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Preface

This book is a significant update of the first four chapters of Symmetries and Differential

Equations (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki

Kumei.  Since 1989 there have been considerable developments in symmetry methods

(group methods) for differential equations as evidenced by the number of research

papers, books, and new symbolic manipulation software devoted to the subject.  This is,

no doubt, due to the inherent applicability of the methods to nonlinear differential

equations.  Symmetry methods for differential equations, originally developed by Sophus

Lie in the latter half of the nineteenth century, are highly algorithmic and hence amenable

to symbolic computation.  These methods systematically unify and extend well-known ad

hoc techniques to construct explicit solutions for differential equations, especially for

nonlinear differential equations.  Often ingenious tricks for solving particular differential

equations arise transparently from the symmetry point of view, and thus it remains

somewhat surprising that symmetry methods are not more widely known.  Nowadays it is

essential to learn the methods presented in this book to understand existing symbolic

manipulation software for obtaining analytical results for differential equations. For

ordinary differential equations (ODEs), these include reduction of order through group

invariance or integrating factors.  For partial differential equations (PDEs), these include

the construction of special solutions such as similarity solutions or nonclassical solutions,

finding conservation laws, equivalence mappings, and linearizations.

A large portion of this book discusses work that has appeared since the above-

mentioned book, especially connected with finding first integrals for higher-order ODEs

and using higher-order symmetries to reduce the order of an ODE.  Also novel is a

comparison of various complementary symmetry and integration methods for an ODE.

The present book includes a comprehensive treatment of dimensional analysis.

There is a full discussion of aspects of Lie groups of point transformations (point

symmetries), contact symmetries, and higher-order symmetries that are essential for

finding solutions of differential equations.  No knowledge of group theory is assumed.

Emphasis is placed on explicit algorithms to discover symmetries and integrating factors

admitted by a given differential equation and to construct solutions and first integrals

resulting from such symmetries and integrating factors.

This book should be particularly suitable for applied mathematicians, engineers,

and scientists interested in how to find systematically explicit solutions of differential

equations.  Almost all examples are taken from physical and engineering problems

including those concerned with heat conduction, wave propagation, and fluid flow.

Chapter 1 includes a thorough treatment of dimensional analysis.  The well-

known Buckingham Pi-theorem is presented in a manner that introduces the reader

concretely to the notion of invariance.  This is shown to naturally lead to generalizations

through invariance of boundary value problems under scalings of variables.  This

prepares the reader to consider the still more general invariance of differential equations

under Lie groups of transformations in the third and fourth chapters.  Basically, the first



chapter gives the reader an intuitive grasp of some of the subject matter of the book in an

elementary setting.

Chapter 2 develops the basic concepts of Lie groups of transformations and Lie

algebras that are necessary in the following two chapters.  By considering a Lie group of

point transformations through its infinitesimal generator from the point of view of

mapping functions into functions with their independent variables held fixed, we show

how one is able to consider naturally other local transformations such as contact

transformations and higher-order transformations.  Moreover, this allows us to prepare

the foundation for consideration of integrating factors for differential equations.

Chapter 3 is concerned with ODEs. A reduction algorithm is presented that

reduces an nth-order ODE, admitting a solvable r-parameter Lie group of point

transformations (point symmetries), to an (n – r)th-order differential equation and r

quadratures.  We show how to find admitted point, contact, and higher-order symmetries.

We also show how to extend the reduction algorithm to incorporate such symmetries.  It

is shown how to find admitted first integrals through corresponding integrating factors

and to obtain reductions of order using first integrals.  We show how this simplifies and

significantly extends the classical Noether’s Theorem for finding conservation laws (first

integrals) to any ODE (not just one admitting a variational principle).  In particular, we

show how to calculate integrating factors by various algorithmic procedures analogous to

those for calculating symmetries in characteristic form where only the dependent variable

undergoes a transformation. We also compare the distinct methods of reducing order

through admitted local symmetries and through admitted integrating factors.  We show

how to use invariance under point symmetries to solve boundary value problems.  We

derive an algorithm to construct special solutions (invariant solutions) resulting from

admitted symmetries.  By studying their topological nature, we show that invariant

solutions include separatrices and singular envelope solutions.

Chapter 4 is concerned with PDEs.  It is shown how to find admitted point

symmetries and how to construct related invariant solutions.  There is a full discussion of

the applicability to boundary value problems with numerous examples involving scalar

PDEs and systems of PDEs.

Chapters 2 to 4 can be read independently of the first chapter.   Moreover, a

reader interested in PDEs can skip the third chapter.

Every topic is illustrated by examples.  All sections have many exercises.  It is

essential to do the exercises to obtain a working knowledge of the material. The

Discussion section at the end of each chapter puts its contents into perspective by

summarizing major results, by referring to related works, and by introducing related

material.

Within each section and subsection of a given chapter, we number separately, and

consecutively, definitions, theorems, lemmas, and corollaries.  For example, Definition

2.3.3-1 refers to the first definition and Theorem 2.3.3-1 to the first theorem in Section

2.3.3.  Exercises appear at the conclusion of each section; Exercise 2.4-2 refers to the

second problem of Exercises 2.4.

We thank Benny Bluman for the illustrations and Cecile Gauthier for typing

several drafts of Sections 3.5 to 3.8.

Vancouver, British Columbia, Canada     George W. Bluman

St. Catharines, Ontario, Canada         Stephen C. Anco



Introduction

In the latter part of the nineteenth century, Sophus Lie introduced the notion of

continuous groups, now known as Lie groups, in order to unify and extend various

specialized methods for solving ordinary differential equations (ODEs). Lie was inspired

by the lectures of Sylow given at Christiania (present-day Oslo) on Galois theory and

Abel’s related works. [In 1881 Sylow and Lie collaborated in a careful editing of Abel’s

complete works.] Lie showed that the order of an ODE could be reduced by one,

constructively, if it is invariant under a one-parameter Lie group of point transformations.

Lie’s work systematically related a miscellany of topics in ODEs including:

integrating factor, separable equation, homogeneous equation, reduction of order, the

methods of undetermined coefficients and variation of parameters for linear equations,

solution of the Euler equation, and the use of the Laplace transform. Lie (1881) also in-

dicated that for linear partial differential equations (PDEs), invariance under a Lie group

leads directly to superpositions of solutions in terms of transforms.

A symmetry of a system of differential equations is a transformation that maps

any solution to another solution of the system. In Lie’s framework such transformations

are groups that depend on continuous parameters and consist of either point

transformations (point symmetries), acting on the system’s space of independent and

dependent variables, or, more generally, contact transformations (contact symmetries),

acting on the space of independent and dependent variables as well as on all first

derivatives of the dependent variables.  Elementary examples of Lie groups include

translations, rotations, and scalings. An autonomous system of first-order ODEs, i.e., a

stationary flow, essentially defines a one-parameter Lie group of point transformations.

Lie showed that for a given differential equation (linear or nonlinear), the admitted

continuous group of point transformations, acting on the space of its independent and

dependent variables, can be determined by an explicit computational algorithm (Lie’s

algorithm).

In this book, the applications of continuous groups to differential equations make

no use of the global aspects of Lie groups. These applications use connected local Lie

groups of transformations. Lie’s fundamental theorems show that such groups are

completely characterized by their infinitesimal generators. In turn, these form a Lie

algebra determined by structure constants.

Lie groups, and hence their infinitesimal generators, can be naturally extended or

“prolonged” to act on the space of independent variables, dependent variables, and

derivatives of the dependent variables up to any finite order. As a consequence, the

seemingly intractable nonlinear conditions for group invariance of a given system of

differential equations reduce to linear homogeneous equations determining the

infinitesimal generators of the group. Since these determining equations form an

overdetermined system of linear homogeneous PDEs, one can usually determine the

infinitesimal generators in explicit form. For a given system of differential equations, the

setting up of the determining equations is entirely routine. Symbolic manipulation

programs exist to set up the determining equations and in some cases explicitly solve 



them [Schwarz (1985, 1988); Kersten (1987); Head (1992); Champagne, Hereman, and

Winternitz (1991); Wolf and Brand (1992); Hereman (1996); Reid (1990, 1991);

Mansfield (1996); Mansfield and Clarkson (1997); Wolf (2002a)].

One can generalize Lie’s work to find and use higher-order symmetries admitted

by differential equations.  The possibility of the existence of higher-order symmetries

appears to have been first considered by Noether (1918).  Such symmetries are

characterized by infinitesimal generators that act only on dependent variables, with

coefficients of the generators depending on independent variables, dependent variables

and their derivatives to some finite order.  Here, unlike the case for point symmetries or

contact symmetries, any extension of the corresponding global transformation is not

closed on any finite-dimensional space of independent variables, dependent variables and

their derivatives to some finite order.  In particular, globally, such transformations act on

the infinite-dimensional space of independent variables, dependent variables, and their

derivatives to all orders.  Nonetheless, a natural extension of Lie’s algorithm can be used

to find such transformations for a given differential equation.

For a first-order ODE, Lie showed that invariance of the ODE under a point

symmetry is equivalent to the existence of a first integral for the ODE.  In this situation a

first integral yields a conserved quantity that is constant for each solution of the ODE.

Local existence theory for an nth-order ODE shows that there always exist n functionally

independent first integrals of the ODE, which are quadratures relating the independent

variable, dependent variable and its derivatives to order .1�n  Correspondingly, an nth

order ODE admits  n  essential conserved quantities.  Moreover, it is a long-known result

that any first integral arises from an integrating factor, given by a function of the

independent variable, dependent variable and its derivatives to some order, which

multiplies the ODE to transform it into an exact (total derivative) form. 

For a higher-order ODE, a correspondence between first integrals and invariance

under point symmetries holds only when the ODE has a variational principle

(Lagrangian).  In particular, Noether's work showed that invariance of such an ODE

under a point symmetry, a contact symmetry, or a higher-order symmetry is equivalent to

the existence of a first integral for the ODE if the symmetry leaves invariant the

variational principle of the ODE (variational symmetry). Here it is essential to view a

symmetry in its characteristic form where the coefficient of its infinitesimal generator

acts only on the dependent variable (and its derivatives) in the ODE. The determining

equation for symmetries is then given by the linearization (Frèchet derivative) of the

ODE holding for all solutions of the ODE. The condition for a symmetry to be a

variational symmetry is expressed by augmenting the linearization of the ODE through

extra determining equations.  Integrating factors are solutions of the resulting augmented

system of determining equations.

For an ODE with no variational principle, we show that integrating factors are

related to adjoint-symmetries defined as solutions of the adjoint equation of the

linearization (Frèchet derivative) of  the ODE, holding for all solutions of the ODE. In

particular, there are necessary and sufficient extra determining equations for an adjoint-

symmetry to be an integrating factor.  This generalizes the equivalence between first

integrals and variational symmetries in the case of an ODE with a variational principle, to

an equivalence between first integrals and adjoint-symmetries that satisfy extra adjoint

invariance conditions in the case of an ODE with no variational principle.
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As a consequence, adjoint-symmetries play a central role in the study of first

integrals of ODEs. Most important, an obvious extension of the calculational algorithm

for solving the symmetry-determining equation can be used to solve the determining

equation for adjoint-symmetries and the augmented system of determining equations for

integrating factors.

Integrating factors provide another method for constructively reducing the order

of an ODE through finding a first integral. This reduction of order method is

complementary to, and independent of, Lie's reduction method for second- and higher-

order ODEs.  In particular, the integrating factor method is just as algorithmic and no

more computationally complex than Lie's algorithm. Moreover, with the integrating

factor approach one obtains a reduction of order in terms of the given variables in the

original ODE, unlike reduction through point symmetries where the reduced ODE

involves derived independent and dependent variables (and usually remains of the same

order as the given ODE if expressed in the original variables).  

     If a system of PDEs is invariant under a Lie group of point transformations, one

can find, constructively, special solutions, called similarity solutions or invariant

solutions, that are invariant under a subgroup of the full group admitted by the system.

These solutions result from solving a reduced system of differential equations with fewer

independent variables. This application of Lie groups was discovered by Lie but first

came to prominence in the late 1950s through the work of the Soviet group at

Novosibirsk, led by Ovsiannikov (1962, 1982).  Invariant solutions can also be

constructed for specific boundary value problems. Here one seeks a subgroup of the full

group of a given PDE that leaves invariant the boundary curves and the conditions

imposed on them [Bluman and Cole (1974)]. Such solutions include self-similar

(automodel) solutions that can be obtained through dimensional analysis or, more

generally, from invariance under groups of scalings. Connections between invariant

solutions and separation of variables have been studied extensively by Miller (1977) and

coworkers.  For ODEs, invariant solutions have particularly nice geometrical properties

and include separatrices and envelope solutions [Bluman (1990c); Dresner (1999)].
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1

Dimensional Analysis, Modeling, and Invariance

1.1 INTRODUCTION

In this chapter, we introduce the ideas behind invariance concretely through a thorough

treatment of dimensional analysis. We show how dimensional analysis is connected to

modeling and the construction of solutions obtained through invariance for boundary

value problems for PDEs.

     Often, for a quantity of interest, one knows at most the independent quantities it

depends upon, say n in total, and the dimensions of all these n + 1 quantities. The

application of dimensional analysis usually reduces the number of essential independent

quantities. This is the starting point of modeling where the objective is to reduce

significantly the number of necessary experimental measurements.  In the following

sections we will show that dimensional analysis can lead to a reduction in the number of

independent variables appearing in a boundary value problem for a PDE.  Most

important, we show that for PDEs the reduction of the number of independent variables

through dimensional analysis is a special case of reduction from invariance under groups

of scaling (stretching) transformations.

1.2 DIMENSIONAL ANALYSIS:  BUCKINGHAM PI-THEOREM

The basic theorem of dimensional analysis is the so-called Buckingham Pi-theorem,

attributed to the American engineering scientist Buckingham (1914, 1915a,b). General

references on the subject include those of Bridgman (1931), Barenblatt (1979, 1987,

1996), Sedov (1982), and Bluman (1983a).  An historical perspective is given by Görtler

(1975).  For a detailed mathematical perspective, see Curtis, Logan, and Parker (1982).

     The following assumptions and conclusions of dimensional analysis constitute the

Buckingham Pi-theorem.

1.2.1    ASSUMPTIONS BEHIND DIMENSIONAL ANALYSIS

Essentially, no real problem violates the following assumptions:

  (i)  A quantity  u is to be determined in terms of  n measurable  quantities (variables

and parameters) nWWW ,...,, 21 :

                                          ),,...,,( 21 nWWWfu �       (1.1)
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         where f is some function of  .,...,, 21 nWWW

 (ii)  The quantities u, nWWW ,...,, 21  are measured in terms of m fundamental dimensions

labeled by .,,, 21 mLLL � For example, in a mechanical problem these are usually

the mechanical fundamental dimensions, 1L = length, 2L  = mass, and 3L = time.

   (iii)  Let  Z represent any of  u, .,...,, 21 nWWW   Then the dimension of Z, denoted by [Z],

is a product of powers of the fundamental dimensions, in particular,

,][ 21

21
m

mLLLZ
���

��     (1.2)

      for some real numbers ,,,, 21 m��� �  usually rational, which are called the

dimension exponents of  Z. The dimension vector of Z is the column vector

�

�

�

�

�

�

�

�

�

�

�

�

�

m�

�

�

�

2

1

.     (1.3)

A quantity Z is said to be dimensionless if and only if  [Z] = 1, i.e., if and only if all

of its dimension exponents are zero. For example, in terms of the mechanical

fundamental dimensions, the dimension vector of the energy E is given by

(E) = 

�

�

�

�

�

�

�

�

�

�

� 2

1

2

.

         Let

�

�

�

�

�

�

�

�

�

�

�

�

�

mi

i

i

i

b

b

b

�

2

1

b     (1.4)

         be the dimension vector of Wi , i = 1,2,...,n,  and let

�

�

�

�

�

�

�

�

�

�

�

�

�

mnmm

n

n

bbb

bbb

bbb

�

����

�

�

21

22221

11211

B     (1.5)

         be the nm�  dimension matrix of the given problem.

(iv)  For any set of fundamental dimensions, one can choose a system of units for

measuring the value of any quantity Z. A change from one system of units to

another involves a positive scaling of each fundamental dimension that in turn

induces a scaling of each quantity Z. For example, for the mechanical fundamental
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dimensions, the common systems of units are mks (meter-kilogram-second), cgs

(centimeter-gram-second), or British foot-pounds. In changing from cgs to mks

units, L1 is scaled by 210� , L2 is scaled by 310� , L3 is unchanged, and hence the

value of the energy E is scaled by 710� .  Under a change of system of units, the

value of a dimensionless quantity is unchanged, i.e., its value is invariant under an

arbitrary scaling of any fundamental dimension. Hence, it is meaningful to deem

dimensionless quantities as large or small. The last assumption of dimensional

analysis is that formula (1.1) acts as a dimensionless equation in the sense that (1.1)

is invariant under an arbitrary scaling of any fundamental dimension, i.e., (1.1) is

independent of the choice of system of units.

1.2.2 CONCLUSIONS FROM DIMENSIONAL ANALYSIS

The assumptions of the Buckingham Pi-theorem stated in Section 1.2.1 lead to the

following conclusions:

(i)  Formula (1.1) can be expressed in terms of dimensionless quantities.

  (ii)  The number of dimensionless quantities is  k + 1 = n + 1 – r(B),  where  r(B)  is the

rank of matrix B.  Precisely k of these dimensionless quantities depend on the

measurable quantities W1,W2 ,...,Wn.

 (iii)  Let
                                       

                                               

�

�

�

�

�

�

�

�

�

�

�

�

�

ni

i

i

i

x

x

x

�

2

1

)(
x , i = 1,2,…,k, (1.6)

represent the  B)(rnk ��  linearly independent solutions  x  of the system

Bx = 0.                                               (1.7)

         Let

�

�

�

�

�

�

�

�

�

�

�

�

�

ma

a

a

�

2

1

a     (1.8)

         be the dimension vector of u, and let

�

�

�

�

�

�

�

�

�

�

�

�

�

ny

y

y

�

2

1

y     (1.9)
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  represent a solution of the system

               By = –a.   (1.10)

      Then formula (1.1) simplifies to

         ),,...,,( 21 kg ���� �   (1.11)

  where i�� ,  are dimensionless quantities given by

,21

21
ny

n

yy
WWuW ��� (1.12a)

,21

21
niii x

n

xx

i WWW ��� i = 1,2,…,k, (1.12b)

 and g  is some function of its arguments. In particular, (1.1) becomes

).,,,( 2121
21

k

y

n

yy
gWWWu n

��� ��

���

� (1.13)

[In terms of experimental modeling, formula (1.13) is “cheaper” than formula (1.1) by

r(B)  orders of magnitude.]

1.2.3 PROOF OF THE BUCKINGHAM PI-THEOREM 

First of all,

,][ 21

21
ma

m

aa
LLLu �� (1.14a)

.,,2,1,][ 21

21 niLLLW miii b

m

bb

i �� �� (1.14b)

Next, we use assumption (iv), and consider the invariance of (1.1) under arbitrary

scalings of the fundamental dimensions by taking each fundamental dimension in turn.

We first scale  L1 by letting

                                                       .,* 11 R�� �

� LeL   (1.15)

In turn, this induces the following scalings of the measurable quantities:

,* 1ueu a�
� (1.16a)

,* 1

i

b

i WeW i�

� i = 1,2,…,n.             (1.16b)

Equations (1.16a,b) happen to define a one-parameter )(� Lie group of scaling

transformations of the n + 1  quantities  u,W1,W2,…,Wn, with 0��  corresponding to the

identity transformation. This group is induced by the one-parameter group of scalings

(1.15) of the fundamental dimension L1. [It is not necessary to be familiar with Lie

groups to read the rest of this chapter.]

     From assumption (iv), formula (1.1) holds if and only if

          ),*,...,*,*(* 21 nWWWfu �

i.e.,
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),,,( 112111

21 n

bbba
WeWeWefue n����

�� for all �� R.   (1.17)

Then two cases need to be distinguished:

Case I. b11= b12 =  = b1n= a1 = 0. 

Here, L1 is not a fundamental dimension of the problem, or in other words, formula (1.1)

is dimensionless with respect to L1.

Case II. b11= b12 =  = b1n= 0, a1  0.

Here, it follows that  u 0, a trivial situation.

Hence, it follows that  b1i  0  for some  i = 1,2,…,n.  Without loss of generality,

we assume b11 0. We define new measurable quantities

,111 /

11

bb

ii
iWWX

�

�

�  i = 2,3,…,n,                            (1.18)

and  let

Xn = W1.   (1.19)

We choose as the new unknown

                    .111 /

1

bauWv �

� (1.20)

The transformation given by (1.18)–(1.20) defines a one-to-one mapping of the quantities

W1,W2,…,Wn to the quantities ,,,, 21 nXXX �  and a one-to-one mapping of the quantities

u,W1,W2,…,Wn to the quantities .,,,, 21 nXXXv �  Consequently, formula (1.1) is

equivalent to

                  ),,,,( 21 nXXXF ���   (1.21)

where F is some function of .,,, 21 nXXX �  Thus, the group of transformations (1.16a,b)

becomes

,* vv � (1.22a)

           ,* ii XX � i = 1,2,…,n – 1,                         (1.22b)

,* 11

n

b

n XeX
�

� (1.22c)

so that 121 ,,,,
�nXXXv �  are invariants of (1.16a,b). Moreover, the quantities

nXXXv ,,,, 21 �  satisfy assumption (iii), and formula (1.21) satisfies assumption (iv).

Hence,

),,,,,( 11

121 n

b

n XeXXXF
�

�
�

� � (1.23)

for all �� R. Consequently, F is independent of the quantity Xn. Moreover, the

measurable quantities  121 ,,,
�nXXX �  are products of powers of  W1,W2,…,Wn, and  v  is

a product of u and powers of  W1,W2,…,Wn.  Thus, formula (1.1) reduces to
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    ),,,,( 121 �

� nXXXG ��   (1.24)

where 121 ,,,,
�nXXXv �  are dimensionless with respect to  L1 and G  is some function

of its 1�n  arguments.

Continuing in turn with the other 1�m  fundamental dimensions, we reduce

formula (1.1) to a dimensionless formula

                   ),...,,( 21 kg ���� � ,   (1.25)

where  ,1][][ �� i��  and g  is some function of k��� ,...,, 21 :

,21

21
ny

n

yy
WWuW ���            (1.26a)

and

,21

21
niii x

n

xx

i WWW ��� i = 1,2,…,k, (1.26b)
                                                                                                      

for some real numbers yj, xji, i = 1,2,...,k;  j= 1,2,...,n.

Next, we show that the number of measurable dimensionless quantities is

k = n – r(B).  This follows immediately since

1][ 21

11 �

nx

n

xx
WWW �

if and only if 

�

�

�

�

�

�

�

�

�

�

�

�

�

nx

x

x

�

2

1

x

satisfies (1.7).  Equation (1.7) has k = n – r(B) linearly independent solutions )(ix  given

by (1.6).  The real numbers 

�

�

�

�

�

�

�

�

�

�

�

�

�

ny

y

y

�

2

1

y

follow from setting

,1][ 21

11 �

ny

n

yy
WWuW �

leading to  y  satisfying (1.10). 

Note that the proof of the Buckingham Pi-theorem makes no assumption about the

continuity of the function  f, and hence of  g, with respect to any of their arguments.
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1.2.4    EXAMPLES

(1) The Atomic Explosion of 1945

Sir Geoffrey Taylor (1950) deduced the approximate energy released by the first atomic

explosion that took place in New Mexico in 1945 from the motion picture records of J.E.

Mack that were declassified in 1947.  But the amount of energy released by the blast was

still classified in 1947! [Taylor carried out the analysis necessary for his deduction in

1941.]  A dimensional analysis argument of Taylor’s deduction follows.

     An atomic explosion is approximated by the release of a large amount of energy E

from a “point.” A consequence is an expanding spherical fireball whose edge corresponds

to a powerful shock wave.  Let  u = R be the radius of the shock wave. We treat R as the

unknown and assume that

      ),,,,( 4321 WWWWfR �   (1.27)

where

EW �1  is the energy released by the explosion,

tW �2  is the elapsed time after the explosion takes place,

03 ��W  is the initial or ambient air density, 

04 PW �  is the initial or ambient air pressure.

 For this problem, we use the mechanical fundamental dimensions. The

corresponding dimension matrix is given by

�

�

�

�

�

�

�

�

�

�

��

��

	

2012

1101

1302

B .   (1.28)

Clearly, r(B) = 3, and hence,  k = n – r(B) = 4 – 3 = 1.  The general solution of Bx = 0 is

x1 = –
5
2 x4, x2 =

5
6 x4, x3 = –

5
3 x4, where x4 is arbitrary.   Setting x4 = 1, we get the

measurable dimensionless quantity

5/1

3

0

2

6

01
)(
�

�

�

�

�

�

�

�

�

E

t
P .   (1.29)

The dimension vector of R  is

�

�

�

�

�

�

�

�

�

�

�

0

0

1

a .   (1.30)

The general solution of  By = – a  is
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xy �

�

�

�

�

�

�

�

�

�

�

�

�

	

	




0

1

2

1

5

1
,   (1.31)

where x is the general solution of Bx = 0. Setting x = 0 in (1.31), we obtain the

dimensionless unknown

5/1

0

2
�

�

�

�

�

�

�

�

�

�

Et
R .   (1.32)

Thus, from dimensional analysis, we get

),( 1

5/1

0

2

�

�

g
Et

R
�

�

�

�

�

�

�               (1.33)

where g  is some function of  1.

    Equivalently, 

),(
)(

)( 1

5/

3

0

2

6

0

5/1

0

2

�

��

q

q

q h
E

t
P

Et
R

�

�

�

�

�

�

�

�

�

�

�

�

�

for some function  .)()( 111

q

q gh
�


 ���   Now we assume that for some ,Qq � 0)0( �Qh

and that )( 1�Qh  is continuous at ,01 ��  i.e., we are essentially assuming that

5/)62( qtR �

�  near 0�t  for some .Qq �   Then

),()()( 1

5/)62(

0

5/)31(

0

5/)21(
�� Q

QQQQ htPER ����

�

and

,loglog
5

62
CtR

Q
��

�

for some constant 

),0(loglogloglog 00
5

31

5

21
QhPQEC

QQ
����

��

�

near .01 ��   Plotting Rlog  versus tlog  for a light explosives experiment, one can

determine that 0�Q  and that g(0) = .1)0(0 �h   This leads to Taylor’s approximation

formula

     ,5/2AtR � (1.34)

where
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).0(

5/1

0

g
E

A
�
�

�

�

�
�

�

�

�

�

       (1.35) 

Using Mack’s motion picture for the first atomic explosion, Taylor plotted 
2
5 log10R

versus  log10 t with R and t measured in terms of  cgs units. [See Figure 1.1 where the

motion picture data is indicated by +.]  This led to an accurate estimation of the classified

energy E of the explosion!

Figure 1.1

(2) An Example in Heat Conduction Illustrating the Choice of Fundamental Dimensions

Consider the standard problem of one-dimensional heat conduction in an “infinite” bar

with constant thermal properties, initially heated by a point source of heat.  Let  u  be the

temperature at any point of the bar. We assume that

                  u = f(W1, W2, W3, W4, W5, W6), (1.36)

where

     xW �1  is the distance along the bar from the point source of heat, 

           tW �2  is the elapsed time after the initial heating,

��3W  is the mass density of the bar,

            cW �4  is the specific heat of the bar, 

            KW �5  is the thermal conductivity of the bar, 

           QW �6  is the strength of the heat source measured in energy units per (length

units)
2
.

+

++

+
++

+

+

+

+
++

+

+

+

++

+

++
+

+
+

–4.0               –3.0                –2.0                –1.0

10.5

9.5

8.5

7.5 t10log

R102
5 log
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     It is interesting to consider the effects of dimensional analysis in simplifying

(1.36) with two different choices of fundamental dimensions.

Choice I  (Dynamical Units).  Here, we let L1 = length, L2 = mass, L3 = time, and L4 =

temperature.  Correspondingly, the dimension matrix is given by

                  .

011000

232010

110100

012301

BI

�

�

�

�

�

�

�

�

�

�

�

�

		

			

	

�          (1.37)

Here, r(BI) = 4, and hence, the number of measurable dimensionless quantities is

k = 6 – 4 = 2.  One can choose two linearly independent solutions x
(1)

  and  x
(2)  

of

BIx = 0  such that  1 is linear in  x  and independent of  t, and 2 is linear in  t and

independent of x.  Then

,
2

2

1 x
K

Qc�
�� �� (1.38a)

.
3

23

2 t
K

Qc�
�� �� (1.38b)

For the dimensionless quantity , it is convenient to choose a solution of

          ,

1

0

0

0

BI

�

�

�

�

�

�

�

�

�

�

�

�

	

�	� ay

where y1 = y2 = 0, so that   is independent of x  and  t.  Consequently,

.
2

2

u
cQ

K
��   (1.39)

Hence, dimensional analysis with dynamical units reduces (1.36) to

),,(
2

2

��F
K

cQ
u �   (1.40)

where F is some function of    and .

Choice II (Thermal Units).  Motivated by the implicit assumption that in the posed

problem there is no conversion of heat energy to mechanical energy, we refine the

dynamical units by introducing a thermal unit L5 = “calories.” The corresponding

dimension matrix is given by
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        .

111000

011000

010010

001100

210301

BII

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

���

	   (1.41)

Here, r(BII) = 5, and hence, there is only one measurable dimensionless quantity. For

dimensionless quantities, it is convenient to choose

t

x

�

�� ��1   where 
c

K

�

� � , (1.42a)

and

.u
Q

cKt�

� � (1.42b)

Thus, dimensional analysis with thermal units reduces (1.36) to

),(�
�

G
cKt

Q
u �   (1.43)

where G  is some function of .

     Note that (1.43) is a special case of (1.40) with

.
1

),(and �

�

�

�

�

�
��

�

�

�

��

�

�

� GF

[In terms of thermal units, each of the quantities , , cQuK 22 /  is not dimensionless.]

     Obviously, if it is correct, expression (1.43) is a significant simplification of

(1.40). By conducting experiments or associating a properly posed boundary value

problem to determine u, one can show that thermal units are justified.  In turn, thermal

units can then be used for other heat (diffusion) problems where the governing equations

are not completely known.

EXERCISES 1.2

1. Use dimensional analysis to prove the Pythagoras theorem. [Hint: Drop a

perpendicular to the hypotenuse of a right-angle triangle and consider the areas of the

resulting three similar triangles.]

2. How would you use dimensional analysis and experimental modeling to find the time

of flight T of a body dropped vertically from a height  h?

(a) Model I: Assume that T depends on h, the mass m  of the body, the acceleration

g  due to gravity, and the shape  s of the body.
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(b) Model II: Now take into account a resistance force proportional to the velocity v

of the body as it falls.  Let k be the constant of proportionality.  How does the

extra dimensionless quantity depend on h and m?  How important is the constant k

as the values of h and m change?

3. Given that in cgs units 0 = ,103.1 3�
�  and P0 = ,100.1 6�


  use the data from

Figure 1.1 to estimate the domain of  1 and E.

4.   Cooking a turkey.   Assume that a turkey is composed of a uniform material with

specific heat c, mass density , thermal conductivity K, and weight m.  Assume that

the cooking temperature is T.   Let  t be the time to cook the turkey.

(a) Choose, as fundamental dimensions: length, mass, time, and temperature. Use

dimensional analysis to find t in terms of c, , K, m, T, and the shape of the

turkey.

(b) Repeat as for (a) and determine t with heat as an added fifth fundamental

dimension.  How can one justify introducing this fifth fundamental dimension?  Is

this extra fundamental dimension helpful?

(c) Interpret your answer for t in (b) in terms of the surface area of the turkey. 

(d) You should find that t  is proportional to .3/2m

(e) Suppose one assumes that t is proportional to pm for some constant p.  Use

cookbook data to determine p.  How good is the crude “dimensional analysis”
estimate of  p = 2/3?

(f)  How would stuffing affect the answer?

1.3 APPLICATION OF DIMENSIONAL ANALYSIS TO PDEs

Consider the use of dimensional analysis where the quantities u,W1,W2,…,Wn arise in a

boundary value problem for a PDE which has a unique solution. Then the unknown u (the

dependent variable of the PDE) is the solution of the boundary value problem, and

W1,W2,…,Wn denote all independent variables and constants appearing in the boundary

value problem.   From the Buckingham Pi-theorem it follows that such a boundary value

problem can always be re-expressed in dimensionless form where  is a dimensionless

dependent variable and k��� ,,, 21 �  are dimensionless independent variables and

dimensionless constants.

Suppose W1,W2,…,W   are the  independent variables and  W +1,W +2,…,Wn  are

the n –  constants appearing in the boundary value problem.  Let

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����

�

�

mmm bbb

bbb

bbb

21

22221

11211

1B (1.44a)

be the dimension matrix of the independent variables, and let
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�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

mnmm

n

n

bbb

bbb

bbb

�

����

�

�

��

��

��

2,1,

22,21,2

12,11,1

2B (1.44b)

be the dimension matrix of the constants. The dimension matrix of the boundary value

problem is given by

� �21 B|BB � .               (1.45)

 A dimensionless i quantity is called a dimensionless constant if and only if it

does not depend on the variables W1,W2,…,W , i.e., in (1.26b),  xji = 0, j = 1,2,..., . A

dimensionless i  quantity is a dimensionless variable if  xji  0  for some  j = 1,2,..., .

An important objective in applying dimensional analysis to a boundary value problem is

to reduce the number of independent variables.  The rank of  B2, i.e., r(B2), represents the

reduction in the number of constants through dimensional analysis. Consequently, the

reduction in the number of independent variables is  = r(B) – r(B2).  In particular, the

number of dimensionless measurable quantities is k = n – r(B) = [ – ] + [(n – – r(B2)],

where –   of the  quantities are dimensionless independent variables and  n – – r(B2)

are dimensionless constants.

     If r(B) = r(B2), then dimensional analysis reduces the given boundary value

problem to a dimensionless boundary value problem with  (n – ) – r(B2)  dimensionless

constants.  In this case the number of independent variables is not reduced. Nonetheless,

this is useful as a starting point for perturbation analysis if any dimensionless constant is

small.

     If   2, –  = 1, then the resulting solution of the boundary value problem is

called a self-similar or automodel solution.

1.3.1 EXAMPLES

(1) Source Problem for Heat Conduction

Consider the unknown temperature  u of the heat conduction problem of Section 1.2.4 as

the solution  u(x, t) of the boundary value problem

,0,,0
2

2

�������

�

�

�

�

�

tx
x

u
K

t

u
c� (1.46a)

),()0,( x
c

Q
xu �

�

� (1.46b)

.0),(lim �

���

txu
x

(1.46c)

In (1.46b), (x) is the Dirac delta function.

     The use of dimensional analysis with dynamical units reduces (1.46a–c) to
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,0,,0
2

2

�������

�

�

�

�

�

t
FF

�

��

(1.47a)

),()0,( ��� �F (1.47b)

,0),(lim �

���

��

�

F (1.47c)

with  u defined in terms of F( , )  by (1.40) and  , given by (1.38a,b). Consequently,

there is no essential progress in solving the boundary value problem (1.46a–c).

We now justify the use of dimensional analysis with thermal units to solve

(1.46a–c) as follows: First, note that from (1.47a,c) we have

.0),(),(
2

2

�

�

�

�

�

�

��

�

��

�

��

���

�

���

�

d
F

dF

Then, from this equation and (1.47b), we get the conservation law

.0allforvalid1),( ���

�

��

���� dF

Consequently, the substitution ),/()/1(),( ����� GF �  which results from using

dimensional analysis with thermal units [cf. Section 1.2.4], reduces (l.47a–c), and hence

(1.46a–c), to a boundary value problem for an ODE with independent variable ��� /�

and dependent variable G( ):

,,02
2

2

�������� �

�

�

�

G
d

dG

d

Gd
(1.48a)

�

�

��

� ,1)( �� dG (1.48b)

.0)( ���G (1.48c)

This reduction of (1.46a–c) to a boundary value problem for an ODE is obtained much

more naturally and easily in Section 1.4 from the invariance of (1.46a–c) under a one-

parameter group of scalings of its variables.

(2) Prandtl–Blasius Problem for a Flat Plate

Consider the Prandtl boundary layer equations for flow past a semi-infinite flat plate:

,
2

2

y

u

y

u
v

x

u
u

�

�

�

�

�

�

�

�

� (1.49a)

,0�

�

�

�

�

�

y

v

x

u
(1.49b)

0 < x < , 0 < y < , with boundary conditions

u(x,0) = 0, (1.49c)
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v(x,0) = 0, (1.49d)

u(x, ) = U,                                              (1.49e)

u(0,y) = U. (1.49f)

In the boundary value problem (1.49a–f), x is the distance along the plate surface from its

edge (tangential coordinate), y is the distance from the plate surface (normal coordinate),

u  is the  x-component of velocity,  v  is the  y-component of velocity, �  is the kinematic

viscosity, and  U is the velocity of the incident flow [Figure 1.2].     

Figure 1.2

Our aim is to calculate the shear at the plate (skin friction), )0,(xuy , which in turn

leads to the determination of the viscous drag on the plate.

     We look at the problem of determining )0,(xuy  as defined through the boundary

value problem (1.49a–f) from three analytical perspectives:

(i) Dimensional Analysis. From (1.49a–f), it follows that

),,,()0,( �Uxfx
y

u
�

�

�

  (1.50)

with the unknown function f to be determined in terms of measurable quantities .,, �Ux

The fundamental dimensions are L = length and T = time. Then, with respect to these

fundamental dimensions, one has

1)0,( �

�
�

�

�

�

�

�

	

	

Tx
y

u
, (1.51a)

[x] = L, (1.51b)

                                 [U] = 1�LT , (1.51c)

][� = 12 �TL . (1.51d)

Consequently,  r(B) = 2.  Dimensionless quantities are given by

y v

x

uIncident

flow

U

Flat plate
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,1
�

�

Ux
�             (1.52a)

and

).0,(
2

x
y

u

U �

�

�

�

� (1.52b)

Hence, dimensional analysis leads to

�

�

�

�

�

�
�

	

	

��

Ux
g

U
x

y

u 2

)0,( ,     (1.53)

where g  is an unknown function of ./�Ux

(ii)  Scalinqs of Quantities Followed by Dimensional Analysis. Consider a linear

transformation of the variables of the boundary value problem (1.49a–f) given by  x = aX,

y = bY, u = UQ, v = cR, where  a, b, c are undetermined positive constants, U is the

velocity of the incident flow, and  X, Y, Q, R represent new (dimensional) independent

and dependent variables: Q = Q(X, Y), R = R(X, Y); 

u(x, y) = UQ(X, Y) = �

�

�

�

�

�

b

y

a
xUQ , ,  v(x, y) = cR(X, Y) = �

�

�

�

�

�

b

y

a
xcR , .

     Consequently,

),0,()0,( X
Y

Q

b

U
x

y

u

�

�

�

�

�

  (1.54)

and the boundary value problem (1.49a–f) transforms to

,
2

2

2 Y

Q

bY

Q
R

b

c

X

Q
Q

a

U

�

�

�

�

�

�

�

� �

(1.55a)

,0�

�

�

�

�

�

Y

R

b

c

X

Q

a

U
(1.55b)

0 < X < , 0 < Y < , with

Q(X, 0) = 0,                                   (1.55c)

R(X, 0) = 0,                                   (1.55d)

   Q(X, ) = 1,                                           (1.55e)

Q(0, Y) = 1.                                            (1.55f)

From the form of (1.55a,b), it is convenient to choose a, b, c so that

.
2bb

c

a

U �

��
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Hence, we set  c = 1, b = ,�  a = .�U As a result, (1.55a,b) become cleared of constants:

,
2

2

Y

Q

Y

Q
R

X

Q
Q

�

�

�

�

�

�

�

�

(1.56a)

,0�

�

�

�

�

�

Y

R

X

Q
(1.56b)

0 < X < , 0 < Y < .  Moreover,

.0,)0,()0,( �

�

�

�

�

�

�

�

	

�

�

	

�

�

��� U

x

Y

QU
X

Y

QU
x

y

u
              (1.57)

Since Q(X, Y) results from the solution of (1.56a,b), (1.55c–f), we have

),()0,( XhX
Y

Q
�

�

�

(1.58)

for some function h(X). To determine h(X), we apply dimensional analysis to (1.58):

,1�
�

�
�

�

�
�

�

	

	

LT
Y

Q
           (1.59a)

                     [X] = L
–2

T
2
. (1.59b)

Hence, it is easy to see that (1.58) reduces to

2/1)( �

� XXh � ,   (1.60)

for some fixed dimensionless constant �  to be determined.  Thus, (1.53) simplifies

further to ,)/()/( 2/1�
� ��� UxUxg  so that

.)0,(

2/1
3

�
�

�

�

�
�

�

�

�

	

	

�

�

x

U
x

y

u
  (1.61)

   (iii)   Further Use of Dimensional Analysis on the Full Boundary Value Problem. We

now apply dimensional analysis to the boundary value problem (1.56a,b), (1.55c-f), to

reduce it to a boundary value problem for an ODE.  It is convenient (but not necessary) to

introduce a potential (stream function) ),( YX�  from the form of (1.56b). 

Let ./,/ XRYQ ������� ��  Then in terms of the single dependent variable

,�  the boundary value problem (1.56a,b), (1.55c–f), becomes

,
3

3

2
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YYXYXY �

�

�

�

�

�

�

�

��

�

�

� �����

            (1.62a)

,0,0 ������ YX  with

,0)0,( �

�

�

X
Y

�

(1.62b)
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,0)0,( �

�

�

X
X

�

(1.62c)

,1),( ��

�

�

X
Y

�

(1.62d)

.1),0( �

�

�

Y
Y

�

(1.62e)

Moreover, from (1.58) and (1.60), we get

.)0,()0,( 2/1

2

2
�

�

�

�

�

�

�

XX
Y

X
Y

Q
�

�

              (1.63)

We now use dimensional analysis to simplify (X, Y).  Since the boundary value problem

(1.62a–e) has no constants, we have

= F(X, Y), (1.64)

for some unknown function  F. We see that

                  [ ] = [Y] = L
–1

T, (l.65a)

                           [X] = L
–2

T
2
. (1.65b)

Consequently, there is only one measurable dimensionless quantity.  It is convenient to

choose as dimensionless quantities

,1
X

Y
���� (1.66a)

and

.
X

�

� � (1.66b)

Hence,

),(),( �� GXYX � (1.67)

where G( ) solves a boundary value problem for an ODE that is obtained by substituting

(1.67) into (1.62a–e).  Moreover, from (1.67) and (1.63), it follows that

).0(G ����    (1.68)

[A prime denotes differentiation with respect to .] Note that 

],[),( 2/1

2
1 GGX

X
G

Y
���

�

�

��

�

�
�

�

�

�

�

],[,, 1

2
1

2
1

3

3
2/1

2

2

GX
YX

GX
Y

GX
Y

����

��

�

����

�

�

���

�

�
���

�

���

0 < X < , 0 < Y <   leads to  0 <  < ; Y = 0  leads to   = 0; Y   leads to  ;



23

and X = 0  leads to  .  Correspondingly, the boundary value problem (1.62a–e)

reduces to solving a third-order ODE, known as the Blasius equation, for G( ):

,0,02
2

2

3

3

����� �

�� d

Gd
G

d

Gd
            (1.69a)

with boundary conditions

.1)(,0)0()0( ������ GGG             (1.69b)

The aim is to find ).0(G ����

     A numerical procedure for solving the boundary value problem (1.69a,b) is the

shooting method where one considers the auxiliary initial value problem

,0,02
2

2

3

3

����� z
dz

Hd
H

dz

Hd
(1.70a)

,)0(,0)0()0( AHHH ������ (1.70b)

for some initial guess A. One integrates out the initial value problem (1.70a,b) and de-

termines that ,)( BH ���  for some number  B = B(A). One continues this process with

different values of A until B is close enough to 1.

     We now show that the invariance of (1.70a) and the initial conditions

0)0()0( ��� HH  under a one-parameter family of scalings (one-parameter Lie group of

scaling transformations) lead to the determination of   with only one shooting.

     The transformation

,
�

�

�z (1.71a)

                   H(z) = G( ), (1.71b)

where  > 0  is an arbitrary constant, maps (1.70a,b) to (1.69a) with initial conditions

.)0(,0)0()0(
3

�

A
GGG ������   (1.72)

Moreover, BH ��� )(  implies that 

.)(
2

�

B
G ���   (1.73)

Hence, we pick so that 
2
 = B, i.e.,  = B .  Then

.)0(
2/3B

A
G �����   (1.74)

From the numerical solution of the initial value problem (1.70a,b) for any particular value

of A, one can show that

 = 0.332... .   (1.75)
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EXERCISES 1.3

1. For the heat conduction problem (1.46a–c), show that r(B2) = 4 for both dynamical

and thermal units.

2.   Derive (1.47a–c).

3.    Derive (1.48a–c). 

4.   The boundary value problem (1.46a–c), in effect, has only two constants: � cK �/�

(diffusivity) and �� ./ cQ �  Use dimensional analysis with dynamical units to reduce

(1.46a–c), where now W1 = x, W2 = t, W3 = , W4  = .

5.  Consider the Rayleigh flow problem [see Schlichting (1955)], where an infinite flat

plate is immersed in an incompressible fluid at rest. The plate is instantaneously

accelerated so that it moves parallel to itself with constant velocity U. Let u be the

fluid velocity in the direction of U (x-direction).  Let the y-direction be the direction

normal to the plate. The situation is illustrated in Figure 1.3.

                                                                 Figure 1.3

From symmetry considerations, one can show that the Navier–Stokes equations

governing this problem reduce to the viscous diffusion equation

const,,0,0,
2

2

�������

�

�

�

�

�

�� yt
y

u

t

u
(1.76a)

  with boundary conditions

u(y, 0) = 0,   (1.76b)

u(0, t) = U, (1.76c)

u( , t) = 0. (1.76d)

      (a) Use dimensional analysis to simplify the boundary value problem (1.76a–d).

(b) Use scalings of quantities followed by dimensional analysis to further simplify

(1.76a–d).  Find the explicit self-similar solution  u(y, t) of (1.76a–d).

Fluid flow
u

y

x

U

Flat plate
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1.4 GENERALIZATION OF DIMENSIONAL ANALYSIS:  INVARIANCE OF

PDEs UNDER SCALINGS OF VARIABLES

In both examples of Section 1.3.1, the use of dimensional analysis to reduce a boundary

value problem for a PDE to a boundary value problem for an ODE is rather cumbersome.

For the heat conduction problem, the use of dimensional analysis depends on either

making the right choice of fundamental dimensions (thermal units) or combining

effectively the constants before using dynamical units [cf. Exercise 1.3-4]. For the

Prandtl–Blasius problem we used scaled variables before applying dimensional analysis.

A much easier way to accomplish such a reduction for a boundary value problem

is to consider the invariance property of the boundary value problem under a one-

parameter family of scalings (one-parameter Lie group of scaling transformations) where

its variables are scaled but the constants of the boundary value problem are not scaled. If

the boundary value problem is invariant under such a family of scaling transformations,

then the number of independent variables is reduced constructively by one. We show that

if, for some choice of fundamental dimensions, dimensional analysis leads to a reduction

of the number of independent variables of a boundary value problem, then such a

reduction is always possible through invariance of the boundary value problem under

scalings applied strictly to its variables. [Recall that dimensional analysis involves

scalings of both variables and constants.]  Moreover, as will be shown, there exist

boundary value problems for which the number of independent variables is reduced from

invariance under a one-parameter family of scalings of their variables but the number of

independent variables is not reduced from the use of dimensional analysis for any known

choice of fundamental dimensions. [One could argue that this is a way of discovering

new sets of fundamental dimensions!]  Hence, for the purpose of reducing the number of

independent variables of a boundary value problem, the invariance of a boundary value

problem under a one-parameter family of scalings of its variables is a generalization of

dimensional analysis.

Zel’dovich (1956) [see also Barenblatt and Zel’dovich (1972) and Barenblatt

(1979, 1987, 1996)] calls a self-similar solution of the first kind a solution of a boundary

value problem obtained by reduction through dimensional analysis, and calls a self-

similar solution of the second kind a solution to a boundary value problem obtained by

reduction through invariance under scalings of the variables when this reduction is not

possible through dimensional analysis. The two examples of Section 1.3.1 show that

these distinctions are somewhat blurred.

     Before proving a general theorem relating dimensional analysis and invariance

under scalings of variables, we consider the invariance property of the heat conduction

problem (1.46a–c) under scalings of its variables.

     Consider the family of scaling transformations

,* xx �� (1.77a)

,* tt �� (1.77b)

,* uu �� (1.77c)

where , ,   are arbitrary positive constants. 
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Definition 1.4-1. A transformation of the form (1.77a–c) leaves invariant the boundary

value problem (1.46a–c) (is admitted by the boundary value problem (1.46a–c)) if and

only if for any solution ),( txu ��  of (1.46a–c), it follows that 

),(**)*,( txuutxv ���� ��   (1.78)

solves the boundary value problem

,0*,*,0
** 2

2

�������

�

�

�

�

�

tx
x

v
K

t

v
c� (1.79a)

*),()0*,( x
c

Q
xv �

�

� (1.79b)

.0*)*,(lim �

���

�

txv
x

(1.79c)

Clearly, the domain ,0*,* ��		�� tx  corresponds to the domain ;0, ������ tx

0* �t   corresponds to t = 0;  and ���*x  corresponds to  .���x  Hence, (1.77a–c)

leaves invariant the boundary of the boundary value problem (1.46a–c).

Lemma 1.4-1. If a scaling (1.77a–c) leaves invariant the boundary value problem

(1.46a–c) and ),( txu ��  solves (1.46a–c), then )/,/( ��� txu �� also solves

(1.46a–c).

Proof. Left to Exercise 1.4-1.           

     In order that (1.77a–c) leaves invariant the boundary value problem (1.46a-c), it is

sufficient that each of the three equations of (1.46a–c) is separately invariant.  Invariance

of (1.46a) means that u = (x, t) solves (1.46a) if and only if v = (x, t) solves (1.79a).

This leads to  = 2. Invariance of (1.46b,c) similarly leads to  = 1/ .  Hence, the one-

parameter ( > 0) family of scaling transformations

,* xx �� (1.80a)

              ,* 2tt �� (1.80b)

             ,* 1uu �

�� (1.80c)

is admitted by (1.46a–c).

Clearly, if u = (x, t) solves (l.46a–c), then

               ),(*)*,(*)*,( 2txtxtxv ������               (1.81)

solves (1.79a–c). Hence, the transformation (1.80a–c) maps any solution *)*,( txv ��  of

(1.79a–c) to the solution

        *)*,(),( 2111 txtxv ����

���� ����
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of (1.79a–c) or, equivalently, maps any solution  u = (x, t) of (1.46a–c) to the solution

),( 211 txu ���

�� ���  of (1.46a–c).

     The solution of (1.46a–c), and hence of (1.79a–c), is unique. Consequently, from

this uniqueness property, the solution u = (x, t) of (1.46a–c) must satisfy the functional

equation

      ).,(*)*,( 1 txtx ���

�

�   (1.82)

Such a solution of a PDE, arising from invariance under a one-parameter Lie group of

transformations, is called a similarity or invariant solution. The functional equation

(1.82), satisfied by the invariant solution, is called the invariant surface condition. An

invariant solution arising from invariance under a one-parameter Lie group of scalings

such as (1.80a–c) is also called a self-similar or automodel solution.

From (1.80a,b), the invariant surface condition (1.82) satisfied by (x, t) is given

by

      ).,(),( 12 txtx ���

�

���   (1.83)

In order to solve (1.83), let z = tx / and (x, t) = ).,()/1( tzt �   Then in terms of

z,  t, ),,( tz�  (1.83) becomes

.
),(

),(),(
1

),(),(
2

2

2

2

t

tz
tz

t
tz

t
txtx

��

��

�

�

���� ������

Hence, � (z, t)  satisfies the functional equation

    ),(),( 2tztz ��� �    for any .0��               (1.84)

Thus, � (z, t)  does not depend on t. This leads to the invariant form (similarity form)

)(
1

),( zF
t

txu ��� (1.85)

for the solution of the boundary value problem (1.46a–c); z is called the similarity

variable.  The substitution of (1.85) into (1.46a–c) leads to a boundary value problem for

an ordinary differential equation with unknown F(z). The details are left to

Exercise 1.4–2. 

     Now consider the following theorem that connects dimensional analysis and

invariance under scalings of variables:

Theorem 1.4-1. If the number of independent variables appearing in a boundary value

problem for a PDE can be reduced by  through dimensional analysis, then the number

of variables can be reduced by  through invariance of the boundary value problem

under a -parameter family of scaling transformations of its variables.

Proof. Consider the dimension matrices B, B1, and B2 defined by (1.44a,b) and (1.45).

Through dimensional analysis the number of independent variables of the given boundary

value problem is reduced by = r(B) – r(B2).

An arbitrary scaling of any fundamental dimension is represented by the m-
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parameter family of scaling transformations

                                                  ,* jj LeL j�

�    j = 1,2,...,m, (1.86)

where m��� ,,, 21 � are arbitrary real numbers. Let    be the row vector

         ].,,,[ 21 m��� ��   (1.87)

The scaling (1.86) induces a scaling of the value of each measurable quantity Wi:

,,...,2,1,*
)B(1 niWeWeW ii

b

i
i

m

j jij

��

�

�
�

�

�

              (1.88)

where ( B)i is the ith component of the n-component row vector B.  The value of u

scales to

.* 1 ueu
m

j jja�

�
�

�

  (1.89)

From assumption (iv) of the Buckingham Pi-theorem, the family of scaling

transformations (1.88), (1.89), induced by the m-parameter family of scalings of the

fundamental dimensions (1.86), leaves invariant the given boundary value problem.  Our

aim is to find the number of essential parameters in the subfamily of transformations of

the form (1.88), (1.89) for which the constants are all invariant, i.e., we aim to find the

dimension of the vector space of all vectors ],,,[ 21 m��� �� such that

,,...,2,1,* nlliWW ii ���� (1.90a)

and

.,...,2,1somefor* ljWW jj ��                                 (1.90b)

Equation (1.90a) holds if and only if

B2 = 0.   (1.91)

The number of essential parameters is the number of linearly independent solutions of

(1.91) such that B1  0.

     It is helpful to introduce a few definitions and some notation:

    Let A be a matrix linear transformation acting on vector space V such that if

v �V is a row vector, then  vA  is the action of  A  on  v. The null space of  A  is the

vector space },0A:{)A( ��� VV
N

 the range space of A is the vector space

},someforA:{)A( VzzV
R

���  and dim V is the dimension of the vector space V.

It follows that

NR
VVV )A()A( dimdimdim �� .

     Consider the matrices B, B1, and B2 defined by (1.44a,b), (1.45).  Let V be R
m
,

where m is the number of rows of each of these three matrices, so that dim V = m. Then

N
V )B(dim is the number of linearly independent solutions of the set of equations B = 0,
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and
N

V )B( 2
dim is the number of linearly independent solutions of B2 = 0. It follows that

.)B((B)dim),B(dim 2)B(2)B( 2
������� rmrmVrmV

NN

     Since 
NNN

VV )B()B()B( 12
� , it follows that

.dimdimdimdimdim )B()B()B()B()B()B()B()B( 1212122 RNNRNNNN
VVVVV ����

Hence, .dim )B()B( 12
��

RN
V  But

RN
V )B()B( 12

dim is the number of linearly independent

solutions of the system B2 = 0 such that B1  0.  Hence, the number of essential

parameters is  , completing the proof of the theorem.                                                       

EXERCISES 1.4

1. Prove Lemma 1.4-1.

2.   Set up the boundary value problem for F(z) as defined by (1.85). Put this boundary

value problem in dimensionless form using:

(a) dynamical units;  and

   (b) thermal units. Explain.

3. Consider diffusion in a half-space with a concentration-dependent diffusion

coefficient which is directly proportional to the concentration of a substance ).,( txC

Initially, and far from the front face  x =  0, the concentration is assumed to be zero.

The concentration is fixed on the front face. The aim is to find the concentration flux

on the front face, ).,0( tCx  In special units, C(x, t) satisfies the boundary value

problem

,0,0, �������

�

�

�

�

	













�







tx
x

C
C

xt

C
            (1.92a)

      where

 C(x, 0) = C( , t) = 0, C(0, t) = A. (1.92b)

(a) Exploit similarity to determine ),0( tCx   as effectively as possible. 

(b) Use scaling invariance to reduce the boundary value problem (1.92a,b) to a

boundary value problem for an ODE. 

(c) Discuss a numerical procedure to determine ),0( tCx  based on the scaling property

of the reduced boundary value problem derived in (b).

4. For boundary layer flow over a semi-infinite wedge at zero angle of attack, the

governing PDEs are given by
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,)(
2

2

y

u

dx

dU
xU

y

u
v

x

u
u
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�

�

�

�

�

,0,0,0 �������

�

�

�

�

�

yx
y

v

x

u

 with boundary conditions u(x, 0) = v(x, 0) = 0,
��y

lim  u(x, y) = U(x), U(x) = Ax, where

A, l are constants with �l )2/( �� �  corresponding to the opening angle  of the

semi-infinite wedge.  In this problem,  x is the distance from the leading edge on the

wedge surface and  y  is the distance from the wedge surface [Figure 1.4].

Figure 1.4

As for the Prandtl boundary layer equations (1.49a,b), introduce a stream function

(x, y).  Use scaling invariance to reduce the given problem to a boundary value

problem for an ODE. Choose coordinates so that the Blasius equation arises if  l = 0.

5. The following boundary value problem for a nonlinear diffusion equation arises from

a biphasic  continuum model of soft tissue [Holmes (1984)]: 

,0,0,0
2

2

�������

�

�

�

�

�

	




�

�

�

�

�

�

tx
t

u

x

u
K

x

u

where K is a function of xu �� / , with boundary conditions 
x

u

�

�

,1),0( ��t

.0)0,(),( ��� xutu   Reduce this problem to a boundary value problem for an ODE.

6. Use invariance under scalings of the variables to solve the Rayleigh flow problem

(1.76a–d).

7. Consider again the source problem for heat conduction in terms of the dimensionless

form arising  from dynamical units:

y = 0 (u = v = 0)

y = 0 (u = v = 0)

y
u

y

v

x

x
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,0,,0
2

2

�������

�

�

�

�

�

tx
x

u

t

u

),()0,( xxu ��

.0),(lim �

���

txu
x

The use of scaling invariance with respect to the variables (1.80a–c) leads to the

similarity form for the solution, �u )./()/1( txGt

(a) Show that this problem is invariant under the one-parameter ( ) family of

transformations

,*,*,*
2)4/1()2/1( txueutttxx ��

�
�

����               (1.93)

for any constant  , – <  < .

(b) Check that t and txue 4/2

are invariants of these transformations.

(c) Show that these transformations lead to the similarity form

                                                .)(),( 4/2 txetHtxu �

��      (1.94)

Hence show that invariance under the scalings (1.80a–c) and the transformations

(1.93) lead to the well-known fundamental solution

.
4

1
),( 4/2 txe

t
txu �

�

�

1.5       DISCUSSION

Dimensional analysis is necessary for ascertaining fundamental dimensions and the

consequent essential quantities that arise in a real problem in order to design proper

model experiments. If a given problem can be described in terms of a boundary value

problem for a system of PDEs then dimensional analysis may lead to a reduction in the

number of independent variables. Moreover, if such a reduction exists, it can always be

accomplished by considering the invariance properties of the boundary value problem

under scaling transformations applied only to its variables.

     As will be seen in Chapter 4, the invariance properties of PDEs (or, more

particularly, boundary value problems) under scalings of variables can be generalized to

the study of the invariance properties of PDEs under arbitrary one-parameter Lie groups

of point transformations of their variables. Moreover, for a given differential equation,

such transformations can be found algorithmically. [For example, one can easily deduce

transformations (1.93) and (1.94).] This follows from the properties of such

transformations and, in particular, their characterization by infinitesimal generators [see

Chapter 2].
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     References on dimensional analysis specific to various fields include: de Jong

(1967) [economics]; Sedov (1982), Birkhoff (1950), Barenblatt (1979, 1987, 1996), and

Zierep (1971) [mechanics, elasticity, and hydrodynamics]; Venikov (1969) [electrical

engineering]; Taylor (1974) [mechanical engineering]; Becker (1976) [chemical

engineering]; Haynes (1982) [geography]; Kurth (1972) [astrophysics]; Murota (1985)

[systems analysis]; Schepartz (1980) and Barenblatt (1987) [biomedical sciences].

Examples of dimensional analysis and scaling invariance applied to boundary value

problems appear in Sedov (1982), Birkhoff (1950), Barenblatt (1979, 1996), Dresner

(1983, 1999), Hansen (1964), Zierep (1971), and Seshadri and Na (1985). Examples

which use scalings to convert boundary value problems to initial value problems for

ODEs appear in Klamkin (1962), Na (1967, 1979), Dresner (1983, 1999), and Seshadri

and Na (1985).  Fractals are connected with self-similarity [Mandelbrot (1977, 1982)].

There are important connections between self-similarity, asymptotics, and

renormalization groups [Barenblatt (1996); Goldenfeld (1992); Cole and Wagner (1996)].
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Lie Groups of Transformations and 

Infinitesimal Transformations

2.1 INTRODUCTION

In dimensional analysis, the scalings of the fundamental dimensions (1.86), the induced

scalings of the measurable quantities (1.88), the induced scalings of all quantities (1.88),

(1.89), and the induced scalings preserving all constants (1.88), (1.91), are all examples

of Lie groups of transformations. From the point of view of finding solutions to partial

differential equations (PDEs), a general theory of Lie groups of transformations is

unnecessary if transformations are restricted to scalings, translations, or rotations. How-

ever, it turns out that much wider classes of transformations can leave invariant PDEs.

For the use and discovery of such transformations, the infinitesimal characterization of a

Lie group of transformations is crucial.

Sophus Lie introduced the notion of a continuous group of transformations to put

order to the hodgepodge of techniques for solving ordinary differential equations (ODEs).

He was motivated by the lectures of his fellow Norwegian, Sylow, on the works of Abel

and Galois on solving algebraic equations.  

Lie groups of transformations are characterized by infinitesimal generators.  Lie

gave an algorithm to find all infinitesimal generators of point transformations and, more

generally, contact transformations admitted by a given differential equation.

Significantly, for a given differential equation, the basic applications of Lie groups of

transformations only require knowledge of the admitted infinitesimal generators. 

A point transformation acts on the space of independent and dependent variables

of a differential equation.  A Lie group of point transformations extends naturally to act

on a space that includes the derivatives of dependent variables to any finite order.  The

functions appearing in the infinitesimal generator of a Lie group of transformations

satisfy an overdetermined system of linear differential equations.  These functions only

depend on independent and dependent variables in the case of point transformations and

include dependence on first derivatives of dependent variables in the case of contact

transformations.  More generally, the method of calculation, as well as many applications

of infinitesimal generators for point and contact transformations, extend to infinitesimal

generators of higher-order local transformations which allow the functions in their

generators to depend on a finite number of higher-order derivatives.

A Lie group of transformations admitted by a differential equation corresponds to

a mapping of each of its solutions to another solution of the same differential equation.

There are an infinite number of ways of representing such a mapping by allowing an

arbitrary change of independent variables.  The representation is unique if the

independent variables are kept fixed.  This point of view is essential when one extends

Lie’s algorithm to the computation and use of higher-order local transformations

admitted by differential equations as well as when one extends Lie’s work on integrating

factors for first-order ODEs to higher-order ODEs.
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2.2 LIE GROUP OF TRANSFORMATIONS

We start with the definition of a group, then consider a group of transformations and,

more specifically, a one-parameter Lie group of transformations.  Here, the

transformations act on .n
R

2.2.1 GROUPS

Definition 2.2.1-1. A group G is a set of elements with a law of composition �  between

elements satisfying the following axioms:

(i) Closure property. For any elements  a and b of  G, � (a, b) is an element of  G.

   (ii) Associative property. For any elements  a, b, c  of  G:

� (a, � (b, c)) = � (� (a, b), c).

 (iii) Identity element.   There exists a unique identity element  e of  G such that for any

      element a  of G:

� (a, e) = � (e, a) = a.

(iv) Inverse element.   For any element a of G there exists a unique inverse element
1�a in G such that

),( 1�aa�  = ),( 1 aa�

�  = e.

Definition 2.2.1-2.  A group G is Abelian if � (a, b) = � (b, a) holds for all elements a

and b in G.

Definition 2.2.1-3.  A subgroup of G is a group formed by a subset of elements of G with

the same law of composition � .

2.2.2 EXAMPLES OF GROUPS

  (1) G is the set of all integers with � (a, b) = a + b.  Here,  e = 0 and .1 aa ��

�

  (2) G is the set of all positive reals with � (a, b) = a · b. Here, e = 1 and 1�a = 1/a.

  (3) G is the set of symmetries (transformations) which leave invariant an equilateral

triangle  ABC with both faces painted in the same color [Figure 2.1].
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Figure 2.1

     Here, the group can be represented by all permutations of the vertices A, B, C.

The identity element e = (1,2,3) corresponds to vertex 1 located at A, vertex 2 at B, and

vertex 3 at C [Figure 2.2(a)]. The rotation element R = (3,1,2) corresponds to a

counterclockwise rotation of 2 /3 radians of the configuration of Figure 2.1 about an axis

coming out of the page through the center of the triangle [Figure 2.2(b)]. As a

consequence vertex 3 is located at A, vertex 1 at B, and vertex 2 at C. The flip element

r = (3,2,1) represents the rotation of the configuration of Figure 2.1 about the indicated

perpendicular by    radians.  As a consequence, vertex 3 is located at A, vertex 2 at B,

and vertex 1 at C [Figure 2.2(c)].

Figure 2.2. Symmetry group of an equilateral triangle: (a) identity, e; (b) rotation by

2 /3, R; (c) flip, r; (d) rotation by 4 /3, � (R,R); (e) rotation by 2 /3 followed by flip,

� (R,r); and (f) flip followed by rotation by 2 /3, � (r,R).

The element � (R,R)  = R = (2,3,1) represents a counterclockwise rotation of

4 /3 radians of the configuration in Figure 2.1 [Figure 2.2(d)].  It is the composition of a

counterclockwise rotation of 2 /3 radians followed by another counterclockwise rotation

of 2 /3 radians.  The composition element � (R,r) = rR = (2,1,3) represents a

counterclockwise rotation of 2 /3 radians followed by a flip [Figure 2.2(e)]. The

composition element � (r,R) = Rr = (1,3,2) represents a flip followed by a

counterclockwise rotation of 2 /3 radians [Figure 2.2(f)].  It is left to Exercise 2.2–1 to

prove that the symmetries of an equilateral triangle form a group with six elements. Note

that this group is not Abelian since � (r,R) � (R,r).

3 2 1

            1                       2               3                       1                3                       2
         (a)         (b)         (c)

                          1                                        3                                         2

            2                       3               2                       1                 1                      3
         (d)                                     (e)         (f)

2 /3

2 /34 /3 2 /3

� � � �

C

A                         B
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2.2.3    GROUP OF TRANSFORMATIONS

Definition 2.2.3-1. Let ),,,( 21 nxxx ��x lie in region .n
R�D  The set of

transformations

x* = X(x;� ),     (2.1)

defined for each x in D and parameter �  in set ,R�S  with � ( ,� ) defining a law of

composition of parameters �  and  in S, forms a one-parameter group of transformations

on D if the following hold:

   (i)  For each �  in S the transformations are one-to-one onto D.  [Hence, x* lies in D.]

  (ii) S with the law of composition �  forms a group G.

(iii) For each x in D,  x*= x  when 0�� �  corresponds to the identity e, i.e.,

X(x; 0� ) = x.

(iv)  If  x* = X(x;� ), x** = X(x*; ), then

        x** = X(x; )).,( ���

2.2.4 ONE-PARAMETER LIE GROUP OF TRANSFORMATIONS

Definition 2.2.4-1.  A one-parameter group of transformations defines a one-parameter

Lie group of transformations if, in addition to satisfying axioms (i)–(iv) of Definition

2.2.3-1, the following hold:

 (v) �  is a continuous parameter, i.e., S  is an interval in R. Without loss of generality,

�  = 0  corresponds to the identity element  e.

(vi)  X is infinitely differentiable with respect to  x  in  D and an analytic function of �

in S.

 (vii) ),( ���  is an analytic function of �  and , ,S�� .S��

     If one thinks of �  as a time variable and x as spatial variables, then a one-

parameter Lie group of transformations, in effect, defines a stationary flow. This will be

shown in Section 2.3.1 but can now be partially seen as follows: Let

X(x; )         (2.2)

define the evolution of x  over all elements .S�� This defines a curve 1 [Figure 2.3(a)].

     Now let );( �xXy �  represent a point on 1. Then );(** �yXx �

� )),(;( ���xX  must lie on 1.  Note that the self-intersecting curve 2  [Figure 2.3(b)]

cannot represent the evolution defined by (2.2) [Exercise 2.2-2].
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Figure 2.3

2.2.5 EXAMPLES OF ONE-PARAMETER LIE GROUPS OF 

            TRANSFORMATIONS

(1)  Group of Translations in the Plane

Consider the group of translations

.,*
,*

R��

��

�

�

yy
xx

Here, .),( ����� ��  This group corresponds to motions parallel to the x-axis.

[In Figure 2.4, the curve represents the evolution  X(x0; ).]�

Figure 2.4

(2)  Group of Scalings in the Plane

Consider the group of scalings

.0,*
,*

2
����

�

��

�

yy
xx

Here ,),( ����� �  and the identity element corresponds to .1��  This group of

transformations can also be reparametrized in terms of :1����

,)1(* xx ���   (2.3a)

             ,1,)1(* 2
������ �� yy   (2.3b)

                             1�

                                           x**

                y

                    x

                                                   2�

        x

(a)  (b)

   y

                    

              �

                                   xo

                                      x



38

so that the identity element corresponds to 0��  with the law of composition of param-

eters given by

.),( ������� ���     (2.4)

EXERCISES 2.2

1. Show that the symmetries of an equilateral triangle, with both faces painted in the

same color, form a group with six elements. What happens if the faces are painted in

different colors?

2.   Show that the curve 2 of Figure 2.3(b) cannot represent the transformations (2.2).

3. Show that the transformations

,2* ��� xx   (2.5a)

                                          ,),(,,3* 2RR ���� yxyy ��                                   (2.5b)

  define a Lie group of transformations. Trace out the evolution curves of the points

(0, 0) and (1, 0) under this group.  Explain the geometrical situation of the resulting

curves.

4. Show that the set }1:{ ����� ��S  with the law of composition

������� ���),( defines a group.

5.   Trace out the evolution curves of the points (1, 0), (1, 1), and (0, 0) for the Lie group

of transformations (2.3a,b).

6. Show that the transformations (1.93) define a one-parameter Lie group of

transformations acting on:

  (a)  (x, t)-space; and

      (b)  (x, t, u)-space.

7.  Show whether or not each of the following one-parameter )(� families of transforma-

tions of the plane defines a Lie group of transformations:        

      (a) ;*,* xyyyxx �� ����

(b) ;*,* 2 yyxy ��� �   and

(c) .*,*
�

�

�

���

x

xy
yxx

2.3     INFINITESIMAL TRANSFORMATIONS

Consider a one-parameter )(� Lie group of transformations

X* = X(x;� )     (2.6)
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with the identity � = 0 and law of composition � .  Expanding (2.6) about � = 0, in some

neighborhood of � = 0, we get

).(
);();();(
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xXxX
xx �

                                                                                                                (2.7)

Let

.
);(

)(
0��

�

�

�

�

�xX
x (2.8)

The transformation x + )(x�  is called the infinitesimal transformation of the Lie group

of transformations (2.6).  The components of )(x  are called the infinitesimals of (2.6).

2.3.1 FIRST FUNDAMENTAL THEOREM OF LIE

The following lemma is useful:

Lemma 2.3.1-1. The one-parameter )(� Lie group of transformations (2.6) satisfies the

relation

                                     )).,();;(();( 1
������� �����

�xXXxX     (2.9)

Proof.

))),(,(;()),();;(( 11
����������� �����

�� xXxXX

))),,((;( 1
������ ���

�xX

)),0(;( ��� ��� xX

                                                                      ).;( �� ��� xX                                              

Theorem 2.3.1-1 (First Fundamental Theorem of Lie). There exists a parametrization

)(��  such that the Lie group of transformations (2.6) is equivalent to the solution of an

initial value problem for a system of first-order ODEs given by

*),(
*

x
x

�

�d

d
                                                 (2.10a)

with

xx �*      when .0�� (2.10b)

In particular,

�
����

�

����

0
,)()( d (2.11)

where
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),(),( 1

),(
)(

��

�

�

�

�

�

�

��

bab

ba
  (2.12)

and

(0) = 1.   (2.13)

[�
–1

denotes the inverse element to .� ]

Proof.  First we show that (2.6) leads to (2.l0a,b), (2.11), and (2.12). Expand the left-

hand side of (2.9) in a power series in ��  about �� = 0, so that

),)((
);(

*);( 2
��

�

�

�� ���

�

�

���� O
xX

xxX                           (2.14)

where x* is given by (2.6). Then, expanding ),( 1
���� ��

�  in a power series in ��

about 0��� , we have

                ),)(()())(()(),(),( 2211
������������� �������������

�� OO      (2.15)

where )(��  is defined by (2.12). Consequently, after expanding the right-hand side of

(2.9) in a power series in �� about 0��� , we obtain

                   )))(()(*;()),(*;();( 21
��������� ����������

� OxXxXxX

))((
)*;(

)()0*;( 2

0

�

�

�

��

�

��
�
�

�

�

�
�

�

	







����

�

O
xX

xX

                                       ).)((*)()(* 2
��� ������ Oxx   (2.16)

Equating (2.14) and (2.16), we see that x* = );( �xX satisfies the initial value problem for

the system of differential equations given by

*)()(
*

x
x

�

�

��

d

d
                                              (2.17a)

with

         x* = x     at � = 0. (2.17b)

From (2.7), it follows that .1)0( ��  The parametrization �
����

�

����

0
)()( d

leads to (2.10a,b).

     Since ix�� /)(x  is continuous, ,,,2,1 ni ��  then from the existence and

uniqueness theorem for an initial value problem for a system of first-order differential

equations [Coddington (1961)], it follows that the solution of (2.l0a,b), and hence

(2.17a,b), exists and is unique.  This solution must be (2.6), completing the proof of Lie’s

First Fundamental Theorem.                                                                                               

Lie’s First Fundamental Theorem shows that the infinitesimal transformation

contains the essential information determining a one-parameter Lie group of
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transformations.  Since the system of first-order ODEs (2.10a) is invariant under

translations in , one can always reparameterize a given group in terms of a parameter 

such that for parameter values 1 and 2 , the law of composition becomes� ( 1, 2) = 1 + 2.

Lie’s First Fundamental Theorem also shows that a one-parameter Lie group of

transformations (2.6) defines a stationary flow given by (2.l0a,b) and, moreover, that any

stationary flow (2.l0a,b) defines a one-parameter Lie group of transformations.

2.3.2    EXAMPLES ILLUSTRATING LIE’S FIRST FUNDAMENTAL THEOREM

(1)  Group of Translations in the Plane

For the group of translations

,* ��� xx (2.18a)

,* yy �                                                         (2.18b)

the law of composition is given by � (a, b) = a + b, and �

–1
= .�� Then 1/),( ��� bba� ,

and hence,  )(�  1.

     Let x = (x, y).  Then the group (2.18a,b) becomes X(x;� ) = (x + ,� y).  Thus,

�� �� /);(xX = (1, 0).  Hence,

).0,1(
);(

)(
0

�

�

�

�

��

�

�xX
x

     Consequently, (2.17a,b) becomes

,0
*

,1
*

��

�� d

dy

d

dx
                                       (2.19a)

with

.0at*,* ��� �yyxx                                      (2.19b)

The solution of the initial value problem (2.19a,b) is easily seen to be given by (2.18a,b).

(2) Group of Scalings

For the group of scalings

,)1(* xx ���             (2.20a)

                                                             ,1,)1(* 2
������ �� yy                        (2.20b)

the law of composition is given by � (a, b) = a + b + ab, and �
–1

= ).1/( �� ��  Here,

,1/),( abba �����  and hence,

.
1

1
1

),(
)( 1

),(),( 1 �

�

�

�

��

�

���

�

�

��

�

�

�bab

ba
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Let x = (x, y). Then the group (2.20a,b) becomes X(x;� ) = ((1 +� )x, (1 +� )
2
y).

Thus, �� �� /);(xX  = (x, 2(1 + � )y),  and

).2,(
);(

)(
0

yx�

�

�

�

��

�

�xX
x

     As a result, (2.17a,b) here becomes

,
1

*2*
,

1

**

���� �

�

�

�

y

d

dyx

d

dx
                                 (2.21a)

with

.0at*,* ��� �yyxx (2.21b)

The solution of the initial value problem (2.21a,b) is, of course, given by (2.20a,b).

     In terms of the parameterization 

),1log(
1

1
)(

00
��

�

���

��

���

��

����� �� dd

the group (2.20a,b) becomes

                                                            ,* xex �

� (2.22a)

                                                       ,,* 2
������ �

� yey                           (2.22b)

with the law of composition  � ( 1, 2) = 1 + 2 .

2.3.3    INFINITESIMAL GENERATORS

In view of Lie’s First Fundamental Theorem, from now on, without loss of generality, we

assume that a one-parameter )(�  Lie group of transformations is parameterized such that

its law of composition is given by � (a, b) = a + b, so that �
–1

= –� and )(� 1.  Thus,

in terms of its infinitesimals (x), the one-parameter Lie group of transformations (2.6)

becomes

*),(
*

x
x

�

�d

d
(2.23a)

with

                                                          x* = x    at � = 0.             (2.23b)

Definition 2.3.3-1. The infinitesimal generator of the one-parameter Lie group of

transformations (2.6) is the operator

i

n

i

i
x�

�

����� �
�

)()()X(X
1

xxx � ,                                 (2.24)
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where  is the gradient operator

.,,,
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nxxx
�                                           (2.25)

For any differentiable function ),,,,()( 21 nxxxFF ��x one has

.
)(

)()()()(X
1 i

n

i

i
x

F
FF

�

�

���� �
�

x
xxxx �

Note that Xx = (x).

It follows that a one-parameter Lie group of transformations, which from Lie’s

First Fundamental Theorem is determined by its infinitesimal transformation, is also

determined by its infinitesimal generator. The following theorem shows that use of the

infinitesimal generator (2.24) leads to an algorithm to find the explicit solution of the

initial value problem (2.23a,b).

Theorem 2.3.3-1.  The one-parameter Lie group of transformations (2.6) is equivalent to

�

�
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����������

0

22
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122

2
1X ,X

!
]XX1[XX*

k

k
k

k
e xxxxxxx

�

����

�

��   (2.26)

where the operator X = X(x) is defined by (2.24) and the operator )(XX xkk
� is given

by .,2,1,XXX 1
���

� kkk In particular, )(X xFk  is the function obtained by applying

the operator X to the function ,,2,1),(X 1
��

� kFk x  with ).()(X0 xx FF �

Proof.  Let

�
�

�

�

��

n

i i

i
x1

)()X(X xx � (2.27a)

and

�
�

�

�

�

n

i i

i
x1 *

*)(*)X( xx � , (2.27b)

where

x* = X(x;� ) (2.28)

is the Lie group of transformations (2.6).  From Taylor’s theorem, expanding (2.28) about

� = 0, we have
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     For any differentiable function F(x),  we obtain
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*).(*)X(
*
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d
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(2.30)

Hence, it follows that

*,*)X(
*

xx
x
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�d

d
                                              (2.31a)
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                 (2.31b)

and, in general,

.,2,1*,*)(X
*

��� k
d

d k

k

k

xx
x

�

                                   (2.31c)

Consequently, we have

,,2,1,X)(X
*
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k
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d kk
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xxx
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  (2.32)

 which leads to (2.26).                                                                                                        

     Thus, the Taylor series expansion about � = 0 of a function X(x;� ) that defines a

Lie group of transformations (2.6), with law of composition ,),( baba ��� is determined

by the coefficient of its O )(� term, which is the infinitesimal

).(
);(

0

x
xX

�

�

�

��

�

�

     In summary, there are two ways to find explicitly a one-parameter Lie group of

transformations from its infinitesimal transformation: 

(i) Express the group in terms of a power series (2.26), called a Lie series, that is

developed from the infinitesimal generator (2.24) corresponding to the infinitesimal

transformation;  or 

(ii) Solve the initial value problem (2.23a,b) through explicitly finding the general

solution of the system of first-order differential equations (2.23a).

     The following corollary results from Theorem 2.3.3-1:

Corollary 2.3.3-1. If F(x) is infinitely differentiable, then for a one-parameter Lie group

of transformations (2.6) with infinitesimal generator (2.27a), we have

                                                 ).()(*)( XX xxx FeeFF ��

��                                        (2.33)
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Proof.

.
*)(

!
*)()(

00

X

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

k

k

k

k

d

Fd

k
FeF

x
xx

From (2.30) we see that )*()*(X
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  Consequently,
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          As an example, consider the rotation group

,sincos* �� yxx �� (2.34a)

.cossin* �� yxy ���                                         (2.34b)

The infinitesimal for (2.34a,b) is given by
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��x                 (2.35)

The infinitesimal generator for (2.34a,b) is
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The Lie series corresponding to (2.36) is obtained as follows:

),,(*)*,( XX yexeyx ��
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.XX,X 2 xyxyx ����
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Consequently,
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Similarly,

.cossin* X
��

� yxyey ����

2.3.4    INVARIANT FUNCTIONS

Definition 2.3.4-1.  An infinitely differentiable function F(x) is an invariant function of

the Lie group of transformations (2.6) if and only if, for any group transformation (2.6), 

).(*)( xx FF �                                                   (2.37)

If F(x) is an invariant function of (2.6), then F(x) is called an invariant of (2.6) and F(x)

is said to be invariant under (2.6).

Theorem 2.3.4-1. F(x) is invariant under a Lie group of transformations (2.6) if and

only if

XF(x)  0.   (2.38)

Proof.

.)(X)(X)()(X
!

)(*)( 22

2
1

0

kX
������� �
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xxxxxx FFFF
k

FeF
k

k

��

�
�       (2.39)

Suppose F(x*)  F(x). Then XF(x) 0 follows from (2.39).

     Conversely, let F(x) satisfy XF(x) 0. Then nX F(x) 0, n = 1,2,….    Hence,

from (2.39), we have F(x*)  F(x).

Theorem 2.3.4-2.  For a Lie group of transformations (2.6), the identity

                                                           F(x*)  F(x) +� (2.40)

holds if and only if  F(x)  is such that

XF(x) 1.   (2.41)

Proof.  Let F(x) satisfy (2.40).  Then

.)(X)(X)()( 22

2
1

������ xxxx FFFF ���

Hence, XF(x) 1.

     Conversely, let F(x) satisfy (2.41).  Then nX F(x) 0, n = 2,3,….  Hence,

                                .)()(X)()(*)( X
��

�

����� xxxxx FFFFeF                             
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2.3.5    CANONICAL COORDINATES

Suppose one makes a change of coordinates (one-to-one and continuously differentiable

in some appropriate domain)

                                            )).(,),(),(()( 21 xxxxYy nyyy ���   (2.42)

For the one-parameter Lie group of transformations (2.6), the infinitesimal generator

�
�

�

�

�

n

i

i

ix1

)(X x�  with respect to the coordinates ),,,,( 21 nxxx ��x  becomes the

infinitesimal generator 

                                                  �
�

�

�

�

n

i i

i
y1

)(Y y� ,               (2.43)

with respect to the coordinates ),,,( 21 nyyy ��y  defined by (2.42).  Then it is necessary

that Y = X in order to have the same group action. The infinitesimal, with respect to the

coordinates y, is given by

                                          .Y))(,),(),(()( 21 yyyyy �� n��� �   (2.44)

Note that, using the chain rule, we have

���
���

�

�

�

�

�

�

�

�

�

�

�

�

n

j j

j

n

ji ji

j

i

n

i i

i
yyx

y

x 11,1

Y.)(
)(

)()(X y
x

xx ���

Hence, in order to have Y = X, it is necessary that

�
�

��

�

�

�

n

i

j

i

j

ij njy
x

y

1

.,,2,1,X
)(

)()( �

x
xy ��   (2.45)

Theorem 2.3.5-1. With respect to the coordinates y given by (2.42), the one-parameter

Lie group of transformations (2.6) becomes

                                                                .* Yyy �e�                                                      (2.46)

Proof.  From (2.33) and (2.42), we obtain

.)(*)(* YXX yYxYxYy ��� eee ����

Definition 2.3.5-1.  A change of coordinates (2.42) defines a set of canonical coordinates

for the one-parameter Lie group of transformations (2.6) if, in terms of such coordinates,

the group (2.6) becomes

                                                 ,1,,2,1,* ��� niyy ii �             (2.47a)

                                                .* ��� nn yy                                                              (2.47b)
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Theorem 2.3.5-2. For any Lie group of transformations (2.6), there exists a set of

canonical coordinates ),,,( 21 nyyy ��y  such that (2.6) is equivalent to (2.47a,b).

Proof.  From Theorem 2.3.4-1, we have

 )(*)(* xx iii yyy ��

if and only if

                                                .1,,2,1,0)(X ��� niyi �x               (2.48)

The homogeneous first-order linear PDE

0)()()()(X
2

2

1

1 �

�

�

��

�

�

�

�

�

�

n

n
x

u

x

u

x

u
u xxxx ��� �                     (2.49)

has 1�n  functionally independent solutions for  u(x). These solutions are 1�n  essential

constants y1(x),y2(x),...,yn-1(x) appearing in the general solution of the system of n first-

order ODEs

),(x
x
�

dt

d
(2.50)

resulting from the characteristic equations

.
)()()( 2

2

1

1

xxx n

ndxdxdx

���

��� �

This yields the n – 1 coordinates satisfying (2.47a).                                                           

     From Theorem 2.3.4-2, it follows that 

���� )(*)(* xx nnn yyy

if and only if

                                                              .1)(X �xny   (2.51)

Hence, yn(x) is given by any particular solution v(x) of the nonhomogeneous first-order

linear PDE

1)()()()(X
2

2

1

1 �

�

�

��

�

�

�

�

�

�

n

n
x

v

x

v

x

v
v xxxx ��� � (2.52)

that is solved by determining a particular solution of the corresponding characteristic

system of  n + 1 first-order ODEs

,1�

dt

dv
                                                     (2.53a)
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).(x
x
�

dt

d
                                               (2.53b)

Theorem 2.3.5-3. In terms of any set of canonical coordinates ),(),(( 21 xxy yy�

)),(, 1 x
�ny� the infinitesimal generator of the one-parameter Lie group of

transformations (2.6) becomes

.Y
ny�

�

�                                                      (2.54)

Proof.  We have .)(Y
1�
�

�

�

�

n

i i

iy
y�  In terms of canonical coordinates, from (2.48) and

(2.51) it follows that

.1X)(

,1,,2,1,0X)(

��

����

nn

ii

y

niy

y

y

�

� �

Hence, we obtain (2.54).                                                                                                      

2.3.6    EXAMPLES OF SETS OF CANONICAL COORDINATES

In ,2R  we set x1 = x, x2 = y, and let canonical coordinates be denoted by y1 = r, y2 = s, so

that a one-parameter Lie group of transformations becomes

,* rr �                                                         (2.55a)

,* ��� ss                                                    (2.55b)

with infinitesimal generator 

.Y
s�

�

�

(1)  Group of Scalings

For the group of scalings

                                                                ,* xex �

� (2.56a)

                                                               ,* 2 yey �

�                                                    (2.56b)

the infinitesimal generator is given by .2X
yx

yx
�

�

�

�

��  The canonical coordinate r(x, y)

satisfies

x

r
xr
�

�

�X .02 �

�

�

�

y

r
y                                            (2.57)
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The corresponding characteristic differential equations reduce to

x

y

dx

dy 2
�                                                       (2.58)

with the general solution given by

const.),(
2
��

x

y
yxr                                              (2.59)

The canonical coordinate s(x, y) satisfies

x

s
xs
�

�

�X .12 �

�

�

�

y

s
y                                            (2.60)

A particular solution of (2.60) is given by s(x, y) = s(x) satisfying

.
1

xdx

ds
�                                                       (2.61)

Thus,

s(x, y) = log x,   (2.62)

and hence, (2.56a,b) has canonical coordinates )log,/(),( 2 xxysr � .

(2) Group of Rotations

For the group of rotations

,sincos* �� yxx �� (2.63a)

,cossin* �� yxy ��                                           (2.63b)

the infinitesimal generator is given by .X
xy

yx
�

�

�

�

��   Correspondingly,

r(x, y) = const

is the general solution of

y

x

dx

dy
��   (2.64)

so that

.22 yxr ��   (2.65)

Then a particular solution for s(x, y) is given by )(),( ysyxs �  satisfying

.
11

22 yrxdy

ds

�

��                                             (2.66)

Thus,
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.sin 1

r

y
s �

���               (2.67)

Canonical coordinates are the polar coordinates

,sin,),(),( 122
�

�

�

�

�

�
�		

�

r

y
yxrsr �                                 (2.68)

in terms of which the rotation group (2.63a,b) is expressed in the usual form

,* rr � (2.69a)

.* ��� ��                                                 (2.69b)

EXERCISES 2.3

1. Consider the rotation group

,1* 2 yxx �� ��� (2.70a)

.1* 2 yxy �� ���                                             (2.70b)

(a) Show that (2.70a,b) defines a one-parameter Lie group of transformations in some

neighborhood of � = 0.  In particular, find the law of composition � (a, b)  and

.1�
�

(b) Determine )(��  and the infinitesimal generator for (2.70a,b).

      (c) Integrate the initial value problem for the infinitesimals to obtain (2.70a,b).

      (d) Parametrize (2.70a,b) in terms of �
����

�

���

0
.)( d

2. Formally, consider the one-parameter )(� family of transformations

,* ��� xx                                                  (2.71a)

.*
��

�

x

xy
y                                                 (2.71b)

(a) Determine ),(),( x��  and explicitly integrate the initial value problem for the

infinitesimals to obtain (2.71a,b).

(b) Find canonical coordinates for (2.71a,b).

(c) Determine (2.71a,b) in terms of its Lie series developed from ).(x

3.  For the group of transformations (1.93), find the infinitesimal generator, explicitly

integrate out the initial value problem for the infinitesimals, and find canonical

coordinates:

(a) in (x, t)-space;  and 

(b) in (x, t, u)-space.
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4. Find the one-parameter groups of transformations and canonical coordinates

corresponding to the infinitesimal generators:

      (a) ;X1
y

y
x

x
�

�

�

�

�

�

      (b) ;X2
y

y
x

x
�

�

�

�

�

�  and

      (c) .X 22

3
y

y
x

x
�

�

�

�

�

�

5. Show that X(x)x* = *).(x   Hence, show that X(x*)  X(x)  X. .

6. For the infinitesimal generator

� �
z

zxy
y

xy
x

x
�

�

��

�

�

�

�

�

�
2
12

4
12X :

(a) find canonical coordinates;  and

(b) determine the corresponding one-parameter Lie group of transformations by

             (i) integrating the appropriate initial value problem;  and

            (ii) developing it in terms of a Lie series.

2.4       POINT TRANSFORMATIONS AND EXTENDED TRANSFORMATIONS

(PROLONGATIONS)

In later chapters, we will be interested in determining one-parameter Lie groups of point

transformations admitted by a given system S of differential equations. 

Definition 2.4-1.  A one-parameter )(�  Lie group of point transformations is a group of

transformations of the form

),;,(* �uxXx �                                               (2.72a)

);,(* �uxUu � ,             (2.72b)

acting on the space of  n + m  variables

                                                         ),,,,( 21 nxxxx ��   (2.73)

                                                         );,,,( 21 muuuu ��   (2.74)

x represents  n independent variables and  u represents  m dependent variables.

  A Lie group of point transformations (2.72a,b) admitted by S maps any solution

u = (x)  of S into a one-parameter family of solutions  u = � (x;� ) of  S.  Equivalently,

a Lie group of point transformations (2.72a,b) leaves S invariant in the sense that the

form of S is unchanged in terms of the transformed variables (2.72a,b) for any solution
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)(xu ��  of S.  The expression for � (x;� ) is derived in Section 2.6.2.

Let u�  denote the set of nm coordinates corresponding to all first order partial

derivatives of u with respect to  x:

              
�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	�

n

mmm

nn x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u
u ,,,,,,,,,,,,

21

2

2

2

1

21

2

1

1

1

���� .   (2.75) 

In general, for ,1�k  let uk
�  denote the set of coordinates

kjnim
xxx

u
u j

iii

k

iii

k

k
,2,,1,,2,1,and,,2,1    with

21

21
���

�

�

���

���

�

� �

�

�

corresponding to all kth-order partial derivatives of  u  with respect to  x.

It turns out that the natural transformation of partial derivatives of the dependent

variables  leads  successively  to  extensions  (prolongations) of  a  one-parameter

Lie group  of  transformations  (2.72a,b)  acting  on  ),( ux -space  to  one-parameter

Lie groups of transformations acting on space,-),,( uux � ),,,( 2uuux �� -space,…,

),,,,,( 2 uuuux k
��� � -space for any k > 2. [For a given system S of differential

equations, k would be the order of the highest order derivative appearing in S.]  Then the

infinitesimal transformation of (2.72a,b) is naturally extended (prolonged) successively to

infinitesimal transformations acting on ),,,,( uuux �
� �� -space, .,,2,1 k�� �

     In the following subsections, because of the importance of scalar differential

equations, we consider separately the cases of one dependent )1( �m and one independent

variable (n = 1); and of one dependent (m = 1) and  n  independent variables.   Key results

will be stated for the general case of  m dependent and  n  independent variables with

proofs left as an exercise.

     The motivation for introducing extended transformations is that we can formulate

the problem of finding one-parameter Lie groups of transformations of the form

(2.72a,b), admitted by a given system S of differential equations, in terms of infinitesimal

generators admitted by S.  This will be shown to be an algorithmic procedure.

2.4.1    EXTENDED GROUP OF POINT TRANSFORMATIONS:  

            ONE DEPENDENT AND ONE INDEPENDENT VARIABLE

In studying the invariance properties of a kth-order ODE with independent variable x and

dependent variable y, the aim is to find admitted one-parameter Lie groups of point

transformations of the form

x* = X(x, y;� ), (2.76a)

y* = Y(x, y;� ), (2.76b)
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where y = y(x).

     Let

.1,)(
��� k

dx

yd
yy

k

k
k

k   (2.77)

We naturally extend (2.76a,b) to ),,,,( )(kyyyx �
� -space, ,1�k  by demanding that

(2.76a,b) preserve the contact conditions relating the differentials  dx, dy, dy1, …, dyk:

                                                 dy = y1 dx, (2.78a)

and

dyk = yk+1 dx, .1�k (2.78b)

In particular, under the action of the group of transformations (2.76a,b), the transformed

derivatives, ,1,* �ky k  are defined successively by

*,** 1 dxydy � (2.79a)

�

                                                          *,** 1 dxydy kk �

� (2.79b)

where x* is defined by (2.76a) and  y*  by (2.76b).  Then

,
);,();,(

);,(* dy
y

yxY
dx

x

yxY
yxdYdy

�

�

�

�

�

��

��

� (2.80a)

.
);,();,(

);,(* dy
y

yxX
dx

x

yxX
yxdXdx

�

�

�

�

�

��

��

� (2.80b)

Consequently, from (2.79a) and (2.80a,b), it follows that 1*y satisfies

.
);,();,(

*
);,();,(

1 �

�

�

�

�

�

�

�

	

�

�




�

�

	

�

�

dy
y

yxX
dx

x

yxX
ydy

y

yxY
dx

x

yxY ����

   (2.81)

Substituting (2.78a) into (2.81), we see that

.
);,();,(

);,();,(

);,,(*

1

1

111

y

yxX
y

x

yxX

y

yxY
y

x

yxY

yyxYy

�

�

�

�

�

�

�

�

�

�

��

��

��

�                      (2.82)

Theorem 2.4.1-1.  The  one-parameter  Lie  group  of  point  transformations (2.76a,b)

acting on ),( yx -space (naturally) extends to the following one-parameter Lie group of

transformations acting on (x, y, y1)-space:

),;,(* �yxXx � (2.83a)

),;,(* �yxYy � (2.83b)
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                                                          ),;,,(* 111 �yyxYy � (2.83c)

where  Y1(x, y, y1;� )  is given by (2.82).

Proof.  The proof is accomplished by showing that the closure property is preserved in

this first extension of (2.76a,b) to (x, y, y1)-space. The other properties of a one-parameter

Lie group of transformations then follow immediately for this first extension.

     Let ),( ���  define the law of composition of parameters �  and  . Let

)).*;*,(),*;*,((*)**,*( �� yxYyxXyx �   (2.84)

Then, from the closure property of the group (2.76a,b), it follows that

))).,(;,()),,(;,(()**,**( ������ yxYyxXyx �

But 1**y  satisfies  ****** 1 dxydy � .  Consequently,

                 .
)),(;,()),(;,(

)),(;,()),(;,(

)),(;,,(**

1

1

111

y

yxX
y

x

yxX

y

yxY
y

x

yxY

yyxYy

�

�

�

�

�

�

�

�

�

�

��

������

������

���                           

Theorem 2.4.1-2. The second extension of the one-parameter Lie group of point

transformations (2.76a,b) is the following one-parameter Lie group of transformations

acting on  ),,,( 21 yyyx -space:

),;,(* �yxXx �                                     (2.85a)

),;,(* �yxYy �                                     (2.85b)

                             ),;,,(* 111 �yyxYy �                         (2.85c)

,
);,();,(

);,,,(*

1

1

1
2

1
1

1

2122

y

yxX
y

x

yxX

y

Y
y

y

Y
y

x

Y

yyyxYy

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�               (2.85d)

where );,,( 111 �yyxYY � is defined by (2.82).

The proof of Theorem 2.4.1-2 is left to Exercise 2.4-2.

     The proof of the next theorem follows by induction:

Theorem 2.4.1-3.  The kth extension of the one-parameter Lie group of point

transformations (2.76a,b), ,2�k is the following one-parameter Lie group of

transformations acting on ),,,,( 1 kyyyx � -space:
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),;,(* �yxXx � (2.86a)

),;,(* �yxYy � (2.86b)

                                                             ),;,,(* 111 �yyxYy �             (2.86c)

�

,
);,();,(

);,,,,(*

1

1

11
1

1

1

y

yxX
y

x

yxX

y

Y
y

y

Y
y

x

Y

yyyxYy k

k
k

kk

kkk

�

�

�

�

�

�

�

��

�

�

�

�

�

��
�

���

��

�

�

�        (2.86d)

where );,,( 111 �yyxYY �  is defined by (2.82), and ),;,,,,( 1 �iii yyyxYY �� .,,2,1 ki ��

     Note that we can extend any set of one-to-one transformations (not necessarily a

group of transformations)

                 x
†
  = X(x, y),                          (2.87a)

                 y
†
  = Y(x, y),             (2.87b)

from some domain D in (x, y)-space to another domain D
†
 in (x

†
, y

†
)-space, where the

functions X(x, y) and Y(x, y) are k times differentiable in D. One can naturally extend the

transformations (2.87a,b) to ),,,,( 1 kyyyx � -space so that the contact conditions (2.79a,b)

are preserved, i.e.,

                                               ,††

1

† dxydy � (2.88a)

.1,††

1

†
��

�

kdxdydy kk             (2.88b) 

Here the kth-extended transformation from ),,,,( 1 kyyyx � -space to ),,,,( ††

1

††

kyyyx � -

space is given by    

                                                             ),,(† yxXx � (2.89a)

                                                             ),,(† yxYy � (2.89b)

 ),,,( 11

†

1 yyxYy � (2.89c)

�

,
),(),(

),,,,(

1

1

11
1

1

1

†

y

yxX
y

x

yxX

y

Y
y

y

Y
y

x

Y

yyyxYy k

k
k

kk

kkk

�

�

�

�

�

�

�

��

�

�

�

�

�

��
�

���

�

� (2.89d)

where
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,
),(),(

),(),(

),,(

1

1

111

y

yxX
y

x

yxX

y

yxY
y

x

yxY

yyxYY

�

�

�

�

�

�

�

�

�

�

��

and .1,,2,1),,,,,( 1 ��� kiyyyxYY iii ��

    Now consider examples of extended group transformations.

(1) Translation Group

For the translation group

x* = X =  x +� , (2.90a)

y* = Y = y, (2.90b)

we have

,
*

*
*

* 111 y
dx

dy
Y

dx

dy

dx

dy
y �����

�

�

�

�

�
�

and, in general,

.1,
*

*
* �����

�

�
�

�

�

�
�

	




� ky
dx

yd
Y

dx

yd

dx

yd
y kk

k

kk

k

k

k

k

Then, for the translation group (2.90a,b), the kth-extended group is given by

x* = x +� , (2.91a)

*y = y, (2.91b)

                                                             .,,1,* kiyy ii ��� (2.91c)

(2) Scaling Group

For the scaling group

                                                              ,* xeXx �

�� (2.92a)

                                                             ,* 2 yeYy �

�� (2.92b)

we have

,
*

*
*

* 1

1

11 ye

x

X

y

Y
y

Y
dx

dy

dx

dy
y �

�

	

	

	

	

����

�

�

�

�

�
�

and, in general,
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.1,
*

*
* )2(1

1

�����

�

�
�

�

�

�
�

	




�
�

�

�

�

�

�

�

kye

y

Y
dx

yd

dx

yd
y k

k

k

kk

k

k

k

k

x

X

k
y

k
Y

�

Here the kth-extended Lie group of transformations is given by

                                                                 ,* xex �

� (2.93a)

                                                                 ,* 2 yey �

� (2.93b)

.,,2,1,* )2( kiyey i

i

i ���

� � (2.93c)

(3)  Rotation Group

For the rotation group

                                                   x* = X = x cos� + y sin ,�             (2.94a)

y* = Y =  –x sin�  + y cos ,� (2.94b)

we obtain

.cos,sin,sin,cos ���� �

�

�

��

�

�

�

�

�

�

�

�

y

Y

x

Y

y

X

x

X

Hence, from (2.83), we obtain

.
sincos

cossin

1

1
1

��

��

y

y
Y

�

��

�

Then

.
)sin(cos

1
,0

2

11

111

�� yy

Y

y

Y

x

Y

�

�

�

�

�

�

�

�

�

�

Consequently, from (2.85d), we have

.
)sin(cos 3

1

2
2

�� y

y
Y

�

�

Then

3

12

2

4

1

2

1

222

)sin(cos

1
,

)sin(cos

)(sin3
,0

����

�

yy

Y

y

y

y

Y

y

Y

x

Y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

As a result, from (2.86d), we get

.
)sin(cos

sin)(3)cossin(
5

1

2
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Thus, the third-extended Lie group of transformations corresponding to (2.94a,b) is given
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by

                                                  x* = X = x cos� + y sin� , (2.95a)

y* = Y =  –x sin�  + y cos� , (2.95b)

,
sincos

cossin
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1

1
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y
y

�

��

�                         (2.95c)
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� (2.95d)
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This is a one-parameter Lie group of transformations acting on ),,,,( 321 yyyyx -space.

Of course, one can extend this Lie group of transformations successively to

),,,,,,( 321 kyyyyyx � -space, k = 4,5,..., but the calculations quickly get more and more

complicated as  k  increases.

     From Section 2.3, we know that a one-parameter Lie group of point trans-

formations is characterized by its infinitesimal generator.  Since the kth extension of a

one-parameter Lie group of point transformations is also a one-parameter Lie group of

transformations, it follows that the study of extended Lie groups of transformations

reduces to the study of extended infinitesimal transformations. In the next subsection we

formulate Theorems 2.4.1-1 to 2.4.1-3 in terms of infinitesimal transformations.

Consequently, we will have an explicit algorithm to determine the extended infinitesimal

transformations (and the corresponding infinitesimal generators) of an infinitesimal

transformation.

     Before proceeding further, we introduce the following convenient notations: Let a

subscript denote differentiation with respect to the corresponding coordinate, e.g.,

./,/ yFFxFF yx ������

Definition 2.4.1-1.  The total derivative operator is defined by
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(2.96)

For a differentiable function ),,,,,,( 21 �
� yyyyxF  its total derivative is then given by

.),,,,,(D 12121 1 �
��

�� yyyx FyFyFyFyyyyxF
�

�����

In terms of the total derivative operator (2.96), the kth extension of the one-parameter Lie

group of point transformations (2.86a,b) is given by

                x* = X(x, y;� ), (2.97a)

y* = Y(x, y;� ), (2.97b)
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where ).;,(0 �yxYY �

2.4.2    EXTENDED INFINITESIMAL TRANSFORMATIONS: 

            ONE DEPENDENT AND ONE INDEPENDENT VARIABLE

The one-parameter Lie group of point transformations

     x*  = X(x, y;� ) = x + � (x, y) + O(�
2
), (2.98a)

                 y*  = Y(x, y;� ) = y + � (x, y) + O(�
2
), (2.98b)

acting on  (x, y)-space, has infinitesimals

(x, y), (x, y), (2.98c)

with the corresponding infinitesimal generator

.),(),(X
y

yx
x

yx
�

�

�

�

�

� �� (2.98d)

The kth extension of (2.98a,b), given by

      x* = X(x, y;� ) = x + � (x, y) + O(�
2
), (2.99a)

                                 y* = Y(x, y;� ) = y + � (x, y) + O(�
2
), (2.99b)

                                  ),(),,();,,(* 2

1
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1111 ���� OyyxyyyxYy ���� (2.99c)
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has kth-extended infinitesimals
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k

k yyyxyyxyxyx �� ���� (2.99e)

with the corresponding kth-extended infinitesimal generator
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 (2.99f)

k = 1,2,….  Explicit formulas for the extended infinitesimals )(k
�  result from the

following theorem:

Theorem 2.4.2-1.  The extended infinitesimals  )(k
� satisfy the recursion relation

,1,2,,D),,,,(D),,,,( 11

)1(

1

)(
��� ���

�

� kyyyyxyyyx kk

k

k

k
��� (2.100a)
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where  ).,()0( yx�� �   In particular,
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Proof.  From (2.97c), (2.99a–d), and (2.96), we have
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leading to (2.100a).  Then we obtain (2.100b) by finite induction on  k.

Explicit formulas for )(k
�  follow immediately from Theorem 2.4.2-1.  In

particular,

,)()( 2

11

)1( yy yxyx ����� ���� (2.101)

2

11

)2( ))(2()2( yy xyyyxxxyxx ������ �����

                                                       ,3)2()( 212
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2 yyyy yxy ���� ���� (2.103)

The following observations are important:

Theorem 2.4.2-2.  The extended infinitesimals )(k
� have the following properties:

(i) )(k
� is linear in .2�kforyk

  (ii)  )(k
� is a polynomial in ,,,, 21 kyyy � whose coefficients are linear homogeneous

in (x, y), (x, y), and their partial derivatives up to kth-order.

Proof.  Left to Exercise 2.4-5.                       

We now find the extended infinitesimals )(k
�  for the examples of Section 2.4.1.

(1)  Translation Group (2.90a,b)

Here

.10,)(
�� kk

�
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(2) Scaling Group (2.92a,b)

From the form of (2.93c), it is immediately obvious that

.1,)2()(
��� kyk k

k
�

(3) Rotation Group (2.94a,b)

Here .),(,),( xyxyyx ��� ��  So .01,1, ����� yxxy ����  From (2.101)–(2.103), 

we see that
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2.4.3 EXTENDED TRANSFORMATIONS:  ONE DEPENDENT 

           AND n INDEPENDENT VARIABLES

In studying the invariance properties of a kth-order PDE with one dependent variable u

and n independent variables ),,,,( 21 nxxxx ��  with u = u(x), we are naturally led to the

problem of finding the extensions of transformations on ),( ux -space to

( space-),,,, uuux k
�� �  where uk

�  denotes the components of all kth-order partial

derivatives of u with respect to  x.

            First we consider the extended transformations of a point transformation

                                                              ),,(† uxXx �           (2.104a)

                                                              ).,(† uxUu �           (2.104b)

The transformation (2.104a,b) is assumed to be one-to-one on some domain D in

(x,u)-space with functions ),(),,( uxUuxX  that are k times differentiable in D. The

transformation (2.104a,b) preserves the contact conditions, i.e.,

,dxudu ��           (2.105a)

�

                                                       ,1 dxuud kk
���

�           (2.105b)

                                                             ,††† dxudu ��           (2.106a)

�

ifonlyandifspace-),,,,(indomainsomein uuuxD k
�� �
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                                                      ,†††1 dxuud kk
���

�           (2.106b)

in the corresponding domain D
†
 in space.-),,,,( †††† uuux k

�� �

In order to express the contact conditions in an explicit form, we let
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From now on, we assume summation over a repeated index. The conditions (2.105a,b)

are given by the set of equations

,jj dxudu �
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Similar representations hold for (2.106a,b).

     We introduce the total derivative operators
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For a given differentiable function ),,,,,( uuuxF �
� ��  we have
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We now determine the extended transformation

                                             .,,2,1),,,(† njuuxUu jj ���� (2.108)

From (2.104a,b), we obtain

,)(D†††

iiii dxUdxudu ��

and

,,,2,1,)(D† njdxXdx ijij ���

where iD  is defined by (2.107), .,1,2, ni ��   Then

.,,2,1,D)(D † niUuX ijji ���

Let A be the n � n matrix
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and assume that A
–1

exists.  Then
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This leads to the extended transformation in ),,( uux � -space given by     

                                                             ),,(† uxXx � (2.111a)

                                                             ),,(† uxUu �           (2.111b)

     ).,,(† uuxUu ����           (2.111c)

It is easy to show that the extension to ),,,,( uuux k
�� � -space is given by

),,(† uxXx � (2.112a)

                                                             ),,(† uxUu �           (2.112b)

 ),,,(† uuxUu ����           (2.112c)
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����� �           (2.112d)

where the components of †ku�  are determined by
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,,2,1 ni �

�
� for ,1,,2,1 �� k��  with ),,(;2 uuxUk ���  is determined by (2.110),

and A is the matrix (2.109).

     Now we specialize to the case where (2.104a,b) defines a Lie group of point

transformations

),;,(* �uxXx �           (2.114a)

),;,(* �uxUu �           (2.114b)

acting on  (x, u)-space.  Then it is easy to show (following the proofs of Theorems 2.4.1-1

to 2.4.1-3) that its kth extension to ),,,,( uuux k
�� � -space, given by

),;,(* �uxXx �                       (2.115a)

),;,(* �uxUu �           (2.115b)

),;,,(* �uuxUu ����           (2.115c)
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defines a kth-extended one-parameter Lie group of transformations.  In (2.115a–d),

                                                   ,

D

D

D

*

*

*

2

1

12

1

2

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

U

U

U

A

U

U

U

u

u

u

nnn

���
          (2.116a)

,

D

D

D

*

*

*

121

121

121

121

121

121

121

121

121

2

1

12

1

2

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

k

k

k

k

k

k

k

k

k

iiin

iii

iii

niii

iii

iii

niii

iii

iii

U

U

U

A

U

U

U

u

u

u

�

�

�

�

�

�

�

�

�

���
          (2.116b)

where ii Uu �*  are the components of Uu ��� *  and iiiiiiii kk
Uu

121121
*

��

�

��

 are the

components of .* Uu kk
���   In (2.116b), ni ,,2,1 �

�
�  for 1,,2,1 �� k��  with ;2�k

the operators iD  are given by (2.107); and 1�A is the inverse of the matrix A given by

(2.109) for X and U given by (2.115a,b).

2.4.4 EXTENDED INFINITESIMAL TRANSFORMATIONS:  ONE DEPENDENT

AND n INDEPENDENT VARIABLES

The one-parameter Lie group of point transformations

),(),();,(* 2
���� OuxxuxXx iiii ����           (2.117a)

           ),(),();,(* 2
���� OuxuuxUu ����           (2.117b)

i = 1,2,...,n, acting on (x, u)-space, has infinitesimal generator
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The kth extension of (2.117a,b) is given by
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                         ),(),();,(* 2
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where n... i ,,2,1�  and ni 1,2,...,�

�
 for k1,2,...,��  with .1�k   Its kth-extended

infinitesimals are

                           ),,,,,(,),,,(),,(),,( )()1( uuuxuuxuxux kk
��� �� ����           (2.118e)

with the corresponding kth-extended infinitesimal generator
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Explicit formulas for the extended infinitesimals 
(k)

result from the following

theorem:

Theorem 2.4.4-1.  The extended infinitesimals satisfy the recursion relations
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Proof.  From (2.109) and (2.118a), we have
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where I is the n � n identity matrix and
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From (2.116a), (2.118b,c), (2.120), and (2.121), it follows that
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and, thus,
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leading to (2.119a). Then, from (2.116b), (2.118c,d), (2.120), and (2.121), we get
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 for l1,2,..., �� k�   with 2,�k leading to (2.119b).                                       

     Specializing Theorem 2.4.4-1 to the case of one dependent variable u and two

independent variables x1 and x2, the extended one-parameter Lie group of transformations 
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etc., has its extended infinitesimals given by
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etc.

2.4.5   EXTENDED TRANSFORMATIONS AND EXTENDED INFINITESIMAL

           TRANSFORMATIONS:  m DEPENDENT AND n INDEPENDENT   

           VARIABLES

The situation of  m dependent variables  ),,,( 21 muuuu �� and n independent

variables ),,,,( 21 nxxxx �� u = u(x), with m  2, arises in studying systems of

differential equations.  This leads to consideration of extended transformations from

space-),( ux  to space-),,,,( uuux k
�� �  where uk

�  denotes the components of all kth-

order partial derivatives of u with respect to x. These extended transformations preserve

the corresponding contact conditions.

     We consider a point transformation
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),,(† uxXx � (2.128a)

                                                             ).,(† uxUu �                       (2.128b)
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with summation over a repeated index. The kth-extended transformation of (2.128a,b) is

given by [Exercise 2.4-12]

),,(† uxXx � (2.129a)

                                                              ),,(† uxUu �           (2.129b)

      ),,,(† uuxUu ����           (2.129c)
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A
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is the inverse (assumed to exist) of the matrix
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and the components †)(
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     Now we specialize the point transformation (2.128a,b) to the case of a one-

parameter Lie group of point transformations
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X* = X(x, u;� ),           (2.133a)

U* = U(x, u;� ). (2.133b)

Here, the kth-extended transformation (2.129)–(2.132), with † replaced by *, is a one-

parameter Lie group of transformations acting on ),,,,( uuux k
�� � -space.  Then we

have

),(),();,(* 2
���� OuxxuxXx iiii ����           (2.134a)

                 ),(),();,()*( 2
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���� OuxuuxUu ����           (2.134b)
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with the extended infinitesimals �
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given by
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ni ,,2,1 �

�
�  for k,,2,1 �� �  with .2�k  Here, the kth-extended infinitesimal generator

is given by
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EXERCISES 2.4

1.   In Theorem 2.4.1-3, show that Yk, k � 2, defined by (2.86d), is:

(a) linear in yk;  and

      (b) a polynomial in kyyy ,,, 32 � whose coefficients are functions of (x, y, y1).

2.   Prove Theorem 2.4.1-2.

3.   For the rotation group (2.94a,b), determine :* 44 Yy �

      (a) using Theorem 2.4.1-3;  and

 (b) from its extended infinitesimals, i.e., using Theorem 2.4.2-1.

4.   (a) Derive (2.101)–(2.103).
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      (b) Determine 
(4)

.

5.   Prove Theorem 2.4.2-2.

6.   For the group

),(with,*,* xyy
x

xy
yxx �

�

���

�

�

      determine:

(a) , ,
(1)

,
(2)

,
(3)

;  and

(b) .*,*,* 33211 YyYyYy ���

7. For the rotation group (2.94a,b), find the invariants of its first- and second-extended

group.  Interpret geometrically.

8. Explain the geometrical significance of preserving the contact conditions (2.78a,b).

9. Show that each component of ,2, �� kUk defined by (2.115d), (2.116a,b), is: 

(a) linear in the components of ;uk
�   and 

(b) a polynomial in the components of ,,,, 132 uuu k�
��� �  with coefficients that are

functions of the components of .,, uux �

10. State and prove the analog of Theorem 2.4.2-2 for the extended infinitesimals

kiii �21
� determined by Theorem 2.4.4-1. 

11. Derive (2.123)–(2.127).

12. Derive (2.129a–d), (2.130)–(2.132).

13. Derive (2.135), (2.136).

14. For the following two examples (arising from study of the group properties of the

heat equation), involving two independent variables (x, t) and one dependent variable

u = u(x, t), determine: (i) the extended infinitesimal generators  X
(1)

and X
(2)

;  and

(ii) the extended one-parameter Lie groups of transformations acting on

space),,( ��uux   and  space),,,( 2
��� uuux  with:

(a) ;2X
u

xu
x

t
�

�

�

�

�

�  and

(b) .)2(44X 22

u
utx

t
t

x
xt

�

�

��

�

�

�

�

�

�

15. Consider the case of one independent variable x and one dependent variable y = y(x).

Assume that the point transformation

),,(† yxXx �                       (2.138a)

                                     ),,(† yxYy �           (2.138b)

      preserves the contact conditions and can be inverted so that 
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),,(

),,(

†††

†††

yxYy

yxXx

�

�

      where X
†
, Y

†
 are known explicitly as functions of  x

†
, y

†
.  Express y1 and y2 as

functions of .,,, †

2

†

1

†† yyyx   Show how this simplifies in the situation when (2.138a,b)

is a one-parameter Lie group of point transformations.  Illustrate for the rotation

group (2.94a,b).

16. Consider the situation of two independent variables (x, t) and one dependent variable

u =  u(x, t).  Assume that the point transformation

                                                            ),,,(† utxXx �           (2.139a)

                                                          ),,,(† utxTt �           (2.139b)

                                                             ),,,(† utxUu �           (2.139c)

preserves the contact conditions and can be inverted so that

),,,( †††† utxXx �

                                                          ),,,( †††† utxTt �

                                                          ),,,( †††† utxUu �

where X
†
,T

†
,U

†
 are known as explicit functions of  x

†
,t

†
,u

†
.  Express the components

of u�  and u2
�  as functions of ††† ,, utx  and the components of †u� and .†2u�   Show

how this simplifies in the situation when (2.139a–c) is a one-parameter Lie group of

point transformations. Illustrate for the one-parameter Lie group of point

transformations with the infinitesimal generator .2X
ux

xut
�

�

�

�

��

17. For ),( uxX  defined by (2.104a) [(2.129a)], give criteria so that the corresponding

matrix  A defined by (2.109) [(2.131)] has an inverse.

2.5 MULTIPARAMETER LIE GROUPS OF TRANSFORMATIONS 

             AND LIE ALGEBRAS

So far in this chapter, we have only considered one-parameter Lie groups of

transformations. In Chapter 1, on dimensional analysis, we encountered invariance under

multiparameter families of scalings. These are examples of multiparameter Lie groups of

point transformations. In this section we summarize some key results pertaining to

multiparameter Lie groups of transformations. We assume a finite number of parameters.

     Each parameter of an r-parameter Lie group of transformations leads to an

infinitesimal generator. The infinitesimal generators belong to an r-dimensional vector

space on which there is an additional structure, called the commutator. This special

vector space is called a  Lie algebra (r-dimensional Lie algebra).
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     For our purposes, the study of an r-parameter Lie group of transformations is

equivalent to the study of its infinitesimal generators and the structure of the

corresponding Lie algebra. The exponentiation of any infinitesimal generator is a one-

parameter Lie group of transformations that is a subgroup of the r-parameter Lie group of

transformations. Most important, the discovery of multiparameter Lie groups of

transformations admitted by a given differential equation requires one to consider only

invariance of the differential equation under one-parameter Lie groups of

transformations.

     Special Lie algebras called solvable Lie algebras play an important role in the

study of the invariance of ODEs of at least third-order under multiparameter Lie groups

of transformations.

     For further details of the material of this section, the reader is referred to the

books of Cohn (1965), Eisenhart (1933), Gilmore (1974), and Ovsiannikov (1962, 1982).

2.5.1 r-PARAMETER LIE GROUPS OF TRANSFORMATIONS

Consider an r-parameter Lie group of point transformations

x* = X(x; ), (2.140)

with ),,,( 21 nxxx ��x  and parameters ).,,,( 21 r��� �� Let the law of composition of

parameters be denoted by

)),,(,),,(),,((),( 21 r��� ��

with ),,,,( 21 r��� ��  where ),(  satisfies the group axioms with = 0

corresponding to the identity ,021 ���� r��� �  and ),(  is assumed to be analytic

in its domain of definition.

     Let the infinitesimal matrix (x) be the r � n matrix with entries

.,,2,1,,,2,1,
);(*

)(
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Xx jj
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Let )(  be the r � r matrix with entries

,
),(

)(

0�
�

�

��

�

�

��

�

�

(2.142)

and denote the inverse of the matrix )(  by

( ) = 
 –1

( ).                                      (2.143)

Then Lie’s First Fundamental Theorem for an r-parameter Lie group of transformations

states that in some neighborhood of = 0, (2.140) is equivalent to the solution of the

initial value problem for the system of  nr first-order PDEs given by
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          (2.144a)

with

         x* = x at  = 0.                                 (2.144b)

Definition 2.5.1-1.  The infinitesimal generator X , corresponding to the parameter
�

� of

the r-parameter Lie group of transformations (2.140), is given by

.,,2,1,)(X
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x
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j j
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x (2.145)

     One can show that the r-parameter Lie group of transformations (2.140) is

equivalent to 

,*
XXX

1

X 2211 xxx rreeee
r

���

�

�
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����
�

(2.146)

where μ1, μ2,� , μr are arbitrary real constants. [The order of the operations in (2.146)

can be rearranged by renumbering the infinitesimal generators even though it is not

necessarily true that .for
XXXX

��
��������

����

�� eeee   A reordering would correspond

to a different parameterization, i.e., )( would change.  An r-parameter Lie group of

transformations is equivalent to (2.140) if it can be expressed in the form (2.144a,b) with

the same ).(x ]

     One can also show that the one-parameter Lie group of transformations

,* 1

X
X
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�
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�

r

ee �
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� (2.147)

obtained by exponentiating the infinitesimal generator

� �
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�� x (2.148)

where

�
�

��

r

jj nj
1

,,,2,1),()(
�

��

��� �xx (2.149)

in terms of any fixed real constants 1, 2,� , r, defines a one-parameter )(�  subgroup of

the r-parameter Lie group of transformations (2.140).
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     As an example, consider the two-parameter )],([ 21 ��� Lie group of

transformations [(x1, x2) = (x, y)] given by

                                                             ,* 2
1

�

�

�� xex           (2.150a)

                                                             .* 12 yey �

�           (2.150b)

Then
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with the law of composition given by

                                 ).,()),(),,((),( 221121
1

������
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���� e (2.151)

One can easily check that the two-parameter family of transformations (2.150a,b), with

the law of composition (2.151), defines a two-parameter Lie group of transformations

with  x* = x, y* = y, when ),( 21 ��� = 0.

     We now check that (2.144a,b) holds:
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Then
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Consequently, the infinitesimal matrix is given by
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To determine ),( we have
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and, hence,
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Then it is easily seen that

,
01

*2*
*)()(
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yx �

x

which is the matrix (2.152), verifying (2.144a,b). It is left to Exercise 2.5-1 to solve the

initial value problem for the system of PDEs 

        ,*
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�
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�

x
x

         (2.156a)

*,2
*

1

y
y

�

�
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          (2.156b)

        ,1
*

2

�

�

�

�

x
         (2.156c)

,0
*

2

�

�

�

�

y
          (2.156d)

with

x* = x,   y* = y, when  ,0,0 21 �� ��           (2.156e)

to recover (2.150a,b).

     For the two-parameter Lie group of transformations (2.150a,b), the corresponding

infinitesimal generators are

,2X1
y

y
x

x
�

�

�

�

�

�           (2.157a)

.X2
x�

�

�           (2.157b)

For any differentiable function F(x, y), we have

                                                   ),,(),( 2X1 yexeFyxFe ���

�           (2.158a)
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                ).,(),(2X yxFyxFe �

�

��           (2.158b)

We now check that the representations (2.146) and (2.147) lead to (2.150a,b).

     From (2.158a,b), it follows that for any real constants  μ1, μ2, we have

),,(),(),( 11112211 2

22

XXX yexeyxeyxee �����

�� ���� (2.159)

and

                          ).),((),(),( 1111221122 2

2

2XXX yexeyexeeyxee �������

���� (2.160)
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     Thus, (2.159) is identical to (2.150a,b), with the same law of composition (2.151);

(2.160) is equivalent to (2.150a,b) with the law of composition �),(

;),( 2211
1
����

��

�� e  and (2.161) is equivalent to (2.150a,b) with the law of composition
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2.5.2 LIE ALGEBRAS

Definition 2.5.2-1. Consider an r-parameter Lie group of transformations (2.140) with

infinitesimal generators X ,  = 1,2,…,r, defined by (2.141) and (2.145). The commutator

(Lie bracket) of  X and X is a first-order operator
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where
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��           (2.162b)

     It immediately follows that

[X , X ]  =  –[X , X ].              (2.163)
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Theorem 2.5.2-1 (Second Fundamental Theorem of Lie). The commutator of any two

infinitesimal generators of an r-parameter Lie group of transformations is also an

infinitesimal generator.  In particular,

,X]X,X[
1

�

�

�

���� �
�

�

r

C             (2.164)

where the coefficients �

��
C  are constants called  structure constants, .,,2,1,, r�����

Proof. The proof of this theorem essentially depends on the integrability conditions

,,,2,1,,,,2,1,
** 22

rni
xx ii

�� ��

��

�

�

��

�

��

����
����

(2.165)

applied to (2.144a). For complete details, see any of the earlier-mentioned references of

this section.          

Definition 2.5.2-2. Equations (2.164) are called the commutation relations of the

r-parameter Lie group of transformations (2.140) with the infinitesimal generators

(2.145).

     For any three infinitesimal generators X , X , X , by direct computation one can

show that Jacobi’s identity holds:

                               [X ,[ X , X ]] + [X ,[ X , X ]] + [X ,[ X , X ]] = 0.        (2.166)

     From (2.163), (2.164), and (2.166), the following theorem relating the structure

constants is easily proved:

Theorem 2.5.2-2 (Third Fundamental Theorem of Lie). The structure constants defined

by the commutation relations (2.164) satisfy the relations

,�

��

�

��
CC ��           (2.167a)

                                           .0][
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CCCCCC
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��

�

��
          (2.167b)

In particular, (2.167a) is equivalent to the commutator anti-symmetry property (2.163),

and (2.167b) is equivalent to Jacobi's identity (2.166). 

Definition 2.5.2-3.  A Lie algebra L is a vector space over R or C with a bilinear bracket

operation (the commutator) satisfying the properties (2.163), (2.166) and, most important,

(2.164).  In particular, the set of infinitesimal generators {X },  = 1,2,…,r, of an

r-parameter Lie group of transformations (2.140) forms an r-dimensional Lie algebra

over R.
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     One can motivate the definition of the commutator [X , X ] by the following

argument.

     Let rG denote the r-parameter Lie group of transformations (2.140). Any one-

parameter )(� subgroup of rG  has a corresponding infinitesimal generator in .r
L  For

example, r
L�

�

X corresponds to ;,,2,1,
X

rGe r
��� �

�

�

x
rba L��

��
XX  corresponds

to both ,
)XX( rba

Ge �

�

x��
�

 and .
XX rba

Gee �x��
�

�

  If  ,X,X r
L�

��
 then both 

X
x�

�

e  and

.realanyfor tobelong
X

�

�
� rGe x  Consider the one-parameter )(�  commutator group

transformations

.][][
XX1X1XXXXX rGeeeeeeee ��

��
�

�

xx ��������
�

�
�

�
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�
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�
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Hence,  [X , X ] .r
L�

One can show that ������
������ XXXXXX �

�� eeeee  if and only if 0]X,[X �

��

[Exercise 2.5-10]. 

Theorem 2.5.2-3. Let X
(k)

, X
(k)

be the kth-extended infinitesimal generators of the

infinitesimal generators  X , X , and let [X , X ]
(k)

be the kth-extended infinitesimal

generator of the commutator  [X , X ].  Then  [X , X ]
(k)

 = [X
(k)

, X
(k)

], .1�k Hence, if

[X , X ] = X , then  [X
(k)

, X
(k)

] = X
(k)

, 1�k .

Proof.  Left to Exercise 2.5-11 [Ovsiannikov (1962, 1982), Olver (1986)].                      

Definition 2.5.2-4.  A subspace J � L is called a subalgebra of the Lie algebra L if

[X , X ] � J  for all X , X � J.

2.5.3    EXAMPLES OF LIE ALGEBRAS

(1)  Eight-Parameter Lie Group of Projective Transformations in 2
R

Projective transformations in 2
R  map straight lines into straight lines.  In particular, they

are defined by the eight-parameter Lie group of transformations
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          (2.168b)

with parameters 
�

� R, �  = 1,2,...,8.  The infinitesimal generators of the corresponding

Lie algebra L
8
 are given by

.X,X,X,X

,X,X,X,X
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 (2.169)

     It is convenient to display the commutators of a Lie algebra through its

commutator table whose (i, j)th entry is  [Xi, Xj].  From (2.163), it follows that the table

is antisymmetric with its diagonal elements all zero.  The structure constants are easily

read off from the commutator table.

     For the infinitesimal generators (2.169), we have the following commutator table:

57368

427

73616

54735

424

413

2

211

4321

X0X2XXX

X0X0X

XXXX0X

0XXXX2X

0X0XX

X00XX

0000X

XX00X

XXXX

�

��

�

�

��

0X00X

X0X0X

0X0XX

00X0X

XXXX0X

00XXX

X2XXXXX

X00X2X-X

XXXX

88

867

686

85

54374
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732142

6731

8765
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���
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(2) Group of Rigid Motions in 2
R

The group of rigid motions in 2
R  preserves distances between any two points in 2

R .

This group is the three-parameter Lie group of transformations of rotations and

translations in 2
R given by

                                                  ,sincos* 211 ��� ��� yxx                                    (2.170a)

                                                  ,cossin* 311 ��� ��� yxy                                    (2.170b)

The corresponding infinitesimal generators are given by

.X,X,X 321
yxy

x
x

y
�

�

�

�

�

�

�

�

�

�

�

�� (2.171)

The commutator table of its Lie algebra follows:

00XX

00XX

XX0X

XXX

23

32

231

321

�

�

(3) Similitude Group in 2
R

The similitude group in 2
R  consists of uniform scalings and rigid motions in 2

R .  It is

the four-parameter Lie group of transformations given by

                                              ,)sincos(* 211
4

���

�

��� yxex           (2.172a)

.)cossin(* 311
4

���

�

��� yxey           (2.172b)

The infinitesimal generators are X1, X2, X3 given by (2.171) and

.X4
y

y
x

x
�

�

�

�

�

� (2.173)

The corresponding commutator table is given by

0XX0X

X00XX

X00XX

0XX0X

XXXX

324

323

232

231

4321

��

�

�

The group of rigid motions in 2
R [(2.170a,b)] is a three-parameter subgroup of

the similitude group in 2
R  [(2.172a,b)]. This also follows from noticing that the Lie

algebra with infinitesimal generators (2.171) is a three-dimensional subalgebra of the

four-dimensional Lie algebra with infinitesimal generators (2.171) and (2.173).
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     By comparing the infinitesimal generators of the Lie algebra for the projective

group (2.168a,b) with those for the similitude group (2.172a,b), one can see that the

similitude group is a four-parameter subgroup of the eight-parameter projective group. 

     The commutator can be most useful as an aid for finding additional symmetries.

For example, if a problem in 2
R  is invariant under both rotational symmetry

yx
xy
�

�

�

�

���1X  and translational symmetry in the x-direction, i.e., ,X2
x�

�

�  then it

must also be invariant under the symmetry 321 X]X,[X ����

�

�

y
 [cf. (2.171)], i.e.,

translational symmetry in the y-direction.

2.5.4    SOLVABLE LIE ALGEBRAS

In the next chapter, we will consider nth-order ODEs admitting r-parameter Lie groups of

transformations. We will show that if r = 1, then the order of an ODE can be reduced

constructively by one. If n � 2 and r = 2, the order can be reduced constructively by two.

But if n � 2 and r > 2, it will not necessarily follow that the order can be reduced by more

than one.  However, if the r-dimensional Lie algebra of infinitesimal generators of an

admitted r-parameter group has a q-dimensional solvable subalgebra, then the order of

the ODE can be reduced constructively by q.

Definition 2.5.4-1.  A subalgebra J � L is called an ideal or normal subalgebra of L if

[X, Y] J  for all X J , Y L.

Definition 2.5.4-2.  L
q

is a q-dimensional solvable Lie algebra if there exists a chain of

subalgebras

                                L
(1)
�L

(2)
� �L

(q-1)
�L

(q)
= L

q
, (2.174)

such that L
(k)

 is a k-dimensional Lie algebra and L
(k-1)

  is an ideal of L
(k)

, k  = 1,2,�,q.

[L
(0)

  is the null ideal consisting of only the zero vector.]

Definition 2.5.4-3. L is called an Abelian Lie algebra if ,0]X,X[ �

��
 for all X�,X� �L.

    The proof of the following theorem is obvious and left to Exercise 2.5-12:

Theorem 2.5.4-1. Every Abelian Lie algebra is solvable.

     The following theorem holds for any two-dimensional Lie algebra:

Theorem 2.5.4-2. Every two-dimensional Lie algebra is solvable.
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Proof.  Let L be a two-dimensional Lie algebra with infinitesimal generators X1 and X2

as basis vectors.  Suppose  [X1, X2] = aX1 + bX2 = Y.  If  c1X1 + c2X2 � L, for arbitrary

constants 1c  and ,2c  then

[Y, c1X1 + c2X2] = c1 [Y, X1] + c2[Y, X2]

                                                                  = c1b[X2, X1] + c2a[X1, X2]

                                                      = (c2a – c1b)Y.

Hence, Y is a one-dimensional ideal of L.   [If ,0�� ba  then L is an Abelian Lie

algebra.]                                                                                                                      

    It turns out that a three-dimensional Lie algebra is not necessarily solvable.  For

example, the three-dimensional Lie algebra with infinitesimal generators

,X,X,X 2

321
x

x
x

x
x �

�

�

�

�

�

�

�

� (2.175)

is not solvable.

     As an example of a three-dimensional solvable Lie algebra, consider the Lie

algebra for the group of rigid motions (2.170a,b). The solvability of its Lie algebra

follows from the chain

L
(1)
�L

(2)
�L

(3) 
 = L,

where L
(3)

 has basis vectors X1, X2, X3 given by (2.171), L
(2)

 has basis vectors X2, X3,

and L
(1)

 has basis vector X2.

EXERCISES 2.5

1. Solve the initial value problem (2.156a-e) and recover (2.150a,b).

2. In the case of a one-parameter Lie group of transformations [r  = 1], show that the

law of composition �(a, b) satisfies

.
),(),(

)(

1

0),(),( 1

�

��

�

�

�

�

�

�

	

	




	

	


�

�

���
�

����

�

bab

ba

      [Hint: Consider )),(,( 1
�����

�  in some neighborhood of  � = 0.]

3. Show that the set of conformal transformation  x* = X(x, y),  y* = Y(x, y), where

F(z) = ),(),( yxiYyxX � is analytic in domain D, forms an infinite-parameter Lie

group of transformations.  Let z = x + iy.  Characterize the infinitesimal generators of

the group.
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4.   Consider the set of all conformal transformations that are one-to-one on the extended

plane, i.e., the  bilinear (Möbius) transformations,

,0,* ��

�

�

� bcad
dcz

baz
z (2.176)

where a, b, c, d � C and z = x + iy.

      (a) Show that (2.176) defines a six-parameter Lie group of transformations.

      (b) Find the infinitesimal generators of the group.

      (c) Establish the commutator table of the corresponding Lie algebra.

      (d) Find the subalgebra of largest dimension that is identical to a subalgebra of the

Lie algebra of the projective group (2.168a,b).

(e) Determine the subgroup of (2.176) with the largest number of parameters that is 

in common with a subgroup of the projective group (2.168a,b).

5. (a) Show that the infinitesimal generators 7643 X,X,X,X  of (2.169) form a four-

dimensional Lie algebra.

      (b) Find the corresponding four-parameter Lie group of transformations.

6.  Show that the three-parameter family of transformations *x  = ax + b, *y = cx + y,

does not form a three-parameter Lie group of transformations:

(a) from the definition of a Lie group of transformations;  or 

      (b) from the algebra of its infinitesimal generators.

7.   Consider the three-parameter family of transformations

*x  = ax + b, (2.177a)

.* cyy �                                                      (2.177b)

      (a) Show that (2.177a,b) defines a three-parameter Lie group of transformations.

(b) Establish the commutator table of the corresponding infinitesimal generators.

  (c) Show that the Lie algebra of (2.177a,b) is solvable.

8. In Chapter 1, it was shown that problem (1.46a–c) is invariant under the two-

parameter family of transformations

*x  = �(x – �t), (2.178a)

*t = �
2
t,           (2.178b)

.
1

*
2)4/1()2/1( txueu ��

�

�

�           (2.178c)

(a) Show that (2.178a–c) defines a two-parameter Lie group of point transformations.

      (b) Establish the commutator table of its Lie algebra.

9. Check that the projective transformations (2.168a,b) map straight lines into straight

lines.  Also check this in terms of their infinitesimal generators (2.169).

10. Show that ������
������ XXXXXX �

�� eeeee if and only if .0]X,[X �

��
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11. Prove Theorem 2.5.2-3.

12. Prove Theorem 2.5.4-1.

13. (a) Show that the infinitesimal generators

,X,)1(X,)1(X 3

2

2

2

1
y

x
x

y
y

y
x

xy
y

xy
x

x
�

�
�

�

�
�

�

�
��

�

�
�

�

�
�

�

�
��

            form a three-dimensional Lie algebra L
(3)

.

(b) Show that L
(3)

 does not have a two-dimensional subalgebra and, hence, is not

solvable.

2.6     MAPPINGS OF CURVES AND SURFACES

Under the action of a one-parameter Lie group of point transformations admitted by an

ODE, each solution curve is mapped into a one-parameter family of solution curves of

the same differential equation or is invariant under the action of the group.

Corresponding remarks apply to solution surfaces of PDEs.

2.6.1    INVARIANT SURFACES, INVARIANT CURVES, INVARIANT POINTS

Definition 2.6.1-1.  A surface F(x) = 0 is an invariant surface for a one-parameter Lie

group of transformations (2.6) if and only if  F(x*) = 0  when  F(x) = 0.

Definition 2.6.1-2.  A curve F(x, y) = 0 is an invariant curve for a one-parameter Lie

group of transformations (2.98a,b) if and only if  F(x*, y*) = 0  when  F(x, y) = 0.

The proof of the following theorem is left to Exercise 2.6-3:

Theorem 2.6.1-1.

(i) A surface F(x) = 0 is an invariant surface for a one-parameter Lie group of

transformations (2.6) if and only if

XF(x) = 0 when  F(x) = 0, (2.179)

         where X is the infinitesimal generator given by (2.24).

(ii)  A curve F(x, y) = 0 is an invariant curve for a one-parameter Lie group of

transformations (2.98a,b) if and only if

                                             XF(x, y) = 0     when  F(x, y) = 0,  (2.180)

         where X is the infinitesimal generator given by (2.98d).

     This theorem gives a means for finding the invariant surface of a given Lie group
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of transformations, namely, by solving (2.179). 

     A curve written in a solved form, ,0)(),( ��� xfyyxF  is an invariant curve for

(2.98a,b) if and only if

0)(),(),(),(X ���� xfyxyxyxF ��

when ,0)(),( ��� xfyyxF  i.e., if and only if

 .0)())(,())(,( ��� xfxfxxfx �� (2.181)

            As an example, consider the scaling group

                                                                 ,* xex �

�           (2.182a)

                                                                  .* yey �

�           (2.182b)

The corresponding infinitesimal generator is given by

  .X
y

y
x

x
�

�

�

�

�

� (2.183)

A ray ,0�� xy � ,0�x const,��  is an invariant curve for (2.182a,b) since

X(y – x) = y – x = 0 when y – x = 0; a parabola  y – x
2
  = 0,  = const, is not an

invariant curve for (2.182a,b) since X(y – x
2
) = y – 2 x

2
 0  when  y – x

2
= 0. 

      To find all invariant curves 0)( �� xfy  for (2.182a,b), we first find the general

solution u(x, y)  of the PDE

.0�

�

�
�

�

�

y

u
y

x

u
x

This yields

,),( �

�

�

�

�

�
�

x

y
Fyxu

where F is an arbitrary function of xy / . Invariant curves then include the curves

y – x = 0,  = const,    x > 0  or x  < 0.

Definition 2.6.1-3.  A point x is an invariant point for the Lie group of transformations

(2.6) if and only if  x* x under (2.6).

            The proof of the following theorem is left to Exercise 2.6-5:

Theorem 2.6.1-2.  A point x is an invariant point for the Lie group of transformations

(2.6) if and only if

(x) = 0. (2.184)

     For the scaling group (2.182a,b), note that (x, y) = (x, y) = 0 if and only if

0�� yx
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,0�� yx  so that the only invariant point is the origin (0, 0).

Definition 2.6.1-4.  The family of surfaces

(x) = const = c

is an invariant family of surfaces for the Lie group of transformations (2.6) if and only if

(x*) = const = c*    when (x) = c.

Definition 2.6.1-5.  The family of curves

(x, y) = const = c

is an invariant family of curves for the Lie group of transformations (2.98a,b) if and only

if

(x*, y*) = const = c*    when  (x, y) = c.

From these definitions, it follows that

                                                              c* = C(c;� ) (2.185)

for some function C of  the constant  c and the group parameter � .

Theorem 2.6.1-3.

(i) A family of surfaces, (x) = const = c, is an invariant family of surfaces for the Lie

group of transformations (2.6) if and only if

X = ( ) (2.186)

         for some infinitely differentiable function ( ).

(ii) A family of curves, (x, y) = const = c, is an invariant family of curves for the Lie
group of transformations (2.98a,b) if and only if

)(),(),(X �

�

�

�

�� ��

�

�

�

�

�

�

y
yx

x
yx (2.187)

         for some infinitely differentiable function ( ).

Proof.  Let (x) = c be an invariant family of surfaces for (2.6). Then

).;(*)(X
2

)(X)()(*)( 2
2

X
��

�

�����

� cCce ������� �xxxxx

Hence, X (x) = ( ) for some function ( ) when (x) = c. It follows that
2X = )(��� X = )(��� ( ), etc.

     Conversely, suppose X (x) = ( ) for some infinitely differentiable function

( ).  Then 2X = )(��� ( ), and nX = fn( ) for some function fn( ), n = 1,2,….

Consequently, if (x) = c, then
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������ )(X
2

)(X)()(*)( 2
2

X
xxxxx �
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�����
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�����
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�

� xx

      There are two distinguished types of invariant families of surfaces (curves).  The

trivial type is where each surface (curve) in the family is itself invariant.  This type is

characterized by ( )  0.  The nontrivial type is where no surface (curve) in the family

is itself invariant, i.e., each surface (curve) is moved to a different surface (curve).  This

type is characterized by ( )  1.  This follows from the fact that if (x) = c is an

invariant family of surfaces, then so is F( (x)) = F(c) for any function F; then

XF( (x)) = )(�F � X  = )(�F � ( ), so that setting )(�F � = 1/ ( ) we have XF( ) 1.

[We assume that ( )  0, for otherwise some surface in the invariant family of surfaces

is itself an invariant surface for (2.6).] 

     As an example, consider again the scaling group (2.182a,b).  The invariant family

of curves (x, y) = c satisfies

.1X �

�

�
�

�

�
�

y
y

x
x

��

�

The corresponding characteristic equations are given by

,
1 y

dy

x

dxd
��

�

with their general solution given by

�

�

�

�

�

�
�	

x

y
fxyx log),(�

for an arbitrary function  f.  Hence, any family of curves

constlog)( c
x

y
fxFF ��

�
�

�

�

	
	




�

�

�

�
	




�
���  (2.188)

is an invariant family of curves for (2.182a,b) for any choice of F and f. In particular, the

family of circles x
2

+ y
2

= const = r
2

is an invariant family of curves for (2.182a,b)

obtained by choosing F( ) = e
2���

and f(z) = 
2
1 log(1 + z

2
) in (2.188). The family of lines

x = const  is invariant, corresponding to F( ) = e
��

, f(z) = 0.  The family of logarithmic

spirals r
2
e = const  is invariant, corresponding to F( ) = e

2
and f(z) = 

2
1 (log(1 + z

2
) +

arctan z).
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2.6.2 MAPPINGS OF CURVES

Consider a one-parameter Lie group of transformations

                                                      ,);,(* X xeyxXx �

� ��           (2.189a)

                                                        ,);,(* X yeyxYy �

� ��           (2.189b)

with infinitesimal generator

.),(),(X
y

yx
x

yx
�

�

�

�

�

� ��                                   (2.189c)

            Consider a curve y = (x).  The transformation (2.189a,b) maps a point (x, y) on

the curve y = (x) into the point (x*, y*) with

),);(,(* �xxXx ��           (2.190a)

).);(,(* �xxYy ��           (2.190b)

For a fixed value of � , (2.190a,b) defines a parametric representation of a new curve

with x playing the role of a parameter [Figure 2.5].  One can eliminate x from (2.190a,b)

by substitution through the inverse transformation of (2.189a,b), i.e., through substitution

of

)*;*,( ��� yxXx (2.191)

into (2.190b).  Then

               ).*);(*,()));*;*,((),*;*,((* XX
����

�� xexeYyxXyxXYy ��

������ (2.192)

Figure 2.5.  Mapping of a curve: A different curve y = � (x;� ) corresponds to each

parameter value � .

Equation (2.192) yields the relationship between the x- and y-coordinates of the new

curve denoted by y = � (x;� ).  After substituting in x and y for x* and y* and replacing�

),( yx

*)*,( yx
);( �� xy �

)(xy ��

X�e

            y

                                      x
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by –� , we have the following:

Theorem 2.6.2-1.  Suppose y = (x) is not an invariant curve of (2.189a,b).  Then

));(,( XX
�

��

��� xexeYy           (2.193a)

)));;,((),;,(( ��� ��� yxXyxXY             (2.193b)

implicitly defines a one-parameter family of curves  y = � (x;� ).

2.6.3 EXAMPLES OF MAPPINGS OF CURVES

(1)  Scaling Group

For the scaling group

                                                              ,* xeXx �

��           (2.194a)

                                                              ,* 2 yeYy �

��           (2.194b)

we have

*),()(* 22 xeexey ��� �

����

and hence,  y = (x)  maps into the family of curves

                                                     )(2
������

�

��
�� xxeey (2.195)

(2)  Projection Group

For the projection group

,
1

*
y

x
x

��

�           (2.196a)

,
1

*
y

y
y

��

�           (2.196b)

we have

,
)(1

)(
*

x

x
y

��

�

�

�

and

*1

*
)1(*

y

x
yxx

�

�

�

��� .

Hence,
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Consequently, the curve y = (x) maps into the family of curves y = � (x;� ) satisfying

the implicit equation

.
11 �

�

�

�

�
�

�

�

�

	


� y

x

y

y

��

(2.197)

2.6.4   MAPPINGS OF SURFACES

We derive a formula for families of surfaces analogous to formula (2.193a,b) for families

of curves.  Consider a one-parameter Lie group of transformations

                                                       ,);,(* X xeuxXx �

� ��           (2.198a)

                                                      ,);,(* XueuxUu �

� ��           (2.198b)

with infinitesimal generator

.),(),(X
1 u

ux
x

ux
i

n

i

i
�

�

�

�

�

��
�

��

     Consider a surface u = (x) that is not invariant under (2.198a,b). The

transformation (2.198a,b) maps a point (x, u) on the curve u = (x) into the point  (x*, u*)

with

),);(,(* �xxXx ��           (2.199a)

).);(,(* �xxUu ��           (2.199b)

For a fixed value of ,�  one can eliminate x from (2.199a,b) by substitution

through the inverse transformation of (2.198a), i.e., by substitution of

)*;*,( ��� uxXx

into (2.199b).  Then

                ),*);(*,()));*;*,((),*;*,((* XX
����

�� xexeUuxXuxXUu ��

������ (2.200)

with

*
*)*,(

*
*)*,(),(),(X

11

i
u

ux
x

ux
u

ux
x

ux
i

n

i

i

i

n

i �

�

�

�

�

�

�

�

�

�

�

� ��
��

����

[cf. Exercise 2.3-5].  Replacing )*,*,( ��ux  by ),,( �ux  in (2.200), we then have
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                      )));;,((),;,(());(,( XX
����

��

������ uxXuxXUxexeUu . (2.201)

Theorem 2.6.4-1.  Suppose u = (x) is not an invariant surface of (2.198a,b).  Then

(2.201) implicitly defines a mapping of the surface u = (x) into a one-parameter family

of surfaces  u  = � (x;� ).

EXERCISES 2.6

1. For the group of transformations (2.71a,b), find invariant curves, invariant points, and

invariant families of curves.

2.  For the group of transformations (1.93), find invariant curves (surfaces), invariant

points, and invariant families of curves (surfaces):

(a) in  (x, t)-space;  and

(b) in  (x, t, u)-space.

3.   Prove Theorem 2.6.1-1.

4.   Geometrically interpret (2.181).

5.   Prove Theorem 2.6.1-2.

6.  Show that if y = (x) is an invariant curve of (2.189a,b), then (2.193a,b) yields

� (x;� ) (x) for all .�

7.   Find the image );( �� xy �  of  the curve  y = (x)  under the rotation group

.cossin*

,sincos*

��

��

yxy

yxx

��

��

2.7     LOCAL TRANSFORMATIONS

For some applications to ODEs, it is essential to look at a one-parameter Lie group of

point transformations (2.189a,b) acting on ),( yx -space from the point of view of

transformations acting directly on the space of functions y = y(x).  This will lead to

natural generalizations of point transformations.

2.7.1 POINT TRANSFORMATIONS

Consider again the mapping of a curve y = (x) into a family of curves );( �� xy �  under

a one-parameter Lie group of point transformations (2.189a,b).  Geometrically, this

transformation represents a mapping of points (x, y) into (x*, y*), as discussed in Section

2.6.2 [cf. Figure 2.5], giving the implicit formula (2.193b) for ).;( �� xy �  It is important
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to describe this mapping explicitly as a transformation of the curve y = (x) to curves

).;( �� xy � Formally, this mapping is given by

,* xx �

,)();(*
)(

X̂

xy
yexy

��

��

�

��

for some infinitesimal generator X̂ [see Figure 2.6].

           Figure 2.6.  Direct mapping of a curve  y = (x)  to curves  ).;( �� xy �

We now derive a formula for the infinitesimal generator .X̂  Under a Lie group

of point transformations (2.189a,b), we have

                                                ),())(,(* 2
��� Oxxxx ����                       (2.202a)

                                                 ).())(,()(* 2
��� Oxxxy �����           (2.202b)

The dependence of y* on x* defines the image y* = )*;( �� x  of y = (x).  One eliminates

x from (2.202a,b) to obtain ).*;( �� x   Solving (2.202a) for  x yields

                                               ).(*))(*,(* 2
��� Oxxxx ���� (2.203)

Substituting (2.203) into (2.202b) and taking the Taylor expansion in ,� we obtain

                   ).(*))(*))(*,(*))(*,((*)()*;( 2
������ Oxxxxxxx ��������� (2.204)

Then, if we replace x* by x in (2.204), the image of y = (x) under the transformation
(2.189a,b) is given by

                      ).()]())(,())(,([)();(* 2
������ Oxxxxxxxy ���������� (2.205)

We now observe that the same image of y = (x) can also be obtained by a
transformation leaving  x invariant:

,* xx �

            y

                                      x

),( yx

*),( yx );( �� xy �

)(xy ��

X̂�e
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                                        ).(]),(),([* 2
���� Oyyxyxyy �����                         (2.206)

The infinitesimal generator for transformation (2.206) is given by

                                                .]),(),([X̂
y

yyxyx
�

�

��� �� (2.207)

     Geometrically, we have now moved from a transformation (2.189a,b) acting on

(x, y)-space to a transformation (2.206) acting on the space of functions y = y(x). The

infinitesimal generator (2.207) is the characteristic form of the infinitesimal generator

(2.189c).

     As examples, for the scaling group (2.194a,b), we have

                                                         ,]2[X̂
y

yxy
�

�

��� (2.208)

and for the projection group (2.196a,b), we have

                                                        .][X̂ 2

y
yxyy

�

�

��� (2.209)

2.7.2 CONTACT AND HIGHER-ORDER TRANSFORMATIONS

We can generalize point transformations with infinitesimal generators of the

characteristic form (2.207) to local transformations with infinitesimal generators of the

form

                                                   
y

yyyx k

�

�

�� ),,,,(ˆX̂ )(
�� (2.210)

involving dependence on derivatives )(�y up to some finite order .k��

Formally, we can exponentiate (2.210) to obtain a corresponding one-parameter

group of transformations acting on the space of functions y = y(x):

                                                        ,* xx �

                    )(ˆ* 2
��� Oyy ��� .             (2.211)

To calculate the higher-order terms, we extend X̂  to act on )(,,, jyyy ����  by

requiring that the contact conditions are preserved, i.e.,

),(ˆD))(ˆD(D
*

*

),(ˆD))(ˆ(D
*

)*(

2)(21)1(
)1(

)(

22

������

������

OyOy
dx

dy
y

OyOy
dx

dy
y

jjjj
j

j
�������

���������

��

�

�
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where ,1,/)(
�� jdxydy jjj  and  D  is the total derivative operator ./ dxd

Consequently, the extended infinitesimal generator (the prolongation of X̂ ) is

given by

                                    ,ˆˆˆX̂
)(

)()1()(
�� �

�

�

��

��

�

�

�

�

�

�

j

j

yyy
���                       (2.212a)

where

                                      ,
ˆˆˆ

ˆDˆ
)(

)1()1(

k

k

y
y

y
y

x �

�

��

�

�

��

�

�

��

�

���

�� �           (2.212b)

                                      .1,ˆDˆ )1()(
��

� jjj
��                       (2.212c)

Hence, the exponentiation of the infinitesimal generator (2.210) yields the

following transformation: 

Definition 2.7.2-1.  A one-parameter group of local transformations is a transformation

of the form

                                                          ,* xx �

                                            ,ˆ)X̂(
!

*
1

1)(X̂ )(

�

�
�

�

�

�

��

���

�

j

j
j

j
yyey             (2.213)

where )(X̂ �  is given by (2.112a).

Note that one can invert (2.213) through inverse exponentiation.

A local transformation corresponds to a point transformation if and only if  �̂  is

of the form yyxyx ��� ),(),(ˆ ���  for some ),,(),,( yxyx ��  i.e., �̂  is linear in y�  and

has no dependence on higher derivatives of  y.  A local transformation (2.213) is called a

contact transformation if  �̂  is of the form ).,,(ˆˆ yyx ����  Otherwise, a local

transformation is called a higher-order transformation.  One can show that a local

transformation corresponds to an extended transformation acting on some finite-

dimensional space ,1),,,,,( )(
�� pyyyx p

�  if and only if it is a contact transformation.

2.7.3 EXAMPLES OF LOCAL TRANSFORMATIONS

(1)  Scaling Group

For the scaling group (2.194a,b), the extension of the infinitesimal generator (2.208) is

given by

��

����

�

�����

����

�

����

��

�

�����

�

�

���

�

y
xyy

y
yx

y
yxy

y
yxy )()()2(X̂ )4()(
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.))2((
)(

)1()(
��
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�

���

�

j

jj

y
xyyj             (2.214)

The curve )(xy ��  is mapped into the family of curves );( �� xy �  given by

)(

X̂ )();(
)(

xy
yex

��

�

�

�

��

)(

322

2
1 )]()24()2([

xy
Oyxyxyxyyxyy

��

������������� ���

).()]()(3)(4[)]()(2[)( 322

2
1

��� Oxxxxxxxxx �� ��������������� (2.215)

The expression (2.215) is the Taylor series of the mapping (2.195).

(2)  Projective Group

For the projective group (2.196a,b), the extension of the infinitesimal generator (2.209) is

given by

.)3())(()(X̂ 22)(
��

���

�

��������

��

�

�������

�

�

���

�

y
yxyyyx

y
yxyyxyy

y
yxyy

(2.216)

Here the curve )(xy ��  is mapped into the family of curves );( �� xy �  given by

)(

X̂ )();(
)(

xy
yex

��

�

�

�

��

)]()()([)(

)]()))(()2)((()([

2

)(

3222

2
12

xxxxx

Oyxyyxyyxyyxyyxyyyxyyy
xy

��������

�����������������
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�

���

).()]()())()((2)()(4)(2[ 32222232

2
1

�� Oxxxxxxxxxx �� �������������� (2.217)

The expression (2.217) yields the explicit Taylor series for the mapping given by the

implicit equation (2.197).

EXERCISES 2.7

1. Consider the rotation group

.cossin*

,sincos*

��

��

yxy

yxx

��

��

(a) Find the extended infinitesimal generator .X̂ )(�

(b) Use the local transformation with the infinitesimal generator )(X̂ �  to calculate the

image of the curve )(  to)( 3
�Oxy ��  and compare the resulting expression with

the expression obtained in Exercise 2.6-7.

2.   Show that the Taylor series for (2.197) to )( 3
�O  agrees with (2.217).
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3.   Consider a point transformation

       
),(),(*

),(),(*

2

2

���

���

Oyxyy

Oyxxx

���

���

with extended infinitesimal generator

�� �

�

�

��

��

�
�

�

�
�

�

�
�

�

)(

)()1()(X
k

k

yyyx
���� . (2.218)

Show that the characteristic form of the extended infinitesimal generator (2.218) is

given by

�� �

�

�
��

��

�
�

�

�
�

�

)(

)()1()( ˆˆˆX̂
k

k

yyy
��� ,

where

.1,D
!)!(

!
Dˆ,ˆ )1(

0

)1()(
�

�

�������

��

�

�

� ky
jjk

k
yy jjk

k

j

kkk(k)
������

(2.219)

2.8     DISCUSSION

In this chapter, we have considered one-parameter Lie groups of transformations that are

completely determined by their infinitesimal transformations. Actually such groups are

one-parameter connected local Lie groups of transformations [Gilmore (1974); Olver

(1986); Ovsiannikov (1962, 1982)]. The global properties of Lie groups turn out to be

unimportant for the purpose of studying the invariance of differential equations.

Using the infinitesimal generator of a one-parameter Lie group of transformations

one can construct various kinds of invariants (invariant surfaces, invariant points,

invariant families of surfaces). Moreover, for a one-parameter Lie group of point

transformations we can determine canonical coordinates in terms of which the

transformation group becomes a group of translations.

When applying Lie groups of transformations to the study of the invariance

properties of a differential equation, the coordinates of the group transformations are

separated into independent and dependent variables. A one-parameter Lie group of

transformations acting on the space of independent and dependent variables is naturally

extended (prolonged) to a one-parameter Lie group of transformations acting on an

enlarged space (jet space) that includes all derivatives of the dependent variables up to a

fixed finite order.  This is accomplished by requiring, under the group action,

preservation of derivative relations or, equivalently, the preservation of the contact

conditions connecting the higher-order differentials. This requirement induces a unique
extension (prolongation) of the group action to any enlarged space (higher-order jet

space). Consequently, one-parameter extended (prolonged) Lie groups of transformations

are characterized completely by their infinitesimals.  Moreover, these extended
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(prolonged) infinitesimals are determined from the infinitesimals of the group action on

the space of independent and dependent variables. This allows one to establish an

algorithm to determine the infinitesimal transformations admitted by a given differential

equation.

The study of multiparameter Lie groups of transformations reduces to the study of

infinitesimal generators of one-parameter subgroups. The infinitesimal generators form a

vector space called a Lie algebra that is closed under commutation.  The invariance

properties of a differential equation under a multiparameter Lie group of transformations

can be completely characterized by its Lie algebra. The structure (commutator table) of

the Lie algebra of a multiparameter group plays an essential role in applying infinitesimal

transformations to differential equations.

     When one considers generalizations beyond point transformations to higher-order

transformations (as well as to nonlocal transformations), it turns out to be important to

look at a group transformation from the point of view of mapping a given curve (surface)

into another curve (surface) with the independent variable(s) fixed. This is especially

necessary in studying the invariance properties of differential equations under higher-

order transformations.

Our presentation of Lie groups of transformations has emphasized the essential

computational and algebraic aspects of Lie group theory needed for applications to ODEs

in Chapter 3 and PDEs in Chapter 4. Differential geometrical aspects of Lie group theory,

although secondary in such applications, provide a complementary viewpoint and a

geometrical interpretation for results covered in this chapter [Olver (1986); Warner

(1983)].

The (prolonged) action of a one-parameter Lie group of transformations defines a

differentiable curve in a (higher-order) jet space. Geometrically, the infinitesimal

generator of the transformation represents the tangent vector of this curve at a given

point. For m  dependent variables and n  independent variables, the jet space of order k

is a differentiable manifold of dimension )]!!/()!)[(( mkknnm �� . A basis for the tangent

space of vector fields on this manifold is defined by the coordinate vector fields which

are partial derivative operators with respect to the jet space coordinates. The basis

components of the tangent vector field associated to a one-parameter Lie group of

transformations are thus the prolonged infinitesimals of the transformation. For an r-

parameter Lie group of transformations, the associated r  tangent vector fields are

linearly independent and in involution, i.e., their span is an r-dimensional vector space

containing all their commutators (Lie brackets). In particular, at each point in the

underlying jet space, these vector fields span an r-dimensional Lie algebra.

Correspondingly, the action of the transformation group defines an r-dimensional surface

in the jet space. 

An r-parameter Lie group of transformations on a jet space arises naturally as a

representation of an underlying abstract r-dimensional connected Lie group. Such a Lie

group is a differentiable manifold G  on which there is a given group structure (law of

composition) GGG ��:�  such that multiplication and inversion of group elements

(points) in G  are given by differentiable mappings. The mappings GGLg �:  and

,: GGRg �  respectively defined by left and right multiplication by a fixed group
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element g in ,G  play a central role in abstract Lie group theory. The action of these

differentiable mappings on a tangent vector at the point given by the identity element e

in G  determines a corresponding left- or right-invariant vector field on .G  The

respective sets of all left- and right-invariant vector fields on an r-dimensional Lie group

form r-dimensional vector spaces which possess a Lie bracket structure given by the

commutator operation. In this context, Lie’s three fundamental theorems have a simple

geometrical meaning. 

Lie’s first theorem essentially states that a one-dimensional Lie subgroup of G  is

equivalent to an integral curve on G  of a left- or right-invariant vector field determined

by specifying a tangent vector at the identity element e  in .G   The Lie bracket of two

left- or right-invariant vector fields on G  measures the extent to which they are

involutive, i.e., their corresponding integral curves close to form a two-dimensional

differentiable submanifold (surface) in G  if and only if the Lie bracket is contained in

the span of these two vector fields. Lie’s second and third theorems then reflect the fact

that the vector spaces of left- and right-invariant vector fields on G  have the structure of

a Lie algebra whose commutator structure is the same at all points in G  because of the

invariance property of the vector fields. 

Thus, associated to any abstract connected Lie group of dimension r is a unique r-

dimensional Lie algebra. Conversely, corresponding to any abstract r-dimensional Lie

algebra there is a unique simply-connected Lie group .G   More generally, for such a Lie

group, there is a one-to-one correspondence between its k-dimensional Lie subgroups and

its k-dimensional Lie subalgebras. Indeed, geometrically, a k-dimensional Lie subgroup

of G  is a k-dimensional submanifold (surface) foliated by integral curves of left- or

right-invariant vector fields on G  determined by an involutive k-dimensional subspace of

tangent vectors at the identity element e  in .G  Finally, a solvable r-dimensional Lie

group is geometrically characterized by admitting an ascending chain of integral

submanifolds of dimensions r,...,2,1  generated by integral curves of involutive left- or

right-invariant vector fields on the Lie group. 
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Ordinary Differential Equations (ODEs)

3.1       INTRODUCTION

Symmetries and first integrals are two fundamental structures of ordinary differential

equations (ODEs).  Geometrically, it is natural to view an nth-order ODE as a surface in

the )2( �n –dimensional space whose coordinates are given by the independent variable,

the dependent variable and its derivatives to order n, so that the solutions of the ODE are

particular curves lying on this surface.   From this point of view, a symmetry represents a

motion that moves each solution curve into solution curves; a first integral represents a

quantity that is conserved along each solution curve.  [More precisely, a symmetry is a

one-parameter group of local transformations, acting on the coordinates of the )2( �n –

dimensional space, that maps solutions into solutions, and a first integral is a quadrature

expressed by a function of the coordinates involving the independent variable, the

dependent variable and its derivatives to order ,1�n  that is constant on each solution.]

            In this chapter, we show how to find admitted symmetries and first integrals of an

nth-order ODE.  We study the integration of ODEs from these two distinct points of

view.

Lie showed that if a given ODE admits a one-parameter group of point

transformations (point symmetry), then the order of the ODE can be reduced by one.

Moreover, the solution of the reduced ODE plus a quadrature yields the solution of the

given ODE.

If an nth-order ODE admits an r-parameter solvable group of point

transformations, then it can be reduced to an (n – r)th-order ODE plus r quadratures.

When r = n, one can obtain the general solution of the ODE in terms of n quadratures.

When r < n, the reduced (n – r)th-order ODE uses derived independent and dependent

variables.  In general, this ODE is not of order n – r when expressed in terms of the

original independent and dependent variables (typically it is still of order n).

For a first-order ODE, Lie’s symmetry reduction yields the quadrature of the

ODE.  Lie showed that this is equivalent to finding a first integral and corresponding

integrating factor of the ODE.

For an nth order-ODE, a first integral yields a quadrature reducing the order of the

ODE by one.  Finding a first integral of a given ODE is equivalent to obtaining an

integrating factor admitted by the ODE.

If  n functionally independent first integrals are known for an nth-order ODE,

then one obtains the general solution of the ODE in terms of  n  essential constants.  On

the other hand, if one only knows r < n functionally independent first integrals, then the

ODE is reduced to an (n – r)th-order ODE in terms of  r  essential constants.  In contrast

to symmetry reduction, in the integrating factor approach, the reduced ODE is of order

n – r  in terms of the original independent and dependent variables.

For a given ODE, the integrating factor method and Lie’s reduction method are

complementary.  However, the algorithms for computing symmetries and integrating
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factors are similar.  Symmetries are solutions of the linearization (Fréchet derivative) of

the given ODE holding for all solutions of the given ODE.  On the other hand, integrating

factors are solutions of a linear system that includes the adjoint of the linearization of the

given ODE holding for all solutions of the given ODE. 

Symmetry reduction can also be applied to boundary value problems for ODEs.

If a symmetry reduces the order of an ODE, the same reduction holds for any posed

boundary value problem.  

If an ODE admits a Lie group of transformations, then one can construct

interesting special classes of solutions (invariant solutions) that correspond to invariant

curves of the admitted Lie group of transformations.  For a first-order ODE, such

invariant solutions can be determined algebraically and include separatrices and singular

envelope solutions.  For higher-order ODEs, invariant solutions are determined either

algebraically or by solving the first-order ODE for the invariant curves of the group.

3.1.1 ELEMENTARY EXAMPLES

To illustrate symmetry reduction and its connections with integrating factors for first-

order ODEs, we consider two elementary examples:

(1)  Group of Translations

The first-order ODE

)(1 xF
dx

dy
y ��     (3.1)

trivially reduces to the quadrature

.)(� �� CdxxFy     (3.2)

Obviously, the right-hand side of ODE (3.1) is characterized by no dependence on y.  In

particular, the one-parameter )(�  Lie group of translations

,* xx �   (3.3a)

,* ��� yy   (3.3b)

is admitted by ODE (3.1) since

),(*)(and
*

*
* 11 xFxFy

dx

dy

dx

dy
y ����

so that under the group (3.3a,b), the surface  y1 = F(x)  is invariant in  (x, y, y1)-space.  

     Moreover, it is easy to see that the ODE

),( yxf
dx

dy
�                 (3.4)

is invariant under the group (3.3a,b) if and only if, for any value of the parameter ,�
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),,(),(*)*,( yxfyxfyxf ��� �

i.e., ),( yxf  is independent of y or, equivalently, )(),( xFyxf �  for some function F(x).

Thus the reduction of (3.1) to quadrature (3.2) is equivalent to the invariance of (3.1)

under the group of translations (3.3a,b).

Under the action of the group (3.3a,b), a solution curve y = (x) of ODE (3.1)

maps into a curve y* = (x*) which corresponds to the solution curve ���� )(xy  of

(3.1) [Figure 3.1]. Thus, from the invariance of ODE (3.1) under the group of translations

(3.3a,b), we see that if y = (x) is a particular solution of (3.1) then y = (x) + C is the

general solution of (3.1) for an arbitrary constant C.

Figure 3.1

     From the quadrature (3.2), we see that

� �� CdxxFy )(     (3.5)

is a first integral of (3.1).  After differentiating the first integral (3.5), we obtain

� � ,0))((1)()( ��������� � xFyxFydxxFy
dx

d

and hence, the function

μ(x, y)  1                                                       (3.6)

is an integrating factor of ODE (3.1) that yields the first integral (3.5).

(2) Group of Scalings

The first-order ODE

,1 �

�

�

�

�

�
��

x

y
F

dx

dy
y     (3.7)

commonly called a homogeneous equation, admits the one-parameter ( ) group of

scalings

            y

                                      x

)(xy ��

���� )(xy



104

,* xx ��   (3.8a)

,* xy ��   (3.8b)

since

.
*

*
and

*

*
* 11 �

�

�

�

�

�
��

�

�

�

�

�
���

x

y
F

x

y
Fy

dx

dy

dx

dy
y

�

�

     Under the action of group (3.8a,b), a solution curve y = (x) of  ODE (3.7) maps

into the curve y*  = (x*) which corresponds to the solution curve

)(
1

xy �

�

��     (3.9)

of (3.7).  It follows that if y = (x) is a particular solution of  ODE (3.7) and the curve

y – (x) = 0  is not invariant under (3.8a,b) (i.e., (x) x for some fixed constant ),

then

is the general solution of (3.7) for an arbitrary constant C.

     The reduction of order of ODE (3.7) from its invariance under the group of

scalings (3.8a,b) is accomplished by choosing, as new coordinates, the canonical

coordinates

,
x

y
r � (3.10a)

.log ys � (3.10b)

With the reparametrization �  = log (  > 0), the ODE (3.7) is correspondingly invariant

under the one-parameter )(� Lie group of translations

,* rr � (3.11a)

.* ��� ss (3.11b)

Hence, from the first example it follows that, in terms of canonical coordinates (3.10a,b),

the ODE (3.7) must be of the form

),(rG
dr

ds
�   (3.12)

for some function G(r).  Thus, the general solution of ODE (3.7) is given by

� �� ,)( CdrrGs   (3.13)

or, in terms of  coordinates  x  and y,

                                         .const*,)(exp*
/

�
��

�

��

�
� � CdrrGCy

xy

  (3.14)

)(
1

Cx
C

y ��
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     The function G(r) is determined as follows:

,
1

,
1

2
dy

x
dx

x

y
drdy

y
ds ����

and hence,

,
)(

)(
)(

22

1

1

rrrF

rF

rry

y

dr

ds
rG

�

�

�

��  (3.15)

where F(r) is the function given in ODE (3.7).

     From the quadrature (3.13), we see that

)(log
/

CdrrGy
xy

�� �   (3.16)

is a first integral of (3.7).  After differentiating (3.16) and collecting the y�  terms, we

obtain

.0
1

)(log
/

�
	
	




�

�
�



�

	




�

�



�
���

	




�

�



�
�

�
��

�

��

�
� � x

y
Fy

x

y
xFy

drrGy
dx

d xy

Hence, the function

1
),(

�

�

�

�

�

�
�

	

x

y
xFy

yx�   (3.17)

is an integrating factor of  ODE (3.7) that yields its general solution in the form (3.16).

EXERCISES 3.1

1. Consider the ODE

.
x

y

dx

dy
�  (3.18)

(a) Obtain the general solution of ODE (3.18) from its invariance under scalings:

(i) ;*,* yyxx �� ��  and

(ii) .*,* yyxx ���

(b) Find the corresponding integrating factors.

(c) y = (x) = x  is a solution curve of (3.18).   Find the image of this solution curve

for each of the two groups in (a).  Explain your answers.
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2. Consider the ODE

).()( yBxA
dx

dy
�   (3.19)

(a) Find an integrating factor of (3.19).

(b) Find a one-parameter Lie group of transformations admitted by (3.19).

3. Find the most general first order ODE ),( yxf
dx

dy
�   that admits the group

,* xx ��

                                                           .* 2 yy ��

4.  Formulate the problem of finding one-parameter Lie groups of transformations that

leave invariant the family of straight lines y = cx.

3.2   FIRST-ORDER ODEs

We consider applications of point symmetries to the study of a first-order ODE

).,( yxf
dx

dy
y ���   (3.20)

We assume that the ODE (3.20) admits a one-parameter Lie group of point

transformations, called a  point symmetry,

                                          ),(),();,(* 2
���� OyxxyxXx ���� (3.21a)

                                         ),(),();,(* 2
���� OyxyyxYy ���� (3.21b)

with the infinitesimal generator

.),(),(X
y

yx
x

yx
�

�

�

�

�

� �� (3.21c)

     We first show how to find the general solution of ODE (3.20) from the

infinitesimals (x, y), (x, y) of an admitted group (3.21a,b) from two points of view:

(i) use of canonical coordinates;  and

(ii) determination of an integrating factor.

     Alternatively, if a particular solution of ODE (3.20) is known, and this particular

solution is not an invariant curve of point symmetry (3.21a,b), then the implicit formula

(2.193a,b) yields the general solution of (3.20).

    We then consider the problem of determining point symmetries (3.21a,b) admitted

by a given first-order ODE (3.20).  We also show how to find all first-order ODEs

admitting a given point symmetry.
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3.2.1 CANONICAL COORDINATES

As discussed in Section 2.3.5, given any one-parameter Lie group of point

transformations (3.21a,b), there exist canonical coordinates ),,(),,( yxsyxr  so that

(3.21a,b) becomes the translation group

,* rr � (3.22a)

.* ��� ss (3.22b)

These coordinates are found by solving

,0X �r

1X �s .

In terms of canonical coordinates, ODE (3.20) becomes the ODE

),,(
),(

),(
srF

yxfrr

yxfss

yrr

yss

dr

ds

yx

yx

yx

yx
�

�

�

�

��

��

�    (3.23)

where ),( srF  is obtained by substituting x and y in terms of r and s into

)],(/[)],([ yxfrryxfss yxyx �� .   The invariance of ODE (3.20), and hence ODE (3.23),

under the translation group (3.22a,b), means that F(r, s) does not depend explicitly on s.

Hence, ODE (3.23) must be of the form

.
),(

),(
)(

yxfrr

yxfss
rG

dr

ds

yx

yx

�

�

��   (3.24)

Consequently, the general solution of ODE (3.20) is given implicitly by

� ���

),(

const.,)(),(
yxr

CCdGyxs ��               (3.25)

     In Section 3.1.1, we solved the first-order homogeneous ODE (3.7) in terms of

canonical coordinates arising from its invariance under scalings (3.8a,b).  Now consider

two more familiar examples in terms of canonical coordinates.

(1)  Linear Homogeneous Equation

The first-order linear homogeneous ODE

0)( ��� yxpy   (3.26)

admits the one-parameter ( ) Lie group of scaling transformations

,* xx � (3.27a)

.* yy �� (3.27b)

In terms of corresponding canonical coordinates

,xr � (3.28a)
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       ,log ys � (3.28b)

ODE (3.26) becomes

.)(rp
y

y

dr

ds
��

�

�   (3.29)

Hence, the general solution of ODE (3.26) is given by

� ����

x

Cdpyyxs ,)(log),( ��

or

const.
~

,)(exp
~

�
��

�

��

�
	� � CdpCy

x

��

(2)  Linear Nonhomogeneous Equation

The first-order linear nonhomogeneous ODE

)()( xgyxpy ���   (3.30)

admits the one-parameter )(�  Lie group of transformations

,* xx � (3.31a)

),(* xyy ���� (3.31b)

where )(xu ��  is any particular solution of the associated linear homogeneous ODE

.0)( ��� uxpu   (3.32)

The infinitesimal generator corresponding to (3.31a,b) is given by

,)(X
y

x
�

�

� �

and hence, 1X �s  has the solution ).(/ xys ��   In terms of canonical coordinates

,xr � (3.33a)

,
)(x

y
s

�

� (3.33b)

the ODE (3.30) reduces to

,
)(

)(

r

rg

dr

ds

�

�

which has as its general solution

� ��

x

Cd
g

x

y
.

)(

)(

)(
�

��

�

�
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Hence, the general solution of ODE (3.30) is given by

const.),(
)(

)(
)( ��� � CxCd

g
xy

x

��

��

�

�     (3.34)

3.2.2 INTEGRATING FACTORS

The general solution of the first-order ODE (3.20) is a family of curves

const.),( �yx�   (3.35)

Then

,0���� y
dx

d
yx ��

�

  (3.36)

and hence,

0),( �� yx yxf ��   (3.37)

holds for all solutions of ODE (3.20).

     We assume that ODE (3.20) admits a one-parameter Lie group of point

transformations (3.21a,b).  Thus, (3.21a,b) leaves invariant the family of solution curves

(3.35).  We further assume that, under group (3.21a,b), the solution curves (3.35) of ODE

(3.20) are not invariant curves of (3.21a,b).  Then, without loss of generality, the family

of solution curves (3.35) satisfies [cf. Section 2.6.1]

1),(),(X �

�

�

�

�

�

�

y
yx

x
yx

�

�

�

��   (3.38)

with ,f�� �  where X is  the infinitesimal generator (3.21c).  Substituting for x from

(3.37) into  (3.38), we obtain

,
1

f
y

��

�

�

� (3.39a)

and hence,

.
f

f
x

��

�

�

�� (3.39b)

Substituting (3.39a,b) into (3.36), we obtain

).(
1

fy
fdx

d
��

�

�

��

�

Consequently,

1
),(

f
yx

��

�

�

�   (3.40)
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is an integrating factor for ODE (3.20).

     The integrating factor (3.40) yields the general solution of ODE (3.20) given by

const.])),(),((),([),(),(),( ����� � � � dydxyxfyxyxdxyxfyxyx y����

  (3.41)

Conversely, one can show that if ),( yx�  is an integrating factor of a first-order ODE

(3.20), then any ),( yx�  and ),( yx�  satisfying (3.40) defines an infinitesimal generator

(3.21c) of a one-parameter Lie group of transformations admitted by the first-order ODE

(3.20).

3.2.3 MAPPINGS OF SOLUTION CURVES

The following theorems concern one-parameter Lie groups of transformations acting on

the solution curves of a first-order ODE (3.20):

Theorem 3.2.3-1. For any function ),,( yx� the one-parameter Lie group of

transformations with the infinitesimal generator

,),(),(X
�

�

�

�

�

�

�

�

	

�

�




y
yxf

x
yx�   (3.42)

leaves invariant each solution curve of the first-order ODE  ).,( yxfy ��

Proof.  Let y = (x) be a solution curve of ).,( yxfy ��  Then

)).(,()( xxfxy ������   (3.43)

Consider the infinitesimal generator X given by (3.42).  Then

)].(),()[,())((X xyxfyxxy ������ �

Hence, if y = (x),  then from (3.43) it follows that

.0)]())(,())[(,())((X ��������� xxxfxxxy �

Consequently, )(xy ��  is an invariant curve for the one-parameter Lie group of

transformations with infinitesimal generator (3.42).                                                           

Theorem 3.2.3-2.  For any function ),,( yx� the first order ODE ),( yxfy ��  admits a

one-parameter Lie group of transformations with the infinitesimal

generator ),(),(X
y

yx
x

yx
�

�

�

�

�

� �� for some ),,(),(),( yxfyxyx �� �  under which

each solution curve of the ODE maps into a different solution curve of the ODE.
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Proof.  Let  (x,y) = const  be the solution curves of  ).,( yxfy �� Then

.0�� fyx ��   (3.44)

For arbitrary ),,( yx�  consider the infinitesimal generator ,X
yx �

�

�

�

�

� ��  with ),( yx�

determined by the relation )./(1 fy ��� ��  Then from ,X yx ����� ��  after use of

(3.44), we obtain .1)(X ��� yf ����  Thus the one-parameter Lie group of

transformations with infinitesimal generator X maps each solution curve of the ODE into

a different solution curve [cf. Section 2.6.1].                                                                      

     From Theorems 3.2.3-1 and 3.2.3-2, we see that two types of one-parameter Lie

groups of transformations are admitted by any first-order ODE (3.20).  Moreover, the

ODE (3.20) admits infinite-parameter Lie groups of transformations of both types:

Type (i). Trivial One-Parameter Transformation Groups 

Infinitesimal generators of the form 

y
yx

x
yx

�

�

�

�

�

� ),(),(X ��     where ),,( yxf�

�

�

are always admitted by ).,( yxfy ��  Here each solution curve of ),( yxfy ��  is an

invariant curve.  This type of group is useless for reducing ),( yxfy ��  to a quadrature

since, in order to find the canonical coordinates of the group, one must first find the

general solution of ).,( yxfy ��

Type (ii). Nontrivial One-Parameter Transformation Groups

For a one-parameter Lie group with an infinitesimal generator 

y
yx

x
yx

�

�

�

�

�

� ),(),(X ��

admitted by ),( yxfy ��  in a domain D where ),,(/ yxf���  the family of solution

curves of ),( yxfy �� is invariant in D, with each solution curve in D moving to a

different solution curve in D.  This type of group defines a nontrivial Lie group of

transformations.   It is useful for reducing ),( yxfy ��  to a quadrature, provided that one

can solve the ODE �� // �dxdy   to obtain the canonical coordinate ).,( yxr

     The  geometrical  situation  is  illustrated  in  Figure 3.2.  Here )()i(
x  = ( (i)(x, y),

(i)(x, y))  is the infinitesimal of a one-parameter Lie group G(i) of  Type (i), and )()ii(
x =

( (ii)(x, y), (ii)(x, y)) is the infinitesimal of a one-parameter Lie group G(ii) of Type (ii),

admitted by );,( yxfy �� is any solution curve y = (x) of   ).,( yxfy ��  Along  ,

)()i(
x  is tangent to �  since ./ f���   But )()ii(

x  is not tangent to �  since ./ f���

Consequently,  G(i)  leaves invariant  whereas  G(ii)  maps   into a one-parameter family
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of solution curves given by the implicit formula (2.193a,b) or the explicit formula (2.201)

with the infinitesimal generator

.),(),(X )ii()ii(

y
yx

x
yx

�

�

�

�

�

� ��

Figure 3.2.  Illustration of groups of Types (i) and (ii).

3.2.4  DETERMINING EQUATION FOR SYMMETRIES OF A FIRST-ORDER ODE

A first-order ODE

),( yxfy ��   (3.45)

defines a corresponding surface

),(1 yxfy �   (3.46)

in ),,( 1yyx -space with the solutions )(xy ��  of (3.45) corresponding to points

)),(),(,(),,( 1 xxxyyx ����  i.e., dxdyyy /1 ���  when )(xy ��  satisfies (3.45).

     Consider a one-parameter Lie group of transformations

),;,(* �yxXx � (3.47a)

).;,(* �yxYy �             (3.47b)

Definition 3.2.4-1. The group (3.47a,b) leaves invariant ODE (3.45), i.e., is a point

symmetry admitted by ODE (3.45), if and only if its first extension, defined by (2.83a–c),

leaves invariant the surface (3.46).

     A solution curve y = (x) of (3.45) satisfies )),(,()( xxfx ����  and hence, lies

on the surface (3.46) with ).(),( 1 xyxy �����  Invariance of the surface (3.46) under

the first extension of (3.47a,b) means that any solution curve  y = (x)  of (3.45) maps

into some solution curve );( �� xy �  of (3.45) under the action of the group (3.47a,b).

Moreover if a transformation (3.47a,b) maps each solution curve )(xy ��  of (3.45) into 

            y

            x

                                      x

)()ii(
x)()i(

x)(xy ��

�
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a solution curve );( �� xy �  of (3.45), then the surface (3.46) is invariant under (3.47a,b)

with ./);(1 xxy ��� �� It immediately follows that the family of solution curves of

(3.45) is invariant under point symmetry (3.47a,b) if and only if (3.45) admits (3.47a,b).

     The following theorem results from Definition 3.2.4-1, Theorem 2.6.1-1 on the

infinitesimal criterion for an invariant surface, and Theorem 2.4.2-1 on extended

infinitesimals:

Theorem 3.2.4-1 (Infinitesimal Criterion for Invariance of a First-Order ODE).  Let

y
yx

x
yx

�

�

�

�

�

� ),(),(X ��   (3.48)

be the infinitesimal generator of the Lie group of transformations (3.47a,b). Let

),,(),(),(X
1

1

)1((1)

y
yyx

y
yx

x
yx

�

�

�

�

�

�

�

�

� ���   (3.49)

be the first-extended infinitesimal generator of (3.48) where (1) is given by (2.101) in

terms of ).,(),,( yxyx �� Then (3.47a,b) is admitted by a first-order ODE (3.45) if and

only if

0)),((X )1(

1

)1(
����� yx ffyxfy ��� when  ).,(1 yxfy �   (3.50) 

Proof.  Left to Exercise 3.2-10.                                                                                           

     Explicitly, the first-extended infinitesimal of (3.48) is given by

.)(][ 2

11

)1( yy yxyx ����� ����

Thus, from (3.50), the first-order ODE (3.45) admits (3.48) if and only if

),(and),( yxyx ��  satisfy

                .andoffor0][ 2 yxvaluesarbitraryffff yxyxyx ������ ������   (3.51)

Equation (3.51) is the determining equation for the infinitesimal transformations (3.48)

admitted by (3.45).  The solutions of the determining equation (3.51) yield the point

symmetries of ODE (3.45).

     It is easy to check that for any function ),,( yx�  a solution of the determining

equation (3.51) is given by

),(),(),( yxfyxyx �� � .   (3.52)

This represents the trivial infinite-parameter Lie group of transformations of Type (i) that

leaves each solution curve of ODE (3.45) invariant.

     For any ),,( yx�  it follows that

),(),(),(),( yxyxfyxyx ��� ��   (3.53)



114

yields the general solution of (3.51) where ),( yx�  is the general solution of the first-

order linear PDE    

.0��� ��� yyx ff              (3.54)

Thus, (3.53) leads to the infinite-parameter Lie group of transformations of Type (ii)

admitted by (3.45) that maps solution curves into different solution curves of (3.45).  [An

infinite-parameter subgroup of Type (ii) corresponds to .]0, �� ���  Moreover, from

(3.53), we see that the first-order ODE (3.45) admits

y
yx

x
yx

�

�

�

�

�

� ),(),(X ��

if and only if it admits

.)],(),(),([Y
y

yxfyxyx
�

�

�� ��

     Consequently, the problem of finding all Lie groups of transformations (3.48),

admitted by a given first-order ODE (3.45), is equivalent to finding the general solution

of (3.54).  But, in order to find the general solution of (3.54), we must solve the

corresponding characteristic system ),/(/1/ �� yfdfdydx ��  and hence, we would

need to know the general solution of ODE (3.45).  However, any particular solution �

of (3.54) or, equivalently, any particular solution of (3.51) with ,f�� ��  leads to a one-

parameter Lie group of transformations admitted by (3.45), and hence to the general

solution of (3.45) through its reduction by a quadrature.  [In turn, this leads to

determining the infinite-parameter Lie group of transformations admitted by (3.45).]

Unfortunately, there is no general procedure to find an explicit particular solution �  of

(3.54).

     Next we consider the converse problem of determining all first-order ODEs that

admit a given one-parameter Lie group of transformations.

3.2.5    DETERMINATION OF FIRST-ORDER ODEs INVARIANT               

            UNDER A GIVEN GROUP

We show how to find all first-order ODEs

),( yxfy ��               (3.55)

that admit a given one-parameter Lie group of transformations with the infinitesimal

generator

.),(),(X
y

yx
x

yx
�

�

�

�

�

� ��     (3.56)

           This can be accomplished in two different ways:
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(i) Method of Canonical Coordinates.  Given the infinitesimal generator (3.56), we

compute canonical coordinates ),(and),( yxsyxr  satisfying

,1X,0X �� sr   (3.57)

so that the group corresponding to (3.56) becomes the translation group

.*,* ���� ssrr   (3.58)

Then

yrr

yss

dr

ds

yx

yx

��

��

�   (3.59)

relates y� and ./ drds   Consequently, the problem of finding all first-order ODEs (3.55)

admitting (3.56) transforms to the problem of finding all first-order ODEs

),( srF
dr

ds
�   (3.60)

that admit (3.58).  Clearly, ),( srF cannot depend explicitly on s.  Hence, the most general

first-order ODE admitting (3.56) is of the form

)(rG
dr

ds
� ,   (3.61)

where G is an arbitrary function of  r.  In terms of the given coordinates ,and yx  ODE

(3.61) becomes the ODE

)).,((
),(),(

),(),(
yxrG

yyxryxr

yyxsyxs

yx

yx
�

��

��

  (3.62)

(ii) Method of (Differential) Invariants.  The first-order ODE (3.55) admits (3.56) if

and only if ),( yxf  satisfies the first-order PDE (3.51).  The corresponding characteristic

equations to determine ),( yxf   are given by

.
)(),(),( 2ff

df

yx

dy

yx

dx

yxyx ������ ���

��     (3.63)

The invariant

1const),(),( cyxryxu ���     (3.64)

is the quadrature of the first equation of (3.63).  Eliminating y through (3.64), and setting

,
),(

),(
);( 1

yx

yx
cxf p

�

�

�                           (3.65)

we see that

pff �               (3.66)
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is a particular solution of the second equation of (3.63):

,2CfBfA
dx

df
���   (3.67)

with

,);( 1
�

� xcxAA �� (3.68a)

,);( 1
�

�� xy
cxBB

�

�� (3.68b)

.);( 1
�

� y
cxCC ��� (3.68c)

Equation (3.67) is a first-order ODE of Riccati type, with 1c  playing the role of a

parameter.  Its general solution can be determined explicitly from the particular solution

(3.66) through a transformation to a second-order linear ODE.  Specifically, if  z  solves

,0����

�

�

�

	



�

�

��� ACzzB
C

C
z   (3.69)

then

z

z

C
f

�

��

1
  (3.70)

solves (3.67).  Hence, the general solution of (3.69) leads to the general solution of (3.67)

through the well-known Riccati transformation (3.70).  A particular solution of (3.69) is

given by

,�
��

� dxCf

p

p

ezz   (3.71)

where C is given by (3.68c), (3.64); and pf  by (3.65), (3.64).  The explicit general

solution of (3.69) follows from (3.71) through the method of reduction of order (to be

derived from group invariance in Section 3.3.3).  Consequently, one obtains the general

solution of (3.67) given by

                                                      ),,;( 21 ccxf ��               (3.72)

where c2 is a constant of integration and �  is a known function of its arguments.  Then

the general solution of (3.63) arises from the equation  c2 = (c1), where �  is an arbitrary

function of 1c .

In (3.72), replacing  f  by y�  and 1c  by  u(x, y),  then solving for c2, we obtain the

differential invariant ),,( yyxv �  = c2 = const  of the first extension of (3.56), i.e.,

.0X(1)
�v  The general solution of (3.63) can then be expressed as )),,((),,( yxufyxv ��

and hence,

)),((),,( yxuyyxv ���               (3.73) 
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is the most general first-order ODE that admits (3.56), written in terms of differential

invariants.

Note that, in terms of canonical coordinates ),,(and),( yxsyxr

yrr

yss

dr

ds
yyxv

yx

yx

��

��

���),,(

satisfies 0X )1(
�v  since drds /  is invariant under (3.56), i.e. ./*/* drdsdrds �

Consider examples for which we use both approaches to find first-order ODEs admitting

specific groups:

(1) A Scaling Group

Suppose a first-order ODE (3.55) is invariant under the scaling group

                                                                ,* xex �

� (3.74a)

yey �

�* , (3.74b)

which has the infinitesimal generator .X
yx

yx
�

�

�

�

��

(i) Canonical coordinates for the Lie group (3.74a,b) are given by

.log, ys
x

y
r ��

Then

.
1

,,
1

,0
2 x

r
x

y
r

y
ss yxyx �����

Hence, ODE (3.62) takes the form

).(
2

rG
ryr

y
�

��

�

  (3.75)

Solving (3.75) for y� , we find that the most general first-order ODE admitting the scaling

group (3.74a,b) is given by

,�
�

�

�

�

�
�	

x

y
Hy   (3.76)

where H is an arbitrary function of ./ xy
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(ii)    In terms of the method of differential invariants, the characteristic equations

(3.63) become

.
0

df

y

dy

x

dx
��   (3.77)

The quadrature of the first equation of (3.77) is given by

.const),( 1c
x

y
yxu ���

The second equation of (3.77) yields

.const 2cf ��

Then )/(),(gives)( 12 xyyxfcc �� ��  which again yields ODE (3.76).

(2) Rotation Group

Suppose a first-order ODE (3.55) admits the rotation group

,sincos* �� yxx �� (3.78a)

,cossin* �� yxy �� (3.78b)

with the infinitesimal generator .X
yx

xy
�

�

�

�

���

(i) Canonical coordinates are polar coordinates

.sin, 122

r

y
syxr �

���� �

Then ./,/,/,/ 22 rxsrysryrrxr yxyx �����   Thus, ODE (3.62) becomes

).(rrG
yyx

yxy
�

��

���

Consequently, the most general first-order ODE admitting (3.78a,b) is given by

� �22 yxH
yyx

yxy
��

��

���

,   (3.79)

where H is an arbitrary function of .22 yx �

(ii) In terms of the method of differential invariants, the characteristic equations

(3.63) become

.
1 2f

df

x

dy

y

dx




��

�

  (3.80)
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The quadrature of the first equation of (3.80) is given by

.),( 1

22 cyxyxu ���    (3.81)

The second characteristic equation of (3.80) now becomes

.
1 22

1

2

yc

dy

f

df

�

�

�

  (3.82)

Let )./(tan)/(sin,tan 1

1

11 xycyf ���

��� ��   Then the quadrature of (3.82) yields

                                                               .2c�� ��     (3.83)

Hence, )()tan(tan 12 cc ��� ���  leads to

)(

1

22 yx

f
x

y
x

y
f

��

�

�

� .    (3.84)

Replacing  f  by y�  in (3.84), we again get ODE (3.79).

EXERCISES 3.2

1. Let )(xy ��  be a particular solution of

).()( xgyxpy ���   (3.85)

(a) Use this solution to find a one-parameter Lie group of transformations

admitted by (3.85).

(b) Find corresponding canonical coordinates and reduce (3.85) to a quadrature.

(c) Illustrate for the ODE .xyy ���

2. Find the integrating factor for ODE (3.30) from its invariance under (3.31a,b).

3. Show that if ),( yx�  is an integrating factor of ODE (3.20), then any ),(),,( yxyx ��

satisfying (3.40) defines an infinitesimal generator (3.21a) of a one-parameter Lie

group of transformations admitted by (3.20).

4. (a) Characterize the infinitesimal transformation of a one-parameter Lie group of

transformations that leaves invariant the family of straight lines const.�y

Explicitly find all such groups for which .1),( �yx�

(b) Do the same for the family of straight lines const./ �xy

5. Find all first-order ODEs that admit the scalings ,0,*,* ��� ��� yyxx k  for a fixed

constant k.
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6. For the first-order ODE

),,( yxfy ��     (3.86)

written as a differential form ,0�� dyNdxM  introduce the associated operator

.A
y

M
x

N
�

�

�

�

�

�

(a) Prove that the one-parameter Lie group with the infinitesimal generator

yx �

�

�

�

�� ��X  is admitted by (3.86) if and only if the commutation relation

A),(A]X,[ yx��   is satisfied for some function ).,( yx�

(b) What can you say if ?0]A[X, �

(c)  Illustrate for first-order ODEs that admit:

(i) ;
y

y
x

x
�

�

�

�

�

  and

(ii) .
y

x
x

y
�

�

�

�

�

�

7. If a first-order ODE ),( yxfy ��  admits two nontrivial groups with the infinitesimal

generators ,2,1,X ���

�

�

�

�

i
yx

iii ��  show that

11

22

��

��

�

f

f

�

�

�

 is identically constant or a first integral of the ODE.

8. Find the most general first-order ODE that admits the one-parameter )(�  Lie  group

of transformations

.*

,*

�

�

�

�

��

x

xy
y

xx

9. Consider the first-order ODE

.0)3(
2
3

����� yyxy

(a) Find a nontrivial Lie group of transformations that is admitted by this ODE.

(b) Find the general solution of this ODE.

10. Prove Theorem 3.2.4-1.
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3.3      INVARIANCE OF SECOND- AND HIGHER-ORDER ODEs

            UNDER POINT SYMMETRIES

Now consider the application of Lie groups of point transformations to the study of a

second- or higher-order ODE

                                                 ,,,()( yyxfy n
�� … ),, )1( �ny   (3.87)

or, equivalently, a surface in ,,,( 1yyx … ), ny -space,

),,…,,,( 11 �

� nn yyyxfy

,2�n  where we use the notations

,,;,…,2,1, )2()1()( yyyynk
dx

yd
y

k

k
k

�������   etc.

Note that the solutions )(xy ��  of (3.87) correspond to points

)).(,),(),(,(),,,,( )(

1 xxxxyyyx n

n ����� ��

Assume that ODE (3.87) admits a one-parameter Lie group of point

transformations

                                         ),(),();,(* 2
���� OyxxyxXx ���� (3.88a)

                                         ),(),();,(* 2
���� OyxyyxYy ���� (3.88b)

with infinitesimal generator

.),(),(X
y

yx
x

yx
�

�

�

�

�

� �� (3.88c)

Definition 3.3-1.  A point symmetry of an nth-order ODE (3.87) is a one-parameter Lie

group of point transformations (3.88a–c) admitted by (3.87).

We will show that the invariance of an nth-order ODE (3.87) under a point

symmetry (3.88a,b) constructively leads to reducing (3.87) to an (n – 1)th-order ODE

plus a quadrature.  It will be shown that this can be done in two ways:

(i) reduction of order through canonical coordinates;  and

    (ii)   reduction of order through differential invariants.

[In Section 3.4, we will show that reduction of order through differential invariants is a

natural setting for reducing an nth-order ODE that admits a multiparameter Lie group of

point transformations.]

     We will then show how to find the point symmetries admitted by a given nth-

order ODE.  Recall that for a given first-order ODE, we saw that the admitted

infinitesimals ),(),,( yxyx ��  satisfy a single linear PDE whose general solution could

not be found without knowing the general solution of the ODE itself.  Consequently, we

could not systematically determine all such symmetries.  But when ,2�n  it turns out that
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the admitted infinitesimals for Lie groups of point transformations satisfy an

overdetermined system of linear determining equations which have only a finite number

of linearly independent solutions.  In practice, we are usually able to compute explicitly

the admitted Lie group of point transformations of an nth-order ODE if .2�n

     We will also consider the problem of finding all nth-order ODEs that admit a

given one-parameter Lie group of point transformations.

3.3.1 REDUCTION OF ORDER THROUGH CANONICAL COORDINATES

The basic result is summarized in terms of the following theorem:

Theorem 3.3.1-1.  Suppose a nontrivial one-parameter Lie group of transformations

(3.88a,b), with infinitesimal generator (3.88c), is admitted by an nth-order ODE (3.87),

.2�n Let ),(),,( yxsyxr  be corresponding canonical coordinates satisfying ,0X �r

.1X �s  Then the nth-order ODE (3.87) reduces to an (n – 1)th-order ODE

�
�

�

�

�
�

�

�

�
�

�

�

�

2

2

1

1

,...,,,
n

n

n

n

dr

zd

dr

dz
zrG

dr

zd
,   (3.89)

where

.z
dr

ds
�   (3.90)

Proof.   In terms of canonical coordinates ),,(and),( yxsyxr  we have

.
yrr

yss

dr

ds

yx

yx

��

��

�   (3.91)

In order for (3.91) to be nonsingular, we assume that ,0��� yrr yx  and hence, from

,0X ��� yx rrr ��  it follows that )(/ xy �������  for a solution curve )(xy ��  of

(3.87).  Consequently, the group (3.88a,b) acts on a domain of solution curves of ODE

(3.87) where, under the action of group (3.88a,b), each solution curve of (3.87) in this

domain is mapped into a different solution curve of (3.87). 

Through differentiation of (3.91), we obtain

,,,,,
1

112

2

�

�

�

�

�

�
��

�

�

�

�

�
		


�

�

�

�

�

�

�

�

	�

	�

�

�

�

�

�

�

�

�

	�




dr

ds
srg

dr

ds
srfy

dx

yrr

yss
d

yrrdr

sd yx

yx

yx

  (3.92)

where

,
)(

,,
31

yrr

rsrs

dr

ds
srf

yx

yxxy

��

�

��

�

�

	




�
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and

)22()()()[(
)(

1
,, 23

31 yyxxyyyyxxyyyyyyyy

yx

rsrssrsryrssry
yrrdr

ds
srg �������

��

��

�

�

	




�

)].()22( xxxxxxxxyxyxxxyxyx rssrrsrssrsry �������

Next, solving (3.91) for ,y�  we obtain

.

yy

xx

s
dr

ds
r

dr

ds
rs

y

�

�

��               (3.93)

Then substituting (3.93) into (3.92) and replacing  x  and y in terms of  r  and s,  we

have

,,,,, 112

2

�

�

�

�

�

�
��

�

�

�

�

�
	



dr

ds
srG

dr

ds
srF

dr

sd
y   (3.94)

with 11 /1 fF �  and ./ 111 fgG ��   Note that since sr and  are canonical coordinates, it

follows that 0�� yxxy rsrs  and hence, .01 �f  Proceeding inductively, one can show

that

�
�

�

�

�
�

�

�

��

�

�

�

�

�
	

�

�

�� 1

1

11

)( ,...,,,,,
k

k

kk

k

k

k

dr

sd

dr

ds
srg

dr

ds
srfy

dr

sd
  (3.95)

for some function

,,...,,,
1

1

1 �
�

�

�

�
�

�

�

�

�

� k

k

k
dr

sd

dr

ds
srg

with

.2,
)(

,,
11 �

��

�

��

�

	




�

�

�
�

k
yrr

rsrs

dr

ds
srf

k

yx

yxxy

k

This leads to

,,...,,,,,
1

1

11

)(

�
�

�

�

�
�

�

�

��

�

�

�

�

�
	

�

�

�� k

k

kkk

k
k

dr

sd

dr

ds
srG

dr

ds
srF

dr

sd
y   (3.96)

where

.2,and
1

1

1
1

1

1 ����

�

�

�

�

�

k
f

g
G

f
F

k

k
k

k

k

Note that 0/1and0 111 ���
��� kkk fFf  for .2�k
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     Thus, it follows that in terms of canonical coordinates ),,(),,( yxsyxr  the

nth-order ODE (3.87) can be written as an  nth-order ODE in solved form:

,,...,,,
1

1

�
�

�

�

�
�

�

�

�
�

�

n

n

n

n

dr

sd

dr

ds
srF

dr

sd
  (3.97)

for some function )./,...,/,,( 11 �� nn drsddrdssrF   But the ODE (3.97) admits the

translation group

,* rr � (3.98a)

.* ��� ss (3.98b)

Hence, )/,...,/,,( 11 �� nn drsddrdssrF  is independent of s.  Consequently, the ODE (3.87)

reduces to (3.89) and (3.90).                                                                      

     Note that if

),...,,;( 121 �

� nCCCrz �

is the general solution of ODE (3.89), then the general solution of ODE (3.87) is given by

,),...,,;(),(
),(

121� ��
�

yxr

nn CdCCCyxs ���

where nCCC ,...,, 21  are n essential constants of integration.  Hence, the invariance of the

nth-order ODE (3.87) under a one-parameter Lie group of point transformations leads,

constructively, to the reduction of (3.87) to an  (n – 1)th-order ODE plus a quadrature.

3.3.2 REDUCTION OF ORDER THROUGH DIFFERENTIAL INVARIANTS

The nth-order ODE (3.87) represented by the surface

                                   0),...,,,(),...,,,( 111 ���

�nnn yyyxfyyyyxF          (3.99)

admits the group (3.88a,b) if and only if the surface (3.99) is invariant, i.e.,

0X )(
�Fn      when ,0�F

where )(X n  is the nth extension of the infinitesimal generator X [cf. Section 2.4.2].

Hence, it follows that ),...,,,( 1 nyyyxF  is some function of the group’s invariants

                                         ),,...,,,(),...,,,(),,( 111 nn yyyxvyyxvyxu (3.100)

where

0),...,,,(X,0),(X 1

)(
�� kk

k yyyxvyxu     with .,...,2,1,0 nk
y

v

k

k
��

�

�
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Clearly, for the nth extension of the group (3.88a,b), we have ,*,* kk vvuu ��

....,,2,1 nk �   Here, ),...,,,( 1 kk yyyxv  is a constant of integration of the characteristic

equations

����

),,(),(),(
1

)1(

1

yyx

dy

yx

dy

yx

dx

���

,
),...,,,( 1

)(

k

k

k

yyyx

dy

�

�

where )(k
�  is given by (2.100a,b), .,...,2,1 nk �

     For any set of invariants (3.100), the ODE (3.99) becomes

                                                       ,0),...,,,( 21 �nvvvuG (3.101)

for some function ).,...,,,( 21 nvvvuG  We now show that one can always choose the

invariants (3.100) without computing a canonical coordinate ),( yxs , such that (3.101) is

an  (n – 1)th-order ODE.  Moreover, we can do this in such a way that the nth-order ODE

(3.99) will reduce to an (n – 1)th-order ODE plus a quadrature.  [Note that the same

reduction holds in terms of canonical coordinates ),(and),( yxsyxr  with

),(),( yxryxu �  and .],,2,1,/),...,,,( 1 nkdrsdyyyxv kk

kk ���

     In Section 3.2.5, we showed how to find explicit invariants ),( yxu  and

),,(),,( 111 yyxvyyxv �  of the first extension )1(X  corresponding to the infinitesimal

generator (3.88c).  These invariants arose as constants of integration of the characteristic

equations

.
)()(),(),( 2

11

1

yy

dy

yx

dy

yx

dx

yxyx ������ ���

�� (3.102)

Recall that if we could determine explicitly ),,( yxu  then the computation of ),,( 1yyxv

reduced to quadrature.

     Since ),( yxu  and ),,( 1yyxv  are invariants under the action of the kth-extended

group of (3.88a,b), it follows that dv/du is a group invariant under the action of the

)1( �k th-extended group of (3.88a,b) since .1,/*/*)*/( ��� kdudvdudvdudv

Continuing inductively, we see that 1122 /,...,/,/ �� nn duvdduvddudv  are invariants of the

nth-extended group of (3.88a,b).  Such invariants are called differential invariants of the

nth-extended group of (3.88a,b).  Moreover, such differential invariants can be

constructed for any choice of invariants ),( yxu  and ),,( 1yyxv of the first-extended

group of (3.88a,b) with 0/ 1 ��ydv .

     Then
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for some function ).,,( 11 yyxg   Inductively, one can show that

),,...,,,(),...,,,( 1
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1
1111 kkkkkk
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for some function .1,...,2,1),,...,,,( 1 �� nkyyyxg kk   Consequently, the invariants

,,...,3,2),,...,,,( 1 nkyyyxv kk �  are constructed as differential invariants.  Moreover, it

should be noted that

),,...,,,(),,( 111 kkkk

k

k yyyxByyxA
du

vd
y ��

�

where

,),,(

1

1

1
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yyxA
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                                                           .1,,2,1, ���� nkgAB kkk �

Note that 01/and0 �� kk AA  for .1,...,2,1 �� nk

     Hence, it follows that constructively, in terms of differential invariants, the

reduced equation (3.101) is an  (n – 1)th-order ODE

,,,,,
2

2

1

1

�
�

�

�

�
�

�

�

�
�

�

�

�

n

n

n

n

du

vd

du

dv
vuH

du

vd
� (3.103)

for some function ./,,/,,of 22 �� nn duvddudvvuH �   Moreover, if

),...,,;( 121 �

� nCCCuv �

is the general solution of (3.103) where 121 ,...,,
�nCCC  are arbitrary constants, then the

general solution of the nth-order ODE (3.99) is found by solving the first-order ODE

),,...,,);,((),,( 121 �

��
nCCCyxuyyxv �

which reduces to a quadrature since it admits the group (3.88a,b).

3.3.3 EXAMPLES OF REDUCTION OF ORDER

(1)  Second-Order Linear Homogeneous Equation (Invariance under Scaling)

Consider the second-order linear homogeneous ODE



127

0)()( ������ yxqyxpy

or, equivalently,

                                                    .0)()( 12 ��� yxqyxpy (3.104)

     The ODE (3.104) admits the one-parameter )(�  Lie group of point

transformations

,* xx �           (3.105a)

.* yy ��           (3.105b)

(i) Reduction of Order Through Canonical Coordinates. Canonical coordinates

corresponding to (3.105a,b) are given by

.log),(,),( yyxsxyxr ��

Then

z = ,
y

y

dr

ds �

� (3.106)

so that

.yzy ��

Consequently,

.2

dr

dz
yyz

dr

dz
yzyy �������

Then the second-order ODE (3.104) reduces to the following first-order ODE of Riccati

type,

.0)()(2
���� rqzrpz

dr

dz
(3.107)

Note that (3.106) is the Riccati transformation relating (3.107) and (3.104).

(ii)  Reduction of Order Through Differential Invariants.  It is obvious that invariants of

the first extension of (3.105a,b) are given by

.),,(,),( 1
1

y

y
yyxvxyxu ��

The corresponding differential invariant is

.22

2

12 v
y

y

y

y

y

y

du

dv
��

�
�

�

�

�
�

�

	

��

Hence,
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.2

2 yv
du

dv
yy ��

Consequently, the second-order ODE (3.104) again reduces to the Riccati equation

.0)()(2
���� uqvupv

du

dv
(3.108)

     If

                                                              );( 1Cuv �� (3.109)

is the general solution of ODE (3.108), then from Section 3.3.2 it follows that the first-

order ODE

);(),,( 1Cx
y

y
yyxv ��

�

��

admits the group (3.105a,b).  This leads to the reduction of this first-order ODE to

quadrature.  In particular,

.
);(

2

1�
�

dxCx
eCy

�

(2)  Second-Order Linear Homogeneous Equation (Reduction of Order 

        from a Given Particular Solution)

Suppose )(xy ��  is a particular solution of the second-order ODE (3.104).  Then

(3.104) admits the one-parameter )(�  Lie group of point transformations

,* xx �           (3.110a)

).(* xyy ��� �           (3.110b)

(i) Reduction of Order Through Canonical Coordinates. Canonical coordinates

corresponding to (3.110a,b) are given by

.
)(

),(,),(
x

y
yxsxyxr

�

��

Then

,
)(

)(

)( 2 x

xy

x

y

dr

ds

�

��

�

�

�

�

so that

).()( rs
dr

ds
ry ������

Hence,
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.)()()(2
2

2

sr
dr

sd
r

dr

ds
ry � ����������

Let ./ drdsz �  Then (3.104) reduces to the first-order linear ODE

.0)]()()(2[)( ������� zrrpr
dr

dz
r

(ii) Reduction of Order Through Differential Invariants.  Clearly, xyxu �),(  is an

invariant of the group (3.110a,b). The invariant ),,( 1yyxv  of the first extension of

(3.110a,b) ,0),([ �yx� )](),( xyx ���  is a constant of integration of the corresponding

characteristic equations (3.102), which here are given by

.
)()(0

1

x

dy

x

dydx

��

�

�

�

Hence,
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),,( 111
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u
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x
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�
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Consequently,
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du
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Hence, ODE (3.104) reduces to

.0)(
)(

)(
�

�

�

�

�

�

	




�

��


 vup
u

u

du

dv
(3.111)

If 

                                                              );( 1Cuv �� (3.112)

is the general solution  of ODE (3.111), then the first-order ODE

);(
)(

)(
),,( 1Cxy

x

x
yyyxv ��

�

��

����

admits the group (3.110a,b) and, accordingly, can be reduced to a quadrature.  [See

example (2) of Section 3.2.1.]
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(3) Blasius Equation

The Blasius equation resulting from the Prandtl–Blasius problem for a flat plate [cf.

Section 1.3.1] is the ODE

,0
2
1

������� yyy

or, equivalently, the surface

.022
1

3 �� yyy (3.113)

It is easy to see that the third-order ODE (3.113) admits the two-parameter ),( ��  Lie

group of point transformations

,
1

* �

�

�� xx           (3.114a)

.* yy ��           (3.114b)

We treat (3.114a,b) as two one-parameter groups by considering the parameters �  and �

separately to reduce the Blasius equation (3.113) to two different second-order ODEs

through the use of differential invariants.  The reduction through canonical coordinates is

left to Exercise 3.3-2.  In Section 3.4.2 we will show how to reduce (3.113) directly to a

first-order ODE plus two quadratures, from invariance under the group (3.114a,b).

(i) Reduction of ODE (3.113) from Invariance Under Scalings.  Obvious invariants of

the first extension of ,*,)/1(* yyxx �� ��  are given by

.),,(,),(
2

1
1

y

y
yyxvxyyxu ��

Then

].1[1 uvyxyy
dx

du
����

Hence,
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du
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uvv

du
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uvu

du
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uvy

Thus, ODE (3.113) reduces to the second-order ODE
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,06)1)(8()1()1( 23

2
1

2

2

2
2

�������

�

�

�

�

	
��� vv

du

dv
uvv

du

dv
uvu

du

vd
uv (3.115)

plus a quadrature.  In particular, if

                                                           ),;( 21 CCuv �� (3.116)

is the general solution of ODE (3.115), then the first-order ODE

),;( 212
CCxy

y

y
v �	




	 (3.117)

admits .*,)/1(* yyxx �� ��  In terms of the canonical coordinates log ys �

and ,xyr �   ODE (3.117)  becomes  the  ODE

.
1),;(

),;(

21

21

�

�

CCrr

CCr

dr

ds

�

�

Then we obtain the general solution of the Blasius equation,

,
1),;(

),;(
exp

21

21
3 �

�

�

�

�

�

�

	 �

xy

dr
CCrr

CCr
Cy

�

�

where 321 ,, CCC  are arbitrary constants.

     Note that the second-order ODE (3.115) does not admit any obvious one-

parameter Lie group of point transformations.  In particular, the group with parameter ,�

i.e., ,*,* yyxx ��� � does not induce a group of point transformations admitted by

(3.115).  The reason for this will be explained in Section 3.4.

  (ii)  Reduction of ODE (3.113) from Invariance Under Translations.  Obvious invariants

of the first extension of ,*,* yyxx ��� �  are given by

.),,(,),( 11 yyyxvyyxu ��

Then

.1 vy
dx

du
��

Thus,

.,

2

2

2
2

32 �

�

�

�

�

�
�			

du

dv
v

du

vd
vy

du

dv
v

dx

du

du

dv
y

Hence, ODE (3.113) reduces to

0
2
1

2

2

2

���

�

�

�

�

	
�

du

dv
u

du

dv

du

vd
v (3.118)
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plus a quadrature.  In particular, if

                                                           ),;( 21 CCuv �� (3.119)

is the general solution of ODE (3.118), then the first-order ODE

                                                       ),;( 21 CCyyv ���� (3.120)

admits .*,* yyxx ��� �   Consequently, the general solution of the Blasius equation

(3.113) is given by

� ��

y

Cx
CCz

dz
,

),;(
3

21�

where 321 ,, CCC  are arbitrary constants.

     Note that the second-order ODE (3.118) admits the obvious one-parameter )(�

scaling group .*,* 2vvuu �� ��   This group is induced by the invariance of the Blasius

equation (3.113) under ,* yy �� .)/1(* xx ��  Thus, (3.118) can be reduced to a first-

order ODE.  In Section 3.4, we will explain why this is possible.

3.3.4 DETERMINING EQUATIONS FOR POINT SYMMETRIES 

            OF AN nth-ORDER ODE

Consider a one-parameter Lie group of point transformations

),;,(* �yxXx �                            (3.121a)

).;,(* �yxYy �                     (3.121b)

Definition 3.3.4-1.  The Lie group of point transformations (3.121a,b) leaves invariant an

nth-order ODE (3.87), i.e., is a point symmetry admitted by ODE (3.87), if and only if its

nth extension, defined by (2.89a–d) with ,nk �  leaves invariant the surface (3.99).

     A solution curve )(xy ��  of ODE (3.87) satisfies �� )()( xn

))(),...,(),(,( )1( xxxxf n�
����  and thus lies on the surface (3.99) with ),(xy ��

....,,2,1),()( nkxy k

k ���  Invariance of the surface (3.99) under the nth extension of

the group (3.121a,b) means that any solution curve )(xy ��  of ODE (3.87) maps into

some solution curve );( �� xy �  of ODE (3.87) under the action of the group (3.121a,b).

Moreover, if a group of transformations (3.121a,b) maps each solution curve )(xy ��  of

ODE (3.87) into a solution curve );( �� xy �  of ODE (3.87), then the surface (3.99) is

invariant under (3.121a,b) with .,...,2,1,/);( nkxxy kk

k ���� ��  It immediately follows

that the family of all solution curves of ODE (3.87) is invariant under the group

(3.121a,b) if and only if ODE (3.87) admits the group (3.121a,b).
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     The following theorem results from Definition 3.3.4-1, Theorem 2.6.1-1 on the

infinitesimal criterion for an invariant surface, and Theorem 2.4.2-1 on extended

infinitesimals:

Theorem 3.3.4-1 (Infinitesimal Criterion for Invariance of an nth-Order ODE).  Let

y
yx

x
yx

�

�

�

�

�

� ),(),(X �� (3.122)

be the infinitesimal generator of the one-parameter Lie group of point transformations

(3.121a,b). Let

n

n

nn

y
yyyx

y
yyx

y
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x
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�

�

�����

�

�

�

�

�

�

�

�

� ),...,,,(),,(),(),(X 1

)(

1

1

)1()(
����

(3.123)

be the  nth-extended infinitesimal generator of (3.122), where )(k
�  is given by (2.100a,b)

in terms of ),(),,( yxyx �� for .,...,2,1 nk � Then (3.121a,b) is a point symmetry admitted

by an nth-order ODE (3.87) if and only if

,when0)),...,,,((X 11

)( fyyyyxfy nnn

n
���

�

or, equivalently,

1

)1(

1

)1()(
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�����
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�
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�

�

n

n

fy

n

y

f

y

f

y

f

x

f

n

����� , (3.124)

where 

�

�

�

�

�

���

��

1

0

1)( D
)!1()!1(

!
D

k

j

j

jk

kk y
jjk

k
���

for .,,2,1 nk ��

Proof.  Left to Exercise 3.3-9.          

     More generally, an ODE 0),...,,,( 1 �nyyyxF  admits the group (3.121a,b) with

infinitesimal generator (3.122) if and only if 0),...,,,(X 1

)(
�n

n yyyxF  when

.0),...,,,( 1 �nyyyxF

     If ),...,,,( 11 �nyyyxf  is a polynomial in ,,...,, 121 �nyyy  then from Theorem 2.4.2-2

it follows that equation (3.124) (after replacing )),...,,,(by 11 �nn yyyxfy is a polynomial

in ,,...,, 121 �nyyy  whose coefficients are linear homogeneous in ),,(),,( yxyx ��  and their

partial derivatives up to nth order.  Since for any nth-order ODE (3.87) we can assign

arbitrary values to each of 121 ,...,,,
�nyyyy  at any fixed value of x, it follows that the

coefficient of each monomial term in (3.124) must vanish since this polynomial equation

must  hold  for  arbitrary  values  of   121 ,...,,,,
�nyyyyx .  This leads to a system of  linear
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homogeneous PDEs for ).,(),,( yxyx ��  This linear system defines the set of determining

equations for the point symmetries admitted by the nth-order ODE (3.87).  The system is

overdetermined if 2�n  since the number of determining equations exceeds two, i.e.,

exceeds the number of unknowns.

     In general, if ),...,,,( 11 �nyyyxf  is not a polynomial in ,,...,, 121 �nyyy  then (3.124)

still splits into an overdetermined system of determining equations based on the

independence of the variables 121 ,...,,,,
�nyyyyx .

    One can show that a second-order ODE admits at most an eight-parameter Lie

group of point transformations and that an nth-order ODE )2( �n  admits at most an

�� )4(n parameter Lie group of point transformations [Lie (1893, pp. 296–298);

Dickson (1924); Ovsiannikov (1982)].

     We now state some theorems on the forms of infinitesimal generators that can be

admitted by ODEs.  These theorems cover many ODEs arising in applications and

significantly simplify the many calculations involved in setting up and solving the

determining equations for the infinitesimals ).,(),,( yxyx ��   In particular, the theorems

are concerned with the dependence on  y  of  ),(),,( yxyx �� .

Theorem 3.3.4-2.  Consider an nth-order ODE, ,3�n  of the form

                                    ).,...,,,(),,( )2()1()( ��

����

nnn yyyxhyyyxgy (3.125)

If ODE (3.125) admits the infinitesimal generator (3.122), then .0�y�

Theorem 3.3.4-3.  Consider an nth-order ODE, ,3�n  of the form

                                       ).,...,,,(),( )2()1()( ��

���

nnn yyyxhyyxgy (3.126)

If ODE (3.126) admits the infinitesimal generator (3.122), then .0,0 �� yyy ��

Theorem 3.3.4-4.  Consider a second-order ODE of the form

).,(),( yxhyyxgy ����� (3.127)

If ODE (3.127) admits the infinitesimal generator (3.122) with ,0�y� then .0�yy�

Theorems 3.3.4-2 to 3.3.4-4 are proved in Bluman (1990a).  

     Consider two examples:

(1) The Lie Group of Transformations Acting on 2R  that 

      Maps Straight Lines into Straight Lines

This is the Lie group of point transformations admitted by the second-order ODE

                                 .0���y (3.128)

The invariance criterion here is
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0)2(
��      when ,02 �y

where )2(
�  is given by (2.102), i.e., ),(),,( yxyx ��  satisfy

.0)()](2[]2[ 3

1

2

11 ������ yyy yyyyyxxxyxx ������ (3.129)

Equation (3.129) is a cubic polynomial in terms of .1y   Equating to zero the coefficients

of each monomial term in (3.129), we obtain the system of determining equations

,0�yy�           (3.130a)

                                                                 ,0�xx�           (3.130b)

,02 �� xyyy ��           (3.130c)

.02 �� xyxx ��           (3.130d)

From (3.130a,b), we obtain

),()( xbyxa ���

).()( ydxyc ���

Then (3.130c,d) lead to

,0)(2)()( �������� xaydxyc           (3.131a)

.0)(2)()( �������� ycxbyxa                       (3.131b)

Taking x�� /  of (3.131a) and y�� /  of (3.131b), we see that .0)()( ������ xayc  Thus, the

solution of the determining equations (3.130a–d) is given by

,5432

2

1 ������ ����� yxxyx

,876

2

21 ������ ����� yxyxy

where 821 ,...,, ���  are arbitrary constants.  This is the eight-parameter Lie group of

projective transformations (2.168a,b) admitted by ODE (3.125).

(2) Blasius Equation

The invariance criterion for the Blasius equation

0
2
1

������� yyy (3.132)

is given by

0)2(

2
1

22
1)3(

��� ��� yy     when ,22
1

3 yyy �� (3.133)

where )3()2( ,��  are given by (2.102), (2.103).  Then (3.133) becomes the polynomial

equation
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2

12
1

12
1

2
1 )](33[]3[][ yyyyyyy xyyyxxyxyyxxxyxxxxxyxxxxx ���������� ���������

22
1

2
14

1

3

12
1 ]33[)()](3[ yyyyy xxxxyyyyyyxyyyyy �������� ��������

yxyyy y���
2
193[ ��� ] .0)(3)(6 2

22

2

121 ��� yyyyy yyy �� (3.134)

The resulting determining equations for ),(and),( yxyx ��  are given by

,0
2
1

�� xxxxx y��           (3.135a)

,03
2
1

���� xxxyxxxxxy yy ����           (3.135b)

,033
2
1

���� xyyyxxyxyy yy ����           (3.135c)

,03
2
1

��� yyyyyxxy y ���           (3.135d)

,0�yyy�           (3.135e)

,033
2
1

2
1

���� ���� xxxxy y           (3.135f)

,093
2
1

��� yxyyy y���           (3.135g)

,0�yy�           (3.135h)

.0�y�           (3.135i)

From (3.135i), one immediately sees that )(x�� � , and hence, (3.135h,e) are redundant.

Then (3.135g) leads to

,0�yy� (3.136)

so that (3.135c,d) are also satisfied.  Taking y�� /  of (3.135b) and yx ��� /2  of (3.135f),

we are led to

.0)( ���� xxy ��            (3.137)

Moreover, now (3.135b) is satisfied.  Then

,x��� ��                                   (3.138a)

).(xay �� ��             (3.138b)

Equation (3.135f) leads to .,0)( �� ���xa   No further restrictions arise from (3.135a).

Consequently, the Blasius equation (3.132) only admits a two-parameter Lie group of

point transformations (translations, scalings) with infinitesimals

,x��� ��                       (3.139a)

,y�� ��                       (3.139b)

where �  and �  are arbitrary constants.
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     If we directly use Theorem 3.3.4-3, the computations for finding

),(and),( yxyx ��  simplify significantly.  Since ODE (3.132) is of the form (3.126), it

immediately follows that .0,0 �� yyy ��  Hence, the determining equations resulting

from the polynomial equation (3.134) reduce to just (3.135a,b,f).

3.3.5 DETERMINATION OF nth-ORDER ODEs INVARIANT 

            UNDER A GIVEN GROUP

Now we consider the problem of finding all nth-order ODEs that admit a given one-

parameter Lie group of point transformations.  This is accomplished by a simple

extension of the procedure outlined in Section 3.2.4 for first-order ODEs through the use

of either canonical coordinates or differential invariants.

     Suppose an nth-order ODE (3.121) admits a given one-parameter Lie group of

point transformations with infinitesimal generator (3.122).  We can proceed in two

obvious ways:

(i) Method of Canonical Coordinates. Corresponding to the infinitesimal generator

(3.122), we compute canonical coordinates ),(and),( yxsyxr  satisfying

,1X,0X �� sr  so that the group admitted by ODE (3.121) is now the translation group

.*,* ���� ssrr (3.140)

Then invariants under (3.140) are given by

.,...,2,1, nk
dr

sd
k

k

�

These invariants can be expressed in terms of )(,...,,, nyyyx �  through relations (3.91) and

(3.95).  Consequently, the most general nth-order ODE, written in solved form, that

admits a one-parameter Lie group of point transformations with infinitesimal generator

(3.122) is given by

,,,,
1

1

�
�

�

�

�
�

�

�

�
�

�

n

n

n

n

dr

sd

dr

ds
rG

dr

sd
� (3.141)

where G  is an arbitrary function of ./,,/, 11 �� nn drsddrdsr �  Note that ODE (3.141) is

an )1( �n th-order ODE in terms of a dependent variable ./ drdsz �

 (ii) Method of Differential Invariants.  Here we first find invariants ),( yxu  and

),,( yyxv �  as we did for first-order ODEs.  Then we compute the differential invariants

,1,...,2,1, �� nk
du

vd
k

k
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which can be expressed in terms of )(,...,,, nyyyx �  as indicated in Section 3.3.2.

Consequently, the most general nth-order ODE (in solved form) that admits the group

(3.122) can be written in the form

,,,,,
1

2

1

1

�
�

�

�

�
�

�

�

�
�

�

�

�

n

n

n

n

du

vd

du

dv
vuH

du

vd
� (3.142)

where H  is an arbitrary function of ./,,/,, 22 �� nn duvddudvvu �  Note that ODE (3.142)

is an )1( �n th-order ODE in terms of its dependent variable v.

     To find the most general nth-order ODE admitting a group of a simple form, such

as a group of scalings, it is more natural to compute directly 1�n  invariants that depend

on, respectively, ).,...,,,(),...,,,(),,( )(nyyyxyyxyx ��  The disadvantage of such a direct

approach is that the reduction of order from  n to 1�n  is not automatic, as is the case

when the most general nth-order ODE is obtained through either canonical coordinates or

differential invariants.

     As an example, we use these methods to find the most general second-order ODE

that admits the scaling group (3.74a,b).  The reader is referred to the calculations in

Section 3.2.4, where we found the most general first-order ODE that admits (3.74a,b).

(1)  Method of Canonical Coordinates

Canonical coordinates are given by

.log, ys
x

y
r ��

Then

.
)(

2

)()(

)(2

)(
,

2

2232

2
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2 �
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��
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�

dr

ds

ryr

yr

ryr

yyr

ryr

yyr

ryr

yyr

dr

sd

ryr

y

dr

ds

Hence, the most general second-order ODE that admits the scaling group (3.74a,b) is

given by

,,
)()(

2
2

2

4

3

�
�

�

�

�
�

�

�

	



	


�

	



�



yyxy

yx

x

y
G

x

yyx

xy

yyxy
y (3.143)

where G is an arbitrary function of its arguments.

(2)  Method of Differential Invariants

From the form of the most general first-order ODE (3.76) admitting (3.74a,b), we see that

., yv
x

y
u ���

Then

.
2

yyx

yx

du

dv

��

��

�
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Consequently, the most general second-order ODE that admits (3.74a,b) is given by

,,
2

�

�

�

�

�

�
�

	�


�� y
x

y
H

x

yyx
y (3.144)

where H is an arbitrary function of its arguments.  Of course, (3.143) and (3.144) must

yield the same general second-order ODE.  In comparing (3.143) and (3.144), note that
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and so we see that
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�
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�
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y
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x
y

x

y
H ,2,

2

.

(3)  Direct Approach

Obvious invariants of the scaling group (3.74a,b) are given by .,,/ yyyxy ���  Hence, the

most general second-order ODE that admits (3.74a,b) is given by

,,
1

�

�

�

�

�

�
�	�� y

x

y
I

y
y (3.145)

where I is an arbitrary function of its arguments.  In comparing (3.144) and (3.145), note

that
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and hence,
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EXERCISES 3.3

1. Let )(xy ��  be a particular solution of the second-order linear nonhomogeneous

ODE

).()()( xgyxqyxpy ������  (3.146)

(a) Find a one-parameter Lie group of point transformations admitted by (3.146).
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(b) Use canonical coordinates to reduce ODE (3.146) to a first-order ODE plus a

quadrature.

(c) Use differential invariants to reduce ODE (3.146) to a first-order ODE plus a

quadrature.

2. The third-order Blasius equation (3.113) admits the two-parameter ),( ��  Lie

group of point transformations (3.114a,b).

(a) Use canonical coordinates associated with parameter �  to reduce ODE (3.113) to

a second-order ODE.
(b) Find a symmetry of this second-order ODE.  How is this symmetry related to the

parameter �  of  (3.114a,b)?

(c) Find canonical coordinates for the symmetry of (b).  Consequently, reduce the

Blasius equation to a first-order ODE plus two quadratures.

3. Find the Lie group of point transformations admitted by the ODE

                                                        ,)( Nyy ���� �

where ��  const  and ,...2,1�N is a fixed integer. Investigate further the cases

.3,2,1�N  Compare these cases with the Lie group admitted by .0���y   [For related

ODEs, see Aguirre and Krause (1985).]

4. Find the Lie group of point transformations admitted by each of the ODEs:

(a) ;3�
��� yy  and

(b) .yey
��

���

5. Consider the ODE

0)(2 ���

�

�

�

�

	

dx

dy
x

dx

dy
yK

dx

d
(3.147)

that arises when seeking invariant solutions of the nonlinear heat conduction

equation [Bluman and Kumei (1989b, Section 7.2.7)] from its invariance under

scalings.

(a) Find a Lie group of point transformations admitted by ODE (3.147) when:

        (i) �

�� )()( �� yyK , where ��� ,,  are arbitrary constants;  and

 (ii)  yeyK �

��)( , where ��,  are arbitrary constants.

(b) Find all )(yK  for which ODE (3.147) admits a Lie group of point

transformations.

6. Consider the ODE

0)( ������� yyxyyK (3.148)

that arises when seeking invariant solutions of the nonlinear heat conduction

equation from the invariance of a related potential system under scalings [Bluman and

Kumei (1989a, Section 7.3.1)].

(a) Find a Lie group of point transformations admitted by ODE (3.148) when:
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 (i) ;
)(1

1
)(

2y
yK

��

��   and

(ii) const.],arctanexp[
)(1

1
)(

2
��

��

�� �� y
y

yK

(b) Solve ODE (3.148) when ].)(1/[1)( 2yyK ����

7. Find the Lie group of point transformations admitted by the family of curves

),(xpy �  where )(xp is an arbitrary polynomial of degree n.

8. Find the most general second-order ODE that admits the scaling group ,* xx ��

kyy k where,* ��  is a fixed constant.  Reduce the ODE to a first-order ODE  plus a

quadrature.

9. (a) Find the most general second-order ODE that admits the rotation group.

(b) Interpret your result geometrically. 

(c) Find the general solution of the ODE

                             .0))(1)((2)( 222
��������� yyxyyyx

10. Prove Theorem 3.3.4-1.

3.4   REDUCTION OF ORDER OF ODEs UNDER MULTIPARAMETER 

            LIE GROUPS OF POINT TRANSFORMATIONS

Now we consider the invariance of an nth-order ODE under an r-parameter Lie group of

point transformations, .2�r   If the corresponding r-dimensional Lie algebra is solvable

[cf. Section 2.5.4], we show that the given nth-order ODE can be reduced to an (n – r)th-

order ODE plus r quadratures.  Theorem 2.5.2-2 shows that any two-dimensional Lie

algebra is solvable.  It turns out that every even-dimensional mr 2( �  for some integer m)

Lie algebra acting on nR  contains a two-dimensional subalgebra. [Cohen (1911, p. 150);

Dickson (1924).  Both of these authors erroneously claim that this is true for any real Lie

algebra acting on .n
R  Their proofs only hold for complex Lie algebras or real Lie

algebras of even dimension.  It is easy to show that the Lie algebra SO(3) corresponding

to the rotation group acting on 3R  is not solvable.  One can show that there exists a

three-dimensional Lie algebra acting on 2R  that is isomorphic to SO(3) and hence not

solvable.]

3.4.1 INVARIANCE OF A SECOND-ORDER ODE UNDER A 

            TWO-PARAMETER LIE GROUP

We now show that if a second-order ODE

),,( yyxfy ���� (3.149)
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admits a two-parameter Lie group of point transformations, then one can constructively

reduce ODE (3.149) to two quadratures and, hence, find its general solution.

     Let 21 X,X  be basis generators of the Lie algebra of the given two-parameter Lie

group of transformations, and let )(X k

i  denote the kth-extended infinitesimal generator of

.2,1,X �ii  Without loss of generality, from Theorem 2.5.4-2, we can assume that

121 X]X,X[ �� (3.150)

for some constant .�

     Let ),,(),,( yyxvyxu �  be invariants of )2(

1X such that

.0X,0X (1)

11 �� vu

Then the corresponding differential invariant dudv /  satisfies the equation [cf. Section

3.3.2]

,0X(2)

1 �

du

dv

and hence, ODE (3.149) reduces to

),,( vuH
du

dv
� (3.151)

for some function H  of ., vu  [Note that .]0/ ���� yv  From the commutation relation

(3.150), it follows that 

.0XXXXX 11221 ��� uuu �

Hence,

                                                              )(X2 uu ��           (3.152a)

for some function .of u�

     Similarly, from Theorem 2.5.2-3, it follows that

.0XX,0XX (2)

2

(2)

1

(1)

2

(1)

1 ��

du

dv
v

Hence,

                                                            ),(X(1)

2 vuv ��           (3.152b)

for some function .,of vu�  Since ODE (3.149) admits ,X2  it follows that

0),(X(2)

2 ��

�

�

�

�

�
	 vuH

du

dv
     when ).,( vuH

du

dv
�

From (3.152a,b) it follows that in terms of coordinates (1)

2Xextensionfirst the,and vu

becomes
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,),()(X(1)

2
v

vu
u

u
�

�

�

�

�

� ��

which is admitted by ODE (3.151).  Consider canonical coordinates ),(),,( vuSvuR  such

that

.1X,0X (1)

2

(1)

2 �� SR

Then ),(),,( vuSvuR  satisfy

,0),()( �

�

�

�

�

�

v

R
vu

u

R
u ��

.1),()( �

�

�

�

�

�

v

S
vu

u

S
u ��

Thus, the one-parameter group of translations

,* RR �           (3.153a)

,* ��� SS           (3.153b)

is admitted by ODE (3.151).  Hence, ODE (3.151) reduces to

)(RI
dR

dS
� (3.154)

for some function .of RI  Then the first-order ODE (3.154) integrates out to

,)(),( 1

),(

CdRRIvuS
vuR

�� � (3.155)

for some arbitrary constant .1C   The differential equation

�

�

���

)),,(),,((

1)()),,(),,((
yyxvyxuR

CdRRIyyxvyxuS

admits 1X  and, hence, reduces to quadrature by the method of canonical coordinates after

one determines ),(and),( yxsyxr  such that

.1X,0X 11 �� sr

Consequently, any second-order ODE that admits a two-parameter Lie group of

transformations reduces completely to two quadratures.

     As an example, consider the second-order linear nonhomogeneous ODE

).()()( xgyxqyxpy ������ (3.156)

Let )(1 xz ��  and )(2 xz ��  be two linearly independent solutions of the corresponding

homogeneous equation

.0)()( ������ zxqzxpz (3.157)
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Then ODE (3.156) admits the two-parameter ),( 21 ��  Lie group of transformations

,* xx �           (3.158a)

                                                                  ).()(* 2211 xxyy ���� ���           (3.158b)

The corresponding infinitesimal generators are given by

y
x

y
x

�

�

�

�

�

� )(X,)(X 2211 �� ,

with .0]X,X[ 21 �   Then

,2,1,)()(X )1(
�

��

�

��

�

�

� i
y

x
y

x iii ��

,
)(

,
11 x

yy
vxu

��

�

�

�

��

,
)()(

)(

)(

)(

)(

)(
X,0XX

111

2

1

2(1)

222
xx

xW

x

x

x

x
vxu

���

�

�

�

�

��

�

�

���

where )(xW  is the Wronskian .)( 1221 ���� ����xW   Now, in terms of coordinates x and

v, we have

.
)()(

)(
X

11

(1)

2
vxx

xW

�

�

�

�

��

Canonical coordinates ),(),,( vxSvxR satisfy

,1X,0X
11

(1)

2

11

(1)

2 �

�

�

�

��

�

�

�

�

v

SW
S

v

RW
R

����

and hence,

., 11

W

v
SxR

�� �

��

Consequently, by a simple calculation, we find

,
)(

)()( 1

xW

xxg

dx

dS �

�

so that

2
111 Cdx

W

g

W

yy
S ��

���

� �

���

(3.159)

for some arbitrary constant .2C
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By construction, the first-order ODE (3.159) admits .)(X 11
y

x
�

�

� �   In terms of

the corresponding canonical coordinates ),(/, 1 xysxr ���   ODE (3.159) reduces to

.
)(

2
1

2

1
�
�

�

�
�

�
�	 � Cdx

W

gW

dx

ds �

�

(3.160)

But .)/()/( 12

2

1
�� ���W  Hence,

.
)(

21

1

21

2

1
W

g
dx

W

g

dx

d
dx

W

gW ��

�

��

�

�
�

�

�

�

�

�

	� �

Thus,

,1
21

1

2

1

2
2 Cdx

W

g
dx

W

g
Cs ���� ��

��

�

�

�

�

for some arbitrary constant ,1C  which leads to the familiar general solution

�� ���� dx
W

g
dx

W

g
CCy 2

1
1

22211

�

�

�

��� (3.161)

of ODE (3.156), derived by the variation of parameters method in standard textbooks.

3.4.2 INVARIANCE OF AN nth-ORDER ODE UNDER 

            A TWO-PARAMETER LIE GROUP

Now consider an nth-order ODE

                                                    ),,...,,,( 11 �

� nn yyyxfy (3.162)

,3�n  assumed to be invariant under a two-parameter Lie group of point transformations

with infinitesimal generators 21 X,X  such that, without loss of generality,

,X]X,[X 121 ��  for some constant �  [cf. Theorem 2.5.4-2].

     As in Section 3.4.1, let ),,(),,(),,( 1 yyxvyyxvyxu ��  be invariants of .X(2)

1

Then 0X 1

(2)

1 �v  where ,/1 dudvv �  and hence, ODE (3.162) reduces to

,,,,,
2

2

1

1

�
�

�

�

�
�

�

�

�
�

�

�

�

n

n

n

n

du

vd

du

dv
vuH

du

vd
� (3.163)

for some function ./,,/,,of 22 �� nn duvddudvvuH �

     Since ,...,2,1,X]X,X[ )(

1

)(

2

)(

1 �� kkkk
�  it follows that 

),(X2 uu ��

                                                             ),,(X )1(

2 vuv ��
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     ),,,(X 11

)2(

2 vvuv ��

for some functions ��� ,,  of the indicated arguments.  Then

,),()(X )1(

2
v

vu
u

u
�

�

�

�

�

� ��

with its first extension given by

,),,(),()(X
1

1

)2(

2
dv

vvu
v

vu
u

u
�

�

�

�

�

�

�

� ���

is admitted by ODE (3.163).  Now, let ),,(),,( 1vvuVvuU  be invariants of (2)

2X  such that

.0X,0X (2)

2

(1)

2 �� VU

Then

.0X(3)

2 �

dU

dV

Consequently, ODE (3.163) and, hence, ODE (3.162) reduce to

,,,,,
3

3

2

2

�
�

�

�

�
�

�

�

�
�

�

�

�

n

n

n

n

dU

Vd

dU

dV
VUI

dU

Vd
� (3.164)

for some function ./,,/,,of 33 �� nn dUVddUdVVUI �   If

),...,,;( 221 �

� nCCCUV �

is the general solution of ODE (3.164), then the first-order ODE

),...,,);,((,, 221 �

��

�

�

�

�

�

nCCCvuU
du

dv
vuV � (3.165)

admits .),()(X(1)

2
vu

vuu
�

�

�

�

�� ��  Hence, ODE (3.165) reduces to a quadrature

).,,...,,;( 1221 ��

� nn CCCCuv �

But the first-order ODE

                                     ),,...,,);,((),,( 1221 ��

��
nn CCCCyxuyyxv � (3.166)

admits .X1   Thus, ODE (3.166) reduces to a quadrature that leads to the general solution

of ODE (3.162).

     Hence, if an nth-order ODE )3( �n  admits a two-parameter Lie group of point

transformations, then it can be reduced constructively to an )2( �n th-order ODE plus

two quadratures. Note that the order in which the operators 1X  and 2X  are used is

crucial if .0��
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     As a first example, we consider again the Blasius equation

,0
2
1

������� yyy (3.167)

which admits the two-parameter Lie group of point transformations [cf. (3.139a,b)] with

infinitesimal generators

.X,X 21
y

y
x

x
x �

�

�

�

�

�

�

�

�

Then

.X]X,X[ 121 �

Invariants of (2)

1X are given by

.,,
1

2
11

y

y

du

dv
vyyvyu ������

It follows that

,32X
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�

�

�
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.X,22X,X 1
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(2)

21

(1)

22 v
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vvyvuyu ������������

Then

,0),,(X,0),(X 1

(2)

2

(1)

2 �� vvuVvuU

lead to

., 1

2 u

v
V

u

v
U ��

Consequently, the third-order Blasius equation (3.167) reduces to

,
)()(2

)()(

)(2)(

)()(

)(

))((
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2
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which, in terms of  U  and V,  becomes the first-order ODE
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VU

UV

U

V

dU

dV
(3.168)

     If  );( 1CUV ��  is the general solution of ODE (3.168), then the first-order ODE

�

�

�

�

�

�
�� 121 ;C

u

v
u

du

dv
v � (3.169)
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admits .2X(1)

2
vu

vu
�

�

�

�

���   In terms of corresponding canonical coordinates ,/ 2uvr �

,log vs �  ODE (3.169) becomes

.
]2);([

);(

1

1

rCrr

Cr

dr

ds

�

�

�

�

(3.170)

This leads to the quadrature

,
]2);([

);(
exp

1

1
2 �

�

�

�

�

�

�
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r

d
C

C
Cv �

����

��

(3.171)

where ./, 2

11 yyryv ��   In principle, (3.171) can be expressed in a solved form

),;( 21 CCyy ���

that admits 
x�

�

�1X  and thus reduces to a quadrature

� �� .
),;(

3

21

Cx
CCy

dy

�

(3.172)

Equation (3.172) represents a general solution of the Blasius equation.

As a second example, we consider the third-order ODE

,1��

�

�
�

�

�

�
�

	




�

�

y

y
yy (3.173)

that arises when one studies the group properties of the wave equation with wave speed

)(xy  [Bluman and Kumei (1987)].  ODE (3.173) obviously admits the two-parameter Lie

group of transformations

.*

,*

ayy

baxx

�

��

It is easy to see that corresponding differential invariants are given by 

., yyVyU �����

Consequently, ODE (3.173) reduces to

.2
V

U

U

V

dU

dV
�� (3.174)

Fortuitously, the first-order ODE (3.174) admits the scalings

.*,* VVUU �� ��
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Accordingly, one easily finds the general solution of ODE (3.174):

const.1

2

2
�

�

�

�

�

�

�

�

�

	




�

�



�
�

�
U

V
U (3.175)

Two cases arise depending on the sign of the constant in (3.175). We will consider the

case where the constant is given by .const,02
�� ��  Here it is convenient to choose

first-order differential invariants, corresponding to invariance under translations in x, as

new variables:

., Uyvyu ����

Then (3.175) becomes the first-order ODE

u

v

du

dv 12
�

�

�

. (3.176)

The general solution of ODE (3.176) is given by

],)()[(
2

1
��

��

�

�

� uuv � (3.177)

where � is an arbitrary constant.  Without loss of generality, through a uniform scaling of

x and y, we can set .1��   Hence, modulo the scalings ,*,* ayyaxx ��  the third-order

ODE (3.173) reduces to

],[
2

1
��

�

�

�� yyy �

i.e., to the canonical forms

)logsinh(
1

yy �

�

��           (3.178a)

or

).logcosh(
1

yy �

�

��           (3.178b)

            If the constant in (3.175) is given by ,02
���  then by the same procedure one

can show that finally, modulo the same scalings in x and y, the third-order ODE (3.173)

has a further reduction to the canonical form

).logsin(
1

yy �

�

��           (3.178c)

The properties of the solutions to ODE (3.178c) are most interesting [Bluman and Kumei

(1988)].



150

3.4.3 INVARIANCE OF AN nth-ORDER ODE UNDER AN r-PARAMETER

            LIE GROUP WITH A SOLVABLE LIE ALGEBRA

If an r-parameter Lie group of point transformations )3( �r  is admitted by an nth-order

ODE ),( rn �  it does not always follow that one can have a reduction to an )( rn � th-order

ODE plus r quadratures.  We will show that such a reduction is always possible if the Lie

algebra, Lr
, formed by the infinitesimal generators of the group, is a solvable Lie algebra

[cf. Section 2.5-4].  Then Lr
 has a basis set of generators rX,...,X,X 21  satisfying

commutation relations of the form

�

�

�

����

1

1

,,...,2,1,X]X,X[
j

k

k

k

ijji rjjiC (3.179)

for some real structure constants k

ijC  [Exercise 3.4-7].  For the same constants ,k

ijC  the

corresponding mth-extended infinitesimal generators )(X m

j  satisfy

.,...,2,1,X]X,X[
1

1

)()()( rjjiC
j

k

m

k

k

ij

m

j

m

i �����

�

�

(3.180)

     Now consider the nth-order ODE

                                                   ),,...,,,( 11 �

� nnn yyyxFy (3.181)

where nF is a given function of its arguments.  We assume that ODE (3.181) admits an

r-parameter Lie group of point transformations )3( nr ��  whose infinitesimal

generators ,,...,2,1,X rii �  form a solvable Lie algebra and, in particular, satisfy the

commutation relations (3.179) for some constants .k

ijC

     Let ),,(),,( 1)1()1( yyxvyxu  be invariants such that

.0X,0X )1(

(1)

1)1(1 �� vu

Then

.1,...,2,1,0X
)1(

)1(1)(

1 ���

� nk
du

vd
k

k

k

Let

.1,...,2,1,
)1(

)1(

)1( ��� nk
du

vd
v

k

k

k

In terms of the invariants ,, )1()1( vu  and the differential invariants ,)1( kv ,1,...,2,1 �� nk  of

,X )(

1

n  ODE (3.181) reduces to an )1( �n th-order ODE

),,...,,,( 2)1(1)1()1()1(11)1( ���

� nnn vvvuFv (3.182)
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for some function 1�nF of the indicated invariants of .X )(

1

n

     From (3.179) and (3.180), it follows that

),,,(X),,(X),(X 1)1()1()1(11)1(

(2)

2)1()1(1)1(

(1)

2)1(1)1(2 vvuvvuvuu ��� ���

for some functions 111 ,, ���  of the indicated arguments.  Hence ODE (3.182) admits the

one-parameter Lie group of point transformations with infinitesimal generator

,),()(X
)1(

)1()1(1

)1(

)1(1

(1)

2
v

vu
u

u
�

�

�

�

�

� ��

whose first extension is given by

.),,(XX
1)1(

1)1()1()1(1

(1)

2

(2)

2
v

vvu
�

�

�� �

     Let ),,(),,( 1)1()1()1()2()1()1()2( vvuvvuu  be invariants such that

                                                 .0X,0X )2(

(2)

2)2(

(1)

2 �� vu (3.183)

Then

.2,...,2,1,0X
)2(

)2()(2

2 ���

� nk
du

vd
k

k

k

Let

.2,...,2,1,
)2(

)2(

)2( ��� nk
du

vd
v

k

k

k

In terms of the invariants ,2,...,2,1,,, )2()2()2( �� nkvvu k  of )(

2X n  (which are also

invariants of ),X )(

1

n  ODE (3.182) and, hence, ODE (3.181) reduce to the )2( �n th-order

ODE

),,...,,,( 3)2(1)2()2()2(22)2( ���

� nnn vvvuFv (3.184)

for some function 2�nF  of the indicated invariants of .X,X )(

1

)(

2

nn

     From (3.179) and (3.180), it follows that

                                                           ,0XX )2(

)1(

3

)1(

1 �u           (3.185a)

                                                           .0XX )2(

)1(

3

)1(

2 �u           (3.185b)

Then (3.185a) leads to

                                                      ),(X )1()1()2(

)1(

3 vuAu � (3.186)

for some function .,of )1()1( vuA   From (3.185b), we obtain
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),(),(X )2(2)1()1()2(

(1)

3 uvuAu ���

for some function .of )2(2 u�   Similarly,

),,,(X),,(X 1)2()2()2(21)2(

)3(

3)2()2(2)2(

)2(

3 vvuvvuv �� ��

for some functions 22 , ��  of the indicated arguments.  Hence, ODE (3.184) admits the

point symmetry

,),()(X
)2(

)2()2(2

)2(

)2(2

(2)

3
v

vu
u

u
�

�

�

�

�

� �� (3.187)

with its first extension given by

.),,(XX
1)2(

1)2()2()2(2

(2)

3

(3)

3
v

vvu
�

�

�� �

     Then let ),,(),,( 1)2()2()2()3()2()2()3( vvuvvuu  be invariants such that

                                                   .0X,0X )3(

(3)

3)3(

(2)

3 �� vu (3.188)

Consequently, we see that

.3,...,2,1,0X
)3(

)3()(3

3 ���

� nk
du

vd
k

k

k

Let

.3,...,2,1,
)3(

)3(

)3( ��� nk
du

vd
v

k

k

k

In terms of the invariants ,3,...,2,1,,, )3()3()3( �� nkvvu k  of )(

3X n  (which are also

invariants of )X,X )(

2

)(

1

nn ,  ODE (3.184) and, hence, ODE (3.181) reduce to the )3( �n th-

order ODE

),,...,,,( 4)3(1)3()3()3(33)3( ���

� nnn vvvuFv (3.189)

for some function 3�nF of the indicated invariants.

     We continue inductively and suppose that for ,,,...,3 rmmq ��

),,(),,( 1)1()1()1()()1()1()( ����� qqqqqqq vvuvvuu

are invariants such that

,,...,2,1,0X,0X )(

)(

)(

)1( qpvu q

q

pq

q

p ���

�

.1for,...,2,1,0X
)(

)()( qpqnk
du

vd
k

q

q

k

kq

p �����

�



153

Let .,...,2,1,/ )()()( qnkduvdv
k

qq

k

kq ���  Then the nth-order ODE (3.181) reduces to

the )( mn � th-order ODE

),,...,,,( 1)(1)()()()( ����

� mnmmmmmnmnm vvvuFv (3.190)

for some function mnF
�

of the invariants of .X,X,...,X,X )(

1

)(

2

)(

1

)( nnn

m

n

m �

     To go from step m to step m + 1, we proceed as follows: From (3.180), it follows

that

.,...,2,1,0XX )(

)1(

1

)1( mju m

m

m

m

j ��

�

�

�

Then 0XX )(

)1(

1

)1(

1 �

�

�

�

m

m

m

m u  leads to

),,...,,,(X 2)1(1)1()1()1(1)(

)1(

1 �

�

�

� mm

m

m vvvuAu

for some function 1A of the invariants of .X )1(

1

�m   Similarly, 0XX )(

)1(

1

)1(

2 �

�

�

�

m

m

m

m u  leads to

),,...,,,( 3)2(1)2()2()2(21 �

� mvvvuAA

for some function 2A  of the invariants of .X,X )1(

1

)1(

2

�� mm  Then 0XX )(

)1(

1

)1(
�

�

�

�

m

m

m

m

l u  leads

to

),,...,,,( 1)(1)()()(1 ��

� lmlllll vvvuAA

for some function lA  of the invariants of .21,X,...,X,X )1(

1

)1(

1

)1(
���

��

�

� mlmm

l

m

l   Now

0XX )(

)1(

1

)1(

1 �

�

�

�

� m

m

m

m

m u   leads to

),,( )1()1(11 ���

� mmm vuAA

for some function 1�mA  of the invariants )1()1( ,
�� mm vu  of .X,...,X,X )1(

1

)1(

2

)1(

1

��

�

�

�

mm

m

m

m   Finally,

0XX )(

)1(

1

)1(
�

�

�

�

m

m

m

m

m u  leads to

),(X )(1)(

)1(

1 mmm

m

m uAu ���

�

�

for some function .of )(mm u�

     Similarly, one can show that

),,,(X),,(X 1)()()(1)(

)1(

1)()()(

)(

1 mmmmm

m

mmmmm

m

m vvuvvuv �� ��

�

��

for some functions mm �� ,  of the indicated arguments.  Hence,

,),()(X
)(

)()(

)(

)(

)(

1

m

mmm

m

mm

m

m
v

vu
u

u
�

�

�

�

�

�
�

��
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with its first extension given by

,),,(XX
1)(

1)()()(

)(

1

)1(

1

m

mmmm

m

m

m

m
v

vvu
�

�

��
�

�

�

�

is admitted by ODE (3.190) since ODE (3.181) admits .X 1�m   Now let ),,( )()()1( mmm vuu
�

),,( 1)()()()1( mmmm vvuv
�

 be invariants such that

.0X,0X )1(

)1(

1)1(

)(

1 ��

�

�

��� m

m

mm

m

m vu

Then

.1,...,2,1,0X
)1(

)1()1(

1 ����

�

���

�

mnk
du

vd
k

m

m

k

km

m

Let

.1,...,2,1,
)1(

)1(

)1( ����

�

�

�

mnk
du

vd
v

k

m

m

k

km

In terms of the invariants ,1,...,2,1,,, )1()1()1( ���

���

mnkvvu kmmm  of )(

1X n

m�

 (which are

also invariants of )X,...,X,X )()(

2

)(

1

n

m

nn , ODE (3.190) and, hence, ODE (3.181) reduce to

the )1( �� mn th-order ODE

),,...,,,( 2)1(1)1()1()1(11)1( �����������

� mnmmmmmnmnm vvvuFv (3.191)

for some function 1��mnF  of the indicated invariants of .X 1

n

m�

     Finally, two cases are distinguished:

Case I. .3 nr ��

Here ODE (3.181) reduces to an )( rn � th-order ODE

),,...,,,( 1)(1)()()()( ����

� rnrrrrrnrnr vvvuFv (3.192)

for some function rnF
�

of the invariants of ,X )(n

r plus r quadratures.  The quadratures arise

as follows:

     Suppose

),...,,;( 21)()( rnrrr CCCuv
�

� �

is the general solution of ODE (3.192).  Then the first-order ODE

),...,,);,((),,( 21)1()1()(1)1()1()1()( rnrrrrrrrr CCCvuuvvuv
������

� �

admits
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,),()(X
)1(

)1()1(1

)1(

)1(1

)1(

�

���

�

��

�

�

�

�

�

�

�

r

rrr

r

rr

r

r
v

vu
u

u ��

which leads to a quadrature

),...,,;( 121)1(1)1( �����

� rnrrr CCCuv �

for some function 1�r�  of the indicated arguments.  Continuing inductively, assume we

have obtained

).,...,,;( 21)()( knkkk CCCuv
�

� �

Then the first-order ODE

),...,,);,((),,( 21)1()1()(1)1()1()1()( knkkkkkkkk CCCvuuvvuv
������

� �

admits

],[1...,,1,,),()(X )0(

)1(

)1()1(1

)1(

)1(1

)1( yvrrk
v

vu
u

u
k

kkk

k

kk

k

k ���

�

�

�

�

�

�

�

���

�

��

�

��

which leads to the quadratures

][1...,,1,),,...,,;( )0(121)1(1)1( yvrrkCCCuv knkkk ����

�����

�

for some functions 1�k�  of the indicated arguments.

Case II. .3 nr ��

Here ODE (3.181) reduces to a first-order ODE

),( )1()1(11)1( ���

� nnn vuFv (3.193)

for some function 1F  of the invariants )1()1( ,
�� nn vu  of ,X )(

1

n

n�  plus n – 1 quadratures that are

obtained as demonstrated for Case I.  The first-order ODE (3.193) reduces to a quadrature

since ODE (3.193) admits 

.),()(X
)1(

)1()1(1

)1(

)1(1

)1(

�

���

�

��

�

�

�

�

�

�

�

n

nnn

n

nn

n

n
v

vu
u

u ��

Thus, the solution of ODE (3.175) is reduced to n quadratures.

     Note that in reducing an nth-order ODE to an )( rn � th-order ODE plus

r quadratures, from its invariance under an r-parameter Lie group of point

transformations whose infinitesimal generators form an r-dimensional solvable Lie

algebra, one does not need to determine the intermediate ODEs of orders

.2,...,2,1 ���� rnnn   Moreover, in Case I, one does not need to determine the

intermediate ODE of order .1�� rn
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     As an example, consider the fourth-order ODE

,0�

�

�

�

�

�

�

�

�

	 


�
�

�



�
�

�

�

�

�

y

y
yy (3.194)

that arises when studying the invariance properties of the wave equation in an

inhomogeneous medium [Bluman and Kumei (1987, 1988)]. ODE (3.194) obviously

admits the three-parameter ),,( cba  Lie group of point transformations

,* baxx ��                        (3.195a)

.* cyy �                       (3.195b)

The corresponding infinitesimal generators 
x�

�

�1X  (parameter b),
x

x
�

�

�2X  (parameter

a), and 
y

y
�

�

�3X  (parameter c) satisfy

,0]X,X[,0]X,X[,X]X,X[ 3132121 ���

which are commutation relations of the form (3.179).  To carry out the reduction

algorithm, we first need the following extended infinitesimal generators:

,2X,X,X
2

2

1

1

(2)

2

1

1

(1)

2

(1)

1
y

y
y

y
x

x
y

y
x

x
x �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,X,X
2

2

1

1

(2)

3

1

1

(1)

3
y

y
y

y
y

y
y

y
y

y
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.X
3

3

2

2

1

1

(3)

3
y

y
y

y
y

y
y

y
�

�

�

�

�

�

�

�

�

�

�

�

From

,,0X,0X
)1(

)1(

1)1()1(

(1)

1)1(1
du

dv
vvu ���

we get

.,,
1

2
1)1(1)1()1(

y

y
vyvyu ���

Then

,X),(,0X)( )1()1(

(1)

2)1()1(1)1(2)1(1 vvvuuu ����� ��

.X),,( 1)1(

1

2
1)1(

(2)

21)1()1()1(1 v
y

y
vvvu ������
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Thus, in terms of ,,, 1)1()1()1( vvu we have

.X,X
1)1(

1)1(

)1(

)1(

(2)

2

)1(

)1(

(1)

2
u

u
u

u
u

u
�

�

�

�

�

��

�

�

��

Now, from

,,0X,0X
)2(

)2(

1)2()2(

(2)

2)2(

(1)

2
du

dv
vvu ���

we find that

.
)(

)(2
,

)(
,

4

1

2

231
1)2(2

1

2

)1(

1)1(

)2()1()2(
y

yyy
v

y

y

v

v
vyuu

�

�����

Then

,
)(

X),(,X)( )2(2

1

2
)2(

(2)

3)2()2(2)2()2(

(1)

3)2(2 v
y

y
vvuuyuu �������� ��

.2
)(

2)(4
X),,( 1)2(4

1

31

2

2
1)2(

(3)

31)2()2()2(2 v
y

yyy
vvvu ��

�

���

Thus, in terms of ,,, 1)2()2()2( vvu we have

.2X,X
1)2(

1)2(

)2(

)2(

)2(

)2(

(3)

3

)2(

)2(

)2(

)2(

(2)

3
v

v
v

v
u

u
v

v
u

u
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Now, from ,0X,0X )3(

(3)

3)3(

(2)

3 �� vu  we get

.
)(

])(2[
)(,

)( 4

1

2

231

2

1)2(

2

)2()3(2

1

2
)2()2()3(

y

yyyy
vuv

y

yy
vuu

�

���� (3.196)

It must now follow that ODE (3.194) reduces to

),,( )3()3(

)3(

)3(
vuF

du

dv
�

for some function .,of )3()3( vuF   We now find ).,( )3()3( vuF   We have

�

�

�

�

�

�

�	

	�	�



2

2312

2

1

3

2

2

2

2

13

3

13214

2

1

2

1)3(

)3(

)(2)(

)(8)()(4)(27)(

)( yyyyyyy

yyyyyyyyyyyyy

y

y

du

dv
. (3.197)

ODE (3.194) can be expressed as

.)(4)(3)(5)()(4)( 3

2

2

3

3

12

4

1321

22

2

2

14

2

1

2 yyyyyyyyyyyyyyyyy �����

(3.198)

Replacing 4

2

1

2 )( yyy  in ODE (3.197) through substitution of (3.198), we obtain
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),21(
)(

2)(
)3(2

1

2

2

1

)3(

)3(
u

y

yyy

du

dv
���

�

�� (3.199)

which fortunately reduces to the quadrature

                                                   ].)([ 1

2

)3()3()3( cuuv ���� (3.200)

After (3.196) is substituted for )3(v  and ,)3(u  the quadrature (3.200) becomes

                                       ].)([)( 1

2

)2()2()2()2(1)2(

2

)2( cvuvuvu ���� (3.201)

ODE (3.201) admits

,X
)2(

)2(

)2(

)2(

(2)

3
v

v
u

u
�

�

�

�

�

�

with corresponding canonical variables given by

.log, )2()2()2( vSvuR ��

Then (3.201) transforms to

.
11

1

2 cRRdR

dS

�

�� (3.202)

Consider the case when the constant ,01 �c  and let .)( 2

11 Cc �   Then

,loglog 2

)2/(1

1

1

1

c
CR

CR
RS

C

�
�
�

�

�

�
�

�

�

�

	

�


with arbitrary constant .2c   Consequently,

,
)(1

)(1
),;(

)2(

)2(

)2(

1
21)2()2(

�

�

�

�

�

�

�

�

�

	





uA

uA

u

C
CCuv � (3.203)

with 12

)2(2)2( )/()(
C

uCuA �  in terms of arbitrary constants ., 21 CC   Then the first-order

ODE resulting from (3.203), namely,

),,;( 21)1(

)1(

1)1(
CCu

v

v
�� (3.204)

admits .

)1(
)1(

(1)

2X
v

v
�

�

��   Hence, ODE (3.204) reduces to

,),;( )1(21)1(

)1(

)1(
duCCu

v

dv
��
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which integrates out to

                            .),;(exp),,;( )1(21)1(3321)1(
��

�

��

�
�� �

y

duCCuCCCCyv �� (3.205)

Finally, the first-order ODE

),,;( 3211 CCCy
dx

dy
y ���

admits 
x�

�

�1X  and thus reduces to the quadrature

,
),,;(

4

321

Cx
CCCy

dyy

���
�

yielding a general solution of ODE (3.194).  The case 2

11 )(Cc �� , substituted into

(3.202), would yield another general solution of ODE (3.194) in solved form.

     In using the reduction algorithm to reduce an nth-order ODE to an

)( rn � th-order ODE plus r quadratures, from invariance of the nth-order ODE under an

r-parameter Lie group of point transformations whose infinitesimal generators form an

r-dimensional solvable Lie algebra, we determine, iteratively, invariants 1)()()( ,, iii vvu  and

coefficients ),,(),,(),( 1)()()()()()( iiiiiiiii vvuvuu ���  such that

����� ),,(),,(),,(),,( 2221)2()2()2(1111)1()1()1( ������ vvuvvu

).,(),,(),,( )()(1111)1()1()1( rrrrrrrr vuvvu ���
������

���

The nth-order ODE reduces to an )( rn � th-order ODE in terms of the variables

., )()( rr vu   The quadratures follow from reversing the arrows of this iterative procedure.

3.4.4 INVARIANCE OF AN OVERDETERMINED SYSTEM OF ODEs UNDER

AN r-PARAMETER LIE GROUP WITH A SOLVABLE LIE ALGEBRA

Now consider an overdetermined system of two ODEs of orders m and n given by

                             ,0),,,,( )(
��

myyyxf �            (3.206a)

                                                      ,0),,,,( )(
��

nyyyxg �           (3.206b)

.nm �   We assume that each of the ODEs (3.206a,b) admits the same r-parameter Lie

group with a solvable Lie algebra Lr
, with a basis set of r infinitesimal generators

satisfying commutation relations of the form (3.179).  Then, from Section 3.4.3, there

exist invariants ),,,,(),,,,,( )(

)(

)1(

)(

r

r

r

r yyyxvvyyyxuu ��
����

�  of Lr
, such that ODEs

(3.206a and b), respectively, reduce to the equivalent overdetermined system of equations
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,0,,,, �
�
�

�

�

�
�

�

�

�

�

rm

rm

du

vd

du

dv
vuF �           (3.207a)

,0,,,, �
�
�

�

�

�
�

�

�

�

�

rn

rn

du

vd

du

dv
vuG �           (3.207b)

for some functions F and G of the indicated invariants.

Now suppose )(uv ��  solves the system of equations (3.207a,b).  Then any

solution of the ODE

  ),,,,((),,,,( )1()( �

����
rr yyyxuyyyxv �� (3.208)

solves the given system of ODEs (3.206a,b).  If )(u�  depends on rm �  essential

constants, then we obtain a general solution of the system of ODEs (3.206a,b).   Since u

and v are invariants of Lr
, it follows that ODE (3.208) is also invariant under Lr

.  Hence,

in principle, ODE (3.208) can be reduced constructively to r quadratures, with r essential

constants .,,1 rcc �   Thus, we obtain a function ),,;,( 1 rccyx ��  for which the equation

                                                       0),,;,( 1 �� rccyx � (3.209)

yields an explicit solution of the overdetermined system of ODEs (3.206a,b).

The previous considerations have assumed that solutions of the system of ODEs

(3.206a,b) satisfy

.0
)

)

)(

)(

)1(

)1(

(

(
�

����

����

�

�

�

r

yyx

r

yyx

yuyuu

yvyvv

du

dv

r

r

�

�

Alternatively, solutions of the system of ODEs (3.206a,b) can be obtained by considering

,Au �           (3.210a)

,Bv �           (3.210b)

for some constants A and B. From (3.210a,b), a solution of the system of ODEs

(3.206a,b) satisfies the system of ODEs

                                                    ,),,,,( )1( Ayyyxu r
��

�

�           (3.211a)

                                                      .),,,,( )( Byyyxv r
���           (3.211b)

Since the system of ODEs (3.211a,b) is invariant under the infinitesimal generators of

Lr
, it follows that the solution of (3.211a,b) reduces constructively to quadratures.  Thus,

one can find all solutions of the system of ODEs (3.211a,b).

Most important, the considerations outlined above allow one to generate solutions

of the system of ODEs (3.206a,b) without first determining the general solution of either

of these ODEs.
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As an example, consider the following system of ODEs that arises when studying

the invariance properties of the wave equation in an inhomogeneous medium [Bluman

and Kumei (1987, 1988)] with wave speed  y(x):

                                                        ,0]))(([ 1
������

�yyyy             (3.212a)

.0
])()(2[

]))(()())((2)(2[
3

)()(2

)(
2211

2111131

211

1
2

�

�

�

�

�

�

�

	




�

�



�

�

����

������������

�

����

����

��

�����

��

�

yyyy

yyyyyyyyyy

yyyy

yy
y

                      (3.212b)

Recall that the fourth-order ODE (3.212a) [cf. (3.194)] admits the three-parameter

Lie group of transformations (3.195a,b) with infinitesimal generators 
x�

�

�1X ,

,2X
x

x
�

�

�  and 
y

y
�

�

�3X .  The fifth-order ODE (3.212b) also admits this same group.

Consequently, the Lie group of point transformations (3.195a,b) is a solvable three-

parameter Lie group of point symmetries admitted by the overdetermined system of

ODEs (3.212a,b).  A convenient choice of differential invariants of this three-parameter

group is given by

,
)( 2y

yy
u

�

��

�                     (3.213a)

.
)( 3

2

y

yy
v

�

���

�           (3.213b)

Consequently, the ODEs (3.212a,b), respectively, reduce to the ODEs

,012)2( 2
��

�

�

�

�

�
	


 u

du

dv
vuu           (3.214a)

and

,0)2(2 2

2

2

1
���

�
�

�

�

�
�

	




������� uvu
du

vd

du

dv
u vvu           (3.214b)

with

,
)12(

)12(
3

12

)46932()2(
)1(),,(

2

22

1

2

1
�

��

�

�

�������

����

u

uv

u

vuuvuvuvu
uvvu

where ./1 dudvv �

From (3.214a), the following two cases arise naturally:
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                                                              ,2 2 uuv �� (3.215)

                                                              ,2
���� uuv �� const. (3.216)

We now determine separately the compatibility between (3.215) and (3.216) with

(3.214b).

Case I. .2 2 uuv ��

In this case, it is easy to check that (3.214b) is satisfied identically so that we have a

solution of the system of ODEs (3.212a,b) defined by uuuv ����

2

1 2)(  which, in

terms of the differential invariants (3.213a,b), yields the third-order ODE

.
)()(

)(
2

)( 24

22

3

2

y

yy

y

yy

y

yy

�

��

�

�

��

�

�

���

(3.217)

The ODE (3.217) must admit the solvable group (3.195a,b).  It is easy to show that ODE

(3.217) can be expressed in the form 0/ �dxdu  and, hence, we have

.const
)( 2

���

�

��

�

y

yy
u

From this equation, it is easy to show that the general solution of ODE (3.217) is given

by

                                                          ,)( 3

21

c
xccy �� (3.218)

yielding a three-parameter family of solutions of the system of ODEs (3.212a,b).

Case II. .2
���� uuv

In this case, the substitution of (3.216) into ODE (3.214b) leads to the compatibility

equation

                                                       .0)41)(( 2
��� ��u (3.219)

We now set to zero each factor in (3.219).  Clearly, the first factor again yields the

solution (3.218).  The second factor yields ,4/1��  so that now we have all other

solutions of the system of ODEs (3.214a,b) as given by .)(
4
12

2 ����� uuuv  In terms

of the differential invariants (3.213a,b), this corresponds to all solutions of the ODE

.
4

1

)()(

)(

)( 24

22

3

2

�

�

��

�

�

��

�

�

���

y

yy

y

yy

y

yy
(3.220)

It follows that the third-order ODE (3.220) must admit the solvable three-parameter Lie

group (3.195a,b) and, hence, can be reduced completely to quadratures.  As differential

invariants of this three-parameter group, it is convenient to choose

., yyVyU ����� (3.221)
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Then ODE (3.220) reduces to

V

U

U

V

dU

dV

4

3

��

whose general solution, from scaling invariance, is given by 

const.,24

4
12

��� ��UUV (3.222)

From the differential invariants (3.221), we see that ,/ dydUyUV �  and thus, (3.222)

becomes the first-order ODE

,2

4
1

2

2
���

�
�

�

�

�
�

�

	

U
dy

dU
y (3.223)

which is invariant under scalings in  y.  In terms of ,Uy ��  the integration of (3.223)

yields two families of ODEs in terms of arbitrary constants :0and ���

                                                    ].)()[( 2/12/1 �

��� yyy ��� (3.224)

The solution of ODE (3.224) yields two further three-parameter families of solutions of

the given system of ODEs (3.216a,b):

),()arctan( 321 cxcycy ��� (3.225)

and

).(log 32

2/1

1

1 cxc
cy

cy
y ��

�

�

� (3.226)

Hence, all solutions of the system of ODEs (3.214a,b) are given by (3.218), (3.225), and

(3.226).  It is left to Exercise 3.4-6 to find all solutions of the system of ODEs (3.214a,b)

that satisfy the system of ODEs given by (3.217) and (3.220), i.e., to find all functions

which lie in the intersection of the family of functions satisfying (3.218) and either

(3.225) or (3.226).

Further details of the work in this section appear in Bluman and Kumei (1989a).

EXERCISES 3.4

1. For each of the following second-order ODEs, find an admitted two-parameter Lie

group of point transformations and use appropriate differential invariants to find the

general solution of the ODEs:

(a) 0������� CByyAy   where A, B, C are constants;

(b) 0
2

������ y
x

B
y

x

A
y   where A, B  are constants;
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(c) ;0))(1)((2)( 222
��������� yyxyyyx

(d) ;1)( 2
����� yyy  and

(e) .0
1

2
��

�

���

xyy

y
y

2. For each of the following two parameter Lie groups of transformations whose Lie

algebras are spanned by the set },X,X{ 21  find all admitted second- and third-order

ODEs:

(a) ;X,X 21
yx �

�

�

�

�

�

(b) ;X,X 21
y

y
x

x
�

�

�

�

�

�

(c) ;X,X 21
y

y
x

x
y

y
x

x
�

�

�

�

�

�

�

�

�

�

�

�

(d) ;X,X 21
x

x
x �

�

�

�

�

�   and

(e) .X,X 21
y

y
x

x
x �

�

�

�

�

�

�

�

�

3. Consider the fourth-order ODE (3.194), invariant under the three-parameter Lie group

of point transformations (3.195a,b).

(a) Show that if ,X,X,X 321
xxy

xy
�

�

�

�

�

�

���  then commutation relations of the

form (3.179) are satisfied.  Accordingly, solve ODE (3.194) by the reduction

algorithm.

(b) What happens when trying the reduction algorithm with ,X1
x

x
�

�

�

y
y
�

�

�2X ,

?X3
x�

�

�

4. Let )(,),(),( 21 xxx n��� �  be n linearly independent solutions of the nth-order linear

homogeneous ODE

.0)()()( 1

)1(

1

)(
������

�

� yxpyxpyxpy nn

nn
�

(a) Find an n-parameter Lie group of point transformations that is admitted by the

nth-order linear nonhomogeneous ODE

).()()()( 1

)1(

1

)( xgyxpyxpyxpy nn

nn
������

�

�

� (3.227)

   Show that the corresponding Lie algebra is solvable.

      (b) Use group invariance to obtain the general solution of ODE (3.227).  In particular,

find the well-known formula obtained by the variation of parameters method.
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5. The overdetermined system of second-order ODEs given by

                                                      ,02
������ yyxyx           (3.228a)

                                                         ,0)(2 2
����� yyy           (3.228b)

admits .X,X 21
yx

yx
�

�

�

�

��   Find the general solution of the system of ODEs

(3.228a,b) in three ways by using differential invariants corresponding to:

(a) ;X1

(b) ;X2  and

(c)  the set }.X,X{ 21

6. Find the general solution of the overdetermined system consisting of the ODEs

(3.217) and (3.220).

7. Show that if an r-dimensional Lie algebra is solvable, then one can find a spanning

(basis) set of infinitesimal generators }X,,X,X{ 21 r�  so that commutation relations

of the form (3.179) hold.

8. (a) Let a second-order ODE admit a two-parameter Lie group of transformations

with infinitesimal generators ,0]X,[Xsuch that X,X 2121 � i.e., the Lie algebra is

Abelian. Suppose “canonical coordinates” ),(),,( yxSyxR  can be found such that

                                      .1X,0X,0X,1X 2121 ���� SSRR (3.229)

            Transform the given ODE to ),( SR  coordinates and reduce it to two

quadratures.

      (b) Show that if the Lie algebra of a two-parameter Lie group of transformations

acting on 2R  is Abelian, then  it is does not necessarily follow that one can find

“canonical coordinates” ),(),,( yxSyxR  satisfying relations (3.229).  Explain this

geometrically and give a specific example.

9. Find the most general second- and third-order ODEs admitting the three-parameter

group with infinitesimal generators

.X,)1(X,)1(X 3

2

2

2

1
y

x
x

y
y

y
x

xy
y

xy
x

x
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

��

(3.230)

      Note that the corresponding Lie algebra is not solvable [cf. Exercise 2.5-13].

3.5     CONTACT SYMMETRIES AND HIGHER-ORDER SYMMETRIES

Now we consider the invariance of an nth-order ODE under contact transformations

when ,2�n  and under higher-order local transformations when 3�n  [cf. Section 2.7.2].
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Definition 3.5-1.  A second- or higher-order ODE

                                                  ),,,,,( )1()( �

��

nn yyyxfy � (3.231)

,2�n  admits a one-parameter group of local transformations

,* xx �

                                    )(),,,,(ˆ* 2)(
��� Oyyyxyy ����

�
� (3.232)

with infinitesimal generator

y
yyyx

�

�

�� ),,,,(ˆX̂ )(�
�� (3.233)

if and only if (3.232) maps any solution )(xy ��  of ODE (3.231) into solutions

)(

X̂ )()(*
)(

xy
yexy

��

�

���

�   of   ODE (3.231), where )(X̂ �  is the extended infinitesimal

generator given by (2.212).

In particular, the group (3.232) leaves invariant ODE (3.231) if and only if the

curve
)(

X̂ )()(*
)(

xy
yexy

��

�

���

�  satisfies ODE (3.231) whenever a curve )(xy ��

does.  The highest order � of the derivatives of y  appearing in �̂  is called the order of

the local transformation (3.232).

Definition 3.5-2. A one-parameter group of local transformations (3.232) of order

10 ��� n�  admitted by ODE (3.231) is a symmetry of order �  of (3.231).

When ,1��  a local transformation (3.232) is a  point symmetry of ODE (3.231) if

),,(ˆ yyx ��  is linear in y� .  In particular, 

y
yyxyx

�

�

��� ]),(),([X̂ ��    and
y

yx
x

yx
�

�

�

�

�

� ),(),(X ��

have the same action on solutions )(xy ��  of ODE (3.231).  More generally, if

),,(ˆ yyx �� is not linear in y� , then a local transformation (3.232) for 1��  is a contact

symmetry of ODE (3.231). When ,2��  a local transformation (3.232) is a higher-order

symmetry [cf. Section 2.7.2] of ODE (3.231).  The infinitesimal ),...,,,(ˆ )(�yyyx ��  of

(3.232) is called the symmetry characteristic.

We will show how to find the contact symmetries and higher-order symmetries

admitted by a given nth-order ODE, .2�n   As is the case for point symmetries of a first-

order ODE, when 1�� n� ,  the infinitesimal ),...,,,(ˆ )1( �

�
nyyyx�  for a symmetry of order

1�n  satisfies a linear homogeneous PDE whose general solution cannot be found unless

we know the general solution of the ODE itself.  However, when ,1�� n�  the

determining equation for the infinitesimal ),,...,,,(ˆ )(�yyyx ��  in general, splits into an
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overdetermined system of linear homogeneous PDEs which has only a finite number of

linearly independent solutions.

Most important, we will give a reformulation of the differential invariant method

for reduction of order [cf. Section 3.3.2] that allows an extension of this method to

include contact and higher-order symmetries. 

3.5.1 DETERMINING EQUATIONS FOR CONTACT SYMMETRIES 

            AND HIGHER-ORDER SYMMETRIES

We start by giving the infinitesimal criterion for the invariance of an nth-order ODE

(3.231) under a one-parameter group of local transformations (3.232) with infinitesimal

generator (3.233) of order .10 ��� n�

Geometrically, an infinitesimal generator (3.233) acting on the space of solutions

of a given ODE (3.231) corresponds to a vector field )(ˆ nX  tangent to the surface defined

by (3.231) in �),,,,( 1 nyyyx � space,

                                                    ),,,,,( 11 �

� nn yyyxfy � (3.234)

given by

n

nn

yyy �

�

�

�

�

�

�

�

� � ��� ˆDˆDˆˆ

1

)(
�X     on fyn �

� ,ˆˆˆ
1 n

n

yyy �

�

��

�

�

�

�

�

��� DD �             (3.235)

where

,withD),,,,,(ˆˆ
0

1 1

1 yy
y

y
x

yyyx
i i

i �

�

�

�

�

�

�� �

�

�
�

�
���

and

1

11

2

11 ),,,,(D |
�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

��

n

n

n

nfy
y

yyyxf
y

y
y

y
xn

��D             (3.236)

is the total derivative operator associated with the surface (3.234).  Since (3.235) is a

tangent vector field, it is an infinitesimal generator of a one-parameter Lie group of local

transformations on the surface (3.234) given by

,* xx �           (3.237a)

,*
)(ˆ
yey

nX�
�           (3.237b)

�jy * ,1,,2,1,
)(ˆ

�� njye j

n

�

X�                       (3.237c)

).*,,**,,(* 11

)(ˆ

�

�� nnn yyyxfyey
n

�

X�           (3.237d)
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Solutions )(xy ��  of ODE (3.231) satisfy ))(,),(),(,()( )1()( xxxxfx nn �

������ �  and

thus represent curves lying on the surface (3.234) with ),(),( )( xyxy j

j ����

.,,2,1 nj ��   If a solution curve )(xy ��  of ODE (3.231) is not itself invariant under

the transformation group (3.237a–d), then it is mapped into another solution curve

)(

X̂ )();(
)(

xy
yexy

n

��

��

�

��  of ODE (3.231) for any value of .�

Definition 3.5.1-1.  An nth-order ODE (3.231) is invariant under a one-parameter group

of local transformations (3.232) if and only if the corresponding surface (3.234) in

�),,,,( 1 nyyyx � space admits the one-parameter Lie group of transformations

(3.237a–d).

The following theorem results from Definitions 3.5-2 and 3.5.1-1 and Theorem

2.6.7-1 on the infinitesimal criterion for an invariant surface:

Theorem 3.5.1-1 (Infinitesimal Criterion for Invariance of an ODE). A vector field

(3.235) is the infinitesimal generator of a symmetry of order n��  admitted by the

nth-order ODE (3.231) if and only if

                                                          ,0)(ˆ )(
�� fyn

n
X (3.238)

or, equivalently,

.ˆˆˆˆ 1

11
����

�

�

����

n

yyy

n

n
fff DDD � (3.239)

Equation (3.239) is called the symmetry determining equation for ODE (3.231),

and its solutions ),,,,(ˆ
1 �
� yyyx�  are the symmetry characteristics up to order

10 ��� n�  admitted by the nth-order ODE (3.231) or, equivalently, the surface (3.234).

Since for any nth-order ODE, we can assign arbitrary values to each of

11 ,,,
�nyyy �  at any value of x, it follows that the symmetry determining equation (3.239)

is a linear homogeneous PDE for �̂  with independent variables .,,,, 11 �nyyyx �   If

,1�� n�  then the general solution of (3.239) cannot be found unless one knows the

general solution of the given ODE (3.231).  However, if ,1�� n�  then the symmetry

determining equation (3.239) reduces to an overdetermined system of linear

homogeneous PDEs which has a finite number of linearly independent solutions for .�̂

There exist efficient computational algorithms to solve such systems [cf. Head (1992);

Hereman (1996); Wolf (2002a)] and, typically, the solutions here can be found explicitly

although the computational complexity grows rapidly as the order �  increases.

If a given nth-order ODE (3.231) admits a point symmetry, then one can make a

simplifying ansatz to solve the symmetry determining equation (3.239) for higher-order

symmetries. In particular, if ODE (3.231) admits a scaling symmetry

,, yyxx pq
�� ��  then the symmetry determining equation (3.239) admits the scaling

symmetry ,,,ˆˆ yyxx pqr
����� ��� ,,, 1

)1(

111 �

��

�

�

�� n

qnp

n

qp yyyy �� �  for
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arbitrary r = const.  As a consequence, one can seek invariant solutions of the symmetry

determining equation (3.239) of the form

.
)(

,,
)(

,ˆ
)1(

11

�
�

�

�

�
�

�

�

�
��

�

� qnp

q

n

qp

q

p

q
r

x

y

x

y

x

y
gx ��

Hence, (3.239) reduces to an overdetermined linear system of PDEs in terms of the

scaling invariant variables ./)(,,/)(,/ )1(

1

1

1

qnpq

n

pqpq xyxyxy ��

�

�

�  Similarly, if ODE

(3.231) admits a translation symmetry ,,or,, �� ������ yyxxyyxx  then the

symmetry determining equation (3.239) admits the translation symmetry ,��� xx

,,or, ����� yyxxyy 11 yy � , ,� 11 ��

� nn yy  together with the scaling

symmetry ��� ˆˆ r
�  for arbitrary r = const.  Consequently, here one can seek invariant

solutions of the symmetry determining equation (3.239) of the form

),,,,(ˆor),,,(ˆ
1111 ��

�� n

ry

n

rx yyxgeyyyge �� ��

leading to a reduction of (3.239) to an overdetermined linear system of PDEs in terms of

the translation invariant variables .,,,or,,,, 1111 �� nn yyxyyy ��

More generally, if one can find a point symmetry X
~

 of the symmetry determining

equation (3.239) (which need not necessarily be a point symmetry admitted by the given

ODE (3.231)), then one can consider a corresponding ansatz ,ˆˆX
~

�� r�  for arbitrary r =

const, to seek invariant solutions �̂  in terms of the corresponding n invariants nuu ,,1 �

determined by solving 0),,,,(X
~

11 �

�ni yyyxu �  through use of the admitted point

symmetry

1

1111111 ),,,,(~),,,,(~),,,,(
~

X
~

y
yyyx

y
yyyx

x
yyyx nnn
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�

��

n

nn
y

yyyx �� �

Through use of canonical coordinates [cf. Section 3.2.5], one can show that the point

symmetries admitted by the symmetry determining equation (3.239) include all point

symmetries admitted by the given ODE (3.231).  The use of the ansatz �� ˆˆX
~

r�  is

illustrated in the examples in Section 3.5.2.

3.5.2 EXAMPLES OF CONTACT SYMMETRIES AND 

HIGHER-ORDER SYMMETRIES

(1) Contact Symmetries

As a first example, consider the elementary third-order linear ODE

,0����y (3.240)



170

corresponding to the surface �� ),,,,(in0 3213 yyyyxy space. The symmetry

determining equation (3.239) for contact symmetries ),,(ˆ
1yyx�  admitted by ODE

(3.240) is given by

yyyxyyxxyxxx yyy ����� ˆ)(ˆ)(3ˆ3ˆˆ 3

1

2

11

3
����D

21

2

11 ]ˆˆˆ)(ˆ2ˆ[3
111

yyyy yyxyyyyxyyxxy ����� �����

2

21 )](ˆˆˆ[3
11111

yy yyyyyyxy ��� ��� 0)(ˆ 3

2111
�� yyyy� , (3.241)

where

.
1

21
y

y
y

y
x �

�

�

�

�

�

�

�

�D

With respect to the coefficients of like powers of 2y , PDE (3.241) splits into the

overdetermined linear system

                                      ,0ˆ)(ˆ)(3ˆ3ˆ 3

1

2

11 ���� yyyxyyxxyxxx yyy ����           (3.242a)

                                  ,0ˆˆˆ)(ˆ2ˆ
1

2

11 111
����� yyxyyyyxyyxxy yyy �����           (3.242b)

,0ˆˆˆ
11111 1 ��� yyyyyyxy y ���           (3.242c)

.0ˆ
111
�yyy�           (3.242d)

It is straightforward to solve (3.242a–d) to obtain the three admitted contact symmetries

2

13112

2

11 )2(ˆ,)2(ˆ,)(ˆ xyyyxyyy ����� ��� , (3.243)

in addition to the seven admitted point symmetries

.2ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,1ˆ
1

2

1019187

2

654 yxxyxyyyxx �������� �������

(3.244)

As a second example, consider the third-order nonlinear ODE

,
)(

6
)(

)(
6

2

2

3

y

y

y

y
xy

�

��

�

�

��

���� (3.245)

or, equivalently, the surface 1

1

2

2

2

1

3

23 )()(6)()(6 ��

�� yyyyxy in �),,,,( 321 yyyyx space,

which admits the scaling symmetries ,, yyxx �� ��  and the translation symmetry

., ���� yyxx   For ODE (3.245), the contact symmetry determining equation (3.239)

for  ),,(ˆ
1yyx�   becomes

0ˆ)()(6ˆ)(12ˆ)()(12ˆ)()(18ˆ 2

1

2

2

21

12

3

1

3

2

22

1

2

2

3
�����

����

����� DDDDD yyyyyyxyyx

(3.246)

with ,0ˆ
11
��yy�  where
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One can see that (3.246) is a cubic polynomial in 2y  and hence it splits into a

linear system of four third-order PDEs.  Rather than look for the general solution directly,

we seek solutions by using ansatzes based on the invariants of the point symmetries

admitted by the given ODE (3.245).

First, since (3.245) admits translations in y, we seek solutions of the contact

symmetry determining equation (3.246) of the form

                                 const,),,(ˆ
1 �� pyxge py

� (3.247)

.0with
11
��yyg  For simplicity, we initially choose .0�p  Substitution of (3.247) into

(3.246) leads to the linear system of PDEs

                                                                                                       ,0�xxxg           (3.248a)

,04
11 �� xxxxy ggy             (3.248b)

,0)(262
111

2

11 ���� yxyxyxxx gygyxgg           (3.248c)

                         .0)()(661812
1111111

3

1

2

111 ����� yyyyyyxyx gygygygxyxg           (3.248d)

One can readily solve (3.248a–d) to obtain

4

1

2

6

2

1514

2

13

1

121 )()()()( yxcyxcxycycyccg ������

��

with arbitrary constants .ic   It is not hard to show that the contact symmetry determining

equation (3.246) has no solutions of the form (3.247) when ,0�p  from the compatibility

of the resulting linear system of PDEs for ).,( 1yxg   Hence, the ansatz (3.247) yields the

four admitted contact symmetries

.)(ˆ,)(ˆ,)(ˆ,)(ˆ 4

1

2

4

2

13

2

12

1

11 yxyxyy ����

��

���� (3.249)

Next, using the x and y scalings admitted by the given ODE (3.245), we seek

solutions of (3.246) of the form

                                                            ),(ˆ zgyx pq
�� (3.250)

where .0)(andconst,,,1

1
������

� zgqpyxyz   Substitution of (3.250) into the

contact symmetry determining equation (3.246) yields an overdetermined linear system

of four third-order ODEs for ).(zg   The compatibility conditions for this overdetermined

system yield the solutions

                                             ),2,0(4129 2
����� pqzzg            (3.251a)

                                             ),0,1(23 1
����

� pqzg                     (3.251b)

                                             ).3,1(23 23
����� pqzzg                       (3.251c)
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Hence, the ansatz (3.250) yields three more contact symmetries admitted by ODE

(3.245), given by

.)(2)(3ˆ,)(23ˆ,412)(9ˆ 2

1

3

1

2

7

1

16

2

1

2

1

2

5 yxyyxyyxyxyyyx �������

�

���

(3.252)

More generally, through analysis of the overdetermined linear system of PDEs

arising from the contact symmetry determining equation (3.246) for ODE (3.245), one

can show that all solutions ),,(ˆ
1yyx�  of (3.246) are yielded by the ansatzes (3.247) and

(3.250).  Hence, the contact symmetries admitted by ODE (3.245) consist of (3.249) and

(3.252).

As a final example, we again consider the Blasius equation

,0
2
1

������� yyy (3.253)

with the corresponding surface given by 22
1

3 yyy ��  in space.),,,,( 321 �yyyyx   The

symmetry determining equation (3.239) for contact symmetries ),,(ˆ
1yyx�  admitted by

ODE (3.253) takes the form

0ˆˆˆ 2

22
13

��� ��� DD yy , (3.254)

where

.
2

22
1

1

21
y

yy
y

y
y

y
x �

�

�

�

�

�

�

�

�

�

�

�D

Hence, (3.254) is a cubic polynomial in 2y  and, thus, splits into an overdetermined linear

system of four PDEs.  The coefficient of 3

2 )(y  in (3.254) yields

0ˆ
111
�yyy� , (3.255)

and thus,

2

11 ))(,(),(),(ˆ yyxyyxyx ���� ��� (3.256)

for some functions of .,of,, yx���   Consequently, (3.254) becomes a polynomial in

.1y  Then the coefficients of ,)( 2

21 yy  ,)( 2

2y  and 2

2

1 )( yy  in (3.254), respectively, yield

.12,2,0
3
2

yyxyy ������ ����

From these equations, it is easy to show that ,0��  and hence �̂  is at most linear in .1y

Thus, the Blasius equation (3.253) admits no contact symmetries.

(2) Higher-Order Symmetries

As an example, we consider the fourth-order ODE
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� (3.257)

or, equivalently, the surface 1

2

2

33
4

4 )()( �

� yyy in space,),,,,,( 4321 �yyyyyx which admits

the scaling symmetries yyxx �� �� ,  and the translation symmetries ,1��� xx

.2��� yy   The symmetry determining equation (3.239) for second-order symmetries

),,,(ˆ
21 yyyx�  admitted by ODE (3.257) is given by

0ˆ)()(ˆ)(ˆ 22
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PDE (3.258) is a fourth-degree polynomial in .3y  The coefficient of 4

3 )(y  yields

,0ˆˆˆ)(ˆ)(
2222222222
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8

9

44

3

16
2

2

2

3

2 ���� yyyyyyyyyy yyy ���� (3.259)

which has the general solution

         ),,(),,()(),,()(),,()(ˆ
11

3/1

21

3/2

21

3/1

2 yyxyyxyyyxyyyxy ����� ����

� (3.260)

for some functions .,,of,,, 1yyx����   Then if we divide the symmetry determining

equation (3.258) by a power of ,2y  it splits with respect to powers of 3/1

2 )(y  into

separate equations.  The coefficients of 3

3 )(y  in these equations yield

,0,0,0
111 ���� yyxyy ���� (3.261)

and thus, ),,(),,(,),( 1 yxyxyz ������ ���  with .1 yxyz ��

From the coefficients of the remaining powers of ,3y  we find that

                                              ,2110 zayaa ����                       (3.262a)

,3

3

2

210 xbxbxbb �����                       (3.262b)

,2

43210 xcxycycxcc ������                       (3.262c)

          ,1413210 xykykxkykk ������                       (3.262d)

for arbitrary constants .,,, iiii kcba   Consequently, the fourth-order ODE (3.257) admits

the 12 second-order symmetries given by

,)(ˆ,)(ˆ,))((ˆ,)(ˆ,)(ˆ 3/2

25
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                                              .)(ˆ,)(ˆ 3/1

212

3/1

211 yyyxy �� �� (3.263)

We note that ODE (3.257) also admits five point symmetries, corresponding to (3.362d),

but no contact symmetries.

As a second example, we consider the fourth-order ODE

                                                        ,0)))((( 1
������

�yyyy (3.264)

that arises in the study of the invariance properties of the wave equation with a wave

speed ).(xy   The surface represented by ODE (3.264) in �),,,,,( 4321 yyyyyx space is

given by
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13214 yyyyyyyyyyyyyyyyyfy �����

������

(3.265)

The symmetry determining equation for second-order symmetries ),,,(ˆ
21 yyyx�  admitted

by ODE (3.264) is given by
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It is not hard to see that (3.266) is a fourth-degree polynomial in .3y  The coefficient of
4

3 )(y  yields

3

21

2

21211 ))(,,())(,,(),,(),,(ˆ yyyxyyyxyyyxyyx ����� ���� (3.267)

for some functions .,,of,,, 1yyx����  Then the coefficients of 2

3

3

2

3

32 )()(and)( yyyy

in (3.266) yield

,04
11 �� �� yy (3.268)

                                              .056135)(25
111 1

2

1 ��� ��� yyy yy             (3.269)

The compatibility between (3.268) and (3.269) then leads to

.0��

Similarly, the coefficients of 3

3

2

2

32

2

3

2

2

3

3 )(,)(,)()(,)( yyyyyyy  in (3.266) lead to

.0�� ��

Hence, ODE (3.264) admits no second-order symmetries.  Finally, for ),,(ˆ
1yyx�� � , it

is straightforward to show that the coefficients of 3

2

3

3

3 ,)(,)( yyy  in (3.266) lead to
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131210 xyayayaa �����

for arbitrary constants ia . Therefore, ODE (3.264) admits four point symmetries

consisting of translations in x and y, and scalings in x and y, but no contact symmetries.

3.5.3 REDUCTION OF ORDER USING POINT SYMMETRIES 

IN CHARACTERISTIC FORM

Consider a second-order ODE given by a surface 

0),,(),,,( 1221 ��� yyxfyyyyxF (3.270)

that is assumed to admit a one-parameter Lie group of point transformations with the

once-extended  infinitesimal generator

1

1

)1((1) ),,(),(),(X
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yyx
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� ��� , (3.271)
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In Section 3.3.2, we showed how ODE (3.270) can be reduced, constructively, to a first-

order ODE of the form ),(/ vuHdudv �  in terms of invariants ),,( yxu ),,( 1yyxv  of the

infinitesimal generator (3.271).  In particular, u and v are given by the constants of

integration that arise in solving the characteristic equations

���� DD 1

1

y

dydydx

�

�� , (3.272)

which result from

,0),(X(1)
��� yx uuyxu ��                       (3.273a)

                         ].0[0)DD(),,(X
1111

(1)
������� yyyx vvyvvyyxv ����            (3.273b)

We now demonstrate an analogous reduction of order of ODE (3.270) in terms of the

invariants that arise from expressing the infinitesimal generator (3.271) in its

characteristic form

,0onˆˆˆ

1

)1((1)
�

�

�

�

�

�

� F
yy

��X (3.274)

where

                           0onDDˆˆ,ˆ
1

)1(

1 ������� Ffyy �������� D                  (3.275)
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with  .
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���D

Since (3.274) involves no motion on x, it immediately follows that x is an

invariant, .0ˆ (1)
�xX   A second invariant ),,,( 1yyxw  satisfying

                                   ]0[0ˆˆ),,(ˆ
11

)1(

1

(1)
����� yyy wwwyyxw ��X , (3.276)

is obtained as a constant of integration in solving the characteristic equation

const].[
ˆˆ )1(

1
�� x

dydy

��

(3.277)

Then

]0)[(),,,(
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�� yw
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w
y

y

w
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x

w

dx

dw
yyyxw

is obviously a differential invariant.  Hence, in terms of the invariants ,,, )1(wwx it follows

that the surface (3.270) is given by 

0),,(ˆ),(ˆ),,,( )1()1(

21

1

����

�

�

wwxFwxHwyyyxF
y

w

for some function .),(ˆ wwxH D�  Thus, the second-order ODE ),,( yyxfy ����  reduces,

constructively, to the first-order ODE

).,(ˆ wxH
dx

dw
� (3.278)

Most important, we note that in contrast to the standard reduction in terms of invariants

),,( yxu ),,( 1yyxv  of ,X(1)  the reduction (3.278) is given directly in terms of the original

independent variable  x  of the given second-order ODE (3.270).  The two reduction of

order methods are the same if (1)(1) Xˆ
�X  on ,0�F  which happens if the given point

symmetry is of the form .0,0 ��� ��

We now give examples of this direct reduction of order and compare it to the

standard reduction method.

(1) Translation Symmetry

Consider the second-order nonlinear harmonic oscillator equation

                                                   const,,0)(2
������ �� ygyy (3.279)

where )()( yGyg ��  for some nonlinear potential ).(yG   The corresponding surface in

space,),,,( 21 �yyyx  given by

                                         ,0)(),,,( 2

221 ���� ygyyyyyxF � (3.280)
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admits the translation symmetry 0,1 �� �� ]ˆi.e.,[ 1y���  with the extended

infinitesimal generator in characteristic form 

.))((ˆ

1

2

1

(1)

y
ygy

y
y

�

�

��

�

�

�� �X (3.281)

An invariant satisfying ]0[0),,(ˆ
11

(1)
��� ywyyxwX  is found by solving the characteristic

equation (3.277), which here becomes the separable first-order ODE

.
)(

1
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1

y

ygy

dy

dy �

��

�

(3.282)

From the constant of integration of (3.282), we obtain the invariant

)()( 22

2
12

12
1 yGyyw ��� � . (3.283)

Then

,0)]([)()]([ 1

2

11

22

1 1
�������� yygyyygyywygywyw yy ���D

and hence, the harmonic oscillator equation (3.279) is reduced to the trivial first-order

ODE

.0�

dx

dw
(3.284)

Since the solution of ODE (3.284) is ,const cw ��  the reduction (3.284) leads to the

quadrature of ODE (3.279) given by

,)()( 22

2
12

12
1 cyGyy ��� � (3.285)

which is simply the harmonic oscillator energy.

In comparison, standard invariants satisfying ,0X )1(
�� xuu ,0X )1(

�� xvv  are

given by ., 1yvyu ��  Thus, ODE (3.279) reduces to the first-order ODE

.
)()( 2

1

2

1

2

v

ugu

y

ygy

y

y

du

dv �

��

�

���

��

(3.286)

We note that ODEs (3.286) and (3.282) are the same first-order ODEs with the roles of

the reduced ODE and the equation for the first-order invariant interchanged in the two

reduction procedures.

(2)  Scaling Symmetry

Consider the second-order Euler equation

                                                      ,0242
������ yyxyx (3.287)

with the corresponding surface

                                       024),,,( 2

1

1

221 ����

�� yxyxyyyyxF (3.288)



178

in space.),,,( 21 �yyyx  This surface admits the scaling symmetry 0, �� �� x

],ˆi.e.,[ 1xy���  with the extended infinitesimal generator in characteristic form 

.)23(ˆ

1

1

11

(1)

y
yxy

y
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��
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�
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�

X (3.289)

The characteristic equation (3.277) for finding an invariant 0),,(ˆ
1

(1)
�yyxwX  reduces to

solving the homogeneous ODE 

.const][23
1

211
����

�� x
y

y
xx

dy

dy
(3.290)

The constant of integration arising from the solution of ODE (3.290) yields

    .)()2()()2( 11

1
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1
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1
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��������

������ yxyyxyyxyyxyyw (3.291)

Then one finds that

.)()2(]24[ 111
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1
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1 1
wxyxyyxyxwyxyxwyww yyx

�������

����������D

(3.292)

Hence, the Euler equation (3.287) reduces to the first-order linear ODE

.1wx
dx

dw
�

�� (3.293)

Thus, cxw �� const  and, consequently, (3.291) leads to a quadrature of (3.287) given

by the surface

                                                  .)()2( 1

1

2

1 cyxyyxy ���

� (3.294)

Finally, note that this surface inherits the scaling symmetry yyxx �� ,�  admitted by

ODE (3.287).  Hence, one can solve ODE (3.294) to obtain the complete quadrature of

the Euler equation (3.287).

In comparison, 
1

1

(1)X
yx

yx
�

�

�

�

��  has the invariants ,, 1xyvyu ��  satisfying

.0X,0X
11

(1)(1)
����� yxx vyxvvxuu  Then, in terms of these invariants, the Euler

equation (3.287) has the standard reduction

�

�

�

1

21

y

xyy

du

dv
.23

v

u
�� (3.295)

Note that ODE (3.295) is the same as ODE (3.290).

We briefly consider the situation for an nth-order ODE ),,,,( )1()( �

��

nn yyyxfy �

represented as a surface

                                 0),,,,(),,,,( 111 ���

�nnn yyyxfyyyyxF �� . (3.296)
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If ODE (3.296) admits a point symmetry 
yx

yxyx
�

�

�

�

�� ),(),(X ��  with its extended

infinitesimal generator in characteristic form given by
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1 ����� njyxyyx jj
������ D              (3.297b)

where
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then one is able to find n functionally independent invariants ,1,,2,1,, �� niwx i �

satisfying ,0ˆ )(
�i

n wX  which are determined as constants of integration in solving the

characteristic equations

.const][
ˆˆˆ )1(

1

)1(

1
����

�

� x
dydydy

n

n

���

� (3.298)

The differential invariants ,1,,2,1,/
)1(

��� nidxdww ii �  can be shown to lead to a

direct reduction of the given nth-order ODE (3.296) to a system of first-order ODEs with

x  as the independent variable.

3.5.4 REDUCTION OF ORDER USING CONTACT SYMMETRIES 

            AND HIGHER-ORDER SYMMETRIES

The direct reduction of order method presented in Section 3.5.3, using point symmetries

in characteristic form (i.e., as first-order symmetries) admitted by an nth-order ODE,

generalizes naturally to using admitted contact symmetries and higher-order symmetries.

We show this generalization by means of the two examples (3.245) and (3.257)

considered in Section 3.5.2.

(1) Contact Symmetries

The third-order ODE (3.245), represented by the surface

0)()(6)()(6 2

2

1

1

3

2

2

13 ����

�� yyyyxyF (3.299)

in �),,,,( 321 yyyyx space, admits seven contact symmetries given by (3.249) and (3.252).

Here, we carry out the direct reduction of order method through use of the contact

symmetry 1

1 )(ˆ �

� y�  corresponding to the infinitesimal generator

2

)2(

1

)1()2( ˆˆˆˆ
yyy �

�

�

�

�

�

�

�

� ���X     on ,0�F (3.300)
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where

                ].)()(4)()(6[ˆ,)(ˆ,)(ˆ 2

2

3

1

3

2

4

1

)2(

2

2

1

)1(1

1 yyyyxyyy ����

������ ��� (3.301)

First, we determine the invariants satisfying

.0])()(4)()(6[)()(),,,(ˆ
21

2

2

3

1

3

2

4

12

2

1

1

121

(2)
�����

����

yyy wyyyyxwyywyyyyxwX

(3.302)

Clearly, one invariant is .xw �  Two more invariants arise as constants of integration in

solving the characteristic equations const][ �x

.
)()(4)()(6)()( 2

2

3

1

3

2

4

1

2

2

2

1

1

1

1 yyyyx

dy
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dy

y

dy
����

�

���� (3.303)

Note that we have some freedom of choice of independent variable in solving (3.303).  If

we choose 1y  as the independent variable, then (3.303) becomes the system of ODEs

,)(4)()(6 2

1

1

2

2

2

1

1

2 yyyyx
dy

dy
��

��           (3.304a)

.)( 1

21

1

�

�� yy
dy

dy
                      (3.304b)

Clearly, ODE (3.304a) admits the scaling symmetry 2211 , yyyy �� ��  and, hence, is

easily solved to yield the invariant

                                                   .)()()(2 1

2

4

1

3

11

�

�� yyyxw             (3.305)

Then we solve (3.305) for 1

2 )( �y  and substitute it into (3.304b), which becomes a linear

homogeneous ODE for .y The solution of ODE (3.304b) thereby yields a second invariant

.2)( 1

2

112
1

2 xyywyw ���

�             (3.306)

Then we find that

          ,0))(()()()(6)()( 1

21

3

2

2

112111 21
�����

�� yyxyywywww yyxD           (3.307)

and

,0)()()()( 1

2

12
1

221222 1
�����

� wyywywww yyx DD             (3.308)

after using (3.307) and (3.305), where
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Hence, the differential invariants dxdw /1  and ,/2 dxdw  determined by (3.307) and

(3.308), yield a reduction of ODE (3.299) to the system of trivial first-order ODEs
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,01
�

dx

dw
           (3.309a)

                                                     .02
�

dx

dw
          (3.309b)

Then the solution 11 const cw �� , 22 const cw ��  of (3.309a,b) yields two quadratures of

ODE (3.299) given by

1

1

2

4

1

3

1 )()()(2 cyyyx ��

� ,            (3.310)

21

2

112
1 2)( cxyycy ���

� .            (3.311)

Thus, we obtain a reduction of the third-order ODE (3.299) to a first-order ODE given by

the surface 

.0))(()(2 12
12

12

3

1 ���� cyycyx (3.312)

Finally, note that this surface admits the symmetry ,)(, 22

3/2 ccyyxx ���� ��  which

is inherited from the scaling symmetries and translation symmetry of (3.299).

Consequently, one can solve ODE (3.312) to obtain the complete quadrature of the given

ODE (3.299). 

(2)  Second-Order Symmetries

The fourth-order ODE (3.257), represented by the surface

0)()( 2

3

1

23
4

4 ���

� yyyF (3.313)

in space,),,,,,( 4321 �yyyyyx  admits the 12 second-order symmetries given by (3.263).

We now apply the direct reduction of order method, using one of the admitted second-

order symmetries: .)(ˆ 3/1

21

�

� yy�   The corresponding extended infinitesimal generator is

given by

3

)3(

2

)2(

1

)1((3) ˆˆˆˆˆ
yyyy �
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where
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First, we determine invariants satisfying

   ),,,,(ˆ
321

(3) yyyyxwX

       = 0)()()(])[()()(
321

2

3

3/4

23
1

3

3/1

23
1

313
12

2

3/4

2

3/1

21 �����

����

yyyy wyywyywyyyywyy .

(3.315)
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An obvious invariant is .xw �  Three additional invariants 321 ,, www  arise as constants of

integration in solving the characteristic equations const][ �x

.
)()(

3

)(
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])[()()( 2
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� (3.316)

If we choose 3y  as the independent variable, then (3.316) becomes the system of ODEs

,)( 2
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3

3

2 yy
dy
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�

�                       (3.317a)

,)()()(3 1
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1 yyyy
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��                     (3.317b)

.)(3 21
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3

3

yyy
dy

dy
�

�                     (3.317c)

We see that (3.317a) is a linear homogeneous ODE in terms of the dependent variable

.2y  If the solution of (3.317a) is substituted into (3.317b), we obtain a linear

inhomogeneous ODE in terms of the dependent variable .1y  In turn, after the substitution

of the solution of (3.317a,b) into (3.317c), we see that (3.317c) becomes a separable ODE

in terms of the dependent variable y.  Hence, the constants of integration of the system of

ODEs (3.317a–c) yield the three invariants

,)( 2

1

31 yyw �

�                                   (3.318a)

,)( 2
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312 yyyw ��                       (3.318b)
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1

3

3

2

2

33 yyyyyyw ��
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Then we find that 
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Hence, the differential invariants ,/,/,/ 321 dxdwdxdwdxdw  determined by (3.319a–c),

reduce the fourth-order ODE (3.313) to the system of first-order ODEs

,
3

11
��

dx

dw
                      (3.320a)
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,)( 2
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1
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3

4
ww

dx

dw
�

�           (3.320b)

.03
�

dx

dw
          (3.320c)

Consequently, after solving (3.320a–c), we obtain

,,)(, 33

4

13
1

2213
1

1 cwcxcwcxw �������

� (3.321)

yielding the three quadratures

,const)( 13
1

2

1

3 cxyy ���

�           (3.322a)

,const)]()([ 2
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13
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22
3

31 ccxyyy �����           (3.322b)

.const)(3)()(9 321

1

3

3

2

2

3 cyyyyyy ����

��                     (3.322c)

Substitution of 2y  and 3y  from (3.322a,b) into (3.322c) then reduces the given fourth-

order ODE (3.313) to a first-order ODE, 

,6)(
1

2

2

39
1

3
1

1

1 cyc
xc

y ��

�

��  (3.323)

which is separable.  Hence, the solution of (3.323) yields the complete quadrature of

ODE (3.313), i.e., the general solution,

42

2

33

1

3
1

1 const)54)(()( ccyccyxc �������

�

or, equivalently, 

1

12143 )~(~)~(~~ �

����� xccxcccy                            (3.324)

for some renamed constants .~
ic

EXERCISES 3.5

1. Consider a one-parameter Lie group of point transformations

                
),(),(*

),(),(*

2

2

���

���

Oyxyy

Oyxxx

���

���

with infinitesimal generator 
yx �

�

�

�

�� ��X , admitted by an nth-order ODE (3.231).

Show that the corresponding vector field ,ˆ )(nX  tangent to the surface (3.234)

representing ODE (3.231), is given by
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),,,,( 1 nn yyyxfy ��   and .ˆˆˆˆ )1()1()(
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����
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yyy
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n
fff ���� �

2. Find the point symmetries admitted by the nonlinear Duffing equation

const.,,03
�������� baybyyay

3. Find the point symmetries admitted by the ODE yyyyy cossincot)(2 2
�����

[Stephani (1989)].  Show that these symmetries form an SO(3) Lie algebra.

4. Find the contact symmetries admitted by the ODEs:

(a) 0����y  [verify (3.243)];

(b)  ;)(2))(1( 23 yyxyxxy �������������  and

(c) .

3

�
�

�

�

�
�

�

�

�

��

	���

y

y
yy

5.  Find the contact symmetries admitted by the third-order ODE 0������ yyy .  This

ODE arises when describing traveling wave solutions of the Korteweg–de Vries

(KdV) equation [see Exercise 4.1-2].

6. Find the second-order symmetries admitted by the fourth-order ODE

.)( 1)4( yyyy �����

�

7.  Find the symmetries up to second-order of the fourth-order ODE [Sheftel (1997)]

.3/5)4( �

	 yy   Show that the admitted point symmetries form a three-dimensional Lie

algebra with commutators given by ,X̂2]X̂,X̂[ 121 � ,X̂2]X̂,X̂[ 332 �

.X̂]X̂,X̂[ 231 ��

8. Show that the Blasius equation (3.253) admits no second-order symmetries based  on

the ansatz �� ˆˆX
~

r�  for either the translation symmetry or for the scaling symmetry

admitted by (3.253).

9. Find all third-order ODEs admitting the contact symmetry .)(ˆ 1

1

�

	 y�

10. Find all fourth-order ODEs admitting the second-order symmetry .ˆ
2y��

11. Use the direct reduction of order method to reduce: 

(a) the second-order linear ODE (3.104) from its invariance under the scaling

symmetry (3.105a,b);



185

(b) the Blasius equation (3.253) from its invariance under translations in  x;

(c) the third-order ODE (3.245) from its invariance under

             (i)  scalings in  x;

 (ii)   scalings in  y;

(iii)   the contact symmetry 2�̂  of (3.249);  and 

(iv)   the contact symmetry 3�̂  of (3.249);

(d) the fourth-order ODE (3.257) from its invariance under 

 (i)   translations in  x;

 (ii)   translations in  y;  and

(iii)   each of the second-order symmetries 12541
ˆ,,ˆ,ˆ,ˆ ���� �  given by (3.263).

12. Consider the Thomas–Fermi equation

                                                         .2/32/1 yxy �

��� (3.325)

(a) Show that ODE (3.325) admits the scaling symmetry .)3(X̂ 1
y

xyy
�

�

��  Use

direct reduction of order to reduce (3.325) from its invariance under X̂ .

(b) Show that the equation 0),,(ˆ
1

(1)
�yyxwX  for the invariant ),,( 1yyxw  is

equivalent to the reduced first-order ODE obtained by the standard reduction

method.

(c) Show that although the invariant ),,( 1yyxw  cannot be found explicitly, the

corresponding reduced ODE ),(ˆ/ wxHdxdw �  is given implictly by

,
3

43 22/52/1

�

�

��

xy

yx

dx

dw
xw

�

�

�� (3.326)

where );,(1 xwyy ��  is the solution of 0),,(ˆ
1

(1)
�yyxwX .  In particular, show

that there is no essential y-dependence in (3.326) and, consequently, (3.326) is a

first-order ODE in terms of variables  x  and w.

3.6       FIRST INTEGRALS AND REDUCTION OF ORDER  

            THROUGH  INTEGRATING FACTORS

We generalize the classical treatment, presented in Section 3.2.2, of first integrals and

integrating factors for first-order ODEs to second- and higher-order ODEs.

Definition  3.6-1.   A first integral of an nth-order ODE 

                                                   ),...,,,( )1()( �

��

nn yyyxfy                                         (3.327)

is a function � �),...,,,( 1�
�

nyyyx�  with an essential dependence on )1( �ny satisfying
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0�

dx

d�
    when ,)( fy n

�                                                   (3.328)

i.e., � �),...,,,( 1�
�

nyyyx�  is constant for every solution )(xy ��  of ODE (3.327).  

Since a first integral � �),...,,,( 1�
�

nyyyx�  of ODE (3.327) satisfies

cyyyx n
���

� const),,,,( )1(
��  for each solution )(xy ��  of (3.327), it represents a

conserved quantity for any solution )(xy �� .  Moreover, a first integral provides a

quadrature which reduces (3.327) to an )1( �n th-order ODE in terms of the original

variables .,...,,, )1( �

�
nyyyx  If one knows r  first integrals of (3.327) which are functionally

independent, i.e., none of them is a function combination of the others, then the nth-order

ODE (3.327) is reduced to an )( rn � th-order ODE in terms of r  essential constants and

1�� rn  variables )1(,...,,, ��

�
rnyyyx .  In particular, any n  functionally independent first

integrals yield a general solution of ODE (3.327) involving n  essential constants.  These

constants represent n independent conserved quantities for the solutions )(xy ��  of the

ODE.

As we showed in Section 3.2.2 in the case of a first order ODE, it is well-known

that finding a first integral is equivalent to finding an integrating factor.  The same is true

for second- and higher-order ODEs.

Definition 3.6-2. An integrating factor of an nth-order ODE (3.327) is a function

,0),...,,,( )(
����

�yyyx ,10 ��� n�  that satisfies

                )),...,,,()(,...,,,( )1()()( �

����

nn yyyxfyyyyx � ),...,,,( )1( �

��

nyyyx
dx

d
�     (3.329)

for some function � �),...,,,( 1�
�

nyyyx�  which has an essential dependence on � �.1�ny   The

highest-order �  of the derivatives of y  in ),...,,,( )(�yyyx ��  is called the order of the

integrating factor.

From (3.329) it follows that 0/ �dxd�  when ),,,,( )1()( �

��

nn yyyxfy �  and,

hence, cyyyx n
���

� const),,,,( )1(
��  on solutions )(xy ��  of ODE (3.327) for which

),,,,( )(�
� yyyx ��  is nonsingular.  In particular, if ),,,,( )(�

� yyyx ��  is nonsingular for

an arbitrary function )(xy , then cyyyx n
���

� const),,,,( )1(
��  holds on every solution

of (3.327) and thus determines a first integral of ODE (3.327).  Conversely, if

),,,,( )1( �

�
nyyyx ��  is a first integral of ODE (3.327), then one can easily show that

(3.329) holds with )1(/ �

����

ny�  defining the corresponding integrating factor of

(3.327).  Hence, all first integrals of ODE (3.327) arise from integrating factors satisfying

the linear relation (3.329) for arbitrary functions )(xy .  Equation (3.329) is called the

characteristic equation for first integrals and integrating factors.  Note that, as a

consequence of the linearity of the characteristic equation (3.329), the set of all
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integrating factors and the set of all first integrals of a given ODE (3.327), respectively,

form vector spaces.

We will first derive a necessary and sufficient system of linear determining

equations whose solutions yield the integrating factors of any given nth-order ODE

(3.327).  We will also derive a line integral formula that yields a first integral

corresponding to an integrating factor through the characteristic equation (3.329).  Note

that the local existence theory for solutions of an ODE [Coddington (1961)] guarantees

that n  functionally independent first integrals ),...,,,,,( )1(

1

�

�
nyyyx ��

),,,,( )1( �

�
n

n yyyx ��  exist for any nth-order ODE (3.327).  Since any function of

),,,,(),...,,,,,( )1()1(

1

��

��
n

n

n yyyxyyyx �� ��   is also a first integral, one sees that a given

ODE (3.327) admits an infinite number of integrating factors with an essential

dependence on .)1( �ny   Thus, the determining system for integrating factors of order n – 1

of ODE (3.327) always has infinitely many solutions.  However, for integrating factors of

order ,1�� n�  the determining system reduces to an overdetermined system of linear

PDEs that has at most a finite number of linearly independent solutions.  This situation is

analogous to that of the determining equation for symmetries of ODE (3.327) [cf. Section

3.5].

Definition 3.6-3.  An integrating factor � �),...,,,( �yyyx ��  of order 1�� n�  of an

nth-order ODE (3.327) is of point-form if 1��  and �  is linear in ,y�  i.e.,

.),(),(),,( yyxyxyyx ����� ��

Otherwise, for ,1��  an integrating factor is called first-order, and for 2�� , higher-

order.

  We will show how to solve the determining system to obtain all integrating factors

of orders 10 ��� n�  of an nth-order ODE (3.327). We will also present effective

ansatzes for directly finding particular solutions of the integrating factor determining

system.  Moreover, the use of such ansatzes is essential for obtaining integrating factors

of order .1�� n�   These ansatzes lead to a splitting of the integrating factor determining

system into an overdetermined linear system of PDEs.  Most important, in all cases one

can solve these equations by a simple algorithmic procedure, analogous to that for

solving the determining equation for symmetries of orders 1�� n�  of ODE (3.327).

This will be illustrated through many examples.

3.6.1 FIRST-ORDER ODEs

Consider a first-order ODE (3.327) or, equivalently, a surface

                                                              ).,(1 yxfy � (3.330)

A first integral of ODE (3.330) is any function cyx �� const),(�  on the surface (3.330)

such that ,0��y�  and thus satisfies
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0)D(
1

����
� yxfy f���� D , (3.331)

where

y
y

x �

�

�

�

�

� 1D                                              (3.332a)

and

y
f

x
fy

�

�

�

�

�

��
�1

DD                                        (3.332b)

(i.e., 1y is eliminated through ODE (3.330)).  Hence, for an arbitrary function ),(xy one has

��� )(D 1 fy� ,                                             (3.333)

where, from (3.331),

xy
f

yx ��

1
),( ���� ,                                         (3.334)

which is the integrating factor corresponding to the first integral  ).,( yx�   Conversely,

any function  0),( ��� yx   satisfying (3.333) for arbitrary values of ,,, 1yyx  for some

function ),,( yx� is an integrating factor of ODE (3.330) with the corresponding first

integral ).,( yx�  We can obtain necessary and sufficient defining conditions for

integrating factors and first integrals of ODE (3.330) by the elimination of ),( yx�  and

),,( yx�  respectively, in (3.334).

Theorem 3.6.1-1.  The integrating factors of ODE (3.330) are the solutions 0),( ��� yx

of the determining equation

.0)( ���� yx f (3.335)

For a given integrating factor, the corresponding first integral ),( yx�  of ODE (3.330) is

given by the line integral

� �����

C

dydxf ][� , (3.336)

where C  is a path curve from any point )~,~( yx  to the point ),( yx  in .),( spaceyx �   A

change in )~,~( yx  changes (3.336) by the addition of a constant.  If ),( yxf  and ),( yx�

are nonsingular, then the line integral (3.336) is independent of the path curve .C

Proof.  Suppose ),( yx�  is an integrating factor of ODE (3.330).  Then, from (3.334), we

have the pair of equations

., yxf �� �����                                           (3.337)
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By cross-differentiation and commutativity of partial derivatives, we see that ),( yx�

satisfies (3.335), which is just the integrability condition for solving (3.337).  

            Conversely, suppose ),( yx�  is a solution of the integrating factor determining

equation (3.335).  Since the integrability condition holds for solving (3.337), it follows

that there exists a ),( yx�  satisfying (3.334).  The fundamental theorem of calculus for

line integrals of gradients then yields (3.336).  Moreover, from the integrating factor

determining equation (3.335), it follows that (3.336) is independent of the path curve C

when ),( yxf  and ),( yx�  are nonsingular.       

  There is an alternative formulation of Theorem 3.6.1-1 that is more useful when

one considers its generalization to higher-order ODEs.  First, writing out the integrating

factor determining equation (3.335) and using (3.332a), we have

������ yyx ff0 ),(E)(D 11 ���������� yy fyf             (3.338a)

with

                                            ),()),((),,( 11 yxyxfyyyx ���� ,                              (3.338b)

where

1

1 DE
yy �

�

�

�

�

�                                               (3.339)

denotes a truncated Euler operator.  One can easily show that the operator (3.339)

annihilates total derivatives of arbitrary differentiable functions of .and yx  In

particular, for any function ),( yx� , if we let ),(D),,( 1 yxyyx �� �  and define

,D, 101 1
������ yy ��  then

,0)(
11 �� y                                                    (3.340)

                                                                     ,00 ��                                                   (3.341)

which hold by the identities .D)D(, 01 yyy ��� �����   Conversely, if (3.340) and

(3.341) hold for some function  ),,,( 1yyx�  where ,D, 101 1
������ yy ��  then (3.340)

yields 0
11
�yy�  and so we have

BAy �� 1�                                                    (3.342)

for some functions ).,(),,( yxByxA    Then (3.341) yields

0�� yx BA ,

which is just the integrability condition for there to exist a function ),( yx�  such that

., xy BA �� ��   Hence, from (3.342), we obtain .D1 ���� ��� yyx   Moreover, since

then yy �� �

1
and xyy ��� ��

11  are functions depending only on x  and ,y   we have
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,])0,,()0,,([),(
1� ��

C

y dyyxdxyxyx ���                            (3.343)

which gives a line integral formula for ),( yx�  in terms of ),,,( 1yyx�  to within an

arbitrary constant, where C  is any path curve from a point )~,~( yx  to the point ),( yx  in

space.),( �yx   Then substitution of (3.338b) into (3.343) yields the line integral (3.336).

The determining equation (3.335) for integrating factors is a first-order linear

homogeneous PDE which has an infinite number of solutions.  In particular, if ),( yx�  is

an integrating factor of ODE (3.330) with corresponding first integral ),,( yx�  then since

any function )(�F  is automatically a first integral of ODE (3.330), it follows that

�� )(�F  is also an integrating factor as obtained from (3.334).  Moreover, this represents

the general solution of the integrating factor determining equation (3.335).  From (3.336),

we see that any particular solution ),(1 yx���  of (3.335) yields a corresponding first

integral ),(1 yx�� �  and thus reduces ODE (3.330) to the quadrature �),(1 yx�

.const 1c�  However, in general, one cannot obtain any solution of the integrating factor

determining equation (3.335) without knowing the general solution of ODE (3.330).

Consequently, for a given ODE (3.330), one often seeks to determine if it admits

an integrating factor of a specific form.  Two simple ansatzes are based on elimination of

variables.

If we seek )(x��� , then from the integrating factor determining equation

(3.335) we find that 0��� yf��  and, hence, ),( yxf  must satisfy ,�� ���yf  leading

to ).(functionsomefor,)/(),( xyyxf ����� �����  Thus, ODE (3.330) admits an

integrating factor depending only on x  if and only if ),( yxf  is linear in .y  Then

�
��

� dxxA
e

)(
 is the integrating factor, where ).()(),(1 xByxAyxfy ���

Alternatively, if we seek )( y��� , then the integrating factor determining

equation (3.335) yields  ,0���
yff ��   and so ),( yxf  must satisfy ./ �� ���ff y   This

leads to .)(functionsomefor, xf ���� ��  Thus, ODE (3.330) admits an integrating

factor depending only on y  if and only if ),( yxf  is separable in x  and .y   Then

)(/1 yB��  is the integrating factor, where  ).()(),(1 yBxAyxfy ��

A more effective general ansatz is based on separation of variables.  Consider

).()( yx ����  Then, from the integrating factor determining equation (3.335), we find

that 0)/()/( �����
yff����  and, hence, by integration with respect to ,y  we obtain

.)(functionsomefor,)/( � ����� xdyf �������  Thus, ODE (3.330) admits an

integrating factor of separable form if and only if 

,
)(

)()()(
),(1

yC

xByCxA
yxfy

�

�

��                                  (3.344)

for some functions ).(),(),( yCxBxA   The integrating factor is then given by
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),(),(
)(

yCeyx
dxxA

�
�

��

�

                                       (3.345)

with the corresponding first integral given by

.)()(),(
)()(

dxxBeyCeyx
dxxAdxxA

�
�

�
�

��

��                        (3.346)

The class of ODEs (3.344) includes all linear ODEs, i.e., corresponding to ;)( yyC �  all

separable ODEs, i.e., corresponding to 0)( �xA  or ;0)( �xB  and all Bernoulli ODEs,

i.e., corresponding to .const,)( �� ryyC r

More generally, for any given integrating factor ansatz ),,( yx���  one can solve

the integrating factor determining equation (3.335) for ),( yxf  to obtain

� ����

),(

)(
),(

),(

1
),(1

yx

x
dyyx

yx
yxfy x

�

�

�

�

,                    (3.347)

which yields the most general ODE admitting the given integrating factor.  Conversely, if

one can match the form of (3.347) to a given ODE (3.330) for some ),( yx�  and ),(x�

then one immediately obtains an integrating factor ).,( yx���

3.6.2   DETERMINING EQUATIONS FOR INTEGRATING 

            FACTORS OF SECOND-ORDER ODEs

We now consider a second-order ODE

),,( yyxfy ����                                                 (3.348)

or, equivalently, a surface given by

                                                 ).,,( 12 yyxfy �                                                (3.349)

Theorem 3.6.2-1.  A function ),,( yyx �� with an essential dependence on y�  is a first

integral of ODE (3.348), satisfying ��),,( yyx� c�const  on the surface (3.349), if and

only if

,0)D(
12 1 �����

� yyxfy fy ����� D (3.350)

where

1

21D
y

y
y

y
x �

�

�

�

�

�

�

�

� (3.351a)

and

.)(DD
1

2

1

12 y
fy

y
f

y
y

x
fy

�

�

���

�

�

�

�

�

�

�

�

��
�

D (3.351b)
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  From (3.351a,b), one sees that (3.350) is equivalent to the characteristic equation

                                                 )(D 2 fy ����                                             (3.352a)

holding for arbitrary values of ,,,, 21 yyyx with 

,),,(
11 yyyx ���                                              (3.352b)

which is the integrating factor corresponding to the first integral.  Conversely, if a

function 0),,( 1 ��� yyx  satisfies (3.352a,b) for some ),,,( 1yyx�  then ),,( yyx ��  is an

integrating factor of ODE (3.348) and ),,( yyx ��  is the corresponding first integral.  We

now derive a determining system that yields all integrating factors ),,( yyx ��  of ODE

(3.348).

Consider the truncated Euler operator

.DDE
2

2

1

2
yyy �

�

�

�

�

�

�

�

�                                     (3.353)

One can easily show that operator (3.353) is connected with annihilating total derivatives

of any differentiable function of .,, 1yyx  Let

                                                ),,,(D),,,( 121 yyxyyyx �� �                                     (3.354)

and introduce the notations

).(D,D, 210212 12
���� ������������ yyy                 (3.355)

Theorem 3.6.2-2.   A function ),,,( 21 yyyx�  is a total derivative (3.354) if and only if it

satisfies 

,0)()(
22 12 ���� yy (3.356a)

,00 �� (3.356b)

on the entire space.),,( 2,1 �yyyx   In particular, if ),,,( 21 yyyx�  satisfies (3.356a,b),

then (3.354) holds with

,]),,(),,()),,()0,,,([(),,( 1121111111 � �������

C
dyyyxdyyyxdxyyxyyyxyyx ��

(3.357)

where C  is any path curve from a point )~,~,~( 1yyx  to  ).,,( 1yyx

Proof.  Suppose a function ),,,( 21 yyyx�  satisfies (3.354) for some ),,( 1yyx� .  Then,

using the identities

,)D(,D)D(,D)D(
1211 yyyyyyy ������� ����          (3.358)
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one can easily verify that 2�  annihilates .D�   Hence, �� D�  satisfies .00 ��

Furthermore, from (3.358), one sees that  0)()(
22 12 ���� yy   are identities, with 

., 12 1 yy �� ����                                       (3.359)

Thus, (3.356a,b) holds. This establishes the “only if ” part of the theorem.

Let

                                              .2211 ������ yy�                                          (3.360)

Then, using (3.354) and (3.359), it follows that

                                                                 .x���                                                      (3.361)

Hence, from (3.359) and (3.361), we see that the integrability conditions for the existence

of a function ),,( 1yyx�  satisfying (3.354) are given by

,0)()(
222 12 ������ yyy                                     (3.362a)

,)()(
112 yy ���                                              (3.362b)

.)(,)( 12 1 yxyx ������                                    (3.362c)

Now suppose a function ),,,( 21 yyyx�  satisfies (3.356a,b).  Using (3.355), we have

).)((D)()(

)D()(

221

22

101

102

yyy

yyyy

������

������ �

Thus, we obtain (3.362b) from (3.356a,b).  Next, using (3.355) and (3.360), we find that

,))()(()(

)()(

),)()(()(

)()(

,)()()()(

21201

2211

1212

22111

221122112

1

1

1111

222222

yyx

yyyy

yyx

yyyy

yyyyyy

y

yy

y

yy

yyyy

��������

������

������

��������

�������������

�

�

�

which yield (3.362a,c) from (3.356a,b) and (3.362b).  Hence, the integrability conditions

(3.362a–c) hold as a consequence of (3.356a,b).  This establishes the “if ” part of the

theorem.

Finally, from the relations (3.359), (3.360), and (3.361), by the fundamental

theorem of calculus for gradients, we obtain

� ���

C
yyx dydydx ][ 11

����

� ������

C
dydydx ][ 121                                      (3.363)
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to within an arbitrary constant, where C  is any path curve from a point )~,~,~( 1yyx  to

).,,( 1yyx  Then integral (3.363), combined with (3.360) and (3.362a), yields the line

integral formula (3.357).       

Now, by applying Theorem 3.6.2-2 to the characteristic equation (3.352a), we

obtain a necessary and sufficient determining system for all integrating factors

),,( 1yyx�  of ODE (3.349).  Let 

                          ).,,()),,((),,,( 11221 yyxyyxfyyyyx ����                          (3.364)

Then (3.356a) reduces to an identity and (3.356b) is linear in .2y  Consequently, (3.356b)

splits into two equations

0),,(),,( 11 �� yyxByyxA ,

where the functions A and B are given by     

).(E),,(),,( 21210 ����� yyxByyyxA

Explicitly, this yields

,0)(2
1111 1 �������� yyyyxyy fy           (3.365a)

.02)()()()( 1

2

11 11
������������� xyyyxxyyxyy yyfyff           (3.365b)

For any ),,( 1yyx�  satisfying the integrating factor determining system (3.365a,b), it

follows from (3.359–3.361) and (3.364) that we have

.,)(, 211112 11
�������������������� fyfy xyyxyy ���

Hence, the first integral formula (3.357) reduces to

� ����������������

C yyxyyx dydyyfdxffyyyyyx ]))(())()([(),,( 111

2

111 11
� ,

                                                                                                                          (3.366)

where C is a path curve from a point )~,~,~( 1yyx  to ).,,( 1yyx   If ),,( 1yyxf  and

),,( 1yyx�   are nonsingular, then the curve C  can be chosen arbitrarily, and a change in

)~,~,~( 1yyx  just changes (3.366) by the addition of a constant.  Most important, if

),,( 1yyxf  or ),,( 1yyx�  are singular, then one can choose a path curve C  so that the

line integral (3.366) is nonsingular.  This will be illustrated in examples in Section 3.6.3.

Thus, the following theorem has been proved:

Theorem 3.6.2-3. The integrating factors of ODE (3.349) are the solutions

0),,( 1 ��� yyx  of the integrating factor determining system (3.365a,b).  For a given

integrating factor, the corresponding first integral of ODE (3.349) is given by the line

integral (3.366). Conversely, every first integral arises from a corresponding integrating

factor through the characteristic equation (3.352a,b).
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The integrating factor determining system (3.365a,b) is a linear homogeneous

system of second-order PDEs for ).,,( 1yyx�   If one knows two functionally independent

first integrals ),,( 11 yyx�  and ),,( 12 yyx�  of ODE (3.349), i.e., 1�  is not equal to a

function of ,2�  then the general solution of (3.365a,b) is given by �� ),,( 1yyx

21 21
���

��

FF  where ),( 21 ��FF �  is an arbitrary function of 1�  and ,2�  with

.)(,)(
11 2211 yy �� ����  Hence, finding all solutions of the integrating factor

determining system (3.365a,b) is equivalent to solving the original ODE (3.349).

However, any particular solution of (3.365a,b) yields a first integral (3.366) which

reduces ODE (3.349) to a first-order ODE given by the surface cyyx �� const),,( 1� .

If two solutions of the integrating factor determining system (3.365a,b) yield functionally

independent first integrals ),,( 11 yyx�  and ),,,( 12 yyx�  then ODE (3.349) is reduced to

quadrature by the elimination of 1y  in the two equations �),,( 11 yyx� const ,1c�

.const),,( 212 cyyx ���  This represents, implicitly, the general solution of ODE (3.349)

in terms of two essential constants 1c  and 2c .

Note that if two first integrals are related by )( 12 �� F�  for some function ,F

then 112 )( ���� �F  holds for the corresponding integrating factors. This gives a criterion

for checking when two solutions of the integrating factor determining system yield

functionally independent first integrals.

Lemma 3.6.2-1 (Criterion for Integrating Factors to Yield Two Functionally Independent

First Integrals).  Two integrating factors ),,( 11 yyx�  and ),,( 12 yyx�  of ODE (3.349)

determine functionally independent first integrals ),,( 11 yyx�  and

),(),,,( 1212 ��� Fyyx �  if and only if for all functions ),( 1�F 112 )( ���� �F  or,

equivalently, 221 )( ���� �F  where 1�  and 2�  are given, respectively, in terms of 1�

and 2�  by the line integral formula (3.366).

As a corollary of Lemma 3.6.2-1, we have the following useful sufficient criterion

for the functional independence of first integrals:

Theorem 3.6.2-4.  If two integrating factors ),,( 11 yyx�  and ),,( 12 yyx�  of ODE

(3.349) satisfy

0)/(const,/
11212 ������� y , (3.367)

then the corresponding first integrals ),,( 11 yyx�  and ),,,( 12 yyx�   given by the line

integral formula (3.366), are functionally independent.

Proof.    From (3.367), we have const),(/ 12 ���� yxc  for some function ).,( yxc  Then

from Lemma 3.6.2-1 we see that ),,( 11 yyx�  and ),,( 12 yyx�  determine the functionally

dependent first integrals ),,( 11 yyx�  and ),,( 12 yyx�  if and only if the relation

)(),( 1�Fyxc ��  holds for some function ).( 1�F   Taking 1/ y��  of this relation, we
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obtain 0)( 11 ���� �F , and thus, .const)( 1 ���F   But, since ,const),( �yxc  it follows that

),,( 11 yyx�   and  ),,( 12 yyx�  must be functionally independent.                                      

3.6.3    FIRST INTEGRALS OF SECOND-ORDER ODEs

We now consider several effective algorithmic methods for finding solutions of the

integrating factor determining system (3.365a,b) for a second-order ODE (3.349).  The

situation is analogous to solving the symmetry determining equation [cf. Section 3.5.1]

where, for a given second-order ODE (3.349), one can find all of its finite number of

admitted point symmetries (if any exist) but, in general, one needs specific ansatzes in

order to find admitted first-order symmetries (contact symmetries).

We also show how to construct a first integral of a second-order ODE (3.349)

from an admitted integrating factor through the line integral formula (3.366) and obtain a

corresponding reduction of order of the ODE. 

(1) Point-Form Ansatzes

If one considers a point-form integrating factor

1),(),( yyxyx �� ��� , (3.368)

then the integrating factor determining system (3.365a,b) reduces to an overdetermined

linear system of PDEs for ),( yx�  and ),( yx�  given by

                                   ,0232
11111 11 ������

yyyyyyxy fyffy ������                      (3.369a)

xyxyyyyyxxxx yyyyy ������
2

11

3

1

2

11 )(22)()( �����

    .0)()()()()()()(
1111

2

111 ������� yyyyxyxyxy fyfyfyfff ������                      (3.369b)

The system (3.369a,b) has at most a finite number of linearly independent solutions

).,(),,( yxyx ��  For a given solution ),,(and),( yxyx ��  the corresponding first

integral (3.366) of ODE (3.349) is given by

� ��������

C yyyxyx dxyfyfyfyyx ))()()()([(),,( 3

1

2

111 11
��������

                   ])())()(( 11

2

11 11
dyydyyfyff yyyxyx ��������� ���������

                                                                                                                        (3.370)

for any path curve C  from  )~,~,~( 1yyx   to  ).,,( 1yyx

We now establish a useful classification result:

Lemma 3.6.3-1. A second-order ODE (3.349) admits an integrating factor of point-form

(3.368) if and only if (3.349) is of the form

1

2/12/1

2
12

12
1

2 ])()(log[)()(log yyy yxy

��

���� �����

                                    )()()( 1

1

1

2/12/1 yy yxx ������� ����

��� (3.371)
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for some functions ).,(),,(),,( yxyxyx ���   The corresponding first integral of ODE

(3.349) is given by

.)(),,( 2

1

1

2
1

1 ����� ���

� yyyx (3.372)

Proof.  From (3.352b), we have

.11
yy ��� ���� (3.373)

After integrating (3.373) with respect to ,1y  we find that

����
~)( 1

2

12
1

��� yy

,~, 21

2
121

2
1

������
��

����� (3.374)

for some function ),,(~ yx� which thus yields the first integral (3.372).  Then substitution

of (3.374) into the characteristic equation (3.352a) gives

).(

)DD)(D(DDD

2

2

1

1

12

2
1122

2
11

fy

yyD

���

��������������

������

������������

Hence, we obtain

���������� DyDDDf 1

1

2

2
111

2
1 )( ����

������ ,

which yields ODE (3.371).                                                                                          

Note that if one can match a given ODE (3.349) to the form (3.371) for some

),,(),,(),,( yxyxyx ���  then one obtains an integrating factor (3.368) with first integral

(3.372).  Most important, the classification given by Lemma 3.6.3-1 leads to a stronger

counterpart of Lemma 3.6.2-1 and Theorem 3.6.2-4 for the functional independence of

first integrals arising from integrating factors of point-form.

Theorem 3.6.3-1. Suppose ODE (3.349) admits two integrating factors of point-form,

].[),(),(,),(),( 2112221111 ��������� yyxyxyyxyx ���� (3.375)

Then the integrating factors (3.375) determine functionally independent first integrals of

ODE (3.349) if, when ,0
111
��yyyf 1�  and 2�  are linearly independent or, when ,0

111
�yyyf

111 �c��  and 222 �c��  are linearly independent for all constants ., 21 cc

Proof. Suppose )( 12 �� F�  for some function ,F  where ),,( 11 yyx�  and ),,( 12 yyx�

are functionally dependent first integrals corresponding to the integrating factors

1
)( 11111 yy ��� ����  and .)(

121222 yy ��� ����   The case 021 �� ��  is covered by

Theorem 3.6.2-4.  So, henceforth, we assume that .01 ���  To proceed, we see that since

112 )( ���� �F  is linear in 1y ,  it must satisfy
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                                         .0)(3)( 3

1111 11
������������ FFF yy �                                (3.376)

There are now two cases to consider: .0)(or0)( 11 ��������� �� FF  In the first case,

(3.376) gives 0)( 1 ��� �F  and so we immediately have 2111)( ccF �� ��  for some

constants 1c  and .2c Then 11112 )( ������ cF �  yields

., 112112 ���� cc ��

Next, in the case ,0)( 1 ����� �F  (3.376) yields ./)(/3 1

2

1 ��������� FF  It then follows from

(3.372) that

.
)(

11

1

2

1

2

1

2

3
��

�

��

�

�

���

��

�

F

F
                                     (3.377)

But, since F depends just on ,1�  we must have const1 ��  and, consequently,

.1

112

3

�� �

��

��

���

F

F

Thus, 1121101)( ���� ���� cccF for some constants ,, 10 cc  and .02 �c  Substitution

of the right-hand side of (3.377) into 1

2/1

1122
1

1112 ])([)( ��������

�

��� ccF  then

yields

., 12

1
2112112 ����� ccc ��� (3.378)

Finally, from (3.377) combined with (3.371) and (3.372), we have that in this case

),,( 1yyxf  is quadratic in .1y   Hence, .0
111
�yyyf       

As an example to illustrate how to find point-form integrating factors, we

consider the nonlinear Duffing equation

                             .0const,0const,03
����������� baybyyay                  (3.379)

This describes a nonlinear damped oscillator, where a is the damping constant and

�2/b  is the frequency for undamped linearized oscillations. For point-form integrating

factors (3.368) of ODE (3.379), the integrating factor determining system (3.369a,b) is

given by

,0322 1 ���� ya yxy ����                       (3.380a)

1

2

1

3

1 )22())(2())(( yayay xyxxxyyyxyyy ������� �������

                ,03 332
��������� yyxxxxx ybyybyayb ��������                       (3.380b)

which are polynomial equations in terms of .1y   Hence, the coefficients of like powers of

1y  yield the determining equations
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,0,0 �� yyy ��               (3.381a)

,022 ��� ��� axy              (3.381b) 

                             .0)()()3( 332
�������� yxxxx ybyybyayb �����               (3.381c)

From (3.381a), we see that )(x�� �  and

                                         )()( 10 xyx ��� ��                                        (3.382)

for some functions ).(),( 10 xx ��   Then (3.381b) yields

��� ���
2
1

1 a ,                                                 (3.383)

and (3.381c) becomes a polynomial equation in terms of ,y  which splits into the

equations

                                                                  ,00 ��                                                     (3.384a)

,
4
1

1 �� ��                                                (3.384b)

                                              .2 111 ���� ������� bba                                                 (3.384c)

By combining (3.383) and (3.384b), we obtain

const,, 0

)3/4(

0 �� ���
xae                                    (3.385a)

.)3/4(

03
1

1

xaea�� �                                             (3.385b)

Finally, (3.384c) yields baa �

3

9
2 , and so

0�a     or .2

9
2 ab �        (3.386)

      Hence, ODE (3.379) admits a single point-form integrating factor given by

xaeyay )3/4(

13
1 )( ��� , (3.387) 

where the constants a  and b are restricted to satisfy (3.386).  A corresponding first

integral is obtained from the line integral (3.370).  If we choose the path curve C to be a

piecewise straight line, parallel to the coordinate axes, from )0,0,0(  to ),,,( 1yyx  then

(3.370) yields

dyeyyadx xayx )3/4(32

9
1

00
)(0 ��� ��� 1

)3/4(

13
1

0
)(

1

dyeyay xay

�� �

                       .))(( )3/4(2

12
1

13
14

4
122

18
1 xaeyayyyya ����                                           (3.388)
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We thus obtain a reduction of ODE (3.379), with 0�a  or 2

9
2 ab � , to the first-order

ODE given by .const),,( 1 cyyx ���   [In Section 3.7.3, we will show how to obtain a

second first integral leading to the complete quadrature of ODE (3.379).]

(2) Symmetry-Type Ansatzes

If a second-order ODE (3.349) admits a point symmetry

y
yx

x
yx

�

�

�

�

�

� ),(),(X �� ,                                       (3.389)

then the first-extended generator

������ DD,X 1

)1(

1

)1()1( y
yyx

��

�

�

�

�

�

�

�

�

�                    (3.390)

maps first integrals of ODE (3.349) into first integrals since, geometrically, a first integral

is constant on every solution curve on the surface (3.349) in space),,,( 21 �yyyx  on

which the second-extended generator )2(X  is a tangent vector field [cf. Section 3.5.1].

Thus, )1(X  describes a geometrical motion within the vector space of first integrals of

ODE (3.349).

Theorem 3.6.3-2.  Suppose ),,( 1yyx�  is a first integral of ODE (3.349) with integrating

factor ).,,( 1yyx�    Then, under any point symmetry (3.389) admitted by ODE (3.349),

const,~,~X~ )1(
��� cc�� (3.391)

 yields a first integral with integrating factor 

����� R)1(X
~

, (3.392)

where

.2 1

1

)1(

yxy y
y

R ���

�

���

�

�

� (3.393)

Proof.   We apply )2(X  to the characteristic equation (3.352a), which yields

                                   .DX))(X())(X( )2(

2

)2(

2

)1(
������� fyfy                         (3.394)

Then, from (2.100a,b) and (3.124), we obtain

� � )1(2

2

)2(

1
)(X ���� yyx ffffy �����

��� D2DD 2

2

1

2 yy ��� ���� yxy ffyf ���� )DD( 11

).)(D2( 21 fyy yy ���� ���                                                           (3.395)

Hence, the left-hand side of (3.394) becomes 

).)()D(X( 2

)1( fyR ����� �
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We next evaluate the right-hand side of (3.394) by using the operator identity

D)D(DXDX )2()2(
���

that holds on differentiable functions of 1,, yyx  [Exercise 3.6-17].   This yields

                                            ),)(X()D(X 2

)1()1( fyR ������                                  (3.396)

and hence, (3.392) is an integrating factor corresponding to the first integral (3.391).      

From Theorem 3.6.3-2, we see that every point symmetry admitted by ODE

(3.349) induces a point symmetry on the vector space of its integrating factors.  The

explicit generator in space),,,( 1 ��yyx is given by 

��

�

��

�

�

�

�

�

�

�

�

� R
yyx 1

)1(X
~

��� ,                              (3.397)

which maps integrating factors into integrating factors of ODE (3.349).  Consequently,

one can consider an ansatz to seek integrating factors invariant under (3.397) to within a

scaling.  In particular, for such an ansatz, one has

const,,X
~

���� rr                                          (3.398)

or, equivalently, 

.0)2())(( 1

2

111 1
�������������� ryyyy yxyyxyxyx ���������          (3.399)

We can solve the first-order linear PDE (3.399) by the method of characteristics

in terms of invariants ),( yxu  and ]0[),,(
11 �yyyx ��  of )1(X  [cf. Section 3.3.2] given

by solving (3.102).  This leads to 

),,(exp 1)1(
�

�

uwdy
Rr

�
�

�

�

�
�

�

� �

	
 �                                   (3.400a)

in terms of an arbitrary function ),,( vuw  where ),,,(),,,( 11

)1()1( yvuRRyvu ����  with

x  and y  eliminated in terms of  u and v.

Alternatively, if 0��� , then one can have 

),,(exp �

�

uwdx
Rr

�
�

�

�

�
�

�

� �

	
 �                                   (3.400b)

in terms of an arbitrary function ),,( vuw  where ),,,(),,( ��� uxRRux ��  with y  and

1y  eliminated in terms of  u  and .v

If  ,0��  then one can have 

                                                           ),,(exp �

�

uwdy
Rr

�
�

�

�

�
�

�

� �

	
 �                                          (3.400c)
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in terms of an arbitrary function ),,( vuw  where ),,( uy�� � ),,,( vuyRR �  with x  and

1y  eliminated in terms of  u  and .v

Note that the ansatz (3.398) reduces to the scaling invariance of �  corresponding

to

                                                              const,)1(
���� ss ,                                                 (3.401)

if and only if ,const�R  with .Rrs ��    Moreover, from Theorem 3.6.3-2, this condition

on R also corresponds to the scaling invariance of ),,( 1yyx�  under ,e.i.,X )1(

                                                  ,const,~X )1( Rsrcr ����� ��                                     (3.402)

to within some constant .~c   All point symmetries satisfying const�R  are easily

classified.

Lemma 3.6.3-2. A point symmetry (3.389) of a second-order ODE (3.349) has

cyR ����� const/ 1

)1(
�  if and only if

                                                   )(,))(()( xycxx ����� ����� ,                                    (3.403)

for some functions ).(),( xx ��  In particular, all translations ,const[ a���

]const b���  and all scalings ]constconst,,,[ ���� babyax ��   satisfy const.�R

Proof.   Left to Exercise 3.6-19.          

Thus, from Lemma 3.6.3-2 and Theorem 3.6.3-2, it follows that any translation

and scaling symmetries admitted by a given ODE (3.349) are automatically inherited by

its integrating factor determining system (3.365a,b).  Hence, if ODE (3.349) is invariant

under such symmetries, then one can consider a simple ansatz

),( vuw��                                                    (3.404)

in terms of corresponding invariants  ).,,(),,( 1yyxvyxu

We now illustrate the use of ansatzes (3.400a–c) and (3.404) through several

examples.

As an elementary first example, consider a general second-order linear

homogeneous ODE [cf. Section 3.3.3]

                                        ,0)()( 12 ��� yxqyxpy                                        (3.405)

which admits the scaling xxyy �� ,�  and the shifts )(, xyyxx �����  where

)(x�  is any solution of ODE (3.405), i.e.,  .0)()( ������ ��� xqxp   Respective symmetry

invariants are given by ,/, 1)1()1( yyvxu ��  and )2()2( , vxu �  ./1 �� ��� yy   Using the

ansatz (3.404) with the unique joint invariant ,xu �  we seek solutions of the integrating

factor determining system (3.369a,b) of the form
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).(xw��                                                     (3.406)

Substitution of (3.406) into (3.369a,b) yields a single equation

,0)())(( ����� wxqwxpw                                      (3.407)

which is the adjoint of ODE (3.405).  ODE (3.407) is well-known as the determining

equation for a classical integrating factor of (3.405).  If one knows a solution )(xw  of

ODE (3.407), then a first integral of ODE (3.405) is obtained from (3.370) through

,)(

)(0

])()[(),,(

1

1000

111

1

wyypww

dywdypwwdx

dywdypwwdxwyqywyyx

yyx

C

�����

�����

�������

���

��

where C  is a piecewise straight line, parallel to the coordinate axes, from )0,0,0(  to

).,,( 1yyx

Now consider the second-order linear ODE (3.405) with, for example,

,/2)(,/4)( 2xxqxxp ��  which yields the Euler equation 

0
24

212 ��� y
x

y
x

y                                             (3.408)

admitting the additional scaling symmetry ., yyxx �� �    In Section 3.5.3, we derived

a first integral (3.294) of ODE (3.408) using symmetry reduction.  Here we seek

integrating factors and corresponding first integrals using the ansatz (3.400b,c) based on

invariance under scalings in x and y and shifts in y.

For the x scaling symmetry [ 0��  and x�� ], we have 1��R  from (3.393), and

thus ansatz (3.400b) yields ),( 1

1 xyywxr�
��  in terms of the scaling invariants x and .1xy

Similarly, for the y scaling symmetry [ y��  and 0�� ], ansatz (3.400c) yields

)/,( 1

1 yyxwyr�
��  in terms of the scaling invariants x and ./1 yy   Finally, for the shift

symmetry [ )(x�� � and 0�� ], we have ,0�R  and hence, )./,( 1

/
��

�

���� yyxwery

Consequently, the common invariant form for �  is given by 

                                           .const, ��� sxs                                             (3.409)

Substitution of (3.409) into the integrating factor determining equation (3.407) easily

leads to the solutions

                                                        ., 3

2

2

1 xx ����                                     (3.410)

From Theorem 3.6.2-4, we see that the solutions (3.410) determine two functionally

independent first integrals given by the line integral formula (3.370).  Since ODE (3.408)

is singular at ,0�x  we choose the path curve C  to be a piecewise straight line from

)0,0,~(x  to ),,,( 1yyx  parallel to the coordinate axes, with .0~
�x  Then (3.370) yields the

first integrals
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       ,220 1

2

1

2

00~1

1

yxxydyxdyxdx
yyx

x
����� ����                (3.411a)

                .0 1

32

1

3

0

2

0~2

1

yxyxdyxdyxdx
yyx

x
����� ����           (3.411b)

Hence, 11 const c���  and 22 const c���  yield two quadratures giving the complete

reduction of ODE (3.408).  Explicitly, by eliminating 1y  in the equations  11 c��   and

,22 c��  we have

                                                          .2

2

1

1

��

�� xcxcy                                     (3.412)

For a final example, consider the ODE

22

2

11
2

))(1)((
2

yx

yyxy
y

�

��

� ,                                 (3.413)

which admits the rotation symmetry [cf. Exercise 3.3-9]

.,i.e.,,X xy
y

x
x

y ���

�

�

�

�

�

� ��                              (3.414)

From (3.393), we see that .2 1yR ��  Since ,const�R  we seek integrating factors of

(3.413) given by the general ansatz (3.400a) in terms of the rotation invariants

2

1

2

122

)(1

)(
,

y

xyy
vyxu

�

�

��� ,                         (3.415)

satisfying .0X,0X )1(
�� vu   Since ),)(1( 2

1

)1( y����  the resulting ansatz is given by

),,())(1( 12

1

arctan 1 vuwye yr ��

��� .const�r

For simplicity, we take .0�r  From (3.398), this corresponds to invariance of �  under

.XX
~ )1(

��

�

��� R   Hence, for the ansatz

                                                    ),())(1( 12

1 vuwy �

��� ,                                          (3.416)

the integrating factor determining system (3.365a,b) becomes

                  ,0)(4)(2)69(2 ������� vvvuvu wuvvwuvuwuvuw                 (3.417a)

.0)(2)(443 222
������ uuvuvu wvuuwvuuvwvwu                (3.417b)

It is easy to see that const�w  satisfies (3.417a,b).  Hence we obtain a single integrating

factor

                      .))(1( 12

11

�

��� y                                               (3.418)
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The corresponding first integral of ODE (3.413) is given by the line integral formula

(3.366), which here becomes

� �

�

�

�

�

�

�

�

�

	

�



C

dy
y

dy
yx

x
dx

yx

y
12

1

22221
)(1

122
� .                    (3.419)

Since the integrand in (3.419) is singular at ,0�� yx  we take C  to be a piecewise

straight line from )0,~,~( yx   to  ),,,( 1yyx  parallel to the coordinate axes, with 0~
�x  and

.0~
�y    This yields

12

1
022~22~1

)(1

12
~

~2 1

dy
y

dy
yx

x
dx

yx

y yy

y

x

x
�

�

�

�

�

�

� ����

.~

~
arctan2arctanarctan2 1 ������

x

y
y

x

y
                                 (3.420)

Setting 0~
�y  and letting ,tan~

11 �� �  we obtain the simplified first integral

.
2

2)(~

1

22

22

1
1

xyyxy

xyxyy

��

��

��                                          (3.421)

            We next obtain another integrating factor from the determining system (3.417a,b)

by exploiting the scaling symmetry yyxx �� �� ,  admitted by ODE (3.413).  If we

further restrict the ansatz (3.416) to be scaling invariant, then ),(),( zwvuw �  with

,/ uvz �   and hence,

                   ).())(1( 12

1 zwy �

���                                           (3.422)

This simplifies the integrating factor determining system (3.417a,b) to a single ODE

.0)(2)34( ������ wuvvwuvu                                   (3.423)

The general solution of ODE (3.423) is a linear combination of 11 �w  and

                                                          .)1( 2/11

2 ��

�uvw (3.424)

Thus, from (3.424), we obtain a second integrating factor

2/1

2

1

2

1

22
12

12 1
)(

))(1)((
))(1(

�
�

�

�

�
�

�

�

�

�

		

	
�
�

xyy

yyx
y .

))(1)(( 2

11

1

yxyy

yyx

��

�

�       (3.425)

            We now check that the integrating factor (3.425) satisfies the criterion of Lemma

3.6.2-1 to yield a first integral that is functionally independent of (3.420).  First observe

from (3.419) that since �1

)1(X � xy )( 1� 1))()(1()(
11

2

11 ���� yy yx ��  is nonzero, it

follows that 1�  is not a function only of  z = v/u.  It then follows from ansatz (3.422) and

(3.424) that )(/)( 1122 ������ Fzw  for any function ).( 1�F  Thus, the first integrals

corresponding to 1�  and 2�  are functionally independent.  From the line integral

formula (3.366), we obtain
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.
))(1)(())((

2

))((

2)(
12

11

1

22

1

1
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1

22

1
2 � �
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�	
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�	
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C

dy
yxyy

yyx
dy

yxxyy

xyyyx
dx

yxxyy

xyxyy
�

Since this integrand is singular at ,0�� yx  we take C  from )0,~,~( yx  to ),,,( 1yyx  with

,0~,0~
�� yx  using a piecewise straight line parallel to the axes.  This yields the first

integral

12

11

11

022

22

~22~2
))(1)(()()~(

2
dy

yxyy

yyx
dy

yxy

xy
dx

yx

x yy

y

x

x
��

�

�

�

�

�

�

�

���
�

.~log)~~log()log())(1log()log( 22222

12
1

1 yyxyxyxyy ����������

(3.426)

By exponentiation of (3.426), we obtain the simplified first integral

1

222/12

1
2

)())(1(~

xyy

yxy

�

��

��                                       (3.427)

to within a multiplicative constant.  The first integrals (3.427) and (3.421) lead to the

complete reduction (quadrature) of ODE (3.413) given by ,const~
11 c���

.const~
22 c���   Explicitly, by eliminating ,1y  we obtain

)()(1)( 222

112 yxcxcyc ���� ,                                (3.428)

which is the general solution of ODE (3.413).

(3) Elimination of Variables Ansatzes

We now consider ansatzes involving elimination of one of the variables .or yx  Note

that the elimination of 1y  is a special case of the point-form ansatz (3.368).

            First of all, suppose 

                         ),( 1yx��� ,                                                 (3.429)

i.e., �  has no dependence on y.  From the characteristic equation (3.352a,b), it is

straightforward to classify all second-order ODEs (3.349) admitting integrating factors of

the form (3.429).  We integrate ),( 11
yxy �� �  with respect to ,1y  which gives

.),,(),(
11 �� ��� yayxbyxa                                   (3.430)

Substitution of (3.430) into the characteristic equation (3.352a) yields

.11 yxxy bybafa ����                                          (3.431)

            Thus, from (3.430) and (3.431), we obtain the following classification result:
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Theorem 3.6.3-3. A second-order ODE (3.349) admits an integrating factor of the form

(3.429) if and only if ODE (3.349) is of the form

),(

),(),(),(
),,(

1

111

12
yx

dyyxyxyxy
yyxfy

xxy

�

��� ���

�� (3.432)

for some functions ).,(),,( 1yxyx ��   The corresponding first integral is given by

.),(),(),,( 111 � �� yxdyyxyyx ��� (3.433)

If one can match a given ODE (3.349) to the form (3.432) for some

),,(),,( 1yxyx ��  then one immediately obtains a first integral (3.433).

            Now consider integrating factors of the form

             ),( 1yy��� .                                                 (3.434)

By the same steps as in proving Theorem 3.6.3-3, it is straightforward to classify all

second-order ODEs (3.349) admitting integrating factors of the form (3.434).  This leads

to the following result:

Theorem 3.6.3-4. A second-order ODE (3.349) admits an integrating factor of the form

(3.434) if and only if ODE (3.349) is of the form

),(

),()),(),((
),,(

1

111

12
yy

yxdyyyyxy
yyxfy

xyy

�

��� � ��

�� (3.435)

for some functions ).,(),,( 1yyyx ��   The corresponding first integral is given by

).,(),(),,( 111 yxdyyyyyx ��� �� � (3.436)

If one can match a given ODE (3.349) to the form (3.435) for some

),,(),,( 1yyyx ��  then one immediately has a first integral (3.436).

The matching of a given ODE (3.349) to (3.432) or (3.435) can be carried out

algorithmically [Cheb-Terrab and Roche (1999)].  In particular, from the integrating

factor determining system (3.365a,b), one can easily derive necessary and sufficient

conditions for a function ),,( 1yyxf  to satisfy (3.432) or (3.435).

Theorems 3.6.3-3 and 3.6.3-4 can be combined to obtain a result for integrating

factors depending only on .1y

Corollary 3.6.3-1. A second-order ODE (3.349) admits an integrating factor of the form

)( 1y���  if and only if ODE (3.349) is of the form

)(

),(),(
),,(

1

1

12
y

yxyyx
yyxfy

yx

�

�� �

��                               (3.437)
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for some functions ).(),,( 1yyx ��   The corresponding first integral is given by

).,()(),,( 111 yxdyyyyx ��� �� �                                 (3.438)

We note that a special case of an ODE of the form (3.437) is given by the

separable second-order ODE

,
)(

)(

1

2
yb

ya
y �                                                   (3.439)

for any functions ).(),( 1ybya

            An ODE (3.439) reduces to quadrature since the first integral (3.438) yields

,const)()( 1111 cdyybydyya ����� ���

which represents a first-order separable ODE [cf. Section 3.6.1] given by an algebraic

expression in :, 1yy

.)()( 1111 dyyacdyyby �� ��                                     (3.440)

Hence, if we denote the solved form of (3.440) by ),;( 11 cygy �  then the quadrature

2

1

const
);(

1
cxdy

cyg
����                         (3.441)

yields the general solution of ODE (3.439).

3.6.4   DETERMINING EQUATIONS FOR INTEGRATING FACTORS 

            OF THIRD- AND HIGHER-ORDER ODEs

We now consider a third- or higher-order ODE 

                                            ,3),,...,,,( )1()(
���

� nyyyxfy nn                                  (3.442) 

or, equivalently, the surface given by

                                                  .0),...,,,( 11 ��

�nn yyyxfy                                       (3.443) 

Theorem 3.6.4-1.  A function ),...,,,( )1( �

�
nyyyx�  with an essential dependence on )1( �ny

is a first integral of ODE (3.442), satisfying cyyyx n
���

� const),...,,,( )1(
�  on the

surface (3.443), if and only if 

,0|D
1211 �������

��

�� nnn yynyxfy fyy ������ �D (3.444)

where
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1

1D
�

�

�

��

�

�

�

�

�

�

n

n
y

y
y

y
x

� (3.445a)

and

.)(D|D
1�

�

�

�

����

n

nfy
y

fy
n

D (3.445b)

A corresponding integrating factor of order � of ODE (3.442) is a function

,0),...,,,( )(
����

�yyyx ,10 ��� n� given by the characteristic equation

��� )(D fyn�                                             (3.446a)

with

,),...,,,(
1

)(

�

���
nyyyyx �

�                                       (3.446b)

which is equivalent to (3.444). All first integrals of ODE (3.442) arise through

integrating factors satisfying (3.446a,b).

We now derive a determining system that yields the integrating factors of all

orders, 10 ��� n� , for ODE (3.442).  Consider the truncated Euler operator

.with)D(E 0

0

yy
yi

i
n

i

n �

�

�

���
�

                                (3.447)

Let 

                             ),,,,,(D),,,,( 111 �

� nn yyyxyyyx �� ��                            (3.448)

and define, inductively,

nyn ��� ,                                                                       (3.449a)

,,,2,1,D 1 nkknykn kn
������

���
�

�                            (3.449b)

where

                                                     ).(E0 �n��                                                 (3.449c)

            The following result shows that the truncated Euler operator (3.447) is connected

with annihilating total derivatives of differentiable functions of 11 ,,,,
�nyyyx � :
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Theorem 3.6.4-2. A function ),,,,( 1 nyyyx ��  is a total derivative (3.448) if and only if

it satisfies

,1,,1,0,0 ���

�

��
� nk

yn

kn
� (3.450a)

00 �� , (3.450b)

 on the entire  space.),,,,( 1 �nyyyx �   Then (3.448) holds with

0

111

1

111 ))(,...,,,(),...,,,(),,,,(

�

��

�

� �

�

�

�

�

�

�	
� ��

ny

iini

n

i

n
C

n dxydyyyyxdxyyyxyyyx �� � ,

(3.451)

where C is any path curve from a point )~,,~,~,~( 11 �nyyyx � to .),,,,( 11 �nyyyx �

Proof.  We break up the proof into “if” and “only if” parts.  First of all, suppose a

function ),,,,( 1 nyyyx ��  satisfies (3.448) for some ).,,,,( 11 �nyyyx ��   Then from the

identities

,D)D( yy �� �                                                                       (3.452a)

,with,...,2,1,D)D( 01
yyni

iii yyy ����
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���                 (3.452b)

it follows that
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since 0�
ny� .  Thus, (3.450b) holds.  In addition, substitution of (3.448) into (3.449a,b)

yields

,,...,2,1,
1

ni
iyi ���
�

� (3.453)

and hence, we obtain (3.450a) since 0)(
1
���

�inn yyyi �  from .0�
ny�

Let
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n

i

y ���� �

�1

� ,                                              (3.454)

which satisfies

x���                                                      (3.455)
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from (3.448) and (3.453).  Then we see that the integrability conditions for the existence

of  ),,,,( 11 �nyyyx ��  are given by

,,...,2,1,0 ni
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                                             (3.456a)
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Conversely, suppose a function ),,,,( 1 nyyyx ��  satisfies (3.450a,b).  We now

proceed to show that the integrability conditions (3.456a–c) are satisfied.  Let

,,...,,,...,2,1,
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We begin by establishing the following useful recursion identities

,1,...,1,0,D 1,1,11, ��������
����

njnjnjnj                                   (3.458a)

,,...,2,1,1,...,1,D ,11,1, nmmjmjmjmj ���������
���

            (3.458b)

,,...,2,1,0, nmmm ���

holding independently of (3.450a,b).  To obtain (3.458b), one first applies my�� /  to

(3.449b) with jkn ��  and subtracts jy�� /  of (3.449b) with .mkn ��  Then one

combines terms by using (3.457a).  Similarly, one obtains (3.458a).  

 Now consider km,�  for .1�� mk  If 12 ��� �mk , then using (3.458b)

iteratively, we have that 12, ��

�
�mm  is a linear combination of ,,D 1,

2 imjjj

i
����

�

�

.,,1,0 ���i  Similarly, if ,2��� mk  then 
�2, �

� mm  is a linear combination of

,,D 1,

12 imjjj
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� .1,,1,0 �� ��i  To proceed, we consider (3.458a) with

,2�� nj  which yields
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from (3.450a).  Likewise, for 0or1,...,6,4 ��� nnj  (for n odd or even, respectively),

by using (3.450a) and (3.458a) iteratively, we obtain

,1,...,,01, �����
�

nnmmm �                                    (3.459)
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where 2/n��   if  n  is even, or 2/)1( �� n�  if  n  is odd.  Hence, after combining the

above results, we have

0, �� km                                                      (3.460)

for all ,1 nkm ���  which yields (3.456b).  Then from (3.454) and (3.457a,b), we

obtain

1,...,1,0,,1
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through use of (3.449b) as well as (3.450b) in the case  .0�k    Hence, this yields

(3.456c) from (3.460).  Finally, we obtain (3.456a) immediately from (3.450a).  Thus, all

of the integrability conditions (3.456a–c) hold as a consequence of (3.450a,b), and so

there exists a  ),,,,( 11 �nyyyx ��  satisfying (3.448).

Finally, from the relations (3.453) and (3.455) for the partial derivatives of

),,,,( 11 �nyyyx ��  in terms of ),,,,,( 1 nyyyx ��  the fundamental theorem of calculus

for gradients yields
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to within a constant, where C  is any path curve from a point )~,...,~,~,~( 11 �nyyyx  to

).,...,,,( 11 �nyyyx   Thus, (3.461), (3.454), (3.456a) yield the line integral (3.451).            

Remarkably, through the identities (3.458a,b), the equations in the system

(3.450a,b) of Theorem 3.6.4-2 can be reduced to a simpler system of half as many

equations as follows.  We use the notation [q] to denote the greatest integer less than or

equal to a given rational number q.

Lemma 3.6.4-1. Equations (3.450a) for ],2/[,,1,0,2 nmmk ���  together with

(3.450b), are equivalent to the system of ]2/[2 n�  independent equations given by

,0�

nn yy� (3.462a)
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.0)D()1( 0
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� ni yy

ii
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� (3.462c)

The remaining equations (3.450a) for ,]2/)1[(,,1,0,12 ���� nmmk � are

(differential) linear combinations of (3.462a,b).
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Proof.   We use (3.458a,b) recursively.  For 1�� nj , we obtain
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Continuing, we find that ],2/)1[(,,1,0,/12 �����
��

nynn ��
�

 is a differential linear

combination of nn y��� /  and )1(if �� .1,,,1, ����
�

nnjjj ��  In addition, we see

that ,1, �

� jj ,1],...,2/)1[( ��� nnj  is a differential linear combination of

.,,1,0,/2 jniynin �����
�

�   Thus, nn y���
��

/12�  can be expressed as a differential

linear combination of ,,,1,0,/2 ������
�

iynin  which establishes the second part of the

lemma. It now follows from (3.458a,b) that the equations ,0/2 ����
� nn y

�

],2/[,,1,0 n�� �  are equivalent to the system
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Finally, we note that (3.463) and (3.449a,b) show that kn�� equals 0��

�
nykn  plus (if

1�k ) a polynomial of degree k  in ny  with coefficients given by differential linear

combinations of nin y���
�

/  for ,1,...,1,0 �� ki .,...,2,1 nk �   Consequently, we conclude

that (3.450a,b) is equivalent to the system 

,0�

�

��

n

n

y
,000 ��

�ny ,001, ��
�� nyjj ,1],...,2/)1[( ��� nnj

which are, respectively, given by (3.462a–c) through (3.457a,b) and (3.449a,b).

Furthermore, since the terms ,],...,2/)1[(, nnk
kk yy ���  in (3.462a,b) are linearly

independent, we see that the equations (3.462a–c) are independent.  This establishes the

first part of the lemma.

Now, from the characteristic equation (3.446a), let

.10),,,,,()),,,,((),,,,( 1111 ������
�

nyyyxyyyxfyyyyx nnn ����
�

�

(3.465)

By taking kny
�

�� /  of (3.465), ,,...,1,0 nk �  we obtain

,��
ny�                                                     (3.466a)
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.,...,2,1,)(0 nkf
knnkn yyy ����
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�                 (3.466b)

Then, using (3.449a,b), we have
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nyn �                                                (3.467a)
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where 1D
�n  is the truncated total derivative operator defined by
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Finally, from (3.454) and (3.468), we obtain
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Hence, for all integrating factors of ODE (3.443), Theorem 3.6.4-2 and Lemma

3.6.4-1 give a necessary and sufficient determining system consisting of the ]2/[1 n�

equations (3.462b,c).  The total system can be written out explicitly as follows, using

(3.466a,b) and (3.467a,b):
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Furthermore, through (3.467a,b) and (3.469) combined with (3.451), we obtain the first

integral ),,,,( 11 �nyyyx ��  corresponding to the integrating factor ),...,,,( 1 �
yyyx�

from the explicit line integral formula
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where C  is a path curve from any point )~,,~,~,~( 11 �nyyyx �  to the point ),,,,( 11 �nyyyx �

in space.),,,,( 11 �

�nyyyx �  If ),...,,,( 11 �nyyyxf  and ),...,,,( 1 �
yyyx�  are nonsingular,

then C  can be chosen arbitrarily and, hence, in any convenient way to simplify the

integral.  Most important, if ),...,,,( 11 �nyyyxf  or ),...,,,( 1 �
yyyx�  are singular, then

some path curve C  can be chosen so that the line integral (3.471) is nonsingular.            

Theorem 3.6.4-3. The integrating factors of order 10 ��� n�  of ODE (3.443) are the

solutions 0),,,,( 1 ���
�

� yyyx  of the determining system consisting of the ]2/[1 n�

equations (3.470a,b).  For a given integrating factor, the corresponding first integral of

ODE (3.443) is given by the line integral formula (3.471).

The integrating factor determining system (3.470a,b) is a system of ]2/[1 n�

linear homogeneous PDEs of order n  for ).,,,,( 1 �
� yyyx�   Any solution of (3.470a,b)

yields a first integral (3.471) which provides a reduction of the order of ODE (3.443) by

one, yielding an )1( �n th-order ODE represented by the surface

cyyyx n ��

�

const),,,,( 11 �� .  If one knows nk ��1  solutions of the integrating factor

determining system (3.470a,b), such that the resulting k first integrals k�� ,,1 �  are

functionally independent, i.e., none is a function of the others, then ODE (3.443) is

reduced to an )( kn � th-order ODE given by the elimination of 11 ,,
��� knn yy �  in the

equations ,const),,,,( 11 ini cyyyx ��
�

�� .,,2,1 ki ��  Hence, if ,nk �  this yields a

complete reduction of ODE (3.443) to quadrature.

It is straightforward to see that a set of first integrals ,,...,2,1, kii ��  is

functionally dependent if and only if 0),...,( 1 �kF ��  holds for some nonconstant

function  ).,...,( 1 kF ��   Consequently, from the characteristic equation (3.446a,b), it

follows that a set of integrating factors ,,,2,1, nkii ��� �  of ODE (3.443) determines

k  functionally independent first integrals ,,...,2,1, kii ��  if and only if 0
1

���
�

k

i ii
F
�

holds for all functions ,const),,( 1 ��kF �� �  where each i�  and i�  are related through

(3.446a,b) and (3.471).  For first integrals with integrating factors of order ,1�� n�  there

is a stronger criterion for functional independence.

Theorem 3.6.4-4. A set of integrating factors ,,,2,1, kii ���  of order kn ��� �0  of

ODE (3.443) determines k  functionally independent first integrals ,,,2,1, kii ���  if

and only if the integrating factors are linearly independent, i.e.,

0
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ii

k

i

c                                                    (3.472)

holds for all constants .0�ic
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Proof.   Suppose

                                                              0
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c                                                    (3.473)

holds where const.�ic  Let �
�
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k

i iicF
1

~
�  where }{ i�  is a set of k first integrals

corresponding to the set of k integrating factors }.{ i�  Then, from the characteristic

equation (3.446a,b) and (3.473), it immediately follows that
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Hence, using (3.474) and (3.445b), we have .0
~~

D
1

��� �
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k

i iicFF �DD  Consequently,

,const
~

cF ��  so that the set of first integrals }{ i�  satisfies

                                                ,0),,( 1 �kF �� �                                              (3.475)

where .
~

cFF ��   Hence, the set }{ i�  is functionally dependent.

Conversely, suppose (3.475) holds where }{ i�  is a set of  k first integrals with

the corresponding set of  k integrating factors }{ i�  being of order .kn ���   By taking

1/
�

�� ny  of (3.475) and using (3.446b), we obtain (3.473) with .
i

Fci �

�   We now show

that const.�ic  Since the set }{ i�  is functionally dependent, we suppose that at most

kr ��1  of these first integrals are functionally independent and denote them as

.,,1 r�� �   Hence, through reduction of order of ODE (3.443), the variables rnn yy
��

,...,1

in each expression i�  can be eliminated in terms of ,,,1 r�� �  and .,,,, 11 ��rnyyyx �

Then ,0// 1 ���������
� kiri �� �  and, furthermore, since each i�  is assumed to be

of order ,rnkn �����  it follows that ,0)/)(/(/
1

���������� �
�

r

j mjjimi yy ��

.1,, ��� nrnm �   Thus, since the functional independence of ,,,1 r�� �  implies that

the rr �  Jacobian matrix of partial derivatives mj y�� /�  is invertible, we obtain

.,,1,allfor0 kji
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Now we take j��� /  of (3.473) with ,
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Fci �

�  and use the commutativity of partial

derivatives
ji
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� ��� / ,/ ijc ����  to obtain .0)/(
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Since 
j

Fc j �

�  also satisfies ,0
1

��� �
�

k

i ij ijj
FFc �

���

DDD  it then follows from

(3.476) and (3.445b) that .0D �jc  Hence, for ,,,1 kj ��  we have const�jc  in (3.473),

which completes the proof.                                                                                                  

A sufficient criterion, generalizing Theorem 3.6.2-4 for functional independence

of first integrals, can be given with less restriction on the order of corresponding

integrating factors than required in Theorem 3.6.4-4.

Theorem 3.6.4-5.  If nk ��2  integrating factors ,,,2,1),,,,,( 1 kiyyyxi ��

�
��  of

any order 10 ��� n�  of ODE (3.443) are linearly independent and satisfy

,0)/( ���
�rnyji ,,,2,1,1,...,1 kjikr �����  then the corresponding first integrals

,,,2,1, kii ���   given by (3.471),  are functionally independent.

Proof.    Left to Exercise 3.6-23.          

The general solution of the integrating factor determining system (3.470a,b) is

given by

i

n

i
i

F ��� �

�

�

1

,                                                 (3.477)

where ),,( 1 nF �� �  is an arbitrary function of n  functionally independent first integrals

),,,,( 11 �ni yyyx ��  with corresponding integrating factors ),,,,,( 1 �
� yyyxi�

,,,2,1 ni ��  arising from the characteristic equation (3.446a,b).  Hence, finding all

solutions of (3.470a,b) is equivalent to solving the original nth-order ODE (3.443).

However, it suffices to find just nk ��1  solutions that yield functionally independent

first integrals in order to reduce the order of ODE (3.443) by .k

   For integrating factors of order ,1�� n�  the determining system (3.470a,b) splits

into an overdetermined linear system of PDEs and thus has a finite number of linearly

independent solutions.  In practice, it is useful to consider ansatzes for further simplifying

and reducing this overdetermined system.  Moreover, for finding integrating factors of

order ,1�� n�  there is no inherent splitting of the determining system (3.470a,b) and,

hence, it is necessary to use ansatzes so as to obtain an overdetermined system from

(3.470a,b) with at most a finite number of linearly independent solutions.  Most

important, in all these situations the resulting systems of determining equations for

integrating factors can be solved by the same algorithmic procedure used in solving the

analogous determining equations for symmetries of order 1�� n�  [cf. Section 3.5].

We now summarize several effective ansatzes, generalizing those given in Section

3.6.3 to third- and higher-order ODEs, for obtaining solutions of the integrating factor

determining system (3.470a,b).  Examples illustrating the use of these ansatzes will be

given in Section 3.6.5.
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(1) Point-Form Ansatzes

If one considers integrating factors of ODE (3.443) of point-form

                                           ,),(),( 1yyxyx �� ���                                          (3.478)

then the integrating factor determining system (3.470a,b) becomes an overdetermined

system of  ]2/[1 n�   linear homogeneous PDEs for ),( yx�  and ).,( yx�

Theorem 3.6.4-6. An nth-order ODE (3.443), ,3�n admits an integrating factor of

point-form (3.478) if and only if
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                                                                                                                          (3.479)

for some function ).,,,,( 21 �nyyyxh �  In particular, if 3�n , it is necessary that

),,,,( 11 �nyyyxf �  be at most linear in ;1�ny  if ,3�n  it is necessary that

),,,,( 11 �nyyyxf �   be at most quadratic in 1�ny .

Proof.    We start from the identity

)(D)( 1111 ��

��� nnn yyyyy ����  )DD( 211 ��� yyyn ���
�

.

Then, from the characteristic equation (3.446a), it follows that (3.478) is an integrating

factor of ),...,,,( 11 �

� nn yyyxfy if and only if for some function ),,,,,( 11 �nyyyx �� we

have

).DD()())((D 211111 �������� yyyfyyy nn ��������
��

Thus, we obtain the relation
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)DD(D
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yyyh
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�                                (3.480)

where

                  .)( 11 ��� ���
�nyyh                                      (3.481)

Then ny�� /  of (3.480) immediately yields 0
1
�

�nyh  if .3�n Hence, we obtain ODE

(3.479).

Conversely, for any function ),,...,,,( 21 �nyyyxh  from (3.480) and (3.481) we see

that the characteristic equation (3.446a) for ODE (3.479) is satisfied for the integrating

factor (3.478) if  ,3�n where .)( 11 hyy n ���
�

���                                       

In practice, the simplest way to determine if a given third- or higher-order ODE

(3.443) admits an integrating factor of point-form is to first verify that the necessary
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conditions given in Theorem 3.6.4-6 are satisfied.  Then one solves the resulting

integrating factor determining system (3.470a,b).  Alternatively, note that if one can

match the form of (3.479) to a given ODE (3.443), then one immediately obtains the

integrating factor (3.478), with the corresponding first integral given by (3.481).

(2) Elimination of Variables Ansatz

More generally, for an nth-order ODE (3.443), ,3�n if one considers integrating factors

),,,,( 1 �
� yyyx�  of order ,11 ��� n�  i.e., depending on variables iy  up to some order

strictly less than the order of the highest derivative appearing in ),,...,,,( 11 �nyyyxf  then

the integrating factor determining system (3.470a,b) again reduces to an overdetermined

system of ]2/[1 n�  linear homogeneous PDEs, which has at most a finite number of

linearly independent solutions ).,,,,( 1 �
� yyyx�   There exist efficient computational

algorithms to solve such systems [Wolf (2002a,b)] and, hence, it is straightforward to

find all integrating factors of order less than 1�n  for a given nth-order ODE (3.443).

However, the computational complexity grows quickly as n increases.

(3) Symmetry-Type Ansatzes

If an nth-order ODE (3.442) admits a point symmetry

,),(),(X
y

yx
x

yx
�

�

�

�

�

� ��                                      (3.482)

then since the corresponding surface (3.443) is invariant under the nth-extended generator

i

i
n

i

n

yyx �
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�

�

�

�

� �

�

)(

1

)(X ���

with )(i
� given by (2.100a,b), it follows that the (n – 1)th-extended generator )1(X �n  maps

first integrals of ODE (3.442) into first integrals since any first integral of ODE (3.442) is

constant for every solution curve on the surface (3.443).

Theorem 3.6.4-7.   Suppose ),,,,( 11 �nyyyx ��  is a first integral with integrating factor

),,,,( 1 �
� yyyx�  for ODE (3.443). Then, under any point symmetry (3.482) admitted by

ODE (3.443),

                                     const,~,~X~ )1(
���

� ccn
�� (3.483)

yields a first integral with integrating factor given by

,X
~

1

)1(
�����

�

�

n

n R                                           (3.484)

where

.)1(1

1

)1(

1 xyy

n

n

n nyn
y

R ���

�

����

�

�

�

�

�

�

(3.485)
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Proof.   Left to Exercise 3.6-27.                                                                                          

Consequently, every point symmetry admitted by ODE (3.443) induces a point

symmetry on the vector space of its integrating factors.  The explicit generator in

),,,,,( 11 �
�nyyyx � space� is given by

��

�

��

�

�

�

�

�

�

�

�

�
�

�

�

� 1

)(
1

1

X
~

n

i

i
n

i

R
yyx

��� ,                          (3.486)

which maps integrating factors into integrating factors of ODE (3.443).  Hence, as an

ansatz, one can consider integrating factors invariant under (3.486),

const,,X
~

���� rr                                           (3.487)

or, equivalently,

.0))1(( 1

)(
1

1

������������ �

�

�

rnyn xyyy

i
n

i

yx i
������             (3.488)

If we now obtain invariants ),( yxu  and ),,( 1yyxv  of (3.443) by solving ,0X �u

0X )1(
�v ],0[

1
�yv and introduce the differential invariants ,/),,,,( 11

ii

ii duvdyyyxv �
�

�

satisfying ,0X )1(
�

�

i

i v  for ,2,...,1 �� ni then we have the general solution of (3.488)

given by

),,,,,(
),,(

),,(
exp 211

1

)1(
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�

�
�

�

�

�
�

�

� �

	
 � n
n vvvuwdy

yvu

yvuRr
�

�

                   (3.489)

for an arbitrary function ),,,,,( 21 �nvvvuw �  with x  and y  eliminated in terms of  u  and

.v   Alternatively, if  0��  or ,0��   then we can have

),,,,(
),(

),,(
exp 21

1
�

�

�
�

�

�

�
�

�

� �

	
 � n
n vvvuwdx

ux

vuxRr
�

�

                  (3.490a)

or

),,,,,(
),(

),,(
exp 21

1
�

�

�
�

�

�

�
�

�

� �

	
 � n
n vvvuwdy

uy

vuyRr
�

�

                 (3.490b)

in terms of an arbitrary function ).,,,,( 21 �nvvvuw �

These ansatzes correspond to the scaling invariance of ),,,,( 1 �
� yyyx�  and

),,,,( 11 �nyyyx ��   under  ,X )1( �n  given by

                                       const,,X )1(
����

� ssn                                                    (3.491)

                                       const,~,const,~X )1(
����

� crcrn
�� (3.492)

if and only if ,const1 	�	
�

srRn  which holds for the following class of point

symmetries:
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Lemma 3.6.4-2. A point symmetry (3.482) of the nth-order ODE (3.443) has

cyR n

n

n �����
�

�

�

const/ 1

)1(

1 �   if and only if

)(,))()1(()( xycxnx ����� ������ , (3.493)

for some functions ).(),( xx ��   In particular, all translations and scalings satisfy

.const1 ��nR

Proof.   Left to Exercise 3.6-19.          

Hence, note that any translations and scalings admitted by a given ODE (3.443)

are automatically inherited by its integrating factor determining system (3.470a,b), so that

one can consider the simple ansatz

                                            ),,,,,( 21 �

�� nvvvuw �                                          (3.494)

i.e., 1�� nRr in (3.489) since .const1 ��nR

3.6.5   EXAMPLES OF FIRST INTEGRALS OF 

           THIRD- AND HIGHER-ORDER  ODEs

Consider a third-order ODE

),,,( yyyxfy �������                                              (3.495)

represented as a surface

                            ).,,,( 213 yyyxfy �                                              (3.496)

From Theorem 3.6.4-3, we see that the integrating factors ),,,( 21 yyyx�  of ODE (3.496)

are given by the explicit determining system

,0)(2
2212221 21 ���������� yyyyyyxyy fyy           (3.497a)

xxyyyyyyyxxxyyyyxy yyyyyyy ������������� 1

3

2

3

1

2

2212 3)()()(333
1111

1111111 21

2

212

2

1

2

2

2

12 6)(3)(3)(3)(33 xyyyyyyyyyxyxyyxxy yyyyyyyyy ������������

2221111
)()()()()()()()( 2

1221 yyyxxyyyyyyyxyy fyffyfyfyff ��������������

  ,0)(2)(2)(2)()(
21212211 2121

2

2 ��������� yyyyxyxyyyyy fyyfyfyfy                      (3.497b)

with the corresponding first integrals ),,,( 21 yyyx�  of ODE (3.496) given by the explicit

line integral formula

� �����������

C yyyyyxyy yfyfyff 221 21221
)()()()([(�

                         ))(222)()( 12121

2

2

2

1 1111
dxydyyyyyyy yyxyxyyyyyxx �������������

)].())()(( 22121 12
dxfdydxydyyyf yyxy ������������        (3.498)
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 We now illustrate how to find solutions of the integrating factor determining

system (3.497a,b) through the algorithmic methods summarized in Section 3.6.4.  We

also show the calculation of corresponding first integrals through the line integral formula

(3.498) and illustrate reduction of order from first integrals for third-order ODEs.

As a first example, consider the ODE

,13 yyy ��                                                  (3.499)

arising from seeking traveling wave solutions of the Korteweg–de Vries (KdV) equation

[Exercise 4.1-2].  The point symmetries admitted by ODE (3.499) consist of the

translation symmetry yyxx ��� ,�  and the scaling symmetry ., 2 yyxx �

�� ��

To begin, we observe that since ODE (3.499) does not involve ,2y  it satisfies the

necessary condition of Theorem 3.6.4-6 to admit point-form integrating factors

    .),(),( 1yyxyx �� ���                                          (3.500)

Substitution of (3.500) into the integrating factor determining system (3.497a,b) yields,

respectively,

0��                                                         (3.501)

and, after (3.501) is used,

                .03)(3)(33 1

2

1

3

1212 ������� xxxxxxyxyyyyyyyxy yyyyyyy �������      (3.502)

From the splitting of (3.502) with respect to 1y  and ,2y  we obtain 0�� yyxy ��   and

.xxxxy �� �    This immediately gives

.const,const, 1010 ���� ����� y

Hence, ODE (3.499) admits two integrating factors of point-form, given by

                                                 .,1 21 y����                                               (3.503)

Using the line integral formula (3.498) with C  chosen to be a piecewise straight line

from )0,0,0,0(  to ),,,( 21 yyyx  parallel to the coordinate axes, we obtain the

corresponding first integrals

2

2

2
1

21 ][ yydydyy
C

���� ��                                  (3.504a)

and

.)(])[( 2

2

12
13

3
1

2112

2

2 yyyydyydyydyyy
C

������� ��           (3.504b)

From Theorem 3.6.4-4, we see that the first integrals (3.504a,b) are functionally

independent.  Hence, we have two quadratures ,const,const 2211 cc ���� �� which

lead to a reduction of the third-order ODE (3.499) to a first-order ODE
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.22 2

3

3
1

11 cyycy ����

This reduced ODE is separable, which results from the invariance of the integrating

factors (3.503) under the translation symmetry yyxx ��� ,�  admitted by ODE

(3.499) (but not under the admitted scaling symmetry).  Thus, we obtain an additional

first integral [cf. (3.441)]

,
22 2

3

3
1

1

3 x
cyyc

dy
�

��

�� ��                                   (3.505)

which obviously is functionally independent of 1�  and .2�   Thus, 33 const c���  yields

the complete quadrature (i.e.,  the general solution) of ODE (3.499).

For a second example, consider the third-order ODE

y

y

y

y
xy

�

��

�

�

��

����

2

2

3 )(
6

)(

)(
6                                          (3.506)

or, equivalently, the surface

,0)()(6)()(6 1

1

2

2

2

1

3

23 ���

�� yyyyxy                         (3.507)

which admits contact symmetries as shown in Section 3.5.2.  First we observe that

(3.507) is cubic in 2y  and, hence, from Theorem 3.6.4-6, it does not admit any

integrating factor of point-form .),(),( 1yyxyx �� ���  Consequently, we instead make

use of the symmetry-type ansatz (3.490a,b) to seek integrating factors.  From Section

3.5.2 [cf. Exercise 3.5-5], we see that the point symmetries of (3.507) consist of

translations in ,y  scalings in ,x  and scalings in .y  For the y translation symmetry [ 1�� ,

0�� ], the ansatz (3.490b) yields ),,( 21 yyxwery
��  in terms of invariants .,, 21 yyx   For

the y  scaling symmetry ],0,[ �� �� y  the ansatz (3.490b) yields ��

)/,/,( 21

1 yyyyxwyr�   in  terms  of  invariants  ./,/, 21 yyyyx   Similarly,  the  x   scaling

symmetry ],0[ x�� ��  leads to ).,,( 2

2

1

2 yxxyywxr�
��  Hence the common joint

invariant form for ),,,( 21 yyyx�  is given by

.const,const,),()(
1

2
1 ����� sr

y

xy
uuwyx sr                    (3.508)

Substitution of (3.508) into the integrating factor determining system (3.497a,b) yields

the equations
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                ,0)21236()1)21(36()13)(12( 2
�������������� wsuwrusuwuuu   (3.509a)
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                               .0))2)(1()4)(1(3)56(3 22
���������� wrrrusrrussrr   (3.509b)

We take dud /  of (3.509a), eliminate w ���  through (3.509b), and then eliminate w ��

through (3.509a).  This leads to ,0��� BwwA  where

.
)13)(12(

))1()6)(1(2))6)(1()1(18()1(12)(2(

),2)(1)1((
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������
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rrusrussrusrsu
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rsurusA

Hence, if ),1,1(or)2,0(),( ��rs  so that ),0,0(),( ��BA  then we obtain a separable first-

order ODE

.
)1)1)((13)(12(

)1()6)(1(2))6)(1()1(18()1(12 23

�����
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�

rusuuu

rrusrussrus
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w

     (3.510)

This has the solution

           ,22,53,)1)1(()12()13( �������������

� srqsrpurusuuw rqp

                                                                                                                                    (3.511) 

which can be readily checked to satisfy both equations (3.509a,b) including the cases

).1,1(),2,0(),( ��rs   Thus, we have the family of integrating factors
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depending on two free parameters ).,( sr   One expects that (3.512) yields at most two

functionally independent first integrals.

To obtain simple expressions, we choose 2�r  and ,1�s 2 in (3.512), which

yields two integrating factors

.
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1
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y
����                                       (3.513)
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Since const)(/ 1

121 �����

�y  does not involve ,2y  from Theorem 3.6.4-5 we see that 1�

and 2�  yield functionally independent first integrals 1�  and ,2�  given by the line

integral formula (3.498).  Hence, we obtain the first integrals
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   (3.514a)
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   (3.514b)

with C  chosen to be a piecewise straight line from )~,0,0,0( 2y  to ),,,,( 21 yyyx  parallel to

the coordinate axes, with .0~
2 �y   Note that it is now straightforward to verify that the

family of integrating factors (3.512) reduces to

,22,53,)()()1(,

)1()()()1()()(
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and hence, the corresponding family of first integrals is a function combination of

(3.514a,b).

We now obtain a third functionally independent first integral by considering

(3.509a,b) in the special case when ).2,0(),( �rs   Since (3.511) with 2,0 �� rs  yields a

solution of (3.509a,b), given by

,)12)(13(
1 2

2

�

��

�

� uu
u

u
w

we can use reduction of order to find the general solution of (3.509a,b) in this case.  This

yields a second solution

,2�
� uw

which leads to the integrating factor

.
)(

)(
2

2

2

1
3

y

y
�� (3.515)

Note that 3�  is linearly independent of 1�  and .2�  A corresponding first integral is

obtained from the line integral formula (3.498) with the same path curve C  as before.

This yields



226

,
)(

62
)(

)(
)

2
6(2)6(

2

2

1
122

2

2

1
1

2

1
13

y

y
xyydy

y

y
dy

y

y
xdydxy

C
���

�

�

�

�

�

	



�
�� ��

     (3.516)

which is functionally independent of  (3.514a,b) since 0)()( 21 �� yy ��  but .0)( 3 �y�

The first integrals (3.514a,b) and (3.516) yield three quadratures ,const 11 c���

,const,const 3322 cc ���� ��  giving the complete reduction of (3.507) to an

algebraic equation through the elimination of 2y  and .1y  Explicitly, solving (3.514a) for

2y  and substituting into (3.514b) and (3.516), we have

.0)2()(3

,0)(

.113
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1

211

3

1
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���

cyycyx

cycyx

After algebraically combining these equations to eliminate ,1y  we obtain
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231 )12)2(()9)2((3 xcyccxcyccx �����

,0)12)2)((9)2()(2( 1

2

32313 ������� xcycxcyccyc                  (3.517)

which is the general solution of ODE (3.507).

Finally, consider a fourth-order ODE

                                                                ),,,,()4( yyyyxfy ������� (3.518)

 represented as a surface

                                                  .0),,,,( 3214 �� yyyyxfy (3.519)

From (3.470a,b), we see that the determining system for the integrating factors

),,,,( 321 yyyyx�  of ODE (3.519) is given by

                                                                        ,0)(D2
33332
������ yyyy f             (3.520a)

              ,0)()(2)(D)D(D32
2231322 3
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313 ������������ yyyyyyyyy fff             (3.520b)
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���������� yyyy ffff            (3.520c)
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����   The line integral formula for the corresponding

first integrals is given by
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  Through the algorithmic methods presented in Section 3.6.4, we now give an

example to illustrate how to solve the integrating factor determining system (3.520a–c)

and calculate first integrals from (3.521) to obtain a reduction of order. 

  Consider the fourth-order ODE

0))/(( ������ yyyy

that arises in the study of the wave equation with wave speed ).(xy  This ODE is

equivalent to the surface

1
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in space.),,,,,( 4321 �yyyyyx   We now find all integrating factors ),,,( 21 yyyx�  of ODE

(3.522) up to second-order.  From the integrating factor determining system (3.520a–c),

we see that the first equation (3.520a) yields 0
2
�� y  and so �  is at most a first-order

integrating factor.  The second equation (3.520b) then becomes linear in .2y  The

coefficient of 2y  yields

0)(53
11

2

111 ������ yyy yy ,

which is an Euler equation [cf. Section 3.6.3] with the general solution
1

1))(,( �

�� yyx� .))(,( 3
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� yyx�   The remaining terms in (3.520b) now split with respect

to powers of ,1y  giving
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This yields ,, 2
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0 yy ���� ��  with .const,const 00 �� ��  We then find that
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�  satisfies the third equation (3.520c).  Hence, we obtain two

integrating factors given by
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Since these are first-order integrating factors, from Theorem 3.6.4-4 it follows that the

corresponding first integrals are functionally independent.  The line integral formula

(3.521) gives
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where C  is chosen to be a piecewise straight line from )0,0,~,0,0( 1y   to  ),,,,,( 321 yyyyx

parallel to the coordinate axes, with .0~
1 �y   The first integrals (3.524a,b) yield two

quadratures ,const 11 c���   ,const 22 c���  leading to a reduction of the fourth-order

ODE (3.522) to a second-order ODE

.)( 1

2

12
1

2 cyc
y

y
y ��� (3.525)

The ODE (3.525) is separable [cf. (3.439)], and hence, it immediately admits two

quadratures, yielding

4
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�
� ,                       (3.526)

which is a general solution of ODE (3.522).

EXERCISES 3.6

1. Consider the general second-order linear ODE

).()()( xgyxqyxpy ������

(a) Find its integrating factors of the form ),( yx�  and corresponding first integrals

when 0)( �xg  and .0)( ��xg

(b) In the case const,)(const,)( �� xqxp  find its point-form integrating factors

1),(),( yyxyx �� ���  and corresponding first integrals. 

2. Consider the nonlinear van der Pol oscillator

           const.,,,,0)1( 2
�������� pcbabyyaycy p (3.527)

Find its point-form integrating factors 1),(),( yyxyx �� ���  and corresponding

first integrals.  Show that two functionally independent first integrals are obtained if
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and only if 3�p  and ,3bac ��  and give the complete quadrature of (3.527) in this

case.

3. Consider the fully nonlinear Duffing oscillator

                 const.,03
����� aayy (3.528)

(a) Show that the only point-form integrating factor admitted by (3.528) is given by

.1y��

(b) Show that the reduced first-order ODE c�� const�  given by the first integral �

corresponding to 1y��  is separable.  Hence, obtain the complete quadrature of

(3.528).

(c) Find the integrating factor of (3.528) corresponding to the quadrature of this

separable reduced ODE.

(d) Consider the integrating factor ansatz (3.400b,c) for (3.528) using the joint

invariants of the translation symmetry yyxx ��� ,� and the scaling symmetry

yyxx p)1/(2, �

�� ��  of (3.528).  Show that this ansatz yields a first-order

integrating factor of (3.528) that is not of point-form and gives a first integral

functionally independent of the one arising from the integrating factor .1y��

4. Consider the variable frequency oscillator [Mimura and Nôno (1994)]

            .0)( 2
����� yyy (3.529)

(a) Find the point-form integrating factors 1),(),( yyxyx �� ���  and corresponding

first integrals of ODE (3.529).

(b) Find the integrating factors given by the ansatz (3.400b,c) using the joint

invariants of the scaling symmetry yyxx �� ,�  and translation symmetry

yyxx ��� ,�  of ODE (3.529).  Find the corresponding first integrals.

(c) Obtain the complete quadrature of ODE (3.529).

5. The Thomas–Fermi equation is given by

.2/32/1 yxy �

��� (3.530)

(a) Show that ODE (3.530) admits no point-form integrating factors.

(b) Find the first-order integrating factors of ODE (3.530) given by the ansatz

(3.400b,c), using the invariants of the scaling symmetry yyxx 3, �

�� ��

admitted by (3.530).

6. Find all first-order integrating factors ),,( 1yyx�  and corresponding of the third-order

ODE .0����y  By using the general solution of this ODE, find all second-order

integrating factors ),,,( 21 yyyx�  and corresponding first integrals.

7. Consider the Blasius equation

.0
2
1

������� yyy (3.531)

(a) Show that the third-order ODE (3.531) admits no first-order integrating factors.
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(b) Find the second-order integrating factors of (3.531) given by the ansatz (3.490a,b)

using the joint invariants of the translation symmetry yyxx ��� ,�  and

scaling symmetry ., 1yyxx �

�� ��  Show that ODE (3.531) admits no

integrating factors of the form .const],[/),( 3

21 ���� sryyuuyy sr
�

8. Consider the KdV traveling wave ODE (3.499).
(a) The two admitted point-form integrating factors (3.503) of ODE (3.499) lead to a

reduced first-order ODE.  Find the integrating factor of ODE (3.499)

corresponding to the quadrature of this reduced ODE.

(b) Find the first-order integrating factors of ODE (3.499).

(c) Find the second-order integrating factors of ODE (3.499) given by the ansatz

,const],[)(1 ��� sruyy sr
�   using the scaling symmetry invariant  ./ 2

2 yyu �

9. Consider the fourth-order ODE

./)( 2

3
4)4( yyy ������ (3.532)

(a) Find the point-form integrating factors of ODE (3.532).

(b) Find the first- and second-order integrating factors of ODE (3.532).

(c) Find the third-order integrating factors of ODE (3.532) given by the ansatz

(3.490a,b), using the joint invariants of the x  and y  translation symmetries and

the x  and y  scaling symmetries of (3.532).

10. Classify all second-order ODEs ),,( yyxfy ����  admitting an integrating factor of the

form ).,( yx���

11. Classify all second-order ODEs ),,( yyxfy ����  admitting integrating factors of the

form:

(a) 1/1 y�� ;

(b) 2

1)(y�� ;  and

(c) 1y
e�� .

12. Find the necessary and sufficient conditions on a function ),,( 1yyxf  such that the

second-order ODE ),,( yyxfy ����  admits an integrating factor of the form:

(a) ),( 1yx��� ;  and

(b) ),( 1yy��� .

13. Classify all third- and higher-order ODEs admitting an integrating factor of the form

).,,( 1yyx���

14. Consider the truncated Euler operator  
1

1 DE
yy �

�

�

�

�

�   on  ),,( 1yyx -space,  where

.D 1
y

y
x �

�

�

�

�

�
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(a) Show that the equation 

0)),,((E 11 �yyx�                                            (3.533a)

on space-),,( 1yyx  can be explicitly solved by the following steps to obtain

),,(D),,( 1 yxyyx �� �

.),,()0,0,(),( 1

1

0 1
������� dyyxyxxyx y�� �

(3.533b)

   In (3.533a), replace y  by y�� �)(  and 1y  by ,)(D)( 11 y��� ��  and then

multiply by  yddY ��/   to get

�
�

�

�

�
�

�

�

�

�

	

�

�


 ),,(D),,(0 1

1

1 x
Y

x
Y

y ��

).,,(),,(D 11

1

xx
Y

y �

�

�

�

�

�
�
�

�

�

�
�

�

	

�

�



�                      (3.534)

Finally, integrate (3.534) from 0��  to ,1��  and use the identity

,)0,0,()0,0,(
1

0
���� dxxx ��

   which leads to (3.533b).

(b) Show that for an appropriate path curve ,C  the line integral formula (3.336)

reduces to (3.533b) to within a constant.

15. For a general first-order ODE ),,( yxfy ��  solve the integrating factor equations

)/(/1/ ����� yfdfdydx  to obtain the general solution 11)( ���� �F , where

y)( 11 ���  is any particular solution of (3.335) and F  is an arbitrary function of  .1�

16. Show that the truncated Euler operator 
2

2

1

2 DDE
yyy �

�

�

�

�

�

�

�

� , with

1

21D
y

y
y

y
x �

�

�

�

�

�

�

�

� , on space-),,,( 21 yyyx  can be inverted similarly to

(3.533a,b).  Show that the line integral formula (3.366) reduces to this inversion for

an appropriate path curve .C

17. Prove the identity

,)D(D)D(]X,D[ )()(

n

nn

y�

�

�� ��
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where )(X n  is the nth extension (2.99f) of the operator

,),(),(X
yx

yxyx
�

�

�

�

�� ��
)(n

�  is the nth extension (2.100a,b) of ,�  and D  is the

total derivative operator (3.445a) on space.-),...,,,( 1 nyyyx

18. State and prove the converse of Theorem 3.6.3-1.

19. Prove Lemmas 3.6.3-2 and 3.6.4-2.

20. Prove Theorem 3.6.3-4 and Corollary 3.6.3-1.

21. Show that kn��  equals 0��

�
nykn  plus a polynomial of kth degree in ny  with

coefficients given by differential linear combinations of ,/ nin y���
�

,0 ki ��

.,...,2,1 nk �

22. Show that the system of equations ,1],...,2/)1[(,001, �����
��

nnj
nyjj  and

000 ��
�ny  explicitly yield (3.462b,c).

23. Prove Theorem 3.6.4-5.

24. Prove Theorem 3.6.4-7.

3.7 FUNDAMENTAL CONNECTIONS BETWEEN INTEGRATING 

FACTORS AND SYMMETRIES

We now discuss important connections between the determining systems derived in

Sections 3.5 and 3.6, respectively, for symmetries and integrating factors of second- and

higher-order ODEs.

For an ODE with a variational principle, all first integrals can be shown to arise

from invariance of the action functional under one-parameter groups of local

transformations [cf. Section 2.7.2] through the classical Noether's Theorem [Noether

(1918); Boyer (1967); Olver (1986)].  In particular, Noether’s Theorem states that a one-

parameter local transformation group leaves invariant the given action functional if and

only if the infinitesimal of the transformations, in characteristic form [cf. Section 3.5.1],

is an integrating factor of the given ODE.  Clearly, since every such one-parameter local

transformation group leaves invariant the extremals of the action functional, it gives rise

to a corresponding symmetry of the ODE.  However, all symmetries of the ODE need not

necessarily arise from local transformation groups of the action functional.  For example,

often an action functional is not invariant under scalings admitted by the corresponding

ODE.  If a symmetry of an ODE corresponds to a one-parameter local transformation

group of an action functional for the ODE, then it is called a variational symmetry.

Consequently, from Noether’s Theorem, it follows that integrating factors are the same as

variational symmetries when an ODE possesses a variational principle.

            Existence of a variational principle for an ODE can be expressed as a condition on

the linear operator associated with the linearization of the ODE (i.e., its Fréchet
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derivative).  In particular, an ODE admits a variational principle if and only if its

linearization operator is self-adjoint.  [Moreover, then an action functional can be

constructed from the independent and dependent variables of the ODE through an explicit

formula [Olver (1986)].]

Whether or not an ODE admits a variational principle, the linearization operator

of the ODE is directly connected with the determining equation for symmetries of the

ODE.  From Theorem 3.5.1-1, symmetry characteristics are the solutions of the

linearization of the ODE holding on the entire solution space of the ODE.  As a result, if

the linearization operator of an ODE is self-adjoint, then the integrating factors of the

ODE are the same as the variational symmetries of the ODE and, thus, in this situation,

the integrating factor determining system is equivalent to the symmetry determining

equation augmented by conditions for a symmetry to be variational.  If the linearization

operator of an ODE is not self-adjoint, then the integrating factors are no longer

symmetries but instead turn out to be directly connected with the solutions of adjoint

linearization of the ODE, as is familiar in the classical case of second-order linear ODEs

[cf. Section 3.6.3].

We show that for an nth-order ODE, whether or not its linearization operator is

self-adjoint, the integrating factor determining system of ]2/[1 n�  equations, arising

from Theorem 3.6.4-3, is equivalent to the adjoint equation of the symmetry determining

equation, augmented by ]2/[n  extra equations.  These extra determining equations are

called the adjoint invariance conditions, while the solutions of the adjoint equation of the

symmetry determining equation are called adjoint-symmetries.  Thus, the integrating

factors of a nth-order ODE are those adjoint-symmetries that satisfy the adjoint

invariance conditions.

In the case when an nth-order ODE admits a variational principle, the symmetry

determining equation is the same as its adjoint equation, so here adjoint-symmetries are

symmetries.  The adjoint invariance conditions are then equivalent to the condition for a

symmetry to be variational.  We explicitly identify the variational symmetry condition as

]2/[n  determining equations obtained by splitting up the integrating factor determining

system into the symmetry determining equation augmented by ]2/[n  extra determining

equations.

Finally, we compare the calculations for integrating factors, symmetries, and

adjoint-symmetries.  In particular, we show that the class of nth-order ODEs admitting

integrating factors of a given form is of a cardinality similar to that of the class of nth-

order ODEs admitting symmetries of the same form.

3.7.1 ADJOINT-SYMMETRIES

Consider an nth-order ODE

),,,,( )1()( �

��

nn yyyxfy �                                        (3.535)

represented by the surface

                                  .0),,,,(),...,,,( 111 ���
�nnn yyyxfyyyyxF �                       (3.536)
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The linearization operator  of  ODE (3.536) is given by

,DDL
1

0

i

y

n

i

n

F i
f�

�

�

��                                           (3.537)

where
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i y
y

x
    with  .0 yy �

The adjoint linearization operator is given by (through formal integration by parts)

.D)D(
!)!(

!)1(D)1(*L
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j
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nn

F i
f

jji
i �
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�

�

���� ��                (3.538)

            The operator (3.538) can also be introduced by the following relation:

Lemma 3.7.1-1. The operators FL  and F*L  satisfy the identity

],;,[D*LL FVWSWVVW FF �� (3.539a)

where S  is the trilinear function defined by

)(D)D()1(];,[
1

1

0 0
�

�

�

� �

���� iy

jjij
n

i

i

j

WUVUVWS                       (3.539b)

for arbitrary functions ).,,,,(),,,,,(),,,,,( 111 nnn yyyxWyyyxVyyyxU ���

Proof.   The identity (3.539a,b) is verified by a direct expansion of both sides of (3.539a)

through use of the definitions (3.537) and (3.538) for FL  and F*L .                                 

Definition 3.7.1-1.  An nth-order ODE (3.535) is self-adjoint if and only if FF *LL � .

In particular, self-adjointness is equivalent to the 1�n  conditions

                                                  ,1)1( ��

n     i.e., n  is even,                                    (3.540a)
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jji
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y �                  (3.540b)

            Let

,L
1

0
0

i

y

n

i

n

FFF i
f DDL �

�

�

�

���                                                           (3.541a)
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where

.),,,,(D
1

11

1

1

1
0

�

�

�

�

�

�

�

�
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iF y
yyyxf

y
y

x
�D

The operators (3.541a,b) are the restrictions of operators (3.537) and (3.538) to the

surface (3.536).  From Theorem 3.5.1-1, we see that the symmetries in characteristic form

of order 10 ��� n�  of ODE (3.535) are the solutions ),,,,(ˆ
1 �
� yyyx�  of the symmetry

determining equation

                                                  .0ˆˆˆ
1

0

��� �

�

�

���

i

y

n

i

n

F i
f DDL                                      (3.542)

Definition 3.7.1-2.   The adjoint-symmetries of order 10 ��� n�  of ODE (3.535) are the

solutions ),,,,( 1 �
� yyyx�  of the adjoint-symmetry determining equation

.0)()1()1(
1

0

����� �

�

�

���

iy

ii
n

i

nn

F fDD*L                         (3.543)

Geometrically, symmetries of ODE (3.535) describe motions on the surface

(3.536) [cf. Section 3.5.1].  When ODE (3.535) is self-adjoint, its adjoint-symmetries are

the same as its symmetries in characteristic form.  However, if ODE (3.535) is not self-

adjoint, then, in general, its adjoint-symmetries are not symmetries (i.e., the only

common solution of the determining equations (3.542) and (3.543) is 0ˆ ���� ), and

there is no obvious geometrical invariance or motion related to the solutions of the

adjoint-symmetry determining equation (3.543).

            We note that the conditions for self-adjointness of ODE (3.535) can be formulated

equivalently in terms of FL  and F*L .

Lemma 3.7.1-2. An nth-order ODE (3.535) is self-adjoint if and only if

),,,,( 11 �nyyyxf �  satisfies ,FF *LL � which is equivalent to the 1�n  conditions

,1)1( ��

n

.1,...,1,0,
!!

)!(
)1(

1
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�
njf
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f

jij y

iji
jn

i

y D

In particular, it is necessary (but not sufficient unless 2�n ) that .0
1
�

�nyf

Proof.   Left to Exercise 3.7-5.                                                                                            

            A similar discussion applies to an nth-order ODE

0,0),...,,,( 1 ��

nyn FyyyxF                                     (3.544)
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that is not in a solved form (3.536) in terms of ny .  Symmetries in characteristic form

),...,,,(ˆ
1 �

yyyx�  of an ODE (3.544) are solutions of the determining equation ,0ˆ ��FL

and adjoint-symmetries ),...,,,( 1 �
yyyx�  of (3.544) are solutions of the adjoint equation

,0��F*L  where FL  and F*L  are the restrictions of the operators 

i

y

n

i
F i

F DL
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�     and j
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jii
i
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i

F i
F

jji

i
D)D(
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)1(*L

00

�

��

�

�� ��

to the surface 0),...,,,( 1 �nyyyxF .  The criterion for self-adjointness, FF *LL � , of

ODE (3.544) is equivalent to the 2�n  conditions

                                                ,1)1( ��

n     i.e., n  is even,                                     (3.545a)
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In particular, it is necessary (but not sufficient unless 2�n ) that ODE (3.544) take the

form BAyF n ��  with ,0��

nn yy BA AnDB nyn
1

1

2
�

�

�

 and, if ,0,3
1
��

�nyAn  where

1�nD  is the truncated total derivative operator (3.468).

3.7.2    ADJOINT INVARIANCE CONDITIONS AND INTEGRATING FACTORS

From Theorem 3.6.4-3, recall that the integrating factors of order 10 ��� n�  of an

nth-order ODE (3.535) are the solutions of the determining system of ]2/[1 n�  equations

(3.470a,b). In particular, (3.470b) is the Euler operator equation [cf. (3.447)]

0)(E 0��
�nyn F   which follows from Lemma 3.6.4-1.  We now show that (3.470b) plus a

certain differential linear combination of (3.470a) yields the adjoint-symmetry

determining equation (3.543).

Lemma 3.7.2-1. Let nE  be the truncated Euler operator (3.447) in 	),...,,,( 1 nyyyx

space.  For any function ,10),,...,,,( 1 ��� nyyyx �
�

�  define inductively

,,...,1,D
)(

, 1 nk
y

F
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knn �	
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� (3.546a)
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(3.546b)

where ),...,,,( 1 nyyyxF  is given by the surface (3.536).   Then 0)(E 0��nyn F�  holds if

and only if

.0)()1( 0

1
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����
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�

� nyi

ii
n

i

F fD*L � (3.547)
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Proof.    From (3.447) we note that 0)(E ���Fn .  Now taking ny�� /  of (3.546a) yields

the relation

,,...,2,1,
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1 nk
yy n
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kn
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                             (3.548)

which allows (3.546a) to be expressed as

.,...,2,1,1 nkfF knyknkn kn
�������

����
�

D�                       (3.549)

Then, by finite induction on the index  k  in (3.549), we obtain
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Hence, this establishes (3.547).                                                                                           

The remaining [n/2] determining equations (3.470a) for integrating factors in

Theorem 3.6.4-3 are equivalent to the system of equations .1,,1,0,0/ ������ niyni �

Through relation (3.546b), this system can be written as .1,,1,0,0 ���� nii �   Then,

from Lemma 3.6.4-1, we see that these equations in turn are equivalent to the simpler

system of half as many equations

,002 ��
�� nymn ].2/[,,1 nm ��                                 (3.550)

We refer to each equation

,...,,2,1,0)()1())(()1(
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�� � ��� DD

                                                                         (3.551)

obtained inductively from (3.548) and (3.549), as an adjoint invariance equation, and we

call the system of equations (3.550) the adjoint invariance conditions on

).,,,,( 1 �
� yyyx�  Hence, Lemma 3.7.2-1 and Theorem 3.6.4-3 lead immediately to the

following main result:

Theorem 3.7.2-1.  The integrating factors of order 10 ��� n�  of ODE (3.535) are

those adjoint-symmetries of order �  of (3.535) that satisfy the ]2/[n  adjoint invariance

conditions (3.550).  Explicitly, ),,,,( 1 �
� yyyx�  is an integrating factor of ODE (3.535)

if and only if
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The version (3.552a,b) of the integrating factor determining system leads to a

useful ansatz for finding integrating factors as follows.  Clearly, every integrating factor

of ODE (3.535) is an adjoint-symmetry, but not conversely if ,2�n  since the adjoint

invariance conditions need to be satisfied for an adjoint-symmetry of ODE (3.535) to be

an integrating factor.  Note that if ),,,( 1 �
� yyyx�  satisfies the adjoint-symmetry

determining equation (3.543), then so does ,��  where ),,,( 11 �nyyyx ��  is any function

satisfying 0��D , i.e., ),,,( 11 �nyyyx ��  is a first integral of ODE (3.535).  Hence, if

one already knows 1	k  first integrals ,),,,,( 111 ��

�nyyyx� ),,,( 11 �nk yyyx ��  that are

functionally independent, and if ),,,( 1 �
� yyyx�  is an adjoint-symmetry that is not an

integrating factor of ODE (3.535), then one can seek a multiplier function

),,( 1 k���� ��  so that

����                                                      (3.553)

satisfies the adjoint invariance conditions (3.552b).  In particular, (3.552b) reduces to a

system of ]2/[n first-order linear homogeneous PDEs for ).,,( 1 k��� �  Thus, the

ansatz (3.553) allows one to seek integrating factors through the use of any known

adjoint-symmetries and first integrals.  Examples illustrating this ansatz will be given in

Section 3.7.3.

3.7.3 EXAMPLES OF FINDING ADJOINT-SYMMETRIES 

            AND INTEGRATING FACTORS

The determining equation (3.543) for adjoint-symmetries ),,,,( 1 �
� yyyx�  of order �  of

a given nth-order ODE (3.535) is an nth-order linear homogeneous PDE in terms

of 1�n  independent variables 11 ,,,,
�nyyyx � . Hence, for 1�� n� , the adjoint-symmetry

determining equation (3.543) has infinitely many solutions.  However, for 10 ��� n� ,

equation (3.543) in general splits into an overdetermined linear system of PDEs with at

most a finite number of linearly independent solutions.  These solutions can be calculated

by the same algorithmic procedure as that used for finding symmetries of order

10 ��� n�  [cf. Section 3.5.1].

If a second- or higher-order ODE (3.535) admits a point symmetry

1),(),(ˆ yyxyx ��� �� , so that the surface (3.536) is invariant [i.e., 0ˆ )(
�Fn

X  under the

generator   )(ˆ nX   defined  by  (3.235)],  then  through  the  use  of  canonical  coordinates 
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[Exercise 3.7-7] one can show that the adjoint-symmetry determining equation (3.543)

admits the corresponding point symmetry

i

i
n

i

n

yyx �
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�

�
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�

�

)(
1

1

)(X ��� .

This allows one to make a simplifying ansatz to seek solutions of (3.543).  In particular,

if ODE (3.535) admits a scaling ,, pyqx �� ��  i.e., yyxx pq
�� �� ,   [p, q = const],

then the adjoint-symmetry determining equation (3.543) admits the scalings 

,1,,1,0,,, �����

� niyyxx i

iqp

i

qr
������

for arbitrary  r = const,  and so one can seek invariant solutions of (3.543) [see Section

4.2.1] of the form

,0if))(,,)(,( 1

)1(

1 ��
�

���� qyxyxxyx q

n

pqnqpqpqr
���             (3.554a)

.0if),,,( 1

1

1

1
��

�

�� pyyyyxy n

r
���                                       (3.554b)

The ansatzes (3.554a,b) respectively reduce the adjoint-symmetry determining equation

(3.543) to an overdetermined linear system of PDEs in terms of invariant variables

or,1,,1,0,)( ��

� niyx q

i

piq
� .1,,1,, 1

��

� niyyx i �  Similarly, if ODE (3.535) admits a

translation ,0,1 �� ��  i.e., ,, yyxx ��� �  or ,1,0 �� ��  i.e., ,, ���� yyxx

then the adjoint-symmetry determining equation (3.543) admits the translation 

,, yyxx ��� �     or ,, ���� yyxx

,1,...,1, ��� niyy ii

together with the scaling 

��

�re�

for arbitrary const.�r   Consequently, one can seek invariant solutions of (3.543) of the

form

),...,,( 11 �

� n

rx yyye ��     or ).,...,,( 11 �

� n

ry yyxe ��                  (3.555)

Each ansatz (3.555) reduces the adjoint-symmetry determining equation (3.535) to an

overdetermined linear system of PDEs in terms of invariant variables ,or, xyy i

.1,...,1, �� niyi

The previous ansatzes are obvious counterparts of the ansatzes presented in

Section 3.5.1 for solving the symmetry determining equation for second- and higher-

order ODEs.  We now give examples that illustrate the calculation of adjoint-symmetries.

            As a first example, consider the nonlinear Duffing equation

const,,,0 2

9
23

��������� aabybyyay                        (3.556)
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for which an integrating factor of point-form was obtained in Section 3.6.3 [cf. (3.387)].

Here we will compare the point symmetries and point-form adjoint-symmetries of ODE

(3.556), and then obtain a second integrating factor through the ansatz (3.553).

The linearization operator of (3.556) is given by ,3DDL 22

9
22 yaaF ����

which is not a self-adjoint operator since FF yaa L3DD*L 22

9
22

�����  if .0�a

Hence, in this case, ODE (3.556) is not self-adjoint, and so its adjoint-symmetries are not

symmetries.  The determining equation (3.543) for the adjoint-symmetries ),,( 1yyx�  of

ODE (3.556) is given by

,0)3( 22

9
22

���� ��� yaaDD                                  (3.557)

where

.)(
1

32

9
2

11
y

yyaay
y

y
x �

�

���

�

�

�

�

�

�D

If we consider point-form adjoint-symmetries ,),(),( 1yyxyx ��� ��  then the adjoint-

symmetry determining (3.557) reduces to a system of four linear PDEs arising from the

coefficients of like powers of 1y :

,0�yy�        (3.558a)

,024 ���� xyyyya ���         (3.558b)

,0223)3(2 32

3
22

������� xxxyyxy aayyaa ������        (3.558c)

.0)3()22)(( 2

9
222

9
23

�������� xxxyx aayayay �������        (3.558d)

After integrating (3.558a,b) with respect to ,y  we obtain yxx )()( 10 ��� ��  and

yxxyxxa )()())()(2( 10

2

11 ����� �����  for some functions ).(),(),(),( 1010 xxxx ����

Then (3.558cd) leads to ,0,0 10 �� ��  ,001 ��� a���  and 0473 0

2

00 ������ ��� aa .

Hence, we obtain 

., )3/4(

23
1)3/4(

21 yaececec xaxaax
��� ��

Thus, ODE (3.556) admits two point-form adjoint-symmetries given by

),( 13
1)3/4(

1 yaye xa
���                                         (3.559a)

                                                     .12 yeax
��                                                            (3.559b)

By a similar calculation, the point symmetries 1),(),(ˆ yyxyx ��� ��  of ODE (3.556)

are given by

.ˆ),(ˆ
1213

1)3/(

1 yyaye xa
��� ��

Thus, the adjoint-symmetries (3.559a,b) are not symmetries of ODE (3.556) except when

0�a .
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            From Section 3.6.3 [cf. (3.387)], we see that the adjoint-symmetry (3.559a) is an

integrating factor of (3.556), while (3.559b) is an adjoint-symmetry of ODE (3.556)

which is not an integrating factor of (3.556).  In particular, the adjoint-symmetry (3.559b)

fails to satisfy the adjoint invariance condition of Theorem 3.7.2-1,

,0)(
11
������ yyy a D                                          (3.560)

which is necessary and sufficient for an adjoint-symmetry �  to be an integrating factor

���  of ODE (3.556).  We now use the adjoint-symmetry (3.559b) to seek an

integrating factor

,)( 11 yeax
����                                                (3.561)

depending on a function  ),( 1��   where

))(( 2

13
1

2
14

4
1)3/4(

1 yayye xa
����                                  (3.562)

is the first integral corresponding to the integrating factor (3.559a).  Note that (3.561)

satisfies the adjoint-symmetry determining equation (3.557) for arbitrary )( 1��  since

01 ��D .   Substitution of (3.561) into the adjoint invariance condition (3.560) yields

,0)()))(()(( 13
4

1

32

9
2

111 1
����������� ������� ayyaayya yy

which reduces to a first-order separable ODE 14
3/ ��� ��� . Hence, ,)()( 4/3

11

�

� ��� c

,const�c  and thus, we obtain

,))(()( 4/32

13
1

2
14

4
1

1

4/3

11

��

����� yayyyey ax
�                       (3.563)

giving an integrating factor of ODE (3.556).  Since 4/3

1

)3/(

13
1

1 )())/(1(/ ��

xaeyya���

is clearly not a function of only 1� , from Lemma 3.6.2-1 it follows that �  yields a first

integral 2�  that is functionally independent of .1�  Using the line integral formula

(3.366) to calculate  ,2�  we have

,])[( 1

4/3

1

4/3

1

32

9
2

2 �
��

����

C
dyzydyzayyya�                      (3.564)

with

.)(),( 2

13
1

2
14

4
1

1 yayyyyz ���                                    (3.565)

Here we choose C  to be a path curve such that const�z  in the plane,),( 1 �yy  which is

conveniently parametrized by ),(),( 11 �� YyYy ��  satisfying ,~)0( yY � ,~)0( 11 yY �

,)1( yY �  ,)1( 11 yY �  as follows:

.),(

,),(

13
12

9
13

1
1

13
1

11

aYYaYYYz
d

dY

YaYYYz
d

dY

y

y

������

���

�

�
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This system is readily integrated to yield

const,)( 2

13
1

2
14

4
1

���� YaYYz                          (3.566a)

.
)2( 2/14

2
1~
�

�

�

�

� � z

dY

y
                                        (3.566b)

Then, after we combine terms and simplify using (3.566a), the first integral (3.564)

becomes

2/14

2
1~

4/1

3
44/1

3
4

1

02
)2( �

�

��

�

�� �� z

d
azdaz

y

y
                      (3.567)

with z  given by (3.565).

The first integrals (3.563) and (3.567) together yield the quadrature of ODE

(3.556) given by ,const 11 c���  .const 22 c���  Explicitly, we have

.
)2(

)(
2/14

2
1)3/4(

1

~

)3/1(4/1

13
4

2
�

�

�

�

�

�

� xa

y

y

ax

ec

d
ecac                      (3.568)

            As a second example, we return to the third-order ODE

,)()(6)()(6 2132 yyyyxy �����������
��                                     (3.569)

which admits contact symmetries as shown in Section 3.5.2.  In Section 3.6.5, we

obtained three second-order integrating factors of ODE (3.569) that led to its complete

quadrature [cf. (3.517)].  Here we seek the first-order adjoint-symmetries admitted by

ODE (3.569).  Since ODE (3.569) is of third-order, it is not self-adjoint, and hence, its

adjoint-symmetries are not symmetries.  The linearization operator of (3.569) is given by

.))()(6)()(12())(12)()(18(L 2

1

2

2

3

1

3

2

21

12

2

1

2

2

3 DDD ����

����� yyyyxyyyyxF

From the adjoint operator ,F*L  the determining equation (3.543) for adjoint-symmetries

),,( 1yyx�  of ODE (3.569) becomes

,0))()(6)()(12())(12)()(18( 2

1

2

2

3

1

3

2

1

12

2

1

2

2

23
�����

����

����� yyyyxyyyyx DDD

(3.570)

where

.)()(6)()(6, 1

1

2

2

2

1

3

2

21

21

��

��

�

�

�

�

�

�

�

�

�

�

�

� yyyyxf
y

f
y

y
y

y
x

D

It is not hard to show that the adjoint-symmetry determining equation (3.570) is a

polynomial equation of sixth degree in terms of 2y  and, thus, reduces to a linear system

of seven equations arising from the coefficients of like powers of .2y   The equation given

by the coefficient of 6

2 )(y  immediately yields .0��  Hence we find that ODE (3.569)
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admits no first-order adjoint-symmetries, in contrast to its seven admitted contact

symmetries and three admitted point symmetries [cf. Section 3.5.2].

            As a final example, consider the fourth-order ODE

                                                        0)))((( 1
������

�yyyy                                             (3.571)

that arises in the study of the wave equation with wave speed ).(xy    In Section 3.5.2, we

showed that the admitted symmetries of ODE (3.571) up to second-order consist only of

point symmetries given by x translation and yx,  scalings.  In Section 3.6.5, we obtained

two first-order integrating factors of ODE (3.571), which led to a second-order separable

ODE [cf. (3.525)] and thereby yielded the quadrature of ODE (3.571).  Here, we find the

adjoint-symmetries of ODE (3.571) up to second-order and then apply ansatz (3.553) to

obtain additional integrating factors of (3.571).

            We first show that ODE (3.571) is not self-adjoint.  Expressing (3.571) in solved

form, we obtain

.053
)(

)(
4

)(
4

)(
),,,(

1

3231

2

1

3

2

2

2

2

2

2

1
3214 ��������

y

yy

y

yy

y

y

y

y

y

yy
yyyyfy

     (3.572)

Since ,0)(53 2

1

11

1

3
����

�� yyyyf y  from Lemma 3.7.1-2 it immediately follows that

ODE (3.572) fails to be self-adjoint.  The same conclusion holds for ODE (3.571) in its

original form, as seen from (3.545b).  Hence, adjoint-symmetries of ODE (3.572) are not

symmetries of (3.572).

            The determining equation (3.543) for adjoint-symmetries ),,,( 21 yyyx�  of ODE

(3.572) is most easily derived by starting from the linearization of ODE (3.571) rather

than that of (3.572).  This leads to

)~))()()(2)((( 2

13

3

1

2

2

1

12 �DD
���

�� yyyyyyyyy

0))~()(()~()( 1

22

11

21

1 ���

��

�� DDDDD yyyyyyy               (3.573)

with ��

2

1
~ �

� yy , where

.
32

3

1
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y

f
y

y
y

y
y

y
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�D

We find that the adjoint-symmetry determining equation (3.573) is a quartic polynomial

in terms of 3y  and, thus, reduces to an overdetermined linear system of five PDEs for

).,,,( 21 yyyx�   To avoid the complexity of solving this system directly, we instead

exploit the  x  translation symmetry and the yx,  scaling symmetries of ODE (3.572) to

look for solutions ),,,( 21 yyyx�  based on ansatzes (3.554a,b) and (3.555) using the

common joint invariant

.)( 2

2

1 yyyu �

�

Thus, we consider
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                                       .const,const),()( 1 ��� sruyy sr
��                           (3.574)

Then the coefficient of 4

3)(y  in the adjoint-symmetry determining equation (3.573)

yields ,0)4(
��  and hence,

const.,3

3

2

210 ����� iuuu ������                           (3.575)

The coefficients of the remaining powers of 3y  in (3.573) now become a system of

polynomial equations in u which reduce to algebraic equations for 3210 ,,,,, ����sr .

First, from the coefficients of 73

3 )( uy  and ,)( 72

3 uy  we find that .03 ��   Next, from the

coefficients of ,,)(,)( 6

3

62

3

63

3 uyuyuy  we find that .0)1( 2 �� �s   This leads to two cases:

1��s   or  .02 ��    If  ,1��s   we find that the coefficients of  52

3 )( uy  and 5

3uy  yield

.021 ��� r�    Hence, we obtain

,2,1,2

20 ����� rsu���                                   (3.576)

which is readily checked to satisfy the adjoint-symmetry determining equation (3.573).

Finally, if ,02 ��  the coefficients of 52

3 )( uy  and 5

3uy  just yield .01 ��  Then, from the

coefficients of 42

3 )( uy  and ,4

3uy  we obtain .3��s  The remaining coefficients yield

.2�r   Hence, we have

                                                    .2,3,0 ���� rs��                                         (3.577)

Therefore, (3.576) and (3.577) yield three adjoint-symmetries given by

.)()(,)(,)( 5

1

2

2

4

3

3

1

2

2

1

1

2

1

���

��� yyyyyyy ���                 (3.578)

From results in Section 3.6.5 [cf. (3.523)], it follows that the two first-order

adjoint-symmetries 1�  and 2�  are integrating factors of ODE (3.572), while the second-

order adjoint-symmetry 3�  is not an integrating factor of ODE (3.572).  We now use 3�

to obtain a higher-order integrating factor of ODE (3.572) by means of the ansatz (3.553),

which here becomes

                                                 ),()()( 21

5

1

2

2

4
���

�

�� yyy                                      (3.579)

depending on a function ),( 21 ��� ,  where

,)()()(2 3

1

1

22

2

2

1

2

21 yyyyyyyy ��

����                               (3.580a)

,)()()()( 3

3

1

22

2

4

1

2

2

2

12 yyyyyyyyy ���

����                      (3.580b)

are the first integrals corresponding to the integrating factors ., 2211 �� ����   Since

,021 �� �� DD  it follows that ansatz (3.579) satisfies the adjoint-symmetry

determining equation (3.573) for an arbitrary function ).,( 21 ���   Then, from Theorem

3.7.2-1, we see that ansatz (3.579) yields an integrating factor of ODE (3.572) if and only

if it satisfies the adjoint invariance conditions
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,0)())(53(
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yyyyy DD                             (3.581b) 

After some simplifications, we find that the adjoint invariance conditions (3.581a,b)

reduce to the single PDE

.02
12 12 ��� �����

��

                                        (3.582)

This has the general solution

,~)(
2

12

2 �
�

�

�

�
�

�

�

�
�

�

�

���

where �
~  is an arbitrary function of its argument.  Hence, by the relation (3.477) between

first integrals and integrating factors, we obtain an integrating factor

2
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1

22
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2

1

2

2

1

1

2

2

42

2

5

1

2

2

4

3 ))()()(()()()()()( ������

����� yyyyyyyyyyyyyy �

                                                                                     (3.583)

and a corresponding functionally dependent first integral

.))()()(()()( 1

3

1

1

22

1
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2
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2
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1

2

1
3

���

����� yyyyyyyyyyy
�

�

�           (3.584)

3.7.4 NOETHER’S THEOREM, VARIATIONAL SYMMETRIES, 

            AND INTEGRATING FACTORS

An nth-order ODE

,0,0),...,,,(
)(

)(
��

�

�
��

n

n

y

FyyyxF                                 (3.585)

has a variational formulation if its solutions )(xy ��  on a domain ],[ bax�  correspond

to the extremals of an action functional

.),...,,,()]([ )( dxyyyxxyS nb

a
�� � L                                (3.586)

In particular, on the space of functions ),(xy  consider a one-parameter group of local

transformations ),()(*,* 2
�� OxVyyxx ����  with the infinitesimal generator

��

��

�
��

�

�
�

�

y
xV

y
xV )()(X̂ )(                                    (3.587)
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in terms of an arbitrary function ).(xV   The corresponding variation of the action (3.586)

is given by

dxyyyxxyS nb

a
),...,,,(X̂)]([X̂ )()()(

��

��

� L
bx

ax

nn

n

b

a
yyyxVAdxyyyxxV

�

�

�

���� � ),...,,,;()),...,,,((Ê)( )12()(L ,

                                                                                                      (3.588)

where

)(
)1(Ê

nn

n
n

n
ydx

d
ydx

d
y �

�
���
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�
�

�

�
� �                             (3.589)

is the standard Euler operator in the calculus of variations [Olver (1986)], and where,

through integration by parts,

���

�

�
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�

�
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)(1 VV
ydx

dV
nj

jn

j

jnj
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�
L        (3.590)

Now suppose )(xV  and its derivatives ),(),( xVxV ��� etc. vanish at the end-points ax � ,

.bx �  Consequently, the end-point values of ),(),(),( xyxyxy ��� etc. are fixed under the

transformation generated by (3.587).  Then the equation

                              0)),...,,,((Ê)()]([X̂ )()(
��� �

� dxyyyxxVxyS n

n

b

a
L                   (3.591)

is a necessary condition for )(xy  to be an extremal of the action (3.586).  Since )(xV  is

arbitrary within the domain ),,( bax�  it follows that the extremals must satisfy the

Euler–Lagrange ODE

���

��

�
��

�

� ),...,,,(),...,,,( )(

)(

n

n yyyx
ydx

dyyyx
y

LL

.0),...,,,()1( )(

)(
��

�

�
��

n

nn

n
n yyyx

ydx

d L           (3.592a)

Hence, a given ODE (3.585) corresponds to the extremals of an action (3.586) if and only

if 

                                    )),...,,,((Ê),,,,( )()( n

n

n yyyxyyyxF ��� L�                        (3.592b)

holds for some function ),,...,,,( )(nyyyx �L  for all functions ).(xy  Any two functions L
that differ by a total derivative dxdW /  of an arbitrary differentiable function

),...,,,( )1( �

�
nyyyxW  yield the same Euler-Lagrange equation (3.592b), since one can

show that nÊ  annihilates a function if and only if it is of the form ./ dxdW  We will see
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that in (3.592b) there is no loss of generality in allowing the highest order derivative of y

in L  to be the same as the highest order derivative of y in F.

The variation (3.588) of the action is equivalent to the identity

,2),,...,,,;(D)),...,,,((E),...,,,(X̂ 1111

)( nkyyyxVAyyyxVyyyx kknkn

n
���

�

LL

(3.593)

holding in space,-),...,,,( 1 kyyyx  where )(X̂ n  denotes the nth-extension of the generator

,X̂
y

V
�

�

�  ),...,,,( 1 �
yyyxVV �  is an arbitrary function (with ),n�� kD  is the truncated

total derivative operator (3.468), and

][,0,)D(E 0

0

yyk
y

k

i i

i

kk ��

�

�

���
�

  (3.594)

is a corresponding truncated Euler operator. 

Consequently, from (3.591), the Euler–Lagrange equation (3.592a) for extremals

of the action is equivalent to

.0)),...,,,((E 12 �nn yyyxL

Hence, the surface given by

                                                       0),...,,,( 1 �nyyyxF                                             (3.595)

defines the stationary points of the action (3.586).

Definition 3.7.4-1.  An nth-order ODE (3.585) has a variational principle given by an

action functional (3.586) if there exists some function ),,...,,,( )(nyyyx �L  i.e., a

Lagrangian, such that the Euler–Lagrange equation (3.592b) holds for all functions

).(xyy �   Equivalently, the surface (3.595)  arises as the stationary points 

0)),...,,,((E),...,,,( 121 �� nnn yyyxyyyxF L             (3.596)

for a Lagrangian ).,...,,,( 1 nyyyxL

            We next establish the fundamental connection between the existence of an action

functional (3.586) and the self-adjointness of the linearization operator for an nth-order

ODE (3.585).  If relation (3.596) holds for some Lagrangian ),,...,,,( 1 nyyyxL  then by

direct calculation one can show that 0)*LL( �� VFF  is satisfied identically for arbitrary

functions .),,...,,,( 1 nyyyxVV �� �
�

 Hence, .*LL FF �  Conversely, if ,*LL FF �  then

using conditions (3.545a,b), one can verify that

���� dyyyxFyyyyx nn ),...,,,(),...,,,( 1

1

01 ��L                      (3.597)

is a Lagrangian yielding (3.596).
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Theorem 3.7.4-1. An nth-order ODE (3.585) admits an action functional (3.586) if and

only if (3.585) is self-adjoint.  An explicit Lagrangian is then given by (3.597).

The same results hold for a self-adjoint ODE in a solved form (3.535) for .ny  In

particular, the Lagrangian (3.597) then takes the form

.),...,,,(),...,,,( 11

1

02
1

1 ���� dyyyxfyyyyyyx nnn ����L

When ODE (3.535) is not self-adjoint, we remark that one can also consider an

action functional whose Euler–Lagrange equation yields (3.535) to within a nonconstant

multiplier, i.e., 

)),...,,,((E)),...,,,((),...,,,( 12111 nnnnn yyyxhyyyxfyyyyxF L���

�

(3.598)

in terms of some function ).,...,,,( 1 nyyyxhh �   Necessary and sufficient conditions for

the existence of such a multiplier ),...,,,( 1 nyyyxh  are given by (3.545a,b).  The cases

3,2�n  are considered in Exercises 3.7-8.  Theorem 3.7.4-1 corresponds to the situation

when .1),...,,,( 1 �nyyyxh

As discussed in Section 3.5.1, each symmetry of ODE (3.535) is characterized by

the infinitesimal of a one-parameter group of local transformations leaving invariant the

surface (3.536).  In particular, if ),...,,,(ˆ
1 �

yyyx�  is a symmetry of order 10 ��� n�

admitted by ODE (3.535), then the corresponding local transformation group acting on

functions )(xy  is given by the extended infinitesimal generator

.),...,,,(ˆX̂
)(

0

)()(

i
i

i

i

y
yyyx

dx

d

�

�

�
�

�

�

�
�

�

�

	
�

�

�

� �
�                             (3.599)

For a self-adjoint ODE (3.535), any such local transformation group obviously leaves

invariant the extremals of the action functional (3.586).

Definition 3.7.4-2.  A symmetry ),...,,,(ˆ
1 �

yyyx�  of order �  admitted by a self-adjoint

ODE (3.535) is a variational symmetry if the action functional (3.586) is invariant under

(3.599) to within a boundary term, i.e.,

bx

ax

nnb

a
yyyxBdxyyyxxyS

�

�

����

���� � ),...,,,;ˆ(),...,,,(X̂)]([X̂ )1()()()( �
�L

for some function ),...,,,;ˆ( )1( ��

�
�nyyyxB �  which, without loss of generality, depends on

,, yx  and )(iy up to at most order .1��� �ni

Invariance of the action functional to within a boundary term is equivalent to the

invariance of the Lagrangian to within a total derivative

,X̂with),...,,,;(D),...,,,(X̂ 111

)(

y
VyyyxVByyyx kkn

n

�

�

��
�

L       (3.600)
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where ),,...,,,(ˆ
1 �

yyyxV ��  and .��� nk   In turn, (3.600) can be expressed

equivalently using the Euler operator equation given by Theorem 3.6.4-2 as follows:

Theorem 3.7.4-2. Suppose ),...,,,(ˆ
1 �

yyyx�  is a symmetry of order �  admitted by a self-

adjoint ODE (3.535).  Let ,),,...,,,(X̂),...,,,( 1

)(

1 ���� nkyyyxyyyx n

n

k L�  where

)(X̂ n  is the nth extension of .ˆX̂
y�

�

��  Let, inductively, ,
kyk ���

,,...,1,1 kjD jkkyjk jk
�����

���
�

�  where kD  is the truncated total derivative operator

(3.468) and )(E0 �k��  is the Euler operator (3.594).  Then ),...,,,(ˆ
1 �

yyyx�  is a

variational symmetry of the self-adjoint ODE (3.535) if and only if

,1,...,1,0,0 ���

�

��
�

kj
yk

jk
                                 (3.601a)

                                                        .00 ��                                                              (3.601b)

            Theorem 3.7.4-2 provides a system of 1�� �n  linear determining equations for

the variational symmetries ),...,,,(ˆ
1 �

yyyx�  of a self-adjoint ODE (3.535).  From Lemma

3.7.2-1 and Theorem 3.7.2-1 (in the self-adjoint case), we see that this system is

equivalent to the symmetry determining equation

                                                       0ˆˆ
1

0

���

�

�

��

i

y

n

i

n

i
f DD                                           (3.602a)

and the n/2  adjoint invariance conditions

,2/,...,1,0)ˆ())ˆ(()1(ˆ
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� ��� DD

                         (3.602b)

where D is the derivative operator (3.445b) associated with the surface (3.536).  Hence,

we obtain a system of )2/(1 n�  linear determining equations that are necessary and

sufficient for a symmetry of a self-adjoint ODE (3.535) to be a variational symmetry.

Theorem 3.7.4-3 (Variational Symmetry Determining Equations). The variational

symmetries of a self-adjoint nth-order ODE (3.535) are those symmetries �̂  of (3.535)

that satisfy the n/2 adjoint invariance conditions (3.602b).

            We now state the fundamental theorem of Noether for variational symmetries:

Theorem 3.7.4-4 (Noether’s Theorem). For a self-adjoint ODE (3.535), every

variational symmetry of order 10 ��� n�  is an integrating factor and, conversely, every

integrating factor of order 10 ��� n�  is a variational symmetry.  In particular, if

),...,,,(ˆ
1 �

yyyx�  is a variational symmetry of ODE (3.535), then
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                ,...)0,,...,,,;ˆ(,...)0,,...,,,;ˆ(),...,,,( 111111 ���

�� nnn yyyxAyyyxByyyx ���

            (3.603)

yields a first integral of (3.535), where ),...,,,;( 121 �nyyyxVA  and ),...,,,;( 11 ���nyyyxVB

are given by (3.593) and (3.600).

Proof.  Suppose ),...,,,(ˆ
1 �

yyyx�  is  a  variational  symmetry  of  a  self-adjoint  ODE

(3.535).  By combining the Lagrangian variations (3.600) and (3.593) for ,�̂�V  we

obtain

).(Ewith)(Dˆ
22 Lnn FABF ����

This is the characteristic equation [cf. Section 3.6.4] stating that ),...,,,(ˆ
1 �

yyyx�  is an

integrating factor of ODE (3.535) with corresponding first integral (3.603).  

Conversely, suppose ),...,,,( 1 �
yyyx�  is an integrating factor of a self-adjoint

ODE (3.535).   Then we have the characteristic equation

).(EwithD 2 Lnn FF ��� �

By using identity (3.593) with ,��V  we obtain

                                                       ),(DX̂ 2

)( An

n
�� �L                                           (3.604)

and hence, yyyyx ���� /),...,,,(X̂ 1 �
 is the infinitesimal generator of a one-parameter

local transformation group leaving invariant the action functional (3.586) to within a

boundary term.  Since the extremals of (3.586) remain invariant, ),...,,,( 1 �
yyyx�  is a

symmetry of ODE (3.535) and, hence, from (3.604) we conclude that ),...,,,( 1 �
yyyx�  is

a variational symmetry of (3.535).          

            It is common to see Noether’s Theorem applied to a self-adjoint ODE (3.535) in

the following way: One first finds symmetries of ODE (3.535).  Next, one checks which

of these symmetries are variational symmetries, i.e., if the Lagrangian is invariant to

within a total derivative.  Finally, one calculates the first integral (3.603) for each

variational symmetry.  This procedure is quite awkward computationally since it is

cumbersome to verify directly the invariance (3.600).  A much more effective approach is

given by Theorem 3.7.4-3.  In particular, one can solve the linear determining system

(3.602a,b) to find only those symmetries of ODE (3.535) which are variational

symmetries.  Most important, one is able to mingle the n/2 adjoint invariance conditions

(3.602b) with the symmetry determining equation (3.602a) to optimally solve the system.

In practice, this provides a significant computational advantage compared to the approach

through Noether’s Theorem.  Moreover, the calculation of first integrals can be carried

out directly in terms of the variational symmetries of ODE (3.535) by the line integral

formula given in Theorem 3.6.4-3.
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Theorem 3.7.4-5.  For a self-adjoint ODE (3.535), the first integral corresponding to a

variational symmetry (i.e., integrating factor) ),...,,,(ˆ
1 �

yyyx�  of (3.535) is given by the

line integral
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where C  is any path curve from a point )~,...,~,~,~( 11 �nyyyx   to  ).,...,,,( 11 �nyyyx

3.7.5 COMPARISON OF CALCULATIONS OF SYMMETRIES, 

            ADJOINT-SYMMETRIES, AND INTEGRATING FACTORS

For a given nth-order ODE (3.535), the nature of the calculation of its symmetries

),,...,,,(ˆ
1 �

yyyx�  adjoint-symmetries ),...,,,( 1 �
yyyx� , and integrating factors

),,...,,,( 1 �
yyyx� ,10 ��� n�  is the same.  In each situation one has to solve a system of

linear determining equations, given by (3.542), (3.543), and (3.552a,b), respectively.  For

,10 ��� n�  these determining systems reduce to overdetermined systems of linear

homogeneous PDEs in 2��  independent variables 
�

yyyx ,...,,, 1  and, consequently, there

are at most a finite number of linearly independent solutions.  In practice, one is typically

able to find all these solutions explicitly.  However, for ,1�� n�  the determining systems

are no longer overdetermined and now possess an infinite number of solutions.  In this

case one can use special ansatzes (e.g., elimination of variables, separation of variables,

point symmetry invariance) to seek solutions.

            In the classical case of a first-order ODE, there is an explicit one-to-one relation

between symmetries and integrating factors [cf. Section 3.2.2], namely, ),(ˆ yx�  is a

symmetry if and only if ),(ˆ/1),( yxyx ���  is an integrating factor.  Moreover, here

integrating factors are the same as adjoint-symmetries.  However, for second- and higher-

order ODEs, these relationships break down (i.e., there are now adjoint invariance

conditions).

When ,2�n  the size of the solution space for adjoint-symmetries of order

1�� n�  of ODE (3.535) is always of a larger cardinality (in terms of free functions) than

that for integrating factors of the same order 1�� n�  since, from Theorem 3.7.2-1, it

follows that not every adjoint-symmetry satisfies the [n/2] adjoint invariance conditions

for determining integrating factors.

            The size of the solution space for symmetries of order 1�� n�  of ODE (3.535) is

of the same cardinality as that for adjoint-symmetries of order ,1�� n�  since both the

symmetry determining equation and adjoint-symmetry determining equation are of the

same nature, i.e., they are linear homogeneous PDEs in 1�n  independent variables

.,...,,, 11 �nyyyx

The situation for the solution spaces of symmetries, adjoint-symmetries, and

integrating factors,  respectively,  of  order  10 ��� n�   is much more involved since, in 
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general, a given nth-order ODE (3.535) may admit no such symmetries, adjoint-

symmetries, or integrating factors.  An interesting question then is how do sizes of

respective classes of nth-order ODEs (3.535) compare if one considers a specific ansatz

for admitted symmetries, adjoint-symmetries, and integrating factors. This is relevant for

assessing a priori the utility of, say, point symmetry analysis versus point-form

integrating factor analysis.

            To make an explicit comparison, we classify second-order ODEs 

),,( 12 yyxfy �                                                 (3.605)

admitting 

(i)   point symmetries:

1
ˆ y�� ;                                                     (3.606a)

(ii) point-form adjoint-symmetries:

1y�� ;                                                    (3.606b)

          (iii)   point-form integrating factors:

                                                                  .1y��                                                     (3.606c)

The substitution of (3.606a) into the symmetry determining equation (3.542) yields

.0111

2

1
���� xyy fyfyfy DD

Hence, the class of ODEs (3.605) admitting the point symmetry ansatz (3.606a) is given

by

                                                              ),( 1yyaf �                                                   (3.607)

(i.e., x is missing) depending on an arbitrary function ).,( 1yya   In contrast, the

substitution of (3.606b) into the adjoint-symmetry determining equation (3.543) yields

                 .0)(2)(
111111 1

2

11111

2
�������� yyyyxyyxyy ffyfyfyffffyyfy DD      (3.608)

This is a second-order nonlinear PDE for ),,( 1yyxf  and, hence, in effect its general

solution depends on two arbitrary functions of two independent variables.  But the

substitution of (3.606c) into the adjoint invariance condition (3.552b) yields

.02)()(
111111 111 ���� yyyyyy fyfyyf D                               (3.609)

Solving (3.609), we obtain ),,())(,( 0

1

11 yxayyxaf ��

�  and then (3.608) reduces to

.)()( 10 yx aa �  Hence, the class of ODEs (3.605) admitting the point-form integrating

factor ansatz (3.606c) is given by

)(),())(,( 1

1 ybdxyxayyxaf y ��� �
�                             (3.610)

depending on arbitrary functions ),( yxa  and ).(yb   We observe that both classes (3.610)

and (3.607) of ODEs (3.605) involve one arbitrary function of two independent variables,
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while the class given by (3.608) depends on two such arbitrary functions.  Moreover, the

class (3.610) also involves an additional arbitrary function of one independent variable.

           Therefore, a priori the utility of a point-form integrating factor ansatz is no less

than that of a point symmetry ansatz for second-order ODEs.  More generally, a similar

conclusion holds for any particular ansatz for symmetries and integrating factors of

nth-order ODEs.

EXERCISES 3.7

1. Consider the harmonic oscillator equation

                            const.,02
����� �� yy             (3.611)

(a)  Show that the adjoint-symmetries of ODE (3.611) are the same as the symmetries

of (3.611).

(b) Show that the translation symmetry yy,xx ���  of ODE (3.611) is a

variational symmetry (i.e., an integrating factor of (3.611)) but the scaling

symmetry yyx,x ���  of (3.611) is not.  Find the first integral of ODE (3.611)

arising from the translation symmetry.

(c) Consider the ansatz (3.553) for ODE (3.611) by using the scaling symmetry and

first integral corresponding to the translation symmetry.  Show that this ansatz

yields a variational symmetry of ODE (3.611) giving a first integral functionally

independent of the previous one.

(d) Show that these two first integrals correspond to the energy and phase of the

harmonic oscillator, and obtain the quadrature of ODE (3.611).

2.   Consider the KdV traveling wave ODE (3.499).

(a) Find the first-order adjoint-symmetries of ODE (3.499) and verify that the two

admitted point-form adjoint-symmetries satisfy the adjoint invariance conditions

for integrating factors of (3.499).

(b) Use the ansatz (3.553) to obtain an additional integrating factor of ODE (3.499).

Show that this ansatz only yields two functionally independent first integrals

corresponding to first-order integrating factors.

(c) Look for second-order adjoint-symmetries of ODE (3.499) given by the ansatzes

(3.554a,b), using the invariants of the scaling symmetry yyxx 2, �

�� ��

admitted by (3.499).  Verify which of these adjoint-symmetries satisfy the adjoint

invariance conditions for integrating factors of ODE (3.499).

(d) Obtain the quadrature of ODE (3.499) using the first integrals corresponding to its

admitted first- and second-order integrating factors.

3. Consider the fourth-order ODE

./)( 2

3
4)4( yyy ������                                              (3.612)

(a) Show that ODE (3.612) is not self-adjoint.
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(b) Find the first- and second-order adjoint-symmetries of ODE (3.612).  Verify

which ones satisfy the adjoint invariance conditions for integrating factors of

(3.612).

(c) Find third-order adjoint-symmetries of ODE (3.612) that are given by the ansatzes

(3.554a,b) using the joint invariants of the scaling symmetries yyx,x �� ��

and the translation symmetries ����� yy,xx  admitted by (3.612).  Verify

which of these third-order adjoint-symmetries satisfy the adjoint invariance

conditions for integrating factors of ODE (3.612).

(d) Obtain the quadrature of ODE (3.612) by using the first integrals arising from the

admitted integrating factors.

4.   Show that the fourth-order wave speed ODE (3.571) (not in solved form) is not self-

adjoint.

5.   Prove Lemma 3.7.1-2.

6.  For an nth-order ODE (3.535), show that if ),,( 1 n��� �  is a function of first

integrals ,,...,1, kii ��  and ),,,,( 1 �
� yyyx�  is an adjoint-symmetry, then ����

satisfies (3.552a) while (3.552b) reduces to a first-order linear homogeneous system

of PDEs for ).,,( 1 n��� �

7.  Let 
y

yx
x

yx
�

�

�

�

�

� ),(),(X ��  be the infinitesimal generator of a point symmetry

admitted by an nth-order ODE (3.535).  Through the use of canonical coordinates [cf.

Section 3.3.1], show that the symmetry determining equation (3.542) and the adjoint-

symmetry determining equation (3.543) admit the nth-extended infinitesimal

generator X.ofX )(n

8.  (a)  Consider a second-order ODE ).,,( yyxfy ����   Obtain a linear homogeneous PDE

that is a necessary and sufficient condition for ���� ),,,( yyyxF

0)),,()(,,( ������ yyxfyyyxh  to be a self-adjoint ODE in terms of a multiplier

).,,( 1yyxh  Show that such a multiplier exists for any ).,,( 1yyxf

(b) Consider a third-order ODE ).,,,( yyyxfy �������  Show that the ODE

0)),,,()(,,,(),,,,( ������������������ yyyxfyyyyxhyyyyxF  is not self-adjoint for

any multiplier ),,,( yyyxh ��� .

9.   Classify all self-adjoint fourth-order ODEs ).,,,()4( yyyxfy �������

10. A second-order ODE ),,( yyxfy ����  admits the point-form adjoint-symmetry 1y��

if and only if ),,( 1yyxf  satisfies the second-order nonlinear PDE (3.608).

(a) Show that ),(),( 1 yxbyyxaf ��  is a solution of (3.608) if 0�ya  and

.02 �� abbx

(b) Show that 1y��  is not an integrating factor for the corresponding class of ODEs

).()]([)( 2 ybxayxay �

�����
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(c) Compare the class of ODEs (b) to the class given by (3.610) admitting the

integrating factor .1y��

11. Classify all second-order ODEs (3.605) admitting:

(a) the point symmetry y��̂ ;

(b) the point-form adjoint-symmetry y�� ;

(c) the point-form integrating factor y�� ;

(d) the first-order symmetry 1/1ˆ y�� ;

(e) the first-order adjoint-symmetry 1/1 y�� ;  and

(f) the first-order integrating factor ./1 1y��

12. Classify all third-order ODEs ),,,( yyyxfy �������  admitting:

(a) the point symmetry 1
ˆ y�� ;

(b) the point-form adjoint-symmetry 1y�� ;  and

(c) the point-form integrating factor 1y�� .

13. An nth-order ODE (3.535) is skew-adjoint if  .*LL FF ��

(a) Show that for any skew-adjoint ODE, admitted symmetries are the same as

admitted adjoint-symmetries.

(b) Classify all second-, third-, and fourth-order skew-adjoint ODEs.

3.8 DIRECT CONSTRUCTION OF FIRST INTEGRALS THROUGH

SYMMETRIES AND ADJOINT-SYMMETRIES

We now present two additional methods for construction of first integrals of nth-order

ODEs.

The first method yields an algebraic first integral formula (i.e., without

integration) from any pair consisting of a symmetry and an adjoint-symmetry admitted by

a given ODE.  For an nth-order ODE that admits a scaling symmetry, we show that the

first integral arising from a pair consisting of the scaling symmetry and an adjoint-

symmetry given by an admitted integrating factor is the same as the first integral arising

from the line integral formula for the admitted integrating factor.  Thus, for such an ODE,

one can use the algebraic first integral formula in place of the line integral formula for

constructing a first integral in terms of an integrating factor.  Most important, the

algebraic first integral formula yields a first integral from any adjoint-symmetry whether

or not it is an integrating factor.

The second method uses a Wronskian determinant formula yielding first integrals

for ODEs that admit sufficiently many symmetries or adjoint-symmetries.  If an nth-order

ODE in solved form does not have an explicit dependence on the (n–1)th derivative of the

dependent variable, then either  n  symmetries or  n  adjoint-symmetries are sufficient to

obtain a first integral by the Wronskian formula.  More generally, for an nth-order ODE

in solved form with an essential dependence on the (n–1)th derivative of the dependent
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variable, the formula requires at least either 1�n  symmetries or 1�n  adjoint-symmetries

or, alternatively, n  symmetries together with n  adjoint-symmetries.

3.8.1 FIRST INTEGRALS FROM SYMMETRY AND 

            ADJOINT-SYMMETRY PAIRS

Consider a second- or higher-order ODE

                                             ,2),,...,,,( )1()(
���

� nyyyxfy nn                                  (3.613)

represented as a surface

.0),...,,,(),...,,,( 1111 ���

�� nnn yyyxfyyyyxF                        (3.614)

Recall that the symmetries �̂  and adjoint-symmetries �  of ODE (3.613) are given by the

solutions of 0ˆ ��FL  and ,0��F*L  respectively, where FL  is the linearization

operator of (3.614) and F*L  is the adjoint operator [cf. (3.541a,b)].  Now, from Lemma

3.7.1-1, it follows that FF *LL and  satisfy the identity

                                             ];,[ FVWSWVVW FF D*LL ��                                (3.615a)

with
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WFVFVWS D(D                       (3.615b)

for arbitrary functions ).,...,,,(),,...,,,( 1111 �� nn yyyxWyyyxV   Hence, if we let

),,,,(ˆ
1 �
� yyyxV ��   and  ),,,,,( 1 �

� yyyxW ��  then (3.615a) yields  0];ˆ,[ �FS ��D .

Therefore, ];ˆ,[ FS ��  is either a constant or a first integral of ODE (3.613), depending on

whether its corresponding integrating factor is identically zero.

Theorem 3.8.1-1. If  ),ˆ( ��  is a pair consisting of a symmetry ),,,,(ˆ
1 �
� yyyx�  and an

adjoint-symmetry ),,,,( 1 �
� yyyx� of ODE (3.613), then
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���� ��� DDDD (3.616)

is a first integral of (3.613) provided that .0/),ˆ(ˆ
1 ����
�ny���

Now suppose we have a point symmetry 11 ),(),(),,(ˆ yyxyxyyx ��� ��  of ODE

(3.613) and an adjoint-symmetry ),,,,( 1 �
� yyyx�  given by an integrating factor of ODE

(3.613).  Then the following relation holds between the first integral (3.616) determined

by the pair ),ˆ( ��  and the first integral corresponding to the integrating factor

).,,,,( 1 �
� yyyx���
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Theorem 3.8.1-2. Let ),,,,( 1 �
� yyyx���  be an integrating factor of ODE (3.613)

with the corresponding first integral ).,...,,,( 11 �nyyyx�  If 1),(),(ˆ yyxyx ��� ��  is a

point symmetry of (3.613), then the first integral ),,ˆ(ˆ ���  given by (3.616), satisfies

const,,X),ˆ(ˆ )1(
���

� ccn
���� (3.617)

where )1(X �n  is the )1( �n th extension [cf. (2.100a,b)] of the point symmetry generator

.
yx

X
�
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� ��    In particular, the integrating factor corresponding to the first integral

(3.617) is given by

,X),ˆ(ˆ
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n R                                        (3.618)
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Proof.  We calculate the integrating factor 1/),ˆ(ˆ),ˆ(ˆ
�

���� ny�����  from (3.616).  First,

since 0/ˆ ��� iy�  for ,2�i  the terms in 1/),ˆ(ˆ
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�� ny��� involving differentiation
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Next, the terms in 1/),ˆ(ˆ
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By using the adjoint invariance conditions (3.551), which hold since ),,,,( 1 �
� yyyx�  is

an integrating factor of ODE (3.613), we find that (3.620) simplifies to
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                                                   (3.621)

We now combine (3.621) and (3.619), which yield
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Hence, we have established (3.618).  Finally, (3.617) follows from Theorem 3.6.4-7.      

Now, if ODE (3.613) admits a scaling symmetry

                                          ,,with,ˆ
1 qxpyyS ���� �����                             (3.622a)

i.e., yyxx pq
�� �� ,  for some ,const,const �� qp  then

)),,...,,,()(()),...,,,((X 1111

)(

��

���� nnnn

n

S yyyxfynqpyyyxfy        (3.622b)

where nqp �  is the scaling weight of the surface (3.614), i.e., FF nqp�
��  under .X )(n

S

If an integrating factor ),...,,,( 1 �
yyyx�  of ODE (3.613) is homogeneous with respect to

this scaling symmetry, i.e., ���

s
�  under ,xx q

�� ,yy p
�� ,i

qip

i yy �

�� then

),...,,,(),...,,,(X 11

)(

��

� yyyxsyyyxS ���                             (3.623)

for some s  which defines the scaling weight of ).,...,,,( 1 �
yyyx�

Definition 3.8.1-1.  A  homogeneous  integrating  factor  (3.623)  of  ODE  (3.613)  has

critical scaling weight with respect to the scaling symmetry (3.622a) if .)1( pqns ���

In the case of a scaling symmetry, Theorem 3.8.1-2 yields an algebraic formula

for first integrals.

Theorem 3.8.1-3. Suppose ODE (3.613) admits a scaling symmetry (3.622a,b).  Let

),...,,,( 1 �
yyyx�  be a homogeneous integrating factor of (3.613) with scaling weight

(3.623), and let ),,,,( 11 �nyyyx ��  be its corresponding homogeneous first integral.

Then

,),ˆ(ˆ ��� rS �� (3.624)

where

.)1( qnpsr ���� (3.625)

In particular, if the scaling weight s of ),,,,( 1 �
� yyyx�  is not critical, i.e. ,0�r  then
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                  (3.626)

We now illustrate the use of Theorems 3.8.1-1 to 3.8.1-3 through several

examples.
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For a first example, consider the nonlinear Duffing equation

                                                      ,03
������� ybyyay                                           (3.627)

which is not self-adjoint if 0�a  (i.e., the damping constant is nonzero).  The point

symmetries of ODE (3.627) are given by

                                            ,ˆ
11 y��                                                                          (3.628a)

.if)(ˆ 2

9
2

13
1)3/(

2 abyaye xa
����                              (3.628b)

The adjoint-symmetries of (3.627) are given by [cf. Section 3.7.3]

                                           ,11 yeax
��                                                                      (3.629a)

.if)( 2

9
2

13
1)3/4(

2 abyaye xa
����                             (3.629b)

Here, we apply Theorem 3.8.1-1, using the four pairs of symmetries and adjoint-

symmetries given by (3.628a,b) and (3.629a,b) to obtain first integrals of ODE (3.627)

given by 

                                                ,ˆˆˆ),ˆ(ˆ ��������� a��� DD                                   (3.630)

where
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�D

Substitution of (3.628a,b) and (3.629a,b) into (3.630) gives

                         ,0),ˆ(ˆ),ˆ(ˆ
1122 �� ������                                                                (3.631a)
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2
12

3
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)3/4(
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1221 yayyae xa
������ ������             (3.631b)

This yields a single first integral that is a multiple 3/4a�  of the first integral

,if))(( 2

9
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4
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3
1

12
1)3/4(

2 abyayye xa
�����                     (3.631c)

where 2�  is the first integral given by the integrating factor 2���  of ODE (3.627) [cf.

Section 3.6.3].  From Theorem 3.8.1-2, note that (3.631a,b) corresponds to the action of

the point symmetry generators
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  As a second example, consider the third-order nonlinear ODE

0������ yyy                                                   (3.632)

that describes traveling wave solutions of the KdV equation [see Exercise 4.1-2].  Since

(3.632) is a third-order ODE, it is not self-adjoint.  Its admitted point symmetries are

given by a translation in  x  and a scaling in  x, y:

,ˆ
11 y��                                                          (3.633a)

                                                            .2ˆ
12 xyy ����                                              (3.633b)

Its admitted first-order adjoint-symmetries [cf. Exercise 3.7-2] are given by

                                                           ,11 ��                                                             (3.634a)

                                                           ,2 y��                                                           (3.634b)

.)( 2

1

3

3
1

3 yy ���                                            (3.634c)

The two point-form adjoint-symmetries (3.634a,b) are integrating factors of ODE (3.632)

[cf. Section 3.6.5] while (3.634c) is a first-order adjoint-symmetry that is not an

integrating factor of ODE (3.632).  Under the action of the scaling symmetry (3.633b),

the adjoint-symmetries (3.634a–c) are homogeneous with scaling weights given,

respectively, by

                                                 .6,2,0 321 ����� sss                                      (3.635)

We now apply Theorem 3.8.1-1, using the symmetries (3.633a,b) and adjoint-symmetries

(3.634a–c) to obtain first integrals of ODE (3.632) given by

                                     ,ˆˆˆ)(ˆ),ˆ(ˆ 22
����������� y���� DDDD                         (3.636)

where
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First we use the scaling symmetry .ˆˆ
2�� �  Substituting (3.634a,b) into (3.636), we obtain

,4)(4),ˆ(ˆ
1

2

2
1

212 ���� ����� yy                                        (3.637a)

,6))((6),ˆ(ˆ
2

2

12
13

3
1

222 ���� ������ yyyy                       (3.637b)

which are scaling multiples 6and4 21 ���� rr  of the first integrals 1�  and 2�  given

by the integrating factors (3.634a,b).  Note that these scaling factors are in accordance

with Theorem 3.8.1-3 where, from (3.625), .2,1,4 ��� isr ii  Next, the substitution of

(3.634c) into (3.636) yields the functionally dependent first integral

                                                        .4),ˆ(ˆ
2132 ����� ��                                            (3.638)
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Finally, if we use the translation symmetry 1̂
ˆ �� �  in (3.363) with (3.634a–c), then we

obtain

0),ˆ(ˆ),ˆ(ˆ),ˆ(ˆ
312111 ��� ��������� .

As a third example, consider the fourth-order ODE

0)))((( 1
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�yyyy

or, equivalently,

,
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���������      (3.639)

arising in the study of the symmetry properties of the wave equation with wave speed

y(x).  The ODE (3.639) is not self-adjoint [cf. Section 3.7.3].  Its admitted point

symmetries consist of translations in  x  and independent scalings in  x  and y  given by

      ,ˆ
11 y��                                                     (3.640a)

      ,ˆ
2 y��                                                      (3.640b)

     .ˆ
13 xy���                                                  (3.640c)

It does not admit any contact symmetries or second-order symmetries [cf. Section 3.5.2].

The adjoint-symmetries up to second order of (3.639) [cf. Section 3.7.3] are given by

,
1

2

1 y

y
��                                                    (3.641a)

,
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��                                                (3.641b)
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24

3
y

y
y��                                           (3.641c)

where (3.641a,b) are integrating factors but (3.641c) is not [cf. Section 3.6.5].  The first

integrals corresponding to (3.641a,b) are given by

,)()(2)( 2

2

2

1
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23

1

1

2

1 yyyyyyyy ��

����                           (3.642a)

.)()()()( 2

2

4

1
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13

3

1

2

2 yyyyyyyyy ���

����                   (3.642b)

Here, we apply Theorems 3.8.1-1 and 3.8.1-3, using pairs of symmetries (3.640a–c) and

adjoint-symmetries (3.641a–c) to obtain the first integrals (3.642a,b).  First, using the

translation symmetry (3.640a), we find that the first integral formula (3.616) trivially

yields .0),ˆ(ˆ),ˆ(ˆ),ˆ(ˆ
312111 ��� ���������  Next consider the scaling symmetries

(3.640b,c).  The scaling weights of (3.641a–c) are 1231 ���� sss  with respect to

(3.640b), and 3,1 231 ��� sss  with respect to (3.640c).  From the first integral formula



262

(3.616), we obtain (3.616)

 ,2),ˆ(ˆ),ˆ(ˆ
11312 ������� ���                                  (3.643a)

 ,0),ˆ(ˆ),ˆ(ˆ
2322 �� ������                                       (3.643b)

 ,2),ˆ(ˆ),ˆ(ˆ
213332 �������� ���                             (3.643c)

where (3.643a,b) are scaling multiples 0and2 21 �� rr  of (3.642a,b), respectively.

Note that 02 �r  reflects the x and y scaling invariance of ,2�  i.e., correspondingly, 2�

has critical scaling weight with respect to both (3.640b,c).

3.8.2   FIRST INTEGRALS FROM A WRONSKIAN FORMULA USING 

  SYMMETRIES OR ADJOINT-SYMMETRIES

Consider again a second- or higher-order ODE

                 ,2),,...,,,( )1()(
���

� nyyyxfy nn                                  (3.644)

represented as a surface

                                                     ).,...,,,( 11 �

� nn yyyxfy                                          (3.645)

Recall that the determining equations for symmetries and adjoint-symmetries of ODE

(3.644) are nth-order linear homogeneous equations in terms of the operator
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In particular, both of the determining equations have the form
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n                           (3.646)

where, for symmetries  ),...,,,(ˆ
1 �

yyyx�   of ODE (3.644), in (3.646) we have

,1,...,1,0,,ˆ ����� nif
iyi��                               (3.647a)

with ;0 yy �  for adjoint-symmetries ),...,,,( 1 �
yyyx�  of (3.644), in (3.646) we have

,1...,,1,0,
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with .0 yy �

Definition 3.8.2-1.  If ,,...,2,1)},,...,,,({ 1 niyyyxi �

�
�  is a set of n solutions of the nth-

order linear homogeneous PDE (3.646), then the Wronskian of }{ i�  is given by the n � n

determinant
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                                (3.648)

The determinant (3.648) possesses properties completely analogous to the

classical Wronskian for nth-order linear ODEs [Coddington (1961)].

Definition 3.8.2-2. A set of k solutions ,,...,2,1)},,...,,,({ 1 kiyyyxi �

�
�  of the

determining equation (3.646) is linearly dependent with respect to the surface (3.645) if

0
1

��
�

k

i iic �  holds for some functions ),...,,,( 11 �ni yyyxc  satisfying .0�icD  Otherwise,

the set of k solutions ,,...,2,1)},,...,,,({ 1 kiyyyxi �

�
� of (3.646) is linearly independent

with respect to the surface (3.645).

Definition 3.8.2-2 is stronger than the usual strict linear dependence of functions.

In particular, a set of solutions of determining equation (3.646) can be linearly

independent in the strict sense (i.e., none is a constant coefficient linear combination of

the others) but may still be linearly dependent with respect to the surface (3.645).

Lemma 3.8.2-1. Let ,,...,2,1)},,...,,,({ 1 niyyyxi �

�
�  be a set of n solutions of

determining equation (3.646). Then 0),...,( 1 �nW ��  if and only if the set is linearly

dependent with respect to the surface (3.645).

Proof.   Let }{ i�  be a set of n strictly linearly independent solutions of (3.646).  If }{ i�

is linearly dependent with respect to the surface (3.645), then 0
1

��
�

i

n

i ic �  holds with

.0�icD   Hence, by repeated differentiation with respect to D,  one has
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Thus, the column vectors of the Wronskian (3.648) are linearly dependent, i.e.,
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and, consequently, the Wronskian  ),...,( 1 nW ��   vanishes.

Conversely, if the Wronskian satisfies 0),...,( 1 �nW �� , then its column vectors

must be linearly dependent for some coefficient functions ic  that are not all zero. Clearly,
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without loss of generality, we may assume that .0�nc  We now use an induction

argument on n.  Suppose .2�n  Then (3.649) yields

,~
12 �� c�                                                   (3.650a)

                                                              ,~
12 �� DD c�                                               (3.650b)

with ./~
21 ccc ��   Substitution of (3.650a) into (3.650b) yields 0~

�cD ,  and thus, the set

}{ i�  is linearly dependent with respect to the surface (3.645).  Now suppose .2�n  To

proceed inductively, we assume that if the Wronskian of a proper subset of }{ i�

vanishes, then the subset is linearly dependent with respect to the surface (3.645).

Consider (3.649) with 2�n  and divide this equation by .nc  The second row minus the

derivative D of the first row yields the equation
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cc D�                                      (3.651)

Similarly, the other rows of (3.649) lead to

.2,...,1,0,0ˆ
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����
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nkc i

k

i

n

i

�D                                 (3.652)

There are now two cases to consider.  If 0ˆ �ic  for all ,1�� ni  then the first row of

(3.649) yields �
�

�

n

i iic
1

0~
�  with ,/~

nii ccc �  where .0~
�icD  Otherwise, if 0ˆ �ic  for

some ,1�� ni  then from (3.651) and (3.652) the determinant ),...,( 11 �nW ��  has linearly

dependent column vectors, and thus, .0),...,( 11 �
�nW ��   Hence, �

�

�

n

i iic
1

0~
�  holds with

0~
�nc  and ,ˆ~

ii cc � ,1,...,1 �� ni  where 0~
�icD  by the induction assumption.  In either

case, we conclude that the set }{ i�  is linearly dependent with respect to the surface

(3.645).

The following result holds analogously to the situation for the classical Wronskian

case.  The proof is left to Exercise 3.8-6:

Lemma 3.8.2-2. Let ,,...,2,1)},,...,,,({ 1 niyyyxi �

�
�  be a set of n solutions of

determining equation (3.646).  Then the Wronskian (3.648) satisfies the first-order linear

PDE

).,...,(),...,( 111 nnn WW ����
�

��D (3.653)

In (3.653), the coefficient 1��n  is given by
1�nyf or

1�
�

nyf when (3.646) is,

respectively, the symmetry determining equation or adjoint-symmetry determining
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equation.  Hence, if ODE (3.645) does not involve ,1�ny  then ,01 ��
�n  and thus, (3.653)

yields .0),...,( 1 �nW ��D  This establishes the following theorem:

Theorem 3.8.2-1. Suppose an nth-order ODE (3.645) does not involve ,1�ny  i.e.,

.0
1
�

�nyf  Let ,,...,2,1),,...,,,( 1 niyyyxi �

�
�  be either n symmetries or n adjoint-

symmetries of (3.645).  If this set }{ i�  is linearly independent with respect to the surface

(3.645), then
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(3.654)

yields a first integral of ODE (3.645) provided that .0/),...,(ˆ
11 ����
�nn y���

If 1�ny  appears in ODE (3.645), then the coefficient 1��n  in (3.653) is nonzero.

In this case, one can still obtain first integrals from (3.653) provided that one has at least

1�n  linearly independent solutions of the determining equation (3.646) for either

admitted symmetries or admitted adjoint-symmetries or, alternatively, n  admitted

symmetries together with n  admitted adjoint-symmetries. 

Theorem 3.8.2-2.  Suppose an nth-order ODE (3.645) has an essential dependence on

,0i.e.,,
11 �

�

� nyn fy  and thus adjoint-symmetries of (3.645) are not symmetries of (3.645).

(i)  Let both ),,...,,,(~and),...,,,( 11 ��
yyyxyyyx ii �� ,,...,2,1 ni �  be either n  symmetries

or n  adjoint-symmetries of (3.645). If each set }{ i�  and }~{ i�  is linearly independent

with respect to the surface (3.645), then

)~,...,~(/),...,()~,...,~,,...(ˆ
1111 nnnn WW ��������� � (3.655a)

yields a first integral of ODE (3.645) provided that .0/)~,...,~,,...,(ˆ
111 ����
�nnn y�����

(ii) Let ,,...,2,1),,...,,,( 1 niyyyxi �

�
�  be n  symmetries of (3.645) and let

,,...,2,1),,...,,,(~
1 niyyyxi �

�
�  be n  adjoint-symmetries of (3.645).  If each set }{ i�  and

}~{ i�  is linearly independent with respect to the surface (3.645), then

)~,...,~(),...,()~,...,~,,...,(ˆ
1111 nnnn WW ��������� � (3.655b)

yields a first integral of ODE (3.645) provided that .0/)~,...,~,,...,(ˆ
111 ����
�nnn y�����

Proof.   Left to Exercise 3.8-7.        

In particular, if one has a set of at least 1�n  symmetries (or 1�n  adjoint-

symmetries) which is linearly independent with respect to the surface (3.645), then by
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considering the 1�n  distinct subsets of n symmetries (or n adjoint-symmetries), one

obtains 1�n  first integrals (3.655a) of ODE (3.644).  This yields a reduction of (3.644) to

an (n – r)th-order ODE when r of the 1�n  first integrals are functionally independent.  If

nr � , then one obtains the quadrature of ODE (3.644), i.e., its general solution

depending on  n  essential constants.

We note that for an nth-order ODE (3.644), if one knows a set of nk ��1

symmetries (or adjoint-symmetries) which is linearly dependent with respect to the

surface (3.645), i.e., �
�

�

k

i iic
1

0�  where ,0�icD  then it follows that each coefficient

,,...,2,1),,...,,,( 11 kiyyyxc ni �

�

yields a first integral of (3.644) provided that

.0/ 1 ����
�ni yc

We now illustrate the use of Theorems 3.8.2-2 through several examples.

Examples illustrating Theorem 3.8.2-1 will be considered in the next section and in

Exercise 3.8-2.

For a first example, consider the second-order ODE [Stephani (1989)]

,cossincot)(2 2 yyyyy �����                                      (3.656)

which describes the geodesics, i.e., great circles, on a unit sphere (x is the polar angle or

longitude and y is the azimuthal angle or latitude).  The point symmetries admitted by

(3.656) are given by [cf. Exercise 3.5-3]

                                                     ,ˆ
11 y��                                                                 (3.657a)

                                                    ,coscotsinˆ
12 xyyx ���                                      (3.657b)

                                                    .sincotcosˆ
13 xyyx ���                                     (3.657c)

The point symmetries (3.657a–c) form the Lie algebra SO(3) with generators
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We now apply Theorem 3.8.2-2(i), using (3.657a–c) to obtain first integrals of ODE

(3.656) that yield its complete quadrature.  The Wronskians (3.648) arising for the three

pairs of symmetries obtained from (3.657a–c) are given by
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where
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Hence, the ratios (3.655a) arising from (3.658a–c) yield the three first integrals
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Clearly, any two of (3.659a–c) are functionally independent and thus yield the quadrature

of the second-order ODE (3.656). In particular, ,const 11 c��� 22 const c���  yield its

general solution

                                                    .cotcossin 21 yxcxc ��                                         (3.660)

As a second example, we return to the nonlinear Duffing equation (3.627), which

admits two point symmetries (3.628a,b) and two point-form adjoint-symmetries

(3.629a,b).  Here, we apply Theorem 3.8.2-2(ii), using together the pairs (3.628a,b) and

(3.629a,b) to obtain the first integral (3.631c).  The Wronskians corresponding to

(3.628a,b) and (3.629a,b) are given by
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Hence, the corresponding product (3.655b) yields the first integral

,))((( 24

4
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3
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1)3/4(

3
4 yayyae xa

����                             (3.662)

which is a multiple of the square of (3.631c).

For a third example, we return to the third-order nonlinear ODE (3.632)

represented by the surface

                                                       ).,( 113 yyfyyy ���                                            (3.663)

ODE (3.663) admits the first-order adjoint-symmetries (3.634a–c).  Since ,0
2
�yf  from

Theorem 3.8.2-1 it follows that three adjoint-symmetries could yield a first integral

(3.654) of ODE (3.663).  However, we find that the Wronskian arising from (3.634a–c)

vanishes:
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Consequently, from Lemma 3.8.2-1, it follows that the adjoint-symmetries (3.634a–c) are

linearly dependent with respect to surface (3.663) and, hence, we cannot apply Theorem

3.8.2-1 in this situation.  However, the linear dependence among (3.634a–c) directly leads

to two first integrals as follows.  From (3.664), we have
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for some functions ic  satisfying
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The linear system (3.665) yields
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Thus, since 32 cc  and 31 cc  are not constants, the expressions (3.666a,b) give two first

integrals 1�   and 2�  of ODE (3.663) which clearly are functionally independent.  Note

that 1�  and 2�  are multiples of the first integrals arising from integrating factors

(3.634a,b)  [cf. Section 3.6.5].

For a fourth example, consider the third-order ODE
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represented by the surface
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23 yyxfyyyyxy ���
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in space.),,,,( 321 �yyyyx   As shown in Section 3.5.2, ODE (3.667) admits three point

symmetries and seven contact symmetries.  It also admits three second-order adjoint-

symmetries that are integrating factors, as shown in Section 3.6.5.  Here, we obtain the

three corresponding first integrals of (3.667) through Theorem 3.8.2-2(i) by using the

three admitted point symmetries

   ,1ˆ,ˆ,ˆ
3121 ��� ��� xyy                   (3.668)
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and the two admitted contact symmetries
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Note that, since ,0
2
�yf  we need at least four symmetries in order to obtain two

independent Wronskians (3.648).  Now from (3.668) and (3.669a,b), we obtain

10)!2!3/(!5 �  Wronskians using sets of three symmetries each.  The corresponding ratios

(3.655a) of these Wronskians yield 45 first integrals, which can be shown to include three

functionally independent ones.  In particular, the following are functionally independent:
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From the 45 first integrals, one can show that among those connected with just (3.668)

and either (3.669a) or (3.669b), there are only two functionally independent ones.  Hence,

both of the contact symmetries (3.669a,b) are needed to obtain three functionally

independent first integrals of (3.667).

As a final example, we consider the fourth-order ODE

y

y
y

��

���

�

2
)4( )(

3

4

represented by the surface

),(
)(

32

2

2

3
4

3

4
yyf

y

y
y ��               (3.671)

in space.),,,,,( 4321 �yyyyyx   In Section 3.5.2, it was shown that ODE (3.671) admits 12

second-order symmetries.  Similarly, one can show that ODE (3.671) admits 17 second-

order adjoint-symmetries [cf. Exercise 3.7-3].  Since ,0
3
�yf  at least five symmetries or

adjoint-symmetries are needed to obtain two independent Wronskians (3.648) yielding a

first integral of ODE (3.671) from Theorem 3.8.2-2(i).  Here we obtain four functionally

independent first integrals of the fourth-order ODE (3.671) by using five of its admitted

symmetries
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and five of its admitted adjoint-symmetries
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From (3.672), we obtain five Wronskians using sets of four symmetries each, yielding 10

first integrals given by the ratios (3.655a).  Likewise, we obtain 10 first integrals from

(3.673).  Each set of first integrals can be shown to lead to four functionally independent

first integrals of (3.671).  In particular, we obtain
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The same first integrals arise from Theorem 3.8.2-2(ii) through products of Wronskians

involving (3.672) and (3.673).  Then, from (3.674a–d), we have the quadrature of ODE

(3.671) given by ,4,3,2,1,const ��� icii�  which yields
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3.8.3   FIRST INTEGRALS FOR SELF-ADJOINT ODEs

Here we briefly specialize the results of Sections 3.8.1 and 3.8.2 to self-adjoint ODEs.

Recall that for an nth-order ODE given by the surface (3.645), the conditions for self-

adjointness are that n is even and that ),...,,,( 11 �nyyyxf  satisfies (3.540b).  In particular,

it is necessary that ,0
1
�

�nyf  and thus,

.2),,...,,,( 21 ��
�

nyyyxfy nn                   (3.676)

For a self-adjoint ODE (3.676), adjoint-symmetries are symmetries.  If one knows

at least two linearly independent symmetries, then Theorem 3.8.1-1 yields a first integral

of (3.676) for each such pair of admitted symmetries ),...,,,(ˆ
11 �

yyyx�  and

),,...,,,(ˆ
12 �

yyyx�  given by the algebraic formula
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     (3.677)

provided that .0/)ˆ,ˆ(ˆ
121 ����
�ny���   We emphasize that the symmetries used in (3.677)

need not be variational symmetries.

Now suppose ),...,,,(ˆ
11 �

yyyx�  and ),...,,,(ˆ
12 �

yyyx�  are variational symmetries

of order �  of a self-adjoint ODE (3.676).  Then one can show [Exercise 3.8-6] that the

first integral (3.677) is yielded by the integrating factor
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where
y

ii
�

�

� �̂X̂  is the infinitesimal generator corresponding to .2,1,ˆ �ii�  Since an

integrating factor is a variational symmetry for a self-adjoint ODE [cf. Section 3.7.4], it

follows that the integrating factor (3.678) of a self-adjoint ODE (3.676) is a symmetry of

(3.676).  In particular,
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��                   (3.679)

is equal to the commutator symmetry of  the symmetries  1�̂   and  .ˆ
2�   Correspondingly,

if 1�  and 2�  are first integrals arising from integrating factors given by the variational

symmetries  1�̂   and  ,ˆ
2�   then
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Now suppose a self-adjoint ODE (3.676) admits a scaling symmetry

           const,,const,ˆ
1 ���� qpqxypyS�                   (3.681)

i.e., ., yyxx pq
�� ��   If one knows a variational symmetry ),...,,,(ˆ

1 �
yyyx�  of order

�  of (3.676) with noncritical scaling weight pqns ��� )1(  with respect to (3.681), then

(3.677) yields an algebraic formula for the corresponding first integral of ODE (3.676)

given by
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      (3.682a)

where

.)1( qnpsr ����                 (3.682b)
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Finally, since 0
1
�

�nyf  holds for a self-adjoint ODE (3.676), Theorem 3.8.2-1

yields a first integral of (3.676) if one knows a set of n symmetries

,,...,2,1),,...,,,(ˆ
1 niyyyxi �

�
�  that is linearly independent with respect to the surface

(3.676).  In particular, the first integral is given by
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provided that .0/)ˆ,...,ˆ(ˆ
11 ����
�nn y���  The symmetries used in (3.683) need not be

variational symmetries.

For ,2�n  we note that (3.683) and (3.677) both yield the same first integral

formula .ˆˆˆˆ)ˆ,ˆ(ˆ
122121 ������� DD ��   However, for ,2�n  the corresponding formulas are

different.

We now consider two examples.

As a first example, we consider the nonlinear Duffing equation (3.627) with  no

damping, i.e., the self-adjoint ODE .03
����� ybyy   This second-order ODE admits the

point symmetry (3.628a).  In the case ,0�b  the fully nonlinear Duffing equation

                                                              03
���� yy                                    (3.684)

admits a second point symmetry given by the scaling symmetry ., 1yyxx �

�� ��  We

now apply the Wronskian (3.683) to obtain a first integral of the self-adjoint ODE (3.684)

from the two admitted point symmetries

      .ˆ,ˆ
1211 xyyy ��� ��                   (3.685)

This yields

      .)(2)ˆ,ˆ(ˆ 42

121 yy �����                   (3.686)

The corresponding integrating factor is given by the variational point symmetry

.ˆ44)ˆ,ˆ(ˆ
1121 ��� ��� y                   (3.687)

Consequently, the first integral (3.686) can also be obtained directly in terms of 1̂�  from

the scaling formula (3.682a,b) since the scaling weight s = –2 of (3.687) is noncritical

(i.e., ).04hence,and,1,1 ������ rpq   Note that the first integral (3.686) is a

multiple of the energy of the nonlinear oscillator described by (3.684).

As our final example, we consider the fourth-order nonlinear ODE [Sheftel

(1997)]

              .3/5)4( �

� yy                   (3.688)
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Its admitted point symmetries are given by [cf. Exercise 3.5-7]

,ˆ
11 y��                  (3.689a)

            ,23ˆ
12 xyy ���                 (3.689b)

.3ˆ
1

2

3 yxxy ���                 (3.689c)

Hence, there are an insufficient number of symmetries to apply the first integral

Wronskian formula (3.683).  However, we can apply the first integral formula (3.677) by

using pairs of symmetries (3.689a–c).  This yields three functionally independent first

integrals
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231211
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   (3.690c)

with corresponding integrating factors given by

,ˆ22)ˆ,ˆ(ˆ
11211 ��� ��� y                 (3.691a)

,ˆ32)ˆ,ˆ(ˆ
21312 ��� ����� yxy                 (3.691b)

                 .ˆ262)ˆ,ˆ(ˆ
31

2

323 ��� ����� xyyx                 (3.691c)

Hence, the three point symmetries, including the scaling symmetry, are variational

symmetries of ODE (3.688).  Note that the two first integrals (3.690a,c) can also be

obtained using the scaling formula (3.682a) in terms of (3.689a,c).  We also note that the

commutators (3.679) arising from the three point symmetries (3.689a–c) are given by

,X̂2]X̂,X̂[,X̂]X̂,X̂[,X̂2]X̂,X̂[ 332231121 ����

in accordance with the results (3.678) and (3.691a–c).

Finally, from (3.690a–c), we obtain three quadratures ,3,2,1,const ��� icii�

yielding a reduction of ODE (3.688) to a first-order ODE given by

.0)2(3)())(2( 2
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13/42
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2

9
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���������� cxccxyycyycxcycxccx

                  (3.692)

EXERCISES 3.8

1. Consider the harmonic oscillator equation const.,02
����� �� yy  Find first integrals

from its admitted point symmetries by using the scaling formula (3.682a,b) and the

Wronskian formula (3.683).
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2.   Consider the third-order ODE ,)( 32 yyy �����
�  which admits the translation symmetry

yyxx ��� ,�  and the scaling symmetries ., yyxx �� ��  Use the Wronskian

formula (3.654) with these three admitted point symmetries to find a first integral and

corresponding integrating factor. 

3. Consider the third-order ODE (3.667), which admits the scaling symmetries

., yyxx �� ��

(a) Find first integrals from the admitted second-order adjoint-symmetries (3.513)

and (3.515) by using the scaling formula (3.626).  Compare the results obtained

from invariance under the x  and y  scalings, respectively.

(b) Classify which of the second-order adjoint-symmetries (3.513) and (3.515) of

ODE (3.667) have noncritical scaling dimension with respect to the x  and y

scalings.  Determine if there is a combination of the x  and y  scalings such that

all the second-order adjoint-symmetries (3.513) and (3.515) have noncritical

scaling dimensions. 

4. Consider the fourth-order ODE (3.671), which admits the scaling symmetries

., yyxx �� ��

(a) Find first integrals from the admitted second-order adjoint-symmetries [cf.

Exercise 3.7-3] by using the scaling formula (3.626) for the x and y scalings.

(b) Find first integrals from the admitted second-order symmetries and adjoint-

symmetries by using the Wronskian formula (3.655a,b).

(c) Compare the results obtained from the scaling formula and the Wronskian

formula.

5.   Consider the fourth-order wave speed ODE (3.639).  Find first integrals by using the

Wronskian formulas (3.655a,b) for:

(a) admitted first- and second-order symmetries [cf. Section 3.5.2];  and

(b) admitted first- and second-order adjoint-symmetries [cf. Section 3.7.3].

6. Show that the first integral formula (3.677) for a pair of variational symmetries

reduces to the expression (3.680).  Show that the corresponding integrating factor is

given by the commutator expression (3.678), (3.679).

7. Prove Lemma 3.8.2-2.

8. Prove Theorem 3.8.2-2.

9. Here we consider another algebraic formula for first integrals that applies to the

special class of nth-order ODEs

,0),,...,,( 11 ��

� ynn fyyxfy                                     (3.693)

i.e., f has no dependence on .y   For an ODE (3.693), the adjoint-symmetry

determining equation (3.543) takes the form
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Hence, (3.694) yields a first integral of ODE (3.693) provided that .0
1
��

�ny�

(a) Calculate first integrals given by (3.694) for the third-order ODE (3.506) by using

its admitted second-order adjoint-symmetries [cf. Section 3.7.3].

(b) Calculate first integrals given by (3.694) for the fourth-order ODE (3.612) by

using its admitted adjoint-symmetries determined in Exercise 3.7-3.

3.9      APPLICATIONS TO BOUNDARY VALUE PROBLEMS

We show how reduction of order is applied to boundary value problems for ODEs.  Since

reduction of order holds for essentially all solutions of a given ODE, it follows that a

posed boundary value problem for the given ODE will map into a boundary value

problem for the reduced order ODE.  We illustrate this through an example. 

Consider again the Prandtl–Blasius problem for a flat plate discussed in Section

1.3.1.  The boundary value problem (1.62a–e) reduces to solving the Blasius equation

,0,0
2
1

���������� xyyy                       (3.695a)

with the boundary conditions

,0)0()0( ��� yy            (3.695b)

.1)( ���y                       (3.695c)

We wish to determine the value of ).0(y ����

In Section 3.4.2, we saw that the invariance of (3.695a) under the two-parameter

Lie group of point transformations (3.139a,b) reduced this ODE to the first-order ODE

�

�

�

�

�

�

�

		




VU

UV

U

V

dU

dV

2

2
1

(3.696)

plus the quadratures (3.171) and (3.172), where

.,
2y

y
U

yy

y
V

�

�

�

��

�

Let );( 1CUV �� be the general solution of (3.696).  Consider the phase plane

diagram in the UV-plane associated with (3.696).  At some point on the solution curve of

the boundary value problem (3.695a–c), one must have .0��y  Then, from the phase

plane diagram, it follows that 0�U  along the whole solution curve of the boundary

value problem (3.695a–c).  Consequently, 0,0 ��� yy  for .0 ��� x  Then, at some

point along the solution curve of (3.695a–c), one must have .0���y  Hence, the solution

curve of the boundary value problem (3.695a–c) must lie entirely in the first quadrant [cf.

Figure 3.3].  It then follows that along the solution curve one has 0,0,0 ������ yyy  for

.0 ��� x  Thus, .0)0( ���� �y  Then,
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]2[ UV
y

y

dx

dU
�

�

� 0    if V ,2U

leads to the direction of increasing x indicated by the arrows in Figure 3.3.  Thus, as

).0,0(),(, ��� VUx  As ,0�x  three cases can arise: ���� UVU );,0(),(  with

),(),(and; ����� VUUV  with ).(UOV �  We examine each of these three cases in

terms of the boundary conditions (3.695b,c):

Figure 3.3

Case I. .0as),0(),( ��� xVU

Here .0as/~/ �� xUVdUdV  Then 1

3 const~/ CVUyy ����  as ,0�x  which is

impossible if .0const)0( ����� �y

Case II. .0as  with ����� xUVU

Here .0as2/~/ �xUVdUdV 2

2/3 const~)/(Then Cyy ����  as ,0�x  which again

is impossible.

Thus, the following case must hold:

Case III. .0as)(  with),(),( ����� xUOVVU

From ODE (3.696), it follows that the solution must lie along a separatrix (exceptional

path) [see Section 3.10]

,0as~
2
1

�xUV

i.e., .0as/)(~ 2

2
1

���� xyyy  Then ODE (3.170) becomes

V = 2U
V

U

V = U
2
1

solution curve
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,0as
3

1
~ �� x

rdr

ds

which leads to

.0asconst~
)( 2

�

�

��

�

xC
y

y

Then
�

��� Cy
2
1)0( .

As ,��x  the boundary condition (3.695c) leads to )0,0(),( �VU  with

.UV ��   Consequently, as  ,��x  we have

,
4

~
2U

V

dU

dV

so that

UedV 4/1

0~ �

for some constant  .0d   Thus, from ODE (3.170), we get .asconst 0 ������ xCsy

As shown in Section 1.3.1, it then follows that .)(2/ 2/3

0CC
�

��

The solution of the boundary value problem (3.695a–c) is now obtained by

starting from the exceptional path as ,��U  then integrating out to

,0as~ 4/1

0 �

� UedV U  and finally determining constants .and0 �

CC  Then we obtain

.)(2/ 2/3

0CC
�

��  See Dresner (1983) for further details.

Further examples of applications to boundary value problems appear in Bluman

and Cole (1974) and Dresner (1983, 1999).

EXERCISES 3.9

1. Consider the nonlinear diffusion equation

,0,0,)( ������� txuuu xxt

      with the boundary conditions

.0,1),0(

,0,0)0,(

��

��

ttu

xxu

From its invariance under scalings, its solution is of the form )(�yu �  with

./ tx��

(a) Derive the second-order ODE satisfied by )(�y  and the corresponding boundary

conditions.
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(b) Show that this ODE admits a one-parameter Lie group of point transformations.

Reduce this ODE to a first-order ODE plus a quadrature.

(c) Study the phase plane of this first-order ODE and discuss which path yields the

solution of the posed boundary value problem. 

(d) Sketch  ).(),( �ytxu �

2. Consider the Thomas–Fermi equation

                                                         .2/32/1 yxy �

���             (3.697)

(a) Find a scaling symmetry admitted by (3.697).

(b) Use this symmetry to reduce ODE (3.697) to a first-order ODE.

(c) Find the curve in the phase plane that corresponds to the physically interesting

boundary conditions

.0)(,1)0( ��� yy

For a full discussion of this problem, see Bluman and Cole (1974) and Dresner

(1999).

3. In a geometrically nonlinear theory of axisymmetric deformation of a membrane

under pressure loading, one obtains the ODE

,10),()()(
2

3
33

������ xxq
y

x
xxyx � (3.698)

   where  y  is the deflection from the original shape, x  is a radial spherical coordinate,

)(x�  is a shape function with const)( �x�  for a sphere, and )(xq  is a load function

with 4~)( xxq  for uniform pressure.  Assume that the membrane is spherical and

loaded with constant pressure near x = 0.  The boundary conditions are

axis),at they(regularitfiniteis)0(y                (3.699a)

edge).at thefixed(membrane0)1( �y           (3.699b)

(a) Show that ODE (3.698), with )(x�  and )(xq  having the desired properties and

with the solution satisfying the regularity condition, admits a one-parameter Lie

group of point transformations if and only if )(x�  and )(xq  are of the form

524

0

32

0 )1()(,)1()( ��

���� xxqxqxx ���� , (3.700)

   for arbitrary constants .,, 00 qv�

(b) Show that the infinitesimal generator of the point symmetry admitted by ODE

(3.698), when its coefficients satisfy (3.700), is given by

.2)(X 3

y
y

x
xx

�

�

�

�

�

�� �              (3.701)
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(c) Accordingly, reduce ODE (3.698) to a first-order ODE and isolate the particular

path in the phase plane that solves the boundary value problem (3.698),

(3.699a,b).

For a full discussion of this problem, see Bluman and Cole (1974).

3.10     INVARIANT SOLUTIONS

Consider an nth-order ODE

                                                   ),,,,( )1()( �

��

nn yyyxfy � (3.702)

or, equivalently, the surface ),,,,,( 1 nn yyyxfy ��  that is assumed to admit a one-

parameter Lie group of point transformations (point symmetry) with the infinitesimal

generator

.),(),(X
y

yx
x

yx
�

�

�

�

�

� ��             (3.703)

Definition 3.10-1.  )(xy ��  is an invariant solution of ODE (3.702) resulting from its

invariance under the point symmetry (3.703) if and only if:

(i) )(xy ��  is an invariant curve of (3.703), i.e., );(  when0))((X xyxy �� ���

(ii) )(xy ��  solves (3.702).

It follows that )(xy ��  is an invariant solution of ODE (3.702) resulting from its

invariance under the point symmetry (3.703) if and only if )(xy ��  satisfies

(i) ));(,()())(,( xxxxx ����� ��                       (3.704a)

(ii)                                 )).(,),(),(,()( )1()( xxxxfx nn �

�� ���� �           (3.704b)

More generally, 0),( �� yx defines an invariant solution of ODE (3.702) resulting

from its invariance under the point symmetry (3.703) if and only if:

(i) 0),( �� yx  is an invariant curve of (3.703), i.e., ;0  when0X ����

(ii) 0),( �� yx  solves (3.702).

In particular, here (i) and (ii) are equivalent to:

(i) 0),( �� yx   is a solution of the first-order ODE );,(/),( yxyxy ����

(ii) 0),( �� yx   is a solution of the ODE  ),,,,( )1()( �

��

nn yyyxfy � .

An obvious (naive) procedure to find invariant solutions of ODE (3.702),

resulting from its invariance under the point symmetry (3.703), is to first try to solve the

ODE ),(/),( yxyxy ����  to obtain its general solution .0);,( �Cyxg   If one is able to

do this, the values of C that yield invariant solutions, if any exist, are then determined by

substituting this general solution into the given ODE (3.702).  Any such value of *CC �
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determines an invariant solution 0*);,(),( ��� Cyxgyx  of ODE (3.702) resulting from

its invariance under (3.703).

A better alternative procedure that avoids determining the general solution of

),(/),( yxyxy ����  will now be given.  In particular, we will see that usually it is not

necessary to solve the ODE ),(/),( yxyxy ���� or any other ODE in order to find the

invariant solutions of ODE (3.702) resulting from its invariance under the point

symmetry (3.408).

Theorem 3.10-1 [Bluman (1990c)]. Suppose an nth-order ODE (3.702) admits the point

symmetry (3.703) with �  0. Let 
yx

yx
�

�

�

�

��� ),(Y  where ).,(/),(),( yxyxyx ����

Consider the function ),( yxQ  defined by

� � ).Y,,Y,,,(Y),,,,(),( 21

Y11 1 ��������

��

��
�

�

nn

ynn yxfyyyxfyyxQ k
k

��

     (3.705)

Three cases arise for the algebraic equation 0),( �yxQ :

(i) 0),( �yxQ  defines no curves in the  xy-plane;

(ii) 0),( �yxQ  is identically satisfied for all values of  x  and  y;

(iii) 0),( �yxQ  defines curves in the  xy-plane.

In Case (i), the ODE (3.702) has no solutions resulting from its invariance under

the point symmetry (3.703).

In Case (ii), any solution of the ODE ),(/),( yxyxy ���� is an invariant solution

of the ODE (3.702) resulting from its invariance under the point symmetry (3.703).

In Case (iii), an invariant solution of ODE (3.702), resulting from its invariance

under the point symmetry (3.703), is a curve satisfying 0),( �yxQ  and, conversely, any

curve satisfying 0),( �yxQ  is an invariant solution of ODE (3.702) resulting from its

invariance under (3.703).

Proof.  If ),,(),(/),(1 yxyxyxyy ����� �� then we successively obtain ��

)(k

k yy

1

1

1 / �� kk dxyd .,,2,1for,Y 1 nkk
����

�  Hence, any invariant solution of ODE (3.702),

resulting from its invariance under the point symmetry (3.703), must satisfy the algebraic

equation

0),( �yxQ .

From this it immediately follows that:  

(i) if  0),( �yxQ  defines no curves in the  xy-plane, then ODE (3.702) has no

solutions resulting from its invariance under the point symmetry (3.703); and  

(ii) if  0),( �yxQ  for all  x, y, then any solution of the ODE  ),(/),( yxyxy ����  is

an invariant solution of ODE (3.702) resulting from its invariance under (3.703).

In Case (iii), consider any curve satisfying .0),( �yxQ   This curve is an invariant

solution of ODE (3.702), resulting from its invariance under the point symmetry (3.703),

if and only if its differential consequence
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0��� yQQ yx

satisfies ODE ),(/),( yxyxy ���� .  This is equivalent to

.0),(when0Y �� yxQQ (3.706)

We now show that (3.706) holds for any curve defined by .0),( �yxQ

Since ODE (3.702) admits the point symmetry (3.703), it follows that the point

symmetry determining equation

1

)1(

1

)1()(

�

�

�

�

��

�

�

�

�

�

�

�

�

�

n

nn

y

f

y

f

y

f

x

f
����� �           (3.707a)

must hold for all values of nyyyx ,,,, 1 �   satisfying

                                                   ),,,,( 11 �

� nn yyyxfy � ,           (3.707b)

with )(k
� given by (2.100a,b) for .,,2,1 nk ��   Given any values of  x and y, from

(3.705) we see that the values ,,,2,1,Y,, 1 nkyyx k

k ����

�  satisfy (3.707b) if

.0),( �yxQ   Then it follows that D,Y � where D is the total derivative operator (2.96).

Hence, in (3.707a), we have

����������� YY)Y(YYDD 1

)1(
�������� y

and, by induction,

.1,,2,1,YDD 1

1

)()1(
������

�

�

� nky k

k

kk
�����

Thus, the point symmetry determining equation (3.707a) yields

1

)1(

1

)Y()Y(Y
�

�

�

�

���

�

�

��

�

�

��

�

�

��

n

nn

y

f

y

f

y

f

x

f
� (3.708)

evaluated at ,1,,2,1,Y 1
����

� nky k

k �  for any curve satisfying .0),( �yxQ   On the

other hand, by applying Y to (3.705), we have

�

�

�

�

�

�

�

�

	



�

�

	


�

�

	


�

�

�	�

�

�

1

1

1

)Y()Y(YY
n

nn

y

f

y

f

y

f

x

f
Q �

evaluated at .1,,2,1,Y 1
����

� nky k

k �   Hence, from (3.708), we obtain

.0),(when0Y �� yxQQ

A similar result holds for invariant solutions of ODE (3.702) resulting from an

admitted point symmetry (3.703) with .0��
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Theorem 3.10-2.  Suppose an nth-order ODE (3.702) admits a point symmetry (3.703)

with .0�� Consider the algebraic equation .0),( �yx�  Then two cases arise:

(i) 0),( �yx� defines no curves in the xy-plane;  and

(ii) 0),( �yx�   defines curves in the xy-plane.

In Case (i), ODE (3.702) has no invariant solutions resulting from its invariance

under (3.703).

In Case (ii), a curve )(xy ��  is an invariant solution of ODE (3.702) resulting

from its invariance under (3.703) if and only if this curve satisfies 0),( �yx� .

Proof.  Left to Exercise 3.10-13.                                                                                         

As a first example, consider the nth-order linear homogeneous ODE with constant

coefficients,

.01

)1(

1

)(
������

�

� yayayay nn

nn
� (3.709)

We find all invariant solutions of ODE (3.709) from its invariance under both translations

in x  and scalings  in  y  generated by the infinitesimal generator

y
y

x �

�

�

�

�

� ��X

for arbitrary constants .,��   Let ��� /�  with .0��  The corresponding invariant

solutions )(xy ��  satisfy 

.yy �

�

�

��� (3.710)

.]Y,Y,have weHence,[ 1)( yyyy kkk

yx
��� ������

�

�

�

�

�

�

 Substituting (3.710) into

ODE (3.709), we obtain

.0][),( 1

1

1 ������
�

� yaaayxQ nn

nn
��� �

This yields the well-known characteristic polynomial equation

,0)( 1

1

1 ������
�

�

nn

nn aaap ���� �                           (3.711)

that arises for determining solutions const,, �� CCey x�  of ODE (3.709).  Here these

solutions are the invariant solutions of the given ODE (3.709) resulting from invariance

under ,X
yx

y
�

�

�

�

�� ��  i.e., xCey �

�  satisfies 0)]([X ��

�

xCey

xCey
�

�  when 0)( ��p .

In terms of Theorem 3.10-1, Case (ii) arises when �  is a root of ,0)( ��p  Case (iii)

arises when �  is not a root of ,0)( ��p  and here 0�y  is the corresponding (trivial)

invariant solution.  In Case (ii), an invariant solution is any solution of ODE (3.710) of

the form ,xCey �

�  for arbitrary constant C.
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As a second example, consider again the Blasius equation

,0
2
1

������� yyy (3.712)

which admits

,)(X
y

y
x

x
�

�

�

�

�

�� ���

for arbitrary constants .,��  When ,0��  the corresponding invariant solution is

�y const ,C�  for any constant C.  When ./let,0 ���� ��

We first consider obtaining invariant solutions through the obvious procedure.

Then an invariant solution )(xy ��  satisfies the ODE

,
��

�

�

����

x

y
y           (3.713a)

which has the general solution,

,
��

�

x

C
y           (3.713b)

for an arbitrary constant C.   After substituting (3.713b) into ODE (3.712), we find that

6,Cor0 ��C  which leads to the corresponding invariant solutions

�

��

�

����

x
xyxy

6
)(,0)( 21 ,   (3.714)

of  the Blasius equation (3.712) for an arbitrary constant .�

Now we obtain the invariant solutions (3.714) through the procedure arising from

Theorem 3.10-1.  Here

.
)(

6
Y,

)(

2
Y,,Y

3

2

2
���� �

���

�

��

�

���

�

�

�

�

�

�

�

x

y

x

y

x

y

yx

y

x

Then

.
)(

6

)(
),(

32

2

�� �

�

�

�

x

y

x

y
yxQ

Consequently, 0),( �yxQ  yields the invariant solutions (3.714).

For both examples, there is little difference in the amount of computation for the

two approaches.  However, in general, the procedure outlined in Theorem 3.10-1 is

clearly superior since it avoids an unnecessary integration of the ODE ./����y

Invariant solutions are especially interesting for first-order ODEs.
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3.10.1  INVARIANT SOLUTIONS FOR FIRST-ORDER ODEs: 

             SEPARATRICES AND ENVELOPES

In the case of a first-order ODE

),,( yxfy �� (3.715)

one only considers invariant solutions resulting from invariance under a nontrivial

infinitesimal generator (3.703), admitted by (3.715), for which ),(/),( yxyx �� ),,( yxf

i.e., ),( yxQ ),(),(/),( yxfyxyx �� �� 0  for all values of x, y. This clearly follows

from Theorem 3.10-1, since if ),(/),( yxyx �� � ),,( yxf then 0),( �yxQ  and hence,

trivially, all solutions of ODE (3.715) are invariant solutions.

Consider the set of all solution curves of ODE (3.715) in the xy-plane (phase

plane).  This set may include separatrices (exceptional paths), e.g., limit cycles, which

are solution curves that behave topologically “abnormally” in relation to neighboring

solution curves, i.e., “separate” topologically distinct solution curves [Lefschetz (1963)].

By the following argument we show that a separatrix is an invariant solution of ODE

(3.715) for any admitted Lie group of transformations. 

A one-parameter )(�  Lie group of transformations admitted by ODE (3.715)

induces a continuous deformation of the solutions of (3.715) to other solutions of (3.715)

through the parameter )(� .  But two solutions of ODE (3.715) that are topologically

distinct cannot be continuously deformed to each other and, hence, cannot be mapped

into each other under the group.  Thus, it follows that a separatrix must be an invariant

solution of ODE (3.715) for all admitted Lie groups of transformations.

By a similar argument as that for separatrices, it follows that any singular

solution, in particular any envelope solution (if one exists), for a first-order ODE

0),,( ��yyxF ,             (3.716)

must be an invariant solution for any admitted Lie group of transformations.  If ODE

(3.716) admits a nontrivial one-parameter Lie group of transformations with the

infinitesimal generator ,),(),(X
yx

yxyx
�

�

�

�

�� ��  then

0])()([X 2)1(
���������

�yyxyxyx FyyFFF ������     when ,0),,( ��yyxF

and

�
�

�

�

�
�

�

�

),(

),(
,,

yx

yx
yxF
�

�

0    for all values of x, y.

By a simple extension of Theorem 3.10-1, it follows that the invariant solutions of ODE

(3.716), resulting from its invariance under ,),(),(X
yx

yxyx
�

�

�

�

�� ��  are the curves

defined by the algebraic equation
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�
�

�

�

�
�

�

�

),(

),(
,,

yx

yx
yxF
�

�

 = 0. (3.717)

Hence, an envelope solution of ODE (3.421) satisfies the algebraic equation (3.717) for

any point symmetry
yx

yxyx
�

�

�

�

�� ),(),(X ��  admitted by (3.716).

As a first example, consider the first-order ODE

                                                                 ,2yy �� (3.718)

which obviously admits

.X,X 21
y

y
x

x
x �

�

�

�

�

�

�

�

�

From its invariance under ,X1  it follows that a separatrix solution )(xy ��  of

ODE (3.718) must satisfy

.0),(
),(

),(
),( 2

����� yyxf
yx

yx
yxQ

�

�

Hence, the only possible separatrix solution could be .0�y

From its invariance under ,X2  it follows that a separatrix solution )(xy ��  of

ODE (3.718) must also satisfy

,0
1

),(
),(

),(
),( 2

��

�

�

�

�

�
	
��

�

�

�

�

�
	
�
�

x
yyy

x

y
yxf

yx

yx
yxQ

�

�

which leads to possible separatrices ./1and0 xyy ���  Since xy /1��  is not an

invariant solution of (3.718), resulting from its invariance under ,X1  it cannot be a

separatrix of ODE (3.718).  This solution is a particular solution of ODE (3.718) arising

from its general solution )/(1 Cxy ��� , C = const, when C = 0.  The solution curves are

illustrated in Figure 3.4.  Clearly, y = 0 is a separatrix.
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Figure 3.4.  Solution curves of .2yy ��

As a second example, consider the first-order ODE

2222

2222

)1(

)1(

yxyyxx

yxyyxx
y

����

����

�� , (3.719)

which admits the rotation group

.X
y

x
x

y
�

�

�

�

�

� (3.720)

Invariant curves of (3.720) are the circles

                                                             .222 cyx ��             (3.721)

Thus, a separatrix of ODE (3.719) must satisfy (3.721).  After substituting (3.721) into

ODE (3.719), we get

,
)1(

)1(
2

2

yccx

cyxc

y

x

��

��

��

so that c = 1.  Hence, the only possible separatrix is the circle

                                                              .122
�� yx (3.722)

One can show that the circle (3.722) is indeed a limit cycle of ODE (3.719).  The

situation is illustrated in Figure 3.5.

x

y

Separatrix

y = 0
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Figure 3.5.  Solution curves of ODE (3.719).

As a third example, consider Clairaut’s equation

,
y

m
yxy

�

��� (3.723)

where m  is a constant.

Clearly, ODE (3.723) admits the scaling group

.2X
y

y
x

x
�

�

�

�

�

� (3.724)

An envelope solution of ODE (3.723) must satisfy the algebraic equation (3.717) with

,2// xy���  i.e.,

y

mx
yy

2
2
1

��

and so

                                                               .42 mxy � (3.725)

Hence, mxy 42
�  is the only possible envelope solution of ODE (3.723).

The invariance of ODE (3.723) under (3.724) yields its general solution

x

y

Separatrix

           x
2
+ y

2
 - 1
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c

m
cxy �� (3.726)

for an arbitrary constant c.  Clearly, the parabola defined by (3.725) is the envelope of the

family of straight lines (3.726).  The situation is illustrated in Figure 3.6 for m = 1.

Figure 3.6.  Typical solution curves of ODE (3.723) for m = 1.

EXERCISES 3.10

1. (a) Suppose that r��  is a double root of the characteristic polynomial equation

(3.711).

(i) Show that 
yx

rxey
�

�

�

�

��� )(X ���  is admitted by ODE (3.709) for arbitrary

constants .,, ���

(ii)   Find the corresponding invariant solutions of ODE (3.709).

(b) What is the situation if r��  is a root of multiplicity k of the characteristic

polynomial equation (3.711)?

2. Consider the Euler equation

const.const,,02
�������� BAByyAxyx

   Find its general solution in terms of invariant solutions.  Note that the scalings

yx
yx
�

�

�

�

�� ��X  are admitted by the Euler equation for arbitrary constants .,��

x

y

Envelope y
2

= 4x
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3. Find all invariant solutions of ODE (3.194) resulting from its invariance under the

three-parameter Lie group of point transformations (3.195a,b).

4. Find the general solution of ODE (3.719) and sketch several of the solution curves.

5. Use the invariance of ODE (3.723) under (3.724) to derive its general solution

(3.726).

6. Find necessary conditions for a first-order ODE ),( yxfy ��  so that it admits the

rotation group 
yx

xy
�

�

�

�

��X  and has the circle 122
�� yx  as a limit cycle

(separatrix).

7. Consider the ODE

.0const, ���� A
x

y
Ay (3.727)

(a) Find invariant solutions resulting from the invariance of ODE (3.727) under

           (i) ;X1
x

x
�

�

�

 (ii)  ;X2
y

y
�

�

�  and

         (iii)  .X3
y

y
x

x
�

�

�

�

�

�

(b) Determine the separatrices of ODE (3.727).

(c) Sketch typical solution curves of ODE (3.727).

8. Use the invariance of the ODE yxy /��  under 
yx

yx
�

�

�

�

��X  to find its

separatrices.

9. Find the separatrices and sketch typical solution curves for the ODE

.
)2(

)2(

yxx

xyy
y

�

�

��

10. Show that the ODE

y

x
y

3

���

   has no separatrices, without explicitly solving it.

11. Consider the ODE

.0))(()( 23

3
2

������ yxyy (3.728)

(a) Find a one-parameter Lie group of transformations admitted by ODE (3.728).

(b) Sketch typical solution curves of ODE (3.728).



290

(c) Find the envelope of the solution curves of ODE (3.728). 

12. Do the same as in the Exercise 3.10-11 for the Clairaut ODE

.))(1( 2/12yyxy �����

13. Prove Theorem 3.10-2.

3.11   DISCUSSION

In this chapter, we have shown how to:

(i)   use invariance under Lie groups of point transformations to construct solutions to

a  given ODE;

 (ii) use invariance under one-parameter groups of local transformations (point,

contact, higher-order) to reduce the order of a given ODE;

(iii) find infinitesimal generators of local transformations admitted by a given ODE

through solving determining equations arising from Lie’s algorithm;

(iv) find the most general nth-order ODE that admits a given Lie group of

transformations;

(v) use first integrals to reduce the order of a given ODE;

(vi)   find first integrals through corresponding integrating factors admitted by a given

ODE;  and

  (vii)  construct first integrals algebraically through use of symmetries and adjoint-

symmetries admitted by a given ODE. 

If a given nth-order ODE admits a one-parameter Lie group of point

transformations, then its order can be reduced, constructively, to an (n – 1)th-order ODE

through the use of canonical coordinates or differential invariants associated with the

group.  Moreover, the solution of the given ODE can be found by quadrature after the

reduced ODE is solved.  

The invariance of a first-order ODE under a nontrivial one-parameter Lie group of

transformations is equivalent to the existence of an integrating factor for the ODE.  In

general, this equivalence does not hold for higher-order ODEs.  However, if a higher-

order ODE possesses a variational formulation (Lagrangian), then its invariance under a

one-parameter Lie group of local transformations admitted by the variational principle for

the ODE (variational symmetry) is equivalent to the existence of an integrating factor of

the ODE (the classical Noether’s Theorem). An nth-order ODE )1( �n  possesses a

variational principle if the linearized equation of the ODE is self-adjoint (which is only

possible if the ODE is of even order).  For a self-adjoint ODE, a one-parameter Lie group

of point transformations admitted by its variational principle leads, constructively, to a

reduction of order by two [Olver (1986)].  A geometrical reduction procedure for such an

ODE in a Hamiltonian setting is discussed in Marsden and Ratiu (1999).

Any first-order ODE admits a nontrivial infinite-parameter Lie group of point

transformations.  A second-order ODE admits at most an eight-parameter Lie group of

point transformations.  Moreover, if a second-order ODE does admit an eight-parameter
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Lie group of point transformations, then there exists a point transformation mapping the

ODE into a linear ODE and, in particular, to the ODE .0���y  An nth-order ODE )3( �n

admits at most an (n + 4)-parameter Lie group of point transformations. 

Olver (1986) showed that if an nth-order ODE admits an r-parameter solvable Lie

group of point transformations ),( nr �  then it can be reduced to an (n – r)th-order ODE

plus r quadratures.  The reduction algorithm presented in Section 3.4 appeared in Bluman

(1990b).  The use of solvable Lie groups (called integrable groups in earlier literature) to

reduce the order of a system of first-order ODEs appears to have been first considered by

Bianchi (1918, Section 167) [Eisenhart (1933, Section 36)].

One can extend Lie’s work on the invariance of ODEs under Lie groups of point

transformations (point symmetries) to invariance under more general local

transformations characterized by infinitesimal generators depending on derivatives of

dependent variables. Such extensions include invariance under Lie groups of contact

transformations (contact symmetries) relevant for second- or higher-order ODEs or, more

generally, higher-order transformations (higher-order symmetries) relevant for third- and

higher-order ODEs.  In making such generalizations, it is more convenient to consider the

invariance of an ODE from the point of view of directly mapping its solutions into

solutions by local transformations that keep the independent variable of the ODE fixed.

Here, a symmetry (point, contact, or higher-order) of an ODE is generated by any

solution of the linear determining equation arising from linearization about all solutions

of the given ODE.  Contact symmetries for ODEs are considered in Abraham-Shrauner et

al. (1995), Stephani (1989), and Hydon (2000).

Geometrically, symmetries of an nth order ODE describe motions on its space of

solutions. Such motions are most naturally formulated in the setting of jet spaces [c.f.

Section 2.8] whose coordinates consist of the independent variable, and the dependent

variable and its derivatives up to at least nth-order. Here, a given nth-order ODE

corresponds to a surface of co-dimension one, and its symmetries (one-parameter local

transformation groups) in characteristic form represent integral curves of vector fields

that are tangent to the surface and involve no motion with respect to the coordinate given

by the independent variable, while preserving the derivative relations (contact ideal)

among the remaining coordinates. Point symmetries and contact symmetries are

distinguished as local transformations that arise from vector fields well-defined on the

entire jet space (i.e., irrespective of the ODE and its corresponding surface), whereas

higher-order symmetries cannot be so defined except on the infinite-order extension

(prolongation) of the jet space to include coordinates given by derivatives of the

dependent variable to all orders

Any second-order ODE admits an infinite number of contact symmetries, i.e., an

infinite-parameter Lie group of contact transformations.  Any nth-order ODE )3( �n

admits an infinite number of (n – 1)th-order symmetries, i.e., an infinite-parameter group

of local transformations of order 1�n . However, an nth-order ODE )3( �n admits at most

a finite number of symmetries of order strictly less than 1�n , i.e., any admitted group of

local transformations of order at most 2�n  has finite dimension.  The complete

symmetry group of an ODE naturally has the structure of an abstract infinite-dimensional

Lie group [cf. Section 2.8].  Subgroups of admitted point symmetries and contact

symmetries correspond to finite-dimensional abstract Lie groups in the cases of ODEs of

orders 2�n  and ,3�n  respectively.
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Similarly, any second- or nth-order ODE )2( �n  admits an infinite number of

linearly independent integrating factors of order 1�n  (i.e., with an essential dependence

on up to (n – 1)th-order derivatives of the dependent variable) but admits at most a finite

number with order strictly less than 1�n .  In general, an integrating factor of an ODE has

no obvious relation to any underlying invariance or geometrical motion other than in the

case of the classical Noether’s Theorem where integrating factors are symmetries that

leave invariant a variational principle for the ODE.

An integrating factor multiplying an ODE transforms it into an total derivative

(exact) form. Consequently, any integrating factor admitted by an nth-order ODE

satisfies a system of linear determining equations arising from annihilation by an Euler

operator [Olver (1986)] applied to the product of the ODE and the integrating factor. The

basic framework for exact nth-order ODEs and integrating factors is given in Kamke

(1943) and Kaplan (1958).  For a first-order ODE, the classical formulation of integrating

factors involves transforming the ODE to an exact differential form

0)),()(,(),( ���� dxyxfdyyxyxd�  in the independent and dependent variables. This

generalizes naturally in the context of jet space to higher-order ODEs, since one can write

an exact nth-order ODE 0/),...,,,( 11 �

�

dxyyyxd n�  as a system of n exact differential

forms    ,0)),...,,,()(,...,,,(),...,,,( 1111111 ����
����

dxyyyxfdyyyyxyyyxd nnnn�        and

,2,...,1,0,1 ���

�

nidxydy ii
][ 0 yy �  using the jet space coordinates. Here, the

determining equations for an integrating factor ),...,,,( 11 �

� nyyyx  can be derived from

the fact that any exact differential form is closed. This leads to a system of

)2/)1((1 �� nn  determining equations that is essentially the same as the system obtained

from the standard Euler operator framework.  Moreover, the line integral formula for first

integrals ),...,,,( 11 �nyyyx�  is the same as the Poincaré homotopy formula [Olver (1986)]

used for showing that a closed differential form is locally exact.  

In contrast, our framework for exact nth-order ODEs, presented in Section 3.6.4,

uses a truncation of the standard Euler operator (defined on the infinite-order jet space) to

the finite-order jet space naturally associated with a given ODE.  Most signifcantly, this

leads to a simplification of the integrating factor determining equations into an equivalent

smaller system of ]2/[1 n�  determining equations, which has not, to our knowledge,

appeared elsewhere in the literature.

Any integrating factor also satisfies the adjoint equation of the linear determining

equation for symmetries of a given ODE.  In particular, the ]2/[1 n�  determining

equations for integrating factors have a natural splitting into this adjoint equation plus

]2/[n  extra determining equations. Use of the adjoint equation appears in related work

by Gordon (1986) and Sarlet et al. (1987, 1990), where solutions of the adjoint equation

are named “adjoint symmetries.”  Keeping in mind that, in general, the solutions of the

adjoint equation are not themselves generators of symmetries unless the given ODE is

self-adjoint, we call them adjoint-symmetries.  The splitting of the integrating factor

determining equations leads to the useful alternative characterization of integrating

factors as adjoint-symmetries that satisfy extra adjoint invariance conditions, as given in

Section 3.7.2. Moreover, from this point of view, the classical equivalence between

integrating factors and variational symmetries in the case of an ODE with a variational

principle is obviously generalized to an equivalence between integrating factors and those
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adjoint-symmetries satisfying the adjoint invariance conditions in the case of an ODE

without any variational principle.  Finally, this provides a more geometrically appealing

formulation of the symplified system of ]2/[1 n�  determining equations for integrating

factors from Section 3.6.4, where the total derivative operator on jet space is now

replaced by a tangential derivative with respect to the surface defined by the ODE.

The local existence theory for nth-order ODEs guarantees that a given ODE

admits  n  functionally independent first integrals (i.e., none is a function combination of

the others).  Any admitted first integral is equal to a constant for each solution of the

ODE and hence its total derivative with respect to the independent variable of the ODE

yields an integrating factor multiplying the ODE.  The correspondence between a first

integral and an integrating factor can be thought of as being similar to the correspondence

between a group of local transformations and the infinitesimal of its infinitesimal

generator in characteristic form. 

Any integrating factor admitted by an ODE leads, constructively, to a single

reduction of order of the ODE through the corresponding first integral given by the line

integral formula. This reduction of order method is complementary to Lie’s symmetry

method for reducing the order of a given ODE.  Moreover, the integrating factor

procedure is computationally no more complex than Lie’s algorithm.  Most important, the

integrating factor approach yields first integrals which are reductions of order in terms of

the given variables, unlike the situation for reduction of order under Lie groups of

transformation where the reduction of order does not usually hold in terms of the original

variables. A full discussion of the integrating factor approach appears in Anco and

Bluman (1997a, 1998).  Related work also appears in Sheftel (1997, Section 3.5), Cheb-

Terrab and Roche (1999), and Hydon (2000). 

The nature of the calculation of symmetries, adjoint-symmetries, and integrating

factors of an ODE is similar, as in each situation there is a linear determining system to

solve.  Moreover, for an nth-order ODE, the determining system reduces to an

overdetermined system of linear homogeneous PDEs when one calculates symmetries,

adjoint-symmetries, or integrating factors of order strictly less than 1�n .  Typically, in

these cases, all solutions of the respective determining systems can be obtained explicitly

by obvious extensions of the standard calculational algorithm for solving the

overdetermined linear system for point symmetries. One can also use effective ansatzes

to seek particular solutions by directly splitting the determining equations into an

overdetermined system of linear homogeneous PDEs. Such ansatzes include a point-form

ansatz, an elimination of variables ansatz, and an invariant-solution ansatz [see Chapter

4] arising naturally from any admitted Lie group of point transformations of a given

ODE. Available powerful computer algebra systems, e.g., REDUCE, MATHEMATICA,

MAPLE (which was used for the calculations for the ODE examples in Sections 3.5–3.8),

are readily adapted for solving the resulting overdetermined systems.

Most important, the cardinality of the class of ODEs admitting symmetries of a

given ansatz is, in general, the same as that of the class of ODEs admitting integrating

factors of the same ansatz. Consequently, the use of the integrating factor method for

reducing the order of ODEs should be viewed as having an a priori utility no less than

that of symmetry methods. 

Another procedure for reducing the order of an ODE is through direct

construction of first integrals by special formulas using either symmetries or adjoint-
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symmetries. The scaling symmetry formula in Section 3.8.1 is a counterpart for ODEs of

a conservation law formula in the case of linear PDEs appearing in works of Olver (1986)

and Anco and Bluman (1996, 1997a). The Wronskian formula in Section 3.8.2 is a

generalization of a related procedure given in Hydon (2000) for obtaining a first integral

of any nth-order ODE that admits at least 1�n  point symmetries. 

In the case of a boundary value problem for an nth-order ODE, invariance of the

ODE under an r-parameter solvable Lie group of transformations )( nr �  reduces the

given boundary value problem to a boundary value problem for an (n – r)th-order ODE.

This can be especially useful for obtaining qualitative results about the solution of the

boundary value problem.  Moreover, finding a Lie group of transformations admitted by

the ODE of a boundary value problem may lead to an effective numerical method for

solving the ODE [Dresner (1983, 1999)].  In addition, if the boundary conditions are of

the right type, then the shooting method may be reduced to a single shooting when used

in combination with Lie group invariance (which yields a parameter-dependent family of

solutions from a given solution).

If an ODE admits a Lie group of transformations, then one can construct special

solutions that are invariant under the admitted transformations.  Such solutions are also

invariant curves of the group.  The construction of invariant solutions for an nth-order

ODE can be extended to invariance with respect to an admitted Lie group of local

transformations of any order less than n.  For a second- or higher-order ODE, invariant

solutions, resulting from invariance under point symmetries, can be found without

explicitly solving the given ODE.  For a first-order ODE, invariant solutions are found by

solving related algebraic equations.  Moreover, separatrices and singular envelope

solutions, if they exist, are invariant solutions for any admitted Lie group of

transformations.  Consequently, such solutions can be found without determining the

general solution of the given first-order ODE.  The results presented in Section 3.10

appeared in Bluman (1990c).  Wulfman (1979) considered group aspects of separatrices

that are limit cycles.  The construction of separatrices in the case of scaling invariance is

discussed in Dresner (1983, 1999).  Discussions of envelope solutions from invariance

considerations appear in Page (1896, 1897), Cohen (1911), and Dresner (1999).

Some known results for systems of ODEs are now summarized.  Using the ideas

developed in Section 3.2, one can show that a system of first-order ODEs always admits

an infinite-parameter Lie group of nontrivial point transformations and an infinite-

parameter Lie group of trivial point transformations.  But there is no constructive

procedure for finding the groups [Ovsiannikov (1982, Section 8)].  Gonzalez-Gascon and

Gonzalez-Lopez (1983) showed that a system of m nth-order ODEs can admit at most a

parameter])1(2[ 2
��m  Lie group of point transformations if n = 2, and at most a

parameter)22( 2
��� mnm  Lie group of point transformations if n > 2.  If a given

system of m first-order ODEs admits an r-parameter solvable Lie group of point

transformations ),( mr �  then it can be reduced to a system of m – r first-order ODEs

plus r quadratures.  The latter two results appear in Olver (1986).  The framework for

constructing integrating factors for systems of ODEs appears in Anco and Bluman

(1998).  Interesting examples appear in Senthilvelan and Lakshmanan (1995).

In Chapter 4, we consider the invariance of PDEs under Lie groups of point

transformations.  In general, unlike the case for an ODE where invariance under a one-
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parameter Lie group of transformations leads to a reduced ODE whose solution includes

all solutions of the given ODE, the invariance of a PDE does not lead to a reduced PDE

whose solution includes all solutions of the given PDE.  However, in the same way as for

ODEs, we can define and construct invariant solutions for PDEs resulting from

invariance under Lie groups of transformations.  For ODEs, such special solutions are

obtained by solving reduced algebraic equations; for PDEs, such special solutions arise

from solving reduced PDEs with fewer independent variables.



4

Partial Differential Equations (PDEs)

4.1    INTRODUCTION

In this chapter, we show how to construct solutions of partial differential equations

(PDEs) from invariance under Lie groups of point transformations (point symmetries).

We will consider both scalar PDEs and systems of PDEs.

As is the situation for an ordinary differential equation (ODE), we will see that

the infinitesimal criterion for the invariance of a PDE leads directly to an algorithm to

determine the infinitesimal generators of the Lie group of point transformations admitted

by a given PDE.  The invariant surfaces of the Lie group of point transformations lead to

invariant solutions (similarity solutions).  These solutions are obtained by solving PDEs

with fewer independent variables than appear in the given PDE.

We will discuss how one can use invariance under Lie groups of point

transformations to solve boundary value problems for PDEs.  If a one-parameter Lie

group of point transformations admitted by a PDE also leaves invariant both the domain

and boundary conditions of a posed boundary value problem, then the solution of the

boundary value problem is an invariant solution.  Hence, the boundary value problem is

reduced constructively to a posed boundary value problem with one less independent

variable.  The situation is less restrictive in the case of a linear PDE.  Here, one need not

leave invariant the boundary conditions of a posed boundary value problem.  A

superposition of invariant solutions, corresponding to an eigenfunction expansion, could

yield the solution of the boundary value problem, where the eigenvalue arises from the

invariance of a linear homogeneous PDE under scalings of its dependent variables.  We

will also consider the invariance of boundary value problems under multiparameter Lie

groups of point transformations.

4.1.1 INVARIANCE OF A PDE

First we consider a scalar PDE.  We represent a  kth-order scalar PDE by

                                                 ,0),,,,,( 2
���� uuuuxF k

�     (4.1)

where ),,,( 21 nxxxx ��  denotes the coordinates corresponding to its n independent

variables, u denotes the coordinate corresponding to its dependent variable, and uj�

denotes the coordinates with components 
jiii

j xxxu ���� �
21

/ = ,
21 jiiiu
�

,,,2,1 ni j ��

for ,,,2,1 kj ��  corresponding to all jth-order partial derivatives of u with respect to x.

In terms of the coordinates ,,,,,, 2 uuuux k
��� �  the PDE (4.1) becomes an

algebraic equation that defines a hypersurface in space.),,,,,( 2
���� uuuux k

�  [Here,
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space),,( ��uux  is of dimension ,12 �n  space),,,( 2
��� uuux  is of dimension

]etc.),25( 2

2
1

�� nn   For any solution )(xu ��  of  PDE (4.1), the equation

))(,),(),(),(,(),,,,,( 22 xxxxxuuuux kk
����������� ��

defines a solution surface that lies on the surface .0),,,,,( 2
���� uuuuxF k

�

We assume that PDE (4.1) can be written in solved form in terms of some specific

component of the th-order partial derivatives of  u:

                      ,0),,,,,(),,,,,( 22

21
��������� uuuuxfuuuuuxF k

iii

k
��

��

    (4.2)

where ),,,,,( 2 uuuuxf k
��� �  does not depend explicitly on .

21 �
�iiiu

Definition 4.1.1-1.  The one-parameter Lie group of point transformations

),;,(* �uxXx �   (4.3a)

),;,(* �uxUu �   (4.3b)

leaves invariant the PDE (4.1), i.e., is a point symmetry admitted by PDE (4.1), if and

only if its kth extension, defined by (2.115a–d) and (2.116a,b), leaves invariant the

surface (4.1).

A solution )(xu ��  of PDE (4.1) lies on the surface (4.1) with

�

jiiiu
�21

,/)(
21 jiii

j xxxx ����� � ,,,2,1 ni j ��  for .,,2,1 kj ��  The invariance of

surface (4.1) under the kth-extension of (4.3a,b) means that any solution )(xu ��  of

PDE (4.1) maps into another solution );( �xu ��  of (4.1) under the action of the one-

parameter group (4.3a,b) for any .�   Moreover, if a transformation (4.3a,b) maps any

solution )(xu ��  of PDE (4.1) into another solution );( �xu ��  of (4.1), then the

surface (4.1) is invariant under (4.3a,b) with ,/);(
2121 jj iii

j

iii xxxxu ������ �
�

�

,,,2,1 ni j ��  for .,,2,1 kj ��  Consequently, the set of all solutions of PDE (4.1) is

invariant under the one-parameter Lie group of point transformations (4.3a,b) if and

only if (4.1) admits (4.3a,b).

The following theorem arises from Definition 4.1.1-1, Theorem 2.6.7-1 on the

criterion for an invariant surface in terms of an infinitesimal generator, and Theorem

2.4.4-1 on extended infinitesimals.  [For the rest of this section, we assume the

summation convention for repeated indices.]

Theorem 4.1.1-1  (Infinitesimal Criterion for the Invariance of a PDE).  Let

u
ux

x
ux

i

i
�

�

�

�

�

� ),(),(X ��     (4.4)

be the infinitesimal generator of the Lie group of point transformations (4.3a,b). Let
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��

�

�

��

�

�

�

�

�

�

i

i

i

i

k

u
uux

u
ux

x
ux ),,(),(),(X )1()(

���

ki

ki

iii

kk

iii
u

uuuux
�

�

�

2

2
),,,,,( 2)(

�

�

�����     (4.5)

be  the  kth-extended  infinitesimal  generator  of  (4.4), where  )1(

i�   is  given  by

(2.119a) and )(

21

j

iii j�

� by (2.119b), ,,,2,1 ni j �� for ,,,2,1 kj �� in terms of �),( ux�

).,()),,(,),,(),,(( 21 uxuxuxux n ���� �  Then the one-parameter Lie group of point

transformations (4.3a,b) is admitted by PDE (4.1), i.e., is a point symmetry of PDE (4.1),

if and only if

                  0),,,,,(X 2)(
���� uuuuxF kk

� when .0),,,,,( 2
���� uuuuxF k

�     (4.6)

Proof.   Left to Exercise 4.1-3.          

4.1.2 ELEMENTARY EXAMPLES

(1) Group of Translations

The second-order PDE

                                                  ),,,,,( xuuuuufu txttxtxx �     (4.7)

admits the one-parameter )(�  Lie group of translations

,* xx �   (4.8a)

,* ��� tt   (4.8b)

,* uu �   (4.8c)

since under (4.8a–c) we have

,*,*,*,*,* ******** ttxxttttxttxxxxx uuuuuuuuuu �����

so that the surface defined by (4.7) is invariant in space),,,( 2
��� uuux  with

., 21 txxx ��   Then

)(xu ��     (4.9)

is invariant under (4.8a–c) and defines a solution (invariant solution) of PDE (4.7)

provided that )(x�  solves the second-order ODE

).),(,0),(,0,0()( xxxfx ��� ����

Note that

),( txu ��
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defines an invariant surface of (4.8a–c) [cf. Theorem 2.6.7-1] if and only if

),,(when0
),(

)),((X txu
t

tx
txu ���

�

��

����

where
t�

�

�X  is the infinitesimal generator of the Lie group of translations (4.8a–c).

This leads to the invariant form (similarity form) (4.9) for an invariant solution resulting

from the invariance of PDE (4.7) under (4.8a–c).

Under the action of the Lie group of translations (4.8a–c), a solution ),( txu ��

of PDE (4.7) is mapped into a one-parameter family of solutions

),();,( �� ����� txtxu  provided that ),( txu ��  is not an invariant solution of PDE

(4.7) resulting from its invariance under (4.8a–c), i.e., ),( tx�  depends essentially on  t.

(2) Group of Scalings

The wave equation

ttxx uu �     (4.10)

admits the one-parameter )(�  Lie group of scalings

,* xx �� (4.11a)

,* tt �� (4.11b)

,* uu � (4.11c)

since ttttxxxx uuuu 2

**

2

** *,* ��

�� ��  and, consequently, **** ** ttxx uu �  when .ttxx uu �

If one chooses canonical coordinates ,,log,/ utstxr ��  so that the Lie group

of scalings (4.11a–c) becomes ,*,log*,* uussrr ���� �  then PDE (4.10) transforms

into the PDE

.022)1( 2
������ r

s

rsssrr ruuruuur   (4.12)

Correspondingly,

�

�

�

�

�

�
��

t

x
ru �� )(   (4.13)

defines an invariant solution of PDE (4.12), and hence of the wave equation (4.10),

provided that )(r�  satisfies the ODE

                                                  .0)(2)()1( 2
������ rrrr ��               (4.14)

The infinitesimal generator of the group of scalings (4.11a–c) is given by

.X
tx

tx
�

�

�

�

��  Hence, ),( txu ��  defines an invariant surface of (4.11a–c) if and only if

),,(when0)),(X( txutxu �����
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i.e., if and only if

                                                           .0���� tx tx               (4.15)

The solution of the corresponding characteristic equations

,
0

�

��

d

t

dt

x

dx

leads to the invariant form (4.13).  The substitution of (4.13) into the wave equation

(4.10) yields the ODE (4.14).  We see that it is unnecessary to find canonical coordinates

of the Lie group of scalings (4.11a–c) in order to find the resulting invariant solutions.

Moreover, under the action of the Lie group of scalings (4.11a–c), a solution

),( txu ��  of the wave equation (4.10) maps into the one-parameter family of solutions

),();,( txtxu ��� ����  of (4.10) provided that ),( txu ��  is not an invariant solution

of (4.10) resulting from its invariance under (4.11a–c), i.e., ),( txu ��  is not of the form

(4.13).

(3) Superposition of Invariant Solutions for Linear PDEs

The wave equation (4.10) admits the one-parameter )(�  Lie group of point

transformations

,* xx � (4.16a)

,* ��� tt             (4.16b)

       ,* ueu ��

�             (4.16c)

for any constant C.��   The infinitesimal generator of (4.16a–c) is given by

.
t

X
u

u
�

�

�

�

�

� �

Actually, the Lie group of point transformations (4.16a–c) defines a two-parameter ),( ��

Lie group of transformations corresponding to the invariance of the wave equation under

translations in t and scalings in u.  The resulting invariant solutions ),( txu ��  must

satisfy the invariant surface condition

),(when0)),(X( txuutxu t �������� � ,

i.e.,

                                                                 .uut ��  (4.17)

As is the situation for ODEs [cf. Section 3.10], we can find invariant solutions through

two procedures:

Method (I) (Invariant Form Method). The solution of the invariant surface condition

(4.17) is given by the invariant form

                                                              ,)( texu �

��               (4.18)
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for an arbitrary function ).(x�   Then the substitution of (4.18) into the wave equation

(4.10) yields the ODE

).()( 2 xx ��� ���

Hence, after solving this simple ODE, we obtain invariant solutions

)(),( xtCetxu �

���

�   (4.19)

of PDE (4.10), where C is an arbitrary constant.

Method (II) (Direct Substitution Method). Here we directly substitute the invariant

surface condition (4.17) into PDE (4.10) and avoid solving explicitly (4.17).  Then

.2uuu ttt �� ��   Hence, ,2uuxx ��  so that

xetu �

�
�

� )(               (4.20)

for an arbitrary function ).(t�   Then the substitution of (4.20) into the invariant surface

condition (4.17) leads to )(t�  satisfying the ODE ),()( tt ��� ��  and hence to the

invariant solutions (4.19).

Since the wave equation (4.10) is a linear homogeneous PDE, it follows that

superpositions of invariant solutions

�� �
����

�

�

�

� �

���

����� etc.,,)(,])()([,)( )()(

2

)(

1

)( deCeCeCeC xtxtxtxt

define solutions of (4.10) where C��  is an “eigenvalue,” and �  defines a path in the

complex –plane. Special superpositions correspond to Fourier series, the Laplace

transform, and the Fourier transform representations of solutions.

As a general remark, we note that the Invariant Form Method is useful if one can

find the general solution of the invariant surface condition whereas the Direct

Substitution Method must be used if one is unable to solve explicitly the invariant surface

condition.

EXERCISES 4.1

1. Find invariant solutions for the wave equation (4.10) resulting from its invariance

under the one-parameter )(�  Lie group of translations

,* ��� xx

,* ���� tt

   for any fixed constant .R��   How do these solutions relate to the general solution of

PDE (4.10)?
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2. (a) Show that the most general second-order PDE that admits the two-parameter

),( 21 ��  Lie group of translations ,*,* 21 �� ���� ttxx  is of the form

.0),,,,,( �uuuuuuF txttxtxx

(b) Find the invariant solutions of this PDE resulting from its invariance under the

one-parameter )(�  Lie group of translations ,*,* �� ���� ttcxx  where R�c

is a fixed constant.  Interpret these solutions.

(c) As an example, find invariant solutions of the Korteweg–de Vries (KdV)

equation .0��� xxxxt uuuu  In particular, show that czUtxu ���� )(),(

satisfies the KdV equation where ,0const, ���� cxctz  and )(zU  satisfies the

ODE .0������ UUU   Verify that )1)(sech3(
2
12

�� zccU  is a particular solution

of this ODE.  Show that the corresponding traveling wave solution ),( txu ��  of

the KdV equation, the well-known KdV soliton solution, satisfies 0�u  as
.���x

3. Prove Theorem 4.1.1-1.

4.2    INVARIANCE FOR SCALAR PDEs

4.2.1 INVARIANT SOLUTIONS

Consider a kth-order PDE (4.1) )2( �k  that admits a one-parameter Lie group of point

transformations with the infinitesimal generator (4.4).  We assume that .0),( ��ux�

Definition 4.2.1-1.  )(xu �� is an invariant solution of PDE (4.1) resulting from its

admitted point symmetry with the infinitesimal generator (4.4) if and only if:

(i) )(xu �� is an invariant surface of (4.4);  and

(ii) )(xu �� solves (4.1).

It follows that )(xu ��  is an invariant solution of PDE (4.1) resulting from its

invariance under the point symmetry (4.4) if and only if  )(xu ��  satisfies both:

(i) 0))((X ��� xu   when ),(xu ��  i.e., 

));(,(
)(

))(,( xx
x

x
xx

i

i ��

�

��

� ��  (4.21a)

             and

(ii) 0),,,,,( 2
���� uuuuxF k

�   when ),(xu ��  i.e.,

                                 .0))(,),(),(),(,( 2
�������� xxxxxF k

� (4.21b)
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Equation (4.21a) is called the invariant surface condition for the invariant

solutions resulting from invariance under the point symmetry (4.4).  Invariant solutions

for PDEs were first considered by Lie (1881).  They can be determined by two

procedures.

(I) Invariant Form Method.  Here, we first solve the invariant surface condition, i.e.,

the first-order PDE (4.21a), by solving the corresponding characteristic equations for

)(xu �� :

.
),(),(),(),( 2

2

1

1

ux

du

ux

dx

ux

dx

ux

dx

n

n

����

���� � (4.22)

If ),(),,(,),,(),,( 121 uxvuxyuxyuxy n��  are n functionally independent constants arising

from solving the system of  n first order ODEs (4.22) with ,0/ ���� uv  then the general

solution )(xu ��  of  PDE (4.21a) is given, implicitly, by the invariant form

                                     )),,(,),,(),,((),( 121 uxyuxyuxyuxv n��� �    (4.23)

where �  is an arbitrary differentiable function of ).,(,),,(),,( 121 uxyuxyuxy n��   Note

that ),(),,(,),,(),,( 121 uxvuxyuxyuxy n��  are n functionally independent group invariants

of the point symmetry (4.4) and thus are n canonical coordinates for the Lie group of

point transformations (4.3a,b).  Let ),( uxyn be the th)1( �n canonical coordinate satisfying

.1X �ny

If PDE (4.1) is transformed to another kth-order PDE in terms of independent variables

nyyy ,,, 21 �  and dependent variable v, then the transformed PDE would admit the one-

parameter Lie group of translations

,1,,2,1,* ��� niyy ii � (4.24a)

,* ��� nn yy (4.24b)

.* vv � (4.24c)

Thus, the variable ny  would not appear explicitly in the transformed PDE, and hence, the

transformed PDE would have solutions of the form (4.23).  Consequently, the PDE (4.1)

has invariant solutions given implicitly by the invariant form (4.23).  Such solutions are

found by solving a reduced differential equation with 1�n  independent variables

121 ,,,
�nyyy �  and a dependent variable v.  The variables 121 ,,,

�nyyy �  are commonly

called similarity variables.  The reduced differential equation is found by substituting the

invariant form (4.23) into PDE (4.1).  We assume that this substitution does not lead to a

singular differential equation for v.  Note that if ,0/ ��� u�  as is usually the case, then

;1,,2,1),( ��� nixyy ii �  if n = 2, then the reduced differential equation is an ODE and

we denote the similarity variable by .1y��
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(II) Direct Substitution Method.  This procedure is especially useful, in fact, it is

necessary to use it, if one cannot solve explicitly the invariant surface condition (4.21a),

i.e., the characteristic equations (4.22). We can assume that .0),( ��uxn�  [If

,,,2,1,0),( niuxi ����  then the solutions )(xu ��  of the algebraic equation

0),( �ux�  define the invariant surfaces satisfying (4.21a).  Any such )(xu ��  is an

invariant solution of (4.1) if and only if it satisfies the given PDE (4.1).]  Hence, the first-

order PDE (4.21a) can be written as

.
),(

),(

),(

),( 1

1 i

n

i n

i

nn x

u

ux

ux

ux

ux

x

u

�

�

��

�

�

�

�

�

�

�

�

�

   (4.25)

From (4.25) and its differential consequences, it follows that any term involving

derivatives of u with respect to nx  can be expressed in terms of  x, u, and derivatives of

u with respect to the variables .,,, 121 �nxxx �   Hence, after directly substituting (4.25)

and its differential consequences into the given PDE (4.1), for all terms in (4.1) that

involve derivatives of u with respect to nx , we obtain a reduced differential equation of

order at most k  involving the dependent variable  u,  the n – 1 independent variables

121 ,,,
�nxxx � , and the parameter nx .  Any solution of this reduced differential equation

defines an invariant solution of PDE (4.1), resulting from its invariance under the Lie

group of point transformations with infinitesimal generator (4.4), provided that the

invariant surface condition (4.25) or, equivalently, the given PDE (4.1) itself, is also

satisfied.  If n = 2, the reduced differential equation is an ODE.  The constants appearing

in the general solution of this ODE are arbitrary functions of the parameter nx .  These

arbitrary functions are then determined by substituting this general solution into either

(4.25) or the given PDE (4.1). Note that the Direct Substitution Method is

computationally better than the Invariant Form Method since it avoids integration of the

characteristic ODEs.

In Section 4.4.1, we extend the Invariant Form Method and the Direct

Substitution Method to obtain invariant solutions from admitted multiparameter groups of

point symmetries.

4.2.2    DETERMINING EQUATIONS FOR SYMMETRIES OF A kth-ORDER PDE

Consider a kth-order PDE ),2( kk �� �

),,,,,,( 2

21
uuuuxfu k

iii ���� �

��

  (4.26)

where ),,,,,( 2 uuuuxf k
��� �  does not depend explicitly on .

21 �
�iiiu  From Theorem

4.1.1-1, we see that PDE (4.26) admits the one-parameter Lie group of point

transformations with the infinitesimal generator

u
ux

x
ux

i

i
�

�

�

�

�

� ),(),(X �� ,   (4.27)
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and with its kth extension given by (4.5), if and only if ),(and),( uxux ��  satisfy the

symmetry determining equation

k

k

jjj

k

jjj

j

j

j

jiii
u

f

u

f

u

f

x

f

�

�

�

�
�

�

21

2121

)()1()(

�

�

��

�

�

�

�

�

�

�

�

� �����    when u satisfies (4.26).

  (4.28)

   It is easy to show that:

(i) )(

21

p

jjj p�

�  is linear in the components of the coordinates up
�  if ;2�p   and

(ii) )(

21

p

jjj p�

�  is a polynomial in the components of the coordinates ,,,, 2 uuu p
��� �  with

coefficients that are linear homogeneous in ),(),,( uxux ��  and their derivatives

with respect to  x and u to order p.

From (i) and (ii), it follows that if ),,,,,( 2 uuuuxf k
��� �  is a polynomial in the

components of ,,,, 2 uuu k
��� �  then the symmetry determining equation (4.28) is a

polynomial equation in the components of uuu k
��� ,,, 2

�  with coefficients that are

linear homogeneous in ),(),,( uxux �� , and their derivatives to order k.  Observe that at

any point x, we can assign arbitrary values to each component of uuuu k
��� ,,,, 2

�

provided that PDE (4.26) is satisfied.  In particular, after 
�

�iiiu
21

 is replaced by

),,,,,( 2 uuuuxf k
��� �  in the symmetry determining equation (4.28), the resulting

expression must hold for arbitrary values of the remaining components of coordinates

.,,,,, 2 uuuux k
��� �   Moreover, the resulting expression is a polynomial equation in the

remaining components of .,,, 2 uuu k
��� �  Consequently, the coefficients of this

polynomial equation must vanish separately.  This yields a system of linear homogeneous

PDEs for the n + 1 functions ),(),,( uxux �� .  This system of linear PDEs is called the set

of determining equations for the infinitesimal generators (4.27) admitted by PDE (4.26).

The set of determining equations is an overdetermined system of PDEs

for ),(and),( uxux �� since, in general, there are more than 1�n  determining equations. 

When PDE (4.26) is not a polynomial equation in the components of

,,,, 2 uuu k
��� �  one can still split the symmetry determining equation (4.28) into a

system of linear homogeneous PDEs for ),(and),( uxux ��  by using the independence

of the components of uuu k
��� ,,, 2

�  after substitution for the component .
21 �
�iiiu

Typically, the resulting set of determining equations will be an overdetermined system

for ),(),,( uxux �� .

When the set of determining equations is overdetermined, it often happens that its

only solution is the trivial solution .0),(),( �� uxux ��   In this case, the given PDE

(4.26) does not admit point symmetries (although (4.26) could still admit contact

symmetries, higher-order symmetries, or nonlocal symmetries, that result from

considering a more general infinitesimal generator than (4.27)). 

When the general solution of the set of determining equations is nontrivial, two

cases arise: If the general solution contains at most a finite number r of essential arbitrary

constants, then it yields an r-parameter Lie group of point transformations admitted by
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PDE (4.26); if the general solution cannot be expressed in terms of a finite number of

essential constants (e.g., when it contains an infinite number of essential constants or

involves arbitrary functions of components of x, u), then it yields an infinite-parameter

Lie group of point transformations admitted by PDE (4.26).

One can easily verify that any linear nonhomogeneous PDE, defined by a linear

operator L,

),(L xgu �   (4.29)

admits a trivial infinite-parameter Lie group of point transformations

,* xx �             (4.30a)

),(* xuu ����  (4.30b)

where )(x�  is any solution of the associated linear homogeneous PDE

.0L ��   (4.31)

[The group (4.30a,b) is important when considering the problem of mapping nonlinear

PDEs to linear PDEs [Kumei and Bluman (1982); Bluman and Kumei (1990a)].] To

within this trivial infinite-parameter Lie group of point transformations, the Lie group of

point transformations admitted by a linear PDE typically has at most a finite number of

parameters.

We now state some useful results on the forms of admitted point symmetries for

wide classes of scalar PDEs (4.1) that arise in applications.  For a given PDE (4.1), these

results significantly simplify the many calculations involved in setting up and solving the

set of determining equations for the admitted infinitesimals ).,(),,( uxux ��   Suppose

PDE (4.1) is such that ),,,,,( 2 uuuuxF k
��� �  is linear in the components of uk

�  and, in

addition, suppose the coefficients of the components of uk
�  depend at most on x and u.

Then PDE (4.1) is of the form

                                       ),,,,,(),( 1

2121
uuuxguuxA k

iiiiii kk

�

��� �

��

  (4.32)

with coefficients ),(
21

uxA
kiii �

 that are symmetric with respect to their indices.  The

following theorems hold:

Theorem 4.2.2-1.  Suppose a kth-order PDE (4.26) is of the form

),,,,,()( 1

2121
uuuxguxB k

iiiiii kk

�

��� �

��

    (4.33)

,2�k  and admits a Lie group of point transformations with the infinitesimal generator

(4.27). If there does not exist a change of independent variables  x  under which PDE

(4.33) is equivalent to a PDE

),,,,( 1

1

uuuxG
x

u k

k

k
�

���

�

�

�   (4.34)

for some function ),,,,,( 1uuuxG k�
�� � then
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.,,2,1,0 ni
u

i
���

�

��

Theorem 4.2.2-2.  Suppose a PDE of the form (4.34) is of order 2�k  and admits a Lie

group of point transformations with the infinitesimal generator (4.27). Then

.,,2,0 ni
u

i
���

�

��

Theorem 4.2.2-3.  Suppose a PDE (4.26), of order ,3�k is of the form

),,,,,(),,(),( 2

1211212121
uuuxhuuuxBuuxA k

jjjjjjiiiiii kkkk

�

�����
��

�

����

  (4.35)

and admits a Lie group of point transformations with the infinitesimal generator (4.27).

Then

.,,2,1,0 ni
u

i
���

�

��

Theorem 4.2.2-4.  Suppose a PDE (4.26), of order ,3�k is of the form

                 ),,,,,(),(),( 2

1211212121
uuuxhuuxCuuxA k

jjjjjjiiiiii kkkk

�

����
��

�

����

  (4.36)

and admits a Lie group of point transformations with the infinitesimal generator (4.27).

Then

,,,2,1,0 ni
u

i
���

�

��

and

.0
2

2

�

�

�

u

�

Theorem 4.2.2-5.  Suppose a second-order PDE (4.26) is of the form

),,(),(),( uxhuuxCuuxA kkijij ��

and admits a Lie group of point transformations with the infinitesimal generator (4.27)

such that

.,,2,1,0 ni
u

i
���

�

��

Then

.0
2

2

�

�

�

u

�
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Theorem 4.2.2-6.  Suppose a PDE (4.26), of order ,2�k is a linear PDE that admits a

Lie group of point transformations with the infinitesimal generator (4.27). Then

,,,2,1,0 ni
u

i
���

�

��

.0
2

2

�

�

�

u

�

Theorems 4.2.2-1 to 4.2.2-5 are proved in Bluman (1990a).  Theorem 4.2.2-6 is

proved in Ovsiannikov (1962, Chapter 6; 1982, Section 27) for k = 2, and in Bluman

(1990a) for k > 2.  Further classification results for special cases of PDEs of the form

(4.32) appear in Heredero and Olver (1996).

For ,2�n  introduce the notations 

),,(),(),,(),(,, 21221121 txxxtxxxtxxx ���� ����

and

,1
x

u
uu x

�

�

�� ,2
t

u
uu t

�

�

�� ,)1()1(

1 x�� � ,)1()1(

2 t�� �    etc.

If ,0/,0/,0/ 22
��������� uuu ���  then an admitted infinitesimal generator

for a point symmetry is of the form

.)],(),([),(),(X
u

txgutxf
t

tx
x

tx
�

�

��

�

�

�

�

�

� ��   (4.37)

It follows that for an infinitesimal generator of the form (4.37), we have [cf. (2.123)–
(2.137)]

,gfu ���                                                   (4.38)

,)1(

txx u
x

u
x

fu
x

f

x

g

�

�

�
�
�

�

�
�

	

�

�

�


�

�




�

�

�

��

�                           (4.39)

,)1(

txt u
t

u
t

fu
t

f

t

g

�

�

�
�
�

�

�
�

	

�

�

�


�

�




�

�

�

��

�                           (4.40)

,222
2

2

2

2

2

2

2

2
)2(

xtxxtxxx u
x

u
x

fu
x

u
xx

f
u

x

f

x

g

�

�

�
�
�

�

�
�

	

�

�

�


�

�

�
�

�

�

�

�

	

�

�

�

�

�




�

�




�

�

�

����

�   (4.41)

xxtxxt u
t

u
txt

f
u

txx

f
u

tx

f

tx

g

�

�

�
�

�

�

�

�

	

��

�

�

�

�



�

�

�

�

�

	

��

�

�

�

�




��

�




��

�

�

���

�

2222
)2(

,ttxt u
x

u
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f
�

�

�
�
�

�

�
�

	

�

�

�

�

�

�


���

  (4.42)
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.222
2

2

2

2

2

2

2

2
)2(

ttxttxtt u
t

fu
t

u
tt

f
u

t
u

t

f

t

g
�
�

�

�
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�

�
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�
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�

�

�

����

�   (4.43)

4.2.3 EXAMPLES

(1)  Heat Equation

Consider the heat equation

                                                                 .txx uu �   (4.44)

From Theorem 4.2.2-6, it immediately follows that the infinitesimal generator of a point

symmetry

u
utx

t
utx

x
utx

�

�

�

�

�

�

�

�

� ),,(),,(),,(X ���   (4.45)

admitted by PDE (4.44) must be of the form (4.37).  We now find all infinitesimal

generators of point symmetries (4.37) admitted by the heat equation (4.44).  For PDE

(4.44), the symmetry determining equation (4.28) becomes

.when)1()2(

txxtxx uu ����    (4.46)

Substituting (4.40) and (4.41) into (4.46), and then eliminating xxu  through (4.44), we

obtain

xu
txx

f
u

t

f

x

f

t

g

x

g
�

�

�

�

�

�

�

�
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 xtt u
x

u
xxt

����

  (4.47)

The symmetry determining equation (4.47) must hold for all values of .,,,,, xttx uuuutx

Hence, from setting to zero the coefficients of uuuu xtxt ,,,  and the first bracketed term of

(4.47) we obtain the following set of five determining equations for

:),(),,(),,(),,( txgtxftxtx ��

,0�

�

�

x

�

(4.48a)

xxt �
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�

�

�

�

�

� ���

2
2

2

 = 0, (4.48b)
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txx

f ��

(4.48c)
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(4.48d)
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.0
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t

g

x

g
(4.48e)

The solution of PDE (4.48e) corresponds to the trivial infinite-parameter Lie group of

point symmetries (4.30a,b) with ).,()( txgx ��   Nontrivial point symmetries arise from

solving the system of linear PDEs (4.48a–d).  One can show that the solution of the

determining equations (4.48a–d) is given by

,),( txtxtx ����� ���� (4.49a)

                                                   ,2)(),( 2ttttx ����� ���� (4.49b)

,)(),(
2
1

2
12

4
1

��� ����� xtxtxf (4.49c)

where ������ ,,,,,  are six arbitrary parameters [Bluman and Cole (1969)].  Hence, the

point symmetry generators admitted by the heat equation (4.44) are given by

,)(X,2X,X,X
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�   (4.50)

The infinitesimal generators (4.50) correspond to a six-parameter Lie group of nontrivial

point transformations acting on space),,( �utx .

The commutator table for the Lie algebra arising from the infinitesimal generators

(4.50) is given by

000000X

000XXXX

000X2XXXX

0XX20X2XX

0XXX2X00X

0XXX00X

XXXXXX

6

5162
1

5

462
1

354

54213

162
1

322

62
1

511

654321

��

����

��

�

�

                          

From the form of the infinitesimals (4.49a,b), we see that the infinitesimal

generators (4.50) induce a five-parameter ),,,,( �����  Lie group of point

transformations acting on ),( tx –space

.Y,Y,2Y,Y,Y 5

2

4321
x

t
t
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xt
t

t
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x
tx �
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�

�

�

�
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�

�

�

�

�

�

�

�   (4.51)

This five-parameter Lie group is a subgroup of the eight-parameter Lie group of

projective transformations in 2R  defined by (2.168a,b) with infinitesimal generators

given by (2.169).
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Consider the infinitesimal generator 4X  (parameter )�  in (4.50).  The

corresponding one-parameter Lie group of point transformations is obtained by solving

the initial value problem for the first order system of ODEs,

*,*]*)([
*

,*)(
*

*,*
*

2
12

4
1

2

utx
d

du

t
d

dt
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d

dx

���

�
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�

�

with .0at*,*,* ���� �ttxxuu   This yields
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x
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�

�

�
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u
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x
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�

�

�

�

�

�

�
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Now we find the invariant solutions ),( txu ��  of the heat equation (4.44)

resulting from its invariance under 4X  by both methods outlined in Section 4.2.1.

(I)  Invariant Form Method.  Here, the invariant surface condition (4.21a) becomes

.)(
2
12

4
12 utxutxtu tx ����   (4.52)

The corresponding characteristic equations are given by

.
)(

2
12

4
12 utx

du

t

dt

xt

dx

��

��

This solution of the characteristic equations yields two invariants of 4X :

., 4/2

uetv
t

x tx
���

Thus, the solution of the invariant surface condition (4.52) is given by the invariant form

�

�

�

�

�

�
�

t

x
uet tx

�
4/2

or, after we solve for u,

)(
1

),( 4/2

��
txe

t
txu �

���   (4.53)
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in terms of the similarity variable  ./ tx��   Substitution of (4.53) into the heat equation

(4.44) leads to )(��  satisfying the reduced ODE

.0)( ��� ��

Hence, the invariant solutions of PDE (4.44), resulting from its invariance under 4X , are

given by

,
1

),( 4/

21

2 txe
t

x
CC

t
txu �

	



�

�


�
����   (4.54)

where 21 and CC  are arbitrary constants.

(II)  Direct Substitution Method.  Here, we first express the invariant surface condition

in a solved form for tu :

.
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4 2
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u
tt

x
u

t

x
u xt �

�

�

�

�

�

�		
               (4.55)

After substituting (4.55) into the heat equation (4.44), we obtain the following ODE with

t playing the role of a parameter:
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x
u xxx               (4.56)

The general solution of the parametric ODE (4.56) is given by

txextBtAu 4/2

])()([ �

�� ,               (4.57)

where )(and)( tBtA  are arbitrary functions.  Substitution of (4.57) into the invariant

surface condition (4.55) yields
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Hence,
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1
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t

tB

tA
t

tA

which in turn yields the invariant solutions (4.54).
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We now find the one-parameter )(�  family of solutions );,( �txu �� , resulting

from the invariance of the heat equation (4.44) under the point symmetry 4X , obtained

from any solution ),( txu ��  that is not of the form (4.54).  Let   

).ˆ,ˆ(ˆ

,
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Lie (1881) found the admitted group of point transformations of the heat equation

(4.44).  Bluman (1967, Chapter II) [see also Bluman and Cole (1969, 1974 (Section 2.7))]

constructed all corresponding invariant solutions of the heat equation (4.44).

(2)  Nonlinear Heat Conduction Equation

For a second example, we consider a group classification problem.  In particular, we

completely classify the admitted point symmetries for the nonlinear heat conduction

equation

                                                           ,))(( xxt uuKu �   (4.58)

in terms of the conductivity ).(uK   Since PDE (4.58) is of the form (4.34), from Theorem

4.2.2-2 it immediately follows that for any ),(uK  an admitted infinitesimal generator for a

point symmetry (4.45) must be of the form

.),,(),(),,(X
u

utx
t

tx
x

utx
�

�

�

�

�

�

�

�

� ���

For PDE (4.58), the symmetry determining equation (4.28) becomes

)1()2(2)1( )(2)(]))(()([ xxxxxxxt uuKuKuuKuuK ���� ��������             (4.59a)

with

,))(()())(( 2

xxxxxt uuKuuKuuKu ����                      (4.59b)

where )2()1()1( ,, xxtx ���  are given by (2.123)–(2.125).  After using the given PDE (4.59b) to

eliminate tu  from (4.59a), we obtain a polynomial equation in powers of xxtxx uuu and,,

that must hold for arbitrary values of .,,,,, xtxxx uuuutx  From the coefficients of

,and xxxxt uuu  we find that
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,0,0 �
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(4.60a)

so that ).(),,( ttx ���� ��   Using (4.60a) we get, from the coefficients of ,)(,, 2

xxxx uuu

respectively, 
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(4.60b)
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The terms not involving ,,, xxtxx uuu  lead to the final determining equation

.0)(
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(4.60e)

Solving (4.60c) for ,�  and then substituting this result into (4.60e), we find that

],24[
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2
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������ x
uK

uK
utxtxtxtx   (4.61)

where �� , are arbitrary constants and )(t�  is an arbitrary function of  t. After substituting

(4.61) into the determining equation (4.60d), we find that if one of �� , is nonzero then it

is necessary that the conductivity )(uK  satisfy the ODE

0
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� uK

uK

whose solution is given by ),)(caselimiting(with the)()( ueuKuuK ��

��� ���  where

��� ,,  are arbitrary constants.  Finally, after substituting (4.61) into the determining

equation (4.60b), we obtain
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����� uK
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uKuK
xtt ���

Hence, for any const,)( �uK  it immediately follows that ,0)()( ����� tt ��  so that

const,�� .)( ��� �� tt  Thus, there are five possible parameters .,,,, �����  The

parameters ��� ,,  exist for any )(uK  but the existence of the parameters �� ,  depends

on the form of )(uK .  Three cases arise:
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Case I. arbitrary.)(uK

Here, ,0�� ��  and the nonlinear heat conduction equation (4.58) admits a three-

parameter Lie group of point transformations with its infinitesimal generators given by

.2X,X,X 321
t

t
x

x
tx �
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�

�

�

�

�
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�   (4.62)

Case II. .)()( �

�	 �� uuK

Here, ,0��  and PDE (4.58) admits a four-parameter Lie group of point transformations

with its infinitesimal generators given by (4.62) and
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u
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x
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  (4.63)

In the limiting case, where ,)( ueuK �

��  the infinitesimal generator (4.63) becomes
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Case III. .)()( 3/4�
�� �� uuK

Here, PDE (4.58) admits a five-parameter Lie group of point transformations with its

infinitesimal generators given by (4.62), (4.63) ],3/4[ ��� and

.)(3X 2
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u
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x
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Ovsiannikov (1959, 1962) derived the above results by considering PDE (4.58) as

a system of PDEs .,)( txx uvuuKv ��  The classification presented here appeared in

Bluman (1967) [see also Bluman and Cole (1974); Ovsiannikov (1982)].  The group

classification problem for the n-dimensional radially symmetric nonlinear heat

conduction equation, ,))(( 11

xx

nn

t uuKxxu ��

�  is presented in Sophocleous (1992).

(3)  Wave Equation for an Inhomogeneous Medium

As a third example, we consider the complete group classification, with respect to

admitted point symmetries, for the wave equation with a variable wave speed  c(x):

.)(2

xxtt uxcu �   (4.64)

Since PDE (4.64) is a linear PDE, from Theorem 4.2.2-6 it follows that (4.64)

only admits point symmetries with infinitesimal generators of the form (4.37).  The

symmetry determining equation (4.28) is given by

��� xxxxtt uxcxcxc )()(2)( )2(2)2(
���

with

,)(2

xxtt uxcu �
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where )2()2( and ttxx ��  are given by (4.41) and (4.43), respectively (without loss of

generality, we can set ).0�g   For an arbitrary wave speed ),(xc  after eliminating ttu

through use of the given PDE (4.64), and then using the independence of

,,,,, uuuuu xtxxxt  we obtain the following set of five determining equations for

),(),,(),,( txftxtx �� :
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Solving (4.65a) for ,/ x���  (4.65b) for ,/ t���  and then using

,// 22 xttx ������� ��  we obtain the equation
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where

.
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xc

xc
xH
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�

The solution of PDE (4.66) and the determining equation (4.65d) lead to

),(),()(),(
2
1 tStxxHtxf �� �               (4.67)

where )(tS  is an arbitrary function of  t.  After substituting (4.67) into the determining

equation (4.65c), solving (4.65a) for t�� /�  and (4.65b) for ,/ x���  and then using

,// 22 xttx ������� ��  we find that .const)( stS ��  Hence, we obtain

.),()(),(
2
1 stxxHtxf �� �               (4.68)

After substituting (4.68) into the determining equation (4.65e) and then using the

determining equation (4.65d), we obtain
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or, equivalently,

.0]))()(2[( 22
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�
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�xHxH
x

  (4.69)

Three cases then arise:

Case I. .0)()(2 2
��� xHxH

Here, it is easy to show that

                                                          ,)()( 2BAxxc ��   (4.70)

where A, B  are arbitrary constants, with )./(2)( BAxAxH ��   For any solution ),( tx�

of the corresponding PDE (4.66), we find that the functions ),,(),,( txftx�  solving the set

of determining equations (4.65a–e), are given by

,)(),( dtxH
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�             (4.71a)

).,(),( tx
BAx

A
txf �
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� (4.71b)

The set of functions },,{ f�� , determined by any solution ),( tx�  of PDE (4.66) and by

(4.71a,b), corresponds to the invariance of the wave equation (4.64) under a nontrivial

infinite-parameter Lie group of point transformations when its wave speed is given by

(4.70).  One can show that for ,0�A  the wave equation

xxtt uBAxu 4)( ��   (4.72)

can be transformed to the wave equation

0�XTw

by the point transformation [Bluman (1983b)]
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,][
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uBAxw

AtBAxT

AtBAxX

�
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���

���

Hence, the general solution of (4.72) is given by

)],()()[( TGXFBAxu ���

where )(),( TGXF  are arbitrary twice differentiable functions of their respective

arguments.

Case II. .0),(,0)()(2 2
���� txxHxH �

Here, from (4.69) it follows that ),( tx�  can be expressed in the separable form

),()(),( txtx ��� �   (4.73)
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where

122 )]()(2[)( �

��� xHxHx ��   (4.74)

for some constant )(; t��  is to be determined.  After substituting (4.68) and (4.73) into

the determining equation (4.65d), we find that
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where �  is a real or imaginary constant.  We distinguish the subcases .0,0 �� ��

Case IIa. .0��

Here, the wave speed )(xc  must satisfy the fourth-order ODE

.0])()()([ ���� xxHx ��   (4.76)

Correspondingly, from (4.75),

,)( qtpt ���

where p, q are arbitrary constants.  Substitution of (4.68) and (4.73) into the determining

equation (4.65e) leads to the equation

.0])()([ ���xHx�   (4.77)

The wave speed )(xc  must satisfy (4.76), (4.77), and (4.74).  This leads to

,)( 2 DCxBxx ����

,2)()( BxAxHx ���

                                                           ,24 2 ACABD ����

where DCBA ,,,  are arbitrary constants.  Consequently,
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i.e.,

(i) .][)exp[(][)( 122 dxDCxBxCADCxBxxc �

������ �

The corresponding ),(and),( txftx�  are obtained, respectively, from (4.73) and (4.68);

),( tx�  is obtained from the determining equations (4.65a,b).  This yields a four-

parameter Lie group of point transformations admitted by the corresponding wave

equation (4.64). The infinitesimal generators are given by
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The nonzero commutators of the corresponding Lie algebra are given by

.X)(]X,X[,X]X,X[,X)(]X,X[ 332231121 ACAC �		�	  One can show that the Lie

algebra with basis generators 321 X,X,X  is isomorphic to the Lie algebra  SO(2,1)  when

.CA �   When .)(hasone, 2 DCxBxxcCA ����

It is easy to see that to within arbitrary scalings and translations in  x,  a wave

speed ),(xc  given by (i), is equivalent to one of the following five canonical forms:

].1,1,0[)(e)(
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We now list special cases of the wave speed (i), together with the infinitesimal generators

(constants A, B, C, D are renamed) admitted by the corresponding wave equations (4.64).
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The commutator table is the same as for (i) with  (C – A)  replaced by  A(1 – C).
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The nonzero commutators of the corresponding Lie algebra are given by ,X]X,X[ 231 �

.X]X,X[ 132 �
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The commutator table is the same as for (i) with  C – A  replaced by  – AB.

Case IIb. .0��

Here, (4.75) leads to the wave speed )(xc  solving the fourth-order ODE

                                          ),(])()()()[( 22 xxxHxxc ���� ����   (4.78)

where )(and),(/)()( xxcxcxH ���  is given by (4.74).  [Without loss of generality,

1��  in (4.74).]  One can show that if )(xc  satisfies ODE (4.78), then the corresponding

wave equation (4.64) admits a four-parameter Lie group of point transformations with its

infinitesimal generators given by
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The nonzero commutators of the corresponding Lie algebra are given by

,X]X,X[,X]X,X[ 331221 �� ���

.]X))()(())()()([(2]X,X[ 1

221

32 x/cxxxHx ����� ����

�

It immediately follows that

                                .const))()(())()()(( 22 Kx/cx-xxHx ���� ����   (4.79)

Hence, (4.79) is a quadrature of ODE (4.78), i.e., the commutator ]X,X[ 32  yields a first

integral of ODE (4.78)!  The third-order ODE (4.79) for the wave speed )(xc  admits two

point symmetries.  Using the methods of Chapter 3, it can be reduced to a first-order

ODE. If the reduced ODE can be solved, then the general solution of ODE (4.79) is

obtained through three quadratures.  [When �  is imaginary, then appropriate linear

combinations of 32 XandX  yield the corresponding infinitesimal generators.]  When

,0�K  one can show that the Lie algebra with basis generators 321 X,X,X  is isomorphic

to the Lie algebra of  SO(2,1).

Case III. .0��

From the determining equations (4.65a–e), it immediately follows that

sfr ���� const,const�  and, hence, the wave equation (4.64) here only admits

translations in t and scalings in u.  In particular, if the wave speed )(xc  does not satisfy

(4.74) and (4.79) for any values of the constants ,,, K��  then the wave equation (4.64)

only admits the two-parameter Lie group of point transformations with infinitesimal

generators .X,X 21
ut

u
�

�

�

�

��
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In summary, we have the following theorem:

Theorem 4.2.3-1.  The wave equation (4.64), whose wave speed )(xc is a solution of the

system (4.74) and (4.79) for some constants ,,, K�� admits a four-parameter Lie group

of point transformations.  This group becomes an infinite-parameter group if and only if

.2,0,)()( ��� CBAxxc C  For all other wave speeds ),(xc the wave equation (4.64)

only admits the two-parameter Lie group of translations in  t  and scalings in  u.

The group classification of the wave equation (4.64) appeared in Bluman and

Kumei (1987).  This paper includes the corresponding invariant solutions.

(4)  Biharmonic Equation

As a final example, we find the Lie group of point transformations admitted by the

fourth-order biharmonic equation 

,022
����� uu

where 22222 // yx �������  or, equivalently, the PDE

.2 xxxxxxyyyyyy uuu ���   (4.80)

From Theorem 4.2.2-6 ],,[ 21 yxxx ��  we see that for the PDE (4.80) an admitted

nontrivial point symmetry has an infinitesimal generator of the form

,),(),(),(X
u

uyxf
y

yxY
x

yxX
�

�

�

�

�

�

�

�

�

where the symmetry determining equation (4.28) is given by

              )4()4()4( 2 xxxxxxyyyyyy ��� ��� (4.81a)

with

            .2 xxxxxxyyyyyy uuu ��� (4.81b)

Then it is straightforward to derive the following set of determining equations for

),,( yxX ),,( yxY :),( yxf
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Y
(4.82a)
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(4.82b)
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(4.82c)
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(4.82k)

.0��f (4.82 )

From the determining equations (4.82a,b), it follows that

                                                       .0,0 22
���� YX   (4.83)

After substituting (4.83) into the determining equations (4.82c,f), we find that

const.,),( ��

�

�

� ss
x

X
yxf   (4.84)

Then the determining equations (4.82d,e) are also satisfied.  After substituting (4.84),

(4.82a,b) into the determining equations (4.82g–i), we find that third-order derivatives of

X and Y vanish.  Consequently, the remaining determining equations (4.82j– ) are

automatically satisfied.  Hence, we obtain

                                  ,),( 111

2

11

2

1 ������ ������ yxyxyxyxX (4.85a)

                                  ,),( 222

2

22

2

2 ������ ������ yxyxyxyxY (4.85b)

and, after renaming  s  in (4.84),

,2),( 11 syxyxf ��� ��             (4.85c)
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where the indicated constants are to be determined.  From the determining equations

(4.82a,b), it follows that

.22,22 222111111222 ������������ ����������� yxyxyxyx

Hence,

.,,,2,,2 211211122221 ������������ ����������

Consequently, after renaming the constants ,,,,, 2121 s����  we see that the point

symmetry generators 

u
uyxf

y
yxY

x
yxX

�

�

�

�

�

�

�

�

� ),(),(),(X

admitted by the biharmonic equation (4.80) are given by the infinitesimals

,2)(),( 5432

22

1 ����� ������ yxxyyxyxX (4.86a)

,)(2),( 643

22

21 ����� ������ xyyxxyyxY (4.86b)

                                 .22),( 721 ��� ��� yxyxf             (4.86c)

It is left to Exercise 4.2-5 to show that, in terms of the complex variable ,iyxz ��  these

infinitesimal generators determine a seven-parameter ),,,( 721 ��� �  Lie group of point

transformations given by 

,*
dcz

baz
z

�

�

� (4.87a)

,
*

* u
dz

dz
u ��             (4.87b)

where dcba ,,,  are arbitrary complex constants such that 0�� bcad , and �  is an

arbitrary real constant.  Equation (4.87a) is a general Möbius (bilinear) transformation.

This example was considered in Bluman and Gregory (1985).

Reid (1990, 1991) showed that the distinguished cases in group classification

problems for admitted point symmetries of a given PDE can be determined without

solving the determining equations.  Lisle (1992) modified Reid’s algorithm by

introducing a method based on moving frames to show how to solve complex

classification problems that involve two or more classifying functions.  He applied his

method to give the complete group classification, with respect to admitted point

symmetries, for the scalar diffusion convection equation

,))()(( xxt uKuuDu ��

in terms of two classifying functions: the diffusion ).(convectionand)( uKuD

The point symmetries admitted by the porous medium equation,

x

rq

xx

p

t uxfuxguu ))(()()( ��� , for various functions )(),( xfxg  and constants ,,, rqp

are considered in Gandarias (1996).
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EXERCISES 4.2

1. Consider the heat equation (4.44).

(a) Find the invariant solutions of PDE (4.44) resulting from its invariance under ,X5

using both methods of Section 4.2.1.

(b) For any solution ),( txu ��  that is not an invariant solution related to invariance

under ,X5  find the generated one-parameter family of solutions );,( �tx�  of PDE

(4.44).

2. (a) For which solutions ),( txu ��  of the heat equation (4.44) do the infinitesimal

generators ,X,,X,X 621 �  given by (4.50), yield a six-parameter family of

solutions ),,,;,( 621 ��� �txu ��  of (4.44)?

(b) Determine ).,,,;,( 621 ��� �tx�

3. Consider the wave equation .2

xx

x

tt ueu �

(a) Find invariant solutions resulting from its admitted infinitesimal generators:

(i) ;XX 12 s�   and

(ii) ,XX 12 s�

            where s  is an arbitrary constant.

(b) Given any solution ),( txu ��  of this wave equation, find the four-parameter

family of solutions generated by .X,X,X,X 4321   What condition must ),( tx�

satisfy?

4. Show that (4.49a–c) yield the general solution of the set of determining equations

(4.48a–d).

5. Show that (4.87a,b) define a seven-parameter Lie group of point transformations with

its infinitesimals given by (4.86a–c).

6. Consider the heat equation in n spatial dimensions.

(a) Find the nine-parameter Lie group of point transformations admitted by

].2[ ��� nuuu yyxxt

(b) Find the 13-parameter Lie group of point transformations admitted by

].3[ ���� nuuuu zzyyxxt

(c) Generalize to the case of the n-dimensional heat equation .
1�
�

�

n

j xxt jj
uu

7. Consider the axisymmetric wave equation

.
1

rrrtt u
r

uu ��   (4.88)

(a) Show that the Lie group of point transformations admitted by PDE (4.88) has its

infinitesimal generators given by

.X,X,)(2X,X 43
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(b) Find invariant solutions of PDE (4.88) resulting from the admitted infinitesimal

generators:

(i)  ;XX 31 s�   and

(ii)  ,XX 32 s�

        where s  is an arbitrary constant.

8. Consider the nonlinear wave equation

,)(2

xxtt uucu �   (4.89)

const.)( �uc  In terms of infinitesimal generators, show that the group classification

for the invariance of PDE (4.89), with respect to point symmetries, is given by:

(a) )(uc arbitrary:

.X,X,X 321
txt

t
x

x
�

�

�

�

�

�

�

�

�

�

�

�

(b) ,, where,)()( CBABuAuc C
�� are arbitrary constants:

.)(X,X,X,X 4321
u

Bu
x

Cx
�

�

��

�

�

�

(c) BABuAuc and where,)()( 2
��  are arbitrary constants:

.)(X),2(X,X,X,X 2

54321
u

Bux
x

xC
�

�

��

�

�

��

9. Consider Laplace’s equation in 3�n  dimensions,

.0
1

��
�

n

j

xx jj
u               (4.90)

(a) Show that the parameter)]2)(1(1[
2
1

���� nn  Lie group of point

transformations admitted by PDE (4.90) has the infinitesimal generator

�
�

�

�

�

�

�

�

n

j j

j
u

uxf
x

x
1

)()(X �

   with the infinitesimals given by

,,,2,1,2)()(
1 1

2

1

njxxxxxx j

n

k

n

k

kkjk

n

k

jkjkjj ������� � ��

� ��

������

,)2()(
1

���
�

���

n

k

kk xnxf

where ,,,, jj ����  and ,,,2,1,, nkjkjjk ���� ��  are )2)(1(1
2
1

��� nn arbitrary

constants.  The subgroup corresponding to 0��  is called the conformal group. 
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One can show that the conformal group is isomorphic to )1,1(SO �n  [Bluman

(1967)].

(b) Find the corresponding global seven-parameter Lie group of point transformations

admitted by PDE (4.90) when  n = 2.

10. Consider the nonlinear diffusion equation

.)( 2

txxx uuu �   (4.91)

(a) Find the infinite-parameter Lie group of point transformations admitted by PDE

(4.91).

(b) Compare the Lie algebra for the infinitesimal generators admitted by PDE (4.91)

with the Lie algebra for the infinitesimal generators admitted by the linear heat

equation (4.44).

11. Find the five-parameter Lie group of point transformations admitted by Burgers’

equation .xxxt uuuu ��  The admitted point symmetries and corresponding invariant

solutions for the two- and three-dimensional Burgers’ equations, ,2

xt uuuu ���

appears in Edwards and Broadbridge (1995). 

12. Find the four-parameter Lie group of point transformations admitted by the Kortweg–

de Vries (KdV) equation

                                                              .0��� txxxx uuuu   (4.92)

13. Find the four-parameter Lie group of point transformations admitted by the

cylindrical KdV equation

.0
2

1
���� txxxx uu

t
uuu   (4.93)

See Bluman and Kumei (1989b, Chapter 6) on relating PDEs (4.92) and (4.93)

through their group properties.

14. The motion of an incompressible two-dimensional constant-property fluid is

described by the stream-function equation

,4222 uuuuuu yxxyt ������� �                (4.94)

where ),,( tyxu is the stream function for the flow, const��  is the kinematic

viscosity, and .// 22222 yx �������

(a) If ,0��  show that the infinite-parameter Lie group of point transformations

admitted by PDE (4.94) can be represented by the infinitesimal generator

u
utyx

t
tT

y
tyxY

x
tyxX

�

�

�

�

�

�

�

�

�

�

�

� ),,,()(),,(),,(X �

 with the infinitesimals given by

                  ),(),,( 1 tfcytbyaxtyxX ����
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                   ),(),,( 2 tfcxtbxaytyxY ����

,)( khttT ��

),()()()()2(),,,( 321

22

2
1 tfxtfytfyxcuhautyx ����������

where khcba ,,,,  are arbitrary constants and )(),(),( 321 tftftf  are arbitrary

differentiable functions of the time coordinate  t.

(b) If ,0��  show that the admitted group is the same as for (a) except that h = 2a

[Cantwell (1978)].

15. Consider the nonlinear reaction–diffusion equation

                                                        ).(uFuu xxt ��   (4.95)

For an arbitrary reaction function ),(uF  one can show that PDE (4.95) is only

invariant under translations in x and t. Show that PDE (4.95) admits a three-

parameter Lie group of point transformations only if )(uF  is given by one of the

three forms: ),log(, uBAuAu B
�  ,BuAe  to within translations in u, where A and B

are arbitrary constants. [Liu and Fang (1986).  For generalizations, see Galaktionov et

al. (1988).]

16. Consider the nonlinear wave equation

,))(( 2

xxtt uucu �               (4.96)

const.)( �uc  In terms of the infinitesimal generators for admitted Lie groups of point

transformations, show that the group classification of PDE (4.96) is given by:

(a) )(uc  arbitrary:

.X,X,X 321
txt

t
x

x
�

�

�

�

�

�

�

�

�

�

�

�

(b) ,)()( CBuAuc ��  where CBA ,,  are arbitrary constants:

.)(X,X,X,X 4321
u

Bu
x

Cx
�
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��

�

�

�

(c) ,)()( 2�
�� BuAuc  where A and B are arbitrary constants:

.)(X),2(X,X,X,X 2

54321
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(d) ,)()( 3/2�
�� BuAuc  where A and B are arbitrary constants:

.)(3X),(X,X,X,X 2

53
2

4321
u

Bux
x

xC
�

�
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�

�

���

[Ames, Lohner, and Adams (1981).  A group classification for PDE (4.96) with )(uc

replaced by ),( uxc  has been investigated by Torrisi and Valenti (1985).

Generalizations to higher-dimensional nonlinear wave equations of the form
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zzyyxxtt uuhuuguufu ))(())(())(( ���  are given in Baikov, Gazizov, and

Ibragimov (1990, 1991).]

17. Show that the two-dimensional nonlinear Schrödinger equation

const,,|| 2
���� riuuuruu tyyxx

admits an eight-parameter Lie group of point transformations with its  infinitesimal

generators given by

,X,2X,X,X,X 54321
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   [Tajiri (1983)].

18. Show that the PDE ,0)( ��� zz

u

yyxx euu  which arises in Riemannian geometry,

admits

,X,X,X,X 4321
z
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y
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x
zyx �
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�

�
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   and the infinite-parameter Lie group of point transformations represented by the

      infinitesimal generator

,),(2),(),(X
u

yx
y

yyx
x

xyx
�

�

�

�

�

�

�

�

�
�

���

where 0),(2
�� yx� . [See Drew, Kloster, and Gegenberg (1989) where the

cylindrically symmetric case is also considered.]

19. Show that the most general second-order scalar PDE ),,,,,,( ttxttxxx uuuuutxfu �  that

admits the group of the heat equation with the six infinitesimal generators (4.53) is

given by

),(
)( 2

�K
u

u
uu x

txx ��

   where

3

2

)(

3

x

xtxt

u

uuuuu �

��

    and )(�K  is any solution of the first-order ODE

.0)3(
2
3

����� KKK �
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Find a point symmetry admitted by this first-order ODE and show that its general

solution is given by

const.
)22(

3

�

�� �K

K

20. Consider the nonlinear second-order PDE

,02 2
����� zzyzxzzx zuuuzzuuuu

which arises in the classification of ODEs that admit point-form adjoint-symmetries

[cf. Section 3.7.5].  Find the two-parameter Lie group of scalings admitted by this

PDE and the corresponding invariant solutions.

4.3     INVARIANCE FOR A SYSTEM OF PDEs

Consider a system of N PDEs (N > 1) with n independent variables ),,,( 21 nxxxx ��

and m dependent variables ),,,,( 21 muuuu ��  given by 

                                   .,,2,1,0),,,,,( 2 NuuuuxF k
�� ����� �

�   (4.97)

Definition 4.3-1.  The one-parameter Lie group of point transformations

),;,(* �uxXx � (4.98a)

),;,(* �uxUu � (4.98b)

leaves invariant the system of PDEs (4.97), i.e., is a point symmetry admitted by (4.97), if

and only if its kth extension, defined by (2.134a–d), (2.130)–(2.132), leaves invariant the

N surfaces in ),,,,,( 2 uuuux k
��� � -space, defined by (4.97).  

In analogy to the situation for a scalar PDE, it is easy to prove the following

theorem.  [For the rest of this section, we assume the summation convention for repeated

indices.]

Theorem 4.3-1  (Infinitesimal Criterion for the Invariance of a System of PDEs).  Let

�

�
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u
ux

x
ux

i

i
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�

�

� ),(),(X   (4.99)

be the infinitesimal generator of the Lie group of point transformations (4.98a,b). Let
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uuuux
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���� (4.100)

be the kth-extended infinitesimal generator of (4.99) where �

�
)1(

i is given by (2.135) and

�

�

)(

21

j

iii j�

 by (2.136), ,,,2,1,,,2,1,,,2,1 kjforniandm j ��� ���� in terms of

)).,(,),,(),,((),()),,(,),,(),,((),( 21

21 uxuxuxuxuxuxuxux m

n �������� �� ��  Then

the one-parameter Lie group of point transformations (4.98a,b) is admitted by the system

of PDEs (4.97) if and only if 

0),,,,,(X 2)(
���� uuuuxF kk

�

� when  u  satisfies (4.97)             (4.101)

for each .,,2,1 N���

Proof.  Left to Exercise 4.3-1.          

Note that the invariance criterion (system of symmetry determining equations

(4.101)) involves the substitution of the N PDEs (4.97) and their differential

consequences into each of the N determining equations given by (4.101).

4.3.1 INVARIANT SOLUTIONS

Consider a system of PDEs (4.97) that admits a one-parameter Lie group of point

transformations with the infinitesimal generator (4.99).  We assume that .0),( ��ux�

Definition 4.3.1-1.  ),(xu �� with components ,,,2,1),( mxu ���� �
�� is an invariant

solution of the system of PDEs (4.97) resulting from an admitted point symmetry with

infinitesimal generator (4.99) if and only if:

(i) ;,,2,1eachfor(4.99)ofsurfaceinvariantanis)( mxu ���� �

��

(ii) )(xu �� solves (4.97).

It follows that )(xu �� is an invariant solution of the system of PDEs (4.97),

resulting from its invariance under the Lie group of point transformations (4.98a,b), if

and only if )(xu �� satisfies:

(i) 0))((X ��� xu ��  when ,,,2,1),( mxu ���� � i.e.,

;,,2,1)),(,(
)(

))(,( mxx
x

x
xx

i

i ����

�

��

� ���
�

�

 (4.102)

  (ii)    i.e.,,,,2,1),(  when0),,,,,( 2 NxuuuuuxF k
�� ������� �

�

                       .,,2,1,0))(,),(),(),(,( 2 NxxxxxF k
�� ��������� �

� (4.103)
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where )(xj
��  denotes ,/)(

21 jiii

j xxxx ����� �

� ,,,2,1 m���  and ,,,2,1 ni j ��

for .,,2,1 kj ��

Equations (4.102) are the invariant surface conditions for the invariant solutions

of the system of PDEs (4.97) resulting from its invariance under the point symmetry
(4.99).  As is the situation for a scalar PDE, invariant solutions can be determined by two

procedures.

(I) Invariant Form Method.  Here, we solve the invariant surface conditions (4.102)

by explicitly solving the corresponding characteristic equations for )(xu �� given by

.
),(),(),(),(),(),( 2

2

1

1

2

2

1

1

ux

du

ux

du

ux

du

ux

dx

ux

dx
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m

m

n
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������

������� �� (4.104)

If ),,(,),,(),,(),,(,),,(),,( 21

121 uxvuxvuxvuxyuxyuxy m

n ��

�

 are 1�� mn  functionally

independent constants that arise from solving the system of 1�� mn  first-order ODEs

(4.104) with the Jacobian ,0),,,(/),,,( 2121
���

mm uuuvvv ��  then the general solution

)(xu �� of the system of PDEs (4.102) is given implicitly by the invariant form

)),,(,),,(),,((),( 121 uxyuxyuxyuxv n��� �

�� (4.105)

where �

�  is an arbitrary differentiable function of ),,(,),,(),,( 121 uxyuxyuxy n��  for

.,,2,1 m���   Note that ),(,),,(),,(),,(,),,(),,( 21

121 uxvuxvuxvuxyuxyuxy m

n ��

�

 are

1�� mn  functionally independent group invariants of (4.99) and hence are 1�� mn

canonical coordinates for the Lie group of point transformations (4.98a,b).  Let ),( uxyn

be the th)( mn �  canonical coordinate satisfying

.1X �ny

If the system of PDEs (4.97) is transformed into a system of PDEs in terms of

independent variables nyyy ,,, 21 �  and dependent variables ,,,, 21 mvvv �  then the

transformed system of PDEs admits the one-parameter Lie group of translations

.,,2,1,*

,*

,1,,2,1,*

mvv

yy

niyy

nn

ii

�

�

��

��

���

�

�

��

Thus, the variable ny  does not appear explicitly in the transformed system of PDEs and,

hence, the transformed system of PDEs has solutions of the form (4.105).  Consequently,

the system of PDEs (4.97) has invariant solutions given implicitly by the invariant form

(4.105).  Such solutions are found by solving a reduced system of differential equations

with n – 1 independent variables 121 ,,,
�nyyy �  and m dependent variables .,,, 21 mvvv �

The variables 121 ,,,
�nyyy �  are commonly called similarity variables.  The reduced

system of differential equations is found by substituting the invariant form (4.105) into
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the given system of PDEs (4.97).  We assume that this substitution does not lead to a

singular differential equation.  Note that if ,0/ ��� u�  as is typically the case, then

.1,,2,1),( ��� nixyy ii �  If n = 2, then the reduced system of differential equations is a

system of ODEs and we denote the similarity variable by .1y��

(II) Direct Substitution Method. This procedure is essential if one is unable to solve

explicitly the invariant surface conditions (4.102), i.e., the characteristic equations

(4.104). We assume that .0),( ��uxn�   Then the first-order system of PDEs (4.102) can

be written as

.,,2,1,
),(
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(4.106)

From (4.106) and its differential consequences, it follows that any term involving

derivatives of u with respect to nx  can be expressed in terms of  x, u, and derivatives of

u with respect to the variables .,,, 121 �nxxx �   Hence, after directly substituting (4.106)

and its differential consequences into the given system of PDEs (4.97) for all terms in

(4.97) that involve derivatives of   u with respect to nx , we obtain a reduced system of

differential equations involving  m dependent variables ,,,, 21 muuu � n – 1 independent

variables ,,,, 121 �nxxx �  and parameter .nx  Any solution of this reduced system of

differential equations defines an invariant solution of the system of PDEs (4.97) resulting

from its invariance under the Lie group of point transformations with the infinitesimal

generator (4.99), provided that the invariant surface conditions (4.102) or, equivalently,

the given system of PDEs (4.97) itself, are also satisfied.  If  n = 2, the reduced system of

differential equations is a system of ODEs. The constants appearing in the general

solution of this system of ODEs are arbitrary functions of the parameter .nx  These

arbitrary functions are then determined by substituting this general solution into either the

invariant surface conditions (4.102) or the given system of PDEs (4.97).

4.3.2 DETERMINING EQUATIONS FOR SYMMETRIES OF A SYSTEM OF PDEs

Consider a system of PDEs (4.97) with each of its PDEs given in a solved form

                                            ),,,,,,( 2

21
uuuuxfu k

iii ���� �

�
�

�
�
�

�

(4.107)

in terms of some specific 
�

� th-order partial derivative of �
�

u  for some ,,,2,1 m��

�

�

where ),,,,,( 2 uuuuxf k
��� �

�  does not depend explicitly on any of the components

,,,2,1,
21

Nu iii �

��

��

�

�

�

 for each .,,2,1 N���   From Theorem 4.3-1, we see that the

system of PDEs (4.107) admits the point symmetry
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�
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u
ux

x
ux
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i
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�

� ),(),(X , (4.108)
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with the kth extension of (4.108) given by (4.100), if and only if
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                               (4.109a)

with

.,,2,1),,,,,,( 2

21
Nuuuuxfu k

iii ��

�
�

����� �

��
�

�

          (4.109b)

It is easy to see that �

�

)(

21

p

jjj p�

is a polynomial in the components of ,,,, 2 uuu p
��� �

with coefficients that are linear homogeneous in the components of ),(),,( uxux ��  and

their derivatives to order p.  Thus, �� and  appear linearly in (4.109a).  As is the

situation for a given scalar PDE, the system of symmetry determining equations

(4.109a,b) leads to a system of linear homogeneous PDEs for �� and .  First, we

eliminate the components �

�

�

�
�iiiu

21
and their differential consequences from (4.109a) by

substitution from (4.109b) and the differential consequences of (4.109b), .,,2,1 N���

Consequently, the components of ux,  and the remaining components of uuu k
��� ,,, 2

�

that appear in the resulting system of symmetry determining equations (4.109a) are

themselves independent variables, i.e., take on arbitrary values.  Since the resulting

expression for (4.109a) holds for any values of these independent variables, one obtains a

system of linear homogeneous PDEs for �� and  that constitutes a set of determining

equations for the infinitesimal generators X admitted by the given system of PDEs (4.97).

In particular, if each ,,,2,1),,,,,,( 2 Nuuuuxf k
�� ���� �

�  is a polynomial in the

components of ,,,, 2 uuu k
��� �  then the system of symmetry determining equations

(4.109a) yields polynomial equations in the independent components of uuu k
��� ,,, 2

� .

Consequently, the coefficients of these polynomial equations must vanish separately.

This yields the set of linear determining equations for �� and .  Typically, the number

of determining equations is far greater than ,mn �  so that the set of determining

equations is very overdetermined.

A linear system of nonhomogeneous PDEs,

),(L xgu � (4.110)

admits a trivial infinite-parameter Lie group of point transformations

,* xx �                       (4.111a)

),(* xuu ����           (4.111b)

where )(x�  is any solution of the associated linear homogeneous system of PDEs

.0L �u
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To within this trivial infinite-parameter Lie group of point transformations, the Lie group

of point transformations admitted by a linear system of PDEs usually has at most a finite

number of parameters.

Unlike the case for scalar PDEs, there still appears to be very little known about

the forms of admitted point symmetries for systems of PDEs.  It is conjectured that for a

linear system of PDEs (4.110), an admitted infinitesimal generator for a point symmetry

(modulo the admitted trivial infinite-parameter Lie group of point transformations

(4.111a,b)) is such that �  has no dependence on  u,  and �  is linear in  u, i.e.,

                                                    ,,,2,1),( nixii ��� ��           (4.112a)

,)( ��

�

�

� uxk�                       (4.112b)

for some functions mxk ,,2,1,for)( ����

�

�

.  We will assume that the conditions

(4.112a,b) hold for a Lie group of point transformations admitted by a linear system of

PDEs. [It is easy to check that the conditions (4.112a,b) hold for all examples treated in

this book.]  

For a linear system with n = 2 and m = 2, write ,1 xx �  ,2 tx �  ),,(1 tx�� �

),,(2 tx�� �  ,1 uu �  ,2 vu �  ,),(),(1 vtxgutxfu
�����  .),(),(2 utxvtxkv

������

Here an admitted infinitesimal generator for a point symmetry is of the form
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and the once-extended infinitesimals are given by
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4.3.3 EXAMPLES

(1)  System of Wave Equations

Consider the linear system of first-order wave equations

                                                                 ,xt uv �                       (4.118a)

.4

xt vxu �           (4.118b)
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Note that if the pair )),(),,(( txvtxu  solves (4.118a,b), then ),( txu  solves the wave

equation

,4

xxtt uxu �

and ),( txv  solves the wave equation 

.)( 4

xxtt vxv �

The system of symmetry determining equations (4.102a,b) for the system of PDEs

(4.118a,b) is given by

,)1()1( u

x

v

t �� �           (4.119a)

,4 )1(43)1( v

xx

u

t xvx ��� ��                       (4.119b)

with ., 4

xtxt vxuuv ��   After substituting (4.114)–(4.117) into (4.119a,b), and then

eliminating tt uv and   through substitutions from the given system of PDEs (4.118a,b),

we obtain the system of symmetry determining equations given by
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Each of the equations (4.120a,b) must hold for arbitrary values of .,,,,, xx vuvutx

Consequently, we obtain a set of eight symmetry determining equations for

�,,,,, kgf�� ,  that simplify to the equations
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,04
�

�

�

�

�

�

t

f

x
x

�
                       (4.121f)

,02 ��
�
�

�

�
�

	







�







�

��

xt
x                                 (4.121g)

.0�

�

�

�

�

�

��

tx
fk

��

                                  (4.121h)

It is left to Exercise 4.3-3 to show that the solution of the symmetry determining

equations (4.121a–h) is given by

,2),( xtxtx ��� ��                       (4.122a)

                                               ,)(),( 22
���� �����

� txttx           (4.122b)

,3),( �� �� ttxf                       (4.122c)

,),( xtxg ���                                   (4.122d)

,2),( ��� ���� ttxk                       (4.122e)

                                               ,),( 3�
�� xtx ��                        (4.122f)

where ���� ,,,  are four arbitrary constants.  Hence, the point symmetry generators

admitted by the system of wave equations (4.118a,b) are given by
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These infinitesimal generators determine a nontrivial four-parameter Lie group of point

transformations acting on space.),,,( �vutx  The nonzero commutators of the

corresponding Lie algebra are given by

.X]X,X[,X3X2]X,X[,X]X,X[ 3324231121 ������

One can show that the Lie algebra with basis generators ,XXY,XY 42
3

2211 ���

,XY 33 �  is isomorphic to the Lie algebra of  SO(2,1).

Consider the infinitesimal generator 3X  (parameter ).�  We find the resulting

invariant solutions )),(),,((),( 21 txtxvu ��� by both procedures outlined in Section 4.3.1.

(I) Invariant Form Method.   Here, the characteristic equations (4.104) become

.
32 322 uxtv

dv

xvtu
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tx

dt

xt
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�� (4.123)
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The integration of the first ODE in (4.123), i.e., ),/(2/ 22 txxtdtdx ���

�  yields the

similarity variable (invariant)

                                                  .const 21

1 xtxy ����

�

� (4.124)

To determine the other invariants of (4.123), we consider the corresponding system of

first-order characteristic ODEs
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                      (4.125c)

).( 3uxtv
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After substituting the constant of integration (4.124) into the system of ODEs (4.125a,b),

from (4.125b) we obtain

                                                      .const1 Ext ���

�

�� (4.126)

The constant E is related to the invariance of (4.125a–d) under translations in .�  Without

loss of generality, we can set E = 0.  From (4.125a–d), we get
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t

d

vd

��

Then using (4.124), one can show that this ODE simplifies to
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�xv
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Hence,

                                                            ,21 vvxv �� �                       (4.127a)

where 21 and vv  are constants of integration.  Equation (4.125d) now yields

                                                    ].)([ 1212 vvvtxu ��� �           (4.127b)

Using xt1�
�� ��  [cf. (4.126)], we can eliminate �  from (4.127a,b), and thus obtain
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The constants 21,, vv�  are independent invariants of (4.123); �  is the similarity variable

for the invariant solutions resulting from .X3  These invariant solutions are now found by
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replacing 21,vv  by functions of )(),(i.e.,, 21
��� GvFv ��  [ GF ����

21 ,  in the

invariant form (4.105)].  Then
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��           (4.128b)

We now substitute (4.128a,b) into the wave equations (4.118a,b) to determine )(�F  and

).(�G  Equations (4.118a,b), respectively, lead to the system 
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where a, b  are arbitrary constants.  This yields the two linearly independent solutions
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of the system of wave equations (4.118a,b).

(II) Direct Substitution Method. Here, the invariant surface conditions (4.106)

become

],3][[ 11113

2
1 vtuxutxtxu tx

�����

����           (4.130a)

].][[ 141113

2
1 utxvxvtxtxv tx

������

����           (4.130b)

Using (4.130a,b), we now eliminate derivatives of u and v with respect to x from

(4.118a,b) so that these equations become

],3][[ 11113

2
1 vtuxutxtxv tt

�����

���� (4.131a)

],][[ 1331

2
1 utvxvtxxtu tt

��

����                       (4.131b)

which is a system of first-order ODEs with independent variable  t  and parameter  x.

Expressing (4.131a,b) in solved form in terms of tt uv , , and setting ,xt��  we

obtain
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Next we take ��� /  of (4.132a) and eliminate 
�

u  through (4.132b).  Finally, we

eliminate u through expressing (4.132a) in the form

.
15

)1()3(
2

22
2

�
�

�

�

�
�

�

�

�

�		




�

���
�

vv
xu (4.133)

This leads to the second-order ODE
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Linearly independent solutions of (4.134) are given by

.)1(, 22 �

��� �� vv

Hence,

22 )1)(()( �

��� �� xBxAv           (4.135a)

is the general solution of ODE (4.134) where )(),( xBxA  are arbitrary functions.  From

(4.133), we then get

                                              .)1()()( 2222 �

��� ��xBxxAxu           (4.135b)

After substituting (4.135a,b) into the given PDE (4.118a), we find that

)].()([
)1(

)]()([
22

xBxxBxAxxA ��

�

���
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            (4.136)

Since (4.136) must hold for all values of x  and ,�  we get

,)(,)( 1 bxxBaxxA ��

�

where a and b are arbitrary constants.   In turn, this leads to the solutions (4.129a,b).

Note that the Direct Substitution Method avoids integration of the characteristic

equations (4.104) and, hence, it is more adaptable to automatic computation through

symbolic manipulation programs.

(2)  Nonlinear Heat Conduction Equation

Consider again the nonlinear heat conduction equation

                                                           .))(( xxt uuKu � (4.137)

We form an associated system of PDEs
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                                                             ,)( xt uuKv �                       (4.138a)

                                                            .uvx �                       (4.138b)

Note that if the pair )),(),,(( txvtxu  solves the system of PDEs (4.138a,b), then ),( txu

solves the nonlinear heat conduction equation (4.137), and ),( txv  solves the nonlinear

diffusion equation

.)( xxxt vvKv �

The Lie group of point transformations admitted by the system of PDEs (4.138a,b) can

yield a symmetry admitted by the scalar PDE (4.137) that is neither a point

transformation nor even a local transformation.  For a full discussion of how to find and

use such nonlocal symmetries for a given system of PDEs, see Bluman, Kumei, and Reid

(1988), Bluman and Kumei (1989b, Chapter 7)), Bluman and Doran-Wu (1995), and

Anco and Bluman (1996, 1997b).

We now completely classify the invariance properties of the system of PDEs

(4.138a,b) in terms of its admitted point symmetries.  We leave many details to the

reader.  Suppose the system of PDEs (4.138a,b) admits an infinitesimal generator of the

form
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Here, the system of symmetry determining equations (4.102) becomes
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x �� �                       (4.140b)

with

      ,,)( uvuuKv xxt ��           (4.140c)

where v
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v

t

)1()1()1( ,, ���  are given by (2.135).  After eliminating tx vv and   through

substitution from the given system of PDEs (4.138a,b), we obtain
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Each of the symmetry determining equations (4.141a,b) must hold for arbitrary values of

.,,,,, tx uuvutx  Consequently, we obtain a set of seven symmetry determining equations

for ,,,, vu
����  that simplify to the equations
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The solution of the set of symmetry determining equations (4.142a–g) is left to

Exercise 4.3-5.  The results can be summarized as follows [Bluman, Kumei, and Reid

(1988)].

Case I. arbitrary.)(uK

Here, the given system of PDEs (4.138a,b) admits a four-parameter Lie group of point

transformations with its infinitesimal generators given by

vv
v

t
t

x
x

tx �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� 4321 X,2X,X,X . (4.143)

Case II. .)()( �

�� �� uuK

Here, the system of PDEs (4.138a,b) admits a five-parameter Lie group of point

transformations with its infinitesimal generators given by (4.143) and

.]2)21[()(2X 111

5
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Case III. .)()( 2�
�� �� uuK

Here, the system of PDEs (4.138a,b) admits an infinite-parameter Lie group of point

transformations with its infinitesimal generators given by (4.143), (4.144) [with ]2��� ,
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where ,xvz ���  and ),( tzw ��  is any solution of the linear heat equation

.zzt ww ��

The use of the infinitesimal generator 
�

X  to map the nonlinear heat conduction equation

xxt uuu ))(( 2�
�� ��

to a linear PDE is discussed in Kumei and Bluman (1982) and Bluman and Kumei

(1990a) [see also Bluman and Kumei (1989b, Chapter 6)].
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)( , where rqp ,,  are arbitrary constants

such that .04 22
��� rqp

Here, the system of PDEs (4.138a,b) admits a five-parameter Lie group of point

transformations with its infinitesimal generators given by (4.143) and
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(3)  Wave Equation for an Inhomogeneous Medium

Consider again the wave equation in an inhomogeneous medium with a variable wave

speed :)(xc

.)(2

xxtt uxcu � (4.147)

We form an associated system of first-order PDEs

                                                                 ,xt uv �           (4.148a)

.)(2

xt vxcu �           (4.148b)

If the pair )),(),,(( txvtxu  solves (4.148a,b), then ),( txu solves the wave equation (4.147)

and ),( txv  solves the hyperbolic equation

.))(( 2

xxtt vxcv �

We now give a complete group classification of the system of PDEs (4.148a,b) with

respect to its invariance under a Lie group of point transformations.  Suppose (4.148a,b)
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admits an infinitesimal generator of the form (4.113).  It is left to Exercise 4.3-6 to show

that the set of symmetry determining equations for ),,(),,( txtx �� ),,( txf ),,( txg

),(),,( txtxk �  is given by
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The integrability conditions arising from the determining equations (4.149a–c,f) lead to

),( txg  satisfying
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Consequently,

,
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txg �� (4.152)

in terms of an arbitrary function )(ta .  Two cases arise that depend on whether or not the

wave speed )(xc  satisfies the ODE

,const ���
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c
cc (4.153)

for some constant .�   If  )(xc  satisfies ODE (4.153), then )(ta  satisfies the ODE
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).()( tata ����

If )(xc  does not satisfy ODE (4.153) for any constant ,�  then ,0)( �ta  and the

corresponding system of PDEs (4.148a,b) only admits the two obvious infinitesimal

generators
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�             (4.154)

If the wave speed )(xc  satisfies ODE (4.153), then one can show that the

corresponding system of PDEs (4.148a,b) admits a four-parameter Lie group of point

transformations.  In terms of the solutions of ODE (4.153), the group classification is

summarized as follows, modulo scalings and translations in  x [Bluman and Kumei

(1987, 1988)]:

(I) .0��

In this case,

                                                          ,or)( Cx xexc � (4.155)

where C is an arbitrary constant.

(II) .0��

Here, the ODE (4.153) cannot be solved explicitly but reduces to one of the following

first-order ODEs:

                                                        );logsin(1 cc ��
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��           (4.156a)

        );logsinh(1 cc ��
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��           (4.156b)

;logcc ��           (4.156c)

        );logcosh(1 cc ��

�

��           (4.156d)

0��  is an arbitrary constant.  If ),()( �� xxc �  is a solution of any one of the ODEs

(4.156a–d), then the corresponding general solution of ODE (4.153) is given by

),,()( �� MLxKxc ��

where ||22
��LK  for arbitrary constants .,, �ML   The admitted infinitesimal

generators for the various subcases include:
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Case II. .0��

If the wave speed )(xc  satisfies either of the ODEs (4.156a or b), then the given system

of PDEs (4.148a,b) admits
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The resulting invariant solutions appear in Bluman and Kumei (1987, 1988).

Special classes of invariant solutions will be considered in Section 4.4.3.

Lisle (1992) gave a partial group classification of the diffusion convection system

of PDEs
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by delineating those classes of functions )(),( uKuD  for which the system admits extra

point symmetries (including those that induce nonlocal symmetries of the scalar diffusion

convection equation).
Akhatov, Gazizov, and Ibragimov (1988) [see also Ibragimov (1995)] present the

group classification of the one-dimensional system of adiabatic gas equations given by

,0��� xxt vv ���

                                                    ,0)( ��� xxt pvvv�

                                       ,0),()( ��� xxt vpBvpp ��

where ),( tx�  is the density of the gas, ),( txp  is the pressure, ),( txv  is the velocity, and

),( �pB  is the constitutive law.

Many further examples are exhibited in Ibragimov (1995).  

EXERCISES 4.3

1. Prove Theorem 4.3-1.

2. Show that the infinitesimal generators for point symmetries admitted by the system of

PDEs (4.118a,b) are of the form (4.113).

3. Show that (4.122a–f) is the general solution of the set of symmetry determining

equations (4.121a–h).

4. The linear system of wave equations (4.118a,b) admits the infinitesimal generator
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(a) For invariant solutions resulting from invariance under X, show that the invariant

form is given by
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where );(and);( sGsF ��  are arbitrary functions of �  and s.  The similarity

variable � is given by (4.124).

(b) Determine the coupled system of ODEs that are satisfied by ).;(),;( sGsF ��

Simplify and express the solution in terms of special functions.

(c) Derive these invariant solutions by the Direct Substitution Method.
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5. Complete the group classification of the system of PDEs (4.138a,b) and derive

(4.143)–(4.146).

6. Derive the set of symmetry determining equations (4.149a–h).

7. Consider the two-dimensional nonstationary boundary layer equations

,0,0, ������� yxyyyxyxt vupupvuuuu                     (4.161)

[ ),,(),,,( tyxvtyxu are components of the velocity vector; ),( txp is the pressure;

without loss of generality, the viscosity and density constants are set to equal one].

Show that the admitted point symmetries of (4.161) are given by
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where )(and),(),( ttt ���  are arbitrary sufficiently smooth functions of t

[Ovsiannikov (1982)].

8. Show that the two-dimensional steady-state boundary layer equations [ 0�tu  in the

system of PDEs (4.161)] admit
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where )(x�  is an arbitrary differentiable function [Ovsiannikov (1982)].

9. Show that the three-dimensional incompressible Navier–Stokes equations ,,[ 21 xx 3x

are spatial variables; t  is time; 321 ,, uuu  are components of the velocity vector;  p is

pressure; �
�

����

3

1

222 ;/
i ix without loss of generality, the viscosity is set to equal 1],

��

��

������

3

1

2
3

1

,3,2,1,,0
i

j

x

j

x

ij

t

i

i

x jupuuuu
jii

admit

,2X,X
3

1

21 �
�

�

�

�

�

�

�

�

�

	

�

�



�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

i
i

i

i

i
p

p
t

t
u

u
x

x
t

,X,X
3

1

1

3

3

1

1

342

1

1

2

2

1

1

23
u

u
u

u
x

x
x

x
u

u
u

u
x

x
x

x
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,X
3

2

2

3

3

2

2

35
u

u
u

u
x

x
x

x
�

�

�

�

�

�

�

�

�

�

�

�



349

,3,2,1,)()()(X �

�

�

���

�

�

��

�

�

�
�

j
p

tx
u

t
x

t jjjj

j

jj
���

,)(X
4 p

t
�

�

�
�

�

where ,3,2,1),(),( �jtt j��  are arbitrary functions.  [See Boisvert, Ames, and

Srivastava (1983).  In this paper various invariant solutions are given.]

10. If the complex-valued wave function ),( tx�  satisfies the cubic nonlinear Schrödinger

equation

�����

2||)( ���� xVi xxt (4.162)

for an external potential ),(xV  then the canonical transformation

,),( 2/iuevtx �

��

where ),(and),( txvtxu  are real-valued functions, transforms PDE (4.162) into the

nonlinear system of PDEs, representing a Madelung fluid, given by
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Show that if ,)( xxV ��  then the system of PDEs (4.163) admits the infinitesimal

generators
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[See Baumann and Nonnenmacher (1987), where these infinitesimal generators and

resulting invariant solutions are given.]

11. Show that the coupled two-dimensional nonlinear system of Schrödinger equations

,0)|(|,02|| 22
�������� xxyyxxyyxxt uvvuvuuuuiu

where ),(and),( txvtxu  are complex-valued functions, admits the infinitesimal

generators
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[Tajiri and Hagiwara (1983).]



350

12. Show that the shallow water wave equations for two-dimensional flow over a flat

bottom, given by

,0,0 �������� yyxtxyxt gHvuvuvgHvuuuu

,0)( ����� yxyxt vuHvHuHH

where ),,(),,,( tyxvtyxu  are the components of the velocity vector, ),,( tyxH  is the

depth of the water, and g = const is the acceleration due to gravity, admit the point

symmetries
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[Ibragimov (1983).]

13. Consider the mapping from space),,,,,( 2
���� uuuux �

�  to ���� ),,,,,( 2 vvvvy �
�

space  given by ),,(),,( vyUuvyXx ��  where ),,,,( 21 nxxxx ��

),,,,( 21 muuuu �� );,,,(and),,,,( 21
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n vvvvyyyy �� �� vj�  denotes jth-

order partial derivatives of  the components of v with respect to the components of y.
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    Assume that under the above mapping, the Jacobian determinant satisfies
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(a) Show that 
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(b) Show that

.
222

qpk

q

j

p

pkj

p

kj yy

u

Dy

DX

Dy

DX

x

u

DyDy

XD

DyDy

UD

��

�

�

�

�

�

���

(c) One can show that  
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   [Greub (1967, p. 26)].  Hence, as an example, show that
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4.4     APPLICATIONS TO BOUNDARY VALUE PROBLEMS

In Sections 4.1 to 4.3, we have shown how to find point symmetries admitted by given

PDEs and how to use them to find resulting invariant solutions.  Now we consider the

problem of using invariance to solve boundary value problems posed for PDEs.  The

application of Lie symmetries to boundary value problems for PDEs is much more

restrictive than is the situation for ODEs.  

In the case of an ODE, an admitted integrating factor or point symmetry (or, more

generally, a higher-order symmetry) leads to a reduction in the order of the ODE.  In

terms of the original variables (integrating factor reduction) or in terms of the
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corresponding differential invariants (point symmetry reduction), any posed boundary

value problem for the ODE is automatically reduced to a boundary value problem for a

lower order ODE.

In the case of a PDE, an invariant solution arising from an admitted point

symmetry solves a given boundary value problem provided that the symmetry leaves

invariant all boundary conditions.  This means that the domain of the boundary value

problem or, equivalently, its boundary as well as the conditions (boundary conditions)

imposed on the boundary must be invariant.

The situation is not so restrictive in the case of boundary value problems posed

for linear PDEs. Here a boundary value problem need not be completely invariant

(incomplete invariance) since one can use an appropriate superposition of invariant

solutions in the following situations:

(i) For a linear nonhomogeneous PDE with linear homogeneous boundary

conditions, an infinitesimal generator ,X
u

u
�

�

�  admitted by the associated linear

homogeneous PDE, is useful if X is also admitted by the homogeneous boundary

conditions. Then the boundary value problem can be solved by a superposition (i.e.,

eigenfunction expansion, integral transform representation) of invariant form functions

arising from the infinitesimal generator 
u

u
�

�

� �X , where �  is an arbitrary constant,

since 
u

u
�

�

� �X  is admitted by both the associated linear homogeneous PDE and the

homogeneous boundary conditions �[  plays the role of an eigenvalue].

  (ii)  For a linear homogeneous PDE with 1�p  linear homogeneous boundary

conditions and one linear nonhomogeneous boundary condition, an infinitesimal

generator ,X
u

u
�

�

�  admitted by the PDE, is useful if X is also admitted by the p

homogeneous boundary conditions.  Consequently, for any complex constant ,�  the

infinitesimal generator 
u

u
�

�

� �X  is admitted by the PDE and its p homogeneous

boundary conditions.  Here, one solves the boundary value problem by first constructing

the invariant solutions, resulting from 
u

u
�

�

� �X , that satisfy the PDE and its

homogeneous boundary conditions.  Then one finds a superposition of these invariant

solutions that solves the nonhomogeneous boundary condition.  Note that in this case

(unlike in (i)), X does not necessarily leave invariant the domain of the boundary value

problem.

The results to be presented in Sections 4.4.1 and 4.4.2 first appeared in a more

rudimentary form in Bluman (1967, 1974) and Bluman and Cole (1969, 1974).  [For the

rest of this section, we assume the summation convention for repeated indices.]
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4.4.1 FORMULATION OF INVARIANCE OF A BOUNDARY 

            VALUE PROBLEM FOR A SCALAR PDE

Consider a boundary value problem for a kth-order )2( �k scalar PDE that can be written

in a solved form

0),,,,,(),,,,,( 22

21
��������� uuuuxfuuuuuxF k

iii

k
��

��

          (4.164a)

),,,,,([ 2 uuuuxf k
��� �  does not depend explicitly on ],

21 �
�iiiu  defined on a domain

x� in space�x  )],,,([ 21 nxxxx ��  with boundary conditions 

0),,,,( 1
���

� uuuxB k
�

�

          (4.164b)

prescribed on boundary surfaces

                                                   .,,2,1,0)( sx ��� ��
�

          (4.164c)

We assume that the boundary value problem (4.164a–c) has a unique solution.

Consider an infinitesimal generator of the form

,),()(X
u

ux
x

x
i

i
�

�

�

�

�

� �� (4.165)

which defines a point symmetry acting on both space),( �ux  as well as on its projection

to space.�x

Definition 4.4.1-1. The point symmetry X of the form (4.165) is admitted by the

boundary value problem (4.164a–c) if and only if:

   (i)  ;0),,,,,(  when0),,,,,(X 22)(
�������� uuuuxFuuuuxF kkk

��             (4.166a)

  (ii)  ;,,2,1,0)(  when0)(X sxx ���� ���
��

                      (4.166b)

 (iii)  0),,,,(X 1)1(
���

�� uuuxB kk
�

�

.,,2,1,0)(on0),,,,(when 1 sxuuuxB k
�� �����

�

��
��

                      (4.166c)

Theorem 4.4.1-1.  Suppose the boundary value problem (4.164a–c) admits the Lie group

of point transformations with infinitesimal generator (4.165). Let

))(,),(),(( 121 xyxyxyy n�� �  be 1�n  functionally independent group invariants of

(4.165) that depend only on x. Let ),( uxv  be a group invariant of (4.165) such that

.0/ ��� uv   Then the boundary value problem (4.164a–c) reduces to

0),,,,,( 2
���� vvvvyG k

�           (4.167a)

defined on some domain y�  in spacey �  with boundary conditions

0),,,,,( 12
����

� vvvvyC k
�

�

          (4.167b)
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prescribed on boundary surfaces

,0)( �y
�

�           (4.167c)

for some ),,,,,,( 2 vvvvyG k
��� � .,,2,1),(),,,,,,( 12 syvvvvyC k

�� ����

�

��
��

Moreover, in the boundary value problem (4.167a,b), vj
�   represents the components of

jth-order partial derivatives of v with respect to )),(,),(),(( 121 xyxyxyy n�� �

;,,2,1 kj ��  and (4.167a) can be written in a solved form in terms of some specific

th-order partial derivative of  v  with respect to  y.

Proof.  Left to Exercise 4.4-1.          

Note that the surfaces ,1,,2,1,0)( ��� njxy j �  are invariant surfaces of the

point symmetry (4.165).  The invariance condition (4.166b) means that each boundary

surface 0)( �x
�

�  is an invariant surface 0)( �y
�

�  of the projected point symmetry

i

i
x

x
�

�

)(� (4.168)

given by the restriction of point symmetry (4.165) to  x-space.  From the invariance of the

boundary value problem under the point symmetry (4.165), the number of independent

variables in (4.164a–c) is reduced by one.  In particular, the solution of the boundary

value problem (4.164a–c) is an invariant solution

                                                      ),,,( 121 �

�� nyyyv � (4.169)

of the PDE (4.167a) resulting from its invariance under point symmetry (4.165).  In terms

of the dependent variable u and independent variables x appearing in PDE (4.164a), the

corresponding invariant solution )(xu �� of PDE (4.164a) must satisfy

),(when0))((X xuxu ����� (4.170)

i.e.,

)).(,(
)(

)( xx
x

x
x

i

i ��

�

��

�� (4.171)

Theorem 4.4.1-2.  If the infinitesimal generator X, given by (4.165), is of the form

,)()(X
u

uxf
x

x
i

i
�

�

�

�

�

� � (4.172)

then the group invariant ),( uxv is of the form )(/),( xguuxv �  for some specific

function )(xg  and hence the invariant form related to invariance under X can be

expressed in the separable form
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),()()( yxgxu ���� (4.173)

in terms of an arbitrary function )).(,),(),((of)( 121 xyxyxyyy n��� �

Proof.  Left to Exercise 4.4-2.          

If the boundary value problem (4.164a–c) admits an r-parameter Lie group of

point transformations with infinitesimal generators of the form

,,,2,1,),()(X ri
u

ux
x

x i

j

iji ��

�

�

�

�

�

� �� (4.174)

then the unique solution )(xu ��  of the boundary value problem (4.164a–c) is an

invariant solution satisfying

.,,2,1),(when0))((X rixuxui �������

The proof of the following theorem is left to Exercise 4.4-3:

Theorem 4.4.1-3  (Invariance of a Boundary Value Problem Under a Multiparameter Lie

Group of Point Transformations). Suppose the boundary value problem (4.164a–c)

admits an r-parameter Lie group of point transformations with infinitesimal generators

of the form

.,,2,1,),()(X ri
u

ux
x

x i

j

iji ��

�

�

�

�

�

� �� (4.175)

Let R be the rank of the nr �  matrix

�

�

�

�

�

�

�

�

�

�

�

�

�	

)()()(

)()()(

)()()(

)(

21

22221

11211

xxx

xxx

xxx

x

rnrr

n

n

���

���

���

�

���

�

�

. (4.176)

Let q = n – R, and let )(,),(),( 21 xzxzxz q�  be a complete set of functionally independent

invariants of (4.175), satisfying

.,,2,1,,,2,1,0
)(

)( qri
x

xz
x

j

ij ���
�

���

�

�

� (4.177)

Let

)(xg

u
v � (4.178)

be an invariant of (4.175) satisfying

.,,2,1,0X rivi ���
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Then the boundary value problem (4.164a–c) reduces to a boundary value problem with

q = n – R independent variables ))(,),(),(( 21 xzxzxzz q��  and dependent variable v

given by (4.178).  The solution of the boundary value problem (4.164a–c) is an invariant

solution that can be expressed in terms of a separable form

),()( zxgu �� (4.179)

where the function )(z�  is to be determined.

The following examples are illustrative:

(1)  Fundamental Solutions of the Heat Equation

Consider again the heat equation (4.47) defined on the domain .,0 bxat ���  Recall

that PDE (4.47) admits the six-parameter ),,,,,( ������  Lie group of point

transformations given by infinitesimal generators of the form

,),()(),(X
u

utxf
t

t
x

tx
�

�

�

�

�

�

�

�

� ��

with its infinitesimals given by the equations

,),( txtxtx ����� ����           (4.180a)

                                                       ,2)( 2ttt ���� ���           (4.180b)

.)(),(
2
1

2
12

4
1

��� ����� xtxtxf           (4.180c)

The boundary curves of the domain are t = 0, x = a, x = b.  The invariance of t = 0 leads

to

,0)0( ��

and, hence, .0��  If ,and ����� ba  then there is no further parameter reduction

resulting from invariance of the boundary curves.  If ,���a  then the invariance of

x = a  leads to

0),( �ta�

for any t > 0, and hence,

., aa ���� ����

Similarly, if ,��b  then the invariance of  x = b yields

., bb ���� ����

Consequently, if ���a  and ,��b  then ,0���� ����  and so there is no

nontrivial Lie group of point transformations admitted by both the heat equation and the

boundary of a boundary value problem for the heat equation (4.47) defined on the domain

.,0 bxat ���   However, since PDE (4.47) is linear, it is not necessary to leave all
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boundary curves of the domain invariant, as mentioned in the introductory remarks of

Section 4.4, and as will be shown in Section 4.4.2.

If ,and ����� ba  then a four-parameter Lie group of point transformations is

admitted by the boundary of a boundary value problem posed for the heat equation (4.47)

on the domain ,,0 bxat ���  and hence, a boundary value problem could admit at most

a five-parameter ),,,,( �����  Lie group of point transformations.

If ���a  (without loss of generality a = 0) and ,��b  then a two-parameter Lie

group of point transformations is admitted by the boundary of a posed boundary value

problem for the heat equation (4.47), and hence, a boundary value problem could admit at

most a three-parameter ),,( ���  Lie group of point transformations with infinitesimals

given by

,),( xtxtx ��� ��           (4.181a)

                                                              ,2)( 2ttt ��� ��           (4.181b)

.)(),(
2
12

4
1

�� ���� txtxf           (4.181c)

We now derive fundamental solutions for the heat equation (4.47) when

),()0,( 0xxxu �� �

where )( 0xx ��  is the Dirac delta function centered at ,, 00 bxax ��  for an infinite

domain ),( ����� ba  or a semi-infinite domain ).,0( ��� ba

(i) Infinite Domain ).,(),( ����ba   Consider the boundary value problem

                                                                 ,xxt uu �           (4.182a)

on the domain ,,0 ������ xt  with boundary conditions

,0,0),( ���� ttu

and

).()0,( xxu ��           (4.182b)

Without loss of generality, one can set .00 �x

The Lie group of point transformations with infinitesimals (4.180a–c) is admitted

by the boundary value problem (4.182a,b) provided that

),()0,(when)()0,()0,()0,( xxuxxxuxf ��� ���

i.e.,

).()0,()()0,( xxxxf ��� �� (4.183)

From the properties of the Dirac delta function (a generalized function [Lighthill

(1958)]), we see that (4.183) is satisfied if 

0)0,0( ��           (4.184a)
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and

                                                         ).0,0()0,0( xf ���           (4.184b)

Thus, in the infinitesimal equations (4.180a–c), we have

.,0 ��� ���

Consequently, a three-parameter ),,( ���  Lie group of point transformations is admitted

by the boundary value problem (4.182a,b).  The infinitesimal generators of this group are

given by

.][X,X,2X
2
12

4
12

32
1

21
u

utx
t

t
x

xt
u

xu
x

t
u

u
t

t
x

x
�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(4.185)

The corresponding matrix

�

�

�

�

�

�

�

�

�

�

�	

2

0

2

),(

txt

t

tx

tx

has rank R = 2,  so that group invariance reduces the boundary value problem completely

in the sense that the number of independent variables is reduced from two to zero.  Note

that

].XX[X 212
1

3 xt �� (4.186)

Hence, an invariant solution resulting from joint invariance under 21 XandX  must also

be an invariant solution resulting from .X3  Let ),( txu ��  be an invariant solution

resulting from joint invariance under 21 XandX .  Then

0)),((X1 ��� txu     when ),( txu ��

yields the invariant form

),(
1

),( 11 �����

t
txu (4.187)

with the similarity variable given by

.1
t

x
��

The equation

0)),((X2 ��� txu     when ),( txu ��

leads to the invariant form
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),(),( 22

4/2

�����

� txetxu (4.188)

with the similarity variable given by

.2 t��

From the uniqueness of the solution to the boundary value problem (4.182a,b), it follows

that

)()(
1

22

4/

11

2

�� ���

� txe
t

.

After expressing the variables x and t in terms of the similarity variables 1�  and ,2�  we

see that

.const)()( 22211

4/)( 2
1 ce ����� ���

�

Hence, the solution of the boundary value problem (4.182a,b) is given by the well-known

expression

txe
t

c
txu 4/2

),( �

��� (4.189)

for some constant c.  The initial condition (4.182b) yields

.
4

1

�

�c

Note that from relation (4.186) it must automatically follow that

0X 4/

3

2

�
�
�

�

�

�
�

�

�

	
� txe

t

c
u

for any value of the constant  c.

  (ii)  Semi-Infinite Domain  ).,0(),( ��ba   Consider the boundary value problem

     ,xxt uu �           (4.190a)

on the domain ,0,0 �� xt  with boundary conditions

,0,0),0( �� ttu           (4.190b)

and

                                              .0),()0,( 00 ����� xxxxu �           (4.190c)

The three-parameter Lie group of point transformations with infinitesimals given by

(4.181a–c) is admitted by PDE (4.190a), the boundary curves t = 0 and x = 0, and the

boundary condition (4.190b).  The invariance of the initial condition (4.190c) leads to the

restriction



360

),()0,(when)()0,()0,()0,( 00 xxxuxxxxuxf ����� ���

i.e.,

).()0,()()0,( 00 xxxxxxf ���� ���

Hence,

,0)0,( 0 �x�

                                                             ).0,()0,( 00 xxf x���

Consequently, in the infinitesimal equations (4.181a–c), we must have

.)(,0 2

04
1

��� x��

Thus, the boundary value problem (4.190a–c) admits the point symmetry

.)]()([X
2
12

4
12

04
12

u
utxx

t
t

x
xt

�

�

���

�

�

�

�

�

�

The corresponding invariant solution has the invariant form

),(),(
4/])([

2
0

2

�����

��

t

e
txu

txx

(4.191)

where )(��  is an arbitrary function of the similarity variable

.
t

x
��

After substituting the invariant form (4.191) into the heat equation (4.190a), we find that

)(��  satisfies the ODE

.)( 2

04
1

����� x

Hence, the solution of the boundary value problem (4.190a–c) has the form

][
1

),(
4/)(4/)( 2

0
2

0 txxtxx
DeCe

t
txu

����

����

for some constants C and D.  The boundary condition (4.190b) leads to D = –C, and from

the initial condition (4.190c) we find that .4/1 ��C  This yields the well-known

solution of the boundary value problem (4.190a–c), usually obtained by the method of

images, given by

),,(),(),( 00 txxGtxxGtxu ������

where

.
4

),(
4/2

t

e
txG

tx

�

�

�



361

(2)  Fundamental Solution of the Axisymmetric Wave Equation

The fundamental solution of the axisymmetric wave equation (4.88) is the solution of the

boundary value problem

),()(
2

11
L tr

r
u

r
uuu rrrtt ��

�

����

i.e.,

),()(
2

1
L trur ��

�

�           (4.192a)

on the domain ,0,0 �� tr  with the causality condition that

.if0 tru ��           (4.192b)

It is left to Exercise 4.2-7 to show that the linear homogeneous equation

0L �u

admits a four-parameter ),,,( ����  Lie group of point transformations represented by

the infinitesimal generator

,)(),(),(X
u

utf
t

tr
r

tr
�

�

�

�

�

�

�

�

� �� (4.193)

with its infinitesimals given by

,2),( rtrtr ��� ��           (4.194a)

                                                         ,)(),( 22
���� ���� trttr           (4.194b)

.)( �� ��� ttf           (4.194c)

The invariance of the wavefront r = t leads to

),,(),( tttt �� �

and hence, .0��

Under the action of (4.193), we have

,L)(
),(

),(2)(1**L* 2 urO
r

tr
trtfur t �

�

�

�

�

�

�
�
�

�

�
�

�
�	�
 �

�

��

).()]()(),()()(),([)()(*)(*)( 2
������������ Otrtrtrtrtrtr ������

Hence, (4.193), (4.194a–c) is admitted by (4.192a) if

).()(),()()(),()()(
),(

),(2)( trtrtrtrtr
r

tr
trtf t ��������

�

� ����
�
�

�

�
	



�� (4.195)

Since ),()( zzz �� ���  after using this in (4.195) with z = r, t, we see that (4.192a,b)

admits (4.193) and (4.194a–c) if
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.0)()(),(
1

),(
2

),(2)( �
�
�

�

�
�

�
		
 trtr

t
tr

r
trtf t ����� (4.196)

Equation (4.196) reduces to

.0)()(
2

�
�

�

�

�

�

�

		 tr
t

r
����� (4.197)

Since (4.197) needs to be satisfied only on the wavefront r = t when t = 0, it

follows that �  remains arbitrary and .�� ��  Thus, the boundary value problem

(4.192a,b) admits a two-parameter Lie group of point transformations given by the

infinitesimal generators

.)(2X,X 22

21
u

tu
t

tr
r

rt
u

u
t

t
r

r
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

� (4.198)

Let ),( tru ��  be an invariant solution resulting from joint invariance under 1X

and .X2   Then

0)),((X1 ��� tru     when ),( tru ��

yields the invariant form

),(
1

),( 11 �����

t
tru (4.199)

with the similarity variable

;1
t

r
��

and

0)),((X2 ��� tru     when ),( tru ��

leads to the invariant form

),(
1

),( 22 �����

r
tru (4.200)

with the similarity variable

).(
1 22

2 rt
r

���

The uniqueness of the solution of the boundary value problem (4.192a,b) leads to

).(
1

)(
1

1122 �� ���

tr
(4.201)

Since
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,
)(1

)(
,

)(1 2

1

2

12

2

1

12

�

��

�

��

�

�

�

� rt

it follows that after making these substitutions in (4.201), we have

.const)()(1)( 11

2

1222 ����� ����

Hence,

22
),(

rt

c
tru

�

��� (4.202)

for some constant c.  One can show that .2/1 ��c

(3)  Fundamental Solutions of Fokker–Planck Equations

As a third example, we consider probability distributions that arise as fundamental

solutions of Fokker–Planck equations with drifts ).(x�  In particular, we consider the

boundary value problem

                                                        ,))(( xxxt uxuu ���           (4.203a)

on the domain ,,0 bxat ���  with the initial condition

                                              ,),()0,( 00 bxaxxxu ���� �           (4.203b)

and reflecting boundaries  x = a  and  x = b  on which

.0])([lim
,

��

��

�

uxux
bax

�            (4.203c)

Let );,( 0xtxGu �  be the solution of the boundary value problem (4.203a–c).  Then it

follows that for any ,0x  ,0 bxa ��  one must have

.1);,( 0� �

b

a
dxxtxG (4.204)

We consider the group classification problem with respect to drifts )(x�  for the

boundary value problem (4.203a,b) for the physically interesting situation where )(x�  is

an odd function of x.  Complete details appear in Bluman (1967, 1971) and Bluman and

Cole (1974).

One can show that the linear PDE (4.203a) admits a point symmetry

u
utxf

t
tx

x
tx

�

�

�

�

�

�

�

�

),(),(),( �� (4.205)

if and only if

),(),( ttx �� �

),()(),(
2
1 tAtxtx �� ��

),()()()()()()(),(
2
1

2
12

8
1

4
1 tBtAxtAxtxtxxtxf ���������� ����
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where for a given drift )(x� , the functions )(),(),( ttBtA �  must satisfy

,0),(),( �� txQtxP

with

),()()()()]()(2)()()([),( 2

8
1

4
12

4
1 tBtxttxxxxxxxtxP ������������������ ��������

).()()]()()([),(
2
1

2
1 tAxtAxxxtxQ �������� ���

After imposing the restriction that )(x�  is an odd function of x, we see that

                                                                           ,0),( �txP           (4.206a)

.0),( �txQ           (4.206b)

From the identity (2.406a), it follows that if ,0)( ��� t�  then the drift )(x�  must

satisfy the fifth-order ODE

                                     0])()(2)()()([ 2
����������� xxxxxxx ����� (4.207)

for the Fokker–Planck equation (4.203a) to admit nontrivial point symmetries (other than

the obvious invariance under translations in  t).

One can show that ODE (4.207) (with the restriction that )(x�  is odd) reduces to

the Riccati equation

,0
116

)()(2
2

2
222

�

�

�����

x
xxx

�

���� (4.208)

where ��� and,,  are arbitrary constants.  After substituting (4.208) into (4.206a), we

see that )(and)( tBt�  must satisfy the system of ODEs

                                                          ),(4)( 2 tt ��� �����           (4.209a)

)].()([)(
4
1 tttB ��� ������           (4.209b)

From the identity (4.206b), it now follows that if ,0)( ��tA  then an odd drift )(x�

must satisfy the Riccati equation

                                               .0)()(2 222
����� ���� xxx             (4.210)

After substituting (4.210) into (4.206b), we see that )(tA  must satisfy the ODE

                                                          ).()( 2 tAtA ���� (4.211)

Hence, a drift )(x�  simultaneously satisfies ODEs (4.208) and (4.210) if and only

if )(x�  satisfies ODE (4.210).  From (4.209a,b) and (4.211), we see that a Fokker–Planck

PDE (4.203a) with an odd drift )(x�  admits a six-parameter Lie group of point

transformations if and only if )(x�  satisfies ODE (4.210).  Moreover, we see that if an
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odd drift )(x�  satisfies ODE (4.208) with ,
16
12

��  then the corresponding Fokker–

Planck equation (4.203a) admits a four-parameter Lie group of point transformations.

The invariance of the boundary curve t = 0 leads to 0)0( ��  and thus reduces the

number of parameters by one.  The invariance of the initial condition (4.203b) requires

that

,0)0,( 0 �x�

                                                              ).0,()0,( 00 xxf x���

Hence, a three-parameter Lie group is admitted by (4.203a,b) if an odd drift )(x�

satisfies ODE (4.210); a one-parameter Lie group is admitted by (4.203a,b) if an odd drift

)(x�  satisfies ODE (4.208) with .
16
12

��

The standard substitution

)(

)(
2)(

xV

xV
x

�

���

transforms any solution of the second-order linear ODE

0)(
116

)(4
2

2
22

�
�

�

�

�

�

� 	

		
�� xV
x

xxV
�

�� (4.212)

to a solution of the Riccati ODE (4.208).  Since ODE (4.212) is invariant under

reflections in x, its general solution can be expressed in the form

),()()( 2211 xVcxVcxV ��

where )(),( 21 xVxV  are, respectively, even and odd functions of  x.  Then )(x�  is an odd

function of x that satisfies ODE (4.208) if and only if either

)(

)(
2)(

1

1

xV

xV
x

�

���

or

.
)(

)(
2)(

2

2

xV

xV
x

�

���

Only )(1 xV  leads to a physically interesting drift.  One can show that

),,,(][)( 2

2
14/)4/1(2

2
1

1

2

xdcMexxV x
��

�� ��

� (4.213)

where ),,( zdcM  denotes Kummer’s hypergeometric function of the first kind with

,8/
2
1

��� ���c .0,,21
2
1

����� ���d   The properties of ),,( zdcM  are well-

known [Abramowitz and Stegun (1970, Chapter 13)]:
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As ,0�z

).(1),,( 2zOz
d

c
zdcM ���                            (4.214a)

As ,��z

.
1

1
)(

)(
),,(

�

�

�

�

�

�

�

	




�

�


�

�

�

�
�

z
Oez

c

d
zdcM zdc           (4.214b)

From the asymptotic properties (4.214a,b), it follows that

.
)(

lim),14()(lim
0

�

�

�� �����

��� x

x
xx

xx

The following cases arise:

Case I. .
16
12

��

Here, a three-parameter Lie group of point transformations is admitted by (4.203a,b) with

its infinitesimal generators given by

t
t

x
tx

�

�

�

�

�

� ���
2

1 sinh42sinh2X

,)]2cosh)(())(1(2sinhsinh[ 22

0

22

u
utxxxxtt
�

�

����� �������  (4.215a)

,]sinh)()cosh([sinh2X 02
u

utxtxx
x

t
�

�

���

�

�

� �����                       (4.215b)

)(2cosh4[2sinh4)2coshcosh(4X 2

03 xt
t

t
x

txtx �������� ��

�

�

�

�

�

��

.]2sinh)sinh2sinh(2)cosh2cosh( 0

2

0
u

uttxtxxtxtx
�

�

����� �������

   (4.215c)

Note that

.X)cothcosech(2Xcoth2X 2013 txtxt ���� ����

Let ),( txu ��  be a resulting invariant solution for the three-parameter Lie group of

point transformations (4.215a–c).  Then

0)),((X1 ��� txu     when ),( txu ��

leads to the invariant form

                                                         ),(),( 111 ��� txgu (4.216)
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where

,
4

coth

)1(2

)(

4
exp

sinh

)(
),(

2

2

2

01
1 �

�

�

�

�

�

�

�

	


tx

e

xt

t

xV
txg

t

����

�
�

with the similarity variable given by

.
sinh2

1
t

x

�

� �

On the other hand,

0)),((X2 ��� txu     when ),( txu ��

leads to the invariant form

                                                        ),(),( 222 ��� txgu (4.217)

where

,
4

coth

sinh2
exp)(),(

2
0

11 �

�

�

�

�

�

�	

tx

t

xx
xVtxg

��

�

�

with the similarity variable

.2 t��

Assuming uniqueness of the solution to the boundary value problem (4.203a,b), we

equate the invariant forms (4.216) and (4.217) to obtain

,
)1(2

)(

4
exp

sinh
)()(

2

2

0
222 �

�

�

�

�

�

�

	
�
�
te

xt

t

D
t

�

��

�

�

where D is an arbitrary constant.

We now consider separately the subcases .
4
1

���

Case I(a). .
4
1

���

Here,

.
8

),,,()(
4
12

2
1

2
14/

1

2

�

�

�
�

���

� cxcMexV x

If there is no reflecting boundary, i.e., ,, ����� ba  then the solution of the

boundary value problem (4.203a,b) is given by

]))(coth1(exp[),,(
sinh

);,( 2

04
1

4
12

2
1

2
1

01

texxttxcM
t

D
xtxGu �

����

�

�

����� ,

               (4.218a)

with
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,)])(,,([
4

12

02
1

2
1 �

�� xcMD �

�

�

          (4.218b)

on the domain .,0 ������ xt

If a = 0 is a reflecting boundary and ,��b  then the solution of the boundary

value problem (4.203a–c) is given by

                                 ,0,0),;,();,( 0101 ������� xtxtxGxtxGu (4.219)

which is an even function of x with the extension of the domain of x in (4.219) to

.����� x   The solution (4.219) can be interpreted as representing the response to

sources located at 0x�  when t = 0.

Note that in the limiting case c = 0, the drift becomes ,)( xx �� �  and here the

solutions (4.218a,b) and (4.219) become the well-known probability distributions for a

free particle in a Brownian motion.

Case I(b). .
4
1

��

Here,

,
8

),,,()(
4
32

2
1

2
34/

1

2

�

�

�
�

���

� cxcMxexV x

x > 0, with a = 0 as a reflecting boundary and .��b  The resulting solution of the

corresponding boundary value problem (4.203a–c) is given by

,0,0),;,();,( 0202 ������� xtxtxGxtxGu

where

],))(coth1(exp[),,(
sinh

);,( 2

04
1

4
12

2
1

2
3

02

texxttxcxM
t

E
xtxG �

����

�

�

����

with

.)])(,,([
4

1 12

02
1

2
3

0

�

�� xcM
x

E �

�

�

Case II. .
2
1

���

Here, only a one-parameter Lie group of point transformations is admitted by the

boundary value problem (4.203a,b), with its infinitesimal generator given by (4.215a).

The resulting invariant solution arises from the invariant form (4.216).  After substituting

(4.216) into PDE (4.203a) and letting ),()(, 111 ���� ����  we find that )(��  satisfies

a second-order linear ODE for which the general solution can be expressed in terms of

modified Bessel functions:

,0for)]()([)( 022021

2/1
����

�

xxIAxIA ������
��

,0for|)]|(|)|([||)( 022021

2/1
���� xxIBxKB ������

��
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where 2121 ,,, BBAA  are arbitrary constants to be determined from boundary and

continuity conditions. As .,0 ��� �t  From Watson (1922, Section 7.23), we find

that, as ,��z

.
1

1
2

1
)(

,
1

1
2

)(

2/1

2

2/1
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�

�
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z
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�

�

One can show that with ,0212 ��� BBA  we obtain a solution valid for ,
4
1

��� ,0�t

0�x  (i.e., x = 0  is a reflecting boundary) with the constant

.)])(,,([)()(2 12

02
1)4/3(

2
12

01

���

� xdcMxA ��
��

One can show that the reflecting boundary condition (4.203c) admits the point

symmetry (4.215a) when  x = a.  An important consequence is that the conservation law

equation

�

�

�

0
0 1);,( dxxtxG

admits (4.215a), and hence, all moments of the probability distribution can be computed

from this invariance and invariance of successive higher-order moments [Bluman and

Cole (1974, pp. 272–274)].

An interesting special case, when the drift ,/)( xxx ��� ��  is considered in

Exercise 4.4-8.

The problem of finding fundamental solutions for wider classes of Fokker–Planck

equations with time-dependent coefficients through mappings to the heat equation

(mappings to a Wiener process) is considered in Bluman (1980) and Bluman and Shtelen

(1998).  Point symmetries are found for various examples of Fokker–Planck equations in

Stognii and Shtelen (1991), Cicogna and Vitali (1990), and Rudra (1990). 

The use of point symmetries to find fundamental solutions of linear scalar PDEs

is also considered in Aksenov (1995).  Rosinger and Walus (1994) give a general setting

for considering the group invariance of generalized solutions.

King (1989, 1991) gives many examples of using group invariance to solve

boundary value problems for nonlinear diffusion equations of the form (4.58).

4.4.2 INCOMPLETE INVARIANCE FOR A LINEAR SCALAR PDE

Consider a boundary value problem for a kth-order )2( �k  linear scalar PDE

)(L xgu �           (4.220a)

defined on a domain � , with linear boundary conditions
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                                                             )(L xhu
��

�           (4.220b)

prescribed on boundary surfaces

                                                               ,0)( �x
�

�           (4.220c)

where L is a kth-order linear operator and 
�

L is a linear operator of order at most k – 1,

.,,2,1 s���  We assume that the boundary value problem (4.220a–c) has a unique

solution.  Formally, the solution of the boundary value problem (4.220a–c) can be

represented as a superposition

,
1

0 �
�

��

s

uuu
�

�

where 0u  satisfies

,),(L 0 ��� xxgu

                                                     ,,,2,1,0)(on0L 0 sxu ���� ��
��

and
�

u  satisfies

,,0L ��� xu
�

.,,2,1,,0)(on(x)L sxhu ���� ����
������

��
�[  is the Kronecker symbol.]

The solution of the boundary value problem  (2.220a–c) reduces to the solutions

of two types of boundary value problems:

   (i)   a linear nonhomogeneous PDE with  s  linear homogeneous boundary conditions:

,),(L ��� xxgu           (4.221a)

                                                      .,,2,1,0)(on0L sxu ���� ��
��

          (4.221b)

  (ii)  a linear homogeneous PDE with  s – 1  linear homogeneous boundary conditions

and one linear nonhomogeneous boundary condition (without loss of generality the

sth  one):

,,0L ��� xu           (4.222a)

                                                        ,1,,2,1,0)(on0L ���� sxu ���
��

      (4.222b)

                                                        .0)(on)(L �� xxhu ss �           (4.222c)

Now consider the homogeneous boundary value problem

,,0L ��� xu           (4.223a)

                                                        ,,,2,1,0)(on0L sxu ���� ��
��

          (4.223b)
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associated with the given boundary value problem  (4.220a–c).  Suppose the nontrivial

infinitesimal generator

u
uxf

x
x

i

i
�

�

�

�

�

� )()(X1 � (4.224)

is admitted by ].0)([0L ��� xu �   Clearly, the homogeneous boundary value problem

(4.223a,b) admits

.X 2
u

u
�

�

� (4.225)

For the solution of (i), let

);( �xu �� (4.226)

be the invariant form related to the invariance of the boundary value problem  (4.223a,b)

under the infinitesimal generator 21 XXX �
�

��  where �  is an arbitrary complex

constant.  Then the superposition of invariant forms

���

�

�);(xu (4.227)

solves the boundary value problem  (4.221a,b) if

� ��

�

� ),();(L xgx     (4.228)

and if

                                   ,,,2,1,0)(on0);(L sxx ����� ���
��

(4.229)

for each �  in the sum (4.227).  In (4.227) the superposition �
�

could also represent

�
�

�d  for some curve �  in the complex -plane. Typically, one solves (4.228) for

)()( 0xxxg �� �  for any .0 ��x  Then a superposition over the resulting Green’s

function is used to solve the boundary value problem  (4.221a,b) for an arbitrary ).(xg

For the solution of (ii), let 

);( �xu �� (4.230)

be the most general invariant solution of (4.222a,b) resulting from its invariance under

,X
�

 which usually exists for only certain complex eigenvalues .�   A superposition over

such invariant solutions given by

���

�

�);(xu (4.231)

solves the boundary value problem  (4.222a–c) provided that

� ���

�

�� .0)(on)();(L xxhx ss (4.232)
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Again the superposition �
�

in (4.231) could also represent �
�

�d  for some curve �  in

the complex -plane.  The appropriate superposition is then found so as to satisfy (4.232).

Typically, one first solves (4.232) for )()( 0xxxh �� �  for any ,0 ��x  and then uses a

superposition over the resulting Green’s function to solve the boundary value problem

(4.222a–c) for an arbitrary ).(xh

The following examples are illustrative:

(1)  Fundamental Solutions of the Heat Equation for a Finite Spatial Domain

   (i) Nonhomogeneous Heat Equation with Linear Homogeneous Boundary

Conditions.  Consider the boundary value problem for the nonhomogeneous heat

equation

                                                ),()(L 0 txxuuu xxt �� ����           (4.233a)

defined on the domain ,10  where,10,0 0 ����� xxt  with linear homogeneous

boundary conditions

.0),1(),0( �� tutu           (4.233b)

Clearly, the point symmetry (invariance under translations in t)

t�

�

�1X

is admitted by  Lu = 0  and the homogeneous boundary conditions (4.233b).  The

invariant form resulting from invariance under

u
u

t �

�

�

�

�

� �
�

X

is given by

                                                   .);();,( texytxu �

�� ��� (4.234)

Now consider the superposition of invariant forms

                                                          .);( texyu �

�

��� (4.235)

After substituting (4.235) into PDE (4.233a), we formally find that

                                            ).()()( 0 txxeyy t

xx ���

�

�

����� (4.236)

To satisfy the homogeneous boundary condition (4.233b), we require that for any �  in

the superposition (4.235), we have

.0);1();0( �� �� yy (4.237)
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A natural superposition (4.235) arising from (4.234) is the inverse Laplace

transform representation of the solution of the boundary value problem  (4.233a,b) given

by

�

��

��

�

i

i

t dexy
i

txu
�

�

�

��

�

,);(
2

1
),( (4.238)

where R�� lies to the right of all singularities of );( �xy  in the complex  -plane.  [This

superposition integral is the well-known Bromwich contour.]  Formally,

�

��

��

�

i

i

t de
i

t
�

�

�

�

�

� .
2

1
)(

Hence, );( �xy  satisfies the ODE

                                                                 )( 0xxyyxx ���� �� (4.239)

together with the boundary conditions (4.237).  Consequently,

�

�

�

�

�

�

�

��

�

��

�

�

.1,
sinh

)1(sinhsinh

,0,
sinh

)1(sinhsinh

);(

0
0

0
0

xx
xx

xx
xx

xy

��

��

��

��

�

Using the calculus of residues, one obtains the following solution representation of the

boundary value problem  (4.233a,b) that is useful for large values of  t:

.sinsin2),(
1

0

22

�

�

�

�

�

n

tn xnxnetxu ��

� (4.240)

Using the asymptotic expansion of );( �xy valid for large values of || �  along the

Bromwich contour of the inverse Laplace transform, one obtains the following solution

representation of the boundary value problem  (4.233a,b) that is useful for small values of

t:

)],2(),2([),( 00 tnxxGtnxxGtxu
n

������ �

�

���

,

where

.
4

1
),( 4/2 txe

t
txG �

�

�

In principle, the approach presented here applies to any boundary value problem

for a linear PDE that has a nontrivial point symmetry admitted by the homogeneous PDE

and its homogeneous boundary conditions with the symmetry also admitted by a

boundary surface on which no boundary conditions are imposed.  One proceeds by using

canonical coordinates ),(),,( yxsyxr  associated with the point symmetry.  Then s�� /

plays the role in solution of the transformed boundary value problem that t�� /  played in
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the solution of the boundary value problem (4.233a,b).  The solution representation of the

transformed boundary value problem would then be the inverse Laplace transform with s

playing the role of  t.

 (ii)  Homogeneous Heat Equation with a Linear Nonhomogeneous Boundary

Condition.  Consider the following boundary value problem for the linear heat equation:

                                               ,0,10,0 ����� txuu xxt           (4.241a)

,0),1(),0( �� tutu                     (4.241b)

).()0,( xhxu �                       (4.241c)

Clearly,

u
u

t �

�

�

�

�

� �
�

X

is admitted by (4.241a,b).  The invariant form for the related invariant solution is given

by

                                                   ,);();,( texytxu �

�� ��� (4.242)

which satisfies (4.241a,b) if and only if

,22
��� nn ���

with

,sin);( xnaxy nn �� �

where na  is an arbitrary constant, �,2,1�n  .  If ),()( 0xxxh �� �  then the superposition

of invariant solutions

�

�

�

��

1

);,(),(
n

ntxtxu �

satisfies the initial condition if .sin2 0xnan ��  Of course, this is the solution

representation (4.240) since the boundary value problems  (4.233a,b) and (4.241a–c) are

equivalent problems when ).()( 0xxxh �� �   Let

.sinsin2);,(
1

00

22

�

�

�

�

�

n

tn xnxnextxK ��

�

Then the solution of the boundary value problem  (4.141a–c) is given by

��

1

0
000 .);,()(),( dxxtxKxhtxu
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(2)  An Inverse Stefan Problem

A nontrivial example is illustrated by the inverse Stefan problem that is given by the

boundary value problem

                                                ,0),(0, ���� ttXxuu xxt           (4.243a)

,0,0)),(( �� tttXu                                   (4.243b)

                                        ,0),(),0( 1 �� tthtux                       (4.243c)

                                         ,10),()0,( 2 ��� xxhxu                       (4.243d)

                                            ,0),()),(()(3 ���� ttXttXkuth x           (4.243e)

where, for a prescribed moving boundary ,1)0(  with)( �XtX  an arbitrary initial

distribution ),(2 xh  fixed constant k, and arbitrary flux ),(1 th  the aim is to determine

),( txu  and the flux )(3 th  so that the boundary value problem  (4.243a–e) is solved.

Our strategy will be to first obtain a solution ),(1 txu ��  of (4.243a–c).  Then we

will solve (4.243a–d), with 0)(1 �th  and )0,()()0,( 12 xxhxu ��� , to obtain a second

function ),(2 txu ��  that is the unique solution of this second boundary value problem.

Consequently, the solution of the boundary value problem (4.243a–e) is given by

),(),( 21 txtxu ����  with

).()),(()),(()( 21
3 tXttX

x
ttX

x
kth ��

�
�

�

�
�

	




�


�




�




Details of this example appear in Bluman and Cole (1974, pp. 213–219, 235–245) and

Bluman (1974).

Consider the six-parameter Lie group of point transformations admitted by the

heat equation (4.44) with its infinitesimals given by (4.49a–c).  One can show that this

group leaves invariant a fixed curve, representing a moving boundary, )(tXx �  with

,1)0( �X  if and only if .0�� ��   After solving the resulting ODE given by

,1)0(with)()()),(( ��� XtXtttX ��

one can show that )(tX  must be of the form

221)( tttX �� ��� ,

for arbitrary constants .and ��   We now examine in detail the interesting subcase where

.2
�� �   Here

.,1)( 1�
���� �T

T

t
tX (4.244)

If )(tX  is of the form (4.244), then (4.243a,b) admits



376

.)()1()1(X
2
12

4
122

1
u

utx
t

t
x

tx
�

�

��

�

�

��

�

�

�� ���� (4.245)

We consider the situation where T > 0, so that 0 < t < T, i.e., ,0)( �� tX  which

corresponds to a “melting” situation with the melt completed when t = T. The

corresponding similarity variable is given by

,10,

1
)(

��

�

�� ��

T

t

x

tX

x
(4.246)

with 0��  corresponding to  x = 0,  and 1��  corresponding to ./1)( TttXx ���

The similarity curves (invariant curves) const��  are illustrated in Figure 4.1.               

Figure 4.1.  The invariant curves const.��

The invariant form corresponding to the infinitesimal generator 
u

u
�

�

�� �
� 1XX

is given by

),;(
4

)(

)(
exp

)(

1
);,(

22

��

��

� y
T

tX

tX

T

tX
txu

�

�

�

�

�

�

�	
�
 (4.247)

with

.1

2
12 �

�� T�� (4.248)

After substituting the invariant form (4.247) into the heat equation (4.243a), we find that

);( ��y  satisfies the ODE

.02
�� yy �

��
(4.249)

The boundary condition (4.243b) yields

            x

          1

                                         t
T

 = 0

 = 1
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,0);1( ��y (4.250)

so that

),1(sin)();( �� ����� Ay (4.251)

for an arbitrary constant ).(�A   Hence any formal superposition of invariant solutions

� �
�

�

�

�

�

�

	�


�

�

���

)1(sin
4

)(

)(
exp

)(

)( 22

v
T

tX

tX

T

tX

A
u (4.252)

solves the homogeneous problem (4.243a,b).

Now let

),(
2

)(,,
)(

22
�

�

�

� Ae
T

i
sBs

tX

t
r T�

����

and replace ��

��

�

i

i-
.by

�

�
�

ds  Thus, formally, we obtain the following solution

representation of the boundary value problem  (4.243a–c) in terms of an inverse Laplace

transform:

�

��

��

�

�����

i

i

srTr dsessB
i

eTrtxu
�

�

�

�

�

.)]1(sinh[)(
2

1
),( )(4/

1

2

(4.253)

Letting

,)()( 11 �

�

�

�

�

�

�

		

Tr

rT
hthrH

and then taking the inverse of (4.253) so that the boundary condition (4.243c) is satisfied,

we find that

�

�

�

�

��

0 2/3
.

)(

)(

cosh
)( dre

Tr

rH

ss
sB sr�

(4.254)

Now we proceed to find ).,(2 tx�  Let

),0,()()( 122 xxhxH ���

and consider the boundary value problem (4.243a–d) with 0)(1 �th  and )(2 xh  replaced

by ).(2 xH   In particular, we consider the boundary value problem

                                              ,0),(0, ���� ttXxuu xxt           (4.255a)

,0,0)),(( �� tttXu                                   (4.255b)

                                      ,0),(),0( 1 �� tthtux                       (4.255c)

                                       ,10),()0,( 2 ��� xxHxu                                   (4.255d)
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with )(tX  given by (4.244).  It is easy to check that the point symmetry (4.245) is

admitted by (4.255a–c).  Consequently, one obtains the similarity variable (4.246).  The

infinitesimal generator 
u

u
�

�

�� �
� 1XX  yields the invariant form (4.247), (4.248).  The

substitution of (4.247) into the heat equation (4.255a) leads to ODE (4.249).  The

boundary conditions (4.255b,c) then yield the homogeneous boundary conditions (4.250)

and

0);0( ��
�

y (4.256)

for ODE (4.249).  Thus,

��� )(
2
1

��� nn

and

,cos);( ���� nnn Ay �

where nA  is an arbitrary constant, �,2,1,0�n  .  The formal superposition of invariant

solutions

�

�

�

�

�

�

�

�
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�
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)(

)(
exp

)(
),(
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n
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T
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T

tX

A
txu �

��

(4.257)

satisfies (4.255a–c).  The initial condition (4.255d) is satisfied by setting

.)cos()(
4

exp)(
2
1

0

22

2
1

2

2 xnTn
T

x
AxH

n

n �� �
�

�

�

�

�

�

�	
�

�

�

Let �,2,1,0,)cos()(
2
1

��� nxnxn �� .  Then the set of eigenfunctions )}({ xn�

form a complete orthogonal set of functions on the interval [0,1] with

.)()(
2
1

1

0
nmmn dxxx ��� ��   Thus,

� ��

��

1

0

4/

2

)2/1( .,2,1,0,)()(2
222

�ndxexxHeA Tx

n

Tn

n �

�

The above solutions have been used to develop a numerical procedure for solving

the direct nonlinear Stefan problem described by boundary value problem (4.243a–e)

where the aim is to find the unknown moving boundary )(tX  and the distribution ),( txu

for arbitrary ),(),( 21 thxh ),(3 th  and constant k [Milinazzo (1974); Milinazzo and Bluman

(1975)].
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4.4.3 INCOMPLETE INVARIANCE FOR A LINEAR SYSTEM OF PDEs

As an example, consider the initial value problem for the linear system of wave equations

                                                             ,xt uv �           (4.258a)

,)(2

xt vxcu �                       (4.258b)

with

),()0,( xUxu �           (4.258c)

),()0,( xVxv �                       (4.258d)

on the domain .0, ������ tx   We consider the physically interesting wave speed

)(xc  found in Section 4.3.4 that satisfies the ODE

const.),logsin( ��� �� cmc (4.259)

One can show that for any solution of ODE (4.259), the wave speed )(xc  is a monotonic

function of x.  In particular, for the corresponding wave equation (4.147), such a wave

speed )(xc  describes wave propagation in two-layered media with smooth transitions,

with the properties,

,1)(lim �

���

xc
x

                      (4.260a)

,0,)(lim /
���

��

��

��exc
x

          (4.260b)

                                              ,0when)(max
),(

���

����

mmxc
x

          (4.260c)

where m,�  are independent parameters with �  representing the ratio of asymptotic wave

speeds.  [One can easily adapt the results presented here to the situation where

,0)(lim,0)(lim 21 ����

�����

cxccxc
xx

by appropriate scalings.] Note that, without loss of generality, from the invariance of

ODE (4.259) under translations in x, we can set .)0( mc ��  A typical profile for such a

wave speed )(xc  is exhibited in Figure 4.2.
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Figure 4.2.  Typical profiles for the wave speed ).(xc

The four-parameter Lie group of point transformations (4.160) is admitted by the

system of PDEs (4.258a,b) when )(xc  satisfies the first-order ODE (4.259).  It is easy to

see that the point symmetry 32 XXX ��  leaves invariant the curve  t = 0.  One can show

that the relevant invariant solutions of the given system of PDEs (4.258a,b) arise from its

invariance under
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for all integers  n.

For �,2,1,0�n , these invariant solutions are given by
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where
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the constants nn QP and   are chosen separately for each invariant solution pair

)),(),,(( txvtxu nn  in terms of the initial data (4.258c,d).

For ,,2,1 ����n  the corresponding invariant solutions can be expressed in

terms of the invariant solutions (4.262) through
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where a bar denotes complex conjugation.
Consequently, the solution of the initial value problem (4.258a–d) can be

represented formally in the form
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The constants nn QP and   are now determined.  First, note that

                                              ,sin)()()1()0,( 2nyi

nn

n

n eyxcQPxu ���           (4.263a)

,
)(

sin
)()1()0,( 2nyi

nn

n

n e
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y
QPxv ���           (4.263b)

.0 ��� y   Consequently, from the Fourier series representation (4.263a,b), we find that
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For a given initial value problem (4.258a–d), after determining the constants

nn QP and  , for ,,2,1 ��n  one can directly compute the solution for any time t,

.0 ��� t  Note that no time-step marching is required as would be the case for

numerical procedures based on the method of characteristics.  Full details of the

derivation of these solutions and their properties are found in Bluman and Kumei (1988).
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EXERCISES  4.4

1. Prove Theorem 4.4.1-1.

2. Prove Theorem 4.4.1-2.

3. Prove Theorem 4.4.1-3.

4. Obtain the fundamental solution of the heat equation (4.47) for an infinite spatial

domain ),(),( ����ba  by using the invariant forms arising from the following

combinations of the infinitesimal generators (4.185):

(a) ;X,X 31   and

(b) .X,X 32

5. The problem of finding the steady-state temperature distribution near the surface of

the Earth due to a periodic temperature variation at the Earth’s surface approximately

reduces to finding the steady-state solution of the following boundary value problem:

                                           ,0,0, ������� txuu xxt           (4.264a)

),()0,( xhxu �                                   (4.264b)

,cos),0( tAtu ��                                   (4.264c)

.0),( �� tu                                   (4.264d)

(a) Show that the steady-state solution of the boundary value problem (4.264a–d) is

independent of the initial distribution ).(xh

(b) Let ),( txv  solve

                                       ,0,0, ������� txvv xxt           (4.265a)

                              ,),0( tiAetv �

�                                   (4.265b)

.0),( �� tv                                               (4.265c)

Find a one-parameter Lie group of point transformations that is admitted by the
boundary value problem (4.265a–c).  Find the resulting invariant solution of

(4.265a–c).

(c) Find the steady-state solution of the boundary value problem (4.264a–d).

6. Find the fundamental solution (Riemann function) for the Euler–Poisson–Darboux

equation, i.e., solve

).()( 0 txxuu
x

u ttxxx ��

�

���� (4.266)

   This solution is the source solution for isentropic flow for a polytropic gas where x is

the sound speed in the gas, t is the fluid velocity in some fixed direction, u is the time

variable, and the constant� is related to the ratio of specific heats of the gas.
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(a) Show that (4.266) admits the point symmetry

.
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X
222
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��

(4.267)

(b) Show that the similarity variable arising from the point symmetry (4.267) is given

by

.
)( 22

0

x

txx ��

�� (4.268)

(c) Derive the invariant form for the resulting invariant solution.

(d) Show that the solution of PDE (4.266) is given by

,
)(

)(
;1;,

])[(

)2(
);,(

22
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22
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2
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2
1

2/22
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0
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txx

txx
F

txx

x
xtxuu ��

�

�

   where );;,( zcbaF  is the hypergeometric function [Bluman (1967)].

7. Consider the boundary value problem for the response due to a unit impulse for a

vibrating string with a nonlinear restoring force:

),()()( txufuu xxtt �����

,if0 txu ��

   with

.0for0)(),()( ����� uufufuf

(a) Find a point symmetry admitted by this boundary value problem.

(b) Find the invariant form for the resulting invariant solution.

(c) For the case ,)( 3kuuf �  study the solution in a suitable phase plane.  What

conditions must apply at the wavefront  x = t?

8. Consider the Fokker–Planck equation

                                     ,0,0,))(( ������ xtuxuu xxxt �           (4.269a)

   with the drift

,0,1,)( ���� ���

�

� x
x

x

   and the initial condition

                                           .0),()0,( 00 ����� xxxxu �           (4.269b)

(a) Find a point symmetry X admitted by the boundary value problem (4.269a,b).

(b) Let );,( 0xtxu  be the solution of the boundary value problem (4.269a,b).  Since

the conservation law equation
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1);,(
0

0 ��

�

dxxtxu              (4.270)

   must hold for any allowed values of ,, 0xt  it follows that (4.270) must admit the

point symmetry X. Consequently, use the invariance of the conservation law

(4.270) under the point symmetry X to show that the second moment of the

solution );,( 0xtxu  of the boundary value problem (4.269a,b) is given by

tt exedxxtxuxx ��
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� 22
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22 )()1(
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	 �
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(4.271)

   without explicitly determining );,( 0xtxu .

(c) Show that the solution of the boundary value problem (4.269a,b) is given by the

following invariant solution related to invariance under the point symmetry X:

]))(coth1()1(exp[
sinh2

);,( 2

04
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xI
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� (4.272)

   where the similarity variable is given by 

t

x

�

�

sinh2
� ,

   and )(zI
�

 is a modified Bessel function.

(d) Use (4.270)–(4.272) and the fact that all moments must admit the point symmetry

X  to derive explicit expressions for definite integrals involving )(zI
�

 [Bluman

and Cole (1974)].

9. Use group methods to find the fundamental solution of the heat equation in 2�n

spatial dimensions, i.e., solve the initial value problem

,,,2,1for,0,
1

2

2

nixt
x

u

t

u
i

n

i i

��������

�

�

�

�

�

�
�

   with

).()()()0,,,,( 2121 nn xxxxxxu ��� �� �

10. Consider the problem of finding the Green’s function for an instantaneous line

particle source diffusing in a gravitational field and under the influence of a linear

shear wind [Neuringer (1968); Bluman and Cole (1974)].  This problem reduces to
solving the initial value problem

,0)( ����� yyxxyxt uuduyuu           (4.273a)

                                                ),()()0,,( 0yyxyxu �� ��                       (4.273b)
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   on the domain ����������� yxt ,,0 with .0 ����� y

(a) Show that the initial value problem (4.273a,b) admits the point symmetries

,)(2X 0
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1
u

utyyd
y

t
x

t
�

�

���

�

�

�

�

�

�

�

.)(33)6(X 2

2
1123

2
u

uyttxd
y

t
x

tt
�

�

���

�

�

�

�

�

��

� (4.274)

(b) Find invariant forms for the solution of the initial value problem (4.273a,b)

resulting from the infinitesimal generators 21 XandX , respectively.  Then show

that the solution of the initial value problem (4.273a,b) reduces to solving a first-

order ODE.

(c) Show that the solution of the initial value problem (4.273a,b) is given by
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(4.275)

(d) Use the point symmetries (4.274) to compute directly the moments ,, ���� yx

,��xy ,, 22
���� yx  etc., without using the explicit solution (4.275).

11. The Poisson kernel is the solution of

,20,10,0
11

2

2
��

��
��������� ru

r
u

r
uu rrr           (4.276a)

   with

).(),1( ��� �u                       (4.276b)

(a) Let .�irez �  Show that the boundary value problem (4.276a,b) admits the

infinite-parameter Lie group of point transformations corresponding to the

infinitesimal generator 

,),(),(X
u

urT
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rrS
�
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�

�

�
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��

   where

,)],()([),(
1

�
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inn

n

n

nn

n rezzzbzzarS ��

�

�

�

������

  ),0,1(,0)0,1(),,(ofconjugateharmonic theis),(
�

��� TTrSrT ���  and nn ba ,

are arbitrary complex parameters for �,2,1�n .

(b) Consider the subgroup for which 0,0,0 11 ������ jj babbaa  for .1�j

Show that the boundary value problem (4.276a,b) admits the two-parameter

subgroup given by the infinitesimal generators
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(c) Show that the invariant solution resulting from point symmetry 1X  has the

invariant form )(���u ,  with the similarity variable given by

.
cos21

1
2

2

rr

r

��

�

�

�

�

(d) Use the invariant surface condition 0))((X2 ��� �u  when ),(���u  to show

that )(��  satisfies the ODE .0)()( ����� ���   Hence, derive the Poisson

kernel
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cos21
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rr

r
ru

��

�
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��

� .

   [Bluman and Cole (1974).]

12. Consider a well-posed boundary value problem for a linear homogeneous PDE with

independent variables  t   and  :),,,( 21 nxxxx ��

,,0,0L ���� xtu           (4.277a)

   with k – 1 linear homogeneous boundary conditions

                                  ,1,,2,1,0)(on0L ���� kxu ���
��

          (4.277b)

   and one linear nonhomogeneous initial condition

                                                .0when)(L �� txhuk           (4.277c)

If the associated homogeneous boundary value problem admits ,X
t�

�

�  show that the

solution of the boundary value problem (4.277a–c) has the inverse Laplace transform

representation
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(4.278)

where );( sxF  is determined by substituting (4.278) into the boundary value problem

(4.277a–c).  What is the situation when the right-hand side of (4.277a) is )(xg  and

the initial condition (4.277c) becomes homogeneous?
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4.5 DISCUSSION

In this chapter, we showed how to:

(i) find the point symmetries admitted by a scalar PDE or system of PDEs;

(ii) use admitted point symmetries of PDEs to construct resulting invariant solutions

(also called similarity solutions);  and

(iii) find and use point symmetries admitted by a boundary value problem for a PDE

to reduce the boundary value problem to one involving fewer independent

variables.

Invariant solutions for scalar PDEs were discovered by Lie (1881).  Such

solutions for scalar PDEs or systems of PDEs can be determined from an admitted point

symmetry in two ways:  

(i) Using the Invariant Form Method, one first solves explicitly the characteristic

equations arising from the invariant surface conditions to obtain the invariant form for

resulting invariant solutions.  The invariant solutions are then determined by substituting

the invariant form into the given PDEs. 

(ii)  Using the Direct Substitution Method [Bluman and Kumei (1989b)], one first isolates

a specific independent variable and treats it as a parameter.  Then one substitutes the

invariant surface conditions and necessary differential consequences into the given PDEs

in order to eliminate all derivatives with respect to this isolated (parametric) independent

variable.

The resulting invariant solutions are determined by solving the reduced PDEs (with one

less independent variable than the given PDEs) and then substituting solutions of the

reduced PDEs into either the invariant surface conditions or the given PDEs.  Most

important, the Direct Substitution Method allows one to construct invariant solutions

without explicitly solving the characteristic equations corresponding to the invariant

surface conditions.  One can extend these two methods to obtain invariant solutions from

an admitted multiparameter group of point symmetries [cf. Section 4.4.1]. 

A boundary value problem for a scalar PDE, or system of PDEs, admits a point

symmetry if the symmetry separately leaves invariant the boundary, the boundary

conditions, and the PDEs of the boundary value problem.  If the boundary value problem

is well-posed, then its solution is an invariant solution resulting from the admitted point

symmetry.  The construction of the solution of the boundary value problem further

simplifies if the boundary value problem admits a multiparameter Lie group of point

transformations.

When applying invariance under point symmetries to a linear boundary value

problem, it is unnecessary to leave invariant the boundary conditions of the boundary

value problem.  Moreover, one only needs to leave invariant the associated homogeneous

PDE of a nonhomogeneous PDE, since a homogeneous PDE always admits a uniform

scaling of its dependent variables.  Here a superposition of invariant solutions or invariant

forms, arising from invariance of the associated homogeneous boundary value problem,

can be used to solve the given boundary value problem.

Invariant solutions arising from a multiparameter group of point symmetries

admitted by a system of PDEs are considered in Anderson, Fels, and Torre (2000) for the
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situation when the group does not admit sufficiently many independent invariants in

relation to the number of independent and dependent variables.  This requires a more

complicated invariant form for finding invariant solutions than in the situation arising

from invariance under a one-parameter group [cf. Section 4.3.1].  In particular, this is the

case when seeking rotationally invariant solutions that arise from invariance under the

rotation group SO(3) for systems of PDEs in three spatial dimensions, e.g., the Euler

equations for fluid flow whose dependent variables include a vector function of its

independent variables.

Often, the asymptotic solution of a boundary value problem for a nonlinear PDE

is either an invariant solution of self-similar type (self-similar or automodel solution)

arising from scaling invariance, or a traveling-wave solution arising from invariance

under translations in space and time.  Comprehensive reviews of self-similar asymptotics

appear in Newman (1984) and Galaktionov, Dorodnitsyn, Elenin, Kurdyumov, and

Samarskii (1988).  For applications of self-similar and traveling-wave asymptotics to

physical problems, see Barenblatt and Zel’dovich (1972), Barenblatt (1979, 1987, 1996),

and Goldenfeld (1992).  Barenblatt and Zel’dovich (1972) and Barenblatt (1979, 1987,

1996) consider examples of  “intermediate asymptotics” where, in an intermediate space–

time domain, the solution of a boundary value problem is approximated by a similarity

solution which does not depend on the given boundary conditions—in such examples the

similarity solution is not an equilibrium state.  Kamin (1975) rigorously justified the

evolution of the solution of a porous medium equation to a self-similar solution.  For

other papers that rigorously justify self-similar asymptotics, see Atkinson and Peletier

(1974), Friedman and Kamin (1980), Galaktionov and Samarskii (1984), and Kamin

(1975).

Point symmetries of a scalar PDE, or a system of PDEs, describe geometrical

motions on its solution space. As is the situation for ODEs, such motions are naturally

formulated in the jet space [cf. Section 2.8] associated to the PDE, or system of PDEs,

with coordinates given by the independent variables, dependent variables and their partial

derivatives up to a finite order. Here an admitted point symmetry geometrically

represents the integral curve of a vector field that is tangent to the surface defined by a

given scalar PDE, or simultaneously tangent to the set of surfaces defined by a given

system of PDEs, and preserves the derivative relations (contact ideal) among the

coordinates on the entire jet space. Such vector fields also arise naturally when one

considers first-order and higher-order symmetries. Point symmetries in particular

correspond to vector fields given by extensions (prolongations) of one-parameter Lie

groups of transformations defined on the coordinates for the independent and dependent

variables to transformations acting on the coordinates including all partial derivatives of

dependent variables with respect to the independent variables [cf. Section 2.4] in jet

space. All the point symmetries admitted by a scalar PDE, or a system of PDEs, form a

group which has the structure of an abstract connected Lie group [cf. Section 2.8] whose

Lie algebra is characterized by a Lie bracket which is isomorphic to the commutators of

the vector fields representing the point symmetries on the jet space associated to the PDE,

or the system of PDEs.

In a subsequent volume, we will consider many other topics related to the

invariance of PDEs, including:
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(i) the algorithmic computation of local conservation laws for PDEs, analogous to

finding first integrals of ODEs [cf. Sections 3.6 and 3.7], [Olver (1986); Anco and

Bluman (1997a, 2002a,b)];

(ii)  the computation and use of higher-order symmetries (so-called Lie–Bäcklund

symmetries) for PDEs, including recursion operators for linearization [Anderson, Kumei,

and Wulfman (1972); Olver (1977, 1986); Bluman and Kumei (1980, 1989b); Mikhailov,

Shabat, and Sokolov (1991); Krasil'shchik and Vinogradov (1989)];

(iii)  the use of point symmetries and contact symmetries for linearizations of PDEs and

to discover mappings relating PDEs [Kumei and Bluman (1982); Bluman and Kumei

(1989b, 1990a); Bluman (1983b)];

(iv) the computation of nonlocal symmetries (including potential symmetries resulting

from conservation laws) and their uses for finding invariant solutions, linearizations, and

conservation laws [Bluman and Kumei (1987, 1988, 1989b, 1990b); Bluman, Kumei, and

Reid (1988); Mikhailov, Shabat, and Sokolov (1991); Anco and Bluman (1996, 1997b)];

and

(v) the generalization of the method of finding invariant solutions resulting from

invariance under point symmetries to the nonclassical method for finding solutions of

PDEs [Bluman and Cole (1969)] which, in the case of a nonlinear PDE, allows one to

find solutions that cannot be obtained as invariant solutions resulting from the point

symmetries of the PDE [Levi and Winternitz (1989); Nucci and Clarkson (1992);

Clarkson and Mansfield (1994a,b)].
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heat equation, 17, 18, 25, 310–313, 356–

360, 372–378 [325, 382]

 commutator structure (table), 311

 determining equations, 310

        fundamental solutions, 356–360,

372, 373 [382, 384]

  finite domain, 372, 373

  infinite domain, 357–359

  semi-infinite domain, 359, 360

       invariant solutions, 312, 313 [140,

325]

mapping to, 369

n-dimensional, [325, 384]

 nonhomogeneous, 372

 nonlinear, 314, 315, 340–343
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               determining equations, 314,

342

as first-order system, 340–343

               group classification, 314–316,

340–342 [347]

  symmetries, 314–316, 341–343

        one-parameter family of solutions,

314

 Stefan problem, 375–378

 symmetries, 311, 312

higher-order ODE(s), see ODE(s)

higher-order symmetries, 2, 166, 173,

181, 291, 388 [184]

 characteristic form of, 166

higher-order transformation(s), 95, 97,

166, 291

homogeneous boundary conditions, 352,

372 [386]

homogeneous ODE, 103

homotopy formula, 292

hypergeometric function, 365 [383]

hypersurface, 297; see also surface(s)

I

ideal, 82

 null, 82

 one-dimensional, 83

identity element, 34, 98

identity transformation, 8

images, method of, 360

incomplete invariance, 352, 369–381

infinite-parameter Lie group, 111, 290,

291, 343 [83]

 nontrivial, 111, 114, 318

 trivial, 111, 113, 307, 334

infinitesimal(s), 39, 44, 97, 98, 166 [51,

325]

        extended, 60, 61, 67, 68, 70, 98 [70,

71]

 once-extended, 67, 309, 335

 twice-extended, 68, 309

infinitesimal criterion of invariance, 167,

168, 298, 353 [303, 347]

infinitesimal generator(s), 1, 31, 42–45,

74, 97, 110, 168, 201, 220, 290

[52, 83–85, 119, 120]

 extended, 60, 61, 66–68, 70, 79, 94

 form of, 134, 307–309

identity satisfied by, 201 [231]

 nontrivial, 111, 114, 284

infinitesimal matrix, 73

infinitesimal transformation, 38–41, 97

[119]

        extended (prolonged), 60, 61, 65–

68, 70, 98

inhomogeneous medium, 156, 316, 343

initial value problem, 32, 39, 40, 41,

379, 381 [51]

integrability conditions, 78, 189, 193,

211, 344

integrable group, 290

integral curve, 98, 291, 388

integral transform, 352

integrating factor(s), 1, 101, 186, 192,

255, 257, 290, 291 [119, 120]

        ansatzes for, 190, 196–208, 218–

221

 cardinality of classes, 233, 251, 252

        characteristic equation for, 186,

188, 192, 209, 250

        classical, 106, 109, 190, 203, 233,

251, 291

        determining equations for, 188,

190, 194, 212–215, 222, 223,

226, 249, 291

 first-order, 187, 204, 227 [231]

 higher-order, 187, 225, 226 [230]

 mapping of, 200, 201, 219, 220

        point-form, 187, 196, 197, 203,

222, 252 [230]

 scaling invariance, 201, 222

 separation of variables, 190

relation to variational symmetries,

232, 249, 293

invariance criterion (invariance

condition), 167, 168, 298, 353

[347]
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invariance of boundary value problem,

353–356, 369–371 [382]

 incomplete, 352, 369–371

invariance of ODE, 101, 102–105, 121,

141–163, 290

        contact symmetry (transformation),

166, 290

        higher-order symmetry

(transformation), 166, 290

        local symmetry (transformation),

166–168, 290

        point symmetry (transformation),

166, 290

invariance of PDE(s), see PDE(s)

invariant(s), 7, 9, 46, 97, 115, 124, 125,

150–155, 304, 332

for boundary value problem, 25

differential, see differential

invariant(s)

        functionally independent, 304, 332,

355

invariant curve(s), 85, 86, 90, 97, 102,

109, 110, 279, 286, 294 [92,

106]

invariant family of curves, 87, 88 [92,

106, 119, 141]

invariant family of surfaces, 87, 88, 91,

97 [92]

invariant form, 27, 300, 301, 304, 312,

332, 371 [383, 385]

Invariant Form Method, 304, 312, 332,

337, 387 [325]

invariant function, 46

invariant point, 86, 97 [92]

invariant solution(s), 2, 296

 ansatz, 202, 221

        of ODE(s), 102, 279–288, 294, 295

[289]

        of PDE(s), 294, 297, 300, 301,

303–305, 331–333, 387 [277,

302, 303, 325, 326, 347, 349,

382–384, 386]

invariant surface(s), 27, 85, 86, 91, 97,

298, 300, 304, 353

invariant surface condition(s), 27, 304,

332, 387 [386]

inverse element, 34

inverse Laplace transform, 373, 377

[386]

inverse Stefan problem, 375–378

involution, 98

involutive, 98

isentropic flow, [382]

isomorphism, 320, 321, 337 [327]

J

Jacobian, [350]

Jacobi’s identity, 78

jet space, 97, 98, 291, 292, 388

K

kinematic viscosity, 19 [387]

Korteweg–de Vries (KdV) equation,

[303]

 cylindrical, [327]

 point symmetries, [327]

 soliton solution, [303]

 traveling wave equation, [184, 303]

adjoint-symmetries, 260 [253]

               first integral(s), 222, 260, 268

[253]

               integrating factor(s), 222 [230,

253]

reduction of order, 223

symmetries, [184]

Kronecker symbol, 370

Kummer’s hypergeometric function, 365

L

Lagrangian, 2, 247, 290

Lagrangian formulation, 245–247

Laplace equation, [326, 385]

Laplace transform, 1, 302, 373, 377

[386]

law of composition, 34, 36, 38, 41, 42,

73, 75 [38, 51, 83]

Lie algebra, 1, 72, 78, 79–82, 97, 99,

311, 320

 Abelian, 82 [84, 165]
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 abstract, 98, 388

 complex, 141

 even-dimensional, 141

nonsolvable, 141 [85, 165]

 real, 141

r-dimensional, 72, 141, 155 [165]

        solvable, 72, 82, 83, 98, 150, 155

[84, 164, 165]

 two-dimensional, 82, 141 [164]

Lie bracket, 77, 98, 388

Lie group; see also Lie group of

transformations

 abstract, 98, 291, 388

Lie group of point transformations, see

Lie group of transformations

Lie group of transformations, 1, 32, 36,

97, 98, 102, 290, 388

 extended, 97 [70, 71]

 global, 97 [321]

identity element, 36, 98

        infinite-parameter, 111, 113, 290,

291, 294, 307, 334

 local, 97

multiparameter, see multiparameter

Lie  group, r-parameter Lie

group of transformations

 nontrivial, 111, 114, 284, 290, 294,

318

one-parameter, 36, 37, 98, 284, 290

[38, 51, 52, 71, 72]

r-parameter, 73, 74, 77, 78, 98, 101,

141, 150, 155, 290, 291, 355

       solvable, 99, 101, 291 [165]

       trivial, 111, 113, 294, 307, 334

       two-parameter, 130, 142, 143, 144,

145, 146–148 [164, 165]

Lie’s algorithm, 1; see also determining

equation(s)

Lie’s fundamental theorems, 1

 first, 39–41, 41–44, 73, 98

 second, 78, 99

 third, 78, 99

Lie series, 44, 45 [52]

limit cycle, 284, 286 [288]

line integral formula, 188, 194, 214, 222,

227, 251, 292

linear homogeneous boundary

condition(s), 352, 372 [386]

linear homogeneous ODE(s), 107, 126–

129 [164, 184, 228]

linear homogeneous PDE(s), 307, 334,

352 [386]

 associated, 307, 334

        boundary value problem for, 352,

370–372

linear nonhomogeneous boundary

condition(s), 352, 372

linear nonhomogeneous ODE, 108, 143

[119, 139, 228]

linear nonhomogeneous PDE, 307, 334

[386]

        boundary value problem for, 369–

372

linear operator, 307, 334, 369

linear PDE, 309; see also PDE(s)

linearization, 2, 102, 233, 234, 291

adjoint, 2, 102, 233, 234, 291

adjoint operator, 234, 256

operator, 233, 234, 256

linearized equation, 235, 290

adjoint, 235

linearly independent [164]

integrating factors, 197, 215, 217

        with respect to a surface, 263, 265,

268

local symmetries, 168

local transformation(s), 94, 95, 97, 166,

232, 245, 248, 290

       infinite-parameter Lie group of, see

Lie group of transformations

logarithmic spiral, 88

M

Madelung fluid, [349]

mapping(s), [350]

 of curve(s), 89, 92, 110–112

        of first integral(s), 200, 201, 219,

220, 257

        relating differential equations, 291,

318, 369, 389
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       of solution curves, 101, 110, 112,

132, 168

       of solutions to solutions, 166, 168,

291, 298, 300, 301, 314 [325]

of surfaces, 91

matrix, 28, 63 [71]

 dimension, 6

 infinitesimal, 73

 rank, 7, 355

measurable quantity, 6

method, see also Direct Substitution

Method, Invariant Form

Method

       of canonical coordinates, 115, 122,

138

       of characteristics, 381 

       of differential invariants, 115–117,

124–126, 137, 138

 of images, 360

of moving frames, 324

 of undetermined coefficients, 1

        of variation of parameters, 1, 145

[164]

Möbius (bilinear) transformation(s), 324

[84]

modified Bessel function, 386 [384]

moment(s), 369 [384, 385]

moving boundary, 375

moving frames, 324

multiparameter Lie group, 72, 73, 74,

77, 78, 97, 150, 290, 291, 355,

387

multiplier, 2, 248, 291

N

Navier–Stokes equations, [24, 348]

Noether’s Theorem, 232, 249, 250, 290,

292

nonclassical method, 389

nonclassical solutions, 389

nonhomogeneous boundary condition(s),

352, 372

nonlinear harmonic oscillator, 176; see

also Duffing equation

nonlinear heat equation (conduction),

see heat equation

nonlinear wave equation, see wave

equation(s)

nonlocal symmetries, 341, 347, 389

normal subalgebra, 82

null ideal, 82

null space, 28

O

ODE(s), 101–295

        boundary value problem, 102, 275–

277, 294 [278]

Euler–Lagrange, 246, 247 [254]

 exact, 291 

       first-order, 102, 106–118, 187–191,

290

  first integral(s), 109, 187

  integrating factor(s), 109, 188

symmetries, 112, 113

 homogeneous, 1, 103

 intermediate, 155

 invariance of, 121–139, 166–168

        invariant solutions, 102, 279–287

[288–290]

        linear homogeneous, 107, 126–129

[164, 184, 228]

linear nonhomogeneous, 108, 143

[119, 139, 228]

local existence theory, 187, 293

overdetermined system of, 159, 160

[165]

scaling invariant, 258, 271

        second-order, 102, 121–145, 191–

208

  first integral(s), 191

  integrating factor(s), 194

symmetries, 133, 134

 self-adjoint, 235, 248, 270 [254]

 separable, 1, 191, 208 [106]
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        skew-adjoint, [255]

in solved form, 208, 248

 system of, 159–163, 294

third- and higher-order, 102, 145–

163, 208–228

  first integral(s), 208

  integrating factor(s), 215–218

symmetries, 133, 134

variational principle (action

functional, Lagrangian),

245–248

once-extended infinitesimal, 67, 309,

335

one-parameter Lie group of

transformations, 36, 37, 98,

284, 290 [38, 51, 52, 71, 72]

operator(s)

 Euler, 291

 gradient, 43

linear, 307, 334, 369

linearization, 233, 234, 256

adjoint, 234, 256

        surface tangential derivative, 167,

188, 191, 209, 234

        total derivative, 59, 63, 167, 188,

191, 209, 234, 249, 281

        truncated Euler, 189, 192, 209, 231,

249

ordinary differential equation(s), see

ODE(s)

overdetermined, 134, 167, 217, 251,

293, 306, 334

system of ODE(s), 159, 160 [165]

P

parameter, 36

 essential, 28

partial differential equation(s), see

PDE(s)

PDE(s); see also scalar PDE(s),

system(s) of PDEs

 invariance of, 297–301

  scalar, 305–309

  system, 330, 331, 333–335

        invariant solutions, 294, 297, 300,

303–305, 331–333 [277, 302,

303, 325, 326, 347, 349, 382–

384, 386]

 linear

  homogeneous, 307, 334, 352

               nonhomogeneous, 307, 334,

369–372 [386]

 in solved form, 298, 333

permutation, 35

phase plane, 275, 284 [278, 279]

Pi-theorem, see Buckingham Pi-theorem

point symmetries, 1, 101, 121, 132, 166,

200, 202, 219, 238, 252, 257,

260, 261, 266, 298, 387, 388;

see also Lie

                     group of transformations

 characteristic form of, 166

 inherited, 202, 221

point transformation(s), 62, 68, 92, 93;

see also Lie group of

transformations

 characteristic form of, 93 [96]

Poisson kernel, [385]

polar coordinates, 51

polytropic gas, [382]

porous medium equation, 324, 388

potential(s), 21

potential symmetries, 389

Prandtl boundary layer equations, 18–23

probability distribution, 363

projection group, see projective group

projective group, 79–81, 90, 94, 96, 135,

311 [84]

projective transformation, 79, 80, 135,

311 [84]

prolongation(s), 52, 94, 97, 291, 388; see

also extended

transformation(s), extended

infinitesimal transformation(s)

prolonged, 1, 97

       infinitesimal transformation(s), see

extended infinitesimal

transformation(s)

Pythagoras theorem, [5]
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Q

quadrature(s), 101, 126, 146, 154, 155,

160, 186, 290

quantity

 dimensionless, 6

 measurable, 6

R

range space, 28

rank, 7, 355 [24]

ratio of asymptotic wave speeds, 379

ratio of specific heats, [382]

Rayleigh flow problem, [24, 30]

reaction-diffusion equation, [328]

recursion operator(s), 389

reduction algorithm, 156–159, 291 [164]

reduction of order, 101, 121, 290

 algorithm for, 159

               by canonical coordinates, 122–

124, 127, 128, 290 [140,

165]

               by differential invariants, 124–

126, 128–131, 290 [140,

165]

 direct method

               using contact symmetries, 179–

181

               using higher-order symmetries,

181–183

               using point symmetries, 175,

176

by first integrals, 2, 293, 294

Lie method, 2, 101, 293

for overdetermined systems, 159,

160

for self-adjoint ODE(s), 290

reduction to quadratures, 130, 131

reflecting boundary, 363

renormalization group, 32

Riccati equation, 116, 127, 364

Riccati transformation, 116, 127

Riemann function, [382]

rigid motions 81, 83

rotation(s), 35, 81; see also SO(3)

 canonical coordinates, 50, 118

 differential invariants, 118

 extended group, 58

 extended infinitesimals, 62 [70, 71]

        first-order ODE(s) admitting, 118,

286 [289]

group, 50, 81, 118 [51, 72, 92, 96] 

 infinitesimal(s), 45 [51]

 infinitesimal generator, 45 [51, 289]

invariants, 204

invariant solutions, 388

 Lie series, 45

        second-order ODE(s) admitting,

141, 204

S

scalar PDE(s), 297, 298, 303, 304, 369–

378

       invariant solutions of, 294, 297, 300,

301, 303–305, 312, 313, 387

[277, 302, 303]

scaling(s), 8, 31, 37, 81, 201, 202, 221,

232, 239, 248, 249, 258, 271

       boundary value problem, 20, 21,

25–29

       canonical coordinates, 49, 104, 117,

138, 300

 differential invariants, 138

 dimensional analysis, 6, 31

 extended group, 57

 extended infinitesimals, 62

        first-order ODE(s) admitting, 117

[119]

group, 3, 8, 49, 90, 94, 95, 117, 138,

300

        higher-order ODE(s) admitting,

179, 181, 223, 242, 273 [184,

230, 274]

 infinitesimal generator, 49, 86

 invariant curves, 86

 invariant family of curves, 88

        invariant solutions, 25–29, 32, 169,

282, 283, 294, 388

 law of composition, 38

        second-order ODE(s) admitting,

138, 139 [141]
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 self-similar solutions, 25–29, 300

scaling group, see scaling(s)

scaling weight, 258

Schroedinger equation

 cubic, [349]

        two-dimensional nonlinear, [329,

349]

second extension, 55

second moment, [384, 385]

second-order ODE(s), see ODE(s)

self-adjoint, 233, 235, 248, 290 [254]

self-similar asymptotics, 388

self-similar solution(s), 3, 17, 27, 388

[24]

 first kind, 25

 second kind, 25

self-similarity, 32

separable form, 354, 356 [382]

separable ODE(s), see ODE(s)

separation of variables, 3

separatrix, 3, 102, 276, 277, 284, 285,

286, 294 [289]

series

 Fourier, 302, 381

 Lie, 44, 45 [52]

 Taylor, 44

shear, 19

shear wind, [384]

shock wave, 11

shooting method, 23, 294

similar triangle, [15]

similarity form, 27, 300 [31]

similarity solution, 3, 27, 297, 387

similarity variable(s), 27, 304, 332 [347,

382]

singular envelope, see envelope

skew-adjoint, [255]

skin friction, 19

SO(3), 141, 266, 388 [184]; see also

rotation(s)

SO(2,1), 320, 321, 337

SO(n + 1,1), [327]

soliton, [33]

solution(s)

 automodel, 3, 17, 27, 388

        fundamental, 356–369, 372–374

[31, 382–386]

 invariant, see invariant solution(s)

nonclassical, 389

        one-parameter family of, 112, 168,

298, 300, 301, 314 [325]

 self-similar, see self-similar

solution(s)

 similarity, 3, 27, 297, 387

 source, [382]

 steady-state, [382]

solution curve(s), 109, 110, 112, 132,

168, 275, 284, 285 [289, 290]

 family of, 109, 112, 168

mapping of, 101, 110–112, 168

solvable Lie algebra, 72, 82, 83, 98, 150,

155 [84, 164, 165]

solvable Lie group, 99, 101, 291 [165]

solvable subalgebra, 82

solved form, 208, 236, 248, 298, 333

source, 13 [31]

special functions, [347]

specific heat(s), 13

 ratio of, [382]

stationary flow, 1, 36, 41

stationary points, 247

steady-state solution, [382]

Stefan problem, 375–378

stream function, 21 [30]

stream-function equation, [327]

structure constant(s), 78, 99, 150

subalgebra, 79, 99 [84]

 normal, 82

 solvable, 82

subgroup, 34 [84, 385]

 one-parameter, 74, 97

superposition(s), 1, 301, 352

 of invariant forms, 301, 370

        of invariant solutions, 301, 352,

370, 387

surface(s), 101, 112, 121, 124, 132, 167,

168, 175, 178, 187, 191, 200,

208, 219, 221, 226, 234, 235,

247, 256, 258, 262, 263, 265,

291, 297
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 boundary, 353

        invariant, 27, 85, 86, 91, 97, 298,

300, 304, 353

 invariant family, 87, 88, 91

 mapping of, 91

symbolic manipulation, 1, 168, 219, 293,

340

symmetries, 1, 101, 255, 265, 290, 291,

388

        cardinality of classes, 233, 251,

252, 293

        characteristic form of, 2, 166, 235,

236

        contact, 166, 170–172, 179, 291

[184]

        determining equation for, 168, 235,

262

 group, 291

        higher-order, 166, 173, 181, 291,

388 [184]

 inherited, 169, 202, 239

 local, 168, 248, 291

 nonlocal, 341, 347

 point, see point symmetries

 potential, 389

scaling, see scaling(s)

translation, see translation(s)

 variational, 232, 248, 249, 271

determining equation for, 249

symmetry characteristic, 166, 168, 233

symmetry group, 35, 291

of contact transformations, 291

of point transformations, 291

system(s) of differential equations, 68,

294

        overdetermined, 134, 167, 217,

251, 293, 306, 334

system(s) of ODEs, 159–163, 294

system(s) of PDEs, 330–347, 379, 380

        invariant solutions of, 331–333,

339, 340, 379, 380, 387

linear, 334, 350, 379, 380

system of units, 7

T

tangent vector, 98

tangential derivative, 167, 188, 191, 209

Taylor series, 44

Taylor’s theorem, 43

theorem(s)

 Buckingham–Pi, 5–15, 28

        Lie’s fundamental, 1, 39–41, 78,

98, 99

 Noether’s, 232, 249, 250, 290, 292

thermal conductivity, 13 [16]

thermal units, 14, 15 [24, 29]

total derivative operator, 59, 63, 167,

188, 191, 209, 234, 249, 281

        associated to a surface, see

tangential derivative

transform

 Fourier, 302

 integral, 352

 Laplace, 1, 302, 373, 377 [386]

transformation(s)

 bilinear, 324 [84, 85, 325]

 conformal, [84]

 contact, 1, 94, 166, 291

 derivative-dependent, 94, 95, 166

 extended, 53–57 [70]

 higher-order, 95, 97, 166

 identity, 8

 infinitesimal, 38–41, 97 [119]

        local, 94, 95, 97, 166, 232, 245,

248, 290

 Möbius, 324 [84]

nonlocal, 97

 point, 62, 68, 92, 93, 95

 projective, 79, 80, 135, 311 [84]

 Riccati, 116, 127

 scaling, see scaling(s)

transformation group, 36 [38]

 contact, 292

 infinite-parameter, [83]

 point, 291

 projective, 79–81, 90, 135, 311
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translation(s), 33, 37, 41, 83, 177, 202,

221, 239 [38]

 extended group, 57

 extended infinitesimals, 62

 first-order ODE(s) admitting, 102

group, 299

        invariant solutions, 169, 239, 299

[302, 303]

law of composition, 37

        second-order ODE(s) admitting,

176, 239 [184]

second-order PDE(s) admitting,

[303]

traveling wave, 388 [303]

 for KdV equation, [184, 303]

adjoint-symmetries, 260 [253]

               first integral(s), 222, 260, 268

[253]

               integrating factor(s), 222 [230,

253]

reduction of order, 223

truncated Euler operator, 189, 192, 209,

236, 247 [231]

twice-extended infinitesimal, 68, 309

two-layered medium, 379

U

undetermined coefficients, 1

units

 dynamical, 13, 17 [24, 29, 30]

 system of, 7

 thermal, 14, 15 [24, 29]

V

variable(s), 1, 52, 97, 98, 101, 291, 292,

388

 dependent, 16, 52, 101

  dimensionless, 16

 independent, 16, 52, 101, 291 

  dimensionless, 16

 similarity, 27, 304, 332 [347, 382]

variation of parameters, 1, 145 [164]

variational formulation, 244–247, 290

variational principle, 2, 232, 247, 290

variational symmetries, 2, 232, 248, 249,

271

vector

 dimension, 6

 tangent, 98

vector field

 left invariant, 98

 right invariant, 98

        tangent, 98, 167, 168, 291, 388

[183]

viscosity, 19 [327, 348]

viscous diffusion equation, [24]

viscous drag, 19

W

wave equation(s), 300, 316, 335, 343,

379 [325, 326, 328, 347, 383]

 axisymmetric, 361–363 [325]

 commutator structure, 320, 321, 337

        determining equations, 316, 336,

344 [348]

        as first-order system, 335–337,

343–346 [347]

        group classification, 316–321, 343–

346 [326, 328]

        infinite-parameter Lie group, 318,

322

 initial value problem, 379–381

        invariant solutions, 300, 301, 337–

340, 379–381 [325, 347, 383]

 nonlinear, [326, 328, 383]

        symmetries, 318–321, 337, 345,

346

wave propagation, 379

wave speed, 316, 322, 343, 344, 379

wave speed equation(s)

adjoint-symmetries, 244, 261

        first integrals, 228, 245, 261, 262

[274]

integrating factors, 227, 245

        reduction of order, 149, 156–159,

161–163, 228, 245

 symmetries, 148, 156, 174, 261

system of, 161

wavefront, 361, 362 [383]
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Wiener process, 369

Wronskian, 144, 262–264 [274]

        first integral formula, 255, 265,

272, 294 [273, 274]


