,
respectively, is identical to the totality of all systems of equations solvable with
respect to x1, . . . ,xn of the form (5) which admit the r-term group Ω1 f , . . . ,Ωr f .

The determination of a transformation of the discussed constitution therefore
leads back to the determination of a certain system of equations in the 2s variables
x1, . . . ,xs, y1, . . . ,ys; this system of equations must possess the following properties:
it must consist of s independent equations, it must be solvable both with respect to
x1, . . . ,xs and with respect to y1, . . . ,ys, and lastly, it must admit the r-term group
Ω1 f , . . . ,Ωr f .

For the resolution of this new problem, we can base ourselves on the develop-
ments of Chap. 14.

Under the assumptions made, the r × r determinants of the matrix:
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x)
· · · ·

ξr1(x) · · ξrs(x)

∣
∣
∣
∣
∣
∣

do not all vanish identically and even less all r × r determinants of the matrix:

(7)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x) η11(y) · · η1s(y)
· · · · · · · ·

ξr1(x) · · ξrs(x) ηr1(y) · · ηrs(y)

∣
∣
∣
∣
∣
∣

.

Hence when a system of equations brings to zero all r × r determinants of the ma-
trix (7), it must necessarily contain relations between the x alone.

Our problem is the determination of a system of equations of the form:

(8) y1 −Φ1(x1, . . . ,xs) = 0, . . . , ys −Φs(x1, . . . ,xs) = 0

which admits the group Xk f +Yk f , and which is at the same time solvable with
respect to x1, . . . ,xs.
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A system of equations of this nature certainly contains no relation between
x1, . . . ,xs only, so it does not bring to zero all r × r determinants of the matrix (7)
and according to Theorem 17 in Chap. 7, p. 137, it can be brought to a such a form
that it contains only relations between the solutions of the complete system:

(9) Ωk f = Xk f +Yk f = 0 (k=1 ···r).

Consequently, our problem will be solved when we succeed in determining s inde-
pendent relations between the solutions of this complete system that are solvable
with respect to x1, . . . ,xs and with respect to y1, . . . ,ys.

The complete system (9) possesses 2s − r independent solutions which we can
evidently choose in such a way that s− r of them, say:

u1(x1, . . . ,xs), . . . , us−r(x1, . . . ,xs)

depend only upon the x, so that s− r other solutions:

v1(y1, . . . ,ys), . . . , vs−r(y1, . . . ,ys)

depend only upon the y, while by contrast, the r remaining ones:

w1(x1, . . . ,xs, y1, . . . ,ys), . . . , wr(x1, . . . ,xs, y1, . . . ,ys)

must contain certain x and certain y as well. Here, the s functions u1, . . . ,us−r,
w1, . . . ,wr are mutually independent as far as x1, . . . ,xs are concerned, and the s
functions v1, . . . ,vs−r, w1, . . . ,wr are so too, as far as y1, . . . ,ys are concerned; from
this, it follows that the r equations of the complete system are solvable with respect
to r of the differential quotients ∂ f/∂y1, . . . , ∂ f/∂ys, and with respect to r of
the differential quotients ∂ f/∂x1, . . . , ∂ f/∂xs as well (cf. Chap. 5, Theorem 12,
p. 105).

Now, when are s mutually independent relations between the u, v, w solvable both
with respect to x1, . . . ,xs and with respect to y1, . . . ,ys? Clearly, when and only when
they can be solved both with respect to u1, . . . ,us−r, w1, . . . ,wr and with respect to
v1, . . . ,vs−r, w1, . . . ,wr, hence when they can be brought to the form:

(10)
v1 = F1(u1, . . . ,us−r), . . . , vs−r = Fs−r(u1, . . . ,us−r),
w1 =G1(u1, . . . ,us−r), . . . , wr =Gr(u1, . . . ,us−r),

where F1, . . . ,Fs−r denote arbitrary mutually independent functions of their argu-
ments, while the functions G1, . . . ,Gr are submitted to absolutely no restriction.

The equations (10) represent the most general system of equations which consists
of s independent equations, which admits the group Ω1 f , . . . ,Ωr f and which can
be solved both with respect to x1, . . . ,xs and with respect to y1, . . . ,ys; at the same
time, they represent the most general transformation between x1, . . . ,xs and y1, . . . ,ys

which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively. It is therefore proved that
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there exist transformations which achieve this transfer, hence that our two groups
are effectively similar to each other.

But even more: the equations (10) actually represent the most general transfor-
mation which transfers the group X1 f , . . . ,Xr f to the group Z1 f , . . . ,Zr f .

In fact, if yi =Ψi(x1, . . . ,xs) is an arbitrary transformation which transfers one
group to the other, then it converts X1 f , . . . ,Xr f into certain infinitesimal transfor-
mations Y1 f , . . . ,Yr f of the group Z1 f , . . . ,Zr f which stand pairwise in the rela-
tionships:

[Yi,Yk] =
r

∑
σ=1

cikσYσ f ,

and which can hence be obtained from the r infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

when one specializes in an appropriate way the arbitrary elements appearing in the
gk j. But now, all transformations which convert X1 f , . . . ,Xr f into Y1 f , . . . ,Yr f , re-
spectively, are contained in the form (10), so in particular, the transformation yi =
Ψi(x1, . . . ,xn) is also contained in this form.

Now, by summarizing the obtained result, we can say:

Theorem 63. If the two r-term groups:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

and:

Zk f =
s

∑
i=1
ζki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r)

are equally composed and if neither X1 f , . . . ,Xr f nor Z1 f , . . . ,Zr f are linked to-
gether by linear relations, then the two groups are also similar to each other. One
obtains the most general transformation which transfers one group to the other in
the following way: One chooses the r2 constants gk j in the most general way so that
the r infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

are mutually independent and so that, together with the relations:

[Xi, Xk] =
r

∑
σ=1

cikσ Xσ f ,

there are at the same time the relations:
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[Yi, Yk] =
r

∑
σ=1

cikσ Yσ f ;

then, one forms the r-term complete system:

Xk f +Yk f = 0 (k=1 ···r)

in the 2s variables x1, . . . ,xs, y1, . . . ,ys and one determines 2s− r independent solu-
tions of it, namely s− r independent solutions:

u1(x1, . . . ,xs), . . . , us−r(x1, . . . ,xs)

which contain only the x, plus s− r independent solutions:

v1(y1, . . . ,ys), . . . , vs−r(y1, . . . ,ys)

which contain only the y, and r solutions:

w1(x1, . . . ,xs, y1, . . . ,ys), . . . , wr(x1, . . . ,xs, y1, . . . ,ys)

which are mutually independent and which are independent of u1, . . . ,us−r,
v1, . . . ,vs−r; if this takes place, then the system of equations:

v1 = F1(u1, . . . ,us−r), . . . , vs−r = Fs−r(u1, . . . ,us−r),
w1 =G1(u1, . . . ,us−r), . . . , wr =Gr(u1, . . . ,us−r),

represents the demanded transformation; here, G1, . . . ,Gr are perfectly arbitrary
functions of their arguments; by contrast, F1, . . . ,Fs−r are subjected to the restric-
tion that they must be mutually independent.

From this, in particular, we obtain the

Proposition 1. If the r � s independent infinitesimal transformations:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

stand pairwise in the relationships:

[Xi, Xk] = 0 (i, k=1 ···r),

without being, however, linked together by a linear relation of the form:

r

∑
k=1

χk(x1, . . . ,xs)Xk f = 0,

then they generate an r-term group which is similar to the group of transformations:
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Y1 f =
∂ f
∂y1

, . . . , Yr f =
∂ f
∂yr

.

A case of the utmost importance is when the two numbers s and r are equal
to each other, so that the two groups X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f are transitive,
or more precisely: simply transitive (cf. Chap. 13, p. 226). We want to enunciate
Theorem 63 for this special case:

Theorem 64. Two simply transitive equally composed groups in the same number
of variables are always also similar to each other. If:

Xk f =
r

∑
i=1
ξki(x1, . . . ,xr)

∂ f
∂xi

(k=1 ···r)

and:

Zk f =
r

∑
i=1
ζki(y1, . . . ,yr)

∂ f
∂yi

(k=1 ···r)

are the infinitesimal transformations of the two groups, then one finds in the follow-
ing way the most general transformation which transfers the one group to the other:
One chooses the r2 constants gk j in the most general way so that the r infinitesimal
transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

are mutually independent and so that, together with the relations:

[Xi, Xk] =
r

∑
σ=1

cikσ Xσ f ,

there are at the same time the relations:

[Yi, Yk] =
r

∑
σ=1

cikσ Yσ f ;

moreover, one forms the r-term complete system:

Xk f +Yk f = 0 (k=1 ···r)

in the 2r variables x1, . . . ,xr, y1, . . . ,yr and one determines r arbitrary independent
solutions:

w1(x1, . . . ,xr, y1, . . . ,yr), . . . , wr(x1, . . . ,xr, y1, . . . ,yr)

of it; then the r equations:

w1 = a1, . . . , wr = ar
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with the r arbitrary constants a1, . . . ,ar represent the most general transformation
having the constitution demanded.

§ 91. Now, we turn to the treatment of the general problem that we stated at the
end of § 89 (p. 347).

First, we can prove exactly as in the previous section that every transformation:
yi = Φi(x1, . . . ,xs) which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, repre-
sents a system of equations which admits the r-term group Ωk f = Xk f +Yk f and
that, on the other hand, every system of equations solvable with respect to x1, . . . ,xs:

yi =Φi(x1, . . . ,xs)

which admits the group Ω1 f , . . . ,Ωr f represents a transformation which transfers
X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively.

Now, according to p. 346, every transformation yi = Φi(x1, . . . ,xs) which trans-
fers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, is constituted in such a way that the
equations (4) become identities after the substitution: y1 = Φ1(x), . . . , ys = Φs(x).
Consequently, we can also enunciate as follows the problem formulated on p. 347:

To seek, in the 2s variables x1, . . . ,xs, y1, . . . ,ys, a system of equations which ad-
mits the r-term group Ω1 f , . . . ,Ωr f , which consists of exactly s independent equa-
tions that are solvable both with respect to x1, . . . ,xs and to y1, . . . ,ys, and lastly,
which embraces1 (Translator’s note: See the footnote on p. 132.) the n(r −n) equa-
tions:

(4) ϕkν(x1, . . . ,xs)−ψkν(x1, . . . ,xs) = 0 (k=1 ···r−n ; ν=1 ···n).

For the solution of this problem, it is of great importance that the system of equa-
tions (4) admits in turn the r-term group Ω1 f , . . . ,Ωr f .

In order to prove this, we imagine that the matrix which is associated to the
infinitesimal transformations Ω1 f , . . . ,Ωr f :

(11)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x) η11(y) · · η1s(y)
· · · · · · · ·

ξr1(x) · · ξrs(x) ηr1(y) · · ηrs(y)

∣
∣
∣
∣
∣
∣

is written down. We will show that the equations (4) are a system of equations
which is obtained by setting equal to zero all (n+ 1)× (n+ 1) determinants of the
matrix (11). With this, according to Theorem 39, Chap. 14, p. 240, it will be proved
that the system of equations (4) admits the group Ω1 f , . . . ,Ωr f .

Amongst the (n+1)× (n+1) determinants of the matrix (11), there are in par-
ticular those of the form:
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Δ =

∣
∣
∣
∣
∣
∣
∣
∣

ξ1k1(x) · · ξ1kn(x) η1σ (y)
· · · · ·

ξnk1(x) · · ξnkn(x) ηnσ (y)
ξn+ j,k1(x) · · ξn+ j,kn(x) ηn+ j,σ (y)

∣
∣
∣
∣
∣
∣
∣
∣

.

If we replace in Δ the members of the last horizontal row by their values from (3)
and (3’), namely by the following values:

ξn+ j,kμ (x) ≡
n

∑
ν=1

ϕ jν(x)ξν ,kμ (x), ηn+ j,σ (y) ≡
n

∑
ν=1

ψ jν(y)ηνσ (y),

and if we subtract from the last horizontal row the first n rows, after we have multi-
plied them before by ϕ j1(x), . . . ,ϕ jn(x), respectively, then we obtain:

Δ =∑±ξ1k1(x) · · · ξnkn(x)
n

∑
ν=1

ηνσ (y)
{

ψ jν(y)−ϕ jν(x)
}

.

Here, under the assumptions made earlier on, the determinants of the form:

D =∑±ξ1k1(x) · · · ξnkn(x)

do not all vanish identically, and likewise not all determinants:

D=∑±η1k1(y) · · · ηnkn(y)

vanish identically.
Obviously, a system of equations that brings to zero all determinants Δ must

either contain all equations of the form D = 0, or it must contain the s(r −n) equa-
tions:

n

∑
ν=1

ηνσ (y)
{

ψ jν(y)−ϕ jν(x)
}

= 0 (σ=1 ···s ; j=1 ···r−n) ;

in the latter case, it embraces either all equations of the form D= 0, or the n(r −n)
equations:

(4) ϕ jν(x)−ψ jν(y) = 0 ( j=1 ···r−n ; ν=1 ···n).

In the latter of these three cases, we now observe the following:
The system of equation (4) brings to zero not only all determinants Δ , but ac-

tually also all (n+ 1)× (n+ 1) determinants of the matrix (11). One realizes this
immediately when one writes the matrix in the form:
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x) η11(y) · · η1s(y)
· · · · · · · ·

∑1···n
ν ϕ1ν ξν1 · · ∑1···n

ν ϕ1ν ξνs ∑1···n
ν ψ1ν ην1 · · ∑1···n

ν ψ1ν ηνs

· · · · · · · ·
∑1···n
ν ϕr−n,ν ξν1 · · ∑1···n

ν ϕr−n,ν ξνs ∑1···n
ν ψr−n,ν ην1 · · ∑1···n

ν ψr−n,ν ηνs

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and when one makes afterwards the substitution: ψkν(y) = ϕkν(x); the (n+ 1)×
(n+ 1) determinants of the obtained matrix are all identically zero. Consequently,
(4) belongs to the systems of equations that one obtains by setting equal to zero all
(n+ 1)× (n+ 1) determinants of the matrix (11), and therefore, according to the
theorem cited above, it admits the r-term group Ω1 f , . . . ,Ωr f .

The important property of the system of equations (4) just proved can also be
realized in another, somewhat more direct way.

According to p. 124 and to p. 235, the system of equations (4) admits in any case
the r-term group Ω1 f , . . . ,Ωr f only when all equations of the form:

Ω j
(

ϕkν(x)−ψkν(y)
)

= Xjϕkν(x)−Yjψkν(y) = 0

are a consequence of (4). That this condition is satisfied in the present case can be
easily verified.

For j = 1, . . . ,r and k = 1, . . . ,r −n, we have:

[Xj, Xn+k] =
[

Xj f ,
n

∑
ν=1

ϕkν Xν f

]

=
n

∑
ν=1

Xjϕkν Xν f +
n

∑
ν=1

ϕkν [Xj, Xν ].

Moreover, we have in general:

[Xj, Xμ ] =
r

∑
π=1

c jμπ Xπ f =
n

∑
ν=1

{

c jμν +
r−n

∑
τ=1

c jμ,n+τ ϕτν
}

Xν f .

If we insert these values into the preceding equation and if in addition, we take
into account that X1 f , . . . ,Xn f are not linked together by a linear relation, we then
find:

(12)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xjϕkν = c j,n+k,ν +
r−n

∑
τ=1

c j,n+k,n+τ ϕτν

−
n

∑
μ=1

ϕkμ

{

c jμν +
r−n

∑
τ=1

c j,μ,n+τ ϕτν
}

.

Consequently, we have:

Xjϕkν =Π jkν(ϕ11, ϕ12, . . .) ( j=1 ···r ; k=1 ···r−n ; ν=1 ···r),
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and a completely similar computation gives:

Yjψkν =Π jkν(ψ11, ψ12, . . .),

where in the two cases Π jkν denote the same functions of their arguments.
At present, we obtain:

Ω j(ϕkν −ψkν) =Π jkν(ϕ11, ϕ12, . . .)−Π jkν(ψ11, ψ12, . . .),

from which it is to be seen that the expressions Ω j(ϕkν −ψkν) effectively vanish by
virtue of (4).

In general, the n(r − n) equations ϕkν(x) = ψkν(x) are not mutually indepen-
dent, but rather, they can be replaced by a smaller number of mutually independent
equations, say by the following s−ρ � s ones:

(13) ϕk(x1, . . . ,xs) = ψk(y1, . . . ,ys) (k=1 ···s−ρ).

Naturally, each Xjϕk will then be a function of ϕ1, . . . ,ϕs−ρ alone:

(14) Xjϕk = π jk(ϕ1, . . . ,ϕs−ρ) ( j=1 ···r ; k=1 ···s−ρ),

and every Yjψk will be the same function of ψ1, . . . ,ψs−ρ :

(14’) Yjψk = π jk(ψ1, . . . ,ψs−ρ) ( j=1 ···r ; k=1 ···s−ρ),

hence all Ω j(ϕk −ψk) vanish by virtue of the system of equations: ϕ1 = ψ1, . . . ,
ϕs−ρ = ψs−ρ . But since this system of equations is presented in a form which satis-
fies the requirement given on p. 123 sq., then according to p. 127 and to p. 235, we
conclude that it admits the r-term group Ω1 f , . . . ,Ωr f .

Now, if s −ρ = s, so ρ = 0, then the s equations ϕ1 = ψ1, . . . , ϕs = ψs actually
already represent a transformation in the variables x1, . . . ,xs, y1, . . . ,ys. This trans-
formation obviously transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, and at the
same time, it is the most general transformation that does this.

Thus, the case s −ρ = s is settled from the beginning, but by contrast, the case
s−ρ < s requires a closer examination.

In order to simplify the additional considerations, we first want to introduce ap-
propriate new variables in place of the variables x and y.

The n mutually independent equations: X1 f = 0, . . . , Xn f = 0 form an n-term
complete system in the s variables x1, . . . ,xs, hence they have s − n independent
solutions in common, and likewise, the n equations: Y1 f = 0, . . . , Yn f = 0 in the
variables y1, . . . ,ys have exactly s−n independent solutions in common.

It stands to reason to simplify the infinitesimal transformations X1 f , . . . ,Xr f and
Y1 f , . . . ,Yr f by introducing, in place of the x, new independent variables of which
s − n are independent solutions of the complete system: X1 f = 0, . . . , Xn f = 0,
and by introducing, in place of the y, new independent variables of which s − n are
independent solutions of the complete system: Y1 f = 0, . . . , Yn f = 0.
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On the other hand, it stands to reason to simplify the equations (13) by introduc-
ing the functions ϕ1(x), . . . ,ϕs−ρ(x) and ψ1(y), . . . ,ψs−ρ(y) as new variables.

We want to attempt to combine the two simplifications as far as possible.
We start by introducing appropriate new variables in place of the x.
Amongst the solutions of the complete system X1 f = 0, . . . , Xn f = 0, there may

be some which can be expressed in terms of the functions ϕ1(x), . . . , ϕs−ρ(x) alone;
all solutions F(ϕ1, . . . ,ϕs−ρ) of this nature determine themselves from the n differ-
ential equations:

(15)
s−ρ
∑
ν=1

Xkϕν
∂F
∂ϕν

=
s−ρ
∑
ν=1

πkν(ϕ1, . . . ,ϕs−ρ)
∂F
∂ϕν

= 0 (k=1 ···n)

in the s−ρ variables ϕ1, . . . ,ϕs−ρ . We assume that these equations possess exactly
s−q � s−ρ independent solutions, say the following ones:

U1(ϕ1, . . . ,ϕs−ρ), . . . , Us−q(ϕ1, . . . ,ϕs−ρ).

Under these assumptions:

U1
(

ϕ1(x), . . . ,ϕs−ρ(x)
)

= u1(x), . . . , Us−q
(

ϕ1(x), . . . ,ϕs−ρ(x)
)

= us−q(x)

are obviously independent solutions of the complete system: X1 f = 0, . . . , Xn f = 0
which can be expressed in terms of ϕ1(x), . . . ,ϕs−ρ(x) alone, and such that every
other solution of the same constitution is a function of u1(x), . . . ,us−q(x) only. Nat-
urally, we also have at the same time the inequality: s − q � s − n, hence neither of
the two numbers ρ and n is larger than q.

Now, let:
us−q+1 = us−q+1(x), . . . , us−n = us−n(x)

be q − n arbitrary mutually independent solutions of the complete system X1 f = 0,
. . . , Xn f = 0 that are also independent of u1(x), . . . ,us−q(x). We will show that the
s − ρ + q − n functions: us−q+1(x), . . . , us−n(x), ϕ1(x), . . . ,ϕs−ρ(x) are mutually
independent.

Since ϕ1(x), . . . ,ϕs−ρ(x) are mutually independent, there are, amongst the
functions ϕ1(x), . . . , ϕs−ρ(x), us−q+1(x), . . . , us−n(x) at least s − ρ , say exactly
s −ρ + q − n − h that are mutually independent, where 0 � h � q − n. We assume
that precisely ϕ1(x), . . . , ϕs−ρ(x), us−q+h+1(x), . . . , us−n(x) are mutually inde-
pendent, while us−q+1(x), . . . , us−q+h(x) can be expressed in terms of ϕ1(x), . . . ,
ϕs−ρ(x), us−q+h+1(x), . . . , us−n only. Thus, there must exist, between the quantities
us−q+1, . . . ,us−n, ϕ1, . . . ,ϕs−ρ relations of the form:

(16) us−q+ j = χ j
(

us−q+h+1, . . . , us−n, ϕ1, . . . , ϕs−ρ
)

( j=1 ···h)

which reduce to identities after the substitution:

(17)

{

us−q+1 = us−q+1(x), . . . , us−n = us−n(x)
ϕ1 = ϕ1(x), . . . , ϕs−ρ = ϕs−ρ(x).
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If we interpret the substitution (17) by the symbol [ ], we then have:

[us−q+ j −χ j ] ≡ 0 ( j=1 ···h),

whence we get:

Xk [us−q+ j −χ j ] = −
s−ρ
∑
ν=1

[πkν(ϕ1, . . . ,ϕs−ρ) ]
[
∂χ j

∂ϕν

]

≡ 0 (k=1 ···n ; j=1 ···h),

that is to say: all the expressions:

(18)
s−ρ
∑
ν=1

πkν(ϕ1, . . . ,ϕs−ρ)
∂χ j

∂ϕν
(k=1 ···n ; j=1 ···h)

vanish identically after the substitution (17). But now, these expressions are all free
of us−q+1, . . . ,us−q+h, so if they were not identically zero and they vanished identi-
cally after the substitution (17), then the functions us−q+h+1(x), . . . , us−n(x), ϕ1(x),
. . . , ϕs−ρ(x) would not be mutually independent, but this contradicts the assumption.
Consequently, the expressions (18) are in fact identically zero, or, what amounts to
the same, the functions χ1, . . . ,χh are solutions of the n differential equations (15)
in the s −ρ variables ϕ1, . . . ,ϕs−ρ . From this, it results that ϕ1, . . . ,ϕs−ρ appear in
the χ j only in the combination: U1(ϕ1, . . . ,ϕs−ρ), . . . , Us−q(ϕ1, . . . ,ϕs−ρ), so that
the h equations (16) can be replaced by h relations of the form:

(19) us−q+ j = χ j

(

us−q+h+1, . . . , us−n, u1, . . . ,us−q
)

( j=1 ···h),

which in turn reduce to identities after the substitution:

u1 = u1(x), . . . , us−n = us−n(x).

Obviously, relations of the form (19) cannot exist, for u1, . . . ,us−n are indepen-
dent solutions of the complete system X1 f = 0, . . . , Xn f = 0; consequently, h is equal
to zero. As a result, it is proved that the s −ρ+q − n functions ϕ1(x), . . . ,ϕs−ρ(x),
us−q+1(x), . . . , us−n(x) really are independent of each other.

We therefore see that, between the s − n + s − ρ quantities u1, . . . ,us−n,
ϕ1, . . . ,ϕs−ρ , no other relations exist that are independent from the s−q relations:

(20) u1 = U1(ϕ1, . . . ,ϕs−ρ), . . . , us−q = Us−q(ϕ1, . . . ,ϕs−ρ)

which reduce to identities after the substitution:

u1 = u1(x), . . . , us−q = us−q(x), ϕ1 = ϕ1(x), . . . , ϕs−ρ = ϕs−ρ(x).

From what has just been said, it follows that, amongst the s−n+ s−ρ functions
u1(x), . . . , us−n(x), ϕ1(x), . . . , ϕs−ρ(x), there exist exactly s−n+ s−ρ− (s−q) =
s − n+ q − ρ that are mutually independent, namely for instance the s − n func-
tions: u1(x), . . . ,us−n(x) to which q −ρ � 0 of the functions ϕ1(x), . . . ,ϕs−ρ(x) are
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added. If we agree that the equations (20) can be resolved precisely with respect to
ϕq−ρ+1, . . . ,ϕs−ρ , we can conclude that precisely the s−n+q−ρ functions: u1(x),
. . . , us−n(x), ϕ1(x), . . . , ϕq−ρ(x) are mutually independent. Here, the number q−ρ ,
or shortly m, is certainly not larger than n, since the sum s−n+q−ρ can naturally
not exceed the number s of the variables x.

At present, we have gone so far that we can introduce new independent variables
x′

1, . . . ,x
′
s in place of x1, . . . ,xs; we choose them in the following way:

We set simply:

x′
q+1 = u1(x1, . . . ,xs), . . . , x′

s = us−q(x1, . . . ,xs),

furthermore:

x′
n+1 = us−q+1(x1, . . . ,xs), . . . , x′

q = us−n(x1, . . . ,xs),

and:
x′

1 = ϕ1(x1, . . . ,xs), . . . , x′
m = ϕm(x1, . . . ,xs),

where m = q−ρ is not larger than n; in addition, we set:

x′
m+1 = λ1(x1, . . . ,xs), . . . , x′

n = λn−m(x1, . . . ,xs),

where λ1(x), . . . ,λn−m(x) denote arbitrary mutually independent functions that are
also independent of u1(x), . . . , us−n(x), ϕ1(x), . . . , ϕm(x).

In a completely similar way, we introduce new independent variables in place of
y1, . . . ,ys.

We form the s−q functions:

U1
(

ψ1(y), . . . , ψs−ρ(y)
)

= v1(y), . . . , Us−q
(

ψ1(y), . . . , ψs−ρ(y)
)

= vs−q(y)

that are evidently independent solutions of the n-term complete system: Y1 f = 0,
. . . , Yn f = 0; moreover, we determine any q−n arbitrary mutually independent solu-
tions: vs−q+1(y), . . . , vs−n(y) of the same complete system that are also independent
of v1(y), . . . , vs−q(y). Then it is clear that the s−n+q−ρ functions:

v1(y), . . . , vs−n(y), ψ1(y), . . . , ψq−ρ(y)

are mutually independent.
We now choose the new variables y′

1, . . . ,y
′
s in exactly the same way as the vari-

ables x′ a short while ago.
We set simply:

y′
q+1 = v1(y1, . . . ,ys), . . . , y′

s = vs−q(y1, . . . ,ys),

furthermore:

y′
n+1 = vs−q+1(y1, . . . ,ys), . . . , y′

q = vs−n(y1, . . . ,ys),
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and:
y′

1 = ψ1(y1, . . . ,ys), . . . , y′
m = ψm(y1, . . . ,ys) ;

in addition, we set:

y′
m+1 =Λ1(y1, . . . ,ys), . . . , y′

n =Λn−m(y1, . . . ,ys),

where Λ1, . . . ,Λn−m are arbitrary mutually independent functions that are also inde-
pendent of: v1(y), . . . , vs−n(y), ψ1(y), . . . , ψm(y).

Now, we introduce the new variables x′ and y′ in the infinitesimal transformations
Xk f , Yk f and in the equations (13).

Since all Xk x′
n+1, . . . , Xk x′

s vanish identically and since all Xkϕ1, . . . , Xkϕm de-
pend only on ϕ1, . . . ,ϕs−ρ , that is to say, only on x′

1, . . . ,x
′
m, x′

q+1, . . . ,x
′
s, the Xk f are

of the following form in the variables x′
1, . . . ,x

′
s:

Xk f =
m

∑
μ=1

xkμ
(

x′
1, . . . ,x

′
m, x′

q+1, . . . ,x
′
s

) ∂ f
∂x′
μ
+

+
n−m

∑
j=1

xk,m+ j
(

x′
1, . . . ,x

′
m, . . . ,x

′
n, . . . ,x

′
q, . . . ,x

′
s

) ∂ f
∂x′

m+ j
= Ξk f .

In the same way, we have:

Yk f =
m

∑
μ=1

xkμ
(

y′
1, . . . ,y

′
m, y′

q+1, . . . ,y
′
s

) ∂ f
∂y′
μ
+

+
n−m

∑
j=1

yk,m+ j
(

y′
1, . . . ,y

′
m, . . . ,y

′
n, . . . ,y

′
q, . . . ,y

′
s

) ∂ f
∂y′

m+ j
= Hk f .

Here, the xkμ(y′
1, . . . ,y

′
m, y′

q+1, . . . ,y
′
s) denote the same functions of their arguments

as the xkμ(x′
1, . . . ,x

′
m, x′

q+1, . . . ,x
′
s). Indeed, it results from the equations (14)

and (14’) that Yk y′
μ is the same function of y′

1, . . . ,y
′
m, y′

q+1, . . . ,y
′
s as Xk x′

μ is of
x′

1, . . . ,x
′
m, x′

q+1, . . . ,x
′
s, where it is understood that μ is an arbitrary number amongst

1,2, . . . ,m.

On the other hand, we must determine which form the system of equations (13)
receives in the new variables.

The system of equations can evidently be replaced by the following one:

ϕ1 −ψ1 = 0, . . . , ϕm −ψm = 0,

U1(ϕ1, . . . ,ϕs−ρ)−U1(ψ1, . . . ,ψs−ρ) = 0, . . . ,

Us−q(ϕ1, . . . ,ϕs−ρ)−Us−q(ψ1, . . . ,ψs−ρ) = 0.

If we introduce our new variables in this system, we obviously obtain the simple
system:
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(21)

{

x′
1 − y′

1 = 0, . . . , x′
m − y′

m = 0,

x′
q+1 − y′

q+1 = 0, . . . , x′
s − y′

s = 0;

so the system of equations (13), or, what is the same, the system of equations (4),
can be brought to this form after the introduction of the new variables.

Finally, if we remember that neither X1 f , . . . ,Xn f nor Y1 f , . . . ,Yn f are linked by
linear relations and that all (n+1)× (n+1) determinants of the matrix (11) vanish
by means of (4) while not all n × n determinants do, we then realize that in the
same way, neither Ξ1 f , . . . ,Ξn f , nor H1 f , . . . ,Hn f are linked by linear relations,
and that all (n+ 1)× (n+ 1) determinants, but not all n × n determinants, of the
matrix which can be formed with the coefficients of the differential quotients of f
in the r infinitesimal transformations Ωk f = Ξk f +Hk f vanish by means of (21).

Thanks to the preceding developments, the problem stated at the outset of the
section, p. 354, leads back to the following simpler problem:

To seek, in the 2s variables x′
1, . . . ,x

′
s, y′

1, . . . ,y
′
s, a system of equations which

admits the r-term group:

Ωk f = Ξk f +Hk f (k=1 ···r)

and in addition which consists of s independent equations that are solvable with re-
spect to x′

1, . . . ,x
′
s and to y′

1, . . . ,y
′
s, and lastly, which comprises the s −q+m equa-

tions (21).

In order to solve this new problem, we remember Chap. 14, p. 243 sq.; from what
was said at that time, we deduce that every system of equations which admits the
group Ξk f +Hk f = Ωk f and which comprises at the same time the equations (21)
can be obtained by adding to the equations (21) a system of equations in the s+q−m
variables x′

1, . . . , x′
m, . . . , x′

n, . . . , x′
q, . . . , x′

s, . . . , y′
m+1, . . . ,y

′
q that admits the r-term

group:

Ω k f =
m

∑
μ=1

xkμ
(

x′
1, . . . ,x

′
m, x′

q+1, . . . ,x
′
s

) ∂ f
∂x′
μ
+

+
n−m

∑
j=1

xk,m+ j
(

x′
1, . . . ,x

′
m, . . . ,x

′
n, . . . ,x

′
q, . . . ,x

′
s

) ∂ f
∂x′

m+ j
+

+
n−m

∑
j=1

yk,m+ j
(

x′
1, . . . ,x

′
m, y′

m+1, . . . ,y
′
n, . . . ,y

′
q, x′

q+1, . . . ,x
′
s

) ∂ f
∂y′

m+ j
.

Here, Ω k f is obtained by leaving out all terms with ∂ f/∂y′
1, . . . , ∂ f/∂y′

m in
Ωk f = Ξk f +Hk f and by making everywhere the substitution:

y′
1 = x′

1, . . . , y′
m = x′

m, y′
q+1 = x′

q+1, . . . , y′
s = x′

s

by means of (21) in the remaining terms. This formation of Ω k f shows that in the
matrix formed with Ω 1 f , . . . ,Ω r f :
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(22)

∣
∣
∣
∣
∣
∣

x11(x′) · · x1n(x′) y1,m+1(x′,y′) · · y1n(x′,y′)
· · · · · · · ·

xr1(x′) · · xrn(x′) yr,m+1(x′,y′) · · yrn(x′,y′)

∣
∣
∣
∣
∣
∣

,

all (n+1)× (n+1) determinants vanish identically, but not all n×n determinants.
If we add that neither Ξ1 f , . . . ,Ξn f nor H1 f , . . . ,Hn f are linked by linear relations,
we realize immediately that in particular the two n×n determinants:

(23) ∑±x11(x′) · · · xnn(x′)

and:

(24)

∣
∣
∣
∣
∣
∣

x11(x′) · · x1m(x′) y1,m+1(x′,y′) · · y1n(x′,y′)
· · · · · · · ·

xn1(x′) · · xnm(x′) yn,m+1(x′,y′) · · ynn(x′,y′)

∣
∣
∣
∣
∣
∣

are not identically zero.
But now, the matter for us is not to find all systems of equations which

comprise (21) and which admit the group Ω1 f , . . . ,Ωr f , but only to determine
systems of equations of this sort which consist of exactly s independent equations
that are solvable both with respect to x′

1, . . . ,x
′
s and to y′

1, . . . ,y
′
s. Consequently, we

do not have to set up all systems of equations in x′
1, . . . ,x

′
s, y′

m+1, . . . ,y
′
q which admit

Ω 1 f , . . . ,Ω r f , but only the systems which consist of exactly s−(m+s−q) = q−m
independent equations and which in addition are solvable both with respect to
x′

m+1, . . . ,x
′
n, . . . ,x

′
q and with respect to y′

m+1, . . . ,y
′
n, . . . ,y

′
q.

If a system of equations in x′
1, . . . ,x

′
s, y′

m+1, . . . ,y
′
q satisfies the requirement just

stated, then it can be brought to the form:

(25) y′
m+ j =Φm+ j(x′

1, . . . ,x
′
m, . . . ,x

′
n, . . . ,x

′
q, . . . ,x

′
s) ( j=1 ···q−m),

where the functions Φm+1, . . . ,Φq are in turn independent relative to x′
m+1, . . . ,x

′
q.

Now, it is clear that a system of equations of the form (25) cannot bring to zero
all n × n determinants of the matrix (22), since in any case, the determinant (23)
cannot be equal to zero by virtue of (25). On the other hand, since all (n+ 1)×
(n+1) determinants of (22) vanish identically, then according to Chap. 14, p. 241,
it follows that every system of equations of the form (25) which admits the group
Ω 1 f , . . . ,Ω r f is represented by relations between the solutions of the equations:
Ω 1 f = 0, . . . , Ω r f = 0, or, what is the same, by relations between the solutions of
the n-term complete system: Ω 1 f = 0, . . . , Ω n f = 0.

The n-term complete system Ω 1 f = 0, . . . , Ω n f = 0 contains s+q−m indepen-
dent variables and therefore possesses s−n+q−m independent solutions; one can
immediately indicate s−n+q−n independent solutions, namely: x′

n+1, . . . , x′
q, . . . ,

x′
s, y′

n+1, . . . , y′
q, while the n−m remaining ones must be determined by integration

and can obviously be brought to the form:

ω1(x′
1, . . . ,x

′
m, . . . ,x

′
s, y′

m+1, . . . ,y
′
q), . . . , ωn−m(x′

1, . . . ,x
′
m, . . . ,x

′
s, y′

m+1, . . . ,y
′
q).
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Since the two determinants (23) and (24) do not vanish identically, the equations
of our complete system are solvable both with respect to ∂ f/∂x′

1, . . . , ∂ f/∂x′
m,

. . . , ∂ f/∂x′
n and with respect to ∂ f/∂x′

1, . . . , ∂ f/∂x′
m, ∂ f/∂y′

m+1, . . . , ∂ f/∂y′
n

and therefore, its s − n + q − m independent solutions x′
n+1, . . . ,x

′
s, y′

n+1, . . . ,y
′
q,

ω1, . . . ,ωn−m are mutually independent both relative to x′
n+1, . . . , x′

q, . . . , x′
s,

y′
m+1, . . . ,y

′
q and to x′

m+1, . . . , x′
n, . . . , x′

q, . . . , x′
s, y′

n+1, . . . ,y
′
q (cf. Theorem 12,

p. 105). Consequently, the functions ω1, . . . ,ωn−m are mutually independent both
relative to y′

m+1, . . . ,y
′
n and to x′

m+1, . . . ,x
′
n.

Every system of equations (25) which satisfies the stated requirements is repre-
sented by relations between the solutions x′

n+1, . . . ,x
′
s, y′

n+1, . . . ,y
′
q, ω1, . . . ,ωn−m

and, to be precise, by q − m relations that are solvable both with respect to
y′

m+1, . . . ,y
′
q and to x′

m+1, . . . ,x
′
q. Visibly, these relations must be solvable both with

respect to ω1, . . . ,ωn−m, x′
n+1, . . . ,x

′
q and to ω1, . . . ,ωn−m, y′

n+1, . . . ,y
′
q, so they must

have the form:

(26)

⎧

⎪⎨

⎪⎩

ωμ(x′
1, . . . ,x

′
m, x′

m+1, . . . ,x
′
s, y′

m+1, . . . ,y
′
q) = χμ(x′

n+1, . . . ,x
′
q, . . . ,x

′
s)

(μ=1 ···n−m)

y′
n+1 =Π1(x′

n+1, . . . ,x
′
q, . . . ,x

′
s), . . . , y′

q =Πq−n(x′
n+1, . . . ,x

′
q, . . . ,x

′
s),

where Π1, . . . ,Πq−n are mutually independent relative to x′
n+1, . . . ,x

′
q.

Conversely, every system of equations of the form (26) in which Π1, . . . ,Πq−n

are mutually independent relative to x′
n+1, . . . ,x

′
q is solvable both with respect to

y′
m+1, . . . ,y

′
q and with respect to x′

m+1, . . . ,x
′
q and since in addition, it admits the

group Ω 1 f , . . . ,Ω r f , then it possesses all properties which the sought system of
equations in the variables x′

1, . . . ,x
′
s, y′

m+1, . . . ,y
′
q should have.

From this, we conclude that the equations (26) represent the most general system
of equations which admits the group Ω 1 f , . . . ,Ω r f , which consists of exactly q −
m independent equations, and which is solvable both with respect to y′

m+1, . . . ,y
′
q

and to x′
m+1, . . . ,x

′
q; here, χ1, . . . ,χn−m are absolutely arbitrary functions of their

arguments and Π1, . . . ,Πq−n, though with the restriction for the latter that they must
be mutually independent relative to x′

n+1, . . . ,x
′
q.

Thus, if we add the system of equation (26) to the equations (21), we obtain the
most general system of equations in x′

1, . . . ,x
′
s, y′

1, . . . ,y
′
s which admits the group

Ωk = Ξk f +Hk f , which comprises the equations (21), which consists of s indepen-
dent equations and which is solvable both with respect to x′

1, . . . ,x
′
s and to y′

1, . . . ,y
′
s.

Finally, if, in this system of equations, we express the variables x′ and y′ in terms of
the initial variables x and y, we obtain the most general system of equations which
admits the group Ωk f = Xk f +Yk f , which comprises the equations (4), which con-
sists of s independent equations and which is solvable both with respect to x1, . . . ,xs

and to y1, . . . ,ys. In other words: we obtain the most general transformation yi =
Φi(x1, . . . ,xs) which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively.

As a result, the problem stated on p. 347 is settled, and we have achieved even
more than what was actually required, because we not only know a transformation of
the demanded constitution, we know all these transformations. At the same time, the
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claim stated on p. 346 is proved, namely it is proved that the two groups X1 f , . . . ,Xr f
and Z1 f , . . . ,Zr f are similar to each other, under the assumptions made there.

Lastly, on the basis of the preceding developments, we can determine the
most general transformation which transfers the group X1 f , . . . ,Xr f to the group
Z1 f , . . . ,Zr f ; indeed, if we remember the considerations of p. 344 sq., and if we
combine them with the result just obtained, we then see immediately that the
transformation in question can be found in the following way: In the infinitesimal
transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

defined on p. 347, one chooses the constants gk j in the most general way and af-
terwards, following the method given by us, one determines the most general trans-
formation which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively; this then is at
the same time the most general transformation which actually transfers the group
X1 f , . . . ,Xr f to the group Z1 f , . . . ,Zr f .

As the equations (26) show, the transformation found in this way contains n −
m+ q − n = q − m arbitrary functions of s − n arguments, and in addition, certain
arbitrary elements which come from the gk j; these are firstly certain arbitrary pa-
rameters, and secondly, certain arbitrarinesses which come from the fact that the gk j
are determined by algebraic operations. From this, it follows that the said transfor-
mation cannot in all cases be represented by a single system of equations. —

Now we summarize our results.
First, we have the

Theorem 65. Two r-term groups:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

and:

Zk f =
s

∑
i=1
ζki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r)

in the same number of variables are similar to each other if and only if the following
conditions are satisfied:

Firstly: the two groups must be equally composed; so, if the relations:

[Xi, Xk] =
r

∑
σ=1

cikσ Xσ f

hold, it must be possible to determine r2 constants gk j such that the r infinitesimal
transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

are mutually independent and such that the relations:
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[Yi,Yk] =
r

∑
σ=1

cikσYσ f

are identically satisfied.
Secondly: if X1 f , . . . ,Xr f are constituted in such a way that X1 f , . . . ,Xn f (say)

are linked together by no relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χn(x1, . . . ,xs)Xn f = 0,

while by contrast Xn+1 f , . . . ,Xr f express themselves linearly in terms of X1 f , . . . ,Xn f :

Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n),

them amongst the systems of gk j which satisfy the above requirements, there must
exist at least one, say the system: gk j = gk j, which is constituted in such a way that,
of the r infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r),

the first n are linked together by no linear relation of the form:

ψ1(y1, . . . ,ys)Y1 f + · · ·+ψn(y1, . . . ,ys)Yn f = 0,

while Yn+1 f , . . . ,Yr f express themselves in terms of Y1 f , . . . ,Yn f :

Yn+k f ≡
n

∑
ν=1

ψkν(y1, . . . ,ys)Yν f (k=1 ···r−n),

and such that in addition, the n(r −n) equations:

ϕkν(x1, . . . ,xs)−ψkν(y1, . . . ,ys) = 0 (k=1 ···r−n ; ν=1 ···n)

neither contradict themselves mutually, nor produce relations between the x alone
or between the y alone.1

Moreover, we have the

Proposition 2. If the two r-term groups X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f are similar
to each other and if the r infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

1 LIE, Archiv for Math. og Naturv. Vols. 3 and 4, Christiania 1878 and 1879; Math. Ann. Vol.
XXV, pp. 96–107.
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are chosen as is indicated by Theorem 65, then there always exists at least one
transformation:

y1 =Φ1(x1, . . . ,xs), . . . , ys =Φs(x1, . . . ,xs)

which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively. One can set up each trans-
formation of this nature as soon as one has integrated certain complete systems.
One obtains the most general transformation which actually transfers the group
X1 f , . . . ,Xr f to the group Z1 f , . . . ,Zr f by choosing the constants gk j in the Yk f in
the most general way, and afterwards, by seeking the most general transformation
which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively.

The complete systems which are spoken of in this proposition do not appear at
all in one case, namely in the case where the number ρ defined earlier on is equal to
zero, hence when amongst the n(r −n) functions ϕkν(x1, . . . ,xs), there are exactly s
which are mutually independent. Indeed, we have already remarked on p. 357 that
in this case, the equations:

ϕkν(x1, . . . ,xs)−ψkν(y1, . . . ,ys) = 0 (k=1 ···r−n ; ν=1 ···n)

are solvable both with respect to y1, . . . ,ys and with respect to x1, . . . ,xs, and that
they represent the most general transformation which transfers X1 f , . . . ,Xr f to
Y1 f , . . . ,Yr f , respectively.

On the other hand, there are cases in which the integration of the mentioned com-
plete systems is executable, for instance, this is always so when the finite equations
of both groups X1 f , . . . ,Xr f and Y1 f , . . . ,Yr f are known; however, we cannot get
involved in this sort of question.

§ 92. Let the two r-term groups X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f be similar to each
other, so that the transformations X1 f , . . . ,Xr f convert into the infinitesimal trans-
formations of the other group.

If we now choose r independent infinitesimal transformations:

Yk f =
r

∑
j=1

gk j Z j f (k=1 ···r)

in the group Z1 f , . . . ,Zr f , then according to the preceding, there exists a trans-
formation which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, if and only if
Y1 f , . . . ,Yr f possess the properties indicated in Theorem 65.

We assume that Y1 f , . . . ,Yr f satisfy this requirement and that yi = Φi(x1, . . . ,xs)
is a transformation which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively. Then
by the transformation yi =Φi(x), the general infinitesimal transformation: e1 X1 f +
· · ·+er Xr f is of the form: e1 Y1 f + · · ·+er Yr f , hence our transformation associates
to every infinitesimal transformation of the group X1 f , . . . ,Xr f a completely deter-
mined infinitesimal transformation of the group Z1 f , . . . ,Zr f , and conversely. The
univalent and invertible relationships which is established in this way between the
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infinitesimal transformations of the two groups is, according to p. 343, a holoedri-
cally isomorphic one.

Now, let x0
1, . . . ,x

0
s be a point in general position, i.e. a point for which the trans-

formations X1 f , . . . ,Xn f produce n independent directions, so that the functions
ϕkν(x) in the identities:

(3) Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xn)Xν f (k=1 ···r−n)

behave regularly. According to Chap. 11, p. 216, the infinitesimal transformations
e1 X1 f + · · ·+ er Xr f that leave invariant the point x0

1, . . . ,x
0
s have the form:

(27)
r−n

∑
k=1

εk

{

Xq+k f −
n

∑
ν=1

ϕkν(x0
1, . . . ,x

0
s )Xν f

}

,

where it is understood that ε1, . . . ,εr−n are arbitrary parameters, and all these
infinitesimal transformations generate an (r − n)-term subgroup of the group
X1 f , . . . ,Xr f .

If, in the identities (3), we introduce the new variables y1, . . . ,ys by means of the
transformation: yi = Φi(x1, . . . ,xs), then we obtain between Y1 f , . . . ,Yr f the identi-
ties:

(3’) Yn+k f ≡
n

∑
ν=1

ψkν(y1, . . . ,ys)Yν f (k=1 ···r−n).

Hence with y0
i =Φi(x0

1, . . . ,x
0
s ), after the introduction of the variables y, the infinites-

imal transformation (27) is transferred to:

(27’)
r−n

∑
k=1

εk

{

Yq+k −
n

∑
ν=1

ψkν(y0
1, . . .y

0
s )Yν f

}

,

that is to say, to the most general infinitesimal transformation e1 Y1 f + · · ·+ er Yr f
which leaves fixed the point: y0

1, . . . ,y
0
s in general position. At the same time, all

infinitesimal transformations of the form (27’) naturally generate an (r − n)-term
subgroup of the group Z1 f , . . . ,Zr f .

In that, we have an important property of the holoedrically isomorphic re-
lationship which is established between the two groups by the transformation:
yi = Φi(x1, . . . ,xs). Indeed, to the most general subgroup of X1 f , . . . ,Xr f which
leaves fixed an arbitrarily chosen point: x0

1, . . . ,x
0
s in general position, this holoedri-

cally isomorphic relationship always associates the most general subgroup of
Y1 f , . . . ,Yr f which leaves fixed a point: y0

1, . . . ,y
0
s in general position. Exactly the

same association is found in the reverse direction; in other words: when the point:
x0

1, . . . ,x
0
s runs through all possible positions, then the point: y0

1, . . . ,y
0
s also runs

through all possible positions.
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Now conversely, for two r-term groups in the same number of variables to be
similar to each other, then obviously, one must be able to produce between them a
holoedrically isomorphic relationship of the constitution just described. We claim
that this necessary condition is at the same time also sufficient; we will show that
the two groups are really similar, when such a holoedrically isomorphic relationship
can be produced between them.

In fact, let Z1 f , . . . ,Zr f be any r-term group which can be related in a holoedri-
cally isomorphic way to the group X1 f , . . . ,Xr f in the said manner; let e1 Y1 f + · · ·+
er Yr f be the infinitesimal transformation of the group Z1 f , . . . ,Zr f which is asso-
ciated to the general infinitesimal transformation e1 X1 f + · · ·+ er Xr f of the group
X1 f , . . . ,Xr f through the concerned holoedrically isomorphic relationship.

If X1 f , . . . ,Xn f are linked together by no linear relations, while Xn+1 f , . . . ,Xr f
can be expressed by means of X1 f , . . . ,Xn f in the known way, then the most gen-
eral infinitesimal transformation contained in the group X1 f , . . . ,Xr f which leaves
invariant the point: x0

1, . . . ,x
0
s in general position reads as follows:

(27)
r−n

∑
k=1

εk

{

Xn+k f −
n

∑
ν=1

ϕkν(x0
1, . . . ,x

0
s )Xν f

}

.

Under the assumptions made, to it corresponds, in the group Z1 f , . . . ,Zr f , the in-
finitesimal transformation:

(28)
r−n

∑
k=1

εk

{

Yn+k f −
n

∑
ν=1

ϕkν(x0
1, . . . ,x

0
s )Yν f

}

,

which now is in turn the most general transformation of the group Z1 f , . . . ,Zr f
which leaves at rest a certain point: y0

1, . . . ,y
0
s in general position. Here, if the point

x0
1, . . . ,x

0
s runs through all possible positions, then the point y0

1, . . . ,y
0
s does the same.

Since (28) is the most general infinitesimal transformation e1 Y1 f + · · ·+ er Yr f
which leaves invariant the point: y0

1, . . . ,y
0
s in general position, Y1 f , . . . ,Yn f can be

linked together by no linear relation, and by contrast, Yn+1 f , . . . ,Yr f must be ex-
pressible by means of Y1 f , . . . ,Yn f in the known way. From this, we deduce that the
most general infinitesimal transformation e1 Y1 f + · · ·+er Yr f which leaves fixed the
point: y0

1, . . . ,y
0
s can also be represented by the following expression:

(28’)
r−n

∑
k=1

ε ′
k

{

Yn+k f −
n

∑
ν=1

ψkν(y0
1, . . . ,y

0
s )Yν f

}

.

Evidently, every infinitesimal transformation contained in the expression (28) is
identical to one of the infinitesimal transformations (28’), so for arbitrarily chosen
ε1, . . . ,εr−n, it must always be possible to determine ε ′

1, . . . ,ε ′
r−n so that the equation:

r−n

∑
k=1

(εk − ε ′
k)Yn+k f −

n

∑
ν=1

{ r−n

∑
k=1

(

εkϕkν(x0)− ε ′
kψkν(y0)

)
}

Yν f = 0
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is identically satisfied.
Because Y1 f , . . . ,Yr f are independent infinitesimal transformations, the equation

just written decomposes into the following ones:

(29)
εk − ε ′

k = 0,
r−n

∑
j=1

(

ε jϕ jν(x0)− ε ′
jψ jν(y0)

)

= 0

(k=1 ···r−n ; ν=1 ···n).

From this, it follows immediately that:

ε ′
1 = ε1, . . . , ε ′

r−n = εr−n,

and in addition, thanks to the arbitrariness of the ε , we obtain the equations:

ϕkν(x0
1, . . . ,x

0
s )−ψkν(y0

1, . . . ,y
0
s ) = 0 (k=1 ···r−n ; ν=1 ···n),

which must therefore, under the assumptions made, hold for the two points x0
1, . . . ,x

0
s

and y0
1, . . . ,y

0
s . At present, if we recall that the point y0

1, . . . ,y
0
s runs through all possi-

ble positions, as soon as x0
1, . . . ,x

0
s does this, then we realize immediately that, under

the assumptions made, the n(r −n) equations:

(4) ϕkν(x1, . . . ,xs)−ψkν(y1, . . . ,ys) = 0 (k=1 ···r−n ; ν=1 ···n)

are compatible with each other and produce relations neither between the x alone,
nor between the y alone.

According to Theorem 65, p. 365, it is thus proved that the two groups
X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f are similar to each other, and this is just what we
wanted to prove.

We therefore have the

Proposition 3. Two r-term groups G and Γ in the same number of variables are
similar to each other if and only if it is possible to relate them in a holoedrically
isomorphic way so that the most general subgroup of G which leaves invariant a de-
termined point in general position always corresponds, in whichever way the point
may be chosen, to the most general subgroup of Γ which leaves invariant a certain
point in general position, and so that the same correspondence also holds in the
reverse direction.

But at the same time, it is also proved that, under the present assumption,
there exists a transformation: yi = Φi(x1, . . . ,xs) which transfers X1 f , . . . ,Xr f to
Y1 f , . . . ,Yr f , respectively. We can therefore also state the following somewhat more
specific proposition:

Proposition 4. If the r independent infinitesimal transformations:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)
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generate an r-term group G, and if the r independent infinitesimal transformations:

Yk f =
s

∑
i=1
ηki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r)

generate an r-term groupΓ , then there is a transformation: yi =Φi(x1, . . . ,xs) which
transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, if and only if the following con-
ditions are satisfied:

Firstly: if G contains exactly r − n independent infinitesimal transformations
which leave invariant an arbitrarily chosen point in general position, then Γ must
also contain exactly r − n independent infinitesimal transformations having this
constitution.

Secondly: if one associates to every infinitesimal transformation e1 X1 f + · · ·+
er Xr f of G the infinitesimal transformation e1 Y1 f + · · ·+ er Yr f of Γ , then the two
groups must be related to each other in a holoedrically isomorphic way, in the man-
ner indicated by the previous proposition.

Because the most general subgroup of G which leaves invariant a determined
point in general position is completely defined by this point, and moreover, because
the holoedrically isomorphic relationship between G and Γ mentioned several times
associates to every subgroup of G of this kind a subgroup of Γ constituted in the
same way, it follows that this relationship between G and Γ also establishes a cor-
respondence between the points x1, . . . ,xs and the points y1, . . . ,ys; however, this
correspondence is in general infinitely multivalent, for to every point x1, . . . ,xs there
obviously correspond all points y1, . . . ,ys which satisfy the equations (4), and con-
versely. As a result, this agrees with the fact that there are in general infinitely many
transformations which transfer X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively.

For transitive groups, the criterion of similarity enunciated in Proposition 3 turns
out to be particularly simple. We shall see later (Chap. 21) that two r-term transitive
groups G and Γ in the same number, say s, of variables are already similar to each
other when it is possible to relate them in a holoedrically isomorphic way so that, to
a single (r − s)-term subgroup of G which leaves fixed one point in general position
there corresponds an (r − s)-term subgroup of Γ having the same constitution.

If an r-term group:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

having the composition:

[Xi, Xk] =
r

∑
σ=1

cikσ Xσ f

is presented, then one can ask for all transformations:

x′
i =Φi(x1, . . . ,xs) (i=1 ···s)
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that leave it invariant, namely one can ask for all transformations through which the
group is similar to itself.

Thanks to the developments of the previous sections, we are in a position to
determine all the transformations in question.

To begin with, we relate in the most general holoedrically isomorphic way the
group X1 f , . . . ,Xr f to itself, hence we choose in the most general way r independent
infinitesimal transformations:

Ξk f =
r

∑
j=1

gk j Xj f (k=1 ···r)

that stand pairwise in the relationships:

[Ξi, Ξk] =
r

∑
σ=1

cikσ Ξσ f .

Afterwards, we specialize the arbitrary elements contained in the gk j in such a way
that the following conditions are satisfied: when there are no relations between
X1 f , . . . ,Xn f , while Xn+1 f , . . . ,Xr f express themselves by means of X1 f , . . . ,Xn f :

Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n),

then firstly, Ξ1 f , . . . ,Ξn f should also be linked together by no linear relation, while
by contrast Ξn+1 f , . . . ,Ξr f also express themselves by means of Ξ1 f , . . . ,Ξn f :

Ξn+k f ≡
n

∑
ν=1

ψkν(x1, . . . ,xs)Ξν f (k=1 ···r−n),

and secondly, the n(r −n) equations:

ϕkν(x′
1, . . . ,x

′
s) = ψkν(x1, . . . ,xs) (k=1 ···r−n ; ν=1 ···n)

should be mutually compatible, and they should produce relations neither between
the x alone, nor between the x′ alone.

If all of this is realized, then following the introduction of § 91, we determine
the most general transformation x′

i = Φi(x1, . . . ,xs) which transfers Ξ1 f , . . . ,Ξr f to
X ′

1 f , . . . ,X ′
r f , respectively, where:

X ′
k f =

r

∑
i=1
ξki(x′

1, . . . ,x
′
s)
∂ f
∂x′

i
.

The transformation in question is then the most general one by which the group
X1 f , . . . ,Xr f is transferred to itself.

It is clear that the totality of all transformations which leave invariant the group
X1 f , . . . ,Xr f forms a group by itself, namely the largest group in which X1 f , . . . ,Xr f
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is contained as an invariant subgroup. This group can be finite or infinite, contin-
uous or not continuous, but in all circumstances its transformations order as in-
verses by pairs, because when a transformation x′

i =Φi(x1, . . . ,xs) leaves the group
X1 f , . . . ,Xr f invariant, then the associated inverse transformation also does this.

If by chance the group just defined consists of a finite number of different fami-
lies of transformations and if at the same time each of these families contains only a
finite number of arbitrary parameters, then according to Chap. 18, p. 327 sq., there is
in the concerned group a family of transformations which constitutes a finite contin-
uous group; then this family is the largest continuous group in which X1 f , . . . ,Xr f
is contained as an invariant subgroup.

Up to now, we have spoken of similarity only for groups which contain the same
number of variables. However, it was not excluded that certain of the variables were
not transformed by the concerned groups, so that they did not appear in the infinites-
imal transformations.

Now, for the groups which do not contain the same number of variables, one can
also speak of similarity; indeed, one can always complete the number of variables
in one of the groups so that one adds a necessary number of variables that are not
transformed by the concerned group. Then one has two groups in the same number
of variables and one can examine whether they are similar to each other, or not.

In the sequel, unless the contrary is expressly stressed, we shall actually interpret
the concept of similarity in the original, narrower sense.

§ 93. In order to illustrate the general theory of similarity by an example, we
will examine whether the two three-term groups in two independent variables:

X1 f =
∂ f
∂x1

, X2 f = x1
∂ f
∂x1

+ x2
∂ f
∂x2

,

X3 f = x2
1
∂ f
∂x1

+(2x1x2 +C x2
2)
∂ f
∂x2

and:

Y1 f =
∂ f
∂y1

+
∂ f
∂y2

, Y2 f = y1
∂ f
∂y1

+ y2
∂ f
∂y2

,

Y3 f = y2
1
∂ f
∂y1

+ y2
2
∂ f
∂y2

are similar to each other.
As we remarked, the Yk f here are already chosen in such a way that one has at

the same time:

[X1, X2] = X1 f , [X1, X3] = 2X2 f , [X2, X3] = X3 f

and:
[Y1, Y2] = Y1 f , [Y1, Y3] = 2Y2 f , [Y2, Y3] = Y3 f
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Although the Yk f are not chosen in the most general way so that the shown rela-
tions hold, it is nevertheless not necessary to do this, because the result would not
be modified by this.

We find:
X3 f ≡ −(x2

1 +C x1x2)X1 f +(2x1 +C x2)X2 f

and:
Y3 f ≡ −y1y2 Y1 f +(y1 + y2)Y2 f ,

whence one must have:

y1y2 = x2
1 +C x1x2, y1 + y2 = 2x1 +C x2.

As long as the constant C does not vanish, these equations determine a transforma-
tion, and consequently, according to our general theory, the two groups are similar
to each other in the case C �= 0. But if C = 0, we obtain a relation between y1 and y2

alone, hence in any case, there exists no transformation which transfers X1 f , X2 f ,
X3 f to Y1 f , Y2 f , Y3 f , respectively; one can easily convince oneself that in this case,
the two groups are actually not similar to each other.

§ 94. Subsequently to the theory of the similarity of r-term groups, we want to
briefly treat a somewhat more general question and to indicate its solution.

We imagine, in the variables x1, . . . ,xs, that any p infinitesimal transformations:
X1 f , . . . ,Xp f are presented, hence not necessarily some which generate a finite
group, and likewise, we imagine in y1, . . . ,ys that any p infinitesimal transfor-
mations Y1 f , . . . ,Yp f are presented. We ask under which conditions there is a
transformation yi = Φi(x1, . . . ,xs) which transfers X1 f , . . . ,Xp f to Y1 f , . . . ,Yp f ,
respectively. Here, we do not demand that X1 f , . . . ,Xp f should be independent
infinitesimal transformations, since this assumption would in fact not interfere
with the generality of the following considerations, but it would complicate the
presentation, because it would always have to be taken into account.

First, we can lead the above general problem back to the special case where
the independent equations amongst the equations: X1 f = 0, . . . , Xp f = 0 form a
complete system.

Indeed, if there is a transformation which transfers X1 f , . . . ,Xp f to Y1 f , . . . ,Yp f ,
respectively, then according to Chap. 4, p. 100, every expression:

Xk
(

Xj( f )
)−Xj

(

Xk( f )
)

= [Xk, Xj]

also converts into the corresponding expression:

Yk
(

Yj( f )
)−Yj

(

Yk( f )
)

= [Yk, Yj].

Hence, if the independent equations amongst the equations X1 f = 0, . . . , Xp f = 0 do
not already form a complete system, then to X1 f , . . . ,Xp f we can add all the expres-
sions [Xk, Xj], and also, we must only add to Y1 f , . . . ,Yp f all the expressions [Yk, Yj].
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The question of whether there exists a transformation of the demanded constitution
then amounts to the question of whether there exists a transformation which trans-
fers X1 f , . . . ,Xp f , [Xk, Xj] to Y1 f , . . . ,Yp f , [Yk, Yj], respectively, where one has to set
for k and j the numbers 1,2, . . . , p one after the other.

Now, if the independent equations amongst the equations: X1 f = 0, . . . , Xp f =
0, [Xk, Xj] = 0 also do not form a complete system, then we add the expressions
[

Xi, [Xk, Xj]
]

and the
[

[Xi, Xk], [Xj, Xl ]
]

, and the corresponding expressions in the
Y f as well. If we continue in this way, we obtain at the end that our initial problem
leads back to the following one:

In the variables x1, . . . ,xs, let r infinitesimal transformations: X1 f , . . . ,Xr f be
presented, of which n � r, say X1 f , . . . ,Xn f , are linked together by no linear relation,
while Xn+1 f , . . . ,Xr f can be linearly expressed in terms of X1 f , . . . ,Xn f :

Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···n−r) ;

in addition, let relations of the form:

[Xk, Xj] =
n

∑
ν=1

ϕk jν(x1, . . . ,xs)Xν f (k, j=1 ···r)

hold, so that the independent equations amongst the equations X1 f = 0, . . . , Xr f = 0
form an n-term complete system. Moreover, in the variables y1, . . . ,ys, let r infinites-
imal transformations Y1 f , . . . ,Yr f be presented. To determine whether there is a
transformation yi = Φi(x1, . . . ,xs) which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , re-
spectively.

For a transformation of the constitution demanded here to exist, Y1 f , . . . ,Yr f
should naturally not be linked together by a linear relation, while Yn+1 f , . . . ,Yr f
should be linearly expressible in terms of Y1 f , . . . ,Yn f :

Yn+k f ≡
n

∑
ν=1

ψkν(y1, . . . ,ys)Yν f (k=1 ···r−n),

and there should be relations of the form:

[Yk, Yj] =
n

∑
ν=1

ψk jν(y1, . . . ,ys)Yν f (k, j=1 ···r).

In addition, the equations:

(30)

{

ϕkν(x1, . . . ,xs)−ψkν(y1, . . . ,ys) = 0 (k=1 ···r−n ; ν=1 ···n)
ϕk jν(x1, . . . ,xs)−ψk jν(y1, . . . ,ys) = 0 (k, j=1 ···r ; ν=1 ···n)

should neither mutually contradict, nor lead to relations between the x alone or the y
alone, since these equations will obviously reduce to identities after the substitution:
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yi = Φi(x1, . . . ,xs), when the transformation: yi = Φi(x) converts X1 f , . . . ,Xr f into
Y1 f , . . . ,Yr f , respectively.

We want to assume that all these conditions are satisfied and that all the equa-
tions (30) reduce to the ρ mutually independent equations:

(31) ϕ1(x)−ψ1(x) = 0, . . . , ϕρ(x)−ψρ(x) = 0.

Thanks to considerations completely similar to those of p. 348 sq., we realize that
the determination of a transformation which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f ,
respectively, amounts to determining a system of equations in the 2s variables
x1, . . . ,xs, y1, . . . ,ys, and to be precise, a system of equations having the following
constitution: it must admit the r infinitesimal transformations: Ωk f = Xk f +Yk f ,
it must consist of exactly s independent equations, it must be solvable both with
respect to x1, . . . ,xs and with respect to y1, . . . ,ys, and lastly, it must comprise the ρ
equations (31).

A system of equations which comprises the ρ equations (31) and which admits
the r infinitesimal transformations Ωk f embraces at the same time all the rρ equa-
tions:

Ωk
(

ϕ j(x)−ψ j(x)
)

= Xkϕ j(x)−Ykψ j(y) = 0

(k=1 ···r ; j=1 ···ρ).

If these equations are not a consequence of (31), we can again deduce from them
new equations which must be contained in the sought system of equations, and so
on. If we proceed in this way, then at the end, we must come either to relations which
contradict each other, or to relations between the x alone, or to relations between the
y alone, or lastly, to a system of σ � s independent equations:

(32) ϕ1(x)−ψ1(y) = 0, . . . , ϕσ (x)−ψσ (y) = 0 (σ�ρ)

which possesses the following two properties: it produces no relation between the
x or the y alone, and it admits the r infinitesimal transformations Ωk f , so that each
one of the rσ equations:

Ωk
(

ϕ j(x)−ψ j(y)
)

= 0 (k=1 ···r ; j=1 ···σ).

is a consequence of (32).
Evidently, there can be a transformation which transfers X1 f , . . . ,Xr f to

Y1 f , . . . ,Yr f , respectively, only when we are led to a system of equations (32)
having the constitution just defined by means of the indicated operations. So we
need to consider only this case.

If the whole number σ is precisely equal to s, then the system of equations (32)
taken for itself represents a transformation which achieves the demanded transfer
and to be precise, it is obviously the only transformation which does this. We
will also show that in the case σ < s, a transformation exists which transfers
X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively; here, we produce the proof of this by
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indicating a method which leads us to the determination of a transformation having
the demanded constitution.

It is clear that the equations (32) neither cancel the independence of the equa-
tions: X1 f = 0, . . . , Xn f = 0, nor do they cancel the independence of the equations:
Y1 f = 0, . . . , Yn f = 0, for they neither produce relations between the x alone, nor
between the y alone.

Furthermore, it is to be observed that relations of the form:

[Ωk,Ω j] =
n

∑
ν=1

ϕk jν(x)Ων f =
n

∑
ν=1

ψk jν(y)Ων f

(k, j=1, 2 ···n)

hold, in which the coefficients ϕk jν(x) =ψk jν(y) behave regularly in general for the
systems of values of the system of equations: ϕ1 −ψ1 = 0, . . . , ϕσ −ψσ = 0. Thus,
the case settled in Theorem 19, p. 146 is present here.

As in p. 357 sq., we introduce the solutions of the n-term complete system X1 f =
0, . . . , Xn f = 0 as new x and those of the complete system Y1 f = 0, . . . , Yn f = 0 as
new y, and on the occasion, exactly as we did at that time, we have to make a dis-
tinction between the solutions which can be expressed in terms of ϕ1(x), . . . ,ϕσ (x)
or, respectively, in terms of ψ1(y), . . . ,ψσ (y), and the solutions which are indepen-
dent of the ϕ , or respectively, of the ψ . In this way, we simplify the form of the
equations (32), and then, exactly as on p. 361 sq., we can determine a system of
equations which admits Ω1 f , . . . ,Ωr f , which contains exactly s independent equa-
tions, which is solvable both with respect to x1, . . . ,xs and with respect to y1, . . . ,ys,
and lastly, which embraces the equations (32). Obviously, the obtained system of
equations represents a transformation which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f ,
respectively.

Thus, we have the following Theorem.

Theorem 66. If, in the variables x1, . . . ,xs, p infinitesimal transformations
X1 f , . . . ,Xp f are presented and if, in the variables y1, . . . ,ys, p infinitesimal
transformations Y1 f , . . . ,Yp f are also presented, then one can always decide, by
means of differentiations and of eliminations, whether there is a transformation
yi =Φi(x1, . . . ,xs) which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively; if there
is such a transformation, then one can determine the most general transformation
which accomplishes the concerned transfer, as soon as one has integrated certain
complete systems.2

—————–

2 LIE, Archiv for Math. og Naturv., Vol. 3, p. 125, Christiania 1878.



Chapter 20
Groups, the Transformations of Which
Are Interchangeable With All Transformations
of a Given Group

Thanks to the developments of §§ 89, 90, 91, pp. 343 up to 367, we are in the
position to determine all transformations which leave invariant a given r-term group:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r).

Amongst all transformations of this nature, we now want to pick out those which in
addition possess the property of leaving invariant every individual transformation
of the group X1 f , . . . ,Xr f , and we want to occupy ourselves more closely with these
transformations.

When a transformation T leaves invariant every individual transformation S of
the group X1 f , . . . ,Xr f , then according to p. 271, it stands with respect to S in the
relationship:

T −1 ST = S,

or, what is the same, in the relationship:

ST = T S,

hence it is interchangeable with T . Thus, we can also characterize the transforma-
tions just defined in the following way: they are the transformations which are in-
terchangeable with all transformations of the group X1 f , . . . ,Xr f .

§ 95. According to Chap. 15, p. 268, the expression e1 X1 f + · · ·+ er Xr f can
be regarded as the general symbol of a transformation of the group X1 f , . . . ,Xr f .
Consequently, a transformation x′

i = Φi(x1, . . . ,xs) will leave invariant every indi-
vidual transformation of the group X1 f , . . . ,Xr f when, for arbitrary choice of the e,
it leaves invariant the expression e1 X1 f + · · ·+ er Xr f , hence when the expression
e1 X1 f + · · ·+ er Xr f takes the form: e1 X ′

1 f + · · ·+ er X ′
r f after the introduction of

the new variables x′
i =Φi(x), where:

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_20
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X ′
k f =

s

∑
i=1
ξki(x′

1, . . . ,x
′
s)
∂ f
∂x′

i
.

Here, for this to hold, it is necessary and sufficient that the r infinitesimal transfor-
mations: X1 f , . . . ,Xr f are of the form X ′

1 f , . . . ,X ′
r f , respectively, after the introduc-

tion of the new variables x′
i.

It is clear that there are transformations x′
i = Φi(x) having the constitution de-

manded; indeed, the identity transformation x′
i = xi is such a transformation; be-

sides, this results from Proposition 2 of the preceding chapter (p. 366), because
this proposition shows that there are transformations which transfer X1 f , . . . ,Xr f to
X ′

1 f , . . . ,X ′
r f , respectively. In addition, it follows from the results found at that time

that the most general transformation of the demanded constitution is represented by
the most general system of equations:

x′
1 =Φ1(x1, . . . ,xs), . . . , x′

s =Φs(x1, . . . ,xs)

which admits the r-term group: X1 f + X ′
1 f , . . . , Xr f + X ′

r f in the 2s variables
x1, . . . ,xs, x′

1, . . . ,x
′
s.

If one executes, one after the other, two transformations which leave invariant ev-
ery individual transformation of the group: X1 f , . . . ,Xr f , then obviously, one always
obtains a transformation which does the same; consequently, the totality of all trans-
formations of this constitution forms a group G. This group can be discontinuous,
and it can even reduce to the identity transformation; it can consist of several discrete
families of which each one contains only a finite number of arbitrary parameters, it
can be infinite; but its transformations are always ordered as inverses by pairs, since
if a transformation leaves invariant all transformations of the group: X1 f , . . . ,Xr f ,
then the associated inverse transformation naturally possesses the same property.

If the group G just defined contains only a finite number of arbitrary parame-
ters, then it belongs to the category of groups which was discussed in Chap. 18, and
according to Theorem 56, p. 328, it certainly comprises a finite number of continu-
ous subgroups generated by infinitesimal transformations. On the other hand, if the
group G is infinite, then thanks to considerations similar to those of Chap. 18, it can
be proved that it comprises one-term groups, and in fact, infinitely many such groups
that are generated by infinitely many independent infinitesimal transformations.

Now, we directly take up the problem of determining all one-term groups which
are contained in the group G.

According to Chap. 15, p. 271 and 271, the r expressions X1 f , . . . ,Xr f remain
invariant by all transformations of the one-term group Z f when the r relations:

[Xk, Z] = Xk
(

Z( f )
)−Z

(

Xk( f )
)

= 0 (k=1 ···r)

are identically satisfied, hence when the infinitesimal transformation Z f is inter-
changeable with all transformations of the group X1 f , . . . ,Xr f . Thus, the determina-
tion of all one-term groups having the constitution defined a short while ago amounts
to the determination of the most general infinitesimal transformation Z f which is in-
terchangeable with all Xk f .
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If one has two infinitesimal transformations Z1 f and Z2 f which are interchange-
able with all Xk f , then all expressions [Z1, Xk] and [Z2, Xk] vanish identically,
whence the Jacobi identity:

[

[Z1, Z2], Xk
]

+
[

[Z2, Xk], Z1
]

+
[

[Xk, Z1], Z2
] ≡ 0

reduces to:
[

[Z1, Z2], Xk
] ≡ 0.

Thus, the following holds:

Proposition 1. If the two infinitesimal transformations Z1 f and Z2 f are inter-
changeable with all infinitesimal transformations of the r-term group X1 f , . . . ,Xr f ,
then so is the transformation [Z1, Z2].

On the other hand, every infinitesimal transformation aZ1 f + bZ2 f is at the
same time interchangeable with X1 f , . . . ,Xr f , whichever values the constants
a and b may have. Hence if by chance there is only a finite number, say q, of
independent infinitesimal transformations Z1 f , . . . ,Zq f which are interchangeable
with X1 f , . . . ,Xr f , then the most general infinitesimal transformation having the
same constitution has the form: λ1 Z1 f + · · ·+ λq Zq f , where it is understood that
λ1, . . . ,λq are arbitrary parameters. Then because of Proposition 1, there must exist
relations of the form:

[Zi, Zk] =
q

∑
σ=1

c′
ikσ Zσ f ,

so that Z1 f , . . . ,Zq f generate a q-term group.

At present, we seek to determine directly the most general infinitesimal transfor-
mation:

Z f =
s

∑
i=1
ζi(x1, . . . ,xs)

∂ f
∂xi

which is interchangeable with all infinitesimal transformations of the group
X1 f , . . . ,Xr f .

The r condition-equations [BEDINGUNGSGLEICHUNGEN]:

[X1, Z] = 0, . . . , [Xr, Z] = 0

decompose immediately into the following r s equations:

Xk ζi = Z ξki (k=1 ···r ; i=1 ···s),

or, if written at more length:

(1)
s

∑
ν=1

ξkν(x)
∂ζi

∂xν
=

s

∑
ν=1

∂ξki

∂xν
ζν (k=1 ···r ; i=1 ···s).

The question is to determine the most general solutions ζ1, . . . ,ζs to these differen-
tial equations.
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Let:

(2) ζi = ωi(x1, . . . ,xs) (i=1 ···n)

be any system of solutions of (1), whence all the expressions:

Xkωi −
s

∑
ν=1

∂ξki

∂xν
ζν

vanish identically after the substitution: ζ1 =ω1(x), . . . , ζs =ωs(x); in other words:
the system of equations (2) in the 2s variables x1, . . . ,xs, ζ1, . . . ,ζs admits the r
infinitesimal transformations:

Wk F = Xk f +
s

∑
i=1

{ s

∑
ν=1

∂ξki

∂xν
ζν

}
∂ f
∂ζi

(k=1 ···r).

Conversely, if a system of equations of the form (2) admits the infinitesimal trans-
formations W1 f , . . . ,Wr f , thenω1(x), . . . ,ωs(x) are obviously solutions of the differ-
ential equations (1). Consequently, the integration of the differential equations (1)
is equivalent to the determination of the most general system of equations (2) which
admits the infinitesimal transformations W1 f , . . . ,Wr f .

Every system of equations which admits W1 f , . . . ,Wr f also allows the infinitesi-
mal transformation Wk(Wj( f ))−Wj(Wk( f )) = [Wk,Wj]; we compute it.

We have:

[Wk,Wj] = [Xk, Xj]+
1···s
∑

i, μ, ν

{

ξkν
∂ 2ξ ji

∂xμ∂xν
−ξ jν

∂ 2ξki

∂xμ∂xν

}

ζμ
∂ f
∂ζi

+
1···s
∑

i, μ, ν

{
∂ξkν
∂xμ

∂ξ ji

∂xν
− ∂ξ jν

∂xμ

∂ξki

∂xν

}

ζμ
∂ f
∂ζi

,

and here, the right-hand side can be written:

[Xk, Xj]+
1···s
∑
i, μ

∂
∂xμ

s

∑
ν=1

{

ξkν
∂ξ ji

∂xν
−ξ jν

∂ξki

∂xν

}

ζμ
∂ f
∂ζi

.

But now, there are relations of the form:

[Xk, Xj] =
r

∑
σ=1

ck jσ Xσ f ,

from which it follows:

s

∑
ν=1

{

ξkν
∂ξ ji

∂xν
−ξ jν

∂ξki

∂xν

}

=
r

∑
σ=1

ck jσ ξσ i,

and therefore, we get simply:
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[Wk,Wj] =
r

∑
σ=1

ck jσWσ f .

From this, we see that W1 f , . . . ,Wr f generate an r-term group in the 2s variables
x1, . . . ,xs, ζ1, . . . ,ζs; but this was closely presumed.

There can be n, amongst the infinitesimal transformations X1 f , . . . ,Xr f , say
X1 f , . . . ,Xn f that are linked together by no linear relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χn(x1, . . . ,xs)Xn f = 0,

while Xn+1 f , . . . ,Xr f can be expressed in the following way:

(3) Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n).

Under these assumptions, the differential equations (1) can also be written as:

Xν ζi −Z ξν i = 0 (ν=1 ···n ; i=1 ···s)
n

∑
ν=1

ϕkν(x)Xν ζi −Z ξn+k, i = 0 (k=1 ···r−n ; i=1 ···s).

Hence if the expressions X1 ζ1, . . . ,Xn ζi are taken away, we obtain between
ζ1, . . . ,ζs the finite equations:

(4)

s

∑
π=1

{
∂ξn+k, i

∂xπ
−

n

∑
ν=1

ϕkν
∂ξν i

∂xπ

}

ζπ = 0

(k=1 ···r−n ; i=1 ···s).

It stands to reason that every system of equations of the form (2) which admits
the group W1 f , . . . ,Wr f must comprise the equations (4).

The equations (4) are linear and homogeneous in ζ1, . . . ,ζs; so if amongst them,
one finds exactly s that are mutually independent, then ζ1 = 0, . . . , ζs = 0 is the
only system of solutions which satisfies the equations. In this case, there is only one
system of equations of the form (2) which admits the group W1 f , . . . ,Wr f , namely
the system of equations: ζ1 = 0, . . . , ζs = 0, hence there is no infinitesimal transfor-
mation Z f which is interchangeable with all Xk f .

Alternatively, assume that the equations (4) reduce to fewer than s, say to m < s
independent equations. We will see that in this case, aside from the useless system
ζ1 = 0, . . . , ζs = 0, there are also other systems of the form (2) which admit the
group W1 f , . . . ,Wr f .

Above all, we observe that the system of equations (4) admits the group
W1 f , . . . ,Wr f .

In order to prove this, we write down the matrix which is associated to the in-
finitesimal transformations W1 f , . . . ,Wr f :
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(5)

∣
∣
∣
∣
∣
∣
∣

ξ11 · · ξ1s ∑s
ν=1

∂ξ11
∂xν
ζν · · ∑s

ν=1
∂ξ1s
∂xν
ζν

· · · · · · · ·
ξr1 · · ξrs ∑s

ν=1
∂ξr1
∂xν
ζν · · ∑s

ν=1
∂ξrs
∂xν
ζν

∣
∣
∣
∣
∣
∣
∣

.

We will show that (4) belongs to the system of equations that one obtains by setting
equal to zero all (n+ 1)× (n+ 1) determinants of this matrix. As a result, accord-
ing to Chap. 14, Theorem 39, p. 240, it will be proved that (4) admits the group
W1 f , . . . ,Wr f .

Amongst the (n+1)× (n+1) determinants of the matrix (5), there are those of
the form:

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ1k1 · · ξ1kn ∑s
ν=1

∂ξ1σ
∂xν

ζν
· · · · ·
ξnk1 · · ξnkn ∑s

ν=1
∂ξnσ
∂xν

ζν
· · · · ·

ξn+ j,k1 · · ξn+ j,kn ∑
s
ν=1

∂ξn+ j,σ
∂xν

ζν

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

If we use the identities following from (3):

ξn+ j,π ≡
n

∑
ν=1

ϕ jν(x)ξνπ (π=1 ···s ; j=1 ···r−n),

then we can obviously write D as:

D =∑±ξ1k1 · · · ξnkn

s

∑
ν=1

{
∂ξn+ j,σ

∂xν
−

n

∑
τ=1

ϕ jτ
∂ξτσ
∂xν

}

ζν .

Now, under the assumptions made, not all determinants of the form:

∑±ξ1k1 · · · ξnkn

vanish identically; so if we set all determinants of the form D equal to zero, we
obtain either relations between the x1, . . . ,xs alone, or we obtain the system of
equations (4). But as is easy to see, this system of equations actually brings to
zero all (n+ 1)× (n+ 1) determinants of the matrix (5), hence it admits the group
W1 f , . . . ,Wr f .

The determination of the most general system of equations (2) which admits the
group W1 f , . . . ,Wr f and which comprises the equations (4) can now be executed on
the basis of Chap. 14, p. 246 up to p. 248.

The system of equations (4) brings to zero all (n+ 1)× (n+ 1) determinants of
the matrix (5), but not all n×n determinants; likewise, a system of equations of the
form (2) cannot make zero all n×n determinants of the matrix (5). Thus, we proceed
in the following way: We solve the equations (4) with respect to m of the quantities
ζ1, . . . ,ζs, say with respect to ζ1, . . . ,ζm, then, following the introduction of the cited
developments, we form the reduced infinitesimal transformations W 1 f , . . . ,W r f in
the 2s − m variables x1, . . . ,xs, ζm+1, . . . ,ζs, and lastly, we determine 2s − m − n
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arbitrary independent solutions of the n-term complete system which is formed by
the n equations: W 1 f = 0, . . . , W n f = 0.

The n equations W 1 f = 0, . . . , W n f = 0 are solvable with respect to n of the dif-
ferential quotients ∂ f/∂x1, . . . , ∂ f/∂xs, hence its 2s−m−n independent solutions
are mutually independent relatively to s−n of the x and to the variables ζm+1, . . . ,ζs

(cf. Chap. 15, Theorem 12, p. 105). Now, amongst the solutions of the complete
system W k f = 0, there are exactly s−n independent ones which satisfy at the same
time the n-term complete system: X1 f = 0, . . . , Xn f = 0, and hence depend only
upon the x, and they can be called:

u1(x1, . . . ,xs), . . . , us−n(x1, . . . ,xs).

So, if:

B1(ζm+1, . . . ,ζs, x1, . . . ,xs), . . . , Bs−m(ζm+1, . . . ,ζs, x1, . . . ,xs)

are s−m arbitrary mutually independent, and independent of the u, solutions of the
complete system W k f = 0, then necessarily, these solutions are mutually indepen-
dent relative to ζm+1, . . . ,ζs.

Now, we obtain the most general system of equations (2) which admits the group
W1 f , . . . ,Wr f by adding to the equations (4), in the most general way, s−m mutually
independent relations between u1, . . . ,us−n, B1, . . . ,Bs−m that are solvable with re-
spect to ζm+1, . . . ,ζs. It is clear that these relations must be solvable with respect to
B1, . . . ,Bs−m, so that they can be brought to the form:

(6) Bμ(ζm+1, . . . ,ζs, x1, . . . ,xs) =Ωμ
(

u1(x), . . . , us−n(x)
)

(μ=1 ···s−m).

Here, the Ωμ are subject to no restriction at all, and they are absolutely arbitrary
functions of their arguments.

Thus, if we add the equations (6) to (4) and, what is always possible, if we solve
all of them with respect to ζ1, . . . ,ζs, then we obtain the most general system of
equations (2) which admits the group W1 f , . . . ,Wr f and as a result, the most gen-
eral system of solutions to the differential equations (1). Visibly, this most general
system of solutions contains s−m arbitrary functions of u1, . . . ,us−n.

But now, the differential equations (1) are linear and homogeneous in the un-
knowns ζ1, . . . ,ζs; thus, it can be concluded that its most general system of solutions
ζ1, . . . ,ζs can be deduced from s−m particular systems of solutions:

ζμ1(x), . . . , ζμs(x) (μ=1 ···s−m)

in the following way:

ζi = χ1(u1, . . . , us−n)ζ1i + · · ·+χs−m(u1, . . . , us−n)ζs−m, i

(i=1 ···s),
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where the χ are completely arbitrary functions of the u; naturally, the particular
system of solutions in question must be constituted in such a way that there are no
s − m functions ψ1(u1, . . . ,us−n), . . . , ψs−m(u1, . . . ,us−n) which satisfy identically
the s equations:

ψ1(u)ζ1i + · · ·+ψs−m(u)ζs−m, i = 0 (i=1 ···s).

It can even be proved that actually, there are no s − m functionsΨ1(x1, . . . ,xs), . . . ,
Ψs−m(x1, . . . ,xs) which satisfy identically the s−m equations:

Ψ1(x)ζ1i + · · ·+Ψs−m ζs−m, i = 0 (i=1 ···s−m).

Indeed, the s−m equations:

ζm+σ =
s−m

∑
μ=1

χμ(u)ζμ,m+σ (σ=1 ···s−m)

are obviously equivalent to the equations (6), hence they must be solvable with
respect to χ1, . . . ,χs−m and the determinant:

∑±ζ1,m+1 · · · ζs−m,m+s−m

should not vanish identically.
According to these preparations, we can finally determine the form that the

most general infinitesimal transformation Z f interchangeable with X1 f , . . . ,Xr f
possesses. The concerned transformation reads:

Z f =
s−m

∑
μ=1

χμ(u1, . . . ,us−m)Zμ f ,

where the s−m infinitesimal transformations:

Zμ f =
s

∑
i=1
ζμi(x1, . . . ,xs)

∂ f
∂xi

(μ=1 ···s−m)

are linked together by no linear relation of the form:

Ψ1(x1, . . . ,xs)Z1 f + · · ·+Ψs−m(x1, . . . ,xs)Zs−m f = 0.

In addition, since according to Proposition 1, p. 381, every infinitesimal transfor-
mation [Zμ , Zν ] is also interchangeable with X1 f , . . . ,Xr f , there are relations of the
specific form:

[Zμ , Zν ] =
s−m

∑
π=1

ωμνπ(u1, . . . ,us−m)Zπ f (μ, ν=1 ···s−m).
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We thus see: There always exists a transformation which is interchangeable with
X1 f , . . . ,Xr f when and only when the number m defined on p. 383 is smaller than
the number s of the variables x. If m < s and if at the same time, n < s, then the
group X1 f , . . . ,Xr f is intransitive, so the most general infinitesimal transformation
Z f interchangeable with X1 f , . . . ,Xr f depends upon arbitrary functions. If by con-
trast n = s, then the group X1 f , . . . ,Xr f is transitive, so the most general transfor-
mation Z f interchangeable with X1 f , . . . ,Xr f can be linearly deduced from s − m
independent infinitesimal transformations: Z1 f , . . . ,Zs−m f ; according to a remark
made earlier on (p. 381), the concerned infinitesimal transformations then generate
an (s−m)-term group. —

We know that an infinitesimal transformation interchangeable with X1 f , . . . ,Xr f
exists only when the equations (4) reduce to less than s independent equations. We
can give a somewhat more lucid interpretation of this condition by remembering the
identities (3), or the equivalent identities:

ξn+k, i −
n

∑
ν=1

ϕkν(x)ξν i ≡ 0 (k=1 ···r−n ; i=1 ···s),

that define the functions ϕkν . Indeed, if we differentiate the identities just written
with respect to x j, we obtain the following identities:

∂ξn+k, i

∂x j
−

n

∑
ν=1

{

ϕkν
∂ξν i

∂x j
+ξν i

∂ϕkν
∂x j

}

≡ 0

(k=1 ···r−n ; i=1, j ···s),

by virtue of which the equations (4) can be replaced by the equivalent equations:

n

∑
ν=1

ξν i

s

∑
j=1
ζ j
∂ϕkν
∂x j

= 0 (i=1 ···s ; k=1 ···r−n).

But since not all determinants of the form ∑±ξk1 · · · ξkn vanish identically, then in
turn, the latter equations are equivalent to:

(4’)
s

∑
j=1
ζ j
∂ϕkν
∂x j

= 0 (k=1 ···r−n ; ν=1 ···n).

Thus, there is a transformation Z f interchangeable with X1 f , . . . ,Xr f only when
the linear equations (4’) in the ζ j reduce to fewer than s independent equations.

The equations (4’) are more clearly arranged than the equations (4), and they
have in addition a simple meaning, for they express that each one of the n(r − n)
functions ϕkν(x1, . . . ,xs) admits all the infinitesimal transformations Z f .

If, amongst the equations (4), there are exactly m that are mutually independent,
then naturally, amongst the equations (4’), there are also exactly m that are mutually
independent, and therefore, m is nothing but the number of independent functions
amongst the n(r −n) functions ϕkν(x).
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We recapitulate the obtained result:

Theorem 67. If, amongst the r infinitesimal transformations:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r),

of an r-term group, X1 f , . . . ,Xn f , say, are linked together by no linear relation, while
Xn+1 f , . . . ,Xr f can be expressed linearly in terms of X1 f , . . . ,Xn f :

Xn+ j f ≡
n

∑
ν=1

ϕ jν(x1, . . . ,xs)Xν f ( j=1 ···r−n),

and if amongst the n(r − n) functions ϕkν , there exist exactly s that are mutually
independent, then there is no infinitesimal transformation which is interchangeable
with all Xk f ; by contrast, if amongst the functions ϕkν , there exist fewer than s, say
only m, that are mutually independent, then there are infinitesimal transformations
which are interchangeable with X1 f , . . . ,Xr f , and to be precise, the most general
infinitesimal transformations Z f of this nature are of the form:

Z f = ψ1(u1, . . . ,us−n)Z1 f + · · ·+ψs−m(u1, . . . ,us−n)Zs−m f ,

where u1, . . . ,us−n denote independent solutions of the n-term complete system:
X1 f = 0, . . . , Xn f = 0, where furthermore ψ1, . . . ,ψs−m mean arbitrary functions of
their arguments, and lastly, where the infinitesimal transformations:

Zμ f =
s

∑
i=1
ζμi(x1, . . . ,xs)

∂ f
∂xi

(μ=1 ···s−m)

interchangeable with X1 f , . . . ,Xr f and linked together by no linear relation stand
pairwise in relationships of the form:1

[Zμ , Zν ] =
s−m

∑
π=1

ωμνπ(u1, . . . ,us−m)Zπ f .

Furthermore, a part of the result stated in this proposition follows immediately
from the developments of the previous chapter. Indeed, if the number of independent
functions amongst the functions ϕkν(x1, . . . ,xs) is exactly equal to s, then according
to p. 357, the equations:

ϕkν(x′
1, . . . ,x

′
s) = ϕkν(x1, . . . ,xs) (k=1 ···r−n ; ν=1 ···n)

represent the most general transformation which transfers X1 f , . . . ,Xr f to
X ′

1 f , . . . ,X ′
r f , respectively. By contrast, if amongst the ϕkν , there are fewer than s

that are mutually independent, then according to Theorem 65, p. 365, there is a

1 LIE suggested this general theorem in Math. Ann. Vol. XXV.
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continuous set [MENGE] of transformations which leaves invariant every Xk f ; we
have already remarked on p. 380 that the totality of all such transformations forms
a group, about which it can be directly seen that it comprises one-term groups.

It seems to be adequate to expressly state the following proposition:

Proposition 2. If there exists an infinitesimal transformation which is interchange-
able with all infinitesimal transformations X1 f , . . . ,Xr f of an r-term group of the
space x1, . . . ,xs, then the most general infinitesimal transformation interchangeable
with X1 f , . . . ,Xr f contains arbitrary functions, as soon as the group X1 f , . . . ,Xr f is
intransitive, but by contrast, it contains only arbitrary parameters, as soon as the
group is transitive.

§ 96. Of outstanding significance is the case where the group Xk f is simply
transitive, thus the case s = r = n.

If one would desire, in this case, to know the most general transformation x′
i =

Φi(x1, . . . ,xn) by virtue of which every Xk f takes the form X ′
k f , then one would only

have to seek n independent solutions Ω1, . . . ,Ωn of the n-term complete system:

Xk f +X ′
k f = 0 (k=1 ···n)

and to set these solutions equal to arbitrary constants a1, . . . ,an. The equations:

Ωk(x1, . . . ,xn, x′
1, . . . ,x

′
n) = ak (k=1 ···n)

are then solvable both with respect to the x and with respect to the x′, and they
represent the transformation demanded.

From the beginning, we know that the totality of all transformations Ωk = ak

forms a group. At present, we see that this group is n-term and simply transitive;
this follows immediately from the form in which the group is presented, resolved
with respect to its n parameters.

The group:
Ω1(x,x′) = a1, . . . , Ωn(x,x′) = an

contains the identity transformation and n independent infinitesimal transforma-
tions:

Zk f =
n

∑
i=1
ζki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···n),

and this results from the developments of the preceding section; but this is also clear
in itself, since the transformations of the group are ordered as inverses by pairs, and
hence Theorem 56 in Chap. 18, p. 328, finds an application. Besides, it follows from
the transitivity of the group Z1 f , . . . ,Zn f that Z1 f , . . . ,Zn f are linked together by no
linear relation of the form ∑ χi(x1, . . . ,xs)Zi f = 0.

Between the two simply transitive groups Xk f and Zi f , there is a full relation-
ship of reciprocity [RECIPROCITÄTSVERHÄLTNISS]. If the Xk f are given, then the
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general infinitesimal transformation Z f = ∑ ei Zi f is completely defined by the n
equations:

Xk
(

Z( f )
)−Z

(

Xk( f )
)

= 0 (k=1 ···n) ;

on the other hand, if the Zi f are given then the n equations:

X
(

Zi( f )
)−Zi

(

X( f )
)

= 0 (i=1 ···n)

determine in the same way the general infinitesimal transformation:

X f =∑ ek Xk f .

However, the peculiar relationship in which the two groups stand has not yet
been written down exhaustively. Indeed, as we will now show, the two groups are
also equally composed; since both are simply transitive, it then follows immediately
that they are similar to each other (cf. Chap. 19, Theorem 64, p. 353).

In the infinitesimal transformations Xk f and Zi f , we imagine that the ξkν and the
ζiν are expanded in powers of x1, . . . ,xn, and we assume at the same time that x1 = 0,
. . . , xn = 0 is a point in general position. According to Chap. 13, p. 229, since the
group Xk f is simply transitive, it contains exactly n infinitesimal transformations of
zeroth order in x1, . . . ,xn out of which no infinitesimal transformation of first order,
or of higher order, can be linearly deduced.

We can therefore imagine that X1 f , . . . ,Xn f are replaced by n other independent
infinitesimal transformations X1 f , . . . ,Xn f which have the form:

Xk f =
∂ f
∂xk

+
1···n
∑
μ, ν

hkμν xμ
∂ f
∂xν

+ · · ·

(k=1 ···n),

after leaving out the terms of second order and of higher order. In the same way,
we can replace Z1 f , . . . ,Zn f by n independent infinitesimal transformations of the
form:

Zi f = − ∂ f
∂xi

+
1···n
∑
μ,ν

liμν xμ
∂ f
∂xν

+ · · ·

(i=1 ···n).

After these preparations, we form the equations [Xk, Zi] = 0 ; the same equation
takes the form:

n

∑
ν=1

(likν +hkiν)
∂ f
∂xν

+ · · · = 0,

from which it follows that:
likν = −hkiν .

Computations of the same sort yield:
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[Xk, X j] =
n

∑
ν=1

(h jkν −hk jν)
∂ f
∂xν

+ · · ·

and:

[Zk, Z j] =
n

∑
ν=1

(− l jkν + lk jν)
∂ f
∂xν

+ · · ·

=
n

∑
ν=1

(hk jν −h jkν)
∂ f
∂xν

+ · · · .

On the other hand, we have:

[Xk, X j] =
n

∑
ν=1

ck jν Xν f , [Zk, Zi] =
n

∑
ν=1

c′k jν Zν f ;

here, we insert the expressions just found for: Xν f , Zν f , [Xk, X j], [Zk, Z j] and af-
terwards, we make the substitution: x1 = 0, . . . , xn = 0; we obtain:

ck jν = h jkν −hk jν = c′k jν .

Thus, our two groups are effectively equally composed, and in consequence of
that, as already remarked above, they are similar to each other. As a result, the
following holds:

Theorem 68. If X1 f , . . . ,Xn f are independent infinitesimal transformations of a
simply transitive group in the variables x1, . . . ,xn, then the n equations [Xk, Z] = 0
define the general infinitesimal transformation Z f of a second simply transitive
group Z1 f , . . . ,Zn f which has the same composition as the group X1 f , . . . ,Xn f and
which is at the same time similar to it. The relationship between these two simply
transitive groups is a reciprocal relationship: each one of the two groups consists
of the totality of all one-term groups whose transformations are interchangeable
with all transformations of the other group.2

It is convenient to call the groups Xk f and Zi f reciprocal [RECIPROKE] transfor-
mation groups, or always, the one as the reciprocal group of the other.

If we recall from Chap. 16, p. 288, that the excellent infinitesimal transforma-
tions e1 X1 f + · · ·+ er Xr f of the group X1 f , . . . ,Xn f are defined by the n equations
[Xk, Y ] = 0, then we can state the following proposition:

Proposition 3. The common infinitesimal transformations of two reciprocal simply
transitive groups are at the same time the excellent infinitesimal transformations of
both groups.

Let the two n-term groups X1 f , . . . ,Xn f and Z1 f , . . . ,Zn f in the n variables
x1, . . . ,xn be simply transitive and reciprocal to each other. Then, if after the
introduction of new variables x′

1, . . . ,x
′
n, the Xk f are transferred to X ′

k f and the

2 LIE communicated Theorem 68 in the Gesellschaft der Wissenschaften zu Christiania in Nov.
1882 and in May 1883; cf. also Math. Ann. Vol. XXV, p. 107 sq.
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Zk f to Z′
k f , the two simply transitive groups X ′

1 f , . . . ,X ′
n f and Z′

1 f , . . . ,Z′
n f

are also reciprocal to each other; this follows immediately from the relations:
[X ′

k, Z′
j] = [Xk, Z j] ≡ 0.

From this, in particular, we get the following

Proposition 4. If an n-term simply transitive group in n variables remains invariant
by a transformation, then at the same time, its reciprocal simply transitive group
remains invariant.

Lastly, from this proposition we obtain the next one:

Proposition 5. The largest group of the space x1, . . . ,xn in which an n-term simply
transitive group of this space is contained as an invariant subgroup coincides with
the largest subgroup in which the reciprocal group of this simply transitive group is
contained as an invariant subgroup.

We want to give a couple of simple examples of the preceding general develop-
ments concerning simply transitive groups.

The group:
∂ f
∂x

, x
∂ f
∂x

+ y
∂ f
∂y

of x,y-space is simply transitive. The finite equations of the reciprocal group are
obtained by integration of the complete system:

∂ f
∂x

+
∂ f
∂x′ = 0, x

∂ f
∂x

+ y
∂ f
∂y

+ x′ ∂ f
∂x′ + y′ ∂ f

∂y′ = 0

in the following form:
x′ − x

y
= a,

y′

y
= b,

hence they are solved with respect to x′ and y′:

x′ = x+ay, y′ = by.

The infinitesimal transformations of the reciprocal group are therefore:

y
∂ f
∂x

, y
∂ f
∂y

.

An interesting example is provided by the six-term projective group of a non-
degenerate surface of second order in ordinary space. Indeed, this group contains
two three-term simply transitive groups which are reciprocal to each other, of which
the first group leaves fixed all generatrices of the one family, while the other group
leaves fixed all generatrices of the other family.

If z− xy = 0 is the equation of the surface, then:
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X1 f =
∂ f
∂x

+ y
∂ f
∂ z

, X2 f = x
∂ f
∂x

+ z
∂ f
∂ z

,

X3 f = x2 ∂ f
∂x

+(xy− z)
∂ f
∂y

+ xz
∂ f
∂ z

is one of the two simply transitive groups and:

Z1 f =
∂ f
∂y

+ x
∂ f
∂ z

, Z2 f = y
∂ f
∂y

+ z
∂ f
∂ z

Z3 f = (xy− z)
∂ f
∂x

+ y2 ∂ f
∂y

+ yz
∂ f
∂ z

is the other.
The two reciprocal groups are naturally similar to each other; but it is to be ob-

served that they are similar through a projective transformation, namely through
every projective transformation which interchanges the two families of generatrices
of the surface.

§ 97. We proceed to a general study of reciprocal simply transitive groups.
Let X1 f , . . . ,Xn f and Z1 f , . . . ,Zn f be two simply transitive and reciprocal groups

in the variables x1, . . . ,xn.
If n were equal to 1, then the two groups would be identical to each other, as

one easily convinces oneself; we therefore assume that n is larger than 1. Then the
group Z1 f , . . . ,Zn f certainly contains subgroups. If Z1 f , . . . ,Zm f (m < n) is such a
subgroup, then the m equations:

Z1 f = 0, . . . , Zm f = 0

form an m-term complete system which, as follows from the identities:

[Xi, Z1] ≡ 0, . . . , [Xi, Zm] ≡ 0 (i=1 ···n),

admits the group X1 f , . . . ,Xn f (cf. Chap. 8, Theorem 20, p. 155). Consequently, the
group X1 f , . . . ,Xn f is imprimitive.

If u1, . . . ,un−m are independent solutions of the complete system Z1 f = 0, . . . ,
Zm f = 0, then according to Chap. 8, Proposition 1, p. 153, there are relations of the
form:

Xi uν = ωiν(u1, . . . ,un−m) (i=1 ···n ; ν=1 ···n−m),

and hence (cf. p. 157) the ∞n−m m-times extended manifolds:

u1 = const., . . . , un−m = const.

are mutually permuted by the group X1 f , . . . ,Xr f .
We therefore have the:
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Proposition 6. Every simply transitive group: X1 f , . . . ,Xn f in n > 1 variables:
x1, . . . ,xn is imprimitive; if Z1 f , . . . ,Zn f is the associated reciprocal group and if
Z1 f , . . . ,Zm f is an arbitrary subgroup of it with the invariants u1, . . . ,un−m, then
the m-term complete system Z1 f = 0, . . . , Zm f = 0 admits the group X1 f , . . . ,Xn f
and the ∞n−m m-times extended manifolds: u1 = const., . . . , un−m = const. are
mutually permuted by this group.

The preceding proposition shows that every m-term subgroup of the group
Z1 f , . . . ,Zn f provides a completely determined decomposition of the space
x1, . . . ,xn in ∞n−m m-times extended manifolds invariant by the group X1 f , . . . ,Xn f .
Hence, if we imagine that all subgroups of the group Z1 f , . . . ,Zn f are determined,
and that all the associated invariants are computed, then we obtain infinitely many
decompositions of the space invariant by the group X1 f , . . . ,Xn f . It can be proved
that all existing invariant decompositions are found in this way, so that Proposition 6
can be reversed.

Indeed, let Y1 f = 0, . . . , Ym f = 0 be any m-term complete system which admits
the group X1 f , . . . ,Xn f , and let u1, . . . ,un−m be independent solutions of this com-
plete system, so that the family of the ∞n−m m-times extended manifolds:

u1 = const., . . . , un−m = const.

represent a decomposition of the space x1, . . . ,xn invariant by the group X1 f , . . . ,Xn f .
We claim that the group Z1 f , . . . ,Zn f contains a completely determined m-term
subgroup which leaves individually invariant each one of these ∞n−m manifolds;
this is just the reverse of Proposition 6.

First, we introduce the functions u1, . . . ,un−m and m arbitrary mutually indepen-
dent functions: v1, . . . ,vm of the x that are also independent of u1, . . . ,un−m as vari-
ables in our reciprocal groups, and we get:

Xk f =
n−m

∑
ν=1

ωkν(u1, . . . ,un−m)
∂ f
∂uν

+
m

∑
μ=1

Xk vμ
∂ f
∂vμ

(k=1 ···n)

and:

Zk f =
n−m

∑
ν=1

Zk uν
∂ f
∂uν

+
m

∑
μ=1

Zk vμ
∂ f
∂vμ

(k=1 ···n),

where the Xk vμ , Zk uν and Zk vμ are certain functions of the u and the v. Our claim
now obviously amounts to the fact that m independent infinitesimal transformations
should be linearly deducible from Z1 f , . . . ,Zn f which should absolutely not
transform u1, . . . ,un−m, hence in which the coefficients of ∂ f/∂u1, . . . , ∂ f/∂un−m

should all be zero.
In order to be able to prove this, we must compute the coefficients of ∂ f/∂u1, . . . ,

∂ f/∂un−m in the general infinitesimal transformation Z f = e1 Z1 f + · · ·+en Zn f of
the group Z1 f , . . . ,Zn f .

The infinitesimal transformation Z f is completely determined by the relations:
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X1
(

Z( f )
)−Z

(

X1( f )
)

= 0, . . . , Xn
(

Z( f )
)−Z

(

Xn( f )
)

= 0.

If we replace f in these equations by uν , we obtain the relations:

X1(Z uν)−Zω1ν = 0, . . . , Xn(Z uν)−Zωnν = 0 (ν=1 ···n−m).

Consequently, the functions Z u1, . . . ,Z un−m are solutions of the differential equa-
tions:

(7) Xk ρν −
n−m

∑
μ=1

∂ωkν
∂uμ

ρμ = 0 (k=1 ···n ; ν=1 ···n−m),

in which ρ1, . . . ,ρn−m are to be seen as the unknown functions.
If:

(8)
ρ1 = ψ1(u1, . . . ,un−m, v1, . . . ,vm), . . . , ρn−m = ψn−m(u1, . . . ,un−m, v1, . . . ,vm)

is an arbitrary system of solutions to the differential equations (7), then all the n(n−
m) expressions:

Xkψν −
n−m

∑
μ=1

∂ωkν
∂uμ

ρμ

vanish identically after the substitution: ρ1 = ψ1, . . . , ρn−m = ψn−m. Hence if we
interpret the equations (8) as a system of equations in the n + n − m variables:
u1, . . . ,un−m, v1, . . . ,vm, ρ1, . . . ,ρn−m, we realize immediately that this system of
equations admits the n infinitesimal transformations:

(9) Uk f = Xk f +
n−m

∑
ν=1

{ n−m

∑
μ=1

∂ωkν
∂uμ

ρμ
}
∂ f
∂ρν

(k=1 ···n).

The converse is also clear: if one known an arbitrary system of equations of the
form (8) which admits the infinitesimal transformations U1 f , . . . ,Un f , then one also
knows a system of solutions of the differential equations (7), since the functions
ψ1, . . . ,ψn−m are such a system.

From this, it follows that the determination of the most general system of solu-
tions to the differential equations (7) amounts to determining, in the 2n − m vari-
ables u, v, ρ , the most general system of equations (8) that admits the infinitesimal
transformations U1 f , . . . ,Un f .

Every system of equations which admits U1 f , . . . ,Un f also allows all the
infinitesimal transformations [Ui,Uk]. By a calculation, we find:

[Ui,Uk] = [Xi, Xk]+
1···n−m

∑
μ, ν , π

(

ωiπ
∂ 2ωkν
∂uμ∂uπ

−ωkπ
∂ 2ωiν
∂uμ∂uπ

)

ρμ
∂ f
∂ρν

+
1···n−m

∑
μ, ν , π

(
∂ωiν
∂uμ

∂ωkπ
∂uν

− ∂ωkν
∂uμ

∂ωiπ
∂uν

)

ρμ
∂ f
∂ρπ

,
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or else, if written differently:

[Ui,Uk] = [Xi, Xk]+
1···n−m

∑
μ, ν

∂
∂uμ

(

Xiωkν −Xkωiν
)

ρμ
∂ f
∂ρν

.

Now, since X1 f , . . . ,Xn f generate a group, there exist relations of the form:

[Xi, Xk] = Xi
(

Xk( f )
)−Xk

(

Xi( f )
)

=
n

∑
σ=1

cikσ Xσ f ,

hence in particular, we have:

Xi
(

Xk uν
)−Xk

(

Xi uν
)

= Xiωkν −Xkωiν

=
n

∑
σ=1

cikσ ωσν ,

and we get:

[Ui,Uk] =
n

∑
σ=1

cikσUσ f .

Consequently, the infinitesimal transformations U1 f , . . . ,Un f generate an n-term
group in the 2n−m variables u1, . . . ,un−m, v1, . . . ,vm, ρ1, . . . ,ρn−m.

Thus, the question at present is to determine the most general system of equations
of the form (8) that admits the group U1 f , . . . ,Un f . Since X1 f , . . . ,Xn f are linked
together by no linear relation, not all n × n determinants of the matrix which is
associated to U1 f , . . . ,Un f vanish, and likewise, not all these determinants vanish by
virtue of a system of equations of the form (8). It therefore follows from Chap. 14,
Theorem 42, p. 247, that every system of equations of the form (8) which admits
the group U1 f , . . . ,Un f is represented by relations between the solutions of the n-
term complete system U1 f = 0, . . . , Un f = 0. Now, this complete system possesses
exactly n−m independent solutions, say:

Ψμ(u1, . . . ,un−m, v1, . . . ,vm, ρ1, . . . ,ρn−m) (k=1 ···n−m)

and to be precise, Ψ1, . . . ,Ψn−m are mutually independent relative to ρ1, . . . ,ρn−m,
because the complete system is solvable with respect to the differential quotients
∂ f/∂u1, . . . , ∂ f/∂un−m, ∂ f/∂v1, . . . , ∂ f/∂vm (cf. Chap. 5, Theorem 12, p. 105).
From this, we conclude that the most general system of equations (8) that admits
the group U1 f , . . . ,Un f can be given the form:

Ψ1 =C1, . . . , Ψn−m =Cn−m,

where C1, . . . ,Cn−m denote arbitrary constants.
If we solve the system of equations just found with respect to ρ1, . . . ,ρn−m, which

is always possible, then we obtain the most general system of solutions to the differ-
ential equations (7), hence we see that this most general system of solutions contains
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exactly n−m arbitrary, essential constants. Now, since the differential equations (7)
are linear and homogeneous in the unknowns ρ1, . . . ,ρn−m, the said most general
system of solutions must be of the form:

(10)
ρμ =C′

1ψ
(1)
μ +C′

2ψ
(2)
μ + · · ·+C′

n−mψ
(n−m)
μ

(μ=1 ···n−m),

where the n−m systems of functions:

ψ(ν)
1 , ψ(ν)

2 , . . . , ψ(ν)
n−m (ν=1 ···n−m)

represent the same number n − m of linearly independent systems of solutions to
the differential equations (7) that are free of arbitrary constants, and where the C′
are arbitrary constants. Of course, the determinant of the ψ does not vanish, for the
equations (10) must be solvable with respect to C′

1, . . . ,C
′
n−m.

The functions: Z u1, . . . ,Z un−m are, according to p. 395, solutions of the differ-
ential equations (7), hence they have the form:

Z uμ =C1ψ
(1)
μ + · · ·+Cn−mψ

(n−m)
μ (μ=1 ···n−m).

Here, the Cν are constants about which we temporarily do not know anything more
precise; it could still be conceivable that they are linked together by linear relations.

From the values of the Z uμ , it follows that the general infinitesimal transforma-
tion Z f of the group: Z1 f , . . . ,Zn f can be given the following representation:

Z f =
1···n−m

∑
μ, ν

Cμ ψ
(μ)
ν

∂ f
∂uν

+
m

∑
μ=1

Z vμ
∂ f
∂vμ

.

Now, since the n−m expressions:

n−m

∑
ν=1

ψ(μ)
ν

∂ f
∂uν

(μ=1 ···n−m)

represent independent infinitesimal transformations, then from Z1 f , . . . ,Zn f , one
can obviously deduce linearly at least m, hence say exactly m + ε , independent
infinitesimal transformations in which the coefficients of ∂ f/∂u1, . . . , ∂ f/∂un−m

are equal to zero. These m+ ε infinitesimal transformations naturally generate an
(m+ ε)-term subgroup of the group: Z1 f , . . . ,Zn f , and in fact, a subgroup which
leaves fixed each one of the ∞n−m m-times extended manifolds u1 = const., . . . ,
un−m = const. But this is only possible when the whole number ε is equal to zero,
since if ε were > 0, the group Z1 f , . . . ,Zn f could not be simply transitive.

As a result, the claim made on p. 394 is proved and we can therefore state the
following proposition:

Proposition 7. If X1 f , . . . ,Xn f and Z1 f , . . . ,Zn f are two reciprocal simply transitive
groups in the n variables x1, . . . ,xn, and if:
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u1(x1, . . . ,xn) = const., . . . , un−m(x1, . . . ,xn) = const.

is an arbitrary decomposition of the space x1, . . . ,xn into ∞n−m m-times extended
manifolds that is invariant by the group X1 f , . . . ,Xn f , then the group Z1 f , . . . ,Zn f
always contains an m-term subgroup which leaves individually fixed each one of
these ∞n−m manifolds.

By combining this proposition with Proposition 6, p. 394, we obtain the:

Theorem 69. If the n-term group X1 f , . . . ,Xn f in the n variables x1, . . . ,xn is simply
transitive, then one finds all m-term complete systems that this groups admits, or,
what is the same, all invariant decompositions of the space x1, . . . ,xn in ∞n−m m-
times extended manifolds, in the following way: One first determines the simply
transitive group: Z1 f , . . . ,Zn f which is reciprocal to X1 f , . . . ,Xn f and one sets up
all m-term subgroups of the former; if, say:

Zμ f = gμ1 Z1 f + · · ·+gμn Zn f (μ=1 ···m)

is one of the found subgroups, then the equations Z1 f = 0, . . . , Zm f = 0 repre-
sent one of the sought complete systems and they determine a decomposition of the
space x1, . . . ,xn into∞n−m m-times extended manifolds that is invariant by the group
X1 f , . . . ,Xn f ; if, for each one of the found subgroups, one forms the m-term complete
system which the subgroup provides, then one obtains all m-term complete systems
that the group X1 f , . . . ,Xn f admits. If one undertakes the indicated study for each of
the numbers m = 1,2, . . . ,n−1, then one actually obtains all complete systems that
the group X1 f , . . . ,Xn f admits, and therefore at the same time, all decompositions
of the space x1, . . . ,xn that are invariant by this group.

The above theorem contains a solution to the problem of determining all possible
ways in which a given simply transitive group can be imprimitive.

Let the equations:

u1 = const., . . . , un−m = const.

again represent an arbitrary decomposition of the space x1, . . . ,xn into ∞n−m m-
times extended manifolds invariant by the group X1 f , . . . ,Xn f , so that hence, when
u1, . . . ,un−m, together with appropriate functions v1, . . . ,vm, are introduced as new
variables, X1 f , . . . ,Xn f receive the form:

Xk f =
n−m

∑
ν=1

ωkν(u1, . . . ,un−m)
∂ f
∂uν

+
m

∑
μ=1

ξ kμ(u1, . . . ,un−m, v1, . . . ,vm)
∂ f
∂vμ

.

Here, not all (n−m)× (n−m) determinants of the matrix:
∣
∣
∣
∣
∣
∣

ω11 · · ω1,n−m

· · · ·
ωn1 · · ωn,n−m

∣
∣
∣
∣
∣
∣
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can vanish identically, since otherwise, X1 f , . . . ,Xn f would be linked together by
a linear relation, which is contrary to the assumption. So, if by u0

1, . . . ,u
0
n−m, we

understand a general system of values, then according to Chap. 13, p. 234, the group
X1 f , . . . ,Xn f contains exactly ∞m−1 different infinitesimal transformations which
leave invariant the system of equations:

u1 = u0
1, . . . , un−m = u0

n−m ;

naturally, these infinitesimal transformations then generate an m-term subgroup, the
most general subgroup of the group X1 f , . . . ,Xn f which leaves fixed the m-times
extended manifold u1 = u0

1, . . . , un−m = u0
n−m, or shortly M.

On the other hand, the said m-times extended manifold M now also admits m
independent infinitesimal transformations of the reciprocal group Z1 f , . . . ,Zn f , for
according to Proposition 7, p. 397, this group contains an m-term subgroup which
leaves individually fixed each of the ∞n−m manifolds:

u1 = const., . . . , un−m = const.

In addition, it is clear that M cannot admit a larger subgroup of the group
Z1 f , . . . ,Zn f , for u0

1, . . . ,u
0
n−m is supposed to be a general system of values.

From this, we see that M allows exactly m infinitesimal transformations both
from the two reciprocal groups X1 f , . . . ,Xn f and Z1 f , . . . ,Zn f , hence from each
one, a completely determined m-term subgroup.

We can make these two m-term subgroups visible by choosing an arbitrary
system of values: v0

1, . . . ,v
0
m in general position and by expanding the infinites-

imal transformations of our two reciprocal groups in powers of: u1 − u0
1, . . . ,

un−m − u0
n−m, v1 − v0

1, . . . , vm − v0
m. Indeed, if we disregard the terms of first order

and of higher order, then similarly as on p. 390, we can replace the infinitesimal
transformations: X1 f , . . . ,Xn f by n transformations of the form:

X1 f =
∂ f
∂u1

+ · · · , . . . , Xn−m f =
∂ f
∂un−m

+ · · · ,

Xn−m+1 f =
∂ f
∂v1

+ · · · , . . . , Xn f =
∂ f
∂vm

+ · · · ,

and we can also replace Z1 f , . . . ,Zn f by n transformations of the form:

Z1 f = − ∂ f
∂u1

+ · · · , . . . , Zn−m f = − ∂ f
∂un−m

+ · · · ,

Zn−m+1 f = − ∂ f
∂v1

+ · · · , . . . , Zn f = − ∂ f
∂vm

+ · · · .

Here, Xn−m+1 f , . . . ,Xn f are obviously independent infinitesimal transforma-
tions which leave invariant the manifold: u1 = u0

1, . . . , un−m = u0
n−m, and

Zn−m+1 f , . . . ,Zn f are independent infinitesimal transformations which do the
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same; thus, Xn−m+1 f , . . . ,Xn f and Zn−m+1 f , . . . ,Zn f are the two m-term subgroups
about which we have just spoken.

From this representation of the two subgroups, one can derive a few notable
conclusions.

Between X1 f , . . . ,Xn f , there are relations of the form:

[Xi, Xk] =
n

∑
ν=1

cikν Xν f ,

and according to p. 390 sq., between Z1 f , . . . ,Zn f , there are the same relations:

[Zi, Zk] =
n

∑
ν=1

cikν Zν f ,

with the same constants cikν . From this, it follows that the two subgroups:
Xn−m+1 f , . . . ,Xn f and Zn−m+1 f , . . . ,Zn f are equally composed. But we obtain
even more. Indeed, since the two groups: X1 f , . . . ,Xn f and: Z1 f , . . . ,Zn f are related
to each other in a holoedrically isomorphic way, when to every infinitesimal
transformation: e1X1 f + · · · + er Xr f is associated the infinitesimal transfor-
mation: e1Z1 f + · · · + er Zr f , and since through this association, the subgroup:
Xn−m+1 f , . . . ,Xr f obviously corresponds to the subgroup: Zn−m+1 f , . . . ,Zr f , then
it becomes evident that the two reciprocal groups can be related to each other in
a holoedrically isomorphic way so that the two m-term subgroups which leave M
invariant correspond to each other.

Summarizing the results of pp. 398 sq., we have the:

Proposition 8. If an m-times extended manifold of the space x1, . . . ,xn admits
exactly m independent infinitesimal transformations, and hence an m-term sub-
group, of a simply transitive group X1 f , . . . ,Xn f of this space, then it admits at
the same time exactly m independent infinitesimal transformations, and hence an
m-term subgroup, of the simply transitive group: Z1 f , . . . ,Zn f which is reciprocal
to X1 f , . . . ,Xn f . The two m-term subgroups defined in this way are equally com-
posed and it is possible to relate the two simply transitive reciprocal groups in a
holoedrically isomorphic way so that these m-term subgroups correspond to each
other.

§ 98. The largest portion of the results of the preceding section can be derived
by means of simple conceptual considerations. We shall now undertake this, and at
the same time, we shall obtain a few further results.

As up to now, let X1 f , . . . ,Xn f and Z1 f , . . . ,Zn f be two reciprocal simply tran-
sitive groups in the variables x1, . . . ,xn; moreover, let Z1 f , . . . ,Zm f again be an ar-
bitrary m-term subgroup of the group Z1 f , . . . ,Zn f and let u1, . . . ,un−m be its in-
variants. Let the letter S be the general symbol of a transformation of the group
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Z1 f , . . . ,Zm f , and lastly, let T be an arbitrarily chosen transformation of the group
X1 f , . . . ,Xn f .

Now, if P is any point of the space x1, . . . ,xn, then:

(P′) = (P)S

is the general symbol of a point on the manifold:

u1 = const., . . . , un−m = const.

which passes through the point P. Furthermore, since the transformations S and T
are mutually interchangeable, we have:

(P′)T = (P)ST = (P)T S,

hence, if we denote by Π the point (P)T , we have:

(11) (P′)T = (Π)S.

Here, (Π)S is the general symbol of a point on the manifold: uν = const. passing
thoughΠ . Consequently, our symbolic equation (11) says that the transformation T ,
hence actually every transformation of the group X1 f , . . . ,Xn f , permutes the ∞n−m

manifolds: u1 = const., . . . , un−m = const., by transferring each one of these mani-
folds to a manifold of the same family.

As a result, Proposition 6, p. 394, is derived.
But we can also prove the converse of this proposition by means of such concep-

tual considerations.
Let us imagine that an arbitrary decomposition of the space x1, . . . ,xn into ∞n−m

m-times extended manifolds invariant by the group X1 f , . . . ,Xn f is given, and let us
assume that M is one of these∞n−m manifolds. By P and P′, let us understand two ar-
bitrary points of M, and by T , an arbitrary transformation of the group X1 f , . . . ,Xn f .

By the execution of T , let the point P be transferred to Π , so we have:

(Π) = (P)T ;

on the other hand, there is always in the reciprocal group Z1 f , . . . ,Zn f one, and only
one, transformation which transfers P to P′:

(P′) = (P)S.

Because of:
(P)ST = (P)T S,

we also have:

(12) (P′)T = (Π)S.

We must attempt to interpret this equation.
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To begin with, we assume that the point Π also belongs to the manifold M. In
this case, the transformation T has the property of leaving M invariant. Indeed, T
permutes the mentioned ∞n−m manifolds, but on the other hand, T transfers a point
of M, namely P, to a point of M, namely the point Π ; thus, T must transfer all
points of M to points of M, hence it must leave M invariant. Now, since P′ lies on
M, then the point (P′)T also belongs to the manifold M, and because of (12), the
point (Π)S too; but by appropriate choice of T , Π can be an arbitrary point of M,
hence the transformation S also transfers every point of M to a point of M, so that it
also leaves invariant the manifold M.

On the other hand, we can suppose that Π is any point of another arbitrary man-
ifold amongst the ∞n−m in question; if we make this assumption, then we immedi-
ately realize from (12) that S leaves at rest the concerned manifold.

With these words, it is proved that the group Z1 f , . . . ,Zn f contains a transforma-
tion, namely the transformation S, which leaves individually fixed each one of our
∞n−m manifolds. But there are evidently ∞m different such transformations, since
after fixing P, the point P′ can be chosen inside M in ∞m different ways. However,
there are no more than ∞m transformations of this sort in the group Z1 f , . . . ,Zn f , be-
cause this group is simply transitive; consequently, the ∞m existing transformations
generate an m-term subgroup of the group Z1 f , . . . ,Zn f .

As a result, Proposition 7, p. 397, is proved.
Obviously, the manifold M also admits, aside from the ∞m transformations of

the group Z1 f , . . . ,Zn f , ∞m transformations of the group X1 f , . . . ,Xn f , which in
turn form an m-term subgroup of this group. This is a result which is stated in
Proposition 8, p. 400.

Something essentially new arises when the number m in the above developments
is chosen to be equal to n. Up to now, this case has not come into consideration,
because to it, there corresponds no decomposition of the space x1, . . . ,xn.

If m is equal to n, then the manifold M coincides with the space x1, . . . ,xn itself;
hence P and P′ are arbitrary points of the space, and by appropriate choice of P and
P′, S can be any transformation of the reciprocal group Z1 f , . . . ,Zn f .

If we choose P and P′ fixed, the transformation S is completely determined; next,
if T is an arbitrary transformation of the group X1 f , . . . ,Xn f , we have:

(P)ST = (P)T S,

or, because (P′) = (P)S:

(13) (P′)T = (P)T S.

Here, by an appropriate choice of the transformation T , the point (P)T can be
brought to coincidence with any arbitrary point of the space x1, . . . ,xn; the same
holds for the point (P′)T . Consequently, thanks to the equation (13), we are in a
position to indicate, for every point P of the space, the new position P′ that it
reaches by the transformation S; we need only to determine the transformation T of
the group X1 f , . . . ,Xn f which transfers P to P, hence which satisfies the symbolic
equation:
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(P)T = (P).

Then we have:
(P′) = (P)S = (P)TS,

whence:
(P′) = (P′)T.

Now, if we let the point P take all possible positions, or, what is the same, if we
set for T one after the other all transformations of the group X1 f , . . . ,Xn f , then we
obtain that, to every point of the space x1, . . . ,xn is associated another completely
determined point, hence we obtain a transformation of the space x1, . . . ,xn, namely
the transformation S. Lastly, if we choose the points P and P′ in all possible ways,
then we obviously obtain all transformations of the group Z1 f , . . . ,Zn f .

Thus, we can say:

If two points P and P′ of the space x1, . . . ,xn are transformed in a cogredient way
[IN COGREDIENTER WEISE] by means of each one of the ∞n transformations of a
simply transitive group X1 f , . . . ,Xn f , then the transformation which transfers each
of the ∞n positions taken by P to the corresponding position of the point P′ belongs
to the group Z1 f , . . . ,Zn f reciprocal to the group X1 f , . . . ,Xn f . If one chooses the
points P and P′ in all possible ways, then one obtains all transformations of the
group Z1 f , . . . ,Zn f .

It goes without saying that here, the points P and P′ are always to be understood
as points in general position, or put more precisely, points which lie on no manifold
invariant by the group X1 f , . . . ,Xn f .

If one knows the finite equations of the group X1 f , . . . ,Xn f , then one can use the
construction just found for the transformations of the group Z1 f , . . . ,Zn f in order to
set up the finite equations of this group.

Let:
x′

i = fi(x1, . . . ,xn, a1, . . . ,an) (i=1 ···n)

be the finite equations of the group X1 f , . . . ,Xn f . If one calls the coordinates of
the point say x0

1, . . . ,x
0
n, and those of the point P′ say u0

1, . . . ,u
0
n, then by the ∞n

transformations of the group X1 f , . . . ,Xn f , P receives the ∞n different positions:

yi = fi(x0
1, . . . ,x

0
n, a1, . . . ,an) (i=1 ···n)

and P′ receives the ∞n positions:

y′
i = fi(u0

1, . . . ,u
0
n, a1, . . . ,an) (i=1 ···n).

Every system of values of the a provides positions for P and P′ which correspond to
each other; hence if we eliminate from the equations yi = fi(x0,a) and y′

i = fi(u0,a)
the parameters a, we obtain the equations:

(14) y′
i = Fi(y1, . . . ,yn, x0

1, . . . ,x
0
n, u0

1, . . . ,u
0
n) (i=1 ···n)
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of a transformation of the group Z1 f , . . . ,Zn f , namely the transformation which
transfers the point P to P′. Lastly, if we let x0

1, . . . ,x
0
n and u0

1, . . . ,u
0
n take all possible

values, we obtain all transformations of the group Z1 f , . . . ,Zn f .
In the equations (14) of the group Z1 f , . . . ,Zn f just found, there appear 2n

arbitrary parameters; however, this is only fictitious, only n of these parameters
are essential. Indeed, one can obtain every individual transformation of the group
Z1 f , . . . ,Zn f in ∞n different ways, since one can always arbitrarily choose the point
P, whereas the point P′ is determined by the concerned transformation after the
fixed choice of P.

From this, it follows that one can also derive in this way all transformations of the
group Z1 f , . . . ,Zn f , by choosing the point P fixed once for all, and only by letting
the point P′ take all possible positions; that is to say, one can insert determined
numbers for the quantities x0

1, . . . ,x
0
n and one only needs to interpret u0

1, . . . ,u
0
n as

arbitrary parameters.
Thus, the following holds:

Proposition 9. If the finite equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,an) (i=1 ···n)

of a simply transitive n-term group of the space x1, . . . ,xn are presented, then one
finds the equations of the reciprocal simply transitive group in the following way:

In the equations:

yi = fi(x0
1, . . . ,x

0
n, a1, . . . ,an) (i=1 ···n),

one confers a fixed value to the x0 and afterwards, one eliminates the n quantities
a1, . . . ,an from these equations and from the equations:

y′
i = fi(u0

1, . . . ,u
0
n, a1, . . . ,an) (i=1 ···n) ;

the resulting equations:

y′
i = Fi(y1, . . . ,yn, x0

1, . . . ,x
0
n, u0

1, . . . ,u
0
n) (i=1 ···n)

with the n arbitrary parameters are the equations of the reciprocal group. The as-
sumption is that the x0

k are chosen so that the point x0
1, . . . ,x

0
n lies on no manifold

which remains invariant by the group: x′
i = fi(x,a).

§ 99. Proposition 7, p. 397, is a special case of a general proposition that also
holds true for certain groups which are not simply transitive. We now want to derive
this general proposition; on the occasion, we obtain at the same time a new proof of
Proposition 7.

Let X1 f , . . . ,Xn f be an n-term group in the variables x1, . . . ,xn and let the number
n be no larger than s. In addition, we make the assumption that X1 f , . . . ,Xn f are
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linked together by no linear relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χn(x1, . . . ,xs)Xn f = 0.

The proposition to be proved amounts to the following: if one knows an arbitrary
m-term complete system: Y1 f = 0, . . . , Ym f = 0 that the group X1 f , . . . ,Xn f ad-
mits, then one can always bring the complete system to a form: Y1 f = 0, . . . , Ym f = 0
such that the infinitesimal transformations Y1 f , . . . ,Ym f are all interchangeable with
X1 f , . . . ,Xn f , and that in the relations:

[Yi, Yk] =
m

∑
ν=1

τikν(x1, . . . ,xs)Yν f

which hold between Y1 f , . . . ,Ym f , the τikν are all solutions of the n-term complete
system: X1 f = 0, . . . , Xn f = 0.

In the special case s = n, where the group X1 f , . . . ,Xn f is simply transitive, the
infinitesimal transformations Y1 f , . . . ,Ym f obviously belong to the simply transitive
group Z1 f , . . . ,Zn f reciprocal to X1 f , . . . ,Xn f ; moreover, since the n-term complete
system X1 f = 0, . . . , Xn f = 0 possesses in this case no other solutions than f =
const., the functions τikν are then plain constants so that Y1 f , . . . ,Ym f generate an
m-term subgroup of the group Z1 f , . . . ,Zn f . We therefore have Proposition 7, p. 397.

However, we deal at present with the general case.
We therefore imagine that an m-term complete system:

Y1 f = 0, . . . , Ym f = 0

is presented which admits the group X1 f , . . . ,Xn f , so that the X f and Y f are linked
together by relations of the form:

(15) [Yμ , Xk] =
m

∑
ν=1

αμkν(x1, . . . ,xs)Yν f (k=1 ···n ; μ=1 ···m)

(cf. Chap. 13, p. 233).
To begin with, we now attempt to determine m functions ρ1, . . . ,ρm of the x so

that the infinitesimal transformation:

Y f =
m

∑
μ=1

ρμ(x1, . . . ,xs)Yμ f

is interchangeable with all the n infinitesimal transformations Xk f . We therefore
have to satisfy the n equations:

[Xk, Y ] =
m

∑
μ=1

Xk ρμYμ f +
m

∑
μ=1

ρμ [Xk,Yμ ]

=
m

∑
μ=1

{

Xk ρμ −
m

∑
ν=1

ανkμ ρν
}

Yμ f = 0,
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or, because Y1 f , . . . ,Ym f cannot be linked together by linear relations, the follow-
ing mn relations:

(16) Xk ρμ −
m

∑
ν=1

ανkμ ρν = 0 (k=1 ···n ; μ=1 ···m).

These are differential equations by means of which the ρ are to be determined.
If:

(17) ρ1 = P1(x1, . . . ,xs), . . . , ρm = Pm(x1, . . . ,xs)

is a system of solutions of the differential equations (16), then the equations:

Xk Pμ −
m

∑
ν=1

ανkμ ρν = 0

are satisfied identically after the substitution: ρ1 = P1, . . . , ρm = Pm. Expressed dif-
ferently: the system of equations (17) in the s+m variables x1, . . . ,xs, ρ1, . . . ,ρm

admits the infinitesimal transformations:

Uk f = Xk f +
m

∑
μ=1

{ m

∑
ν=1

ανkμ ρν
}
∂ f
∂ρμ

(k=1 ···n).

Conversely, if a system of equations of the form (17) admits the infinitesimal trans-
formations U1 f , . . . ,Un f , then the functions P1, . . . ,Pm are obviously solutions of the
differential equations (16).

From this, we see that the integration of the differential equations (16) amounts to
determining, in the s+m variables x, ρ , the most general system of equations (17),
which admits the infinitesimal transformations U1 f , . . . ,Un f .

The system of equations to be determined also admits the infinitesimal transfor-
mations: [Ui, Uk].

By calculation, we find:

[Ui, Uk] = [Xi, Xk]+
1···m
∑
μ, ν

{

Xiανkμ −Xkαν iμ
}

ρν
∂ f
∂ρμ

+
1···m
∑
μ, ν , π

{

αν iπ απkμ −ανkπ απiμ
}

ρν
∂ f
∂ρμ

.

Here, in order to simplify the right-hand side, we form the Jacobi identity (cf.
Chap. 5, p. 109):

[

Yν , [Xi, Xk]
]

+
[

Xi, [Xk,Yν
]

+]
[

Xk, [Yν , Xi]
]

= 0,

which, using (15), can be written as:
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[

Yν , [Xi, Xk]
]

=
m

∑
μ=1

{

[Xi f , ανkμYμ f ]− [Xk f , αν iμYμ f ]
}

,

or:
[

Yν , [Xi, Xk]
]

=
m

∑
μ=1

{

Xiανkμ −Xkαν iμ
}

Yμ f

+
1···m
∑
μ, π

{

αν iμ αμkπ −ανkμ αμiπ
}

Yπ f .

But now, X1 f , . . . ,Xn f generate an n-term group, whence:

[Xi, Xk] =
n

∑
σ=1

cikσ Xσ f ,

from which it follows:

[

Yν , [Xi, Xk]
]

=
m

∑
μ=1

{ n

∑
σ=1

cikσ ανσμ
}

Yμ f .

If we still take into account that Y1 f , . . . ,Ym f are linked together by no linear
relations, we obtain:

Xiανkμ −Xkαν iμ +
m

∑
π=1

{

αν iπ απkμ −ανkπ απiμ
}

=
n

∑
σ=1

cikσ ανσμ .

By inserting these values into the expression found above for [Ui, Uk], we get:

[Ui, Uk] =
n

∑
σ=1

cikσ Uσ f ,

so U1 f , . . . ,Un f generate an n-term group in the s+m variables x, ρ .
At present, the question is to determine the most general system of equations (17)

which admits the n-term group U1 f , . . . ,Un f .
Since X1 f , . . . ,Xn f are linked together by no linear relation, not all n × n deter-

minants vanish identically in the matrix associated to U1 f , . . . ,Un f ; but obviously,
these n × n determinants cannot all be equal to zero, even by virtue of a system of
equations of the form (17). Consequently, every system of equations of the form (17)
which admits the group U1 f , . . . ,Un f is represented by relations between the solu-
tions of the n-term complete system: U1 f = 0, . . . , Un f = 0 (cf. Chap. 14, Theo-
rem 42, p. 247).

The n-term complete system U1 f = 0, . . . , Un f = 0 possesses s+m−n indepen-
dent solutions; s − n of these solutions can be chosen in such a way that they are
free of the ρ and depend only upon the x, they are the independent solutions of the
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n-term complete system: X1 f = 0, . . . , Xn f = 0, and we can call them:

v1(x1, . . . ,xs), . . . , vs−n(x1, . . . ,xs).

Furthermore, let:

Ω1(ρ1, . . . ,ρm, x1, . . . ,xs), . . . , Ωm(ρ1, . . . ,ρm, x1, . . . ,xs)

be m arbitrary mutually independent solutions of the complete system: U1 f = 0, . . . ,
Un f = 0 that are also independent of the v.

Since the equations: U1 f = 0, . . . , Un f = 0 are solvable with respect to n of
the differential quotients ∂ f/∂x1, . . . , ∂ f/∂xs, the s−n+m functions v1, . . . ,vs−n,
Ω1, . . . ,Ωm must be mutually independent relative to s−n of the variables x1, . . . ,xs,
and relative to ρ1, . . . ,ρm. Consequently, Ω1, . . . ,Ωm are mutually independent rel-
ative to ρ1, . . . ,ρm.

After these preparations, we can identify the most general system of equations
which admits the group U1 f , . . . ,Un f and which can be given the form (17).

The concerned system of equations consists of m relations between v1, . . . ,vs−n,
Ω1, . . . ,Ωm and is solvable with respect to ρ1, . . . ,ρm; consequently, it is solvable
with respect to Ω1, . . . ,Ωm and has the form:

(18) Ωμ(ρ1, . . . ,ρm, x1, . . . ,xs) =Ψμ
(

v1(x), . . . , vs−n(x)
)

(μ=1 ···m),

where theΨ are absolutely arbitrary functions of their arguments. If we solve this
system of equations with respect to ρ1, . . . ,ρm, then for ρ1, . . . ,ρm, we receive ex-
pressions that represent the most general system of solutions to the differential equa-
tions (16).

Thus, the most general system of solutions (16) contains m arbitrary functions of
v1, . . . ,vs−n. Now, since the equations (16) in the unknowns ρ1, . . . ,ρm are linear and
homogeneous, one can conclude that the most general system of solutions ρ1, . . . ,ρm

to it can be deduced from m particular systems of solutions:

P(μ)
1 (x1, . . . ,xs), . . . , P(μ)

m (x1, . . . ,xs) (μ=1 ···m)

in the following way:

(19)
ρν = χ1(v1, . . . ,vs−n)P(1)

ν + · · ·+χm(v1, . . . ,vs−n)P(m)
ν

(μ=1 ···m),

where it is understood that the χ are arbitrary functions of their arguments. Natu-
rally, the m particular systems of solutions must be constituted in such a way that it
is not possible to determine m functions ψ1, . . . ,ψm of v1, . . . ,vs−n such that the m
equations:

m

∑
μ=1

ψμ(v1, . . . ,vs−n)P(μ)
ν = 0 (ν=1 ···m)
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are satisfied simultaneously.
Lastly, it is still to be observed that the equations (19) are solvable with respect

to χ1, . . . ,χm, so that the determinant of the P(μ)
ν does not vanish identically. In-

deed, according to the preceding, one must be able to bring the equations (19) to

the form (18), and this is obviously impossible when the determinant of the P(μ)
ν

vanishes.

At present, we can write down the most general transformation:

Y f =
m

∑
μ=1

ρμYμ f

which is interchangeable with X1 f , . . . ,Xn f (cf. above, p. 405). Its form is:

Y f =
m

∑
ν=1

χν(v1, . . . ,vs−n)
m

∑
μ=1

P(ν)
μ (x1, . . . ,xs)Yμ f ,

or:

Y f =
m

∑
ν=1

χν(v1, . . . ,vs−n)Yν f ,

if we set:
m

∑
μ=1

P(ν)
μ Yμ f = Yν f (ν=1 ···m).

Here, obviously, Y1 f , . . . ,Ym f are all interchangeable with X1 f , . . . ,Xn f ; further-
more, the equations: Y1 f = 0, . . . , Ym f = 0 are equivalent to the equations: Y1 f = 0,
. . . , Ym f = 0, and hence they in turn form an m-term complete system that admits
the group X1 f , . . . ,Xn f .

As a consequence of this, between Y1 f , . . . ,Ym f , there are relations of the form:

[Yμ , Yν ] =
m

∑
π=1

τμνπ(x1, . . . ,xs)Yπ f .

But from the Jacobi identity:
[

Xk, [Yμ , Yν ]
]

+
[

Yμ , [Yν , Xk]
]

+
[

Yν , [Xk, Yμ ]
] ≡ 0 ,

in which the last two terms are identically zero, it immediately follows that:
[

Xk, [Yμ , Yν ]
] ≡ 0.

We must therefore have:
m

∑
π=1

Xk τμνπ Yπ f ≡ 0,

or, because Y1 f , . . . ,Ym f are linked together by no linear relation:
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Xk τμνπ ≡ 0 (k=1 ···n),

that is to say: the τμνπ are all solutions of the complete system: X1 f = 0, . . . , Xn f =
0, they are functions of v1, . . . ,vs−n alone.

The complete system: Y1 f = 0, . . . , Ym f = 0 possesses all the properties indicated
on p 405; we can therefore enunciate the statement:

Theorem 70. If an m-term complete system: Y1 f = 0, . . . , Ym f = 0 in the s vari-
ables x1, . . . ,xs admits the n-term group X1 f , . . . ,Xn f and if this group is constituted
in such a way that between X1 f , . . . ,Xn f , there is no linear relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χn(x1, . . . ,xs)Xn f = 0,

then it is possible to determine m2 functions P(ν)
μ (x1, . . . ,xs) with not identically

vanishing determinant such that the m infinitesimal transformations:

Yν f =
m

∑
μ=1

P(ν)
μ (x1, . . . ,xs)Yμ f (ν=1 ···m)

are all interchangeable with X1 f , . . . ,Xn f . In turn, the equations: Y1 f = 0, . . . ,
Ym f = 0 equivalent to Y1 f = 0, . . . , Ym f = 0 form an m-term complete system that
admits the group X1 f , . . . ,Xn f . Lastly, between Y1 f , . . . ,Ym f , there are relations of
the specific form:

[Yμ , Yν ] =
m

∑
π=1

ϑμνπ(v1, . . . ,vs−n)Yπ f ,

where v1, . . . ,vs−n are independent solutions of the n-term complete system: X1 f =
0, . . . , Xn f = 0.3

—————–

3 During the summer semester 1887, in a lecture about the general theory of integration of the
differential equations that admit a finite continuous group, LIE developed Theorem 70, which has
Theorem 69 as a special case.



Chapter 21
The Group of Parameters

If one executes three transformations of the space x1, . . . ,xn subsequently, say the
following ones:

(1)

⎧

⎪⎨

⎪⎩

x′
i = fi(x1, . . . ,xn) (i=1 ···n)

x′′
i = gi(x′

1, . . . ,x
′
n) (i=1 ···n)

x′′′
i = hi(x′′

1 , . . . ,x
′′
n) (i=1 ···n),

the one gets a new transformation:

x′′′
i = ωi(x1, . . . ,xn) (i=1 ···n)

of the space x1, . . . ,xn.
The equations of the new transformation are obtained when the 2n variables:

x′
1, . . . ,x

′
n, x′′

1 , . . . ,x
′′
n are eliminated from the 3n equations (1). Clearly, one can ex-

ecute this elimination in two different ways, since one can begin either by taking
away the x′, or by taking away the x′′. In the first case, one obtains firstly between
the x and the x′′ the relations:

x′′
i = gi

(

f1(x), . . . , fn(x)
)

(i=1 ···n),

and afterwards, one has to insert these values of x′′
1 , . . . ,x

′′
n into the equations:

x′′′
i = hi(x′′

1 , . . . ,x
′′
n) (i=1 ···n).

In the second case, one obtains firstly between the x′ and the x′′′ the relations:

x′′′
i = hi

(

g1(x′), . . . , gn(x′)
)

(i=1 ···n),

and then one has to replace the x′ by their values:

x′
i = fi(x1, . . . ,xn) (i=1 ···n).

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_21
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The obvious observation that in both ways indicated above, one obtains as the
final result the same transformation has content [INHALT] when one interprets the
transformation as an operation and when one applies the symbolism of substitution
theory.

For the three substitutions (1), we want to introduce the symbols: S, T , U one
after the other, so that the transformation:

x′′
i = gi

(

f1(x), . . . , fn(x)
)

(i=1 ···n)

has the symbol: ST , the transformation:

x′′′
i = hi

(

g1(x′), . . . , gn(x′)
)

(i=1 ···n),

the symbol: T U and lastly, the transformation: x′′′
i = ωi(x1, . . . ,xn), the sym-

bol: ST U . We can then express the two ways of forming the transformation:
x′′′

i = ωi(x1, . . . ,xn) discussed above by saying that this transformation is obtained
both when one first executes the transformation: ST and then the transformation U ,
and when one first executes the transformation S, and then the transformation T U .

Symbolically, these facts can be expressed by the equations:

(2) (ST )U = S (T U) = ST U,

and it is known that they say that the operations S, T , U satisfy the so-called asso-
ciative rule [ASSOCIATIVE GESETZ].

We can therefore say:

The transformations of an n-times extended space are operations for which the
law of associativity holds true.

At present, let us consider the specific case where S, T , U are arbitrary transfor-
mations of an r-term group:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n).

In this case, the transformations ST , T U and ST U naturally also belong to the
group in question. We now want to see what can be concluded from the validity of
the associative law.

§ 100. Let the transformations S, T , U of our group be:

(3)

⎧

⎪⎨

⎪⎩

S : x′
i = fi(x1, . . . ,xn, a1, . . . ,ar)

T : x′′
i = fi(x′

1, . . . ,x
′
n, b1, . . . ,br)

U : x′′′
i = fi(x′′

1 , . . . ,x
′′
n , c1, . . . ,cr).

For the transformation ST , there result from this in the known way equations of
the form:
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x′′
i = fi

(

x1, . . . ,xn, ϕ1(a,b), . . . , ϕr(a,b)
)

,

where the functions ϕ1(a,b), . . . , ϕr(a,b) are, according to Chap. 3, p. 53, mutually
independent both relative to a1, . . . ,ar and relative to b1, . . . ,br.

Furthermore, the equations of the transformation (ST )U are:

(4) x′′′
i = fi

(

x1, . . . ,xn, ϕ1
(

ϕ(a,b), c
)

, . . . , ϕr
(

ϕ(a,b), c
))

.

On the other hand, we have for the transformation T U the equations:

x′′′
i = fi

(

x′
1, . . . ,x

′
n, ϕ1(b,c), . . . , ϕr(b,c)

)

,

hence for S (T U) the following:

(4’) x′′′
i = fi

(

x1, . . . ,xn, ϕ1
(

a, ϕ(b,c)
)

, . . . , ϕr
(

a, ϕ(b,c)
))

.

Now, we have: (ST )U = S (T U), whence the two transformations (4) and (4’)
must be identical to each other; by comparison of the two parameters in the two
transformations, we therefore obtain the following relations:

ϕk
(

ϕ1(a,b), . . . , ϕr(a,b), c1, . . . ,cr
)

= ϕk
(

a1, . . . ,ar, ϕ1(b,c), . . . , ϕr(b,c)
)

(k=1 ···r),

or more shortly:

(5) ϕk
(

ϕ(a,b), c
)

= ϕk
(

a, ϕ(b,c)
)

(k=1 ···r).

Thus, the functions ϕ1, . . . ,ϕr must identically satisfy these relations for all val-
ues of the a, b, c.

The equations (5) express the law of associativity for three arbitrary transforma-
tions of the group x′

i = fi(x,a). But they can also be interpreted in another way;
namely, they say that the equations:

(6) a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r)

in the variables a1, . . . ,ar represent a group, and to be precise, a group with the r
parameters b1, . . . ,br.

Indeed, if we execute two transformations (6), say:

a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br)

and:
a′′

k = ϕk(a′
1, . . . ,a

′
r, c1, . . . ,cr)

one after the other, we obtain the transformation:

a′′
k = ϕk

(

ϕ1(a,b), . . . , ϕr(a,b), c1, . . . ,cr
)
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which, by virtue of (5), takes the form:

a′′
k = ϕk

(

a1, . . . ,ar, ϕ1(b,c), . . . , ϕr(b,c)
)

,

and hence belongs likewise to the transformations (6). As a result, our assertion is
proved.

We want to call the group:

(6) a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r)

the parameter group [PARAMETERGRUPPE] of the group x′
i = fi(x1, . . . ,xn, a1, . . . ,ar).

According to the already cited page 53, the equations a′
k = ϕk(a,b) are solvable

with respect to the r parameters b1, . . . ,br:

bk = ψk(a1, . . . ,ar, a′
1, . . . ,a

′
r) (k=1 ···r).

From this, we conclude that the parameter group is r-term, is transitive, and in fact,
simply transitive. In addition, the equations (5) show that the parameter group is its
own parameter group.

We can therefore say in summary:

Theorem 71. If the functions fi(x1, . . . ,xn, a1, . . . ,ar) in the equations x′
i = fi(x,a)

of an r-term group satisfy the functional equations:

fi
(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

= fi
(

x1, . . . ,xn, ϕ1(a,b), . . . , ϕr(a,b)
)

(i=1 ···n),

then the r relations:

a′
i = ϕi(a1, . . . ,ar, b1, . . . ,br) (i=1 ···r)

determine an r-term group between the 2r variables a and a′: the parameter group
of the original group. This parameter group is simply transitive and is its own pa-
rameter group.

§ 101. If the r-term group: x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) is generated by the r

independent infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r),

then according to Chap. 9, p. 172, its transformations are ordered together as in-
verses by pairs. Evidently, the transformations of the associated parameter group:
a′

k = ϕk(a,b) are then also ordered together as inverses by pairs, whence accord-
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ing to Chap. 9, p. 184 above, the parameter group contains exactly r independent
infinitesimal transformations and is generated by them.

We can also establish this important property of the parameter group in the fol-
lowing way, where we find at the same time the infinitesimal transformations of this
group.

In the equations: x′
i = fi(x1, . . . ,xn, a1, . . . ,ar), if the x′

i are considered as func-
tions of the x and of the a, then according to Theorem 3, p. 40, there are differential
equations of the form:

(7)
∂x′

i

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(x′

1, . . . ,x
′
n) (i=1 ···n ; k=1 ···r),

and they can also be written:

(7’) ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak
( j=1 ···r ; i=1 ···n).

Here, according to Chap. 3, Proposition 3.4, p. 54, the ξ ji and the α jk are deter-
mined by the equations:

ξ ji(x′
1, . . . ,x

′
n) =

[
∂x′

i

∂b j

]

b=b0
, α jk(a1, . . . ,ar) =

[
∂ak

∂b j

]

b=b0
,

whose meaning has been explained in the indicated locations.
For the group a′

k = ϕk(a,b), one naturally obtains analogous differential equa-
tions:

∂a′
i

∂bk
=

r

∑
j=1
ψk j(b1, . . . ,br)ψ ji(a

′
1, . . . ,a

′
r) (i, k=1 ···r)

in which the ψk j have the same signification as in (7), while the ψ ji(a) are deter-
mined by:

ψ ji(a1, . . . ,ar) =
[
∂ai

∂b j

]

b=b0
.

In consequence, the ψ ji are the same functions of their arguments as the α ji; in
correspondence to the formulas (7) and (7’). We therefore obtain the two following
ones:

(8)
∂a′

i

∂bk
=

r

∑
j=1
ψk j(b1, . . . ,br)α ji(a′

1, . . . ,a
′
r) (i, k=1 ···r)

and:

(8’) α ji(a′
1, . . . ,a

′
r) =

r

∑
k=1

α jk(b1, . . . ,br)
∂a′

i

∂bk
( j, i=1 ···r).
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Now, the group: x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) contains the identity transforma-

tion and in fact, we can always suppose that the parameters a0
1, . . . ,a

0
r of the iden-

tity transformation lie in the region ((a)) defined on p. 26. According to p. 40,1

(Translator’s note: According to the footnote, this determinant is equal to (−1)r.)
the determinant:

∑±ψ11(a0) · · · ψrr(a0)

is then certainly different from zero.
On the other hand, it is clear that, also in the family of transformations: a′

k =
ϕk(a,b), the identity transformation: a′

1 = a1, . . . , a′
r = ar appears, and even, that

the transformation:

a′
k = ϕk(a1, . . . ,ar, a0

1, . . . ,a
0
r ) (k=1 ···r)

is the identity transformation. Thus, if we take into account the existence of the
differential equations (8) and if we apply Theorem 9, p. 82, we realize immediately
that the family of the ∞r transformations: a′

k = ϕk(a,b) coincides with the family of
the ∞r−1 one-term groups:

r

∑
k=1

λk

r

∑
i=1
αki(a1, . . . ,ar)

∂ f
∂ai

.

Consequently, the group: a′
k = ϕk(a,b) is generated by the r infinitesimal trans-

formations:

Ak f =
r

∑
j=1
αk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r).

Naturally, these infinitesimal transformations are independent of each other,
since there exists between them absolutely no relation of the form:

χ1(a1, . . . ,ar)A1 f + · · ·+χr(a1, . . . ,ar)Ar f = 0,

as we have already realized in Chap. 3, Theorem 3, p. 40; on the other hand, it can
also be concluded from this that the parameter group is simply transitive (Theo-
rem 71).

In the preceding, we have not only proved that the group: a′
k = ϕk(a,b) is gen-

erated by infinitesimal transformations, but we have also found these infinitesimal
transformations themselves. From this, we can immediately deduce a new important
property of the group: a′

k = ϕk(a,b).
The r infinitesimal transformations: X1 f , . . . ,Xr f of the group: x′

i = fi(x,a) are
linked together by relations of the form:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,
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and according to Theorem 21, p. 164, there are, between A1 f , . . . ,Ar f , relations of
the same form:

[Ai, Ak] =
r

∑
s=1

ciks As f ,

with the same constants ciks. By applying the terminology introduced in Chap. 17,
p. 303 and p. 305, we can hence state the following theorem:

Theorem 72. Every r-term group:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

is equally composed with its parameter group:

a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r),

or, what is the same, it is holoedrically isomorphic to it. If the infinitesimal transfor-
mations of the group: x′

i = fi(x,a) satisfy the relations:

ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak
(i=1 ···n ; j=1 ···r),

then the r expressions:

A j f =
r

∑
k=1

α jk(a1, . . . ,ar)
∂ f
∂ak

( j=1 ···r)

represent r independent infinitesimal transformations of the parameter group.1

§ 102. As usual, let:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

be independent infinitesimal transformations of an r-term group in the variables
x1, . . . ,xn.

Under the guidance of Chap. 9, p. 171 and p. 172, one determines r independent
infinitesimal transformations:

Ak f =
r

∑
j=1
αk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r)

which are linked together by no linear relation of the form:

χ1(a1, . . . ,ar)A1 f + · · ·+χr(a1, . . . ,ar)Ar f = 0,

1 LIE, Gesellschaft d. W. zu Christiania 1884, no. 15.
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but which stand pairwise in the relationships:

[Ai, Ak] =
r

∑
s=1

ciks As f ;

in other words, one determines r independent infinitesimal transformations of
any simply transitive r-term group which has the same composition as the group
X1 f , . . . ,Xr f .

Afterwards, one selects any system of values: a1, . . . ,ar in the neighborhood
of which the αki(a1, . . . ,ar) behave regularly and for which the determinant
∑±α11 · · · αrr does not vanish, and then, relative to this system of values, one
determines the general solutions of the r-term complete system:

(9)

n

∑
i=1
ξki(x′)

∂ f
∂x′

i
+

r

∑
j=1
αk j(a)

∂ f
∂a j

= X ′
k f +Ak f = 0

(k=1 ···r)

in the n+ r variables: x′
1, . . . ,x

′
n, a1, . . . ,ar.

Now, if F1(x′
1, . . . ,x

′
n, a1, . . . ,ar), . . . , Fn(x′, a) are the general solutions in ques-

tion, one sets:
xi = Fi(x′

1, . . . ,x
′
n, a1, . . . ,ar) (i=1 ···n) ;

by resolution with respect to x′
1, . . . ,x

′
n, one obtains equations of the form:

x′
i = f i(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

which, according to Theorem 23, p. 169, represent the finite transformations of an
r-term group, namely of the group: X1 f , . . . ,Xr f itself.

In the mentioned theorem, we already observed that the equations: x′
i = f i(x,a)

can be brought to the form:

x′
i = xi +

r

∑
k=1

ek Xk xi +
1···r
∑
k, j

ek e j

1 ·2
Xk Xj xi + · · · (i=1 ···n)

after the introduction of new parameters, so that these equations represent the finite
equations of the r-term group which is generated by the infinitesimal transforma-
tions: X1 f , . . . ,Xr f .

It has no influence whether we choose the group A1 f , . . . ,Ar f or any other group
amongst the infinitely many simply transitive groups which have the same compo-
sition as the group X1 f , . . . ,Xr f , and it is completely indifferent whether we choose
the system of values a1, . . . ,ar or any other system of values: in the way indicated,
we always obtain an analytic representation for the finite transformations of the
group: X1 f , . . . ,Xr f .

We have already made this remark in Chap. 9, though naturally not in the same
words. But at present, we have reached a point where we can see directly why one
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always obtains the equations of the same group for various choices of the group:
A1 f , . . . ,Ar f and of the systems of values: a1, . . . ,ar.

Indeed, let:

Ak f =
r

∑
j=1
βk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r)

be any other simply transitive group equally composed with the group: X1 f , . . . ,Xr f
for which the relations:

[Ai, Ak] =
r

∑
s=1

ciksAs f

are identically satisfied, and moreover, let: a0
1, . . . ,a

0
r be any system of values in the

neighborhood of which all βk j(a) behave regularly and for which the determinant
∑±β11 · · · βrr does not vanish.

Because the two groups: A1 f , . . . ,Ar f and A1 f , . . . ,Ar f are equally composed
and are both simply transitive, then (Theorem 64, p. 353) there are ∞r different
transformations:

ak = λk
(

a1, . . . ,ar,C1, . . . ,Cr
)

(k=1 ···r)

which transfer A1 f , . . . ,Ar f to: A1 f , . . . ,Ar f , respectively. The equations of these
transformations are solvable with respect to the arbitrary parameters: C1, . . . ,Cr, so
in particular, one can choose C1, . . . ,Cr in such a way that the equations:

ak = λk(a0
1, . . . ,a

0
r ,C1, . . . ,Cr) (k=1 ···r)

are satisfied.
If: C0

1 , . . . ,C
0
r are the values of C1, . . . ,Cr obtained in this way, and if one sets:

λk(a1, . . . ,ar,C0
1 , . . . ,C

0
r ) = πk(a1, . . . ,ar) (k=1 ···r),

then the equations:

(10) ak = πk(a1, . . . ,ar) (k=1 ···r)

represent a transformation which transfers A1 f , . . . ,Ar f to: A1 f , . . . ,Ar f , respec-
tively, and which in addition transfers the system of values: a0

1, . . . ,a
0
r to the system

of values: a1, . . . ,ar.
From this, it follows that we obtain the general solutions of the complete system:

(9’) X ′
k f +Ak f = 0 (k=1 ···r)

relative to: a1 = a0
1, . . . , ar = a0

r when we make the substitution: a1 = π1(a), . . . ,
ar = πr(a) in the general solutions:

Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n)
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of the complete system (9). Therefore, if we had used, instead of the simply tran-
sitive group: A1 f , . . . ,Ar f , the group: A1 f , . . . ,Ar f , and if we had used, instead of
the system of values: a1, . . . ,ar, the system of values: a0

1, . . . ,a
0
r , then instead of the

equations: x′
i = f i(x1, . . . ,xn, a1, . . . ,ar), we would have received the equations:

x′
i = f i

(

x1, . . . ,xn, π1(a), . . . , πr(a)
)

(i=1 ···n).

But evidently, these equations are transferred to the former ones when the
new parameters a1, . . . ,ar are introduced in place of a1, . . . ,ar by virtue of the
equations (10).

As in sections 100 and 101, p. 412 sq., we again want to start with a determined
form:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of the group: X1 f , . . . ,Xr f , and as before, we let a0
1, . . . ,a

0
r denote the parameters

attached to the identity transformation: x′
i = xi.

Then it is easy to identify the complete system, the integration of which leads
precisely to the equations: x′

i = fi(x,a).
The complete system in question simply has the form:

X ′
k +Ak f = 0 (k=1 ···r),

where, in the infinitesimal transformations:

Ak f =
r

∑
j=1
αk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r),

the functions αk j(a) are the same as in the differential equations (7’). If:

Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n)

denote the general solutions to the complete system: X ′
k f + Ak f = 0 relative to:

a1 = a0
1, . . . , ar = a0

r , then by resolution with respect to x′
1, . . . ,x

′
n, the equations:

xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n)

give the equations: x′
i = fi(x,a) exactly. All of this follows from the developments

of Chaps. 3 and 9.
We now apply these considerations to the parameter group associated to the

group: x′
i = fi(x,a), whose equations, according to p. 413, have the form:

a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r)

and whose identity transformation possesses the parameters: b1 = a0
1, . . . , br = a0

r .
The complete system, through the introduction of which the equations:

a′
k = ϕk(a,b) of the parameter group can be found, visibly reads:
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r

∑
j=1
αk j(a′

1, . . . ,a
′
r)
∂ f
∂a′

j
+

r

∑
j=1
αk j(b1, . . . ,br)

∂ f
∂b j

= 0 (k=1 ···r).

If we determine the general solutions:

Hj(a′
1, . . . ,a

′
r, b1, . . . ,br) ( j=1 ···r)

of this complete system relative to: bk = a0
k and if we then solve the equations:

a j = Hj(a′
1, . . . ,a

′
r, b1, . . . ,br) ( j=1 ···r)

with respect to a′
1, . . . ,a

′
r, we obtain: a′

k = ϕk(a,b).
Thus, the following holds:

Theorem 73. If one knows the infinitesimal transformations:

Ak f =
r

∑
j=1
αk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r)

of the parameter group of an r-term group and if one knows that the identity trans-
formation of this group has the parameters: a0

1, . . . ,a
0
r , whence the identity transfor-

mation of the parameter group also has the parameters: a0
1, . . . ,a

0
r , then one finds

the finite equations of the parameter group in the following way: One determines
the general solutions of the complete system:

r

∑
j=1
αk j(a′)

∂ f
∂a′

j
+

r

∑
j=1
αk j(b)

∂ f
∂b j

= 0 (k=1 ···r)

relative to: b1 = a0
1, . . . , br = a0

r ; if:

Hj(a′
1, . . . ,a

′
r, b1, . . . ,br) ( j=1 ···r)

are these general solutions, then one obtains the sought equations of the parameter
group by solving the r equations:

a j = Hj(a′
1, . . . ,a

′
r, b1, . . . ,br) ( j=1 ···r)

with respect to a′
1, . . . ,a

′
r.

If, in an r-term group x′
i = fi(x,a), one introduces new parameters ak in place of

the a, then the group receives a new form to which a new parameter group is also
naturally associated.

The connection between the new and the old parameter groups is very simple.
Indeed, if the new parameters are determined by the equations:

a j = λ j(a1, . . . ,ar) ( j=1 ···r),

then the new form of the group: x′
i = fi(x,a) is the following:
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x′
i = fi

(

x1, . . . ,xn, λ1(a), . . . , λr(a)
)

(i=1 ···n),

and the new parameter group reads:

λk(a′
1, . . . ,a

′
r) = ϕk

(

λ1(a), . . . , λr(a), λ1(b), . . . , λr(b)
)

(k=1 ···r)

while the old one was a′
k = ϕk(a,b). Consequently, the new one comes from the old

one when by executing the substitution a j = λ j(a) both on the a and on the b, that
is to say, by inserting, for the a′, a, b, the following values:

a′
j = λ j(a′), a j = λ j(a), b j = λ j(b) ( j=1 ···r)

in the equations: a′
k = ϕk(a,b).

§ 103. According to Theorem 72, p. 417, every r-term group has the same com-
position as its parameter group, and consequently, the r-term groups which have the
same parameter group are equally composed with each other.

Now, we claim that conversely, two equally composed r-term groups can always
be brought, after the introduction of new parameters, to a form such that they both
have the same parameter group.

In order to prove this claim, we imagine that the infinitesimal transformations of
the two groups are given; let the transformations of the first group be:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r),

and the transformations of the other group be:

Yk f =
m

∑
μ=1

ηkμ(y1, . . . ,ym)
∂ f
∂yμ

(k=1 ···r).

Since the two groups are equally composed, we can assume that the Xk f and the Yk f
are already chosen in such a way that, simultaneously with the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

the relations:

[Yi, Yk] =
r

∑
s=1

ciks Ys f

hold.
Lastly, we imagine that r independent infinitesimal transformations:
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Ak f =
r

∑
j=1
αk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r)

are given which generate a simply transitive r-term group equally composed with
these groups and which stand pairwise in the relationships:

[Ai, Ak] =
r

∑
s=1

ciks As f .

At present, we form the complete system:

X ′
k f +Ak f = 0 (k=1 ···r)

and we determine its general solutions:

Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n)

relative to an arbitrary system of values: a1 = a0
1, . . . , ar = a0

r ; furthermore, we form
the complete system:

Y ′
k f +Ak f = 0 (k=1 ···r)

and we determine its general solutions:

Fμ(y′
1, . . . ,y

′
m, a1, . . . ,ar) (i=1 ···n)

relative to the same system of values: ak = a0
k .

In addition, we solve the n equations: xi = Fi(x′,a) with respect to x′
1, . . . ,x

′
n:

(11) x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n),

and likewise, the m equations: yμ = Fμ(y′,a) with respect to y′
1, . . . ,y

′
m:

(11’) y′
μ = fμ(y1, . . . ,ym, a1, . . . ,ar) (μ=1 ···n).

In whichever form the finite equations of the group: X1 f , . . . ,Xr f are present,
then obviously, they can be brought to the form (11) by introducing new parameters,
and likewise, in whichever form the finite equations of the group: Y1 f , . . . ,Yr f are
present, they can always be given the form (11’) by introducing new parameters.

But Theorem 73, p. 421, can be applied to the two groups (11) and (11’). Indeed,
in the two groups, the identity transformation has the parameters: a0

1, . . . ,a
0
r and for

the two groups, the associated parameter groups contain the r independent infinites-
imal transformations: A1 f , . . . ,Ar f , and consequently, according to the mentioned
theorem, one can indicate for each one of the two groups the associated parameter
group, and these parameter groups are the same for both of them.

As a result, the claim stated above is proved. —
Thus, it is at present established that two groups which have the same parameter

group are equally composed, and on the other hand, that two groups which are
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equally composed can be brought, by introducing new parameters, to a form in
which they both have the same parameter group. Thus, we can say:

Theorem 74. Two r-term groups:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

and:
y′
μ = gμ(y1, . . . ,ym, a1, . . . ,ar) (μ=1 ···m)

are equally composed if and only if it is possible to represent the parameters:
a1, . . . ,ar as independent functions of the a:

ak = χk(a1, . . . ,ar) (k=1 ···r)

in such a way that the parameter group of the group:

y′
μ = gμ

(

y1, . . . ,ym, χ1(a), . . . ,χr(a)
)

(μ=1 ···m)

coincides with the parameter group of the group: x′
i = fi(x,a).

It is particularly noticeable that our two equally composed groups: X1 f , . . . ,Xr f
and: Y1 f , . . . ,Yr f then have the same parameter group when one writes their finite
equations in the canonical form:

(12) x′
i = xi +

r

∑
k=1

ek Xk xi +
1···r
∑
k, j

ek e j

1 ·2
Xk Xj xi + · · · (i=1 ···n)

and, respectively:

(12’) y′
μ = yμ +

r

∑
k=1

ek Yk yμ +
1···r
∑
k, j

ek e j

1 ·2
Yk Yj yμ + · · · (μ=1 ···m).

In fact, from the developments in Chap. 4, Sect. 4.5, it follows that the equa-
tions (11) receive the form (12) after the substitution:

(13)
aν = a0

ν +
r

∑
k=1

ek
[

Ak aν
]

a=a0 +
1···r
∑
k, j

ek e j

1 ·2

[

Ak A j aν
]

a=a0 + · · ·

(ν=1 ···r)

and that the equations (11’) are transferred to (12’) by the same substitution.
Now, since the equations (13) represent a transformation between the parameters:
a1, . . . ,ar and e1, . . . ,er and since the two groups (11) and (11’) have their parameter
group in common, it follows that one and the same parameter group is associated to
the two groups (12) and (12’).

Thus, the following holds:
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Proposition 1. If the r independent infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

stand pairwise in the relationships:

[Xi, Xk] =
r

∑
s=1

ciks Xs f

and if, on the other hand, the r independent infinitesimal transformations:

Yk f =
m

∑
μ=1

ηkμ(y1, . . . ,ym)
∂ f
∂yμ

(k=1 ···r)

stand pairwise in the same relationships:

[Yi, Yk] =
r

∑
s=1

ciks Ys f ,

then the two equally composed groups:

x′
i = xi +

r

∑
k=1

ek Xk xi +
1···r
∑
k, j

ek e j

1 ·2
Xk Xj xi + · · · (i=1 ···n)

and:

y′
μ = yμ +

r

∑
k=1

ek Yk yμ +
1···r
∑
k, j

ek e j

1 ·2
Yk Yj yμ + · · · (μ=1 ···m)

have one and the same parameter group.

Now, we imagine that two arbitrary equally composed r-term groups:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

and:
y′
μ = fμ(y1, . . . ,ym, a1, . . . ,ar) (μ=1 ···m)

are presented which already have a form such that the parameter group for both is
the same.

Let the infinitesimal transformations of the parameter group in question be:

Ak f =
r

∑
j=1
αk j(a1, . . . ,ar)

∂ f
∂a j

(k=1 ···r)

and let them be linked together by the relations:
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[Ai, Ak] =
r

∑
s=1

ciks As f .

According to p. 415, x′
1, . . . ,x

′
n, when considered as functions of x1, . . . ,xn,

a1, . . . ,ar, satisfy certain differential equations of the form:

ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂x′

i

∂ak
( j=1 ···r ; i=1 ···n).

Here, the ξ ji(x′) are completely determined functions, because by resolution of the
equations: x′

i = fi(x,a), we get, say: xi = Fi(x′,a), whence it holds identically:

ξ ji(x′
1, . . . ,x

′
n) =

r

∑
k=1

α jk(a1, . . . ,ar)
[
∂ fi(x,a)
∂ak

]

x=F(x′,a)
,

so that we can therefore find the ξ ji(x′) without difficulty, when we want.
According to Theorem 21, p. 164, the r expressions:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

are independent infinitesimal transformations and they are linked together by the
relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ;

naturally, they generate the group: x′
i = fi(x,a).

For the group: y′
μ = fμ(y,a), there are in a corresponding way differential equa-

tions of the form:

η jμ(y′
1, . . . ,y

′
m) =

r

∑
k=1

α jk(a1, . . . ,ar)
∂y′
μ

∂ak
( j=1 ···r ; μ=1 ···m),

where the η jμ(y′) are completely determined functions. The r expressions:

Yk f =
m

∑
μ=1

ηkμ(y1, . . . ,ym)
∂ f
∂yμ

(k=1 ···r)

are independent infinitesimal transformations and they are linked together by the
relations:

[Yi, Yk] =
r

∑
s=1

ciks Ys f ;

naturally, they generate the group: y′
μ = fμ(y,a).

Now, exactly as on p. 424, we recognize that, after the substitution:
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aν = a0
ν +

r

∑
k=1

ek
[

Ak aν
]

a=a0 + · · · (ν=1 ···r),

the groups: x′
i = fi(x,a) and: y′

μ = fμ(y,a) are of the forms:

x′
i = xi +

r

∑
k=1

ek Xk xi + · · · (i=1 ···n)

and, respectively:

y′
μ = yμ +

r

∑
k=1

ek Yk yμ + · · · (μ=1 ···m).

Therefore, we get the

Proposition 2. If the two r-term groups:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

and:
y′
μ = fμ(y1, . . . ,ym, a1, . . . ,ar) (μ=1 ···m)

have the same parameter group, then it is possible to introduce, in place of the a,
new parameters: e1, . . . ,er so that the two groups receive the forms:

x′
i = xi +

r

∑
k=1

ek Xk xi + · · · (i=1 ···n)

and, respectively:

y′
μ = yμ +

r

∑
k=1

ek Yk yμ + · · · (μ=1 ···m) ;

here, X1 f , . . . ,Xr f and Y1 f , . . . ,Yr f are independent infinitesimal transformations of
the two groups such that, simultaneously with the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f

there hold the relations:

[Yi, Yk] =
r

∑
s=1

ciks Ys f ,

so that the two groups are related to each other in a holoedrically isomorphic way
when the infinitesimal transformation e1 Y1 f + · · ·+ er Yr f is associated to every
infinitesimal transformation: e1 X1 f + · · ·+ er Xr f .
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Now, concerning the two groups: x′
i = fi(x,a) and: y′

μ = fμ(y,a), we make the
same assumptions as in Proposition 2; in addition, we assume that: a′

k = ϕk(a,b) are
the finite equations of their common parameter group.

Under this assumption, the following obviously holds true of each of the two
groups: If two transformations of the group which have the parameters: a1, . . . ,ar

and: b1, . . . ,br, respectively, are executed one after the other, then the resulting
transformation belongs to the group and it possesses the parameters: ϕ1(a,b), . . . ,
ϕr(a,b).

We can express this fact somewhat differently if we mutually associate the trans-
formations of the two groups in such a way that every transformation of the one
group corresponds to the transformation of the other group which has the same pa-
rameters. Indeed, we can then say: if S is a transformation of the one group and if
S is the corresponding transformation of the other group, and moreover, if T is a
second transformation of the one group and if T the corresponding transformation
of the other group, then the transformation ST of the one group corresponds to the
transformation ST in the other group.

Such a mutual association of the transformations of both groups is then, accord-
ing to Theorem 74, p. 424, always possible when and only when the two groups are
equally composed. So we have the:

Theorem 75. Two r-term groups are equally composed if and only if it is possible to
relate the transformations of the one group to the transformations of the other group
in a univalent invertible way so that the following holds true: If, in the one group,
one executes two transformations one after the other and if, in the other group, one
executes one after the other and in the same order the corresponding transforma-
tions, then the transformation that one obtains in the one group corresponds to the
transformation that one obtains in the other group.2

The above considerations provide a new important result when they are applied
to Proposition 1, p. 424. In order to be able to state this result under the most simple
form, we remember two different things: firstly, that the two groups: X1 f , . . . ,Xr f
and: Y1 f , . . . ,Yr f are related to each other in a holoedrically isomorphic way when to
every infinitesimal transformation: e1 X1 f + · · ·+ er Xr f is associated the infinitesi-
mal transformation: e1 Y1 f + · · ·+er Yr f , and secondly, that the expression: e1 X1 f +
· · ·+ er Xr f can also be interpreted as the symbol of a finite transformation of the
group: X1 f , . . . ,Xr f (cf. Chap. 17, p. 305 and Chap. 15, p. 268). By taking this into
account, we can say:

Proposition 3. Let the two equally composed r-term groups:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

and:

2 Cf. LIE, Archiv for Mathematik og Naturvidenskab 1876; Math. Ann. Vol. XXV, p. 77; G. d.
W. zu Christiania, 1884, no. 15.
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Yk f =
m

∑
μ=1

ηkμ(y1, . . . ,ym)
∂ f
∂yμ

(k=1 ···r)

be related to each other in a holoedrically isomorphic way when one associates to
every infinitesimal transformation: e1 X1 f + · · ·+ er Xr f the infinitesimal transfor-
mation: e1 Y1 f + · · ·+ er Yr f so that, simultaneously with the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f

there hold the relations:

[Yi, Yk] =
r

∑
s=1

ciks Ys f .

Then, if one interprets the expressions: ∑ ek Xk f and ∑ ek Yk f as the general sym-
bols of the finite transformations of the two groups: X1 f , . . . ,Xr f and Y1 f , . . . ,Yr f ,
the following holds true: If the two transformations: ∑ ek Xk f and ∑ e′

k Xk f of the
group: X1 f , . . . ,Xr f give, when executed one after the other, the transformation:
∑ e′′

k Xk f , then the two transformations: ∑ ek Yk f and ∑ e′
k Yk f give the transforma-

tion: ∑ e′′
k Yk f when executed one after the other.

Thus, if one has related two equally composed r-term groups in a holoedrically
isomorphic way in the sense of Chap. 17, p. 305, then at the same time, thanks
to this, one has established a univalent invertible relationship between the finite
transformations of the two groups, as is described in Theorem 75.

But the converse also holds true: If one has produced a univalent invertible rela-
tionship between the transformations of two r-term equally composed groups which
has the property described in Theorem 75, then at the same time, thanks to this, the
two groups are related to each other in a holoedrically isomorphic way.

In fact, let: x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) be the one group and let: y′

μ =
fμ(y1, . . . ,ym, a1, . . . ,ar) be the transformation of the other group that corre-
sponds to the transformation: x′

i = fi(x,a). Then the two groups: x′
i = fi(x,a)

and y′
μ = fμ(y,a) obviously have one and the same parameter group and hence,

according to Proposition 2, p. 427, by introducing appropriate new parameters:
e1, . . . ,er, they can be given the following forms:

x′
i = xi +

r

∑
k=1

ek Xk xi + · · · (i=1 ···n)

and:

y′
μ = yμ +

r

∑
k=1

ek Yk yμ + · · · (μ=1 ···m).

From this, it results that the said univalent invertible relationship between the trans-
formations of the two groups amounts to the fact that, to every finite transforma-
tion: e1 X1 f + · · ·+ er Xr f of the one group is associated the finite transformation:
e1 Y1 f + · · ·+ er Yr f of the other group. Therefore at the same time, to every in-
finitesimal transformation: ∑ ek Xk f is associated the infinitesimal transformation:
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∑ ek Yk f , and as a result, according to Proposition 2, a holoedrically isomorphic
relationship between the two groups is effectively established.

In the theory of substitutions, one defines the holoedric isomorphism of two
groups and the holoedrically isomorphic relationship between two groups dif-
ferently than what we have done in Chap. 17. There, one says that two groups
with the same number of substitutions are “equally composed” or “holoedrically
isomorphic” when one can produce, between the transformations of the two groups,
a univalent invertible relationship which has the property described in Theorem 75,
p. 428; if such a relationship between two holoedrically isomorphic groups is
really established, then one says that the two groups are “related to each other in a
holoedrically isomorphic way”.

But already on p. 305, we observed that materially [MATERIELL], our definition
of the concept in question corresponds precisely to the one which is usual in the
theory of substitutions, as far as such a correspondence may in any case be possi-
ble between domains so different as the theory of substitutions and the theory of
transformation groups.

Our last developments show that the claim made on p. 305 is correct. From Theo-
rem 75, p. 428, it follows that two r-term groups which are holoedrically isomorphic
in the sense of Chap. 17, p. 305, must also be called holoedrically isomorphic in the
sense of the theory of substitutions, and conversely. From Proposition 3, p. 428, and
from the remarks following, it is evident that two r-term groups which are related to
each other in a holoedrically isomorphic way in the sense of Chap. 17, p. 305, are
also holoedrically isomorphic in the sense of substitution theory.

It still remains to prove that our definition of the meroedric isomorphism (cf.
Chap. 17, p. 305) also corresponds to the definition of meroedric isomorphism that
is given by the theory of substitutions.

Let X1 f , . . . ,Xr−q f , . . . ,Xr f and Y1 f , . . . ,Yr−q f be two meroedrically isomorphic
groups and let Xr−q+1 f , . . . ,Xr f be precisely the invariant subgroup of the r-term
group which corresponds to the identity transformation of the (r − q)-term group.
Lastly, let A1 f , . . . ,Ar f be a simply transitive group in the variables a1, . . . ,ar which
has the same composition as X1 f , . . . ,Xr f . Here, we want to assume that a1, . . . ,ar−q

are solutions of the complete system:

Ar−q+1 f = 0, . . . , Ar f = 0.

After this choice of the variables, A1 f , . . . ,Ar−q f has the form:

Ak f =
r−q

∑
i=1
αki(a1, . . . ,ar−q)

∂ f
∂ai

+
r

∑
j=r−q+1

βk j(a1, . . . ,ar)
∂ f
∂a j

(k=1 ···r−q),

while Ar−q+1 f , . . . ,Ar f have the form:
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Ak f =
r

∑
j=r−q+1

βk j(a1, . . . ,ar)
∂ f
∂a j

(k=1 ···r−q+1).

At the same time, it is clear that the reduced infinitesimal transformations:

Ak f =
r−q

∑
i=1
αki(a1, . . . ,ar−q)

∂ f
∂ai

(k=1 ···r−q)

generate a simply transitive group equally composed with the (r − q)-term group
Y1 f , . . . ,Yr−q f .

If one denotes by Bk f , Bk f the infinitesimal transformations Ak f , Ak f written
down in the variables b instead of the variables a, then according to earlier discus-
sions, one finds the parameter group of the (r − q)-term group Y1 f , . . . ,Yr−q f by
integrating the complete system:

Ak f +Bk f = 0 (k=1 ···r−q),

and also the parameter group of the r-term group X1 f , . . . ,Xr f by integrating the
complete system:

Ak f +Bk f = 0 (k=1 ···r).

If the equations of the parameter group associated with the (r − q)-term group
obtained in this way are, say:

a′
k = ϕk(a1, . . . ,ar−q, b1, . . . ,br−q) (k=1 ···r−q),

then it is clear that the parameter group associated with the r-term group is repre-
sentable by equations of the form:

a′
k = ϕk(a1, . . . ,ar−q, b1, . . . ,br−q) (k=1 ···r−q)

a′
i = ψi(a1, . . . ,ar, b1, . . . ,br) (i=r−q+1 ···r).

From this, it follows that the groups X1 f , . . . ,Xr f and Y1 f , . . . ,Yr−q f are meroedri-
cally isomorphic in the sense of substitution theory.

At present, we want to derive the result just obtained in another way. However, we
do not consider it to be necessary to describe this second method in detail, although
it is in itself notable, because it is very similar to the preceding developments.

We imagine that the transformation equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

are presented, but we leave undecided whether the a are essential parameters or not.
Now, if the fi satisfy differential equations of the form:

∂ fi

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji( f1, . . . , fn)
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which can be resolved with respect to the ξ ji:

ξ ji( f ) =
r

∑
k=1

α jk(a1, . . . ,ar)
∂ fi

∂ak
,

then we realize easily (cf. Chap. 4, Sect. 4.6) that every transformation: x′
i = fi(x,a)

whose parameters a lie in a certain neighborhood of a1, . . . ,ar can be obtained by
executing firstly the transformation: xi = fi(x, a), and then a certain transformation:

x′
i = wi(x1, . . . ,xn, λ1, . . . ,λr)

of a one-term group:

λ1 X1 f + · · ·+λr Xr f =
r

∑
k=1

λk

n

∑
i=1
ξki(x)

∂ f
∂xi

.

In addition, we find that the concerned values of the parameters λ only depend upon
the form of the functions α jk(a), and on the two systems of values ak and ak as well.

Under the assumptions made, when one sets:

r

∑
k=1

α jk(a)
∂ f
∂ak

= Ak f ,
n

∑
i=1
ξki(x′)

∂ f
∂x′

i
= X ′

k f ,

one now obtains (compare with pages 161 sq.) that relations of the form:

[X ′
i , X ′

k] =
r

∑
s=1
ϑiks(x′

1, . . . ,x
′
n, a1, . . . ,ar)X ′

s f

[Ai, Ak] =
r

∑
s=1
ϑiks(x′

1, . . . ,x
′
n, a1, . . . ,ar)As f

hold, in which the ϑiks are even independent of the x′. However, contrary to the
earlier analogous developments, it cannot be proved now that in the two latter equa-
tions, the ϑ can be set equal to absolute constants. But when we consider only the
equations:

[X ′
i , X ′

k] =
r

∑
s=1
ϑiks(a)X ′

s f ,

it is clear that by particularizing the a, they provide relations of the form:

[X ′
i , X ′

k] =
r

∑
s=1

ciks X ′
s f

in which the ciks denote constants. Hence it is also true under our present assump-
tions that all finite transformations λ1 X1 f + · · ·+λr Xr f form a group which pos-
sesses the same number of essential parameters as the family x′

i = fi(x,a).
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On the other hand, let X ′
1 f , . . . ,X ′

r f denote r infinitesimal transformation that are
not necessarily independent and which stand in the relationships:

[X ′
i , X ′

k] =
r

∑
s=1

ciks X ′
s f ;

furthermore, let:

Ak f =
r

∑
i=1
αki(a1, . . . ,ar)

∂ f
∂ai

(k=1 ···r)

be r independent infinitesimal transformations of a simply transitive group whose
composition is given by the equations:

[Ai, Ak] =
r

∑
s=1

ciks As f .

Now, we form the r-term complete system:

X ′
k f +Ak f = 0 (k=1 ···r),

we compute its general solutions F1, . . . ,Fn relative to a suitable system of values
a1 = a0

1, . . . , ar = a0
r and we set: x1 = F1, . . . , xn = Fn. Then, the equations resulting

by resolution:
x′

k = fk(x1, . . . ,xn, a1, . . . ,ar)

determine a family of at most ∞r transformations which obviously comprises the
identity transformation x′

k = xk.
Now, by proceeding exactly as on p. 167, we first obtain the system of equations:

r

∑
μ=1

α jμ(a)
∂x′
ν

∂aμ
= ξ jν(x′),

and then from it, by resolution:

∂x′
ν

∂aμ
=

r

∑
j=1
ψμ j(a)ξ jν(x′).

From this, we conclude: firstly, that the family x′
i = fi(x,a) consists of the trans-

formations of all one-term groups ∑ λk Xk f , secondly, that all these transformations
form a group with at most r essential parameters, and thirdly that from the two
transformations:

x′
i = fi(x,a), x′′

i = fi(x′,b),

a third transformation x′′
i = fi(x,c) comes into existence whose parameters: c1 =

ϕ1(a,b), . . . , cr = ϕr(a,b) are determined by these two systems of values ak, bi and
by the form of the functions αk j(a).
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But with this, the result obtained earlier on is derived in a new manner, without
the need to enter into further details.

If a given r-term group X1 f , . . . ,Xr−q f , . . . ,Xr f contains a known invariant sub-
group, say Xr−q+1 f , . . . ,Xr f , then at present, we can easily indicate a meroedrically
isomorphic (r − q)-term group, the identity transformation of which corresponds
to the said invariant subgroup (cf. p. 315, footnote). In fact, one forms a simply
transitive group A1 f , . . . ,Ar−q f , . . . ,Ar f in the variables a1, . . . ,ar which is equally
composed with the r-term group X1 f , . . . ,Xr f . At the same time, we can assume,
as earlier on, that a1, . . . ,ar−q are invariants of the q-term group Ar−q+1 f , . . . ,Ar f .
Then if we again set:

Ak f =
r−q

∑
i=1
αki(a1, . . . ,ar−q)

∂ f
∂ai

+
r

∑
j=r−q+1

βk j(a)
∂ f
∂a j

(k=1 ···r−q),

then the reduced infinitesimal transformations:

Ak f =
r−q

∑
i=1
αki(a1, . . . ,ar−q)

∂ f
∂ai

(k=1 ···r−q)

obviously generate an (r −q)-term group having the constitution demanded.
In addition, it results from these developments that every proposition about the

composition of (r −q)-term groups produces without effort a proposition about the
composition of r-term groups with a q-term invariant subgroup. This general prin-
ciple, which has its analogue in the theory of substitutions, will be exploited in the
third volume.3

§ 104. In Chap. 19, Proposition 3, p. 370, we gave a remarkable form to the
criterion for the similarity of equally composed groups; namely, we showed that
two equally composed groups in the same number of variables are similar to each
other if and only if they can be related to each other in a holoedrically isomorphic,
completely specific way.

At that time, we had already announced that the criterion in question could be
simplified in an essential way as soon as the two concerned groups are transitive;
we announced that the following theorem holds:

Theorem 76. Two equally composed transitive groups:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

and:

3 Cf. LIE, Math. Ann. Vol. XXV, p. 137.
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Zk f =
n

∑
i=1
ζki(y1, . . . ,yn)

∂ f
∂yi

(k=1 ···r)

in the same number of variables are similar to each other if and only if the fol-
lowing condition is satisfied: If one chooses a determined point x0

1, . . . ,x
0
n which

lies on no manifold invariant by the group: X1 f , . . . ,Xr f , then it must be possible
to relate the two groups to one another in a holoedrically isomorphic way so that
the largest subgroup contained in the group: X1 f , . . . ,Xr f which leaves invariant
the point: x0

1, . . . ,x
0
n corresponds to the largest subgroup of the group: Z1 f , . . . ,Zr f

which leaves at rest a certain point: y0
1, . . . ,y

0
n.4

From Proposition 3, p. 370, it is clear that this condition for the similarity of the
two groups is necessary; hence we need only to prove that it is also sufficient.

So, we imagine that the assumptions of the theorem are satisfied, namely we
imagine that in the group: Z1 f , . . . ,Zr f , independent infinitesimal transformations:
Y1 f , . . . ,Yr f are chosen so that our two groups are related to each other in the
holoedrically isomorphic way described in Theorem 76, when to every infinitesimal
transformation: e1 X1 f + · · ·+ er Xr f is associated the infinitesimal transformation:
e1 Y1 f + · · ·+ er Yr f .

According to the developments of the preceding section, by means of the con-
cerned holoedrically isomorphic relationship, a univalent invertible relationship be-
tween the finite transformations of the two groups is also produced. We can de-
scribe the latter relationship simply by interpreting, in the known way, ∑ ek Xk f and
∑ ek Yk f as symbols of the finite transformations of our groups and in addition, by
denoting for convenience the finite transformation ∑ ek Xk f shortly by: T(e), and
also, the transformation: ∑ ek Yk f shortly by: T(e).

Indeed, under these assumptions, the holoedrically isomorphic relationship be-
tween our two groups associates the transformation T(e) to the transformation T(e),
and conversely, and this association is constituted in such a way that the two trans-
formations: T(e) T(e′) and T(e)T(e′) are related to each other, where e1, . . . ,er and
e′

1, . . . ,e
′
r denote completely arbitrary systems of values.

The point: x0
1, . . . ,x

0
n remains invariant by exactly r − n independent infinitesi-

mal transformations of the group X1 f , . . . ,Xr f , and consequently, it admits exactly
∞r−n different finite transformations of this group, transformations which form, as
is known, an (r −n)-term subgroup. For the most general transformation T(e) which
leaves at rest the point: x0

1, . . . ,x
0
n, we want to introduce the symbol: S(a1,...,ar−n), or

shortly: S(a); here, by a1, . . . ,ar−n we understand arbitrary parameters.
We denote by S(a1,...,ar−n), or shortly by S(a), the transformations T(e) of the

group: Z1 f , . . . ,Zr f which are associated to the transformations S(a) of the group:
X1 f , . . . ,Xr f ; under the assumptions made, the∞r−n transformations S(a) then form
the largest subgroup contained in the group: Z1 f , . . . ,Zr f which leaves invariant the
point: y0

1, . . . ,y
0
n. This is the reason why the point: y0

1, . . . ,y
0
n belongs to no manifold

which remains invariant by the group: Z1 f , . . . ,Zr f .

After these preparations, we conduct the following reflections.

4 Cf. LIE, Archiv for Math. og Naturv. Christiania 1885, p. 388 and p. 389.
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By execution of the transformation T(e) the point x0
i is transferred to the point:

(x0
i )T(e), whose position naturally depends on the values of the parameters e1, . . . ,er.

According to Chap. 14, Proposition 1, p. 238, this new point in turn admits exactly
∞r−n transformations of the group: X1 f , . . . ,Xr f , namely all transformations of the
form:

T −1
(e) S(a) T(e)

with the r −n arbitrary parameters: a1, . . . ,ar−n.
On the other hand, the point y0

i is transferred by the transformation T(e) to the
point: (y0

i )T(e) which, naturally, admits exactly ∞r−n transformations of the group:
Z1 f , . . . ,Zr f , namely all transformations of the form:

T−1
(e)S(a)T(e).

Now, this is visibly the transformations of the group: Z1 f , . . . ,Zr f which is as-
sociated to the transformation: T −1

(e) S(a) T(e) of the group: X1 f , . . . ,Xr f ; so, we see
that, by means of our holoedrically isomorphic relationship, exactly the same holds
true for the points: (x0

i )T(e) and (y0
i )T(e) as for the points: x0

i and y0
i ; namely, to

the largest subgroup contained in the group X1 f , . . . ,Xr f which leaves invariant the
point: (x0

i )T(e) there corresponds the largest subgroup of the group: Z1 f , . . . ,Zr f by
which the point: (y0

i )T(e) remains fixed.
Now, we give to the parameters e1, . . . ,er in the transformations T(e) and

T(e) all possible values, gradually. Then because of the transitivity of the group:
X1 f , . . . ,Xr f , the point: (x0

i )T(e) is transferred gradually to all points of the space
x1, . . . ,xn that lie on no invariant manifold, hence to all points in general position.
At the same time, the point: (y0

i )T(e) is transferred to all points in general position
in the space y1, . . . ,yn.

With these words, it is proved that the holoedrically isomorphic relationship be-
tween our two groups possesses the properties put together in Proposition 3, p. 370;
consequently, according to that proposition, the group: X1 f , . . . ,Xr f is similar to the
group: Z1 f , . . . ,Zr f and the correctness of Theorem 76, p. 434, is established.

Moreover, for the proof of Theorem 76, one does not need to go back to the cited
proposition. Rather, it can be directly concluded from the developments above that a
transformation exists which transfers the infinitesimal transformations: X1 f , . . . ,Xr f
to Y1 f , . . . ,Yr f , respectively.

We have seen that through our holoedrically isomorphic relationship, the point:
(y0

i )T(e) of the space y1, . . . ,yn is associated to the point: (x0
i )T(e) of the space

x1, . . . ,xn, and to be precise, in this way, a univalent invertible relationship is
produced between the points of the two spaces in general position, inside a certain
region. Now, if we interpret the xi and the yi as point coordinates of one and the
same n-times extended space: Rn, and both with respect to the same system of
coordinates, then there is a completely determined transformation T of the space
Rn which always transfers the points with the coordinates: (x0

i )T(e) to the point with
the coordinates: (y0

i )T(e). We will prove that this transformation T transfers the



§ 104. 437

infinitesimal transformations: X1 f , . . . ,Xr f to: Y1 f , . . . ,Yr f , respectively, so that our
two r-term groups are similar to each other precisely thanks to the transformation
T.

The transformation T satisfies all the infinitely many symbolic equations:

(14) (x0
i )T(e′)T = (y0

i )T(e′),

with the r arbitrary parameters e′
1, . . . ,e

′
r, and it is even defined by these equations.

From this, it results that T satisfies at the same time the symbolic equations:

(x0
i )T(e′) T(e)T = (y0

i )T(e′)T(e),

whichever values the parameters e and e′ may have.
If we compare these equations with the equations (14) which we can obviously

also write as:
(x0

i )T(e′) = (y0
i )T(e′)T

−1,

then we obtain:
(y0

i )T(e′)T
−1 T(e)T = (y0

i )T(e′)T(e),

or, what is the same:

(15) (y0
i )T(e′)T

−1 T(e)TT−1
(e) = (y0

i )T(e′).

By appropriate choice of e′
1, . . . ,e

′
r, the point: (y0

i )T(e′) can be brought into coin-
cidence with every point in general position in Rm, hence the equations (15) express
that every transformation:

(16) T−1 T(e)TT−1
(e)

leaves fixed all points in general position in Rn. But obviously, this is possible only
when all transformations (16) coincide with the identity transformation.

With these words, we have proved that the following∞r symbolic equations hold:

(17) T−1 T(e)T = T(e),

hence that the transformation T transfers every transformation T(e) of the group:
X1 f , . . . ,Xr f to the corresponding transformation T(e) of the group: Z1 f , . . . ,Zr f .
In other words, the expression: e1 X1 f + · · ·+ er Xr f converts into the expression:
e1 Y1 f + · · ·+er Yr f after the execution of the transformation T, or, what is the same,
the r infinitesimal transformations: X1 f , . . . ,Xr f are transferred, by the execution of
T, to Y1 f , . . . ,Yr f , respectively.

Consequently, the two groups: X1 f , . . . ,Xr f and Z1 f , . . . ,Zr f are similar to each
other and Theorem 76, p. 434, is now proved, independently of Proposition 3, p. 370.
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§ 105. In § 100, we saw that the same equations defined there: a′
k = ϕk(a,b)

represented a group, and in fact, we realized that between the r functions ϕk(a,b),
the r identities:

(5) ϕk
(

ϕ1(a,b), . . . , ϕr(a,b), c1, . . . ,cr
) ≡ ϕk

(

a1, . . . ,ar, ϕ1(b,c), . . . ,ϕr(b,c)
)

held true.
Now, one convinces oneself in the same way that the equations:

(18) a′
k = ϕk(b1, . . . ,br, a1, . . . ,ar) (k=1 ···r)

in the variables a also represent a group with the parameters b and to be precise, a
simply transitive r-term group.

We now make a few remarks about this new group.
This group possesses the remarkable property that each of its transformations is

interchangeable with every transformation of the parameter group: a′
k = ϕk(a,b).

Indeed, if one first executes the transformation (18) and then any transformation:

a′′
k = ϕk(a′

1, . . . ,a
′
r, c1, . . . ,cr) (k=1 ···r)

of the parameter group: a′
k = ϕk(a,b), then one obtains the transformation:

a′′
k = ϕk

(

ϕ1(b,a), . . . ,ϕr(b,a), c1, . . . ,cr
)

(k=1 ···r)

which, because of the identities (5), can be brought to the form:

a′′
k = ϕk

(

b1, . . . ,br, ϕ1(a,c), . . . , ϕr(a,c)
)

(k=1 ···r).

But this transformation can be obtained by first executing the transformation:

a′
k = ϕk(a1, . . . ,ar, c1, . . . ,cr)

of the parameter group and then the transformation:

a′′
k = ϕk(b1, . . . ,br, a′

1, . . . ,a
′
r)

of the group (18).
Thus, the group (18) is nothing else than the reciprocal simply transitive group

associated to the parameter group;5 according to Theorem 68, p. 391, it is equally
composed with the parameter group, and even similar to it; besides, it is naturally
also equally composed with the group: x′

i = fi(x,a) itself.

—————–

5 The observation that the two groups (6) and (18) discussed in the text stand in a relationship
such that the transformations of the one are interchangeable with the transformations of the other,
is due to ENGEL.



Chapter 22
The Determination of All r-term Groups

we have already emphasized in Chap. 17, p. 309, that every system of constants ciks

which satisfies the relations:

(1)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ciks + ckis = 0
r

∑
ν=1

(

cikν cν js + ck jν cν is + c jiν cνks
)

= 0

(i, k, j, s=1 ···r).

represents a possible composition of r-term groups and that there are always r-
term groups whose composition is determined just by this system of ciks. As we
remarked at the time, the proof for this will be first provided in full generality in the
second volume; there, we will imagine that an arbitrary system of ciks having the
said constitution is presented and we will prove that in order to find the infinitesimal
transformations of an r-term group having the composition ciks, only the integration
of simultaneous systems of ordinary differential equations is required in any case.
The finite equations of this group can likewise be obtained by integrating ordinary
differential equations, according to Chaps. 4 and 9.

Now in the present chapter, we show two kinds of things:
Firstly, we imagine that the finite equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an r-term group are presented and we show that by integrating simultaneous
systems of ordinary differential equations, one can in every case find all r-term
transitive groups which are equally composed with the group: x′

i = fi(x,a).
Secondly, we show that one can determine all intransitive r-term groups without

integration as soon as one knows all transitive groups with r or fewer parameters.
If we combine these results with what was said above and if we add that ac-

cording to Theorem 53, p. 311, the determination of all possible compositions of
groups with a given number of parameters requires only algebraic operations, then
we immediately realize the following:

c© Springer-Verlag Berlin Heidelberg 2015
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If the number r is given, then, aside from executable operations, the determina-
tion of all r-term groups requires at most the integration of simultaneous systems of
ordinary differential equations.

Naturally, the question of whether the integration of the appearing differential
equations is executable or not is of great importance. However, this question will
neither be addressed in this chapter, nor in the second volume, since the answer
presupposes the theory of integration, which cannot be developed wholly in a work
on transformation groups, and which would rather demand a separate treatment.

§ 106. In this section, we put together various methods for the determination of
simply transitive groups, partly because these method will find applications in the
sequel, partly because they are notable in themselves.

First, let the equations:

(2) x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an r-term group be presented. We seek the finite equations of a simply transitive
group which is equally composed with the presented group.

According to Chap. 21, p. 414, the parameter group of the group (2) is simply
transitive and is equally composed with the group (2). Now, the finite equations:

a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r)

of this group can be found by means of executable operations, namely by resolving
finite equations. Thus, we can set up the finite equations of one simply transitive
group having the constitution demanded, namely just the said parameter group.

We therefore have the:

Theorem 77. If the finite equations of an r-term group are presented, then one can
find the equations of an equally composed simply transitive group by means of exe-
cutable operations.

Obviously, together with this one simply transitive group, all other simply transi-
tive groups which are equally composed with the group: x′

i = fi(x,a) are also given,
for as a consequence of Theorem 64, p. 353, all these groups are similar to each
other.

On the other hand, we assume that not the finite equations, but instead only the
infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

of an r-term group are presented, and we seek to determine the infinitesimal trans-
formations of an equally composed simply transitive group.
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Visibly, we have already solved this problem in Chap. 9, p. 171 and 172, though it
was interpreted differently there, because at that time, we did not have the concepts
of simply transitive group and of being equally composed [GLEICHZUSAMMENGE-
SETZTSEINS]. Now we can state our previous solution to the problem as follows:

Proposition 1. If the infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

of an r-term group are presented, then one finds the infinitesimal transformations of
an equally composed simply transitive group in the following way: One sets:

X (μ)
k =

n

∑
i=1
ξki

(

x(μ)1 , . . . , x(μ)n
) ∂ f

∂x(μ)i

(k=1 ···r)

(μ=1,2 ···r−1),

one forms the r infinitesimal transformations:

Wk f = Xk f +X (1)
k f + · · ·+X (r−1)

k f (k=1 ···r)

and one determines rn − r arbitrary independent solutions: u1, . . . ,unr−r of the r-
term complete system:

W1 f = 0, . . . , Wr f = 0;

then one introduces u1, . . . ,unr−r together with r appropriate functions: y1, . . . ,yr of

the nr variables x(μ)i as new independent variables and in this way, one obtains the
infinitesimal transformations:

Wk f =
r

∑
j=1
ηk j(y1, . . . ,yr, u1, . . . ,unr−r)

∂ f
∂y j

(k=1 ···r),

and if in addition one understands by u0
1, . . . ,u

0
nr−r numerical constants, then the r

independent infinitesimal transformations:

Wk f =
r

∑
j=1
ηk j(y1, . . . ,yr, u0

1, . . . ,u
0
nr−r)

∂ f
∂y j

(k=1 ···r)

generate a simply transitive group equally composed with the group: X1 f , . . . ,Xr f .
If: X1 f , . . . ,Xr f are linked together by the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

then the same relations hold between W1 f , . . . ,Wr f :



442 22 The Determination of All r-term Groups

[Wi,Wk] =
r

∑
s=1

ciksWs f .

The process which is described in the above proposition requires the integration
of ordinary differential equations, and naturally, this integration is not always ex-
ecutable. Theoretically, this is completely indifferent, since in the present chapter,
we do not manage without integration. Nevertheless, in the developments of the next
section, where the question is to set up simply transitive groups, we will nowhere
make use of the described process, and we will apply it only in one place, where
it holds, in order to prove the existence of a simply transitive group with certain
properties.

Lastly, we still want to take up the standpoint where we imagine only that a
composition of an r-term group is given, hence a system of ciks which satisfies the
equations (1). We will show that it is at least in very many cases possible, by means
of executable operations, to set up the finite equations of a simply transitive group
of the composition ciks.

For this, we use Theorem 52, p. 308. According to it, the r infinitesimal transfor-
mations:

Eμ f =
1···r
∑
k, j

c jμk e j
∂ f
∂ek

(k=1 ···r)

stand pairwise in the relationships:

[Ei, Ek] =
r

∑
s=1

ciks Es f ,

hence they generate a linear homogeneous group in the variables: e1, . . . ,er. This
group is in particular r-term when not all r×r determinants vanish whose horizontal
rows are of the form:

∣
∣c j1k c j2k · · · c jrk

∣
∣ ( j, k=1 ···r)

and it then evidently has the composition ciks.
Now, the finite equations of the group: E1 f , . . . ,Er f can be set up by means of

executable operations (cf. p. 286); hence when these r × r determinants are not all
equal to zero, we can indicate the finite equations of an r-term group having the
composition ciks. But from this, it immediately follows (Theorem 77, p. 440) that
we can also indicate the finite equations of a simply transitive group having the
composition ciks.

Thus we have proved the following proposition:

Proposition 2. If a system of constants ciks is presented which satisfies the equa-
tions:
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(1)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ciks + ckis = 0
r

∑
ν=1

(

cikν cν js + ck jν cν is + c jiν cνks
)

= 0

(i, k, j, s=1 ···r)

and which is constituted in such a way that not all r × r determinants vanish whose
horizontal rows have the form:

∣
∣c j1k c j2k · · · c jrk

∣
∣ ( j, k=1 ···r),

then by means of executable operations, one can always find the finite equations of
a simply transitive group having the composition ciks.

Furthermore, the same can also be proved in a completely analogous way for
other systems of ciks, but we do not want to go further in that direction. We make
only a few more observations.

If r infinitesimal transformations: X1 f , . . . ,Xr f are presented which generate an
r-term group, then the system of ciks which is associated to the group in question
is given at the same time. Now, if this system of ciks is constituted in such a way
that not all determinants considered in Proposition 2 vanish, then visibly, the group:
X1 f , . . . ,Xr f contains no excellent infinitesimal transformation (cf. p. 288), hence
we see that the following holds:

If r independent infinitesimal transformations: X1 f , . . . ,Xr f are presented which
generate an r-term group, then when this group contains no excellent infinitesimal
transformation, one can set up in every case, by means of executable operations,
the finite equations of a simply transitive group which is equally composed with the
group: X1 f , . . . ,Xr f .

§ 107. We now tackle the first of the two problems, the solution of which we
promised in the introduction of the chapter.

So, we imagine that the finite equations:

(2) x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an r-term group are presented and we take up the problem of determining all
transitive r-term groups which are equally composed with the presented group.

When an r-term group Γ of any arbitrary space is transitive and has the same
composition as the group: x′

i = fi(x,a), the same two properties evidently hold true
for all groups of the same space that are similar to Γ . Hence, we classify the sought
groups into classes by including in the same class all groups of the demanded con-
stitution which contain an equal number of parameters and which in addition are
similar to each other. We call the totality of all groups which belong to such a class
a type of transitive group of the given composition.
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This classification of the sought groups has the advantage that it is not necessary
for us to write down all the sought groups. Indeed, if one group of the constitution
demanded is known, then at the same time, all groups similar to it are known, hence
all groups which belong to the same type. Consequently, it completely suffices that
we enumerate how many different types there are of the sought groups and that we
indicate for every individual type a representative, hence a group which belongs to
the concerned type.

In order to settle our problem, we take the following route:

First, we indicate a process which provides the transitive groups equally com-
posed with the group: x′

i = fi(x,a). Then, we conduct the proof that, by means of
this process, one can obtain every group having the concerned constitution, so that
notably, one finds at least one representative group for every type. Lastly, we give
criteria to decide whether or not two different groups obtained by our process are
similar to each other, hence to decide whether or not they belong to the same type.
Thanks to this, we are in a position to have a view of the existing mutually distinct
types and at the same time, for each one of these types, to have a representative.

This is the program that will be carried out in the sequel.

Let:

Yk f =
r

∑
j=1
ηk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

be independent infinitesimal transformations of a simply transitive group which is
equally composed with the group: x′

i = fi(x,a). Moreover, let:

Zk f =
r

∑
j=1
ζk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

be independent infinitesimal transformations of the associated reciprocal group
which, according to Theorem 68, p. 391, is simply transitive as well, and is equally
composed with the group: x′

i = fi(x,a).
Evidently, all these assumptions can be satisfied. For instance, two simply transi-

tive groups having the constitution indicated are the parameter group of the group:
x′

i = fi(x,a) defined in the previous chapter:

a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r)

and its reciprocal group:

a′
k = ϕk(b1, . . . ,br, a1, . . . ,ar) (k=1 ···r)

and the finite equations of both may even be set up by means of executable opera-
tions.

After these preparations, we turn to the explanation of the process announced
above which produces transitive groups that are equally composed with the group:
x′

i = fi(x,a).
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In Chap. 17, p. 316, we showed how every decomposition of the space invariant
by a group can be used in order to set up an isomorphic group. We want to apply
this to the group: Y1 f , . . . ,Yr f .

On the basis of Theorem 69, p. 398, we seek an arbitrary decomposition of the
space y1, . . . ,yr invariant by the group Y1 f , . . . ,Yr f . By means of algebraic opera-
tions, we determine an m-term subgroup of the group: Z1 f , . . . ,Zr f . If:

(3) Zμ f = εμ1 Z1 f + · · ·+ εμr Zr f (μ=1 ···m)

are independent infinitesimal transformations of this subgroup, we form the m-term
complete system:

Z1 f = 0, . . . , Zm f = 0

and we compute, by integrating it, r −m arbitrary invariants:

u1(y1, . . . ,yr), . . . , ur−m(y1, . . . ,yr)

of the group: Z1 f , . . . ,Zm f . Then the equations:

(4) u1(y1, . . . ,yr) = const., . . . , ur−m(y1, . . . ,yr) = const.

determine a decomposition of the space y1, . . . ,yr into ∞r−m m-times extended man-
ifolds invariant by the group: Y1 f , . . . ,Yr f .

Now, we introduce u1(y), . . . ,ur−m(y) together with m other appropriate func-
tions: v1, . . . ,vm of the y as new variables in Y1 f , . . . ,Yr f and we obtain:

Yk f =
r−m

∑
ν=1

ωkν(u1, . . . ,ur−m)
∂ f
∂uν

+
m

∑
μ=1

wkμ(u1, . . . ,ur−m, v1, . . . ,vm)
∂ f
∂vμ

(k=1 ···r).

From this, we lastly form the reduced infinitesimal transformations:

Uk f =
r−m

∑
ν=1

ωkν(u1, . . . ,ur−m)
∂ f
∂uν

(k=1 ···r).

According to Chap. 17, Proposition 4, p. 318, they generate a group in the variables:
u1, . . . ,ur−m which is isomorphic with the group: Y1 f , . . . ,Yr f .

If we had chosen, instead of u1(y), . . . ,ur−m(y), any other independent invari-
ants: u′

1(y), . . . ,u
′
r−m(y) of the group: Z1 f , . . . ,Zm f , then in place of the group:

U1 f , . . . ,Ur f , we would have obtained another group in the variables u′
1, . . . ,u

′
r−m,

but this group would visibly be similar to the group: U1 f , . . . ,Ur f , because
u′

1(y), . . . ,u
′
r−m(y) are independent functions of: u1(y), . . . ,ur−m(y). If we replaced

u1(y), . . . ,ur−m(y) by the most general system of r − m independent invariants of
the group: Z1 f , . . . ,Zm f , then we would obtain the most general group in r − m
variables which is similar to the group: U1 f , . . . ,Ur f .
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From the fact that the group: Y1 f , . . . ,Yr f is simply transitive, it follows, as we
have observed already in Chap. 20, p. 398, that not all (r−m)×(r−m) determinants
of the matrix: ∣

∣
∣
∣
∣
∣
∣
∣

ω11(u) · · ω1,r−m(u)
· · · ·
· · · ·

ωr1(u) · · ωr,r−m(u)

∣
∣
∣
∣
∣
∣
∣
∣

vanish identically; expressed differently: it follows that the group: U1 f , . . . ,Ur−m f
in the r −m variables u is transitive.

We therefore have a method for setting up transitive groups which are isomor-
phic with the group: Y1 f , . . . ,Yr f . However, this does not suffice, for we demand
transitive groups that are equally composed with the group: Y1 f , . . . ,Yr f , hence are
holoedrically isomorphic to it. Thus, the group: U1 f , . . . ,Ur f is useful for us only
when it is r-term. Under which conditions is it so?

Since the group: U1 f , . . . ,Ur f is transitive, it contains at least r − m essential
parameters, hence it will in general contain exactly r− l essential parameters, where
0 � l � m. Then according to p. 318, in the group: Y1 f , . . . ,Yr f , there are exactly l
independent infinitesimal transformations which leave individually fixed each one
of the ∞r−m manifolds (4), and these infinitesimal transformations generate an l-
term invariant subgroup of the group: Y1 f , . . . ,Yr f . For reasons of brevity, we want
to denote the concerned subgroup by g.

If M is an arbitrary manifold amongst the generally located manifolds (4), then
M admits exactly m independent infinitesimal transformations: e1 Y1 f + · · ·+ er Yr f
which generate an m-term subgroup γ of the group: Y1 f , . . . ,Yr f (cf. page 399). Nat-
urally, the invariant subgroup g is contained in this group γ . On the other hand, M
admits exactly m independent infinitesimal transformations of the reciprocal group:
Z1 f , . . . ,Zr f , namely: Z1 f , . . . ,Zm f , which also generate an m-term group. There-
fore, according to Chap. 20, p. 400, one can relate the two simply transitive groups:
Y1 f , . . . ,Yr f and Z1 f , . . . ,Zr f to each other in a holoedrically isomorphic way so that
the subgroup γ corresponds to the subgroup: Z1 f , . . . ,Zm f . On the occasion, to the
invariant subgroup g, there visibly corresponds an l-term invariant subgroup g′ of
the group: Z1 f , . . . ,Zr f , and in fact, g′ is contained in the subgroup: Z1 f , . . . ,Zm f .

We therefore see: when the group: U1 f , . . . ,Ur f is exactly (r − l)-term, then the
group: Z1 f , . . . ,Zm f contains an l-term subgroup g′ which is invariant in the group:
Z1 f , . . . ,Zr f .

Conversely: when the group: Z1 f , . . . ,Zm f contains an l-term subgroup:

Z′
λ f = hλ1 Z1 f + · · ·+hλm Zm f (λ=1 ··· l)

which is invariant in the group: Z1 f , . . . ,Zr f , then the group: U1 f , . . . ,Ur f can at
most be (r − l)-term.

Indeed, under the assumptions just made, the l mutually independent equations:

(5) Z′
1 f = 0, . . . , Z′

l f = 0
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form an l-term complete system with r − l independent solutions:

ψ1(y1, . . . ,yr), . . . , ψr−l(y1, . . . ,yr).

Furthermore, there are relations of the form:

[Zk, Z
′
λ ] = hkλ1 Z′

1 f + · · ·+hkλ l Z
′
l f

(k=1 ···r ; λ =1 ··· l)

which express that the complete system (5) admits the group: Z1 f , . . . ,Zr f . Conse-
quently, the equations:

(6) ψ1(y1, . . . ,yr) = const., . . . , ψr−l(y1, . . . ,yr) = const.

represent a decomposition of the space y1, . . . ,yr invariant by the group Z1 f , . . . ,Zr f ,
and to be precise, a decomposition into ∞r−l l-times extended manifolds.

These∞r−l manifolds stand in a very simple relationship with respect to the∞r−m

manifolds:

(4) u1(y1, . . . ,yr) = const., . . . , ur−m(y1, . . . ,yr) = const.,

namely each one of the manifolds (4) consists of ∞m−l different manifolds (6). This
follows without effort from the fact that u1(y), . . . ,ur−m(y), as solutions of the com-
plete system:

Z1 f = 0, . . . , Zm f = 0,

simultaneously satisfy the complete system (5), and can therefore be represented as
functions of: ψ1(y), . . . ,ψr−l(y).

Now, according to Chap. 20, p. 397, the reciprocal group: Y1 f , . . . ,Yr f contains
exactly l independent infinitesimal transformations which leave individually fixed
each one of the ∞r−l manifolds (6), hence it obviously contains at least l indepen-
dent infinitesimal transformations which leave individually fixed each one of the
∞r−m manifolds (4); but from this, it immediately follows that, under the assump-
tion made, the group: U1 f , . . . ,Ur f can be at most (r− l)-term, as we claimed above.

Thanks to the preceding developments, it is proved that the group: U1 f , . . . ,Ur f
is (r − l)-term if and only if the group: Z1 f , . . . ,Zm f contains an l-term subgroup
invariant in the group: Z1 f , . . . ,Zr f , but no larger subgroup of the same nature. In
particular, the group: U1 f , . . . ,Ur f is r-term if and only if the group: Z1 f , . . . ,Zm f
contains, aside from the identity transformation, no subgroup invariant in the group
Z1 f , . . . ,Zr f . Here, the word ‘subgroup’ is to be understood in its widest sense,
so that one then also has to consider the group: Z1 f , . . . ,Zm f itself as a subgroup
contained in it.

By summarizing the obtained result, we can now say:

Theorem 78. If the two r-term groups:
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Yk f =
r

∑
j=1
ηk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

and:

Zk f =
r

∑
j=1
ζk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

are simply transitive and reciprocal to each other, if, moreover:

Zμ f = εμ1 Z1 f + · · ·+ εμr Zr f (μ=1 ···m)

is an m-term subgroup of the group: Z1 f , . . . ,Zr f , and if:

u1(y1, . . . ,yr), . . . , ur−m(y1, . . . ,yr)

are independent invariants of this subgroup, then the r infinitesimal transforma-
tions:

r−m

∑
ν=1

Yk uν
∂ f
∂uν

=
r−m

∑
ν=1

ωkν(u1, . . . ,ur−m)
∂ f
∂uν

=Uk f

(k=1 ···r)

in the r − m variables: u1, . . . ,ur−m generate a transitive group, isomorphic with
the group: Y1 f , . . . ,Yr f . This group is (r − l)-term when there is in the group:
Z1 f , . . . ,Zm f an l-term subgroup, but no larger subgroup, which is invariant in
the group: Z1 f , . . . ,Zr f . In particular, it is r-term and equally composed with the
group: Y1 f , . . . ,Yr f if and only if the group: Z1 f , . . . ,Zm f is neither invariant itself
in the group: Z1 f , . . . ,Zr f , nor contains, aside from the identity transformation,
another subgroup invariant in the group: Z1 f , . . . ,Zr f .

If one replaces u1(y), . . . ,ur−m(y) by the most general system: u′
1(y), . . . ,u

′
r−m(y)

of r − m independent invariants of the group: Z1 f , . . . ,Zm f , then in place of the
group: U1 f , . . . ,Ur f , one obtains the most general group in r −m variables similar
to it. In particular, if the group: U1 f , . . . ,Ur f is r-term, then one obtains in this way
the most general transitive group equally composed with the group: Y1 f , . . . ,Yr f
that belongs to the same type as the group: U1 f , . . . ,Ur f .

In addition, from the developments used for the proof of this theorem, we have
the following

Proposition 3. If Y1 f , . . . ,Yr f and Z1 f , . . . ,Zr f are two reciprocal simply transitive
groups and if: Z1 f , . . . ,Zl f is an invariant l-term subgroup of the second group,
then the invariants of this l-term group can also be defined as the invariants of
a certain l-term group which is contained as an invariant subgroup in the r-term
group: Y1 f , . . . ,Yr f .

Thanks to Theorem 78, the first part of the program stated on p. 444 is settled, and
we are in possession of a process which provides transitive groups equally composed
with the group: x′

i = fi(x,a). We now come to the second part, namely to the proof
that every group of this sort can be found thanks to our process.
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In r −m variables, let an arbitrary transitive group be presented which is equally
composed with the group: x′

i = fi(x,a); let its infinitesimal transformations be:

Xk f =
r−m

∑
ν=1

xkν(z1, . . . ,zr−m)
∂ f
∂ zν

(k=1 ···r)

At first, we prove that amongst the simply transitive groups of the same compo-
sition, there is in any case one which can be obtained from the group: X1 f , . . . ,Xr f
in a way completely analogous to the way in which the group: U1 f , . . . ,Ur f was
obtained from the simply transitive group: Y1 f , . . . ,Yr f .

To this end, under the guidance of Proposition 1, p. 441, we form, in the r(r−m)
variables: z, z(1), . . . , z(r−1), the r infinitesimal transformations:

Wk f = Xk f +X
(1)
k f + · · ·+X

(r−1)
k f (k=1 ···r).

Now, if ϕ1, . . . ,ϕR are (r−m)r−r =R independent solutions of the r-term complete
system:

(7) W1 f = 0, . . . , Wr f = 0,

then we introduce them, together with z1, . . . ,zr−m and with m functions z1, . . . ,zm

of the z, z(1), . . . , z(r−1), as new variables. This is possible, since the equations (7)
are solvable with respect to ∂ f/∂ z1, . . . , ∂ f/∂ zr−m because of the transitivity of
the group: X1 f , . . . ,Xr f , whence z1, . . . ,zr−m are independent of the functions:
ϕ1, . . . ,ϕR. In the new variables, W1 f , . . . ,Wr f receive the form:

Wk f = Xk f +
m

∑
μ=1

wkμ(z1, . . . ,zr−m, z1, . . . ,zm, ϕ1, . . . ,ϕR)
∂ f
∂ zμ

(k=1 ···r),

and here, when we confer to the ϕ suitable fixed values ϕ0
1 , . . . ,ϕ

0
R and when we set:

wk(z1, . . . ,zr−m, z1, . . . ,zm, ϕ0
1 , . . . ,ϕ

0
R) = w0

k(z1, . . . ,zr−m, z1, . . . ,zm),

then:

Wk f = Xk f +
m

∑
μ=1

w0
kμ(z1, . . . ,zr−m, z1, . . . ,zm)

∂ f
∂ zμ

(k=1 ···r)

are independent infinitesimal transformations of a simply transitive group which is
equally composed with the group: X1 f , . . . ,Xr f and therefore, also equally com-
posed with the group: x′

i = fi(x,a).
With this, we have found a simply transitive group having the constitution indi-

cated earlier on.
Indeed, the equations:
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z1 = const., . . . , zr−m = const.

obviously determine a decomposition of the space: z1, . . . ,zr−m, z1, . . . ,zm into
∞r−m m-times extended manifolds invariant by the group: W1 f , . . . ,Wr f . The
group: X1 f , . . . ,Xr f indicates in which way these ∞r−m manifolds are permuted
by the group: W1 f , . . . ,Wr f . So, between the two groups: X1 f , . . . ,Xr f and
W1 f , . . . ,Wr f , there is a relationship completely analogous to the one above
between the two groups: U1 f , . . . ,Ur f and Y1 f , . . . ,Yr f .

Now, there is no difficulty in proving that the group: X1 f , . . . ,Xr f is similar to
one of the groups that we obtain when we apply the process described in Theo-
rem 78, p. 447, to two determined simply transitive reciprocal groups: Y1 f , . . . ,Yr f
and Z1 f , . . . ,Zr f having the concerned composition.

Let: B1 f , . . . ,Br f be the simply transitive group reciprocal to: W1 f , . . . ,Wr f .
Naturally, this group is equally composed with the group: Z1 f , . . . ,Zr f and hence,
also similar to it (cf. Chap. 19, Theorem 64, p. 353).

We want to assume that the transformation:

(8)

{

z1 = z1(y1, . . . ,yr), . . . , zr−m = zr−m(y1, . . . ,yr)
z1 = z1(y1, . . . ,yr), . . . , zm = zm(y1, . . . ,yr)

transfers the group: Z1 f , . . . ,Zr f to the group: B1 f , . . . ,Br f . Then according to
Chap. 20, p. 391, through the same transformation, the group: Y1 f , . . . ,Yr f is
transferred at the same time to the group: W1 f , . . . ,Wr f , hence by virtue of (8),
there are relations of the form:

Yk f =
r

∑
j=1

hk j W j f (k=1 ···r),

where the determinant of the constants hk j does not vanish. But from these relations,
the following relations immediately follow:

(9)
r−m

∑
ν=1

Yk zν
∂ f
∂ zν

=
r

∑
j=1

hk j X j f (k=1 ···r),

and likewise, they hold identically by virtue of (8).
This is the reason why the equations:

z1(y1, . . . ,yr) = const., . . . , zr−m(y1, . . . ,yr) = const.

represent a decomposition of the space y1, . . . ,yr invariant by the group: Y1 f , . . . ,Yr f ,
or, what amount to the same, the reason why z1(y), . . . ,zr−m(y) are independent
invariants of a completely determined m-term subgroup g of the group Z1 f , . . . ,Zr f .
Consequently, we obtain the group: X1 f , . . . ,Xr f thanks to the process described
in Theorem 78, p. 447, when we arrange ourselves as follows: As the group:
Z1 f , . . . ,Zm f , we choose the m-term subgroup g of the group: Z1 f , . . . ,Zr f just
defined, and as the functions: u1(y), . . . ,ur−m(y), we choose the just mentioned
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invariants: z1(y), . . . ,zr−m(y) of the group g. Indeed, under these assumptions, the
relations (9) hold true, in which the right-hand side expressions are independent
infinitesimal transformations of the group: X1 f , . . . ,Xr f .

As a result, it is proved that, thanks to the process which is described in The-
orem 78, p. 447, one can find every transitive group isomorphic with the group:
x′

i = fi(x,a). We can therefore enunciate the following theorem:

Theorem 79. If the finite equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an r-term group are presented, then one finds in the following way all transitive
groups that are equally composed with this group:

To begin with, one determines, which requires only executable operations, two
r-term simply transitive groups:

Yk f =
r

∑
j=1
ηk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

and:

Zk f =
r

∑
j=1
ζk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

that are reciprocal to each other and are equally composed with the group pre-
sented. Afterwards, by means of algebraic operations, one sets up all subgroups of
the group: Z1 f , . . . ,Zr f which are neither invariant in this group, nor contain, aside
from the identity transformation, a subgroup invariant in the group: Z1 f , . . . ,Zr f .
Under the guidance of Theorem 78, each of the found subgroups produces all tran-
sitive groups equally composed with the group: x′

i = fi(x,a) that belong to a certain
type. If one determines these groups for each of the found subgroups, then one ob-
tains all transitive groups that are equally composed with the group: x′

i = fi(x,a).1

The second part of our program is now carried out, and we are in a position to
identify all types of transitive groups equally composed with the group: x′

i = fi(x,a).
Every subgroup of the group: Z1 f , . . . ,Zr f which has the property mentioned in
Theorem 79 provides us with such a type. It remains to decide when two differ-
ent subgroups of the group: Z1 f , . . . ,Zr f produce different types, and when they
produce the same type.

Let the m independent infinitesimal transformations:

Zμ f =
r

∑
k=1

εμk Zk f (μ=1 ···m)

1 LIE, Archiv for Math., Vol. 10, Christiania 1885, and Verh. der Gesellsch. d. W. zu Chr. a. 1884;
Berichte der Kgl. Sächs. G. d. W., 1888.
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generate an m-term group which is neither invariant in the group: Z1 f , . . . ,Zr f , nor
contains, aside from the identity transformation, another subgroup invariant in the
group: Z1 f , . . . ,Zr f .

Let the functions:

u1(y1, . . . ,yr), . . . , ur−m(y1, . . . ,yr)

be independent invariants of the group: Z1 f , . . . ,Zm f . Under these assumptions, ac-
cording to Theorem 79, the group:

Uk f =
r−m

∑
ν=1

Yk uν
∂ f
∂uν

=
r−m

∑
ν=1

ωkν(u1, . . . ,ur−m)
∂ f
∂uν

(k=1 ···r)

in the r − m variables: u1, . . . ,ur−m has the same composition as the group: x′
i =

fi(x,a), and is in addition transitive, hence it is a representative of the type of groups
which corresponds to the subgroup: Z1 f , . . . ,Zm f .

If another subgroup of the group: Z1 f , . . . ,Zr f is the same type of group, then
this subgroup must evidently be m-term, for it is only in this case that it can provide
transitive groups in r − m variables that are equally composed with the group: x′

i =
fi(x,a).

So, we assume that:

Zμ f =
r

∑
k=1

eμk Zk f (μ=1 ···m)

is another m-term subgroup of the group: Z1 f , . . . ,Zr f , and that this subgroup too
is neither invariant in the group: Z1 f , . . . ,Zr f , nor contains, aside from the identity
transformation, another subgroup invariant in the group: Z1 f , . . . ,Zr f . Let indepen-
dent invariants of the group: Z1 f , . . . ,Zm f be:

u1(y1, . . . ,yr), . . . , ur−m(y1, . . . ,yr).

Under these assumptions, the group:

Uk f =
r−m

∑
ν=1

Yk uν
∂ f
∂uν

=
r−m

∑
ν=1

okν(u1, . . . ,ur−m)
∂ f
∂uν

(k=1 ···r)

in the r−m variables: u1, . . . ,ur−m is transitive and has the same composition as the
group: x′

i = fi(x,a).
The question of whether the two subgroups: Z1 f , . . . ,Zm f and Z1 f , . . . ,Zm f of

the group: Z1 f , . . . ,Zr f provide the same type of group, or not, can now obviously
also be expressed as follows: Are the two groups: U1 f , . . . ,Ur f and: U1 f , . . . ,Ur f
similar to each other, or not?

As the two groups we are presently considering are transitive; the question of
whether they are similar, or not similar, can be decided on the basis of Theorem 76,
p. 434.
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From this theorem, we see that the groups: U1 f , . . . ,Ur f and: U1 f , . . . ,Ur f are
similar to each other if and only if it is possible to relate them to each other in a
holoedrically isomorphic way so that the following condition is satisfied: The most
general subgroup of the group: U1 f , . . . ,Ur f which leaves invariant an arbitrarily
chosen, but determined, system of values: u1 = u0

1, . . . , ur−m = u0
r−m in general

position must correspond to the most general subgroup of the group: U1 f , . . . ,Ur f
which leaves invariant a certain system of values: u1 = u0

1, . . . , ur−m = u0
r−m in

general position.
Now, the groups: U1 f , . . . ,Ur f and: U1 f , . . . ,Ur f are, because of their derivation,

both related to the group: Y1 f , . . . ,Yr f in a holoedrically isomorphic way, hence we
can also obviously express the necessary and sufficient criterion for their similarity
as follows: Similarity happens to hold when and only when it is possible to relate
the group: Y1 f , . . . ,Yr f to itself in a holoedrically isomorphic way so that its largest
subgroup G which fixes the manifold:

(10) u1(y1, . . . ,yr) = u0
1, . . . , ur−m(y1, . . . ,yr) = u0

r−m

corresponds to its largest subgroup G which fixes the manifold:

(11) u1(y1, . . . ,yr) = u0
1, . . . , ur−m(y1, . . . ,yr) = u0

r−m.

The criterion found with these words can be brought to another remarkable form.
In fact, we consider the group: Z1 f , . . . ,Zr f reciprocal to the group: Y1 f , . . . ,Yr f . In
it, Z1 f , . . . ,Zm f is the largest subgroup which leaves invariant the manifold (10),
and Z1 f , . . . ,Zm f is the largest subgroup which leaves invariant the manifold (11).
According to Chap. 20, Proposition 8, p. 400, one can then relate the two groups:
Y1 f , . . . ,Yr f and: Z1 f , . . . ,Zr f in a holoedrically isomorphic way so that the sub-
group G corresponds to the subgroup: Z1 f , . . . ,Zm f ; but one can also relate them
together in a holoedrically isomorphic way so that the subgroup G corresponds to
the subgroup: Z1 f , . . . ,Zm f .

From this, it results that the group: Y1 f , . . . ,Yr f can be related to itself in a
holoedrically isomorphic way as described just above if and only if it is possible to
relate the group: Z1 f , . . . ,Zr f to itself in a holoedrically isomorphic way so that the
subgroup: Z1 f , . . . ,Zm f corresponds to the subgroup: Z1 f , . . . ,Zm f .

We therefore have the:

Theorem 80. If the two r-term groups:

Yk f =
r

∑
j=1
ηk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

and:

Zk f =
r

∑
j=1
ζk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

are simply transitive and reciprocal to each other, if moreover:
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Zμ f =
r

∑
k=1

εμk Zk f (μ=1 ···m)

and:

Zμ f =
r

∑
k=1

eμk Zk f (μ=1 ···m)

are two m-term subgroups of the group: Z1 f , . . . ,Zr f both of which are neither
invariant in this group, nor contain, aside from the identity transformation,
another subgroup invariant in this group, and lastly, if: u1(y), . . . ,ur−m(y) and:
u1(y), . . . ,ur−m(y) are independent invariants of these two m-term subgroups,
respectively, then the two transitive groups, both equally composed with the group
Y1 f , . . . ,Yr f :

Uk f =
r−m

∑
ν=1

Yk uν
∂ f
∂uν

=
r−m

∑
ν=1

ωkν(u1, . . . ,ur−m)
∂ f
∂uν

(k=1 ···r)

and:

Uk f =
r−m

∑
ν=1

Yk uν
∂ f
∂uν

=
r−m

∑
ν=1

okν(u1, . . . ,ur−m)
∂ f
∂uν

(k=1 ···r)

are similar to each other if and only if it is possible to relate the group: Z1 f , . . . ,Zr f
to itself in a holoedrically isomorphic way so that the subgroup: Z1 f , . . . ,Zm f cor-
responds to the subgroup: Z1 f , . . . ,Zm f .

Thanks to this theorem, the last part of the program stated on p. 444 is now also
settled. At present, we can decide whether two different subgroups of the group:
Z1 f , . . . ,Zr f provide, or do not provide, different types of transitive groups equally
composed with the group: x′

i = fi(x,a). Clearly, for that, only a study of the sub-
groups of the group Z1 f , . . . ,Zr f is required, or, what is the same, of the subgroups
of the group: x′

i = fi(x,a).
We recapitulate the necessary operations in a theorem:

Theorem 81. If the finite equations, or the infinitesimal transformations of an r-
term group Γ are presented, one can determine in the following way how many
different types of transitive groups having the same composition as Γ there are:
One determines all m-term subgroups of Γ , but one excludes those which are either
invariant in Γ or which contain a subgroup invariant in Γ different from the identity
transformation. One distributes the found m-term subgroups in classes by including
two subgroups always in the same class when it is possible to relate Γ to itself
in a holoedrically isomorphic way so that the two subgroups correspond to each
other. To each class of m-term subgroups obtained in this way there corresponds a
completely determined type of transitive group in r−m variables equally composed
with Γ ; to different classes there correspond different types. If one undertakes this
study for each one of the numbers: m = 0,1,2, . . . ,r − 1, then one can have a view
[ÜBERSEHEN] of all existing types.
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We observe the following: The operations required in Theorem 81 are all ex-
ecutable, even when the group Γ is not given, and when only its composition is
given. Also in this case, only executable operations are then necessary. Since the
number of the subgroups of Γ only depends upon arbitrary parameters, the number
of existing types depends at most upon arbitrary parameters. In particular, there is
only one type of simply transitive group which is equally composed with the group
Γ . But this already results from the developments of the previous section.

By combining the two Theorems 81 and 78, we obtain the following:

Theorem 82. If the finite equations:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

of an r-term group are presented, then the determination of all equally composed
transitive groups requires in all cases, while disregarding executable operations,
only the integration of simultaneous systems of ordinary differential equations.2

If one wants to list all r-term transitive groups in n variables, then one determines
all compositions of r-term groups and one then seeks, for each composition, the
associated types of transitive groups in n variables. For given r (and n), all these
types decompose into a bounded number of kinds [GATTUNG] so that the types of
a kind have the same analytic representation. However, the analytic expressions for
all types of a kind contain certain parameters, the number of which we can always
imagine to be lowered down to a minimum. That such parameters occur stems from
two different facts: firstly, from the fact that, to a given r > 2, an unbounded number
of different compositions is associated; secondly from the fact that in general, a
given r-term group contains an unbounded number of subgroups which produce
nothing but different types. We do not consider it to be appropriate here to pursue
these considerations further.

§ 108. Once again, we move back to the standpoint we took on p. 451 sq.
We had used two m-term subgroups: Z1 f , . . . ,Zm f and: Z1 f , . . . ,Zm f of the

group: Z1 f , . . . ,Zr f in order to produce transitive groups equally composed with
the group: Y1 f , . . . ,Yr f , and we have found the two groups: U1 f , . . . ,Ur f and:
U1 f , . . . ,Ur f . At present, the question arises: under which conditions are these two
group similar to each other?

We answered this question earlier, when we based ourselves on Theorem 76,
p. 434, and in this way, we obtained Theorem 80, p. 453. Now we want to take up
this question again and attempt to answer it without using Theorem 76.

Evidently, we are close to presuming that the groups: U1 f , . . . ,Ur f and:
U1 f , . . . ,Ur f are in any case similar to each other when there is a transformation:

(12) yk =Ωk(y1, . . . ,yr) (k=1 ···r)

2 Cf. LIE, Math. Annalen Vol. XVI, p. 528.
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which converts the subgroup: Z1 f , . . . ,Zm f into the subgroup: Z1 f , . . . ,Zm f and
which transfers at the same time the group: Z1 f , . . . ,Zr f into itself. We will show
that this presumption corresponds to the truth.

Thus, let (12) be a transformation which possesses the indicated properties.
Through this transformation, the invariants of the group: Z1 f , . . . ,Zm f are obvi-
ously transferred to the invariants of the group: Z1 f , . . . ,Zm f , hence we have by
virtue of (12):

uν(y1, . . . ,yr) = χν
(

u1(y), . . . , ur−m(y)
)

(ν=1 ···r−m),

where the functions: χ1, . . . ,χr−m are absolutely determined and are mutually inde-
pendent relative to: u1(y), . . . ,ur−m(y). On the other hand, according to Chap. 20,
p. 391, through the transformation (12), not only the group: Z1 f , . . . ,Zr f is trans-
ferred into itself, but also its reciprocal group: Y1 f , . . . ,Yr f , so we have:

r

∑
j=1
ηk j(y1, . . . ,yr)

∂ f
∂y j

= Y k f =
r

∑
j=1

hk j Yj f (k=1 ···r),

where the hk j are constants, the determinant of which does not vanish.
Now, if we set for f , in the equations just written, an arbitrary function F of:

u1(y), . . . ,ur−m(y), or, what is the same, a function of: u1(y), . . . , ur−m(y), we get:

Y kF =
r−m

∑
ν=1

okν(u1, . . . ,ur−m)
∂F
∂uν

=
r

∑
j=1

hk j

r−m

∑
ν=1

ω jν(u1, . . . ,ur−m)
∂F
∂uν

.

In other words, the two groups: U1 f , . . . ,Ur f and: U1 f , . . . ,Ur f are similar to each
other: obviously:

(13) uν = χν(u1, . . . ,ur−m) (ν=1 ···r−m)

is a transformation which transfers the one group to the other.
As a result, the presumption enunciated above is proved.

It can be proved that the converse also holds true: When the two groups:
U1 f , . . . ,Ur f and: U1 f , . . . ,Ur f are similar to each other, then there is always
a transformation which transfers the subgroup: Z1 f , . . . ,Zm f to the subgroup:
Z1 f , . . . ,Zm f and which transfers at the same time the group: Z1 f , . . . ,Zr f to itself.

Thus, let the two groups: Uk f and: Uk f be similar to each other and let:

(14) uν = ψν(u1, . . . ,ur−m) (ν=1 ···r−m)

be a transformation which transfers the one group to the other, so that we have:

(15) Uk f =
r

∑
j=1
δk j Uj f =U ′

k f (k=1 ···r).
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Here, by δk j, it is to be understood constants, the determinant of which does not
vanish. If U1 f , . . . ,Ur f are linked together by relations of the form:

[Ui, Uk] =
r

∑
s=1

ciksUs f ,

then naturally, U ′
1 f , . . . ,U ′

r f are linked together by the relations:

[U ′
i ,U ′

k] =
r

∑
s=1

ciks U ′
s f .

Above, we have seen that every transformation (12) which leaves invariant the
group: Z1 f , . . . ,Zr f and which transfers the subgroup of the Zμ f to the subgroup
of the Zμ f provides a completely determined transformation (13) which transfers
the group of the Uk f to the group of the Uk f . Under the present assumptions, we
already know a transformation which accomplishes the latter transfer, namely the
transformation (14). Therefore, we attempt to determine a transformation:

(16) yk = Ok(y1, . . . ,yr) (k=1 ···r)

which leaves invariant the group: Z1 f , . . . ,Zr f , which converts the subgroup:
Z1 f , . . . ,Zm f into the subgroup: Z1 f , . . . ,Zm f and lastly, which provides exactly
the transformation (14).

It is clear that every transformation (16) of the kind demanded must be con-
stituted in such a way that its equations embrace the r − m mutually independent
equations:

(14’) uν(y1, . . . ,yr) = ψν
(

u1(y), . . . , ur−m(y)
)

(ν=1 ···r−m).

If it satisfies this condition, and in addition, if it leaves invariant the group:
Z1 f , . . . ,Zr f , then it satisfies all our demands. Indeed, on the one hand, it trans-
fers the invariants of the group: Z1 f , . . . ,Zm f to the invariants of the group:
Z1 f , . . . ,Zm f , whence it converts the first one of these two groups into the second
one, and on the other hand, it visibly produces the transformation (14) by virtue of
which the two groups: U1 f , . . . ,Ur f and U1 f , . . . ,Ur f are similar to each other.

But now, whether we require of the transformation (16) that it leaves invariant the
group: Z1 f , . . . ,Zr f , or whether we require that it transfers the group: Y1 f , . . . ,Yr f
into itself, is obviously completely indifferent. We can therefore interpret our prob-
lem as follows:

To seek a transformation (16) which leaves invariant the group: Y1 f , . . . ,Yr f and
which is constituted in such a way that its equations embrace the equations (14’).

For the sake of simplification, we introduce new variables.
We choose m arbitrary mutually independent functions: v1(y), . . . ,vm(y) that

are also independent of: u1(y), . . . ,ur−m(y), and moreover, we choose m arbitrary
mutually independent functions: v1(y), . . . ,vm(y) that are also independent of
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u1(y), . . . ,ur−m(y). We introduce the functions: u1(y), . . . ,ur−m(y), v1(y), . . . ,vm(y)
as new variables in place of: y1, . . . ,yr and the functions: u1(y), . . . ,ur−m(y),
v1(y), . . . ,vm(y) in place of: y1, . . . ,yr.

In the new variables, the sought transformation (16) necessarily receives the
form:

(16’)

{

uν = ψν(u1, . . . ,ur−m) (ν=1 ···r−m)

vμ =Ψμ(u1, . . . ,ur−m, v1, . . . ,vm) (μ=1 ···m),

where the fact that the present equations must comprise the equations (14) is already
taken account of.

But what do we have in place of the requirement that the transformation (16)
should leave invariant the group: Y1 f , . . . ,Yr f ?

Clearly, in the new variables: u1, . . . ,ur−m, v1, . . . ,vm, the group: Y1 f , . . . ,Yr f re-
ceives the form:

Uk f +
m

∑
μ=1

wkμ(u1, . . . ,ur−m, v1, . . . ,vm)
∂ f
∂vμ

=Uk f +Vk f (k=1 ···r).

On the other hand, after the introduction of u1, . . . ,ur−m, v1, . . . ,vm, the infinitesimal
transformations:

Y k f =
r

∑
j=1
ηk j(y1, . . . ,yr)

∂ f
∂y j

(k=1 ···r)

are transferred to:

Uk f +
m

∑
μ=1

wkμ(u1, . . . ,ur−m, v1, . . . ,vm)
∂ f
∂vμ

= Uk f +Vk f (k=1 ···r).

Consequently, we must require of the transformation (16’) that it transfers the group:
U1 f +V1 f , . . . , Ur f +Vr f to the group: U1 f +V1 f , . . . , Ur f +Vr f ; we must attempt
to determine the functions:Ψ1, . . . ,Ψm accordingly.

As the equation (15) shows, the r independent infinitesimal transformations:

r

∑
j=1
δ1 j Uj f , . . . ,

r

∑
j=1
δr j Uj f

are transferred by the transformation:

(14) uν = ψν(u1, . . . ,ur−m) (ν=1 ···r−m)

to the transformations:
U1 f , . . . , Ur f ,

respectively. Hence, if a transformation of the form (16’) is supposed to convert
the group of the Uk f +Vk f to the group of the Uk f +Vk f , then through it, the r
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independent infinitesimal transformations:

r

∑
j=1
δ1 j (Uj f +Vj f ), . . . ,

r

∑
j=1
δr j (Uj f +Vj f )

are transferred to:
U1 f +V1 f , . . . , Ur f +Vr f .

This condition is necessary, and simultaneously also sufficient.

Thanks to the same considerations as in Chap. 19, p. 348 sq., we now recog-
nize that every transformation (16’) having the constitution demanded can also be
defined as a system of equations in the 2r variables u, v, u, v which possesses the
form:

(16’)

{

uν = ψν(u1, . . . ,ur−m) (ν=1 ···r−m)

vμ =Ψμ(u1, . . . ,ur−m, v1, . . . ,vm) (μ=1 ···m),

which admits the r-term group:

Wk f = Uk f +Vk f +
r

∑
j=1
δk j (Uj f +Vj f ) (k=1 ···r)

and which is solvable with respect to u1, . . . ,ur−m, v1, . . . ,vm.
According to our assumption, the system of equations:

(14) uν = ψν(u1, . . . ,ur−m) (ν=1 ···r−m)

represents a transformation which transfers the r independent infinitesimal transfor-
mations:

r

∑
j=1
δk j Uj f (k=1 ···r)

to: U1 f , . . . ,Ur f , respectively, whence it admits the r-term group:

Uk f +
r

∑
j=1
δk j Uj f (k=1 ···r),

and consequently, also the group: W1 f , . . . ,Wr f .
We can therefore use the developments of Chap. 14, pp. 243–246, in order to find

a system of equations (16’) having the constitution demanded.
To begin with, from W1 f , . . . ,Wr f , we form certain reduced infinitesimal trans-

formations: W1 f , . . . ,Wr f by leaving out all terms with the differential quotients:
∂ f/∂u1, . . . , ∂ f/∂ur−m and by making the substitution: u1 = ψ1(u), . . . , ur−m =
ψr−m(u) in all the terms remaining. If this substitution is indicated by the symbol:
[ ], then the Wk f read as follows:
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Wk f =
m

∑
μ=1

[

wkμ(u1, . . . ,ur−m, v1, . . . ,vm
] ∂ f
∂vμ

+
r

∑
j=1
δk j (Uj f +Vj f ),

or, more shortly:

Wk f =
[

Vk f
]

+
r

∑
j=1
δk j (Uj f +Vj f ) (k=1 ···r).

Naturally, W1 f , . . . ,Wr f generate a group in the r + m variables v1, . . . ,vm,
u1, . . . ,ur−m, v1, . . . ,vm and in our case, a group which is evidently r-term.

Now, we determine in the v, u, v a system of equations of the form:

(17) vμ =Ψμ(u1, . . . ,ur−m, v1, . . . ,vm) (μ=1 ···m)

which admits the group: W1 f , . . . ,Wr f and which is solvable with respect to
v1, . . . ,vm. Lastly, when we add this system to the equations (14), we then obtain
a system of equations of the form (16’) which possesses the properties explained
above.

Since the r-term group:

r

∑
j=1
δk j (Uj f +Vj f ) (k=1 ···r)

is simply transitive, then in the matrix which can be formed with the coefficients
of W1 f , . . . ,Wr f , it is certain that not all r × r determinants vanish identically, and
they can even less all vanish by virtue of a system of equations of the form (17).
Consequently, every system of equations of the form (17) which admits the group:
W1 f , . . . ,Wr f can be represented by m independent relations between m arbitrary
independent solutions of the r-term complete system:

(18) W1 f = 0, . . . , Wr f = 0

in the r+m variables v1, . . . ,vm, u1, . . . ,ur−m, v1, . . . ,vm.
The equations (18) are obviously solvable with respect to: ∂ f/∂u1, . . . ,

∂ f/∂ur−m, ∂ f/∂v1, . . . , ∂ f/∂vm; on the other hand, they are also solvable with
respect to: ∂ f/∂u1, . . . , ∂ f/∂ur−m, ∂ f/∂v1, . . . , ∂ f/∂vm, because if we introduce
the new variables: u1, . . . ,ur−m, v1, . . . ,vm in place of u1, . . . ,ur−m, v1, . . . ,vm by
means of the equations:

(14) uμ = ψμ(u1, . . . ,ur−m) (μ=1 ···r−m)

in the r infinitesimal transformations:

U1 f +V1 f , . . . , Ur f +Vr f ,

then we obtain the infinitesimal transformations:
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r

∑
j=1
δk j Uj f +

[

Vk f
]

(k=1 ···r)

which in turn therefore generate a simply transitive group in the variables:
u1, . . . ,ur−m, v1, . . . ,vm.

Consequently, if:

Pμ
(

v1, . . . ,vm, u1, . . . ,ur−m, v1, . . . ,vm
)

(μ=1 ···m)

are m arbitrary independent solutions of the complete system (18), then these solu-
tions are mutually independent both relative to v1, . . . ,vm and relative to v1, . . . ,vm

(cf. Theorem 12, p. 105).
From this, it results that the most general system of equations of the form (17)

which can be resolved with respect to v1, . . . ,vm and which admits the group:
W1 f , . . . ,Wr f can be obtained by solving the m equations:

(19) Pμ(v1, . . . ,vm, u1, . . . ,ur−m, v1, . . . ,vm) = const. (μ=1 ···m)

with respect to v1, . . . ,vm.

Now, we can immediately indicate a transformation, and in fact the most general
transformation (16’), which transfers the infinitesimal transformations:

r

∑
j=1
δ1 j (Uj +Vj f ), . . . ,

r

∑
j=1
δr j (Uj f +Vj f )

to the infinitesimal transformations:

U1 f +V1 f , . . . , Ur f +Vr f ,

respectively; this transformation is simply represented by the equations (14)
and (19) together. Lastly, if we again introduce the variables: y1, . . . ,yr, y1, . . . ,yr
in (14) and in (19), we obtain a transformation which leaves invariant the group:
Y1 f , . . . ,Yr f and whose equations embrace the equations (14’); in other words, we
obtain a transformation which leaves the group: Z1 f , . . . ,Zr f invariant and which
transfers the subgroup: Z1 f , . . . ,Zm f to the subgroup: Z1 f , . . . ,Zm f .

With these words, we have proved that there always exists a transformation hav-
ing the constitution just described, as soon as the two groups: U1 f , . . . ,Ur f and
U1 f , . . . ,Ur f are similar to each other. But since the similarity of the two groups
follows from the existence of such a transformation, according to p. 455 sq., we can
say:

The two groups: U1 f , . . . ,Ur f and U1 f , . . . ,Ur f are similar to each other if and
only if there is a transformation which leaves invariant the group: Z1 f , . . . ,Zr f and
which transfers the subgroup: Z1 f , . . . ,Zm f to the subgroup: Z1 f , . . . ,Zm f .

Now, the group: Z1 f , . . . ,Zr f is simply transitive, hence it is clear that there is
always a transformation of this sort when and only when the group: Z1 f , . . . ,Zr f
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can be related to itself in a holoedrically isomorphic way so that the two subgroups:
Z1 f , . . . ,Zm f and Z1 f , . . . ,Zm f correspond to each other. Consequently, for the sim-
ilarity of the groups: U1 f , . . . ,Ur f and U1 f , . . . ,Ur f , we find exactly the same crite-
rion as we had expressed in Theorem 80, p. 453.

Furthermore, the preceding developments can also be used to derive a new proof
of Theorem 76 in Chap. 21, p. 434.

First, thanks to considerations completely similar to the ones on p. 452, it can be
proved that the transitive groups: U1 f , . . . ,Ur f and U1 f , . . . ,Ur f can be related to
each other in the holoedrically isomorphic way described in Theorem 76 if and only
if it is possible to relate the group: Z1 f , . . . ,Zr f to itself in a holoedrically isomor-
phic way in such a way that the subgroups: Z1 f , . . . ,Zm f and Z1 f , . . . ,Zm f corre-
spond to each other. Then, it follows from the preceding results that the conditions
of Theorem 76 for the similarity of the two groups: U1 f , . . . ,Ur f and U1 f , . . . ,Ur f
are necessary and sufficient.

§ 109. Now, we turn to the second of the two problems, the settlement of which
was announced in the introduction to the chapter (on p. 439): to determine all r-
term intransitive groups; as was already said at that time, we want to undertake
the determination in question under the assumption that all transitive groups with r
or fewer parameters are given. Since all transitive groups with an equal number of
parameters can be ordered in classes according to their composition and moreover,
since all transitive groups having one and the same composition decompose into
a series of types (cf. p. 443 sq.), we can express our assumption more precisely by
supposing firstly that all possible compositions of a group with r or fewer parameters
are known and secondly by imagining that for each one of these compositions, all
possible types of transitive groups having the concerned composition are given.

To begin with, we consider an arbitrary r-term intransitive group.
If X1 f , . . . ,Xr f are independent infinitesimal transformations of an r-term group

of the space x1, . . . ,xn, the r equations:

(20) X1 f = 0, . . . , Xr f = 0

have a certain number, say exactly n − l > 0, of independent solutions in common.
Hence we can imagine that the variables x1, . . . ,xn are chosen from the beginning in
such a way that xl+1, . . . ,xn are such independent solutions. Then X1 f , . . . ,Xr f will
receive the form:

Xk f =
l

∑
λ=1

ξkλ (x1, . . . ,xl , xl+1, . . . ,xn)
∂ f
∂xλ

(k=1 ···r)

where now naturally, not all l × l determinants of the matrix:
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∣
∣
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1l(x)
· · · ·
· · · ·

ξr1(x) · · ξrl(x)

∣
∣
∣
∣
∣
∣
∣
∣

vanish identically, since otherwise, the equations (20) would have more than n − l
independent solutions in common.

If the number r, which is at least equal to l, was exactly equal to l, then
X1 f , . . . ,Xr f would be linked together by no relation of the form:

χ1(xl+1, . . . ,xn)X1 f + · · ·+χr(xl+1, . . . ,xn)Xr f = 0;

but now, r need not be equal to l, hence relations of the form just described can also
very well exist without all the functions χ1, . . . ,χr vanishing. So we want to assume
that X1 f , . . . ,Xm f , say, are linked together by no such relation, while by contrast,
Xm+1 f , . . . ,Xr f may be expressed as follows in terms of X1 f , . . . ,Xm f :

(21) Xm+ν f ≡
m

∑
μ=1

ϑνμ(xl+1, . . . ,xn)Xμ f (ν=1 ···r−m).

Here of course, m satisfies the inequalities: l � m � r.
By combining the equation (21) with the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f (i, k=1 ···r)

which hold true in all circumstances, we see that X1 f , . . . ,Xm f stand pairwise in the
relationships:

[Xλ , Xμ ] =
m

∑
π=1

{

cλμπ +
r−m

∑
ν=1

cλ ,μ,m+ν ϑνπ(xl+1, . . . ,xn)
}

Xπ f

(λ , μ=1 ···m).

Now, if the variables xl+1, . . . ,xn are replaced by arbitrary constants: al+1, . . . ,an

and if x1, . . . ,xl only are still considered as variables, then it is clear that the r in-
finitesimal transformations:

Xk f =
l

∑
λ=1

ξkλ (x1, . . . ,xl , al+1, . . . ,an)
∂ f
∂xλ

(k=1 ···r)

in the l variables x1, . . . ,xl are no longer independent of each other, but can be lin-
early deduced from the m independent infinitesimal transformations:

Xμ f =
l

∑
λ=1

ξμλ (x1, . . . ,xl , al+1, . . . ,an)
∂ f
∂xλ

(μ=1 ···m).
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The m infinitesimal transformations X1 f , . . . ,Xm f are in turn obviously linked to-
gether by the relations:

(22) [Xλ , Xμ ] =
m

∑
π=1

{

cλμπ +
r−m

∑
ν=1

cλ ,μ,m+ν ϑνπ(al+1, . . . ,an)
}

Xπ f ,

and consequently, whichever values one may confer to the parameters al+1, . . . ,an,
they always generate an m-term group in the variables: x1, . . . ,xl , and of course, a
transitive group.

Now, by conferring to the parameters al+1, . . . ,an all possible values gradually,
one obtains ∞n−l m-term groups in l variables. On the occasion, it is conceivable,
though not necessary, that these ∞n−l groups are similar to each other. If this is not
the case, then these groups order themselves in∞n−l−σ families, each one consisting
of ∞σ groups, and to be precise, in such a way that two groups in the same family
are similar, while by contrast, two groups belonging to two different families are not
similar.

In all circumstances, our ∞n−l groups belong to the same kind of type [TYPE-
NGATTUNG]; in the latter case, this kind depends upon essential parameters (cf.
p. 455 sq.).

Now we can summarize how one can find all intransitive r-term groups in n
variables. One chooses two numbers l and m so that l � m � r and so that in addition
l < n, and one then forms all kinds [GATTUNGEN] of transitive m-term groups in l
variables. If Y1 f , . . . ,Ym f :

Yk f =
l

∑
i=1
ηki(x1, . . . ,xl , α1,α2, . . .)

∂ f
∂xi

(k=1 ···m)

is such a kind with the essential parameters α1, α2, . . . , then one interprets these
parameters as unknown functions of xl+1, . . . ,xn, one sets:

Xk f =
m

∑
i=1
βki(xl+1, . . . ,xn)Yi f (k=1 ···r),

and lastly, one attempts to choose the undetermined functions α j, βki of xl+1, . . . ,xn

in the most general way so that X1 f , . . . ,Xr f become independent infinitesimal
transformations of an r-term group. This requirement leads to certain finite relations
between the α , the β and the ciks of the sought r-term group which must be satisfied
in the most general way. The expressions of the infinitesimal transformations
determined in this way contain, apart from certain arbitrary constants ciks, certain
arbitrary functions of the invariants of the group.

We therefore have the
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Theorem 83. The determination of all intransitive r-term groups: X1 f , . . . ,Xr f in n
variables requires, as soon as all transitive groups with r or fewer parameters are
found, no integration, but only executable operations.3

It is to be observed that the computations necessary for the determination of
all intransitive groups depend only upon the numbers r, l and m. By contrast, the
number n plays no direct rôle. Consequently:

Theorem 84. The determination of all r-term groups in an arbitrary number of vari-
ables can be led back to the determination of all r-term groups in r or fewer vari-
ables.

We make a brief remark about the determination of all intransitive r-term groups
of the given composition.

If a group of the concerned composition contains only a finite number of invari-
ant subgroups, then m must be equal to r (Proposition 8, p. 320), and consequently,
the settlement of the problem just formulated amounts without effort to the deter-
mination of all transitive groups of the concerned composition. By contrast, if there
occur infinitely many invariant subgroups, m can be smaller than r; then according to
the developments just mentioned, the m-term group X1 f , . . . ,Xm f discussed above
must be meroedrically isomorphic to the sought r-term group. We do not want to
undertake to show more closely how the problem can be settled in this case.

—————–

3 LIE, Archiv for Math. og Naturv. Vol. 10, Christiania 1885; Math. Ann. Vol. XVI, p. 528, 1880.



Chapter 23
Invariant Families of Manifolds

If x1, . . . ,xn are point coordinates of an n-times extended space, then a family of
manifolds of this space is represented by equations of the form:

(1) Ω1(x1, . . . ,xn, l1, . . . , lm) = 0, . . . , Ωn−q(x1, . . . ,xn, l1, . . . , lm) = 0,

in which, aside from the variables x1, . . . ,xn, certain parameters: l1, . . . , lm are
present.

If one executes an arbitrary transformation:

x′
i = fi(x1, . . . ,xn) (i=1 ···n)

of the space x1, . . . ,xn, then each one of the manifolds (1) is transferred to a new
manifold, hence the whole family (1) converts into a new family of manifolds. One
obtains the equations of this new family when one takes away x1, . . . ,xn from (1)
with the help of the n equations: x′

i = fi(x). Now in particular, if the new family
of manifolds coincides with the original family (1), whence every manifold of the
family (1) is transferred by the transformation: x′

i = fi(x) to a manifold of the same
family, then we say that the family (1) admits the transformation in question, or that
it remains invariant by it.

If a family of manifolds in the space x1, . . . ,xn admits all transformations of an
r-term group, then we say that it admits the group in question.

Examples of invariant families of manifolds in the space x1, . . . ,xn have already
appeared to us several times; every intransitive group decomposes the space into an
invariant family of individually invariant manifolds (Chap. 13, pp. 227–228); every
imprimitive group decomposes the space into an invariant family of manifolds that
it permutes (p. 232 sq.); also, every manifold individually invariant by a group may
be interpreted as an invariant family of manifolds, namely as a family parametrized
by a point.

In what follows, we now consider a completely arbitrary family of manifolds.
First, we study under which conditions this family admits a single given transfor-
mation, or a given r-term group. Then, we imagine that a group is given by which the
family remains invariant and we determine the law according to which the manifolds

c© Springer-Verlag Berlin Heidelberg 2015
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of the family are permuted with each other by the transformations of this group. In
this way, we obtain a new process to set up the groups which are isomorphic with a
given group. Finally, we give a method for finding all families of manifolds invariant
by a given group.

§ 110. Let the equations:

(1) Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

with the m arbitrary parameters l1, . . . , lm represent an arbitrary family of manifolds.
If l1, . . . , lm are absolutely arbitrary parameters, then naturally, one should not be

able to eliminate all the x from (1); therefore, the equations (1) must be solvable
with respect to n−q of the variables x1, . . . ,xn.

By contrast, it is not excluded that the l can be eliminated from (1), and this says
nothing but that some relations between the x alone can be derived from (1). Only
the number of independent equations free of the l which follow from (1) must be
smaller than n−q, since otherwise, the parameters l1, . . . , lr would be only apparent
and the equations (1) would therefore represent not a family of manifolds, but a
single manifold.

Before we study how the family of manifolds (1) behaves relative to transforma-
tions of the x, we must first make a few remarks about the nature of the equations (1).

The equations (1) contain m parameters l1, . . . , lm; if we let these parameters take
all possible values, then we obtain ∞m different systems of values: l1, . . . , lm, but not
necessarily ∞m different manifolds. It must therefore be determined under which
conditions the given system of equations represents exactly ∞m different manifolds,
or in other words: one must give a criterion to determine whether the parameters:
l1, . . . , lm in the equations (1) are essential, or not.

In order to find such a criterion, we imagine that the equations:Ωk = 0 are solved
with respect to n−q of the x, say with respect to xq+1, . . . ,xn:

(2)
xq+k = ψq+k(x1, . . . ,xq, l1, . . . , lm)

(k=1 ···n−q)

and we imagine moreover that the functions ψq+k are expanded with respect to the
powers of: x1 −x0

1, . . . , xq −x0
q in the neighborhood of an arbitrary system of values:

x0
1, . . . ,x

0
q. The coefficients of the expansion, whose number is naturally infinitely

large in general, will be analytic functions of l1, . . . , lm and we may call them:

Λ j(l1, . . . , lm) ( j=1, 2 ···).

The question amounts just to how many independent functions are extant amongst
all the functions Λ1, Λ2, . . . .

Indeed, if amongst the Λ , there are exactly l that are mutually independent func-
tions — there are anyway surely no more than l —, then to the ∞m different systems
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of values: l1, . . . , lm, there obviously also correspond ∞m different systems of values:
Λ1, Λ2, . . . , and therefore ∞m different manifolds (2), that is to say, the parameters
are essential in the equations (2), and hence also in the equations (1).

Otherwise, assume that amongst the functions Λ1, Λ2, . . . , there are not m but
fewer functions, say only m − h, that are mutually independent. In this case, all
the Λ j can be expressed in terms of m − h of them, say in terms of: Λ ′

1, . . . ,Λ ′
m−h,

which naturally must be mutually independent. To the ∞m different systems of
values l1, . . . , lm, there correspond therefore ∞m−h different systems of values
Λ ′

1, . . . ,Λ ′
m−h, and ∞m−h different systems of values Λ1, Λ2, . . . , so that the equa-

tions (2), and thus also the equations (1), represent only ∞m−h different manifolds.
We can express this in the clearest way by observing that the functions ψq+k(x, l)
contain the parameters l1, . . . , lm only in the combinations: Λ ′

1, . . . ,Λ ′
m−h, so that the

equations (2) are of the form:

(2’) xq+k = ψq+k(x1, . . . ,xq,Λ ′
1, . . . ,Λ ′

m−h) (k=1 ···n−q).

From this, it indeed results that we can introduce precisely Λ ′
1, . . . ,Λ ′

m−h as new pa-
rameters in place of l1, . . . , ln, a process by which the number of arbitrary parameters
appearing in (2) is lowered to m−h.

Thus, we can say:

The equations:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

represent ∞m different manifolds only when it is not possible to indicate m−h < m
functions π1, . . . ,πm−h of l1, . . . , lm such that, in the resolved equations:

xq+k = ψq+k(x1, . . . ,xq, l1, . . . , lm) (k=1 ···n−q),

the functionsψq+1, . . . ,ψn can be expressed in terms of x1, . . . ,xn and of π1, . . . ,πm−h

only. By contrast, if it is possible to indicate m − h < m functions πμ having this
constitution, then the equations Ωk = 0 represent at most ∞m−h manifolds and the
parameters l1, . . . , lm are hence not essential.

Here, we make a brief remark.
If the functions: Λ1, Λ2, . . . discussed above take the values: Λ 0

1 , Λ 0
2 after the

substitution: l1 = l0
1 , . . . , lm = l0

m, then the equations:

Λ j(l1, . . . , lm) =Λ 0
j ( j=1, 2 ···)

define the totality of all systems of values l1, . . . , lm which, when inserted in (2) or
in (1), provide the same manifold as the system of values: l0

1 , . . . , l
0
m. Now, if amongst

the functions Λ1, Λ2, . . . , there are m functions that are mutually independent, then
the parameters l1, . . . , lm are all essential, whence the following obviously holds:
Around every system of values l0

1 , . . . , l
0
m in general position, one can delimit a region
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such that two distinct systems of values l1, . . . , lm of the concerned region always
provide two manifolds that are also distinct.

The definition for essentiality [WESENTLICHKEIT] and for inessentiality
[NICHTWESENTLICHKEIT] of the parameters l1, . . . , lm (respectively) given above
is satisfied only when the equations: Ω1 = 0, . . . , Ωq = 0 are already solved with
respect to n − q of the x. However, it is desirable, in principle and also for what
follows, to reshape this definition so that it also applies to a non-resolved system of
equations Ωk = 0.

There is no difficulty in doing that.
Let the parameters l1, . . . , lm in the equations:

(2) xq+k = ψq+k(x1, . . . ,xq, l1, . . . , lm) (k=1 ···n−q)

be not essential, whence one can indicate m − h < m functions: π1(l), . . . ,πm−h(l)
so that ψq+1(x, l), . . . , ψn(x, l) can be expressed in terms of x1, . . . ,xq and
of π1(l), . . . ,πm−h(l) alone. Evidently, there is then at least one linear partial
differential equation:

L f =
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂ lμ

= 0

with the coefficients: λ1(l), . . . ,λμ(l) free of the x which is satisfied identically by all
functions: π1(l), . . . ,πm−h(l), and hence also by all the functions: xq+i −ψq+i(x, l).
Thus, we can also say (cf. Chap. 7, Theorem 15, p. 132):

When the parameters l1, . . . , lm are not essential in (2), then the system of equa-
tions (2), interpreted as a system of equations in the variables: x1, . . . ,xn, l1, . . . , lm,
admits an infinitesimal transformation L f in the variables l1, . . . , lm alone.

But the converse also holds true: When the system of equations (2), interpreted
as a system of equations in the variables x1, . . . ,xn, l1, . . . , lm, admits an infinitesimal
transformation L f in the l alone, then the parameters l1, . . . , lm are not essential in the
system of equations; it is indeed immediately clear that, under the assumption made,
ψq+1(x, l), . . . , ψn(x, l) are solutions of the partial differential equation: L f = 0,
whence it is possible to lower the number of arbitrary parameters appearing in (2).

If we bear in mind that the system of equations (2) is only another form of the
system of equations (1), then we realize without effort (cf. p. 126) that the following
proposition holds:

Proposition 1. A system of equations:

(1) Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

with the l1, . . . , lm parameters which is solvable with respect to n − q of the vari-
ables x1, . . . ,xn represents ∞m different manifolds of the space x1, . . . ,xn if and only
if, when it is regarded as a system of equations in the n+m variables: x1, . . . ,xn,
l1, . . . , lm, it admits no infinitesimal transformation:
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L f =
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂ lμ

in the variables l alone.

§ 111. In the space x1, . . . ,xn, let now a family of ∞m different manifolds be
determined by the n−q equations: Ωk(x, l) = 0, or by the equally good [GLEICHW-
ERTIG] equations:

(2) xq+k = ψq+k(x1, . . . ,xn, l1, . . . , lm) (k=1 ···n−q).

If this family is supposed to remain invariant by the transformation: x′
i =

fi(x1, . . . ,xn), then every manifold of the family must again be transferred by the
concerned transformation into a manifold of the family. Hence, if by l′1, . . . , l

′
m we

understand the parameters of the manifold of the family into which the manifold
with the parameters l1, . . . , lm is transferred by the transformation: x′

i = fi(x),
then after the introduction of the new variables: x′

1 = f1(x), . . . , x′
n = fn(x), the

equations (2) must receive the form:

x′
q+k = ψq+k(x′

1, . . . ,x
′
q, l′1, . . . , l

′
m) (k=1 ···n−q),

where the parameters l′1, . . . , l
′
m depend naturally only upon the l.

But now, after the introduction of the x′, the equation (2) evidently take up the
form:

x′
q+k =Ψq+k(x′

1, . . . ,x
′
q, l1, . . . , lm) (k=1 ···n−q) ;

thus, if the family (2) is supposed to remain invariant by the transformation: x′
i =

fi(x), then it must be possible to satisfy the n−q equations:

(3) ψq+k(x′
1, . . . ,x

′
q, l′1, . . . , l

′
m) =Ψq+k(x′

1, . . . ,x
′
q, l1, . . . , lm) (k=1 ···n−q)

independently of the values of the variables x′
1, . . . ,x

′
q.

If one expands the two sides of (3), in the neighborhood of an arbitrary system
of values x′

1
0, . . . ,x′

n
0, with respect to the powers of: x′

1 − x′
1

0, . . . , x′
n − x′

n
0, if one

compares the coefficients, and if one takes into account that l′1, . . . , l
′
m are essential

parameters, then one realizes that l′1, . . . , l
′
m must be entirely determined functions of

l1, . . . , lm:
l′μ = χμ(l1, . . . , lm) (μ=1 ···m).

Conversely, the l must also naturally be representable as functions of the l′, be-
cause through the transition from the x′ to the x, the family of our manifolds must
also remain unchanged.

We therefore see that the equations:

x′
i = fi(x1, . . . ,xn) (i=1 ···n), l′μ = χμ(l1, . . . , lm) (μ=1 ···m)
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taken together represent a transformation in the n+m variables: x1, . . . ,xn, l1, . . . , lm,
that leaves invariant the system of equations: xq+k = ψq+k(x, l in these n+m vari-
ables. Consequently, we can say:

A family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

in the space x1, . . . ,xn admits the transformation:

x′
i = fi(x1, . . . ,xn) (i=1 ···n)

if and only if it is possible to add to this transformation in the x a corresponding
transformation:

l′μ = χμ(l1, . . . , lm) (μ=1 ···m)

in the l in such a way that the system of equations:Ωk(x, l)= 0 in the n+m variables
x1, . . . ,xn, l1, . . . , lm allows the transformation:

x′
i = fi(x1, . . . ,xn), l′μ = χμ(l1, . . . , lm).

From the above considerations, it becomes clear that the transformation: l′μ =
χμ(l), when it actually exists, is the only one of its kind; indeed, it is completely
determined when the transformation x′

i = fi(x) is known. The transformation: l′μ =
χμ(l) therefore contains no arbitrary parameters.

If the family of ∞m manifolds: Ωk(x, l) = 0 allows two different transformations:

x′
i = fi(x1, . . . ,xn) ; x′′

i = Fi(x′
1, . . . ,x

′
n),

then obviously, it also admits the transformation:

x′′
i = Fi

(

f1(x), . . . , fn(x)
)

,

which comes into existence by executing each of the two transformations one after
the other. From this, we conclude:

The totality of all transformations x′
i = fi(x1, . . . ,xn) which leave invariant a fam-

ily of ∞m manifolds of the space x1, . . . ,xn forms a group.

Naturally, this group need neither be finite, nor continuous; in complete general-
ity, we can only say: its transformations are ordered as inverses by pairs. Hence in
particular, when it contains only a finite number of arbitrary parameters, then it be-
longs to the category of groups which was discussed in Chap. 18, and according to
Theorem 56, p. 328, it contains a completely determined finite continuous subgroup
generated by infinitesimal transformations. Evidently, this subgroup is the largest
continuous subgroup by which the family Ωk(x, l) = 0 remains invariant.

We now turn ourselves to the consideration of finite continuous groups which
leave invariant the family of ∞m manifolds:
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(1) Ωk(x1, . . . ,xn, l1, . . . , lm) (k=1 ···n−q) ;

however, for reasons of simplicity we first restrict ourselves to the case of a one-term
group having the concerned constitution.

Let the family of ∞m manifolds (1) admit all transformations:

(1) x′
i = fi(x1, . . . ,xn, ε) (i=1 ···n)

of the one-term group:

X f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

.

The transformation in the l which, according to p. 472, corresponds to the general
transformation: x′

i = fi(x,a), can be read:

(4’) l′μ = χμ(l1, . . . , lm, ε) (μ=1 ···m).

It is easy to see that the totality of all transformations of the form:

(4”)

{

x′
i = fi(x1, . . . ,xn, ε) (i=1 ···n)

l′μ = χμ(l1, . . . , lm, ε) (μ=1 ···m)

forms in turn a one-term group in the n+m variables: x1, . . . ,xn, l1, . . . , lm.
In fact, according to p. 472, the transformations (4”) leave invariant the system

of equations (1); hence if one first executes the transformation (4”) and then a trans-
formation of the same form with the parameter ε1, then one gets a transformation:

x′′
i = fi

(

f1(x,ε), . . . , fn(x,ε), ε1
)

(i=1 ···n)

l′′μ = χμ
(

χ1(l,ε), . . . , χm(l,ε), ε1
)

(μ=1 ···m)

which, likewise, leaves invariant the system of equations (1). Now, the transforma-
tion:

(5) x′′
i = fi

(

f1(x,ε), . . . , fn(x,ε), ε1
)

belongs to the one-term group X f and can hence be brought to the form:

x′′
i = fi(x1, . . . ,xn, ε2) (i=1 ···n),

where ε2 depends only on ε and on ε1. Consequently, the transformation in the l
which corresponds to the transformation (5) has the form:

l′′μ = χμ(l1, . . . , lm, ε2) (μ=1 ···m)

and we therefore deduce:
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χμ
(

χ1(l,ε), . . . ,χm(l,ε), ε1) = χμ(l1, . . . , lm, ε2)
(μ=1 ···m).

As a result, it is proved that the equations (4”) effectively represent a group in the
n+m variables: x1, . . . ,xn, l1, . . . , lm, and to be precise, a group which possesses the
same parameter group as the given group: x′

i = fi(x,ε). At the same time, it is clear
that the equations (4’) taken for themselves also represent a group in the variables:
l1, . . . , lm, however not necessarily a one-term group, because it is conceivable that
the parameter ε in the equations (4’) is completely missing.

The transformations of the group (4) order as inverses by pairs, hence the same
visibly holds true for the transformations of the group (4’). From this, we get (cf.
Chap. 9, p. 184 above) that the group (4”) also contains the identity transformation,
and in addition, an infinitesimal transformation:

n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

+
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂λμ

= X f +L f ,

by which it is generated.

We recapitulate the obtained result in the:

Proposition 2. If the family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

of the space x1, . . . ,xn admits all transformations:

x′
i = fi(x1, . . . ,xn, ε) (i=1 ···n)

of the one-term group:

X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

,

then the corresponding transformations:

x′
i = fi(x1, . . . ,xn, ε) (i=1 ···n)

l′μ = χμ(l1, . . . , lm, ε) (μ=1 ···m)

which leave invariant the system of equations: Ω1(x, l) = 0, . . . , Ωn−q(x, l) = 0 in
the n+m variables: x1, . . . ,xn, l1, . . . , lm form a one-term group with an infinitesimal
transformation of the form:

n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

+
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂λμ

= X f +L f .

We set up the following definition:

Definition. A family of ∞m manifolds:
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Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

of the space x1, . . . ,xn admits the infinitesimal transformation:

X f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

when there is, in l1, . . . , lm, an infinitesimal transformation:

L f =
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂ lμ

such that the system of equations: Ω1(x, l) = 0, . . . , Ωn−q(x, l) = 0 in the n+m
variables: x1, . . . ,xn, l1, . . . , lm admits the infinitesimal transformation X f +L f .

It now remains to consider the question of whether the infinitesimal transforma-
tion L f is completely determined by the transformation X f . One easily sees that
this is the case; indeed, if the system of equations: Ωk(x, l) = 0 admits the two in-
finitesimal transformations: Xl +L f and X f +L f , then it admits at the same time
the transformation:

X f +L f − (X f +L f ) = L f −L f ;

but since the parameters of the family: Ωk(x, l) = 0 are essential, the expression:
L f −L f must vanish identically, hence the transformation L f cannot be distinct
from the transformation L f .

By taking as a basis the above definition, we can obviously express the content
of Proposition 2 as follows:

If the family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

admits the one-term group X f , then at the same time, it admits the infinitesimal
transformation X f .

Conversely: when the family of ∞m manifolds: Ωk(x, l) = 0 admits the infinites-
imal transformation X f , then it also admits the one-term group X f .

Indeed, under the assumption made, if the system of equations: Ωk(x, l) = 0 in
the n+m variables x, l admits an infinitesimal transformation of the form:

X f +L f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

+
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂ lμ

,

then1 (Translator’s note: See Chap. 6, Theorem 14, p. 127, for this general fact.) it
admits at the same time all transformations of the one-term group: X f + L f , and
therefore, the family of ∞m manifolds: Ωk(x, l) = 0 in the space x1, . . . ,xn allows all
transformations of the one-term group X f .

With these words, we have proved the:
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Proposition 3. The family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

in the space x1, . . . ,xn admits the one-term group X f if and only if it admits the
infinitesimal transformation X f .

If one wants to know whether the family of ∞m manifolds: Ωk(x, l) = 0 admits
a given infinitesimal transformation X f , then one will first solve the equations
Ωk(x, l) = 0 with respect to n−q of the x:

(2) xq+k = ψq+k(x1, . . . ,xq, l1, . . . , lm) (k=1 ···n−q),

and then, one will attempt to determine m functions: λ1(l), . . . ,λm(l) of the l so
that the system of equations (2) in the n+m variables x, l admits the infinitesimal
transformation:

X f +L f =
n

∑
i=1
ξi(x1, . . . ,xn)

∂ f
∂xi

+
m

∑
μ=1

λμ(l1, . . . , lm)
∂ f
∂ lμ

.

If one denotes the substitution: xq+1 = ψq+1, . . . , xn = ψn by the symbol [ ], then
one obviously obtains for λ1(l), . . . , λm(l) the following equations:

m

∑
μ=1

λμ(l)
∂ψq+k

∂ lμ
=

[

ξq+k
]−

q

∑
j=1

[

ξ j
] ∂ψq+k

∂x j

(k=1 ···n−q),

which must be satisfied independently of the values of the variables x1, . . . ,xq. The-
oretically, there is absolutely no difficulty in deciding whether this is possible. One
finds either that there is no system of functions λμ(l) which has the constitution
demanded, or one finds a system of this sort, but then also only one such system,
for the infinitesimal transformation L f is indeed, when it actually exists, completely
determined by X f .

Now we will prove that the following proposition holds:

Proposition 4. If the family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

in the space x1, . . . ,xn admits the two infinitesimal transformations:

X1 f =
n

∑
i=1
ξ1i(x)

∂ f
∂xi

, X2 f =
n

∑
i=1
ξ2i(x)

∂ f
∂xi

,

then it admits not only every infinitesimal transformation:

e1 X1 f + e2 X2 f
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which can be linearly deduced from X1 f and X2 f , but also the transformation:
[X1, X2].

Under the assumptions that are made in the proposition, there are two infinites-
imal transformations L1 f and L2 f in the l alone that are constituted in such a way
that the system of equations: Ωk(x, l) = 0 in the n+m variables x, l allows the two
infinitesimal transformations X1 f +L1 f , X2 f +L2 f . According to Chap. 7, Proposi-
tion 5, p. 134, the system of equationsΩk(x, l) = 0 then also admits the infinitesimal
transformation: [X1, X2] + [L1, L2] coming into existence by combination; but this
says precisely that the family of ∞m manifolds Ωk(x, l) = 0 also admits [X1,X2]. As
a result, our proposition is proved.

The considerations that we have applied in the proof just conducted also give the
following:

If the family of ∞m manifolds Ωk(x, l) = 0 admits the two infinitesimal trans-
formations X1 f and X2 f , and if L1 f and L2 f , respectively, are the corresponding
infinitesimal transformations in l1, . . . , lm alone, then the infinitesimal transforma-
tion [L1, L2] corresponds to the transformation [X1, X2].

We assume that the family of ∞m manifolds: Ωk(x, l) = 0 in the space: x1, . . . ,xn

allows all transformations of an arbitrary r-term group:

(6) x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n).

Let the group in question be generated by the r independent infinitesimal transfor-
mations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

,

so that between: X1 f , . . . ,Xn f , there are relations of the known form:

[Xi, Xk] =
r

∑
s=1

ciks Xs f (i, k=1 ···r).

If:

(6’) l′μ = χμ(l1, . . . , lm, a1, . . . ,ar) (μ=1 ···m)

is the transformation in the l which corresponds to the general transformation: x′
i =

fi(x,a) of the group: X1 f , . . . ,Xr f , then the equations (6) and (6’) taken together
represent an r-term group in the n+m variables: x1, . . . ,xn, l1, . . . , lm.

In fact, if T(a1,...,ar), or shortly T(a), and T(b1,...,br), or shortly T(b), are two trans-
formations of the group: x′

i = fi(x,a), then when executed one after the other, they
produce in the known way a transformation: T(a) T(b) = T(c) of the same group, where
the parameters c1, . . . ,cr depend only on the a and on the b.

On the other hand, if S(a) and S(b) are the transformations (6’) which correspond,
respectively, to the transformations T(a) and T(b), then one obviously obtains the
transformation in the l corresponding to the transformation T(a) T(b) when one
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executes the two transformations S(a) and S(b) one after the other, that is to say:
the transformation S(a) S(b) corresponds to the transformation T(a) T(b). But now,
we have: T(a) T(b) = T(c) and the transformation S(c) in the l corresponds to the
transformation T(c), whence we must have: S(a) S(b) = S(c).

With these words, we have proved that the equations (6) and (6’) really represent
an r-term group in the variables: x1, . . . ,xn, l1, . . . , lm and to be precise, a group
which is holoedrically isomorphic with the group: x′

i = fi(x,a); indeed, both groups
visibly have one and the same parameter group (cf. Chap. 21, p. 412 sq.).

At the same time, it is proved that the equations (6’) in turn also represent a
group in the variables l1, . . . , lm, and in fact, a group isomorphic with the group:
x′

i = fi(x,a) (cf. Chap. 21, p. 430 sq.), as it results from the symbolic relations
holding simultaneously:

T(a) T(b) = T(c)

and:
S(a) S(b) = S(c).

If one associates to every transformation of the group (6) the transformation of the
group (6’) which is determined by it, then one obtains the two groups (6) and (6’)
related to each other in an isomorphic way.

The isomorphism of the two groups (6) and (6’) need not be holoedric, and in
certain circumstances, the group (6’) can even reduce to the identity transformation,
namely when the group x′ = f (x,a) leaves individually untouched each one of the
∞m manifolds: Ωk(x, l) = 0.

We will show that the group which is represented by the joint equations (6)
and (6’) is generated by r independent infinitesimal transformations.

Since the family of ∞m manifolds: Ωk(x, l) allows all transformations of the
group: x′

i = fi(x,a), it admits in particular each one of the r one-term groups:
X1 f , . . . ,Xr f , hence according to Proposition 3, p. 476, it also admits each one
of the r infinitesimal transformations: X1 f , . . . ,Xr f . From this, it results that to
every infinitesimal transformation Xk f is associated a completely determined
infinitesimal transformation:

Lk f =
m

∑
μ=1

λkμ(l1, . . . , lm)
∂ f
∂ lμ

of such a constitution that the system of equations: Ωk(x, l) = 0 in the n+m vari-
ables: x1, . . . ,xn, l1, . . . , lm admits the infinitesimal transformation: Xk f +Lk f .

Naturally, the system of equations: Ωk(x, l) = 0 admits at the same time every
infinitesimal transformation: e1 (X1 f + L1 f ) + · · ·+ er (Xr f + Lr f ), and in conse-
quence of that, also every one-term group: e1 (X1 f +L1 f )+ · · ·+er (Xr f +Lr f ). But
since the group: x′

i = fi(x,a) consists of the totality of all one-term groups: e1 X1 f +
· · ·+er Xr f , then the group represented by the equations (6) and (6’) must obviously
be identical to the totality of all one-term groups: ∑ ek Xk f +∑ ek Lk f , hence it must
be generated by the r independent infinitesimal transformations: Xk f +Lk f , which
was to be shown.
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Now, from this, it follows that two arbitrary infinitesimal transformations
amongst the Xk +Lk f must satisfy relations of the form:

[Xi +Li f , Xk +Lk f ] =
r

∑
s=1

c′
iks (Xs f +Ls f ).

By verifying this directly, we obtain a new proof of the fact that all finite transfor-
mations: x′

i = fi(x,a), l′μ = χμ(l,a) form a group. But at the same time, we realize
that c′

iks = ciks, which is therefore coherent with the fact that our new group in the x
and l possesses the same parameter group as the given group: x′

i = fi(x,a).
The system of equations: Ωk(x, l) = 0 admits, simultaneously with the infinitesi-

mal transformations: X1 f +L1 f , . . . , Xr f +Lr f , the transformations:

[Xi, Xk]+ [Li, Lk] =
r

∑
s=1

ciks Xs f +[Li, Lk]

(i, k=1 ···r),

and therefore also the following:

[Xi, Xk]+ [Li, Lk]−
r

∑
s=1

ciks (Xs f +Ls f ) = [Li, Lk]−
r

∑
s=1

ciks Ls f

in the variables l1, . . . , lm alone. But because of the constitution of the system of
equations: Ωk(x, l) = 0, this is possible only when the infinitesimal transformations
just written vanish identically, hence when the relations:

[Li, Lk] =
r

∑
s=1

ciks Ls f

hold true. From this, it follows immediately that:

[Li, Lk]+ [Xi, Xk] =
r

∑
s=1

ciks (Xs f +Ls f ),

whence the said property of the joint equations (6) and (6’) is proved.
According to the above, it goes without saying that the group (6’) is generated by

the r infinitesimal transformations: L1 f , . . . ,Lr f . At the same time, in the preceding,
we have a new proof of the fact that the equations (6’) represent a group in the
variables l1, . . . , lm which is isomorphic with the group: X1 f , . . . ,Xr f .

At present, the isomorphic relationship between the two groups (6) and (6’) men-
tioned on p. 478 can also be defined by saying that to every infinitesimal transfor-
mation: e1 X1 f + · · ·+er Xr f is associated the infinitesimal transformation: e1 L1 f +
· · ·+ er Lr f determined by it in the l.

We therefore have the:

Proposition 5. If the family of ∞m manifolds:
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Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

in the space: x1, . . . ,xn admits the r independent infinitesimal transformations:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

of an r-term group having the composition:

[Xi, Xk] =
r

∑
s=1

ciks Xs f (i, k=1 ···r),

then to every Xk f there corresponds a completely determined infinitesimal transfor-
mation:

Lk f =
m

∑
μ=1

λkμ(l1, . . . , lm)
∂ f
∂ lμ

of such a constitution that the system of equations: Ωk(x, l) = 0 in the n+m vari-
ables: x1, . . . ,xn, l1, . . . , lm admits the r infinitesimal transformations: Xk f +Lk f , so
the r infinitesimal transformations Lk f stand pairwise in the relationships:

[Li, Lk] =
r

∑
s=1

ciks Ls f (i, k=1 ···r),

that is to say, they generate a group isomorphic with the group: X1 f , . . . ,Xr f .

Here, the following proposition may be expressly stated and proved indepen-
dently:

Proposition 6. If the r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xn contains ex-
actly p � r independent infinitesimal transformations which leave invariant the ∞m

manifolds:
Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q),

then these p independent infinitesimal transformations generate a p-term subgroup
of the group: X1 f , . . . ,Xr f .

The proof is very simple. Let:

Ξπ f =
r

∑
j=1

gπ j Xj f (π=1 ··· p)

be such independent infinitesimal transformations of the group: X1 f , . . . ,Xr f which
leave invariant the family: Ωk(x, l) = 0, so that every other infinitesimal transfor-
mation: e1 X1 f + · · ·+ er Xr f which does the same can be linearly deduced from
Ξ1 f , . . . ,Ξp f . Then according to Proposition 4, p. 476, the family: Ωk(x, l) = 0 also
admits every infinitesimal transformation: [Ξμ , Ξν ] of the group: X1 f , . . . ,Xr f , and
consequently, there are relations of the form:
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[Ξμ , Ξν ] =
p

∑
π=1

gμνπ Ξπ f (μ, ν=1 ··· p)

in which the gμνπ denote constants. From this, it follows that Ξ1 f , . . . ,Ξp f effec-
tively generate a p-term group. —

If the family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

is presented, and if in addition an arbitrary r-term group: X1 f , . . . ,Xr f of the space
x1, . . . ,xn is also presented, one can ask how many independent infinitesimal trans-
formations of the group: X1 f , . . . ,Xr f the presented family admits. We now summa-
rize how this question can be answered.

Indeed, if the family: Ωk(x, l) = 0 is supposed to admit an infinitesimal trans-
formation of the form: e1 X1 f + · · ·+ er Xr f , then it must be possible to indicate
an infinitesimal transformation: L f in the l alone such that the system of equations:
Ωk(x, l)= 0 in the n+m variables: x1, . . . ,xn, l1, . . . , lm admits the infinitesimal trans-
formation: ∑ ek Xk f +L f . Hence, if we imagine that the equations: Ωk(x, l) = 0 are
resolved with respect to n−q of the x:

xq+k = ψq+k(x1, . . . ,xq, l1, . . . , lm) (k=1 ···n−q),

and if, as on p. 476, we denote the substitution: xq+1 = ψq+1, . . . , xn = ψn by the
symbol [ ], then we only have to determine the constants e1, . . . ,er and the functions:
λ1(l), . . . ,λm(l) in the most general way so that the n−q equations:

m

∑
μ=1

λμ(l)
∂ψq+k

∂ lμ
=

r

∑
σ=1

eσ

{
[

ξσ ,q+k
]−

q

∑
j=1

[

ξσ j
] ∂ψq+k

∂x j

}

(k=1 ···n−q)

are satisfied identically, independently of the values of the variables x1, . . . ,xq. In
this way, we find the most general infinitesimal transformation: e1 X1 f + · · ·+er Xr f
which leaves invariant the family: Ωk(x, l) = 0.

§ 112. When the family of ∞m manifolds:

(1) Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

admits the transformation: x′
i = fi(x1, . . . ,xn), then there is, as we have seen on p. 471

sq., a completely determined transformation: l′μ = χμ(l1, . . . , lm) of such a constitu-
tion that the system of equations: Ωk(x, l) = 0 in the n+m variables x, l admits the
transformation: {

x′
i = fi(x1, . . . ,xn) (i=1 ···n)

l′μ = χμ(l1, . . . , lm) (μ=1 ···m).
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Already on p. 471, we observed that the equations: l′μ = χμ(l) determine the pa-
rameters of the manifold of the invariant family (1) into which the manifold with the
parameters l1, . . . , lm is transferred by the transformation: x′

i = fi(x). Hence, when
we interpret l1, . . . , lm virtually as coordinates of individual manifolds of the fam-
ily (1), the equations: l′μ = χμ(l) indicate the law according to which the mani-
folds of our invariant family are permuted with each other by the transformation:
x′

i = fi(x).
For instance, if a special system of values: l0

1 , . . . , l
0
m admits the transformation:

l′μ = χμ(l1, . . . , lm) (μ=1 ···m),

then at the same time, the manifold:

Ωk(x1, . . . ,xn, l0
1 , . . . , l

0
m) = 0 (k=1 ···n−q)

admits the transformation:

x′
i = fi(x1, . . . ,xn) (i=1 ···n).

In fact, the manifold: Ωk(x, l0) = 0 is transferred, by the execution of the trans-
formation: x′

i = fi(x), to the new manifold:

Ωk
(

x′
1, . . . ,x

′
n, χ1(l0), . . . , χm(l0)

)

= 0 (k=1 ···n−q) ;

but under the assumption made, we have:

χμ(l0
1 , . . . , l

0
m) = l0

μ (μ=1 ···m),

hence the new manifold coincides with the old one and the manifold: Ωk(x, l0) = 0
really remains invariant.

However, by contrast, the converse does not always hold true. If an arbitrary
special manifold:

Ωk(x1, . . . ,xn, l0
1 , . . . , l

0
m) = 0 (k=1 ···n−q)

of the family (1) admits the transformation: x′
i = fi(x), then it does not necessarily

follow that the system of values: l0
1 , . . . , l

0
m admits the transformation: l′μ = χμ(l).

Indeed, it is conceivable that, to the system of values: l0
1 , . . . , l

0
m, there is associated a

continuous series of systems of values: l1, . . . , lm which provide the same manifold
as the system of values: l0

1 , . . . , l
0
m, when inserted in (1); in this case, from the invari-

ance of the manifold: Ωk(x, l0) = 0, it only follows that the individual systems of
values: l1, . . . , lm of the series just defined are permuted with each other by the trans-
formation: l′μ = χμ(l), but not that the system of values: l0

1 , . . . , l
0
m remains invariant

by the transformation in question. Nevertheless, if the lk do not have special val-
ues but general values, then the manifold: Ωk(x, l) = 0 admits the transformation:
x′

i = fi(x,a) only when the system of values lk allows the corresponding transforma-
tion: l′μ = χμ(l), and also, always in this case too.
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Now, we consider the general case where the family of ∞m manifolds:

(1) Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

admits the r-term group:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

with the r independent infinitesimal transformations: X1 f , . . . ,Xr f . Let the group in
the l which corresponds to the group: x′

i = fi(x,a) have the form:

l′μ = χμ(l1, . . . , lm, a1, . . . ,ar) (μ=1 ···m),

and let it be generated by the r infinitesimal transformations: L1 f , . . . ,Lr f which in
turn correspond naturally to the infinitesimal transformations: X1 f , . . . ,Xr f , respec-
tively.

At first, the question is how one decides whether the infinitesimal transforma-
tion: e0

1 X1 f + · · ·+ e0
r Xr f leaves invariant a determined manifold contained in the

family (1):

(7) Ωk(x1, . . . ,xn, l0
1 , . . . , l

0
m) = 0 (k=1 ···n−q).

It is easy to see that the manifold (7) admits in any case the infinitesimal trans-
formation: e0

1 X1 f + · · ·+ e0
r Xr f when the system of values: l0

1 , . . . , l
0
m admits the

infinitesimal transformation: e0
1 L1 f + · · ·+ e0

r Lr f .
In fact, the system of equations (1) in the m+ n variables: x1, . . . ,xn, l1, . . . , lm

admits, under the assumptions made, the infinitesimal transformation: ∑ e0
j (Xj f +

L j f ); the n−q expressions:

r

∑
j=1

e0
j

(

XjΩk +L jΩk
)

=
r

∑
j=1

e0
j

{ n

∑
i=1
ξ ji(x)

∂Ωk

∂xi
+

m

∑
μ=1

λ jμ(l)
∂Ωk

∂ lμ

}

therefore all vanish by virtue of: Ω1(x, l) = 0, . . . , Ωn−q(x, l) = 0. This also holds
true when we set: l1 = l0

1 , . . . , lm = l0
m; but now, the system of values l0

1 , . . . , l
0
m admits

the infinitesimal transformation: ∑ e0
j L j f and hence, the m expressions:

e0
1λ1μ(l0)+ · · ·+ e0

r λrμ(l0) (μ=1 ···m)

all vanish. Consequently, the n−q expressions:

n

∑
i=1

{ r

∑
j=1

e0
j ξ ji(x)

}
∂Ωk(x, l0)
∂xi

(k=1 ···n−q)

all vanish by virtue of (7), that is to say, the manifold (7) really admits the infinites-
imal transformation: ∑ e0

j Xj f .
Nevertheless, the sufficient criterion found above is not necessary.
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Indeed, if our family of manifolds Ωk(x, l) = 0 remains invariant by the group:
X1 f , . . . ,Xr f , and if at the same time, the special manifold:Ωk(x, l0) = 0 is supposed
to admit the infinitesimal transformation: e0

1 X1 f + · · ·+ e0
r Xr f , then for that, it is

only necessary that the n−q expressions:

m

∑
μ=1

r

∑
j=1

e0
j λ jμ(l0)

∂Ωk(x, l0)
∂ lμ

be equal to zero by virtue of the system of equations: Ωk(x, l0) = 0; but it is not at
all necessary that the r expressions: ∑ e0

j λ jμ(l0) themselves vanish.

Thus, if one wants to know whether every manifold: Ωk(x, l) = 0 of the invari-
ant family admits one or several infinitesimal transformations: ∑ ek Xk f , and if in
addition, one wants for every manifold lk to find the concerned infinitesimal trans-
formation, then one has to determine the ek in the most general way as functions of
the l so that the equations:

(8)
m

∑
μ=1

r

∑
j=1

e j λ jμ(l)
∂Ω(x, l)
∂ lμ

= 0

are a consequence of the system of equations: Ωk(x, l) = 0. But since, according to
an assumption made earlier on, the l are essential parameters, the system of equa-
tions: Ωk(x, l) = 0 in the n+m variables x, l can admit no non-identically vanishing
transformation:

m

∑
μ=1

r

∑
j=1

e j(l)λ jμ(l)
∂ f
∂ lμ

,

whence it necessarily follows that:

e1λ1μ(l)+ · · ·+ er λrμ(l) = 0 (μ=1, 2 ···m).

We therefore get the following:

If: ∑ e0
k Lk f is the most general infinitesimal transformation contained in the

group: L1 f , . . . ,Lr f which leaves invariant the system of values: l0
1 , . . . , l

0
m located

in general position, then: ∑ e0
k Xk f is the most general infinitesimal transformation

contained in the group: X1 f , . . . ,Xr f which leaves invariant the manifold (7)
located in general position.

We can assume that amongst the r infinitesimal transformations: L1 f , . . . ,Lr f ,
exactly m − p, say: L1 f , . . . ,Lm−p f , are linked together by no linear relation of the
form:

α1(l1, . . . , lm)L1 f + · · ·+αm−p(l1, . . . , lm)Lm−p f = 0,

while by contrast: Lm−p+1 f , . . . ,Lr f can be expressed linearly in terms of
L1 f , . . . ,Lm−p f :
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Lm−p+ j f ≡
m−p

∑
μ=1

α jμ(l1, . . . , lm)Lμ f ( j=1 ···r−m+ p).

We can always insure that this assumption holds, even when the infinitesimal trans-
formations: L1 f , . . . ,Lr f are not mutually independent, which can very well occur.

It is now clear that the r −m+ p infinitesimal transformations:

(9) Lm−p+ j f −
m−p

∑
μ=1

α jμ(l0
1 , . . . , l

0
m)Lμ f ( j=1 ···r−m+ p)

leave invariant the system of values: l0
1 , . . . , l

0
m; moreover, because l0

1 , . . . , l
0
m is a sys-

tem of values in general position, one realizes immediately that every infinitesimal
transformation:∑ ek Lk f by which the system of values remains invariant can be lin-
early deduced from the r −m+ p transformations (9). Consequently, the most gen-
eral infinitesimal transformation: ∑ ek Xk f which leaves invariant the manifold (7)
located in general position can be linearly deduced from the r − m+ p transforma-
tions:

(10) Xm−p+ j f −
m−p

∑
μ=1

α jμ(l0
1 , . . . , l

0
m)Xμ f ( j=1 ···r−m+ p).

Of course, the infinitesimal transformations (10) are mutually independent and
they generate an (r − m+ p)-term group, namely the most general subgroup con-
tained in the group: X1 f , . . . ,Xr f by which the manifold (7) remains invariant.

In particular, if the group: L1 f , . . . ,Lr f is transitive, then the whole number p
has the value zero; so in this case, every manifold of the family (1) located in gen-
eral position admits exactly r − m independent infinitesimal transformations of the
group: X1 f , . . . ,Xr f .

We therefore have the

Proposition 7. If the family of ∞m manifolds:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q)

admits the r-term group: X1 f , . . . ,Xr f , if moreover L1 f , . . . ,Lr f are the infinites-
imal transformations in the l alone which correspond to the Xj f and if lastly
L1 f , . . . ,Lr f are linked together by exactly r − m+ p independent relations of the
form: ∑ β j(l)L j f = 0, then the group: X1 f , . . . ,Xr f contains exactly r − m+ p in-
dependent infinitesimal transformations which leave invariant a manifold l0

1 , . . . , l
0
m

in general position. These transformations generate an (r − m + p)-term group.
If the group: L1 f , . . . ,Lr f in the m variables l1, . . . , lm is transitive, then every
manifold of the family Ωk(x, l) = 0 located in general position admits exactly r −m
independent infinitesimal transformations of the group: X1 f , . . . ,Xr f and these
infinitesimal transformations generate an (r −m)-term subgroup.



486 23 Invariant Families of Manifolds

We add here the obvious remark that the group: L1 f , . . . ,Lr f in l1, . . . , lm is tran-
sitive if and only if every manifold of the family Ωk(x, l) = 0 located in general
position can be transferred, by means of at least one transformation of the group:
X1 f , . . . ,Xr f , to every other manifold.

§ 113. In the n-times extended space x1, . . . ,xn, let an r-term group: X1 f , . . . ,Xr f
be presented, and in addition, let an arbitrary manifold be given, which we denote
by M. We assume that no arbitrary parameters of any kind appear in the equations
of M.

If all ∞r transformations of the group: X1 f , . . . ,Xr f are executed on the manifold
M, then this manifold is transferred to a series of new manifolds. We will prove that
the totality of all these manifolds remains invariant by the group: X1 f , . . . ,Xr f , and
that it forms a family invariant by the group.

Let M′ be an arbitrary manifold which belongs to the totality just said, and let
T1 be a transformation of the group: X1 f , . . . ,Xr f which transfers M to M′, whence
there is the symbolic equation:

(M)T1 = (M′).

Now, if T is an arbitrary transformation of the group, we have:

(M′)T = (M′)T1 T = (M)T2,

where the transformation T2 again belongs to the group; consequently, the manifold
M′ is transferred by the transformation T to another manifold of the totality in ques-
tion. Since this holds for every manifold M′ of the totality, we see that the manifolds
belonging to the totality are permuted with each other by T , and hence by all trans-
formations of the group: X1 f , . . . ,Xr f , hence we see that the totality of manifolds
defined above effectively forms a family invariant by the group: X1 f , . . . ,Xr f .

It is easy to see that every manifold of this invariant family can be transferred,
by means of at least one transformation of the group, to every other manifold of the
family. Indeed, if:

(M′) = (M)T1, (M′′) = (M)T2,

then (M) = (M′)T −1
1 , whence:

(M′′) = (M′)T −1
1 T2,

whence the claim is proved. At the same time, it results from this that one also
obtains the discussed family of manifolds when one executes all ∞r transformations
of the group on an arbitrary manifold of the family.

We therefore have the

Proposition 8. If one executes all ∞r transformations of an r-term group:
X1 f , . . . ,Xr f of Rn on a given manifold of this space, then the totality of all
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positions that the manifold takes on the occasion forms a family of manifolds
invariant by the group. Every manifold of this family can be transferred, by means
of at least one transformation of the group, to any other manifold of the family.
The family can be derived from each one of its manifolds in the same way as it is
deduced from the initially given manifold.

The manifold M will admit a certain number, that we assume to be exactly equal
to r − m, of infinitesimal transformations of the group: X1 f , . . . ,Xr f .1 These trans-
formations then generate an (r −m)-term subgroup (cf. Theorem 31, p. 219).

Now, let S be the general symbol of a transformation of this subgroup, so:
(M)S = (M); moreover, let T1 be an arbitrary transformation of the group:
X1 f , . . . ,Xr f and let M be transferred to the new position M′ by T1: (M′) = (M)T1.
Then it is easy to indicate all transformations T of the group Xk f which transfer M
to M′.

Indeed, one has:
(M)T = (M′) = (M)T1,

whence:
(M)TT −1

1 = (M),

hence TT −1
1 is a transformation S and ST1 is the general symbol of all transforma-

tions of the group Xk f which transfer M to M′. But there are as many transformations
ST1 as there are different transformations S, that is to say, ∞r−m.

One finds in a similar way all transformations S of our group which leave M′
invariant. From (M′)S= (M′) and (M)T1 = (M′), one obtains:

(M)T1ST −1
1 = (M),

whence:
T1ST −1

1 = S, S= T −1
1 ST1.

Likewise, there are ∞r−m such different transformations and their totality forms an
(r −m)-term subgroup which is conjugate to the group S inside the group Xk f .

We summarize this result as follows:

Proposition 9. If a manifold M of Rn admits exactly r−m independent infinitesimal
transformations of the r-term group: X1 f , . . . ,Xr f , or briefly Gr, if moreover S is
the general symbol of the ∞r−m finite transformations of the (r −m)-term subgroup
which is generated by these r − m infinitesimal transformations, and lastly, if T is
an arbitrary transformation of Gr: X1 f , . . . ,Xr f and if M takes the new position M′
after the execution of T , then Gr contains exactly ∞r−m different transformations
which likewise transfer M to M′ and the general symbol of these transformations

1 The totality of all finite transformations of the group: X1 f , . . . ,Xr f which leave invariant a
manifold M always forms a subgroup (Theorem 32, p. 220), but of course, this group need not be
a finite continuous group. Nevertheless, in the following developments of the text, when we make
the implicit assumption that this subgroup is generated by infinitesimal transformations, it is not to
be interpreted as an essential restriction, because we can indeed suitably narrow down the region
((a)) introduced on p. 26.
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is: ST ; in addition, Gr contains exactly ∞r−m transformations which leave M′ in-
variant, these transformations have T −1 ST for a general symbol and they form an
(r −m)-term subgroup which is conjugate to the group of the S inside Gr.

If we imagine that the ∞r transformations of the group: x′
i = fi(x,a) are executed

on the equations of the manifold M, then we obtain the analytic expression of the
discussed invariant family of manifolds. Formally, this expression contains the r
parameters a1, . . . ,ar, but these parameters need not all be essential. We now want
to determine the number m′ of the essential parameters amongst the parameters
a1, . . . ,ar.

Our invariant family consists of ∞m′
different manifolds and each one of these

manifolds can be transferred to every other manifold by means of a transforma-
tion of the group: X1 f , . . . ,Xr f . According to Proposition 7, p. 485, each individual
manifold amongst the ∞m′

manifolds then admits exactly r − m′ independent in-
finitesimal transformations of Gr; but from the preceding, we know that under the
assumptions made, each one of these manifolds admits exactly ∞r−m finite transfor-
mations of Gr, and consequently, we have m′ = m and amongst the r parameters:
a1, . . . ,ar, there are exactly m that are essential.

We therefore have the

Proposition 10. If a manifold of the n-times extended space Rn admits exactly r−m
independent infinitesimal transformations of an r-term group: X1 f , . . . ,Xr f of this
space, then this manifold takes exactly ∞m different positions by the ∞r transforma-
tions of this group.

§ 114. In the equations of our invariant family of manifolds, as said, the pa-
rameters need not all be essential, but we can always imagine that m � r functions
l1, . . . , lm of the a are introduced as new parameters so that the equations of our
family are given the form:

Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q),

where now l1, . . . , lm are essential parameters.
The family Ωk = 0 remains invariant by the group: X1 f , . . . ,Xr f while its indi-

vidual manifolds are permuted with each other. The way the manifolds are permuted
is indicated by the group: L1 f , . . . ,Lr f in the l alone which, as shown earlier on, is
completely determined by the group: X1 f , . . . ,Xr f .

The group Lk f in the variables l1, . . . , lm is isomorphic with the group Xk f , hence
it has at most r essential parameters; on the other hand it is certainly, under the
assumption made, transitive (cf. p. 485 sq.), hence it has at least m essential parame-
ters. For us, it only remains to indicate a simple criterion for determining how many
essential parameters the group Lk f really has.

Let the group: L1 f , . . . ,Lr f be ρ-term, where 0 � ρ � r. Because it is meroedri-
cally isomorphic with Gr: X1 f , . . . ,Xr f , then there must exist in Gr an (r −ρ)-term
invariant subgroup which corresponds to the identity transformation in the group
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Lk f (cf. Theorem 54, p. 312). This (r−ρ)-term invariant subgroup of Gr then leaves
individually fixed each one of the ∞m manifolds: Ωk(x, l) = 0, hence it is contained
in the (r − m)-term subgroup gr−m of Gr which leaves invariant the manifold M
discussed above and at the same time, it is contained in all (r −m)-term subgroups
contained in Gr which are conjugate, inside Gr, to the gr−m just mentioned.

Conversely, if this gr−m contains an (r −ρ)-term subgroup which is invariant in
Gr, then this subgroup is at the same time contained in all subgroups of Gr that are
conjugate to gr−m, hence it leaves untouched every individual manifold: Ωk(x, l) =
0, and to it, there corresponds the identity transformation in the group: L1 f , . . . ,Lr f .

In order to decide how many parameters the group: L1 f , . . . ,Lr f contains, we
therefore only have to find the largest group contained in gr−m which is invariant
in Gr. When the group in question is exactly (r −ρ)-term (ρ � m), then the group:
L1 f , . . . ,Lr f is exactly ρ-term.

We do not want to state this result as a specific proposition, but instead, we want
to recapitulate all the results of the previous two sections in one theorem.

Theorem 85. If one has an r-term group: X1 f , . . . ,Xr f , or briefly Gr, of the space
x1, . . . ,xn and if one has an arbitrary manifold M which allows exactly r − m
independent infinitesimal transformations of Gr and hence which also admits the
(r − m)-term subgroup gr−m generated by these infinitesimal transformations,
then through the ∞r transformations of Gr, M takes in total ∞m different positions
the totality of which remains invariant relative to the group Gr. If one marks the
individual positions of M by means of m parameters: l1, . . . , lm, then one obtains a
certain group in l1, . . . , lm:

l′μ = χμ(l1, . . . , lm; a1, . . . ,ar) (μ=1 ···m)

which indicates in which way the individual positions of M are permuted with each
other by the group: X1 f , . . . ,Xr f . This group in the l is transitive and isomorphic
with the group: X1 f , . . . ,Xr f . If the largest subgroup contained in gr−m which is
invariant in Gr is exactly (r − ρ)-term, then the group: l′μ = χμ(l,a) has exactly
ρ essential parameters. In particular, if Gr is simple, then the group in the l is
always r-term and holoedrically isomorphic to Gr, with the only exception being
the case m = 0, for which the group: l′μ = χμ(l,a) consists only of the identity

transformation.2

The number r −ρ mentioned in the theorem may have each one of the values: 0,
1, . . . , r − m; if r −ρ = 0, then the (r −ρ)-term subgroup of gr−m consists of the
identity transformation, hence the group: l′μ = χμ(l,a) is holoedrically isomorphic
to Gr; if r−ρ = r−m, then gr−m itself is invariant in Gr and the group: l′μ = χμ(l,a)
is only m-term.

§ 115. In the last but one section we gave a method to find the families of man-
ifolds which remain invariant by a given r-term group: X1 f , . . . ,Xr f . The invariant

2 LIE, Archiv for Mathematik og Naturv., Vol. 10, Christiania 1885.
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families that we obtained in this way were distinguished by the fact that every man-
ifold of a family of this sort could be transferred, by means of at least one transfor-
mation of the group: X1 f , . . . ,Xr f , to every other manifold of the family.

Now we want to generalize the discussed method so that it produces all families
of manifolds invariant by the group X1 f , . . . ,Xr f .

For this, we are led to the obvious observation that the considerations of pp. 486–
488 also remain valid when the equations of the manifold M contain arbitrary pa-
rameters, that is to say: when in place of an individual manifold M we use directly
a complete family of manifolds. Thus, we can also proceed in the following way in
order to find invariant families of manifolds:

We take an arbitrary family:

(11) Vk(x1, . . . ,xn, u1, . . . ,uh) = 0 (k=1 ···n−q)

of ∞h manifolds and we execute on it all ∞r transformations of the group:
X1 f , . . . ,Xr f ; the totality of all manifolds that we obtain in this way always forms a
family invariant by the group: X1 f , . . . ,Xr f .

It is clear that we obtain all families invariant by the group: X1 f , . . . ,Xr f when
we choose the family (11) in all possible ways. Indeed, if an arbitrary family invari-
ant by the group is presented, say the family:

(1) Ωk(x1, . . . ,xn, l1, . . . , lm) = 0 (k=1 ···n−q),

then this family can in any case be obtained when we just choose, as the family (11),
the family (1). Besides, one can easily indicate infinitely many other families (11)
out of which precisely the family (1) is obtained, but we do not want to spend time
on this.

It remains to answer a question.
If the family (11) is presented and if all the transformations of the group:

X1 f , . . . ,Xr f are executed on it, then the equations of the invariant family which
comes into existence in this way obviously have the form:

(12) Wk(x1, . . . ,xn, u1, . . . ,uh, a1, . . . ,ar) = 0 (k=1 ···n−q),

and therefore, they formally contain h+ r arbitrary parameters, namely: u1, . . . ,uh,
a1, . . . ,ar. How many parameters amongst these parameters are essential?

Every generally positioned manifold of the family (11) takes by the group:
X1 f , . . . ,Xr f a certain number, say ∞p, of different positions; of these ∞p positions,
there is a certain number, say ∞o, of different positions, which again belong to the
family (11). In this manner, the complete family (11) is decomposed into ∞h−o

different subfamilies of ∞o manifolds in such a way that every manifold of the
family (11) can always be transferred to every manifold which belongs to one
and the same subfamily by means of at least one transformation of the group:
X1 f , . . . ,Xr f , and such that every manifold of the family (11), as soon as it remains
inside the family (11) by a transformation of the group: X1 f , . . . ,Xr f , remains at the
same time in the subfamily to which it belongs.
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Now, if we imagine that all transformations of the group: X1 f , . . . ,Xr f are exe-
cuted on two arbitrary manifolds which belong to the same subfamily, we obviously
obtain in the two cases the same family of ∞p manifolds; on the other hand, if we
imagine that all transformations of the group are executed on two manifolds of the
family (11) which belong to distinct subfamilies, we obtain two distinct families of
∞p manifolds which have absolutely no manifold in common.

Hence, when we choose on each one of the ∞h−o subfamilies of the family (11)
a manifold and when we execute all transformations of the group: X1 f , . . . ,Xr f on
the so obtained ∞h−o manifolds, we receive ∞h−o distinct families of ∞p manifolds,
in total ∞h−o+p different manifolds. At the same time, it is clear that in this way, we
obtain exactly the same family as when we execute all transformations of our group
on the manifolds (11) themselves.

As a result, it is proved that the family (12) consists of ∞h−o+p different mani-
folds, hence that amongst the h+r parameters of the equations (12), exactly h−o+
p are essential.

We want to indicate how one has to proceed in order to determine the numbers p
and o mentioned above.

The number r − p is evidently the number of the infinitesimal transformations:
e1 X1 f + · · ·+ er Xr f which leave invariant a generally positioned manifold of the
family (11). Now, the most general infinitesimal transformation: ∑ e j Xj f which
leaves invariant the manifold:

(13) Vk(x1, . . . ,xn, u1, . . . ,uh) = 0 (k=1 ···n−q)

necessarily has the form:

(14)
r

∑
j=1

e j(u1, . . . ,uh)Xj f ,

where the e j(u1, . . . ,uh) are functions of the u. So we need only to determine the
functions e j(u) in the most general way so that the system of equations (13) in the
variables: x1, . . . ,xn admits the infinitesimal transformation (14).

If we imagine that the equations (13) are resolved with respect to n−q of the x:

xq+k = ωq+k(x1, . . . ,xq, u1, . . . ,uh) (k=1 ···n−q),

and if we denote the substitution: xq+1 = ωq+1, . . . , xn = ωn by the symbol [ ], we
visibly obtain for the functions e j(u) the equations:

(15)

r

∑
j=1

e j(u1, . . . ,uh)
{
[

ξ j,q+k
]−

q

∑
π=1

[

ξ jπ
] ∂ωq+k

∂xπ

}

= 0

(k=1 ···n−q)

which must be satisfied independently of the values of x1, . . . ,xn.
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If we have determined from these equations the e j(u) in the most general way,
we know the most general infinitesimal transformation ∑ e j Xj f which leaves in-
variant the manifold (13) and from this, we can immediately deduce the number of
independent infinitesimal transformations ∑ e j Xj f of this sort.

For the determination of the number o, we proceed as follows:
First we seek the most general infinitesimal transformation: ∑ ε j(u1, . . . ,uh)Xj f

that transfers the manifold (13) to an infinitely neighboring manifold, or, expressed
differently: we seek the most general infinitesimal transformation:

r

∑
j=1
ε j(u1, . . . ,uh)Xj f +

h

∑
σ=1

Φσ (u1, . . . ,uh)
∂ f
∂uσ

which leaves invariant the system of equations (13) in the n+h variables: x1, . . . ,xn,
u1, . . . ,uh.

If we retain the notation chosen above, the functions: ε j(u) and Φσ (u) are obvi-
ously defined by the equations:

(15’)

r

∑
j=1
ε j(u)

{
[

ξ j,q+k
]−

q

∑
π=1

[

ξ jπ
] ∂ωq+k

∂xπ

}

=
h

∑
σ=1

Φσ (u)
∂ωq+k

∂uσ

(k=1 ···n−q)

which they must satisfy independently of the values of the variables x1, . . . ,xq.
We imagine that the ε j(u) and theΦσ (u) are determined in the most general way

from these equations and we form the expression:

h

∑
σ=1

Φσ (u1, . . . ,uh)
∂ f
∂uσ

.

Evidently, this expression can be deduced from a completely determined number,
say h′ � h, of expressions:

h

∑
σ=1

Φτσ (u1, . . . ,uh)
∂ f
∂uσ

(τ=1 ···h′)

by means of additions and of multiplications by functions of the u. According to the
nature of things, the h′ equations:

h

∑
σ=1

Φτσ (u1, . . . ,uh)
∂ f
∂uσ

= 0 (τ=1 ···h′)

form an h′-term complete system with h−h′ independent solutions:

w1(u1, . . . ,uh), . . . , wh−h′(u1, . . . ,uh),

and it is clear that the equations:
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w1 = const., . . . , wh−h′ = const.

determine the ∞h−o subfamilies in which the family (11) can be decomposed, as we
saw above. Consequently, we have: h−o = h−h′, hence o = h′.

It should not remain unmentioned that the results of the present chapter can be
generalized.

One can for instance, instead of starting from an individual manifold, start from
a discrete number of manifolds or even more generally: instead of starting from an
individual family of manifolds, one can start from several such families. We call a
number of manifolds briefly a figure [FIGUR].

§ 116. Theorem 85, p. 489, contains a method for the determination of transitive
groups which are isomorphic with a given r-term group; we have already given a
method for the determination of all groups of this sort in Chap. 22, p. 443 sq. At
present, we will show that our new method fundamentally amounts ultimately to the
old one, and we will in this way come to state an important result found earlier in a
new, much more general form.

Let:

(16) Vk(x1, . . . ,xn) = 0 (k=1 ···n−q)

be an arbitrary manifold and let:

x′
i = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n)

be an arbitrary r-term group generated by r independent infinitesimal transforma-
tions. By resolution with respect to the x, the equations: x′

i = fi(x,a) may give:

xi = Fi(x′
1, . . . ,x

′
n, a1, . . . ,ar) (i=1 ···n).

Lastly, we want to assume that the manifold (16) admits exactly r −m independent
infinitesimal transformations of the group: x′

i = fi(x,a).
If we execute on the manifold (16) the general transformation: x′

i = fi(x,a) of our
group, then according to Theorem 85, p. 489, we obtain a family of ∞m manifolds
invariant by the group. The equations of this family are:

(17)
Vk

(

F1(x′,a), . . . ,Fn(x′,a)
)

=Wk(x′
1, . . . ,x

′
n, a1, . . . ,ar) = 0

(k=1 ···n−q),

hence they formally contain r arbitrary parameters. But amongst these r parame-
ters, only m are essential, hence it is possible to indicate m independent functions:
ω1(a), . . . ,ωm(a) of the a so that the equations (17) take the form:

(17’) Ωk
(

x′
1, . . . ,x

′
n, ω1(a), . . . ,ωm(a)

)

= 0 (k=1 ···n−q).
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Here, we can lastly introduce: l1 = ω1(a), . . . , lm = ωm(a) as new parameters in
place of the a; then in the system of equations:

(18) Ωk(x′
1, . . . ,x

′
n, l1, . . . , lm) = 0 (k=1 ···n−q)

which comes into existence in this way, the parameters l1, . . . , lm are essential.
We find a new representation of our invariant family when we execute an arbi-

trary transformation: x′′
i = fi(x′,b) of our group on the system of equations (18).

According to Theorem 85, p. 489, (18) receives on the occasion the form:

(18’) Ωk(x′′
1 , . . . ,x

′′
n , l′1, . . . , l

′
m) = 0 (k=1 ···n−q),

where the l′ are completely determined functions of the l and of the b:

(19) l′μ = χμ(l1, . . . , lm, b1, . . . ,br) (μ=1 ···m).

We must obtain this representation of our family when we execute the transforma-
tion:

x′′
i = fi

(

f1(x,a), . . . , fn(x,a), b1, . . . ,br
)

= fi(x1, . . . ,xn, a′
1, . . . ,a

′
r)

directly on the manifold (16), where the a′ are completely determined functions of
the a and of the b:

(20) a′
k = ϕk(a1, . . . ,ar, b1, . . . ,br) (k=1 ···r).

If we do that, we first receive the equations of our family in the form:

Vk
(

F1(x′′,a′), . . . ,Fn(x′′,a′)
)

=Wk(x′′
1 , . . . ,x

′′
n , a′

1, . . . ,a
′
r) = 0

(k=1 ···n−q),

which we can also obviously write in the form:

Ωk
(

x′′
1 , . . . ,x

′′
n , ω1(a′), . . . ,ωm(a′)

)

= 0 (k=1 ···n−q).

But since these equations must agree with the equations (18’), it follows that the
parameters l′ are linked to the a′ by the relations:

l′μ = ωμ(a′
1, . . . ,a

′
r) (μ=1 ···m).

Because of the equations (19), we therefore have:

ωμ(a′) = χμ(l1, . . . , lm, b1, . . . ,br) (μ=1 ···m),

or:

(21) ωμ(a′) = χμ
(

ω1(a), . . . ,ωm(a), b1, . . . ,br) (μ=1 ···m).
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If we make here the substitution: a′
1 = ϕ1(a,b), . . . , a′

r = ϕr(a,b), then we must
obtain only identities, because the parameters a1, . . . ,ar, b1, . . . ,br are absolutely
arbitrary, and hence, are linked together by no relation.

At present, if we remember that the equations (20) represent a simply transitive
group in the variables a1, . . . ,ar equally composed with the group: x′

i = fi(x,a),
namely the associated parameter group (Chap. 21, p. 413), and that the equa-
tions (19) represent a transitive group isomorphic with the group: x′

i = fi(x,a), then
we realize immediately what follows:

The equations:

(22) ω1(a1, . . . ,ar) = const., . . . , ωm(a1, . . . ,ar) = const.

represent a decomposition of the r-times extended space a1, . . . ,ar invariant by the
group (20), and to be precise, a decomposition into ∞m (r−m)-times extended man-
ifolds. But the group:

(19) l′μ = χμ(l1, . . . , lm, b1, . . . ,br) (μ=1 ···m)

indicates in which way the ∞m manifolds (22) are permuted with each other by the
transformations of the simply transitive group (20).

We therefore see that the group (19) can be derived from the simply transitive
group: a′

k = ϕk(a,b) according to the rules of the preceding chapter (p. 444 sq.).
We can use this fact in order to decide under which conditions we obtain two

groups (19) similar to each other when we start from two different manifolds (16).
Thanks to similar considerations, we realize that the following statement holds, of
which Theorem 80 in Chap. 22, p. 453, is only a special case, fundamentally:

Theorem 86. If, in the space x1, . . . ,xn, an r-term group: X1 f , . . . ,Xr f is presented,
if in addition, two manifolds M and M′ are given, and if one executes all ∞r trans-
formations of the group: X1 f , . . . ,Xr f on each one of these two manifolds, then
the individual manifolds of the two invariant families that one obtains in this way
are transformed by two transitive groups isomorphic with the group: X1 f , . . . ,Xr f
which are similar to each other when and only when the following two conditions
are satisfied:

Firstly, the two manifolds M and M′ must admit the same number of independent
infinitesimal transformations of the form: e1 X1 f + · · ·+ er Xr f , and:

Secondly, it must be possible to relate the group: X1 f , . . . ,Xr f to itself in a
holoedrically isomorphic way so that, to every infinitesimal transformation which
fixes the one manifold, there corresponds an infinitesimal transformation which
leaves invariant the other manifold.

It goes without saying that this theorem also remains valid when one replaces the
two manifolds by two figures.

§ 117. Especially worthy of note is the case where one has a manifold, or a
figure, which admits absolutely no infinitesimal transformation of Gr: X1 f , . . . ,Xr f .
The group (19) isomorphic to Gr then has the form:
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l′k = χk(l1, . . . , lr, a1, . . . ,ar) (k=1 ···r),

it is simply transitive and hence holoedrically isomorphic with Gr.3

We therefore have here a general method in order to set up the simply transitive
groups that are equally composed with a given r-term group.

The method applied in the preceding chapter, Proposition 1, page 441, is only a
special case of the present more general method. Indeed at that time — as we can
now express it — we used as a figure the totality of r different points of Rn.

When no special assumption is made about the position of these points, then
the figure consisting of them can allow none of the infinitesimal transformations of
the group Xk f . Since the group Xk f certainly leaves invariant no point in general
position, there can be in it at most r − 1 independent infinitesimal transformations
which fix such a point; from these possible r −1 infinitesimal transformations, one
can again linearly deduce at most r−2 independent infinitesimal transformations by
which a second point in general position remains untouched, and so on; one realizes
at the end that there is no infinitesimal transformation in the group by which r points
in general position remain simultaneously invariant.

Hence if we take a figure which consists of r points of this sort, and if we execute
on them the ∞r transformations of the group: X1 f , . . . ,Xr f , then the figure takes ∞r

different positions, the totality of which remains invariant by the group. These ∞r

positions are transformed by a simply transitive group.
If we set up this simply transitive group, we obtain exactly the same group as the

one obtained thanks to the method of the preceding chapter.
§ 118. It appears to be desirable to illustrate the general developments of §§ 114

and 116 by means of a specific example. However, we restrict ourselves here to giv-
ing indications, and we leave to the reader the effective execution of the concerned
simple computations.

The most general projective group of the plane which leaves invariant the non-
degenerate conic section: x2 −2y = 0 is three-term and contains the following three
independent infinitesimal transformations:

X1 f =
∂ f
∂x

+ x
∂ f
∂y

, X2 f = x
∂ f
∂x

+2y
∂ f
∂y

X3 f = (x2 − y)
∂ f
∂x

+ xy
∂ f
∂y

.

One sees immediately that this group — which we call G3 for short — is transitive
and that its composition is determined through the relations:

[X1, X2] = X1 f , [X1, X3] = X2 f , [X2, X3] = X3 f .

3 LIE, Gesellsch. d. W. zu Christiania, 1884.
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From this, it follows by taking account of Chap. 15, Proposition 8, p. 275, that G3

contains no two-term invariant subgroup; one convinces oneself that it also does
not contain any one-term invariant subgroup. Consequently, G3 is simple (Chap. 15,
p. 276).

Every tangent to the fixed conic section x2 −2y = 0 admits exactly two indepen-
dent infinitesimal transformations of the group; furthermore, it can be proved that
the tangents are the only curves of the plane which possess this property. In the same
way, the conic sections which enter into contact [BERÜHREN] in two points with the
fixed conic section are the only curves which admit one and only one infinitesimal
transformation of G3; as a conic section which enters twice into contact, one must
also certainly count every line of the plane which cuts [SCHNEIDET] the conic sec-
tion in two separate points. Lastly, it is clear that every point not lying on the conic
section admits one and only one infinitesimal transformation of the group.

Now, if one chooses as a manifold M another arbitrary curve, hence a curve
which admits absolutely no infinitesimal transformation of G3, then by the group,
this curve takes ∞3 different positions and the totality of these positions is obviously
transformed by means of a three-term group. One therefore finds a simply transitive
group of the R3 equally composed with the original G3. All groups that one obtains
in this way are similar to each other; one amongst them is for instance the three-term
group of all projective transformations of the R3 which leaves invariant a winding
curve of third order.

If one introduces as manifold M a conic section (irreducible or decomposable)
entering into contact in two separate points [with the fixed conic section], then one
obtains a group holoedrically isomorphic to G3 in a twice-extended manifold; all
groups obtained in this way are similar to each other. By contrast, if one uses as
a manifold M a conic section having four points entering into contact [with the
fixed conic section], one obtains a completely different type of three-term group of
a twice-extended manifold.

Lastly, if one introduces as manifold M a tangent to the fixed conic section, then
one obtains a three-term group in a once-extended manifold which is similar to the
general projective group of the straight line.

§ 119. Let a linear homogeneous group:

Xk f =
1···n
∑
μ, ν

akμν xμ
∂ f
∂xν

(k=1 ···r)

of Rn be presented. This group leaves invariant the family of ∞n planes Mn−1 of Rn:

u1 x1 + · · ·+un xn +1 = 0.

We want to set up the group corresponding to it in the parameters u1, . . . ,un.
According to § 111, the infinitesimal transformations:
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Uk f =
n

∑
ν=1

vkν(u1, . . . ,un)
∂ f
∂uν

of the sought group are to be determined so that the equation ∑ uν xν+1 = 0 admits
the infinitesimal transformation Xk f +Uk f . So, the r expressions:

1···n
∑
μ, ν

akμν xμ uν +
1···n
∑
ν

xν vkν

must vanish by means of ∑ uν xν + 1 = 0. This is possible only when they vanish
identically, that is to say when vkν = − ∑μ akνμ uμ .

We therefore find:

Uk f = −
1···n
∑
μ, ν

akνμ uμ
∂ f
∂uν

.

Consequently, the group Uk f is linear homogeneous too; we know from the begin-
ning that it is isomorphic with the group Xk f .

We call the group: U1 f , . . . ,Ur f the group dualistic [DUALISTISCH] to the group:
X1 f , . . . ,Xr f .

In order to give an example, we want to find the group dualistic to the adjoint
group of an r-term group having the composition:

[Yi, Yk] =
r

∑
s=1

ciks Ys f .

The adjoint group reads (cf. p. 287):

1···r
∑
i, s

ciks ei
∂ f
∂es

(k=1 ···r),

whence the group dualistic to it reads:4

1···r
∑
i, s

ckis εs
∂ f
∂εi

(k=1 ···r),

where the relation: ciks = −ckis is used.
Similar considerations can actually be made for all projective groups of Rn, since

they all leave invariant the family of ∞n straight, (n − 1)-times extended manifolds
of Rn. However, we do not want to enter into these considerations, and rather, we
refer to the next volume in which the concept of duality [DUALITÄT] is considered
under a more general point of view, namely as a special case of the general concept
of contact transformation [BERÜHRUNGSTRANSFORMATION].

4 LIE, Math. Ann. Vol. XVI, p. 496, cf. also Archiv for Mathematik, Vol. 1, Christiania 1876.
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§ 120. Finally, we want to consider an important example of a more general
nature.

We assume that we know all q-term subgroups of Gr: X1 f , . . . ,Xr f . Then the
question is still to decide what are the different types of such q-term subgroups.

In Chap. 16, p. 292, we have already explained the concept of “types of sub-
groups”; according to that, we include two q-term subgroups in the same type when
they are conjugate to each other inside Gr; of all subgroups which belong to the
same type, we therefore need only to indicate a single one, and in addition, all these
subgroups are perfectly determined by this one.

We know that every subgroup of the group: X1 f , . . . ,Xr f is represented by a series
of linear homogeneous relations between the parameters: e1, . . . ,er of the general in-
finitesimal transformation: e1 X1 f + · · ·+er Xr f (cf. Chap. 12, p. 223). Moreover, we
know that two subgroups are conjugate to each other inside the group: X1 f , . . . ,Xr f
if and only if the system of equations between the e which represents the one sub-
group can be transferred, by means of a transformation of the adjoint group, to the
system of equations which represents the other subgroup (Chap. 16, p. 292).

Now according to our assumption, we know all q-term subgroups of Gr, hence
we know all systems of r − q independent linear homogeneous equations between
the e:

r

∑
j=1

hk j e j = 0 (k=1 ···r−q)

which represent q-term subgroups.
For reasons of simplicity, amongst all these systems of equations, we want to

take those which can be resolved with respect to eq+1, . . . ,er, hence which can be
brought to the form:

(23)
eq+k = gq+k,1 e1 + · · ·+gq+k,q eq

(k=1 ···r−q) ;

we leave the remaining ones which cannot be brought to this form, because they
could naturally be treated in exactly the same way as those of the form (23).

All systems of values gq+k, j which, when inserted in (23), provide q-term sub-
groups are defined by means of certain equations between the gq+k, j; however, in
general, it is not possible to represent all these systems of values by means of a sin-
gle system of equations between the g, and rather, a discrete number of such systems
of equations will be necessary if one wants to have all q-term subgroups which are
contained in the form (23). Naturally, two different systems of equations of this sort
then provide nothing but different types of q-term subgroups.

We restrict ourselves to an arbitrary system of equations amongst the concerned
systems of equations, say the following one:

(24) Ωμ(gq+1,1, gq+1,2, . . . , gr,q) = 0 (μ=1, 2 ···),



500 23 Invariant Families of Manifolds

and we now want to see what types of q-term subgroups this system determines.
The equations (23) determine, when the gq+k, j are completely arbitrary, the family
of all straight q-times extended manifolds of the space e1, . . . ,er which pass through
the point: e1 = 0, . . . , er = 0. Of course, this family of manifolds remains invariant
by the adjoint group:

(25) e′
k =

r

∑
j=1
ρk j(a1, . . . ,ar)e j (k=1 ···r)

of the group: X1 f , . . . ,Xr f . Hence, if we execute the transformation (25) on the sys-
tem of equations (23), we obtain a system of equations in the e′ of the corresponding
form:

e′
q+k =

q

∑
j=1

g′
q+k, j e′

j (k=1 ···r−q),

where the g′ are linear homogeneous functions of the g with coefficients which
depend upon the a:

(26)
g′

q+k, j =
r−q

∑
μ=1

q

∑
ν=1

αk jμν(a1, . . . ,ar)gq+μ,ν

(k=1 ···r−q ; j=1 ···q).

According to p. 476 sq., the equations (26) determine a group in the variables g.
The system of equations (24) remains invariant by this group, because every system
of values gq+k, j which provides a subgroup is naturally transferred to a system of
values g′

q+k, j which determines a subgroup; but since the group (26) is continuous,
it leaves individually invariant all discrete regions of systems of values gq+k, j of this
sort, hence in particular also the system of equations:

(24) Ωμ(gq+1,1, . . . ,gr,q) = 0 (μ=1, 2 ···).

Now, the question is how the systems of values (24) are transformed by the
group (26), and whether every system of values can be transferred to every other, or
not.

This question receives a graphical sense when we imagine that the gq+k, j are
point coordinates in a space of q(r −q) dimensions. Indeed, the equations (24) then
represent a certain manifold in this space which remains invariant by the group (26).
Each point of the manifold belongs to a certain smallest invariant subsidiary domain
of the manifold and the points of such a subsidiary domain represent nothing but
conjugate q-term subgroups of Gr, and to be precise, all the q-term subgroups of Gr

which belong to one and the same type.
Besides, one must draw attention on the fact that only the points gq+k, j of such

a smallest invariant subsidiary domain that belong in turn to no smaller invariant
subsidiary domain are to be counted, because it is only when one delimits the sub-
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sidiary domain in this way that each one of its points can be transferred to any other
point by means of a nondegenerate transformation of the group (26).

Hence, if one wants to determine all types of q-term subgroups which are con-
tained in the system of equations (24), then one only has to find all smallest invariant
subsidiary domains of the manifold Ωμ = 0. Every such subsidiary domain deter-
mines all subgroups which belong to the same type, and an arbitrary point of the
subsidiary domain provides a group which can be chosen as a representative of the
concerned type.

Furthermore, in order to be able to determine the discussed invariant subsidiary
domains, one does not need to assume that the finite equations (25) of the adjoint
group are known; it suffices that one has the infinitesimal transformations of this
group, because one can then immediately indicate the infinitesimal transformations
of the group (26) and then, following the rules of Chap. 14, one can determine the
desired invariant subsidiary domains; in the case present here, this determination
requires only executable operations.

One observes that the preceding developments also remain applicable when one
knows not an r-term group, but only a possible composition of such a group, hence
a system of ciks which satisfies the known relations:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ciks + ckis = 0
r

∑
ν=1

{

cikν cν js + ck jν cν is + c jiν cνks
}

= 0

(i, k, j, s=1 ···r).

If Gr: X1 f , . . . ,Xr f is invariant in a larger group G, then the question is often
whether two subgroups of Gr are conjugate in this larger group Gr, or not. In this
case, one can also define differently the concept of “type of subgroup of Gr”, by
reckoning two subgroups of Gr as being distinct only when they are not conjugate
to each other in G.

If one wants to determine all types, in this sense, of subgroups of Gr, then this
task presents no special difficulty. Indeed, the problem in question is obviously a
part of the more general problem of determining all types of subgroups of G, when
the word “type” is understood in the sense of Chap. 16, p. 292.

This study is particularly important when the group G is actually the largest
subgroup of Rn in which Gr: X1 f , . . . ,Xr f is invariant.

—————–



Chapter 24
Systatic and Asystatic Transformation Groups

In the s-times extended space x1, . . . ,xs, let an r-term group:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r),

or shortly Gr, be presented. Of the r infinitesimal transformations X1 f , . . . ,Xr f , let
there be precisely n, say: X1 f , . . . ,Xn f , which are linked together by no linear rela-
tion, while by contrast Xn+1 f , . . . ,Xr f can be expressed as follows:

(1) Xn+ j f ≡
n

∑
ν=1

ϕ jν(x1, . . . ,xn)Xν f ( j=1 ···r−n).

Now, if x0
1, . . . ,x

0
s is a point for which not all n×n determinants of the matrix:

(2)

∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x)
· · · ·

ξn1(x) · · ξns(x)

∣
∣
∣
∣
∣
∣

vanish, then according to Chap. 11, p. 215, there are in Gr exactly r − n indepen-
dent infinitesimal transformations whose power series expansions with respect to
the xi − x0

i contain no term of zeroth order, but only terms of first order or of higher
order; the point x0

1, . . . ,x
0
s therefore admits exactly r − n independent infinitesimal

transformations of Gr which generate an (r − n)-term subgroup Gr−n of Gr (cf.
Chap. 12, p. 218). The infinitesimal transformations of this Gr−n can, according to
p. 216, be linearly deduced from the r −n independent transformations:

Xn+ j f −
n

∑
ν=1

ϕ jν(x0
1, . . . ,x

0
s )Xν f ( j=1 ···r−n).

In the sequel, we want to briefly call a point x0
1, . . . ,x

0
s for which not all n × n

determinants of the matrix (2) vanish, a point in general position.

c© Springer-Verlag Berlin Heidelberg 2015
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§ 121. According to the above, to every point x0
1, . . . ,x

0
s in general position is

associated a completely determined (r − n)-term subgroup of Gr, namely the most
general subgroup of Gr by which it remains invariant.

If we let the point x0 change its position, we receive a new (r−n)-term subgroup
of Gr, and since there are ∞s different points, we receive in total ∞s subgroups of
this sort; however, it is not said that we obtain ∞s different subgroups.

If for example r = n, then the discussed ∞s subgroups all coincide, namely they
all reduce to the identity transformation, since Gr contains absolutely no infinitesi-
mal transformation which leaves at rest a point x0 in general position.

Disregarding this special case, it can happen that to the ∞s points of the space
x1, . . . ,xs, only ∞s−1, or fewer, different groups of the said constitution are associ-
ated; evidently, this will always occur in any case when there is a continuous family
of individual points which simultaneously keep their positions by the (r − n)-term
subgroup.

Now, we want to find the analytic conditions under which such a phenomenon
occurs. At first, we take up the question: when do two points in general position
remain invariant by the same (r −n)-term subgroup of Gr?

The answer to this question has a great similarity with the considerations in
Chap. 19, p. 369 sq.

Let the one point be x0
1, . . . ,x

0
s and let us call Gr−n the associated (r − n)-term

subgroup of Gr; then the general infinitesimal transformation of Gr−n reads:

r−n

∑
j=1
ε j

(

Xn+ j f −
n

∑
ν=1

ϕ0
jν Xν f

)

,

where it is understood that the ε are arbitrary parameters.
Let the other point be: x1, . . . ,xs, and let the general infinitesimal transformation

of the subgroup Gr−n associated to it then be:

r−n

∑
j=1
ε j

(

Xn+ j f −
n

∑
ν=1

ϕ jν Xν f

)

.

Now, if the two points are supposed to remain invariant by the same (r − n)-term
subgroup, then Gr−n and Gr−n coincide; for this, it is necessary and sufficient that
all infinitesimal transformations of the one belong to those of the other group, and
conversely; when expressed analytically, one must be able to satisfy identically the
equation:

r−n

∑
j=1
ε j

{

Xn+ j f −
n

∑
ν=1

ϕ0
jν Xν f

}

=
r−n

∑
j=1
ε j

{

Xn+ j f −
n

∑
ν=1

ϕ jν Xν f

}

for arbitrarily chosen ε thanks to suitable values of the ε , and also for arbitrarily
chosen ε thanks to suitable values of the ε .
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The latter equation can also be written:

r−n

∑
j=1

(ε j − ε j)Xn+ j f −
n

∑
ν=1

r−n

∑
j=1

(ε jϕ0
jν − ε jϕ jν)Xν f = 0,

hence, because of the independence of the infinitesimal transformations X1 f , . . . ,Xr f ,
it can hold only if ε j = ε j; in addition, since the ε j are absolutely arbitrary, we
obtain:

ϕ jν(x0
1, . . . ,x

0
s ) = ϕ jν(x1, . . . ,xs) ( j=1 ···r−n ; ν=1 ···n).

Consequently, the two (r −n)-term subgroups of Gr which are associated to two
distinct points in general position are identical with each other if and only if each
one of the n(r −n) functions ϕ jν takes the same numerical values for the one point
as for the other point.

Hence, if we want to know all points in general position which, under the group
Gr−n, keep their positions simultaneously with the point x0

1, . . . ,x
0
s , then we only

have to determine all systems of values x which satisfy the equations:

(3) ϕ jν(x1, . . . ,xs) = ϕ0
jν ( j=1 ···r−n ; ν=1 ···n) ;

every such system of values provides a point having the constitution demanded.
Here, two cases have to be distinguished.
Firstly the number of mutually independent functions amongst the n(r−n) func-

tions ϕkν(x) can be equal to s exactly. In this case, the (r − n)-term subgroup Gr−n

which fixes the point: x0
1, . . . ,x

0
s leaves untouched at most a discrete number of points

in general position.
Secondly the number of independent functions amongst the ϕkν(x) can be smaller

than s. In this case, there is a continuous manifold of points in general position which
all remain invariant by the group Gr−n; to every point of the manifold in question is
then associated the same (r − n)-term subgroup of Gr as to the point x0

1, . . . ,x
0
s . At

the same time, the point x0
1, . . . ,x

0
s evidently lies inside the manifold, that is to say:

there are, in the manifold, also points that are infinitely close to the point: x0
1, . . . ,x

0
s .

We assume that the second case happens, so that amongst the n(r −n) functions
ϕkν(x), there are only s − ρ < s that are mutually independent, and we may call
them ϕ1(x), . . . ,ϕs−ρ(x).

Under this assumption, all ϕkν(x) can be expressed by means of ϕ1(x), . . . ,ϕs−ρ(x)
alone, and the equations (3) can be replaced by the s − ρ mutually independent
equations:

(3’) ϕ1(x1, . . . ,xs) = ϕ1(x0
1, . . . ,x

0
s ), . . . , ϕs−ρ(x1, . . . ,xs) = ϕs−ρ(x0

1, . . . ,x
0
s ).

We therefore see that to every generally located point: x0
1, . . . ,x

0
s of the space is

associated a completely determined ρ-times extended manifold (3’) which is formed
of the totality of all points to which is associated the same (r −n)-term subgroup of
the group: X1 f , . . . ,Xr f as to the point: x0

1, . . . ,x
0
s .
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It is possible that the equations:

ϕ jν(x1, . . . ,xs) = ϕ jν(x0
1, . . . ,x

0
s ) ( j=1 ···r−n ; ν=1 ···n)

represent, for every system of values x0
1, . . . ,x

0
s , a manifold which decomposes into

a discrete number of different manifolds.
An example is provided by the three-term group:

X1 f =
∂ f
∂x1

, X2 f =
1

cosx2

∂ f
∂x2

, X3 f = tanx2
∂ f
∂x2

.

Here, we have:
X3 f ≡ sinx2 X2 f ,

while X1 f and X2 f are linked by no linear relation. So, if one fixes the point x0
1, x0

2,
all points whose coordinates x1, x2 satisfy the equation:

sinx2 = sinx0
2

also remain fixed, that is to say: simultaneously with the point x0
1, x0

2, every point
which lies in one of the infinitely many lines:

x2 = x0
2 +2kπ

parallel to the x1-axis keeps its position, where it is understood that k is an arbitrary,
positive or negative, whole number.

Since, under the assumption made above, the group: X1 f , . . . ,Xr f associates
to every point: x0

1, . . . ,x
0
s a ρ-times extended manifold passing through it, then

the whole space x1, . . . ,xs obviously decomposes into a family of ∞s−ρ ρ-times
extended manifolds:

(4) ϕ1(x1, . . . ,xs) = const., . . . , ϕs−ρ(x1, . . . ,xs) = const.,

and to be precise, in such a way that all transformations of the group which fix an
arbitrarily chosen point in general position leave at rest all points of the manifold (4)
that passes through this point.

Certainly, it is to be remarked here that one can speak of a real decomposition of
the space only when the number ρ is smaller than s; if ρ = s, no real decomposition
of the space occurs, since every transformation of our group which fixes a point in
general position actually leaves invariant all points of the space; in other words: the
identity transformation is the only transformation of the group which leaves at rest
a point in general position.

The preceding considerations give an occasion for an important division
[EINTHEILUNG] of all r-term groups X1 f , . . . ,Xr f of the space x1, . . . ,xs, and to be
precise, for a division into two different classes.

If a group of the space x1, . . . ,xs is constituted in such a way that all its trans-
formations which leave invariant a point in general position simultaneously fix all
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points of a continuous manifold passing through this point, then we include this
group in the one class and we call them systatic [SYSTATISCH]. We include the re-
maining groups, hence those which are not systatic, in the other class, and we call
them asystatic [ASYSTATISCH].1

Using this terminology, we can express the obtained result in the following way:

Theorem 87. If the independent infinitesimal transformations X1 f , . . . ,Xr f of an r-
term group in s variables x1, . . . ,xs are linked together by r − n linear relations of
the form:

Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n),

while between X1 f , . . . ,Xn f alone no relation of this sort holds, then the group is
systatic when amongst the n(r − n) functions ϕkν(x1, . . . ,xs) there are fewer than s
that are mutually independent; by contrast, if amongst the functions ϕkν(x1, . . . ,xs)
there are s functions that are mutually independent, then the group is asystatic.

§ 122. We want to maintain all the assumptions that we have made in the
introduction of the chapter concerning the r-term group: X1 f , . . . ,Xr f of the space
x1, . . . ,xs, and at present, we only want to add the assumption that the group is
systatic. Thus, we assume that, amongst the n(r − n) functions ϕkν(x1, . . . ,xs),
only 0 � s − ρ < s are mutually independent, and as above, we may call them
ϕ1(x), . . . ,ϕs−ρ(x).

We consider at first the case where the number s−ρ has the value zero.
If the number s − ρ vanishes, then n is obviously equal to r, that is to say the

r independent infinitesimal transformations: X1 f , . . . ,Xr f are linked together by no
linear relation of the form:

χ1(x1, . . . ,xs)X1 f + · · ·+χr(x1, . . . ,xs)Xr f = 0.

From this, it follows that the number r is in any case not larger than the number s of
the variables x, hence that the group: X1 f , . . . ,Xr f is either intransitive, or at most
simply transitive. Hence in the two cases, the group: X1 f , . . . ,Xr f is imprimitive (cf.
Chap. 13, p. 233 and Chap. 20, Proposition 6, p. 394.

So we see that the systatic group: X1 f , . . . ,Xr f is always imprimitive when the
whole number s−ρ has the value zero.

We now turn ourselves to the case s−ρ > 0.
In this case, the equations:

(4) ϕ1(x1, . . . ,xs) = const., . . . , ϕs−ρ(x1, . . . ,xs) = const.

1 The concepts of systatic and asystatic groups, and the theory of these groups, stem from LIE
(Ges. d. W. zu Christiania 1884, Archiv for Math. Vol. 10, Christiania 1885). The expressive ter-
minologies: systatic “leaving fixed” [MITSTEHENDLASSEND] and asystatic “not leaving fixed”
[NICHTMITSTEHENDLASSEND] are from ENGEL. As for the rest, the terminology characteristic
of the present work was introduced by LIE.
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provide a real decomposition of the space x1, . . . ,xs into ∞s−ρ ρ-times extended
manifolds, and in fact, as we have seen above, a decomposition which is completely
determined by the group: X1 f , . . . ,Xr f and which stands in a completely characteris-
tic relationship to this group. We are very close to presuming that this decomposition
remains invariant by the group: X1 f , . . . ,Xr f ; from this, it would then follow that
the systatic group: X1 f , . . . ,Xr f is also imprimitive in the case s−ρ > 0 (Chap. 13,
p. 232).

One can easily see that the above assumption is true. In fact, according to
Chap 19, p. 356 sq., the r(s −ρ) expressions: Xkϕ1, . . . , Xkϕs−ρ can be expressed
as functions of ϕ1, . . . ,ϕs−ρ alone:

Xkϕ j = π jk(ϕ1, . . . ,ϕs−ρ) (k=1 ···r ; j=1 ···s−ρ).

In this (cf. Chap. 8, p. 153 and 157) lies the reason why the decomposition (4) admits
the r infinitesimal transformations Xk f , and therefore actually, the complete group:
X1 f , . . . ,Xr f .

The developments just carried out prove that a systatic group of the space
x1, . . . ,xs is always imprimitive. We therefore have the

Theorem 88. Every systatic group is imprimitive.

It is not superfluous to establish, also by means of conceptual considerations, that
in the case s−ρ > 0, the decomposition (4) remains invariant by the systatic group:
X1 f , . . . ,Xr f .

Let us denote by M an arbitrary manifold amongst the ∞s−ρ ρ-times extended
manifolds (4), let P be the general symbol of a point of the manifold M, let S be the
general symbol of the ∞r−n transformations of our group which leave untouched all
the points of M, and lastly, let us understand by T an arbitrary transformation of our
group.

If we execute the transformation T on M, we obtain a certain ρ-times extended
manifold M′, the ∞ρ points P′ of which are defined by the equation:

(P′) = (P)T.

Now, since every point P remains invariant by all ∞r−n transformations S of our
group, it is clear that every point P′ keeps its position by the ∞r−n transformations
T −1 ST , which also belong to our group. From this, it follows that M′ also belongs
to the ∞s−ρ manifolds (4); consequently, it is proved that the ∞s−ρ manifolds (4)
are permuted with each other by every transformation of the group: X1 f , . . . ,Xr f , so
that the decomposition (4) effectively remains invariant by our group.

Since according to Theorem 88, every systatic group is imprimitive, every primi-
tive group must be asystatic, inversely. But there are also imprimitive groups which
are asystatic, for instance the four-term group:

∂ f
∂x

,
∂ f
∂y

, x
∂ f
∂y

, y
∂ f
∂y
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of the plane x, y. This group is imprimitive, since it leaves invariant the family of
straight lines: x = const., but it is at the same time asystatic, because from the two
identities:

x
∂ f
∂y

≡ x
∂ f
∂y

, y
∂ f
∂y

≡ y
∂ f
∂y

,

it becomes clear that the functions ϕkν associated to the group are nothing but x
and y themselves; but they are obviously independent of each other. The three-term
intransitive group:

∂ f
∂y

, x
∂ f
∂y

, y
∂ f
∂y

shows that there are even intransitive asystatic groups.
§ 123. If one knows r independent infinitesimal transformations: X1 f , . . . ,Xr f of

an r-term group of the space x1, . . . ,xs, then according to Theorem 87, p. 507, one
can easily decide whether the concerned group is systatic or not.

For this purpose, one forms the matrix:
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x)
· · · ·

ξr1(x) · · ξrs(x)

∣
∣
∣
∣
∣
∣

and one studies its determinants. If all the (n+ 1)× (n+ 1) determinants vanish
identically, but not all n×n determinants, and in particular, not all n×n determinants
that can be formed with the topmost n rows of the matrix, then there are identities
of the form:

(1) Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n),

while X1 f , . . . ,Xn f are linked together by no linear relation. If one has set up the
identities (1), then one determines the number of independent functions amongst
the n(r −n) functions ϕkν(x1, . . . ,xs).

However, in order to be able to decide whether a determined r-term group is
systatic or not, one need not know the finite expressions for the infinitesimal trans-
formations of the group, but rather, it suffices that one knows the defining equations
of the group. This sufficiency is based on the fact that, as soon as the defining equa-
tions of the group are presented, one can always indicate an unrestricted integrable
system of total differential equations, the only integral functions of which are just
the ϕkν(x) and the functions of them. Indeed, from this it clearly turns out that one
can determine the number of independent functions amongst the ϕkν(x) without
knowing the ϕkν(x) themselves.

Now, we will derive this important result.
The independent equations amongst the equations:
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(5) dϕkν =
s

∑
i=1

∂ϕkν(x)
∂xi

dxi = 0 (k=1 ···r−n ; ν=1 ···n)

form an unrestricted integrable system of total differential equations, the only inte-
gral functions of which are the ϕkν(x), and the functions of them (cf. Chap. 5, p. 106
sq.). We start from this system of total differential equations.

Because of (1), we have identically:

ξn+ j, i −
n

∑
ν=1

ϕ jν ξν i ≡ 0 ( j=1 ···r−n ; i=1 ···s),

whence we get by differentiation:

dξn+ j, i −
n

∑
ν=1

ϕ jν dξν i ≡
n

∑
ν=1

ξν i dϕ jν ,

or, since according to the assumption, not all n×n determinants of the matrix:
∣
∣
∣
∣
∣
∣

ξ11(x) · · ξ1s(x)
· · · ·

ξr1(x) · · ξrs(x)

∣
∣
∣
∣
∣
∣

vanish, we obtain:

dϕ jπ ≡
s

∑
i=1
χπi(x1, . . . ,xs)

{

dξn+ j, i −
n

∑
ν=1

ϕ jν dξν i

}

( j=1 ···r−n ; π=1 ···n).

From this, it follows that the system of the total differential equations (5) can be
replaced by the following one:

(6)
s

∑
π=1

{
∂ξn+ j, i

∂xπ
−

n

∑
ν=1

ϕ jν
∂ξν i

∂xπ

}

dxπ = 0 ( j=1 ···r−n ; i=1 ···s).

Of course, the independent equations amongst the equations (6) form an unrestricted
integrable system of total differential equations, the integral functions of which are
just the ϕkν(x), and the functions of them.

However, it is not possible now to set up the individual equations (6) when one
only knows the defining equations of the group: X1 f , . . . ,Xr f ; by contrast, it is pos-
sible to replace the system of equations (6) by another system which, aside from the
dxπ , contains only the coefficients of the defining equations. We arrive at this in the
following way.

By x0
1, . . . ,x

0
s , we understand a point in general position. According to p. 215, the

most general infinitesimal transformation: e1 X1 f + · · ·+ er Xr f whose power series
expansion with respect to the xi − x0

i contains only terms of first order or of higher
order has the form:
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r−n

∑
j=1

e j

(

Xn+ j f −
n

∑
ν=1

ϕ jν(x0
1, . . . ,x

0
s )Xν f

)

,

where it is understood that the e j are arbitrary parameters. However, when we ex-
ecute the power series expansion with respect to the xi − x0

i and when at the same
time we take into account only the terms of first order, this expression receives the
form:

(7)
r−n

∑
j=1

e j

1···s
∑
i, π

{[
∂ξn+ j, i

∂xπ

]

x=x0
−

n

∑
ν=1

ϕ jν(x0)
[
∂ξν i

∂xπ

]

x=x0

}

(xπ − x0
π)
∂ f
∂xi

+ · · · .

But we can compute the terms of first order in the expression (7) from the defin-
ing equations of the group, and to be precise, without integration. Indeed, according
to Chap. 11, p. 203 sq., the most general infinitesimal transformation whose power
series expansion with respect to the xi − x0

i contains only terms of first order or of
higher order has the form:

1···s
∑
i, π

g′
iπ(xπ − x0

π)
∂ f
∂xπ

+ · · · ,

where a certain number of the s2 quantities g′
πi which we denoted by ε1 −ν1 at that

time were arbitrary, while the s2 −ε1+ν1 remaining ones were linear homogeneous
functions of these ε1 − ν1 quantities with coefficients which could be computed
immediately from the defining equations. We therefore obtain, when we start from
the defining equations, the following representation for the expression (7):

(7’)
ε1−ν1

∑
j=1

e′j
1···s
∑
i, π
α jπi(x0

1, . . . ,x
0
s )(xπ − x0

π)
∂ f
∂xi

+ · · · ,

where the e′j denote arbitrary parameters, while the α jπi(x0) are completely deter-
mined analytic functions of the x0 which can, as said above, be computed from the
defining equations.

Because (7) and (7’) are only different representations of the same infinitesimal
transformation, the factors of (xπ−x0

π)∂ f/∂xi in the two expressions must be equal
to each other, that is to say, there are the following s2 relations:

r−n

∑
j=1

e j

[
∂ξn+ j, i

∂xπ
−

n

∑
ν=1

ϕ jν(x)
∂ξν i

∂xπ

]

x=x0
=
ε1−ν1

∑
j=1

e′jα jπi(x0) (i, π=1 ···s).

For arbitrarily chosen e j, one must always be able to satisfy these relations thanks to
suitable choices of the values of the e′j, and for arbitrarily chosen e′j, always thanks
to suitable choices of the values of the e j.

All of this holds for every point x0
1, . . . ,x

0
s in general position; hence this also

holds true when we consider the x0 as variables and when we substitute them by
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x1, . . . ,xn. Consequently, when we have chosen the e in a completely arbitrary way
as functions of the x, we can always determine the e′ as functions of the x in such a
way that the equations:

(7”)

r−n

∑
j=1

ek

{
∂ξn+ j, i

∂xπ
−

n

∑
ν=1

ϕ jν(x)
∂ξν i

∂xπ

}

=
ε1−ν1

∑
j=1

e′jα jπi(x)

(i, π=1 ···s)

are identically satisfied, and when we have chosen the e′ in a completely arbitrary
way as functions of the x, we can always satisfy (7”) identically thanks to suitable
functions e1, . . . ,er−n of the x.

Now, one can obviously replace the equations (6) by the following s equations:

(6’)
r−n

∑
j=1

e j

s

∑
π=1

{
∂ξn+ j, i

∂xπ
−

n

∑
ν=1

ϕ jν
∂ξν i

∂xπ

}

dxπ = 0 (i=1 ···s),

provided only that one regards the e as arbitrary functions of the x in them. Hence
from what has been said above, it follows that the totality of all equations (6) is
equivalent to the totality of all equations of the form:

ε1−ν1

∑
j=1

e′j
s

∑
π=1

α jπi(x1, . . . ,xs)dxπ = 0 (i=1 ···s),

in which the e′ are to be interpreted as arbitrary functions of the x. Lastly, the latter
equations can evidently be replaced by the (ε1 −ν1)s equations:

(8)
s

∑
π=1

α jπi(x1, . . . ,xs)dxπ = 0 ( j=1 ···ε1 −ν1 ; i=1 ···s).

With these words, we have proved that the two systems of total differential equa-
tions: (6) and (8) are equivalent to each other; thus, it follows that the independent
equations amongst the equations (8) form an unrestricted integrable system of to-
tal differential equations, and to be precise, a system, the only integral functions of
which are the ϕkν(x) and the functions of them.

We can therefore say:

Theorem 89. If the defining equations of an r-term group of the space x1, . . . ,xs are
presented, then one decides in the following way whether the concerned group is
systatic or not:

One understands by x0
1, . . . ,x

0
s an arbitrary point in the neighborhood of which

the coefficients of the resolved defining equations behave regularly and one deter-
mines the terms of zeroth order and of first order in the power series expansion
of the general infinitesimal transformation of the group with respect to the powers
of x1 − x0

1, . . . , xs − x0
s . Then, one searches for the terms of first order in the most

general infinitesimal transformation of the group which contains no term of zeroth
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order. These terms will have the form:

ε1−ν1

∑
j=1

e′j
1···s
∑
i, π
α jπi(x0

1, . . . ,x
0
s )(xπ − x0

π)
∂ f
∂xi

,

where the e′j denote arbitrary parameters, while the α jπi(x0) are completely deter-

mined analytic functions of the x0 and can be computed without integration from
the coefficients of the defining equations. Now, one forms the system of the total
differential equations:

(8)
s

∑
π=1

α jπi(x1, . . . ,xs)dxπ = 0 ( j=1 ···ε1 −ν1 ; i=1 ···s)

and one determines the number s −ρ of the independent equations amongst these
equations. If s − ρ < s, then the group is systatic, but if s − ρ = s, the group is
asystatic.2

We can add:

Proposition 1. The s −ρ mutually independent equations amongst the differential
equations (8) form an unrestricted integrable system with s − ρ independent inte-
gral functions: ϕ1(x), . . . ,ϕs−ρ(x). These integral functions stand in the following
relationship to the group: X1 f , . . . ,Xr f :

If, amongst the r independent infinitesimal transformations: X1 f , . . . ,Xr f there
are exactly n, say X1 f , . . . ,Xn f , that are linked together by no linear relation, while
Xn+1 f , . . . ,Xr f can be expressed linearly in terms of X1 f , . . . ,Xn f :

Xn+k f ≡
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n),

then all n(r − n) functions ϕkν(x) can be expressed in terms of ϕ1(x), . . . ,ϕs−ρ(x)
alone.

One does not even need to know the defining equations themselves in order to
be able to decide whether a determined group is systatic or not. For this, one only
needs to know the initial terms in the power series expansions of the infinitesimal
transformations of the group in the neighborhood of an individual point: x0

1, . . . ,x
0
s

in general position. Indeed, if one knows these initial terms, one can obviously
compute the numerical values α0

jπi that the functions α jπi(x) take for x1 = x0
1, . . . ,

xs = x0
s . The number s−ρ defined above is then nothing but the number of mutually

independent equations amongst the linear equations in dx1, . . . ,dxs:

s

∑
π=1

α0
jπi dxπ = 0 ( j=1 ···ε1 −ν1 ; i=1 ···s).

2 LIE, Archiv for Math., Vol. 10, Christiania 1885.
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The system of total differential equations has a very simple conceptual interpre-
tation. Indeed, as one easily realizes directly, it defines all the points: x1 +dx1, . . . ,
xs+dxs infinitely close to the point x1, . . . ,xs that remain invariant by all transforma-
tions of our group which leave at rest the point x1, . . . ,xs. Here lies the inner reason
[INNERE GRUND] why the ϕkν(x) and the functions of them are the only integral
functions of the system (6) or (8), because indeed, the equations:

ϕkν(y1, . . . ,ys) = ϕkν(x1, . . . ,xs) (k=1 ···r−n ; ν=1 ···n)

define all points y1, . . . ,ys which remain invariant simultaneously with the point
x1, . . . ,xs.

§ 124. We have found that the r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xs

is asystatic or is systatic according to whether there are exactly s, or fewer than
s, mutually independent functions amongst the functions ϕkν(x1, . . . ,xs) defined on
p. 345 and 503. Now, according to Chap. 20, Theorem 67, p. 388, there is always
an infinitesimal transformation Z f which is interchangeable with all Xk f when, and
only when, the number of independent functions amongst the ϕkν(x) is smaller than
s. Consequently, we can also say:

Proposition 2. The r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xs is systatic if
and only if there is an infinitesimal transformation Z f which is interchangeable with
all Xk f ; if there is no such infinitesimal transformation, the group: X1 f , . . . ,Xr f is
asystatic.3

Since the excellent infinitesimal transformations of a group are interchangeable
with all the other infinitesimal transformations of the group, we have in addition:

Proposition 3. Every group which contains one or several excellent infinitesimal
transformations is systatic.

Thus for such groups, one realizes already from the composition that they are
systatic.

Finally, if we remember that the adjoint group of a group without excellent in-
finitesimal transformation contains r essential parameters (cf. Theorem 49, p. 289),
we see that the following proposition holds:

Proposition 4. The adjoint group of an asystatic group is always r-term.

Proposition 2 and Proposition 4 are the generalizations of Propositions 1 and 2
of Chap. 16 (p. 290) announced at that time.

Already from the developments of Chap. 20 we could have taken a division of
all groups into two classes; in the first class, we had included every r-term group:
X1 f , . . . ,Xr f for which there is at least one infinitesimal transformation interchange-
able with all Xk f , and in the other class, all the remaining groups. According to what

3 LIE, Archiv for Math., Vol. 10, p. 377, Christiania 1885.
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was said above, it is clear that this division would coincide with our present divi-
sion of the groups in systatic and asystatic groups; the first class would consist of
all systatic group, and the second class, of all asystatic groups. In what follows, we
want to explain this fact by means of conceptual considerations and at the same
time, we want to derive new important results.

Let Θ be a transformation which is interchangeable with all transformations of
a given r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xs, and moreover, let S be
the general symbol of the transformations of the group: X1 f , . . . ,Xr f which leave
invariant an arbitrary, generally positioned point P of the space x1, . . . ,xs.

If P is transferred to the point P1 by the execution of the transformation Θ ,
then obviously, Θ−1SΘ is the general symbol of all transformations of the group:
X1 f , . . . ,Xr f which leave invariant the point P1. But now, since Θ is interchange-
able with all transformations of the group: X1 f , . . . ,Xr f , then the totality of all
transformations Θ−1SΘ is identical to the totality of all transformations S, hence
we see that all transformations of the group: X1 f , . . . ,Xr f which fix the point P also
leave at rest the point P1.

We now apply this to the case where there is a continuous family of trans-
formations Θ which are interchangeable with all transformations of the group:
X1 f , . . . ,Xr f .

Since P is a point in general position, then by the execution of the transformations
Θ , it takes a continuous series of different positions. But as we saw just now, each
one of these positions remains invariant by all transformations S, and consequently,
the group: X1 f , . . . ,Xr f is systatic.

As a result, it is proved that the r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xs

is in any case systatic when there is an infinitesimal transformation Z f interchange-
able with all Xk f . It remains to show that the converse also holds true, namely that
for every systatic group: X1 f , . . . ,Xr f , one can indicate a continuous family of trans-
formations which are interchangeable with all transformations X1 f , . . . ,Xr f .

Thus, we imagine that a systatic r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xs

is given. We will indicate a construction that provides infinitely many transforma-
tions which are interchangeable with all transformations of this group.

Every transformationΘ which is interchangeable with all transformations of the
group: X1 f , . . . ,Xr f transfers every point P of the space to a point P1 which admits
exactly the same transformations of the group as the point P; this is what we showed
above. Hence, we choose two arbitrary points P and P1 which admit the same trans-
formations of our group, and we attempt to determine a transformationΘ which is
interchangeable with all transformations of our group and which in addition trans-
fers P to P1.

Let P′ be a point to which P can be transferred by means of a transformation T
of the group: X1 f , . . . ,Xr f ; furthermore, let, as earlier on, S be the general symbol
of all transformations of this group which leave invariant P and hence P1 too. Then
(Chap. 14, Proposition 1, p. 238), ST is the general symbol of all transformations of
our group which transfer P to P′. Obviously, P1 takes the same position by all these
transformations ST , for one indeed has:
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(P1)ST = (P1)T.

At present, by assuming the existence of one transformation Θ having the con-
stitution just demanded, we can easily see that every point P′ = (P)T receives a
completely determined new position by all possible Θ ; indeed, this follows imme-
diately from the equations:

(P′)Θ = (P)TΘ = (P)Θ T = (P1)T.

Hence if T is an arbitrary transformation of our group, then by every transformation
Θ which actually exists, the point (P)T takes the new position (P1)T .

We add that we obtain in this way no overdetermination [ÜBERBESTIMMUNG]
of the new position of the point P′. Indeed, if we replace in the latter equations
the transformation T by another arbitrary transformation of the group: X1 f , . . . ,Xr f
which transfers in the same way P to P′, hence if write ST in place of T , then again
we get:

(P′)Θ = (P)STΘ = (P)Θ ST = (P1)ST = (P1)T.

We first consider the special case where the systatic group: X1 f , . . . ,Xr f is tran-
sitive.

When the group: X1 f , . . . ,Xr f is transitive, by a suitable choice of T , the point
(P)T can be brought to coincidence with every other point (P1)T of the space;
hence, if we associate to every point (P)T of the space the point (P1)T , a completely
determined transformation Θ ′ is defined in this way. If we succeed in proving that
Θ ′ is interchangeable with all transformations of our group, then it is clear that Θ ′
possesses all properties which we have required of the transformation Θ , and that
Θ ′ is the only transformationΘ which actually exists.

The fact that Θ ′ is interchangeable with all transformations of our group can
easily be proved. Indeed, we have:

(P)TΘ ′ = (P1)T = (P)Θ ′ T,

where T means a completely arbitrary transformation of our group. Hence if we
understand in the same way by T a completely arbitrary transformation of our group,
we obtain:

(P)T TΘ ′ = (P)Θ ′ T T = (P)TΘ ′ T,

and therefore, the transformation: TΘ ′ T−1Θ ′−1 leaves invariant the point (P)T ,
that is to say, every point of the space. From this, it follows that TΘ ′ T−1Θ ′−1

is the identity transformation, that is to say: Θ ′ is really interchangeable with all
transformations of our group.

Thus, when the systatic group: X1 f , . . . ,Xr f is transitive, to every pair of points P,
P1 having the constitution defined above there corresponds one and only one trans-
formation interchangeable with all transformations of the group. If one chooses the
pair of points in all possible ways, one obtains infinitely many such transforma-
tions, and it is easy to determine how many: In any case, when ∞ρ different points
remain untouched by all transformations of the group which leave invariant an ar-
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bitrarily chosen point, then there are exactly ∞ρ different transformations which are
interchangeable with all transformations of the group: X1 f , . . . ,Xr f . This is coher-
ent with Theorem 67, p. 388, for because of the assumption made above, amongst
the n(r −n) functions ϕkν(x), there are exactly s−ρ that are mutually independent,
hence there are exactly ρ independent infinitesimal transformations Z1 f , . . . ,Zρ f
which are interchangeable with all Xk f .

We can therefore state the following proposition:

Proposition 5. If the r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xs is transitive,
and if P and P1 are two points which admit exactly the same infinitesimal transfor-
mations of the group: X1 f , . . . ,Xr f , then there is one and only one transformation
Θ which is interchangeable with all transformations of the group: X1 f , . . . ,Xr f and
which transfers P to P1. If one understands by T the general symbol of a trans-
formation of the group: X1 f , . . . ,Xr f , then Θ can be defined as the transformation
which transfers every point (P)T to the point (P1)T . If each time exactly ∞ρ dif-
ferent points admit precisely the same infinitesimal transformations of the group:
X1 f , . . . ,Xr f , then there are exactly ∞ρ different transformations which are inter-
changeable with all transformations of the group X1 f , . . . ,Xr f .

The results concerning simply transitive groups that we gave in Chap. 20, p. 400–
404, are obviously contained as a special case of the present results.

Now, we turn to the case where the r-term systatic group X1 f , . . . ,Xr f is intran-
sitive. However, we want to be brief here.

If the systatic group: X1 f , . . . ,Xr f is intransitive, then there is not only a single
transformation which transfers the point P to the point defined on p. 515 and which
is interchangeable with all transformations of our group, and rather, there are in-
finitely many different transformations of this kind. We will indicate how one finds
such transformations.

The intransitive systatic group: X1 f , . . . ,Xr f determines several invariant decom-
positions of the space x1, . . . ,xs.

A first decomposition is represented by the s−ρ < s equations:

(a) ϕ1(x1, . . . ,xs) = const., . . . , ϕs−ρ(x1, . . . ,xs) = const.

A second decomposition is determined by s−n > 0 arbitrary independent solutions:
u1(x), . . . ,us−n(x) of the n-term complete system: X1 f = 0, . . . , Xn f = 0; the analytic
expression of this decomposition reads:

(b) u1(x1, . . . ,xs) = const., . . . , us−n(x1, . . . ,xs) = const.

In what follows, by Mρ , we always understand one of the ∞s−ρ ρ-times extended
manifolds (a), and by Mn, we understand one of the ∞s−n n-times extended mani-
folds (b).

Amongst the solutions of the complete system: X1 f = 0, . . . , Xn f = 0, there
is a certain number, say s − q � s − n, which can be expressed in terms of
ϕ1(x), . . . ,ϕs−ρ(x) alone; we want to assume that u1(x), . . . ,us−q(x) are such
solutions, so that s−q � s−ρ relations of the form:
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u1(x) = U1
(

ϕ1(x), . . . ,ϕs−ρ(x)
)

, . . . , us−q(x) = Us−q
(

ϕ1(x), . . . ,ϕs−ρ(x)
)

hold, and therefore, every solution of the complete system: X1 f = 0, . . . , Xn f = 0
which can be expressed in terms of ϕ1(x), . . . ,ϕs−ρ(x) alone is a function of
u1(x), . . . ,us−q(x) (cf. Chap. 19, p. 358). Then the s−q equations:

(c) u1(x1, . . . ,xs) = const., . . . , us−q(x1, . . . ,xs) = const.

represent a third decomposition invariant by the group: X1 f , . . . ,Xr f . The individual
manifolds of this decomposition are visibly the smallest manifolds which consist
both of the Mρ and of the Mn (cf. Chap. 8, p. 159). By Mq, we always understand
in what follows one of the ∞s−q q-times extended manifolds (c).

Lastly, a fourth invariant decomposition is determined by the manifold sections
[SCHNITTMANNIGFALTIGKEITEN] of the Mρ and the Mn (Chap. 8, p. 159), and
this decomposition is obviously determined by the s−ρ+q−n equations:

(d)

{

ϕ1(x) = const., . . . , ϕs−ρ(x) = const.

us−q+1(x) = const., . . . , us−n(x) = const.,

which, according to Chap. 19, p. 358 sq., are independent of each other. In what
follows, by Nρ+n−q, we always understand one of the ∞s−ρ+q−n (ρ + n − q)-times
extended manifolds (d).

Now, in order to find a transformationΘ which is interchangeable with all trans-
formations of the group: X1 f , . . . ,Xr f , we proceed in the following way:

Inside every Mq, we associate to every Mn another Mn which we may call M′
n,

and to be precise, we make this association according to an arbitrary analytic law.
Then, on each one of the ∞s−n Mn, we choose an arbitrary point P, and to each one
of the∞s−n chosen points, we associate an arbitrary point P1 on the Nρ+n−q in which
the Mρ passing through the point cuts the M′

n which corresponds to the Mn passing
through the point.

There is one and only one transformation Θ ′ which transfers the ∞s−n chosen
points P to the point P1 corresponding to them. This transformation is defined by
the symbolic equation:

(P)TΘ = (P1)T,

in which P is the general symbol of the ∞s−n chosen points, while T is the general
symbol of the ∞r transformations of our group.

One easily convinces oneself that the transformation Θ just defined is inter-
changeable with all transformations of the group: X1 f , . . . ,Xr f and that one obtains
all transformations Θ of this constitution when one chooses in the most general
way the arbitrary elements which are contained in the definition ofΘ .

We do not spend time proving this; let it only be remarked that when one sets up
the analytic expression of the transformationΘ , one sees immediately that the num-
ber of arbitrary functions appearing in this expression and the number of arguments
appearing in these functions agree with Theorem 67, p. 388.
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Finally, we make a remark which applies both to the intransitive and to the tran-
sitive systatic groups: When the manifold:

ϕkν(x1, . . . ,xs) = ϕkν(x0
1, . . . ,x

0
s ) (k=1 ···r−n ; ν=1 ···n)

decomposes for every system of values x0
1, . . . ,x

0
s into several discrete manifolds,

then the totality of all transformations which are interchangeable with the transfor-
mations of the group: X1 f , . . . ,Xr f also decompose into several discrete families.

§ 125. The functions ϕkν(x) which decide whether a group is systatic or not
have already played a great rôle in the chapter on the similarity of r-term groups.
At present, we want to return to the results of that chapter, and we want to complete
them in a certain direction.

If, in the same number of variables, two r-term groups are presented:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

and:

Yk f =
s

∑
i=1
ηki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r),

and if at the same time the relations:

[Xi, Xk] =
r

∑
σ=1

ciks Xσ f and [Yi, Yk] =
r

∑
σ=1

ciks Yσ f ,

hold with the same constants ciks in the two cases, then according to Chap. 19, p. 365
sq., there is a transformation:

yν =Φν(x1, . . . ,xs) (ν=1 ···s)

which transfers X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, if and only if the follow-
ing conditions are satisfied: if, between X1 f , . . . ,Xr f , there are relations of the form:

Xn+k f =
n

∑
ν=1

ϕkν(x1, . . . ,xs)Xν f (k=1 ···r−n),

while X1 f , . . . ,Xr f are linked together by no linear relation, then between
Y1 f , . . . ,Yr f , there must exist analogous relations:

Yn+k f =
n

∑
ν=1

ψkν(y1, . . . ,ys)Yν f (k=1 ···r−n)

but Y1 f , . . . ,Yn f should not be linked together by linear relations; in addition, the
n(r −n) equations:
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(e) ϕkν(x1, . . . ,xs) = ψkν(y1, . . . ,ys) (k=1 ···r−n ; ν=1 ···n)

should neither contradict each other, nor provide relations between the x alone or
the y alone.

If, amongst the functions ϕkν(x), there were present fewer than s that are
mutually independent, then the determination of a transformation which transfers
X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f would require certain integrations; by contrast, if the
number of independent functions ϕkν(x) were equal to s, the equations (e) would
represent by themselves a transformation transferring X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f ,
respectively, and in fact, the most general transformation of this nature. Hence,
if we remember that in the latter case the group: X1 f , . . . ,Xr f is asystatic, and
naturally also the group: Y1 f , . . . ,Yr f , then we obtain the:

Proposition 6. If one knows that two r-term asystatic groups in s variables are sim-
ilar and if one has already chosen, in each one of the two groups, r infinitesimal
transformations:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

and:

Yk f =
r

∑
i=1
ηki(y1, . . . ,ys)

∂ f
∂yi

(k=1 ···r)

such that there exists a transformation: yi = Φi(x1, . . . ,xs) which transfers
X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively, then one can set up without integra-
tion the most general transformation that achieves the concerned transfer; this
most general transformation contains neither arbitrary functions nor arbitrary
parameters.

From this, it follows that one can find without integration the most general trans-
formation which actually transfers the asystatic group X1 f , . . . ,Xr f to the group:
Y1 f , . . . ,Yr f similar to it. To this end, one has to proceed as follows:

One determines in the group: Y1 f , . . . ,Yr f in the most general way r independent
infinitesimal transformations:

Y j f =
r

∑
k=1

g jk Yk f ( j=1 ···r)

such that firstly, the relations:

[Yi, Yk] =
r

∑
σ=1

ciks Yσ f

hold, and secondly such that there exists a transformation which transfers
X1 f , . . . ,Xr f to Y1 f , . . . ,Yr f , respectively. Then according to what was said a short
while ago, one can find without integration the most general transformation which
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achieves the transfer in question, and as a result, one obtains at the same time the
most general transformation which converts the group: X1 f , . . . ,Xr f into the group:
Y1 f , . . . ,Yr f . Obviously, this transformation contains only arbitrary parameters.

In particular, if the group: Y1 f , . . . ,Yr f coincides with the group: X1 f , . . . ,Xr f ,
then in the way indicated, one obtains all transformations which leave invariant
the group: X1 f , . . . ,Xr f . According to Chap. 19, p. 372, the totality of all these
transformations forms a group, and in fact in our case, visibly a finite group. Thus:

Theorem 90. The largest subgroup in which an r-term asystatic group: X1 f , . . . ,Xr f
of the space x1, . . . ,xs is contained as an invariant subgroup contains only a finite
number of parameters. One can find the finite equations of this group without inte-
gration as soon as the infinitesimal transformations of the group: X1 f , . . . ,Xr f are
given.4

It is of importance that one can also find without integration the finite equations
of the asystatic group: X1 f , . . . ,Xr f itself, as soon as its infinitesimal transformations
are given.

One simply sets up the finite equations:

(f) e′
k =

r

∑
j=1
ψk j(ε1, . . . ,εr)e j (k=1 ···r)

of the adjoint group associated to the group: X1 f , . . . ,Xr f ; this demands only exe-
cutable operations (cf. Chap. 16, p. 286). Next, if the sought finite equations of the
group: X1 f , . . . ,Xr f have the form: x′

i = fi(x1, . . . ,xn, ε1, . . . ,εr), then according to
Theorem 48, p. 287, after the introduction of the new variables: x′

i = fi(x,ε), the
infinitesimal transformations Xk f take the form:

Xk f =
r

∑
j=1
ψ jk(ε1, . . . ,εr)X ′

j f (k=1 ···r),

where, as usual, we have set:

n

∑
i=1
ξki(x′

1, . . . ,x
′
s)
∂ f
∂x′

i
= X ′

k f .

Now, since the group: X1 f , . . . ,Xr f is asystatic, there is a completely determined
transformation between the x and the x′ that transfers X1 f , . . . ,Xr f to:

r

∑
j=1
ψ jk(ε1, . . . ,εr)X ′

j f (k=1 ···r),

respectively. If one computes this transformation according to the former rules, one
finds the sought equations x′

i = fi(x,ε).

4 LIE, Archiv for Math. Vol. 10, p. 378, Christiania 1885.



522 24 Systatic and Asystatic Transformation Groups

In particular, if the equations (f) are a canonical form of the adjoint group (cf.
Chap. 9, p. 187), then evidently, one obtains the finite equations of the group:
X1 f , . . . ,Xr f also in canonical form. We therefore have the

Proposition 7. If one knows the infinitesimal transformations of an asystatic group
of the space x1, . . . ,xs, then one can always find the finite equations of this group by
means of executable operations and, to be precise, in canonical form.

There exist yet more general cases for which the finite equations of an r-term
group, the infinitesimal transformations of which one knows, can be determined
without integration. However, we do not want to involve ourselves further in such
questions, we only want to remark that the determination of the finite equations suc-
ceeds, amongst other circumstances, when there is no infinitesimal transformation
interchangeable with all Xk f which does not belongs to the group X1 f , . . . ,Xr f .

§ 126. Let X1 f , . . . ,Xr f , or shortly Gr, be an r-term systatic group of the space
x1, . . . ,xs, and let Gr−n be the (r − n)-term subgroup of Gr which is associated to a
determined point x0

1, . . . ,x
0
s in general position. The manifold:

ϕkν(x1, . . . ,xs) = ϕkν(x0
1, . . . ,x

0
s ) (k=1 ···r−n ; ν=1 ···n)

which consists of all points invariant by Gr−n will be denoted by M.
Since Gr−n fixes all points of M, it naturally leaves invariant M itself; but is it

conceivable that Gr contains transformations which also leave invariant the manifold
M without fixing all of its points. We want to assume that the largest subgroup of Gr

which leaves M invariant contains exactly r − l parameters and we want to call this
subgroup Gr−l .

Of course, Gr−n is either identical to Gr−l or contained in it as a subgroup.
The latter case always occurs when Gr is transitive; indeed, in this case, the point
x0

1, . . . ,x
0
s can be transferred to all points of M by means of suitable transformations

of Gr, and since every transformation of Gr which transfers x0
1, . . . ,x

0
s to another

point of M visibly leaves invariant the manifold M, Gr contains a continuous
family of transformations which leave invariant M without fixing all of its points;
consequently, in the case of a transitive group Gr, the number r − l is surely larger
than r − n. But if Gr is intransitive, then it is quite possible that all transformations
of Gr which leave M invariant also fix all points of M, so that r − l = r − n. This is
shown for example by the three-term intransitive systatic group:

∂ f
∂x2

, x2
∂ f
∂x2

, x2
2
∂ f
∂x2

of the plane x1, x2.
It is easy to see that Gr−n is invariant in Gr−l . In fact, Gr−n is generated by all

infinitesimal transformations of Gr−l which leave untouched all the points of M;
but according to Chap. 17, Proposition 7, p. 319, these infinitesimal transformations
generate an invariant subgroup of Gr−n. We therefore have the:
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Proposition 8. If: X1 f , . . . ,Xr f , or Gr, is an r-term systatic group of the space
x1, . . . ,xs, if moreover P is a point in general position, and lastly, if M is the
manifold of all points that remain invariant by all transformations of Gr which fix
P, then the largest subgroup of Gr which leaves P invariant is either identical to
the largest subgroup which leaves M at rest, or is contained in this subgroup as an
invariant subgroup. The first case can occur only when Gr is intransitive; when Gr

is transitive, the second case always occurs.

On the other hand, if one knows an arbitrary r-term group Gr of the space
x1, . . . ,xs and if one knows that the largest subgroup Gr−n of Gr which leaves
invariant an arbitrary point P in general position is invariant in a yet larger subgroup
Gr−h with r − h > r − n parameters, then one can conclude that Gr belongs to the
class of systatic groups.

In fact, the point P admits exactly r−n independent infinitesimal transformations
of Gr−h and hence (Chap. 23, Theorem 85, p. 489), it takes, by all ∞r−h transfor-
mations of Gr−h, exactly ∞n−h different positions, where the number n − h, under
the assumption made, is at least equal to 1. Now, since Gr−n is invariant in Gr−h,
then to each of these ∞n−h positions of P is associated exactly the same (r−n)-term
subgroup of Gr as to the point P, that is to say: Gr is effectively systatic. Thus:

Proposition 9. If the r-term group Gr of the space x1, . . . ,xs is constituted in such
a way that its largest subgroup Gr−n which leaves invariant an arbitrary point in
general position is invariant in a larger subgroup of Gr, or even in Gr itself, then Gr

belongs to the class of systatic groups.

From this proposition, it follows immediately that for an r-term asystatic group
of the space x1, . . . ,xs, the subgroup associated to a point in general position is in-
variant neither in Gr itself, nor in a larger subgroup of Gr. But conversely, if Gr is
constituted in such a way that the subgroup which is associated to a point in general
position is invariant in no larger subgroup, then it need not be asystatic for this rea-
son, and it is necessarily so only when it is also transitive; this follows immediately
from Proposition 8, p. 522. We can therefore say:

Proposition 10. An r-term transitive group Gr of the space x1, . . . ,xs is asystatic if
and only if the subgroup associated to a point in general position is invariant in no
larger subgroup.

In Chap. 22, Theorem 79, p. 451, we provided a method for the determination of
all transitive groups which are equally composed with a given r-term group Γ . Now,
we can specialize this method so that it provides in particular all transitive asystatic
groups which are equally composed with the group Γ .

One determines all subgroups of Γ which neither contain a subgroup invariant
in Γ nor are invariant in a larger subgroup of Γ . Each of these subgroups provides,
when one proceeds according to the rules of Theorem 78, a transitive asystatic group
which is equally composed with Γ , and in fact, one finds in this way all transitive
asystatic groups having the concerned composition.
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Taking Proposition 10 as a basis, one can answer the question of whether a given
transitive group is systatic, or asystatic. One can set up a similar statement by means
of which one can answer the question whether a given transitive group is primitive,
or not.

Let the r-term transitive group Gr of the space x1, . . . ,xs be imprimitive, and let:

u1(x1, . . . ,xs) = const., . . . , us−m(x1, . . . ,xs) = const. (0<m<s)

be a decomposition of the space into ∞s−m m-times extended manifolds which is
invariant by the group.

Since Gr is transitive, all its transformations which leave invariant a point
x0

1, . . . ,x
0
s in general position form an (r − s)-term subgroup Gr−s, and on the other

hand, all its transformations which leave invariant the m-times extended manifold:

u1(x1, . . . ,xs) = u1(x0), . . . , us−m(x1, . . . ,xs) = us−m(x0)

form an (r − s+m)-term subgroup Gr−s+m (cf. Chap. 23, p. 485). Here naturally,
Gr−s is contained as subgroup in Gr−s+m, which in turn is obviously a subgroup of
Gr.

Now we imagine conversely that an arbitrary r-term transitive group Gr of the
space x1, . . . ,xs is presented, and we assume that the (r − s)-term subgroup Gr−s

of Gr which is associated to a point P in general position is contained in a larger
subgroup:

Gr−s+h (r−s<r−s+h<r).

If all transformations of Gr−s+h are executed on P, then the point takes ∞h dif-
ferent positions. These ∞h positions form an h-times extended manifold M which
remains invariant by Gr−s+h (cf. Chap. 23, p. 489). Lastly, if we execute on M all
transformations of Gr, we obtain ∞s−h different h-times extended manifolds which
determine a decomposition of the space x1, . . . ,xs.

In fact, since the manifold M remains invariant by Gr−s+h, then by the ∞r trans-
formations of Gr, it takes at most ∞s−h different positions (cf. Chap. 23, p. 489),
and on the other hand, thanks to the transitivity of Gr, it takes at least ∞s−h posi-
tions, hence it receives by Gr exactly ∞s−h different positions which fill the space
and hence determine a decomposition. It follows from Theorem 85, p. 489, that this
decomposition remains invariant by Gr.

From this, it results that Gr, under the assumptions made, is imprimitive. If we
combine this result with the one obtained above, we then first have:

Theorem 91. An r-term transitive group Gr of the space x1, . . . ,xs is primitive if
and only if the (r − s)-term subgroup Gr−s which is associated to a point in general
position is contained in no larger subgroup of Gr.

Furthermore, we obviously obtain at the same time a method for determining all
possible decompositions of the space x1, . . . ,xs which remain invariant by a given
transitive group of this space:
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Theorem 92. If an r-term transitive group Gr of the space x1, . . . ,xs is presented,
then one finds all possible decompositions of the space invariant by the group in the
following way:

One first determines the (r − s)-term subgroup Gr−s of Gr by which an arbitrary
point P in general position remains invariant, a point which does not lie on any
manifold invariant by Gr. Then, one looks up at all subgroups of Gr which contain
Gr−s. If Gr−s+h is one of these subgroups, then one executes all transformations
of Gr−s+h on P; in the process, P takes ∞h different positions which form an h-
times extended manifold M; now, if one executes on M all transformations of Gr,
then M takes ∞s−h different positions which determine a decomposition of the space
invariant by Gr. If one treats in this way all subgroups of Gr which comprise Gr−s,
one obtains all decompositions invariant by Gr.

We can also indicate how one has to specialize the method explained in Chap. 22,
Theorem 79, p. 451, in order to find all primitive groups which are equally composed
with a given r-term group Γ .

Since all primitive groups are transitive, one has to proceed in the following way:
One determines all subgroups of Γ which contain no subgroup invariant in Γ and

which are contained in no larger subgroup of Γ . Each of these subgroups provides,
when one proceeds according to the rules of Theorem 78, a primitive group equally
composed with Γ and in fact, one obtains in this way all primitive groups of this
sort. —

Theorem 92 shows that one can find without integration all decompositions in-
variant by a transitive group when the finite equations of the group are known. Now,
the same also holds true for intransitive groups, although in order to see this, one
needs considerably longer considerations that might not be advisable to develop
here.

—————–



Chapter 25
Differential Invariants

In n variables, we imagine that a transformation is presented:

(1) yi = fi(x1, . . . ,xn) (i=1 ···n),

and we imagine that this transformation is executed on a system of n−q independent
equations:

(2) Ωk(x1, . . . ,xn) = 0 (k=1 ···n−q) ;

we obtain in this way a new system of equations:

(2’) Ω(y1, . . . ,yn) = 0 (k=1 ···n−q)

in the y.
Now, by virtue of the equations (2), n−q of the variables x1, . . . ,xn can be repre-

sented as functions of the q remaining ones and these n−q naturally possess certain
differential quotients: p1, p2, . . . , with respect to the q remaining. On the other hand,
by virtue of the equations (2’), n − q of the variables y1, . . . ,yn can be represented
as functions of the q remaining ones and these n − q possess in their turn certain
differential quotients: p′

1, p′
2, . . . , with respect to the q remaining.

Between the two series of differential quotients so defined, there exists a certain
connection which is essentially independent of the form of the n−q relations (2). In
the course of the chapter, we will explain this known connection thoroughly, and we
recall here that the p′ from the first order up to the m-th order can be represented as
functions of x1, . . . ,xn and of the p from the first order up to the m-th order, when the
p are interpreted as functions of x′

1, . . . ,x
′
n and of the p′. From this, it results that one

can derive from the transformation (1) a new transformation which, aside from the
x, also transforms the differential quotients from the first order up to the m-th order.
We say that this new transformation is obtained by extension [ERWEITERUNG] of
the transformation (1).

Visibly, there are several very varied ways that one can extend the transforma-
tion (1), since one can choose how many and which ones of the variables x1, . . . ,xn
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will be functions of the others. One can even increase the number of possibilities
by taking in addition auxiliary variables: t1, t2, . . . , that are not transformed by the
transformation (1), so that one adds the identity transformation in the auxiliary vari-
ables: t1, t2, . . . , to the equations of the transformation (1).

If an r-term group is presented, we can extend [ERWEITERN] all its ∞r trans-
formations and obtain in this way ∞r extended transformations; the latter transfor-
mations constitute in their turn, as we will see, an r-term group which is equally
composed with the original group.

§ 127. We first consider a special type of extension.
In the transformation:

(1) yi = fi(x1, . . . ,xn) (i=1 ···n),

we consider the variables x1, . . . ,xn as functions of an auxiliary variable t which is
not transformed by the transformation (1). Obviously, y1, . . . ,yn are then also to be
interpreted as functions of t; hence if we set:

dxi

d t
= x(1)i ,

dyi

d t
= y(1)i ,

then it follows from (1) by differentiation with respect to t that:

(3) y(1)i =
n

∑
ν=1

∂ fi

∂xν
x(1)ν (i=1 ···n).

If we take (1) and (3) together, we obtain a transformation in the 2n variables xi and

x(1)i .
The transformation (1), (3) is in a certain sense the simplest transformation that

one can derive from (1) by extension.
If we apply the above special extension to all ∞r transformations of the r-term

group: X1 f , . . . ,Xr f , or to:

(4) yi = fi(x1, . . . ,xn, a1, . . . ,ar) (i=1 ···n),

then we obtain ∞r extended transformations which evidently have the form:

(5) yi = fi(x1, . . . ,xn, a1, . . . ,ar), y(1)i =
n

∑
ν=1

∂ fi(x,a)
∂xν

x(1)ν (i=1 ···n).

It can be proved that the equations (5) represent an r-term group in the 2n vari-

ables xi, x(1)i .
In fact, the equations:

yi = fi(x1, . . . ,xn, a1, . . . ,ar) and zi = fi(y1, . . . ,yn, b1, . . . ,br)
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have by assumption as a consequence:

zi = fi(x1, . . . ,xn, c1, . . . ,cr),

where the c depend only on the a and on the b. Therefore, from:

y(1)i =
n

∑
ν=1

∂ fi(x,a)
∂xν

x(1)ν and z(1)j =
n

∑
i=1

∂ f j(y,b)
∂yi

y(1)i ,

it follows by elimination of the y(1)i that:

z(1)j =
1···n
∑
i, ν

∂ f j(y,b)
∂yi

∂ fi(x,a)
∂xν

x(1)ν

=
n

∑
ν=1

∂ f j(y,b)
∂xν

x(1)ν =
n

∑
ν=1

∂ f j(x,c)
∂xν

x(1)ν ,

whence the announced proof is complete.
In addition, from what has been said, it follows that the new group has the same

parameter group as the original group:

yi = fi(x1, . . . ,xn, a1, . . . ,ar).

The new group:

(5) yk = fk(x,a), y(1)k =
n

∑
i=1

∂ fk

∂xi
x(1)i (k=1 ···n)

which is a first example of an extended group has a very simple conceptual meaning.
Indeed, if one interprets x1, . . . ,xn as ordinary point coordinates of an n-times

extended space, then one can interpret the 2n quantities: x1, . . . ,xn, x(1)1 , . . . ,x(1)n as
the determination pieces [BESTIMMUNGSSTÜCKE] of a line element [LINIENELE-

MENT]; here x(1)1 , . . . ,x(1)n are homogeneous coordinates in the domain of the ∞n−1

directions which pass through the point x1, . . . ,xn.

The new group (5) in the x, x(1) indicates in which way the line elements of the
space x1, . . . ,xn of the original group: yi = fi(x,a) are permuted with each other.

Since the group: yi = fi(x,a) is generated by the r infinitesimal transformations:
X1 f , . . . ,Xr f , its finite equations in canonical form read:

yk = xk +
r

∑
j=1

e j ξ jk + · · · (i=1 ···n).

If we set this form of the group: yi = fi(x,a) as fundamental in order to make up the
extended group (5), then the equations of this group take the form:
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(6)
yk = xk +

r

∑
j=1

e j ξ jk + · · · , y(1)k = x(1)k +
r

∑
j=1

e j ξ
(1)
jk + · · ·

(k=1 ···n),

where we have set for short:

n

∑
i=1

∂ξ jk

∂xi
x(1)i = ξ (1)jk .

From this, we realize immediately that the extended group contains the identity
transformation, and at the same time, we come to the presumption that it is generated
by the r infinitesimal transformations:

X (1)
k f =

n

∑
i=1
ξki
∂ f
∂xi

+
n

∑
i=1
ξ (1)ki

∂ f

∂x(1)i

(k=1 ···r).

The correctness of this presumption can be established in the following way:
According to Theorem 3, p. 40, the n functions: yi = fi(x,a) satisfy differential

equations of the form:

(7)
∂yi

∂ak
=

r

∑
j=1
ψk j(a1, . . . ,ar)ξ ji(y1, . . . ,yn) (i=1 ···n ; k=1 ···r)

If we differentiate these equations with respect to t and if take into account that the
a are independent of the t, then:

(8)
∂y(1)i

∂ak
=

r

∑
j=1
ψk j(a)

n

∑
ν=1

∂ξ ji(y)
∂yν

y(1)ν (i=1 ···n ; k=1 ···r).

Now, if a0
1, . . . ,a

0
r are the parameters of the identity transformation in the group:

yi = fi(x,a), then the determinant: ∑±ψ11(a) · · · ψrr(a) does not vanish for: a1 =
a0

1, . . . , ar = a0
r ; but a0

1, . . . ,a
0
r are also the parameters of the identity transforma-

tion in the extended group (5); consequently, from the equations (7) and (8), we can
conclude in the known way (cf. Chap. 4, p. 82 sq.), that the extended group is gen-

erated by the r independent infinitesimal transformations X (1)
k f . We call the X (1)

k f
the extended infinitesimal transformations.

As the independent infinitesimal transformations of an r-term group, the X (1)
k f

satisfy pairwise relations of the form:

X (1)
k X (1)

j f −X (1)
j X (1)

k f =
r

∑
s=1

c′
k js X (1)

s f .

Here, the coefficients of the ∂ f/∂xi must coincide on the right and on the left, hence
one must have: XkXj f −XjXk f = ∑s c′

k js Xs f , and consequently, one has:
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r

∑
s=1

(c′
k js − ck js)Xs f = 0,

or, because of the independence of X1 f , . . . ,Xr f :

c′
k js = ck js (k, j, s=1 ···r).

Thus, the extended group (5) is holoedrically isomorphic to the original group,
which is consistent with the fact that, according to p. 529, both groups have the
same parameter group. —

We give a second direct proof of the result just found.
If Xk f and Xj f are arbitrary infinitesimal transformations and if the associated

two extended infinitesimal transformations are denoted by X (1)
k f and X (1)

j f as earlier
on, it follows that:

X (1)
k X (1)

j f −X (1)
j X (1)

k f = XkXj f −XjXk f

+
1···n
∑
π, i, ν

{

ξki
∂ 2ξ jπ

∂xi∂xν
−ξ ji

∂ 2ξkπ
∂xi∂xν

}

x(1)ν
∂ f

∂x(1)π

+
1···n
∑
π, i, ν

{
∂ξki

∂xν

∂ξ jπ

∂xi
− ∂ξ ji

∂xν

∂ξkπ
∂xi

}

x(1)ν
∂ f

∂x(1)π
,

or that:

(9)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X (1)
k X (1)

j f −X (1)
j X (1)

k f =
1···n
∑
π, i

{

ξki
∂ξ jπ

∂xi
−ξ ji

∂ξkπ
∂xi

}
∂ f
∂xπ

+
1···n
∑
π, i

d
d t

{

ξki
∂ξ jπ

∂xi
−ξ ji

∂ξkπ
∂xi

}
∂ f

∂x(1)π
.

In particular, if we assume that the Xk f are infinitesimal transformations of an
r-term group, hence that:

XkXj f −XjXk f =
r

∑
s=1

ck js Xs f ,

then it follows that:

X (1)
k X (1)

j f −X (1)
j X (1)

k f =
r

∑
s=1

ck js

n

∑
π=1

ξsπ
∂ f
∂xπ

+
r

∑
s=1

ck js

n

∑
π=1

d
d t
ξsπ

∂ f
∂xπ

=
r

∑
s=1

ck js X (1)
s f ,
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which is what was to be shown.1

The general formula (9) in the computations executed above is of special interest
and it can be expressed in words as follows:

Proposition 1. If, for two arbitrary infinitesimal transformations:

X1 f =
n

∑
i=1
ξ1i
∂ f
∂xi

, X2 f =
n

∑
i=1
ξ2i
∂ f
∂xi

,

one forms the extended infinitesimal transformations:

X (1)
k f =

n

∑
i=1
ξki
∂ f
∂xi

+
n

∑
i=1
ξ (1)ki

∂ f

∂x(1)i

(k=1, 2),

then X (1)
1 X (1)

2 f − X (1)
2 X (1)

1 f is the extended infinitesimal transformation associated
to X1X2 f −X2X1 f .

§ 128. Now, we ask how one can decide whether the equation:

n

∑
ν=1

Uν(x1, . . . ,xn)x(1)ν = 0

admits every finite transformation of the extended one-term group:

X (1) f =
n

∑
i=1
ξi
∂ f
∂xi

+
1···n
∑
i, ν

∂ξi

∂xν
x(1)ν

∂ f

∂x(1)i

.

According to Chap. 7, p. 127, this holds true if and only if X (1)(∑Uν x(1)ν ) van-

ishes by virtue of ∑Uν x(1)ν = 0. By computation, one finds:

X (1)
( n

∑
ν=1

Uν x(1)ν

)

=
n

∑
ν=1

X Uν x(1)ν +
n

∑
ν=1

Uν
n

∑
i=1

∂ξν
∂xi

x(1)i ,

hence an expression which is linear in the x(1)i . Consequently, the equation:

∑Uν x(1)ν = 0 admits the one-term group X (1) f when and only when a relation of
the form:

X (1)
( n

∑
ν=1

Uν x(1)ν

)

= ρ
n

∑
ν=1

Uν x(1)ν

holds, where it is understood that ρ is a function of x1, . . . ,xn alone.

1 The preceding analytic developments present great similarities with certain developments of
Chap. 20 (cf. p. 382 sq.). The main reason of this connection lies in the fact that the quantities ζ
on p. 381 are nothing but certain differential quotients: δy/δ t of the y with respect to t.
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Incidentally, it may be observed that the expression ∑Uν x(1)ν always remains
invariant by every finite transformation of the extended group X (1) f if and only if

the expression: X (1)(∑Uν x(1)ν
)

vanishes identically.
Lastly, a system of m equations:

(10)
n

∑
i=1

Uki(x1, . . . ,xn)x(1)i = 0 (k=1 ···m)

will admit all transformations of the extended group X (1) f if and only if every ex-

pression: X (1) (∑Uki x(1)i

)

vanishes by virtue of the system, hence when relations of
the form:

X (1)
( n

∑
i=1

Uki x(1)i

)

=
m

∑
j=1
ρk j

n

∑
i=1

Uji x(1)i (k=1 ···m)

hold, where the ρk j denote functions of the x alone.
If we combine Proposition 5 of Chap. 7, p. 134, with the proposition proved

above (p. 532), we immediately get:

Proposition 2. If a system of equations of the form:

(10)
n

∑
i=1

Uki(x1, . . . ,xn)x(1)i = 0 (k=1 ···m)

admits the two one-term groups: X (1)
1 f and X (1)

2 f which are derived from X1 f and
X2 f , respectively, by means of the special extension defined above, then it admits

at the same time the one-term group: X (1)
1 X (1)

2 f − X (1)
2 X (1)

1 f , which is derived by
means of extension from the group: X1X2 f −X2X1 f .

We have obtained the preceding proposition by applying Proposition 5 of Chap. 7
to the special case of a system of equations of the form (10). But it must be men-
tioned that our present proposition can be proved in a way substantially easier than
the general Proposition 5 of Chap. 7. Indeed, one can convince oneself without diffi-

culty by a calculation that a system of equations (10) which admits X (1)
1 f and X (1)

2 f

also allows X (1)
1 X (1)

2 f −X (1)
2 X (1)

1 f .

We call an equation of the form:

n

∑
i=1

Ui(x1, . . . ,xn)dxi = 0

a Pfaffian equation [PFAFFSCHE GLEICHUNG], and we call its left-hand side a Pfaf-
fian expression [PFAFFSCHE AUSDRUCK].

From the developments of the present chapter so far, we have important proposi-
tions concerning systems of Pfaffian equations:



534 25 Differential Invariants

(10’)
n

∑
i=1

Uki(x1, . . . ,xn)dxi = 0 (k=1 ···m).

The execution of the transformation: yi = fi(x1, . . . ,xn) on the differential expres-
sion: ∑i Uki(x1, . . . ,xn)dxi obviously happens in such a way that one transforms the
2n quantities x1, . . . ,xn, dx1, . . . ,dxn by means of the transformation:

yi = fi(x1, . . . ,xn), .yi =
n

∑
ν=1

∂ fi

∂xν
dxν (i=1 ···n).

From this, it follows that the system of Pfaffian equations:

(10’)
n

∑
i=1

Uki(x1, . . . ,xn)dxi = 0 (k=1 ···m)

remains invariant by the one-term group X f if and only if the system of equations:

n

∑
i=1

Uki(x1, . . . ,xn)x(1)i = 0 (k=1 ···m)

admits the one-term extended group:

X (1) f =
n

∑
i=1
ξi
∂ f
∂xi

+
n

∑
i=1
ξ (1)i

∂ f

∂x(1)i

,

hence when we have m relations of the form:

n

∑
i=1

X Uki x(1)i +
n

∑
i=1

Uki

n

∑
ν=1

∂ξi

∂xν
x(1)ν =

m

∑
j=1
ρk j(x)

n

∑
i=1

Uji x(1)i

(k=1 ···m),

or, what amounts to the same, m relations of the form:

n

∑
i=1

X Uki dxi +
n

∑
i=1

Uki d(X xi) =
m

∑
j=1
ρk j(x)

n

∑
i=1

Uji dxi

(k=1 ···m).

Hence if we introduce the shorthand:

n

∑
i=1

X Uki dxi +
n

∑
i=1

Uki d(X xi) = X

( n

∑
i=1

Uki dxi

)

,

we obtain the

Proposition 3. If the system of m Pfaffian equations:
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(10’)
n

∑
i=1

Uki(x1, . . . ,xn)dxi = 0 (k=1 ···m).

admits all transformations: yi = xi + ε X xi + · · · of the one-term group X f , hence if
for every value of ε , relations of the form:

n

∑
i=1

Uki(y1, . . . ,yn)dyi =
m

∑
j=1
ωk j(x1, . . . ,xn, ε)

n

∑
i=1

Uji(x)dxi (k=1 ···m)

hold, then for this, it is necessary and sufficient that the m expressions X(∑Uki dxi)
can be represented in the form:

X

( n

∑
i=1

Uki dxi

)

=
m

∑
j=1
ρk j(x)

n

∑
i=1

Uji dxi (k=1 ···m).

Lastly, if we introduce the terminology: the system of Pfaffian equations (10’)
admits the infinitesimal transformation X f when m relations of the form:

X

( n

∑
i=1

Uki dxi

)

=
m

∑
j=1
ρk j(x)

n

∑
i=1

Uji dxi

hold, then we can also state the latter proposition in the following way:

The system of m Pfaffian equations (10’) admits all transformations of the one-
term group X f if and only if it admits the infinitesimal transformation X f .

In addition, from Proposition 2, it follows easily:

Theorem 93. If a system of m Pfaffian equations:

n

∑
i=1

Uki(x1, . . . ,xn)dxi = 0 (k=1 ···m)

admits the two one-term groups: X1 f and X2 f , then at the same time, it also admits
the one-term group: X1X2 f −X2X2 f .

We remark that the Pfaffian expression: ∑i Ui(x1, . . . ,xn)dxi remains invariant by
every transformation of the one-term group X f when the expression: X(∑Ui dxi)
vanishes identically.

Earlier (p. 68 sq.), we agreed that in place of ξi, we will occasionally write δxi/δ t
and in place of X f , δ f/δ t. In a similar way, in place of X(∑Ui dxi), we also want
to write: δ

δ t ∑Ui dxi; then we have the equation:

δ
( n

∑
i=1

Ui dxi

)

=
n

∑
i=1
δUi dxi +

n

∑
i=1

Ui dδxi,

an expression which appears with the same meaning as in the Calculus of Variations.
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§ 129. The propositions of the preceding section perfectly suffice in order de-
rive in complete generality the theory of the extension of a group by means of the
addition of differential quotients. However, we first want to consider a special case,
before we tackle the treatment of the general case. At the same time, we return to
known geometrical concepts of thrice-extended space.

By x,y,z, we understand ordinary point coordinates of thrice-extended space and
moreover, we let:

(11) x′ = Ξ(x,y,z), y′ = H, z′ = Z

be a transformation of this space.
By the transformation (11), all points x,y,z are transformed, that is to say, they

are transferred to the new positions: x′,y′,z′. At the same time, all surfaces take new
positions: every surface: χ(x,y,z) = 0 is transferred to a new surface: ψ(x′,y′,z′) =
0, the equation of which is obtained by means of elimination of x,y,z from the
equations (11) of the transformation in combination with χ = 0.

It is in the nature of things that the transformation (11) transfers surfaces which
enter into contact to surfaces which stand in the same relationship, at least in gen-
eral. Hence, if by the expression surface element [FLÄCHENELEMENT] we call the
totality of a point x,y,z located on the surface and of the tangential plane:

z1 − z = p(x1 − x)+q(y1 − y)
(

p =
∂ z
∂x

, q =
∂ z
∂y

)

passing through it, then we can say that our transformation (11) converts every
surface element x,y,z, p,q to a new surface element x′,y′,z′, p′,q′. In other words,
there must exist certain equations:

(12) p′ =Π(x,y,z, p,q), q′ = K(x,y,z, p,q)

which we will set up below. The equations (11) and (12) taken together represent a
transformation which comes into existence by extension of the transformation (11).

At present, we assume that the ∞r transformations:

(13) x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z

are given which represent an r-term group of point transformations of the space, and
we imagine that for each of these ∞r transformations, the extended transformation
just defined is set up. We claim that the ∞r extended transformations:

(14)

{

x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z

p′ =Π(x,y,z, p,q, a1, . . . ,ar), q′ = H

that we obtain in this way form an r-term group in the variables x,y,z, p,q.
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For the proof, we interpret the ∞r transformations (13) as operations and we
observe that these operations permute with each other both the points x,y,z and
the surface elements x,y,z, p,q. When regarded as permutations of the points, these
operations form a group, and consequently, when interpreted as permutations of
the surface elements, they must also form a group, whence the fact that the equa-
tions (14) represent a group finds its analytic expression.

We will make more precise the considerations made up to now by developing
them in a purely analytic way.

Let:

(11) x′ = Ξ(x,y,z), y′ = H(x,y,z), z′ = Z(x,y,z)

be a transformation between the variables x,y,z and x′,y′,z′. If we imagine z as an
arbitrarily chosen function: z = ϕ(x,y) of x and y, there exist partial differential
quotients of first order of z with respect to x and y; these are defined by means of the
equation:

dz− pdx−qdy = 0.

But on the other hand, our transformation converts every dependence relationship
[ABHÄNGIGSKEITSVERHÄLTNISS]: z = ϕ(x,y) between x,y,z into just such a re-
lationship between z′,x′,y′ which can in general be given the form: z′ = ϕ(x′,y′);
hence z′ also has two partial differential quotients p′ and q′ which, in their turn,
satisfy the condition:

dz′ − p′ dx′ −q′ dy′ = 0.

If, in the equation just written, we substitute z′,x′,y′ with their values Z, Ξ , H
and if we organize the result with respect to dz, dx, dy, we get:

(
∂Z

∂ z
− p′ ∂Ξ

∂ z
−q′ ∂H

∂ z

)

dz+
(
∂Z

∂x
− p′ ∂Ξ

∂x
−q′ ∂H

∂x

)

dx

+
(
∂Z

∂y
− p′ ∂Ξ

∂y
−q′ ∂H

∂y

)

dy = 0,

or, because of dz = pdx+qdy:

(15)

⎧

⎪⎪⎨

⎪⎪⎩

{
∂Z

∂x
− p′ ∂Ξ

∂x
−q′ ∂H

∂x
+ p

(
∂Z

∂ z
− p′ ∂Ξ

∂ z
−q′ ∂H

∂ z

)}

dx

+
{
∂Z

∂y
− p′ ∂Ξ

∂y
−q′ ∂H

∂y
+q

(
∂Z

∂ z
− p′ ∂Ξ

∂ z
−q′ ∂H

∂ z

)}

dy = 0.

In the equation (15), the two factors of dx and of dy must vanish, because dx and
dy are not linked together by a relation. We therefore obtain the two equations:
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(16)

⎧

⎪⎪⎨

⎪⎪⎩

p′
(
∂Ξ
∂x

+ p
∂Ξ
∂ z

)

+q′
(
∂H

∂x
+ p

∂H

∂ z

)

=
∂Z

∂x
+ p

∂Z

∂ z

p′
(
∂Ξ
∂y

+q
∂Ξ
∂ z

)

+q′
(
∂H

∂y
+q

∂H

∂ z

)

=
∂Z

∂y
+q

∂Z

∂ z
.

These equations can be solved with respect to p′ and q′. Indeed, if the determi-
nant:

(17)

∣
∣
∣
∣
∣

∂Ξ
∂x + p ∂Ξ∂ z

∂Ξ
∂y +q ∂Ξ∂ z

∂H
∂x + p ∂H∂ z

∂H
∂y +q ∂H∂ z

∣
∣
∣
∣
∣

vanished for arbitrary functions z of x and y, then it would actually vanish identically,
that is to say, for every value of the variables x,y,z, p,q. Evidently, this case can
occur only when all 2×2 determinants of the matrix:

∣
∣
∣
∣
∣

∂Ξ
∂x

∂Ξ
∂y

∂Ξ
∂ z

∂H
∂x

∂H
∂y

∂H
∂ z

∣
∣
∣
∣
∣

vanish identically. But this is excluded from the beginning.
We therefore see that the equations (16) are in general solvable with respect to

p′ and q′, whatever the function z of x and y is, and that the resolution is impos-
sible only when the function z = ϕ(x,y) satisfies the partial differential equation
which arises by setting to zero the determinant (17). By executing the resolution
of the equations (16), we obtain for p′ and q′ completely determined functions of
x,y,z, p,q:

p′ =Π(x,y,z, p,q), q′ = K(x,y,z, p,q).

This determination is generally valid, because we have made no special assumption
on the function z = ϕ(x,y).

Besides, all of this has long been known.
The equation (15) shows that it is possible to determine a quantity a in such a

way that the relation:

(18) dZ− p′ dΞ −q′ dH = a(dz− pdx−qdy)

holds identically in dx, dy, dz. Indeed, if one expands (18) with respect to dx, dy,
dz, one first obtains by comparing the factors of dz in both sides:

a=
∂Z

∂ z
− p′ ∂Ξ

∂ z
−q′ ∂H

∂ z
;

but if one sets this value in the equation (18), then this equation converts into (15).
In turn, equation (18) has a very simple meaning: it expresses that the extended

transformation:

x′ = Ξ , y′ = H, z′ = Z, p′ =Π , q′ = K
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leaves invariant the Pfaffian equation: dz− pdx−qdy = 0.2

For what follows, it is very important to observe that the extended transformation:
x′ = Ξ , . . . , q′ = K is perfectly determined by this property. In other words: if one
knows Ξ , H, Z, then Π and K are uniquely determined by the requirement that
the transformation: x′ = Ξ , . . . , q′ = K should leave invariant the Pfaffian equation:
dz− pdx−qdy = 0.

Now, we again pass to the consideration of an r-term group:

(19) x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z,

and we imagine that each of the ∞r transformations of this group is extended in the
way formerly indicated by adding the equations:

(20) p′ =Π(x,y,z, p,q, a1, . . . ,ar), q′ = K.

Then we already know (cf. p. 536) that the equations (19) and (20) taken together
represent an r-term group, but at present, we also want to prove this in an analytic
way.

If the equations:

x′′ = Ξ(x′,y′,z′, b1, . . . ,br), y′′ = H, z′′ = Z

are combined with (19), then one obtains in the known way:

x′′ = Ξ(x,y,z, c1, . . . ,cr), y′′ = H, z′′ = Z,

where c depends only on the a and on the b. But on the other hand, the two equations:

dz′ − p′ dx′ −q′ dy′ = a(d z− pdx−qdy)
dz′′ − p′′ dx′′ −q′′ dy′′ = a′ (dz′ − p′ dx′ −q′ dy′)

give the analogous equation:

dz′′ − p′′ dx′′ −q′′ dy′′ = aa′ (dz− pdx−qdy),

which, according to the observation made above, shows that p′′ and q′′ depend on
x,y,z, p,q and on the c in exactly the same way as p′ and q′ depend on x,y,z, p,q
and on the a. We therefore have the

Proposition 4. If the equations:

(19) x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z

represent an r-term group and if one determines the functions Π(x,y,z, a1, . . . ,ar),
K(x,y,z, a1, . . . ,ar) in such a way that the extended transformation equations:

2 LIE, Göttinger Nachr. 1872, p. 480, Verhandl. d. G. d. W. zu Christiania 1873; Math. Ann. Vol.
VIII.
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(21) x′ = Ξ , y′ = H, z′ = Z, p′ =Π , q′ = K

leave invariant the Pfaffian equation: dz− pdx−qdy = 0, so that a relation of the
form:

dz′ − p′ dx′ −q′ dy′ = a(x,y,z, p,q, a1, . . . ,ar)(dz− pdx−qdy)

holds, then these transformation equations represent in the same way an r-term
group and, to be precise, a group which has the same parameter group as the origi-
nal group.

We now claim: If the r-term group (19) is generated by r independent infinitesi-
mal transformations — and as always, we naturally also assume this here —, then at
the same time, the same holds true of the extended group (21).

We will prove this claim at first for the simple case: r = 1. Therefore let r = 1
and let the group (19) be generated by the infinitesimal transformation:

X f = ξ
∂ f
∂x

+η
∂ f
∂y

+ζ
∂ f
∂ z

.

In order to prove that the extended group is generated by an infinitesimal transforma-
tion, we only need to show that from X f , an extended infinitesimal transformation:

X (1) f = ξ
∂ f
∂x

+η
∂ f
∂y

+ζ
∂ f
∂ z

+π
∂ f
∂ p

+χ
∂ f
∂q

can be derived which leaves invariant the Pfaffian equation:

(22) dz− pdx−qdy = 0.

If this is proved, then it is clear that the one-term group in the variables x,y,z, p,q
generated by X (1) f is identical to the one-term group (21), for this last group then
leaves invariant the Pfaffian equation (22) and comes into existence by extension of
the group X f which, according to the assumption, is just the group (19).

According to p. 535, the infinitesimal transformation X (1) f leaves invariant the
Pfaffian equation (22) if and only if π and χ satisfy an equation of the form:

dζ − pdξ −qdη−π dx−χ dy = b(dz− pdx−qdy),

where it is understood that b is a function of x,y,z, p,q. This equation decomposes
into three equations:

b=
∂ζ
∂ z

− p
∂ξ
∂ z

−q
∂η
∂ z

π =
∂ζ
∂x

− p
∂ξ
∂x

−q
∂η
∂x

+b p

χ =
∂ζ
∂y

− p
∂ξ
∂y

−q
∂η
∂y

+bq,
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whence we obtain for π and χ the completely determined values:

π =
dζ
dx

− p
dξ
dx

−q
dη
dx

, χ =
dζ
dy

− p
dξ
dy

−q
dη
dy

,

where for brevity, we have set:

∂Φ(x,y,z)
∂x

+ p
∂Φ(x,y,z)

∂ z
=

dΦ
dx

,
∂Φ(x,y,z)

∂y
+q

∂Φ(x,y,z)
∂ z

=
dΦ
dy

.

With these words, the existence of the infinitesimal transformation X (1) f is
proved, and also at the same time, the correctness for r = 1 of the claim stated
above.

Now, let r be arbitrary. Next, if e1 X1 f + · · ·+ er Xr f is an arbitrary infinitesi-
mal transformation of the group (19), then evidently, the one-term group which is

generated by the extended infinitesimal transformation: e1 X (1)
1 f + · · ·+er X (1)

r f be-
longs to the group (21), because the concerned one-term group indeed comes into
existence by extension of the one-term group: e1 X1 f + · · ·+ er Xr f . From this, it

follows that the group (21) contains the ∞r−1 one-term groups: e1 X (1)
1 f + · · ·+

er X (1)
r f , so that it is generated by the r independent infinitesimal transformations:

X (1)
1 f , . . . ,X (1)

r f .

Of course, the X (1)
k f satisfy pairwise relations of the form:

X (1)
i X (1)

k f −X (1)
k X (1)

i f =
r

∑
s=1

c′
iks X (1)

s f ;

we will verify this by means of a computation, and hence in addition, we will rec-
ognize that the c′

iks here have the same values as the ciks in the relations:

XiXk f −XkXi f =
r

∑
s=1

ciks Xs f .

According to Theorem 93, p. 535, the Pfaffian equation: dz − pdx − qdy = 0

admits, simultaneously with the two infinitesimal transformations: X (1)
i f and X (1)

k f

and also the following: X (1)
i X (1)

k f −X (1)
k X (1)

i f , which visibly has the form:

X (1)
i X (1)

k f −X (1)
k X (1)

i f = XiXk f −XkXi f +α
∂ f
∂ p

+β
∂ f
∂q

.

From this, it follows that the infinitesimal transformation: X (1)
i X (1)

k f −X (1)
k X (1)

i f is
obtained by extension of:

XiXk f −XkXi f =
r

∑
s=1

ciks Xs f ,
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so that the relations:

X (1)
i X (1)

k f −X (1)
k X (1)

i f =
r

∑
s=1

ciks X (1)
s f

hold.
From this, we see that the extended group (21) is holoedrically isomorphic to

the group (19), which is coherent with the fact that the two groups have the same
parameter group (Proposition 4, p. 539).

The group:

(19) x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z

can still be extended further, namely by also taking differential quotients of order
higher than the first order. Here, we only want to consider the extension by means
of the addition of differential quotients of second order.

Since z is considered as a function of x and y, apart from p and q, we also have
to take into account the three differential quotients:

∂ 2z
∂x2 = r,

∂ 2z
∂x∂y

= s,
∂ 2z
∂y2 = t.

Through the transformations of our group, x′,y′,z′ depend in the known way
upon x,y,z, and according to the preceding, p′,q′ depend likewise upon x,y,z, p,q.
As should at present be shown, r′,s′, t ′ can also be represented as functions of
x,y,z, p,q,r,s, t:

r′ = P(x,y,z, p,q,r,s, t; a1, . . . ,ar), s′ = Σ , t ′ = T.

The quantities r′,s′, t ′ are defined by:

d p′ − r′ dx′ − s′ dy′ = 0, dq′ − s′ dx′ − t ′ dy′ = 0.

Here, if the dx′, dy′, d p′, dq′ are expanded with respect to dx, dy, dz, d p, dq,
and then, if the values for dz, d p, dq are inserted from:

dz− pdx−qdy = 0, d p− r dx− sdy = 0, dq− sdx− t dy = 0,

then one obtains two equations of the form: Adx+Bdy = 0 whose coefficients,
apart from x′,y′,z′ and their differential quotients, also contain p′, q′, r′, s′, t ′, p, q,
r, s, t. Since dx and dy are independent of each other, A and B must in the two cases
vanish individually, and hence we find the four equations:
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r′
(
∂Ξ
∂x

+ p
∂Ξ
∂ z

)

+ s′
(
∂H

∂x
+ p

∂H

∂ z

)

=
∂Π
∂x

+ p
∂Π
∂ z

+ r
∂Π
∂ p

+ s
∂Π
∂q

r′
(
∂Ξ
∂y

+q
∂Ξ
∂ z

)

+ s′
(
∂H

∂y
+q

∂H

∂ z

)

=
∂Π
∂y

+q
∂Π
∂ z

+ s
∂Π
∂ p

+ t
∂Π
∂q

and so on.

Of these equations, the first two are solvable with respect to r′ and s′, the last two
with respect to s′ and t ′, exactly as the equations (16) were solvable with respect
to p′ and q′. Still, the question is only whether the two values which are found in
this way for s′ coincide with each other. But as is known, this is indeed the case,
since otherwise, we would obtain a relation between x, y, z, p, q, r, s, t not holding
identically which should be satisfied identically after the substitution: z = ϕ(x,y),
and this is impossible, because ϕ is submitted to absolutely no restriction.

Similarly as before, we also realize here that the quantities r′,s′, t ′ are defined
uniquely as functions of x, y, z, p, q, r, s, t by the condition that equations of the
form:

d p′ − r′ dx′ − s′ dy′ = α1(dz− pdx−qdy)+β1(d p− r dx− sdy)
+ γ1(dq− sdx− t dy)

dq′ − s′ dx′ − t ′ dy′ = α2(dz− pdx−qdy)+β2(d p− r dx− sdy)
+ γ2(dq− sdx− t dy)

hold identically in d p, dq, dz, dy, dx. For this, if we remember the former identity:

dz′ − p′ dx′ −q′ dy′ = a(dz− pdx−qdy)

which determine p′ and q′, we can say that for given Ξ , H, Z, the transformation
equations:

(23) x′ = Ξ(x,y,z,a1, . . . ,ar), . . . , t ′ = T(x,y,z, p,q,r,s, t, a1, . . . ,ar)

are completely and uniquely determined by the condition that they should leave
invariant the system of Pfaffian equations:

(24) dz− pdx−qdy = 0, d p− r dx− sdy = 0, dq− sdx− t dy = 0.

From this, it becomes clear that after the succession of two transformations (23),
a transformation comes into existence with again leaves invariant the system (24).
But by assumption, the equations:

x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z

x′′ = Ξ(x′,y′,z′, b1, . . . ,br), y′′ = H, z′′ = Z

have as a consequence:

(19’) x′′ = Ξ(x,y,z, c1, . . . ,cr) y′′ = H, z′′ = Z,
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where the c depend only on the a and on the b. Therefore, the two transformations:

x′ = Ξ(x,y,z, a1, . . . ,ar), . . . , t ′ = T(x,y,z, p,q,r,s, t, a1, . . . ,ar)
x′′ = Ξ(x′,y′,z′, b1, . . . ,br), . . . , t ′′ = T(x′,y′,z′, p′,q′,r′,s′, t ′, b1, . . . ,br)

when executed one after the other, give a transformation which results from (19’)
by the same extension as the one by which (23) comes into existence from:

(19) x′ = Ξ(x,y,z, a1, . . . ,ar), y′ = H, z′ = Z,

a transformation therefore which belongs in the same way to the family (23). Thus,
the transformations (23) form an r-term group.

We will convince ourselves directly that the group (23) is generated by r inde-
pendent infinitesimal transformations.

To begin with, we again assume that r = 1 and that the group (19) is generated
by the infinitesimal transformation X f . Then obviously, we need only to prove that
there is an extended infinitesimal transformation:

X (2) f = X f +π
∂ f
∂ p

+χ
∂ f
∂q

+ρ
∂ f
∂ r

+σ
∂ f
∂ s

+ τ
∂ f
∂ t

which leaves invariant the system of Pfaffian equations (24). But there is no diffi-
culty in doing this; for π and χ , we find the same values as before, and for ρ , σ , τ ,
we obtain in a similar way expressions which depend linearly and homogeneously
on the ξ , η , ζ and their differential quotients of first order and of second order.

Also, we find here four equations for ρ , σ , τ; but it can easily be proved that
these equations are compatible with each other. We postpone the proof to the con-
sideration of the general case, which appears to be clearer than the case at hand
here.

From the existence of X (2) f , it naturally follows that the group (23) is just gen-
erated by X (2) f in the case r = 1.

One realizes in the same way that for an arbitrary r, the group (23) is generated

by the r infinitesimal transformations: X (2)
1 f , . . . ,X (2)

r f which are obtained by ex-
tension of the infinitesimal transformations: X1 f , . . . ,Xr f . As a result, it is proved at
the same time that relations of the form:

X (2)
i X (2)

k f −X (2)
k X (2)

i f =
r

∑
s=1

c′′
iks X (2)

s f

hold.
It can be seen easily that c′′

iks = ciks. In fact, together with X (2)
i f and X (2)

k f ,
the system of Pfaffian equations (24) also admits the infinitesimal transformation:

X (2)
i X (2)

k f − X (2)
k X (2)

i f =
[

X (2)
i , X (2)

k

]

, but this transformation obviously has the
form:

[

X (2)
i , X (2)

k

]

= [Xi, Xk]+α
∂ f
∂ p

+β
∂ f
∂q

+λ
∂ f
∂ r

+μ
∂ f
∂ s

+ν
∂ f
∂ t

,
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hence it comes into existence by extension of the transformation:

[Xi, Xk] =
r

∑
s=1

ciks Xs f ,

and it can be represented in the following way:

[

X (2)
i , X (2)

k

]

=
r

∑
s=1

ciks X (2)
s f .

Here lies the reason why the extended group (23) is equally composed with the
original group (19).

§ 130. After the realization of the special results of the preceding section, the
general theory of the extension of a finite continuous group by addition of differen-
tial quotients will cause us no more difficulties.

To begin with, we consider an individual transformation in the n+m variables:
x1, . . . ,xn, z1, . . . ,zm, say the following:

(25)
x′

i = fi(x1, . . . ,xn, z1, . . . ,zm) (i=1 ···n)
z′

k = Fk(x1, . . . ,xn, z1, . . . ,zm) (k=1 ···m).

If we want to extend this transformation by adding differential quotients, then we
must at first agree on how many and which of the variables x1, . . . ,xn, z1, . . . ,zm

should be considered as independent, and which ones should be considered as de-
pendent. This can occur in very diverse ways and to each such possible way there
corresponds a completely determined extension of the transformation (25).

In the sequel, we will always consider x1, . . . ,xn as independent variables and
z1, . . . ,zm as functions of x1, . . . ,xn, but which can be chosen arbitrarily. Under this
assumption, x′

1, . . . ,x
′
n are in general mutually independent, while z′

1, . . . ,z
′
m are

functions of x′
1, . . . ,x

′
n.

For the differential quotients of the z with respect to the x and of the z′ with
respect to the x′, we introduce the following notation:

∂ zν
∂xk

= zν ,k,
∂α1+···+αnzμ
∂xα1

1 · · · ∂xαn
n

= zμ,α1,...,αn ,
∂α1+···+αnz′

μ

∂x′
1
α1 · · · ∂x′

n
αn

= z′
μ,α1,...,αn

,

and we claim that z′
μ,α1,...,αn

can be expressed by means of x1, . . . ,xn, z1, . . . ,zm, and
by means of the differential quotients zν ,β1,...,βn of first order up to the (α1 + · · ·+
αn)-th order:

(26)
z′
μ,α1,...,αn

= Fμ,α1,...,αn

(

x1, . . . ,xn, z1, . . . ,zm, zν ,β1,...,βn

)

(ν=1 ···m ; β1 + ···+βn �α1 + ···+αn).
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If we set α1 + · · ·+αn = N, then the existence of equations of the form (26) is
clear for N = 0; in order to establish this existence for an arbitrary N, we therefore
need only to show that equations of the form (26) also hold for α1+ · · ·+αn =N+1
as soon as such equations hold for α1 + · · ·+αn � N.

Thus, let the functions Fμ,α1,...,αn (α1 + · · ·+αn � N) be known; then the values
of the z′

μ,α1,...,αn
(α1 + · · ·+αn = N +1) are to be determined from the equations:

(27) dz′
μ,α1,...,αn

−
n

∑
i=1

z′
μ,α1,...,αi+1,...,αn

dx′
i = 0 (α1 + ···+αn =N),

and to be precise, (27) must hold identically by virtue of the system of equations:

(28)
dzν ,β1,...,βn −

n

∑
i=1

zν ,β1,...,βi+1,...,βn dxi = 0

(ν=1 ···m ; 0�β1 + ···+βn �N),

while dx1, . . . ,dxn are fully independent of each other. For z′
μ,α1,...,αi+1,...,αn

, we
therefore obtain the equations:

(29)
n

∑
i=1

z′
μ,α1,...,αi+1,...,αn

{
∂ fi

∂xk
+

m

∑
ν=1

zν ,k
∂ fi

∂ zν

}

=
dFμ,α1,...,αn

dxk
(k=1 ···n),

where the right-hand side means the complete differential quotient:

∂Fμ,α1,...,αn

∂xk
+

m

∑
ν=1

zν ,k
∂Fμ,α1,...,αn

∂ zν
+

m

∑
ν=1
∑
β

zν ,β1,...,βk+1,...,βn

∂Fμ,α1,...,αn

∂ zν ,β1,...,βn

(1<β1 + ···+βn �α1 + ···+αn)

of Fμ,α1,...,αn with respect to xk.
If the equations (29) were not solvable with respect to the z′

μ,α1,...,αi+1,...,αn
(i =

1, . . . ,n), then the determinant:

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x1

+∑m
μ=1 zμ,1

∂ f1
∂ zμ

· · ∂ f1
∂xn

+∑m
μ=1 zμ,n

∂ f1
∂ zμ

· · · ·
· · · ·

∂ fn
∂x1

+∑m
μ=1 zμ,1

∂ fn
∂ zμ

· · ∂ fn
∂xn

+∑m
μ=1 zμ,n

∂ fn
∂ zμ

∣
∣
∣
∣
∣
∣
∣
∣
∣

would necessarily be zero, whichever functions of x1, . . . ,xn one could substitute for
z1, . . . ,zm, that is to say: this determinant should vanish identically for every value
of the variables xi, zμ , zμ,i. One easily convinces oneself that this can happen only
when all m×m determinants of the matrix:
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∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x1

· · ∂ f1
∂xn

∂ f1
∂ z1

· · ∂ f1
∂ zm

· · · · · · · ·
∂ fn
∂x1

· · ∂ fn
∂xn

∂ fn
∂ z1

· · ∂ fn
∂ zm

∣
∣
∣
∣
∣
∣
∣

vanish identically, hence when the functions f1, . . . , fn are not independent of each
other. But since this is excluded, it follows that the equations (29) are solvable with
respect to z′

μ,α1,...,αi+1,...,αn
(i = 1, . . . ,n).

It still remains to eliminate an objection. Apparently, the equations (29) provide
in general different values for the differential quotients z′

μ,α1,...,αi+1,...,αn
. But in re-

ality, this is only fictitious, because otherwise this would give certain not identical
relations between the xi, the zμ and their differential quotients which should hold
for completely arbitrary functions z1, . . . ,zm of x1, . . . ,xn, which is impossible.

We therefore see: the equations (29) determine all z′
μ,α1,...,αi+1,...,αn

completely
and uniquely, and consequently, there are also, under the assumptions made, equa-
tions of the form (26) for α1 + · · ·+αn = N + 1, whence their general existence is
established. But in addition, we see that the transformation:
(30)

x′
i = fi(x1, . . . ,xn, z1, . . . ,zm) z′

μ = Fμ(x1, . . . ,xn, z1, . . . ,zm)

z′
μ,α1,...,αn

= Fμ α1,...,αn

(

x1, . . . ,xn, z1, . . . ,zm, zν ,β1,...,βn

)

(∑χ βχ �∑χ αχ )

(i=1 ···n ; μ=1 ···m ; 0<α1 + ···+αn �N)

leaves invariant the system of equations:

(31) dzμ,β1,...,βn −
n

∑
i=1

zμ,β1,...,βi+1,...,βn dxi = 0 (μ=1 ···m ; 0�∑χ βχ <N)

and that it is completely defined by this property. Lastly, it is also clear that the
succession of two transformations (30) which leave invariant the Pfaffian system of
equations (31) again provides a transformation of this form.

At present, we assume that the original transformation equations (25) contain a
certain number, say r, of parameters:

(32)

{

x′
i = fi(x1, . . . ,xn, z1, . . . ,zm, a1, . . . ,ar) (i=1 ···n)

z′
μ = Fμ(x1, . . . ,xn, z1, . . . ,zm, a1, . . . ,ar) (μ=1 ···m)

and that they represent an r-term group generated by r independent infinitesimal
transformations. From (32), we imagine that all equations of the form (26) are de-
rived, in which α1 + · · ·+αn � N; we claim that these equations taken together
with (32):

(33)

⎧

⎪⎨

⎪⎩

x′
i = fi(x,z,a), z′

μ = Fμ(x,z,a)

z′
μ,α1,...,αn

= Fμ,α1,...,αn(x,z,zν ,β1,...,βn , a)

(i=1 ···n ; μ=1 ···m ; 0<α1 + ···+αn �N)
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again represent an r-term group.
The proof is very simple.
The transformations:

x′
i = fi(x,z,a), z′

k = Fk(x,z,a)
x′′

i = fi(x′,z′,b), z′′
k = Fk(x′,z′,b)

executed one after the other give a transformation:

x′′
i = fi(x,z,c), z′′

k = Fk(x,z,c)

in which the c are certain functions of the a and of the b. According to what has
been said above, the z′′

μ,α1,...,αn
can be expressed in terms of the xi, zk, zν ,β1,...,βn and

of the c j in exactly the same way as the z′
μ,α1,...,αn

can be expressed in terms of the
xi, zk, zν ,β1,...,βn and of the a. As a result, our claim is proved.

It still remains to prove that the extended group (33) is generated by r infinites-
imal transformations, just as the original group (32). In order to be able to perform
this proof, first make the following considerations:

We start from an arbitrary infinitesimal transformation:

X f =
n

∑
i=1
ξi(x,z)

∂ f
∂xi

+
m

∑
μ=1

ζμ(x,z)
∂ f
∂ zμ

and we attempt to form an extended infinitesimal transformation from it:

X (N) f = X f +
m

∑
ν=1
∑
α
ζν ,α1,...,αn

∂ f
∂ zν ,α1,...,αn

(0<α1 + ···+αn �N)

which leaves invariant the Pfaffian system of equations:

(31)
dzν ,β1,...,βn −

n

∑
i=1

zν ,β1,...,βi+1,...,βn dxi = 0

(ν=1 ···m ; 0�β1 + ···+βn <N).

For N = 0 and N = 1, there certainly exists an infinitesimal transformation X (N) f
of the form just described, and this does not require any justification. Hence we can
carry out the general proof for the existence of X (N) f so we show that, as soon as
X (N−1) f and X (N) f exist, then X (N+1) f also exists.

So the assumption is that X (N−1) f and X (N) f exist. Now, if there is an infinitesi-
mal transformation X (N+1) f which leaves invariant the system of equations:

(34)
dzν ,β1,...,βn −

n

∑
i=1

zν ,β1,...,βi+1,...,βn dxi = 0

(ν=1 ···m ; 0�β1 + ···+βn <N+1)
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then the still unknown coefficients:

δ zμ,γ1,...,γn
δ t

= ζμ,γ1,...,γn (γ1 + ···+γn =N+1)

must satisfy certain equations of the form:

dζμ,α1,...,αn −
n

∑
i=1

zμ,α1,...,αi+1,...,αn dξi −
n

∑
i=1
ζμ,α1,...,αi+1,...,αn dxi

=
m

∑
ν=1
∑
β

Pν ,β1,...,βn

{

dzν ,β1,...,βn −
n

∑
i=1

zν ,β1,...,βi+1,...,βn dxi

}

(α1 + ···+αn =N ; 0�β1 + ···+βn <N+1),

and to be precise, independently of the differentials: dxi, dzν ,β1,...,βn .

From this, at first, the Pν ,β1,...,βn determine themselves uniquely and there remain
only equations between the mutually independent differentials: dx1, . . . ,dxn. Hence
if one inserts the values of the Pν ,β1,...,βn and if one compares the coefficients of the
dxi in both sides, one obtains for ζμ,α1,...,αi+1,...,αn the following expression:

(35)

δ
δ t

zμ,α1,...,αi+1,...,αn = ζμ,α1,...,αi+1,...,αn

dζμ,α1,...,αn

dxi
−

n

∑
j=1

zμ,α1,...,α j+1,...,αn

dξ j

dxi

(α1 + ···+αn =N),

where d/dxi denotes a complete differential quotient with respect to xi.3

But now, there remains a difficulty; indeed, in general, we obtain for each
ζμ,α1,...,αi+1,...,αn a series of apparently different expressions.

The expression on the right-hand side of (35) is the derivation of ζμ,α1,...,αi+1,...,αn

from the value of:

δ
δ t

∂ zμ,α1,...,αn

∂xi
=
δ
δ t

zμ,α1,...,αi+1,...,αn .

But on the other hand, we also have:

(36)

δ
δ t

zμ,α1,...,αi+1,...,αn =
δ
δ t

∂ zμ,α1,...,αh−1,...,αi+1,...,αn

∂xh

=
dζμ,α1,...,αh−1,...,αi+1,...,αn

dxh
−

n

∑
j=1

zμ,α1,...,α j+1,...,αh−1,...,αi+1,...,αn

dξ j

dxh
,

3 The formula (35) is fundamentally identical to a formula due to POISSON in the Calculus of
Variations.
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where h denotes an arbitrary number amongst 1,2, . . . ,n different from i. Thus, all
possibilities are exhausted. Therefore, it only remains to prove that the latter value
of δ

δ t zμ,α1,...,αi+1,...,αn coincides with the value (35).
In order to prove this, we remember that the following equations hold:

ζμ,α1,...,αn =
δ
δ t

∂ zμ,α1,...,αh−1,...,αn

∂xh

=
dζμ,α1,...,αh−1,...,αn

dxh
−

n

∑
j=1

zμ,α1,...,α j+1,...,αh−1,...,αn

dξ j

dxh
,

and:

ζμ,α1,...,αh−1,...,αi+1,...,αn =
δ
δ t

∂ zμ,α1,...,αh−1,...,αn

∂xi

=
dζμ,α1,...,αh−1,...,αn

dxi
−

n

∑
j=1

zμ,α1,...,α j+1,...,αh−1,...,αn

dξ j

dxi
.

If we insert the value of ζμ,α1,...,αn in (35), we obtain:

δ
δ t

∂ zμ,α1,...,αn

∂xi
=

d
dxi

d
dxh

ζμ,α1,...,αh−1,...,αn −
n

∑
j=1

zμ,α1,...,α j+1,...,αh−1,...,αi+1,...,αn

dξ j

dxh

−
n

∑
j=1

zμ,α1,...,α j+1,...,αn

dξ j

dxi
−

n

∑
j=1

zμ,α1,...,α j+1,...,αh−1,...,αn

d
dxi

dξ j

dxh
.

On the other hand, if we insert the value of ζμ,α1,...,αh−1,...,αi+1,...,αn in (36) and if
we take into account that d

dxi

d
dxh

= d
dxh

d
dxi

, we find:

δ
δ t

∂ zμ,α1,...,αh−1,...,αi+1,...,αn

∂xh
=
δ
δ t

zμ,α1,...,αn

∂xi
.

But this is what was to be shown.
At present, it is shown that under the assumptions made, the ζμ,γ1,...,γn (γ1+ · · ·+

γn = N+1) really exist and are uniquely determined; consequently, it is certain that,
according to what was said above, to every X f and for every value of N, there is
associated a completely determined extended infinitesimal transformation X (N) f .

The coefficients of X (N) f are obviously linear and homogeneous in the ξi, ζk and
their partial differential quotients with respect to the x and the z. Hence if Xi f and

Xj f are two infinitesimal transformations of the form X f , and moreover, if X (N)
i f

and X (N)
j f are the infinitesimal transformations extended in the way indicated, then:

ci X (N)
i f + c j X (N)

j f

results from ci Xi f +c j Xj f by means of the extension in question. In addition, since

X (N)
i X (N)

j f − X (N)
j X (N)

i f leaves invariant the Pfaffian system of equations (31) si-
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multaneously with X (N)
i f and X (N)

j f , it follows that:

X (N)
i X (N)

j f −X (N)
j X (N)

i f

must come into existence from XiXj f −XjXi f by means of this extension.
Lastly, let X1 f , . . . ,Xr f be independent infinitesimal transformations of the r-

term group (32) so that they satisfy the known relations:

XiXj f −XjXi f =
r

∑
s=1

ci js Xs f .

If we form the extended infinitesimal transformations: X (N)
1 f , . . . ,X (N)

r f , then

X (N)
i X (N)

j f − X (N)
j X (N)

i f also follows from XiXj f − XjXi f by means of this exten-
sion, and consequently, it follows from ∑ ciks Xs, which again means that we have:

X (N)
i X (N)

j f −X (N)
j X (N)

i f =
r

∑
s=1

ci js X (N)
s f .

Therefore, the r infinitesimal transformations X (N)
i f generate, for every value of

N, a group equally composed with the group Xi f ; the former group is obviously
identical to the group (33) discussed earlier which was obtained by extending the
finite equations (32) of the group: X1 f , . . . ,Xr f .

Theorem 94. If the ∞r transformations:

x′
i = fi(x1, . . . ,xn, z1, . . . ,zm, a1, . . . ,ar) (i=1 ···n)

z′
k = Fk(x1, . . . ,xn, z1, . . . ,zm, a1, . . . ,ar) (k=1 ···m)

in the variables x1, . . . ,xn, z1, . . . ,zm form an r-term group and if one considers the zk

as functions of the xi which can be chosen arbitrarily, then the differential quotients
of the zk with respect to the xi are also subjected to transformations. If one takes
together all differential quotients from the first order up to, say, the N-th order, then
one obtains certain equations:

z′
μ,α1,...,αn

= Fμ,α1,...,αn(x1, . . . ,xn, z1, . . . ,zm, zν ,β1,...,βn ; a1, . . . ,ar)

(β1 + ···+βn �α1 + ···+αn �N)

which, when joined to the equations of the original group, represent an r-term group
equally composed with the original group.4

Above, we already mentioned that every given group can be extended in very
many different ways; indeed, it is left just as one likes which variables one wants to
choose as the independent ones.

4 LIE, Math. Annalen Vol. XXIV, 1884; Archiv for Math., Christiania 1883.
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In addition, one can, from the beginning, substitute the given group for a group
equally composed with it by adding a certain number of variables: t1, . . . , tσ which
are absolutely not transformed by the group, or put differently, that are transformed
only by the identity transformation:

t ′1 = t1, . . . , t ′σ = tσ .

Now, if one regards as the independent variables an arbitrary number amongst the
original variables and amongst the ti, one can add differential quotients and extend;
one always comes to an equally composed group.

As one sees, the number of possibilities is very large here.
§ 131. The theory of the invariants of an arbitrary group developed earlier in

Chap. 13 can immediately be applied to our extended groups.
Since one can always choose the number N so large that the infinitesimal transfor-

mations X (N)
i f contain more than r independent variables, one can always arrange

that the r equations X (N)
k f = 0 form a complete system with one or more solutions.

These solutions are functions of the x, of the z and of the differential quotients of the

latter, they admit every finite transformation of the extended group X (N)
k f and hence

are absolute invariants of this group; they shall be called the differential invariants
[DIFFERENTIALINVARIANTEN] of the original group.

A function Ω of x1, . . . ,xn, z1, . . . ,zm and of the differential quotients of the z with
respect to the x is called a differential invariant of the r-term group:

x′
i = fi(x1, . . . ,xn, z1, . . . ,zm ; a1, . . . ,ar)

z′
k = Fk(x1, . . . ,xn, z1, . . . ,zm ; a1, . . . ,ar)

when a relation of the form:

Ω
(

x′
1, . . . ,x

′
n, z′

1, . . . ,z
′
m, z′

μ,α1,...,αn

)

=Ω(x1, . . . ,xn, z1, . . . ,zm, zμ,α1,...,αn)

holds identically.

Since we can choose N arbitrarily large, we have instantly:

Theorem 95. Every continuous transformation group: X1 f , . . . ,Xr f determines an
infinite series of differential invariants which define themselves as solutions of com-
plete systems.5

If one knows the finite equations of the group: X1 f , . . . ,Xr f , then in the way ex-
plained above, one finds the finite equations of the extended group and afterwards,
under the guidance of Chap. 13, the differential invariants of any order without inte-
gration. But in general, this method for the determination of the differential invari-

5 LIE, Gesellsch. d. W. zu Christiania 1882; Math. Ann. Vol. XXIV, 1884.
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ants is not practically applicable. In most cases, direct integration of the complete

system: X (N)
k f = 0 is preferable.

We shall not enter into these considerations here. Still, we should observe that
from sufficiently well known differential invariants, one can derive new differential
invariants by differentiation and by formation of determinants.

In the variables x1, . . . ,xn, z1, . . . ,zm, if a group is represented by several systems
of equations, each one with r parameters, then naturally, there are in the same way
extended groups whose differential invariants are those of the original group. The
former general developments not only show that each such group possesses differen-
tial invariants, but also at the same time, they show how these differential invariants
can be found.

§ 132. One can also ask for possible systems of differential equations which
remain invariant by a given group. The determination of a system of this sort can
obviously be carried out by extending the concerned group in a suitable way and
by applying the developments of Chap. 14, on the basis of which all systems of
equations invariant by the group can be determined. Each system of equations found
in this way then represents a system of differential equations invariant by the original
group.

However, in each individual case, it must be specially studied whether the con-
cerned system of differential equations satisfies the condition of integrability. —

Conversely, one can imagine that a system of differential equations is given —
integrable or not integrable — and one can ask the question whether this system
admits a given group. The answer to this question also presents no difficulty at
present. One only has to extend the given group in the right way and then, to study
whether the given system of equations admits the extended group; according to
Chap. 7, this study can be conducted without integration.

§ 133. In order to give a simple application of the preceding theory, we want to
seek the conditions under which a system of differential equations of the form:

Akϕ =
n

∑
i=1
αki(x1, . . . ,xn)

∂ϕ
∂xi

= 0 (k=1 ···q)

admits the r-term group:

Xj f =
n

∑
i=1
ξ ji(x1, . . . ,xn)

∂ f
∂xi

( j=1 ···r)

in the variables x1, . . . ,xn; here naturally, the q equations Akϕ = 0 are assumed to be
mutually independent.

In order to be able to answer the question raised, to the variables x1, . . . ,xn of the
group Xk f , we must add the variable ϕ which is not at all transformed by the group.
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The x are to be considered as independent variables, ϕ as dependent and the group:
X1 f , . . . ,Xr f is thus to be extended by adding the n differential quotients:

∂ϕ
∂xi

= ϕi (i=1 ···n).

Then, one has to examine whether the system of equations: ∑k αkiϕi = 0 allows the
extended group.

To begin with, we compute the infinitely small increment δ ϕi that ϕi is given by
the infinitesimal transformation Xj f . This increment is to be determined so that the
expression:

δ
(

dϕ−
n

∑
ν=1

ϕν dxν

)

= dδ ϕ−
n

∑
ν=1

{

ϕν dδ xν +δ ϕν dxν
}

vanishes by virtue of dϕ = ∑ ϕν dxν . But since, as remarked above, δϕ is zero, we
obtain for the δ ϕν the equation:

n

∑
ν=1

{

ϕν dξ jν δ t +δ ϕν dxν
}

= 0

which must hold identically. Consequently, we have:

δ ϕν = −
n

∑
μ=1

∂ξ jμ

∂xν
ϕμ δ t,

and the extended infinitesimal transformation Xj f has the form:

X (1)
j f =

n

∑
i=1
ξ ji
∂ f
∂xi

−
n

∑
i=1

{ n

∑
μ=1

∂ξ jμ

∂xi
ϕμ

}
∂ f
∂ϕi

.

Now, if the system of equations: ∑i αki(x)ϕi = 0 in the 2n variables x1, . . . ,xn,

ϕ1, . . . ,ϕn is supposed to admit the infinitesimal transformation X (1)
j f , then all the q

expressions:

X (1)
j

( n

∑
i=1
αkiϕi

)

=
n

∑
i=1

Xjαkiϕi −
n

∑
μ=1

{ n

∑
i=1
αki
∂ξ jμ

∂xi

}

ϕμ (k=1 ···q)

must vanish by virtue of the system of equations. This necessary, and at the same
time sufficient, condition is then satisfied only when relations of the form:

X (1)
j

( n

∑
i=1
αkiϕi

)

=
q

∑
σ=1

ρ jkσ (x)
n

∑
i=1
ασ iϕi

hold, where the ρ jkσ denote functions of x1, . . . ,xn only which do not depend on the
ϕi.
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With these words, we have found the desired conditions; they can be written:

r

∑
i=1

(

Xjαki −Ak ξ ji
)

ϕi =
q

∑
σ=1

ρ jkσ

n

∑
i=1
ασ iϕi,

or, if we again insert ∂ϕ/∂xi in place of ϕi:

Xj
(

Ak(ϕ)
)−Ak

(

Xj(ϕ)
)

=
q

∑
σ=1

ρ jkσ (x)Aσϕ.

Relations of this sort must be satisfied for every arbitrary function ϕ(x1, . . . ,xn).
The system of q linear partial differential equations: A1ϕ = 0, . . . , Aqϕ = 0 always
remains invariant by every transformation of the group: X1 f , . . . ,Xr f when these
relations hold, and only when they hold.

In the case where the q equations: Akϕ = 0 form a q-term complete system,
this result is not new for us. Indeed, in this special case, we have already indicated
in Chap. 8, Theorem 20, p. 155, the necessary and sufficient condition just found.
However, our present results accomplish more than the results found at that time,
for we have now shown that the criterion in question holds generally, also when the
equations: Akϕ = 0 do not form a q-term complete system.

—————–

The origins of the theory of differential invariants goes back a long time; in-
deed, mathematicians of the previous century already considered and integrated the
differential invariants associated to several especially simple groups.

For instance, it has long been known that every differential equation of first order
between x and y in which one variable, say y, does not explicitly appear, can be
integrated by quadrature; but obviously:

f

(

x,
dy
dx

)

= 0 = f (x, y′)

is nothing but the most general differential equation of first order that admits the
one-term group:

(37) x= x, y= y+a

with the parameter a. The most general integral equation [INTEGRALGLEICHUNG]
can be deduced from a particular integral equation, and in fact, as we can now say, in
such a way that one executes the general transformation of the one-term group (37)
on the particular solution in question; thanks to this, one indeed obtains the equation:
y= ϕ(x)+a with the arbitrary constant a.

Furthermore, the homogeneous differential equation:

f

(
y
x
,

dy
dx

)

= 0 = f

(
y
x
, y′

)
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is the general form of a differential equation of first order which admits the one-term
group: x = ax, y = ay; here, f (y/x, y′) is the most general first order differential
invariant associated to this group.

It has long been observed that every particular integral equation: F(x,y) = 0 of
a homogeneous differential equation: f = 0 can, by executing the general transfor-
mation: x= ax, y= ay, be transferred to the general integral equation:

F

(
x

a
,
y

a

)

= 0.

However, the equation xy′ − y = 0 must be disregarded here.
A third example is provided by differential equations of the form:

f

(
dm y
dxm ,

dm+1y
dxm+1

)

= 0 = f
(

y(m), y(m+1)) ;

nevertheless, it is not necessary here to write down the group of all equations of this
form.

In the invariant theory of linear transformations, there often appear true differ-
ential invariants relative to all linear transformations. They were first considered by
CAYLEY. Nevertheless, it is to be observed on the occasion firstly that the differ-
ential invariants of CAYLEY are not the simplest ones which are associated to the
general linear homogeneous group, and secondly, that CAYLEY has not considered
invariants of differential equations, and even less has integrated such equations.

In a prize-winning essay [PREISSCHRIFT] of 1867, published in 1871 (Determi-
nation of a special minimal surface, Akad. d. W. zu Berlin), H. SCHWARZ consid-
ered differential equations of the form:

J =
y′ y′′′ − 3

2 y′′2

y′2 − f ( f ) = 0

which, as he himself indicated, had already appeared occasionally in the writings
of LAGRANGE. SCHWARZ observed that the most general solution can be deduced
from every particular solution: y = ϕ(x), namely the former has the form:

y =
a+bϕ
c+dϕ

,

with the arbitrary constants: a : b : c : d. Thus, as we can say, the expression J is
a differential invariant, and to be precise, the most general third order differential
invariant by the group:

x= x, y=
a+by
c+d y

.

But now, although all these special theories are undoubtedly valuable, it is how-
ever still to be remarked that the central connection between them, the general prin-
ciple from which they flow [FLIESSEN], has been missed by the mathematicians.
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They have not observed that differential invariants are associated to every finite con-
tinuous group.

In the years 1869–1871, LIE occupied himself with differential equations which
allow interchangeable infinitesimal transformations and in 1874, he published
a work already announced in 1872 concerning a general integration theory of
ordinary differential equations which admit an arbitrary continuous group of
transformations.6

Afterwards, HALPHEN computed the simplest differential invariants relative to
all projective transformations and he gave in addition nice applications to the theory
of linear differential equations.7

After that, LIE developed in the years 1882–1884 a general theory of the differen-
tial invariants of finite and infinite continuous groups, where he specially occupied
himself with finite groups in two variables.8 As far as it relates to finite groups, this
general theory is explained in the preceding.

Finally, after 1884, SYLVESTER and many other English and American mathe-
maticians have published detailed but special studies on differential invariants.

—————–

6 Verhandlungen der Gesellsch. d. W. zu Christiania 1870–1874; Math. Ann. Vol. V, XI; Gött.
Nachr. 1874.
7 Thèse sur les invariants différentiels 1878; Journal de l’École Pol. 1880. Cf. also Comptes
Rendus Vol. 81, 1875, p. 1053; Journal de Liouville Novemb. 1876. Mémoire sur la réduction des
équat. diff. lin. aux formes intégrables 1880–1883.
8 Verh. d. Gesellsch. d. W. zu Christiania, 1882, 1883 and February 1875; Archiv for Math. 1882,
1883; Math. Ann. Vol. XXIV, 1884.



Chapter 26
The General Projective Group

The equations:

(1) x′
ν =

a1ν x1 + · · ·+anν xn +an+1,ν
a1,n+1 x1 + · · ·+an,n+1 xn +an+1,n+1

(ν=1 ···n)

determine a group, as one easily convinces oneself, the so-called general projective
group of the manifold x1, . . . ,xn. In the present chapter, we want to study more
closely this important group, which is also called the group of all collineations
[COLLINEATIONEN] of the space x1, . . . ,xn, by focusing our attention on its
subgroups.

§ 134. The (n+ 1)2 parameters a are not all essential: indeed only their ratios
appear; one of the parameters, say an+1,n+1, can hence be set equal to 1. The values
of the parameters are subjected to the restriction that the substitution determinant
[SUBSTITUTIONSDETERMINANT] ∑±a11 · · ·an+1,n+1 should not be equal to zero,
because simultaneously with it, the functional determinant [FUNCTIONALDETER-

MINANT]: ∑± ∂x′
1

∂x1
. . . ∂x′

n
∂xn

would also vanish.
The identity transformation is contained in our group, it corresponds to the pa-

rameter values:

aνν = 1, aμν = 0 (μ,ν=1 ···n+1, μ �=ν),

for which we indeed have x′
i = xi. As a consequence of this, one obtains the infinites-

imal transformations of the group by giving to the aμν the values:

aνν = 1+ωνν , an+1,n+1 = 1, aμν = ωμν ,

where the ωμν mean infinitesimal quantities. Thus one finds:

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
DOI 10.1007/978-3-662-46211-9_26
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x′
ν =

(

xν +
n

∑
μ=1

ωμν xμ +ωn+1,ν

)(

1−
n

∑
μ=1

ωμ,n+1 xμ + · · ·
)

,

or by leaving out the quantities of second or higher order:

x′
ν − xν =

n

∑
μ=1

ωμν xμ +ωn+1,ν − xν
n

∑
μ=1

ωμ,n+1 xμ .

If one sets all the ωμν equal to zero with the exception of a single one, then one
gradually recognizes that our group contains the n(n+2) independent infinitesimal
transformations:

(2)
∂ f
∂xi

, xi
∂ f
∂xk

, xi

n

∑
j=1

x j
∂ f
∂x j

(i, k=1 ···n).

The general projective group of the n-times extended space x1, . . . ,xn therefore
contains n(n+ 2) essential parameters and is generated by infinitesimal transfor-
mations. The analytic expressions of the latter behave regularly for every point of
the space.

From now on, we will as a rule write pi for ∂ f/∂xi. In addition, for reasons of
convenience, we want in this chapter to introduce the abbreviations:

xi pk = Tik, xi

n

∑
k=1

xk pk = Pi.

Lastly, we still want to agree that εik should mean zero whenever i and k are distinct
from each other, whereas by contrast εii is assumed to have the value 1; this is a
fixing of notation that we have already adopted from time to time. On such a basis,
we can write as follows the relations which emerge through a combination of the
infinitesimal transformations pi, Tik, Pi:

[

pi, pk
]

= 0,
[

Pi, Pk
]

= 0,
[

pi, Pk
]

= Tki + εik

n

∑
ν=1

Tνν ,

[

pi, Tkν
]

= εik pν ,
[

Pi, Tkν
]

= −εiν Pk,

[

Tik, Tμν
]

= εkμ Tiν − εν i Tμk.

One easily convinces oneself that these relations remain unchanged when one
substitutes in them the pi, Tik and Pi by the respective expressions standing under
them in:

(3)
pi, Tik, Pi

Pi, −Tki, pi.
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Thus in this way, the general projective group is related to itself in a holoedrically
isomorphic way.

One could presume that there is a transformation: x′
i =Φi(x1, . . . ,xn) which trans-

fers the infinitesimal transformations:

pi, xi pk, xi

n

∑
k=1

xk pk

to, respectively:

x′
i

n

∑
k=1

x′
k p′

k, −x′
k p′

i, p′
i.

But there is no such transformation, and this, for simple reasons, because the n
infinitesimal transformations p1, . . . , pn generate an n-term transitive group, while:
x′

1 ∑ x′
k p′

k, . . . , x′
n ∑ x′

k p′
k generate an n-term intransitive group.

In the next volume we will learn to see the full significance of this important
property of the projective group, when the concept of contact transformation
[BERÜHRUNGSTRANSFORMATION] and especially the duality will be introduced.

The general infinitesimal transformation:

n

∑
i=1

ai pi +
n

∑
i, k=1

bik Tik +
n

∑
i=1

ci Pi

of our group is expanded in powers of x1, . . . ,xn and visibly contains only terms of
zeroth, first and second order in the x. One easily realizes that the group contains
n independent infinitesimal transformations of zeroth order in x, out of which no
infinitesimal transformation of first or second order in the x can be deduced linearly.
For instance, p1, . . . , pn are n such infinitesimal transformations. From this it follows
that the general projective group is transitive.

Besides, there are n2 infinitesimal transformations of first order in the xi, for in-
stance all xi pk = Tik, out of which no transformation of second order can be deduced
linearly. Finally, there arise n transformations of second order in the x:

xi

n

∑
k=1

xk pk = Pi.

In agreement with Proposition 9 of Chap. 15 on p. 276, the Pi are pairwise inter-
changeable and in addition, the Tik together with the Pi generate a subgroup in which
the group of the Pi is contained as an invariant subgroup.

As one sees, and also as follows from our remark above concerning the relation-
ship between the pi and the Pi, the pi are also interchangeable in pairs and they
generate together with the Tik a subgroup in which the group of the pi is invariant.
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§ 135. For the most important subgroups of the general projective group, it is
advisable to employ special names. If, in the general expression (1) of a projective
transformation, one lets the denominator reduce to 1, then one gets a linear trans-
formation:

x′
ν = a1ν x1 + · · ·+anν xn +an+1,ν (ν=1 ···n);

all transformations of this form constitute the so-called general linear group. We
have already indicated at the end of the previous section the infinitesimal transfor-
mations of this group; they are deduced by linear combination from the following
n(n+1) transformations:

pi, xi pk (i,k=1 ···n).

If one interprets x1, . . . ,xn as coordinates of an n-times extended space Rn and
if one translates the language of ordinary space, then one can say that the general
linear group consists of all projective transformations which leave invariant the in-
finitely far (n−1)-times extended straight manifold, or briefly, the plane at infinity
[UNENDLICH FERNE EBENE] Mn−1.

Next, if one recalls that by execution of two finite linear transformations one after
the other, the substitution determinants:∑±a11 · · ·ann multiply with each other, then
one realizes without difficulty that the totality of all linear transformations whose
determinant equals 1 constitutes a subgroup, and in fact, an invariant subgroup,
which we want to call the special linear group. One easily finds that, as the n(n+
1)−1 independent infinitesimal transformations of this group, the following can be
chosen:

pi, xi pk, xi pi − xk pk (i≷k).

If, amongst all linear transformations, one restricts oneself to those homogeneous
in x, then one obtains the general linear homogeneous group:

x′
ν = a1ν x1 + · · ·+anν xn (ν=1 ···n),

all infinitesimal transformations of which have the form: ∑ bik xi pk and hence can
be linearly deduced from the n2 transformations: xi pk. This group also visibly
contains an invariant subgroup, the special linear homogeneous group, for which:
∑±a11 · · ·ann has the value 1. The n2 −1 infinitesimal transformations of the latter
group are:

xi pk, xi pi − xk pk (i≷k) ;

hence, the general infinitesimal transformation of the group in question has the form:
∑i,k αik xi pk, where the n2 arbitrary constants αik are only subjected to the condition
∑ αii = 0.

Since the expression:
[

xi pk, ∑ j x j p j
]

always vanishes, it is obvious that the last
two named groups are systatic and consequently imprimitive. Indeed, if one sets:
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xi

xn
= yi,

x′
i

x′
n
= y′

i (i=1 ···n−1),

then one receives:

y′
ν =

a1ν y1 + · · ·+an−1,ν yn−1 +anν
a1,n y1 + · · ·+an−1,n yn−1 +an,n

(ν=1 ···n−1).

From this, it results that in both cases the y are transformed by the (n2 − 1)-term
general projective group of the (n − 1)-times extended manifold y1, . . . ,yn−1. Con-
sequently, this group is isomorphic with the general linear homogeneous group of
an n-times extended manifold and with the special linear homogeneous group as
well, though the isomorphism is holoedric only for the special linear homogeneous
group, since this one contains n2 −1 parameters.

Theorem 96. The special linear homogeneous group:

xi pk, xi pi − xk pk (i≷k=1 ···n)

in the variables x1, . . . ,xn is imprimitive and holoedrically isomorphic with the gen-
eral projective group of an (n−1)-times extended manifold.

The formally simplest infinitesimal transformations of the general projective
group are p1, . . . , pn; these generate a group, as already observed: the group of all
translations:

x′
i = xi +ai (i=1 ···n),

which is obviously simply transitive.
In fact, m arbitrary infinitesimal translations, for instance p1, . . . , pm, always gen-

erate an m-term group. For all of these groups, the following holds:

Proposition 1. All m-term groups of translations are conjugate to each other inside
the general projective group, and even already inside the general linear group.

Indeed, the m independent infinitesimal transformations of such a group always
have the form: n

∑
ν=1

bμν pν (μ=1 ···m),

where not all m×m determinants of the bμν vanish.
But we can very easily show that by means of some linear transformation, new

variables x′
1, . . . ,x

′
n can be introduced for which one has:

p′
μ =

n

∑
ν=1

bμν pν (μ=1 ···m).

In fact, let p′
μ = p1

∂x1
∂x′
μ
+ · · ·+ pn

∂xn
∂x′
μ

; then we only need to set:

∂xν
∂x′
μ
= bμν (ν=1 ···n; μ=1 ···m),
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while the ∂xν
∂x′

m+1
, . . . , ∂xν

∂x′
n

remain arbitrary. We can give to these last ones some values

such that the equations:

xν =
n

∑
μ=1

bμν x′
μ +

n

∑
π=m+1

cπν x′
π (ν=1 ···n)

determine a transformation, and then, this transformation transfers the given group
of translations to the group p′

1, . . . , p′
m. From this, our proposition follows immedi-

ately.

We want to at least indicate a second proof of the same proposition. As already
observed, the general linear group leaves invariant the plane at infinity Mn−1, and
in fact, it is even the most general projective group of this nature. Now, every in-
finitesimal translation is directed by a point at infinity and is completely determined
by this point; every m-term group of translations can therefore be represented by an
m-times extended straight manifold Mm at infinity. But two straight Mm at infinity
can always be transferred to one another by a linear transformation which leaves
invariant the plane at infinity. Consequently, all m-term groups of translations are
conjugate to each other inside the general linear group, and in the same way, inside
the general projective group.

The correspondence indicated earlier which takes place between the pi and the
Pi yields, as we prove instantly, the

Proposition 2. All m-term groups, whose infinitesimal transformations are of the
form ∑ ei Pi, are conjugate to each other inside the general projective group.

For the proof, we start from the fact that two subgroups are conjugate inside a
group Gr when one can be transferred to the other by means of a transformation of
the adjoint group of Gr; here, we have to imagine the subgroup as a straight mani-
fold in the space e1, . . . ,er which is transformed by the adjoint group (cf. Chap. 16,
p. 292). If we now write the transformations of the projective group firstly in the
sequence pi, Tik, Pi and secondly in the sequence Pi, −Tki, pi, then in the two cases
we get the same adjoint group. But since two m-term groups of translations can al-
ways be transferred to one another by the adjoint group, this must also always be the
case with two m-term groups whose infinitesimal transformations can be deduced
linearly from the Pi. Furthermore, it immediately follows that two m-term groups of
this sort are already conjugate to each other inside the group Pi, Tik. With that, our
proposition is proved.

§ 136. We consider now one after the other the general projective group, the
general linear group and the general linear homogeneous group, and to be precise,
we examine whether there are invariant subgroups and which ones are contained in
these three groups.

We begin with the general projective group. Let:
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S =
n

∑
i=1
αi pi +

n

∑
i=1

n

∑
k=1

βik xi pk +
n

∑
i=1
γi xi

n

∑
k=1

xk pk

be an infinitesimal transformation of an invariant subgroup; then necessarily [pν , S]
and

[

pμ , [pν , S]
]

are also transformations of the same subgroup. Consequently, in
our invariant subgroup, there would certainly appear an infinitesimal translation
∑ ρi pi.

But because all infinitesimal translations are conjugate to each other inside the
general projective group, they would all appear. Furthermore, since it is invariant,
the subgroup would necessarily contain all transformations:

[

pi, xi ∑ j x j p j
]

, or after
computation:

xi pk (i≷k), xi pi +
n

∑
j=1

x j p j.

Adding the n transformations: xi pi +∑ j x j p j, one obtains: (n+ 1) ∑ x j p j, hence
xi pi and therefore all xi pk. Finally, the invariant subgroup would contain all trans-
formations:

[

xi pi, xi ∑k xk pk
]

, hence all xi ∑k xk pk and thus it would be identical to
the general projective group itself. Thus, our first result is:

Theorem 97. The general projective group in n variables is simple.1

Correspondingly, the special linear homogeneous group:

(4) xi pk, xi pi − xk pk (i≷k)

is also simple.

The general linear homogeneous group with the n2 infinitesimal transformations
xi pk contains, as we saw above, an invariant subgroup with n2 − 1 parameters,
namely the group (4) just named.

If there is a second invariant subgroup, then this subgroup obviously cannot com-
prise the group (4), and in the same way, it cannot have infinitesimal transformations
in common with the same group, since such transformations would constitute an in-
variant subgroup in the simple group (4) (cf. Proposition 10 of Chap. 15 on p. 276).
Taking Proposition 7 of Chap. 12 on p. 223 into account, it hence follows that a pos-
sible second invariant subgroup can contain only one infinitesimal transformation,
and to be precise, one of the form:

n

∑
i=1

xi pi +
1···n
∑
i, k

αik xi pk
(

∑n
i=1 αii =0

)

.

In addition, according to Proposition 11 of Chap. 15 on p. 276, the same transfor-
mation must be interchangeable with every transformation of the group (4), from
which it follows that the transformation:

1 Lie, Math. Ann., Vol. XXV, p. 130.
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1···r
∑
i, k

αik xi pk
(

∑n
i=1 αii =0

)

must be excellent inside the group (4). But there is no such transformation, whence
all the αik vanish and it is revealed that x1 p1 + · · ·+ xn pn and (4) are the only two
invariant subgroups of the group xi pk.

Theorem 98. The general linear homogeneous group xi pk in n variables contains
only two invariant subgroups, namely the special linear homogeneous group and
the one-term group: x1 p1 + · · ·+ xn pn.

Now, one can easily set up all invariant groups of the general linear group. Let:

S =
n

∑
i=1
αi pi +

n

∑
i=1

n

∑
k=1

βik xi pk

be a transformation of such a subgroup. Then together with S, [p j,S] also belongs
to the invariant subgroup; hence this subgroup certainly contains a translation, and
because of Proposition 1, p. 563, it contains all of them. The smallest invariant
subgroup therefore consists of the translations themselves; every other subgroup
must contain, aside from the translations, a series of infinitesimal transformations of
the form: ∑i ∑k αik xi pk. But these last transformations visibly generate an invariant
subgroup, the linear homogeneous group xi pk. So we find:

Theorem 99. The general linear group: pi, xi pk contains only three invariant sub-
groups,2 namely the three subgroups:

pi pi, x1 p1 + · · ·+ xn pn pi, xi pk, xi pi − xk pk (i≷k),

with respectively n, n+1 and n2 +n−1 parameters.

If, as we have already done several times, we employ the terminology which
is common for ordinary space, we can say: the three invariant subgroups of the
general linear group are firstly the group of all translations, secondly the group of
all similitudes [AEHNLICHKEITSTRANSFORMATIONEN]: (x1 −x0

1)p1 + · · ·+(xn −
x0

n)pn, and lastly the most general linear group which leaves all volumes unchanged.
§ 137. Before we pass to determining the largest subgroups of the general pro-

jective group, make an observation which will find several applications in the sequel.
Let X1 f , . . . ,Xr f be independent infinitesimal transformations of an r-term group

Gr and let a family of ∞r−m−1 infinitesimal transformations of this group be deter-
mined by m independent equations of the form:

(5)
r

∑
j=1
αk j e j = 0 (k=1 ···m).

2 Lie, Math. Ann., Vol. XXV, p. 130.
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Assume furthermore that one knows that amongst the infinitesimal transformations:
e1 X1 f + · · ·+ er Xr f , no infinitesimal transformation of the form: e1 X1 f + · · ·+
emXm f is contained in this family. Then it can be deduced that the equations (5)
are solvable with respect to e1, . . . ,em, for if one sets: em+1 = · · · = er = 0 in these
equations, it must follow that: e1 = · · · = em = 0, which happens only when the
determinant: ∑±α11 · · · αmm does not vanish. Hence if one chooses em+1, . . . ,er ar-
bitrary, though not all zero, it follows that e1, . . . ,em receive determined values and
therefore, the family contains r −m mutually independent infinitesimal transforma-
tions of the form:

Xm+ j f + e1 j X1 f + · · ·+ em j Xm f ( j=1 ···r−m).

Thus, the following holds:

Proposition 3. If, amongst the infinitesimal transformations: ∑ ek Xk f of the r-term
group: X1 f , . . . ,Xr f , a family is sorted by means of m independent linear equations:

r

∑
j=1
αk j e j = 0 (k=1 ···m)

which embraces no infinitesimal transformation of the form: e1 X1 f + · · ·+ em Xm f ,
then this family contains r −m infinitesimal transformations of the form:

Xm+ j +
m

∑
ν=1

e jν Xν f ( j=1 ···r−m).

§ 138. After these preparations, we turn ourselves in particular to the general
projective group. We denote its number n(n+ 2) of parameters shortly by N and
we first seek all subgroups with more than N −n parameters, hence some GN−m for
which m < n. Naturally, this way of putting the question is meaningful only when
the number n is larger than 1.

According to an observation made earlier (cf. Chap. 12, Proposition 7, p. 223),
the sought GN−m has at least n − m independent infinitesimal transformations in
common with the n-term group p1, . . . , pn. So GN−m contains in any case n − m
independent infinitesimal translations. If it contains no more than n−m translations,
then thanks to Proposition 1, we can assume that pm+1, . . . , pn are these translations,
while no translation of the form: e1 p1 + · · ·+ em pm is extant. From Proposition 3,
it then follows that there appears a transformation:

xm+1 p1 + e1 p1 + · · ·+ em pm,

but by combination with pm+1, it would give p1, which would be a contradiction.
Hence in our GN−m there are surely more than n−m, say n−q (q<m), infinitesimal
translations, and we want to assume that these are: pq+1, . . . , pm, . . . , pn; by contrast,
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when q > 0, there appear no translations of the form: e1 p1+ · · ·+eq pq. Now in any
case (cf. Chap. 12, Proposition 7, p. 223), there is in GN−m one transformation:

λn xn p1 + · · ·+λq+1 xq+1 p1 + eq pq + · · ·+ e1 p1

in which, according to what precedes, the λ cannot all vanish. By combination with
one of the translations pq+1, . . . , pn, we therefore obtain p1 at least once, but this
was excluded. Hence the number q cannot be bigger than zero, so q = 0 and the
sought GN−m therefore comprises, when m < n, all translations.

Thanks to completely analogous considerations, one realizes that GN−m (m <
n) must contain all transformations Pi. These considerations coincide even literally
with those undertaken just now, when one replaces the pi, xi pk, Pi by Pi, −xk pi, pi,
respectively, and when one relates to Proposition 2, p. 564.

Thus, our GN−m contains all pi and all Pi simultaneously, but then as was already
shown earlier (on page 565), it also contains all xi pk and is hence identical to the
general projective group itself. Consequently:

Theorem 100. The general projective group of the manifold x1, . . . ,xn contains no
subgroup with more than n(n+2)−n = n(n+1) parameters.

§ 139. At present, the question is to determine all subgroups contained in the
general projective group having N −n = n(n+1) parameters. In order to be able to
settle this problem completely, we must individually treat a series of various possi-
bilities.

First, we seek all n(n+1)-term subgroups which contain no infinitesimal transla-
tion∑ ek pk. According to Proposition 3, p. 567, there surely exists a transformation:

U =
n

∑
i=1

xi pi −
n

∑
i=1
αi pi =

n

∑
i=1

(xi −αi) pi

and for every value of i and k, there is in the same way a transformation of the form:

T = (xi −αi) pk +
n

∑
j=1
βik j p j.

By combination of the two infinitesimal transformations U and T , we obtain the
expression: [U, T ] = − ∑ j βik j p j, and because our group contains no infinitesimal
transformation of this form, all βik j must vanish.

Lastly, there are n infinitesimal transformations:

Pi +
n

∑
k=1

γik pk,

or, what amounts to the same:
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P′
i = (xi −αi)

n

∑
j=1

(x j −α j) p j +
n

∑
k=1

δik pk.

If we form the combination of P′
i with ∑(xk −αk) pk =U , we obtain:

[U, P′
i ] = (xi −αi)

n

∑
j=1

(x j −α j) p j −
n

∑
k=1

δik pk,

so that all δik vanish.
Thus, in the sought n(n+1)-term subgroups, the following n(n+1) independent

infinitesimal transformations must appear:

(6) (xi −αi) pk, (xi −αi)
n

∑
j=1

(x j −α j) p j (i, k=1 ···n).

Thanks to pairwise combinations, one easily convinces oneself that these infinitesi-
mal transformations effectively generate an n(n+1)-term group. Besides, this also
follows from the fact that all the infinitesimal transformations (6) leave invariant the
point xi = αi lying in the domain of the finite. Indeed, they are mutually indepen-
dent and their number equals n(n+1), that is to say, exactly equal to the number of
independent infinitesimal transformations there are in the n(n+ 2)-term projective
group that leave invariant the point xi = αi. According to Proposition 2, p. 218, the
infinitesimal transformations (6) therefore generate an n(n+1)-term group.

As a result, every n(n+1)-term projective group of Rn in which no infinitesimal
translation ∑ ek pk appears consists of all projective transformations that fix a point
located in the domain of the finite.

If, in the above computations, we had written Pi, −xi pk, pi in place of pi, xk pi, Pi,
respectively, then we would have found all n(n+1)-term subgroups which contain
no infinitesimal transformation ∑ ek Pk. We can therefore make exactly the same
exchange in the expressions (6) and we obtain in this way:

xk pi +αi Pk, pi +αi

n

∑
j=1

x j p j +
n

∑
j=1
α j (x j pi +αi Pj).

Here, we may clearly take away the term∑ α j (x j pi+αi Pj) and we therefore obtain
the general form of the n(n+ 1)-term subgroups which contain no transformation
∑ ek Pk as follows:

(7) pi +αi

n

∑
j=1

x j p j, xi pk +αk Pi.

The fact that these infinitesimal transformation generate a group follows from their
derivation, but naturally, one could also corroborate this directly.

If all αi vanish, then we have the general linear group already discussed earlier,
which leaves invariant the plane at infinity Mn−1. Hence we are very close to pre-
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suming that in the general case where not all αi are equal to zero, there exists in the
same way a plane Mn−1 : λ1 x1 + · · ·+λn xn +λ = 0 which admits all infinitesimal
transformations (7).

By execution of the infinitesimal transformations: pi +αi ∑ x j p j, we obtain the
following conditions for the λi:

λi +αi

n

∑
j=1
λ j x j = 0 = λi −αiλ .

The quantity λ can hence in any case not vanish and may be set equal to 1; so if there
actually is an invariant plane Mn−1, this plane can only have the form: α1 x1 + · · ·+
αn xn +1 = 0. In fact, this latter plane also admits the infinitesimal transformations:
xi pk +αk Pi.

Every subgroup (7) therefore leaves invariant a plane Mn−1 of Rn and is in addi-
tion the most general projective group of Rn which leaves at rest the plane Mn−1 in
question. Every further infinitesimal projective transformation which leaves invari-
ant the plane: Mn−1 : α1 x1 + · · ·+αn xn +1 = 0 could indeed be given the form:

n

∑
k=1

ek Pk =
n

∑
k=1

ek xk

n

∑
i=1

xi pi.

But if one executes this infinitesimal transformation on the Mn−1, one gets:

n

∑
k=1

ek xk

n

∑
i=1
αi xi = 0 = −

n

∑
k=1

ek xk,

whence e1 = · · · = en = 0.
Thus, if an n(n+1)-term projective group of Rn contains no infinitesimal trans-

formation ∑ ek Pk, it consists of all projective transformations which leave invariant
a plane Mn−1 not passing through the origin of coordinates.

From the previous results, we can derive, thanks to a simple transformation, a
few other results which will be useful to us in the future. Indeed, if we transfer to
infinity the former origin of coordinates by means of the collineation:

(7’) x1 =
1
x′

1
, x2 =

x′
2

x′
1
, . . . , xn =

x′
n

x′
1
,

we then obtain:

p′
1 =

n

∑
i=1

pi
∂xi

∂x′
1
= − 1

x′
1

2

(

p1 +
n

∑
i=2

x′
i pi

)

,

and hence:

p′
1 = −x1

n

∑
i=1

xi pi = −P1,

x′
k p′

1 = −xk

n

∑
i=1

xi pi = −Pk (k=2 ···n).
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In the same way, we obtain:

x′
1

n

∑
i=1

x′
i p′

i = − p1, x′
1 p′

k = − pk (k=2 ···n),

as every infinitesimal projective transformation is actually transferred to a transfor-
mation of the same kind after the introduction of the x′ (cf. Chap. 3, Proposition 4,
p. 48).

From this, we see: our collineation (7’) converts every n(n + 1)-term projec-
tive group in which no infinitesimal transformation ∑ ek Pk appears into a projective
group which contains no transformation e1 p1 +e2 x2 p1 + · · ·+en xn p1. In the same
way, every projective group free of all ∑ ek pk is transferred to a projective group
which contains no transformation: e1 P1 + e2 x1 p2 + · · ·+ en x1 pn.

Thus, if in an n(n+ 1)-term projective group, there are no infinitesimal trans-
formations: e1 p1 +e2 x2 p1 + · · ·+en xn p1, then this group consists of all projective
transformations which leave invariant a certain plane Mn−1. By contrast, if in the
group there are no infinitesimal transformations: e1 P1+e2 x1 p2+ · · ·+en x1 pn, then
this group consists of all projective transformations which leave invariant a certain
point.

The general projective group possesses the property of being able to transfer ev-
ery point of Rn to every other point, and every plane Mn−1 to every other plane. From
this, it results that every n(n+1)-term projective group of Rn which leaves invariant
a point is conjugate, inside the general projective group of Rn, to every other group
of the same sort, and likewise, it follows that every n(n+1)-term projective group
of Rn which leaves invariant a plane Mn−1 is conjugate to every other projective
group of this sort.

Finally, we can now find all n(n+1)-term groups of Rn.
Since we know all groups that contain no translation, it only remains to find the

groups in which some infinitesimal translations appear. We assume that there are
exactly q independent such infinitesimal translations, say pn, . . . , pn−q+1, so that,
when n−q > 0, no translation of the form: e1 p1 + · · ·+ en−q pn−q is extant.

Then in our group, there surely exists an infinitesimal transformation of the form:

(8)
q

∑
i=1

xn−q+i

n−q

∑
k=1

λik pk + e1 p1 + · · ·+ en−q pn−q,

only when the number (n−q)(q+1) of terms contained in this infinitesimal trans-
formation is larger than n.

This is the case only when (n−q)(q+1)−n = q(n−q−1) is larger than zero,
from which it follows that we must temporarily disregard the cases q = n − 1 and
q = n. But if we assume that q is smaller than n − 1 and if we form a combination
of the transformation (8) — in which obviously not all λik vanish — with each one
of the extant translations pn−q+1, . . . , pn, we then obtain in all circumstances a non-
identically vanishing transformation of the form μ1 p1 + · · ·+μn−q pn−q, and this is
a contradiction. Thus, the number q cannot be smaller than n−1.
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Therefore, if an n(n+1)-term projective group contains one infinitesimal trans-
lation ∑ ek pk, it contains at least n−1 independent translations.

In this result we can again, as so often before, replace the pi by the Pi and find
that there always exist n − 1 independent transformations ∑ ek Pk in every group of
the said sort as soon as there exists only a single transformation of this form.

Now, we seek all n(n+1)-term projective groups with exactly n−1 independent
infinitesimal translations ∑ ek pk, say with p2, . . . , pn. No such group can contain a
transformation of the form:

e1 p1 + e2 x2 p1 + · · ·+ en xn p1,

because by combination with p2, . . . , pn, we would obtain p1, which is excluded.
According to what we have shown above, all these groups belong to the category of
n(n+ 1)-term projective groups which leave invariant a plane Mn−1. Correspond-
ingly, it follows that every n(n+1)-term group which contains exactly n − 1 inde-
pendent transformations ∑ ek Pk leaves invariant a point.

It still remains to determine the n(n+ 1)-term projective groups which contain
all the n translations p1, . . . , pn. Besides, the Pi cannot all appear, because otherwise,
the group would coincide with the general projective group itself.

Therefore, according to what has been said above, there are only two possibili-
ties: either there is absolutely no transformation ∑ ek Pk, or there are n−1 indepen-
dent such transformations. Both cases are already settled above.

As a result, our study is brought to a conclusion. The result is the following:

Theorem 101. The largest subgroups of the general projective group of an n-times
extended manifold contain n(n+1) parameters. Each such subgroup consists of all
projective transformations which leave invariant either a plane Mn−1, or a point. In
the first case, the subgroup is conjugate inside the general projective group to the
general linear group pi, xi pk, and in the second case, to the group xk pi, Pk.3

Because the groups of the one category come from the groups of the other cate-
gory through the exchange of pi, xi pk, Pi with Pi, −xk pi, pi, all n(n+1)-term sub-
groups of the general projective group are holoedrically isomorphic to each other.
From the preceding, we obtain the following

Proposition 4. The general projective group of the space x1, . . . ,xn can be related
to itself in a holoedrically isomorphic way so that the largest subgroups which leave
invariant one point correspond each time to the largest subgroups which leave in-
variant a plane Mn−1.

If n = 1, the difference between point and plane Mn−1 disappears; the general
three-term projective group of the once-extended manifold therefore contains only
one category of two-term subgroups, and all of these are conjugate in the three-term
projective group.

3 LIE, Math. Ann. Vol. XXV, p. 130.
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According to the previous results, the general projective group of an n-times
extended space contains n(n+ 1) independent infinitesimal transformations which
leave at rest a given point, and to be precise, these infinitesimal transformations
generate a subgroup which is contained in no larger subgroup. From this, it follows
(Chap. 24, Theorem 91, p. 524) that the general projective group is primitive and
all the more asystatic.

§ 140. We derive here a few general considerations concerning the determination
of all subgroups of the general linear group pi, xi pk (i, k=1 ···n) of Rn.

The general infinitesimal transformation of a linear group of Rn can be written:

(9)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i≷k

∑
i, k

aik xi pk +
n−1

∑
i=1

bi (xi pi − xn pn)

+ c
n

∑
k=1

xk pk +
n

∑
k=1

dk pk.

If one combines two infinitesimal transformations of this form, one obtains a trans-
formation:

i≷k

∑
i, k

Aik xi pk +
n−1

∑
i=1

Bi (xi pi − xn pn)+C
n

∑
k=1

xk pk + c
n

∑
k=1

Dk pk,

in which the Aik, Bi and C (C = 0) depend only on aik, bi and c. Consequently, the
reduced infinitesimal transformation:

(10)
i≷k

∑
i, k

aik xi pk +
n−1

∑
i=1

bi (xi pi − xn pn)+ c
n

∑
k=1

xk pk

is in turn the general infinitesimal transformation of a linear homogeneous group in
x1, . . . ,xn.

From this, we realize that the problem of determining all subgroups of the general
linear group decomposes into two problems which must be settled one after the
other. First, all subgroups of the general linear homogeneous group xi pk (i, k=1 ···n)
have to be sought; then, to the infinitesimal transformations of each of the found
groups, one must add terms∑ βk pk in the most general way so that one again obtains
a group. Thus, if X1 f , . . . ,Xr f is one of the found linear homogeneous groups, one
has to determine all groups of the form:

Xk f +
n

∑
i=1
αki pi,

n

∑
i=1
βμi pi

(k=1 ···r ; μ=1 ···m, m�n).
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We do not want to say anything more about the further treatment of these two re-
duced problems here; rather, we refer to the third volume where a detailed study of
the projective groups of the plane and of thrice-extended space will be given.

By contrast, we shouldn’t neglect the geometric significance of the above men-
tioned decomposition.

To this end, we imagine that the group (9) is extended, by regarding, as in
Chap. 25, p. 528 sq., the x as functions of an auxiliary variable t and by taking with
them the differential quotients dxi/d t = x′

i. In the process, we obtain the group:

∑ aik xi pk +∑ bi (xi pi − xn pn)+ c∑ xk pk +∑ dk pk

+∑ aik x′
i p′

k +∑ bi (x′
i p

′
i − x′

n p′
n)+ c∑ x′

k p′
k,

in which the terms in the x′
i determine for themselves a group, namely precisely the

group (10) just found. But now, as we have seen loc. cit., the x′
i can be interpreted as

homogeneous coordinates of the directions through the point x1, . . . ,xn of Rn. The
fact that the x′

i are transformed for themselves by the above group therefore means
nothing else than the fact that parallel lines are transferred to parallel lines by every
linear transformation of the x; the directions which a determined system of values
x′

i associates to all points of Rn are indeed parallel to each other. But every bundle
[BÜNDEL] of parallel lines provides a completely determined point on the plane
Mn−1 at infinity of Rn, hence x′

1, . . . ,x
′
n can be virtually interpreted as homogeneous

coordinates of the points on the plane at infinity Mn−1 and the group:

(11) ∑ aik x′
i p′

k +∑ bi (x′
i p

′
i − x′

n p′
n)+ c∑ x′

k p′
k

therefore indicates how the points at infinity of Rn are transformed by the group (9).
At the same time, it is yet to be observed that the infinitesimal transformation∑ x′

k p′
k

leaves fixed all points at infinity, so that these points are transformed by the last
group exactly as if c were zero.

Here, we have the central reason for the decomposition indicated above for the
problem of determining all linear groups of Rn. The groups in question are simply
thought to be distributed in classes, and in each class are included all the groups for
which the group (11) is the same, so that the points at infinity of Rn are transformed
in the same way (cf. for this purpose Theorem 40, p. 243).

§ 141. In order to give at least one application of the general considerations
developed just above, we want to determine all linear groups of Rn which transform
the points of infinity of Rn in the most general way. For all of these groups, the
associated group (11) has the form:

x′
i p′

k, x′
i p′

i − x′
k p′

k (i, k=1 ···n, i≷k),

where in certain circumstances, the transformation x′
1 p′

1 + · · ·+ x′
n p′

n can occur,
which leaves individually fixed all points at infinity. The points at infinity are thus
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transformed by an (n2 −1)-term group and, to be precise, by the general projective
group of an (n−1)-times extended space.

Each one of the sought groups must contain n2 −1 infinitesimal transformations
out of which none can be linearly deduced which leaves invariant all points at in-
finity, hence none which are of the form: γ ∑ j x j p j +∑ γk pk. Therefore, the group
surely contains n2 −1 infinitesimal transformations of the form:

(12)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi pk +αik

n

∑
j=1

x j p j +
n

∑
ν=1

βikν pν (i≷k)

xi pi − xn pn +αi

n

∑
j=1

x j p j +
n

∑
ν=1

βiν pν .

In addition, one or several infinitesimal transformations of the form: γ ∑ j x j p j +
∑ν γν pν can occur.

If a group of the demanded sort contains a translation, then it contains all trans-
lations. Indeed, if p1 + e2 p2 + · · ·+ en pn is the translation in question, we combine
it with:

x1 pk +α1k

n

∑
j=1

x j p j +
n

∑
ν=1

β1kν pν (k=2 ···n)

and we obtain in this way p2, . . . , pn and therefore all pi.
Consequently, we first want to assume that all translations appear. Then if the

transformation ∑ x j p j appears, we have the general linear group itself. By contrast,
if the transformation ∑ x j p j is not extant, we obtain by combination of the transfor-
mations (12) in which we can set beforehand the βikν and βiν equal to zero:

[

xi pk +αik

n

∑
j=1

x j p j, xk pi +αki

n

∑
j=1

x j p j

]

= xi pi − xk pk,

so that all the αi are zero. But in addition, we have:
[

xi pi − xk pk, xi pk +αik

n

∑
j=1

x j p j

]

= 2xi pk.

The concerned group is therefore the special linear group.
If in the sought group there is no translation, but by contrast a transformation:

(13)
n

∑
j=1

x j p j +
n

∑
ν=1

γν pν =
n

∑
j=1

(x j + γ j) p j,

then all αik and all αi can be set equal to zero. If we write the infinitesimal transfor-
mations (12) in the form:
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(xi + γi) pk +
n

∑
ν=1

β ′
ikν pν (i≷k)

(xi + γi) pi − (xn + γn) pn +
n

∑
ν=1

β ′
iν pν ,

we then realize immediately by combination with ∑(xi + γi) pi that all β ′
ikν and β ′

iν
vanish and we thus find the group:

(xi + γi) pk (i, k=1 ···n).

Lastly, if there also occurs no transformation of the form (13), then one first
obtains by combination from (12) that all αik and αi are equal to zero. Furthermore,
we have:

[

xi pk +
n

∑
ν=1

βikν pν , xk pi +
n

∑
ν=1

βkiν pν

]

= xi pi − xk pk +βikk pi −βkii pk,

and in addition:
[

(xi +βikk) pi − (xk +βkii) pk, xi pk +
n

∑
ν=1

βikν pν

]

= 2xi pk +2βikk pk −βiki pi,

so that all βikν vanish with the exception of the βikk and βkii, by means of which the
βiν can also be expressed.

Now, if n > 2, the βikk could vary with k; however, this is not the case. Indeed, if
we replace i and k firstly by k, j and secondly by j, i in:

(xi +βikk) pi − (xk +βkii) pk

and if we add together the three obtained infinitesimal transformations, then the sum
must vanish, since no translation should occur. So we obtain: βikk = βi j j and so on.
Thus, if we write shortly βi for βikk, we have the group:

(xi +βi) pk, (xi +βi) pi − (xk +βk) pk (i≷k).

With that, all cases are settled. If, in the two latter forms of groups [GRUPPEN-
FORMEN], we introduce xi + γi and xi +βi as new xi, respectively, we may recapit-
ulate our result as follows:

Theorem 102. The general linear group in n variables contains only three different
sorts of subgroups which transform the points of the plane at infinity in an (n2 −1)-
term way, as does the general linear group itself: firstly, the special linear group
and secondly all groups that are conjugate to the two homogeneous groups:4

4 LIE, Archiv for Math. og Nat. Vol. IX, p. 103 and 104, Christiania 1884.
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xi pk ; xi pk xi pk − xk pk (i≷k).

Here, we thus have a characteristic property which is common to all these groups
already known to us. By contrast, the distinctive marks of the four groups in question
are briefly the following: The general linear group leaves invariant the ratios of all
volumes; the special linear group leaves invariant all volumes. The general and the
special linear homogeneous groups differ from the general and the special linear
groups, respectively, in that they leave invariant the point xi = 0.

§ 142. At the beginning of the previous section, we saw that the determination
of all linear groups of Rn is essentially produced as soon as all linear homogeneous
projective groups of the Rn are determined. There is no special difficulty in settling
this last problem when one knows all projective groups of Rn−1. We now want to
show this.

As we know, the general linear homogeneous group of Rn: xi pk (i, k=1 ···n) con-
tains an invariant subgroup with n2 −1 parameters, namely the special linear homo-
geneous group:

xi pk, xi pi − xk pk (i, k=1 ···n, i≷k).

This last group is equally composed with the general projective group of Rn−1, so
its subgroups can immediately be written down when all projective groups of Rn−1

are known (cf. the next chapter). Then, one finds the subgroups of the group xi pk,
thanks to the following considerations:

An r-term subgroup Gr of the group xi pk is either contained at the same time in
the group xi pk, xi pi − xk pk (i≷k) or it is not. In the first case it would be already
known, and in the second case, according to Proposition 7, p. 223, it would have a
Gr−1 in common with the special linear homogeneous group. Hence, in order to find
all linear homogeneous groups Gr of this sort, we need only to add, to every Gr−1 :
X1 f , . . . ,Xr−1 f of the group xi pk, xi pi − xk pk (i≷k), an infinitesimal transformation
of the form:

Y f =
n

∑
i=1

xi pi +
1···n
∑
k, j

αk j xk p j (∑k αkk =0),

and to determine, by combination with X1 f , . . . ,Xr−1 f , all values of the αk j which
produce a group. Here, it is to be observed that the (r−1)-term group X1 f , . . . ,Xr−1 f
must obviously be invariant in the sought r-term group; we therefore find, so to
speak, the most general values of the αk j when we seek the most general linear
homogeneous infinitesimal transformation Y f which leaves invariant the given (r−
1)-term group. Besides, we always find one r-term group, namely when we choose
all αk j equal to zero.

By taking into consideration the infinitesimal transformations X1 f , . . . ,Xr−1 f ,
one realizes that r − 1 of the αk j can be made equal to zero. Hence the smaller the
number r is, the more constants must be determined. But for small values of r, the
following method is otherwise often more convenient:
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Indeed, the r-term subgroups of the group xi pk can in another way be dis-
tributed into two categories; firstly, in the category of subgroups which contain the
transformation ∑ xi pi — they can, under the assumptions made, be written down
instantly — and secondly, in the category of subgroups which do not contain the
transformation x1 p1 + · · ·+ xn pn. The r infinitesimal transformations of a group
from the latter category must have the form:

(14) Xk f +αk

n

∑
i=1

xi pi,

where the Xk f represent infinitesimal transformations of the special linear homoge-
neous group. Because the transformation ∑ xi pi is interchangeable with all Xk f , for
the execution of the bracket operation [KLAMMEROPERATION], it is completely in-
different whether the αi vanish or not; hence X1 f , . . . ,Xr f must themselves generate
a group and, to be precise, an r-term subgroup of the group xi pk, xi pi − xk pk (i≷k),
one of those which we assume as known. Therefore, it only remains to determine the
αk in the most general way so that the infinitesimal transformations (14) generate
a group. In certain circumstances, one can realize easily that certain of the αk must
vanish; indeed, if there is an equation of the form:

[Xi, Xk] = Xj f ,

then α j must necessarily be zero.
If all [Xi, Xk] generate a ρ-term group (Chap. 15, Proposition 6, p. 274), then we

can assume that the infinitesimal transformations are chosen so that all [Xi, Xk] can
be linearly deduced from X1 f , . . . ,Xρ f . Then we have α1 = · · · = αρ = 0, while all
other αi can be different from zero. It must be specially studied in each individual
case whether the different values of these parameters produce different types of
linear homogeneous groups, or in other words, whether the concerned parameters
are essential. The settlement of this problem for n = 2 and for n = 3 appears in the
third volume.

§ 143. If an arbitrary linear homogeneous group Gr is presented which is not
contained in the special linear homogeneous group, then as we have already ob-
served above, this Gr comprises an invariant (r−1)-term subgroup whose infinites-
imal transformations are characterized by the fact that they are of the form:

i≷k

∑
i, k

aik xi pk +
n−1

∑
i=1

ai (xi pi − xn pn).

If we now apply this observation to the adjoint associated to an arbitrary r-term
group: X1 f , . . . ,Xr f :



§ 143. 579

Eν f =
1···r
∑
k, s

ckνs ek
∂ f
∂es

(ν=1 ···r),

then we recognize immediately that this adjoint group, when the r sums ∑k ckνk do
not all vanish, contains an invariant subgroup whose infinitesimal transformations:
λ1 E1 f + · · ·+λr Er f are defined by means of the condition-equations:

r

∑
ν=1

λν
r

∑
k=1

ckνk = 0.

Lastly, if we remember that every group is isomorphic with its adjoint group, we
obtain the

Proposition 5. If r independent infinitesimal transformations X1 f , . . . ,Xr f of an r-
term group stand pairwise in the relationships: [Xi, Xk] = ∑s ciks Xs f and if at least
one of the r sums∑k cνkk is different from zero, then all infinitesimal transformations
λ1 X1 f + · · ·+λr Xr f which satisfy the condition:

r

∑
ν=1

λν
r

∑
k=1

cνkk = 0

generate an invariant (r −1)-term subgroup.5

For a thorough study of the general projective group, one must naturally devote
special attention to its adjoint group ∑ ek Ek f and to the associated invariant sys-
tems of equations in the ek as well. Here we make only two brief, but important
observations.

If, as usual, one interprets the ek as homogeneous point coordinates of a space
with n2 + 2n − 1 dimensions, then amongst all invariant manifolds of this space,
there is a determined one whose dimension number has the smallest value. This
important manifold consists of all points ek which represent either translations or
transformations conjugate to translations. This manifold is contained in no even
[EBEN] manifold of the space in question. Besides, the known classification of all
projective transformations naturally provides without effort all invariant manifolds
of the space e1, . . . ,er.

For every infinitesimal projective transformation which is conjugate to a transla-
tion, all points of a plane Mn−1 in the space xk remain invariant and simultaneously,
all planes Mn−1 which pass through a certain point of this Mn−1. Every transforma-
tion of this sort is completely determined by means of the firstly said plane Mn−1

and by the distinguished invariant point of this plane.
If n = 2, then as we can say, every projective transformation of the plane x1,

x2 which is conjugate to an infinitesimal translation is completely represented by

5 LIE, Archiv for Math., Vol. IX, p. 89, Christiania 1884; Fortschritte der Mathematik, Vol. XVI,
p. 325.
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means of a line element. Accordingly, in thrice-extended space x1, x2, x3, every pro-
jective transformation conjugate to an infinitesimal translation is represented by a
surface element, and so on. These observations will be exploited in the third volume.

—————–



Chapter 27
Linear Homogeneous Groups

In the previous chapter, p. 577, we characterized the general linear homogeneous
group in n variables x1, . . . ,xn as the most general projective group of the n-times ex-
tended space x1, . . . ,xn, or shortly Rn, that leaves invariant the plane at infinity Mn−1

and simultaneously the point x1 = · · · = xn = 0. This group receives another mean-
ing when one interprets x1, . . . ,xn as homogeneous coordinates in an (n − 1)-times
extended space Rn−1. In the present chapter, this interpretation shall be followed at
the foundation.

§ 144. We imagine that the transition from the ordinary Cartesian coordinates
y1, . . . ,yn−1 of the (n − 1)-times extended space Rn−1 to the homogeneous coordi-
nates x1, . . . ,xn of the same space is procured by means of the equations:

yk =
xk

xn
(k=1 ···n−1).

To the n2-term general linear homogeneous group:

(1) x′
i =

n

∑
k=1

αik xk (i=1 ···n)

then corresponds, in the variables y1, . . . ,yn−1, the meroedrically isomorphic group:

(2) y′
i =

∑n−1
k=1 αik yk +αin

∑n−1
k=1 αnk yk +αnn

(k=1 ···n−1),

the (n2 − 1)-term general projective group of Rn−1. Thus, to every linear homoge-
neous transformation (1) corresponds a single projective transformation (2), hence
a completely determined collineation of Rn−1, whereas conversely, to every projec-
tive transformation (2), there correspond in total ∞1 different linear homogeneous
transformations (1).

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
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In addition, one can also establish a univalent invertible association between
linear homogeneous transformations in x1, . . . ,xn and projective transformations in
y1, . . . ,yn−1 when one submits the constants αik to the condition∑±α11 · · · αnn = 1,
hence when one considers instead of the general the special linear homogeneous
group which is holoedrically isomorphic to the general projective group (2) (cf.
Chap. 26, p. 563). We want to develop in detail this association for the infinitesimal
transformations of the two groups.

The special linear homogeneous group in x1, . . . ,xn contains the following n2 −1
independent infinitesimal transformations:

(3) xi pk, xi pi − xk pk (i≷k).

In order to find the corresponding infinitesimal transformations in y1, . . . ,yn−1, we
only have to compute, for each of the individual infinitesimal transformations just
written, the increment:

δ yi =
xn δ xi − xi δ xn

x2
n

(i=1 ···n−1).

In this way, we find the following table:

(4)

⎧

⎪⎨

⎪⎩

xn pk ≡ qk, xk pn ≡ −yk (y1 q1 + · · ·+ yn−1 qn−1)
xk pk − xn pn ≡ yk qk + y1 q1 + · · ·+ yn−1 qn−1, xi pk ≡ yi qk

(i, k=1 ···n−1; i≷k),

where qi is written for ∂ f/∂yi. This table also provides inversely the infinitesimal
transformations of the special linear homogeneous group (3) corresponding to ev-
ery infinitesimal transformation of the projective group (2); indeed, from the equa-
tions (4), we obtain without effort:

n(y1 q1 + · · ·+ yn−1 qn−1) ≡ x1 p1 + · · ·+ xn pn −nxn pn

nyk qk ≡ nxk pk − (x1 p1 + · · ·+ xn pn).

Now, it is also easy to indicate which ∞1 infinitesimal transformations of the
general linear homogeneous group (1) correspond to a given infinitesimal transfor-
mation of the projective group (2). Indeed, the infinitesimal transformation x1 p1 +
· · ·+ xn pn reduces in the variables y1, . . . ,yn−1 to the identity, for all increases of
the yk vanish. Consequently, if the infinitesimal transformation Y f of the projective
group (2) corresponds to the infinitesimal transformation X f of the special homo-
geneous group (3), then all ∞1 infinitesimal transformations of the general homo-
geneous group (1) which correspond to Y f are contained in the expression X f +
c(x1 p1 + · · ·+ xn pn), where c denotes an arbitrary constant.

If a system of equations:

Ωk(y1, . . . ,yn−1) = 0 (k=1 ···m)
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in y1, . . . ,yn−1 admits a finite or an infinitesimal projective transformation, then nat-
urally, the corresponding system of equations in the x:

Ωk

(
x1

xn
, . . . ,

xn−1

xn

)

= 0 (k=1 ···m)

admits the corresponding finite or infinitesimal transformation of the group (3); but
in addition, because of its homogeneity, it also admits the infinitesimal transforma-
tion: x1 p1 + · · ·+ xn pn.

Conversely, every system of equations in x1, . . . ,xn which admits x1 p1 + · · ·+
xn pn is homogeneous. But now, when we write a projective group of Rn−1 in the
homogeneous variables x1, . . . ,xn, we are concerned only with the ratios of the x,
hence, we are concerned only with systems of equations that are homogeneous in
the x. So, when we have written in a homogeneous way the infinitesimal transfor-
mations of a projective group of Rn−1 with the help of the table (4) and when we
want to find the associated invariant systems of equations, that is why we will al-
ways add the infinitesimal transformation x1 p1+ · · ·+xn pn. The group in x1, . . . ,xn

obtained in this way is the true analytic representation in homogeneous variables of
the concerned projective group of Rn−1.

For the study of a projective group, if one also wants to take the infinite into
consideration, then one must write the group in homogeneous variables.

§ 145. In the preceding section, we have shown that the infinitesimal projective
transformations of Rn−1 can be replaced by infinitesimal linear homogeneous trans-
formations in n variables. Now, we want to imagine that an arbitrary transformation
of this sort in x1, . . . ,xn is presented, say:

X f =
1···n
∑
i, k

aki xi pk,

and we want to submit it to a closer examination. Namely, we want to look for plane
manifolds of Rn−1 which admit the infinitesimal transformation in question. In this
way, we will succeed in showing that X f can always be given a certain canonical
form after the introduction of appropriate new variables: x′

i = ∑ cik xk.
If a plane: Mn−2 : ∑ ci xi = 0 of Rn−1 admits the infinitesimal transformation X f ,

then according to Theorem 14, p. 127, it admits at the same time all finite transfor-
mations of the associated one-term group. Now, the Mn−2 admits the infinitesimal
transformation if and only if the expression X(∑ ci xi) vanishes simultaneously with
∑ ci xi. Since X(∑ ci xi) is linear in the xi, this condition amounts to the fact that a
relation of the form:

X

( n

∑
k=1

ck xk

)

= ρ
n

∑
i=1

ci xi

holds identically, where ρ denotes a constant. The condition-equation following
from this:
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n

∑
i=1

( n

∑
k=1

aki ck −ρ ci

)

xi = 0

decomposes into the n equations:

(5) a1i c1 + · · ·+(aii −ρ)ci + · · ·+ani cn = 0 (i=1 ···n),

which can be satisfied only when the determinant:

(6)

∣
∣
∣
∣
∣
∣
∣
∣

a11 −ρ a21 · · · an1

a12 a22 −ρ · · · an2

· · · · · ·
a1n a2n · · · ann −ρ

∣
∣
∣
∣
∣
∣
∣
∣

= Δ(ρ)

vanishes. This produces for ρ an equation of degree n with n roots, amongst which
some can be multiple. Therefore in all circumstances, there is at least one plane
Mn−2 : c1 x1 + · · ·+ cn xn = 0 which remains invariant by the one-term group X f .

It is known that one sees in exactly the same way that every finite projective
transformation, or, when written homogeneously, every transformation x′

i =∑ bik xk

likewise leaves fixed at least one plane Mn−2. In addition, this follows from the fact
that every transformation x′

i = ∑ bik xk is associated to a one-term group X f .

If the equation Δ(ρ) = 0 found above has exactly n different roots ρ , then there
are in total n separate planes Mn−2 which remain invariant by the group X f ; indeed,
two distinct roots ρ1 and ρ2 of the equation for ρ always provide, because of the
form of the equations (5), two distinct systems of values c1 : c2 : · · · : cn. By con-
trast, if there are multiple roots ρ , then various cases can occur. If, for an m-fold
root ρ , the determinant (6) vanishes itself, but not all of its (n − 1)× (n − 1) deter-
minants, then for the concerned value of ρ , exactly n − 1 of the equations remain
independent of each other and the ratios of the ci are then all determined. To the
m-fold root is hence associated only a single invariant plane Mn−2, but this plane
is counted m times. By contrast, if for an m-fold root not only the determinant (6)
itself is equal to zero, but if all its (n − 1)× (n − 1), . . . , (n − q+ 1)× (n − q+ 1)
subdeterminants also vanish, whereas not all (n − q)× (n − q) subdeterminants do
(q � m), then the equations (5) reduce to exactly n − q independent equations and
amongst the ratios of the ci, there remain q − 1 that can be chosen arbitrarily. Thus
in this case, the m-fold root ρ gives a family of ∞q−1 planes Mn−2 which remain
individually invariant.

It is easy to see that a root of the equation Δ(ρ) = 0 is at least q-fold when all
(n − q+ 1)× (n − q+ 1) subdeterminants of Δ(ρ) vanish for this root. Indeed, the
differential quotients of order (q−1) of Δ(ρ) with respect to ρ express themselves
as sums of the (n−q+1)× (n−q+1) subdeterminants of Δ(ρ).

If we assume that the duality theory is already known at this point, then we could
immediately conclude that the infinitesimal transformation X f leaves invariant at
least one point in Rn−1. But we prefer to prove this directly, particularly because we
gain on the occasion a deeper insight.
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In the homogeneous variables x1, . . . ,xn, a point is represented by n−1 equations
of the form xi x0

k − xkx0
i ; so the point will admit all transformations of the one-term

group X f when x0
k Xxi −x0

i Xxk vanishes by virtue of the equations xi x0
k −xk x0

i = 0,
hence when n relations of the form:

Xxi = σ xi (i=1 ···n)

hold. For the xi and for σ , we therefore obtain the n condition-equations:

ai1 x1 + · · ·+(aii −σ)xi + · · ·+ain xn = 0 (i=1 ···n).

If we disregard the nonsensical solution x1 = · · · = xn = 0, σ must be a root of the
equation:

Δ(σ) =

∣
∣
∣
∣
∣
∣
∣
∣

a11 −σ a12 · · · a1n

a21 a22 −σ · · · a2n

· · · · · ·
an1 an2 · · · ann −σ

∣
∣
∣
∣
∣
∣
∣
∣

and each such root produces an invariant point. The determination of the points
which stay fixed by X f therefore leads to the same algebraic equation as does the
determination of the invariant plane: Mn−2 : c1 x1 + · · ·+ cn xn = 0.

Thus, if this equation of degree n has n different roots, then in Rn−1 :
x1 : x2 : · · · : xn, not only n different planes Mn−2 : ∑ ck xk = 0 remain invariant,
but also simultaneously, n separate points. In the process, these n points do not lie
all in one and the same plane Mn−2, because if n points stay fixed in a plane Mn−2,
then necessarily, infinitely many points of the Mn−2 keep their positions, which
is excluded under the assumption made. We can briefly express this property of
the n invariant points by saying that a nondegenerate n-frame [n-FLACH] remains
invariant by X f .

If there appear multiple roots, then two cases must again be distinguished. If, for
an m-fold root, not all (n−1)× (n−1) subdeterminants of the determinant (6) van-
ish, then this root gives an invariant plane Mn−2 counting m times and an invariant
point counting m times. By contrast, if, for the root in question, all (n−1)×(n−1),
. . . , (n−q+1)× (n−q+1) subdeterminants are equal to zero (q � m) without all
(n−q)× (n−q) subdeterminants vanishing, then to this root is associated a family
of ∞q−1 individually invariant planes Mn−2 and a plane manifold of ∞q−1 individu-
ally invariant points. Therefore, the following holds

Proposition 1. Every infinitesimal transformation:

1···n
∑
i, k

aki xi pk

in the homogeneous variables x1, . . . ,xn, or, what is the same, every infinitesimal
projective transformation in n−1 variables:

x1

xn
, . . . ,

xn−1

xn
,
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leaves invariant a series of points x1 : x2 : · · · : xn and a series of planes Mn−2 :
c1 x1 + · · ·+ cn xn = 0. The points which stay fixed fill a finite number of, and to be
precise at most n, separate manifolds. Likewise, the invariant planes Mn−2 form a
finite number of, and to be precise at most n, separate linear pencils.

If the infinitesimal transformation X f has the form: ∑ xk pk, then it actually
leaves invariant all points x1 : x2 : · · · : xn and naturally also, all planes Mn−2 :
∑ ci xi = 0.

From what has been found up to now, one can now draw further conclusions.
First, we consider once more the special case where the equation of degree n dis-
cussed above has n different roots. Then there are n separate invariant planes Mn−2 :
∑i cki xi = 0 which form a true n-frame according to the preceding. We can therefore
introduce:

x′
k =

n

∑
i=1

cki xi (k=1 ···n)

as new homogeneous variables and in the process, we must obtain an infinitesimal
transformation in x′

1, . . . ,x
′
n which leaves invariant the n equations x′

k = 0, hence
which possesses the form:

X f = a′
1 x′

1 p′
1 + · · ·+a′

n x′
n p′

n.

Under the assumptions made, X f can be brought to this canonical form. Naturally,
no two of the quantities a′

1, . . . ,a
′
n are equal to each other here, for the equation:

(a′
1 −ρ) · · · (a′

n −ρ) = 0

must obviously have n distinct roots.
Now, similar canonical forms of X f also exist when the equation for ρ pos-

sesses multiple roots. However, we do not want to get involved in the consideration
of them, and we only want to show that there is a canonical form to which every
infinitesimal transformation:

X f =
1···n
∑
i, k

aki xi pk

can be brought thanks to an appropriate change of variables: x′
k = ∑ hki xi, that is to

say hence, thanks to an appropriate collineation of Rn−1, completely without paying
heed to the constitution of the equation Δ(ρ) = 0.

Since X f always leaves a point invariant, we can imagine that our coordinates
are chosen so that the point: x1 = · · · = xn−1 = 0 stay fixed. On the occasion, we
find:

(7) X f =
n−1

∑
k=1

n−1

∑
i=1

a′
ik xk pi +

n

∑
k=1

a′
nk xk pn = X ′ f +

n

∑
k=1

a′
nk xk pn.
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To the linear homogeneous infinitesimal transformation X ′ f in the n − 1 variables
x1, . . . ,xn−1 we can apply the same process as the one which provided us with the
reduction of X f to the form (7), and we obtain in this way:

X f =
n−2

∑
k=1

n−2

∑
i=1

a′′
ik xk pi +

n−1

∑
k=1

a′′
n−1,k xk pn−1 +

n

∑
k=1

a′
nk xk pn.

Here, we can again treat in an analogous way the first term of the right-hand side.
Finally, we obtain the

Theorem 103. In every linear homogeneous infinitesimal transformation with n
variables, one can introduce as new independent variables n linear homogeneous
functions of these variables so that the concerned infinitesimal transformation takes
the form:

a11 x1 p1 +(a21 x1 +a22 x2) p2 + · · ·+(an1 x1 + · · ·+ann xn) pn.

It is of some interest to interpret the way in which this result has been obtained.
Since X f leaves a point invariant in any case, if above we chose such a point as

corner of coordinates [COORDINATENECKPUNKT]: x1 = · · · = xn−1 = 0, then the
ratios x1 : x2 : · · · : xn−1 represent the straight lines through the chosen point; simul-
taneously with the points x1 : x2 : · · · : xn, these straight lines are permuted with each
other by the transformation X f , and to be precise, by means of the linear transforma-
tion X ′ f in the n−1 variables x1, . . . ,xn−1. But according to the preceding, a system
of ratios x1 : · · · : xn−1 must remain unchanged by X ′ f , that is to say, a straight line
through the point just said. If we choose this line as an edge x1 = · · · = xn−2 = 0 of
our coordinate system, then the ratios x1 : · · · : xn−2 represent the planes M2 passing
through this edge. In the same way, these M2 are permuted with each other by X f ;
one amongst them surely remains invariant and again gives a closer determination
of the coordinate system, and so on.

In this way, one realizes that the coordinate system can be chosen so that X f
receives the normal form indicated above. However, we want to recapitulate in a
specific proposition the considerations just made, since they express a general prop-
erty of the infinitesimal projective transformations of Rn−1:

Proposition 2. By every infinitesimal projective transformation of Rn−1 there
remain invariant: at least one point; through every invariant point: at least one
straight line; . . . ; and lastly, through every invariant plane Mn−2: at least one plane
Mn−2.

§ 146. The results of the previous section have long been known since they es-
sentially coincide in with the reduction to a normal form, due to CAUCHY, of a
system of linear ordinary differential equations with constant coefficients.
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In what follows, we will generalize in an essential way the results found up to
now, but beforehand, we must make a few observations which, strictly speaking, are
certainly subordinate to the general developments in Chap. 29, p. 486 sq.

Let an arbitrary r-term group Gr with an (r − m)-term invariant subgroup Gr−m

be presented, and let T denote an arbitrary transformation of Gr, while S denotes
an arbitrary transformation of Gr−m. Then according to the assumption, there are
certain equations of the form:

T −1 ST = S1, T S1 T −1 = S,

where S1 is again a transformation of Gr−m, and in fact, a completely arbitrary one,
provided only that one chooses the S appropriately.

Now, if every transformation S leaves invariant a certain point figure [PUNKT-
FIGUR] M, so that:

(M)S = (M),

then the following equation also holds:

(M)T T −1 ST = (M)T,

and it shows that the figure (M)T admits every transformation T −1 ST , hence actu-
ally, every transformation S.

Proposition 3. If Gr is an r-term group, if Gr−m is an invariant subgroup of it, and
lastly, if M is a point figure which admits all transformations of Gr−m, then every
position that M takes by means of a transformation Gr also remains invariant by all
transformations of Gr−m.

Now in particular, let the two groups Gr and Gr−m be projective groups of Rn−1

and let them be written down in n homogeneous variables. Let the figure M be a
point. Then every individual point invariant by all S is transferred, by the execution
of all transformations T , only to points which again admit all transformations S.
Consequently, the totality of all points invariant by the group Gr−m also remains
invariant by the group Gr, though in general, the individual points of this totality are
permuted with each other by Gr.

Above, we saw that all the points which remain invariant by a one-term projective
group can be ordered in at most n mutually distinct plane manifolds. Naturally, this
also holds true for the points which keep their position by our Gr−m. Hence, let
M1, M2, . . . , Mρ (ρ � n) be distinct plane manifolds all points of which remain
fixed by Gr−m, whereas, out of these manifolds, there are no points invariant by
Gr−m. Now, if the group Gr were discontinuous — the considerations made also
remain valid for this case —, then the manifolds M1, . . . ,Mρ could be permuted with
each other by Gr. This is not so when Gr is continuous, hence when it is generated
by infinitesimal transformations, because if for instance M1 took new positions by
means of the transformations contained in Gr, then these positions would form a
continuous family. But now, we have just seen that M1 can at most be given the
finitely different positions M1, . . . ,Mρ . Consequently, no transformation of Gr can
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change the position of M1. In the same way, every other of the ρ manifolds Mk

naturally remains invariant by all transformations of Gr.
Now, we want to add the assumption that m has the value 1. Let X1 f , . . . ,Xr−1 f

be independent infinitesimal transformations of Gr−1 invariant in Gr, and let
X1 f , . . . ,Xr−1 f , Y f be the transformations of Gr; moreover, let x1 = 0, . . . , xq = 0
be one of the plane manifolds M1, . . . ,Mρ all points of which remain invariant by
X1 f , . . . ,Xr−1 f .

Since, as we know, Y f surely leaves invariant the manifold x1 = 0, . . . , xq = 0, it
must have the form:

Y f =
1···q
∑
i, k

aki xi pk +
n

∑
j=q+1

n

∑
ν=1

a jν xν p j.

The points of the manifold in question are transformed by Y f (cf. Theorem 40,
p. 243) and, to be precise, by means of the transformation which comes from Y f
after the substitution x1 = · · · = xq = 0, namely:

(8)
n

∑
j=q+1

n

∑
ν=q+1

a jν xν p j ;

here, the variables xq+1, . . . ,xn are to be considered as coordinates of the points
of the manifold. Now, the transformation (8) leaves invariant at least one point
x0

q+1 : · · · : x0
n inside the manifold x1 = · · · = xq = 0, further, it leaves invariant a

straight line passing through this point, and so on.
Saying this, we have the

Theorem 104. If an (r + 1)-term projective group X1 f , . . . ,Xr f , Y f of the Rn−1

contains an r-term invariant subgroup X1 f , . . . ,Xr f and if there are points of Rn−1

which remain invariant by all Xk f , then every plane manifold consisting of such
invariant points which is not contained in a larger manifold of this sort also admits
all transformations of the (r+1)-term group. Furthermore, the points of each such
manifold are permuted with each other, but so that at least one of these points keeps
its position by all transformations of the (r+1)-term group.

Now, we will apply this theorem to a special category of linear homogeneous
groups.

Let X1 f , . . . ,Xr f be the infinitesimal transformations of an r-term linear homoge-
neous group, and let, as is always possible, X1 f , . . . ,Xρ f generate a ρ-term subgroup
which is invariant in the (ρ+1)-term subgroup X1 f , . . . ,Xρ+1 f , when ρ is smaller
than r. Analytically, these assumptions find their expressions in certain relations of
the form:

[Xi, Xi+k] =
i+k−1

∑
s=1

ciks Xs f (i=1 ···r−1; k=1 ···r− i).

Now, if we interpret as before x1, . . . ,xn as homogeneous coordinates of an Rn−1,
we then see that there always is in this Rn−1 a point invariant by X1 f , moreover
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that there is always a point invariant by X1 f and by X2 f as well, and finally, a point
which actually admits all transformations X1 f , . . . ,Xr f , hence for which relations of
the form:

Xk xi = αk xi (k=1 ···r ; i=1 ···n)

hold. If we choose the variables xi so that x1 = · · ·= xn−1 = 0 is this invariant point,
then in each of the r expressions:

Xk f = ξk1 p1 + · · ·+ξkn pn,

the n − 1 first coefficients ξk1, . . . ,ξk,n−1 depend only upon x1, . . . ,xn−1. Conse-
quently, the reduced expressions:

X ′
k f = ξk1 p1 + · · ·+ξk,n−1 pn−1

stand again in the relationships:

[X ′
i , X ′

i+k] =
i+k−1

∑
s=1

ciks X ′
s f .

However, X ′
1 f , . . . ,X ′

r f need not be mutually independent any more, but neverthe-
less, we can apply to them the same considerations as above for X1 f , . . . ,Xr f , be-
cause on the occasion, no use was made of the independence of the Xk f . Similarly
as above, we can hence imagine that the variables x1, . . . ,xn−1 are chosen in such a
way that all ξk1, . . . ,ξk,n−2 depend only on x1, . . . ,xn−2. At present, the expressions:

X ′′
k f = ξk1 p1 + · · ·+ξk,n−2 pn−2

can be treated in exactly the same way, and so on.
We therefore obtain the

Theorem 105. If X1 f , . . . ,Xr f are independent infinitesimal transformations of an
r-term linear homogeneous group in the variables x1, . . . ,xn and if relations of the
specific form:

[Xi, Xi+k] =
i+k−1

∑
s=1

ciks Xs f (i=1 ···r−1; k=1 ···r− i)

hold, then one can always introduce linear homogeneous functions of x1, . . . ,xn as
new independent variables so that all Xk f simultaneously receive the canonical
form:1

ak11 x1 p1 +(ak21 x1 +ak22 x2) p2 + · · ·+(akn1 x1 + · · ·+aknn xn) pn.

On the other hand, if we remember that X1 f , . . . ,Xr f is also a projective group of
Rn−1, we can say:

1 LIE, Archiv for Math., Vol. 3, p. 110 and p. 111, Theorem 3; Christiania 1878.
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Proposition 4. If X1 f , . . . ,Xr f is an r-term projective group of Rn−1 having the spe-
cific composition:

[Xi, Xi+k] =
i+k−1

∑
s=1

ciks Xs f (i=1 ···r−1; k=1 ···r− i),

then in Rn−1, there is at least one point M0 invariant by the group; through every
invariant point, there passes at least one invariant straight line; . . . ; through every
invariant plane Mn−3, there passes at least one invariant plane Mn−2. In certain
circumstances, several (infinitely many) such series of invariant manifolds M0, M1,
. . . , Mn−2 are associated to the group.

If we maintain the assumptions of this last proposition and if we assume in addi-
tion that in the space x1 : x2 : · · · xn, several invariant plane manifolds Mρ1 , . . . ,Mρq

are already known, about which each one is contained in the one following next, then
amongst the series of invariant manifolds M0, M1, . . . , Mn−2 mentioned in Proposi-
tion 4, there is obviously at least one for which Mρ1 coincides with Mρ1 , at least one
for which Mρ2 coincides with Mρ2 , . . . , at least for which Mρq coincides with Mρq .

§ 147. Apparently, the results found above certainly have a considerably special
character, but this special character is the very reason why they nevertheless possess
a general significance for any finite continuous group, because for every such group,
an isomorphic linear homogeneous group can be shown, namely the associated ad-
joint group (Chap. 16).

Amongst other things, we can employ our theory mentioned above in order
to prove that every group with more than two parameters contains two-term sub-
groups, and that every group with more than three parameters contains three-term
subgroups.

Let X1 f , . . . ,Xr f be an arbitrary r-term group and let:

Ek f =
1···r
∑
i, j

c jki e j
∂ f
∂ei

(k=1 ···r)

be the associated adjoint group, so that the relations:

[Xi, Xk] =
r

∑
s=1

ciks Xs f , [Ei, Ek] =
r

∑
s=1

ciks Es f

hold simultaneously.
We claim that in any case, X1 f belongs to one two-term group, hence that an

infinitesimal transformation λ2 X2 f + · · ·+λr Xr f exists for which one has:

[X1, λ2 X2 + · · ·+λr Xr] = ρ X1 f +μ
r

∑
k=2

λk Xk f .
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This condition represents itself in the form:

r

∑
k=2

λk

r

∑
s=1

c1ks Xs f = ρ X1 f +μ
r

∑
k=2

λk Xk f ,

and it decomposes itself in the r equations:

(9)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

r

∑
k=2

λk c1k1 = ρ

r

∑
k=2

λk c1ks = μ λs (s=2 ···r).

Here, this obviously amounts to satisfying only the last r − 1 equations; but one
sees directly in the simplest way that this is possible. Indeed, one obtains for μ the
equation: ∣

∣
∣
∣
∣
∣
∣
∣

c122 −μ c132 · · · c1r2

c123 c133 −μ · · · c1r3

· · · · · ·
c12r c13r · · · c1rr −μ

∣
∣
∣
∣
∣
∣
∣
∣

which always possesses roots; for this reason, there always exists a system of λk not
all vanishing which satisfies the above conditions and which also determines ρ .

But the fact that the equations (9) may be satisfied is also an immediate con-
sequence of our theory mentioned above; although this observation seems hardly
necessary here, where the relationships are so simple, we nevertheless do not want
to miss this, because for the more general cases that are to be treated next, we cannot
do without this theory.

In the infinitesimal transformation:

E1 f =
r

∑
i=1

r

∑
k=1

ck1i ek
∂ f
∂ei

=
r

∑
i=1
εi
∂ f
∂ei

of the adjoint group, all εi are free of e1, since c11i is always zero. Now, the cut linear
homogeneous infinitesimal transformation ε2 p2 + · · ·+ εr pr in the r − 1 variables
e2, . . . ,er surely leaves invariant a system e2 : · · · : er; so it is possible to satisfy the
equations:

r

∑
k=2

ck1i ek = σ ei (i=2 ···r),

but these equations do not differ from the last r − 1 equations (9), since one has
ck1i = −c1ki.

Now, we can state more precisely our claim above that every group with more
than two parameters contains two-term subgroups, in the following way:
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Proposition 5. Every infinitesimal transformation of a group with more than two
parameters is contained in at least one two-term subgroup.2

Now, we want to assume that X1 f and X2 f generate a two-term subgroup, so that
a relation of the form:

[X1, X2] = c121 X1 f + c122 X2 f

holds; we claim that, as soon as r is larger than 3, there also always exists a three-
term subgroup in which X1 f and X2 f are contained.

First, for the constants c121 and c122, when the two are not already zero, we can
always make one equal to zero. In fact, if, say, c121 is different from zero, then we
introduce X1 f + c122

c121
X2 f as a new X1 f and we obtain:

[X1, X2] = c121 X1 f .

Thus, every two-term group can be brought to this form.
If λ3 X3 f + · · ·+ λr Xr is assumed to generate a three-term group together with

X1 f and X2 f , then one must have:

(10)

{[

X1, λ3 X3 + · · ·+λr Xr
]

= α1 X1 f +α2 X2 f +μ (λ3 X3 f + · · ·+λr Xr f )
[

X2, λ3 X3 + · · ·+λr Xr
]

= β1 X1 f +β2 X2 f +ν (λ3 X3 f + · · ·+λr Xr f ).

From this, we obtain the following condition-equations:

(11)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r

∑
k=3

λk c1k1 = α1,
r

∑
k=3

λk c1k2 = α2,

r

∑
k=3

λk c2k1 = β1,
r

∑
k=3

λk c2k2 = β2,

r

∑
k=3

c1ksλk = μ λs,
r

∑
k=3

c2ksλk = ν λs (s=3 ···r).

As we have observed, it is only necessary to prove that the 2(r −2) equations in
the last row can be satisfied, since the remaining equations can always be satisfied
afterwards.

In order to settle this question, we form the infinitesimal transformations:

E1 f =
r

∑
i=1

r

∑
k=1

ck1i ek
∂ f
∂ei

=
r

∑
i=1
ε1i
∂ f
∂ei

E2 f =
r

∑
i=1

r

∑
k=1

ck2i ek
∂ f
∂ei

=
r

∑
i=1
ε2i
∂ f
∂ei

,

which, as we know, stand in the relationship:

2 LIE, Archiv for Math. Vol. 1, p. 192. Christiania 1876.
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[E1, E2] = c121 E1 f .

Since all c11i, c22i and the c122, . . . ,c12r are equal to zero, both e1 and e2 do not
appear at all in ε13, . . . ,ε1r, ε23, . . . ,ε2r. The reduced expressions:

E1 f =
r

∑
i=3
ε1i
∂ f
∂ei

, E2 f =
r

∑
i=3
ε2i
∂ f
∂ei

are therefore linear homogeneous infinitesimal transformations in e3, . . . ,er and they
satisfy the relation:

[

E1, E2
]

= c121 E1 f .

According to the preceding, it follows from this that there exists at least one system
e3 : · · · : er which admits the two infinitesimal transformations E1 f and E2 f , hence
which satisfies conditions of the form:

r

∑
k=3

ck1i ek = σ ei,
r

∑
k=3

ck2i ek = τ ei (i=3 ···r).

But this is exactly what was to be proved, for these last equations are nothing else
than the last equations (11), about which the question was whether they could be
satisfied. Naturally, the quantities α1, α2, β1, β2 are also determined together with
the λi.

Since we can choose in all circumstances λ3, . . . ,λr so that equations of the
form (3) hold, we can say:

Theorem 106. Every infinitesimal transformation and likewise every two-term sub-
group of a group with more than three parameters is contained in at least one three-
term subgroup.3

One could be led to presume that every three-term subgroup is also contained in
at least one four-term subgroup, and so on, but this presumption is not confirmed.
Our process of proof could be employed further only when every three-term group
X1 f , X2 f , X3 f could be brought to the form:

[X1, X2] = c121 X1 f , [X1, X3] = c131 X1 f + c132 X2 f

[X2, X3] = c231 X1 f + c232 X2 f ,

hence not only when X1 f would be invariant in the group X1 f , X2 f , but when this
last group would also be invariant in the entire three-term group.

But for all three-term groups of the composition:

[X1, X2] = X1 f , [X1, X3] = 2X2 f , [X2, X3] = X3 f ,

this is not the case (Chap. 15, Proposition 12, p. 280).

3 LIE, Archiv for Math. Vol. 1, p. 193, Vol. 3, pp. 114–116, Christiania 1876 and 1878.
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Still, we want to briefly dwell on a special case in which an m-term subgroup is
really contained in an (m+1)-term subgroup.

Let an arbitrary r-term group X1 f , . . . ,Xr f be presented which contains an m-
term subgroup X1 f , . . . ,Xm f having the characteristic composition:

[Xi, Xi+k] =
i+k−1

∑
s=1

ci, i+k,s Xs f (i<m, i+k�m)

already mentioned. We claim that there always exists an (m+1)-term subgroup of
the form:

X1 f , . . . ,Xm f , λm+1 Xm+1 f + · · ·+λr Xr f .

Our assertion amounts to the fact that certain relations of the form:

[

Xj, λm+1 Xm+1 + · · ·+λr Xr
]

=
m

∑
k=1

α jk Xk f +μ j

r

∑
s=m+1

λs Xs f

( j=1 ···m)

hold. By decomposition, we get:

(12)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

r

∑
i=m+1

λi c jik = α jk ( j, k=1 ···m)

r

∑
i=m+1

λi c jis = μ j λs ( j=1 ···m ; s=m+1 ···r).

Thus, the question is whether the last m(r − m) equations can be satisfied; then
always, the first m2 equations can be satisfied.

In order to settle this question, we form the m infinitesimal transformations:

Ek f =
r

∑
i=1

r

∑
j=1

c jki e j
∂ f
∂ei

=
r

∑
i=1
εki
∂ f
∂ei

(k=1 ···m)

which satisfy in pairs the relations:

[Ei, Ei+k] =
i+k−1

∑
s=1

ci, i+k,s Es f (i+k�m).

We observe that all c j,k,m+1, . . . , c jkr vanish for which j and k are smaller than
m+1, and from this we deduce that in E1 f , . . . ,Em f , all coefficients εk,m+1, . . . ,εkr

are free of e1, . . . ,em. The reduced infinitesimal transformations:

Ek f =
r

∑
i=m+1

εki
∂ f
∂ei

(k=1 ···m)
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in the variables em+1, . . . ,er therefore stand pairwise in the relationships:

[

Ei, Ek
]

=
i+k−1

∑
s=1

ci, i+k,s Es f (i+k�m)

and consequently, according to Proposition 4, p. 591, there is a system em+1 : · · · : er

which admits all infinitesimal transformations E1 f , . . . ,Em f . But this says nothing
but that it is possible to satisfy the equations:

r

∑
j=m+1

c jks e j = σk es (k=1 ···m ; s=m+1 ···r).

But these equations are exactly the same as the equations (12) found above and thus,
everything we wanted to show is effectively proved.

Theorem 107. If, in an r-term group X1 f , . . . ,Xr f , there is an m-term subgroup
X1 f , . . . ,Xm f having the specific composition:

[Xi, Xi+k] =
i+k−1

∑
s=1

ci, i+k,s Xs f (i<m, i+k�m),

then this m-term subgroup is always contained in at least one (m+ 1)-term sub-
group.4

§ 148. We now want to derive the above stated theorem thanks to conceptual
considerations, by interpreting, as in Chap. 16, the infinitesimal transformations
e1 X1 f + · · ·+ er Xr f of our group as points of an (r −1)-times extended space with
the homogeneous coordinates e1, . . . ,er.

Since the group X1 f , . . . ,Xm f , . . . ,Xr f is isomorphic with its adjoint group:
E1 f , . . . ,Em f , . . . ,Er f , then under the assumptions made, E1 f , . . . ,Em f satisfy
relations of the form:

[Ei, Ei+k] =
i+k−1

∑
s=1

ci, i+k,s Es f (i+k�m),

hence they generate a subgroup which, in the space ek, is represented by the (m−1)-
times extended plane manifold:

em+1 = 0, . . . , er = 0.

This plane manifold naturally admits the subgroup E1 f , . . . ,Em f , and the same ob-
viously holds true of the family of all m-times extended plane manifolds:

4 LIE, Archiv for Math., Vol. 3, pp. 114–116, Christiania 1878.
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em+1

em+1
=

em+2

em+2
= · · · = er

er

which pass through the manifold em+1 = 0, . . . , er = 0. But since the parameters
em+1 : · · · : er are transformed by a linear homogeneous group which is isomorphic
with the subgroup E1 f , . . . ,Em f (Chap. 23, Proposition 5, p. 479), then amongst
the m-times extended manifolds of our invariant family, there is at least one which
remains invariant by the subgroup E1 f , . . . ,Em f . This m-times extended manifold is
the image of an (m+1)-term subgroup of the group: X1 f , . . . ,Xr f (cf. Proposition 5,
p. 298).

The conceptual considerations just made, which have again led us to Theo-
rem 107, are in essence identical to the analytical considerations developed earlier.
However, the synthetical explanation is more transparent than the analytical one
[DOCH IST DIE SYNTHETISCHE BEGRÜNDUNG DURCHSICHTIGER ALS DIE

ANALYTISCHE].

For the results on the composition of transformation groups, it is actually ad-
visable to set as fundamental the interpretation of all infinitesimal transformations
e1 X1 f + · · ·+ er Xr f as the points of a space which is transformed by the linear ho-
mogeneous adjoint group. Thanks to an example, we will highlight the fruitfulness
and the simplicity of this method which shall also find multiple applications in the
third volume, and at the same time, we will derive a new remarkable statement.

We consider an r-term group X1 f , . . . ,Xr f , the infinitesimal transformations of
which are linked together by relations of the form:

[Xi, Xi+k] =
i+k−1

∑
s=1

ci, i+k,s Xs f .

The infinitesimal transformations E1 f , . . . ,Er f of the adjoint group then satisfy the
analogous equations:

[Ei, Ei+k] =
i+k−1

∑
s=1

ci, i+k,s Es f .

Consequently (Proposition 4, p. 591), the space ek contains at least one point
invariant by the adjoint group. Through every point of this sort, there passes at least
one invariant straight line M1, through every such straight line, there passes at least
one invariant plane M2, and so on.

Now, if we interpret the points ek as infinitesimal transformations, we see that
our r-term group: X1 f , . . . ,Xr f contains at least one invariant one-term subgroup;
next, that every invariant one-term subgroup is contained in at least one invariant
two-term subgroup; next, that every invariant two-term subgroup is contained in at
least one invariant three-term subgroup; and so on (cf. p. 291).

Thus, the following holds true.

Theorem 108. If an r-term group contains r independent infinitesimal transforma-
tions Y1 f , . . . ,Yr f which satisfy relations of the form:
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[Yi, Yi+k] =
i+k−1

∑
s=1

ci, i+k,s Ys f ,

then at the same time, it contains r independent infinitesimal transformations
Z1 f , . . . ,Zr f between which relations of the form:

[Zi, Zi+k] =
i+k−1

∑
s=1

ci, i+k,s Zs f ,

hold; then Z1 f , . . . ,Zi f generate for every i < r an i-term subgroup Gi and to be
precise, every Gi is invariant in every Gi+k and also in the group Y1 f , . . . ,Yr f itself.5

If we maintain the assumptions of this theorem and if we assume in addition
that by chance, several invariant subgroups, say Gρ1 , Gρ2 , . . . , Gρq are known, of
which each one comprises the one following next, then it becomes evident (cf. the
concluding remarks of § 146) that the subgroups Gi discussed in Theorem 108 can
be chosen in such a way that Gρ1 coincides with Gρ1 , that Gρ2 coincides with Gρ2 ,
. . . , that Gρq coincides with Gρq .

On the other hand, when an r-term group: X1 f , . . . ,Xr f of the specific compo-
sition considered here is presented, it is always possible to derive certain invariant
subgroups by differentiation. Indeed, all [Xi, Xk] generate a firstly derived invari-
ant subgroup with say r1 < r independent infinitesimal transformations. If, as in
Chap. 15, p. 278, we denote them by X ′

1 f , . . . ,X ′
r1

f , then all [X ′
i , X ′

k] generate a sec-
ondly derived invariant subgroup of the r-term group with, say, r2 < r1 independent
infinitesimal transformations X ′′

1 f , . . . ,X ′′
r2

f , and so on.
It is therefore possible to bring our group to a form U1 f , . . . ,Ui f , . . . ,Ur f such

that firstly for every i, the infinitesimal transformations U1 f , . . . ,Ui f generate an
invariant subgroup, such that secondly all [Ui,Uk] can be linearly deduced from
U1 f , . . . ,Ur1 f , such that thirdly all

[

[Ui,Uk], [Uα ,Uβ ]
]

can be linearly deduced from
U1 f , . . . ,Ur2 f , and so on.

—————–

5 LIE, Archiv for Math., Vol. 3, p. 112 and p. 113, Christiania 1878; cf. also Vol. IX, pp. 79–82.



Chapter 28
Approach [ANSATZ] towards the Determination
of All Finite Continuous Groups
of n-times Extended Space

It is unlikely that we are close to determining all finite continuous transformation
groups; indeed, it is even uncertain whether this will ever succeed. Therefore, in-
stead of the general problem of determining all finite continuous groups, one would
do well to first tackle more special problems which concern the determination of
certain categories of finite continuous groups. Namely, more special problems of
this kind are the following three:

Firstly the determination of all r-term groups in n variables.

Secondly the determination of all r-term groups in general.

Thirdly the determination of all finite continuous groups in n variables.

In Chap. 22, p. 439 sq., we have shown that the settlement of the first of these
problems, aside from executable operations, requires in any case only the integration
of simultaneous systems of ordinary differential equations. Moreover, we found that
the second of our three problems can be led back to the first one (Theorem 84,
p. 465).

By contrast, the third problem is not settled by means of the developments of
Chap. 22. Namely if n > 1, then for every value of r (how large can it be though?),
there are always r-term groups in n variables. For instance, if one chooses r func-
tions F1, . . . ,Fr of x1, . . . ,xn−1 so that between them, no linear relation of the form:

c1 F1 + · · ·+ cr Fr = 0

with constant coefficients holds, then the r infinitesimal transformations:

F1(x1, . . . ,xn−1)
∂ f
∂xn

, . . . , Fr(x1, . . . ,xn−1)
∂ f
∂xn

are mutually independent and pairwise exchangeable, hence they generate an r-term
group in the n variables x1, . . . ,xn.

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
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In spite of the important results of Chap. 22, the third of the indicated problems
therefore still awaits a solution. This is why we shall tackle this problem in the
present chapter and at least provide an approach towards its solution.

In the sequel, we decompose the problem of determining all groups of an n-times
extended space Rn into a series of individual problems which are independent of
each other. This is possible thanks to a natural division of the groups of Rn into
classes which are selected in such a way that the groups of some given class can
be determined without it being necessary to know any of the groups of the remain-
ing classes. Admittedly, we cannot indicate a general method which accomplishes
in every case the determination of all groups of a class; nonetheless, we provide
important statements about the groups belonging to a given class and on the other
hand, we develop a series of considerations which facilitate the determination of all
groups in a class; in the next chapter, this will be illustrated by special applications.
For these general discussions, we essentially restrict ourselves to transitive groups,
because our classification is of specific practical meaning precisely for the transitive
groups.

This is justified by the fact that later (in the third volume), for the determination
of all finite continuous groups in one, two or three variables, we will exploit only in
part the results of the present chapter. For the determination of the primitive groups
of a space, the process explained here is firmly effective; but not so for the deter-
mination of the imprimitive groups, where it is advisable to take a different route.
Every imprimitive group of Rn decomposes the space into an invariant family of
manifolds and transforms the manifolds of this family by means of an isomorphic
group in fewer than n variables. From this, it results that one would do well to first
tackle the determination of all imprimitive groups of Rn, when one already know
all groups in fewer than n variables. Applying this fundamental principle, we shall
undertake in Volume III the determination of all imprimitive groups of R2 and of
certain imprimitive groups of R3.

§ 149. Let:

Xk f =
n

∑
i=1
ξki(x1, . . . ,xn)

∂ f
∂xi

(k=1 ···r)

be a completely arbitrary r-term group of n-times extended space x1, . . . ,xn, or
briefly of Rn.

Under the guidance of Chap. 25, p. 527, we extend this group by viewing
x1, . . . ,xn as functions of an auxiliary variable t which is not transformed by our
group and by considering that the differential quotients: dxi/d t = x′

i are transformed
by the group. In the 2n variables: x1, . . . ,xn, x′

1, . . . ,x
′
n, we then obtain the extended

group:

Xk f =
n

∑
i=1
ξki(x)

∂ f
∂xi

+
n

∑
i=1

( n

∑
ν=1

∂ξki

∂xν
x′
ν

)
∂ f
∂x′

i
(k=1 ···r).
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As we know, this extended group indicates in which way the ∞2n−1 line elements:
x1, . . . ,xn, x′

1 : x′
2 : · · · : x′

n of the space x1, . . . ,xn are permuted with each other by
the group: X1 f , . . . ,Xr f (cf. p. 529).

Every point: x0
1, . . . ,x

0
n in general position remains invariant by a completely de-

termined number of independent infinitesimal transformations: e1 X1 f + · · ·+er Xr f
and to be precise, at least by r − n such transformations, and at most by r − 1. We
want to denote by r − q the number of these independent infinitesimal transfor-
mations and to suppose that: X0

1 f , . . . ,X0
r−q f are such independent infinitesimal

transformations; then they certainly generate an (r−q)-term subgroup of the group:
X1 f , . . . ,Xr f (cf. Chap. 12, p. 218 sq.).

In the series expansions of X0
1 f , . . . ,X0

r−q f with respect to the powers of the xi −
x0

i , all terms of order zero are naturally lacking and there appear only terms of first
or higher order:

X0
k f =

n

∑
ν=1

{ n

∑
i=1
αkiν(x0

1, . . . ,x
0
n)(xi − x0

i )+ · · ·
}
∂ f
∂xν

(k=1 ···r−q).

The group: X0
1 f , . . . ,X0

r−q f leaves the point x0
1, . . . ,x

0
n invariant, but it permutes

the line elements which pass through this point; how? this is what the associated
extended group shows:

X
0
k f =

n

∑
ν=1

{ n

∑
i=1
αkiν(x0

1, . . . ,x
0
n)(xi − x0

i )+ · · ·
}
∂ f
∂xν

+
n

∑
ν=1

{ n

∑
i=1
αkiν(x0

1, . . . ,x
0
n)x′

n + · · ·
}
∂ f
∂x′
ν

(k=1 ···r−q),

and it transforms the ∞2n−1 line elements of the space x1, . . . ,xn in exactly the same
way as the group: X0

1 f , . . . ,X0
r−q f . Hence, if one wants to restrict oneself to the line

elements which pass through the point x0
1, . . . ,x

0
n, and to disregard the remaining

ones, then under the guidance of Chap. 14, p. 244 sq., one has to leave out, in X
0
k f ,

all terms with the differential quotients of f with respect to x1, . . . ,xn and to make the
substitution: x1 = x0

1, . . . , xn = x0
n in the terms remaining. The so obtained reduced

infinitesimal transformations:

(1) Lk f =
1···n
∑
i, ν
αkiν(x0

1, . . . ,x
0
n)x′

i
∂ f
∂x′
ν

(k=1 ···r−q)

generate a linear homogeneous group in the n variables x′
1, . . . ,x

′
n; this group, which

is isomorphic with the group: X
0
1 f , . . . ,X

0
r−q f , and naturally also, with the group:

X0
1 f , . . . ,X0

r−q f , indicates in which way the two groups just mentioned transform
the ∞n−1 line elements: x′

1 : x′
2 : · · · x′

n through the point x0
1, . . . ,x

0
n.

Visibly, the linear homogeneous group: L1 f , . . . ,Lr−q f is perfectly determined by
the terms of first order in the power series expansions of X0

1 f , . . . ,X0
r−q f , and there-

fore, it contains as many essential parameters as the group: X0
1 f , . . . ,X0

r−q f contains
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independent infinitesimal transformations of first order out of which no transfor-
mation of second order, or of higher order, can be linearly deduced. From this, it
follows that one can set up the group: L1 f , . . . ,Lr−q f as soon as one knows how
many independent infinitesimal transformations of first order the group: X1, . . . ,Xr

contains in the neighborhood of x0
1, . . . ,x

0
n out of which no transformation of second

or higher order can be linearly deduced, and in addition, as soon as one knows the
terms of first order in the power series expansions of these infinitesimal transforma-
tions. Conversely, as soon as one knows the group: L1 f , . . . ,Lr f , one can indicate
the number of and the terms of those independent infinitesimal transformations of
first order in the group: X1 f , . . . ,Xr f out of which no transformation of second or
higher order in the xi − x0

i can be linearly deduced.

One can also derive the linear homogeneous group: L1 f , . . . ,Lr−q f in the follow-
ing way:

Since the question is about the way in which the directions through the fixed
point: x0

1, . . . ,x
0
n are transformed, one may substitute the group: X0

1 f , . . . ,X0
r−q f for

the following:

1···n
∑
i, ν
αkiν(x0

1, . . . ,x
0
n)(xi − x0

i )
∂ f
∂xν

(k=1 ···r−q)

which is obtained by leaving out all terms of second and higher order. Now, x1 −x0
1,

. . . , xn − x0
n can here be directly conceived as homogeneous coordinates of the line

elements through the point x0
1, . . . ,x

0
n, whence the group:

1···n
∑
i, ν
αkiν(x0

1, . . . ,x
0
n)(xi − x0

i )
∂ f

∂ (xν − x0
ν)

(k=1 ···r−q)

indicates how these line elements are transformed. This is consistent with the above.

We have seen that the r-term group: X1 f , . . . ,Xr f associates to every point
x0

1, . . . ,x
0
n in general position a completely determined linear homogeneous

group (1) which, however, turns out to be different for different points. We now
study how this linear homogeneous group behaves after the introduction of some
new variables.

In place of x1, . . . ,xn, we introduce the new variables:

(2) yi = y0
i +

n

∑
ν=1

aiν(xν − x0
ν)+ · · · (i=1 ···n)

which are ordinary power series of x1 − x0
1, . . . , xn − x0

n; as always, we assume on
the occasion that the determinant:

∑±a11 · · · ann

is different from zero, so that conversely, the xi are ordinary power series of y1 −y0
1,

. . . , yn − y0
n.
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In y1, . . . ,yn, let the X0
k be of the form:

Y 0
k f =

n

∑
ν=1

{ n

∑
i=1
βkiν (yi − y0

i )+ · · ·
}
∂ f
∂yν

(k=1 ···r−q).

Then it is clear that the group which comes into existence from X1 f , . . . ,Xr f after
the introduction of the new variables y1, . . . ,yn associates to the point y0

1, . . . ,y
0
n the

linear homogeneous group:

(1’) Lk f =
1···n
∑
i, ν
βkiν y′

i
∂ f
∂y′
ν

(k=1 ···r−q).

But on the other hand, it is clear (cf. Chap. 11, p. 209 sq.) that the terms of first
order:

1···r
∑
i, ν
βkiν (yi − y0

i )
∂ f
∂yν

of Y 0
k can be obtained from the terms of first order:

1···n
∑
i, ν
αkiν (xi − x0

i )
∂ f
∂xν

of X0
k f after the introduction of the new variables:

yi = y0
i +

n

∑
ν=1

aiν (xν − x0
ν) (i=1 ···n).

Consequently, it follows that the linear homogeneous group (1’) comes into exis-
tence from the linear homogeneous group (1) when one introduces in (1), by means
of the linear homogeneous transformation:

y′
i =

n

∑
ν=1

aiν x′
ν (i=1 ···n),

the new variables: y′
1, . . . ,y

′
n in place of the x′.

In this lies the reason why the linear homogeneous group (1) is essentially inde-
pendent from the analytic representation of the group: X1 f , . . . ,Xr f , that is to say,
from the choice of the variables; indeed, if, by means of a transformation (2), one
introduces new variables in the group: X1 f , . . . ,Xr f , then the linear homogeneous
group (1) converts into another linear homogeneous group (1’) which is conjugate
to (1) inside the general linear homogeneous group of Rn (cf. Chap. 16, p. 292).
Thanks to an appropriate choice of the constants aiν in the transformation (2), one
can obviously insure that the group (1’) associated to the point y0

k becomes an arbi-
trary group conjugate to (1).
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Now, we specially assume that the transformation (2) belongs to the group:
X1 f , . . . ,Xr f itself. In this case, (1’) is visibly the linear homogeneous group that
the group: X1 f , . . . ,Xr f associates to the point: y0

1, . . . ,y
0
n, and consequently, (1’)

comes from (1) when one replaces the x0 in the αkiν(x0
1, . . . ,x

0
n) by the y0. But since

the two groups (1) and (1’) are conjugate inside the general linear homogeneous
group of Rn, we have the following

Theorem 109. Every r-term group: X1 f , . . . ,Xr f of the space x1, . . . ,xn associates
to every point x0

1, . . . ,x
0
n in general position a completely determined linear homoge-

neous group of Rn which indicates in which way the line elements through this point
are transformed, as soon as the point is fixed. To those points which can be trans-
ferred to one another by means of transformations of the group: X1 f , . . . ,Xr f are
associated linear homogeneous groups which are conjugate inside the general lin-
ear homogeneous group of Rn. In particular, if the group: X1 f , . . . ,Xr f is transitive,
then to all points which lie in no invariant manifold, it associates linear homoge-
neous groups that are conjugate to each other inside the general linear homoge-
neous group.

The above theorem which recapitulates the most important result up to now, pro-
vides the classification of all groups of Rn announced in the introduction.

We first consider the transitive groups.
We include two transitive groups G and Γ in the same class when the linear

homogeneous group that G associates to an arbitrary point in general position is
conjugate to the linear homogeneous group that Γ associates to such an arbitrary
point. In the opposite case, we include G and Γ in different classes.

Thus, we differentiate as many classes of transitive groups of Rn as there are types
of subgroups of the general linear homogeneous group of Rn (cf. p. 292). Later, we
will see that to each one of such classes, there belongs in any case a transitive group
of Rn.

If two transitive groups G and Γ of the space x1, . . . ,xn belong to the same class,
then in the neighborhood of any point x0

1, . . . ,x
0
n in general position, they obviously

contain the same number of independent infinitesimal transformations of first order
in the xi − x0

i out of which no transformation of second or of higher order can be
linearly deduced. In addition, since one can always, by introducing new variables,
reshape Γ so that it associates to the point x0

1, . . . ,x
0
n exactly the same linear homo-

geneous group as does G, then in all cases, one can insure that the terms of first order
in the infinitesimal transformations of first order in question are the same for the two
groups. In addition, because they are transitive, G and Γ contain, in the neighbor-
hood of x0

1, . . . ,x
0
n, n independent infinitesimal transformations of zeroth order out

of which no transformation of first or higher order can be linearly deduced; by con-
trast, the numbers of terms and the initial terms of second, third, . . . orders can very
well be different for Γ and for G. Here lies the reason why two transitive groups of
the space x1, . . . ,xn which belong to the same class need not have the same number
of parameters.

We now turn ourselves to the intransitive groups.
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To every transitive group of Rn was associated a completely determined type of
linear homogeneous group of Rn; for the intransitive groups, this is in general not
the case. Every intransitive group G of Rn decomposes this space into a family of
∞n−q (0 < q < n) individually invariant q-times extended manifolds Mq, but so that
the points of every individual Mq are transformed transitively (cf. Chap. 13, p. 228).
From this, it follows that G always associates to all points of one and the same Mq

conjugate linear homogeneous groups, but not necessarily to the points of different
Mq.

In general, our ∞n−q Mq are gathered in continuous families so that conjugate
linear homogeneous groups are associated only to the points which belong to the
Mq in the same family. If each such family consists of exactly ∞m Mq, then the
whole Rn decomposes into ∞n−q+m (q+m)-times extended manifolds Mq+m and
to every Mq+m is associated a completely determined type of linear homogeneous
group, while to different Mq+m are associated different types too. So to our group
is associated a family of ∞n−q−m different types; the totality of all these types can
naturally be represented by certain analytic expressions with n − q − m essential
arbitrary parameters. We can also express this as follows: all the concerned types
belong to the same kind of types [TYPENGATTUNG] (cf. Chap. 22, p. 455).

Now, we include two intransitive groups of Rn in the same class when the same
kind of type of linear homogeneous group of Rn is associated to both of them.

§ 105. We can use the classification of all groups of Rn just described in order
to provide an approach [ANSATZ] to the determination of these groups. But we will
only undertake this for the transitive groups.

If we imagine the variables chosen so that the origin of coordinates: x1 = 0, . . . ,
xn = 0 is a point in general position, then every transitive group of Rn contains, in
the neighborhood of the origin of coordinates, n independent infinitesimal transfor-
mations of zeroth order in the xi:

T (0)
i =

∂ f
∂xi

+ · · · (i=1 ···n)

out of which no transformation of first or higher order can be linearly deduced.
Furthermore, every transitive group of Rn also contains in general certain in-

finitesimal transformations of first order in the xi that depend, according to the pre-
ceding, on the class to which the group belongs. Now, since a completely determined
class of transitive groups of Rn is associated to every type of linear homogeneous
group of this space, we want to choose any such type and to restrict ourselves to the
consideration of those transitive groups which belong to the corresponding class.

Let the m1-term group:

(3)
1···n
∑
i, ν
α jiν x′

i
∂ f
∂x′
ν

( j=1 ···m1 ; 0�m1 �n2)
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be a representative of the chosen type of linear homogeneous groups. Then accord-
ing to the above, every transitive group of Rn which belongs to the corresponding
class can, by means of an appropriate choice of variables, be brought to a form
such that in the neighborhood of: x1 = 0, . . . , xn = 0, it contains the following m1

independent infinitesimal transformations of first order:

T (1)
j =

n

∑
ν=1

{ n

∑
i=1
α jiν xi + · · ·

}
∂ f
∂xν

( j=1 ···m1).

These m1 infinitesimal transformations T (1)
j are constituted in such a way that out

of them, no transformation of second or higher order can be linearly deduced and
on the other hand, such that in every first order infinitesimal transformation of the
group, the terms of first order can be linearly deduced from the terms of first order

in T (1)
1 , . . . ,T (1)

m1 .
Besides, we already see now that in all circumstances, there is at least one tran-

sitive group which belongs to the class chosen by us; indeed, one such group can be
immediately indicated, namely the (n+m1)-term group:

∂ f
∂x1

, . . . ,
∂ f
∂xn

,
1···n
∑
i, ν
α jiν xi

∂ f
∂xν

( j=1 ···m1),

and it is obtained by leaving out all terms of first, second, and higher orders in the

Pi and in the T (1)
j .

Aside from the infinitesimal transformations of zeroth and first order already
indicated, every group which belongs to our class can contain, in the neighborhood
of: x1 = 0, . . . , xn = 0, a certain number of independent infinitesimal transformations
of second order, out of which no transformation of third or higher order can be
linearly deduced, and moreover, a certain number of infinitesimal transformations of
third, fourth, . . . orders; but according to Theorem 29, p. 206, there is always a whole
number s � 1 characteristic to the group of such a nature that the group contains
infinitesimal transformations of second, third, . . . , s-th orders, while by contrast, it
contains no transformations of orders (s+ 1) or higher.1 From this, it follows that
the totality of all groups of our class decomposes into a series of subclasses: to each
value of s there corresponds a subclass.

Since there are infinitely many whole numbers s which are � 1, the number of
subclasses just defined is infinitely large, though every subclass need not be repre-
sented effectively by a group. We will show how it can be decided for every individ-
ual value of s whether some groups belong to the concerned subclass; for this, the
question is fundamentally about values of s larger than 1 only, for we already know
that the subclass: s = 1 contains some groups.

Let s0 � 1 be an arbitrarily chosen but completely determined whole number; we
ask whether there are groups in our class which belong to the subclass: s = s0.

1 What we denoted by s in Theorem 29 is called here s+1.
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If there are groups of this sort, let for instance G be one of them. If, for k =
0,1,2, . . . ,s0, we omit from the infinitesimal transformations of order k of G all
terms of orders (k+1) and higher, then we obviously obtain independent infinites-
imal transformations which generate a certain group Γ and, to be precise, a group
which belongs to the subclass s = s0 just as G.

From this, it follows that the subclass: s = s0, as soon as it actually comprises
groups, contains at least one group Γ having the following specific constitution: Γ
is generated by the n+m1 infinitesimal transformations of zeroth and of first orders:

T
(0)
i =

∂ f
∂xi

, T
(1)
j =

1···n
∑
i, ν
α jiν xi

∂ f
∂xν

(i=1 ···n ; j=1 ···m1),

and in addition, by m2 independent infinitesimal transformations of second order,
by m3 independent ones of third order, . . . , by ms0 independent ones of s0-th order;
the general form of these transformations is:

T
(k)
ik

=
n

∑
ν=1

ξ (k)ik,ν(x1, . . . ,xn)
∂ f
∂xν

(k=2,3 ···s0 ; ik =1,2 ···mk),

where the ξ (k) are entire k-th order homogeneous functions of their arguments. At
the same time, it follows that to every group G which belongs to the subclass s= s0 is
associated a completely determined group Γ having the constitution just described.

By executable operations, it can be decided whether there is a group Γ which
possesses the properties just described; by means of executable operations, one can
even determine all possibly existing groups Γ .

In fact, the number of all possible systems: m2, m3, . . . , ms0 is at first finite.
Furthermore, if one has chosen such a system, one can always determine, in the
most general way and by means of algebraic operations, m2+ · · ·+ms0 independent
infinitesimal transformations:

T
(k)
ik

(k=2,3 ···s0 ; ik =1,2 ···mk)

which, together with the T
(0)
i , T

(1)
j generate an (n+m1 + · · ·+ms0)-term group.

Indeed, for that, one only needs to determine in the most general way the coefficients
in the functions ξ (k) so that every transformation:

[

T
(k)
ik
, T

(μ)
jμ

]

(k, μ=2,3 ···s0)

may be linearly deduced from:

T
(k+μ−1)
π (π=1 ···mk+μ−1),
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as soon as k + μ − 1 � s0, and vanishes identically as soon as k + μ − 1 > s0. It
is clear on the occasion that one obtains only algebraic equations for the unknown
coefficients.

In the preceding, it is shown that for every individual whole number s0 � 1, one
can determine by means of executable operations whether there are groups of our
class which belong to the subclass: s = s0. But we possess no general method which
accomplishes this for all whole numbers s > 1 in one stroke. Only in special cases,
for special constitutions of the linear homogeneous group (3) did we succeed in
recognizing how many and which ones of the infinitely many subclasses are repre-
sented by some groups. On the occasion, it happens that a maximum exists for the
number s, so that only the classes whose number s does not exceed a certain maxi-
mum really contain some groups (cf. Chap. 29); however, for the existence of such
a maximum, we do not have a general criterion. Nevertheless, we believe that it is
possible to set up such a criterion.

In consequence of that, we will restrict ourselves to explaining how one can find
all groups of our class which belong to a determined subclass, say in the subclass:
s = s0 � 1.

According to p. 607, to every group of the subclass: s = s0 is associated a com-
pletely determined group Γ of the same subclass with infinitesimal transformations
which have a specific form described above. Now, since all groups Γ of this sort
which belong to the subclass: s = s0 can be determined, as we know, by means of
executable operations, we need only to show in which way one can find the groups
of the subclass: s = s0 to which are associated an arbitrarily chosen concerned group
Γ .

Let:

(4)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T
(0)
i =

∂ f
∂xi

, T
(1)
j =

1···n
∑
ν , π

α jνπ xν
∂ f
∂xπ

=
n

∑
π=1

ξ (1)jπ (x1, . . . ,xn)
∂ f
∂xπ

T
(k)
ik

=
n

∑
ν=1

ξ (k)ik,ν(x1, . . . ,xn)
∂ f
∂xν

(i=1 ···n ; j=1 ···m1 ; ik =1 ···mk ; k=2 ···s0)

be the n+m1 + · · ·+msO independent infinitesimal transformations of an arbitrary
group amongst the discussed groups Γ , and let the composition of this group be
determined by the relations:

(5)

[

T
(k)
ik
, T

(μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π T
(k+μ−1)
π

(k, μ=0, 1 ···s0 ; ik =1 ···mk ; jμ =1 ···mμ ; m0 =n),

in which the c of the right-hand side are to be considered as known and in particular,
vanish as soon as k+μ−1 exceeds the number s0.

Every group G belonging to the subclass: s = s0 to which is associated the
group (4) contains n + m1 + · · ·+ ms0 parameters and is generated by the same
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number of independent infinitesimal transformations; these transformations have
the form:

(6)
T (0)

i =
∂ f
∂xi

+ · · · , T (k)
ik

=
n

∑
ν=1

ξ (k)ik,ν(x1, . . . ,xn)
∂ f
∂xν

+ · · ·

(i=1 ···n ; ik =1 ···mk ; k=1 ···s0),

where, generally, the omitted terms are of higher order than those written. The
question is nothing but to determine all groups, the infinitesimal transformations of
which have the form (6).

Evidently, the composition of a group with the infinitesimal transformations (6)
is represented by relations of the form:

(7)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

T (k)
ik

, T (μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π T (k+μ−1)
π

+
s0

∑
τ=k+μ

1···mτ
∑
πτ

Cik jμ πτ T (τ)
πτ

(k, μ=0, 1 ···s0 ; ik =1 ···mk ; jμ =1 ···mμ ; m0 =n).

Here, the C are certain constants which, as is known, satisfy relations derived from
the Jacobi identity (cf. Chap. 9, p. 184 sq.).

We imagine that the concerned relations between the C are set up and that the
most general system of C which satisfies them is computed. Since all the relations
are algebraic, this computation requires only executable operations. In addition, the
form of the relations (7) can be simplified by replacing every infinitesimal transfor-

mation of k-th order: T (k)
ik

by another transformation of order k:

(8)
T
(k)
ik

= T (k)
ik

+
s0

∑
τ=k+1

1···mτ
∑
πτ

Pik πτ T (τ)
πτ

(ik =1 ···mk ; k=0, 1 ···s0),

where it is understood that the P are arbitrary numerical quantities. Indeed, if one
introduces the T in place of the T , one obtains in place of (7) relations of the form:

(7’)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

T
(k)
ik
, T

(μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π T
(k+μ−1)
π

+
s0

∑
τ=k+μ

1···mτ
∑
πτ

Cik jμ πτ T
(τ)
πτ ,

where, between the C and the C, a connection holds which can be easily indicated.
Now, one will provide the P, which are perfectly arbitrary in order that the coeffi-
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cients C receive the simplest possible numerical values; thanks to this, one achieves
a certain simplification.

If, in the equations (8), all P are chosen fixed, then we say that the infinitesimal

transformation of k-th order: T(k)
ik

is normalized.
If one knows all systems of C which satisfy the relations mentioned a short while

ago, then one therefore knows at the same time all compositions that a group of
the form (6) can possibly have. Still, the question is only whether, for each of the
so defined compositions, there are groups of the form (6) which have precisely the
composition in question, and how these groups can be found, in case they exist.

Thus, we imagine that an arbitrary system of values C is given in the equations (7)
which satisfies the relations discussed, so that the equations (7) represent a possible
composition of an (n+m1 + · · ·+ms0)-term group (cf. p. 309).

First, we easily see that if there are groups of the form (6) which have the com-
position (7), then they are all similar to each other, whence they all belong to the
same type of transitive groups of the space x1, . . . ,xn (Chap. 22, p. 443).

In fact, if we have two groups G and G′ which both possess the form (6) and
the composition (7), then these two groups can obviously be related to each other
in a holoedrically isomorphic way thanks to a choice of their infinitesimal transfor-
mations so that the largest subgroup of G which leaves invariant the point: x1 = 0,
. . . , xn = 0 corresponds to the largest subgroup of G′ which fixes this point. Now,
since under the assumptions made, the point: x1 = 0, . . . , xn = 0 is a point in general
position, then according to Theorem 76, p. 434, these two transitive groups G and
G′ are similar to each other. But this is what was to be proved.

Moreover, we will show that there are always groups of the form (6) which pos-
sess the composition (7).

At the outset we determine in a space RN of N = n+m1 + · · ·+ms0 dimensions
a simply transitive group:

(9) Wi f , W (k)
ik

f (i=1 ···n ; k=1 ···s0 ; ik =1 ···mk)

of the composition (7); according to Chap. 22, pp. 439–442, this is always possible
and this requires at most the integration of ordinary differential equations. Then, we
choose any manifold M of RN which admits the (N −n)-term subgroup:

(10) W (k)
ik

f (k=1 ···s0 ; ik =1 ···mk),

of the group (9), but no larger subgroup; this property is possessed by every charac-
teristic manifold (p. 116) of the (N −n)-term complete system:

W (k)
ik

f = 0 (k=1 ···s0 ; ik =1 ···mk).

Through the ∞N transformations of the group (9), M takes precisely ∞n different
positions whose totality forms an invariant family. If we characterize the individual
manifolds of this family by means of n coordinates x1, . . . ,xn, we obtain a transitive
group in x1, . . . ,xn:
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(11) X (0)
i f , X (k)

ik
f (i=1 ···n ; k=1 ···s0 ; ik =1 ···mk)

that indicates in which way the manifolds of our invariant family are permuted with
each other by the group (9). This new group is isomorphic with the group (9) so that
relations of the form:

(7”)

[

X (k)
ik

, X (μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π X (k+μ−1)
π f +

s0

∑
τ=k+μ

1···mτ
∑
πτ

Cik jμ πτ X (τ)
πτ f

(k, μ=0, 1 ···s0 ; ik =1 ···mk ; jμ =1 ···mμ ; m0 =n)

hold (cf. Theorem 85, p. 489).
It can easily be proved that the infinitesimal transformations of the group (11)

receive the form (6) after an appropriate choice of the variables x1, . . . ,xn.
In order to conduct the concerned proof, we imagine above all that the variables

are chosen so that M receives the coordinates: x1 = 0, . . . , xn = 0. Then obviously,
all infinitesimal transformations:

X (k)
ik

f (k=1 ···s0 ; ik =1 ···mk)

in the xν are of first or higher order, while by contrast: X0
1 f , . . . ,X0

n f are independent
infinitesimal transformations of zeroth order, out of which no transformation of first
or higher order can be linearly deduced; this last fact follows from the transitivity of
the group (11). It is therefore clear that, notwithstanding our assumption just made,
we can choose the variables x1, . . . ,xn so that X0

1 f , . . . ,X0
n f receive the form:

X (0)
i f =

∂ f
∂xi

+ · · · (i=1 ···n).

After these preparations, we want to determine the initial terms in the power

series expansions of the m1 infinitesimal transformations X (1)
j f .

We have:

X (1)
j f =

n

∑
ν=1

ζ (1)jν (x1, . . . ,xn)
∂ f
∂xν

+ · · · ( j=1 ···m1),

where it is understood that the ζ (1) are linear homogeneous functions of their argu-
ments. If we insert this expression in the n relations:

[

X (0)
i , X (1)

j

]

=
n

∑
π=1

ci jπ X (0)
π f +

s0

∑
τ=1

1···mτ
∑
πτ

Ci jπτ X (τ)
πτ f (i=1 ···n)

and if we compare the terms of zeroth order in the two sides, we find:

n

∑
ν=1

∂ζ (1)jν

∂xi

∂ f
∂xν

=
n

∑
π=1

ci jπ
∂ f
∂xπ

(i=1 ···n),
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hence all first order differential quotients of ζ (1)jν are completely determined, and
because of the known equation:

n

∑
i=1

xi
∂ζ (1)jν

∂xi
= ζ (1)jν ,

ζ (1)ν itself is also completely determined. Now, since ξ (1)jν obviously satisfies all

differential equations which we have just found, it follows that: ζ (1)jν = ξ (1)jν , and
consequently:

X (1)
j f =

n

∑
ν=1

ξ (1)jν (x1, . . . ,xn)
∂ f
∂xν

+ · · · ( j=1 ···m1).

In the same way, we find generally:

X (k)
ik

f =
n

∑
ν=1

ξ (k)ik ν(x1, . . . ,xn)
∂ f
∂xν

+ · · · (k=1 ···s0 ; ik =1 ···mk),

or in other words: we find that the infinitesimal transformations of the group (11)
have the form (6). Evidently, here lies the reason why the N infinitesimal transfor-
mations (11) are mutually independent, so that the group (11) is N-term and has the
same composition as the group (9).

Since, as we have seen just now, the group (11) is N-term, the group:

(9) W (0)
i f , W (k)

ik
f (i=1 ···n ; k=1 ···s0 ; ik =1 ···mk)

can contain no invariant subgroup which belongs to the group:

(10) W (k)
ik

f (k=1 ···s0 ; ik =1 ···mk)

(Theorem 85, p. 489). But one can also see directly that there is no such invariant
subgroup of the group (9); in this way, by taking Theorem 85 into consideration,
one obtains a new proof of the fact that the group (11) has N essential parameters.

Every invariant subgroup of (9) which belongs to the group (10) obviously con-
tains an infinitesimal transformation:

W f =
mp

∑
τ=1

ρτW (p)
τ f +

s0

∑
k=p+1

1···mk

∑
τk

στk W (k)
τk

f (p�1),

in which not all the mp quantities ρτ vanish. Simultaneously with W f , there also
appear in g the n infinitesimal transformations:

[W 0
1 ,W], · · · , [W 0

n ,W] ;
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consequently, as one sees from the composition (7) of the group (9), there surely
appears in g a transformation of the form:

W′ f =
mp−1

∑
τ=1

ρ ′
τW (p−1)

τ f +
s0

∑
k=p

1···mk

∑
τk

σ ′
τk

W (k)
τk

f ,

in which not all the mp−1 quantities ρ ′
τ are zero. In this way, one realizes finally

that g must contain an infinitesimal transformation which does not belong to the
group (10); but this contradicts the assumption that g should be contained in the
group (10), hence there is no group g having the supposed constitution.

The results found up to now provide the

Theorem 110. In the variables x1, . . . ,xn, let a transitive group be presented which,
in the neighborhood of the point: x1 = 0, . . . , xn = 0 in general position contains the
following infinitesimal transformations: firstly, n zeroth order independent transfor-
mations of the form:

T
(0)
1 =

∂ f
∂x1

, . . . , T
(0)
n =

∂ f
∂xn

,

and secondly, for every k = 1,2, . . . ,s, mk > 0 independent k-th order transforma-
tions of the form:

T
(k)
ik

=
n

∑
ν=1

ξ (k)ik ν(x1, . . . ,xn)
∂ f
∂xν

(k=1 ···s ; ik =1 ···mk),

where the ξ (k) denote completely homogeneous functions of order k. Also, let the
composition of the group be determined by the relations:

[

T
(k)
ik
, T

(μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π T
(k+μ−1)
π

(k, μ=0, 1 ···s ; ik =1 ···mk ; jμ =1 ···mμ ; m0 =n),

where the c in the right-hand side all vanish as soon as k+ μ − 1 is larger than s.
Then one finds in the following way all (n+m1+ · · ·+ms)-term groups of the space
x1, . . . ,xn, the infinitesimal transformations of which are of the form:

(6)
T (0)

i =
∂ f
∂xi

+ · · · , T (k)
ik

=
n

∑
ν=1

ξ (k)ik,ν(x1, . . . ,xn)
∂ f
∂xν

+ · · ·

(i=1 ···n ; ik =1 ···mk ; k=1 ···s),

in the neighborhood of: x1 = 0, . . . , xn = 0.
One determines the constants C in the equations:
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(7)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

T (k)
ik

, T (μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π T (k+μ−1)
π

+
s0

∑
τ=k+μ

1···mτ
∑
πτ

Cik jμ πτ T (τ)
πτ

(k, μ=0, 1 ···s ; ik =1 ···mk ; jμ =1 ···mμ ; m0 =n)

in the most general way so that they satisfy the relations following from the Jacobi
identity. If this takes place, then the equations (7) represent all compositions that
the sought groups may have. To every individual composition amongst these com-
positions correspond groups of the form (6) which are all similar to each other and
which can be found in any case by integrating ordinary differential equations.2

§ 151. In the preceding sections, we have reduced the problem of determining
all transitive groups of Rn to the following four problems:

A. To find all types of linear homogeneous groups in n variables.

If one has solved this problem, then in the neighborhood of any point in gen-
eral position, one knows the possible forms of the initial terms in all infinitesimal
transformations of first order which can appear in a transitive group of Rn.

B. Assuming that, in the neighborhood of a point in general position, the ini-
tial terms of the first order infinitesimal transformations of a transitive group of Rn

are given, to determine all possible forms of the initial terms in the infinitesimal
transformations of second and higher order.

C. To determine all compositions that a transitive group of Rn can have, a group
which, in the neighborhood of a point in general position contains certain infinites-
imal transformations of first, second, . . . , s-th order with given initial terms, and
which by contrast, contains no transformation of (s+1)-th or higher order.

D. Assuming that one of the compositions found in the preceding problem is
given, to set up a transitive group which has this composition and whose infinites-
imal transformations of first, . . . , s-th order have the form given in the preceding
problem.

If one knows one group having the constitution demanded in the last problem,
then one knows all such groups, since these are, according to Theorem 110, similar
to each other.

The settlement of the first amongst these four problems requires only executable,
or put more precisely: only algebraic operations (cf. Chap. 12, p. 222 and Chap. 23,
p. 499 sq.). By contrast, we have not succeeded in reducing problem B to a finite
number of executable operations. Problem C again requires only algebraic opera-
tions. Lastly, as we have shown in the previous section, problem D can in any case
be settled by integrating ordinary differential equations.

2 LIE, Archiv for Math. Vol. X, pp. 381–389. 1885.
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At present, we want to consider a special case which presents a characteristic
simplification and we want to carry it out in detail.

Assume that the (n+m1 + · · ·+ms)-term group:

(12)
T
(0)
i =

∂ f
∂xi

, T
(k)
ik

=
n

∑
ν=1

ξ (k)ik ν(x1, . . . ,xn)
∂ f
∂xν

(i=1 ···n ; k=1 ···s ; ik =1 ···mk)

which we imagined as given in Theorem 110, p. 613, contains amongst its first-order
infinitesimal transformations:

e1 T
(1)
1 + · · ·+ em1 T

(1)
m1

in particular one of the form:

x1
∂ f
∂x1

+ · · ·+ xn
∂ f
∂xn

and let, say, T
(1)
m1 have this form. We will show that under this assumption, it is

always possible to determine all transitive (n+m1 + · · ·+ms)-term groups of the
space whose transformations, in the neighborhood of the point: x1 = 0, . . . , xn = 0
in general position, have the form:

(12’)
T (0)

i =
∂ f
∂xi

+ · · · , T (k)
ik

=
n

∑
ν=1

ξ (k)ik ν(x1, . . . ,xn)
∂ f
∂xν

+ · · ·

(i=1 ···n ; k=1 ···s ; ik =1 ···mk).

For:

T (1)
m1 =

n

∑
ν=1

xν
∂ f
∂xν

+ · · · ,

we write U , a notation which we shall also employ on later occasions.
First, it is clear that between U and the infinitesimal transformations of order s

of a group of the form (12’), the following relations hold:

[

T (s)
π ,U

]

= (1− s)T (s)
π (π=1 ···ms).

In the same way, between U and the infinitesimal transformations of order (s−1),
there are relations of the form:

[

T (s−1)
j ,U

]

= (2− s)T (s−1)
j +

ms

∑
π=1

Kjπ T (s)
π ( j=1 ···ms−1),

where the K are unknown constants. In order to simplify these relations, we set (cf.
p. 609):
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T
(s−1)
j = T (s−1)

j +
ms

∑
π=1

P jπ T (s)
π ( j=1 ···ms−1),

and we find:

[

T
(s−1)
j , U

]

= (2− s)T(s−1)
j +

ms

∑
π=1

(

Kjπ +(1− s−2+ s)P jπ
)

T (s)
jπ ,

hence when we choose the P in an appropriate way:

[

T
(s−1)
j , U

]

= (2− s)T(s−1)
j ( j=1 ···ms−1).

As a result, the infinitesimal transformations of order (s −1) of the group (12’) are
normalized.

In exactly the same way, we can normalize the infinitesimal transformations of
order (s−2) by setting:

T
(s−2)
j = T (s−2)

j +
ms−1

∑
π=1

P′
jπ T

(s−1)
π +

ms

∑
π=1

P′′
jπ T (s)

π

( j=1 ···ms−2),

and dispose appropriately of the P′ and of the P′′; in this way, we get:

[

T
(s−2)
j , U

]

= (3− s)T(s−2)
j ( j=1 ···ms−2).

By proceeding similarly, we obtain finally, when we generally write T for T:

(13)
[

T (k)
ik

, U
]

= (1− k)T (k)
ik

(k=0, 1 ···s ; ik =1 ···mk ; m0 =n).

As a result, the infinitesimal transformations of zeroth, first, up to s-th order are
all normalized, except for U itself.

Now, we recall that because of the composition of the group (12’), between the
T , there are relations of the form:

(14)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

T (k)
ik

, T (μ)
jμ

]

=
mk+μ−1

∑
π=1

cik jμ π T (k+μ−1)
π

+
s

∑
τ=k+μ

1···mτ
∑
πτ

Cik jμ πτ T (τ)
πτ

(k, μ=0, 1 ···s ; ik =1 ···mk ; jμ =1···mμ ; m0 =n),

in which the c actually vanish as soon as k+ μ − 1 > s. In order to determine the
unknown constants C, we form the Jacobi identity:

[

[T (k)
ik

, T (μ)
jμ

], U
]

+
[

[T (μ)
jμ

,U ], T (k)
ik

]

+
[

[U, T (k)
ik

], T (μ)
jμ

]

= 0,
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which, because of (13), obviously takes the form:

[

[T (k)
ik

, T (μ)
jμ ], U

]

= (2− k −μ)[T (k)
ik

, T (μ)
jμ

]

.

Here, if we insert the expression (14) and if we use once more the equations (13),
we get:

mk+μ−1

∑
π=1

cik jμ π (2− k −μ)T (k+μ−1)
π +

s

∑
τ=k+μ

1···mτ
∑
πτ

Cik jμ πτ (1− τ)T (τ)
πτ

= (2− k −μ)[T (k)
ik

, T (μ)
jμ

]

,

or, because the T are independent infinitesimal transformations:

Cik jμ πτ (τ+1− k −μ) = 0 (k+μ�τ�s).

From this, it follows that all the C vanish.
Thus, under the assumption made, all groups of the form (12’) have the same

composition as the group (12), hence according to Theorem 110, p. 613, they all are
similar to each other and similar to the group (12).

In consequence of this, we can say:

Theorem 111. If a transitive (n + m1 + · · · + ms)-term group in the variables
x1, . . . ,xn contains, in the neighborhood of the point in general position: x1 = 0,
. . . , xn = 0, aside from the n independent infinitesimal transformations of zeroth
order in the x:

Ti =
∂ f
∂xi

+ · · · (i=1 ···n),

mk, independent infinitesimal transformations of order k, for k = 1,2, . . . ,s, out of
which no transformation of order k+1 or higher can be linearly deduced, and if it
in particular contains a first order infinitesimal transformation of the form:

n

∑
ν=1

xν
∂ f
∂xν

+ · · · ,

then thanks to the introduction of new variables x′
1, . . . ,x

′
n, it can be brought to the

form:

Ti = Ti =
∂ f
∂x′

i
, T (k)

ik
= T

(k)
ik

=
n

∑
ν=1

ξ (k)ik ν(x
′
1, . . . ,x

′
n)
∂ f
∂x′
ν

(i=1 ···n ; k=1 ···s ; ik =1 ···mk) ;

here, the ξ (k) are the entire homogeneous functions of order k which determine the
terms of order k in the infinitesimal transformations of order k:

T (k)
ik

=
n

∑
ν=1

ξ (k)ik ν(x1, . . . ,xn)
∂ f
∂xν

+ · · · (k=1 ···s ; ik =1 ···mk)
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of the group.

—————–



Chapter 29
Characteristic Properties of the Groups
Which are Equivalent to Certain Projective
Groups

In the preceding chapter, we gave a classification of all transitive groups:
X1 f , . . . ,Xr f of the n-fold extended space x1, . . . ,xn. We chose a point x0

1, . . . ,x
0
n in

general position and considered all infinitesimal transformations of the group which
leave this point at rest, hence all transformations whose power series expansion
with respect to the xi − x0

i have the form:

n

∑
i,ν=1

α jiν(x0
1, . . . ,x

0
n) · (xi − x0

i )
∂ f
∂xν

+ · · · ( j=1 ,2, ...),

where the omitted terms are of second or of higher order.1 (Translator’s note: Such
terms are systematically written “+ · · ·” by Engel and Lie.) Then the linear homo-
geneous group:

L j f =
n

∑
i,ν=1

α jiν(x0
1, . . . ,x

0
n)x′

i
∂ f
∂x′
ν

( j=1 ,2, ...)

showed in which way the ∞n−1 line-elements x′
1 : x′

2 : · · · : x′
n through the point

x0
1, . . . ,x

0
n are transformed by those transformations of the group: X1 f , . . . ,Xr f ,

which leave this point invariant.
In the present chapter, to begin with, we solve the problem of determining all

transitive groups: X1 f , . . . ,Xr f of the space x1, . . . ,xn for which the linear homoge-
neous group: L1 f ,L2 f , . . . assigned to a point in general position coincides either
with the general linear homogeneous group or with the special linear homogeneous
group.1 Then we obtain the curious result that every such group: X1 f , . . . ,Xr f is

1 It is easy to see that a group of Rn which assigns the general or the special linear homogeneous
group to a point x0

1, . . . ,x
0
n in general position is always transitive. Indeed, in the neighborhood

of x0
1, . . . ,x

0
n, the group certainly comprises an infinitesimal transformation of zeroth order in the

xi − x0
i , hence a transformation: ∑ αi pi + · · · , in which not all αi are equally null. In addition, the

group surely comprises n(n−1) first order transformations of the form:

(xi − x0
i ) pk + · · · (i,k=1 ···n; i �=k).

c© Springer-Verlag Berlin Heidelberg 2015
S. Lie, Theory of Transformation Groups I,
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equivalent either to the general projective group, or to the general linear group, or
to the special linear group of the space x1, . . . ,xn.

In addition, we show in the last section of the chapter that in the space x1, . . . ,xn

there is no finite continuous group which can transfer m > n+ 2 arbitrarily chosen
points in general position to just the same kind of m points; at the same time, we
show that the general projective group and the groups that are equivalent to it are
the only groups of the space x1, . . . ,xn which can transfer n+ 2 arbitrarily chosen
points in general position to just the same kind of n+2 points.

§ 152. Every transitive group of Rn comprises, in the neighborhood of the point:
x0

1, . . . ,x
0
n in general position, n independent infinitesimal transformations of zeroth

order in the xi − x0
i :

p1 + · · · , p2 + · · · , . . . , pn + · · · ,

where, according to the notation fixed on p. 555, pi is written in place of ∂ f
∂xi

.

Now, if G assigns to the point x0
1, . . . ,x

0
n the general linear homogeneous group as

group: L1 f ,L2 f , . . . , then it comprises in the neighborhood of x0
1, . . . ,x

0
n the largest

possible number, namely n2, of such infinitesimal transformations of first order in
x1 − x0

1, . . . ,xn − x0
n, out of which no transformation of second or of higher order

can be deduced by linear combination. These n2 first order transformations have the
form:

(xi − x0
i ) pk + · · · (i,k=1 ···n).

If, on the other hand, G assigns to the point x0
1, . . . ,x

0
n the special linear homogeneous

group, then it comprises, in the neighborhood of the point, only n2 −1 independent
first order infinitesimal transformations out of which no transformation of second
or of higher order can be deduced by linear combination; the same transformations
have the form:

(xi − x0
i ) pk + · · · , (xi − x0

i ) pi − (xk − x0
k) pk + · · ·

(i,k=1 ···n ; i≷k).

Therefore, when we choose the point x0
1, . . . ,x

0
n as the origin of coordinates, we

can enunciate as follows the problem indicated in the introduction to this chapter:

In the variables x1, . . . ,xn, to seek all groups X1 f , . . . ,Xr f , or shortly G, which,
in the neighborhood of the point in general position: x1 = 0, . . . ,xn = 0, comprise
the following infinitesimal transformations of zeroth and of first order: either the
n+n2:

pi + · · · , xi pk + · · · (i,k=1 ···n);

or the n+n2 −1:

If one forms a Combination [bracketing] of the latter with ∑ αi pi + · · · , then one recognizes that n
transformations of the form: p1 + · · · , . . . , pn + · · · appear, whence the group is actually transitive.
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pi + · · · , xi pk + · · · , xi pi − xk pk + · · ·
(i,k=1 ···n ; i≷k).

To begin with, the two cases can be treated simultaneously; one must only, as
long as possible, disregard the fact that in the first case, aside from the transforma-
tions which occur in the second case, one transformation appears: ∑i xi pi.

The group X1 f , . . . ,Xr f comprises infinitesimal transformations whose expan-
sion in power series begins with terms of second, or of relatively higher order in the
x, shortly, infinitesimal transformations of second or higher order, respectively. We
search for the highest order number2 (Translator’s note: Actually, s will be shown to
be equal to 2, not more, and the corresponding transformations of second order to
be necessarily of the form xi(x1 p1 + · · ·+xn pn)+ · · · , i = 1, . . . ,n.) s of the existing
transformations and we even look for the determination of such transformations.

We can assume this number s to be bigger than 1, since we already know all the
first order infinitesimal transformations that appear. Let

K = ϑ1 p1 + · · ·+ϑn pn + · · ·

be an s-th order infinitesimal transformation of the group; at the same time, the
ϑ ’s denote completely homogeneous functions of order s in x1, . . . ,xn, while the
omitted terms are of higher order. Obviously, ϑ1, . . . ,ϑn do not all vanish, because
there should not be given any infinitesimal transformation ∑ ck Xk f whose power
series expansion starts with terms of (s+1)-th or of higher order; so we can assume
in any case that ϑ1 is not identically null.

Let the lowest power of x1 which appears in ϑ1 be the α1-th and let

xα1
1 xα2

2 · · ·xαn
n (α1 + ···+αn =s)

be a term of ϑ1 with nonvanishing coefficient. Now, we form a Combination of the
transformation x1 p2 + · · · with K, and we form a Combination of the result once
more with x1 p2 + · · · , and so on — in total α2 times. We form a Combination of
the s-th order infinitesimal transformation obtained this way with x1 p3 + · · · , and
we then proceed α3 times, one after the other, etc., and finally, we apply αn times
x1 pn+ · · · one after the other. In this way, we finally see that a transformation of the
form:

K′ = xs
1 p1 +ϑ ′

2 p2 + · · ·+ϑ ′
n pn + · · ·

belongs to our group.
All remaining terms of ϑ1 are canceled; indeed, the same terms also contain

either the power xα1
1 or a higher one, and in both cases, the power of a variable xi (i>

1) is certainly not the αi-th, but a lowest one; consequently, the corresponding term
vanishes by forming a Combination αi times with x1 pi + · · · . As always, the terms
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of (s+1)-th and of higher order are also left out of consideration here3 (Translator’s
note: Here is an equivalent reformulation. Adapting the notation slightly, let ϑ1 =
∑|α|=s Aα xα and choose β ∈N

n with |β |= s so that β1 = inf{α1 : Aα �= 0}. For any
other monomial Aα xα with Aα �= 0 we have either α1 > β1 or α1 = β1. In the first
case, since α1+α2+ · · ·+αi+ · · ·+αn = β1+β2+ · · ·+βi+ · · ·+βn = s, there must
exist an i with 2 � i � n such that αi < βi. In the second case, namely if α1 = β1,
then α2+ · · ·+αi+ · · ·+αn = β2+ · · ·+βi+ · · ·+βn, and again, there must exist an
i with 2 � i � n such that αi < βi, because otherwise, α2 � β2, . . . , αn � βn together
with |α| = |β | implies α2 = β2, . . . , αn = βn, hence α = β , a contradiction.) (cf.
Chap. 11, Theorem 30, p. 207).

In order to determine the form of the transformation K′ more precisely, we make
use of an auxiliary proposition which can be exploited several times with benefit.

Proposition 1. If the infinitesimal transformations C f and B1 f + · · ·+Bm f belong
to a group and if, furthermore, there are m relations of the form [C, Bk] = εk Bk f ,
where the constants εk are all distinct from one another, then the group comprises
all m infinitesimal transformations B1 f , . . . ,Bm f .

The proof of this auxiliary proposition is very simple. Aside from B1 f + · · ·+
Bm f , the group obviously comprises the following infinitesimal transformations:

[

C, B1 + · · ·+Bm
]

= ε1 B1 f + · · ·+ εm Bm f
[

C, ε1 B1 + · · ·+ εm Bm
]

= ε2
1 B1 f + · · ·+ ε2

m Bm f

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[

C, εm−2
1 B1 + · · ·+ εm−2

m Bm
]

= εm−1
1 B1 f + · · ·+ εm−1

m Bm f .

But since the determinant:
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 · · · 1
ε1 · · · εm
...

. . .
...

εm−1
1 · · · εm−1

m

∣
∣
∣
∣
∣
∣
∣
∣
∣

=∏
i>k

(εi − εk)

does not vanish by assumption, each individual transformation Bk f can be deduced,
by multiplication with appropriate constants and by subsequent addition, from the
just found transformations. Thus the proposition is proved.

In order to apply the same proposition, we now form a Combination of the trans-
formation K′, written in detail:

xs
1 p1 +

{

∑Aβ xβ1
1 · · ·xβn

n

}

p2 + · · ·+{

∑Nν xν1
1 · · ·xνn

n

}

pn + · · ·
(β1 + ···+βn = ···=ν1 + ···+νn =s)

with the transformation:
x1 p1 − xi pi + · · · ,

on the understanding that i is any of the numbers 2, . . . ,n. Then one obtains:
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(s−1)xs
1 p1 +

{

∑Aβ (β1 −βi + ε2i)xβ1
1 · · ·xβn

n

}

p2 + · · ·+
+

{

∑Nν (ν1 −νi + εni)xν1
1 · · ·xνn

n

}

pn + · · · ,
where εii has the value 1, while all εki (i �= k) vanish. Therefore the s-th order terms of
the infinitesimal transformation K′ have the form B1 f + · · ·+Bm f discussed above,
where the Bk f are reproduced through Combination with x1 p1 − xi pi, but with dis-
tinct factors.

Now, since from the expansion in power series of our group a new groupΓ can be
derived in such a way that in each power series expansion, only the terms of lowest
order are kept (Chap. 28, p. 607), then our Proposition 1 shows that each individual
Bk f belongs to the group Γ . Next, there is evidently a Bk f which embraces the term
xs

1 p1 and hence is reproduced with the factor s−1. The remaining terms of this Bk f
are defined through the equations:4 (Translator’s note: Here is an enlightenment.
The derived homogeneous group Ĝ ≡ Γ contains the infinitesimal transformations
D̂i = x1 p1 − xi pi, for i = 1, . . . ,n, and also:

K̂′ = xs
1 p1 +

{

∑Aβ xβ
}

p2 + · · ·+{

∑Nγ xγ
}

pn,

all the remainders being suppressed (one must have a group for Proposition 1 to
apply). At first, for fixed i, one looks at the Lie bracket, joint with D̂i, of each mono-
mial homogeneous infinitesimal transformation

{

Bγ xγ
}

pk, k � 2, |γ| = s, which
appears in K̂′ and which is distinct from xs

1 p1:

[

D̂i,
{

Bγ xγ
}

pk
]

= (γ1 − γi + εki)
{

Bγ xγ
}

pk.

One then collects all the monomials
{

Bγ xγ
}

pk of K̂′ having the same reproducing
factor γ1 −γi+εki = s−1 as the infinitesimal transformation xs

1 p1, and one calls B̂i
1

the corresponding sum (it depends on i), which is a part of K̂′. On the other hand,
there are finitely many other values of the integers γ1 − γi + εki, say m(i), and one
decomposes accordingly K̂′ = B̂i

1 + B̂i
2 + · · ·+ B̂i

m(i). Then Proposition 1 yields that

B̂i
1 belongs to Ĝ. Other B̂k

1 are omitted.
Let i′ �= i be another integer and consider bracketing with D̂i′ . The same reasoning

applied to B̂i
1 (instead of K̂′) yields a decomposition B̂i

1 = B̂i,i′
1,1 + B̂i,i′

1,2 + · · ·+ B̂i,i′
1,m(i′)

with the first term B̂i,i′
1,1 collecting monomials of B̂i

1 that are reproduced with the

factor s − 1; clearly, xs
1 p1 still belongs to B̂i,i′

1,1. Proposition 1 yields again that B̂i,i′
1,1

belongs to Ĝ. By induction, letting i = 1, i′ = 2, . . . , i(n) = n, one gets an infinites-
imal transformation B̂1,2,...,n

1,1,...,1 of Ĝ — denoted by Bk f in the translated text — such

that
[

D̂i, B̂1,2,...,n
1,1,...,1

]

= (s−1) B̂1,2,...,n
1,1,...,1, for all i = 1,2, . . . ,n.)

β1 −βi + ε2i = · · · = ν1 −νi + εni = s−1.

Since ε23, . . . ,ε2n vanish, from the same equations, we obtain immediately β3 =
· · · = βn and consequently:
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β1 +β2 + · · ·+βn = β1 +β2 +(n−2)β3 = s,

whence we get:
β2 = β1 − s+2, β3 = β1 − s+1.

By elimination of β2 and β3, it follows that:

(β1 − s+1)n = 0

hence β1 = s−1, β2 = 1, β3 = · · · = βn = 0.

In the same way, the νk determine themselves, and so on. In brief, we realize that
our group: X1 f , . . . ,Xr f comprises an infinitesimal transformation of the form:

K′′ = xs
1 p1 +A2 xs−1

1 x2 p2 + · · ·+An xs−1
1 xn pn + · · · .

By forming a Combination of K′′ with p1 + · · · , we get:

sxs−1
1 p1 +(s−1)A2 xs−2

1 x2 p2+

+ · · ·+(s−1)An xs−2
1 xn pn + · · · = L,

and hence our group comprises an infinitesimal transformation, namely
[

L, K′′],
which is of the form:

sx2s−2
1 p1 +η2 p2 + · · ·+ηn pn + · · · .

But now, since 2s − 2 should not be larger than s and since, on the other hand, s is
larger than 1, it follows that:

s = 2,

so that we have:

K′′ = x2
1 p1 +A2 x1 x2 p2 + · · ·+An x1 xn pn + · · · .

Furthermore, we get:
[

x1 pi + · · · , K′′]= (Ai −1)x2
1 pi + · · · .

If now Ai were different from 1, then we would obtain, one after the other, both
transformations:

[

x2
1 pi + · · · , xi p1 + · · ·]= x2

1 p1 −2x1xi pi + · · · ,
[

x2
1 p1 −2x1xi pi + · · · , x2

1 pi + · · ·]= 4x3
1 pi + · · · .

But since no infinitesimal transformation of third order should be found, all the Ai

are equal to 1. Therefore K′′ has the form:

x1
(

x1 p1 + x2 p2 + · · ·+ xn pn
)

+ · · ·
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and thereupon lastly, by forming a Combination with xi p1 + · · · , we find generally:

xi
(

x1 p1 + · · ·+ xn pn
)

+ · · · .

Consequently, if a group X1 f , . . . ,Xr f of the nature required on p. 620 comprises
infinitesimal transformations of order higher than the first, then it comprises only
such transformations that are of order two, and in fact in any case, n of the form:

xi
(

x1 p1 + · · ·+ xn pn
)

+ · · · (i=1 ···n).

If we add up all the n transformations:
[

pi + · · · , xi∑n
k=1 xk pk + · · ·

]

= xi pi +∑n
k=1 xk pk + · · · ,

together, then we obtain the transformation x1 p1 + · · ·+ xn pn + · · · . Hence if the
group X1 f , . . . ,Xr f contains infinitesimal transformations of second order, then the
associated linear homogeneous group L1 f ,L2 f , . . . is the general linear homoge-
neous group. Or conversely:

The group X1 f , . . . ,Xr f never contains infinitesimal transformations of order
higher than the first, when the associated group L1 f ,L2 f , . . . is the special linear
homogeneous group.

For short, we write the infinitesimal transformation xi
(

x1 p1+ · · ·+xn pn
)

+ · · · in
the form Hi + · · · , with the understanding that Hi denotes the terms of second order.
Now, it is conceivable that in one group X1 f , . . . ,Xr f , except the n transformations
Hk + · · · , there may appear others of second order. Let such a transformation be, for
instance:

τ1 p1 + · · ·+ τn pn + · · · = T+ · · · ,
where the τi mean homogeneous functions of second order in x1, . . . ,xn and T the
sum ∑ τk pk. Then the expression

[

Hi, T
]

must obviously vanish, since the lowest
term of this bracket represents an infinitesimal transformation of third order. Con-
sequently, τ1, . . . ,τn satisfy the equation:

[

xi

n

∑
k=1

xk pk,
n

∑
j=1
τ j p j

]

= 0;

this equation decomposes into the following n equations:

xi

( n

∑
k=1

xk
∂τ j

∂xk
− τ j

)

− x j τi = 0

and from this it follows, aside from the natural equation:

n

∑
k=1

xk
∂τ j

∂xk
= 2τ j
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also xi τ j − x j τi = 0. Therefore the τi and T have the form:

τi =
n

∑
k=1

αk xkxi, T =
n

∑
k=1

αk Hk.

Thus we have proved that a group: X1 f , . . . ,Xr f of the indicated constitution can
comprise no second order infinitesimal transformation apart from the n transforma-
tions Hk + · · · .

In total, we therefore have the following cases:

If the linear homogeneous group L1 f ,L2 f , . . . is the general linear homogeneous
group, then the concerned group X1 f , . . . ,Xr f comprises exactly n infinitesimal
transformations of zeroth order:

Pi = pi + · · · (i=1 ···n)

and n2 of first order:
Tik = xi pk + · · · (i,k=1 ···n).

Either transformations of higher order do not occur at all, or there are extant the
following n:

Si = xi
(

x1 p1 + · · ·+ xn pn
)

+ · · · (i=1 ···n).

If the group: L1 f ,L2 f , . . . is the special linear homogeneous group, then the
group: X1 f , . . . ,Xr f comprises exactly n infinitesimal transformations of zeroth
order:

Pi = pi + · · · (i=1 ···n)

and in addition, n2 −1 of first order:

Tik = xi pk + · · · , Tii −Tkk = xi pi − xk pk + · · · (i≷k=1 ···n)

but none of higher order.

We will treat these three cases one after the other. First, we bring the Relations
[brackets] between the infinitesimal transformations, and then, these transforma-
tions themselves, to a form which is as simple as possible. On the occasion, we
remark that among the three cases, the first two are already completed by the results
of section 151 on p. 616 sq. Nonetheless, we maintain that it is advisable to treat
these two cases in detail.

§ 153. The first case, where n transformations of zeroth order and n2 of first
order appear, is the simplest one.

We can indicate without effort the Relations between the n2 infinitesimal trans-
formations. They are:

[

Tik, Tνπ
]

= εkν Tiπ − επi Tνk,

where εik vanishes as soon as i and k are distinct, whereas εii has the value 1. In
particular, it is of importance that each expression:
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[

Tik,
n

∑
ν=1

Tνν

]

vanishes. Further, if, for reasons of abbreviation, we introduce the symbol:

U =
n

∑
ν=1

Tνν ,

there exist Relations of the form:

[

Pi,U
]

= Pi +
n

∑
ν=1

n

∑
π=1

ανπ Tνπ ,

or, when we introduce as new Pi the right-hand side:
[

Pi,U
]

= Pi.
Lastly, there are Relations of the form:

[

Pi, Tk j
]

= εik Pj +∑∑βνπ Tνπ ,
[

Pi, Pk
]

=∑ γν Pν +∑∑δνπ Tνπ .

But the Jacobian identities:
[[

Pi, Tk j
]

,U
]− [

Pi, Tk j
]

= 0,
[[

Pi, Pk
]

,U
]−2

[

Pi, Pk
]

= 0

show immediately that all constants β , γ , δ vanish, whence we have:
[

Pi, Tk j
]

= εik Pj,
[

Pi, Pk
]

= 0.

As a result, all the Relations between the infinitesimal transformations of our
group are known.

The r infinitesimal transformations Pi = pi + · · · generate a simply transitive
group which has the same composition5 (Translator’s note: Namely here: they
both have the same, in fact vanishing, Lie brackets.) [GLEICHZUSAMMENGESETZ

IST] as the group p′
1, . . . , p′

n and is hence also equivalent to it (Chap. 19, p. 339,
Prop. 1).6 (Translator’s note: The so-called Frobenius theorem is needed in the
proposition below. Classically (cf. [1]), one performs a preliminary reduction to a
commuting system of vector fields, reducing the proof to the following concrete

Proposition. If the r � s independent infinitesimal transformations:

Xk f =
s

∑
i=1
ξki(x1, . . . ,xs)

∂ f
∂xi

(k=1 ···r)

stand in the Relationships:

[

Xi, Xk
]

= 0 (i,k=1 ···r)

without being tied together by a linear relation of the form:
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n

∑
k=1

χk(x1, . . . ,xs)Xs f = 0,

then they generate an r-term group which is equivalent to the group of translations:

Y1 f =
∂ f
∂y1

, . . . , Yr f =
∂ f
∂yr

.

(Namely, in a neighborhood of a generic point, there is a local diffeomorphism x �→
y= y(x) straightening each Xk to Yk = ∂

∂yk
.)) So we can introduce such new variables

x′
1, . . . ,x

′
n achieving that:

Pi = p′
i (i=1 ···n).

The form ξ1 p′
1 + · · ·+ ξn p′

n which U takes in the new variables determines itself
from the Relations

[

Pi,U
]

= Pi; the same Relations yield:

U =
n

∑
k=1

(x′
k +αk) p′

k

and, when x′
k +αk is introduced as new xk, which does not change the form of the

Pi, one achieves U = ∑ xk pk. From the Relations:
[

Pi, Tk j
]

= εik Pj

one finds in the same way:

Tk j = xk p j +
n

∑
ν=1

αk jν pν ;

but since
[

Tk j,U
]

must vanish, all the αk jν are equally null. Therefore we have the
group:

Pi = pi, Tik = xi pk (i,k=1 ···n),

that is to say, all groups which belong to the first case are equivalent to the general
linear group of the manifold x1, . . . ,xn.

§ 154. We now come to the second case, where, apart from the n transformations
of zeroth order Pi = pi+ · · · and the n2 of first order Tik = xi pk+ · · · , there still appear
the n transformations of second order:

Si = xi
(

x1 p1 + · · ·+ xn pn)+ · · · .
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The following Relations are obtained without any effort:
[

Si, Sk
]

= 0,
[

Tik, S j
]

= εk j Si,
[

U, S j
]

= S j.

Moreover, there are equations of the form:

[

Tik,U
]

=
n

∑
j=1
αik j S j.

If at first we suppose that i and k are not all both equal to n, then we can introduce
Tik +∑ αik j S j as new Tik and obtain correspondingly the Relation:

[

Tik,U
]

= 0 for
the concerned values of i and k. Since in addition

[

U,U
]

= 0 we have generally:
[

Tik,U
]

= 0 (i,k=1 ···n).

Further, one has:

[

Tik, Tνπ
]

= εkν Tiπ − επi Tνk +
n

∑
j=1
β j S j;

but the identity:
[[

Tik, Tνπ
]

,U
]

= 0

enables us to see that all β j vanish, so we have:
[

Tik, Tνπ
]

= εkν Tiπ − επi Tνk.

From the relation:

[

Pi,U
]

= Pi +
n

∑
ν=1

n

∑
π=1

γνπ Tνπ +
n

∑
ν=1

δν Sν

when:

Pi +
n

∑
ν=1

n

∑
π=1

γνπ Tνπ +
1
2

n

∑
ν=1

δν Sν

is introduced as a new Pi, we get:
[

Pi,U
]

= Pi.

Furthermore, we have:

[

Pi, Sk
]

= εik U +Tki +
n

∑
ν=1

λν Sν ;

but if we form the identity:
[[

Pi, Sk
]

,U
]

+
[

Pi, Sk
]− [

Pi, Sk
]

= 0,
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we then find that the λν are null; consequently we have:
[

Pi, Sk
]

= εik U +Tki.

Finally, there are relations of the form:
[

Pi, Tk j
]

= εik Pj +∑∑ανπ Tνπ +∑λν Sν ,
[

Pi, Pk
]

=∑ gν Pν +∑∑ hνπ Tνπ +∑ lν Sν ;

but also here all constants vanish because of the identities:
[[

Pi, Tk j
]

,U
]− [

Pi, Tk j
]

= 0,
[[

Pi, Pk
]

,U
]−2

[

Pi, Pk
]

= 0.

Therefore we have:
[

Pi, Tk j
]

= εik Pj,
[

Pi, Pk
]

= 0.

All the relations between the infinitesimal transformations of our group are now
determined. One will observe that the infinitesimal transformations Pi, Tik generate a
subgroup which is of the form considered in the first case and hence takes the form:

Pi = pi, Tik = xi pk (i,k=1 ···n)

by an appropriate choice of variables. In the new variables, the infinitesimal trans-
formations Si are, say, equal to ∑ ξik pk, where the ξik satisfy the relations:

[

Pν , Si
]

= εν i U +Tiν ,
[

U, Si
]

= Si.

We find from this:

∂ξik

∂xν
= εν i xk + ενk xi,

n

∑
ν=1

xν
∂ξik

∂xν
= 2ξik,

therefore ξik = xixk and:

Si = xi
(

x1 p1 + · · ·+ xn pn
)

.

Consequently we have the group:

Pi = pi, Tik = xi pk, Si = xi
(

x1 p1 + · · ·+ xn pn
)

(i,k=1 ···n);

that is to say, all groups which belong to the second case are equivalent to the
general projective group of the manifold x1, . . . ,xn.

§ 155.

There remains the third and last case with n infinitesimal transformations of ze-
roth order: Pi = pi + · · · and n2 −1 of first order:
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Tik = xi pk + · · · , Tii −Tkk = xi pi − xk pk + · · · (i,≷k=1 ···n),

while transformations of higher order do not occur.
It is convenient to replace the infinitesimal transformations Tii −Tkk by one of the

form: α1 T11 + · · ·+αn Tnn, where the αi are arbitrary constants, though subjected to
the condition ∑i αi = 0. Then to begin with, the following Relations hold:

[

Tik, Tνπ
]

= εkν Tiπ − επi Tνk (i≷k, ν≷π),

[

Tik,
n

∑
ν=1

αν Tνν

]

= (αk −αi)Tik,

[

Tii −Tkk,
n

∑
ν=1

αν Tνν

]

= 0.

Further, there is an equation of the form:

[

Pi,
n

∑
ν=1

αν Tνν

]

= αi Pi +
n

∑
k=1

n

∑
j=1
λik j Tk j (∑n

k=1 λikk =0).

Therefore if we set:

P′
i = Pi +

n

∑
k=1

n

∑
j=1

lik j Tk j (∑n
k=1 likk =0),

we get:

[

P′
i ,

n

∑
ν=1

αν Tνν

]

= αi P′
i +

n

∑
k=1

n

∑
j=1

{

λik j − (αi +αk −α j)
}

Tk j.

Now, we imagine that a completely determined system of values is chosen for
α1, . . . ,αn which satisfies the condition ∑ αi = 0 and has in addition the property
that no expression αi +αk −α j vanishes, a demand which can always be satisfied.
Under these assumptions, we can choose the lik j so that the equations:

λik j − (αi +αk −α j) lik j = 0

are satisfied, where the condition∑k likk = 0 is automatically fulfilled. Consequently,
we obtain after utilizing again the initial designation:

[

Pi,
n

∑
ν=1

αν Tνν

]

= αi Pi (∑n
ν=1 αν =0).

If the expression:

[

Pi,
n

∑
k=1

βk Tkk

]

= βi Pi +
n

∑
ν=1

n

∑
π=1

gνπ Tνπ

(∑ βk =∑ gνν =0)

is inserted into the identity:
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[[

Pi,
n

∑
k=1

βk Tkk

]

,
n

∑
k=1

αk Tkk

]

−αi

[

Pi,
n

∑
k=1

βk Tkk

]

= 0,

then we get:
n

∑
ν=1

n

∑
π=1

(απ −αν −αi)gνπ Tνπ = 0.

Because of the nature of the α , it follows from this that all gνπ are equally null, and
therefore the equation:

[

Pi,
n

∑
k=1

βk Tkk

]

= βi Ti

holds for all systems of values β1, . . . ,βn which satisfy the condition ∑ βk = 0. Fur-
thermore, there is a relation of the form:

[

Pi, Tk j
]

= εik Pj +
n

∑
ν=1

n

∑
π=1

hνπ Tνπ

(k≷ j, ∑ν hνν =0).

The identity:

[
[

Pi, Tk j
]

,
n

∑
τ=1

βτ Tττ

]

− (βi +β j −βk)
[

Pi, Tk j
]

= 0

therefore takes the form:

εik (βk −βi)Pj +
n

∑
ν=1

n

∑
π=1

(

βπ −βν −βi +βk −β j
)

hνπ Tνπ = 0;

consequently the hνπ must vanish, since the βν , while disregarding the condition
∑ν βν = 0, are completely arbitrary:

[

Pi, Tk j
]

= εik Pj (k≷ j).

Finally, the relations:

[

Pi, Pk
]

=
n

∑
ν=1

mν Pν +
n

∑
ν=1

n

∑
π=1

mνπ Tνπ (∑n
ν=1 mνν =0)

are still to be examined. By calculating the identity:

[
[

Pi, Pk
]

,
n

∑
τ=1

βτ Tττ

]

− (βi +βk)
[

Pi, Pk
]

= 0,

we find:
n

∑
ν=1

(βν −βi −βk)mν Pν +
n

∑
ν=1

n

∑
π=1

(βπ −βν −βi −βk)mνπ Tνπ = 0;
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because of the arbitrariness of the βν , all the mν and mνπ must be equally null.
Consequently, we have:

[

Pi, Pk
]

= 0

and we therefore know all Relations between the infinitesimal transformations of
our group.

In the same way as in the first case, we bring P1, . . . ,Pn by means of an appropriate
choice of variables to the form:

Pi = pi (i=1 ···n).

From this, by proceeding as in the end of section 153, we conclude that all groups
which belong to the third case are equivalent to the special linear group of the
manifold x1, . . . ,xn.

By unifying the results found above we therefore obtain the

Theorem 112. If a transitive group G in n variables is constituted so that all of
its transformations which leave invariant a point in general position transform the
line-elements passing through the point by means of the general or of the special
linear homogeneous group L1 f ,L2 f , . . . , then G is equivalent either to the general
projective group, or to the general linear group, or to the special linear group, in n
variables2.

If we call an r-term group of the space x1, . . . ,xn m-fold transitive when it con-
tains at least one transformation which transfers any m given points in mutually
general position to m other arbitrary given points in general position, then we can
now easily prove firstly, that m is always � n+ 2 and secondly, that every group
for which m = n+2 is equivalent to the general projective group of n-fold extended
space.

Indeed, if the infinitesimal transformations: X1 f , . . . ,Xr f in the variables
x1, . . . ,xn generate an m-fold transitive group, then it immediately stands to reason
that the linear homogeneous group L1 f ,L2 f , . . . assigned to a point x0

k in general
position transforms the ∞n−1 line-elements passing through this point by means of
an (m − 1)-fold transitive projective group. But now, since the general projective
group of an (n − 1)-fold extended space is known to be (n+ 1)-transitive, we then
realize that:

m−1 � n+1 and hence: m � n+2.

Therefore, the following holds.

Theorem 113. A finite continuous group in n variables is at most (n+2)-fold tran-
sitive.

If an r-term group: X1 f , . . . ,Xr f in n variables is exactly (n+2)-transitive, then
as observed earlier, the group L1 f ,L2 f , . . . assigned to a point x0

k in general position

2 Lie, Archiv for Math., Vol. 3, Christiania 1878; cf. also Math. Ann. Vol. XVI, Vol. XXV and
Götting. Nachr. 1874, p. 539.
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is the general or the special linear homogeneous group in n variables; consequently,
the group: X1 f , . . . ,Xr f is equivalent either to the general projective group, or to the
general linear group, or to the special linear group in n variables. But now, because
only the first-mentioned among these three groups is (n+ 2)-transitive, we obtain
the

Theorem 114. If an r-term group in n variables is (n+2)-transitive, then it is equiv-
alent to the general projective group of n-fold extended space.

In the second and third volumes, among other things, a series of studies which
are analogous to those conducted in this chapter shall be undertaken.

—————–
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Chapter 30
Glossary of significantly used words

Symbols
n-FACH, n-fold
n-FLACH, n-frame
q-GLIEDRIG VOLLSTÄNDIG SYSTEM, q-term
complete system

A
ABBILDEN, to represent
ABHÄNGIGSKEITSVERHÄLTNISS, dependence
relationship
ABKÜRZEN, to abbreviate
ABSCHNITT, section
ABSCISSE, abscissa
ADJUNGIRTE GRUPPE, adjoint group
ÄHNLICH, similar
ÄHNLICHKEIT, similarity
ÄHNLICHKEITSTRANSFORMATION, simili-
tude
ALGEBRAISCHE DISCUSSION, algebraic
discussion
ANALYTISCH, analytic
ANALYTISCHE BEGRÜNDUNG, analytic expla-
nation
ANFANGSWERTH, initial value
ANGEBEN, to indicate
ANGEHÖREN, to belong to
ANNAHME, assumption
ANORDNEN, to order
ANSATZ, approach
ANSCHAULICH, graphical
ANSCHAULICH AUFFASUNG, graphical
interpretation
ANSCHAULICHKEIT, graphical nature
ANZEIGEN, to indicate

ASSOCIATIVE GESETZ, associative rule
ASYSTATISCH, asystatic
AUFEINANDERFOLGE, succession
AUFFASSEN, to interpret
AUFFINDUNG, finding
AUFFÜHREN, to list
AUFGABE, problem
AUFLÖSUNG, solution
AUFSTELLEN, to set up
AUFSTELLUNG, list
AUFZÄHLUNG, enumeration
AUSDEHNEN AUF, to extend to, generalize to
AUSDEHNUNG, (complete) extension
AUSFÜRLICH, in detail
AUSGEARTET, degenerate
AUSGEZEICHNET, excellent
AUSRECHNUNG, calculation
ÄUSSERST WICHTIG, utmost importance
AUSSPRECHEN, to enunciate
AUSSTELLEN, to show
AUSZEICHNEN, to distinguish

B
BAHNCURVE, integral curve
BEDENKEN, to consider
BEDENKEN, thought
BEDEUTEN, to mean
BEDEUTUNG, meaning, sense, signification
BEDIENEN SICH, to make use of
BEDINGEN, to give rise to
BEDINGUNGSGLEICHUNGEN, condition-
equations
BEFRIEDIGEN, to satisfy
BEGRIFF, concept
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BEGRIFFLICH SINN, conceptual sense
BEGRIFFLICHE INHALT, conceptual content
BEGRIFFSBILDUNG, forming of concepts
BEGRÜNDEN, to give reasons for
BEGRÜNDUNG, reason
BEHALTEN, to keep
BEHAUPTUNG, assertion
BEHUFE, for this purpose
BEKANNTLICH, as everybody knows
BEKOMMEN, to receive
BELIEBIG, arbitrary
BEMERKEN, to remark
BEMERKENSWERTH IST, it is noteworthy that
BENACHBARCHT, neighboring
BENENNUNG, naming, nomenclature
BENUTZEN, to use
BEQUEM, convenient
BERECHTIGT, legitimate
BEREICH, region
BERÜCKSICHTIGEN, to take into account
BERÜCKSICHTIGUNG, consideration
BERUHEN, to be based on
BERÜHREN, to come into contact with
BERÜHRUNGSTRANSFORMATION, contact
transformation
BESCHAFFEN, to procure
BESCHAFFENHEIT, constitution
BESCHÄFTIGEN SICH, to occupy oneself in
(with) doing something
BESCHRÄNKUNG, restriction
BESCHREIBEN, to describe
BESITZEN, to possess
BESONDER, special, particular, specific
BESONDERS, particularly, especially, notably,
BESPROCHENE (OBEN), discussed (above)
BESTÄTIGEN, to confirm
BESTEHEN, existence
BESTEHEN AUS, to be made of (up)
BESTIMMEN, to determine
BESTIMMT, determinate, definite
BESTIMMUNGSSTÜCKE, determination pieces
BETONEN, to stress, emphasize, underline
BETRACHTEN, to consider
BETRACHTUNG, consideration
BETREFFEND, concerned, in question
BEWEGUNG, movement
BEWEIS, proof
BEWEISEN, to prove, to demonstrate
BEWUSSTEN, said, in question
BEZEICHNUNG, notation, naming
BEZIEHUNG, relationship
BILDEN, to form
BILDPUNKT, image-point
BÜNDEL, bundle

BÜSCHEL, bundle, pencil

C
COLLINEATIONEN, collineation
COMBINATION, combination
CONSEQUENTERWEISE, consequently
COORDINATENECKPUNKT, corner point of co-
ordinates

D
DARSTELLEN, to represent
DECKEN SICH, to coincide
DENKBAR, conceivable
DETERMINANT, determinant
DEUTEN, to interpret
DEUTLICH, clearly, distinctly
DIFFERENTIALINVARIANT, differential invari-
ant
DREIFACH AUSGEDEHNTEN, thrice-extended
DUALISTISCH, dualistic
DUALITÄT, duality
DURCH ANALYTISCHE METHODEN, by means
of the analytic method
DURCH DETERMINANTENBILDUNG, by form-
ing determinants
DURCH UNENDLICHMALIGE WIEDERHOL-
UNG, by repeating infinitely many times
DURCHFÜHRUNG, realization
DURCHSICHTIG, transparent

E
EBEN, straight, even
EIGENSCHAFT, property
EIGENTHÜMLICH, characteristic
EINDEUTIG, univalent
EINFACH, simple
EINFACH AUSGEDEHNTEN, once-extended
EINFACH TRANSITIV, simply transitive
EINFÜHREN, to introduce
EINGEHEN AUF, to deal with
EINGEKLAMMERT, in brackets
EINSETZEN, to insert
EINTHEILEN, to distribute
EINTHEILUNG, division, classification
EINTHEILUNGSGRUNDE, principle of classifi-
cation
EINTRETEN, to occur
EINZELN, individual
ENDERGEBNISS, final result
ENTHALTEN, to contain
ENTSPRECHEN, to correspond to
ENTSTANDEN, to be generated, to be produced
ENTSTEHEN, to come into being
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ENTSTEHUNG, generation, production
ENTWICKELN, to develop
ENTWICKLUNG, development
ENTWICKELUNGSCOEFFICIENT, expansion
coefficient
ERBRINGEN, to produce
ERFORDERN, to require
ERFÜLLEN, to fulfill, to satisfy
ERGEBEN, to yield, to produce, to result in
ERGEBNISS, to result
ERHALTEN, to get, to receive, to obtain
ERHELLEN, to become clear, to be evident
ERINNERN SICH, to remember
ERKENNEN, to recognize
ERKLÄREN, to explain
ERLEDIGEN, to settle, to carry out
ERLEICHTERUNG, simplification
ERREICHEN, to insure
ERSCHEINEN, to appear, to become visible
ERSCHÖPFEN, to exhaust
ERSETZEN DURCH, to replace by, to substitute
for
ERSICHTLICH, clear, obvious, evident
ERWÄHNEN, to mention
ERWÄHNUNG, mention of
ERWEISEN, to show, to demonstrate, to estab-
lish
ERWEISEN SICH, to prove to be
ERWEITERN, to extend
ERWEITERUNG, extension
ERZHIELEN, to achieve
ERZEUGEN, to produce, to generate
ETWA, for instance, for example

F
FASSUNG, version, interpretation
FESTSETZEN, to fix
FESTSETZUNG, fixing of terminology
FESTSTELLEN, to find out
FIGUR, figure (number of manifolds), diagram
FLÄCHENELEMENT, surface element
FLIESSEN, to flow
FLÜSSIGKEITSTHEILCHENS, velocity of the
fluid particle
FOLGENDERMASSEN, as follows
FOLGLICH, so, consequently, therefore
FÖRDERN, to produce
FORDERUNG (ERFÜLLEN), requirement (meet,
satisfy)
FORMELL, formally
FORTSCHREITUNGSRICHTUNG, direction of
progress
FRAGE, question
FRAGEN NACH, to ask for

FRAGESTELLUNG, way of putting the question
FUNCTIONALDETERMINANT, functional deter-
minant

G
GANZE RATIONALE FUNCTION, entire rational
function (polynomial)
GATTUNG, kind
GEBIETE, domain
GEGENSEITIG, mutually
GELANGEN, to reach, to get to, to arrive at
GENAU GENOMMEN, strictly speaking
GERADE, straight
GERADE, straight line
GESICHTSPUNKT, point of view
GESONDERT, separate
GESTALT, shape, form
GESTALTEN SICH, to take shape
GESTATTEN, to admit
GETRENNT, separate
GEWINNEN, to gain
GEWISS, certain
GEWÖHNLICH (WIE), as usual
GLEICHBERECHTIGT, conjugate
GLEICH NULL, identically null
GLEICHWERTIG, equally good
GLEICHZEITIG, simultaneously, at the same
time
GLEICHZUSAMMENGESETZT, equally com-
posed, identically compound as
GLEICHZUSAMMENGESETZTSEINS, property
of being equally composed
GRUND, foundation, reason, background
GRUNDSATZ, principle
GRUNDZÜGE, foundations
GRUPPENEIGENSCHAFT, group property
GRUPPENFORM, form of group

H
HAUPTSACHE, main thing
HERLEITEN, to derive
HERLEITUNG, derivation
HERRÜHREN VON, to come from
HERVORGEHEN AUS, to result from, to come
from
HERVORHEBEN, to emphasize, to underline, to
stress
HERVORRAGEND, outstanding
HINAUSKOMMEN, to amount to the same, to
come down to
HINEINFALLEN, to fall into
HINREICHEND, sufficient
HINSCHREIBEN, to write down
HINSICHTLICH, concerning, regarding
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HINWEISEN, point out to
HINZUFÜGEN, to add
HINZUNEHMEN, to add

I
IM EINZELNEN, in(to) details
IM ENDLICHEN, in the domain of the finite
IM GANZEM, in sum, in total, in all
IM GRUNDE, fundamentally
IM WESENTLICHEN, essentially
IM WIDERSPRUCH STEHEN, to be inconsistent
with, to contradict
IM ZUSAMMENHANGE WIEDERHOLEN, to re-
capitulate in cohesion
IMPRIMITIV, imprimitive
IN ALLER KÜRZE, very briefly
IN ANGRIFF NEHMEN, to tackle
IN COGREDIENTER WEISE, in cogredient way
IN DER PRAXIS, in practice
IN DER THAT, in fact, actually
IN EIN NEUES LICHT SETZEN, to place in a new
light
IN EINZELNEN, in detail
IN FOLGE, as a consequence
INBEGRIFF, (complete) totality
INCREMENT, increment
INDIVIDUEN, individuals
INFOLGEDESSEN, as a result (of this), conse-
quently
INHALT, content(s)
INNERE GRUND, central reason
INS AUGE FASSEN, to consider
INSBESONDERE, particularly, especially,
notably
INTEGRALGLEICHUNG, integral equation
IRREDUCIBEL, irreducible
ISOMORPH, isomorphic
ISOMORPHISMUS, isomorphism
IN VERBINDUNG BRINGEN, to associate with

J
JETZT, now

K
KATEGORIE, category
KEGEL, cone
KEGELSCHNITT, conic section
KENNEN, to know
KENNEN LERNEN, to get to know
KENNZEICHNEN, mark, identify
KLAMMER, bracket
KLAMMEROPERATION, bracketing [·, ·]
KLARLEGEN, to explain, to clarify

KLARSTELLEN, to get straight, to clarify
KLEIDEN, to express, to put into words
KREIS, circle
KRITERIUM, criterion
KUGEL, sphere
KÜNFTIG, from now on
KURZ, shortly
KURZWEG, briefly

L
LEHRE, theory
LEICHT, easily
LEISTEN, to accomplish, to achieve
LIEFERN, to deliver
LIEGEN, to lie on
LINIENELEMENT, line-element

M
MAL, time
MANNIGFALTIGKEITSBETRACHTUNGEN,
manifold considerations
MANNIGFALTIGKEITSLEHRE, theory of mani-
folds
MASSREGEL, rule
MATERIELL, materially
MENGE, amount
MERKWÜRDIG, curious
MIT AUSNAHME, with the exception of
MITBEKOMMEN, to catch, to understand
MITSCHREIBEN, to write down
MITSTEHENDLASSEND, ‘leaving fixed’

N
NACHSTEHEND, following, below
NÄCHSTFOLGEND, following next
NACHWEIS, proof, evidence, certificate
NACHWEISEN, to prove, to show
NÄHER, closer, in more detail, more precisely
NAMENTLICH, especially, particularly, notably
NÄMLICH, namely, that is to say
NATURE DER SACHE, nature of things
NATURGEMÄSS, natural
NEBENBEI BEMERKT, incidentally
NENNER, denominator
NICHTMITSTEHENDLASSEND, ‘without
leaving fixed’
NOTHWENDIG, nessary
NUNMEHR, now, at present

O
OBENSTEHEND (DAS), the above
OBIG, above, above-mentioned
OFFENBAR, obviously, evidently
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ÖFTERS, frequently
OHNE WEITERES, without any effort
OPERATIONSGRUPPE, group operation
ORDNEN SICH, to organize, to arrange

P
PAARWEISE, pairwise
PARAMETERGRUPPE, parameter group
PFAFFSCHE GLEICHUNG, Pfaffian equation
PREISSCHRIFT, prize-winning essay
PRIMITIV, primitive
PUNKTCOORDINATEN, point-coordinates
PUNKTFIGUR, point figure
PUNKTTRANSFORMATION, point transforma-
tion

R
RECHTWINKLING, right-angled
RECIPROCITÄTSVERHÄLTNISS, relationship of
reciprocity
RECIPROKE, reciprocal
REDEWEISE, language
REGULÄR VERHALTEN, to behave regularly, to
be smooth, to be regular
REIHE, row, line
REIHENFOLGE, order (of execution)
REPRÄSENTANT, representative
RICHTUNG, direction
RUHE, rest

S
SCHAAR, family
SCHLUSS ZIEHEN, to draw a conclusion
SCHNEIDEN, to cut
SCHNITT, cutting
SCHNITTMANNIGFALTIGKEIT, manifold
section
SELBSTSTÄNDIG, independently
SELBSTVERSTÄNDLICH, naturally, of course,
obviously
SOGENNANTE, so-called
STANDPUNKT, point of view, standpoint
STEHEN LASSEN, leave untouched
STELLE, position, point, place
STELLEN, to put, to set
STELLUNG, position
STIMMEN, to be right, to be correct
STRAHLBÜSCHEL, bundle of rays
STRECKE, (infinitely small) line
SUBSTITUTIONENTHEORIE, theory of
substitutions
SUBSTITUTIONSDETERMINANT, substitution
determinant

SUCHEN, to look for, to search for, to seek
SYMBOLIK, symbolism
SYNTHETISCHE BEGRÜNDUNG, synthetic ex-
planation
SYSTATISCH, systatic

T
TABELLE, table
TERMINOLOGIE, terminology
THATSACHE, fact
THEILBAR, divisible
THEILEN, to distribute
THEILGEBIETE, subsidiary domain
THEILWEISE, partially
THEORETISCH, theoretical
TRANSFORMATION, transformation
TYPE, type
TYPENGATTUNG, kind of type

U
ÜBERALL, everywhere
ÜBEREINSTIMMEN, to correspond
ÜBEREINSTIMMUNG, correspondence
ÜBERGANG, transition
ÜBERGEHEN, to transfer to
ÜBERHAUPT, generally, altogether, actually
ÜBERLEGUNG, consideration, reflection
ÜBERSEHEN, to overview, to have a view of
ÜBERSICHTLICH, clear,
ÜBERTRAGEN AUF, to translate into
ÜBERZEUGEN, to convince
UMFASSEN, to embrace, to comprise
UMGEBUNG, neighborhood
UMGEKEHRT, inversely, conversely
UMKEHREN, reverse
UMSTAND, circumstance
UNABHÄNGIG VON, independent of
UNBESCHRÄNKT INTEGRABEL, unrestrictedly
integrable
UNENDLICH FERNE EBENE, plane at infinity
UNTERSCHIED, difference, distinction
UNTERSCHEIDEN, to distinguish
UNTERSUCHEN, to study
UNTERSUCHUNG, research on (into), study
URSPRÜNGLICH, initial(ly), original(ly)

V
VERBINDEN, to connect
VERBINDUNG, connection
VERBINDUNGSLINIE, connection line
VERDEUTLICHEN, to make clear, to elucidate
VEREINFACHUNG, simplification
VERFAHREN, to proceed
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VERFAHREN, method, process
VERFOLGEN, to follow, to pursue
VERGLEICHUNG, comparison
VERHÄLTNIS, ratio
VERHANDLUNG, essay, memoir
VERKÜRZTE, reduced
VERMÖGE, by virtue of
VERMUTEN, to presume
VERMUTHUNG, presumption
VERNÜKPFT, linked with
VERSCHIEDENE, different, various
VERSUCHEN, to try, to attempt
VERTAUSCHBAR, interchangeable
VERTAUSCHEN, to permute
VERTAUSCHUNG, permutation
VERVOLLSTÄNDIGEN, to complete
VERWEILEN AUF, to dwell on
VOLLKOMMEN, perfectly, absolutely
VOLLSTÄNDIG, completely, fully, totally
VON JETZ AB, from now on
VON VORNERHEIN, from the beginning
VOR ALLEN DINGEN, above all
VORANGEHENDEN, previous, above
VORAUSGESETZT, provided that
VORAUSSCHICKEN, to begin by mentioning
that
VORAUSSETZEN, to assume
VORGANG, process
VORHABEN, to have in mind
VORHANDEN, extant, in existence, present
VORHANDENSEIN, existence
VORHER, beforehand
VORHERGEHEND, preceding
VORHIN, earlier on, a short while ago
VORIG, previous, former
VORKOMMEN, to appear, to happen, to occur
VORLÄUFIG, provisionally
VORLESUNG, lecture
VORNEHMEN, to carry out
VORSCHREIBEN, to prescribe, to stipulate
VORSTEHENDEN, preceding, above
VORSTELLEN SICH, to imagine, to represent
VORSTELLUNG, idea

W
WAHRHEIT, truth
WEG EINSCHLAGEN, to take a route
WEGEN, because of, on account of, due to
WESENTLICH, essentially, substantially
WICHTIG, important
WIE DER AUGENSCHEIN LEHRT, as an exami-
nation reveals
WIEDERHOLEN, to recapitulate
WILLKÜRLICH, arbitrary

WILLKÜRLICHKEIT, arbitrariness
WIRKLICH, really
WÜNSCHENWERTH, desirable

Z
ZAHLENWERTH, numerical value
ZEICHEN, sign, symbol
ZEIGEN, to show
ZEIGEN SICH, to come out
ZEITABSCHNITT, (infinitely small) time inter-
val
ZERFALLEN, to decompose
ZERLEGEN, to decompose
ZERLEGUNG, decomposition (of space)
ZIEHL, goal, objective
ZU DIESEM ZWECKE, to this end
ZUERST, first of all,
ZUFÄLLIGKEIT, incidental character
ZUGEORDNET, attached
ZUGLEICH, at the same time
ZUGRUNDELEGUNG, taking as a basis
ZULASSEN, to allow
ZULÄSSIG, admissible
ZUNÄCHST, at first, to begin with
ZUORDNEN, to associate, to attach
ZUORDNUNG, association, classification
ZUR ABKÜRZUNG, for abbreviation
ZURÜCKFÜHREN, to reduce to
ZURÜCKKEHREN, to return
ZUSAMMENFASSEN, to sum up, to summarize,
to recapitulate
ZUSAMMENFASSEND, in summary, to sum up
ZUSAMMENGESETZ, made up of, compound
ZUSAMMENHANG, coherence
ZUSAMMENHANGEN, to be linked, to be con-
nected
ZUSAMMENNEHMEN, to take together
ZUSAMMENSETZUNG, composition
ZUSAMMENSTELLEN, to put together
ZU TAGE TRETEN, to come to light
ZUWACHS, increase
ZWEIFACH AUSGEDEHNTEN, twice-extended
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Gr , 238
M, 236
P, 236
SS−1, 236
ST , 236
T(a), 270

T −1
(a) T(b) T(a) = T(c′), 271

X( f ), 68
X1( f ), . . . ,Xr( f ), 173
X1

(

X2( f )
)−X2
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X1( f )
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, 99
Xk

(

Xj( f )
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(
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[ ] substitution x = ϕ , 125, 244
[X ,Y ], 109, 272
[[Xk, Xj], Xl ], [[Xk, Xj], [Xh, Xl ]], 134
∞r , 4, 30
p(k)i , 188
r-term, 19

Adjoint action, 49
Adjoint group, 284
Analytic, 4, 5
Associative rule, 412

Boole, 106
Bouquet, 5, 106
Briot, 5, 106

Cauchy, 5, 106, 587
Cayley, 556
Clebsch, 95, 97, 101, 106
Collineation, 559
Composition [X ,Y ], 109
Contact

direction, 115
transformation, 12

Darboux, 106
Decomposition of space, 116
Determinant, 135, 138, 584

(n−m)× (n−m), 123
Differential invariant, 552
Direction, 115, 117
∞q−1, 118
independent, 117, 121

Domain, 3, 6, 51

Engel, 20, 53, 58, 110, 180, 438, 507
Essential parameters, 15

infinitesimal transformations, 75
Exponential series, 61

Family, 7, 157
of infinitesimal transformations, 257

admitting a transformation, 257
First fundamental theorem, 40
Free generic relocalization, 4
Function

absolute invariant, 111
admitting a transformation, 111
admitting an r-term group, 111
admitting an infinitesimal transformation,

112
invariant by an r-term group, 111, 336
invariant through a transformation, 111

Fundamental differential equations, 23
as an assumption, 57

General position, 484
Generic rank, 14

Halphen, 557
Hyperplane at infinity, 562

Increment, 68
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Infinite coefficient mapping, 14
Infinitesimal transformation, 32, 68, 74, 97

belonging to an r-term group, 32, 86
change of variables, 71
combination, 298
essential parameters, 75
excellent, 288
exponential, 66
general, 88
independent, 74
interchangeable, 272
lift to r-fold point space, 79
order, 207
reduced, 141, 234
straightening, 64
symbol X( f ), 68
transfer by a group transformation, 48, 73
type, 293

Integral curve, 63, 121
Inverse

axiom of, 19, 59
fundamental differential equations, 43
transformation, 6

Jacobi, 97, 106
Jacobi identity, 109, 184
Jordan, 60, 305

Killing, 274
Klein, 225
Kowalewsky, 106

Lagrange, 556
Leibniz, 31
Lie, 123, 180, 199, 222, 225, 235, 266, 272,

284, 289, 308, 315, 323, 338, 366, 377,
388, 391, 410, 417, 428, 434, 435, 451,
455, 465, 489, 496, 498, 507, 513, 521,
539, 551, 557, 572, 576, 579, 590, 593,
594, 614

Lie bracket, 73
Lie’s principles of thought, 4
Linear group, 562

homogeneous, 562, 581
special, 562
special linear, 562

Manifold, 114, 120
admitting a transformation, 120, 148
figure, 493
invariant, 295
smooth, 297
theory, 116, 147

Mayer, 101, 106

Monge, 115
Movements of space, 11

Neighborhood, 5

One-term group, 49, 50, 61
finite equations, 69
infinitesimal generation, 69
interchangeable, 271

Operation, 3, 30
∞r , 30
executable, 443

Parameter group, 414
Partial differential equations

characteristic, 115
complete integral equations, 108
complete system, 95

q-term, 101
admitting a transformation, 151, 156

general solutions, 98, 105
integral function, 98, 107
linear, 97
system, 187
unrestricted integrability, 108

Permutation, 3
∞r , 30

Pfaffian equation, 533
Point transformation equations, 3

r-term, 19
associativity, 25
canonical for an r-term group, 58, 186
homogeneous, 294

Poisson, 549
Projective group, 559

Regular behavior, 6

Schwarz, 556
Second Fundamental Theorem, 50
Subgroup

conjugate, 292
enumeration, 293
one-term, 49, 291
type, 292

Surface element, 536
Sylvester, 557
System of equations

admitting a transformation, 114, 124, 132
irreducible, 139

Theory of substitutions, 7, 59, 231, 270
permutation, 290

Transformation, 3
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∞r , 30, 57, 59
dualistic, 12
extension, 527
image-points, 293
interchangeable, 7, 271
projective, 12

Transformation group, 7
r-term, 19, 27

X1( f ), . . . ,Xr( f ), 173, 186
associativity, 25
asystatic, 507
composition, 52, 301
compound, 276
continuous, 7
defining equations, 200
discontinuous, 7
dualistic, 498
equally composed, 303
finite continuous, 8
finite equations, 69

canonical, 80
fundamental differential equations, 34
generation by infinitesimal transformations,

81
identity, 23
imprimitive, 232

infinite continuous, 8, 10
intransitive, 225
inverse map, 23
isomorphic, 304

holoedric, 305, 321, 343
meroedric, 305

multiplication map, 23, 25
primitive, 233
reciprocal, 391
similar, 29, 341
simple, 276, 565
subgroup, 217

invariant, 273
systatic, 507, 523
transitive, 225, 443

simply, 226, 353
type, 443

Translation, 563
Type, 605

Univalent
function, 6, 29
invertible relationship, 6

Weierstrass, 5, 26, 106
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