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Preface

This book is a significant update of the first four chapters of Symmetries and Differential
Equations (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki
Kumei. Since 1989 there have been considerable developments in symmetry methods
(group methods) for differential equations as evidenced by the number of research
papers, books, and new symbolic manipulation software devoted to the subject. This is,
no doubt, due to the inherent applicability of the methods to nonlinear differential
equations. Symmetry methods for differential equations, originally developed by Sophus
Lie in the latter half of the nineteenth century, are highly algorithmic and hence amenable
to symbolic computation. These methods systematically unify and extend well-known ad
hoc techniques to construct explicit solutions for differential equations, especially for
nonlinear differential equations. Often ingenious tricks for solving particular differential
equations arise transparently from the symmetry point of view, and thus it remains
somewhat surprising that symmetry methods are not more widely known. Nowadays it is
essential to learn the methods presented in this book to understand existing symbolic
manipulation software for obtaining analytical results for differential equations. For
ordinary differential equations (ODEs), these include reduction of order through group
invariance or integrating factors. For partial differential equations (PDEs), these include
the construction of special solutions such as similarity solutions or nonclassical solutions,
finding conservation laws, equivalence mappings, and linearizations.

A large portion of this book discusses work that has appeared since the above-
mentioned book, especially connected with finding first integrals for higher-order ODEs
and using higher-order symmetries to reduce the order of an ODE. Also novel is a
comparison of various complementary symmetry and integration methods for an ODE.

The present book includes a comprehensive treatment of dimensional analysis.
There is a full discussion of aspects of Lie groups of point transformations (point
symmetries), contact symmetries, and higher-order symmetries that are essential for
finding solutions of differential equations. No knowledge of group theory is assumed.
Emphasis is placed on explicit algorithms to discover symmetries and integrating factors
admitted by a given differential equation and to construct solutions and first integrals
resulting from such symmetries and integrating factors.

This book should be particularly suitable for applied mathematicians, engineers,
and scientists interested in how to find systematically explicit solutions of differential
equations. Almost all examples are taken from physical and engineering problems
including those concerned with heat conduction, wave propagation, and fluid flow.

Chapter 1 includes a thorough treatment of dimensional analysis. The well-
known Buckingham Pi-theorem is presented in a manner that introduces the reader
concretely to the notion of invariance. This is shown to naturally lead to generalizations
through invariance of boundary value problems under scalings of variables. This
prepares the reader to consider the still more general invariance of differential equations
under Lie groups of transformations in the third and fourth chapters. Basically, the first



chapter gives the reader an intuitive grasp of some of the subject matter of the book in an
elementary setting.

Chapter 2 develops the basic concepts of Lie groups of transformations and Lie
algebras that are necessary in the following two chapters. By considering a Lie group of
point transformations through its infinitesimal generator from the point of view of
mapping functions into functions with their independent variables held fixed, we show
how one is able to consider naturally other local transformations such as contact
transformations and higher-order transformations. Moreover, this allows us to prepare
the foundation for consideration of integrating factors for differential equations.

Chapter 3 is concerned with ODEs. A reduction algorithm is presented that
reduces an nmth-order ODE, admitting a solvable r-parameter Lie group of point
transformations (point symmetries), to an (n — r)th-order differential equation and r
quadratures. We show how to find admitted point, contact, and higher-order symmetries.
We also show how to extend the reduction algorithm to incorporate such symmetries. It
is shown how to find admitted first integrals through corresponding integrating factors
and to obtain reductions of order using first integrals. We show how this simplifies and
significantly extends the classical Noether’s Theorem for finding conservation laws (first
integrals) to any ODE (not just one admitting a variational principle). In particular, we
show how to calculate integrating factors by various algorithmic procedures analogous to
those for calculating symmetries in characteristic form where only the dependent variable
undergoes a transformation. We also compare the distinct methods of reducing order
through admitted local symmetries and through admitted integrating factors. We show
how to use invariance under point symmetries to solve boundary value problems. We
derive an algorithm to construct special solutions (invariant solutions) resulting from
admitted symmetries. By studying their topological nature, we show that invariant
solutions include separatrices and singular envelope solutions.

Chapter 4 is concerned with PDEs. It is shown how to find admitted point
symmetries and how to construct related invariant solutions. There is a full discussion of
the applicability to boundary value problems with numerous examples involving scalar
PDEs and systems of PDEs.

Chapters 2 to 4 can be read independently of the first chapter. Moreover, a
reader interested in PDEs can skip the third chapter.

Every topic is illustrated by examples. All sections have many exercises. It is
essential to do the exercises to obtain a working knowledge of the material. The
Discussion section at the end of each chapter puts its contents into perspective by
summarizing major results, by referring to related works, and by introducing related
material.

Within each section and subsection of a given chapter, we number separately, and
consecutively, definitions, theorems, lemmas, and corollaries. For example, Definition
2.3.3-1 refers to the first definition and Theorem 2.3.3-1 to the first theorem in Section
2.3.3. Exercises appear at the conclusion of each section; Exercise 2.4-2 refers to the
second problem of Exercises 2.4.

We thank Benny Bluman for the illustrations and Cecile Gauthier for typing
several drafts of Sections 3.5 to 3.8.

Vancouver, British Columbia, Canada George W. Bluman
St. Catharines, Ontario, Canada Stephen C. Anco



Introduction

In the latter part of the nineteenth century, Sophus Lie introduced the notion of
continuous groups, now known as Lie groups, in order to unify and extend various
specialized methods for solving ordinary differential equations (ODEs). Lie was inspired
by the lectures of Sylow given at Christiania (present-day Oslo) on Galois theory and
Abel’s related works. [In 1881 Sylow and Lie collaborated in a careful editing of Abel’s
complete works.] Lie showed that the order of an ODE could be reduced by one,
constructively, if it is invariant under a one-parameter Lie group of point transformations.

Lie’s work systematically related a miscellany of topics in ODEs including:
integrating factor, separable equation, homogeneous equation, reduction of order, the
methods of undetermined coefficients and variation of parameters for linear equations,
solution of the Euler equation, and the use of the Laplace transform. Lie (1881) also in-
dicated that for linear partial differential equations (PDEs), invariance under a Lie group
leads directly to superpositions of solutions in terms of transforms.

A symmetry of a system of differential equations is a transformation that maps
any solution to another solution of the system. In Lie’s framework such transformations
are groups that depend on continuous parameters and consist of either point
transformations (point symmetries), acting on the system’s space of independent and
dependent variables, or, more generally, contact transformations (contact symmetries),
acting on the space of independent and dependent variables as well as on all first
derivatives of the dependent variables. Elementary examples of Lie groups include
translations, rotations, and scalings. An autonomous system of first-order ODEs, i.e., a
stationary flow, essentially defines a one-parameter Lie group of point transformations.
Lie showed that for a given differential equation (linear or nonlinear), the admitted
continuous group of point transformations, acting on the space of its independent and
dependent variables, can be determined by an explicit computational algorithm (Lie’s
algorithm).

In this book, the applications of continuous groups to differential equations make
no use of the global aspects of Lie groups. These applications use connected local Lie
groups of transformations. Lie’s fundamental theorems show that such groups are
completely characterized by their infinitesimal generators. In turn, these form a Lie
algebra determined by structure constants.

Lie groups, and hence their infinitesimal generators, can be naturally extended or
“prolonged” to act on the space of independent variables, dependent variables, and
derivatives of the dependent variables up to any finite order. As a consequence, the
seemingly intractable nonlinear conditions for group invariance of a given system of
differential equations reduce to linear homogeneous equations determining the
infinitesimal generators of the group. Since these determining equations form an
overdetermined system of linear homogeneous PDEs, one can usually determine the
infinitesimal generators in explicit form. For a given system of differential equations, the
setting up of the determining equations is entirely routine. Symbolic manipulation
programs exist to set up the determining equations and in some cases explicitly solve



them [Schwarz (1985, 1988); Kersten (1987); Head (1992); Champagne, Hereman, and
Winternitz (1991); Wolf and Brand (1992); Hereman (1996); Reid (1990, 1991);
Mansfield (1996); Mansfield and Clarkson (1997); Wolf (2002a)].

One can generalize Lie’s work to find and use higher-order symmetries admitted
by differential equations. The possibility of the existence of higher-order symmetries
appears to have been first considered by Noether (1918). Such symmetries are
characterized by infinitesimal generators that act only on dependent variables, with
coefficients of the generators depending on independent variables, dependent variables
and their derivatives to some finite order. Here, unlike the case for point symmetries or
contact symmetries, any extension of the corresponding global transformation is not
closed on any finite-dimensional space of independent variables, dependent variables and
their derivatives to some finite order. In particular, globally, such transformations act on
the infinite-dimensional space of independent variables, dependent variables, and their
derivatives to all orders. Nonetheless, a natural extension of Lie’s algorithm can be used
to find such transformations for a given differential equation.

For a first-order ODE, Lie showed that invariance of the ODE under a point
symmetry is equivalent to the existence of a first integral for the ODE. In this situation a
first integral yields a conserved quantity that is constant for each solution of the ODE.
Local existence theory for an nth-order ODE shows that there always exist # functionally
independent first integrals of the ODE, which are quadratures relating the independent
variable, dependent variable and its derivatives to order n—1. Correspondingly, an nth
order ODE admits » essential conserved quantities. Moreover, it is a long-known result
that any first integral arises from an integrating factor, given by a function of the
independent variable, dependent variable and its derivatives to some order, which
multiplies the ODE to transform it into an exact (total derivative) form.

For a higher-order ODE, a correspondence between first integrals and invariance
under point symmetries holds only when the ODE has a variational principle
(Lagrangian). In particular, Noether's work showed that invariance of such an ODE
under a point symmetry, a contact symmetry, or a higher-order symmetry is equivalent to
the existence of a first integral for the ODE if the symmetry leaves invariant the
variational principle of the ODE (variational symmetry). Here it is essential to view a
symmetry in its characteristic form where the coefficient of its infinitesimal generator
acts only on the dependent variable (and its derivatives) in the ODE. The determining
equation for symmetries is then given by the linearization (Fréchet derivative) of the
ODE holding for all solutions of the ODE. The condition for a symmetry to be a
variational symmetry is expressed by augmenting the linearization of the ODE through
extra determining equations. Integrating factors are solutions of the resulting augmented
system of determining equations.

For an ODE with no variational principle, we show that integrating factors are
related to adjoint-symmetries defined as solutions of the adjoint equation of the
linearization (Fréchet derivative) of the ODE, holding for all solutions of the ODE. In
particular, there are necessary and sufficient extra determining equations for an adjoint-
symmetry to be an integrating factor. This generalizes the equivalence between first
integrals and variational symmetries in the case of an ODE with a variational principle, to
an equivalence between first integrals and adjoint-symmetries that satisfy extra adjoint
invariance conditions in the case of an ODE with no variational principle.



As a consequence, adjoint-symmetries play a central role in the study of first
integrals of ODEs. Most important, an obvious extension of the calculational algorithm
for solving the symmetry-determining equation can be used to solve the determining
equation for adjoint-symmetries and the augmented system of determining equations for
integrating factors.

Integrating factors provide another method for constructively reducing the order
of an ODE through finding a first integral. This reduction of order method is
complementary to, and independent of, Lie's reduction method for second- and higher-
order ODEs. In particular, the integrating factor method is just as algorithmic and no
more computationally complex than Lie's algorithm. Moreover, with the integrating
factor approach one obtains a reduction of order in terms of the given variables in the
original ODE, unlike reduction through point symmetries where the reduced ODE
involves derived independent and dependent variables (and usually remains of the same
order as the given ODE if expressed in the original variables).

If a system of PDEs is invariant under a Lie group of point transformations, one
can find, constructively, special solutions, called similarity solutions or invariant
solutions, that are invariant under a subgroup of the full group admitted by the system.
These solutions result from solving a reduced system of differential equations with fewer
independent variables. This application of Lie groups was discovered by Lie but first
came to prominence in the late 1950s through the work of the Soviet group at
Novosibirsk, led by Ovsiannikov (1962, 1982). Invariant solutions can also be
constructed for specific boundary value problems. Here one seeks a subgroup of the full
group of a given PDE that leaves invariant the boundary curves and the conditions
imposed on them [Bluman and Cole (1974)]. Such solutions include self-similar
(automodel) solutions that can be obtained through dimensional analysis or, more
generally, from invariance under groups of scalings. Connections between invariant
solutions and separation of variables have been studied extensively by Miller (1977) and
coworkers. For ODEs, invariant solutions have particularly nice geometrical properties
and include separatrices and envelope solutions [Bluman (1990c); Dresner (1999)].



Dimensional Analysis, Modeling, and Invariance

1.1 INTRODUCTION

In this chapter, we introduce the ideas behind invariance concretely through a thorough
treatment of dimensional analysis. We show how dimensional analysis is connected to
modeling and the construction of solutions obtained through invariance for boundary
value problems for PDE:s.

Often, for a quantity of interest, one knows at most the independent quantities it
depends upon, say » in total, and the dimensions of all these » + 1 quantities. The
application of dimensional analysis usually reduces the number of essential independent
quantities. This is the starting point of modeling where the objective is to reduce
significantly the number of necessary experimental measurements. In the following
sections we will show that dimensional analysis can lead to a reduction in the number of
independent variables appearing in a boundary value problem for a PDE. Most
important, we show that for PDEs the reduction of the number of independent variables
through dimensional analysis is a special case of reduction from invariance under groups
of scaling (stretching) transformations.

1.2 DIMENSIONAL ANALYSIS: BUCKINGHAM PI-THEOREM

The basic theorem of dimensional analysis is the so-called Buckingham Pi-theorem,
attributed to the American engineering scientist Buckingham (1914, 1915a,b). General
references on the subject include those of Bridgman (1931), Barenblatt (1979, 1987,
1996), Sedov (1982), and Bluman (1983a). An historical perspective is given by Gortler
(1975). For a detailed mathematical perspective, see Curtis, Logan, and Parker (1982).

The following assumptions and conclusions of dimensional analysis constitute the
Buckingham Pi-theorem.

1.2.1 ASSUMPTIONS BEHIND DIMENSIONAL ANALYSIS

Essentially, no real problem violates the following assumptions:
(1) A quantity u is to be determined in terms of n measurable quantities (variables
and parameters) W, W,,...,.W :

u=fW,W,,...Ww,), (1.1)



(ii)

(iii)

(iv)

where f is some function of W, W,,....W,.

The quantities u, W,,W,,...,W are measured in terms of m fundamental dimensions
labeled by L,,L,,...,L,. For example, in a mechanical problem these are usually
the mechanical fundamental dimensions, L, = length, L, = mass, and L, = time.
Let Z represent any of u,W,,W,,...,W, . Then the dimension of Z, denoted by [Z],
is a product of powers of the fundamental dimensions, in particular,

[(Z]1=L"L% - Lo, (1.2)

for some real numbers ¢,,a,,...,«,, usually rational, which are called the

m?o

dimension exponents of Z. The dimension vector of Z is the column vector
0= : (1.3)

A quantity Z is said to be dimensionless if and only if [Z] = 1, i.e., if and only if all
of its dimension exponents are zero. For example, in terms of the mechanical
fundamental dimensions, the dimension vector of the energy E is given by

2
aE)=| 1
-2
Let
bli
b2i
b, = : (1.4)

b

be the dimension vector of W;, i =1,2,...,n, and let

b11 b12 bln
B= bfl bfz bf" (1.5)
bml bm2 bmn

be the m x n dimension matrix of the given problem.

For any set of fundamental dimensions, one can choose a system of units for
measuring the value of any quantity Z. A change from one system of units to
another involves a positive scaling of each fundamental dimension that in turn
induces a scaling of each quantity Z. For example, for the mechanical fundamental



dimensions, the common systems of units are mks (meter-kilogram-second), cgs
(centimeter-gram-second), or British foot-pounds. In changing from cgs to mks

units, L; is scaled by 107, L, is scaled by 107, L3 is unchanged, and hence the

value of the energy E is scaled by 10”7 . Under a change of system of units, the
value of a dimensionless quantity is unchanged, i.e., its value is invariant under an
arbitrary scaling of any fundamental dimension. Hence, it is meaningful to deem
dimensionless quantities as large or small. The last assumption of dimensional
analysis is that formula (1.1) acts as a dimensionless equation in the sense that (1.1)
is invariant under an arbitrary scaling of any fundamental dimension, i.e., (1.1) is
independent of the choice of system of units.

1.2.2  CONCLUSIONS FROM DIMENSIONAL ANALYSIS

The assumptions of the Buckingham Pi-theorem stated in Section 1.2.1 lead to the
following conclusions:
(1) Formula (1.1) can be expressed in terms of dimensionless quantities.
(i) The number of dimensionless quantities is k+ 1 =n+ 1 —r(B), where r(B) is the
rank of matrix B. Precisely k of these dimensionless quantities depend on the
measurable quantities W, W, ,..., W,.

(iii) Let
xV =", i=1.2,. 0k (1.6)

represent the k =n—r(B) linearly independent solutions x of the system

Bx=0. (1.7)
Let
a
a=| (1.8)
y

be the dimension vector of u, and let

N

y=|": (1.9)

Y



represent a solution of the system

By =—a. (1.10)
Then formula (1.1) simplifies to
=87, Ty T,)s (1.11)
where 7, 7, are dimensionless quantities given by
T=uW Wit W', (1.12a)
= WWR Wi =12, 0k, (1.12b)
and g is some function of its arguments. In particular, (1.1) becomes
u=Ww_w; W g(m, 7y, ). (1.13)

[In terms of experimental modeling, formula (1.13) is “cheaper” than formula (1.1) by
r(B) orders of magnitude.]

1.2.3 PROOF OF THE BUCKINGHAM PI-THEOREM

First of all,
[u]=L) L --- L, (1.14a)

1= L1y - Ly

m

i=12,...,n (1.14b)

Next, we use assumption (iv), and consider the invariance of (1.1) under arbitrary
scalings of the fundamental dimensions by taking each fundamental dimension in turn.
We first scale L; by letting

L* =e’L, geR (1.15)

In turn, this induces the following scalings of the measurable quantities:

&ay

u*t=e

u, (1.16a)
W* =e™W, i=12,...,n. (1.16b)

Equations (1.16a,b) happen to define a one-parameter (¢) Lie group of scaling

transformations of the n + 1 quantities u,W;,W,,...,W,, with & =0 corresponding to the
identity transformation. This group is induced by the one-parameter group of scalings
(1.15) of the fundamental dimension L;. [It is not necessary to be familiar with Lie
groups to read the rest of this chapter.]

From assumption (iv), formula (1.1) holds if and only if

ut=fW* ,Ww*, .. . W*),
1e.,



e“u= f(e™W,,e”W,,...,e™W ) forall scR. (1.17)

Then two cases need to be distinguished:

Case 1. b11= b12 == b1n= ar= 0.
Here, L, is not a fundamental dimension of the problem, or in other words, formula (1.1)
is dimensionless with respect to L.

Case I1. b11: b12 = = bln: O, ai 75 0.
Here, it follows that « = 0, a trivial situation.

Hence, it follows that b;;# 0 for some i = 1,2,...,n. Without loss of generality,
we assume bj; # 0. We define new measurable quantities

X,  =ww ™ =23, .n, (1.18)
and let
Xn= Wi, (1.19)
We choose as the new unknown
v=ull " (1.20)

The transformation given by (1.18)—(1.20) defines a one-to-one mapping of the quantities
Wi, Wa,...,W, to the quantities X,, X,,..., X, and a one-to-one mapping of the quantities
u,W,Ws,...,w, to the quantities v,X,,X,,...,X,. Consequently, formula (1.1) is
equivalent to

v=F(X.,X,,....X,), (1.21)
where F'is some function of X, X,,...,X,. Thus, the group of transformations (1.16a,b)
becomes

vE=1, (1.22a)
X* =X, i=12,...n-1, (1.22b)
X* =e™X , (1.22¢)

so that v, X, X,,...,X are invariants of (1.16ab). Moreover, the quantities

H n-1
v,X,,X,,...,X, satisfy assumption (iii), and formula (1.21) satisfies assumption (iv).
Hence,

v=F(X,X,,..,X, ,,e"X), (1.23)

n—1°

for all £eR. Consequently, F' is independent of the quantity X,. Moreover, the
measurable quantities X, X,,..., X, , are products of powers of W,W,,...,W,, and v is

n-1

a product of u and powers of W,,W,,...,W,. Thus, formula (1.1) reduces to



v=G(X,,X,..., X, ), (1.24)

where v, X, X,,..., X, , are dimensionless with respect to L; and G is some function

> n—1
of its » —1 arguments.
Continuing in turn with the other m—1 fundamental dimensions, we reduce
formula (1.1) to a dimensionless formula

=g, Tysis 7T, (1.25)
where [7]=[r,]=1, and g is some function of 7, 7,,..., 7, :

T=uW  W;>---w’, (1.26a)
and

T =W W =12, 0k, (1.26b)

n

for some real numbers y;, x;, i =1,2,...k; j=1,2,....n
Next, we show that the number of measurable dimensionless quantities is
k =n—r(B). This follows immediately since

[WW= - W] =1

if and only if

satisfies (1.7). Equation (1.7) has k = n — #(B) linearly independent solutions x" given
by (1.6). The real numbers

N
Vs
y=| .
Y
follow from setting
[UVVIJ}] I/Vlh "'Wnyn] =1,

leading to y satisfying (1.10).
Note that the proof of the Buckingham Pi-theorem makes no assumption about the
continuity of the function f, and hence of g, with respect to any of their arguments.

10



1.2.4 EXAMPLES

(1) The Atomic Explosion of 1945

Sir Geoffrey Taylor (1950) deduced the approximate energy released by the first atomic
explosion that took place in New Mexico in 1945 from the motion picture records of J.E.
Mack that were declassified in 1947. But the amount of energy released by the blast was
still classified in 1947! [Taylor carried out the analysis necessary for his deduction in
1941.] A dimensional analysis argument of Taylor’s deduction follows.

An atomic explosion is approximated by the release of a large amount of energy £
from a “point.” A consequence is an expanding spherical fireball whose edge corresponds
to a powerful shock wave. Let u = R be the radius of the shock wave. We treat R as the
unknown and assume that

R=fW, W, W, W,), (1.27)

where
W, = E 1is the energy released by the explosion,
W, =t is the elapsed time after the explosion takes place,
W, = p, 1s the initial or ambient air density,
W, = P, 1s the initial or ambient air pressure.

For this problem, we use the mechanical fundamental dimensions. The
corresponding dimension matrix is given by

2 0 -3 -1
B=|1 0 1 1] (1.28)
21 0 -2

Clearly, r(B) = 3, and hence, k =n—r(B) =4 —3 = 1. The general solution of Bx = 0 is
X1 =—2x4, xp= 4x4, x3 = —2x4, where x4 is arbitrary. Setting x4 = 1, we get the

measurable dimensionless quantity

t6 1/5
T, =P|———| . (1.29)
1 0|:E2(p0)3:|
The dimension vector of R is
1
a=[0]. (1.30)
0

The general solution of By=—a is

11



y=— +X, (1.31)

where x is the general solution of Bx = 0. Setting x = 0 in (1.31), we obtain the
dimensionless unknown

El‘z -1/5
0
Thus, from dimensional analysis, we get
El‘z 1/5
R= [,0_} g(m), (1.33)
0

where g is some function of 7.

Equivalently,
/5 q/5
Et? t°
R=|—| (P)|———=]| h (7)),
|:p0 i| ( 0) |:E2(p0)3:| q( 1)

for some function 4, (7,) = g(z)x, .

Now we assume that for some g =0, £,(0)#0
and that /,(z) is continuous at 7z, =0, ie., we are essentially assuming that

R oc t#*9 near t =0 for some g = Q. Then
1-20)/5 -(1430)/5 2+60)/5
R = B0 (p,) 1RO (R 1O hy (),

and

logR = 2+60 logt+C,
5

for some constant

1-20 1+

C= logE -

;Q log p, + Qlog R, +log 1,(0),

near 7, =0. Plotting logR versus logt for a light explosives experiment, one can
determine that Q =0 and that g(0) = 4,(0) =1. This leads to Taylor’s approximation
formula

R = A", (1.34)

where

12



A= [—J 2(0). (1.35)

Using Mack’s motion picture for the first atomic explosion, Taylor plotted 3 logioR

versus logjo? with R and ¢ measured in terms of cgs units. [See Figure 1.1 where the
motion picture data is indicated by +.] This led to an accurate estimation of the classified
energy E of the explosion!

%loglo R
A

10.5
9.5

8.5

1.5 ' ' ' L pJog,, ¢
4.0 3.0 2.0 “1.0 10

Figure 1.1

(2) An Example in Heat Conduction Illustrating the Choice of Fundamental Dimensions
Consider the standard problem of one-dimensional heat conduction in an “infinite” bar
with constant thermal properties, initially heated by a point source of heat. Let u# be the
temperature at any point of the bar. We assume that

u=Lfw, Wa, Ws, Wa, Ws, W), (1.36)
where

W, = x is the distance along the bar from the point source of heat,
W, =t is the elapsed time after the initial heating,
W, = p is the mass density of the bar,
W, = c 1s the specific heat of the bar,
W, = K 1s the thermal conductivity of the bar,

W, =Q is the strength of the heat source measured in energy units per (length

units)”.

13



It is interesting to consider the effects of dimensional analysis in simplifying
(1.36) with two different choices of fundamental dimensions.

Choice I (Dynamical Units). Here, we let L; = length, L, = mass, L3 = time, and L, =
temperature. Correspondingly, the dimension matrix is given by

10 -3 2 1 0
00 1 0 1 1

B, = . (1.37)
01 0 -2 -3 -2
00 0 -1 -1 0

Here, n(B;) = 4, and hence, the number of measurable dimensionless quantities is
k=6 —4=2. One can choose two linearly independent solutions x" and x® of
Bix =0 such that z; is linear in x and independent of ¢, and =, is linear in ¢ and
independent of x. Then

2
7 =&= pI;Q X, (1.38a)
312
pcQ
T, =T= e z. (1.38b)

where y; =y, =0, so that 7 is independent of x and 7 Consequently,

2
= K2 u. (1.39)
Oc
Hence, dimensional analysis with dynamical units reduces (1.36) to
2
c
u= %{2 F(, 1), (1.40)

where F is some function of ¢ and 7.

Choice II (Thermal Units). Motivated by the implicit assumption that in the posed
problem there is no conversion of heat energy to mechanical energy, we refine the
dynamical units by introducing a thermal unit Ls = “calories.” The corresponding
dimension matrix is given by

14



1 0 -3 0 -1 -2]
00 1 -1 0 0
B,=|0 1 0 0 -1 0| (1.41)
00 0 -1 -1 0
00 0 1 1 1]

Here, »(By) = 5, and hence, there is only one measurable dimensionless quantity. For
dimensionless quantities, it is convenient to choose

X K
m, =n=—— where x =—, (1.42a)
1 N pc
and
Kt
p=M2 (1.42b)
o
Thus, dimensional analysis with thermal units reduces (1.36) to
u=—2_Gm. (1.43)

A pcKt

where G is some function of 7.
Note that (1.43) is a special case of (1.40) with

_c S
77—\/; and F(&,7) \/;G(\/;J

[In terms of thermal units, each of the quantities & 7, K*u/Q’c is not dimensionless.]

Obviously, if it is correct, expression (1.43) is a significant simplification of
(1.40). By conducting experiments or associating a properly posed boundary value
problem to determine u, one can show that thermal units are justified. In turn, thermal
units can then be used for other heat (diffusion) problems where the governing equations
are not completely known.

EXERCISES 1.2

1. Use dimensional analysis to prove the Pythagoras theorem. [Hint: Drop a
perpendicular to the hypotenuse of a right-angle triangle and consider the areas of the
resulting three similar triangles.]

2. How would you use dimensional analysis and experimental modeling to find the time
of flight 7 of a body dropped vertically from a height 4?
(a) Model 1. Assume that 7 depends on /4, the mass m of the body, the acceleration
g due to gravity, and the shape s of the body.

15



(b) Model 11: Now take into account a resistance force proportional to the velocity v
of the body as it falls. Let k& be the constant of proportionality. How does the
extra dimensionless quantity depend on /# and m? How important is the constant &
as the values of # and m change?

3. Given that in cgs units po = 1.3x107°, and Py = 1.0x107°, use the data from
Figure 1.1 to estimate the domain of 7; and E.

4. Cooking a turkey. Assume that a turkey is composed of a uniform material with
specific heat ¢, mass density p, thermal conductivity K, and weight m. Assume that
the cooking temperature is 7. Let ¢ be the time to cook the turkey.

(a) Choose, as fundamental dimensions: length, mass, time, and temperature. Use
dimensional analysis to find ¢ in terms of ¢, p, K, m, T, and the shape of the
turkey.

(b) Repeat as for (a) and determine ¢ with heat as an added fifth fundamental
dimension. How can one justify introducing this fifth fundamental dimension? Is
this extra fundamental dimension helpful?

(c) Interpret your answer for 7 in (b) in terms of the surface area of the turkey.

(d) You should find that 7 is proportional to .

(e) Suppose one assumes that ¢ is proportional to m” for some constant p. Use
cookbook data to determine p. How good is the crude “dimensional analysis”
estimate of p =2/3?

(f) How would stuffing affect the answer?

1.3 APPLICATION OF DIMENSIONAL ANALYSIS TO PDEs

Consider the use of dimensional analysis where the quantities u,W;,W,,..., W, arise in a
boundary value problem for a PDE which has a unique solution. Then the unknown u (the
dependent variable of the PDE) is the solution of the boundary value problem, and
W\, Wa,...,W, denote all independent variables and constants appearing in the boundary
value problem. From the Buckingham Pi-theorem it follows that such a boundary value
problem can always be re-expressed in dimensionless form where 7 is a dimensionless

dependent variable and r,,7,,...,7, are dimensionless independent variables and
dimensionless constants.

Suppose W, W,,...,W, are the € independent variables and Wy 1,Wyio,...,W, are
the n — € constants appearing in the boundary value problem. Let

bll b12 o bn
B = 2 (1.44a)
b b b

ml m2 ml

be the dimension matrix of the independent variables, and let
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bl,m bl/+2 o bln
B2 _ 2,:£+1 2,:£+2 : ?n (1.44b)

b b b

m,l+1 m,l+2 mn

be the dimension matrix of the constants. The dimension matrix of the boundary value
problem is given by

B=[B,| B,]. (1.45)

A dimensionless z; quantity is called a dimensionless constant if and only if it
does not depend on the variables W1, W,,...,W;, 1.e., in (1.26b), x; =0, j=12,..L. A
dimensionless m; quantity 1s a dimensionless variable if x; # 0 for some j=1,2,..,¢(.
An important objective in applying dimensional analysis to a boundary value problem is
to reduce the number of independent variables. The rank of B, i.e., #(B;), represents the
reduction in the number of constants through dimensional analysis. Consequently, the
reduction in the number of independent variables is p = #(B) — #(B;). In particular, the
number of dimensionless measurable quantities is k =n — r(B) = [{ — p] + [(n — € — r(By)],
where £ —p of the quantities are dimensionless independent variables and »n — € — »(B;)
are dimensionless constants.

If n(B) = r(B,), then dimensional analysis reduces the given boundary value
problem to a dimensionless boundary value problem with (n — ) — (B;) dimensionless
constants. In this case the number of independent variables is not reduced. Nonetheless,
this is useful as a starting point for perturbation analysis if any dimensionless constant is
small.

If €>2,{—p=1, then the resulting solution of the boundary value problem is
called a self-similar or automodel solution.

1.3.1 EXAMPLES

(1) Source Problem for Heat Conduction
Consider the unknown temperature u of the heat conduction problem of Section 1.2.4 as
the solution u(x, ) of the boundary value problem

Oou 0’u
——K—=0, —wo<x<ow, t>0, 1.46a
P (1462
_9Q
u(x,0) == 5(x), (1.46b)
oc
lim 2(x, ) = 0. (1.46¢)

x—>t0

In (1.46b), d(x) is the Dirac delta function.
The use of dimensional analysis with dynamical units reduces (1.46a—) to
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OF O°F _

5_652_0’ —o<éE<o, t>0, (1.47a)
F(£,0)=6(5), (1.47b)
lim F(,7)=0, (1.47¢c)

with u defined in terms of F(&, 7) by (1.40) and £, v given by (1.38a,b). Consequently,
there is no essential progress in solving the boundary value problem (1.46a—c).

We now justify the use of dimensional analysis with thermal units to solve
(1.46a—c) as follows: First, note that from (1.47a,c) we have
O°F

,7)dé =0.
o (6,7)dS

Then, from this equation and (1.47b), we get the conservation law

O o o
—[LF¢nds=],

[ Fg)dé =1 validforall 7> 0.

Consequently, the substitution F(&,7)=(1/ \/;)G@ /T ), which results from using
dimensional analysis with thermal units [cf. Section 1.2.4], reduces (1.47a—c), and hence

(1.46a—c), to a boundary value problem for an ODE with independent variable 1 =&/ NG
and dependent variable G(7):

2
2d€+77d—G+G=O, —00 <7 <0, (1.48a)
dn dn
["cmyan=1, (1.48b)
G(2o0) = 0. (1.48¢)

This reduction of (1.46a—c) to a boundary value problem for an ODE is obtained much
more naturally and easily in Section 1.4 from the invariance of (1.46a—c) under a one-
parameter group of scalings of its variables.

(2) Prandtl-Blasius Problem for a Flat Plate
Consider the Prandtl boundary layer equations for flow past a semi-infinite flat plate:

2
PLLIMNCLUICY (1.49a)
ox oy oy
8_u+@=0, (1.49b)
ox oy
0 < x <o, 0 <y <oo, with boundary conditions

u(x,0)=0, (1.49¢)
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W(x,0) =0, (1.494)
u(x,0) = U, (1.49¢)
u(0,y)="U. (1.499)

In the boundary value problem (1.49a—f), x is the distance along the plate surface from its
edge (tangential coordinate), y is the distance from the plate surface (normal coordinate),
u 1is the x-component of velocity, v is the y-component of velocity, x is the kinematic
viscosity, and U is the velocity of the incident flow [Figure 1.2].

y A%
Incident —> L} u
>
flow 5
U X
N
Flat plate
Figure 1.2

Our aim is to calculate the shear at the plate (skin friction),u (x, 0) , which in turn

leads to the determination of the viscous drag on the plate.
We look at the problem of determining u (x, 0) as defined through the boundary

value problem (1.49a—f) from three analytical perspectives:

(1) Dimensional Analysis. From (1.49a—f), it follows that
% (x,0) = f(x.U, ), (1.50)
oy

with the unknown function f to be determined in terms of measurable quantities x, U, «.

The fundamental dimensions are L = length and 7 = time. Then, with respect to these
fundamental dimensions, one has

[%(x, 0)} _7, (1.51a)
Y
[x]=L, (1.51b)
[U]=LT", (1.51¢)
[x] =1’T". (1.51d)

Consequently, »(B) =2. Dimensionless quantities are given by
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T, =—, (1.52a)
K
and
K Ou
T=——(x,0). 1.52b
U oy (x, 0) ( )
Hence, dimensional analysis leads to
2
%mm=ig@ﬂ, (1.53)
oy K K

where g is an unknown function of Ux/ k.

(11) Scalings of Quantities Followed by Dimensional Analysis. Consider a linear
transformation of the variables of the boundary value problem (1.49a—f) given by x = aX,
y=>bY,u=UQ, v =cR, where a, b, ¢ are undetermined positive constants, U is the
velocity of the incident flow, and X, ¥, O, R represent new (dimensional) independent
and dependent variables: Q = O(X, Y), R =R(X, Y);

u(x,y) = UQX, Y) = UQ £, 2|, v(x,) = cR(X, ¥) = cR| X, |.
a’ b a’ b
Consequently,
ou Uo
% x,0= L% (x, 0), (1.54)
oy %
and the boundary value problem (1.49a—f) transforms to
U 00 Q K 0°0
, 1.55a
QaX b oY b’ ay> ( )
VR, cR_, (1.55b)
aoX boY
0 <X <00, 0 <Y < oo, with
0, 0) =0, (1.55¢)
R(X, 0)=0, (1.55d)
OX, ©) =1, (1.55¢)
00, )=1. (1.551)
From the form of (1.55a,b), it is convenient to choose a, b, ¢ so that
U_ce_x
a b b
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Hence, we set ¢ =1, b= x, a= Uxk. As aresult, (1.55a,b) become cleared of constants:

0 R0 _0°0 (1.56a)

QaX oy or®’
aQ =0, (1.56b)
6X aY
0<X<oo,0<Y<oo. Moreover,
o (+.0) _Ea_Q(X )_Ea_Q(L, 0} (1.57)
oy oY \ Uk

Since Q(X, Y) results from the solution of (1.56a,b), (1.55¢—f), we have
aQ (X 0) = h(X), (1.58)

for some function #(X). To determine 4(X), we apply dimensional analysis to (1.58):

[Zﬂ LT, (1.59a)
[X]=L"T" (1.59b)

Hence, it is easy to see that (1.58) reduces to
h(X)=oX"?, (1.60)

for some fixed dimensionless constant o to be determined. Thus, (1.53) simplifies
further to g(Ux/«x) = o(Ux/x)™"?, so that

a—“(x, 0) = a[U—3j . (1.61)
y

XK

(ii1) Further Use of Dimensional Analysis on the Full Boundary Value Problem. We
now apply dimensional analysis to the boundary value problem (1.56a,b), (1.55¢-f), to
reduce it to a boundary value problem for an ODE. It is convenient (but not necessary) to
introduce a potential (stream function) w(X,Y) from the form of (1.56b).

Let Q=0w/0Y,R=—-0w/0X. Then in terms of the single dependent variable
v, the boundary value problem (1.56a,b), (1.55¢—f), becomes
2 2 3
vy oy _owow v (1.62a)

oY oXoY oX oY* oy’’’

0<X <, 0<Y <oo, with

oy
—(X,0)=0, 1.62b
aY( ) (1.62b)
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a_W(X, 0)=0, (1.62¢)

oX
oy
a_Y(X’ ) =1, (1.62d)
aa—"y’(o, Y)=1. (1.62¢)
Moreover, from (1.58) and (1.60), we get
2
aQ (X 0) = ng (X,0)=cX"". (1.63)

We now use dimensional analysis to simplify w(X, ¥). Since the boundary value problem
(1.62a—e) has no constants, we have

w=F(X, Y), (1.64)
for some unknown function F. We see that

[y]=[1=L"T, (1.652)

[X]=L"T"> (1.65b)

Consequently, there is only one measurable dimensionless quantity. It is convenient to
choose as dimensionless quantities

T, =77:%, (1.66a)
and
- 1.66b
=y ( )
Hence,
w(X,Y)=VXG), (1.67)

where G(7) solves a boundary value problem for an ODE that is obtained by substituting
(1.67) into (1.62a—e). Moreover, from (1.67) and (1.63), it follows that

o =G"(0). (1.68)
[A prime denotes differentiation with respect to #.] Note that
51// | v-l/2 /
=2 X °[G—-nG'],
oY G'(n), =2 [ nG']
2 3 2
a V/ — X_I/ZG", 8 V/ — X_IGW, a V/ =%X_1[—77G"],

oY? oY? oX oY

0<X<mw,0<Y<ow leadsto 0 <y <oo; Y=0 leadsto #=0; Y — o leads to # — oo;
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and X =0 leads to # — . Correspondingly, the boundary value problem (1.62a—¢)
reduces to solving a third-order ODE, known as the Blasius equation, for G(n):

3 2
2dG3+Gd(2;:O, 0<ny<omo, (1.69a)
dn dn
with boundary conditions
G0)=G'(0)=0, G'(o)=1. (1.69b)

The aim is to find o = G"(0).

A numerical procedure for solving the boundary value problem (1.69a,b) is the
shooting method where one considers the auxiliary initial value problem

3 2

Zdil+Hd];I:O, 0<z<om, (1.70a)
dz dz

H0)=H'(0)=0, H"(0)= 4, (1.70b)

for some initial guess 4. One integrates out the initial value problem (1.70a,b) and de-
termines that H'(«) = B, for some number B = B(A4). One continues this process with
different values of 4 until B is close enough to 1.

We now show that the invariance of (1.70a) and the initial conditions
H(0)=H'(0) =0 under a one-parameter family of scalings (one-parameter Lie group of
scaling transformations) lead to the determination of ¢ with only one shooting.

The transformation

2= (1.71a)
a

H(z) = aG(n), (1.71b)

where a > 0 is an arbitrary constant, maps (1.70a,b) to (1.69a) with initial conditions
G0)=G'(0)=0, G"(0)= 4 (1.72)

a
Moreover, H'(0) = B implies that

G'(0) = ﬁz (1.73)

Hence, we pick a so that o’ =B, 1e.,a= \/E Then

(1.74)

From the numerical solution of the initial value problem (1.70a,b) for any particular value
of A, one can show that

o=0332.... (1.75)
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EXERCISES 1.3

1.

For the heat conduction problem (1.46a—c), show that »(B,) = 4 for both dynamical
and thermal units.

Derive (1.47a—c).
Derive (1.48a—c).

The boundary value problem (1.46a—), in effect, has only two constants: k¥ = K/ pc
(diffusivity) and 4 = Q/ pc. Use dimensional analysis with dynamical units to reduce
(1.46a—), where now Wy =x, Wo=t, Ws=x, Wy = A.

. Consider the Rayleigh flow problem [see Schlichting (1955)], where an infinite flat

plate is immersed in an incompressible fluid at rest. The plate is instantaneously
accelerated so that it moves parallel to itself with constant velocity U. Let u be the
fluid velocity in the direction of U (x-direction). Let the y-direction be the direction
normal to the plate. The situation is illustrated in Figure 1.3.

y

—_—> U
Fluid flow

3 X
_ ]

<>
Flat plate

Figure 1.3

From symmetry considerations, one can show that the Navier—Stokes equations
governing this problem reduce to the viscous diffusion equation

%:VZTZZ, 0<ft<w,0<y<oo, v =const, (1.76a)
with boundary conditions
u(y, 0) =0, (1.76b)
u(0, )= U, (1.76¢)
u(oo, )= 0. (1.76d)

(a) Use dimensional analysis to simplify the boundary value problem (1.76a—d).
(b) Use scalings of quantities followed by dimensional analysis to further simplify
(1.76a—d). Find the explicit self-similar solution u(y, ¢) of (1.76a—d).
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1.4  GENERALIZATION OF DIMENSIONAL ANALYSIS: INVARIANCE OF
PDEs UNDER SCALINGS OF VARIABLES

In both examples of Section 1.3.1, the use of dimensional analysis to reduce a boundary
value problem for a PDE to a boundary value problem for an ODE is rather cumbersome.
For the heat conduction problem, the use of dimensional analysis depends on either
making the right choice of fundamental dimensions (thermal units) or combining
effectively the constants before using dynamical units [cf. Exercise 1.3-4]. For the
Prandtl-Blasius problem we used scaled variables before applying dimensional analysis.

A much easier way to accomplish such a reduction for a boundary value problem
is to consider the invariance property of the boundary value problem under a one-
parameter family of scalings (one-parameter Lie group of scaling transformations) where
its variables are scaled but the constants of the boundary value problem are not scaled. If
the boundary value problem is invariant under such a family of scaling transformations,
then the number of independent variables is reduced constructively by one. We show that
if, for some choice of fundamental dimensions, dimensional analysis leads to a reduction
of the number of independent variables of a boundary value problem, then such a
reduction is always possible through invariance of the boundary value problem under
scalings applied strictly to its variables. [Recall that dimensional analysis involves
scalings of both variables and constants.] Moreover, as will be shown, there exist
boundary value problems for which the number of independent variables is reduced from
invariance under a one-parameter family of scalings of their variables but the number of
independent variables is not reduced from the use of dimensional analysis for any known
choice of fundamental dimensions. [One could argue that this is a way of discovering
new sets of fundamental dimensions!] Hence, for the purpose of reducing the number of
independent variables of a boundary value problem, the invariance of a boundary value
problem under a one-parameter family of scalings of its variables is a generalization of
dimensional analysis.

Zel’dovich (1956) [see also Barenblatt and Zel’dovich (1972) and Barenblatt
(1979, 1987, 1996)] calls a self-similar solution of the first kind a solution of a boundary
value problem obtained by reduction through dimensional analysis, and calls a self-
similar solution of the second kind a solution to a boundary value problem obtained by
reduction through invariance under scalings of the variables when this reduction is not
possible through dimensional analysis. The two examples of Section 1.3.1 show that
these distinctions are somewhat blurred.

Before proving a general theorem relating dimensional analysis and invariance
under scalings of variables, we consider the invariance property of the heat conduction
problem (1.46a—c) under scalings of its variables.

Consider the family of scaling transformations

x* = ax, (1.77a)
t*= [, (1.77b)
u* =y, (1.77¢)

where a, 5, y are arbitrary positive constants.
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Definition 1.4-1. A transformation of the form (1.77a—c) leaves invariant the boundary
value problem (1.46a—c) (is admitted by the boundary value problem (1.46a—c)) if and
only if for any solution u = @(x, ) of (1.46a—c), it follows that

v(x*, %) =u* =y =y0O(x, 1) (1.78)
solves the boundary value problem
2

> _k 8V2=0, — < x* <o, 5> 0, (1.79a)

ot* Oox *
v(x*,0) = 9 o(x*), (1.79b)

o

lim v(x*, #*)=0. (1.79¢)

Clearly, the domain —oo < x* <0, #*> 0, corresponds to the domain —oo <x <o, >0;
t*=0 corresponds to #=0; and x* — too corresponds to x — Foo. Hence, (1.77a—<)
leaves invariant the boundary of the boundary value problem (1.46a—c).

Lemma 1.4-1. If a scaling (1.77a—c) leaves invariant the boundary value problem
(1.46a—) and u=0(x,t) solves (1.46a—c), then u=yO(x/a,t/ ) also solves

(1.46a—c).
Proof. Left to Exercise 1.4-1. O

In order that (1.77a—c) leaves invariant the boundary value problem (1.46a-c), it is
sufficient that each of the three equations of (1.46a—c) is separately invariant. Invariance
of (1.46a) means that u = O(x, 7) solves (1.46a) if and only if v = y®(x, ) solves (1.79a).
This leads to f# = . Invariance of (1.46b,c) similarly leads to y = 1/a. Hence, the one-
parameter (o > 0) family of scaling transformations

x*=qax, (1.80a)
t*=a’t, (1.80b)
w*=a lu, (1.80c)

is admitted by (1.46a—c).
Clearly, if u = O(x, #) solves (l.46a—c), then

V(Xk, 1%) = O(x*, *) = O(ax, 0*f) (1.81)

solves (1.79a—c). Hence, the transformation (1.80a—c) maps any solution v = ®(x*, *) of
(1.79a—c) to the solution

v=a"'0(x, 1) =a 'O(a'x*, a 1)
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of (1.79a—c) or, equivalently, maps any solution u = O(x, #) of (1.46a—c) to the solution
u=a'0O(a'x,a’t) of (1.46a—c).

The solution of (1.46a—c), and hence of (1.79a—c), is unique. Consequently, from
this uniqueness property, the solution u = ®(x, 7) of (1.46a—c) must satisfy the functional
equation

O(x*, *) = 'O (x, £). (1.82)

Such a solution of a PDE, arising from invariance under a one-parameter Lie group of
transformations, is called a similarity or invariant solution. The functional equation
(1.82), satisfied by the invariant solution, is called the invariant surface condition. An
invariant solution arising from invariance under a one-parameter Lie group of scalings
such as (1.80a—c) is also called a self-similar or automodel solution.

From (1.80a,b), the invariant surface condition (1.82) satisfied by O(x, #) is given
by

O(ax, a’t) = a 'O(x, t). (1.83)
In order to solve (1.83), let z = x/A/tand O, ) = (1/\/;)¢(z, t). Then in terms of
z, t, #(z,1), (1.83) becomes
1 #(z.at)

a 2
N $(z,1) —ﬁqﬁ(z,a 1) = T

Hence, ¢ (z, f) satisfies the functional equation

a®(ax,a’t) = O(x,t) =

#(z,t) = ¢(z,a’t) forany a > 0. (1.84)

Thus, ¢ (z, f) does not depend on ¢. This leads to the invariant form (similarity form)

u=0(x,1) =LF(Z) (1.85)
t

-

for the solution of the boundary value problem (1.46a—c); z is called the similarity
variable. The substitution of (1.85) into (1.46a—c) leads to a boundary value problem for
an ordinary differential equation with unknown F(z). The details are left to
Exercise 1.4-2.

Now consider the following theorem that connects dimensional analysis and
invariance under scalings of variables:

Theorem 1.4-1. If the number of independent variables appearing in a boundary value
problem for a PDE can be reduced by p through dimensional analysis, then the number
of variables can be reduced by p through invariance of the boundary value problem
under a p-parameter family of scaling transformations of its variables.

Proof. Consider the dimension matrices B, B, and B, defined by (1.44a,b) and (1.45).
Through dimensional analysis the number of independent variables of the given boundary
value problem is reduced by p = r(B) — (B5).

An arbitrary scaling of any fundamental dimension is represented by the m-
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parameter family of scaling transformations
L* =e’'L;, j=1.2,.,m, (1.86)
where ¢,,¢,,...,&, are arbitrary real numbers. Let & be the row vector
e=[g,&,...,6,] (1.87)

The scaling (1.86) induces a scaling of the value of each measurable quantity W;:

i=12,..,n, (1.88)

where (¢B); is the ith component of the n-component row vector éB. The value of u
scales to

Z'l £j4j
u*=e="

u. (1.89)

From assumption (iv) of the Buckingham Pi-theorem, the family of scaling
transformations (1.88), (1.89), induced by the m-parameter family of scalings of the
fundamental dimensions (1.86), leaves invariant the given boundary value problem. Our
aim 1is to find the number of essential parameters in the subfamily of transformations of
the form (1.88), (1.89) for which the constants are all invariant, i.e., we aim to find the
dimension of the vector space of all vectors ¢ =[¢g,,¢,,..., &, ] such that

w* =w, i=Il+11+2,..,n, (1.90a)
and
w*, #W, forsome j=12,.,1 (1.90b)

Equation (1.90a) holds if and only if
eB, =0. (1.91)

The number of essential parameters is the number of linearly independent solutions & of
(1.91) such that eéB; # 0.

It is helpful to introduce a few definitions and some notation:

Let A be a matrix linear transformation acting on vector space V such that if
v €V is a row vector, then VA is the action of A on v. The null space of A 1is the
vector space Vi, ={e¢€V :eA =0}, the range space of A is the vector space

Vin, =1z z=¢A forsome £ eV}, and dim V' is the dimension of the vector space V.
It follows that

dimV =dimV,, +dimV,, .

Consider the matrices B, By, and B, defined by (1.44a,b), (1.45). Let ¥ be R”,
where m is the number of rows of each of these three matrices, so that dim J = m. Then

dim Vg, is the number of linearly independent solutions ¢ of the set of equations ¢éB = 0,
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and dimV; , is the number of linearly independent solutions & of €B,= 0. It follows that

(By)y
dimVyg ), =m-r(B,), dmVyg m—-r(B)=m-r(B,)-p.
Since Vg ) s, =V, » it follows that
dimVe, =dimVy,) o), +dimVe, o, =dimVe +dimVy ) ) -
Hence, dimV ) s, =p. But dimVg, g, is the number of linearly independent
solutions & of the system &B, = 0 such that ¢éB; # 0. Hence, the number of essential
parameters is p, completing the proof of the theorem. i

EXERCISES 1.4

1. Prove Lemma 1.4-1.

2. Set up the boundary value problem for F(z) as defined by (1.85). Put this boundary
value problem in dimensionless form using:
(a) dynamical units; and
(b) thermal units. Explain.

3. Consider diffusion in a half-space with a concentration-dependent diffusion
coefficient which is directly proportional to the concentration of a substance C(x, 7).
Initially, and far from the front face x = 0, the concentration is assumed to be zero.
The concentration is fixed on the front face. The aim is to find the concentration flux
on the front face, C_ (0,7). In special units, C(x, ?) satisfies the boundary value

problem
a—C:E(Ca—C), 0<x<o,0<t<o, (1.92a)
ot Ox ox
where
C(x,0) =C(0, 1) =0, C(0,7)=A. (1.92b)

(a) Exploit similarity to determine C_ (0,7) as effectively as possible.

(b) Use scaling invariance to reduce the boundary value problem (1.92a,b) to a
boundary value problem for an ODE.
(c) Discuss a numerical procedure to determine C_(0,7) based on the scaling property

of the reduced boundary value problem derived in (b).

4. For boundary layer flow over a semi-infinite wedge at zero angle of attack, the
governing PDEs are given by
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ou ou dUu 0’u

u—+v_—-UXx)—=v—,

ox 0oy dx oy
@+@=0, 0<x<omw, 0<y<om,
ox Oy

with boundary conditions u(x, 0) = v(x, 0) = 0, lim u(x, y) = U(x), U(x) = Ax, where
y—>o©

A, [ are constants with /= /(2 - f) corresponding to the opening angle zf of the

semi-infinite wedge. In this problem, x is the distance from the leading edge on the
wedge surface and y is the distance from the wedge surface [Figure 1.4].

Figure 1.4

As for the Prandtl boundary layer equations (1.49a,b), introduce a stream function
w(x, ). Use scaling invariance to reduce the given problem to a boundary value
problem for an ODE. Choose coordinates so that the Blasius equation arises if /= 0.

The following boundary value problem for a nonlinear diffusion equation arises from
a biphasic continuum model of soft tissue [Holmes (1984)]:

2
a—Z—K(a—uja—u:O, O<x<oo, 0<t<o0,
ox ox ) ot

where K is a function of Ou/0Ox, with boundary conditions Z—u (0,7) =-1,
X
u(o, t) =u(x,0)=0. Reduce this problem to a boundary value problem for an ODE.

Use invariance under scalings of the variables to solve the Rayleigh flow problem
(1.76a—d).

Consider again the source problem for heat conduction in terms of the dimensionless
form arising from dynamical units:
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———=0, —w<x<o, t>0,

u(x,0)=0(x),

lirP u(x,t)=0.

X—>T0

The use of scaling invariance with respect to the variables (1.80a—c) leads to the

similarity form for the solution, u = (1/+/£)G(x//?).

(a) Show that this problem is invariant under the one-parameter () family of
transformations

2
x¥=x— Bt t*¥=t, w*=uye'IFVII (1.93)

for any constant f, — oo < <oo.

(b) Check that 7 and ue”'* are invariants of these transformations.
(c) Show that these transformations lead to the similarity form

u(x,t)=H(@t)=e"'". (1.94)
Hence show that invariance under the scalings (1.80a—c) and the transformations
(1.93) lead to the well-known fundamental solution

x>/ 41

u(x,t) = e

1
N4t

1.5  DISCUSSION

Dimensional analysis is necessary for ascertaining fundamental dimensions and the
consequent essential quantities that arise in a real problem in order to design proper
model experiments. If a given problem can be described in terms of a boundary value
problem for a system of PDEs then dimensional analysis may lead to a reduction in the
number of independent variables. Moreover, if such a reduction exists, it can always be
accomplished by considering the invariance properties of the boundary value problem
under scaling transformations applied only to its variables.

As will be seen in Chapter 4, the invariance properties of PDEs (or, more
particularly, boundary value problems) under scalings of variables can be generalized to
the study of the invariance properties of PDEs under arbitrary one-parameter Lie groups
of point transformations of their variables. Moreover, for a given differential equation,
such transformations can be found algorithmically. [For example, one can easily deduce
transformations (1.93) and (1.94).] This follows from the properties of such
transformations and, in particular, their characterization by infinitesimal generators [see
Chapter 2].
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References on dimensional analysis specific to various fields include: de Jong
(1967) [economics]; Sedov (1982), Birkhoft (1950), Barenblatt (1979, 1987, 1996), and
Zierep (1971) [mechanics, elasticity, and hydrodynamics]; Venikov (1969) [electrical
engineering]; Taylor (1974) [mechanical engineering]; Becker (1976) [chemical
engineering]; Haynes (1982) [geography]; Kurth (1972) [astrophysics]; Murota (1985)
[systems analysis]; Schepartz (1980) and Barenblatt (1987) [biomedical sciences].
Examples of dimensional analysis and scaling invariance applied to boundary value
problems appear in Sedov (1982), Birkhoff (1950), Barenblatt (1979, 1996), Dresner
(1983, 1999), Hansen (1964), Zierep (1971), and Seshadri and Na (1985). Examples
which use scalings to convert boundary value problems to initial value problems for
ODE:s appear in Klamkin (1962), Na (1967, 1979), Dresner (1983, 1999), and Seshadri
and Na (1985). Fractals are connected with self-similarity [Mandelbrot (1977, 1982)].
There are important connections between self-similarity, asymptotics, and
renormalization groups [Barenblatt (1996); Goldenfeld (1992); Cole and Wagner (1996)].
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Lie Groups of Transformations and
Infinitesimal Transformations

2.1 INTRODUCTION

In dimensional analysis, the scalings of the fundamental dimensions (1.86), the induced
scalings of the measurable quantities (1.88), the induced scalings of all quantities (1.88),
(1.89), and the induced scalings preserving all constants (1.88), (1.91), are all examples
of Lie groups of transformations. From the point of view of finding solutions to partial
differential equations (PDEs), a general theory of Lie groups of transformations is
unnecessary if transformations are restricted to scalings, translations, or rotations. How-
ever, it turns out that much wider classes of transformations can leave invariant PDEs.
For the use and discovery of such transformations, the infinitesimal characterization of a
Lie group of transformations is crucial.

Sophus Lie introduced the notion of a continuous group of transformations to put
order to the hodgepodge of techniques for solving ordinary differential equations (ODEs).
He was motivated by the lectures of his fellow Norwegian, Sylow, on the works of Abel
and Galois on solving algebraic equations.

Lie groups of transformations are characterized by infinitesimal generators. Lie
gave an algorithm to find all infinitesimal generators of point transformations and, more
generally, contact transformations admitted by a given differential equation.
Significantly, for a given differential equation, the basic applications of Lie groups of
transformations only require knowledge of the admitted infinitesimal generators.

A point transformation acts on the space of independent and dependent variables
of a differential equation. A Lie group of point transformations extends naturally to act
on a space that includes the derivatives of dependent variables to any finite order. The
functions appearing in the infinitesimal generator of a Lie group of transformations
satisfy an overdetermined system of linear differential equations. These functions only
depend on independent and dependent variables in the case of point transformations and
include dependence on first derivatives of dependent variables in the case of contact
transformations. More generally, the method of calculation, as well as many applications
of infinitesimal generators for point and contact transformations, extend to infinitesimal
generators of higher-order local transformations which allow the functions in their
generators to depend on a finite number of higher-order derivatives.

A Lie group of transformations admitted by a differential equation corresponds to
a mapping of each of its solutions to another solution of the same differential equation.
There are an infinite number of ways of representing such a mapping by allowing an
arbitrary change of independent variables. The representation is unique if the
independent variables are kept fixed. This point of view is essential when one extends
Lie’s algorithm to the computation and use of higher-order local transformations
admitted by differential equations as well as when one extends Lie’s work on integrating
factors for first-order ODEs to higher-order ODEs.



2.2 LIE GROUP OF TRANSFORMATIONS

We start with the definition of a group, then consider a group of transformations and,
more specifically, a one-parameter Lie group of transformations.  Here, the

transformations act on R".

2.2.1 GROUPS

Definition 2.2.1-1. A group G is a set of elements with a law of composition ¢ between

elements satisfying the following axioms:
(1) Closure property. For any elements a and b of G, ¢ (a, b) is an element of G.

(1) Associative property. For any elements a, b, ¢ of G:

¢(a, ¢(b,c)) = ¢(4(a, b), c).

(111) Identity element. There exists a unique identity element e of G such that for any
element a of G:

p(a,e)= ¢g(e,a)=a.

(iv) Inverse element. For any element a of G there exists a unique inverse element
a”'in G such that

#a,a”’) = f(a”',a) =e.

Definition 2.2.1-2. A group G is Abelian if ¢ (a, b) = ¢ (b, a) holds for all elements a
and b in G.

Definition 2.2.1-3. A subgroup of G is a group formed by a subset of elements of G with
the same law of composition ¢ .

2.2.2 EXAMPLES OF GROUPS

(1) G is the set of all integers with ¢ (a, b)=a+b. Here, e=0and a' = -a.

(2) G is the set of all positive reals with ¢ (a, b)=a - b. Here,e=1and a ' = 1/a.

(3) G is the set of symmetries (transformations) which leave invariant an equilateral
triangle ABC with both faces painted in the same color [Figure 2.1].
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Figure 2.1

Here, the group can be represented by all permutations of the vertices 4, B, C.
The identity element e = (1,2,3) corresponds to vertex 1 located at A, vertex 2 at B, and
vertex 3 at C [Figure 2.2(a)]. The rotation element R = (3,1,2) corresponds to a
counterclockwise rotation of 27/3 radians of the configuration of Figure 2.1 about an axis
coming out of the page through the center of the triangle [Figure 2.2(b)]. As a
consequence vertex 3 is located at A, vertex 1 at B, and vertex 2 at C. The flip element
r = (3,2,1) represents the rotation of the configuration of Figure 2.1 about the indicated
perpendicular by 7z radians. As a consequence, vertex 3 is located at 4, vertex 2 at B,
and vertex 1 at C [Figure 2.2(¢c)].

3 2 1

(a) (b) (©)

(d)

Figure 2.2. Symmetry group of an equilateral triangle: (a) identity, e; (b) rotation by
27/3, R; (c) flip, r; (d) rotation by 47/3, ¢ (R,R); (e) rotation by 2z/3 followed by flip,
@ (R,r); and (f) flip followed by rotation by 27/3, ¢ (r,R).

The element ¢ (R,R) = R = (2,3,1) represents a counterclockwise rotation of
47/3 radians of the configuration in Figure 2.1 [Figure 2.2(d)]. It is the composition of a
counterclockwise rotation of 27/3 radians followed by another counterclockwise rotation
of 2z/3 radians. The composition element ¢(Ry») = rR = (2,1,3) represents a
counterclockwise rotation of 2z/3 radians followed by a flip [Figure 2.2(e)]. The
composition element ¢(,R) = Rr = (1,3,2) represents a flip followed by a
counterclockwise rotation of 27/3 radians [Figure 2.2(f)]. It is left to Exercise 2.2—1 to
prove that the symmetries of an equilateral triangle form a group with six elements. Note
that this group is not Abelian since ¢ (r,R) # ¢ (R,r).
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2.2.3 GROUP OF TRANSFORMATIONS

Definition 2.2.3-1. Let x=(x,,x,,...,x,) lie in region DcR". The set of
transformations

x*=X(x;¢), 2.1)

defined for each x in D and parameter ¢ in set S ¢ R, with ¢(¢,d) defining a law of

composition of parameters £ and ¢ in S, forms a one-parameter group of transformations
on D if the following hold:
(1) For each ¢ in § the transformations are one-to-one onto D. [Hence, x* lies in D.]
(i) S with the law of composition ¢ forms a group G.

(ii1) Foreach xin D, x*=x when ¢ = g, corresponds to the identity e, i.¢e.,
X(x;6)) =X.
(v) If x* =X(x;¢), x** = X(x*; 0), then
x** =X(x; ¢(¢, 9)).

2.2.4 ONE-PARAMETER LIE GROUP OF TRANSFORMATIONS

Definition 2.2.4-1. A one-parameter group of transformations defines a one-parameter
Lie group of transformations if, in addition to satisfying axioms (i)—(iv) of Definition
2.2.3-1, the following hold:
(v) € is a continuous parameter, i.e., S is an interval in R. Without loss of generality,
& =0 corresponds to the identity element e.
(vi) X is infinitely differentiable with respect to x in D and an analytic function of ¢
in S.
(vii) @(g, 0) is an analytic function of ¢ and J, €€ S, d € S.

If one thinks of & as a time variable and x as spatial variables, then a one-
parameter Lie group of transformations, in effect, defines a stationary flow. This will be
shown in Section 2.3.1 but can now be partially seen as follows: Let

X(x; ¢) (2.2)

define the evolution of x over all elements ¢ € S. This defines a curve y, [Figure 2.3(a)].

Now let y=X(x;&) represent a point on p. Then x**=X(y;0)
= X(x; ¢#(&, 0)) must lie on y,. Note that the self-intersecting curve y, [Figure 2.3(b)]
cannot represent the evolution defined by (2.2) [Exercise 2.2-2].
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71 7,

(a) (b)

Figure 2.3

2.2.5 EXAMPLES OF ONE-PARAMETER LIE GROUPS OF
TRANSFORMATIONS

(1) Group of Translations in the Plane
Consider the group of translations

x¥=x+g,
y¥=y, geR.

Here, #(g,0)=¢+06. This group corresponds to motions parallel to the x-axis.
[In Figure 2.4, the curve y represents the evolution X(X; €).]

y
A
/4
Xo
»X
Figure 2.4
(2) Group of Scalings in the Plane
Consider the group of scalings
x*=ax,

yi=a’y, 0<a<ow.

Here ¢(a, f)=af, and the identity element corresponds to « =1. This group of
transformations can also be reparametrized in terms of ¢ = —1:

x*=(1+¢&)x, (2.3a)

yE=(1+¢&)y, —-l<g<oo, (2.3b)
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so that the identity element corresponds to & =0 with the law of composition of param-
eters given by

#(g,0)=¢€+0+¢&0. (2.4)

EXERCISES 2.2

1.

23

Show that the symmetries of an equilateral triangle, with both faces painted in the
same color, form a group with six elements. What happens if the faces are painted in
different colors?

Show that the curve y, of Figure 2.3(b) cannot represent the transformations (2.2).
Show that the transformations

x*=x+2e¢, (2.5a)
Y =y+3¢, ceR, (x,y)eR?, (2.5b)

define a Lie group of transformations. Trace out the evolution curves of the points
(0, 0) and (1, 0) under this group. Explain the geometrical situation of the resulting
curves.

Show that the set S={¢:-1<g&<oo} with the law of composition
#(g,0) =€+ 0 +¢&o defines a group.

Trace out the evolution curves of the points (1, 0), (1, 1), and (0, 0) for the Lie group
of transformations (2.3a,b).

Show that the transformations (1.93) define a one-parameter Lie group of
transformations acting on:

(a) (x, 7)-space; and

(b) (x, ¢, u)-space.

Show whether or not each of the following one-parameter (¢) families of transforma-
tions of the plane defines a Lie group of transformations:

(a) x*=x—-¢y, y*=y+ex;

(b) y*=x+¢&’, y*=y; and

O

() x*=x+¢, y*= .
xX+¢

INFINITESIMAL TRANSFORMATIONS

Consider a one-parameter (&) Lie group of transformations

X*=X(x;¢) (2.6)
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with the identity &= 0 and law of composition ¢. Expanding (2.6) about &= 0, in some
neighborhood of &= 0, we get

o |, og o o .
2.7)
Let
) = o) (2.8)
& &=0

The transformation x +&&€(x) is called the infinitesimal transformation of the Lie group
of transformations (2.6). The components of §(x) are called the infinitesimals of (2.6).

2.3.1 FIRST FUNDAMENTAL THEOREM OF LIE
The following lemma is useful:

Lemma 2.3.1-1. The one-parameter (&) Lie group of transformations (2.6) satisfies the
relation

X(x; £+ Ag) = X(X(x; &); p(e7", &+ Ag)). (2.9)

Proof.
X(X(x; ), (&7, £+ Ag)) = X(X; f(e, p(e7', £ + Ag)))
= X(x; ¢(p(e, £7), £+ Ag))
= X(x; #(0, € + A¢g))
=X(x; ¢ + Ag). O

Theorem 2.3.1-1 (First Fundamental Theorem of Lie). There exists a parametrization
7(&) such that the Lie group of transformations (2.6) is equivalent to the solution of an

initial value problem for a system of first-order ODEs given by

*
KT _(x¥), (2.10a)
dr
with
x*=x  when 7=0. (2.10b)
In particular,
(&) = j:r(g') de’, 2.11)
where
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r(e) = 2.0 (2.12)
ob (a,b)=(7" &)

and

ro)=1. (2.13)
[&7" denotes the inverse element to ¢.]
Proof. First we show that (2.6) leads to (2.10a,b), (2.11), and (2.12). Expand the left-
hand side of (2.9) in a power series in Ag about Ag = 0, so that

oX(x;¢€)

X(x; £+ Ag)=x*+ Ag +O((Ag)?), (2.14)

where x* is given by (2.6). Then, expanding ¢(¢', &+ Ag) in a power series in Ag
about A¢ =0, we have

pe™, e+ As)=g(e7", &) +T(e)Ac + O((Ag)?) =T'(e)As + O((Ag)*), (2.15)
where I'(¢) is defined by (2.12). Consequently, after expanding the right-hand side of
(2.9) in a power series in A about Ag =0, we obtain

X(x; € + Ag) = X(x*; (e, £ + Ag)) = X(x*; T'(e)Ag + O((Ag)?))

= X(x*;0) + AJ(E)(M

j +0((Ae)%)

= x*+T(£)E(x*) Ae + O((Ag)?). (2.16)

0=0

Equating (2.14) and (2.16), we see that x* = X(x;¢) satisfies the initial value problem for
the system of differential equations given by

*
K (e)E) (2.17a)
de

with

x¥*=x at ¢=0. (2.17b)

From (2.7), it follows that I'(0)=1. The parametrization 7(&)= I:F(g’) de'

leads to (2.10a,b).
Since 0&(x)/0Ox;, 1is continuous, i=12,...,n, then from the existence and

uniqueness theorem for an initial value problem for a system of first-order differential
equations [Coddington (1961)], it follows that the solution of (2.10a,b), and hence
(2.17a,b), exists and is unique. This solution must be (2.6), completing the proof of Lie’s
First Fundamental Theorem. O

Lie’s First Fundamental Theorem shows that the infinitesimal transformation
contains the essential information determining a one-parameter Lie group of
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transformations.  Since the system of first-order ODEs (2.10a) is invariant under
translations in 7, one can always reparameterize a given group in terms of a parameter t
such that for parameter values 7, and 7,, the law of composition becomes ¢ (7, 7,) = 7, + .

Lie’s First Fundamental Theorem also shows that a one-parameter Lie group of
transformations (2.6) defines a stationary flow given by (2.10a,b) and, moreover, that any
stationary flow (2.10a,b) defines a one-parameter Lie group of transformations.

2.3.2 EXAMPLES ILLUSTRATING LIE’S FIRST FUNDAMENTAL THEOREM

(1) Group of Translations in the Plane
For the group of translations

x*=x+e¢, (2.18a)
yE=y, (2.18b)

the law of composition is given by ¢ (a, b)=a + b, and & ' =—&. Then ¢(a,b)/ b =1,
and hence, I'(g)=1.

Let x = (x, y). Then the group (2.18a,b) becomes X(x;&) = (x +&,y). Thus,
oX(x;&)/ 0e=(1,0). Hence,

oX(x;&
g = XD (10,
o¢ =0
Consequently, (2.17a,b) becomes
% %
et dr_, (2.19a)
de de
with
x*=x, y*=y at £=0. (2.19b)

The solution of the initial value problem (2.19a,b) is easily seen to be given by (2.18a,b).

(2) Group of Scalings
For the group of scalings

x*=(1+¢&)x, (2.20a)

yE=(1+¢8)y, -l<g<oo, (2.20b)

the law of composition is given by ¢ (a, b) = a + b + ab, and &

O0¢(a, b)/ 0b =1+ a, and hence,

:M :1+g_1:L_

ob (ab)=(c".6) l+¢

= —¢&/(1+¢). Here,

I'(¢)
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Let x = (x, y). Then the group (2.20a,b) becomes X(x; &) = ((1 +¢&)x, (1 +&)).
Thus, 0X(x;&)/0¢ = (x,2(1 + &)y), and

_ oX(x;¢€)

S0 =—01r B

=(x,2y).

As aresult, (2.17a,b) here becomes

dx*  x* dy* 2y*

de :1+5’ de :1+5’ (2212)
with
x*=x, y*=yp at g=0. (2.21b)
The solution of the initial value problem (2.21a,b) is, of course, given by (2.20a,b).
In terms of the parameterization
T= KF(E') de' ZJ:%E de' =log(l+¢),
the group (2.20a,b) becomes
x*=e'x, (2.22a)
yE=e"y, —w<r<om, (2.22b)

with the law of composition ¢ (7, 7,) =7, + 1.

2.3.3 INFINITESIMAL GENERATORS

In view of Lie’s First Fundamental Theorem, from now on, without loss of generality, we
assume that a one-parameter (&) Lie group of transformations is parameterized such that

its law of composition is given by ¢(a, b)=a + b, so that ¢ ' =—¢ and I'(¢) = 1. Thus,
in terms of its infinitesimals & (x), the one-parameter Lie group of transformations (2.6)
becomes

dax * N
T =§(x*), (2.23a)

with
x*=x ate=0. (2.23b)

Definition 2.3.3-1. The infinitesimal generator of the one-parameter Lie group of
transformations (2.6) is the operator

X=X =80V =Y £ (2.24)
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where V is the gradient operator

(o o ) 225)
ox, Ox, ox,
For any differentiable function F(x) = F'(x,, x,, ..., X, ), one has

XF(x) = &(x)- VF(x) = 25( 2 @)

l

Note that Xx = & (x).

It follows that a one-parameter Lie group of transformations, which from Lie’s
First Fundamental Theorem is determined by its infinitesimal transformation, is also
determined by its infinitesimal generator. The following theorem shows that use of the
infinitesimal generator (2.24) leads to an algorithm to find the explicit solution of the
initial value problem (2.23a,b).

Theorem 2.3.3-1. The one-parameter Lie group of transformations (2.6) is equivalent to
Xt =e®x=x+eXx+1 X 0x+ =1+ eX+1e’X +-x = ZE—X"X, (2.26)

where the operator X = X(x) is defined by (2.24) and the operator X" = X*(x) is given
by X* =XX*"' k=12,... . In particular, X*F(x) is the function obtained by applying
the operator X to the function X*'F(x), k=1.2,..., with X"F(x) = F(x).

Proof. Let
X=X(x)=)Y ¢ (x)i (2.27a)
i=1 ox,
and
(2.27b)
where
x* =X(x;¢) (2.28)

is the Lie group of transformations (2.6). From Taylor’s theorem, expanding (2.28) about

=0, we have
i akX(x ) i & d"x*
' &=0 k=0 k' &=

k=0
For any differentiable function F(x), we obtain

J (2.29)
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iF(x*) Z&F(x )dx

- > —Zé( AT _xFe. (230)

i

Hence, it follows that

*
K X(x*)x*, (2.31a)
£
d’x* d (dx*
—_— = = X (x*)X(x*)x* = X * (x*)x*, 2.31b
70 dg(dgj (x*)X(x*) (x*) ( )
and, in general,
kg %
d T XE(e)xE, k=12, (2.31¢)
de
Consequently, we have
k%
d T =Xfx=X'x, k=12, (2.32)
de" |
which leads to (2.26). i

Thus, the Taylor series expansion about €= 0 of a function X(x; &) that defines a
Lie group of transformations (2.6), with law of composition @(a, b) = a + b, is determined

by the coefficient of its O (&) term, which is the infinitesimal

oX(x;¢€)

e | =&(x).

In summary, there are two ways to find explicitly a one-parameter Lie group of
transformations from its infinitesimal transformation:

(1) Express the group in terms of a power series (2.26), called a Lie series, that is
developed from the infinitesimal generator (2.24) corresponding to the infinitesimal
transformation; or

(i1) Solve the initial value problem (2.23a,b) through explicitly finding the general
solution of the system of first-order differential equations (2.23a).

The following corollary results from Theorem 2.3.3-1:

Corollary 2.3.3-1. If F(X) is infinitely differentiable, then for a one-parameter Lie group
of transformations (2.6) with infinitesimal generator (2.27a), we have

F(x*) = F(e™x) = e™ F(x). (2.33)
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Proof.

F(eEXX) = F(x*) = ig_k{m

d* F(x*)

d’F(x*) 2 k
From (2.30) we see that B X“(x*)F(x*) and, hence, ot = X" (x¥)F(x*).
€ €

2 =

d* F(x*)
k

Thus, = X*(x)F(x). Consequently,

=0

o0

F(x*) = F(e™x) = (Z %X" (x)jF(x) = e*F(x). O

k=0

As an example, consider the rotation group

x*=Xxcos¢+ ysing, (2.34a)
y*=—xsing+ ycose. (2.34b)
The infinitesimal for (2.34a,b) is given by

dx *
de

dy*

o de

&(x) = (& (%, »), &, (x, ) = ( ] = (¥, —x). (2.35)

The infinitesimal generator for (2.34a,b) is

0 0 0 0
X—é(%)’)aJrfz(X,y)a—J/a—xa- (2.36)

The Lie series corresponding to (2.36) is obtained as follows:
(x*, y*¥) = (e™x, e™y),
where
Xx=y, X’x=Xy=-x
Hence,
X"x=x, X" 'x=—y, X" ’x=—x, X" ’x=y, n=12,...,
X"y=y, X" 'y=x, X" ?y=—y, X" y=—x, n=12,....

Consequently,

=Xxcos¢+ ysine.
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Similarly,

y*=e™y=—xsing+ ycose.

2.3.4 INVARIANT FUNCTIONS

Definition 2.3.4-1. An infinitely differentiable function F(X) is an invariant function of
the Lie group of transformations (2.6) if and only if, for any group transformation (2.6),

F(x*) = F(x). (2.37)

If F(x) is an invariant function of (2.6), then F(x) is called an invariant of (2.6) and F(x)
is said to be invariant under (2.6).

Theorem 2.3.4-1. F(X) is invariant under a Lie group of transformations (2.6) if and

only if
XF(x)=0. (2.38)
Proof.
o k
F(x*) = e F(x) = Z%XkF(x) = F(X)+ &XF(X) + 1 X F(X) ++--.  (2.39)
k=0 .
Suppose F(x*) = F(x). Then XF(x) = 0 follows from (2.39).
Conversely, let F(x) satisfy XF(x) = 0. ThenX"F(x) =0, n = 1,2,....  Hence,
from (2.39), we have F(x*) = F(x). i

Theorem 2.3.4-2. For a Lie group of transformations (2.6), the identity
Fx*)=F(x)+¢ (2.40)
holds if and only if F(X) is such that
XF(x)=1. (2.41)
Proof. Let F(x) satisfy (2.40). Then
F(x)+&=F(X)+eXF(x)+ L&’ XPF(x)+---.

Hence, XF(x) = 1.
Conversely, let F(x) satisfy (2.41). Then X" F(x) =0, n=2,3,.... Hence,

F(x*) = e™F(x) = F(x) + eXF(x) = F(x) + &. i
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2.3.5 CANONICAL COORDINATES

Suppose one makes a change of coordinates (one-to-one and continuously differentiable
in some appropriate domain)

y =Y(X) = (3(x),5,(%),..., ,(x)). (2.42)
For the one-parameter Lie group of transformations (2.6), the infinitesimal generator

X = Zf(x)a— with respect to the coordinates x=(x,x,,...,x,), becomes the

i=1 Xl
infinitesimal generator

n 0
Y=)ny_—, (2.43)
Z;‘ oy,

with respect to the coordinates y =(y,,,,...,»,) defined by (2.42). Then it is necessary

that Y = X in order to have the same group action. The infinitesimal, with respect to the
coordinates y, is given by

n(y) = (), 7,(¥)s - 17,(¥)) = Yy. (2.44)

Note that, using the chain rule, we have

X = Zé()— Zé()ay()é—i ()—=

i dy=l i J Vi

Hence, in order to have Y = X, it is necessary that

n,(y) = er( ) yf() =Xy, j=12..n (2.45)

l

Theorem 2.3.5-1. With respect to the coordinates 'y given by (2.42), the one-parameter
Lie group of transformations (2.6) becomes

y*=e"y. (2.46)

Proof. From (2.33) and (2.42), we obtain
y* = Y(x*) = e®Y(x) = ™Y =ey. i

Definition 2.3.5-1. A change of coordinates (2.42) defines a set of canonical coordinates
for the one-parameter Lie group of transformations (2.6) if, in terms of such coordinates,
the group (2.6) becomes

* =y i=12,...,n-1, 2.47a
YYo=y,

yr, =y, te (2.47D)
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Theorem 2.3.5-2. For any Lie group of transformations (2.6), there exists a set of
canonical coordinates 'y =(y,,,,...,»,) such that (2.6) is equivalent to (2.47a,b).

Proof. From Theorem 2.3.4-1, we have
y* =y =yx)
if and only if
Xy.(x)=0, i=12,...,n—1. (2.48)

The homogeneous first-order linear PDE

Xu(x) =§I(x>§7“+éz(x>§7“+-'-+§n(x)§7“ -0 (2.49)

n

has n—1 functionally independent solutions for u(x). These solutions are n —1 essential
constants y;(x),)2(X),...,V.-1(X) appearing in the general solution of the system of » first-
order ODEs

= _g), (2.50)

resulting from the characteristic equations

dx, dx,  dx,
gx &) &, (x)
This yields the » — 1 coordinates satisfying (2.47a). ]

From Theorem 2.3.4-2, it follows that
y*, =y,&)=y,&+e
if and only if
Xy, (x)=1. (2.51)

Hence, y,(x) is given by any particular solution v(x) of the nonhomogeneous first-order
linear PDE

Xv(x) =é(x>§7v+§z(x)§7v+---+§n(x>§7"=1 (2.52)

n

that is solved by determining a particular solution of the corresponding characteristic
system of n + 1 first-order ODEs

& _

1, 2.53a
7 (2.532)
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dx

— =§&(x). 2.53b

o &(x) ( )
Theorem 2.3.5-3. In terms of any set of canonical coordinates 'y = (y,(X), y,(X),
vy ¥, (X)), the infinitesimal generator of the one-parameter Lie group of
transformations (2.6) becomes

0

Y=—".
oy,

(2.54)

Proof. We haveY = Z; n, (y)ayi. In terms of canonical coordinates, from (2.48) and
i

(2.51) it follows that
U,(Y):X)/,:O: i:172"'-7n_1’
nn(y) =Xyn =1‘

Hence, we obtain (2.54). O

2.3.6 EXAMPLES OF SETS OF CANONICAL COORDINATES

In R*, we setx, =x, x, =y, and let canonical coordinates be denoted by y, =r, y, = s, so
that a one-parameter Lie group of transformations becomes

r¥=r, (2.55a)
s*¥=s+¢, (2.55b)
with infinitesimal generator
v=2
Os
(1) Group of Scalings
For the group of scalings
x*=e‘x, (2.56a)
yt=e*y, (2.56b)

. . . 0 0 . .
the infinitesimal generator is given by X = x— + 2y —. The canonical coordinate 7(x, y)
X

satisfies
or or

Xr=x—+2y—=0. 2.57
o yay (2.57)
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The corresponding characteristic differential equations reduce to

dy_2y
dx x

with the general solution given by
r(x,y)= Y~ const.
X

5=

The canonical coordinate s(x, y) satisfies

Xs =x% +2y%=1.
A particular solution of (2.60) is given by s(x, y) = s(x) satisfying
ds _1
dx x
Thus,
s(x, y) = log x,

and hence, (2.56a,b) has canonical coordinates (r, s) = (y/x*, logx).
(2) Group of Rotations
For the group of rotations

x*=Xxcosg—ysing,

y*=xsing+ ycoseg,
the infinitesimal generator is given by X = x% - yai. Correspondingly,

X
r(x, y) = const
is the general solution of
b__x

dx y

so that

F=aqx"+ 7.
Then a particular solution for s(x, y) is given by s(x, y) = s(y) satisfying
ds 1 1

Thus,

(2.58)

(2.59)

(2.60)

2.61)

(2.62)

(2.63a)
(2.63b)

(2.64)

(2.65)

(2.66)
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s=0=sin" . 2.67)

Canonical coordinates are the polar coordinates

(r,s)=(r,0) = (\/x2 + %, sin” 1), (2.68)

r

in terms of which the rotation group (2.63a,b) is expressed in the usual form

r¥=r, (2.69a)
0*=0+¢. (2.69b)

EXERCISES 2.3

1.

Consider the rotation group
x*¥=1-&’x—-g, (2.70a)

yE=ax+1-¢g"y. (2.70b)

(a) Show that (2.70a,b) defines a one-parameter Lie group of transformations in some
neighborhood of & = 0. In particular, find the law of composition ¢ (a, b) and
el

(b) Determine I'(¢) and the infinitesimal generator for (2.70a,b).

(c) Integrate the initial value problem for the infinitesimals to obtain (2.70a,b).

(d) Parametrize (2.70a,b) in terms of 7 = KF(&') de'.

Formally, consider the one-parameter () family of transformations

x*=x+e¢, (2.71a)
= (2.71b)
X+ &

(a) Determine I'(¢),§(x), and explicitly integrate the initial value problem for the
infinitesimals to obtain (2.71a,b).

(b) Find canonical coordinates for (2.71a,b).

(c) Determine (2.71a,b) in terms of its Lie series developed from &(x).

For the group of transformations (1.93), find the infinitesimal generator, explicitly
integrate out the initial value problem for the infinitesimals, and find canonical
coordinates:

(a) in (x, #)-space; and

(b) in (x, ¢, u)-space.
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4. Find the one-parameter groups of transformations and canonical coordinates
corresponding to the infinitesimal generators:

(a) Xlzxi"‘yi;

ox oy

0 0
b) X, =x——y—; and
(b) X, o yay

0 0
) X, =x>—+y*—.
(©) X, o Y Py
5. Show that X(x)x* = §(x*). Hence, show that X(x*) = X(x) = X.

6. For the infinitesimal generator

0 0 0
X=x>—+xyp—-y* +1x)z=—:
Yoy (i +4x) oz
(a) find canonical coordinates; and
(b) determine the corresponding one-parameter Lie group of transformations by
(1) integrating the appropriate initial value problem; and
(i1) developing it in terms of a Lie series.

24  POINT TRANSFORMATIONS AND EXTENDED TRANSFORMATIONS
(PROLONGATIONS)

In later chapters, we will be interested in determining one-parameter Lie groups of point
transformations admitted by a given system § of differential equations.

Definition 2.4-1. A one-parameter (&) Lie group of point transformations is a group of
transformations of the form

x*=X(x,u;¢), (2.72a)
u*=U(x,u; &), (2.72b)
acting on the space of n + m variables
x=(x,X,,..., X,), (2.73)
u=@",u, .. u"); (2.74)

x represents n independent variables and u represents m dependent variables.

A Lie group of point transformations (2.72a,b) admitted by S maps any solution
u=0(x) of S into a one-parameter family of solutions u = ¢ (x;¢) of S. Equivalently,

a Lie group of point transformations (2.72a,b) leaves S invariant in the sense that the
form of S is unchanged in terms of the transformed variables (2.72a,b) for any solution
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u =0(x) of §. The expression for ¢ (x; ¢ ) is derived in Section 2.6.2.

Let Ou denote the set of nm coordinates corresponding to all first order partial
derivatives of u with respect to x:

1 1 1 2 2 2 m m m
ou = ou ’au Pn,@u ’au ’au . ou ou™ ou Pn,@u 275
Ox, Ox, Ox, Ox, Ox, ox

n

In general, for k >1, let &u denote the set of coordinates

L
u o'u

xil xiz <o OX.

U3

with 4 =1,2,...,m and i,=1,2,....m, j=12,...,k

corresponding to all kth-order partial derivatives of u with respect to x.

It turns out that the natural transformation of partial derivatives of the dependent
variables leads successively to extensions (prolongations) of a one-parameter
Lie group of transformations (2.72a,b) acting on (x,u)-space to one-parameter

Lie groups of transformations acting on (x,u,du)-space, (x,u,du,0°u)-space,...,
(x,u,0u,0’u, ...,0"u)-space for any k > 2. [For a given system S of differential
equations, k£ would be the order of the highest order derivative appearing in S.] Then the
infinitesimal transformation of (2.72a,b) is naturally extended (prolonged) successively to
infinitesimal transformations acting on (x,u,0u,...,0"u)-space, £ =1,2,...,k.

In the following subsections, because of the importance of scalar differential
equations, we consider separately the cases of one dependent (m = 1) and one independent

variable (n = 1); and of one dependent (m = 1) and » independent variables. Key results
will be stated for the general case of m dependent and » independent variables with
proofs left as an exercise.

The motivation for introducing extended transformations is that we can formulate
the problem of finding one-parameter Lie groups of transformations of the form
(2.72a,b), admitted by a given system § of differential equations, in terms of infinitesimal
generators admitted by S. This will be shown to be an algorithmic procedure.

24.1 EXTENDED GROUP OF POINT TRANSFORMATIONS:
ONE DEPENDENT AND ONE INDEPENDENT VARIABLE

In studying the invariance properties of a kth-order ODE with independent variable x and
dependent variable y, the aim is to find admitted one-parameter Lie groups of point
transformations of the form

x*=Xx, y;¢), (2.76a)
yE=Yx, y;€), (2.76b)
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where y = y(x).
Let

dk
y, =y® = dx{ . k=l (2.77)

We naturally extend (2.76a,b) to (x, y, ), ..., y*))-space, k>1, by demanding that
(2.76a,b) preserve the contact conditions relating the differentials dx, dy, dyi, ..., dyx:

dy = y1 dx, (2.782)
and
dyk = Vi+1 dx, k>1. (278b)

In particular, under the action of the group of transformations (2.76a,b), the transformed
derivatives, y *,, k 21, are defined successively by

dy* =y * dx*, (2.79a)

dy* =y*, dx*, (2.79b)

where x* is defined by (2.76a) and y* by (2.76b). Then

dy* = dY (x, yg) = L0 Y58 | OV (B 738) 4 (2.80a)
Ox oy

de* = dX (x, y: £) = 2% (2’y 8) e X (’a"y ) g (2.80b)
X y

Consequently, from (2.79a) and (2.80a,b), it follows that y *  satisfies

N, y38) g, OYX738) y yu | X238) g OXOHYSE) ] 051
ox P ox 0

Substituting (2 78&) into (281), we see that
b ; b ;
0} (X y 5) ¥, 0} (X Yy 5)

ox oy
* Ce) —
y 1 K(xayaylag) aX(x,y;g) aX(x,y;g) . (2.82)
0
ox oy

Theorem 2.4.1-1. The one-parameter Lie group of point transformations (2.76a,b)
acting on (x,y)-space (naturally) extends to the following one-parameter Lie group of

transformations acting on (x, y, y1)-space:
x*=X(x,y;¢&), (2.83a)
y*=Y(x,y;¢), (2.83b)
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v =Y (%, 058), (2.83¢)

where Yi(x,y, vi;&) is given by (2.82).

Proof. The proof is accomplished by showing that the closure property is preserved in
this first extension of (2.76a,b) to (x, y, y1)-space. The other properties of a one-parameter
Lie group of transformations then follow immediately for this first extension.

Let ¢(&,0) define the law of composition of parameters ¢ and o. Let

(x %, y*¥) = (X (x*, y*; 0), Y(x*, y*; 9)). (2.84)
Then, from the closure property of the group (2.76a,b), it follows that
(x %,y *%) = (X(x, y; §(£,0)), Y(x, y; §(¢, 9))).
But y ** satisfies dy**=y** dx**. Consequently,
0Y(x,y;¢(£,0)) ” oY (x, y;¢(¢,9))

e . _ Ox y
PR O R (i pe.0) | K (rrde0)
ax yl ay

Theorem 2.4.1-2. The second extension of the one-parameter Lie group of point
transformations (2.76a,b) is the following one-parameter Lie group of transformations

acting on (x,y,y,,y,)-space:

x* = X(x,y;6), (2.85a)
y*=Y(x,y;6), (2.85b)
y* =Y(x,,3¢), (2.85¢)

oy, oy, oy,
- + -

+
o N o yzayl

*, =Y. ;8) = 2.
R (EN T B ER TR (289
o N By
where Y, =Y,(x,y,y,;€) is defined by (2.82).
The proof of Theorem 2.4.1-2 is left to Exercise 2.4-2. O

The proof of the next theorem follows by induction:

Theorem 2.4.1-3. The kth extension of the one-parameter Lie group of point
transformations (2.76a,b), k=2, is the following one-parameter Lie group of

transformations acting on (x,y,¥,,..., ¥, ) -space:
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x*=X(x,y;¢), (2.86a)

y*=Y(x,y;¢), (2.86b)
y* =1(xp,0;8), (2.86¢)

oY, oY, oY,

ajcl"'yl a;1+"'+ykayk1

* = cg) = k-1
y k }Ik(x’yﬁyly-.-,yk,g) aX(x’y;g) aX(x’y;g) ) (2.86d)

+)
ox oy

where Y, =Y, (x,y,y,;€) is defined by (2.82),and Y, =Y,(x,y,y,,...,¥;;€), i =12,... k.

Note that we can extend any set of one-to-one transformations (not necessarily a
group of transformations)

X=X, ), (2.87a)
¥ =Y, ), (2.87b)

from some domain D in (x, y)-space to another domain D' in (x', y)-space, where the
functions X(x, y) and Y(x, y) are k times differentiable in D. One can naturally extend the
transformations (2.87a,b) to(x, y, y,,..., ¥, ) -space so that the contact conditions (2.79a,b)

are preserved, i.e.,
ay' =yl dxt, (2.88a)
dyf =dyl axt, k>1. (2.88b)

Here the kth-extended transformation from (x,y,y,,...,¥,)-space to (x',y", /., ..., y])-
space is given by

x'=X(x,y), (2.892)
y=Y(xy), (2.89b)
=Y (xy.0), (2.89¢)

oY, oY, oY,

a;1+yl a;c/1+__.+ykayk1

T — k-1
=Yy ) X (x.y) Xy (2.89d)

+)
ox oy

where
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oY (x,y) ry oY(x,y)
1

B o %
K-},l(x,yayl)_ aX(x,y)+ aX(X,Y),
ax yl ay

and ¥, =Y.(x,y,»,....,;), i=12,....k—1.
Now consider examples of extended group transformations.

(1) Translation Group
For the translation group
x*=X=x+g, (2.90a)
y¥=Y=y, (2.90b)
we have
« _[ D " dy dy
A =(£) :%:Yl = =

and, in general,

. _[(d'y) _dy* d'y
Y k= dx* =a’x*k =Yk=dxk = Ve k=2l

Then, for the translation group (2.90a,b), the kth-extended group is given by

x*=x+teg, (2.91a)
y*=y, (2.91b)
y*& =y, i=1..k (2.91c¢)
(2) Scaling Group
For the scaling group
x*¥=X =ex, (2.92a)
yE=Y =e*y, (2.92b)
we have
oY
dy * dy* ! 5
* =| — = = Y = = ¢
Y (de Aok ox €V
ox

and, in general,
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* Vi
(dky) _ dky * _ Y _ ayk—l _ e(Z—k)g
dx" , B

y* = Vo k=1,

e o
ox

Here the kth-extended Lie group of transformations is given by

x*=ex, (2.93a)
yE=e*y, (2.93b)
y* =e® 7y i=12,...,k (2.93¢)
(3) Rotation Group
For the rotation group
x*=X= xcoseg + ysing, (2.94a)
y*=Y= —xsing +ycoseg, (2.94b)

we obtain

ox . oY : oY
— =cosg, — =sing, — =-sing, —— =COSE.
ox oy ox oy

Hence, from (2.83), we obtain

—sing+ y, cosg

Y, = —
cos&+ y, sing
Then
an_ov_, o
& o 0y, (cose+ysing)’’

Consequently, from (2.85d), we have

_ Y2
Y, = - T
(cose+ y,sine)
Then
%—%—O oY,  —=3(sing)y, oY, 1
ox dy 9y, (cose+ysing)’ 0y, (cose+ysing)’

As a result, from (2.86d), we get

v - (y,sing+cose)y, —3(y,)’ sing
’ (cose + y,sing)’

Thus, the third-extended Lie group of transformations corresponding to (2.94a,b) is given
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x*=X= xcosg + ysing, (2.95a)
y*¥=Y= —xsing +ycoseg, (2.95b)

—sing+ y,cose
y* = —, (2.95¢)
coss+ y sine

y*, = L& (2.95d)
(cose+ y,sin¢)

sing+cose€)y. —3(y,) sing
62 )Vs (»,)

v, —= (2.95¢)
(cose+ y,sin¢)

This is a one-parameter Lie group of transformations acting on (x,y,y,,»,,V;)-space.

Of course, one can extend this Lie group of transformations successively to
(X, Y, Y15 Vs V35---» ¥, ) -SPace, k =4,5,..., but the calculations quickly get more and more

complicated as k increases.

From Section 2.3, we know that a one-parameter Lie group of point trans-
formations is characterized by its infinitesimal generator. Since the kth extension of a
one-parameter Lie group of point transformations is also a one-parameter Lie group of
transformations, it follows that the study of extended Lie groups of transformations
reduces to the study of extended infinitesimal transformations. In the next subsection we
formulate Theorems 2.4.1-1 to 2.4.1-3 in terms of infinitesimal transformations.
Consequently, we will have an explicit algorithm to determine the extended infinitesimal
transformations (and the corresponding infinitesimal generators) of an infinitesimal
transformation.

Before proceeding further, we introduce the following convenient notations: Let a
subscript denote differentiation with respect to the corresponding coordinate, e.g.,
F,=0F/0ox, F, =0F/0y.

Definition 2.4.1-1. The total derivative operator is defined by

D=i+y1i+y2i+...+yn+li+u-, (296)
ox oy oy, oy

For a differentiable function F(x,y,y,,»,,...,»,), its total derivative is then given by
DF (X, y,y1,Y55--,¥,) = F, + y|F, +0,F, ++y, F, .

In terms of the total derivative operator (2.96), the kth extension of the one-parameter Lie
group of point transformations (2.86a,b) is given by

x*=Xx, y;¢), (2.97a)
y*=Y(x,y¢), (2.97b)
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DK_l(X,ya)’1,-~ay,~-1;5)
DX (x, y; &)

YE =Y(X, D, Vs Vi3 E) = i=12,....k, (2.97¢)

where Y, =Y (x, y; ).

2.4.2 EXTENDED INFINITESIMAL TRANSFORMATIONS:
ONE DEPENDENT AND ONE INDEPENDENT VARIABLE

The one-parameter Lie group of point transformations

X* =X(x,pe)=x+ edx,p)+ 0(e?), (2.98a)
y¥ =Y pse) =y + enlxy) + 0(e?), (2.98b)

acting on (x, y)-space, has infinitesimals
<x, ¥), n(x, y), (2.98¢)

with the corresponding infinitesimal generator

X =&(x, y)% + n(x, y)%. (2.98d)

The kth extension of (2.98a,b), given by

x*=Xx, ;) =x+ £&(x,y) + 0(ed), (2.99a)
yE=Y(x,y;6) =y + enlx,y) + 0(e?), (2.99b)

y*l = le(xayayl;g) =y1 +g77(1)(x’y’y1)+0(82)> (2990)

v 5 =Y (0 ) =y +en V(G v L 1) H0ED),  (2.99d)

has kth-extended infinitesimals

g(x’ y)’ n(x’ y)’ n(l)(x’ y’ yl)’ ctto n(k)(x’ y’ yl’ ctto yk)’ (2'996)
with the corresponding kth-extended infinitesimal generator

0 0 0 0
X =E(x, ) —+ 006, ) —+7Y(x, y, y)—+ -+ 00y, v Y —,
&( y)ax n( y)ay n( yyl)ay1 no(x,y, yk)ayk

(2.99f)

(k)

k = 1,2,.... Explicit formulas for the extended infinitesimals 7'" result from the

following theorem:

Theorem 2.4.2-1. The extended infinitesimals 1" satisfy the recursion relation

1041, Y5520 =D (4 v, vy ) = 1 DE, k=12,..., (2.100a)
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where 1 =n(x,y). In particular,

4 k! ;
®O =Dy NS — =y DIE k1. 2.100b
7 7 ,Z; T (2.100b)

Proof. From (2.97¢), (2.99a—d), and (2.96), we have

Y, Dly.+ gﬂ(k_l) + 0(52)] _ Yk + ‘9D77(k_1)

Y (x )_D =
KXY Vs Vi DX D[X+5§+O(52)] 1+¢9Dé:

=y, +elDn"" =y, D&+ 0(e*) = y, +en'™ +0(e),

+0(&%)

leading to (2.100a). Then we obtain (2.100b) by finite induction on £. ]

Explicit formulas for ¥ follow immediately from Theorem 2.4.2-1. In
particular,

77(1) =77x+(77y_§x)y1_§y(yl)2’ (2.101)

n? =n,+Qn, =& 00+, —2£,)(0)°
_éyy(yl):; +(77y_2§x)y2_3§yy1y2’ (2.102)

77(3) = nxxx + (377xxy - §xxx )yl + 3(77xyy - 2§xxy)(yl)2
+ (11, —35,)(00) =&, 00 +3(1, —&.)7,
+ 3(77yy - 3§xy)y1y2 - 6§yy(yl)2y2
_35()/2)2+(77y_3§x))/‘3_4§y)ﬁy3- (2.103)

The following observations are important:

Theorem 2.4.2-2. The extended infinitesimals n'™ have the following properties:
() 1™ is linear in y, for k> 2.

(i) 7™ is a polynomial in y,, y,, ..., y,, whose coefficients are linear homogeneous
in &(x, y), n(x, y), and their partial derivatives up to kth-order.

Proof. Left to Exercise 2.4-5. i
We now find the extended infinitesimals 7*) for the examples of Section 2.4.1.

(1) Translation Group (2.90a,b)
Here

n® =0, k>1.
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(2) Scaling Group (2.92a,b)
From the form of (2.93c¢), it is immediately obvious that

" =2-ky, k=1.

(3) Rotation Group (2.94a,b)
Here &(x,y) =y, n(x,y)=-x. So &, =1, n, =-1, & =n, =0. From (2.101)~(2.103),

we see that
n =-1+()’],
n? ==3yy,,
n? =-13(»)" +4n;],
From (2.100a), for k >4, we have ' =Dn"*™" -y, y,, so that

7 ==5[2y,y; + »v,],
7> =-[10(y,)* +15y,y, + 6,51, etc.

2.4.3 EXTENDED TRANSFORMATIONS: ONE DEPENDENT
AND »n INDEPENDENT VARIABLES

In studying the invariance properties of a kth-order PDE with one dependent variable u
and n independent variables x = (x,,x,,...,x,), with # = u(x), we are naturally led to the

problem of finding the extensions of transformations on (x,u)-space to

(x,u,0u,...,0"u) -space where 0 u denotes the components of all kth-order partial

derivatives of u with respect to x.
First we consider the extended transformations of a point transformation

x" = X(x,u), (2.104a)
u' =U(x,u). (2.104b)

The transformation (2.104a,b) is assumed to be one-to-one on some domain D in
(x,u)-space with functions X (x,u),U(x,u) that are k times differentiable in D. The

transformation (2.104a,b) preserves the contact conditions, i.e.,

du = ou dx, (2.105a)

d ou*" =ou* dx, (2.105b)

in some domain Din (x,u,0u,...,0"u) - space if and only if
du" =ou' dx’, (2.106a)
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d o't =0ku’ dx', (2.106b)

in the corresponding domain D in (x",u",6u’,...,0"u") - space.

In order to express the contact conditions in an explicit form, we let

ALY

U, =——, U, =_—=_—, etc.
ox, ox; 0X,

From now on, we assume summation over a repeated index. The conditions (2.105a,b)
are given by the set of equations

du=u,dx;,
=u dx., i,=12,...,nfor (=12,... . k-1.

uiliz"'ik—l iy i j J
Similar representations hold for (2.106a,b).
We introduce the total derivative operators
0 0 0 0

Dy=—+u,—+u, —+-+u,, ,
ox, Ou ou, " Ou

+---, I=12,...,n. (2.107)

byl

For a given differentiable function F(x,u,0du,...,0'u), we have

Dl.F(x,u,Gu,...,ééu) =8—F+uia—F+uﬁa—F+---+um " oF , i=12,...,n.
ox, ou ’ ou v ouy
We now determine the extended transformation
uj :Uj(x,u,au), j=12,...,n (2.108)
From (2.104a,b), we obtain
du' =ul dx! =(DU)dx,,
and
de! =(D,X,)dx,, j=12,....n,
where D, is defined by (2.107), i =1,2,...,n. Then
(DX ul=DU, i=12,...,n
Let A be the n x n matrix
D1X1 Dan
A=| : (2.109)
DnXl Dan

and assume that A" exists. Then
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u; — U2 =A—1 DZU
WU, DU

This leads to the extended transformation in (x,u,0u) -space given by
x" = X(x, u),

u' =U(x, u),
ou" =oU(x, u, ou).

It is easy to show that the extension to (x,u, du, ...,0"u) -space is given by
x" = X(x,u),

u' =U(x, u),

ou" =oU(x, u, ou),

o*u" =0"U(x,u,ou,...,0"u),

where the components of 8*u" are determined by

+

by i1 by i1 1= iy iy
uT
hiy =iy 2 | _ hiy iy 2 | A—l 2% iyl
. - . - . )
hiy: ol hiy: -l n iy

(2.110)

(2.111a)
(2.111b)
(2.111c¢)

(2.112a)
(2.112b)

(2.112¢)

(2.112d)

(2.113)

i, =12,...,n for /=12,....,k—1, with k>2; oU(x, u,0u) is determined by (2.110),

and A4 is the matrix (2.109).

Now we specialize to the case where (2.104a,b) defines a Lie group of point

transformations
x*=X(x,u;¢),

u*=U(x,u;¢&),

(2.114a)
(2.114b)

acting on (x, u)-space. Then it is easy to show (following the proofs of Theorems 2.4.1-1

to 2.4.1-3) that its kth extension to (x,u,du,...,0"u) -space, given by
x* = X(x, u;¢),
u*=U(x,u;¢e),

ou* =0U (x, u, ou; ),

(2.1152)
(2.115b)
(2.115¢)
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o u* =0"U(x, u, ou, ...,0"u; ¢), (2.115d)

defines a kth-extended one-parameter Lie group of transformations. In (2.115a—d),

ur ] U, DU
|2 Uf _ | Y (2.116a)
ut | U DU
Ui iy ] DU, ...,
Y L g L .
U i Uiiooipm D,,U,;,é...,.k_l

=U. . are the

components of 8*u*=0"U. In (2.116b), i, =1,2,...,n for/=12,...,k—1 with k>2;
the operators D, are given by (2.107); and 4™ 'is the inverse of the matrix 4 given by
(2.109) for X and U given by (2.115a,b).

where u* =U, are the components of ou*=0U and u*

iy 0y _qi

244 EXTENDED INFINITESIMAL TRANSFORMATIONS: ONE DEPENDENT
AND »n INDEPENDENT VARIABLES

The one-parameter Lie group of point transformations
x* =X, (x,u; &) = x, + &&,(x, u) + O(g”), (2.117a)
w*=U(x,u; &) =u+en(x, u) + 0(e?), (2.117b)

i=1,2,...,n, acting on (x, u)-space, has infinitesimal generator

X =¢,(x, u)i+77(x, u)i. (2.117¢)
ox, ou

1

The kth extension of (2.117a,b) is given by

x* =X, (x,u; &) = x, + &£, (x, u) + O(g”), (2.118a)
w*=U(x,u; &) =u+ en(x, u) + 0(g*), (2.118b)

u* =U,(x,u,ou; &) =u, +en’’ (x,u, ou) + O(e*), (2.118¢)

u*, . =U, ., (xudu,... ,0%u;6) = .+ 87751.’?,,,.k (x,u,0u,...,0"u) + O(g?),
2.118d)
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where i=12,.,n and i,=12,..,n for (=12, k with k=1. Its kth-extended
infinitesimals are

&Cx, u), n(x,u), 10 (x,u, 0u), ..., n" (x, u, du, ..., 8"u), (2.118e)
with the corresponding kth-extended infinitesimal generator

X0 og 0 p Qg O g O st 18
ox, ou ou e

i i iy iy

Explicit formulas for the extended infinitesimals #* result from the following
theorem:

Theorem 2.4.4-1. The extended infinitesimals satisfy the recursion relations

n =Dn—-D&u;, i=12,...,n, (2.119a)

7715’?"1'1( - Dik 771(15;_131(—1 N (Dik é:j )uiliz"'ik-lj ’ (21 19b)

i, =12,...,n for {=12,....k with k>2.

Proof. From (2.109) and (2.118a), we have

D,(x, +&) Di(x,+&,) - Di(x,+&,)
_ DZ(xl:+ &) Dz(xz:"' eg,) DZ(‘xn:+ &s,) +O(82)=1+8B+0(82),
D,(x,+&) D,(x,+&,) -+ D,(x,+&,)

where [ is the n x n identity matrix and

Dlé:l D1682 D168n
Dngl Dn§2 o Dngn
Then
A =1 —B+0(). (2.121)

From (2.116a), (2.118b,c), (2.120), and (2.121), it follows that

u, +en u, +eDin
0
+¢& u, +&D
R e T o,
u, +enl u, +eD,n

and, thus,
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2] [Pa] [m
2| _|pan|

b

7] D) L

n n

leading to (2.119a). Then, from (2.116b), (2.118c,d), (2.120), and (2.121), we get

(k) (k=1)
Uijio 1 T EMiii 1 Ui 1 T 8D177i1i2»~i,(_1
(k) (k-1)
Uiy 12 + EMiiy-iy 2 =[I - &B] Uiiyiy 12 + gDzniliz"'ik-l + 0(82)
(k) (k-1)
Uiy T EMii) iy in Uiiyooip n T 8Dn77ili2~»ik_l
and hence,
(k) (k-1)
My 1 D, My, Uiy 1
(k) (k=1)
Miiyeiy_,2 _ Mgy | B YR
: : . ?
(k) (k=1)
iy nliiy-iy_, iy eeiy_yn
i,=12,.,n for /=12,.,k—1 with k> 2,leading to (2.119b). O

Specializing Theorem 2.4.4-1 to the case of one dependent variable # and two
independent variables x; and x,, the extended one-parameter Lie group of transformations

x* = X,(x,x,,u; &) =x, + &E,(x,, X, u) + O(g%), i=12, (2.122a)
w*=U(x,, x,, u; &) =u+en(x,, x,, u) + O(&*), (2.122b)
u*, =U,(x, x,, u,u,u,; ) =u, +8771.(1)(x1, Xy, U, Uy, Uy) +O0(%), i=12,
(2.122¢)
u*,.j =U!7(x1,x2,u, Upy Uy Uy Upyy Uny s E)
=1y + &7 (4, X, s Uy, Uy, Uy, Uy, 105,) + O(E), iy j =12, (2.122d)
etc., has its extended infinitesimals given by
on |on o0& o0& o0& o0&
W= L L2y - 22y 2Ly —2uu,, 2.123
n 0ox, {Gu Ox, : Ox, > bu () ou '’ ( )
0 0 0 0
o :ﬂ_,_ on _0s, , _iul _ 98, u,)? _iuluz’ (2.124)
Ox, | Ou Ox, ox, Oou ou
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2 2 2 2
ptaf 2 val, 0, [0 0,

= ox,” ox ou  ax’ ox,’ Ou ox, _1u12
om0 |, 0 8 24 8 <
+ _ J—
[auz o
3%, %y, 2%, (2.125)
ou Ou u
1 =g
2 2 2 2 2
_O0m |9 O |, 10 _ % | 05,
Ox, 0x, | Ox,0u 0Ox, Ox, Ox, Ou  Ox, Ox, ox,
+ 0n_% O ulz_agl Uy, — il (u,)’
ou 0Ox, Ox, ox, Ox, Ou
o’y 0% 0%, X 5 ﬁfz 51
+ J— J— J— J— p—
[6u2 S o anou " A on M) ) g )
2%7’12“12 _2% U _%uzuu _%%”22’ (2.126)
Ou u u
o ’n P & on _,0 0
ng) _ z +12 n §2 é-':zl u, + _n_zi Uy, _2£ o
ox, ox, ou 8x2 6x2 Ou ox, 2
8277 825 82§ a é: éj
+ S0 052 |y, —2-25y E () = —Zu, ()’
|:au2 axz au ( 2) axz au 1 2 ( 2) 1( 2)
3% 3% 2%, (2.127)
u

etc.

2.4.5 EXTENDED TRANSFORMATIONS AND EXTENDED INFINITESIMAL
TRANSFORMATIONS: m DEPENDENT AND » INDEPENDENT
VARIABLES

The situation of m dependent variables wu =(u',u’,...,u™) and n independent
variables x = (x,,x,,...,x,), u = u(x), with m > 2, arises in studying systems of
differential equations. This leads to consideration of extended transformations from
(x,u) -space to (x,u,0u,...,0u)-space where 0"u denotes the components of all kth-

order partial derivatives of u with respect to x. These extended transformations preserve
the corresponding contact conditions.
We consider a point transformation
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x" = X(x,u), (2.128a)

u" =U(x, u). (2.128b)
Let
o ot o
uf=aL, (u,-")T=a(u LU ke,
ox; ox! 0X,
Di=i+ui“ 0 +ut 0 +eetuf, 0 T
ox, ou* 7 ou?! T ouy

with summation over a repeated index. The kth-extended transformation of (2.128a,b) is
given by [Exercise 2.4-12]

x"' = X(x, u), (2.129a)
u" =U(x,u), (2.129b)
ou" =0U(x, u, ou), (2.129¢)
o' u" =" U(x,u,0u,...,0"u), (2.129d)

where the components (u*)" of du' are determined by

@' U DU”

N1 U* D.U*
W) ||V | | PVT (2.130)
@' U D,U”

A7'is the inverse (assumed to exist) of the matrix

DX, DX, - DX,
DX, DX, - DX

— 2: 1 2: 2 2' n , (2.131)
DnXl DnXZ Dan

and the components (u/; ., )" of d“u"are determined by

iy

H il H H

(l/liliz"'ik—l1 ) Uiliz'”ik—l 1 DlUiliZ"'ik—l
H T H H

N T T e e R P T (2.132)
u i u u

(”ilizmik,ln ) Ui1i2~~~i,(,ln DnUilifni,(,l

Now we specialize the point transformation (2.128a,b) to the case of a one-
parameter Lie group of point transformations
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X*=X(x, u; ¢), (2.133a)
U*=Ux, u;¢). (2.133b)

Here, the kth-extended transformation (2.129)—(2.132), with { replaced by *, is a one-
parameter Lie group of transformations acting on (x, u, du, ..., 0*u)-space. Then we

have
x* =X, (x,u; &) = x, + &&,(x, u) + O(g*), (2.134a)
W) =U"(x,u; &) =u" + en*(x, u) + O(&*), (2.134b)

W *=U"(x,u, 0u; &) =u' + en"* (x, u, ou) + O(g*), (2.134¢)

Wl ) =UL . (u,ou,...,0 u; 8)=uli , +eni (x,u,ou,...,0"u)+0(?),

iy By iy iy -

(2.1344)
with the extended infinitesimals ’7:‘(1:1'?-‘?& given by
n"* =Dn" - (D&, )ut, (2.135)
and
771(11];)#’1( - Dik 771(11];_13:; N (Dik é:j )u:;z"‘ik-lj ’ (2136)
i, =12,...,n for /=1,2,...,k with k > 2. Here, the kth-extended infinitesimal generator
is given by
0 0 0
XO = & (x,u)—+ 0" (x,u) —— + 7" (x,u, 0u) —— + - -
() g (a3 o)
+77,§Z?,‘_‘,.k (x,u,0u,0%u,...,0%u) f , k2>1. (2.137)
EXERCISES 2.4

1. In Theorem 2.4.1-3, show that Y}, k > 2, defined by (2.86d), is:
(a) linear in yy; and
(b) a polynomial in y,, y,,...,y, whose coefficients are functions of (x, y, y1).

2. Prove Theorem 2.4.1-2.

3. For the rotation group (2.94a,b), determine y*, =7, :

(a) using Theorem 2.4.1-3; and
(b) from its extended infinitesimals, i.e., using Theorem 2.4.2-1.

4. (a) Derive (2.101)—~(2.103).
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10.

1.
12.
13.
14.

15.

(b) Determine 7.
Prove Theorem 2.4.2-2.
For the group

x*=x+e, y*=£, with y = y(x),

x+e&
determine:

@ & 7,1, 1, n%; and
(b) y*l = 15)’*:}72’)’*3 =Y.

For the rotation group (2.94a,b), find the invariants of its first- and second-extended
group. Interpret geometrically.

Explain the geometrical significance of preserving the contact conditions (2.78a,b).
Show that each component of 8*U, k > 2, defined by (2.115d), (2.116a,b), is:

(a) linear in the components of 0*u; and

(b) a polynomial in the components of 8°u,0%u,...,0"'u, with coefficients that are
functions of the components of x,u, Ou.

State and prove the analog of Theorem 2.4.2-2 for the extended infinitesimals
M,,..., determined by Theorem 2.4.4-1.

Derive (2.123)—(2.127).
Derive (2.129a-d), (2.130)—(2.132).
Derive (2.135), (2.136).

For the following two examples (arising from study of the group properties of the
heat equation), involving two independent variables (x, ) and one dependent variable
u = u(x, t), determine: (i) the extended infinitesimal generators X" and X#; and
(1) the extended one-parameter Lie groups of transformations acting on

(x,u,0u) —space and (x,u,0u,d’u)—space with:

(a) X= 2t£—xui; and
ox ou

(b) X = axt 24 ap? 2—(x2 +2t)ui.
ox ot ou

Consider the case of one independent variable x and one dependent variable y = y(x).
Assume that the point transformation

x" = X(x,y), (2.138a)
¥y =Y (), (2.138b)

preserves the contact conditions and can be inverted so that
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x=X"(x"yh),
y=Y'(x"yh),
where X', Y' are known explicitly as functions of x', 7. Express y; and y, as

functions of x', %, y/,yI. Show how this simplifies in the situation when (2.138a,b)

is a one-parameter Lie group of point transformations. Illustrate for the rotation
group (2.94a,b).

16. Consider the situation of two independent variables (x, #) and one dependent variable
u= u(x, f). Assume that the point transformation

x" = X(x,t,u), (2.139a)
t" =T(x,tu), (2.139b)
u' =U(x,t,u), (2.139¢)

preserves the contact conditions and can be inverted so that
t=T"(x" ¢ ,uh),

where X' T T,UT are known as explicit functions of xT,tT,uT. Express the components
of ou and 0°u as functions of x',#",u" and the components of du'and &°u’. Show
how this simplifies in the situation when (2.139a—c) is a one-parameter Lie group of
point transformations. Illustrate for the one-parameter Lie group of point

. . . o 0 0
transformations with the infinitesimal generator X = 2¢f — — xu —.

ox Ou

17. For X(x,u) defined by (2.104a) [(2.129a)], give criteria so that the corresponding
matrix 4 defined by (2.109) [(2.131)] has an inverse.

2.5 MULTIPARAMETER LIE GROUPS OF TRANSFORMATIONS
AND LIE ALGEBRAS

So far in this chapter, we have only considered one-parameter Lie groups of
transformations. In Chapter 1, on dimensional analysis, we encountered invariance under
multiparameter families of scalings. These are examples of multiparameter Lie groups of
point transformations. In this section we summarize some key results pertaining to
multiparameter Lie groups of transformations. We assume a finite number of parameters.

Each parameter of an r-parameter Lie group of transformations leads to an
infinitesimal generator. The infinitesimal generators belong to an r-dimensional vector
space on which there is an additional structure, called the commutator. This special
vector space is called a Lie algebra (r-dimensional Lie algebra).
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For our purposes, the study of an r-parameter Lie group of transformations is
equivalent to the study of its infinitesimal generators and the structure of the
corresponding Lie algebra. The exponentiation of any infinitesimal generator is a one-
parameter Lie group of transformations that is a subgroup of the r-parameter Lie group of
transformations. Most important, the discovery of multiparameter Lie groups of
transformations admitted by a given differential equation requires one to consider only
invariance of the differential equation under one-parameter Lie groups of
transformations.

Special Lie algebras called solvable Lie algebras play an important role in the
study of the invariance of ODEs of at least third-order under multiparameter Lie groups
of transformations.

For further details of the material of this section, the reader is referred to the
books of Cohn (1965), Eisenhart (1933), Gilmore (1974), and Ovsiannikov (1962, 1982).

2.5.1 r-PARAMETER LIE GROUPS OF TRANSFORMATIONS

Consider an r-parameter Lie group of point transformations
x* =X(x;¢), (2.140)

with X =(x,x,,...,x,) and parameters € = (¢,,&,,...,&,). Let the law of composition of
parameters be denoted by

([)(8, 6) = (¢1 (83 6)5 ¢2 (83 6)5 ] ¢r (83 6)):

with 8 =(9,,0,,...,0,), where ¢(g,0) satisfies the group axioms with ¢ = 0
corresponding to the identitys, =&, =---=¢, =0, and @(g,0) is assumed to be analytic
in its domain of definition.

Let the infinitesimal matrix Z(X) be the r x n matrix with entries

ot ox (%)

(x) = , a=12,....r, j=12,...,n. 2.141
Sy (X) %, | o5, | J (2.141)
Let O(g) be the  x r matrix with entries
0¢,(g,0
0, (e) = W0 (2.142)
00
@ 9=0

and denote the inverse of the matrix @(g) by

Y(e)=0'(¢). (2.143)

Then Lie’s First Fundamental Theorem for an r-parameter Lie group of transformations
states that in some neighborhood of € = 0, (2.140) is equivalent to the solution of the
initial value problem for the system of nr first-order PDEs given by
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_ax*l ox*, 8x*n_
0¢, 0¢, 0¢,
ox* ox*, o ox*,
O¢, O¢, dg, |= Y(e)=(x*), (2.144a)
ox* ox*, o oOx*,
| O¢,  Oe, oe, |
with
x*=x at g =0. (2.144b)

Definition 2.5.1-1. The infinitesimal generator X,, corresponding to the parameter &, of
the r-parameter Lie group of transformations (2.140), is given by

O w12 (2.145)
ox .

J

X, =34,

One can show that the r-parameter Lie group of transformations (2.140) is
equivalent to

r X X X X,
X*:l_[ 1e#a szze/ul 16#2 2 ,,_e/‘r VX’ (2146)
a=

where ui, to,..., i, are arbitrary real constants. [The order of the operations in (2.146)
can be rearranged by renumbering the infinitesimal generators even though it is not

X .
“%0 et for o # . A reordering would correspond

necessarily true that e*«e"” = ¢
to a different parameterization, i.e., W(¢) would change. An r-parameter Lie group of
transformations is equivalent to (2.140) if it can be expressed in the form (2.144a,b) with
the same E(x). ]

One can also show that the one-parameter Lie group of transformations

siaaXa

x¥=e%x=e“ x, (2.147)

obtained by exponentiating the infinitesimal generator

X=>0,X, =Zgj(x)i, (2.148)
a=1 j=1 axj
where
c;(x)=Y0,é,(%), j=12,...n, (2.149)
a=1

in terms of any fixed real constants oi,0,,...,0,, defines a one-parameter (&) subgroup of
the r-parameter Lie group of transformations (2.140).
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As an example, consider the two-parameter [¢=(g,&,)] Lie group of
transformations [(x;, x2) = (x, y)] given by

*=ex+¢,, (2.150a)
yE=ey. (2.150b)
Then
x*¥*=e%x*45, ="V x + ¢, (g,9),
PEE = o2k Q2D
with the law of composition given by
0(£,8) = (¢,(£,0),0,(£,0)) = (&, +J,,e” &, +J,). (2.151)

One can easily check that the two-parameter family of transformations (2.150a,b), with
the law of composition (2.151), defines a two-parameter Lie group of transformations
with x* =x, y* =y, when € =(¢,¢,)=0.

We now check that (2.144a,b) holds:

o o axr_ o

=efix=x*—g,, ——=2"y=2y% ——=], =0.
0g, P dg y=a o¢, o¢,
Hence,
ox* oy*
Og, Og | _|x*—& 2y*
ox* gyt —{ . o | (2.152)
og, 0O,
Then
Ox * oy *
AOE =% &(0=2— =2
0s, o 0s, o
Ox * oy *
&%) = =1, &=+ =0
os, o os, o
Consequently, the infinitesimal matrix is given by
2w =| ¥ @153)
E(x) = . .
1 0

To determine W(g), we have

%_1 %_ 2 %_0 %_1

os, ~ os, 7 o8s, = 05,

3

and, hence,
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_%4 _9 . o 0| _ _o| _4
11— - b 12 — — C2 21 — — Y 2 = — e
25, , 35, , A 35, .
Thus, we get
1
0r) =| | (2.154)
0 1
and
1 _
W(e)= 0 (¢) = L) 1‘92 } (2.155)

Then it is easily seen that

* 2 *
‘I’(s)E(x*)=[x 182 g }

which is the matrix (2.152), verifying (2.144a,b). It is left to Exercise 2.5-1 to solve the
initial value problem for the system of PDEs

*
ox =x*-g,, (2.156a)
0s,

*

W*_ 2y%*, (2.156b)
og,

*
x4, (2.156¢)
os,

*

Y*_ 0, (2.156d)
os,
with
x*=x, y*=y, when g =0,¢, =0, (2.156¢)

to recover (2.150a,b).
For the two-parameter Lie group of transformations (2.150a,b), the corresponding
infinitesimal generators are

X, =x£+2yi, (2.157a)
ox oy
0
X, =— (2.157b)
ox
For any differentiable function F(x, y), we have
e™ F(x,y)=F(ex,e*y), (2.158a)
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e™ F(x,y)=F(x+¢,y). (2.158b)

We now check that the representations (2.146) and (2.147) lead to (2.150a,b).
From (2.158a,b), it follows that for any real constants u;, u», we have

y), (2.159)

eﬂlxleﬂzxz (x’ y) — e:“lxl (x + ﬂz’y) — (eﬂlx + luz’ezﬂl

and
e" 2% (x, y) = e (e x,e’* y)=(e"(x+ u, ),ez"1 V). (2.160)

Let X =A,x+A,. Then

P
_ f%Hﬁ(ﬂw _1) 2, (2.161)
2 ’ ' '

1

~ A~
eni22ey | X — A e 'xX-A4 2é&l
es(/llX1+ﬂ,2X2)(x, )= T [ 2 j: 2 My,

Thus, (2.159) is identical to (2.150a,b), with the same law of composition (2.151);
(2.160) is equivalent to (2.150a,b) with the law of composition @(g,0)=

(& +08,,6,+e%6,); and (2.161) is equivalent to (2.150a,b) with the law of composition
0(g,0) = 51+51:L51 651 i(egl _1)+§ _é '
6‘91 +0, 1 g 0, 0,

2.5.2 LIE ALGEBRAS

Definition 2.5.2-1. Consider an r-parameter Lie group of transformations (2.140) with
infinitesimal generators X,, o = 1,2,...,r, defined by (2.141) and (2.145). The commutator
(Lie bracket) of X, and Xp 1s a first-order operator

X X=X, Xy =X, X, = Z{[i (x)%j[fﬁxx)% —(fﬂmx)%](@, ()aiﬂ

i,j=1 J

- d
—;m(X)gj, (2.162a)
where
— N aé:ﬂ] (X) _ aéraj (X)
n;(x)= ;(50,,- (x) o &, (x) o j (2.162b)
It immediately follows that
[Xao, Xp] = —[Xp, Xal- (2.163)
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Theorem 2.5.2-1 (Second Fundamental Theorem of Lie). The commutator of any two
infinitesimal generators of an r-parameter Lie group of transformations is also an
infinitesimal generator. In particular,

[X,.X,1=>.ClX , (2.164)
=1

where the coefficients C’

.p are constants called structure constants, o, 5,y =1,2,...,r.

Proof. The proof of this theorem essentially depends on the integrability conditions
O*x* O x*

O¢, O, - O¢, 0¢, ’

i=12,...,n, a,B=12,...r, (2.165)

applied to (2.144a). For complete details, see any of the earlier-mentioned references of
this section. o

Definition 2.5.2-2. Equations (2.164) are called the commutation relations of the

r-parameter Lie group of transformations (2.140) with the infinitesimal generators
(2.145).

For any three infinitesimal generators X,, X3, X,, by direct computation one can

show that Jacobi’s identity holds:
[Xo[ X, X511 + [Xp.[ X, Xa]] + [X[ Xor Xp]] = 0. (2.166)
From (2.163), (2.164), and (2.166), the following theorem relating the structure

constants is easily proved:

Theorem 2.5.2-2 (Third Fundamental Theorem of Lie). The structure constants defined
by the commutation relations (2.164) satisfy the relations

Cop =—Chas (2.167a)
YLCLCE, +Ch,Co +ChCo1=0. (2.167b)

p=1

In particular, (2.167a) is equivalent to the commutator anti-symmetry property (2.163),
and (2.167b) is equivalent to Jacobi's identity (2.166).

Definition 2.5.2-3. A Lie algebra L is a vector space over R or C with a bilinear bracket
operation (the commutator) satisfying the properties (2.163), (2.166) and, most important,
(2.164). In particular, the set of infinitesimal generators {X,}, a = 1,2,...,r, of an
r-parameter Lie group of transformations (2.140) forms an r-dimensional Lie algebra
over R.
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One can motivate the definition of the commutator [X,, Xs] by the following
argument.

Let G'" denote the r-parameter Lie group of transformations (2.140). Any one-
parameter (&) subgroup of G” has a corresponding infinitesimal generator in £'. For

example, X, € L corresponds to eXxeG, a=12,...,r; aX, + bXﬂ e L corresponds
to both ™™ x e G", and e e 'x e G". If X,,X, e L', then both ¢™x and

e”’x belongto G” foranyreal ¢. Consider the one-parameter (£) commutator group
transformations

e Kao M eZao®rx = [e% [ [e™ [ e e x e G
Then
e Fee™ e = (1- X +16X(X,))1 - X, + 1g? (Xﬂ)z)
x(1+6X, +167 (X)) + X, +167(X,)*) + O0(&?)
=(l-e(X, + X))+ (X, X, +3(X,)* +$(X,)?)
x(1+e(X, +X )+ (X, X, +3(X,) +4(X,)*) +0(£)
=1+8°(2X, X, +(X,) + (X)) = (X, + X))+ 0(s%)
=1+ (X, X, - XX )+ 0(s%)
=1+&°[X,, X1+ 0().
Hence, [X,, X3] € L.
One can show that e™ ™" =e™7e™ = ¢™«*™ if and only if [X,,X 51=0
[Exercise 2.5-10].
Theorem 2.5.2-3. Let X,*, X/;(k) be the kth-extended infinitesimal generators of the
infinitesimal generators X, Xg, and let [X,, Xﬁ](k) be the kth-extended infinitesimal

generator of the commutator [X,, Xg]. Then [X,, Xﬁ](k) = [Xa(k), X/;(k)], k>1. Hence, if
[Xa Xl =X, then [X, P, XP1=X¥, k>1.

Proof. Left to Exercise 2.5-11 [Ovsiannikov (1962, 1982), Olver (1986)]. O
Definition 2.5.2-4. A subspace J c L is called a subalgebra of the Lie algebra L if
(X Xp] € T forall X, Xp e J.

2.5.3 EXAMPLES OF LIE ALGEBRAS

(1) Eight-Parameter Lie Group of Projective Transformations in R*

Projective transformations in R* map straight lines into straight lines. In particular, they
are defined by the eight-parameter Lie group of transformations

79



B A+é&)x+e,y+¢;

X*

(2.168a)
gx+é&,y+1

_ggxt(l+e)y+ &

¥ (2.168b)
Ex+é&,y+1

with parameters ¢, € R, / = 1,2,...,8. The infinitesimal generators of the corresponding

Lie algebra £° are given by

, O 0 0

X1=x2£+xyi, Xz:xyi"'y o Xy=x—, X =y,
ox oy ox " Oy Ox Ox (2.169)
stai’ Xézxia X7=y£’ XS:E'
X oy oy oy

It is convenient to display the commutators of a Lie algebra through its
commutator table whose (i, j)th entry is [X;, X;]. From (2.163), it follows that the table
is antisymmetric with its diagonal elements all zero. The structure constants are easily
read off from the commutator table.

For the infinitesimal generators (2.169), we have the following commutator table:

X, X, X, X,
X, 0 0 X, -X,
X, 0 0 0 0
X, | X, 0 0 -X,
X, | X, 0 X, 0
X, [2X,+X, X, X, 0
X, 0 X, =X, X,-X,
X, 0 X, 0 X,
X, | X, X,+2X, 0 X,

XS X6 X7 X8
X, [-2X,-X, 0 0 ~X,
X, | =X, X, -X, -X,-2X,
X, | -X, X, 0 0
X, 0 X, -X, -X, -X.
X, 0 X, 0 0
X, | -X, 0 X, 0
X, 0 -X, 0 - X,
X, 0 0 X, 0
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(2) Group of Rigid Motions in R*
The group of rigid motions in R* preserves distances between any two points in R”.
This group is the three-parameter Lie group of transformations of rotations and

translations in R* given by
x*=xcos¢g —ysing, +¢&,, (2.170a)
y*¥*=xsing + ycosg + &, (2.170b)

The corresponding infinitesimal generators are given by

X, :—y£+xi, X, :i, X, :i. (2.171)
ox oy ox

The commutator table of its Lie algebra follows:

X, X, Xy

(3) Similitude Group in R*
The similitude group in R* consists of uniform scalings and rigid motions in R*. It is
the four-parameter Lie group of transformations given by

x*=e"(xcos¢g —ysing) + &,, (2.172a)
y¥=e"(xsing + ycosg)+&;. (2.172b)

The infinitesimal generators are X, X,, X3 given by (2.171) and

0 0
X, =x—+y—. 2.173
4 o yay ( )

The corresponding commutator table is given by

X, X, X, X,
0 -X, X, 0
X, 0 0 X,
-X, 0 0 X
L0 =X, =X, 0

—_

%)
%)

MK M

The group of rigid motions in R* [(2.170a,b)] is a three-parameter subgroup of

the similitude group in R* [(2.172a,b)]. This also follows from noticing that the Lie
algebra with infinitesimal generators (2.171) is a three-dimensional subalgebra of the
four-dimensional Lie algebra with infinitesimal generators (2.171) and (2.173).
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By comparing the infinitesimal generators of the Lie algebra for the projective
group (2.168a,b) with those for the similitude group (2.172a,b), one can see that the
similitude group is a four-parameter subgroup of the eight-parameter projective group.

The commutator can be most useful as an aid for finding additional symmetries.

For example, if a problem in R’ is invariant under both rotational symmetry

0 0 . . . . . 0 .
X, =—y—+x— and translational symmetry in the x-direction, i.e., X, =—, then it

Ox Oy Ox
must also be invariant under the symmetry [Xl,X2]=—ai=—X3 [cf. (2.171)], 1e.,
vV

translational symmetry in the y-direction.

2.54 SOLVABLE LIE ALGEBRAS

In the next chapter, we will consider nth-order ODEs admitting r-parameter Lie groups of
transformations. We will show that if » = 1, then the order of an ODE can be reduced
constructively by one. If » > 2 and » = 2, the order can be reduced constructively by two.
But if » > 2 and r > 2, it will not necessarily follow that the order can be reduced by more
than one. However, if the r-dimensional Lie algebra of infinitesimal generators of an
admitted r-parameter group has a g-dimensional solvable subalgebra, then the order of
the ODE can be reduced constructively by gq.

Definition 2.5.4-1. A subalgebra [J c L is called an ideal or normal subalgebra of L if
X, Y]e J forall X e J,Y € L.

Definition 2.5.4-2. L?1is a g-dimensional solvable Lie algebra if there exists a chain of
subalgebras

LV LV T L@ = 21, (2.174)

such that £% is a k-dimensional Lie algebra and L£%Y s an ideal of £®, k = 1,2,....9.
[£© is the null ideal consisting of only the zero vector.]

Definition 2.5.4-3. L is called an Abelian Lie algebra if [X,,X ;1= 0, for all X4, X5 € L.

The proof of the following theorem is obvious and left to Exercise 2.5-12:
Theorem 2.5.4-1. Every Abelian Lie algebra is solvable.
The following theorem holds for any two-dimensional Lie algebra:

Theorem 2.5.4-2. Every two-dimensional Lie algebra is solvable.
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Proof. Let £ be a two-dimensional Lie algebra with infinitesimal generators X; and X,
as basis vectors. Suppose [X;, Xo] =aX;+ bXy =Y. If ¢;X;+ X, € L, for arbitrary
constants ¢, and c,, then

Y, aciXi+eXo] = [Y, Xi] + ol Y, Xo]
= c1b[Xa, X1] + c2a[ X1, Xs]
= (Cza - Clb)Y.

Hence, Y is a one-dimensional ideal of £. [If a =5 =0, then £ is an Abelian Lie
algebra. ] i

It turns out that a three-dimensional Lie algebra is not necessarily solvable. For
example, the three-dimensional Lie algebra with infinitesimal generators

X1=i, X2=x£, X3=x2i, (2.175)
ox ox

1s not solvable.

As an example of a three-dimensional solvable Lie algebra, consider the Lie
algebra for the group of rigid motions (2.170a,b). The solvability of its Lie algebra
follows from the chain

E(l)CL(Z)CLG) =L

where £ has basis vectors X, X3, X3 given by (2.171), £ has basis vectors X,, X3,
and £V has basis vector Xo.

EXERCISES 2.5
1. Solve the initial value problem (2.156a-e) and recover (2.150a,b).

2. In the case of a one-parameter Lie group of transformations [r = 1], show that the
law of composition ¢a, b) satisfies
-1
5=0 :|

[Hint: Consider ¢(&~',¢(¢,06)) in some neighborhood of & =0.]

I'(s)= —a¢é‘;’ )

_ {%(8, 5)
(a,b)=(c7" &) 00

3. Show that the set of conformal transformation x* = X(x, y), y* = Y(x, y), where
F(z) = X(x,y)+iY(x,y) is analytic in domain D, forms an infinite-parameter Lie
group of transformations. Let z=x + iy. Characterize the infinitesimal generators of
the group.
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. Consider the set of all conformal transformations that are one-to-one on the extended

plane, i.e., the bilinear (Mobius) transformations,

_az+b
cz+d

z¥

, ad—bc#0, (2.176)

where a, b, ¢, d € C and z=x+iy.

(a) Show that (2.176) defines a six-parameter Lie group of transformations.

(b) Find the infinitesimal generators of the group.

(c) Establish the commutator table of the corresponding Lie algebra.

(d) Find the subalgebra of largest dimension that is identical to a subalgebra of the

Lie algebra of the projective group (2.168a,b).

(e) Determine the subgroup of (2.176) with the largest number of parameters that is
in common with a subgroup of the projective group (2.168a,b).

. (a) Show that the infinitesimal generators X,,X,,X,,X, of (2.169) form a four-
dimensional Lie algebra.
(b) Find the corresponding four-parameter Lie group of transformations.

. Show that the three-parameter family of transformations x* = ax + b, y*=cx + y,

does not form a three-parameter Lie group of transformations:
(a) from the definition of a Lie group of transformations; or
(b) from the algebra of its infinitesimal generators.

. Consider the three-parameter family of transformations
x* =ax+b, (2.177a)
y*¥=cy. (2.177b)

(a) Show that (2.177a,b) defines a three-parameter Lie group of transformations.
(b) Establish the commutator table of the corresponding infinitesimal generators.
(c) Show that the Lie algebra of (2.177a,b) is solvable.

. In Chapter 1, it was shown that problem (1.46a—c) is invariant under the two-
parameter family of transformations

x* = a(x — B, (2.178a)

t* = ot (2.178b)

= Ly (AP (2.178¢)
(04

(a) Show that (2.178a—c) defines a two-parameter Lie group of point transformations.
(b) Establish the commutator table of its Lie algebra.

. Check that the projective transformations (2.168a,b) map straight lines into straight
lines. Also check this in terms of their infinitesimal generators (2.169).

10. Show that ™ e™” =™/ e™ = ¢™*™ if and only if [X,,X ;]=0.
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11. Prove Theorem 2.5.2-3.
12. Prove Theorem 2.5.4-1.
13. (a) Show that the infinitesimal generators
0 0

X =+ Lrl X, = lrae S, X, =y Loxl
Ox oy ox oy ox Oy

form a three-dimensional Lie algebra sl
(b) Show that £ does not have a two-dimensional subalgebra and, hence, is not
solvable.

2.6 MAPPINGS OF CURVES AND SURFACES

Under the action of a one-parameter Lie group of point transformations admitted by an
ODE, each solution curve is mapped into a one-parameter family of solution curves of
the same differential equation or is invariant under the action of the group.
Corresponding remarks apply to solution surfaces of PDEs.

2.6.1 INVARIANT SURFACES, INVARIANT CURVES, INVARIANT POINTS

Definition 2.6.1-1. A surface F(x) = 0 is an invariant surface for a one-parameter Lie
group of transformations (2.6) if and only if F(x*)=0 when F(x)=0.

Definition 2.6.1-2. A curve F(x, y) = 0 is an invariant curve for a one-parameter Lie
group of transformations (2.98a,b) if and only if F(x*, y*)=0 when F(x, y)=0.

The proof of the following theorem is left to Exercise 2.6-3:

Theorem 2.6.1-1.
(1) 4 surface F(x) = 0 is an invariant surface for a one-parameter Lie group of
transformations (2.6) if and only if

XF(x)=0 when F(x)=0, (2.179)

where X is the infinitesimal generator given by (2.24).
(11) A curve F(x, y) = 0 is an invariant curve for a one-parameter Lie group of
transformations (2.98a,b) if and only if

XF(x,y)=0 when F(x,y)=0, (2.180)
where X is the infinitesimal generator given by (2.98d).

This theorem gives a means for finding the invariant surface of a given Lie group
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of transformations, namely, by solving (2.179).
A curve written in a solved form, F(x, y) = y— f(x) =0, is an invariant curve for
(2.98a,b) if and only if

XF(x,y)=n(x,y)=¢(x,») f(x)=0
when F(x,y)=y— f(x)=0, ie., if and only if

n(x, f(x)) =& (x, f(x)) f'(x) = 0. (2.181)

As an example, consider the scaling group
x*=ex, (2.182a)
yE=ey. (2.182b)

The corresponding infinitesimal generator is given by

X:xi+y£. (2.183)
ox oy

A ray y—-Ax=0,x>0,A=const, is an invariant curve for (2.182a,b) since
X(y — Ax) =y — Ax = 0 when y — Jx = 0; a parabola y — x> =0, A = const, is not an
invariant curve for (2.182a,b) since X(y — Ax*) =y —24x* # 0 when y — x> =0.

To find all invariant curves y — f(x) =0 for (2.182a,b), we first find the general
solution u(x,y) of the PDE

This yields
u(x,y) = F(Z}
X
where F'is an arbitrary function of y/x. Invariant curves then include the curves
y—Ax=0, A=const, x>0 or x <O.

Definition 2.6.1-3. A point x is an invariant point for the Lie group of transformations
(2.6) if and only if x*=x under (2.6).

The proof of the following theorem is left to Exercise 2.6-5:

Theorem 2.6.1-2. A point X is an invariant point for the Lie group of transformations
(2.6) if and only if

&(x) =0. (2.184)

For the scaling group (2.182a,b), note that &(x, y) = #(x, y) = 0 if and only if
x=y=0

86



x =y =0, so that the only invariant point is the origin (0, 0).

Definition 2.6.1-4. The family of surfaces
w(X) = const = ¢
1s an invariant family of surfaces for the Lie group of transformations (2.6) if and only if

w(x*)=const =c* when w(x)= c.

Definition 2.6.1-5. The family of curves
w(x,y)=const=c
is an invariant family of curves for the Lie group of transformations (2.98a,b) if and only
if
w(x*, y*)=const=c* when w(x,y) =c.
From these definitions, it follows that

c*=C(c;¢) (2.185)
for some function C of the constant ¢ and the group parameter ¢.
Theorem 2.6.1-3.

(1) A family of surfaces, w(x) = const = ¢, is an invariant family of surfaces for the Lie
group of transformations (2.6) if and only if

Xw = Q(w) (2.186)

for some infinitely differentiable function Q(w).
(i1) A family of curves, w(x, y) = const = ¢, is an invariant family of curves for the Lie
group of transformations (2.98a,b) if and only if

ow ow
X =E&(x,y)—+n(x,y)—— = Qo) (2.187)
Ox oy
for some infinitely differentiable function Q(w).

Proof. Let w(x) = c be an invariant family of surfaces for (2.6). Then

o(x*) = e™w(x) = o(x) + X (X) + g—;Xza)(x) +---=c*=C(c¢).

Hence, Xw(x) = Q(w) for some function Q(w) when w(x) = c. It follows that
Xw=Q'(0)Xw = Q'(w) Qw), etc.

Conversely, suppose Xw(x) = Q(w) for some infinitely differentiable function
Q(w). Then X’ w = Q'(w) Qw), and X" w = f;(w) for some function f;(w), n = 1,2,....
Consequently, if w(x) = ¢, then
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o(x*) = e o(x) = o(x) + Xwo(X) + g—;Xza)(x) 4o

&

o) =c+ Y,

87[
n'fn(c):c*. O

= w(Xx)+ i

There are two distinguished types of invariant families of surfaces (curves). The
trivial type is where each surface (curve) in the family is itself invariant. This type is
characterized by Q(w) = 0. The nontrivial type is where no surface (curve) in the family
is itself invariant, i.e., each surface (curve) is moved to a different surface (curve). This
type is characterized by Q(w) = 1. This follows from the fact that if w(x) = ¢ is an
invariant family of surfaces, then so is F(w(x)) = F(c¢) for any function F; then
XF(w(x)) =F'(0) Xo =F'(0) Q(w), so that setting F'(w) = 1/Q(w) we have XF(w) = 1.
[We assume that Q(w) # 0, for otherwise some surface in the invariant family of surfaces
is itself an invariant surface for (2.6).]

As an example, consider again the scaling group (2.182a,b). The invariant family
of curves w(x, y) = c satisfies

Xo = xa—w + ya—a) =1
ox oy
The corresponding characteristic equations are given by
do_dv_dv
1 x oy’

with their general solution given by

w(x,y) =logx+ f(lj
X

for an arbitrary function f. Hence, any family of curves
F(o)= F(logx + f(ZD =const =¢ (2.188)
X

is an invariant family of curves for (2.182a,b) for any choice of F and /. In particular, the
family of circles x* + y* = const = /% is an invariant family of curves for (2.182a,b)

obtained by choosing F(w) = ¢*” and fiz) = L log(l + z%) in (2.188). The family of lines
x = const is invariant, corresponding to F(w) = ¢, fiz) = 0. The family of logarithmic
spirals e’ = const is invariant, corresponding to F(w) = ¢’ and fz) = 2 (log(1 + )+
arctan z).
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2.6.2 MAPPINGS OF CURVES

Consider a one-parameter Lie group of transformations

x*= X(x,y;¢) =e™x, (2.189a)
yE=Y(x,y;6) =e™y, (2.189b)
with infinitesimal generator
0 0
X=8(x,y)—+nxy) (2.189¢)
Ox oy

Consider a curve y = O(x). The transformation (2.189a,b) maps a point (x, y) on
the curve y = O(x) into the point (x*, y*) with

x*= X (x,0(x);¢), (2.190a)
y*=Y(x,0(x);¢). (2.190b)

For a fixed value of &, (2.190a,b) defines a parametric representation of a new curve
with x playing the role of a parameter [Figure 2.5]. One can eliminate x from (2.190a,b)
by substitution through the inverse transformation of (2.189a,b), i.e., through substitution
of

x=X(x*y* —¢) (2.191)

into (2.190b). Then

YE=Y (X (%, p%; - 6), (X (x*, y*; — ));6) = Y (e ", 0(e " x¥);¢).  (2.192)

Y
A

Yy =4(x;¢€)

Figure 2.5. Mapping of a curve: A different curve y = @ (x;&) corresponds to each
parameter value ¢ .

Equation (2.192) yields the relationship between the x- and y-coordinates of the new
curve denoted by y = @ (x; &). After substituting in x and y for x* and y* and replacing ¢
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by —&, we have the following:

Theorem 2.6.2-1. Suppose y = O(x) is not an invariant curve of (2.189a,b). Then
y =Y (e™x,0(e™x); - &) (2.193a)
=Y(X(x,y;6),0(X(x,y;6)); - €) (2.193b)

implicitly defines a one-parameter family of curves y = ¢ (x;¢&).

2.6.3 EXAMPLES OF MAPPINGS OF CURVES

(1) Scaling Group
For the scaling group

x*=X =ex, (2.194a)
yE=Y =e*y, (2.194b)
we have
V¥ =e*0(x) = e*0O(e " x¥),

and hence, y = ®(x) maps into the family of curves

y =e*0(e°x) = ¢(x; ). (2.195)
(2) Projection Group
For the projection group
b= (2.1962)
I-g
ypr=—2 (2.196b)
I-gy
we have
16
1-£0(x)’
and
X *
x=x*({1- =
(1-e) Trev®
Hence,
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o **
= l+ep*
.
1—.9@( al j
I+ep*

Consequently, the curve y = O(x) maps into the family of curves y = ¢ (x; &) satisfying
the implicit equation

4 =@[ al j (2.197)
I+¢y I+¢

2.6.4 MAPPINGS OF SURFACES

We derive a formula for families of surfaces analogous to formula (2.193a,b) for families
of curves. Consider a one-parameter Lie group of transformations

x*= X(x,u;¢) = e™x, (2.198a)
w*=U(x,u;&) = e u, (2.198b)

with infinitesimal generator
% 0 0
X= (x,u)—+n(x,u)—.
PR C

Consider a surface # = O(x) that is not invariant under (2.198a,b). The
transformation (2.198a,b) maps a point (x, ) on the curve # = @(x) into the point (x*, u*)
with

x* = X(x,0(x);¢), (2.199a)
u* =U(x,0(x);¢). (2.199)b)

For a fixed value of &, one can eliminate x from (2.199a,b) by substitution
through the inverse transformation of (2.198a), i.e., by substitution of
x=X(x*u*;—¢)
into (2.199b). Then
w* = U(X (x*,u*; — &), 0(X (x*,u*; — £));6) = U(e ™ x*,0(e ™ x*);¢), (2.200)
with
0 0

+ n(x*,u*
ox *. I )au*

1

N a a N ko, ,%
X_;é(xau)a_xi'i'n(xau)a_;é’(x U )

[cf. Exercise 2.3-5]. Replacing (x*,u*, — &) by (x,u,&) in (2.200), we then have
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u=U(e™x,0(e™x); —&)=U(X(x,u; &), (X (x,u;¢)); — €). (2.201)

Theorem 2.6.4-1. Suppose u = O(x) is not an invariant surface of (2.198a,b). Then
(2.201) implicitly defines a mapping of the surface u = O(x) into a one-parameter family
of surfaces u = ¢ (x;¢).

EXERCISES 2.6

1. For the group of transformations (2.71a,b), find invariant curves, invariant points, and
invariant families of curves.

2. For the group of transformations (1.93), find invariant curves (surfaces), invariant
points, and invariant families of curves (surfaces):
(a) in (x, 7)-space; and
(b) in (x, ¢, u)-space.

Prove Theorem 2.6.1-1.
Geometrically interpret (2.181).
Prove Theorem 2.6.1-2.

Show that if y = ®(x) is an invariant curve of (2.189a,b), then (2.193a,b) yields
@ (x;¢)=0(x) for all ¢.

AN

7. Find the image y = ¢(x;¢) of the curve y = ®(x) under the rotation group

x*=xcosg— ysing,

y*=xsing+ ycose.

2.7 LOCAL TRANSFORMATIONS

For some applications to ODEs, it is essential to look at a one-parameter Lie group of
point transformations (2.189a,b) acting on (x,y)-space from the point of view of

transformations acting directly on the space of functions y = y(x). This will lead to
natural generalizations of point transformations.

2.7.1 POINT TRANSFORMATIONS

Consider again the mapping of a curve y = ®(x) into a family of curves y = ¢(x; &) under

a one-parameter Lie group of point transformations (2.189a,b). Geometrically, this
transformation represents a mapping of points (x, y) into (x*, y*), as discussed in Section
2.6.2 [cf. Figure 2.5], giving the implicit formula (2.193b) for y = ¢(x;¢&). It is important
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to describe this mapping explicitly as a transformation of the curve y = O(x) to curves
y = @(x; ). Formally, this mapping is given by

x*=x,

V¥ =g(x;e) = (€™ y)

b
y=0(x)

for some infinitesimal generatorf( [see Figure 2.6].

Figure 2.6. Direct mapping of a curve y = O(x) to curves y = @(x;¢).

We now derive a formula for the infinitesimal generator X. Under a Lie group
of point transformations (2.189a,b), we have

x* = x+ &£(x,0(x)) + 0(%), (2.202a)
y* = 0O(x) + en(x,0(x)) + O(&?). (2.202b)

The dependence of y* on x* defines the image y* = ¢(x*; &) of y =0O(x). One eliminates
x from (2.202a,b) to obtain ¢(x*;&). Solving (2.202a) for x yields

x = x*—g&(x*,0(x%)) + 0(&). (2.203)
Substituting (2.203) into (2.202b) and taking the Taylor expansion in &, we obtain
P(x*;8) = O(x*) + £((x*,O(x*)) = £(x*,O(x*))O'(x*)) + O(e?).  (2.204)

Then, if we replace x* by x in (2.204), the image of y = ®(x) under the transformation
(2.189a,b) is given by

y*=(x;6) = O(x) + [n(x, O(x)) = £ (x, O(x))O' ()] + O(?). (2.205)

We now observe that the same image of y = ®(x) can also be obtained by a
transformation leaving x invariant:

x*=x,
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y*=y+eln(x,y) = &(x,»)y'1+0E). (2.206)

The infinitesimal generator for transformation (2.206) is given by

X =[x, ) — &G, y)y']% (2.207)

Geometrically, we have now moved from a transformation (2.189a,b) acting on
(x, y)-space to a transformation (2.206) acting on the space of functions y = y(x). The
infinitesimal generator (2.207) is the characteristic form of the infinitesimal generator
(2.189c¢).

As examples, for the scaling group (2.194a,b), we have

X=[2y- xy']%, (2.208)
and for the projection group (2.196a,b), we have
X=[y*- xyy']ﬁ. (2.209)
o)

2.7.2 CONTACT AND HIGHER-ORDER TRANSFORMATIONS

We can generalize point transformations with infinitesimal generators of the
characteristic form (2.207) to local transformations with infinitesimal generators of the
form

A . , 0
in(xayay ’--'7y(k))_ (2210)
y

involving dependence on derivatives y“ up to some finite order / = k.

Formally, we can exponentiate (2.210) to obtain a corresponding one-parameter
group of transformations acting on the space of functions y = y(x):

x*=x,
YE=y+en+0(s?). (2.211)
To calculate the higher-order terms, we extend X to act on ',)",...,y" by

requiring that the contact conditions are preserved, i.e.,

*
0% =2 =Dy + e+ 06 = '+ D7 + O,
X

dy *(~D) . . . .
= DYV +eDH+0(e?)) =y + eDfi + O(e?),
X

*(J) _
y =
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where ) =d’y/dx’, j>1, and D is the total derivative operator d / db.

Consequently, the extended infinitesimal generator (the prolongation of X) is
given by

' :ﬁ§+ﬁa>%+.. +ﬁ</>m+ (2.212a)
where
. . 0N on on
O=ph="Tyy =Ly pyed 2 2.212b
n n o y oy Y ay(k) ( )
AV =DAY, 1. (2.212¢)

Hence, the exponentiation of the infinitesimal generator (2.210) yields the
following transformation:

Definition 2.7.2-1. A one-parameter group of local transformations is a transformation
of the form

x*=x,

o © oJ L )
ey oy ZE—_'(X“’))J-1 5, (2.213)

j=1

where X is given by (2.112a).

Note that one can invert (2.213) through inverse exponentiation.

A local transformation corresponds to a point transformation if and only if 7 is
of the form 77 =n(x,y)—&(x,y)y" for some n(x,y), &(x,y), i.e., 7 islinear in y" and
has no dependence on higher derivatives of y. A local transformation (2.213) is called a
contact transformation if 1 is of the form 7 =7n(x,y,y"). Otherwise, a local

transformation is called a higher-order transformation. One can show that a local
transformation corresponds to an extended transformation acting on some finite-

dimensional space (x,y,)',...,y"”), p =1, ifand only if it is a contact transformation.

2.7.3 EXAMPLES OF LOCAL TRANSFORMATIONS

(1) Scaling Group
For the scaling group (2.194a,b), the extension of the infinitesimal generator (2.208) is
given by

n n a
— Xy -+ ™)

0
+ cee
ayl aylﬂ aylﬂ

(0 ’ 0 ’ "
X' )=(2y—xy)5+(y —x")
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—((=2p" + xy(’”)) (2.214)

5 (/)
The curve y = ®(x) is mapped into the family of curves y = ¢(x;&) given by

#(x;8) = (™" y)

y=0(x)
=[y+ey—xy") +%52 4y —=2xy' —xy' +x*y")+ O(e )]‘ .
= O(x) + £[20(x) — xO'(x)] + L £[40(x) — 3xO'(x) + x’O"(x)] + O(&*).  (2.215)

The expression (2.215) is the Taylor series of the mapping (2.195).

(2) Projective Group
For the projective group (2.196a,b), the extension of the infinitesimal generator (2.209) is
given by

m

(0 ’ 0 ' ' "
X =" =)=+ (' =x() —xpp
oy 0
(2.216)
Here the curve y = ®(x) is mapped into the family of curves y = ¢(x;¢) given by

K
p(x;8)=(e™ )
y=0(x)

=[y+e(y’ =)+ 17 =0 )2y = 0) = ('~ x() = xp") + O]
=0O(x) + g[O%(x) — xO(x)O'(x)]
+1£7[20° (x) — 4x0% ()O'(x) + 2x°O(x)(O'(x))* + x°O* (x)@"(x)]+ O(&’).  (2.217)

y=0(x)

The expression (2.217) yields the explicit Taylor series for the mapping given by the
implicit equation (2.197).

EXERCISES 2.7

1. Consider the rotation group
x*=xcoseg—ysing,
y¥=xsine+ ycose.
(a) Find the extended infinitesimal generator X,
(b) Use the local transformation with the infinitesimal generator X to calculate the

image of the curve y = O(x) to O(&’) and compare the resulting expression with
the expression obtained in Exercise 2.6-7.

2. Show that the Taylor series for (2.197) to O(&’) agrees with (2.217).
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3. Consider a point transformation

x*=x+&&(x,y)+ 0(52),
y¥=y+en(x,y)+0(?),

with extended infinitesimal generator

@ _ g0 0 0D o0 O
X _§ax+776y+77 6y'+ +n Gy(")+ . (2.218)

Show that the characteristic form of the extended infinitesimal generator (2.218) is
given by

X =p O 0 0 L p_O
n@y g oy’ " ay® ’
where
5 . J k! e
n=n-y¢  q¥=nY-y"E=Dn-3 ————y"D/E k2L
/Z(; (k=D

(2.219)

2.8 DISCUSSION

In this chapter, we have considered one-parameter Lie groups of transformations that are
completely determined by their infinitesimal transformations. Actually such groups are
one-parameter connected local Lie groups of transformations [Gilmore (1974); Olver
(1986); Ovsiannikov (1962, 1982)]. The global properties of Lie groups turn out to be
unimportant for the purpose of studying the invariance of differential equations.

Using the infinitesimal generator of a one-parameter Lie group of transformations
one can construct various kinds of invariants (invariant surfaces, invariant points,
invariant families of surfaces). Moreover, for a one-parameter Lie group of point
transformations we can determine canonical coordinates in terms of which the
transformation group becomes a group of translations.

When applying Lie groups of transformations to the study of the invariance
properties of a differential equation, the coordinates of the group transformations are
separated into independent and dependent variables. A one-parameter Lie group of
transformations acting on the space of independent and dependent variables is naturally
extended (prolonged) to a one-parameter Lie group of transformations acting on an
enlarged space (jet space) that includes all derivatives of the dependent variables up to a
fixed finite order. This is accomplished by requiring, under the group action,
preservation of derivative relations or, equivalently, the preservation of the contact
conditions connecting the higher-order differentials. This requirement induces a unique
extension (prolongation) of the group action to any enlarged space (higher-order jet
space). Consequently, one-parameter extended (prolonged) Lie groups of transformations
are characterized completely by their infinitesimals. Moreover, these extended
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(prolonged) infinitesimals are determined from the infinitesimals of the group action on
the space of independent and dependent variables. This allows one to establish an
algorithm to determine the infinitesimal transformations admitted by a given differential
equation.

The study of multiparameter Lie groups of transformations reduces to the study of
infinitesimal generators of one-parameter subgroups. The infinitesimal generators form a
vector space called a Lie algebra that is closed under commutation. The invariance
properties of a differential equation under a multiparameter Lie group of transformations
can be completely characterized by its Lie algebra. The structure (commutator table) of
the Lie algebra of a multiparameter group plays an essential role in applying infinitesimal
transformations to differential equations.

When one considers generalizations beyond point transformations to higher-order
transformations (as well as to nonlocal transformations), it turns out to be important to
look at a group transformation from the point of view of mapping a given curve (surface)
into another curve (surface) with the independent variable(s) fixed. This is especially
necessary in studying the invariance properties of differential equations under higher-
order transformations.

Our presentation of Lie groups of transformations has emphasized the essential
computational and algebraic aspects of Lie group theory needed for applications to ODEs
in Chapter 3 and PDEs in Chapter 4. Differential geometrical aspects of Lie group theory,
although secondary in such applications, provide a complementary viewpoint and a
geometrical interpretation for results covered in this chapter [Olver (1986); Warner
(1983)].

The (prolonged) action of a one-parameter Lie group of transformations defines a
differentiable curve in a (higher-order) jet space. Geometrically, the infinitesimal
generator of the transformation represents the tangent vector of this curve at a given
point. For m dependent variables and » independent variables, the jet space of order &
is a differentiable manifold of dimension (m + n)[(n + k)!/(k! m!)]. A basis for the tangent
space of vector fields on this manifold is defined by the coordinate vector fields which
are partial derivative operators with respect to the jet space coordinates. The basis
components of the tangent vector field associated to a one-parameter Lie group of
transformations are thus the prolonged infinitesimals of the transformation. For an 7-
parameter Lie group of transformations, the associated » tangent vector fields are
linearly independent and in involution, i.e., their span is an r-dimensional vector space
containing all their commutators (Lie brackets). In particular, at each point in the
underlying jet space, these vector fields span an r-dimensional Lie algebra.
Correspondingly, the action of the transformation group defines an r-dimensional surface
in the jet space.

An r-parameter Lie group of transformations on a jet space arises naturally as a
representation of an underlying abstract »-dimensional connected Lie group. Such a Lie
group is a differentiable manifold G on which there is a given group structure (law of
composition) ¢:GxG —> G such that multiplication and inversion of group elements

(points) in G are given by differentiable mappings. The mappings L,:G —> G and
R,:G — G, respectively defined by left and right multiplication by a fixed group
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element gin G, play a central role in abstract Lie group theory. The action of these

differentiable mappings on a tangent vector at the point given by the identity element e
in G determines a corresponding left- or right-invariant vector field on G. The
respective sets of all left- and right-invariant vector fields on an r-dimensional Lie group
form r-dimensional vector spaces which possess a Lie bracket structure given by the
commutator operation. In this context, Lie’s three fundamental theorems have a simple
geometrical meaning.

Lie’s first theorem essentially states that a one-dimensional Lie subgroup of G is
equivalent to an integral curve on G of a left- or right-invariant vector field determined
by specifying a tangent vector at the identity element e in G. The Lie bracket of two
left- or right-invariant vector fields on G measures the extent to which they are
involutive, i.e., their corresponding integral curves close to form a two-dimensional
differentiable submanifold (surface) in G if and only if the Lie bracket is contained in
the span of these two vector fields. Lie’s second and third theorems then reflect the fact
that the vector spaces of left- and right-invariant vector fields on G have the structure of
a Lie algebra whose commutator structure is the same at all points in G because of the
invariance property of the vector fields.

Thus, associated to any abstract connected Lie group of dimension 7 is a unique 7-
dimensional Lie algebra. Conversely, corresponding to any abstract r-dimensional Lie
algebra there is a unique simply-connected Lie group G. More generally, for such a Lie
group, there is a one-to-one correspondence between its k-dimensional Lie subgroups and
its k-dimensional Lie subalgebras. Indeed, geometrically, a A~-dimensional Lie subgroup
of G 1is a k-dimensional submanifold (surface) foliated by integral curves of left- or
right-invariant vector fields on G determined by an involutive k-dimensional subspace of
tangent vectors at the identity element e in G. Finally, a solvable r-dimensional Lie
group is geometrically characterized by admitting an ascending chain of integral
submanifolds of dimensions 1,2,...,7 generated by integral curves of involutive left- or

right-invariant vector fields on the Lie group.
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Ordinary Differential Equations (ODEs)

3.1 INTRODUCTION

Symmetries and first integrals are two fundamental structures of ordinary differential
equations (ODEs). Geometrically, it is natural to view an nth-order ODE as a surface in
the (n+ 2)—dimensional space whose coordinates are given by the independent variable,

the dependent variable and its derivatives to order », so that the solutions of the ODE are
particular curves lying on this surface. From this point of view, a symmetry represents a
motion that moves each solution curve into solution curves; a first integral represents a
quantity that is conserved along each solution curve. [More precisely, a symmetry is a
one-parameter group of local transformations, acting on the coordinates of the (n+2)—

dimensional space, that maps solutions into solutions, and a first integral is a quadrature
expressed by a function of the coordinates involving the independent variable, the
dependent variable and its derivatives to order » —1, that is constant on each solution. ]

In this chapter, we show how to find admitted symmetries and first integrals of an
nth-order ODE. We study the integration of ODEs from these two distinct points of
view.

Lie showed that if a given ODE admits a one-parameter group of point
transformations (point symmetry), then the order of the ODE can be reduced by one.
Moreover, the solution of the reduced ODE plus a quadrature yields the solution of the
given ODE.

If an wnth-order ODE admits an r-parameter solvable group of point
transformations, then it can be reduced to an (n — r)th-order ODE plus r quadratures.
When r = n, one can obtain the general solution of the ODE in terms of » quadratures.
When 7 < n, the reduced (n — r)th-order ODE uses derived independent and dependent
variables. In general, this ODE is not of order » — » when expressed in terms of the
original independent and dependent variables (typically it is still of order »).

For a first-order ODE, Lie’s symmetry reduction yields the quadrature of the
ODE. Lie showed that this is equivalent to finding a first integral and corresponding
integrating factor of the ODE.

For an nth order-ODE, a first integral yields a quadrature reducing the order of the
ODE by one. Finding a first integral of a given ODE is equivalent to obtaining an
integrating factor admitted by the ODE.

If »n functionally independent first integrals are known for an nth-order ODE,
then one obtains the general solution of the ODE in terms of » essential constants. On
the other hand, if one only knows » < » functionally independent first integrals, then the
ODE is reduced to an (n — r)th-order ODE in terms of r essential constants. In contrast
to symmetry reduction, in the integrating factor approach, the reduced ODE is of order
n —r in terms of the original independent and dependent variables.

For a given ODE, the integrating factor method and Lie’s reduction method are
complementary. However, the algorithms for computing symmetries and integrating



factors are similar. Symmetries are solutions of the linearization (Fréchet derivative) of
the given ODE holding for a// solutions of the given ODE. On the other hand, integrating
factors are solutions of a linear system that includes the adjoint of the linearization of the
given ODE holding for a/l solutions of the given ODE.

Symmetry reduction can also be applied to boundary value problems for ODEs.
If a symmetry reduces the order of an ODE, the same reduction holds for any posed
boundary value problem.

If an ODE admits a Lie group of transformations, then one can construct
interesting special classes of solutions (invariant solutions) that correspond to invariant
curves of the admitted Lie group of transformations. For a first-order ODE, such
invariant solutions can be determined algebraically and include separatrices and singular
envelope solutions. For higher-order ODEs, invariant solutions are determined either
algebraically or by solving the first-order ODE for the invariant curves of the group.

3.1.1 ELEMENTARY EXAMPLES

To illustrate symmetry reduction and its connections with integrating factors for first-
order ODEs, we consider two elementary examples:

(1) Group of Translations
The first-order ODE

d
n=2=F (3.1)
dx
trivially reduces to the quadrature
y= j F(x) dx +C. (3.2)

Obviously, the right-hand side of ODE (3.1) is characterized by no dependence on y. In
particular, the one-parameter (&) Lie group of translations

x*=x, (3.3a)
yiE=y+eg, (3.3b)
is admitted by ODE (3.1) since

dy* _dy _

*:—_
R L

» and F(x*)=F(x),

so that under the group (3.3a,b), the surface y, = F(x) is invariant in (x, y, y;)-space.
Moreover, it is easy to see that the ODE

-%=fmw (3.4)

is invariant under the group (3.3a,b) if and only if, for any value of the parameter &,
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FO&*y9) =fxy+e)=f(x,),

i.e., f(x,y) is independent of y or, equivalently, f(x, y) = F(x) for some function F(x).
Thus the reduction of (3.1) to quadrature (3.2) is equivalent to the invariance of (3.1)
under the group of translations (3.3a,b).

Under the action of the group (3.3a,b), a solution curve y = O(x) of ODE (3.1)
maps into a curve y* = @(x*) which corresponds to the solution curve y =®(x)—¢& of
(3.1) [Figure 3.1]. Thus, from the invariance of ODE (3.1) under the group of translations
(3.3a,b), we see that if y = ©(x) is a particular solution of (3.1) then y = O(x) + C is the
general solution of (3.1) for an arbitrary constant C.

y
A
y=0(x)
y=0(x)-¢
A
> X
Figure 3.1
From the quadrature (3.2), we see that
y=[Fx)dc=C (3.5)

is a first integral of (3.1). After differentiating the first integral (3.5), we obtain

- fre -y - Feo =10 - Fep -0,

and hence, the function

ulx, y) =1 (3.6)
is an integrating factor of ODE (3.1) that yields the first integral (3.5).

(2) Group of Scalings
The first-order ODE

= F(l} 3.7)

dx X

commonly called a homogeneous equation, admits the one-parameter (o) group of
scalings
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x* = ax’ (3.83)
y* = o, (3.8b)

since

% *
y* =dy =ady=y1 and F| 2 |=F] 2|
dc* adx x* X

Under the action of group (3.8a,b), a solution curve y = ®(x) of ODE (3.7) maps
into the curve y* = @(x*) which corresponds to the solution curve

y= l®(ooc) (3.9)
(04

of (3.7). It follows that if y = O(x) is a particular solution of ODE (3.7) and the curve
y — 0O(x) = 0 is not invariant under (3.8a,b) (i.e., O(x) # Ax for some fixed constant 1),
then

1
=—0O(Cx
y=C (Cx)

is the general solution of (3.7) for an arbitrary constant C.

The reduction of order of ODE (3.7) from its invariance under the group of
scalings (3.8a,b) is accomplished by choosing, as new coordinates, the canonical
coordinates

r=2, (3.10a)
X

s =logy. (3.10b)

With the reparametrization £ =log a (a > 0), the ODE (3.7) is correspondingly invariant
under the one-parameter (¢) Lie group of translations

r¥=r, (3.11a)
s*=s5+¢. (3.11b)

Hence, from the first example it follows that, in terms of canonical coordinates (3.10a,b),
the ODE (3.7) must be of the form

ds
= =G0, (3.12)

for some function G(r). Thus, the general solution of ODE (3.7) is given by
5= jG(r) dr+C, (3.13)
or, in terms of coordinates x and y,

y=C* exp[ Iy/x G(r) dr} C* =const. (3.14)

104



The function G(r) is determined as follows:

ds =ldy, dr :—%dx+ldy,
v X X

and hence,

_ds_ oy _ F()
G(r)_dr ry, =1’ rF(r)y—r?’ (3.15)

where F(r) is the function given in ODE (3.7).
From the quadrature (3.13), we see that

logy~ [ G(rydr=C (3.16)
is a first integral of (3.7). After differentiating (3.16) and collecting the y' terms, we

“liogy- [ G ar |- ;yJ ' (y' - F@D =0.

y—xF(

obtain

X

Hence, the function

e, y) = ——
Y- xF(yj

X

(3.17)

is an integrating factor of ODE (3.7) that yields its general solution in the form (3.16).

EXERCISES 3.1

1. Consider the ODE

v_y (3.18)
dx x
(a) Obtain the general solution of ODE (3.18) from its invariance under scalings:
(1) x*=ax, y*=ap;, and
(1) x*=x, y*=py.
(b) Find the corresponding integrating factors.
(¢) y=0O(x) =x is a solution curve of (3.18). Find the image of this solution curve
for each of the two groups in (a). Explain your answers.
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2. Consider the ODE
d
D _ 4(x)B(). (3.19)
dx

(a) Find an integrating factor of (3.19).
(b) Find a one-parameter Lie group of transformations admitted by (3.19).

3. Find the most general first order ODE % = f(x,y) that admits the group

x*=qax,
k 2
yr=ay.

4. Formulate the problem of finding one-parameter Lie groups of transformations that
leave invariant the family of straight lines y = cx.

3.2 FIRST-ORDER ODEs

We consider applications of point symmetries to the study of a first-order ODE

% =§= £ ). (3.20)
X

We assume that the ODE (3.20) admits a one-parameter Lie group of point
transformations, called a point symmetry,

x* = X(x,y;6) = x+ &£(x, y) + O(&?), (3.21a)
y*=Y(x,y;6) =y +en(x,y)+0(e), (3.21b)

with the infinitesimal generator
0 0
X=¢(x,y) - +n(x,y) . (3.21¢)
ox oy

We first show how to find the general solution of ODE (3.20) from the
infinitesimals &(x, ), 7(x, y) of an admitted group (3.21a,b) from two points of view:
(1) use of canonical coordinates; and
(i1) determination of an integrating factor.

Alternatively, if a particular solution of ODE (3.20) is known, and this particular
solution is not an invariant curve of point symmetry (3.21a,b), then the implicit formula
(2.193a,b) yields the general solution of (3.20).

We then consider the problem of determining point symmetries (3.21a,b) admitted
by a given first-order ODE (3.20). We also show how to find all first-order ODEs
admitting a given point symmetry.
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3.2.1 CANONICAL COORDINATES

As discussed in Section 2.3.5, given any one-parameter Lie group of point
transformations (3.21a,b), there exist canonical coordinates r(x,y),s(x,y), so that

(3.21a,b) becomes the translation group

r¥=r, (3.22a)

s*=s+¢. (3.22b)
These coordinates are found by solving

Xr=0,

Xs=1.

In terms of canonical coordinates, ODE (3.20) becomes the ODE

s +sy s +s f(x,
ds= FSY Sk WS y)zF(r,s), (3.23)

dr ro+ry ro+r f(x,y)

where F(r,s) is obtained by substituting x and y in terms of » and s into
[s, +s,/(x, »))/[r, +7,f(x,y)]. The invariance of ODE (3.20), and hence ODE (3.23),

under the translation group (3.22a,b), means that F(r, s) does not depend explicitly on s.
Hence, ODE (3.23) must be of the form

s.+s f(x,
B _ Gy = 2T D) (3.24)
dr re+r,f(x,)
Consequently, the general solution of ODE (3.20) is given implicitly by
sy = [ G(pydp+C, € =const. (3.25)

In Section 3.1.1, we solved the first-order homogeneous ODE (3.7) in terms of
canonical coordinates arising from its invariance under scalings (3.8a,b). Now consider
two more familiar examples in terms of canonical coordinates.

(1) Linear Homogeneous Equation
The first-order linear homogeneous ODE

y'+p(x)y=0 (3.26)
admits the one-parameter () Lie group of scaling transformations
x*=x, (3.27a)
y¥=ay. (3.27b)
In terms of corresponding canonical coordinates
r=Xx, (3.28a)
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s =logy, (3.28b)
ODE (3.26) becomes
ds '
BV pi. (3.29)
ar vy
Hence, the general solution of ODE (3.26) is given by
s(x,y)=logy =~ p(p)dp+C,

or

y= C exp[— r p(p) dp}, C = const.

(2) Linear Nonhomogeneous Equation
The first-order linear nonhomogeneous ODE

y'+px)y=g(x) (3.30)

admits the one-parameter (&) Lie group of transformations
x*=x, (3.31a)
yvE=y+ ed(x), (3.31b)

where u = ¢(x) is any particular solution of the associated linear homogeneous ODE
u'+ p(x)u =0. (3.32)

The infinitesimal generator corresponding to (3.31a,b) is given by
0
X =¢(x)—,
$(x) &
and hence, Xs =1 has the solution s = y/¢@(x). Interms of canonical coordinates

r=x, (3.33a)
s=—2 (3.33b)

the ODE (3.30) reduces to
ds g(r)

dr $(r)’

which has as its general solution

I g(p) +C.
(X) ¢(p)

108



Hence, the general solution of ODE (3.30) is given by

y=¢(x) J.X‘ZE—Z;dp + C¢(x), C =const. (3.34)

3.2.2 INTEGRATING FACTORS

The general solution of the first-order ODE (3.20) is a family of curves

w(x,y) = const. (3.35)
Then
do
—=w_+w,y' =0, 3.36
e 0T (3.36)
and hence,
o+ f(x,yo,=0 (3.37)

holds for all solutions of ODE (3.20).

We assume that ODE (3.20) admits a one-parameter Lie group of point
transformations (3.21a,b). Thus, (3.21a,b) leaves invariant the family of solution curves
(3.35). We further assume that, under group (3.21a,b), the solution curves (3.35) of ODE
(3.20) are not invariant curves of (3.21a,b). Then, without loss of generality, the family
of solution curves (3.35) satisfies [cf. Section 2.6.1]

ow ow
Xo =50, y)—+n(x,y)—=1 (3.38)
ox oy

with 77 # &, where X is the infinitesimal generator (3.21¢). Substituting for w, from
(3.37) into (3.38), we obtain

@, = - ) (3.39a)
n-o
and hence,
0, = —L. (3.39b)
n-of
Substituting (3.39a,b) into (3.36), we obtain
dw 1 ,
R ' =7
Consequently,
1
p(x, y) = —— (3.40)
n-o
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is an integrating factor for ODE (3.20).
The integrating factor (3.40) yields the general solution of ODE (3.20) given by

o(x,y) = =[x, 1) (%, y) dx + ([, )+ [(u(x, )/ (x,)), de]dy = const
(3.41)

Conversely, one can show that if u(x,y) is an integrating factor of a first-order ODE
(3.20), then any &(x,y) and 7(x, y) satisfying (3.40) defines an infinitesimal generator

(3.21c¢) of a one-parameter Lie group of transformations admitted by the first-order ODE
(3.20).

3.2.3 MAPPINGS OF SOLUTION CURVES

The following theorems concern one-parameter Lie groups of transformations acting on
the solution curves of a first-order ODE (3.20):

Theorem 3.2.3-1. For any function &(x,y), the one-parameter Lie group of
transformations with the infinitesimal generator

X = &, y){a—iw(x, y)%} (3.42)

leaves invariant each solution curve of the first-order ODE y' = f(x, y).

Proof. Let y = 0O(x) be a solution curve of y' = f(x, y). Then

y' =0'(x) = f(x,0(x)). (3.43)
Consider the infinitesimal generator X given by (3.42). Then
X(y-0(x) = S(x, V)f (x,y) - O'(x)].
Hence, if y=0(x), then from (3.43) it follows that
X(y = 0O(x)) = &(x,0(x))[/ (x,0(x)) - O'(x)] = 0.

Consequently, y =0®(x) is an invariant curve for the one-parameter Lie group of
transformations with infinitesimal generator (3.42). O

Theorem 3.2.3-2. For any function £(x,y), the first order ODE y' = f(x,y) admits a
one-parameter  Lie  group  of  transformations  with  the  infinitesimal

generator X = &(x, y)ai +n(x, y)ai for some n(x,y)#&(x,y)f(x,y), under which
X V

each solution curve of the ODE maps into a different solution curve of the ODE.
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Proof. Let w(x,y) = const be the solution curves of )" = f(x,y). Then

o, +o, f=0. (3.44)

For arbitrary &(x, y), consider the infinitesimal generator X = é‘ai + nai, with 7(x, y)
X y

determined by the relation @, =1/(7—¢f). Then fromXw =Sfw, +nw,, after use of
(3.44), we obtain Xw=(n-S&)w, =1. Thus the one-parameter Lie group of

transformations with infinitesimal generator X maps each solution curve of the ODE into
a different solution curve [cf. Section 2.6.1]. i

From Theorems 3.2.3-1 and 3.2.3-2, we see that two types of one-parameter Lie
groups of transformations are admitted by any first-order ODE (3.20). Moreover, the
ODE (3.20) admits infinite-parameter Lie groups of transformations of both types:

Type (i). Trivial One-Parameter Transformation Groups
Infinitesimal generators of the form

X =g enton o where 7= /(x),

are always admitted by »'= f(x,y). Here each solution curve of y'= f(x,y) is an
invariant curve. This type of group is useless for reducing y' = f(x,y) to a quadrature

since, in order to find the canonical coordinates of the group, one must first find the
general solution of y' = f(x, y).

Type (ii). Nontrivial One-Parameter Transformation Groups
For a one-parameter Lie group with an infinitesimal generator

0 0
X=8(x, ) —+nx,y)—
ox oy

admitted by y' = f(x,y) in a domain D where 7n/& # f(x,y), the family of solution
curves of y'= f(x,y) is invariant in D, with each solution curve in D moving to a

different solution curve in D. This type of group defines a nontrivial Lie group of
transformations. 1t is useful for reducing y' = f(x,y) to a quadrature, provided that one

can solve the ODE dy/dx =n/<& to obtain the canonical coordinate »(x, y).

The geometrical situation is illustrated in Figure 3.2. Here £ (x) = (&(x, y),
n(x, y)) is the infinitesimal of a one-parameter Lie group G of Type (i), and &™) (x)=
(&, y), n%(x, y)) is the infinitesimal of a one-parameter Lie group G of Type (ii),
admitted by y’' = f(x,y); y is any solution curve y = O(x) of ' = f(x,y). Along 7,

£¥(x) is tangent to y since /&= f. But £"(x) is not tangent to y since 7/& # f.
Consequently, G leaves invariant y whereas G maps y into a one-parameter family
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of solution curves given by the implicit formula (2.193a,b) or the explicit formula (2.201)
with the infinitesimal generator

ii a ii a
X =§( )(x’y)_+77( )(x’y)_'
ox oy

Y

A

S ZoRE ™ gV

v
=

\

/4

Figure 3.2. Illustration of groups of Types (i) and (ii).

3.2.4 DETERMINING EQUATION FOR SYMMETRIES OF A FIRST-ORDER ODE

A first-order ODE
y'=f(x,) (3.45)

defines a corresponding surface

=1 (xy) (3.46)

in (x,y,y,)-space with the solutions y=0®(x) of (3.45) corresponding to points
(x, ¥, 1) = (x,0(x),0'(x)), i.e., y, =y =dy/dx when y =0(x) satisfies (3.45).
Consider a one-parameter Lie group of transformations

x*=X(x,y;¢), (3.47a)
y¥=Y(x,y;¢). (3.47b)

Definition 3.2.4-1. The group (3.47a,b) leaves invariant ODE (3.45), i.e., 1S a point
symmetry admitted by ODE (3.45), if and only if its first extension, defined by (2.83a—c),
leaves invariant the surface (3.46).

A solution curve y = O(x) of (3.45) satisfies ®'(x) = f(x,0(x)), and hence, lies
on the surface (3.46) with y =®(x), y, = ®'(x). Invariance of the surface (3.46) under

the first extension of (3.47a,b) means that any solution curve y = @(x) of (3.45) maps
into some solution curve y =d@(x;¢) of (3.45) under the action of the group (3.47a,b).

Moreover if a transformation (3.47a,b) maps each solution curve y = ®(x) of (3.45) into
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a solution curve y = @(x;¢&) of (3.45), then the surface (3.46) is invariant under (3.47a,b)
with y, =0¢(x;¢)/0x. It immediately follows that the family of solution curves of

(3.45) is invariant under point symmetry (3.47a,b) if and only if (3.45) admits (3.47a,b).

The following theorem results from Definition 3.2.4-1, Theorem 2.6.1-1 on the
infinitesimal criterion for an invariant surface, and Theorem 2.4.2-1 on extended
infinitesimals:

Theorem 3.2.4-1 (Infinitesimal Criterion for Invariance of a First-Order ODE). Let

0 0
X=8(x,y)—+nx,y)— (3.48)
Ox oy
be the infinitesimal generator of the Lie group of transformations (3.47a,b). Let
0 0 0
XV =80 )—+ney) —+n" () (3.49)
Ox oy oy,

be the first-extended infinitesimal generator of (3.48) where n'" is given by (2.101) in
terms of £(x,y),n(x,y). Then (3.47a,b) is admitted by a first-order ODE (3.45) if and

only if
XV =y =nV &, ~nf, =0 when y, = f(x,y). (3.50)

Proof. Left to Exercise 3.2-10. O

Explicitly, the first-extended infinitesimal of (3.48) is given by
n =n,+n, -5 -&,(0n)"
Thus, from (3.50), the first-order ODE (3.45) admits (3.48) if and only if
&(x,) and n(x, y) satisfy

n.+n, —§X]f—§yf2 —&f, —nf, =0 forarbitrary values of x and y. (3.51)

Equation (3.51) is the defermining equation for the infinitesimal transformations (3.48)
admitted by (3.45). The solutions of the determining equation (3.51) yield the point
symmetries of ODE (3.45).

It is easy to check that for any function &(x,y), a solution of the determining

equation (3.51) is given by
n(x,y)=5(x,») f(x,). (3.52)

This represents the trivial infinite-parameter Lie group of transformations of Type (i) that
leaves each solution curve of ODE (3.45) invariant.
For any &(x, ), it follows that

n(x, ) =50, y) f(x,y) + 2(x, ) (3.53)
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yields the general solution of (3.51) where y(x,y) is the general solution of the first-
order linear PDE

X+, —f,x=0. (3.54)

Thus, (3.53) leads to the infinite-parameter Lie group of transformations of Type (ii)
admitted by (3.45) that maps solution curves into different solution curves of (3.45). [An
infinite-parameter subgroup of Type (ii) corresponds to 7 = y,& =0.] Moreover, from

(3.53), we see that the first-order ODE (3.45) admits
0

X = §<x,y>§+ e

if and only if it admits
0
Y =[n(x,y) = &(x, ) f (x, y)]a-

Consequently, the problem of finding all Lie groups of transformations (3.48),
admitted by a given first-order ODE (3.45), is equivalent to finding the general solution
of (3.54). But, in order to find the general solution of (3.54), we must solve the

corresponding characteristic system dx/1=dy/f=dy/(f, x), and hence, we would
need to know the general solution of ODE (3.45). However, any particular solution y
of (3.54) or, equivalently, any particular solution of (3.51) with 7 # &, leads to a one-

parameter Lie group of transformations admitted by (3.45), and hence to the general
solution of (3.45) through its reduction by a quadrature. [In turn, this leads to
determining the infinite-parameter Lie group of transformations admitted by (3.45).]
Unfortunately, there is no general procedure to find an explicit particular solution y of

(3.54).
Next we consider the converse problem of determining all first-order ODEs that
admit a given one-parameter Lie group of transformations.

3.2.5 DETERMINATION OF FIRST-ORDER ODEs INVARIANT
UNDER A GIVEN GROUP

We show how to find all first-order ODEs
y'=f(xy) (3.55)

that admit a given one-parameter Lie group of transformations with the infinitesimal
generator

X = r:(x,y>§+ n(x,y)%. (3.56)

This can be accomplished in two different ways:
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(1) Method of Canonical Coordinates. Given the infinitesimal generator (3.56), we
compute canonical coordinates r(x,y) and s(x, y) satisfying

Xr=0, Xs=1, (3.57)
so that the group corresponding to (3.56) becomes the translation group
r¥=r, s*=s+e¢. (3.58)
Then
8 nrey
LT

relates y"and ds/dr. Consequently, the problem of finding all first-order ODEs (3.55)
admitting (3.56) transforms to the problem of finding all first-order ODEs

% = F(r,s) (3.60)

that admit (3.58). Clearly, F(r,s) cannot depend explicitly on s. Hence, the most general
first-order ODE admitting (3.56) is of the form

ds
i G(r), (3.61)

where G is an arbitrary function of 7. In terms of the given coordinates x and y, ODE
(3.61) becomes the ODE

5. (6p)+s,(x,3))'

r(x, )+, (x,0)) = G(r(x 7). (3.62)

(11)  Method of (Differential) Invariants. The first-order ODE (3.55) admits (3.56) if
and only if f(x,y) satisfies the first-order PDE (3.51). The corresponding characteristic

equations to determine f(x,y) are given by
dc  dy df
e,y mxy) no+(m,-E)f =&,/

(3.63)

The invariant
u(x,y)=r(x,y)=const =c, (3.64)

is the quadrature of the first equation of (3.63). Eliminating y through (3.64), and setting

f,(x;e) = Zg; ; (3.65)

we see that

f=1r5 (3.66)
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is a particular solution of the second equation of (3.63):

g _y +Bf +Cf?, (3.67)
dx
with
A= A(x;c,) = 77? (3.682)
B=B(xc,) = % (3.68b)
C=C(x;c) = —%. (3.68¢)

Equation (3.67) is a first-order ODE of Riccati type, with ¢, playing the role of a

parameter. Its general solution can be determined explicitly from the particular solution
(3.66) through a transformation to a second-order linear ODE. Specifically, if z solves

2"—(%+BJZ'+ACZ =0, (3.69)
then
1z
- 3.70
J Cz ( )

solves (3.67). Hence, the general solution of (3.69) leads to the general solution of (3.67)
through the well-known Riccati transformation (3.70). A particular solution of (3.69) is
given by

2=z, _ e (3.71)
where C is given by (3.68¢), (3.64); and f, by (3.65), (3.64). The explicit general

solution of (3.69) follows from (3.71) through the method of reduction of order (to be
derived from group invariance in Section 3.3.3). Consequently, one obtains the general
solution of (3.67) given by

S =d(x;¢,,¢,), (3.72)

where ¢, is a constant of integration and ¢ is a known function of its arguments. Then
the general solution of (3.63) arises from the equation ¢, = y(c,), where y is an arbitrary
function of ¢, .

In (3.72), replacing f by »' and ¢, by u(x, y), then solving for ¢,, we obtain the
differential invariant v(x,y,y") = ¢, = const of the first extension of (3.56), i.e.,

X"y = 0. The general solution of (3.63) can then be expressed as v(x, y, ) = w(u(x, y)),
and hence,

v(x,, ") = w(u(x,y)) (3.73)
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is the most general first-order ODE that admits (3.56), written in terms of differential
invariants.
Note that, in terms of canonical coordinates »(x, y) and s(x, y),

o ds s +s)
vix,y,y)=—=—""2"
7.7 dr rx+ryy'

satisfies X"v=0 since ds/dr is invariant under (3.56), i.e. ds*/dr*=ds/dr.
Consider examples for which we use both approaches to find first-order ODEs admitting
specific groups:

(1) A Scaling Group
Suppose a first-order ODE (3.55) is invariant under the scaling group

x*=ex, (3.74a)
ye=ey, (3.74b)

. . o 0 0
which has the infinitesimal generator X = x—+ y—.

Ox oy

(i) Canonical coordinates for the Lie group (3.74a,b) are given by

r=1, s =log y.
X

Then
_ _ __y _1
5.=0, s, —;, r, = r, =
Hence, ODE (3.62) takes the form
y!
- =G(r). (3.75)

ry' —r

Solving (3.75) for y', we find that the most general first-order ODE admitting the scaling
group (3.74a,b) is given by

= H(l} (3.76)
X

where H is an arbitrary function of y/ x.
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(1i1)) In terms of the method of differential invariants, the characteristic equations
(3.63) become

& _dy _df

0 (3.77)
The quadrature of the first equation of (3.77) is given by
u(x,y) = Y~ const = c.
X
The second equation of (3.77) yields
f =const =c,.
Then ¢, =w(c,) gives f(x,y) =w(y/x) which again yields ODE (3.76).
(2) Rotation Group
Suppose a first-order ODE (3.55) admits the rotation group
x*=xcosg—ysing, (3.78a)
y¥=xsing+ ycose, (3.78b)

. . o 0 0
with the infinitesimal generator X = -y —+x—.
ox Oy

(1) Canonical coordinates are polar coordinates

F=qx"+y°, s=0=sin" L.

r
Then r, =x/r,r,=y/r,s, =-y/r’,s, =x/r’. Thus, ODE (3.62) becomes

A )
xX+yy

Consequently, the most general first-order ODE admitting (3.78a,b) is given by

bt H(m ) (3.79)

x+y'

where H is an arbitrary function of /x* + y°.

(i1) In terms of the method of differential invariants, the characteristic equations
(3.63) become

& _dv_
-y X 1+f2'

(3.80)
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The quadrature of the first equation of (3.80) is given by

u(x,y)=+/x>+y* =¢,. (3.81)

The second characteristic equation of (3.80) now becomes

daf dy
= . 3.82
1+ £ /Clz _ ) (3-82)
Let a =tan”' f, B=sin"'(y/c,) =tan"'(y/x). Then the quadrature of (3.82) yields
a-f=c,. (3.83)

Hence, tanc, = tan(a — f) = y/(c,) leads to

_Y
X —y(x*+y%). (3.84)
1+Xf
X

Replacing f by »' in (3.84), we again get ODE (3.79).

EXERCISES 3.2

1. Let y =¢(x) be a particular solution of

Y+ p(x)y = g(x). (3.85)

(a) Use this solution to find a one-parameter Lie group of transformations
admitted by (3.85).
(b) Find corresponding canonical coordinates and reduce (3.85) to a quadrature.

(c) Illustrate for the ODE y'+ y = x.

2. Find the integrating factor for ODE (3.30) from its invariance under (3.31a,b).

3. Show that if u(x,y) is an integrating factor of ODE (3.20), then any &(x, y),n(x, y)

satisfying (3.40) defines an infinitesimal generator (3.21a) of a one-parameter Lie
group of transformations admitted by (3.20).

4. (a) Characterize the infinitesimal transformation of a one-parameter Lie group of
transformations that leaves invariant the family of straight lines y = const.

Explicitly find all such groups for which &(x, y) =1.
(b) Do the same for the family of straight lines y/x = const.

5. Find all first-order ODEs that admit the scalings x* = ax, y*=a*y, a > 0, for a fixed
constant k.
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6. For the first-order ODE

8.

y'=f(x ), (3.86)
written as a differential form Mdx + Ndy =0, introduce the associated operator
A=N o._ M i
ox oy

(a) Prove that the one-parameter Lie group with the infinitesimal generator

X=¢£ §+77% is admitted by (3.86) if and only if the commutation relation
X

[X,A]= A(x,y)A is satisfied for some function A(x, y).
(b) What can you say if [X,A]=07?
(c) Iustrate for first-order ODEs that admit:
(1) x£+yi; and
Ox oy
(1) — yi + xi.
ox

0y

If a first-order ODE ' = f(x,y) admits two nontrivial groups with the infinitesimal

0 o .
generators X, =& —+1,—,i=1,2, show that
o

X oy
_m -/

-

is identically constant or a first integral of the ODE.

Find the most general first-order ODE that admits the one-parameter (&) Lie group
of transformations

x¥=x+e¢,
w«_ Y
xX+&

Consider the first-order ODE
(y=3x=3)y"+y=0

(a) Find a nontrivial Lie group of transformations that is admitted by this ODE.
(b) Find the general solution of this ODE.

10. Prove Theorem 3.2.4-1.
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33 INVARIANCE OF SECOND- AND HIGHER-ORDER ODEs
UNDER POINT SYMMETRIES

Now consider the application of Lie groups of point transformations to the study of a
second- or higher-order ODE

y(") =f(x, ... ,y(”_l)), (3.87)

or, equivalently, a surface in (x,y,y,,...,»,)-space,

VY, =YY Y )s

n > 2, where we use the notations

k
yH = jle k=12,...n; y'=yV, y'=y? etc

Note that the solutions y=0(x) of (3.87) «correspond to points

(6, 2, V155 9,) = (%,0(x),0'(x),....,0" (x)).
Assume that ODE (3.87) admits a one-parameter Lie group of point
transformations

x* = X(x,y;6) = x+ &£(x, y) + O(&?), (3.88a)
y¥=Y(x,y;6) = y+en(x, ») + 0(&), (3.88b)
with infinitesimal generator
0

5 (3.88¢)

X = &G, y)a—i £ (xy)

Definition 3.3-1. A point symmetry of an nth-order ODE (3.87) is a one-parameter Lie
group of point transformations (3.88a—c) admitted by (3.87).

We will show that the invariance of an mth-order ODE (3.87) under a point
symmetry (3.88a,b) constructively leads to reducing (3.87) to an (n — 1)th-order ODE
plus a quadrature. It will be shown that this can be done in two ways:

(1) reduction of order through canonical coordinates; and
(i1) reduction of order through differential invariants.

[In Section 3.4, we will show that reduction of order through differential invariants is a
natural setting for reducing an nth-order ODE that admits a multiparameter Lie group of
point transformations. ]

We will then show how to find the point symmetries admitted by a given nth-
order ODE. Recall that for a given first-order ODE, we saw that the admitted
infinitesimals &(x, y), 77(x, y) satisfy a single linear PDE whose general solution could
not be found without knowing the general solution of the ODE itself. Consequently, we
could not systematically determine all such symmetries. But when » > 2, it turns out that
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the admitted infinitesimals for Lie groups of point transformations satisfy an
overdetermined system of linear determining equations which have only a finite number
of linearly independent solutions. In practice, we are usually able to compute explicitly
the admitted Lie group of point transformations of an nth-order ODE if »n > 2.

We will also consider the problem of finding all nth-order ODEs that admit a
given one-parameter Lie group of point transformations.

3.3.1 REDUCTION OF ORDER THROUGH CANONICAL COORDINATES
The basic result is summarized in terms of the following theorem:
Theorem 3.3.1-1. Suppose a nontrivial one-parameter Lie group of transformations

(3.88a,b), with infinitesimal generator (3.88c¢), is admitted by an nth-order ODE (3.87),
n>2. Let r(x,y), s(x,y) be corresponding canonical coordinates satisfying Xr =0,

Xs =1. Then the nth-order ODE (3.87) reduces to an (n — 1)th-order ODE

n=1 n-2
d Z-G r,z,@,...,d—_f : (3.89)
dar" dr dar"
where
ds
— =7z 3.90
ok (3.90)

Proof. In terms of canonical coordinates r(x, y) and s(x, y), we have

!
ds S.+S,y

— . 3.91
dr 1. +r) 391

In order for (3.91) to be nonsingular, we assume that r, +7,)"#0, and hence, from
Xr=¢&r, +nr, =0, it follows that /& # y'=@'(x) for a solution curve y=0(x) of

(3.87). Consequently, the group (3.88a,b) acts on a domain of solution curves of ODE
(3.87) where, under the action of group (3.88a,b), each solution curve of (3.87) in this
domain is mapped into a different solution curve of (3.87).

Through differentiation of (3.91), we obtain

d[sx+syy'J
2 r+ry
I A =y"{r,sﬁj+gl(nsﬁ} (3.92)
dr rotny dx dr dr
where
ST —S.F
fl(r,S,éj=yx—x,y3,
dar) (r,+r,y")
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and

ds 1 N "2
gl(’”,&;j =m[(3’) (1,5, =5,1,) + (V) @r,s,, +1.5, =251, =5.7,)

+ y'(2rxsxy +r,s, —2s.r, — syrxx) +(rs, —sr).

Next, solving (3.91) for ', we obtain
e — (3.93)

Then substituting (3.93) into (3.92) and replacing x and y in terms of » and s, we

have
d’s ds ds
"=——F|r,s,— |+G,|r,s,— | 3.94
Y dr? 1( drj 1( drj ( )

with F; =1/ f, and G, =—g,/ f,. Note that since r and s are canonical coordinates, it
follows that s r, —s.r, #0 and hence, f, #0. Proceeding inductively, one can show
that

d*s ds ds d"'s
Z2_ y(k>fk_1(r,s,;) + gk_l(r,s,;,...,ﬁj (3.95)

for some function

ds d"'s
gk_l VySy— e /77 |

dr’ dr*!
with
7 ( s i)z; k>2.

k1| T20> dr (Vx + ryyr)k+1 ? -
This leads to

d¥s ds ds d"'s

y(k) :WFk—l(raSa;)+Gk—l(raS9;9"'9W} (396)

where

F,{_l=L and Gk_lz—@, k>2.

k-1 k-1

Note that f, , #0 and F,_ =1/ f,_, #0 for k> 2.
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Thus, it follows that in terms of canonical coordinates r(x,y),s(x,y), the
nth-order ODE (3.87) can be written as an nth-order ODE in solved form:

n n—1
d’s =F(r,s,§,...,d Sj, (3.97)

dar” dr dr™!

for some function F(r,s,ds/dr,...d""'s/dr""). But the ODE (3.97) admits the
translation group

r¥=r, (3.98a)
s*¥=s+¢. (3.98b)
Hence, F(r,s,ds/dr,....d" s/ dr"™") is independent of s. Consequently, the ODE (3.87)
reduces to (3.89) and (3.90). i

Note that if
z=¢(r;C,,C,,....C )
is the general solution of ODE (3.89), then the general solution of ODE (3.87) is given by

7 (x,y)
sy = [ (0 ConnCL) dp+ C

where C,,C,....,C, are n essential constants of integration. Hence, the invariance of the

nth-order ODE (3.87) under a one-parameter Lie group of point transformations leads,
constructively, to the reduction of (3.87) to an (n — 1)th-order ODE plus a quadrature.

3.3.2 REDUCTION OF ORDER THROUGH DIFFERENTIAL INVARIANTS

The nth-order ODE (3.87) represented by the surface
FOGY 215005 0) = 90 = S (65 V15000 9,0) =0 (3.99)
admits the group (3.88a,b) if and only if the surface (3.99) is invariant, i.e.,
X"F=0 when F =0,

where X is the nth extension of the infinitesimal generator X [cf. Section 2.4.2].
Hence, it follows that F'(x, y, y,,..., y,) 1s some function of the group’s invariants

I/I(X, y)avl (X, ya yl)""9vn(x’ y7 yl:"'> yn)’ (3100)

where

Xu(x,y)=0, X(k)vk (X, ¥, Y15 1,) =0 with % #0, k=12,..,n
Vi
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Clearly, for the nth extension of the group (3.88a,b), we have w*=u,v* =v,,
k=12,..,n. Here, v (x,y,y,,.,y,) 1s a constant of integration of the characteristic
equations
dc  dy dy, o dy,
Exy) ntey) 1O@ry) 1Py

where n*) is given by (2.100a,b), k =1,2,..., n.
For any set of invariants (3.100), the ODE (3.99) becomes

G@u,v,,v,,...,v,) =0, (3.101)

for some function G(u,v,,v,,...,v,). We now show that one can always choose the
invariants (3.100) without computing a canonical coordinate s(x,y), such that (3.101) is

an (n — 1)th-order ODE. Moreover, we can do this in such a way that the nth-order ODE
(3.99) will reduce to an (n — 1)th-order ODE plus a quadrature. [Note that the same
reduction holds in terms of canonical coordinates r(x,y) and s(x,y) with

u(x,y) =r(x,y) and v, (x,, ¥, v,) =d's/dr*, k=1.2,....n]
In Section 3.2.5, we showed how to find explicit invariants u(x,y) and

v, (x,,y,) =v(x,¥,y,) of the first extension X" corresponding to the infinitesimal

generator (3.88c). These invariants arose as constants of integration of the characteristic
equations

dc _ dy _ dy,
E(x,y) nxy) no+@m—En-E,(n)

(3.102)

Recall that if we could determine explicitly u(x,y), then the computation of v(x,y,y,)
reduced to quadrature.

Since u(x,y) and v(x,y,y,) are invariants under the action of the ith-extended
group of (3.88a,b), it follows that dv/du is a group invariant under the action of the
(k +1)th-extended group of (3.88a,b) since (dv/du)*=dv*/du*=dv/du,k>1.
Continuing inductively, we see that dv/du,d*v/du’,...d""'v/du"" are invariants of the

nth-extended group of (3.88a,b). Such invariants are called differential invariants of the
nth-extended group of (3.88a,b). Moreover, such differential invariants can be
constructed for any choice of invariants u(x,y) and v(x,y,y,) of the first-extended

group of (3.88a,b) with dv/dy, #0.

Then
v, v, o o
d o % 28y1=V(xyy y) =] 5 gy ()
du al+ al 2 s )2 1202 2@4_ al 1 > )1 )
o )’16y o )ﬁay
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for some function g,(x,y,y,). Inductively, one can show that

o
d*v 0
_:Vk+1(xayay1""’yk+1)=yk+1 2 k
ou, ou
i o bg oy

du*
for some function g,(x,»,y,....y,), k=12,..,n—1. Consequently, the invariants

+gk(x9y9y19-~-9yk)a

v, (X, Y, Vysees Vi), k=23,...,n, are constructed as differential invariants. Moreover, it
should be noted that

k

d'v
Vst :WAk(xayayl)'i'Bk(xayayla"'ayk)a

where

o, ou)
ox yl&y

Ak(xayayl)z aV >

o,
B, =-4.g,, k=12,...,n—1.

Note that 4, #0 and 1/4, #0 for k=12,...,n—-1.

Hence, it follows that comstructively, in terms of differential invariants, the
reduced equation (3.101) is an (n — 1)th-order ODE

d" v

= (3.103)

n-2
=H(u,v, av d v}

for some function H of u,v,dv/du,...,d"*v/du"*. Moreover, if
v=¢u;C,,C,,...C, )

is the general solution of (3.103) where C,,C,,...,C, , are arbitrary constants, then the

>~ n-1

general solution of the nth-order ODE (3.99) is found by solving the first-order ODE
V(x, y’ y’) = ¢(u(x9 y)ﬁ C] 4 C2 900 Cn_l)a

which reduces to a quadrature since it admits the group (3.88a,b).

3.3.3 EXAMPLES OF REDUCTION OF ORDER

(1) Second-Order Linear Homogeneous Equation (Invariance under Scaling)
Consider the second-order linear homogeneous ODE
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V'+p(x)y'+q(x)y=0
or, equivalently,
Y, + p(x)y; +4(x)y =0. (3.104)

The ODE (3.104) admits the one-parameter («) Lie group of point
transformations

x*=x, (3.105a)

V¥ =qp. (3.105b)

(1) Reduction of Order Through Canonical Coordinates. Canonical coordinates
corresponding to (3.105a,b) are given by

r(x,y)=x, s(x,y)=logy.

Then
;=57 (3.106)
dr vy
so that
y'=yz.
Consequently,

dz

dr

Then the second-order ODE (3.104) reduces to the following first-order ODE of Riccati
type,

" ’ dZ 2
V'=yz4y—=yz +y
dr

&, + p(r)z+q(r)=0. (3.107)
dr
Note that (3.106) is the Riccati transformation relating (3.107) and (3.104).

(i) Reduction of Order Through Differential Invariants. It is obvious that invariants of
the first extension of (3.105a,b) are given by

U(Xa)/):xa V(xay’yl)z%'

The corresponding differential invariant is

2
ﬂ:&_(hJ BRI
du y \y y

Hence,
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NI
Y2 yduy‘

Consequently, the second-order ODE (3.104) again reduces to the Riccati equation

§+ v+ pu)v+q(u) = 0. (3.108)
u

If
v=¢u;C,) (3.109)

is the general solution of ODE (3.108), then from Section 3.3.2 it follows that the first-
order ODE

W(x,y, ") = y; — $(x;C))

admits the group (3.105a,b). This leads to the reduction of this first-order ODE to
quadrature. In particular,

[ocecan
y=C,e .

(2) Second-Order Linear Homogeneous Equation (Reduction of Order
from a Given Particular Solution)
Suppose y =0(x) is a particular solution of the second-order ODE (3.104). Then

(3.104) admits the one-parameter (&) Lie group of point transformations
x*=ux, (3.110a)
y¥=y+0(x). (3.110b)

(1) Reduction of Order Through Canonical Coordinates. Canonical coordinates
corresponding to (3.110a,b) are given by

_ __Y
r(x,y)=x, s(x,y) o)
Then
ds Yy y®'(x)
dr 0O(x) ©*x)’
so that
y' = @(r)ﬁ +sO'(r).
dr
Hence,
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y"'=20' (r)—+®( )i+®"(r)s

Let z =ds/dr. Then (3.104) reduces to the first-order linear ODE

@(r)% +[20'(r) + p(r)O(r)]z =0.

(i) Reduction of Order Through Differential Invariants. Clearly, u(x,y)=x is an
invariant of the group (3.110a,b). The invariant v(x,y,y,) of the first extension of

(3.110a,b) [&(x,¥) =0, n(x,y)=0(x)] is a constant of integration of the corresponding
characteristic equations (3.102), which here are given by

dx _dy _ dy
0 O®k) O(x)

Hence,
_ 9w _ O
v(x, ¥, ) =y y—®(x) 2 y—®(u)-
Then
& e Ow) ©'w)
au 22N @(u)+y[(®(u)j @(u)]'
Consequently,
O'(u ) ., _dv O  O"(u)
"EYew T T ew Y ew)

Hence, ODE (3.104) reduces to

O =0, (3.111)
du | O(u)
If
v=¢u;C)) (3.112)
is the general solution of ODE (3.111), then the first-order ODE
W) =y - oy )
O(x)

admits the group (3.110a,b) and, accordingly, can be reduced to a quadrature. [See
example (2) of Section 3.2.1.]
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(3) Blasius Equation
The Blasius equation resulting from the Prandtl-Blasius problem for a flat plate [cf.
Section 1.3.1] is the ODE

Yz =0,
or, equivalently, the surface

Y3 +3yy, =0. (3.113)
It is easy to see that the third-order ODE (3.113) admits the two-parameter («, ) Lie
group of point transformations

x*:lx+ﬁ, (3.114a)
a

VE = . (3.114b)

We treat (3.114a,b) as two one-parameter groups by considering the parameters « and £
separately to reduce the Blasius equation (3.113) to two different second-order ODEs
through the use of differential invariants. The reduction through canonical coordinates is
left to Exercise 3.3-2. In Section 3.4.2 we will show how to reduce (3.113) directly to a
first-order ODE plus two quadratures, from invariance under the group (3.114a,b).

(1) Reduction of ODE (3.113) from Invariance Under Scalings. Obvious invariants of
the first extension of x* = (1/@)x, y* = ap, are given by

u(x,y)=xy, v(x,y,y)= y_;
Then
%:y+xy1 = y[1+uv].
dx
Hence,
d , > dv du 3[ 2 dv}
- V=2 v+ _ = 2V +1+uv_,
Va2 dx(y ) I y du dx Y ( )du
and

dv d dv || du
V= 3y2y1 [2\/2 +(l+uv)z}+y3(z[2vz +(I+MV)EDE

d*v

du’

2
=y A +uv)’ +u(l+uv)(ﬂj +8v(l+uv)ﬂ+6v3 .
du du

Thus, ODE (3.113) reduces to the second-order ODE
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d*v

1+ uv)2 3

2
+u(1+uv)(ﬂj +(8v+%)(l+uv)ﬂ+6v3 +v° =0, (3.115)
du du

plus a quadrature. In particular, if
v=¢w;C,,C,) (3.116)
is the general solution of ODE (3.115), then the first-order ODE

!

v=;v——¢<xy;cl,cz) (3.117)

— =
admits x*=(1/a)x, y*=apy. In terms of the canonical coordinates s =logy

and r=xy, ODE (3.117) becomes the ODE

ds _ ¢p(r;C,C)
dr  ré(r;C,,C,)+1

Then we obtain the general solution of the Blasius equation,

y=C, exp{ [ GG )

rg(r; €, Cy) +1

where C,,C,,C, are arbitrary constants.

Note that the second-order ODE (3.115) does not admit any obvious one-
parameter Lie group of point transformations. In particular, the group with parameter g,

Le.,, x*=x+ f, y*=y, does not induce a group of point transformations admitted by
(3.115). The reason for this will be explained in Section 3.4.

(11) Reduction of ODE (3.113) from Invariance Under Translations. Obvious invariants
of the first extension of x* = x + £, y* =y, are given by

u(xay)zya v(x,y,y1)=y1.

Then
By =
dx N
Thus,
_dvds v (d—J
2 du dx du’ & du® du)
Hence, ODE (3.113) reduces to
2 2
v f+(ﬂJ +guﬂ=o (3.118)
du du u
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plus a quadrature. In particular, if

v=yC,,C,) (3.119)
is the general solution of ODE (3.118), then the first-order ODE
v=y"=y(C,C,) (3.120)

admits x*=x+¢, y*=y. Consequently, the general solution of the Blasius equation
(3.113) is given by

Iy dz
—_— =X+
l//(Za CI’CZ)

C,,

where C,,C,,C, are arbitrary constants.

Note that the second-order ODE (3.118) admits the obvious one-parameter ()
scaling group u* = au, v* = a*v. This group is induced by the invariance of the Blasius
equation (3.113) under y*=ay, x*=(1/a)x. Thus, (3.118) can be reduced to a first-
order ODE. In Section 3.4, we will explain why this is possible.

3.3.4 DETERMINING EQUATIONS FOR POINT SYMMETRIES
OF AN nth-ORDER ODE

Consider a one-parameter Lie group of point transformations
x*=X(x,y;¢), (3.121a)
y¥=Y(x,y;¢&). (3.121b)

Definition 3.3.4-1. The Lie group of point transformations (3.121a,b) leaves invariant an
nth-order ODE (3.87), i.e., is a point symmetry admitted by ODE (3.87), if and only if its
nth extension, defined by (2.89a—d) with k = n, leaves invariant the surface (3.99).

A solution curve y=0(x) of ODE (3.87) satisfies O"(x) =
f(x,0(x),0'(x),...,0" " (x)) and thus lies on the surface (3.99) with y=0(x),
v, =0%(x), k=1,2,..,n Invariance of the surface (3.99) under the nth extension of
the group (3.121a,b) means that any solution curve y = ®(x) of ODE (3.87) maps into
some solution curve y = @(x;&) of ODE (3.87) under the action of the group (3.121a,b).
Moreover, if a group of transformations (3.121a,b) maps each solution curve y = ®(x) of
ODE (3.87) into a solution curve y =¢@(x;&) of ODE (3.87), then the surface (3.99) is
invariant under (3.121a,b) with y, = 0*¢(x; &)/ ox", k =1,2,...,n. It immediately follows

that the family of all solution curves of ODE (3.87) is invariant under the group
(3.121a,b) if and only if ODE (3.87) admits the group (3.121a,b).
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The following theorem results from Definition 3.3.4-1, Theorem 2.6.1-1 on the
infinitesimal criterion for an invariant surface, and Theorem 2.4.2-1 on extended
infinitesimals:

Theorem 3.3.4-1 (Infinitesimal Criterion for Invariance of an nth-Order ODE). Let
0 0
=&(x, ) —+n(x,y)— (3.122)
ox oy

be the infinitesimal generator of the one-parameter Lie group of point transformations
(3.121a,b). Let

0 0 0 0
X" =E(x, y)—+n(6, ) —+70 0,y p)—+ -+ 0" (01, Ve ¥, ) ——
&( y)ax n( y)ay n( yyl)ay n"(x,y, yn)a

1 n

(3.123)

be the nth-extended infinitesimal generator of (3.122), where n™® is given by (2.100a,b)
in terms of &(x,y), n(x,y) for k =1,2,...,n. Then (3.121a,b) is a point symmetry admitted
by an nth-order ODE (3.87) if and only if

X(n)(yn_f(xayayla"'ayn—l))zo when yn=fa

or, equivalently,

g0 e 0 & e O (3.124)
we T ox Oy W, 0,
where
k kZ‘: |
=D"n- D’* &
o (k- —1)'(J +1)'

for k=12,...,n.
Proof. Left to Exercise 3.3-9. O

More generally, an ODE F(x,y,y,,...,»,) =0 admits the group (3.121a,b) with
infinitesimal generator (3.122) if and only if X“"F(x,y,y,,.,y,)=0 when
F(x,y,15:-59,)=0.

If f(x,y,¥,5.--,y,.,) 1sapolynomialin y,y,,...,y, , then from Theorem 2.4.2-2
it follows that equation (3.124) (after replacing y, by f(x,»,»,...,»,))1s a polynomial
in y,y,,..,»,,, whose coefficients are linear homogeneous in &(x, y), 7(x, y), and their

partial derivatives up to nth order. Since for any nth-order ODE (3.87) we can assign
arbitrary values to each of y,y,,»,,...,»,, at any fixed value of x, it follows that the

coefficient of each monomial term in (3.124) must vanish since this polynomial equation
must hold for arbitrary values of x,y,y,,y,,....,y, . This leads to a system of /inear
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homogeneous PDEs for &(x, y), n(x, y). This linear system defines the set of determining

equations for the point symmetries admitted by the nth-order ODE (3.87). The system is
overdetermined if n>?2 since the number of determining equations exceeds two, i.e.,
exceeds the number of unknowns.

In general, if f(x,y,»,,..,»,,) 1s not a polynomial in y,,»,,...,», ,, then (3.124)

still splits into an overdetermined system of determining equations based on the
independence of the variables x, y,v,,V,,... ¥, ;-

One can show that a second-order ODE admits at most an eight-parameter Lie
group of point transformations and that an nth-order ODE (n >2) admits at most an

(n+4) —parameter Lie group of point transformations [Lie (1893, pp. 296-298);

Dickson (1924); Ovsiannikov (1982)].

We now state some theorems on the forms of infinitesimal generators that can be
admitted by ODEs. These theorems cover many ODEs arising in applications and
significantly simplify the many calculations involved in setting up and solving the
determining equations for the infinitesimals &£(x, y),77(x, y). In particular, the theorems

are concerned with the dependence on y of &(x, y),n(x,y).

Theorem 3.3.4-2. Consider an nth-order ODE, n >3, of the form
y =gy, Y+ by, e ). (3.125)
If ODE (3.125) admits the infinitesimal generator (3.122), then &, = 0.
Theorem 3.3.4-3. Consider an nth-order ODE, n >3, of the form
¥ =g, )y + h(x,y, e ). (3.126)

If ODE (3.126) admits the infinitesimal generator (3.122), then £, =0,n,, =0.

Theorem 3.3.4-4. Consider a second-order ODE of the form
V' =g(x, )y +h(x, ). (3.127)
If ODE (3.127) admits the infinitesimal generator (3.122) with &, =0, then n,, = 0.

Theorems 3.3.4-2 to 3.3.4-4 are proved in Bluman (1990a).

Consider two examples:

(1) The Lie Group of Transformations Acting on R* that
Maps Straight Lines into Straight Lines
This is the Lie group of point transformations admitted by the second-order ODE

p"=0. (3.128)

The invariance criterion here is
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n® =0 when y, =0,
where ® is given by (2.102), i.e., £(x, y), 7(x, y) satisfy

Mo + 20, =& 0y +In, =26, 10)° =&, () =0. (3.129)

Equation (3.129) is a cubic polynomial in terms of y,. Equating to zero the coefficients
of each monomial term in (3.129), we obtain the system of determining equations

¢, =0, (3.130a)
N =0, (3.130b)
n, =28, =0, (3.130¢)
& — 21, =0. (3.130d)

From (3.130a,b), we obtain

& =a(x)y +b(x),
n=c(y)x+d(y).

Then (3.130c¢,d) lead to
c"(y)x+d"(y)—2d'(x)=0, (3.131a)
a"(x)y+b"(x)-2c'(y)=0. (3.131b)

Taking 0/0x of (3.131a) and 0/0y of (3.131b), we see that ¢"(y) = a"(x) = 0. Thus, the
solution of the determining equations (3.130a—d) is given by

E=ax’ +a,xy+ax+a,y+as,
n=axy+a,y’ +ax+o,y+ay,
where «,,a,,...,a; are arbitrary constants. This is the eight-parameter Lie group of

projective transformations (2.168a,b) admitted by ODE (3.125).

(2) Blasius Equation
The invariance criterion for the Blasius equation

y'+3"=0 (3.132)
is given by

n? +1y,n+Liyn® =0 when y, =—1yy,, (3.133)

where n®,n" are given by (2.102), (2.103). Then (3.133) becomes the polynomial
equation
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[nxxx +%y77xx]+[377xxy _é:)‘xx +y77xy _%ygxx ]yl +[377x}} 3§xr} +3 2 y’]yy _yé:)g ](yl)
_[77)” _35"”’ _%yfy} ](y1)3 _éyyy(yl)4 +[377xy —3&, +3y§x +7’7])’2
377yy 9‘5 +2y68 1y, - 6§yy(yl)2y2_3§y(y2)2 =0. (3.134)

The resulting determining equations for £(x, y) and 7(x, y) are given by

Mo T3V =0, (3.135a)

3y =G ¥ VM =3 V60 =0, (3.135b)
3y =36 T31, — ¥, =0, (3.135¢)
3¢, +3Y8,-1,, =0, (3.135d)

Sy =0, (3.135¢)

3n, —3&. +3¥¢, +3n=0, (3.135f)
3n, -9, +355, =0, (3.135g)

s, =0, (3.135h)

¢, =0. (3.135i)

From (3.1351), one immediately sees that & = £(x), and hence, (3.135h,e) are redundant.
Then (3.135g) leads to

n, =0, (3.136)

so that (3.135c¢,d) are also satisfied. Taking 8/dy of (3.135b) and 8°/dxdy of (3.1351),
we are led to

7, =¢"(x)=0. (3.137)

Moreover, now (3.135b) is satisfied. Then
E=a+ b, (3.138a)
n=mw+a(x). (3.138b)

Equation (3.135f) leads to a(x) =0, y =—/. No further restrictions arise from (3.135a).

Consequently, the Blasius equation (3.132) only admits a two-parameter Lie group of
point transformations (translations, scalings) with infinitesimals

E=a+ b, (3.139a)
n=-py, (3.139b)

where o and £ are arbitrary constants.
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If we directly use Theorem 3.3.4-3, the computations for finding
&(x,y) and n(x,y) simplify significantly. Since ODE (3.132) is of the form (3.126), it

immediately follows that & =0,7, =0. Hence, the determining equations resulting
from the polynomial equation (3.134) reduce to just (3.135a,b,1).

3.3.5 DETERMINATION OF nth-ORDER ODEs INVARIANT
UNDER A GIVEN GROUP

Now we consider the problem of finding all nth-order ODEs that admit a given one-
parameter Lie group of point transformations. This is accomplished by a simple
extension of the procedure outlined in Section 3.2.4 for first-order ODEs through the use
of either canonical coordinates or differential invariants.

Suppose an nth-order ODE (3.121) admits a given one-parameter Lie group of
point transformations with infinitesimal generator (3.122). We can proceed in two
obvious ways:

(1) Method of Canonical Coordinates. Corresponding to the infinitesimal generator
(3.122), we compute canonical coordinates r(x,y) and s(x,y)  satisfying

Xr =0, Xs =1, so that the group admitted by ODE (3.121) is now the translation group
r¥=r, s*=s+e¢. (3.140)
Then invariants under (3.140) are given by

k
L )
r
These invariants can be expressed in terms of x, y,)",..., " through relations (3.91) and

(3.95). Consequently, the most general nth-order ODE, written in solved form, that
admits a one-parameter Lie group of point transformations with infinitesimal generator
(3.122) is given by

n n-1
Z S _ G(r,?,...,%), (3.141)
r r r

where G is an arbitrary function of r,ds/dr,...,d""'s/dr"". Note that ODE (3.141) is
an (n —1)th-order ODE in terms of a dependent variable z = ds/ dr.

(1) Method of Differential Invariants. Here we first find invariants u(x,y) and
v(x,y,y") as we did for first-order ODEs. Then we compute the differential invariants

d*v

r
u

k=12,.,n-1,
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which can be expressed in terms of x,y,)’,..,y" as indicated in Section 3.3.2.

Consequently, the most general nth-order ODE (in solved form) that admits the group
(3.122) can be written in the form

n=l1 n-2
d’v_ H(u,v,ﬂ,...,u} (3.142)

du"! du du™!

where H is an arbitrary function of u,v,dv/du,...,d"v/du". Note that ODE (3.142)
is an (n —1) th-order ODE in terms of its dependent variable v.

To find the most general nth-order ODE admitting a group of a simple form, such
as a group of scalings, it is more natural to compute directly » +1 invariants that depend
on, respectively, (x, ), (X, ¥, V")ycs (X, ¥, V5., ¥™). The disadvantage of such a direct
approach is that the reduction of order from » to n»—1 is not automatic, as is the case
when the most general nth-order ODE is obtained through either canonical coordinates or
differential invariants.

As an example, we use these methods to find the most general second-order ODE
that admits the scaling group (3.74a,b). The reader is referred to the calculations in
Section 3.2.4, where we found the most general first-order ODE that admits (3.74a,b).

(1) Method of Canonical Coordinates
Canonical coordinates are given by

r= Z, s =log y.
X
Then
é_ yr d2S _ rzyyrr . 27)}!_()/)2 _ r2yyn .\ 27:)/" _(éjz
dl’ 7y!_}/_2 ? dr2 (}9/_}/2)3 (}9/_}/2)2 (}9/_}/2)3 (}3}!_}/2)2 dr :

Hence, the most general second-order ODE that admits the scaling group (3.74a,b) is
given by

' r_ r_ 3 2.
oY=y (o' =y) G[g x'y J (3.143)

Xy x* x xyy' —y?

where G is an arbitrary function of its arguments.

(2) Method of Differential Invariants
From the form of the most general first-order ODE (3.76) admitting (3.74a,b), we see that

Then
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Consequently, the most general second-order ODE that admits (3.74a,b) is given by

yr=2"r H(y y'j, (3.144)

)
x2 X

where H is an arbitrary function of its arguments. Of course, (3.143) and (3.144) must
yield the same general second-order ODE. In comparing (3.143) and (3.144), note that
x2yr yr
0y - = 20
Y o Y
)

and so we see that

2 ’
H(z,yjzz[ijyf{yf_% oy v |
X y X x v,

X( xj

(3) Direct Approach
Obvious invariants of the scaling group (3.74a,b) are given by y/x, y', yy". Hence, the

most general second-order ODE that admits (3.74a,b) is given by

" =ll(1,y'j, (3.145)
y \x
where [ is an arbitrary function of its arguments. In comparing (3.144) and (3.145), note
that
2
Xy —y_l(y , [yj ]
= )
X yix X

and hence,

EXERCISES 3.3

1. Let y=¢(x) be a particular solution of the second-order linear nonhomogeneous
ODE

Y'+p(x)y' +q(x)y = g(x). (3.146)

(a) Find a one-parameter Lie group of point transformations admitted by (3.146).
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(b) Use canonical coordinates to reduce ODE (3.146) to a first-order ODE plus a
quadrature.

(c) Use differential invariants to reduce ODE (3.146) to a first-order ODE plus a
quadrature.

. The third-order Blasius equation (3.113) admits the two-parameter (e, ) Lie

group of point transformations (3.114a,b).

(a) Use canonical coordinates associated with parameter f to reduce ODE (3.113) to
a second-order ODE.

(b) Find a symmetry of this second-order ODE. How is this symmetry related to the
parameter a of (3.114a,b)?

(c) Find canonical coordinates for the symmetry of (b). Consequently, reduce the
Blasius equation to a first-order ODE plus two quadratures.

. Find the Lie group of point transformations admitted by the ODE
y” — a(yr)N ,
where a = const and N =1,2,... is a fixed integer. Investigate further the cases

N =1,2,3. Compare these cases with the Lie group admitted by y”=0. [For related
ODEs, see Aguirre and Krause (1985).]

. Find the Lie group of point transformations admitted by each of the ODEs:
(@) y"=y7; and

() y'=e"

. Consider the ODE

d dy dy

2— | K(y)— |+x—=0 3.147
dx( ) dxj dx ( )
that arises when seeking invariant solutions of the nonlinear heat conduction
equation [Bluman and Kumei (1989b, Section 7.2.7)] from its invariance under
scalings.

(a) Find a Lie group of point transformations admitted by ODE (3.147) when:

(1) K(y)=A(y+k)",where A, k, v are arbitrary constants; and

(i) K(y)=A4e"”, where A, v are arbitrary constants.
(b) Find all K(y) for which ODE (3.147) admits a Lie group of point
transformations.

. Consider the ODE

KONy "+xy'—y=0 (3.148)

that arises when seeking invariant solutions of the nonlinear heat conduction
equation from the invariance of a related potential system under scalings [Bluman and
Kumei (1989a, Section 7.3.1)].

(a) Find a Lie group of point transformations admitted by ODE (3.148) when:
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1
L+ (»)’

(i) K(y) = ; and

(i) K(y") = —-exp[Aarctan y'], 4 = const.
1+(»)

(b) Solve ODE (3.148) when K (') = 1/[1+ (»)].

7. Find the Lie group of point transformations admitted by the family of curves
v = p(x), where p(x)is an arbitrary polynomial of degree n.

8. Find the most general second-order ODE that admits the scaling group x* = ax,

y*=a"y, where k is a fixed constant. Reduce the ODE to a first-order ODE plus a
quadrature.

9. (a) Find the most general second-order ODE that admits the rotation group.
(b) Interpret your result geometrically.
(c) Find the general solution of the ODE

2+ Y )"+ 2(y -1+ (")) =0.

10. Prove Theorem 3.3.4-1.

3.4  REDUCTION OF ORDER OF ODEs UNDER MULTIPARAMETER
LIE GROUPS OF POINT TRANSFORMATIONS

Now we consider the invariance of an nth-order ODE under an r-parameter Lie group of
point transformations,» > 2. If the corresponding r-dimensional Lie algebra is solvable
[cf. Section 2.5.4], we show that the given nth-order ODE can be reduced to an (# — r)th-
order ODE plus r quadratures. Theorem 2.5.2-2 shows that any two-dimensional Lie
algebra is solvable. It turns out that every even-dimensional (r =2m for some integer m)

Lie algebra acting on R” contains a two-dimensional subalgebra. [Cohen (1911, p. 150);
Dickson (1924). Both of these authors erroneously claim that this is true for any real Lie

algebra acting on R”". Their proofs only hold for complex Lie algebras or real Lie
algebras of even dimension. It is easy to show that the Lie algebra SO(3) corresponding

to the rotation group acting on R’ is not solvable. One can show that there exists a
three-dimensional Lie algebra acting on R” that is isomorphic to SO(3) and hence not
solvable.]

3.4.1 INVARIANCE OF A SECOND-ORDER ODE UNDER A
TWO-PARAMETER LIE GROUP

We now show that if a second-order ODE
y'= £, (3.149)
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admits a two-parameter Lie group of point transformations, then one can constructively
reduce ODE (3.149) to two quadratures and, hence, find its general solution.
Let X, X, be basis generators of the Lie algebra of the given two-parameter Lie

group of transformations, and let X" denote the kth-extended infinitesimal generator of

X,, i =12. Without loss of generality, from Theorem 2.5.4-2, we can assume that
[X,, X,]1=4X, (3.150)

for some constant A.
Let u(x,y),v(x,y,y’) be invariants of X!” such that

Xu=0, X"y=0.

Then the corresponding differential invariant dv/du satisfies the equation [cf. Section
3.3.2]

x® 4 _g
Ydu
and hence, ODE (3.149) reduces to
ﬂzH(u,v), (3.151)
du

for some function H of u,v. [Note that dv/0dy' #0.] From the commutation relation
(3.150), it follows that

X, Xou=X,Xu+AXu=0.
Hence,
X,u=a(u) (3.152a)

for some function o of w.
Similarly, from Theorem 2.5.2-3, it follows that

XOXv=0, XPx2 %,
du
Hence,
X0y = Bu,v) (3.152b)

for some function # of u,v. Since ODE (3.149) admits X, it follows that

X(zz)(ﬂ_H(u,V)j =0 when v _ H(u,v).
du du

From (3.152a,b) it follows that in terms of coordinates u and v, the first extension X"
becomes
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X0 =)=+ ).
which is admitted by ODE (3.151). Consider canonical coordinates R(u,v), S(u,v) such
that
XPR=0, X{'S=1.
Then R(u,v), S(u,v) satisfy

a(u)— + S(u, aR =0,
aS
O!(u)— + f(u,
Thus, the one-parameter group of translations
R* =R, (3.153a)
S*=S+e, (3.153b)
is admitted by ODE (3.151). Hence, ODE (3.151) reduces to
ds
—=I(R 3.154
IR (R) (3.154)

for some function / of R. Then the first-order ODE (3.154) integrates out to

Swy) = [ 1Ry dR+C, (3.155)

for some arbitrary constant C,. The differential equation

IR(u(x,y)»V(x,y,y'))

S(u(x,y),v(x,y,y')) = I(R)dR+C1

admits X, and, hence, reduces to quadrature by the method of canonical coordinates after
one determines 7(x, y) and s(x,y) such that

Xr=0, Xis=1

Consequently, any second-order ODE that admits a two-parameter Lie group of
transformations reduces completely to two quadratures.

As an example, consider the second-order linear nonhomogeneous ODE
V' p(x)y +4q(x)y = gx). (3.156)

Let z=¢,(x) and z =¢,(x) be two linearly independent solutions of the corresponding
homogeneous equation

z"+ p(x)z' + q(x)z = 0. (3.157)

143



Then ODE (3.156) admits the two-parameter (&,,&,) Lie group of transformations
x*=ux, (3.158a)
VE= e () + 66 (). (3.158b)
The corresponding infinitesimal generators are given by

X, =¢1(x>%, X, =¢2(x)%,

with [X,, X,]=0. Then

0 0
XY = ()4 g0, 112,
oy '
u=x, v= L, -
¢1 ¢1 (x)

X eXoxe0. XOp,_&() _ 6 W)
2 ’ , ’ 4(x) ¢(x) () (x)

where W(x) is the Wronskian W (x)=¢,¢, —¢,#/. Now, in terms of coordinates x and
v, we have

X0 = W (x) i
P g (0)g(x) oy

Canonical coordinates R(x,v), S(x,v) satisfy

XOR :LG_R:()’ X\ :1’5_‘9:1,
P ¢ ov ¢ ¢ ov
and hence,
R=x, §="0%
w

Consequently, by a simple calculation, we find

ds _ g(x)¢,(x)

dx W(x)
so that

s 2=V =jg¢1 dx +C, (3.159)
w w

for some arbitrary constant C,.
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By construction, the first-order ODE (3.159) admits X, = ¢, (x)@i. In terms of

y
the corresponding canonical coordinates » = x, s = y/ ¢, (x), ODE (3.159) reduces to
s _ “g"ﬁl dx+C} (3.160)
dx (¢1

But W /(4,)* = (4, / §,)'. Hence,

W [ﬂz jg—qﬁldx}—g—%.
(4’ ¢ "W w

Thus,

s :Czﬁ+ﬁ J.g—¢1dx—J.g—¢2dx+Cl,
6 H-W w

for some arbitrary constant C;, which leads to the familiar general solution

y=C, +Cph, + 4, jgn"fl dx— ¢, jgpﬁz dx (3.161)

of ODE (3.156), derived by the variation of parameters method in standard textbooks.

3.4.2 INVARIANCE OF AN nth-ORDER ODE UNDER
A TWO-PARAMETER LIE GROUP

Now consider an nth-order ODE

Sl A C.75 5 PSS U § (3.162)

n >3, assumed to be invariant under a two-parameter Lie group of point transformations
with infinitesimal generators X,, X, such that, without loss of generality,
[X,,X,]=4X,, for some constant A [cf. Theorem 2.5.4-2].

As in Section 3.4.1, let u(x,y), v(x,y,y,)=v(x,y,’) be invariants of X,
Then XPv, =0 where v, = dv/ du, and hence, ODE (3.162) reduces to

n-1 n-2
v _ H(u,v,%,...,%} (3.163)
u u

for some function H of u,v,dv/du,...,d"*v/du"".

Since [X", X{V1= X", k =1,2,..., it follows that
XZU = a(U),

XYv = p.v),
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Xy =y v,v),

for some functions «, £,y of the indicated arguments. Then

0 0
X" = a(u)—+ Bu,v)—,
2 =a(u) P™ Bu,v) oy
with its first extension given by

0 0 0
XQ =)o fu) Sy v) s

is admitted by ODE (3.163). Now, let U(u,v), V (u,v,v,) be invariants of X{” such that
XPUu =0, XPr=0.
Then
x4 _
P du
Consequently, ODE (3.163) and, hence, ODE (3.162) reduce to

0.

(3.164)

9

n-2 n=3
d—_V2:‘[ U’ 7d_V"' d Z b
du” au du”
for some function/ of U,V,dV /dU,...,d"V /dU"”. If
V=¢U;C,,C,,..,C, )

is the general solution of ODE (3.164), then the first-order ODE

V(u,v,?j=¢(U(u,v);Cl,C2,...,C,,_2) (3.165)
u

admits X! = 0{(14)8i + ﬂ(u,v)ai. Hence, ODE (3.165) reduces to a quadrature
u 1%

v=yu;C,,C,,..,C, ,,C ).
But the first-order ODE
v(x,y,y) =w(ux,y),C,C,,....C,,.,C,) (3.166)

admits X,. Thus, ODE (3.166) reduces to a quadrature that leads to the general solution

of ODE (3.162).
Hence, if an nth-order ODE (n >3) admits a two-parameter Lie group of point

transformations, then it can be reduced constructively to an (n—2)th-order ODE plus
two quadratures. Note that the order in which the operators X, and X, are used is
crucial if 1 #0.
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As a first example, we consider again the Blasius equation
y'+3" =0, (3.167)

which admits the two-parameter Lie group of point transformations [cf. (3.139a,b)] with
infinitesimal generators

X, =£, X, —xi—yi.
ox o oy
Then
[X,, X,]=X,
Invariants of X” are given by
, dv
u=y, v=y =y, W =_:&-
du  y,
It follows that
0 0 0
X5 DR AUt M
Y o, oy,
K=y =-u, X{v=-2y=2v XPy=-2-y
Vi
Then
X(ZI)U(u, v) =0, X(zz)V(u, v,v,)=0,
lead to
v="2, r="1,
u u

Consequently, the third-order Blasius equation (3.167) reduces to

v _dOy) ' y,) _ Yy =y ) -y’ v, v +y () +y(0)’ s

au - d(y?y) Yy, =2(n)’* 200 = y(1)’ s
which, in terms of U and V, becomes the first-order ODE
av_Vi|3+V+U
du U| 2Uu-V |

(3.168)
If V=¢(U;C,) is the general solution of ODE (3.168), then the first-order ODE

dv v
v :E:”‘é(u_z;clj (3.169)
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. 0 0 . . .
admits X" = U= 2\/8—. In terms of corresponding canonical coordinates r=v/u”,
u v

s =logv, ODE (3.169) becomes

;C
& 9nC) (3.170)
dr~ rg(riC)-2r]
This leads to the quadrature
v=Cyexp| [ PoiC) 4yl (3.171)
plp(p;C) ~2p]
where v =y, 7=y, /y*. Inprinciple, (3.171) can be expressed in a solved form
V' =y(»C.C)
that admits X, = ai and thus reduces to a quadrature
X
¥ _ic, (3.172)
v (1€, C,)
Equation (3.172) represents a general solution of the Blasius equation.
As a second example, we consider the third-order ODE
yy'[l,j =41, (3.173)
Y

that arises when one studies the group properties of the wave equation with wave speed
y(x) [Bluman and Kumei (1987)]. ODE (3.173) obviously admits the two-parameter Lie

group of transformations
x*=ax+b,
y¥=ay.

It is easy to see that corresponding differential invariants are given by

U=y, V=yp"

Consequently, ODE (3.173) reduces to
d—V:2K$£. (3.174)
du u v

Fortuitously, the first-order ODE (3.174) admits the scalings
U*=AU, V*=V.
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Accordingly, one easily finds the general solution of ODE (3.174):

U~ [(Kj ¥ 1] = const. (3.175)
U

Two cases arise depending on the sign of the constant in (3.175). We will consider the
case where the constant is given by v” >0, v = const. Here it is convenient to choose

first-order differential invariants, corresponding to invariance under translations in x, as
new variables:

u=y, v=y =U.
Then (3.175) becomes the first-order ODE

ﬂ_\luzvil

= 3.176
du u ( )
The general solution of ODE (3.176) is given by
1 v T -0
v=;[(pu) + ()], (3.177)

where p is an arbitrary constant. Without loss of generality, through a uniform scaling of
x and y, we can set p =1. Hence, modulo the scalings x* = ax, y* = ay, the third-order
ODE (3.173) reduces to

’ 1 v .-V
yi=—"FyTl
2v
1.€., to the canonical forms
y' = Lsinh(vlog ) (3.178a)
19
or
y' = lcosh(u log y). (3.178b)
1%
If the constant in (3.175) is given by —v” <0, then by the same procedure one
can show that finally, modulo the same scalings in x and y, the third-order ODE (3.173)
has a further reduction to the canonical form
y' = Lsin(vlog y). (3.178¢)
19

The properties of the solutions to ODE (3.178c) are most interesting [Bluman and Kumei
(1988)].
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3.4.3 INVARIANCE OF AN nth-ORDER ODE UNDER AN r-PARAMETER
LIE GROUP WITH A SOLVABLE LIE ALGEBRA

If an r-parameter Lie group of point transformations (r > 3) is admitted by an nth-order
ODE (n > r), it does not always follow that one can have a reduction to an (n — r) th-order
ODE plus r quadratures. We will show that such a reduction is always possible if the Lie
algebra, L, formed by the infinitesimal generators of the group, is a solvable Lie algebra

[cf. Section 2.5-4]. Then L has a basis set of generators X,,X,,...,X, satisfying
commutation relations of the form
j-1
X, X, 1=D.CiX,, 1<i<j, j=2,.r, (3.179)
k=1

for some real structure constants C; [Exercise 3.4-7]. For the same constants C;;, the

corresponding mth-extended infinitesimal generators X(j”’) satisfy
-l
(X", X" = ;c;xyﬂ, 1<i<j, j=2,..r. (3.180)

Now consider the nth-order ODE
yn :Fn(x’y’yla'“’yn—l)’ (3'181)

where F, is a given function of its arguments. We assume that ODE (3.181) admits an
r-parameter Lie group of point transformations (3<r<mn) whose infinitesimal
generators X,, i=12,...,r, form a solvable Lie algebra and, in particular, satisfy the

commutation relations (3.179) for some constants Cl.f .

Let u,(x, ), vy (x,y,y,) be invariants such that

— M —
Xy, =0, X;7v, =0.

Then
d*v
X =0 =0, k=12,.,n-1.
du(l)
Let
dk"(l)
Yok = W’ k=12,.,n-1.

O}

In terms of the invariants Uy Vs and the differential invariants Vi s k=12,.,n-1, of

X!, ODE (3.181) reduces to an (1 —1) th-order ODE

Vayr = Foct Wy s Vays Vs Vayn-a )» (3.182)
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for some function F, , of the indicated invariants of X".
From (3.179) and (3.180), it follows that

_ 1 _ (2) _
Xz”(l) =, (”(1)), X5 Yy = o (u(l)av(l))a X5 Y =71 (u(1)aV(1):V(1)1),

for some functions ¢,, f,, 7, of the indicated arguments. Hence ODE (3.182) admits the

one-parameter Lie group of point transformations with infinitesimal generator

0 0
1 _
X, =a (”(1)) P + B (”(1))"(1)) v
Uy Yy

whose first extension is given by
X® - xO 0
2 T Ay "‘7/1(”(1)>V(1)av(1)1)a .
Y

Let u,, (u),v(1))s Vi) (U1)> Vi) > Vay ) be invariants such that

m, _ @, —
XUy =0, X3, =0.

Then
d*v
X¢ —L =0, k=12,.,n-2.
du,
Let
d*v
Vo =d—<2k>, k=12,.,n-2.
u

(2)

(3.183)

In terms of the invariants u,,v,),V,y, kK =1,2,..,n—2, of X" (which are also
invariants of X!{"), ODE (3.182) and, hence, ODE (3.181) reduce to the (n —2)th-order

ODE

Voy-2 = F,, (”(2) sV2ys Vs V23 ),

for some function F,_, of the indicated invariants of X ", X{".
From (3.179) and (3.180), it follows that

XX Pu,, =0,
XPXPu,, =0.
Then (3.185a) leads to
Xgl)”m = A(uqy> V)

for some function 4 of u,,,v,,. From (3.185b), we obtain

(3.184)

(3.185a)

(3.185b)

(3.186)
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1) — —
X, Upy = A(“(l):V(n) =a, (u(z)),
for some function ¢, of u, . Similarly,

2) _ (3) —
X, Viy = B, (u(Z)av(Z))a X3 Voyn =72 (”(2)aV(2)’V(2)1),

for some functions f,, y, of the indicated arguments. Hence, ODE (3.184) admits the
point symmetry

0 0
XQZ) :az(u(z))a—+ﬁz(”(z)av(z))a—: (3.187)

U V)
with its first extension given by
0

3) _yw(©®
Xy =X, +}/2(u(2),v(2),v(2)1) .
6v(2)1

Then let u (45, V(5)) Vi3) (U(2)> V(2> V(2y ) be invariants such that

Xf)um =0, X§3)v(3) =0. (3.188)
Consequently, we see that
d*v
X¢H —L =0, k=12,.,n-3.
U
Let
d*v
Vo =—2, k=12,.,n-3.
du s,

In terms of the invariants u), v, Vi, kK =12,.,n—=3, of X{” (which are also

invariants of X!, X{"), ODE (3.184) and, hence, ODE (3.181) reduce to the (n—3) th-
order ODE

Vs = F, 5y V6) Ve Vay-a)s (3.189)

for some function F,_, of the indicated invariants.
We continue inductively and suppose that for ¢ =3,....m, m <r,

Uiy Wy Vigy)s Vig Wigmys Vigny» Vign)

are invariants such that

@D, _ @, _
Xp" U, =0, Xp" vy =0, p=L2,..q,
d*v
Xl — 4 =0, k=12,.,n—q forl<p<gq.
Uy
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Let v, = dkv(q) /du(q)k, k=12,..,n—q. Then the nth-order ODE (3.181) reduces to
the (n —m)th-order ODE

v(m)n—m = Fn—m (u(m) 9V(m) 9v(m)1 9ecey V(m),,_m_l ), (3190)

X5, X",
To go from step m to step m + 1, we proceed as follows: From (3.180), it follows

for some function F, ,, of the invariants of X!, X

m 2 m=1°°*

that

XX, =0, j=12,.,m.

m+1

Then X{" "X Py, =0 leads to

m+1

-y,
X Uiy = 4, (u(l)’v(l)’v(l)lﬁ"'ﬁv(l)m—z ),

m+1

(m=1)
m+l

for some function 4, of the invariants of X{"™". Similarly, X" VX" "u,, =0 leads to

4 =4, (u(z) s Y2y Voyrss Yoym=3 ),

for some function 4, of the invariants of X{"™, X{"™. Then X|" X" "u =0 leads

m+l

to
4, =4, (u(l)’v(l)’V(l)l""’v(l)m—l—l)’

for some function A, of the invariants of X!"™", X" XD 1<I<m-2. Now

XX, =0 leads to

m—1 m+l

A=A, Wy Vi )s
for some function A4

m—1

(m-Dxe(m=1), _
X, X U,y =0 leads to

m+l

of the invariants u,,_,,v,, of X\"", X", X{"™". Finally,
e T
Xm+1 u(m) - Al - am (u(m) )’

for some function «,, of u,,.

Similarly, one can show that
(m) _ (m+1) _
XowitVomy = B Wiy Vi)s Xorid Vot =V Wy s Vimy> Vo )»
or some functions , of the indicated arguments. Hence,
fi funct 7, of the indicated arguments. H

0 0
X =a, U(y) + B, WUy Vi) )
u ov
(m) (m)
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with its first extension given by

0
(m+1) _ ~o(m)
Xm++l— - Xm+1 + }/m (u(m) ’v(m) ’v(m)l )T’
(m)1
is admitted by ODE (3.190) since ODE (3.181) admits X, .. Now let u,,,, (> V) )s
Vimsty @y > Vimys Vi) D€ Invariants such that
(m) _ (m+1) _
Xm+lu(m+1) =0, X, Vimey = 0.
Then
d*v
XU — ) — 0k =12,.,n-m-1.
u(m+1)
Let
d*v
v(m+l)k = (m+lk) s k = 1729"-9n_m_1~
du(m+1)

In terms of the invariants u,.;), Vs Vimeis & =12,.,n—m—1, of X (which are

also invariants of X!, X{",...,X"), ODE (3.190) and, hence, ODE (3.181) reduce to
the (n—m —1) th-order ODE

v(m+l)n—m—1 = Fn—m—l (u(m+l) 4 v(m+1) b v(m+1)l 900 v(m+l)n—m—2 )7 (3 1 91)

n
m+l*

for some function F,_, , of the indicated invariants of X
Finally, two cases are distinguished:

Casel. 3<r<n.
Here ODE (3.181) reduces to an (n — r) th-order ODE

V(r)n—r = Fn—r (u(r)’V(r)Jv(r)lj"‘)v(r)n_r_l ), (3192)

for some function F,_, of the invariants of X", plus » quadratures. The quadratures arise

as follows:
Suppose

V(r) = ¢r (u(r) 5 Cl ) C2 geey Cn—r)
is the general solution of ODE (3.192). Then the first-order ODE
Voo Wty Vioaty s Vo) = @, Wy vy )€1, Gy L)

admits
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0 0
(1) _
X, V=a,, (u(r—l))a— + B, (g, ’V(r—n)a—’
Uy V-1

which leads to a quadrature
Voo = ()3 G, Chnes Cy)

for some function ¢ _, of the indicated arguments. Continuing inductively, assume we
have obtained

Vo = G (W )3C1, Cysnns C, ).
Then the first-order ODE
Voo Uy s Vi s Vo) = B Uy @y >V 52y ) €1 Coaneets €,
admits

0 0
k-1 —_—
Xy =ay Ugy) —+ B Uy Vi) P s k=rr=1.0 [y, =yl
U1y Vik-1y

which leads to the quadratures
Vo = O @y CChues Ci), k=rr =101 [v =]

for some functions ¢, , of the indicated arguments.

Casell. 3<r=n.
Here ODE (3.181) reduces to a first-order ODE

Viuein = F1 @0y Viny) (3.193)

(n)

for some function F; of the invariants u, ,, v, of X"}, plus n—1 quadratures that are

obtained as demonstrated for Case I. The first-order ODE (3.193) reduces to a quadrature
since ODE (3.193) admits

X(nn_l) =a,, (u(n—l) )% + B, (”(n—l) 9"@-1))%
(n-1) (n-1)
Thus, the solution of ODE (3.175) is reduced to » quadratures.

Note that in reducing an nth-order ODE to an (»n—r)th-order ODE plus
r quadratures, from its invariance under an r-parameter Lie group of point
transformations whose infinitesimal generators form an r-dimensional solvable Lie
algebra, omne does not need to determine the intermediate ODEs of orders
n—1,n—2,..n—r+2. Moreover, in Case 1, one does not need to determine the

intermediate ODE of order n—r +1.
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As an example, consider the fourth-order ODE

!
"

yy'(l,j -0, (3.194)
¥

that arises when studying the invariance properties of the wave equation in an
inhomogeneous medium [Bluman and Kumei (1987, 1988)]. ODE (3.194) obviously
admits the three-parameter (a,b,c) Lie group of point transformations

x*=ax+b, (3.195a)
y*=cy. (3.195b)

. . 0 0
The corresponding infinitesimal generators X, = — (parameter b), X, = x— (parameter
Ox Ox

a),and X, = y@i (parameter c) satisty
v

[X1: Xz] = X1: [Xza X3] = Oa [Xla X3] = 07

which are commutation relations of the form (3.179). To carry out the reduction
algorithm, we first need the following extended infinitesimal generators:

o qw_, 0 8 ym_ 0 0 5

X099 xov_,9%_, 9 xS, 9 o, O
P 2 o M o, 2 o N o, Y2 o,
0 0 0 0 0
XP=y_—+y—— XP=y_—+y——+r$——,
oy oy, dy 5% oy,
0 0
XY = + +Y, Y —
3 yay ylal yzayz y35y3
From
dv
M
X, =0, X{"vy, =0, vy, = o
)
we get
Y
u Zy’ V Zy’ V( = —
(€)) 1) 1 1 ¥,
Then

_ _ O,
oy () =Xpugy =0, fi(ug),vy)) = X3V ==V

_x® __ Y _
71 (”(1) ’v(l)’v(l)l) =X, Yaour =~ = Vayu:

1
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Thus, in terms of u ), v, v, Wwe have

Now, from
vy

we find that
Yy Y Yiy; — 2(y2)2
u =Uu = y, V, = = s vV = .
(2) @) (2) o (yl )2 (2)1 (yl )4

Then
Y

M, @, _ _
() = XUy =y =),  Br(Up),ve) =XV =- ) = Vo)
1
4(v,)° =2y,y
_~x® _ 4, Vs
V2 (”(2)9"(2)9"(2)1) =X; Yon = B )4 = _2"(2)1‘
1

Thus, in terms of u,,, v,), V5, , We have

XY = Uy, 0 Vo 9 , X9 = Uy 0 Vo o _ 2V, o .
Ou,, v, Ou,, oV, Vi
Now, from XPu ;) =0, X{v;, =0, we get
2 2
DA > Yy —2(0,)7]
U = UV, = s Vi =Up) Vi = . (3.196)
e ~ "oV () 3) @/ Von )
It must now follow that ODE (3.194) reduces to
dv
3)
= F(”(3)’V(3))a
dum

for some function F' of u;),v;. Wenow find F(u;),vs ). We have

y(y1)ZY4 —TYNY2 )5 +2(Y1)3Y3 —4()/1)2()/2)2 +8y(y2)3i|' (3.197)

(V)2 ¥, + s —2y(»,)’

dv
du(3) 62 )2

ODE (3.194) can be expressed as
2 2 2 2 2 4 3 2 3
YO vy =4y0) () 5 vy =) v, =3y(0) v =4y (1)
(3.198)

Replacing y°(y,)* y, in ODE (3.197) through substitution of (3.198), we obtain
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dv 240
3) :_(yl) + YV, :—(1+21/l(3)),

du(3) (%)2

which fortunately reduces to the quadrature

2
Vi = lugy +(ug)” +¢l

(3.199)

(3.200)

After (3.196) is substituted for v, and u,, the quadrature (3.200) becomes

2 2
(“(2)) Vou = _[“(2)V(2) + (”(2)"(2)) +¢ ]

ODE (3.201) admits

with corresponding canonical variables given by
R=u,v,, S=logv,.
Then (3.201) transforms to
as 1 1
—=—x :
dR R R’ —c

Consider the case when the constant ¢, >0, and let ¢, = (C,)*. Then

R_C 1/2¢))
S=logR+1o 1 +c,,
8 g(R+C] 2

1

with arbitrary constant ¢,. Consequently,

C (1+Au,)
Voy = ¢(u(2);C1 ,Cy) = 1 = ;
Uy \ 1-Au,,)

with A(u,,) = (C, /u,,))*" in terms of arbitrary constants C,, C,.

ODE resulting from (3.203), namely,

Y )
= ¢(”(1) :CLGY)s
Yy

. 0
admits X3}’ =—-v, P Hence, ODE (3.204) reduces to
v
M

dv

@ .
= ¢(u(1) 5 C1 5 Cz) du(l) 5
Yy

(3.201)

(3.202)

(3.203)

Then the first-order

(3.204)
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which integrates out to
v, = (%G, C,, Cy) = C, exp[ [ pw;€.0) du(l)} (3.205)

Finally, the first-order ODE

d
Vi =—y=l//(y;C1,C2,C3)

dx
admits X, = ai and thus reduces to the quadrature
X
J.y d =x+C,,
y(»;C,,C,,C)

yielding a general solution of ODE (3.194). The case ¢, =—(C,)*, substituted into

(3.202), would yield another general solution of ODE (3.194) in solved form.
In using the reduction algorithm to reduce an wnth-order ODE to an
(n—r) th-order ODE plus r quadratures, from invariance of the nth-order ODE under an

r-parameter Lie group of point transformations whose infinitesimal generators form an
r-dimensional solvable Lie algebra, we determine, iteratively, invariants u,, v,V and

coefficients «, (u;)), B (), Vi))s ¥ (Wy> Viiy» Viiy) such that
©ays Vays Vay) = (@, B> 7)) = Uy, Vi s Vay) = (@, By, 7,) =+
= (Ugoiy> Viory> Vo) = (s By V) = (W5,

The nth-order ODE reduces to an (n —r)th-order ODE in terms of the variables
U> V- The quadratures follow from reversing the arrows of this iterative procedure.

344 INVARIANCE OF AN OVERDETERMINED SYSTEM OF ODEs UNDER
AN r-PARAMETER LIE GROUP WITH A SOLVABLE LIE ALGEBRA

Now consider an overdetermined system of two ODEs of orders m and » given by
f(x:y:y’,---:y(m)):(), (32063)
gx,y, ¥, y") =0, (3.206b)

m < n. We assume that each of the ODEs (3.206a,b) admits the same r-parameter Lie
group with a solvable Lie algebra L', with a basis set of r infinitesimal generators
satisfying commutation relations of the form (3.179). Then, from Section 3.4.3, there
exist invariants u,, = u(x,y,y’,...,y"™"), v,, =v(x,,¥',...,¥""”") of L, such that ODEs
(3.206a and b), respectively, reduce to the equivalent overdetermined system of equations
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Fluv® 42V, (3.2072)
du du™™"

Gluv, . LV, (3.207b)
du du™"

for some functions /' and G of the indicated invariants.
Now suppose v=®(u) solves the system of equations (3.207a,b). Then any
solution of the ODE

v, 1, Y ey ) = O, v,y ") (3.208)

solves the given system of ODEs (3.206a,b). If ®(u) depends on m—r essential
constants, then we obtain a general solution of the system of ODEs (3.206a,b). Since u
and v are invariants of L', it follows that ODE (3.208) is also invariant under £". Hence,
in principle, ODE (3.208) can be reduced constructively to » quadratures, with r essential
constants c,,...,c,. Thus, we obtain a function ¥(x, y;c,,...,c,) for which the equation

Y(x,y;¢,,...,¢,) =0 (3.209)

yields an explicit solution of the overdetermined system of ODEs (3.206a,b).
The previous considerations have assumed that solutions of the system of ODEs
(3.206a,b) satisfy

dv (vx +vyy,+”.+vy(f-l)y(r)) 0
= #

o ' () :
du  (u,+u,y +---+uy<,.,l>y’ )

Alternatively, solutions of the system of ODEs (3.206a,b) can be obtained by considering
u=A4, (3.210a)
v =B, (3.210b)

for some constants 4 and B. From (3.210a,b), a solution of the system of ODEs
(3.206a,b) satisfies the system of ODEs

u(x,y,y,...,y"7") = 4, (3.211a)
v(x,y,,...,y"”) = B. (3.211b)

Since the system of ODEs (3.211a,b) is invariant under the infinitesimal generators of
L', it follows that the solution of (3.211a,b) reduces constructively to quadratures. Thus,
one can find all solutions of the system of ODEs (3.211a,b).

Most important, the considerations outlined above allow one to generate solutions
of the system of ODEs (3.206a,b) without first determining the general solution of either
of these ODEs.
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As an example, consider the following system of ODEs that arises when studying
the invariance properties of the wave equation in an inhomogeneous medium [Bluman
and Kumei (1987, 1988)] with wave speed y(x):

' (v ™' =0, (3.212a)

{y{z(y_l(y‘w 32079 =207 7Y 0T = (7)) ]}} o

YY) 207+ )T
(3.212b)
Recall that the fourth-order ODE (3.212a) [cf. (3.194)] admits the three-parameter
Lie group of transformations (3.195a,b) with infinitesimal generators X, = ai ,
X
X, = xai, and X, = y%. The fifth-order ODE (3.212b) also admits this same group.
X

Consequently, the Lie group of point transformations (3.195a,b) is a solvable three-
parameter Lie group of point symmetries admitted by the overdetermined system of
ODEs (3.212a,b). A convenient choice of differential invariants of this three-parameter
group is given by

14

Yy
==, (3.213a)
")’
2. m
v=2 2 (3.213b)
")
Consequently, the ODEs (3.212a,b), respectively, reduce to the ODEs
Qu’ —u—v)(ﬂ—zuﬂj:o, (3.214a)
du
and
2
2uF+[Fu PSR S fj(uw—zuz):o, (3.214b)
du " du
with

(u+v—2uz)vl+(2uz—3uv—9u+6v+4)_i_3(v—2u+1)2
2u—1 Qu—-1)°

5

I'(u,v,v)=0-u)+

where v, = dv/du.
From (3.214a), the following two cases arise naturally:
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v=2u’—u, (3.215)
v=u’-u+38, & =-const. (3.216)

We now determine separately the compatibility between (3.215) and (3.216) with
(3.214b).

Casel. v—2u’ —u.
In this case, it is easy to check that (3.214b) is satisfied identically so that we have a

solution of the system of ODEs (3.212a,b) defined by v=®,(u)=2u’ —u which, in
terms of the differential invariants (3.213a,b), yields the third-order ODE

2. .m

Y,y wh

")’ SN
The ODE (3.217) must admit the solvable group (3.195a,b). It is easy to show that ODE
(3.217) can be expressed in the form du/dx =0 and, hence, we have

"

(3.217)

u=-2_— const = A.

"’

From this equation, it is easy to show that the general solution of ODE (3.217) is given
by

y=(c, +c,x)%, (3.218)
yielding a three-parameter family of solutions of the system of ODEs (3.212a,b).

Casell. v=u’—u+5.
In this case, the substitution of (3.216) into ODE (3.214b) leads to the compatibility
equation

(u* - 6)(1-45)=0. (3.219)
We now set to zero each factor in (3.219). Clearly, the first factor again yields the
solution (3.218). The second factor yields 6 =1/4, so that now we have all other
solutions of the system of ODEs (3.214a,b) as given by v=®,(u)=u’ —u ++. In terms
of the differential invariants (3.213a,b), this corresponds to all solutions of the ODE

2 m "

2 "2
yy _yU) w1 (3.220)
) O0H 0) 4
It follows that the third-order ODE (3.220) must admit the solvable three-parameter Lie
group (3.195a,b) and, hence, can be reduced completely to quadratures. As differential
invariants of this three-parameter group, it is convenient to choose

U=y, V=p" (3.221)
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Then ODE (3.220) reduces to
v _v. v
dau U 4V
whose general solution, from scaling invariance, is given by
V:=1U"+aU?, ~ a=const (3.222)

From the differential invariants (3.221), we see that V' = yU dU / dy, and thus, (3.222)
becomes the first-order ODE

2
yz[d—UJ =1U? +a, (3.223)

which is invariant under scalings in y. In terms of y'=U, the integration of (3.223)
yields two families of ODEs in terms of arbitrary constants £ and y >0:

y'= Bl ()] (3.224)

The solution of ODE (3.224) yields two further three-parameter families of solutions of
the given system of ODEs (3.216a,b):

\/; —arctan(c, \/;) =c,(x+c;), (3.225)

and

1/2

=c,(x+c;). (3.226)

\/;_cl
logl Y2 — 1
\/;4' Og\/;-i_CI

Hence, all solutions of the system of ODEs (3.214a,b) are given by (3.218), (3.225), and
(3.226). It is left to Exercise 3.4-6 to find all solutions of the system of ODEs (3.214a,b)
that satisfy the system of ODEs given by (3.217) and (3.220), i.e., to find all functions
which lie in the intersection of the family of functions satisfying (3.218) and either
(3.225) or (3.226).

Further details of the work in this section appear in Bluman and Kumei (1989a).

EXERCISES 3.4

1. For each of the following second-order ODEs, find an admitted two-parameter Lie
group of point transformations and use appropriate differential invariants to find the
general solution of the ODEs:

(a) y"+Ay"+By+C =0 where 4, B, C are constants;

” A ' B .
(b) y +;y +x—2y =0 where A4, B are constants;
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(©) (Z+y )" +2(y -1+ (")) =0;
(d) »w"+(")? =1 and

!

" 1
() ¥+ -—=0.
yioxy

. For each of the following two parameter Lie groups of transformations whose Lie
algebras are spanned by the set {X,, X,}, find all admitted second- and third-order
ODEs:

@ X, =2.x,=2
ox oy
0 0
b) X, =x—,X,=y—;
(®) X, PR yay
(©) XI:xi—yi,Xzzxi+yi;
ox oy ox oy
0 0
d X, =—,X,=x—; and
d) X, ol 2 xax
0 0 0
e) X, =—, X, =x—+y—.
(e) X, P o yay

. Consider the fourth-order ODE (3.194), invariant under the three-parameter Lie group
of point transformations (3.195a,b).

(a) Show that if X, = yi, X, :i, X, = xi, then commutation relations of the
oy Ox Ox

form (3.179) are satisfied. Accordingly, solve ODE (3.194) by the reduction
algorithm.

(b) What happens when trying the reduction algorithm with X, = x@i, X, = yai,

i V
X, =29
Ox

. Let ¢,(x), §,(x),...,¢,(x) be n linearly independent solutions of the nth-order linear
homogeneous ODE

y” + p )y + 4 p, ()Y + p,(x)y =0.

(a) Find an n-parameter Lie group of point transformations that is admitted by the
nth-order linear nonhomogeneous ODE

YO p @y et p (1)) P, (0 = g(). (3227)

Show that the corresponding Lie algebra is solvable.
(b) Use group invariance to obtain the general solution of ODE (3.227). In particular,
find the well-known formula obtained by the variation of parameters method.
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5. The overdetermined system of second-order ODEs given by
2.

xy'"+xy'—y=0, (3.228a)
w"=2(y")" =0, (3.228b)

admits X, :xai, X, = yai. Find the general solution of the system of ODEs
x Y

(3.228a,b) in three ways by using differential invariants corresponding to:
(@) X,;

(b) X,; and

(c) theset {X;,X,}.

6. Find the general solution of the overdetermined system consisting of the ODEs
(3.217) and (3.220).

7. Show that if an r-dimensional Lie algebra is solvable, then one can find a spanning
(basis) set of infinitesimal generators {X,,X,,...,X,} so that commutation relations
of the form (3.179) hold.

8. (a) Let a second-order ODE admit a two-parameter Lie group of transformations
with infinitesimal generators X,, X, such that[X,, X,] =0, 1.e., the Lie algebra is
Abelian. Suppose “canonical coordinates” R(x, y), S(x, y) can be found such that

X,R=1, X,R=0, X,§=0, X,S=1. (3.229)

Transform the given ODE to (R,S) coordinates and reduce it to two

quadratures.

(b) Show that if the Lie algebra of a two-parameter Lie group of transformations
acting on R’ is Abelian, then it is does not necessarily follow that one can find
“canonical coordinates” R(x, y), S(x,y) satisfying relations (3.229). Explain this
geometrically and give a specific example.

9. Find the most general second- and third-order ODEs admitting the three-parameter
group with infinitesimal generators
X, = (1+x2)£+xyi, X, = xyi+(1+y2)i, X, = yi—xi.
ox oy ox oy ox Oy
(3.230)

Note that the corresponding Lie algebra is not solvable [cf. Exercise 2.5-13].

3.5 CONTACT SYMMETRIES AND HIGHER-ORDER SYMMETRIES

Now we consider the invariance of an mth-order ODE under contact transformations
when » > 2, and under higher-order local transformations when » > 3 [cf. Section 2.7.2].

165



Definition 3.5-1. A second- or higher-order ODE
Y= 0y, (3.231)
n > 2, admits a one-parameter group of local transformations

x*=x,
yE=y+en(x,y,y,...,y")+0(?) (3.232)

with infinitesimal generator
X = 7 ' 0y 0
X_n(xayaya---ay )_ (3233)
y

if and only if (3.232) maps any solution y=0(x) of ODE (3.231) into solutions
y=0*(x)=(*"y) of ODE (3.231), where X is the extended infinitesimal

y=0(x)

generator given by (2.212).

In particular, the group (3.232) leaves invariant ODE (3.231) if and only if the
satisfies ODE (3.231) whenever a curve y=0(x)

curve y=0%*(x)=(e*"y)

y=0(x
does. The highest order ¢ of the derivatives of y appearing in 7 is called the order of
the local transformation (3.232).

Definition 3.5-2. A one-parameter group of local transformations (3.232) of order
0 </ <n-1 admitted by ODE (3.231) is a symmetry of order ¢ of (3.231).

When 7 =1, alocal transformation (3.232) is a point symmetry of ODE (3.231) if
A(x,y,y") is linear in y". In particular,

: n9 _ o K
X =[n(x,y) =<(x,y)y'] & and - X =¢g(x,y)——+7(x,) &

have the same action on solutions y=0(x) of ODE (3.231). More generally, if
A(x,y,y")is not linear in ), then a local transformation (3.232) for /=1 is a contact
symmetry of ODE (3.231). When />2, a local transformation (3.232) is a higher-order
symmetry [cf. Section 2.7.2] of ODE (3.231). The infinitesimal #A(x,y,),....»"") of

(3.232) is called the symmetry characteristic.
We will show how to find the contact symmetries and higher-order symmetries
admitted by a given nth-order ODE, n > 2. As is the case for point symmetries of a first-

order ODE, when ¢ = n—1, the infinitesimal A(x, y,)’,...,y""™") for a symmetry of order

n—1 satisfies a linear homogeneous PDE whose general solution cannot be found unless
we know the general solution of the ODE itself. However, when /<n-1, the

determining equation for the infinitesimal #(x,y,)’,...,»""), in general, splits into an
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overdetermined system of linear homogeneous PDEs which has only a finite number of
linearly independent solutions.

Most important, we will give a reformulation of the differential invariant method
for reduction of order [cf. Section 3.3.2] that allows an extension of this method to
include contact and higher-order symmetries.

3.5.1 DETERMINING EQUATIONS FOR CONTACT SYMMETRIES
AND HIGHER-ORDER SYMMETRIES

We start by giving the infinitesimal criterion for the invariance of an nth-order ODE
(3.231) under a one-parameter group of local transformations (3.232) with infinitesimal
generator (3.233) of order 0 </ <n-—1.

Geometrically, an infinitesimal generator (3.233) acting on the space of solutions
of a given ODE (3.231) corresponds to a vector field X® tangent to the surface defined

by (3.231) in (x,,,,...,¥,) —space,

Vo =SV Y15V (3.234)
given by
X" :ﬁi+Dﬁi+...+D"ﬁi ony =f
ay ayl ayn
:ﬁi+Dﬁ£+"'+DnAi, (3235)
ay ayl ayn
where
A 0 < 0 )
n=nx,y%,.,5), D=—+)> y,—— with y, =y,
Ox i=1 i-1
and
0 0 0 0
D=D|, _=—+y—++y, o+ 1 s V) (3.236)

ax ay ayn—Z Gyn—l

is the total derivative operator associated with the surface (3.234). Since (3.235) is a
tangent vector field, it is an infinitesimal generator of a one-parameter Lie group of local
transformations on the surface (3.234) given by

x*=x, (3.237a)

yr=eX"y, (3.237b)

pr =Xy o102, n—1 (3.237¢)
] ,] b 9 9 b .

pE =Xy = F Yy, (3.237d)
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Solutions y = ®(x) of ODE (3.231) satisfy @ (x) = f(x,0(x),0'(x),...,0" " (x)) and
thus represent curves lying on the surface (3.234) with y=0(x),y, =0 (x),

j=12,...,n. If a solution curve y =®(x) of ODE (3.231) is not itself invariant under
the transformation group (3.237a—d), then it is mapped into another solution curve

y=g(x;) = (™"y) of ODE (3.231) for any value of &.
y=0(x)

Definition 3.5.1-1. An nth-order ODE (3.231) is invariant under a one-parameter group
of local transformations (3.232) if and only if the corresponding surface (3.234) in

(x,¥,¥,5...,¥,)—space admits the one-parameter Lie group of transformations
(3.237a—d).

The following theorem results from Definitions 3.5-2 and 3.5.1-1 and Theorem
2.6.7-1 on the infinitesimal criterion for an invariant surface:

Theorem 3.5.1-1 (Infinitesimal Criterion for Invariance of an ODE). 4 vector field

(3.235) is the infinitesimal gemnerator of a symmetry of order ( <n admitted by the
nth-order ODE (3.231) if and only if

X" (y, - f)=0, (3.238)
or, equivalently,

D'f=fh+f,Di+--+f, D7 (3.239)

Equation (3.239) is called the symmetry determining equation for ODE (3.231),
and its solutions 7(x,y,y,,...,»y,) are the symmetry characteristics up to order
0 </ <n-1 admitted by the nth-order ODE (3.231) or, equivalently, the surface (3.234).

Since for any mth-order ODE, we can assign arbitrary values to each of
Y, Vi5---» ¥, atany value of x, it follows that the symmetry determining equation (3.239)
is a linear homogeneous PDE for 7/ with independent variables x,y,y,,...,»,,. If
! =n-1, then the general solution of (3.239) cannot be found unless one knows the
general solution of the given ODE (3.231). However, if /<n—1, then the symmetry

determining equation (3.239) reduces to an overdetermined system of linear
homogeneous PDEs which has a finite number of linearly independent solutions for 7.
There exist efficient computational algorithms to solve such systems [cf. Head (1992);
Hereman (1996); Wolf (2002a)] and, typically, the solutions here can be found explicitly
although the computational complexity grows rapidly as the order ¢ increases.

If a given nth-order ODE (3.231) admits a point symmetry, then one can make a
simplifying ansatz to solve the symmetry determining equation (3.239) for higher-order
symmetries. In particular, if ODE (3.231) admits a scaling symmetry

x> a’x, y > a’y, then the symmetry determining equation (3.239) admits the scaling
symmetry A—>a'f,x—>a'x,y>a’y,y—>a’ ...y, —>a” "y . for
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arbitrary » = const. As a consequence, one can seek invariant solutions of the symmetry
determining equation (3.239) of the form

ol 2 O (Vt)’
nh=xg xP 7 xPa T ponmhy |

Hence, (3.239) reduces to an overdetermined linear system of PDEs in terms of the
scaling invariant variables y?/x”,(y)*/x"", ..., ()" /x" "™ Similarly, if ODE
(3.231) admits a translation symmetry x > x+¢&,y —> y, or x > x,y = y +¢&, then the
symmetry determining equation (3.239) admits the translation symmetry x — x+ ¢,
YooY, o X>XY>Y+E YV, > Vs Voo =V, together with the scaling
symmetry /7 — a'7 for arbitrary » = const. Consequently, here one can seek invariant
solutions of the symmetry determining equation (3.239) of the form

n=e"gy, Y., y,y) or f=e”g(x,y,....Y,.),

leading to a reduction of (3.239) to an overdetermined linear system of PDEs in terms of
the translation invariant variables y,y,,...,», ;, Of X, V,,...,V, ;.

More generally, if one can find a point symmetry X of the symmetry determining
equation (3.239) (which need not necessarily be a point symmetry admitted by the given
ODE (3.231)), then one can consider a corresponding ansatz X# =7, for arbitrary r =
const, to seek invariant solutions 7 in terms of the corresponding # invariants u,,...,u

determined by solving )N(ui(x, Vs Viseees¥,) =0 through use of the admitted point
symmetry

S 7 0 - 0 - 0
ng(xayayla--"yn—l) +77(x7y7y17--"yn—1) +771(x7y7y17-'-7yn—1)
ox Ay 2%

~ 0
+'”+77n—1(x7y7y15---7yn—1) N
y

n—1

Through use of canonical coordinates [cf. Section 3.2.5], one can show that the point
symmetries admitted by the symmetry determining equation (3.239) include all point

symmetries admitted by the given ODE (3.231). The use of the ansatz )N(ﬁzrﬁ is
illustrated in the examples in Section 3.5.2.

3.5.2 EXAMPLES OF CONTACT SYMMETRIES AND
HIGHER-ORDER SYMMETRIES

(1) Contact Symmetries
As a first example, consider the elementary third-order linear ODE

Y =0, (3.240)
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corresponding to the surface y; =0 in (x,»,y,,,,y;)—space. The symmetry
determining equation (3.239) for contact symmetries 7(x,y,y,) admitted by ODE

(3.240) is given by
D3ﬁ = ﬁxxx + 3y1ﬁxxy + 3(y1)2ﬁx)y + (y1)3 ﬁyyy
+ 3[ﬁxxy1 + 2y1ﬁxyyl + (.yl)2 ﬁyyyl + ﬁxy + ylﬁyy ]yz
+ 3[ﬁXY1J’1 + ylﬁy}ﬁ)’] + ﬁy}ﬁ ](y2)2 + ﬁﬂ)’l)’] (y2)3 = 0’ (3241)

where

0 0 0
D=—+y—+y,—.
ox oy M

With respect to the coefficients of like powers of y,, PDE (3.241) splits into the
overdetermined linear system

Do + 300y + 300 11, + ()7, =0, (3.242a)
Mgy, + 201y, + (1) 7y + 70, + 2177, =0, (3.242b)
Mo, TNy 11, =0, (3.242¢)

My = 0- (3.242d)

It is straightforward to solve (3.242a—d) to obtain the three admitted contact symmetries
m = (yl)za m,=Qy—xy)y, 7,=Q2y _xy1)2 ) (3.243)

in addition to the seven admitted point symmetries

A A A

=1, fs=x, Ho=x, G,=y, A=y, =Xy, N=2xy—xy,.
(3.244)

As a second example, consider the third-order nonlinear ODE

"3 "2
yr=exY) g (3.245)
() y

or, equivalently, the surface y, = 6x(y,)*(¥,)~ +6(»,)*(¥,)"in (x,,¥,,,,V;) —space,
which admits the scaling symmetries x — ax, y — fy, and the translation symmetry
x> x,y—> y+e&. For ODE (3.245), the contact symmetry determining equation (3.239)

for 7A(x,y,y,) becomes

D5 —18x(y,)* (1) D’ +12x(y,)’ () "D =12y, (y) ' D* G+ 6(y,)*(»,) D7 =0
(3.246)

with 77, # 0, where
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0 0 0 2, 2 O
D=—+y —+y,—+6(xy, + —
o N oy Y2 o, (xxy, + )" (1) o,
One can see that (3.246) is a cubic polynomial in y, and hence it splits into a

linear system of four third-order PDEs. Rather than look for the general solution directly,
we seek solutions by using ansatzes based on the invariants of the point symmetries
admitted by the given ODE (3.245).

First, since (3.245) admits translations in y, we seek solutions of the contact
symmetry determining equation (3.246) of the form

n=e”g(x, ), p = const, (3.247)

with g, #0. For simplicity, we initially choose p =0. Substitution of (3.247) into
(3.246) leads to the linear system of PDEs

g.=0, (3.248a)

N — 4g =0, (3.248b)

2g, —6xg,. =28, +(»)’g,,, =0, (3.248¢)

12xg, —18xy,g,, +61,g, + 6()/1)2gy1yl + (y1)3gy1y1y1 =0. (3.248d)

One can readily solve (3.248a—d) to obtain
g=¢+ cz(yl)_l + 03()’1)_2 T ey + Csx(%)z + Csxz(y1)4

with arbitrary constants c¢,. It is not hard to show that the contact symmetry determining
equation (3.246) has no solutions of the form (3.247) when p # 0, from the compatibility
of the resulting linear system of PDEs for g(x, y,). Hence, the ansatz (3.247) yields the
four admitted contact symmetries

m :(Jﬁ)_la n, =(y1)—2, 78 =x(y1)2’ M, :xz(J’1)4- (3.249)

Next, using the x and y scalings admitted by the given ODE (3.245), we seek
solutions of (3.246) of the form

n=x"y"g(z), (3.250)

where z=xy'y,, p,g=const, and g"(z)#0. Substitution of (3.250) into the

contact symmetry determining equation (3.246) yields an overdetermined linear system
of four third-order ODEs for g(z). The compatibility conditions for this overdetermined

system yield the solutions

g=9z2"-12z+4 (¢g=0, p=2), (3.251a)
g=3-2z" (g=1,p=0), (3.251b)
g=32"-2z" (¢g=-1, p=3). (3.251¢)
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Hence, the ansatz (3.250) yields three more contact symmetries admitted by ODE
(3.245), given by

7s =9x* (0’ —12xpy, +4y°, f, =3x=2y(y)", 7, =3x>(») - 2x0(»)*.
(3.252)

More generally, through analysis of the overdetermined linear system of PDEs
arising from the contact symmetry determining equation (3.246) for ODE (3.245), one
can show that all solutions 7(x, y,y,) of (3.246) are yielded by the ansatzes (3.247) and

(3.250). Hence, the contact symmetries admitted by ODE (3.245) consist of (3.249) and
(3.252).

As a final example, we again consider the Blasius equation
Y3 =0, (3.253)

with the corresponding surface given by y;=-1yy, in (x,¥,¥,,5,,»;)—space. The

symmetry determining equation (3.239) for contact symmetries 7(x,y,y,) admitted by
ODE (3.253) takes the form

D+ 4y, + yD* =0, (3.254)
where

D—£+ 24_ i_L i
o y1ay J’28y1 2yyzay2'

Hence, (3.254) is a cubic polynomial in y, and, thus, splits into an overdetermined linear
system of four PDEs. The coefficient of (y,)’ in (3.254) yields
Moy, =0 (3.255)

and thus,
n=a(x,y)+ By +rx)0)’ (3.256)
for some functions of «, f,7 of x,y. Consequently, (3.254) becomes a polynomial in

y,. Then the coefficients of y,(y,)*, (,)’, and (y,)’ y, in (3.254), respectively, yield
]/y=0’ ﬁyz%]/_zyx’ ]/lelgyy‘

From these equations, it is easy to show that y =0, and hence 7 is at most linear in y,.
Thus, the Blasius equation (3.253) admits no contact symmetries.

(2) Higher-Order Symmetries
As an example, we consider the fourth-order ODE
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y(‘”%(y ) : (3.257)

or, equivalently, the surface y, = 4(;)*(¥,) "' in (x,¥,¥,,¥,,¥5,¥,) —space, which admits
the scaling symmetries x - ax, y = fy and the translation symmetries x = x+ &,
y > y+¢,. The symmetry determining equation (3.239) for second-order symmetries
n(x,y,y,,y,) admitted by ODE (3.257) is given by

~ 8 _ ~ 4 _ n
D4f7—§y3(y2) 1D3f7+§(y3)2(y2) ‘D’ =0, (3.258)
where

0 0 0 0 4 ) 4 0
D=—" 4y — 4y, —+y,—+— —.
o N o ) o, Vs o, 3()/3) () o,

PDE (3.258) is a fourth-degree polynomial in y,. The coefficient of (y,)" yields

A 16 N 4 8 .
(y2)377y2y2y2y2 +?(y2)277y2y2y2 +;y277y2y2 +E77y2 = O, (3.259)

which has the general solution

1/3

ﬁ:(yz)_l/3a(xayay1)+(y2)2/313(x’y7y1)+(y2) 7(x7y5y1)+K(x’y’yl) (3260)

for some functions «, f,7,x of x,y,y,. Then if we divide the symmetry determining
equation (3.258) by a power of y,, it splits with respect to powers of (y,)"’ into

separate equations. The coefficients of ()’ in these equations yield
ya,+a,=0, g, =0,y =0, (3.261)

and thusa o= a(zayl)a /8 = ﬂ(%)’)a V= V(X,J’)a with z =XV =Y.
From the coefficients of the remaining powers of y,, we find that

a=a,+ay +a,z, (3.262a)
B=b, +bx+b,x* +b,x’, (3.262b)
y=c, e x+c,yrexyte,x’, (3.262¢)
K=k, +ky+kx+ky +kxy, (3.262d)

for arbitrary constants a,,b,,c,,k;,. Consequently, the fourth-order ODE (3.257) admits
the 12 second-order symmetries given by

-1/3

= (yz)—m’ =) ", 10y =(xy _y)(J’2)_1/3a =, . N5 =x(y,
ﬁ6 =x2(y2)2/3’ ﬁ7 = x3(y2)2/3’ ﬁg :(y2)1/37 ﬁ9 = x(y2)1/3’ ﬁlO =x2(y2)1/3’

2/3 2/3
) )

5
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Ay =)' i =)', (3.263)
We note that ODE (3.257) also admits five point symmetries, corresponding to (3.362d),
but no contact symmetries.

As a second example, we consider the fourth-order ODE

'™ =0, (3.264)

that arises in the study of the invariance properties of the wave equation with a wave
speed y(x). The surface represented by ODE (3.264) in (x,y,y,,V,,V;,V,) —space is
given by

Vi =T 052,13 =500) " 3y =3 vy =y () v, + 4T () —400) ()’
(3.265)

The symmetry determining equation for second-order symmetries 7(x, y,y,,»,) admitted
by ODE (3.264) is given by

D((», 71+ yDD2y(r) (7)) =) ¥, = y() ) + D ((0) ' = y(»,) D)) =0,
(3.266)

where

0 0 0 0
D=—+y—+y,—+y,—+ I 2 T
PRl o V) o, Vs o SOy Y25Y3) o,

It is not hard to see that (3.266) is a fourth-degree polynomial in y,. The coefficient of
(v;)" yields

0
2

n=ax,y, )+ By, )y, +7(x,y,3)1,)" +&(x,y,y)(,)°  (3.267)

for some functions a, 3,7,x of x,y,y,. Then the coefficients of y,(y,)’ and (y,)*(y,)
in (3.266) yield

ik, +4x =0, (3.268)
25(y)’k,, +135y i, +56K =0. (3.269)
The compatibility between (3.268) and (3.269) then leads to
k=0.
Similarly, the coefficients of (1,)*, (,)°(35)%, »,(13)°,(¥,)’ v, in (3.266) lead to
y=B=0.

Hence, ODE (3.264) admits no second-order symmetries. Finally, for 7=a(x,y,y,), it
is straightforward to show that the coefficients of (y;)’,(1;)’, », in (3.266) lead to
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a=a,+ay+a,y +a;xy

for arbitrary constants a,. Therefore, ODE (3.264) admits four point symmetries
consisting of translations in x and y, and scalings in x and y, but no contact symmetries.

3.5.3 REDUCTION OF ORDER USING POINT SYMMETRIES
IN CHARACTERISTIC FORM

Consider a second-order ODE given by a surface

F(x,,51,5,) =y, = f(x,3,9,) =0 (3.270)

that is assumed to admit a one-parameter Lie group of point transformations with the
once-extended infinitesimal generator

0 0 0
X" =& y) (e y) —+ 0" 0y ) 2 (3.271)
ox oy 0

i
where 7Y =Dn - y,DE and

0 0 0
D=—"+y—+y,—

ox 0Oy o
In Section 3.3.2, we showed how ODE (3.270) can be reduced, constructively, to a first-
order ODE of the form dv/du = H(u,v) in terms of invariants u(x, y), v(x,y,y,) of the

infinitesimal generator (3.271). In particular, # and v are given by the constants of
integration that arise in solving the characteristic equations

& _by_ b

=—=—"1 (3.272)
¢ n Dn-yDS
which result from
XYu(x,y)=éu, +nu, =0, (3.273a)
XDv(x, y, ) =&, + nw,+DOn-yDEyv, =0 [v, #0]. (3.273Db)

We now demonstrate an analogous reduction of order of ODE (3.270) in terms of the
invariants that arise from expressing the infinitesimal generator (3.271) in its
characteristic form
A (1) 6
+1n"’— on F =0, (3.274)
Ay
where

h=n-y& AV =DA=Dnp-yDE-fE onF =0 (3.275)
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9
o,

Since (3.274) involves no motion on x, it immediately follows that x is an

with D=4y, Ly 7
ox

invariant, X"x = 0. A second invariant w(x, y, y,), satisfying
X(l)w(x, ) =1nw, + ﬁ“)wyl =0 [w, #0], (3.276)

is obtained as a constant of integration in solving the characteristic equation
[x = const]. (3.277)

Then

dw ow ow ow
D (x, p, ., _aw_ow_ oW, W My %0
W (X, Y, V15 Ys) e " N oy Y2 o, [(w )yz ]

is obviously a differential invariant. Hence, in terms of the invariants x, w, w”, it follows
that the surface (3.270) is given by

‘;—WF(x, oy vy) = w = F e w) = B, wyw®) = 0

M
for some function A (x,w) =Dw. Thus, the second-order ODE " = f(x, y,y") reduces,
constructively, to the first-order ODE
aw _ H(x,w). (3.278)
dx

Most important, we note that in contrast to the standard reduction in terms of invariants
u(x,y), v(x,y,y,) of XV, the reduction (3.278) is given directly in terms of the original
independent variable x of the given second-order ODE (3.270). The two reduction of
order methods are the same if X® =X® on F =0, which happens if the given point
symmetry is of the form £ =0, 7 #0.

We now give examples of this direct reduction of order and compare it to the
standard reduction method.

(1) Translation Symmetry
Consider the second-order nonlinear harmonic oscillator equation

V' +0’y+g(y)=0, © =const, (3.279)

where g(y)=G'(y) for some nonlinear potential G(y). The corresponding surface in
(x,¥,¥,,¥,)—space, given by

F(x,y,y,3,)=y, +0’y+g(») =0, (3.280)

176



admits the translation symmetry <&=1,7=0[ie,f7=-y] with the extended
infinitesimal generator in characteristic form

2
-

An invariant satisfying X"w(x, y, ») =0 [w, #0] is found by solving the characteristic

o 0
X® =—y15+(w2y+g(y)) (3.281)

equation (3.277), which here becomes the separable first-order ODE

d 2
Do yrey) (3.282)
dy N
From the constant of integration of (3.282), we obtain the invariant
w=3(»)’ +10°y’ +G(y). (3.283)
Then
Dw=yw, —[0’y+g(Mw, =0y, + g0y, —[0’y + gy, =0,

and hence, the harmonic oscillator equation (3.279) is reduced to the trivial first-order
ODE

v _

dx
Since the solution of ODE (3.284) is w = const = ¢, the reduction (3.284) leads to the
quadrature of ODE (3.279) given by

1) +30’y +G(y) =c, (3.285)

0. (3.284)

which is simply the harmonic oscillator energy.
In comparison, standard invariants satisfying X"u=u_=0, X"v=v_ =0, are
given by u = y, v =y,. Thus, ODE (3.279) reduces to the first-order ODE

2 2
v _y,_ _oyt+gly) outgl) (3.286)

du y, N v

We note that ODEs (3.286) and (3.282) are the same first-order ODEs with the roles of
the reduced ODE and the equation for the first-order invariant interchanged in the two
reduction procedures.

(2) Scaling Symmetry
Consider the second-order Euler equation

x*y"+4xy'+2y =0, (3.287)
with the corresponding surface

Fx,y,9,,) =¥, +4x_1y1 +2x_2y =0 (3.288)
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i (x,y,y,,y,)—space. This surface admits the scaling symmetry &=x,7=0
[i.e., 7 = —xy,], with the extended infinitesimal generator in characteristic form

« 0 0
XD = —xp —+ @By, +2xy)—. 3.289
V) & €37 ») o, ( )

The characteristic equation (3.277) for finding an invariant X®"w(x, y, y,) =0 reduces to
solving the homogeneous ODE

Dr_ 33122 Y = const] (3.290)
dy N

The constant of integration arising from the solution of ODE (3.290) yields
w=(y 20 ) (T +xT)  y =20 )+ x ) (3.291)
Then one finds that

Dw=w, +yw, —[4x7'y, + 2x_2y]wy] =—x"'(y, +2x )V (O, +x ) = —x7w

(3.292)
Hence, the Euler equation (3.287) reduces to the first-order linear ODE
aw =—x"'w. (3.293)
dx

Thus, xw = const =c¢ and, consequently, (3.291) leads to a quadrature of (3.287) given
by the surface

(v, +2)° (o, + 1) ' = (3.294)

Finally, note that this surface inherits the scaling symmetry x — ax, y > y admitted by

ODE (3.287). Hence, one can solve ODE (3.294) to obtain the complete quadrature of
the Euler equation (3.287).
0

. 0 . . P
In comparison, X"’ =x——y, — has the invariants u =y, v=1xy,, satisfying
Ox o
XOu=xu, =0, X"v=xv_— »v, =0. Then, in terms of these invariants, the Euler
equation (3.287) has the standard reduction

D N g U (3.295)
du Wi v

Note that ODE (3.295) is the same as ODE (3.290).
We briefly consider the situation for an nth-order ODE y™ = f(x,y,¥",...,y"™")
represented as a surface

F(x:y:yla--'ayn)zyn _f(xay’yla--':yn—l) =0. (3296)
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If ODE (3.296) admits a point symmetry X =&(x, y)§+ n(x, y)ai with its extended
X

Y
infinitesimal generator in characteristic form given by
X0 = ﬁi +/" O s 7N O onF- 0, (3.297a)
oy y Y
n=n0,) - yéxy), 77 =D, j=12,..,n-1, (3.297D)
where
D:£+yli+”.+yn—l a +f a s
ox oy W, o)

then one is able to find » functionally independent invariants x, w,, i=12,...,n—1,

satisfying X(”)wi =0, which are determined as constants of integration in solving the
characteristic equations

d—fj = il)(j; == il)(;”_‘ll) [x = const]. (3.298)
non n
The differential invariants wi(l) =dw, /dx,i=12,...,n—1, can be shown to lead to a

direct reduction of the given nth-order ODE (3.296) to a system of first-order ODEs with
x as the independent variable.

3.54 REDUCTION OF ORDER USING CONTACT SYMMETRIES
AND HIGHER-ORDER SYMMETRIES

The direct reduction of order method presented in Section 3.5.3, using point symmetries
in characteristic form (i.e., as first-order symmetries) admitted by an nth-order ODE,
generalizes naturally to using admitted contact symmetries and higher-order symmetries.
We show this generalization by means of the two examples (3.245) and (3.257)
considered in Section 3.5.2.

(1) Contact Symmetries
The third-order ODE (3.245), represented by the surface

F=y,=6x(»)7 (1) =6(0) " (¥,)* =0 (3.299)

in(x,y,y,,,,;)— space, admits seven contact symmetries given by (3.249) and (3.252).
Here, we carry out the direct reduction of order method through use of the contact
symmetry 7 =(y,)”" corresponding to the infinitesimal generator

o .

X050 50 0 s 0 o p g, (3.300)
5y 5)/1 ayZ
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where

n= (yl)_19 ﬁ(l) = _(yl)_2y29 ﬁ(Z) = _[6x(J/1)_4(J/2)3 + 4()/1)_3()/2)2]. (3.301)
First, we determine the invariants satisfying
XOw(x, v, 3. 3,) = (1) w, = (1) 2 yw, —[6x(1) (1,)’ +4(n) (1,) Iw,, =0.
(3.302)
Clearly, one invariant is w = x. Two more invariants arise as constants of integration in
solving the characteristic equations [x = const]

dy _ dyl — dyZ (3303)

G0 07y 6x() (1) 40 ()

Note that we have some freedom of choice of independent variable in solving (3.303). If
we choose y, as the independent variable, then (3.303) becomes the system of ODEs

i _ _

D2 6x(y) 2 (1,)* +4(3) " 1 (3.304a)
dyl

da _

Ay )™ (3.304b)
d)71

Clearly, ODE (3.304a) admits the scaling symmetry y, - ay,, v, = ay, and, hence, is
easily solved to yield the invariant

w =2x(y)* + (1) ()™ (3.305)

Then we solve (3.305) for (y,)”" and substitute it into (3.304b), which becomes a linear
homogeneous ODE for y. The solution of ODE (3.304b) thereby yields a second invariant

w, =y—1w ()7 -2x,. (3.306)
Then we find that
Dw, = (), + (W), v, +6(w), (1) (1)’ (x+ 3 (r,) ") =0, (3.307)
and
Dw, =(w,), +(W,), », + (W), ¥, -1()7*Dw, =0, (3.308)
after using (3.307) and (3.305), where

d 0 d PP 4y 0
D=—+y, —+y,—+6 + —.
ox Vi &y Y ayl ()’1) (yz) (x )’1(y2) )ayz

Hence, the differential invariants dw,/dx and dw, /dx, determined by (3.307) and
(3.308), yield a reduction of ODE (3.299) to the system of trivial first-order ODEs
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daw,

=0, 3.309a

T ( )

dw _y (3.309b)
dx

Then the solution w, =const =¢,, w, =const =c¢, of (3.309a,b) yields two quadratures of
ODE (3.299) given by

2x(y)’ + () (1) =¢, (3.310)
y=ta(n)? -2x, =c,. (3.311)

Thus, we obtain a reduction of the third-order ODE (3.299) to a first-order ODE given by
the surface

2x(3)’ +(c; = »)()’ +3¢,=0. (3.312)

Finally, note that this surface admits the symmetry x — ax, y — a””*(y —¢,) +¢,, which

is inherited from the scaling symmetries and translation symmetry of (3.299).
Consequently, one can solve ODE (3.312) to obtain the complete quadrature of the given
ODE (3.299).

(2) Second-Order Symmetries
The fourth-order ODE (3.257), represented by the surface

F=y,-4(,)"(3)"=0 (3.313)

in (x,y,y,,¥,,¥;,¥,)—space, admits the 12 second-order symmetries given by (3.263).
We now apply the direct reduction of order method, using one of the admitted second-
order symmetries: 7 = y,(y,)”">. The corresponding extended infinitesimal generator is
given by

X® = ﬁi+ A i+ A i+ A i on F =0, (3.314a)
dy ayl ayZ ay3
where
7 = (y2)2/3 _%y1(J’2)_4/3y3a 7 :%()6)_1/3)/3, 7a :%(yz)—4/3(y3)2.

(3.314b)

First, we determine invariants satisfying

XOW(X, ¥, 91, V2, 5)

=n()"" w, + (7))’ _%)ﬁyz]wyl +%(y2)_1/3y3wyz +%(y2)_4/3 (y3)2Wy3 =0
(3.315)
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An obvious invariant is w = x. Three additional invariants w,,w,,w; arise as constants of
integration in solving the characteristic equations [x = const]
dy dy, __ 3dy, _ 3dy,
y1()’2)_1/3 (yz)_4/3[(y2)2 —3005] (J’2)_1/3y3 (yz)_4/3(y3)2

(3.316)

If we choose y, as the independent variable, then (3.316) becomes the system of ODEs

a _

D2 (), (3.317a)
dJ’3

) _ _

D302 (5,) =) (3.317b)
dJ’3

d _

d—y =3(35) 2y (3.317¢)
1%

We see that (3.317a) is a linear homogeneous ODE in terms of the dependent variable
v,. If the solution of (3.317a) is substituted into (3.317b), we obtain a linear
inhomogeneous ODE in terms of the dependent variable y,. In turn, after the substitution

of the solution of (3.317a,b) into (3.317c), we see that (3.317¢c) becomes a separable ODE
in terms of the dependent variable y. Hence, the constants of integration of the system of
ODE:s (3.317a—c) yield the three invariants

wi =) "y, (3.318a)
w, =y, =3 ()% (3.318b)
wy, =y =9(3;) (1) +3(33) " Y, (3.318¢)
Then we find that
Dw, =-13, (3.319a)
Dw, ==2y,y, +4(3)" »(33)” =4 (w) ' w,, (3.319b)
Dw, =0, (3.319¢)
where
d 0 0 o 4. o 0
D=—+y —+y,—+y;—+— —.
o N1 o Y o, Vs o, 3()’3) (r,) .

Hence, the differential invariants dw, /dx, dw, /dx, dw,/dx, determined by (3.319a—c),
reduce the fourth-order ODE (3.313) to the system of first-order ODEs

an __1 (3.320a)
dx 3
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dw, 4 _

=), (3.320b)
s, (3.320¢)
dx

Consequently, after solving (3.320a—c), we obtain
wo=—1ix+c, w=c(-tx+e)*, w=c, (3.321)

yielding the three quadratures

(3,) 'y, +1x=const=c,, (3.322a)
[V _%(yz)z](_%x"‘qy =const =¢,, (3.322b)
Y=9(35) " (3,) +3(y5) " 3y, = const =c,. (3.322¢)

Substitution of y, and y, from (3.322a,b) into (3.322c) then reduces the given fourth-
order ODE (3.313) to a first-order ODE,

1

_1
=3

y=% JE(e, = y)* +6c,, (3.323)

which is separable. Hence, the solution of (3.323) yields the complete quadrature of
ODE (3.313), i.e., the general solution,

(¢, =+ (y—c, +\/(c3 —y)? +54c,) =const = ¢,
or, equivalently,
Y=8+8,(¢ - x)+&,( —x)" (3.324)

for some renamed constants c,.

EXERCISES 3.5

1. Consider a one-parameter Lie group of point transformations
x* = x + &f(x, y) + O(&),
y*=y+en(x,y)+0(),

with infinitesimal generator X =& Gi + nai , admitted by an nth-order ODE (3.231).
x Y

Show that the corresponding vector field X, tangent to the surface (3.234)
representing ODE (3.231), is given by
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9.

X =ﬁi+n(l)i+ +f7(”) on F=0
ay ayl yn
where
k
ﬁ:n—ylg, A(k) Dkn z | 'yk+l—jD]§’ k=1’29-..,n_1,
j=0 (k - )
with

yn =f(‘x’y9yl""’yn) and ﬁ(n) =fyﬁ+fylﬁ(l)+n.+f)’n—lﬁ(n_l)'

Find the point symmetries admitted by the nonlinear Duffing equation
Y +ay' +by+y’ =0, a,b=const.

Find the point symmetries admitted by the ODE 3" =2()')’coty+sin ycosy
[Stephani (1989)]. Show that these symmetries form an SO(3) Lie algebra.

Find the contact symmetries admitted by the ODEs:
(a) y" =0 [verify (3.243)];

(b) y"=x(x=1)(»")’ =2x(»")* +»"; and

" 3
(c) »" =y[y—,j :
y

Find the contact symmetries admitted by the third-order ODE "+ yy'=0. This

ODE arises when describing traveling wave solutions of the Korteweg—de Vries
(KdV) equation [see Exercise 4.1-2].

Find the second-order symmetries admitted by the fourth-order ODE
yP ="
Find the symmetries up to second-order of the fourth-order ODE [Sheftel (1997)]

¥ =373 Show that the admitted point symmetries form a three-dimensional Lie
algebra with commutators given by [XI,XZ] = 2X1, [5(2,5(3] = 25(3,

[X19X3] = _Xz

Show that the Blasius equation (3.253) admits no second-order symmetries based on

the ansatz )?ﬁ =rn for either the translation symmetry or for the scaling symmetry
admitted by (3.253).

Find all third-order ODEs admitting the contact symmetry 7/ = (y,)".

10. Find all fourth-order ODEs admitting the second-order symmetry 7 = y,.

11. Use the direct reduction of order method to reduce:

(a) the second-order linear ODE (3.104) from its invariance under the scaling
symmetry (3.105a,b);
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(b) the Blasius equation (3.253) from its invariance under translations in x;
(c) the third-order ODE (3.245) from its invariance under
(1) scalings in x;
(i1) scalings in y;
(iii) the contact symmetry 7, of (3.249); and
(iv) the contact symmetry 77, of (3.249);

(d) the fourth-order ODE (3.257) from its invariance under
(i) translations in x;
(i1) translations in y; and
(iii) each of the second-order symmetries 7,, 77,,7s,...,1,, given by (3.263).

12. Consider the Thomas—Fermi equation

ylr — x—1/2y3/2. (3.325)

(a) Show that ODE (3.325) admits the scaling symmetryf(=(3y+xy1)ai. Use
y

direct reduction of order to reduce (3.325) from its invariance under X .
(b) Show that the equation X"w(x,y,y,)=0 for the invariant w(x,y,y,) is

equivalent to the reduced first-order ODE obtained by the standard reduction
method.
(c) Show that although the invariant w(x,y,y,) cannot be found explicitly, the

corresponding reduced ODE dw/ dx = H (x,w) is given implictly by

9 @4_0 :3x1/2y5/2_402

dx 3y+x6

(3.326)

where y, = 0(y,w;x) is the solution of X"w(x,y,y,)=0. In particular, show

that there is no essential y-dependence in (3.326) and, consequently, (3.326) is a
first-order ODE in terms of variables x and w.

3.6 FIRST INTEGRALS AND REDUCTION OF ORDER
THROUGH INTEGRATING FACTORS

We generalize the classical treatment, presented in Section 3.2.2, of first integrals and
integrating factors for first-order ODEs to second- and higher-order ODEs.

Definition 3.6-1. A first integral of an nth-order ODE

Y = f(x0, Y s ) (3.327)

(n=1)

is a function w(x, y,y',..., y(”‘l)) with an essential dependence on y'"" satisfying
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WY _ 0 when y = f, (3.328)
dx

Le., w(x, y,y',...,y(”"l)) is constant for every solution y = ®(x) of ODE (3.327).

Since a first integral t//(x,y,y’,...,y(”*l)) of ODE (3.327) satisfies
w(x,,9,...,y" ) =const = ¢ for each solution y =0O(x) of (3.327), it represents a
conserved quantity for any solution y =®(x). Moreover, a first integral provides a
quadrature which reduces (3.327) to an (n—1)th-order ODE in terms of the original

variables x,y,,..., y" . If one knows r first integrals of (3.327) which are functionally

independent, i.e., none of them is a function combination of the others, then the nth-order
ODE (3.327) is reduced to an(n — r) th-order ODE in terms of r essential constants and

(n-r-1)

n—r+1 variables x,y,)',....,y . In particular, any » functionally independent first

integrals yield a general solution of ODE (3.327) involving n essential constants. These
constants represent zn independent conserved quantities for the solutions y = ®(x) of the

ODE.

As we showed in Section 3.2.2 in the case of a first order ODE, it is well-known
that finding a first integral is equivalent to finding an integrating factor. The same is true
for second- and higher-order ODEs.

Definition 3.6-2. An integrating factor of an nmth-order ODE (3.327) is a function
A, Y,V ) £0, 0</ <n-—1, that satisfies

’ 4 n ' n- d ' n—
A(x’y’y :"',y(é))(y( ) _f(xayay 5""y( 1))) :El//('x’y’y a--'ay( 1)) (3329)

for some function y(x,y,),..., y(”"l)) which has an essential dependence on y(”"l). The

highest-order ¢ of the derivatives of y in A(x,,),...,»")) is called the order of the
integrating factor.

From (3.329) it follows that dy/dx=0 when " = f(x,y,y',...,y"™") and,
hence, w(x,y,y',...,y" ") =const = c on solutions y = @(x) of ODE (3.327) for which
A(x,v,¥',...,y"") is nonsingular. In particular, if A(x,y,",..., ")) is nonsingular for
an arbitrary function y(x), then w(x,y,y',...,y" ") = const = ¢ holds on every solution

of (3.327) and thus determines a first integral of ODE (3.327). Conversely, if
w(x,,5,...,y" ") is a first integral of ODE (3.327), then one can easily show that

(3.329) holds with A =0y /dy" ™" defining the corresponding integrating factor of

(3.327). Hence, all first integrals of ODE (3.327) arise from integrating factors satisfying
the linear relation (3.329) for arbitrary functions y(x). Equation (3.329) is called the

characteristic equation for first integrals and integrating factors. Note that, as a
consequence of the linearity of the characteristic equation (3.329), the set of all
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integrating factors and the set of all first integrals of a given ODE (3.327), respectively,
form vector spaces.

We will first derive a necessary and sufficient system of linear determining
equations whose solutions yield the integrating factors of any given mth-order ODE
(3.327). We will also derive a line integral formula that yields a first integral
corresponding to an integrating factor through the characteristic equation (3.329). Note
that the local existence theory for solutions of an ODE [Coddington (1961)] guarantees

that n functionally  independent  first  integrals w, (0, y, ..,
w,(,,),...,y"") exist for any nth-order ODE (3.327). Since any function of

w0, ) (3, Y., ¥ Y) s also a first integral, one sees that a given
ODE (3.327) admits an infinite number of integrating factors with an essential
dependence on y"". Thus, the determining system for integrating factors of order n — 1

of ODE (3.327) always has infinitely many solutions. However, for integrating factors of
order / <n—1, the determining system reduces to an overdetermined system of linear

PDE:s that has at most a finite number of linearly independent solutions. This situation is
analogous to that of the determining equation for symmetries of ODE (3.327) [cf. Section
3.5].

Definition 3.6-3. An integrating factor A(x,y,)',..., y("/)) of order /<n-1 of an
nth-order ODE (3.327) is of point-form if £ =1 and A is linear in ), i.e.,

A(x,3,Y") = a(x, )+ B(x, )"

Otherwise, for /=1, an integrating factor is called first-order, and for ¢ >2, higher-
order.

We will show how to solve the determining system to obtain a// integrating factors
of orders 0</<n—1 of an nth-order ODE (3.327). We will also present effective
ansatzes for directly finding particular solutions of the integrating factor determining
system. Moreover, the use of such ansatzes is essential for obtaining integrating factors
of order / =n—1. These ansatzes lead to a splitting of the integrating factor determining
system into an overdetermined linear system of PDEs. Most important, in all cases one
can solve these equations by a simple algorithmic procedure, analogous to that for
solving the determining equation for symmetries of orders ¢/ <n—-1 of ODE (3.327).
This will be illustrated through many examples.

3.6.1 FIRST-ORDER ODEs

Consider a first-order ODE (3.327) or, equivalently, a surface
=) (3.330)

A first integral of ODE (3.330) is any function y(x, y) = const = ¢ on the surface (3.330)
such that y, # 0, and thus satisfies
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Oy, =Dy =y, + fi, =0, (3.331)

where
D:£+yli (3.332a)
ox oy
and
p-p|,_ -Z4rl (3.332b)
‘ ox oy
(i.e., y,1s eliminated through ODE (3.330)). Hence, for an arbitrary function y(x), one has
Dy = (- A, (3.333)
where, from (3.331),
1
Ax,y)=y, =-——V,, (3.334)

f

which is the integrating factor corresponding to the first integral (x,y). Conversely,
any function A(x,y)#0 satisfying (3.333) for arbitrary values of x,y,y,, for some
function w(x,y), is an integrating factor of ODE (3.330) with the corresponding first
integral w(x,y). We can obtain necessary and sufficient defining conditions for
integrating factors and first integrals of ODE (3.330) by the elimination of A(x,y) and
w(x,y), respectively, in (3.334).

Theorem 3.6.1-1. The integrating factors of ODE (3.330) are the solutions A(x,y)#0
of the determining equation

A, +(/N), =0. (3.335)

For a given integrating factor, the corresponding first integral w(x,y) of ODE (3.330) is
given by the line integral

y=[[-Afdx+ Adv], (3.336)

where C is a path curve from any point (X,y) to the point (x,y) in (x,y)—space. A
change in (X,y) changes (3.336) by the addition of a constant. If f(x,y) and A(x,y)
are nonsingular, then the line integral (3.336) is independent of the path curve C.

Proof. Suppose A(x,y) is an integrating factor of ODE (3.330). Then, from (3.334), we
have the pair of equations

A=y, A=y, (3.337)
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By cross-differentiation and commutativity of partial derivatives, we see that A(x,y)
satisfies (3.335), which is just the integrability condition for solving (3.337).

Conversely, suppose A(x,y) is a solution of the integrating factor determining
equation (3.335). Since the integrability condition holds for solving (3.337), it follows
that there exists a y/(x, y) satisfying (3.334). The fundamental theorem of calculus for
line integrals of gradients then yields (3.336). Moreover, from the integrating factor
determining equation (3.335), it follows that (3.336) is independent of the path curve C
when f(x,y) and A(x,y) are nonsingular. m

There is an alternative formulation of Theorem 3.6.1-1 that is more useful when
one considers its generalization to higher-order ODEs. First, writing out the integrating
factor determining equation (3.335) and using (3.332a), we have

0=A,+ /A, +f,A =DA+(f-y)A, +f,A=-E 0, (3.338a)
with
0, y,3) = —f(x, ¥)A(x, ), (3.338b)
where
E, =%—Dayi1 (3.339)

denotes a truncated Euler operator. One can easily show that the operator (3.339)
annihilates total derivatives of arbitrary differentiable functions of x and y. In

particular, for any function w(x,y), if we let 8(x,y,y,)=Dw(x,y) and define
¥, =0,,%, =0, -DY, then

(), =0, (3.340)
¥, =0, (3.341)

which hold by the identities ¥, =y, ¥, =(Dy), —Dy,. Conversely, if (3.340) and
(3.341) hold for some function &(x,y,y,), where ¥, =6, , ¥, =6 - DY, then (3.340)

yields 6, =0 and so we have

6=A4y,+B (3.342)
for some functions A(x, y), B(x, y). Then (3.341) yields

4,-B, =0,

which is just the integrability condition for there to exist a function w(x,y) such that
A=y,, B=y, . Hence, from (3.342), we obtain & =y +w y =Dy. Moreover, since

then 6, =y and 60— y,60, =y, are functions depending only on x and y, we have
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v(x,y)= j[@(x, »,0)dx +0, (x,y,0)dy], (3.343)

which gives a line integral formula for w(x,y) in terms of O(x,y,y,), to within an
arbitrary constant, where C is any path curve from a point (X,)) to the point (x,y) in
(x,y)—space. Then substitution of (3.338b) into (3.343) yields the line integral (3.336).

The determining equation (3.335) for integrating factors is a first-order linear
homogeneous PDE which has an infinite number of solutions. In particular, if A(x, y) is

an integrating factor of ODE (3.330) with corresponding first integral y(x, y), then since
any function F(y) is automatically a first integral of ODE (3.330), it follows that
F'(w)A is also an integrating factor as obtained from (3.334). Moreover, this represents
the general solution of the integrating factor determining equation (3.335). From (3.336),
we see that any particular solution A = A,(x,y) of (3.335) yields a corresponding first
integral w =w,(x,y) and thus reduces ODE (3.330) to the quadrature y,(x,y)=
const = ¢;. However, in general, one cannot obtain any solution of the integrating factor

determining equation (3.335) without knowing the general solution of ODE (3.330).
Consequently, for a given ODE (3.330), one often seeks to determine if it admits
an integrating factor of a specific form. Two simple ansatzes are based on elimination of
variables.
If we seek A=a(x), then from the integrating factor determining equation

(3.335) we find that &' +af, =0 and, hence, f(x,y) must satisfy f, = —d'/a, leading
to f(x,y)=—(a' /@)y + B, for some function f = fB(x). Thus, ODE (3.330) admits an
integrating factor depending only on x if and only if f(x,y) is linear in y. Then

-[A(x)dx . . .
A=e JAGde is the integrating factor, where y, = f(x,y) = A(x)y + B(x).

Alternatively, if we seek A =a(y), then the integrating factor determining
equation (3.335) yields af + of, =0, andso f(x,y) mustsatisfy f /f = —a'[a. This
leads to f = B/« , for some function B = f(x). Thus, ODE (3.330) admits an integrating
factor depending only on y if and only if f(x,y) is separable in x and y. Then
A =1/B(y) is the integrating factor, where y, = f(x,y)= A(x)B(y).

A more effective general ansatz is based on separation of variables. Consider
A =a(x)B(y). Then, from the integrating factor determining equation (3.335), we find

that (a'/a)+(B'/ B)f + f, =0 and, hence, by integration with respect to y, we obtain

B=—(a]a) I pdy + y, for some function y = y(x). Thus, ODE (3.330) admits an

integrating factor of separable form if and only if

_ AWC) + B(x)
C'(y)

for some functions A(x), B(x), C(y). The integrating factor is then given by

n=r(xy) ; (3.344)
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[ ACx)d C,

Alx,y)=e ), (3.345)
with the corresponding first integral given by
w(ey) =e 0% () - | 1A By i, (3.346)

The class of ODEs (3.344) includes all linear ODEs, i.e., corresponding to C(y) = y; all
separable ODEs, i.e., corresponding to A(x)=0 or B(x)=0; and all Bernoulli ODEs,
i.e., corresponding to C(y)=y", r = const.

More generally, for any given integrating factor ansatz A = a(x, y), one can solve
the integrating factor determining equation (3.335) for f(x, y) to obtain

1
a(x,y)

[ Geyydy + P (3.347)
a(x,y)

which yields the most general ODE admitting the given integrating factor. Conversely, if
one can match the form of (3.347) to a given ODE (3.330) for some a(x,y) and B(x),

then one immediately obtains an integrating factor A = a(x, y).

n=r(y)=-

3.6.2 DETERMINING EQUATIONS FOR INTEGRATING
FACTORS OF SECOND-ORDER ODEs

We now consider a second-order ODE

V'=f(x,p,)) (3.348)

or, equivalently, a surface given by

yz :f(x’yayl)' (3349)

Theorem 3.6.2-1. A function y(x,y,y") with an essential dependence on y' is a first
integral of ODE (3.348), satisfying w(x,y,y")= const =c on the surface (3.349), if and
only if

Dy)|,,., =Dy =y, +yy, + fy, =0, (3.350)
where
D=£+y1—+yzi (3.351a)
ox oy oy
and
) ) d )
D=D|, , =—+y—+/—=D-(n-/)—. 3.351b
P N oy fayl O, f)ayl ( )
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From (3.351a,b), one sees that (3.350) is equivalent to the characteristic equation

Dy =A(y, - /) (3.352a)
holding for arbitrary values of x, y, y,, y,, with
Ay, y)=v,, (3.352b)

which is the integrating factor corresponding to the first integral. Conversely, if a
function A(x,y,y,)#0 satisfies (3.352a,b) for some w(x,y,y,), then A(x,y,»") is an
integrating factor of ODE (3.348) and w(x, y, ") is the corresponding first integral. We
now derive a determining system that yields all integrating factors A(x,y, ") of ODE

(3.348).
Consider the truncated Euler operator

E, =£—Di+D2i. (3.353)
oy o, oy,

One can easily show that operator (3.353) is connected with annihilating total derivatives
of any differentiable function of x, y, y,. Let

0(x,y,y,,¥,) =Dw(x,y,), (3.354)

and introduce the notations

¥,=6,, ¥ =6, -D¥, ¥, =6 -D¥ =E, 0. (3.355)

Theorem 3.6.2-2. A function 6(x,y,y,,y,) is a total derivative (3.354) if and only if it
satisfies

(‘t,),, =), =0, (3.356a)
¥, =0, (3.356b)

on the entire (x,y,y,y,)—space. In particular, if 0(x,y,y,,y,) satisfies (3.356a,b),
then (3.354) holds with

l//(xay’yl) = _[C[(e(xayaylao)_ylwl(xayayl))dx—i_qll(xayayl)dy+\P2(x’y’yl)dyl ]7
(3.357)

where C is any path curve from a point (X,9,y,) to (X,y,,).

Proof. Suppose a function 6(x,y,y,,y,) satisfies (3.354) for some w(x,y,y,). Then,
using the identities

(Dy), =Dy,. (Dy), =Dy, +v,.(Dy), =v,, (3.358)
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one can easily verify that E, annihilates Dy. Hence, 8§ =Dy satisfies ¥, =0.
Furthermore, from (3.358), one sees that (Y,), = (%)), =0 are identities, with
VY, =vy,, Yi=v,. (3.359)

Thus, (3.356a,b) holds. This establishes the “only if ” part of the theorem.
Let
O=0-yY -y, (3.360)
Then, using (3.354) and (3.359), it follows that
O=y.. (3.361)

Hence, from (3.359) and (3.361), we see that the integrability conditions for the existence
of a function w(x, y, y,) satisfying (3.354) are given by

), =), =@, =0, (3.362a)
(‘F,), =), (3.362b)
(), =@,, (¥),=0,. (3.362¢)

Now suppose a function &(x, y, y,, y,) satisfies (3.356a,b). Using (3.355), we have
(lpz)y = eyyz = (lPo + DLPl)yz
= (1), +(¥,),, +D((F),,).
Thus, we obtain (3.362b) from (3.356a,b). Next, using (3.355) and (3.360), we find that
q)yz = eyz -, - yl(LIJl)yz - yZ(lPZ)yz = _yl(LIJl)yz - yZ(lPZ)yz >
q)yl = ey, - _yl(qjl)y] _yZ(lPZ)yl
=(,), + yl((LIJZ)y _(LIJl)yl ),
CDy = ‘gy _yl(LPI)y _J’2(LP2)y
= (), +¥ + 0, ((F1),, - (1)),

which yield (3.362a,c) from (3.356a,b) and (3.362b). Hence, the integrability conditions
(3.362a—c) hold as a consequence of (3.356a,b). This establishes the “if ” part of the

theorem.
Finally, from the relations (3.359), (3.360), and (3.361), by the fundamental
theorem of calculus for gradients, we obtain

l// = ‘[C[l//x dx+l//y dy+!//y] dyl]
=L@¢+£@+%@ﬂ (3.363)
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to within an arbitrary constant, where C is any path curve from a point (X,7,y,) to
(x,»,»,). Then integral (3.363), combined with (3.360) and (3.362a), yields the line
integral formula (3.357). |

Now, by applying Theorem 3.6.2-2 to the characteristic equation (3.352a), we
obtain a necessary and sufficient determining system for all integrating factors

A(x,y,,) of ODE (3.349). Let

e(xayayl’yz)z (yz _f(xayayl))A(xayayl)' (3364)

Then (3.356a) reduces to an identity and (3.356b) is linear in y,. Consequently, (3.356b)
splits into two equations

A(x, y, ) = B(x,y,5,) =0,
where the functions 4 and B are given by
lE[10 = A(xaya)ﬁ)J’z +B(x7y7y1) = Ez(g)
Explicitly, this yields
A +A, YA, +(N),, =0, (3.365a)

—(N), + (M), + (), + A, +()*A, +2yA,, =0. (3.365b)

For any A(x,y,y,) satisfying the integrating factor determining system (3.365a,b), it
follows from (3.359-3.361) and (3.364) that we have

LIIZZl//ylzj\’ lIJ1zl//yz_j\x_‘yl/\y_(.f‘/\)ylb (DZsz_quJl_fTZ'
Hence, the first integral formula (3.357) reduces to

w(x,y,»)= fc (A, + () A, + 3, (N, — ) dx— (A, +(fN), +»A,)dy+Ady,],
(3.366)

where C is a path curve from a point (X,7,y,) to (x,»,»). If f(x,y,y,) and
A(x,y,y,) are nonsingular, then the curve C can be chosen arbitrarily, and a change in
(%,y,y,) just changes (3.366) by the addition of a constant. Most important, if
f(x, v,y or A(x,y,y,) are singular, then one can choose a path curve C so that the

line integral (3.366) is nonsingular. This will be illustrated in examples in Section 3.6.3.
Thus, the following theorem has been proved:

Theorem 3.6.2-3. The integrating factors of ODE (3.349) are the solutions
A(x,y,¥,)#0 of the integrating factor determining system (3.365a,b). For a given

integrating factor, the corresponding first integral of ODE (3.349) is given by the line
integral (3.366). Conversely, every first integral arises from a corresponding integrating
factor through the characteristic equation (3.352a,b).
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The integrating factor determining system (3.365a,b) is a linear homogeneous
system of second-order PDEs for A(x, y, y,). If one knows two functionally independent
first integrals w,(x,y,y,) and y,(x,y,y,) of ODE (3.349), i.e., y, is not equal to a
function of w,, then the general solution of (3.365a,b) is given by A(x,y,y,) =
F,A +F, A, where F=F(y,,y,) is an arbitrary function of w, and y,, with

A =W, A, =(y,),. Hence, finding all solutions of the integrating factor

determining system (3.365a,b) is equivalent to solving the original ODE (3.349).
However, any particular solution of (3.365a,b) yields a first integral (3.366) which
reduces ODE (3.349) to a first-order ODE given by the surface w(x,y,y,)=const=c.
If two solutions of the integrating factor determining system (3.365a,b) yield functionally
independent first integrals v, (x, y,y,) and y,(x,»,y,), then ODE (3.349) is reduced to

quadrature by the elimination of y, in the two equations y,(x,y,y,)=const=c,
v,(x,y,y,) =const = c,. This represents, implicitly, the general solution of ODE (3.349)
in terms of two essential constants ¢, and ¢, .

Note that if two first integrals are related by y, = F(y,) for some function F,
then A, = F'(y,)A, holds for the corresponding integrating factors. This gives a criterion

for checking when two solutions of the integrating factor determining system yield
functionally independent first integrals.

Lemma 3.6.2-1 (Criterion for Integrating Factors to Yield Two Functionally Independent
First Integrals). Two integrating factors A,(x,y,y,) and A,(x,y,y,) of ODE (3.349)

determine  functionally independent  first integrals v, (x, v, ) and
v, (X, v, ), W, # F(y,), if and only if for all functions F(y,), A, # F'(y,)A, or,
equivalently, A, # F'(y,)\, where y, and v, are given, respectively, in terms of A,
and A, by the line integral formula (3.366).

As a corollary of Lemma 3.6.2-1, we have the following useful sufficient criterion
for the functional independence of first integrals:

Theorem 3.6.2-4. If two integrating factors A,(x,y,y,) and A,(x,y,y,) of ODE
(3.349) satisfy
A, /A, #const, (A,/A), =0, (3.367)

then the corresponding first integrals y (x,y,y,) and y,(x,y,y,), given by the line
integral formula (3.366), are functionally independent.

Proof. From (3.367), we have A, /A, =c(x,y)# const for some function c(x,y). Then
from Lemma 3.6.2-1 we see that A,(x,y,y,) and A,(x,y,y,) determine the functionally
dependent first integrals v, (x,y,y,) and w,(x,y,y,) if and only if the relation
c(x,y)=F'(y,) holds for some function F(y,). Taking 0/0dy, of this relation, we
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obtain F"(y,)A, =0, and thus, F'(y,) = const. But, since c(x,y)# const, it follows that
v,(x,»,y,) and w,(x,y,y,) must be functionally independent. i

3.6.3 FIRST INTEGRALS OF SECOND-ORDER ODEs

We now consider several effective algorithmic methods for finding solutions of the
integrating factor determining system (3.365a,b) for a second-order ODE (3.349). The
situation is analogous to solving the symmetry determining equation [cf. Section 3.5.1]
where, for a given second-order ODE (3.349), one can find all of its finite number of
admitted point symmetries (if any exist) but, in general, one needs specific ansatzes in
order to find admitted first-order symmetries (contact symmetries).

We also show how to construct a first integral of a second-order ODE (3.349)
from an admitted integrating factor through the line integral formula (3.366) and obtain a
corresponding reduction of order of the ODE.

(1) Point-Form Ansatzes
If one considers a point-form integrating factor

A=a(x,y)+ B(x, )y, (3.368)

then the integrating factor determining system (3.365a,b) reduces to an overdetermined
linear system of PDEs for a(x,y) and fB(x,y) given by

2a,+ B 308, +28, +of,, + v, =0, (3.369a)

RaRZ|

A+ VPt (yl)zayy +(y1)3ﬂyy + 2y1axy + 2(y1)218xy
— (), + (), + (), + (B, +n(,), + () (S, =0. (3.369b)

The system (3.369a,b) has at most a finite number of linearly independent solutions
a(x,y), f(x,y). For a given solution «(x,y) and f(x,y), the corresponding first

integral (3.366) of ODE (3.349) is given by
vy, ) = [ [(—fa+y(a, +of,)+ W) (B +a, + f,)+ () B,) dx
—(a, +of, + [B+y(B.+a,+ )+ () B)dy+(a+ f)dy,]
(3.370)

for any path curve C from (X,7,y,) to (x,y,y,).
We now establish a useful classification result:

Lemma 3.6.3-1. 4 second-order ODE (3.349) admits an integrating factor of point-form
(3.368) if and only if (3.349) is of the form

v, =-3(log B), ()" ~[3(og ), + B (™), Iy,

=B p) ~ (e B) (7, 0) (3.371)
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for some functions o(x,y), B(x,y), y(x,y). The corresponding first integral of ODE
(3.349) is given by

w(x,y,y) =58 (a+ /) +7. (3.372)

Proof. From (3.352b), we have
v, =AN=a+py. (3.373)

After integrating (3.373) with respect to y,, we find that
4 =%ﬂ(yl)2 tay, +7
=18\ +y, y=y-1p"a?, (3.374)

for some function ¥ (x,y), which thus yields the first integral (3.372). Then substitution
of (3.374) into the characteristic equation (3.352a) gives

Dy =AS"'DA-LAB7DE+Dy=A(f 'Da+Li(-p7a+"'y)DE+A Dy +y,)
= A(yz _f)

Hence, we obtain

f= —%ﬂ’lD,B - ,B’lDa +%ﬂ’2aD,B —(a+ ,Byl)’lD;/ ,
which yields ODE (3.371). O

Note that if one can match a given ODE (3.349) to the form (3.371) for some
a(x,y), B(x,y), y(x,y), then one obtains an integrating factor (3.368) with first integral

(3.372). Most important, the classification given by Lemma 3.6.3-1 leads to a stronger
counterpart of Lemma 3.6.2-1 and Theorem 3.6.2-4 for the functional independence of
first integrals arising from integrating factors of point-form.

Theorem 3.6.3-1. Suppose ODE (3.349) admits two integrating factors of point-form,
A =a(x, )+ (x5 )y, A, =a(x, )+ B, (x, )y [A #A,]. (3.375)

Then the integrating factors (3.375) determine functionally independent first integrals of
ODE (3.349) if, when f, . #0, A, and A, are linearly independent or, when f, . =0,

yin

A, +c+ B, and A, +c, B, are linearly independent for all constants c,, c,.

Proof. Suppose v, = F(y,) for some function ', where vy, (x,y,y,) and w,(x,y,y,)
are functionally dependent first integrals corresponding to the integrating factors
A=a+By=W), and A, =a,+ B,y =(y,),. Thecase f, =, =0 is covered by
Theorem 3.6.2-4. So, henceforth, we assume that S, # 0. To proceed, we see that since
A, =F'(y,)A, is linear in y,, it must satisfy
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(F'A)),,, =3BF"A +F"(A)’ =0. (3.376)

There are now two cases to consider: F"(w,)=0 or F"(y,)#0. In the first case,
(3.376) gives F"(y,)=0 and so we immediately have F(y,)=cy, +c, for some
constants ¢, and c,. Then A, = F'(y,)A, =c,A, yields

B,=ap, a,=cqaq.

Next, in the case F"(y,) #0, (3.376) yields 3F"/F" =—(A,)*/ ,. It then follows from
(3.372) that
3F 1)

= —7.. 3.377
2F" 2 B V=" ( )

But, since F depends just on ,, we must have y, = const and, consequently,

Fm B 3 1

F" B 2V, =N '
Thus, F(y,) =c, + c,¢, + ¢c,4/¥, — 7, for some constants ¢,, ¢;,, and c, # 0. Substitution
of the right-hand side of (3.377) into A, = F'(y,)A, =[c, +Lc,(w, —y,)"*]A, then
yields

Br=cB. oy =ca +c, 5B (3.378)
Finally, from (3.377) combined with (3.371) and (3.372), we have that in this case
S(x,y,») is quadratic in y,. Hence, f,  =0. O

As an example to illustrate how to find point-form integrating factors, we
consider the nonlinear Duffing equation

y'+ay' +by+y’ =0, a=const>0, b=const>0. (3.379)

This describes a nonlinear damped oscillator, where a is the damping constant and

Jb /27 is the frequency for undamped linearized oscillations. For point-form integrating
factors (3.368) of ODE (3.379), the integrating factor determining system (3.369a.,b) is
given by

2a,+ B, —2af +3p,y, =0, (3.380a)
(ﬂyy)(yl)3 + (2ﬂxy - alBy + ayy)(yl)z + (_Zaﬂx + IBxx + 2axy)yl
+ba+3y’a—aa, +a, -byp. -y’ B, +bya, +y'a, =0, (3.380b)

which are polynomial equations in terms of y,. Hence, the coefficients of like powers of
v, yield the determining equations
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B,=0, a,=0, (3.381a)

yy

20, + . —2af =0, (3.381b)
(b+3y)a—aa, +a,, —(by+y°)p, +(by+y3)ay =0. (3.381¢)

From (3.381a), we see that = f(x) and
a=a,(x)+ya (x) (3.382)

for some functions ¢, (x),,(x). Then (3.381b) yields

ay=af-3p, (3.383)

and (3.381c) becomes a polynomial equation in terms of y, which splits into the
equations

a, =0, (3.384a)
a=3p, (3.384b)
a—aa, +2ba, =bp'. (3.384c)

By combining (3.383) and (3.384b), we obtain
B = p,e ", B, =const, (3.385a)
a, =+ap,e " (3.385b)

Finally, (3.384c¢) yields 2a’ = ba, and so

a=0 or b=2%a’. (3.386)

Hence, ODE (3.379) admits a single point-form integrating factor given by
A =(tay+y)et e, (3.387)

where the constants a and b are restricted to satisfy (3.386). A corresponding first
integral is obtained from the line integral (3.370). If we choose the path curve C to be a

piecewise straight line, parallel to the coordinate axes, from (0,0,0) to (x,y,y,), then
(3.370) yields

Y = j; 0dx+ J;)v (%a2y+y3)e(4a/3)xdy n J:] (%ay+y1)e(4a/3)xdyl

= (g a’y’ + 5y +ayy, + 5 ()", (3.388)
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We thus obtain a reduction of ODE (3.379), with a=0 or b= %az , to the first-order

ODE given by w(x, y,y,)=const =c. [In Section 3.7.3, we will show how to obtain a
second first integral leading to the complete quadrature of ODE (3.379).]

(2) Symmetry-Type Ansatzes
If a second-order ODE (3.349) admits a point symmetry

0 0
X =E(x, ) — +1(x, ¥)—, 3.389
(6 Y)—+11(x,y) P (3.389)
then the first-extended generator
X =L Ly Ly —Dy-yDe (3.390)
ox oy oy,

maps first integrals of ODE (3.349) into first integrals since, geometrically, a first integral
is constant on every solution curve on the surface (3.349) in (x,y,y,,»,)—space on

which the second-extended generator X‘® is a tangent vector field [cf. Section 3.5.1].

Thus, X describes a geometrical motion within the vector space of first integrals of
ODE (3.349).

Theorem 3.6.3-2. Suppose y(x,y,y,) is a first integral of ODE (3.349) with integrating
Jactor A(x,y,y,). Then, under any point symmetry (3.389) admitted by ODE (3.349),

7 =XYy +¢, ¢ =const, (3.391
7 =XV

yields a first integral with integrating factor

A=XDA+RA, (3.392)
where
57](])
E?:ny —& =2y¢&,. (3.393)
1

Proof. We apply X® to the characteristic equation (3.352a), which yields
XNy, = H+AXP (v, - ) =X Dy. (3.394)
Then, from (2.100a,b) and (3.124), we obtain
X, =N =0~ 1.5~ fn- 10"
=D~y D*¢-2y,D¢ ~ f, (Dn-yDE) - &~ 1,1
= (1, =»¢, —2D&)(y, = /). (3.395)
Hence, the left-hand side of (3.394) becomes

(XVA+(R=DEON(, - f)-
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We next evaluate the right-hand side of (3.394) by using the operator identity
DX® - X®D = (Dé&)D
that holds on differentiable functions of x, y, y, [Exercise 3.6-17]. This yields
DXYy) = (XVA +RA)y, — ), (3.396)
and hence, (3.392) is an integrating factor corresponding to the first integral (3.391). o
From Theorem 3.6.3-2, we see that every point symmetry admitted by ODE

(3.349) induces a point symmetry on the vector space of its integrating factors. The
explicit generator in (x, y,y,,A)—spaceis given by

i:gimim(”iw/\i, (3.397)
ox oy oy, oA

which maps integrating factors into integrating factors of ODE (3.349). Consequently,
one can consider an ansatz to seek integrating factors invariant under (3.397) to within a
scaling. In particular, for such an ansatz, one has

XA =rA, r=const, (3.398)
or, equivalently,
SN A, + (1 + 0, = 1iE — ()N, + (7, =&, =20&, —rA=0. (3.399)

We can solve the first-order linear PDE (3.399) by the method of characteristics
in terms of invariants u(x,y) and v(x,y,y) [v, #0] of X" [cf. Section 3.3.2] given

by solving (3.102). This leads to
r—R
A= exp( = dylj w(u, v), (3.400a)
n
in terms of an arbitrary function w(u,v), where 7 =" (u,v,y,), R = R(u,v,y,), with

x and y eliminated in terms of # and v.
Alternatively, if & #0, then one can have

A= exp[ J'%dxj w(u,v), (3.400Db)
in terms of an arbitrary function w(u,v), where & =<¢&(x,u), R = R(x,u,v), with y and

y, eliminated in terms of u and v.
If £=0, then one can have

A= exp( I ﬂa’yj w(u,v), (3.400¢)
n
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in terms of an arbitrary function w(u,v), where n=n(y,u), R=R(y,u,v), with x and
y, eliminated in terms of # and v.

Note that the ansatz (3.398) reduces to the scaling invariance of A corresponding
to

XPA =sA, s=const, (3.401)

if and only if R =const, with s =r—R. Moreover, from Theorem 3.6.3-2, this condition

M

on R also corresponds to the scaling invariance of y(x, y, y,) under X", i.e.,

XY =ry+¢, r=const=s+R, (3.402)

to within some constant ¢. All point symmetries satisfying R =const are easily
classified.

Lemma 3.6.3-2. 4 point symmetry (3.389) of a second-order ODE (3.349) has
R=0n" /oy, =const =c if and only if

n=ax)+(B'x)+c)y, &=px), (3.403)

for some functions o(x), f(x). In particular, all translations [& =const=a,
n =const = b] and all scalings [& = ax,n = by, a = const, b = const] satisfy R =const.

Proof. Leftto Exercise 3.6-19. O

Thus, from Lemma 3.6.3-2 and Theorem 3.6.3-2, it follows that any translation
and scaling symmetries admitted by a given ODE (3.349) are automatically inherited by
its integrating factor determining system (3.365a,b). Hence, if ODE (3.349) is invariant
under such symmetries, then one can consider a simple ansatz

A =w(u,v) (3.404)

in terms of corresponding invariants u(x, ), v(x,y,y,).
We now illustrate the use of ansatzes (3.400a—c) and (3.404) through several
examples.

As an elementary first example, consider a general second-order linear
homogeneous ODE [cf. Section 3.3.3]

Y+ p(x)y, +4q(x)y =0, (3.405)

which admits the scaling y - Ay, x &> x and the shifts x > x, y > y+&@(x) where
@(x) is any solution of ODE (3.405), i.e., ¢"+ p(x)¢'+q(x)¢ =0. Respective symmetry
invariants are given by u,, =x,v,, =y, /y, and u, =x,v, =y —y¢'/$. Using the
ansatz (3.404) with the unique joint invariant u = x, we seek solutions of the integrating
factor determining system (3.369a.b) of the form
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A =w(x). (3.406)
Substitution of (3.406) into (3.369a,b) yields a single equation
w' = (p(x)w) +g(x)w =0, (3.407)

which is the adjoint of ODE (3.405). ODE (3.407) is well-known as the determining
equation for a classical integrating factor of (3.405). If one knows a solution w(x) of

ODE (3.407), then a first integral of ODE (3.405) is obtained from (3.370) through
w(x,y,y)= L [(@w+ y,w)dx —(W — pw)dy + wdy,]

x , y »
= J;) 0dx—(w —pw)j0 cly+wjO dy,
=—(W' = pw)y+wy,,
where C is a piecewise straight line, parallel to the coordinate axes, from (0,0,0) to
(X, y: yl )

Now consider the second-order linear ODE (3.405) with, for example,
p(x)=4/x, qg(x)=2/x*, which yields the Euler equation

4 2
Yty y=0 (3.408)
X X

admitting the additional scaling symmetry x — Ax, y — y. In Section 3.5.3, we derived
a first integral (3.294) of ODE (3.408) using symmetry reduction. Here we seek
integrating factors and corresponding first integrals using the ansatz (3.400b,c) based on
invariance under scalings in x and y and shifts in y.

For the x scaling symmetry [7=0 and £ = x], we have R = -1 from (3.393), and
thus ansatz (3.400b) yields A =x""'w(y,xy,) in terms of the scaling invariants x and xy,.
Similarly, for the y scaling symmetry [7=y and &=0], ansatz (3.400c) yields
A =y"'w(x,y,/y) in terms of the scaling invariants x and y,/y. Finally, for the shift
symmetry [7=¢(x)and £=0], we have R=0, and hence, A =e""'w(x,y, — y4'/ ).
Consequently, the common invariant form for A is given by

A=x", s=const. (3.409)

Substitution of (3.409) into the integrating factor determining equation (3.407) easily
leads to the solutions

A =x% A, =x. (3.410)

From Theorem 3.6.2-4, we see that the solutions (3.410) determine two functionally
independent first integrals given by the line integral formula (3.370). Since ODE (3.408)
is singular at x =0, we choose the path curve C to be a piecewise straight line from
(x,0,0) to (x,y,y,), parallel to the coordinate axes, with X # 0. Then (3.370) yields the
first integrals
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o= [ Odc+ [ 2xdy+ [ %7 dy, =2xp+ 27y, (3.411a)

W, = J; Odx + joy x’dy + Joyl X’dy, =x"y+x’y,. (3.411Db)

Hence, y, =const=c¢, and y, = const =c, yield two quadratures giving the complete
reduction of ODE (3.408). Explicitly, by eliminating y, in the equations , =¢, and
v, =c,, we have

y=cx ' —c,x. (3.412)

For a final example, consider the ODE

2
y2=2(xyl .);)(1+2(y1) )’ (3413)
X +y
which admits the rotation symmetry [cf. Exercise 3.3-9]
0

X = y——xi, e, S=y, n=—x. (3.414)
ox oy

From (3.393), we see that R=-2y,. Since R #const, we seek integrating factors of
(3.413) given by the general ansatz (3.400a) in terms of the rotation invariants

_-w)” (3.415)
1+ ()

satisfying Xu =0, X”v =0. Since 7" = —(1+(y,)?), the resulting ansatz is given by

2 2
u=x"+y°, v

A=e " 1+ (y)?) 'w(u,v), r=const.
For simplicity, we take » = 0. From (3.398), this corresponds to invariance of A under

o~ 0
X =X + RA—. Hence, for the ansatz
OA

A=1+0)) ' wu,v), (3.4106)

the integrating factor determining system (3.365a,b) becomes
2uw, +(Ov—-6u)w, + 2u(v-u)w, +4v(v—u)w, =0, (3.417a)
3utw, + 4w, +duv(u—v)w,, +2u’ (u—v)w,, =0. (3.417b)

It is easy to see that w = const satisfies (3.417a,b). Hence we obtain a single integrating
factor

A =1+ (3.418)
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The corresponding first integral of ODE (3.413) is given by the line integral formula
(3.366), which here becomes

2y 2x 1
= dx — dy + ay, |. 3.419
l/jl J.C|ix2+y2 X2+y2 y 1+(y1)2 y1i| ( )
Since the integrand in (3.419) is singular at x=y =0, we take C to be a piecewise
straight line from (X,7,0) to (x,y,y,), parallel to the coordinate axes, with X =0 and
y #0. This yields

X 2)7 y —-2x Y1 1
Y, = J.N T 3 dx + J.)N) szyzdy'i' .[0 —2dy1

Y oxT+y 1+(»)
— Darctan? + arctan v =2 arctan% + 7. (3.420)
X X

Setting y =0 and letting ¥, = tany,, we obtain the simplified first integral

~ P —x?)+2x
l//lzyl(zy . ) y (3421)
Yo —xT=2xyy,

We next obtain another integrating factor from the determining system (3.417a,b)
by exploiting the scaling symmetry x — Ax, y - Ay admitted by ODE (3.413). If we
further restrict the ansatz (3.416) to be scaling invariant, then w(u,v)=w(z), with
z=v/u, and hence,

A=1+()")"'w(z). (3.422)
This simplifies the integrating factor determining system (3.417a,b) to a single ODE
u(4v—3u)w' +2v(v—u)w" =0. (3.423)
The general solution of ODE (3.423) is a linear combination of w, =1 and
w, =@ =" (3.424)
Thus, from (3.424), we obtain a second integrating factor
2 2 2 1/2
(" + 7)1+ () )‘lj __xtw
(v =)’ (y=2)1+(3)")

We now check that the integrating factor (3.425) satisfies the criterion of Lemma
3.6.2-1 to yield a first integral that is functionally independent of (3.420). First observe

from (3.419) that since X"y, = J’(V/l)x_x('//1)y_(1+(yl)2)(V/1)y, =1 1is nonzero, it

A, = (1+(y1)2)_1[ (3.425)

follows that y/, is not a function only of z = v/u. It then follows from ansatz (3.422) and
(3.424) that w,(z)=A, /A, # F'(y,) for any function F(y,). Thus, the first integrals

corresponding to A, and A, are functionally independent. From the line integral
formula (3.366), we obtain
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22y 2.2
%:j[yl(y X)2 2xzy et =Y +22xyy12 dy+ YRRy dyl}
LoD +y)  -o)E +y) =)0+ (01))

Since this integrand is singular at x =y =0, we take C from (¥,7,0) to (x,y,y,), with
X#0,y#0, using a piecewise straight line parallel to the axes. This yields the first
integral

x 2x vyt =x’ " xX+yy
v,=| ————dx+ | —————dy+ dy
? L (x* +57%) L y(x* + %) Io (y=xp)1+())

=—log(y —xy,) + +log(1 + (,)*) + log(x* + y*) —log(X* + ) + log .
(3.426)

By exponentiation of (3.426), we obtain the simplified first integral

25\1/2 2 2
7, = I+()) " (x"+y9) (3.427)
Yy =X
to within a multiplicative constant. The first integrals (3.427) and (3.421) lead to the
complete reduction (quadrature) of ODE (3.413) given by 1, =const=c,,
v, =const = ¢,. Explicitly, by eliminating y,, we obtain

(e =1+ () (o +37), (3.428)
which is the general solution of ODE (3.413).

(3) Elimination of Variables Ansatzes
We now consider ansatzes involving elimination of one of the variables x or y. Note

that the elimination of y, is a special case of the point-form ansatz (3.368).
First of all, suppose

A= p(x, ), (3.429)

i.e., A has no dependence on y. From the characteristic equation (3.352a,b), it is
straightforward to classify all second-order ODEs (3.349) admitting integrating factors of
the form (3.429). We integrate v, = u(x,y,) with respect to y,, which gives

y=a(x,y)+b(x,y), a, =u. (3.430)
Substitution of (3.430) into the characteristic equation (3.352a) yields
—a, f=a,+b +yb,. (3.431)

Thus, from (3.430) and (3.431), we obtain the following classification result:
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Theorem 3.6.3-3. A second-order ODE (3.349) admits an integrating factor of the form
(3.429) if and only if ODE (3.349) is of the form

W, (6 )+ v, (63) = [, ) dy

)’2=f(xa)’aJ’1)= (3432)
p(x, ¥y)
for some functions v(x,y), u(x,y,). The corresponding first integral is given by
vy, = [ y) dy, —v(x, ). (3.433)

If one can match a given ODE (3.349) to the form (3.432) for some
v(x,y), p(x,y,), then one immediately obtains a first integral (3.433).

Now consider integrating factors of the form

A=pu(y,»n). (3.434)

By the same steps as in proving Theorem 3.6.3-3, it is straightforward to classify all
second-order ODEs (3.349) admitting integrating factors of the form (3.434). This leads
to the following result:

Theorem 3.6.3-4. A second-order ODE (3.349) admits an integrating factor of the form
(3.434) if and only if ODE (3.349) is of the form

N () = [, ) dv) + v, (x,)

v, =f(y, )= (3.435)
#(y, )
for some functions v(x,y), u(y,y,). The corresponding first integral is given by
w(y. ) = [ ) dy = vix, ). (3.436)

If one can match a given ODE (3.349) to the form (3.435) for some
v(x,), u(y,y,), then one immediately has a first integral (3.436).

The matching of a given ODE (3.349) to (3.432) or (3.435) can be carried out
algorithmically [Cheb-Terrab and Roche (1999)]. In particular, from the integrating
factor determining system (3.365a,b), one can easily derive necessary and sufficient

conditions for a function f(x,y,y,) to satisfy (3.432) or (3.435).
Theorems 3.6.3-3 and 3.6.3-4 can be combined to obtain a result for integrating
factors depending only on y,.

Corollary 3.6.3-1. A second-order ODE (3.349) admits an integrating factor of the form
A = u(y,) if and only if ODE (3.349) is of the form

v (x5, )+ v, (x,)
“(n)

Vo =fxy.n)= (3.437)
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for some functions v(x,y), u(y,). The corresponding first integral is given by

w(xy, ) = [ #()dy, = v(x,y). (3.438)

We note that a special case of an ODE of the form (3.437) is given by the
separable second-order ODE

_ k)

) = 5 3.439
Y700 (:439)

for any functions a(y), b(y,).
An ODE (3.439) reduces to quadrature since the first integral (3.438) yields
v =—[ a)dv+ [yb(y)dy, = const=c,

which represents a first-order separable ODE [cf. Section 3.6.1] given by an algebraic
expression in y, y, :

[rbrydy = e+ [ a()dy. (3.440)

Hence, if we denote the solved form of (3.440) by y, = g(»;¢,), then the quadrature

[ L - x=const=c, (3.441)
g(yie)

yields the general solution of ODE (3.439).

3.6.4 DETERMINING EQUATIONS FOR INTEGRATING FACTORS
OF THIRD- AND HIGHER-ORDER ODEs

We now consider a third- or higher-order ODE

Y = (4,9, "), 23, (3.442)

or, equivalently, the surface given by

Vo= S5, Y1005 ¥,) = 0. (3.443)

Theorem 3.6.4-1. A function y(x,y,y',....y""") with an essential dependence on y""™"

is a first integral of ODE (3.442), satisfying w(x,y,V',...,y" V) =const=c on the
surface (3.443), if and only if

Dy |, =Dy=y +yy, ++y,.v, +fv, =0, (3.444)

where
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D=£+yli+---+yni (3.445a)
ox oy o,

and
0

3.445b
> ( )

D=D|, ,=D-(y, - /)

n-1

A corresponding integrating factor of order ( of ODE (3.442) is a function
ALY, Vs V) £0, 0< 0 <n—1, given by the characteristic equation

Dy =(y, - /A (3.446a)
with
A, V¥ )=y, (3.446b)

which is equivalent to (3.444). All first integrals of ODE (3.442) arise through
integrating factors satisfying (3.446a,b).

We now derive a determining system that yields the integrating factors of all
orders, 0</ <n-1, for ODE (3.442). Consider the truncated Euler operator

E, =2 (-D)' 6i with y, = y. (3.447)
Let
(X, 9, V5., Y,)=Dw(x, %, V5., ¥,1), (3.448)
and define, inductively,
v, =0, , (3.449a)
V,.=60, -D¥, .., k=12,...,n, (3.449b)
where
Y, =E, (0). (3.449c¢)
The following result shows that the truncated Euler operator (3.447) is connected
with annihilating total derivatives of differentiable functions of x, y, y,,..., v, :
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Theorem 3.6.4-2. A function 0(x,y,y,,...,»,) is a total derivative (3.448) if and only if

it satisfies
%:0, k=0,,....n—1, (3.450a)
,

¥, =0, (3.450b)

on the entire (x,y,Y,,...,»,)—space. Then (3.448) holds with

3

WY Viseess Vo) = O(X, Y, Yyroes ¥, A+ Y (6, Y, Viseoss ¥, Ny =y, d)
¢ i=1

Y, =0
(3.451)

where C is any path curve from a point (X,Y,Y,,..., ¥, 1) 10 (X, V, V5.0, Y, ).

(134

Proof. We break up the proof into “if” and “only if” parts. First of all, suppose a
function 6(x,y,y,,...,»,) satisfies (3.448) for some y(x,y,y,...,»,,)- Then from the

identities
(Dy), =Dy, (3.452a)
(Dy), =Dy, +y, , i=12,.,n with y, =y, (3.452b)

it follows that

E,(Dy)=3 (-DY(Dy), =% D)y, +3 (D, =(-)'Dy, =0

i=0

since y, =0. Thus, (3.450b) holds. In addition, substitution of (3.448) into (3.449a,b)
yields

VYi=y, , i=12,.,n, (3.453)
and hence, we obtain (3.450a) since (;), =y, =0 from y, =0.
Let
©=0-3 ¥, (3.454)
i=1
which satisfies
d=y, (3.455)
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from (3.448) and (3.453). Then we see that the integrability conditions for the existence
Of l//(x’y’yla"-’yn—l) are giVen by

N o ic12.m, (3.4562)
y, oy,
oy
M TN o=, i=12...n, (3.456D)
ayj iy
oV
9@ _ T o1, (3.456¢)
oy, ox

Conversely, suppose a function &(x,y,y,,...,»,) satisfies (3.450a,b). We now
proceed to show that the integrability conditions (3.456a—c) are satisfied. Let

oY,

= o, 7% . i=12...n, j=i..n, (3.457a)
ayj—l iy

IIli,n+l = %7 l: 071""7 n. (3457b)

n

We begin by establishing the following useful recursion identities

\Pj,n+1 = _lIlj+1,n - Dl}lj+1,n+1’ ] = 0,1,---, n— 1, (34583)
¥, =-Y,,.-D¥,,, Jj=L..m-1, m=12,.n, (3.458b)

Y =0, m=12,..,n,

m,m

holding independently of (3.450a,b). To obtain (3.458b), one first applies 0/0y,, to
(3.449b) with n—k =j and subtracts 0/0dy; of (3.449b) with n—k =m. Then one

combines terms by using (3.457a). Similarly, one obtains (3.458a).
Now consider ¥, , for k>m=1. If k-m=2(+1, then using (3.458b)

iteratively, we have that ¥, ,.,,,, is a linear combination of DZi‘I’j
i=0,1,..,0 Similarly, if k-m=2(, then ¥, .,
D2i+1\PA

JoJ+

j=m+/Ll+i,

D
is a linear combination of
j=m+/l+i, i=0,1,..,/-1. To proceed, we consider (3.458a) with
j =n—2, which yields

h h
+ DY _9 ”‘2+Da )

n-1n+1 — ayn ayn

- LIJn—l,n = LP

n—-2,n+l

from (3.450a). Likewise, for j=n—-4,n-6,...,1 or 0 (for n odd or even, respectively),
by using (3.450a) and (3.458a) iteratively, we obtain

vV =0, m=n—4{,.,n—1, (3.459)

m,m+1
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where /=n/2 if n iseven, or / =(n—-1)/2 if n is odd. Hence, after combining the
above results, we have

¥, =0 (3.460)

for all 1<m <k <n, which yields (3.456b). Then from (3.454) and (3.457a,b), we
obtain

aﬂ:@yk —-y, _Z o, M +> y W k=0L..,n-1,
Vs ayk ox i=1

through use of (3.449b) as well as (3.450b) in the case k£ =0. Hence, this yields
(3.456¢) from (3.460). Finally, we obtain (3.456a) immediately from (3.450a). Thus, all
of the integrability conditions (3.456a—c) hold as a consequence of (3.450a,b), and so
there exists a w(x, y,y,,...,», ) satisfying (3.448).

Finally, from the relations (3.453) and (3.455) for the partial derivatives of
v(x,y,¥,...,y,,) 1n terms of O(x,y,y,,...,y,), the fundamental theorem of calculus

for gradients yields

n-1 n
W= L["’X dx+; v, dy,}: Ic[cpd“; P dy,._l} (3.461)
to within a constant, where C is any path curve from a point (X,,¥,,...,7,,) to
(X, ¥, Yises Vo). Thus, (3.461), (3.454), (3.456a) yield the line integral (3.451). O

Remarkably, through the identities (3.458a,b), the equations in the system
(3.450a,b) of Theorem 3.6.4-2 can be reduced to a simpler system of half as many
equations as follows. We use the notation [g] to denote the greatest integer less than or
equal to a given rational number g.

Lemma 3.6.4-1. Equations (3.450a) for k=2m,m=0,,...,[n/2], together with
(3.450b), are equivalent to the system of 2 +[n/ 2] independent equations given by

0,, =0, (3.462a)
n—k i ' o ‘1
ykyk z z ( 1) ( +]) ( ) (D ]9)’k+iJ’k—')‘y,,=0’ k= . ,...,I’Z—l,
-1 j=0 = N! i 2
(3.462b)
Y (=D(D'6,), - =0. (3.462¢)
i=0

The remaining equations (3.450a) for k=2m+1, m=0,,...,[(n—-1)/2], are
(differential) linear combinations of (3.462a,b).
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Proof. We use (3.458a,b) recursively. For j=n—1, we obtain

o, __ %,

oy, v,

Then, for j=n—2 and j=n-3, we find that

éy{jn—Z
oy

.
. o,

s pp O, 2DY, .

oy, oy,

Y

n-1,n°

Continuing, we find that 0¥ ,,,/0dy,, £ =0,,...,[(n—1)/2], is a differential linear
combination of 0¥, /dy, and (if £>1) ¥,
that W, .,
oY

linear combination of 0¥

s J=n—4L,...,n—1.In addition, we see
j=[n+1)/2],..,n-1, is a differential linear combination of
/0y,,i=0,1,..,n—j. Thus, 0¥, ,,, /0y, can be expressed as a differential
/0y,, i=0,,...,¢, which establishes the second part of the

lemma. It now follows from (3.458a,b) that the equations oW, ,,/dy, =0,

n=2i

n=2i

£=0,1,...,[n/2], are equivalent to the system

% o, (3.463)
v,
. +1
¥ =0, ]{”2 },...,n—l. (3.464)

Finally, we note that (3.463) and (3.449a,b) show that ¥ _,equals ¥ ,

k>1) a polynomial of degree k& in y, with coefficients given by differential linear

,=o Plus (if

combinations of &, /oy, for i=0,1,...,k-1, k=12,..,n. Consequently, we conclude
that (3.450a,b) is equivalent to the system

o,
oy,

which are, respectively, given by (3.462a—c) through (3.457a,b) and (3.449a,b).
Furthermore, since the terms 6, , k=[(n+1)/2],..,n, in (3.462a)b) are linearly
independent, we see that the equations (3.462a—) are independent. This establishes the
first part of the lemma.

Now, from the characteristic equation (3.446a), let

=0, W,|, ,=0, ¥

L 0=0, j=[(n+1)/2],n—1,

Jrj+l

0,1, Y15+ ¥,) =V, = F (50, V15 Y DA Y, Yo 1), 0 <n—1.
(3.465)
By taking 0/0y, , of (3.465), k =0,1,...,n, we obtain

0 =A, (3.466a)

Yn

213



0)’n—/< Y,

o=—(A), , k=12,..n (3.466b)
Then, using (3.449a,b), we have
Y =60 =A (3.467a)

and

L =3EDY0, ),

Jj=0
k—

1
-(-D, )’ (N, +(—Dn_1)"A, k=12,...,n, (3.467b)

j=0

.

where D, , is the truncated total derivative operator defined by

0 < 0
= ,— >1. 3.468
Dy =+ - (3.468)
Finally, from (3.454) and (3.468), we obtain
n—1
CD‘ ,=0 = 9‘ ,=0 - yi\Pi‘ ¥,=0

i=1

n—i—1

LED) yi[z (-D,.) (/N —(—Dn_l)""‘A} (3.469)

Hence, for all integrating factors of ODE (3.443), Theorem 3.6.4-2 and Lemma
3.6.4-1 give a necessary and sufficient determining system consisting of the 1+[n/2]

equations (3.462b,c). The total system can be written out explicitly as follows, using
(3.466a,b) and (3.467a,b):

nl & i+ )E-1n! i i
(fA)y,,_myn_m + Z ( ']).]() il ) (_ 1) (Dn—l ) / (fA)yn_m”yn_m_j
i=l  j=0 . /-

HEDTY W(Dn_l)wi[\ynﬂwfo, m=1H (3.470a)

i=0 (m_l)!l!

n_l . .
;) -D'(D,.) (A, +(-D"'(D,)"A=0. (3.470b)
Furthermore, through (3.467a,b) and (3.469) combined with (3.451), we obtain the first

integral w(x,y,y,,...,y,,) corresponding to the integrating factor A(x,y,y,..,»,)
from the explicit line integral formula

v =] | A, - fdx>+2 ("2 ~(-D,.)/ (/) +(-D,_ )" A)d,, - y,dx)}

(3.471)
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where C is a path curve from any point (X,7,Y,,...,¥, ) to the point (x,y,y,,...,», )

mn(x,y,y,...,y,,)—space. If f(x,y,»,....,y,,) and A(x,»,y,,..,y,) are nonsingular,
then C can be chosen arbitrarily and, hence, in any convenient way to simplify the
integral. Most important, if f(x,y,y,...,»,,) or A(x,y,y,...,»,) are singular, then
some path curve C can be chosen so that the line integral (3.471) is nonsingular. i

Theorem 3.6.4-3. The integrating factors of order 0 <! <n—-1 of ODE (3.443) are the
solutions A(x,y,¥,,...,¥,)#0 of the determining system consisting of the 1+[n/2]

equations (3.470a,b). For a given integrating factor, the corresponding first integral of
ODE (3.443) is given by the line integral formula (3.471).

The integrating factor determining system (3.470a,b) is a system of 1+[n/2]
linear homogeneous PDEs of order n for A(x,y,»,,...,»,). Any solution of (3.470a,b)

yields a first integral (3.471) which provides a reduction of the order of ODE (3.443) by
one, yielding an (n—1)th-order ODE represented by the surface

v(x,y,¥,...,y, ) =const = c. If one knows 1<k <n solutions of the integrating factor
determining system (3.470a,b), such that the resulting £ first integrals v ,...,y, are

functionally independent, i.e., none is a function of the others, then ODE (3.443) is
reduced to an (n—k)th-order ODE given by the elimination of y, ,...,y, ,,, in the

equations ¥,(x,,,,...,», ) =const=c,, i =1,2,...,k. Hence, if k=n, this yields a
complete reduction of ODE (3.443) to quadrature.
It is straightforward to see that a set of first integrals w,,i=12,.,k, is

functionally dependent if and only if F(y,,...,;) =0 holds for some nonconstant
function F(y,,...,i,). Consequently, from the characteristic equation (3.446a,b), it
follows that a set of integrating factors A;, i =12,...,k <n, of ODE (3.443) determines

k functionally independent first integrals y,, i =1,2,...,k, if and only if z; F,A #0

holds for all functions F'(y,,...,\¥,) # const, where each y, and A, are related through
(3.446a,b) and (3.471). For first integrals with integrating factors of order / <n—1, there
is a stronger criterion for functional independence.

Theorem 3.6.4-4. A set of integrating factors A,, i=12,....k, of order 0</<n—k of

ODE (3.443) determines k functionally independent first integrals y,, i=12,....k, if
and only if the integrating factors are linearly independent, i.e.,

k
2 A =0 (3.472)

i=1

holds for all constants c; # 0.
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Proof. Suppose
cA, =0 (3.473)

i=1

holds where ¢, =const. Let F =Zilcil//i where {y,} 1is a set of k first integrals

corresponding to the set of k integrating factors {A.}. Then, from the characteristic
equation (3.446a,b) and (3.473), it immediately follows that

~ k k
F, =2 ey, =2 A =0. (3.474)
i=1 i=1

Hence, using (3.474) and (3.445b), we have DF =DF = Z; ¢, Dy, =0. Consequently,

F =const = ¢, so that the set of first integrals {y/,} satisfies
F(y,,...,w,) =0, (3.475)

where F = F —c. Hence, the set {w.} 1s functionally dependent.

Conversely, suppose (3.475) holds where {y/,} is a set of k first integrals with
the corresponding set of & integrating factors {A,} being of order / <n—k. By taking
0/0y,, of (3.475) and using (3.446b), we obtain (3.473) with ¢, = F, . We now show
that ¢, = const. Since the set {y,} is functionally dependent, we suppose that at most

1<r<k of these first integrals are functionally independent and denote them as
v,,...,¥,. Hence, through reduction of order of ODE (3.443), the variables y, ,...,», ,

in each expression A, can be eliminated in terms of y,,...,w,, and x,y,y,,...,», .

Then OA,/0y,, =---=0A,/0y, =0, and, furthermore, since each A, is assumed to be
of order /<n—k<n—r, it follows that OA,/dy, = Z;zl (O, /0y ) )Ow,; 8y,) =0,
m=n—r,...,n—1. Thus, since the functional independence of v ,...,\,, implies that

the »xr Jacobian matrix of partial derivatives dy, /dy,, is invertible, we obtain

%=0 forall i,j=1,...,k.

oy,
Now we take 0/0y, of (3.473) with ¢, =F, , and use the commutativity of partial
derivatives dc, /0y, =F,, =dc;/0y,, to obtain Z;Ai(écj /0w,;)=0. Then we use

A, =0y, /0y, , and the chain rule to obtain

oc,
o, (3.476)
a.yn—l
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Since ¢, =F, also satisfies Dc; :DF le .M/D‘//, 0, it then follows from

J

(3.476) and (3.445b) that Dc, = 0. Hence, for J=L....,k, we have ¢, =const in (3.473),
which completes the proof. i

A sufficient criterion, generalizing Theorem 3.6.2-4 for functional independence
of first integrals, can be given with less restriction on the order of corresponding
integrating factors than required in Theorem 3.6.4-4.

Theorem 3.6.4-5. If 2<k <n integrating factors N\,(x,y,y,,....»y,), i =12,....k, of
any order 0</<n-1 of ODE (3.443) are linearly independent and satisfy
A /A, =0,r=L..k=1, i<j=12,....k, then the corresponding first integrals

v, i=12,....k, given by (3.471), are functionally independent.

Proof. Left to Exercise 3.6-23. O

The general solution of the integrating factor determining system (3.470a,b) is
given by

=y F, A, (3.477)
i=1

where F(y,,...,y,) is an arbitrary function of » functionally independent first integrals
v.,(X, ¥, Y,...,»,,) Wwith corresponding integrating factors A,(x,y,y,...,»,),
i=12,...,n, arising from the characteristic equation (3.446a,b). Hence, finding all

solutions of (3.470a,b) is equivalent to solving the original nth-order ODE (3.443).
However, it suffices to find just 1<k <n solutions that yield functionally independent
first integrals in order to reduce the order of ODE (3.443) by k.

For integrating factors of order / < n—1, the determining system (3.470a,b) splits
into an overdetermined linear system of PDEs and thus has a finite number of linearly
independent solutions. In practice, it is useful to consider ansatzes for further simplifying
and reducing this overdetermined system. Moreover, for finding integrating factors of
order / =n—1, there is no inherent splitting of the determining system (3.470a,b) and,
hence, it is necessary to use ansatzes so as to obtain an overdetermined system from
(3.470a,b) with at most a finite number of linearly independent solutions. Most
important, in all these situations the resulting systems of determining equations for
integrating factors can be solved by the same algorithmic procedure used in solving the
analogous determining equations for symmetries of order ¢ <»n—1 [cf. Section 3.5].

We now summarize several effective ansatzes, generalizing those given in Section
3.6.3 to third- and higher-order ODEs, for obtaining solutions of the integrating factor
determining system (3.470a,b). Examples illustrating the use of these ansatzes will be
given in Section 3.6.5.
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(1) Point-Form Ansatzes
If one considers integrating factors of ODE (3.443) of point-form

A=a(x,y)+ B(x,y)y, (3.478)

then the integrating factor determining system (3.470a,b) becomes an overdetermined
system of 1+[n/2] linear homogeneous PDEs for a(x, y) and f(x,y).

Theorem 3.6.4-6. An nth-order ODE (3.443), n >3, admits an integrating factor of
point-form (3.478) if and only if

n-2
ho+Y Viah, =y, (@, +y(a, + )+ B, +3,8)

i=0
a+ Py,

yn Zf(x’y’yla"-ayn—l)z

(3.479)

for some function h(x,y,y,,...,y,,). In particular, if n>3, it is necessary that
S, v0..,¥,,) be at most linear in 'y, ,; if n=3, it is necessary that
S, 90...,¥,,) beat most quadratic in y,_,.

Proof. We start from the identity
(a+p)y, =D, +y, ) —y,.(Da+yDf+y,p).

Then, from the characteristic equation (3.446a), it follows that (3.478) is an integrating
factor of y, = f(x,»,¥,,...,y,) if and only if for some function y(x,y,»,,...,», ), we

have
Dy —(a+p)y,)=—(a+p)f -y, (Da+yDB+y,p).

Thus, we obtain the relation

/= Dh=y,.(Da+yDp+y.5) (3.480)
a+ By
where
h=(a+ )Y, —v. (3.481)
Then 0/0dy, of (3.480) immediately yields 7, =0 if n>3. Hence, we obtain ODE
(3.479).

Conversely, for any function A(x,y, y,,...,»,,), from (3.480) and (3.481) we see

that the characteristic equation (3.446a) for ODE (3.479) is satisfied for the integrating
factor (3.478) if n >3, where v =(a+ fy,)y,, —h. O

In practice, the simplest way to determine if a given third- or higher-order ODE
(3.443) admits an integrating factor of point-form is to first verify that the necessary
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conditions given in Theorem 3.6.4-6 are satisfied. Then one solves the resulting
integrating factor determining system (3.470a,b). Alternatively, note that if one can
match the form of (3.479) to a given ODE (3.443), then one immediately obtains the
integrating factor (3.478), with the corresponding first integral given by (3.481).

(2) Elimination of Variables Ansatz
More generally, for an nth-order ODE (3.443),n >3, if one considers integrating factors

A(x,y,¥,,...,»,) of order 1</ <n-1, ie., depending on variables y, up to some order
strictly /ess than the order of the highest derivative appearing in f(x, y, y,,...,y, ), then

the integrating factor determining system (3.470a,b) again reduces to an overdetermined
system of 1+[n/2] linear homogeneous PDEs, which has at most a finite number of

linearly independent solutions A(x,y,y,,...,»,). There exist efficient computational

algorithms to solve such systems [Wolf (2002a,b)] and, hence, it is straightforward to
find all integrating factors of order less than n—1 for a given nth-order ODE (3.443).
However, the computational complexity grows quickly as » increases.

(3) Symmetry-Type Ansatzes
If an nth-order ODE (3.442) admits a point symmetry

0 0
X=8(x,»)—+n(x,y)—, (3.482)
ox oy
then since the corresponding surface (3.443) is invariant under the nth-extended generator

0 0 & & O
xm g9 590 i 9
g Ox n@y ,; 7 oy,

with 1 given by (2.100a,b), it follows that the (r — 1)th-extended generator X" maps

first integrals of ODE (3.442) into first integrals since any first integral of ODE (3.442) is
constant for every solution curve on the surface (3.443).

Theorem 3.6.4-7. Suppose y(x,y,¥,,...,¥,.,) IS a first integral with integrating factor
Ax,y,¥,,...,¥,) for ODE (3.443). Then, under any point symmetry (3.482) admitted by
ODE (3.443),

W =X""w+¢, € =const, (3.483)

yields a first integral with integrating factor given by

A=X"YA+R A, (3.484)
where
o (n=1)
==, —n&y, —(n-DE,. (3.485)
a.yn—l
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Proof. Left to Exercise 3.6-27. i
Consequently, every point symmetry admitted by ODE (3.443) induces a point
symmetry on the vector space of its integrating factors. The explicit generator in

(X, ¥, ¥/5---»¥,.1,/\) —spaceis given by

~ n_l .

X=§i+ni+z ;7<'>i+R Ai, (3.486)
which maps integrating factors into integrating factors of ODE (3.443). Hence, as an
ansatz, one can consider integrating factors invariant under (3.486),

XA =rA, r=const, (3.487)
or, equivalently,
n—1
EN,+nA, + D VA, + (17, —néE y —(n—-DE —r)A=0. (3.488)
i=l1
If we now obtain invariants u(x,y) and v(x,y,y,) of (3.443) by solving Xu =0,
X"y =0[v, #0],and introduce the differential invariants v,(x, y, y,,...,y.,,) =d'v/du’,

satisfying X"y, =0, for i=1,..,n—2, then we have the general solution of (3.488)
given by
-R
A:exp[ [~ (1)"-1(”’V’y 1)dyljw(u,v,vl,...,vn_z), (3.489)
77 (u,v, yl)

for an arbitrary function w(u,v,v,,...,v, ,), with x and y eliminated in terms of u and
v. Alternatively, if £ #0 or 7#0, then we can have

A= exp[ [ = R, (xu,v) dew(u,v, ViV ) (3.490a)
S (x,u)
or
A= exp[ [ = Ry (.4, v) dyJw(u,v, ViV ), (3.490b)
n(y,u)
in terms of an arbitrary function w(u,v,v,,...,v, ,).

These ansatzes correspond to the scaling invariance of A(x,y,y,,...,»,) and

w(X, 9, ¥5...,¥,,) under X" given by
X" DA =sA, s=const, (3.491)

X"y =ry +¢, r=const, ¢ =const, (3.492)

if and only if R _, =r—s=const, which holds for the following class of point
symmetries:
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Lemma 3.6.4-2. A point symmetry (3.482) of the nth-order ODE (3.443) has
R _,=0n"" /oy, =const=c ifandonlyif
n=ax)+((n-DFx)+c)y, &=pBx), (3.493)

for some functions o(x), P(x). In particular, all translations and scalings satisfy

R, =const.

Proof. Left to Exercise 3.6-19. O

Hence, note that any translations and scalings admitted by a given ODE (3.443)
are automatically inherited by its integrating factor determining system (3.470a,b), so that
one can consider the simple ansatz

A=wu,v,v,,...,v, ), (3.494)

ie, r=R _,in(3.489) since R, , = const.

3.6.5 EXAMPLES OF FIRST INTEGRALS OF
THIRD- AND HIGHER-ORDER ODEs

Consider a third-order ODE
V=1, (3.495)

represented as a surface

y3=f(xayay15y2)' (3496)

From Theorem 3.6.4-3, we see that the integrating factors A(x,y,»,,»,) of ODE (3.496)
are given by the explicit determining system

2A.V1 + A)’zx + ylAyzy + yZAyzyl + (fA)y2y2 = 07 (34973)

3y, A, +30mA L +30) A, A+ ()AL ()AL +3YA L

#3050, #3007 A, 30 A, 300 A, +30(0n) A, F6RAL

+(fN), = (D), =2 (N, =12 (I),, + 3. (N),,, + (D), + ()P (A),,,,

+ (1) (D) s + 201 (), + 20, (FN) ,, +20,05(N),,,, =0, (3.497D)
with the corresponding first integrals w(x,y,y,,»,) of ODE (3.496) given by the explicit
line integral formula

= [ L), + (), + 1 (A, + 35 (fA),, + 1A,
+A_ + (J’])ZAW + (yz)zAm +2y A, +2y,A,, +200,A )dy -y, dx)
—((N),, + A+ A+ 3, A )dy, =y, dx)+ A(dy, — f dx)]. (3.498)
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We now illustrate how to find solutions of the integrating factor determining
system (3.497a,b) through the algorithmic methods summarized in Section 3.6.4. We
also show the calculation of corresponding first integrals through the line integral formula
(3.498) and illustrate reduction of order from first integrals for third-order ODE:s.

As a first example, consider the ODE
Y3 == (3.499)

arising from seeking traveling wave solutions of the Korteweg—de Vries (KdV) equation
[Exercise 4.1-2]. The point symmetries admitted by ODE (3.499) consist of the

translation symmetry x — x+¢&,y — y and the scaling symmetry x — Ax, y = A7y.
To begin, we observe that since ODE (3.499) does not involve y,, it satisfies the
necessary condition of Theorem 3.6.4-6 to admit point-form integrating factors

A=alx,y)+ p(x,y)y. (3.500)

Substitution of (3.500) into the integrating factor determining system (3.497a,b) yields,
respectively,

£=0 (3.501)
and, after (3.501) is used,

3axyy2 + 3("ZynyyZ + ayyy (yl )3 + 3axyy (yl )2 + 3axxyyl + axxx - yax = O (3502)

From the splitting of (3.502) with respect to y, and y,, we obtain «, =« =0 and

va,=«a, .. This immediately gives
a=a,+ay, a,=const, o =const.
Hence, ODE (3.499) admits two integrating factors of point-form, given by
A=1 A,=y. (3.503)

Using the line integral formula (3.498) with C chosen to be a piecewise straight line
from (0,0,0,0) to (x,»,»,,y,) parallel to the coordinate axes, we obtain the
corresponding first integrals

vi= [ vdy+dv,]=1)" +, (3.504a)
and
v, = IC[(y2 + 1) dy =y dy +ydy, 1= 5y =5 (7)) + s (3.504b)

From Theorem 3.6.4-4, we see that the first integrals (3.504a,b) are functionally
independent. Hence, we have two quadratures y, =const=c,, y, =const =c,, which
lead to a reduction of the third-order ODE (3.499) to a first-order ODE
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b2 =i\/2c1y—%y3 -2c,.

This reduced ODE is separable, which results from the invariance of the integrating
factors (3.503) under the translation symmetry x — x+¢&,y —> y admitted by ODE

(3.499) (but not under the admitted scaling symmetry). Thus, we obtain an additional
first integral [cf. (3.441)]

. iJ- \/zcly_%y3 -2c,

which obviously is functionally independent of y, and w,. Thus, y,; =const =c, yields

—x, (3.505)

the complete quadrature (i.e., the general solution) of ODE (3.499).

For a second example, consider the third-order ODE

m3 "2
Y= ) (3.506)
") y
or, equivalently, the surface
y3=6x(3,)’ (1) =6(3,)* (1) =0, (3.507)

which admits contact symmetries as shown in Section 3.5.2. First we observe that
(3.507) is cubic in y, and, hence, from Theorem 3.6.4-6, it does not admit any

integrating factor of point-form A =a(x,y)+ f(x,y)y,. Consequently, we instead make

use of the symmetry-type ansatz (3.490a,b) to seek integrating factors. From Section
3.5.2 [cf. Exercise 3.5-5], we see that the point symmetries of (3.507) consist of
translations in y, scalings in x, and scalings in y. For the y translation symmetry [ =1,

& =01, the ansatz (3.490b) yields A =e”w(x, y,,y,) interms of invariants x, y,,y,. For
the y scaling symmetry [n=y, £=0], the ansatz (3.490b) yields A =
y ' w(x,y,/y,y,/y) in terms of invariants x,y,/y,y,/y. Similarly, the x scaling
symmetry [17=0,&=x] leads to A=x""w(y,xy,x’y,). Hence the common joint
invariant form for A(x,y, y,,y,) is given by

A=x"(3) W), u=222, r=const, s = const. (3.508)

N

Substitution of (3.508) into the integrating factor determining system (3.497a,b) yields
the equations
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uQu+D)Gu+Dw +B6u’ + 1+ ) u+r+DHw +(36u+12+2s)w=0, (3.509a)

Qu+D(@u+ )’ (-1 w"
“3u(u—1D((-20+4s)’ + (2 +4r +3s)u” + (6 +3r + s)u+r)w’
+3u(2(s = 3)(s = 8)u' + (—46 + Ts + s° = 22r + 4rs)u’
+(2+6r+Ts+s> +2rs)u’ +r(9+r+28)u+r(r—1))w
—(—12(s =3)(s = 2)u* = (s —2)(24 + 30r + 55 + s* )’
—3r(6r +5s+ s =3r(r =14+ )u—r(r-1)(r-2))w=0. (3.509b)

We take d/du of (3.509a), eliminate w" through (3.509b), and then eliminate w"
through (3.509a). This leads to Aw' + Bw =0, where

A=((s+Du+r—-D(su+r-2),

_(su+r-2)12(1+ )’ +1A8(r = 1) + (1+ )6+ s))u” +2(r = 1)(s + 6)u + r(r —1))
- uu+1)Gu +1) '

B

Hence, if (s,7) #(0,2) or (—1,1), so that(4, B) #(0,0), then we obtain a separable first-
order ODE

w1201+ )’ + (180 = 1)+ (1+5)(6+5)u’ +2(r = 1)(s + 6)u+r(r = 1)

w uQCu+DCu+D((s+Du+r-1)
(3.510)
This has the solution
w=QCBu+1)’Qu+D)!(s+VDu+r—-lu", p=3r-s-5, g=-2r+s+2,
(3.511)

which can be readily checked to satisfy both equations (3.509a,b) including the cases
(s,7)=(0,2), (=1,1). Thus, we have the family of integrating factors

3r—s-5 s=2r+2
A:(yl)”’(yz)-’[ﬂﬂ] (ﬂﬂ] [(s+1)&+r—1] (3.512)
N Y B

depending on two free parameters (r,s). One expects that (3.512) yields at most two

functionally independent first integrals.
To obtain simple expressions, we choose =2 and s=1,2 in (3.512), which

yields two integrating factors

A = (yl)i, Af%- (3.513)
() »)
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Since A,/A, =(y,)”" #const does not involve y,, from Theorem 3.6.4-5 we see that A,
and A, yield functionally independent first integrals y, and y,, given by the line
integral formula (3.498). Hence, we obtain the first integrals

v=l C{H(y D)= (6, + >y, + 2, dyz} —3a(yyr - 2L
(yz) (yz) ¥y,
(3.514a)
and
Y, = IC|:(—2(y1)3)dx—(6x(yl)2 +M)dyl " (J/1)2 dy2i| = 2x(y,)’ )"
V2 (yz) ¥,
(3.514b)

with C chosen to be a piecewise straight line from (0,0,0,y,) to (x,y,y,,y,), parallel to

the coordinate axes, with y, #0. Note that it is now straightforward to verify that the
family of integrating factors (3.512) reduces to

A= (=) w,) (g + DA, + (=) (=) (p+ DA,
=F,A\+F,A\,, F= D () (), p=3r—s—5qg=s-2r+2,

and hence, the corresponding family of first integrals is a function combination of
(3.514a,b).

We now obtain a third functionally independent first integral by considering
(3.509a,b) in the special case when (s,7)=(0,2). Since (3.511) with s =0, r =2 yields a
solution of (3.509a,b), given by

4 e,

w=
2
u

we can use reduction of order to find the general solution of (3.509a,b) in this case. This
yields a second solution

w=u",
which leads to the integrating factor
2
A, = % (3.515)
Y2

Note that A, is linearly independent of A, and A,. A corresponding first integral is

obtained from the line integral formula (3.498) with the same path curve C as before.
This yields
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2

2 2 2

Y Y Y2
(3.516)

which is functionally independent of (3.514a,b) since (v,), =(v,), =0 but (y;), #0.
The first integrals (3.514a,b) and (3.516) yield three quadratures y, = const =c,,
w, =const=c,, Wy, =const=c,;, giving the complete reduction of (3.507) to an
algebraic equation through the elimination of y, and y,. Explicitly, solving (3.514a) for
v, and substituting into (3.514b) and (3.516), we have
x()’l)3 +oy —¢, =0,
3x(y1)2 +(c;=2y)y, —¢, =0.
After algebraically combining these equations to eliminate y,, we obtain
3x(c,(c; —2y) —9xc,)” —c,((c; —2y)* +12x¢,)’
+(c; = 29)(e, (¢ —2) = 9x¢,)(¢; ~ 2)* +12x¢) =0, (3.517)
which is the general solution of ODE (3.507).

Finally, consider a fourth-order ODE
Y= p ") (3.518)
represented as a surface
Vi = (%9152, 33) = 0. (3.519)

From (3.470a,b), we see that the determining system for the integrating factors
A(x,¥,9,,,,v;) of ODE (3.519) is given by

2A,, +DyA, +(/A),, =0, (3.520a)
2A, +3D,A, +(D;)*A, +D,(fA), , +2(/A),, —(fA),,, =0, (3.520D)
(/A), =D, (fA),, +(Dy)*(fA),, —(Dy)*(/A),, —(Dy)* A =0, (3.520c)

with D, = 2 + 3 2 +y, 9 + ¥, i The line integral formula for the corresponding
Ox 0 oy, oy,

first integrals is given by
v = [ L=(/N), +Dy(fA),, =(Dy) (A, —(D;)’ A)dy -y, dx)

+(=(fN),, + D;(fA),, +(D3)’ A)(dy, = y, dx)
+(=(fA),, = DsA)(dy, = y; dx)+ Aldy; — [ dx)]. (3.521)
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Through the algorithmic methods presented in Section 3.6.4, we now give an
example to illustrate how to solve the integrating factor determining system (3.520a—)
and calculate first integrals from (3.521) to obtain a reduction of order.

Consider the fourth-order ODE
W' /y)) =0

that arises in the study of the wave equation with wave speed y(x). This ODE is
equivalent to the surface

2 2 3
y4:_(y1)2y2 ) _4()’22 _30s Sy (3.522)
y y ) y Vi

in(x,y,¥,,¥,,¥;,v,)—space. We now find all integrating factors A(x,y,y,,y,) of ODE
(3.522) up to second-order. From the integrating factor determining system (3.520a—c),
we see that the first equation (3.520a) yields A, =0 and so A is at most a first-order

integrating factor. The second equation (3.520b) then becomes linear in y,. The
coefficient of y, yields

3A+5yA +(»)’A,, =0,

which is an FEuler equation [cf. Section 3.6.3] with the general solution
A=a(x,y)(»)" + B(x,y)(»,)". The remaining terms in (3.520b) now split with respect
to powers of y,, giving

yB,-2p=0, ya, -2a=0, B =a =0.

This yields a=«a,y*, f=,y°, with @, =const, S, =const. We then find that
A=a,y*(y)" + B,y () satisfies the third equation (3.520c). Hence, we obtain two
integrating factors given by

A=y )" A=y 07 (3.523)

Since these are first-order integrating factors, from Theorem 3.6.4-4 it follows that the
corresponding first integrals are functionally independent. The line integral formula
(3.521) gives

7

2y, 4y(»,)’ 4y (»,)  yy’ 4y,y° y’
- 2 - ) 3 T | —— 5 |dyy = dy;
LKy S j“( G0 ) j y{y ) ]y Y y}

2y°(,)° . 2y,
(y1)2 Vi

=, = (3.524a)
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and

v =] ( v, 2 _2y(y2)2]d +[_ 2y, 4y’ ()’ _3y2y3jd
’ ¢ (J’1)2 ()’1)3 ()’1)4 (yl)3 (yl)5 ()’1)4 1

RS ) PR G
+(m)z (yl)“j SANTS 4

_ W YO Yy (3.524b)
)" 00" )

where C is chosen to be a piecewise straight line from (0,0, 7,,0,0) to (x,,V,,V,,Vs),
parallel to the coordinate axes, with y, #0. The first integrals (3.524a,b) yield two

quadratures y, =const=¢,, W, =const=c,, leading to a reduction of the fourth-order
ODE (3.522) to a second-order ODE

y, = i%\/cz 1) —c. (3.525)

The ODE (3.525) is separable [cf. (3.439)], and hence, it immediately admits two
quadratures, yielding

1/2
1 c
dy=| L +c,, 3.526
J cosh((c,)*(log y +¢,)) (cJ e (3:320)

which is a general solution of ODE (3.522).

EXERCISES 3.6

1. Consider the general second-order linear ODE
V' 4 p()y +q(x)y = g(x).

(a) Find its integrating factors of the form A(x,y) and corresponding first integrals
when g(x)=0 and g(x) #0.

(b) In the case p(x)=const, g(x)=-const, find its point-form integrating factors
A =a(x,y)+ B(x,y)y, and corresponding first integrals.

2. Consider the nonlinear van der Pol oscillator
y'—c(l—ay®)y' +by” =0, a,b,c, p =const. (3.527)

Find its point-form integrating factors A =a(x,y)+ B(x,y)y, and corresponding
first integrals. Show that two functionally independent first integrals are obtained if
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and only if p =3 and ac =-3b, and give the complete quadrature of (3.527) in this
case.

. Consider the fully nonlinear Duffing oscillator
y"+ay’ =0, a = const. (3.528)

(a) Show that the only point-form integrating factor admitted by (3.528) is given by
A=y,.

(b) Show that the reduced first-order ODE i = const = ¢ given by the first integral y
corresponding to A =y, is separable. Hence, obtain the complete quadrature of
(3.528).

(c) Find the integrating factor of (3.528) corresponding to the quadrature of this
separable reduced ODE.

(d) Consider the integrating factor ansatz (3.400b,c) for (3.528) using the joint
invariants of the translation symmetry x - x + &, y — y and the scaling symmetry
x = A,y > 2Py of (3.528). Show that this ansatz yields a first-order
integrating factor of (3.528) that is not of point-form and gives a first integral
functionally independent of the one arising from the integrating factor A = y,.

. Consider the variable frequency oscillator [Mimura and N6éno (1994)]
Y +(y)’y=0. (3.529)

(a) Find the point-form integrating factors A = a(x, )+ B(x, y)y, and corresponding

first integrals of ODE (3.529).
(b) Find the integrating factors given by the ansatz (3.400b,c) using the joint
invariants of the scaling symmetry x — Ax, y — y and translation symmetry

x—>x+¢, y— y of ODE (3.529). Find the corresponding first integrals.
(c) Obtain the complete quadrature of ODE (3.529).

. The Thomas—Fermi equation is given by
y!r :X_1/2y3/2. (3530)

(a) Show that ODE (3.530) admits no point-form integrating factors.
(b) Find the first-order integrating factors of ODE (3.530) given by the ansatz

(3.400b,c), using the invariants of the scaling symmetry x — Ax, y —> A"y
admitted by (3.530).

. Find all first-order integrating factors A(x, y,y,) and corresponding of the third-order
ODE y" =0. By using the general solution of this ODE, find all second-order
integrating factors A(x,y,y,,,) and corresponding first integrals.

. Consider the Blasius equation
Y'+Lw"=0. (3.531)

(a) Show that the third-order ODE (3.531) admits no first-order integrating factors.
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(b) Find the second-order integrating factors of (3.531) given by the ansatz (3.490a,b)
using the joint invariants of the translation symmetry x > x+¢, y >y and

scaling symmetry x—> Ax, y—>A"'y. Show that ODE (3.531) admits no
integrating factors of the form A = y"y’a(u), u=y,/y’ [r,s = const].

8. Consider the KdV traveling wave ODE (3.499).

(a) The two admitted point-form integrating factors (3.503) of ODE (3.499) lead to a
reduced first-order ODE. Find the integrating factor of ODE (3.499)
corresponding to the quadrature of this reduced ODE.

(b) Find the first-order integrating factors of ODE (3.499).

(c) Find the second-order integrating factors of ODE (3.499) given by the ansatz

A =y"ya(u) [r,s = const], using the scaling symmetry invariant u =y, /y>.
9. Consider the fourth-order ODE

y(4) — %(ym)Z /y". (3532)

(a) Find the point-form integrating factors of ODE (3.532).

(b) Find the first- and second-order integrating factors of ODE (3.532).

(c) Find the third-order integrating factors of ODE (3.532) given by the ansatz
(3.490a,b), using the joint invariants of the x and y translation symmetries and

the x and y scaling symmetries of (3.532).

10. Classify all second-order ODEs y" = f(x,y, ") admitting an integrating factor of the
form A = u(x, ).

11. Classify all second-order ODEs y" = f(x,y,y") admitting integrating factors of the
form:

@ A=1/y;
(b) A=(»,)*; and
(c) A=e".

12. Find the necessary and sufficient conditions on a function f(x,y,y,) such that the
second-order ODE y" = f(x,y, ") admits an integrating factor of the form:

(@) A=pu(x,y,); and
(b) A= p(y,y).

13. Classify all third- and higher-order ODEs admitting an integrating factor of the form
A= p(x, p, 1)

14. Consider the truncated Euler operator E, = o Di on (x,y,y,)-space, where

oy M
D =i+yli.
ox oy
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(a) Show that the equation
E 0(x,y,7,))=0 (3.533a)

on (x,y,y,)-space can be explicitly solved by the following steps to obtain
O(x,y,»)=Dy(x,y),

1
w(xy) = [, x0(2x,0,0)+ y0, (x, Ay, Ay,) dA.

(3.533b)

In (3.533a), replace y by Y(1)=Ay and y, by Y,(1)=DY (1) =Ay,, and then
multiply by dY/dA =y toget

0 0
O=y[ﬁe(x,Y,Yl)—Da—Yé’(x,Y,Yl)J

1

) )
= —D[— yo Y., )J + 0T, Y)), (3.534)

1

Finally, integrate (3.534) from 4 =0 to A =1, and use the identity
6(x,0,0) = || x0(4x,0,0)dA,

which leads to (3.533D).
(b) Show that for an appropriate path curve C, the line integral formula (3.336)
reduces to (3.533b) to within a constant.

15. For a general first-order ODE "= f(x,y), solve the integrating factor equations
dc/l=dy/ f=dN/(—f,A) to obtain the general solution A=F'(y,)A,, where

A, =(y,), is any particular solution of (3.335) and F' is an arbitrary function of .

16. Show that the truncated Euler operator E, = i—Di+ D’ i, with

a ;
0 0 0 . ..
D=—+y,—+y,—, on (x,»,),y,)-space can be inverted similarly to
ox oy oy,
(3.533a,b). Show that the line integral formula (3.366) reduces to this inversion for
an appropriate path curve C.

17. Prove the identity

[D,X] = (D&D + (an)ai,

n
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where X is the mth extension (2.99f) of the  operator

X =&(x, y)§+77(x, y)%, n' is the nth extension (2.100a,b) of 7, and D is the
X

total derivative operator (3.445a) on (x, y, y,,...,,) - sSpace.

18. State and prove the converse of Theorem 3.6.3-1.
19. Prove Lemmas 3.6.3-2 and 3.6.4-2.
20. Prove Theorem 3.6.3-4 and Corollary 3.6.3-1.

21. Show that ¥, _, equals ‘¥, ;| _, plus a polynomial of kth degree in y, with
coefficients given by differential linear combinations of 0¥, /dy,, 0<i<k,
k=12,...n

22. Show that the system of equations YV

il =0, j=[(n+1)/2],.,n—1, and
Wyl, - =0 explicitly yield (3.462b,c).

23. Prove Theorem 3.6.4-5.
24. Prove Theorem 3.6.4-7.

3.7  FUNDAMENTAL CONNECTIONS BETWEEN INTEGRATING
FACTORS AND SYMMETRIES

We now discuss important connections between the determining systems derived in
Sections 3.5 and 3.6, respectively, for symmetries and integrating factors of second- and
higher-order ODEs.

For an ODE with a variational principle, all first integrals can be shown to arise
from invariance of the action functional under one-parameter groups of local
transformations [cf. Section 2.7.2] through the classical Noether's Theorem [Noether
(1918); Boyer (1967); Olver (1986)]. In particular, Noether’s Theorem states that a one-
parameter local transformation group leaves invariant the given action functional if and
only if the infinitesimal of the transformations, in characteristic form [cf. Section 3.5.1],
is an integrating factor of the given ODE. Clearly, since every such one-parameter local
transformation group leaves invariant the extremals of the action functional, it gives rise
to a corresponding symmetry of the ODE. However, all symmetries of the ODE need not
necessarily arise from local transformation groups of the action functional. For example,
often an action functional is not invariant under scalings admitted by the corresponding
ODE. If a symmetry of an ODE corresponds to a one-parameter local transformation
group of an action functional for the ODE, then it is called a variational symmetry.
Consequently, from Noether’s Theorem, it follows that integrating factors are the same as
variational symmetries when an ODE possesses a variational principle.

Existence of a variational principle for an ODE can be expressed as a condition on
the linear operator associated with the linearization of the ODE (i.e., its Fréchet
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derivative). In particular, an ODE admits a variational principle if and only if its
linearization operator is self-adjoint. [Moreover, then an action functional can be
constructed from the independent and dependent variables of the ODE through an explicit
formula [Olver (1986)].]

Whether or not an ODE admits a variational principle, the linearization operator
of the ODE is directly connected with the determining equation for symmetries of the
ODE. From Theorem 3.5.1-1, symmetry characteristics are the solutions of the
linearization of the ODE holding on the entire solution space of the ODE. As a result, if
the linearization operator of an ODE is self-adjoint, then the integrating factors of the
ODE are the same as the variational symmetries of the ODE and, thus, in this situation,
the integrating factor determining system is equivalent to the symmetry determining
equation augmented by conditions for a symmetry to be variational. If the linearization
operator of an ODE is not self-adjoint, then the integrating factors are no longer
symmetries but instead turn out to be directly connected with the solutions of adjoint
linearization of the ODE, as is familiar in the classical case of second-order linear ODEs
[cf. Section 3.6.3].

We show that for an nth-order ODE, whether or not its linearization operator is
self-adjoint, the integrating factor determining system of 1+[n/2] equations, arising
from Theorem 3.6.4-3, is equivalent to the adjoint equation of the symmetry determining
equation, augmented by [n/2] extra equations. These extra determining equations are
called the adjoint invariance conditions, while the solutions of the adjoint equation of the
symmetry determining equation are called adjoint-symmetries. Thus, the integrating
factors of a mth-order ODE are those adjoint-symmetries that satisfy the adjoint
invariance conditions.

In the case when an nth-order ODE admits a variational principle, the symmetry
determining equation is the same as its adjoint equation, so here adjoint-symmetries are
symmetries. The adjoint invariance conditions are then equivalent to the condition for a
symmetry to be variational. We explicitly identify the variational symmetry condition as
[n/2] determining equations obtained by splitting up the integrating factor determining

system into the symmetry determining equation augmented by [n/2] extra determining

equations.

Finally, we compare the calculations for integrating factors, symmetries, and
adjoint-symmetries. In particular, we show that the class of nth-order ODEs admitting
integrating factors of a given form is of a cardinality similar to that of the class of nth-
order ODEs admitting symmetries of the same form.

3.7.1 ADJOINT-SYMMETRIES

Consider an nth-order ODE

Y= O,y (3.535)

represented by the surface

F(xayayla--'ayn)zyn _f(x’yayla"'aynfl)zo' (3536)
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The linearization operator of ODE (3.536) is given by
n—1
-> f,D, (3.537)
i=0
where

o6 & o
D=—+ . with =y
p» Zl v Yo=Y

The adjoint linearization operator is given by (through formal integration by parts)

n-1 i

=(-D)"D"=> > (- 1)

=0 j=0 ])V l(Dl /f )D’. (3.538)

The operator (3.538) can also be introduced by the following relation:

Lemma 3.7.1-1. The operators L, and L*,. satisfy the identity
WL,V -VL*. W =DS[W.,V;F], (3.539a)

where S is the trilinear function defined by

S[W, VU] = Zl Z (-)/(D"V)D' (WU, ) (3.539b)

i=0 j=0

Jor arbitrary functions U(X,y, V,s...; V) V(X YV, Visers ) W, Y, Vyseas V).

Proof. The identity (3.539a,b) is verified by a direct expansion of both sides of (3.539a)
through use of the definitions (3.537) and (3.538) for L, and L*,.. i

Definition 3.7.1-1. An nth-order ODE (3.535) is self-adjoint if and only if L, =L*,.
In particular, self-adjointness is equivalent to the n+1 conditions

(-D"=1, 1ie., niseven, (3.540a)
n—i—1 (l +])
f= X T SEED S, =0kl (3.5400)
j=0
Let
n-1 .
L.=L|,,=D"-Y f,D', (3.541a)
i=0
., n—1 i . l' ,‘_‘ )
L*, =L*.|,,=(-1)D" - (-1) ————(D/f,)D’,  (3.541b)
=0 j=0 @- N
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where

b_p 2,8 2 9
= |F=0—a“‘;yiy"‘f(xay,yl,---,yn_l)y-

i-1 n—1

The operators (3.541a,b) are the restrictions of operators (3.537) and (3.538) to the
surface (3.536). From Theorem 3.5.1-1, we see that the symmetries in characteristic form

of order 0</<n-1 of ODE (3.535) are the solutions 7(x, y,y,,...,»,) of the symmetry
determining equation

L,7=D"h-Y f D=0 (3.542)

Definition 3.7.1-2. The adjoint-symmetries of order 0 </ <n—1 of ODE (3.535) are the
solutions w(x,y,y,,...,y,) of the adjoint-symmetry determining equation

L*, 0=(-1)'D'w-Y (-1))D'(f,®)=0. (3.543)

1
i=0

Geometrically, symmetries of ODE (3.535) describe motions on the surface
(3.536) [cf. Section 3.5.1]. When ODE (3.535) is self-adjoint, its adjoint-symmetries are
the same as its symmetries in characteristic form. However, if ODE (3.535) is not self-
adjoint, then, in general, its adjoint-symmetries are not symmetries (i.e., the only
common solution of the determining equations (3.542) and (3.543) is 7=w =0), and

there is no obvious geometrical invariance or motion related to the solutions of the
adjoint-symmetry determining equation (3.543).

We note that the conditions for self-adjointness of ODE (3.535) can be formulated
equivalently in terms of L, and L* .

Lemma 3.7.1-2. An nth-order ODE (3.535) is self-adjoint if and only if
f,», 905, p,.,) satisfies L. = L* ., which is equivalent to the n+1 conditions

j=0L..,n-1.

9
i+j

RN

i=0

In particular, it is necessary (but not sufficient unless n=2) that f, =0.

Proof. Leftto Exercise 3.7-5. O

A similar discussion applies to an nth-order ODE

Fx,y,9559,)=0, F, #0 (3.544)
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that is not in a solved form (3.536) in terms of y,. Symmetries in characteristic form
n(x,y, y,...,y,) of an ODE (3.544) are solutions of the determining equation L,7 =0,
and adjoint-symmetries @(x,y,,,...,»,) of (3.544) are solutions of the adjoint equation

L*,. =0, where L, and L*, are the restrictions of the operators

n

> F,D' and L* =) Z( )( ) {(D"F, )D’
i=0 =0 j=0 !

to the surface F(x,y,»,,...,»,)=0. The criterion for self-adjointness, L, =L*,., of
ODE (3.544) is equivalent to the n+2 conditions

(-D"=1, ie., n iseven, (3.545a)
nj

Fy_, = Z ( 1)l+] (ll—:_]]') DlF‘ler ’ .] = 09 19"'7 n. (3.545b)
i=0

In particular, it is necessary (but not sufficient unless »=2) that ODE (3.544) take the
form F =Ay +B with 4, =B, =0, 2By =nD, A and, if n2>3, 4, =0, where

n=1

D, , is the truncated total derivative operator (3.468).

3.7.2 ADJOINT INVARIANCE CONDITIONS AND INTEGRATING FACTORS

From Theorem 3.6.4-3, recall that the integrating factors of order 0</<mn—1 of an
nth-order ODE (3.535) are the solutions of the determining system of 1+[#/2] equations

(3.470a,b). In particular, (3.470b) is the Euler operator equation [cf. (3.447)]
En(FA)‘ ,,==0 which follows from Lemma 3.6.4-1. We now show that (3.470b) plus a

certain differential linear combination of (3.470a) yields the adjoint-symmetry
determining equation (3.543).

Lemma 3.7.2-1. Let E, be the truncated Euler operator (3.447) in (X, 1,5 ¥,) —
space. For any function w(x,y, y,,...,y,), 0 < <n—1, define inductively

Y =0 ¥ = Fo) D¥ ., k=1,.,n, (3.546a)
n—k
Q = o, _ 0, Q _ = O, +D OF i . k=1,..n, (3.546b)
oy, oy, oy,

where F(x,y,,,...,»,) is given by the surface (3.536). Then En(Fa))‘yﬂzoz 0 holds if
and only if

L 0-S D Q| )=0. (3.547)

i=0
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Proof. From (3.447) we note that E (Fw)="Y,. Now taking 0/0y, of (3.546a) yields
the relation

aw _ aLIJn—kJrl

= , k=12,.,n, (3.548)
‘ ayn—k ayn—l
which allows (3.546a) to be expressed as
V.o =FQ, - f, o-D¥ ., k=12,..n (3.549)

Then, by finite induction on the index & in (3.549), we obtain
¥y = FQ, - f,o-D(FQ, - f, 0 =D(--- = D(FQ, ,)))

n—1
=L*, 0+ (-)'D'(FQ)
i=0

=E, (Fo).
Hence, this establishes (3.547). O

The remaining [#/2] determining equations (3.470a) for integrating factors in
Theorem 3.6.4-3 are equivalent to the system of equations 0¥, /0y, =0, i=0,,...,n—1.

Through relation (3.546b), this system can be written as Q, =0, i=0,1,...,n—1. Then,
from Lemma 3.6.4-1, we see that these equations in turn are equivalent to the simpler
system of half as many equations

Qn—Zm‘yn:O = 07 m = 1,,[’7/2] (3550)

We refer to each equation

k-1
Q”*k ,=0 = a)y"—k + Z (_1)]71 (Di]il (fyn*/»*»/a)))yﬂfl + (_l)k (Dkila))ynil = 0’ k = 1: 25"-5 n,
Jj=1

(3.551)

obtained inductively from (3.548) and (3.549), as an adjoint invariance equation, and we
call the system of equations (3.550) the adjoint invariance conditions on
o(x,y,¥,,...,»,). Hence, Lemma 3.7.2-1 and Theorem 3.6.4-3 lead immediately to the

following main result:

Theorem 3.7.2-1. The integrating factors of order 0</<n-1 of ODE (3.535) are
those adjoint-symmetries of order ( of (3.535) that satisfy the [n/2] adjoint invariance

conditions (3.550). Explicitly, A(x,y,¥,,...,y,) is an integrating factor of ODE (3.535)
if and only if
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(-1)"D"A —zl (-)'D'(f, A) =0, (3.552a)

2m-1

A, o+ Z (-D(D'( fo . N), + (DZ"HA)M =0, m=1L..,[n/2].
i=1

(3.552b)

The version (3.552a,b) of the integrating factor determining system leads to a
useful ansatz for finding integrating factors as follows. Clearly, every integrating factor
of ODE (3.535) is an adjoint-symmetry, but not conversely if » > 2, since the adjoint

invariance conditions need to be satisfied for an adjoint-symmetry of ODE (3.535) to be
an integrating factor. Note that if w(x,y,y,,...y,) satisfies the adjoint-symmetry
determining equation (3.543), then so does wy, where w(x,y,y,,...»,.,) is any function
satisfying Dy =0, i.e., w(x,»,»,,...»,,) 1is a first integral of ODE (3.535). Hence, if
one already knows k >1 first integrals v, (x,y,¥,,-.. Y, )s---» ¥, (X, ¥, ¥,,...»,,) that are
functionally independent, and if @(x,y,y,,...y,) is an adjoint-symmetry that is not an
integrating factor of ODE (3.535), then one can seek a multiplier function
v =y(y,,...,\i,) so that

A=w 3.553
7

satisfies the adjoint invariance conditions (3.552b). In particular, (3.552b) reduces to a
system of [n/2] first-order linear homogeneous PDEs for w(y,,...,y,). Thus, the
ansatz (3.553) allows one to seek integrating factors through the use of any known

adjoint-symmetries and first integrals. Examples illustrating this ansatz will be given in
Section 3.7.3.

3.7.3 EXAMPLES OF FINDING ADJOINT-SYMMETRIES
AND INTEGRATING FACTORS

The determining equation (3.543) for adjoint-symmetries @(x,y,y,,...,»,) of order ¢ of
a given nth-order ODE (3.535) is an nmth-order linear homogeneous PDE in terms
of n+1 independent variables x,y, y,,...,», . Hence, for / =n—1, the adjoint-symmetry

determining equation (3.543) has infinitely many solutions. However, for 0</<n—1,
equation (3.543) in general splits into an overdetermined linear system of PDEs with at
most a finite number of linearly independent solutions. These solutions can be calculated
by the same algorithmic procedure as that used for finding symmetries of order
0</<n-1 [cf. Section 3.5.1].

If a second- or higher-order ODE (3.535) admits a point symmetry

7 = n(x, y)— £(x, ¥)y, , so that the surface (3.536) is invariant [i.e., X™F =0 under the
generator X defined by (3.235)], then through the use of canonical coordinates
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[Exercise 3.7-7] one can show that the adjoint-symmetry determining equation (3.543)
admits the corresponding point symmetry

0 o =t 4 0
X" = —+n—+> n"—.
d ox "ay E 7 oy,

This allows one to make a simplifying ansatz to seek solutions of (3.543). In particular,
if ODE (3.535) admits a scaling £ =¢gx, n=py, i.e., x >a’x, y > a’y [p,q=const],
then the adjoint-symmetry determining equation (3.543) admits the scalings

o—>adw, x->a'x, y—o>a’y, i=0l..,n-1,

for arbitrary r = const, and so one can seek invariant solutions of (3.543) [see Section
4.2.1] of the form

o =x"p(y'x ", x"(y),..,x"V(y, )T if g #0, (3.554a)

o=y p(,y'y,..,y"y ) if p=0. (3.554b)

The ansatzes (3.554a,b) respectively reduce the adjoint-symmetry determining equation
(3.543) to an overdetermined linear system of PDEs in terms of invariant variables

x4 (), i=01,...,n=10r x,y"'y,,i=1,...,n—1. Similarly, if ODE (3.535) admits a
translation £ =1, 7=0, 1e, x > x+&5y—>y, or £=0, n=1, 1e, x>x,y>y+e,
then the adjoint-symmetry determining equation (3.543) admits the translation

X>Xx+¢& y—>y, o XX, y>y+e,
y,—=>y, i=l.,n-1,
together with the scaling

o —>ew

for arbitrary » = const. Consequently, one can seek invariant solutions of (3.543) of the
form

@=e"p(V, Yy V,y) O @=e€"p(X, Y0, ¥, ). (3.555)

Each ansatz (3.555) reduces the adjoint-symmetry determining equation (3.535) to an
overdetermined linear system of PDEs in terms of invariant variables y,y, or x,
Vi, i=1,..,n-1.

The previous ansatzes are obvious counterparts of the ansatzes presented in

Section 3.5.1 for solving the symmetry determining equation for second- and higher-
order ODEs. We now give examples that illustrate the calculation of adjoint-symmetries.

As a first example, consider the nonlinear Duffing equation

y'+ay'+by+y’ =0, b=2a’, a=const, (3.556)
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for which an integrating factor of point-form was obtained in Section 3.6.3 [cf. (3.387)].
Here we will compare the point symmetries and point-form adjoint-symmetries of ODE
(3.556), and then obtain a second integrating factor through the ansatz (3.553).

The linearization operator of (3.556) is given by L, =D’+aD +%a2 +3y7,
which is not a self-adjoint operator since L*, =D’ —-aD+2a” +3y* #L, if a#0.
Hence, in this case, ODE (3.556) is not self-adjoint, and so its adjoint-symmetries are not

symmetries. The determining equation (3.543) for the adjoint-symmetries w(x,y,y,) of
ODE (3.556) is given by

D’w—aDw +(2a’> +3y*)w =0, (3.557)
where
0 0 0
D=ty —(ay, +2a°y+ ) —.
o y1ay (ay,+5a’y )’)ayl

If we consider point-form adjoint-symmetries o = a(x,y)+ f(x,»)y,, then the adjoint-
symmetry determining (3.557) reduces to a system of four linear PDEs arising from the
coefficients of like powers of y,:

B, =0,  (3.558a)
—4ap, +a, +2B,=0,  (3.558b)

28— (a’y+3y*)B, —3ap, —2aa, +2a,+ B, =0,  (3.558¢)

(V' +2ad’y)apa-2p,—a,)+(3y’ +2a’)a—aa, +a, =0.  (3.558d)

After integrating (3.558a,b) with respect to y, we obtain S = f,(x)+ f,(x)y and
a=(2ap,(x)~ B(x)y* +a,(x)+ e (x)y for some functions a,(x),a,(x), B, (x), B, (x).
Then (3.558¢cd) leads to «, =0, 3,=0, «a,=p,—ap,, and 3B)-TaB,+4a’B,=0.
Hence, we obtain
ﬁ — cleax + cze(4a/3)x, a = %cza€(4a/3)xy‘

Thus, ODE (3.556) admits two point-form adjoint-symmetries given by

w =" (Lay+y), (3.559a)

@, =e"y,. (3.559b)

By a similar calculation, the point symmetries 77 = a(x, y)+ f(x,y)y, of ODE (3.556)
are given by

7 :e(amx(%ay*‘)ﬁ)a =)

Thus, the adjoint-symmetries (3.559a,b) are not symmetries of ODE (3.556) except when
a=0.
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From Section 3.6.3 [cf. (3.387)], we see that the adjoint-symmetry (3.559a) is an
integrating factor of (3.556), while (3.559b) is an adjoint-symmetry of ODE (3.556)
which is not an integrating factor of (3.556). In particular, the adjoint-symmetry (3.559b)
fails to satisfy the adjoint invariance condition of Theorem 3.7.2-1,

A, —ah, +(DA), =0, (3.560)
which is necessary and sufficient for an adjoint-symmetry @ to be an integrating factor

A=w of ODE (3.556). We now use the adjoint-symmetry (3.559b) to seek an
integrating factor

A=y (y)ey, (3.561)
depending on a function w(y,), where
v =e® Gy Gay + ) (3.562)

is the first integral corresponding to the integrating factor (3.559a). Note that (3.561)
satisfies the adjoint-symmetry determining equation (3.557) for arbitrary w(y,) since

Dy, =0. Substitution of (3.561) into the adjoint invariance condition (3.560) yields

—ay+( (W), —(ay, +2a’y+y)w), v =—aly + 1y y') =0,

-3/4

which reduces to a first-order separable ODE y'/y =—3y,. Hence, y(y,) =c(y,)”"",
¢ = const, and thus, we obtain

-3/4 3/4

A=pe ()" =Gy +5Gay+y)H) 7", (3.563)

)3/4

giving an integrating factor of ODE (3.556). Since @, /A =(1++a(y/y,)e" > (y,
is clearly not a function of only y,, from Lemma 3.6.2-1 it follows that A yields a first
integral y, that is functionally independent of ;. Using the line integral formula
(3.366) to calculate ,, we have

v, = [[Ga'y+y +ay)z dy+y,z" d), (3.564)
with
2 y) =5y +3Gay+ )’ (3.565)

Here we choose C to be a path curve such that z =const in the (y,y,)—plane, which is
conveniently parametrized by y=Y(A1),y, =Y, (1), satisfying Y(0)=Yy, ¥;(0)=7y,,
Y1)=y, Y,(1) =y,, as follows:

dy
;;;{ = Zyl()f’):) = %‘Cl)"+ 11,
%: -z,(Y,Y)=-Y -ta’Y —tay,.
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This system is readily integrated to yield
z=1Y"+1(aY +Y)’ =const, (3.566a)

_J-Y dr

- 7 (22_%1_4)1/2 :

(3.566b)

Then, after we combine terms and simplify using (3.566a), the first integral (3.564)
becomes

v, = j ; faz’* di =4az" j g dz (3.567)

7 (22_%2_4)1/2

with z given by (3.565).
The first integrals (3.563) and (3.567) together yield the quadrature of ODE
(3.556) given by y, =const=¢,, v, =const =c,. Explicitly, we have

dr

“@aldx 1 A2
(2cie —27)

(3.568)

1/4 _—(1/3 y
C'2 :%a(cl e ( )MV[N
y

As a second example, we return to the third-order ODE

y"=6x(y)7 (") +6(x) (), (3.569)

which admits contact symmetries as shown in Section 3.5.2. In Section 3.6.5, we
obtained three second-order integrating factors of ODE (3.569) that led to its complete
quadrature [cf. (3.517)]. Here we seek the first-order adjoint-symmetries admitted by
ODE (3.569). Since ODE (3.569) is of third-order, it is not self-adjoint, and hence, its
adjoint-symmetries are not symmetries. The linearization operator of (3.569) is given by

Ly =D —(18x(»,)*(31)” +122,(») D* + (12x(y,)’ (1)~ +6(3,)*(31)”)D.

From the adjoint operator L *,., the determining equation (3.543) for adjoint-symmetries
@(x,y,y,) of ODE (3.569) becomes

D’w+D’(18x(y,)* (1) @ +12y,(y) " @) + D12x(y,)* () @+ 6(,)* () @) =0,
(3.570)

where

0 0 0 0 _ _
D=—+y—+y,—+f—, f:6x(y2)3(y1) 2 +6(y2)2(y1) L
ox T Oy MO,

It is not hard to show that the adjoint-symmetry determining equation (3.570) is a
polynomial equation of sixth degree in terms of y, and, thus, reduces to a linear system

of seven equations arising from the coefficients of like powers of y,. The equation given
by the coefficient of (y,)° immediately yields @ =0. Hence we find that ODE (3.569)
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admits no first-order adjoint-symmetries, in contrast to its seven admitted contact
symmetries and three admitted point symmetries [cf. Section 3.5.2].

As a final example, consider the fourth-order ODE
' (o"H™"Y =0 (3.571)

that arises in the study of the wave equation with wave speed y(x). In Section 3.5.2, we

showed that the admitted symmetries of ODE (3.571) up to second-order consist only of
point symmetries given by x translation and x, y scalings. In Section 3.6.5, we obtained

two first-order integrating factors of ODE (3.571), which led to a second-order separable
ODE [cf. (3.525)] and thereby yielded the quadrature of ODE (3.571). Here, we find the
adjoint-symmetries of ODE (3.571) up to second-order and then apply ansatz (3.553) to
obtain additional integrating factors of (3.571).

We first show that ODE (3.571) is not self-adjoint. Expressing (3.571) in solved
form, we obtain

2 2 3
)/4:f(y’)/1’J/2’)’3)=—(y1)2y2+4(y2) _4(y2)2 _3y1y3+5y2y3 :0.
y y ") y 7

(3.572)

Since f, =-3 y'y, +5(») "y, #0, from Lemma 3.7.1-2 it immediately follows that

ODE (3.572) fails to be self-adjoint. The same conclusion holds for ODE (3.571) in its
original form, as seen from (3.545b). Hence, adjoint-symmetries of ODE (3.572) are not
symmetries of (3.572).

The determining equation (3.543) for adjoint-symmetries @(x,y,y,,»,) of ODE
(3.572) is most easily derived by starting from the linearization of ODE (3.571) rather

than that of (3.572). This leads to
YD1, (1) =29(3)° (1) + w3 () 7D D)
+(»)"'D* (o, D@) +D(y(y,) D’ (yy,D@)) =0 (3.573)

with @ =y, @, where

D—i+ £+ i+ i+fi
x o e e e,

We find that the adjoint-symmetry determining equation (3.573) is a quartic polynomial
in terms of y, and, thus, reduces to an overdetermined linear system of five PDEs for

o(x,y,y,,y,). To avoid the complexity of solving this system directly, we instead
exploit the x translation symmetry and the x,y scaling symmetries of ODE (3.572) to
look for solutions w(x,y,y,,y,) based on ansatzes (3.554a,b) and (3.555) using the
common joint invariant

u=y(») >y,

Thus, we consider
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o=y (y) au), r=const, s=const. (3.574)

Then the coefficient of (y,)* in the adjoint-symmetry determining equation (3.573)
“ _

yields a 0, and hence,

a=a,+au+a,u’ +au’, o =const (3.575)

The coefficients of the remaining powers of y, in (3.573) now become a system of
polynomial equations in # which reduce to algebraic equations for r,s,a,,q,,a,,;.
First, from the coefficients of (y,)’u’ and (y,)’u’, we find that &, =0. Next, from the
coefficients of (y,)’u®,(y,)*u’, y;u®, we find that (s +1)a, =0. This leads to two cases:
s=-1 or a,=0. If s=-1, we find that the coefficients of (y;)’u’ and yu’ yield

a, =r—2=0. Hence, we obtain
a=a,+au’, s=-1, r=2, (3.576)

which is readily checked to satisfy the adjoint-symmetry determining equation (3.573).
Finally, if o, =0, the coefficients of (y,)’u’ and y,u’ just yield a, =0. Then, from the
coefficients of (y;)’u* and y,u*, we obtain s =-3. The remaining coefficients yield
r=2. Hence, we have

a=a, SsS=-3,r=2. (3.577)
Therefore, (3.576) and (3.577) yield three adjoint-symmetries given by

o =y'()", o,=y0)" o,=y'()0)". (3.578)

From results in Section 3.6.5 [cf. (3.523)], it follows that the two first-order
adjoint-symmetries @, and @, are integrating factors of ODE (3.572), while the second-

order adjoint-symmetry @, is not an integrating factor of ODE (3.572). We now use o,

to obtain a higher-order integrating factor of ODE (3.572) by means of the ansatz (3.553),
which here becomes

A:y4(y2)2(y1)75V/(V/1vV/2) (3.579)
depending on a function y(y,,y,), where
W=, =29 () (00) + ¥ () s (3.580a)

vy =y 7y, =y ) ) + () s, (3.580b)

are the first integrals corresponding to the integrating factors A, =®,, A, =w,. Since
Dy, =Dy, =0, it follows that ansatz (3.579) satisfies the adjoint-symmetry
determining equation (3.573) for an arbitrary function w(y,,y,). Then, from Theorem

3.7.2-1, we see that ansatz (3.579) yields an integrating factor of ODE (3.572) if and only
if it satisfies the adjoint invariance conditions
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A, + (=3y"'y, +5, (yl)_l)AY3 +(DA),, =0, (3.581a)

A+ (290,07 +8(0,) ()7 =3y 7y, =53, 7y )A, =GBy +5y,(0) DA
- (D((_(yl)z)fz +8y, (yl)il - 12()’2)2()’1)72 +5y, (yl)il )A))y3
+(D*((Byy ™ +50,(0) HA) + D3A)y3 =0. (3.581b)

After some simplifications, we find that the adjoint invariance conditions (3.581a,b)
reduce to the single PDE

vy, Ty, +2y =0. (3.582)

This has the general solution
y = (%)W[ﬁ}
2

where / is an arbitrary function of its argument. Hence, by the relation (3.477) between
first integrals and integrating factors, we obtain an integrating factor

A=y () )7 W) =y ) ) O =Y ) + () )

(3.583)
and a corresponding functionally dependent first integral
o=l = () =Y () o =Y ) ) Y00 (3.584)
2
3.74 NOETHER’S THEOREM, VARIATIONAL SYMMETRIES,
AND INTEGRATING FACTORS
An nth-order ODE
Fx,y, 5 y™)=0, 2L 20, (3.585)

ay(n)

has a variational formulation if its solutions y = ®(x) on a domain x €[a,b] correspond
to the extremals of an action functional

Sly(x)]= Ij L(x, . s ¥ dix. (3.586)

In particular, on the space of functions y(x), consider a one-parameter group of local

transformations x* = x, y* = y + &V (x) + O(&*), with the infinitesimal generator

X =y (0L 4102 1 3.587
(5, V@) (3-587)
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in terms of an arbitrary function V'(x). The corresponding variation of the action (3.586)
is given by

< (0 b (o ' n
XSy = [ XD Lx,p, ¥y
x=b

' F ! " ' n—
= [ V@B, (L 0,5 ) di + AV 35,3,V o )

xX=a

(3.588)

where

po_0_do 0
Eo=o " wa dx a<") (3.589)

is the standard Euler operator in the calculus of variations [Olver (1986)], and where,
through integration by parts,

@2n-1) oL  [yroL _yyd oL
A(V x y y’ ’y ) V a ’ [V a ” de 6yﬂ)+

N 4= —8‘97{) O =y]. (3.59)

Now suppose V(x) and its derivatives V'(x), V"(x), etc. vanish at the end-points x=a,
x = b. Consequently, the end-point values of y(x), y'(x), y"(x),etc. are fixed under the
transformation generated by (3.587). Then the equation

X S[y(x)] = Lf V(R (L, y, Ve ™)) dx =0 (3.591)

is a necessary condition for y(x) to be an extremal of the action (3.586). Since V' (x) is
arbitrary within the domain x e (a,b), it follows that the extremals must satisfy the
Euler-Lagrange ODE

O[)(xyvyv vy(n)) d a,cf(x yoy’ ’y(n))+

L, v,y ™) =0. (3.592a)

d a('“

Hence, a given ODE (3.585) corresponds to the extremals of an action (3.586) if and only
if
FO, 1, ey ™) = B (LG v, Vs 1)) (3.592b)

holds for some function -£(x,y,y",..., y”), for all functions y(x). Any two functions -/
that differ by a total derivative dW /dx of an arbitrary differentiable function
W(x,y,¥,...y"") vyield the same Euler-Lagrange equation (3.592b), since one can

show that En annihilates a function if and only if it is of the form dIW /dx. We will see
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that in (3.592b) there is no loss of generality in allowing the highest order derivative of y

in - to be the same as the highest order derivative of y in F.
The variation (3.588) of the action is equivalent to the identity

X(”)J(x, Vs Voo ¥,) = VE (LY, Y10ees ) + DAV 3,9, Vyes i) k=21,
(3.593)
holding in (x,y,y,,..., ¥, ) -space, where X™ denotes the nth-extension of the generator
X = V%, V=V(x,y,y,..,y,) 1s an arbitrary function (with 7/ <n), D, is the truncated
total derivative operator (3.468), and

k
E, =Y (-D)) = k20, [y =] (3.594)
i=0 i

1

is a corresponding truncated Euler operator.
Consequently, from (3.591), the Euler—Lagrange equation (3.592a) for extremals
of the action is equivalent to

E2n(9[)(‘x9 y’ yl""’ yn)) = O'
Hence, the surface given by
F(x,9,%.»Y,)=0 (3.595)

defines the stationary points of the action (3.586).

Definition 3.7.4-1. An nth-order ODE (3.585) has a variational principle given by an
action functional (3.586) if there exists some function L(x,y,),...,»"™), ie. a

Lagrangian, such that the Euler—Lagrange equation (3.592b) holds for all functions
vy = y(x). Equivalently, the surface (3.595) arises as the stationary points

F(X, 0,150 ¥,) =By (L, 9, 314000,3,)) =0 (3.596)

for a Lagrangian £(x, ¥, ¥,,..., ¥, )-

We next establish the fundamental connection between the existence of an action
functional (3.586) and the self-adjointness of the linearization operator for an nth-order

ODE (3.585). If relation (3.596) holds for some Lagrangian -{'(x,y,y,,...,,), then by
direct calculation one can show that (L, —L *.)V =0 is satisfied identically for arbitrary
functions V' =V (x,y,y,,....,y,), { <n. Hence, L, =L*, . Conversely, if L, =L*,, then
using conditions (3.545a,b), one can verify that

1
c[(x, Vs Visews V,) = yjo F(x, Ay, e, Ay,) dA (3.597)

is a Lagrangian yielding (3.596).
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Theorem 3.7.4-1. An nth-order ODE (3.585) admits an action functional (3.586) if and
only if (3.585) is self-adjoint. An explicit Lagrangian is then given by (3.597).

The same results hold for a self-adjoint ODE in a solved form (3.535) for y, . In
particular, the Lagrangian (3.597) then takes the form

1
LY Vi ) =50, =V [y S e W, ) dA.

When ODE (3.535) is not self-adjoint, we remark that one can also consider an
action functional whose Euler—Lagrange equation yields (3.535) to within a nonconstant
multiplier, i.e.,

F(X, . V1sees 1) = (00 = 0, Yy Yo D= By (L (X, 3, 1500, ) (3.598)

in terms of some function % = h(x, y, y,,...,»,). Necessary and sufficient conditions for
the existence of such a multiplier A(x,y,y,,...,y,) are given by (3.545a,b). The cases
n =23 are considered in Exercises 3.7-8. Theorem 3.7.4-1 corresponds to the situation
when A(x,y,y,,....,»,) =1.

As discussed in Section 3.5.1, each symmetry of ODE (3.535) is characterized by
the infinitesimal of a one-parameter group of local transformations leaving invariant the
surface (3.536). In particular, if 7(x,y,y,,...,»,) is a symmetry of order 0</<n-1

admitted by ODE (3.535), then the corresponding local transformation group acting on
functions y(x) is given by the extended infinitesimal generator

co o d ,
X( ) = Z[d i n(xayby a:..ay(é))J (3.599)
i=0 \ aX

ay(i) ’
For a self-adjoint ODE (3.535), any such local transformation group obviously leaves

invariant the extremals of the action functional (3.586).

Definition 3.7.4-2. A symmetry 7(x,»,,,...,»,) of order ¢/ admitted by a self-adjoint

ODE (3.535) is a variational symmetry if the action functional (3.586) is invariant under
(3.599) to within a boundary term, i.e.,

X 0 x=b
XS] = [ XOLx,p,y sy e = B x, 9,5 )
for some function B(#;x, y,)',..., y"*™) which, without loss of generality, depends on

x,y, and y up to at most order i=n+/(—-1.

Invariance of the action functional to within a boundary term is equivalent to the
invariance of the Lagrangian to within a total derivative

X(”)J(x, Vs Visees ¥,) =D, BV, ¥, Y50, V) With X = V%, (3.600)
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where V =7(x,y,¥,,-Y,), and k=n+/¢. In turn, (3.600) can be expressed
equivalently using the Euler operator equation given by Theorem 3.6.4-2 as follows:

Theorem 3.7.4-2. Suppose 17(x, y, y,,...,y,) is a symmetry of order { admitted by a self-
adjoint ODE (3.535). Let O(x,y,Y,,., V;) = )A((”)c[(x, Vs Vi ¥,), k=n+1L, where

X" is the nth extension of X:ﬁ% Let, inductively, ¥, =6 ,

V., =0, DY, .., j=L..k, where D, is the truncated total derivative operator
(3.468) and Y, =E (0) is the Euler operator (3.594). Then 1H(x,y,y,,....V,) is a
variational symmetry of the self-adjoint ODE (3.535) if and only if

o¥, .
ak_j =0, j=01..k—-1, (3.601a)
Vi
Y, =0. (3.601Db)

Theorem 3.7.4-2 provides a system of n+ ¢ +1 linear determining equations for
the variational symmetries 7(x,y, y,,...,y,) of a self-adjoint ODE (3.535). From Lemma

3.7.2-1 and Theorem 3.7.2-1 (in the self-adjoint case), we see that this system is
equivalent to the symmetry determining equation

n—1 .
D73, f,D5=0 (3.6022)

and the »/2 adjoint invariance conditions

2m—i

Ay, + 2, GDTOTS, L ), @), =0, m=1..,n/2,
i=0
(3.602b)

where D is the derivative operator (3.445b) associated with the surface (3.536). Hence,
we obtain a system of 1+ (n#/2) linear determining equations that are necessary and

sufficient for a symmetry of a self-adjoint ODE (3.535) to be a variational symmetry.

Theorem 3.7.4-3 (Variational Symmetry Determining Equations). The variational
symmetries of a self-adjoint nth-order ODE (3.535) are those symmetries 1 of (3.535)

that satisfy the n/2 adjoint invariance conditions (3.602b).

We now state the fundamental theorem of Noether for variational symmetries:

Theorem 3.7.4-4 (Noether’s Theorem). For a self-adjoint ODE (3.535), every
variational symmetry of order 0 < (¢ <n—1 is an integrating factor and, conversely, every
integrating factor of order 0</(<n-1 is a variational symmetry. In particular, if
n(x,y, Y, y,) is a variational symmetry of ODE (3.535), then
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WX Y, Viseos Vot) = BB X, Y, Vysees ¥,0050,0.) = AW %, ¥, Vyseess ¥,0050,00)
(3.603)

yields a first integral of (3.535), where A(V;X,Y, V,seees V5,1) and BV;x, Y, V,5e0s ¥, 1)
are given by (3.593) and (3.600).

Proof. Suppose 7(x,y,¥,,...,y,) is a variational symmetry of a self-adjoint ODE

(3.535). By combining the Lagrangian variations (3.600) and (3.593) for V =7, we
obtain

AF =D, (B-A) with F=E, ().

This is the characteristic equation [cf. Section 3.6.4] stating that 7(x, y, y,,...,»,) is an

integrating factor of ODE (3.535) with corresponding first integral (3.603).
Conversely, suppose A(x,y,y,,...,y,) 1s an integrating factor of a self-adjoint
ODE (3.535). Then we have the characteristic equation

AF =D,y with F=E, ().
By using identity (3.593) with /' = A, we obtain
X" L =D, (v + A), (3.604)

and hence, X = A(x,y,¥,5...,y,) 0/ 0y 1s the infinitesimal generator of a one-parameter

local transformation group leaving invariant the action functional (3.586) to within a
boundary term. Since the extremals of (3.586) remain invariant, A(x,y,y,,....,»,) 1s a

symmetry of ODE (3.535) and, hence, from (3.604) we conclude that A(x,y, y,,...,»,) is
a variational symmetry of (3.535). i

It is common to see Noether’s Theorem applied to a self-adjoint ODE (3.535) in
the following way: One first finds symmetries of ODE (3.535). Next, one checks which
of these symmetries are variational symmetries, i.e., if the Lagrangian is invariant to
within a total derivative. Finally, one calculates the first integral (3.603) for each
variational symmetry. This procedure is quite awkward computationally since it is
cumbersome to verify directly the invariance (3.600). A much more effective approach is
given by Theorem 3.7.4-3. In particular, one can solve the linear determining system
(3.602a,b) to find only those symmetries of ODE (3.535) which are variational
symmetries. Most important, one is able to mingle the »/2 adjoint invariance conditions
(3.602b) with the symmetry determining equation (3.602a) to optimally solve the system.
In practice, this provides a significant computational advantage compared to the approach
through Noether’s Theorem. Moreover, the calculation of first integrals can be carried
out directly in terms of the variational symmetries of ODE (3.535) by the line integral
formula given in Theorem 3.6.4-3.
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Theorem 3.7.4-5. For a self-adjoint ODE (3.535), the first integral corresponding to a
variational symmetry (i.e., integrating factor) 1(x,y,y,,....»,) of (3.535) is given by the
line integral

W:

[ {Z[Z /D, (), + (1" (D))" ﬁj(dy,-l ~ g, d) + iy, — f ) |

i=1 \_ j=0

where C is any path curve from a point (X,V,¥,,...,¥,,) 10 (X, Y, V)50 ¥V, 1)

3.7.5 COMPARISON OF CALCULATIONS OF SYMMETRIES,
ADJOINT-SYMMETRIES, AND INTEGRATING FACTORS

For a given nth-order ODE (3.535), the nature of the calculation of its symmetries
n(x,y,v,--,), adjoint-symmetries @(x,y,y,,...,»,), and integrating factors

A, Y, Y52 Y,), 00 <n—1, is the same. In each situation one has to solve a system of

linear determining equations, given by (3.542), (3.543), and (3.552a,b), respectively. For
0</<n-1, these determining systems reduce to overdetermined systems of linear

homogeneous PDEs in ¢/ +2 independent variables x, y, y,,..., y, and, consequently, there

are at most a finite number of linearly independent solutions. In practice, one is typically
able to find all these solutions explicitly. However, for / =n—1, the determining systems
are no longer overdetermined and now possess an infinite number of solutions. In this
case one can use special ansatzes (e.g., elimination of variables, separation of variables,
point symmetry invariance) to seek solutions.

In the classical case of a first-order ODE, there is an explicit one-to-one relation
between symmetries and integrating factors [cf. Section 3.2.2], namely, #(x,y) is a
symmetry if and only if A(x,y)=1/7(x,y) is an integrating factor. Moreover, here
integrating factors are the same as adjoint-symmetries. However, for second- and higher-
order ODEs, these relationships break down (i.e., there are now adjoint invariance
conditions).

When n>2, the size of the solution space for adjoint-symmetries of order
¢ =n-1 of ODE (3.535) is always of a larger cardinality (in terms of free functions) than
that for integrating factors of the same order /=mn—-1 since, from Theorem 3.7.2-1, it
follows that not every adjoint-symmetry satisfies the [#/2] adjoint invariance conditions
for determining integrating factors.

The size of the solution space for symmetries of order / =n—1 of ODE (3.535) is
of the same cardinality as that for adjoint-symmetries of order / =n—1, since both the
symmetry determining equation and adjoint-symmetry determining equation are of the
same nature, i.e., they are linear homogeneous PDEs in n+1 independent variables

x:y:ylr'ﬂyn—l'
The situation for the solution spaces of symmetries, adjoint-symmetries, and
integrating factors, respectively, of order 0</<n—1 is much more involved since, in
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general, a given nth-order ODE (3.535) may admit no such symmetries, adjoint-
symmetries, or integrating factors. An interesting question then is how do sizes of
respective classes of nth-order ODEs (3.535) compare if one considers a specific ansatz
for admitted symmetries, adjoint-symmetries, and integrating factors. This is relevant for
assessing a priori the utility of, say, point symmetry analysis versus point-form
integrating factor analysis.

To make an explicit comparison, we classify second-order ODEs

Yo =f(x5.0n) (3.605)

admitting

(1) point symmetries:
n=w; (3.606a)

(i) point-form adjoint-symmetries:

=y, (3.606b)
(ii1) point-form integrating factors:

A=y, (3.606¢)
The substitution of (3.606a) into the symmetry determining equation (3.542) yields
D2y1 _ny1 _fle)ﬁ =f.=0.

Hence, the class of ODEs (3.605) admitting the point symmetry ansatz (3.606a) is given
by
f=aly,») (3.607)

(i.e., x 1s missing) depending on an arbitrary function a(y,y,). In contrast, the
substitution of (3.606b) into the adjoint-symmetry determining equation (3.543) yields

D2y1 _fyyl + D(ylﬂ)l) = fx + Zﬁ)l +y1fxyl + (.))1)2.](‘)1}7l +y1‘ffJ’l))l = 0 (3'608)

This is a second-order nonlinear PDE for f(x,y,y,) and, hence, in effect its general

solution depends on two arbitrary functions of two independent variables. But the
substitution of (3.606c) into the adjoint invariance condition (3.552b) yields

), +MDy), =21, +nf,, =0. (3.609)

Solving (3.609), we obtain f =a,(x,y)(y,)”" +a,(x,y), and then (3.608) reduces to
(ay), =(a,),. Hence, the class of ODEs (3.605) admitting the point-form integrating
factor ansatz (3.606¢) is given by

[ =aCe )" + [ a,(x,y)dc+b(y) (3.610)

depending on arbitrary functions a(x, y) and b(y). We observe that both classes (3.610)
and (3.607) of ODEs (3.605) involve one arbitrary function of two independent variables,
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while the class given by (3.608) depends on two such arbitrary functions. Moreover, the
class (3.610) also involves an additional arbitrary function of one independent variable.

Therefore, a priori the utility of a point-form integrating factor ansatz is no less
than that of a point symmetry ansatz for second-order ODEs. More generally, a similar
conclusion holds for any particular ansatz for symmetries and integrating factors of
nth-order ODE:s.

EXERCISES 3.7

1. Consider the harmonic oscillator equation
Y +v?y=0, v =const. (3.611)

(a) Show that the adjoint-symmetries of ODE (3.611) are the same as the symmetries
of (3.611).
(b) Show that the translation symmetry x —> x+¢ y—y of ODE (3.611) is a

variational symmetry (i.e., an integrating factor of (3.611)) but the scaling
symmetry x = x, y > Ay of (3.611) is not. Find the first integral of ODE (3.611)
arising from the translation symmetry.

(c) Consider the ansatz (3.553) for ODE (3.611) by using the scaling symmetry and
first integral corresponding to the translation symmetry. Show that this ansatz
yields a variational symmetry of ODE (3.611) giving a first integral functionally
independent of the previous one.

(d) Show that these two first integrals correspond to the energy and phase of the
harmonic oscillator, and obtain the quadrature of ODE (3.611).

2. Consider the KdV traveling wave ODE (3.499).

(a) Find the first-order adjoint-symmetries of ODE (3.499) and verify that the two
admitted point-form adjoint-symmetries satisfy the adjoint invariance conditions
for integrating factors of (3.499).

(b) Use the ansatz (3.553) to obtain an additional integrating factor of ODE (3.499).
Show that this ansatz only yields two functionally independent first integrals
corresponding to first-order integrating factors.

(c) Look for second-order adjoint-symmetries of ODE (3.499) given by the ansatzes
(3.554a,b), using the invariants of the scaling symmetry x— Ax, y —> A7y
admitted by (3.499). Verify which of these adjoint-symmetries satisfy the adjoint
invariance conditions for integrating factors of ODE (3.499).

(d) Obtain the quadrature of ODE (3.499) using the first integrals corresponding to its
admitted first- and second-order integrating factors.

3. Consider the fourth-order ODE

vy =40"2 " (3.612)
(a) Show that ODE (3.612) is not self-adjoint.
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(b) Find the first- and second-order adjoint-symmetries of ODE (3.612). Verify
which ones satisfy the adjoint invariance conditions for integrating factors of
(3.612).

(c) Find third-order adjoint-symmetries of ODE (3.612) that are given by the ansatzes
(3.554a,b) using the joint invariants of the scaling symmetries x - ax, y — fy

and the translation symmetries x - x+¢, y —> y+0 admitted by (3.612). Verify

which of these third-order adjoint-symmetries satisfy the adjoint invariance
conditions for integrating factors of ODE (3.612).

(d) Obtain the quadrature of ODE (3.612) by using the first integrals arising from the
admitted integrating factors.

4. Show that the fourth-order wave speed ODE (3.571) (not in solved form) is not self-
adjoint.
5. Prove Lemma 3.7.1-2.

6. For an nth-order ODE (3.535), show that if w(y,,...,y,) is a function of first
integrals y,, i =1,...,k, and w(x,y,,,...,»,) is an adjoint-symmetry, then A = oy
satisfies (3.552a) while (3.552b) reduces to a first-order linear homogeneous system
of PDEs for y(y,...,v,).

7. Let X =£&(x, y)aiJr n(x, y)ai be the infinitesimal generator of a point symmetry
X 4

admitted by an nth-order ODE (3.535). Through the use of canonical coordinates [cf.
Section 3.3.1], show that the symmetry determining equation (3.542) and the adjoint-
symmetry determining equation (3.543) admit the nth-extended infinitesimal

generator X" of X.

oo

. (a) Consider a second-order ODE y" = f(x,y,y’). Obtain a linear homogeneous PDE
that is a necessary and sufficient condition for F(x,y,y,y")=
h(x, v, )" = f(x,y,¥")) =0 to be a self-adjoint ODE in terms of a multiplier
h(x, y,y,). Show that such a multiplier exists for any f(x,y,y,).
(b) Consider a third-order ODE y" = f(x,y,)',»"). Show that the ODE

FQx,p,y, 0" ") =h(x, p, ¥, y)O" = f(x, 5,5, ") =0 is not self-adjoint for
any multiplier A(x,y,y',y").
9. Classify all self-adjoint fourth-order ODEs y™* = f(x,3",y", ™).

10. A second-order ODE y" = f(x,y,)") admits the point-form adjoint-symmetry o = y,
if and only if f(x,y,y,) satisfies the second-order nonlinear PDE (3.608).
(a) Show that f=a(x,y)y +b(x,y) is a solution of (3.608) if a,=0 and
b +2ab=0.
(b) Show that @ = y, is not an integrating factor for the corresponding class of ODEs
V"= a(x)y' +[a(x)]”b(y).
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(¢) Compare the class of ODEs (b) to the class given by (3.610) admitting the
integrating factor A = y,.

11. Classify all second-order ODEs (3.605) admitting:
(a) the point symmetry 7=y,
(b) the point-form adjoint-symmetry @ = y;
(¢) the point-form integrating factor A = y;
(d) the first-order symmetry 7 =1/y,;
(e) the first-order adjoint-symmetry @ =1/y,; and
(f) the first-order integrating factor A =1/ y,.

12. Classify all third-order ODEs y" = f(x,y,',»") admitting:

(a) the point symmetry 7= y,;
(b) the point-form adjoint-symmetry @ = y,; and
(c) the point-form integrating factor A =y,.

13. An nth-order ODE (3.535) is skew-adjoint if L, =-L*, .

(a) Show that for any skew-adjoint ODE, admitted symmetries are the same as
admitted adjoint-symmetries.
(b) Classify all second-, third-, and fourth-order skew-adjoint ODEs.

3.8 DIRECT CONSTRUCTION OF FIRST INTEGRALS THROUGH
SYMMETRIES AND ADJOINT-SYMMETRIES

We now present two additional methods for construction of first integrals of nth-order
ODEs.

The first method yields an algebraic first integral formula (i.e., without
integration) from any pair consisting of a symmetry and an adjoint-symmetry admitted by
a given ODE. For an nth-order ODE that admits a scaling symmetry, we show that the
first integral arising from a pair consisting of the scaling symmetry and an adjoint-
symmetry given by an admitted integrating factor is the same as the first integral arising
from the line integral formula for the admitted integrating factor. Thus, for such an ODE,
one can use the algebraic first integral formula in place of the line integral formula for
constructing a first integral in terms of an integrating factor. Most important, the
algebraic first integral formula yields a first integral from any adjoint-symmetry whether
or not it is an integrating factor.

The second method uses a Wronskian determinant formula yielding first integrals
for ODEs that admit sufficiently many symmetries or adjoint-symmetries. If an nth-order
ODE in solved form does not have an explicit dependence on the (n—1)th derivative of the
dependent variable, then either » symmetries or n adjoint-symmetries are sufficient to
obtain a first integral by the Wronskian formula. More generally, for an nth-order ODE
in solved form with an essential dependence on the (n—1)th derivative of the dependent

255



variable, the formula requires at least either n+1 symmetries or n+1 adjoint-symmetries
or, alternatively, n symmetries together with » adjoint-symmetries.

3.8.1 FIRST INTEGRALS FROM SYMMETRY AND
ADJOINT-SYMMETRY PAIRS

Consider a second- or higher-order ODE

= f(x%, 3,V y" ), 122, (3.613)

represented as a surface

F('x’y’y]"'”ynfl):yn _f(x’y’yl"'”ynfl):()' (3'614)

Recall that the symmetries /7 and adjoint-symmetries @ of ODE (3.613) are given by the
solutions of L.7=0 and L*.®=0, respectively, where L, is the linearization
operator of (3.614) and L *, is the adjoint operator [cf. (3.541a,b)]. Now, from Lemma
3.7.1-1, it follows that L, and L*, satisfy the identity

WL,V —VL*, W =DS[W,V;F] (3.6152)

with

n-1 i

SW.,V;F]= (-1)’(D'V)D’ (WF, ), (3.615b)

=0 j=0
for arbitrary functions V(x, 3, V/s0s ¥, 1) W(Xs Yy Vyseens ¥,y)- Hence, if we let
V=nxy,,....y,) and W=aw(x,y,,,...,»,), then (3.615a) yields DS[w,7;F]=0
Therefore, S[w,7n; F] is either a constant or a first integral of ODE (3.613), depending on
whether its corresponding integrating factor is identically zero.

Theorem 3.8.1-1. If (A,®) is a pair consisting of a symmetry 0(x,y,y,,...,y,) and an
adjoint-symmetry o(x,y,y,,...,¥,) of ODE (3.613), then

n—1

v =Y Do i+Y Y )0 @f, DT (3.616)

0 =0 j=0

~.

is a first integral of (3.613) provided that 0y (n,w)/dy, , # 0.

Now suppose we have a point symmetry 7(x, v, y,) =n(x,y)—&(x,y)y, of ODE
(3.613) and an adjoint-symmetry @(x, y, y,,...,»,) given by an integrating factor of ODE
(3.613). Then the following relation holds between the first integral (3.616) determined
by the pair (7,w) and the first integral corresponding to the integrating factor

AN=ao(x,9,¥,...,Y,).
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Theorem 3.8.1-2. Let A =w(x,y,y,,...,y,) be an integrating factor of ODE (3.613)

with the corresponding first integral w(x,y,y,s... v, ). If 1=n(x,y)=&(x, )y, is a
point symmetry of (3.613), then the first integral v (9, ®), given by (3.616), satisfies

v(h,0)=X""w+c, c=const, (3.617)

(n=1)

where X is the (n—1)th extension [cf. (2.100a,b)] of the point symmetry generator

X=¢ 82 + nai. In particular, the integrating factor corresponding to the first integral
X y
(3.617) is given by

A, 0)=X"w+R, o, (3.618)
where
877("—1)
Rn—l = ayn_l = 77)/ - néyyl - (n - l)gx'

Proof. We calculate the integrating factor A(ﬁ, ®) =0y (n,w)/dy, , from (3.616). First,
since 07/0dy, =0 for i>2, the terms in Oy (7,w)/dy, involving differentiation
o/oy,, of D*A reduce to

o(DD"?H), —(af, +Dw)D"’7), , (3.619)
where
(D), =,
(DD"?*f), =—(n-DD&~f, &+n, =&y,

Next, the terms in 0y (#, @)/ dy, , with no differentiation of D' yield

n-2 n—k-1

(oot Y O, ), e, DU 60
i=1

k=0

By using the adjoint invariance conditions (3.551), which hold since w(x, y,y,,...,»,) 1s
an integrating factor of ODE (3.613), we find that (3.620) simplifies to

LN

N

o, D7, (3.621)

0

We now combine (3.621) and (3.619), which yield

=
Il

~H n-1
—6!2;77’ ) =R _ o+ Z a)yka (n-%,)+Daw.
n—1 k=0

The identities D* (7 - &) =n" - &,,,, 0<k<n-1, [cf. (2.219)] then lead to

ay}(ﬁow) — X(n—l)a)+R 1(0
a.yn—l !
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Hence, we have established (3.618). Finally, (3.617) follows from Theorem 3.6.4-7. O

Now, if ODE (3.613) admits a scaling symmetry
Ny =n-&,, with n=py, £=gx, (3.622a)

ie., x > a’x,y > a’y forsome p=const, g =const, then

Xgn)(yn _f(xa Vs Viseeos yn—l)) = (p _nqun _f(xoyv yl""’yn—l))’ (3622b)

where p—nq is the scaling weight of the surface (3.614), i.e., F — a”™F under X{".
If an integrating factor A(x,y,»,,...,y,) of ODE (3.613) is homogeneous with respect to
this scaling symmetry, i.e., A = a'A under x > a’x, y > a’y, y, >a’ "y, then

XA, Y, Viserr ¥,) = SA(X, Y, Yy serr 1)) (3.623)
for some s which defines the scaling weight of A(x,y, y,,...,,).

Definition 3.8.1-1. A homogeneous integrating factor (3.623) of ODE (3.613) has
critical scaling weight with respect to the scaling symmetry (3.622a) if s =(n—1)q — p.

In the case of a scaling symmetry, Theorem 3.8.1-2 yields an algebraic formula
for first integrals.

Theorem 3.8.1-3. Suppose ODE (3.613) admits a scaling symmetry (3.622a,b). Let
A(x, y, ¥y, y,) be a homogeneous integrating factor of (3.613) with scaling weight

(3.623), and let y(x,y,y,,...,¥,,) be its corresponding homogeneous first integral.
Then

V(5. A) = ry, (3.624)
where
r=s+p-(n-1I)g. (3.625)

In particular, if the scaling weight s of A(x,y,¥,,...,»,) is not critical, i.e. r #0, then

l//(xayvyla"-vyn—l) = r_l‘/}(ﬁS’A)
=r(p—(n=Dq)y,., —gxA

+r Z (P —iq)y; = {(—1)"” Do+ Z D7 e, )}
(3.626)

We now illustrate the use of Theorems 3.8.1-1 to 3.8.1-3 through several
examples.
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For a first example, consider the nonlinear Duffing equation
Y'+ay +by+y’ =0, (3.627)

which is not self-adjoint if a#0 (i.e., the damping constant is nonzero). The point
symmetries of ODE (3.627) are given by

N =Y, (3.628a)
h,=e"""Eay+y) if b=2a’. (3.628b)
The adjoint-symmetries of (3.627) are given by [cf. Section 3.7.3]
o, =e"y, (3.629a)
w, =" (Lay+y) if b=2ad". (3.629b)

Here, we apply Theorem 3.8.1-1, using the four pairs of symmetries and adjoint-
symmetries given by (3.628a,b) and (3.629a,b) to obtain first integrals of ODE (3.627)
given by

v(h,w)=wDh-nDw+ano, (3.630)
where
D=%+yl%—(ay1 +by+y3)aiyl.
Substitution of (3.628a,b) and (3.629a,b) into (3.630) gives
V(. 0,) = (i, 0,) =0, (3.631a)
g (i, 0,) == () ==3ae ™ (v, +1ay)’ +50%). (3.631b)

This yields a single first integral that is a multiple —4a/3 of the first integral
w, =Ly, +1ay)’ +1yh if b=2a’, (3.631¢)

where y, is the first integral given by the integrating factor A = @, of ODE (3.627) [cf.

Section 3.6.3]. From Theorem 3.8.1-2, note that (3.631a,b) corresponds to the action of
the point symmetry generators

X0 =2

ox

and

W _ O 1 @mx O e 120 0
X5 =—e" xa+3ae” "y5+e“ "Gay, +va’y)—
1

on y,, i.e., Xil)l//z =y(n,w,) = —%ay, and X(zl)l//z =y (n,,0,)=0.
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As a second example, consider the third-order nonlinear ODE
y'+p'=0 (3.632)

that describes traveling wave solutions of the KdV equation [see Exercise 4.1-2]. Since
(3.632) is a third-order ODE, it is not self-adjoint. Its admitted point symmetries are
given by a translation in x and a scaling in x, y:

A= (3.633a)
n,==2y—xy,. (3.633b)

Its admitted first-order adjoint-symmetries [cf. Exercise 3.7-2] are given by

o, =1, (3.634a)
o, =y, (3.634b)
o, =5y + ()" (3.634¢)

The two point-form adjoint-symmetries (3.634a,b) are integrating factors of ODE (3.632)
[cf. Section 3.6.5] while (3.634c) is a first-order adjoint-symmetry that is not an
integrating factor of ODE (3.632). Under the action of the scaling symmetry (3.633b),
the adjoint-symmetries (3.634a—c) are homogeneous with scaling weights given,
respectively, by

5, =0, s,=-2, s5,=-6. (3.635)

We now apply Theorem 3.8.1-1, using the symmetries (3.633a,b) and adjoint-symmetries
(3.634a—c) to obtain first integrals of ODE (3.632) given by

v (h,w) =D’ — (Do)D7 + 7D’ + yon, (3.636)
where
p.9,,9. ., 9 9
o N oy Y o, BAZ! ayz'

First we use the scaling symmetry 7 =7,. Substituting (3.634a,b) into (3.636), we obtain
Y (i, @) =4y, +3°) =4y, (3.637a)

!/7(7?2,602)=—6(yy2+%y3—%(y1)2)=—6!//2, (3.637b)

which are scaling multiples 7, =—4 and r, =—6 of the first integrals y, and y, given
by the integrating factors (3.634a,b). Note that these scaling factors are in accordance
with Theorem 3.8.1-3 where, from (3.625), r, =s, —4,i=12. Next, the substitution of

(3.634c¢) into (3.636) yields the functionally dependent first integral
Y (i, ;) =—4yp,. (3.638)
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Finally, if we use the translation symmetry 7 =7, in (3.363) with (3.634a—c), then we
obtain

l/;(ﬁl,a)l) = !/;(ﬁl’a)2) = l/;(ﬁl’a)3) =0.
As a third example, consider the fourth-order ODE
'™ =0

or, equivalently,

' , " "n2..m 4 "2 4 ”\3 3 r.m 5 n_.m
Y = f(y iy = QLY O B0 0 V073630
y y ") Y

arising in the study of the symmetry properties of the wave equation with wave speed
y(x). The ODE (3.639) is not self-adjoint [cf. Section 3.7.3]. Its admitted point
symmetries consist of translations in x and independent scalings in x and y given by

= (3.640a)
=y, (3.640b)
fly = —xy,. (3.640¢)

It does not admit any contact symmetries or second-order symmetries [cf. Section 3.5.2].
The adjoint-symmetries up to second order of (3.639) [cf. Section 3.7.3] are given by

Y
o, =—, 3.641a
= ( )
yz
o, =———r0, (3.641b)
’ (%)3
+ (¥ )2
W, =y #5, (3.641¢)
(yl)

where (3.641a,b) are integrating factors but (3.641c¢) is not [cf. Section 3.6.5]. The first
integrals corresponding to (3.641a,b) are given by

4 :yz(yl)_1y3+yy2_2y2(y1)_2(y2)2» (3.642a)

v, = yz(yl)—3y3 +y(y1)_2y2 _yz(yl)—4(y2)2' (3.642b)

Here, we apply Theorems 3.8.1-1 and 3.8.1-3, using pairs of symmetries (3.640a—c) and
adjoint-symmetries (3.641a—c) to obtain the first integrals (3.642a,b). First, using the
translation symmetry (3.640a), we find that the first integral formula (3.616) trivially

yields w(h,0,)=y(#,,0,) =y(H,,0,)=0. Next consider the scaling symmetries
(3.640b,c). The scaling weights of (3.64la—c) are s, =s,=-s,=1 with respect to
(3.640b), and s, =s, =1,5, =3 with respect to (3.640c). From the first integral formula
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(3.616), we obtain (3.616)

(1, 0) ==y (175, 0,) =2y, (3.643a)
y (i, 0,) =y(7;,0,) =0, (3.643b)
Y (1, 0,) ==y (7, 03) =2y, (3.643¢)

where (3.643a,b) are scaling multiples =2 and r, =0 of (3.642a,b), respectively.
Note that , =0 reflects the x and y scaling invariance of y,, i.e., correspondingly, ,
has critical scaling weight with respect to both (3.640b,c).

3.8.2 FIRST INTEGRALS FROM A WRONSKIAN FORMULA USING
SYMMETRIES OR ADJOINT-SYMMETRIES

Consider again a second- or higher-order ODE

y(”) = f(x,y,y',...,y(”’”), n>2, (3.644)

represented as a surface
Vo =S50, Vs Vr)- (3.645)

Recall that the determining equations for symmetries and adjoint-symmetries of ODE
(3.644) are nth-order linear homogeneous equations in terms of the operator

d d d d
D:—+ — -+ —+ xa D) 9¢09 Vp— *
papd & Vot P S Y, Vs V) &

n-1
In particular, both of the determining equations have the form
D'p+A, D" "'p+-+ADp+A,p=0, (3.646)
where, for symmetries 7(x, y, y,,...,»,) of ODE (3.644), in (3.646) we have
p=n, A, =f, i=0L.,n-1, (3.647a)

with y, = y; for adjoint-symmetries w(x,y, y,,...,»,) of (3.644), in (3.646) we have

n—i-1 o (; A\ )
p=w, A=Y (—1)"““%1)1]; L i=0L..,n-1,  (3.647b)
=0 i'y! i
with y, = y.

Definition 3.8.2-1. If {p,(x,y,,,....,y,)}, i=12,...,n, is a set of n solutions of the nth-
order linear homogeneous PDE (3.646), then the Wronskian of {p,} is given by the n x n
determinant
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P P

Dp, - Dp,

W (P, p,) = (3.648)

D"p, - D"p,

The determinant (3.648) possesses properties completely analogous to the
classical Wronskian for nth-order linear ODEs [Coddington (1961)].

Definition 3.8.2-2. A set of k solutions {p,(x,»,y,...y,)}, i=12,..,k, of the
determining equation (3.646) is linearly dependent with respect to the surface (3.645) if
Z; ¢;p; =0 holds for some functions c,(x,y,y,,...,», ;) satisfying Dc, = 0. Otherwise,

the set of & solutions {p,(x,y, V..., V,)}, i =12,....k,0f (3.646) is linearly independent
with respect to the surface (3.645).

Definition 3.8.2-2 is stronger than the usual strict linear dependence of functions.
In particular, a set of solutions of determining equation (3.646) can be linearly
independent in the strict sense (i.e., none is a constant coefficient linear combination of
the others) but may still be linearly dependent with respect to the surface (3.645).

Lemma 3.8.2-1. Let {p,(x,y,V...V,)}, i=12,..,n, be a set of n solutions of
determining equation (3.646). Then W(p,,...,p,) =0 if and only if the set is linearly
dependent with respect to the surface (3.645).

Proof. Let {p,} be a set of n strictly linearly independent solutions of (3.646). If {p,}
is linearly dependent with respect to the surface (3.645), then Z; c,p; =0 holds with
Dc, = 0. Hence, by repeated differentiation with respect to D, one has

n

D> ¢D'p =0, k=0.

i=1
Thus, the column vectors of the Wronskian (3.648) are linearly dependent, i.e.,
Pi
Dp.
c, 'p, =0, (3.649)
i=1 .

D" p,

and, consequently, the Wronskian W (p,,...,p,) vanishes.
Conversely, if the Wronskian satisfies W(p,,...,p,) =0, then its column vectors

must be linearly dependent for some coefficient functions ¢, that are not all zero. Clearly,
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without loss of generality, we may assume that ¢, #0. We now use an induction
argument on n. Suppose n =2. Then (3.649) yields

Py =Cpy, (3.650a)
Dp, =cDp,, (3.650b)

with ¢ =—¢,/c,. Substitution of (3.650a) into (3.650b) yields D¢ =0, and thus, the set
{p;} is linearly dependent with respect to the surface (3.645). Now suppose n>2. To
proceed inductively, we assume that if the Wronskian of a proper subset of {p.}

vanishes, then the subset is linearly dependent with respect to the surface (3.645).
Consider (3.649) with »>2 and divide this equation by ¢,. The second row minus the

derivative D of the first row yields the equation

n—1
ep =0, &= D[i} (3.651)
i=l1 Cn
Similarly, the other rows of (3.649) lead to
n—1
éDfp, =0, k=0,1,.,n-2. (3.652)

pan
There are now two cases to consider. If ¢, =0 for all i <n—1, then the first row of
(3.649) yields Z;E;P; =0 with ¢, =¢,/c,, where Dc, =0. Otherwise, if ¢, #0 for
some i <n—1, then from (3.651) and (3.652) the determinant W (p,,..., p,_,) has linearly
dependent column vectors, and thus, W(p,,..., p, ;) =0. Hence, Z; ¢,p, =0 holds with
¢,=0 and ¢, =¢,, i=1,...,n—1, where Dc, =0 by the induction assumption. In either

case, we conclude that the set {p,} is linearly dependent with respect to the surface
(3.645). O

The following result holds analogously to the situation for the classical Wronskian
case. The proof is left to Exercise 3.8-6:

Lemma 3.8.2-2. Let {p,(x,y,V,,nY,)}, i=12,...,n, be a set of n solutions of

determining equation (3.646). Then the Wronskian (3.648) satisfies the first-order linear
PDE

DW(pys.. p) = A, W (P P)- (3.653)

In (3.653), the coefficient A, , is given by f, or —f when (3.646) is,
respectively, the symmetry determining equation or adjoint-symmetry determining
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equation. Hence, if ODE (3.645) does not involve y, ,, then A , =0, and thus, (3.653)
yields DW (p,,..., p,) =0. This establishes the following theorem:

Theorem 3.8.2-1. Suppose an nth-order ODE (3.645) does not involve y, |, i.e.,
fyn,, =0. Let p.(xX,9, Y5 ),), i =12,..,n, be either n symmetries or n adjoint-

symmetries of (3.645). If this set {p,} is linearly independent with respect to the surface
(3.645), then

PP

. Dp, -+ Dp,
V(Prs P)=| ; (3.654)

D" p - D"p,

yields a first integral of ODE (3.645) provided that oy(p,,..., p,)/ 0y, , #0.

If y, , appears in ODE (3.645), then the coefficient A, in (3.653) is nonzero.

In this case, one can still obtain first integrals from (3.653) provided that one has at least
n+1 linearly independent solutions of the determining equation (3.646) for either
admitted symmetries or admitted adjoint-symmetries or, alternatively, » admitted
symmetries together with » admitted adjoint-symmetries.

Theorem 3.8.2-2. Suppose an nth-order ODE (3.645) has an essential dependence on
Vuis 1€, [, #0, and thus adjoint-symmetries of (3.645) are not symmetries of (3.645).

(i) Let both p,(x,y,¥,,...,y,) and p.(x,y, V,.... ¥,), i =L12,...n, be either n symmetries
or n adjoint-symmetries of (3.645). If each set {p,} and {p,} is linearly independent
with respect to the surface (3.645), then

l/;(plv'“pnvﬁlo"'o IBn) = W(pla“'a pn)/W(IBM“'a ﬁn) (3.655a)

yields a first integral of ODE (3.645) provided that OW(p,,..., P,» Prr-s 0,)/ OV, #0.
(1) Let p,(X,9,Y150¥,),i=12,....n, be n symmetries of (3.645) and let
O,(X, ¥, Vyseees ¥,), i =1,2,...,m, be n adjoint-symmetries of (3.645). If each set {p,} and
{p.} is linearly independent with respect to the surface (3.645), then

F(Prres s Brsves B) = W (Prsees W (P ) (3.655b)
yields a first integral of ODE (3.645) provided that 0y (p,,..., P,s Pys- P,)/ Oy, ; 0.

Proof. Leftto Exercise 3.8-7. O

In particular, if one has a set of at least n+1 symmetries (or n+1 adjoint-
symmetries) which is linearly independent with respect to the surface (3.645), then by
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considering the n+1 distinct subsets of » symmetries (or »n adjoint-symmetries), one
obtains n+1 first integrals (3.655a) of ODE (3.644). This yields a reduction of (3.644) to
an (n — r)th-order ODE when 7 of the n+1 first integrals are functionally independent. If
r=n, then one obtains the quadrature of ODE (3.644), i.e., its general solution
depending on » essential constants.

We note that for an nth-order ODE (3.644), if one knows a set of 1<k <nm
symmetries (or adjoint-symmetries) which is linearly dependent with respect to the

surface (3.645), i.e., Z; c,p;, =0 where D¢, =0, then it follows that each coefficient
(X, Y, Vs V), i=12,..,k, yields a first integral of (3.644) provided that
oc, /oy, , #0.

We now illustrate the use of Theorems 3.8.2-2 through several examples.
Examples illustrating Theorem 3.8.2-1 will be considered in the next section and in
Exercise 3.8-2.

For a first example, consider the second-order ODE [Stephani (1989)]
" =2(y")* cot y +sin y cos y, (3.656)

which describes the geodesics, i.e., great circles, on a unit sphere (x is the polar angle or
longitude and y is the azimuthal angle or latitude). The point symmetries admitted by
(3.656) are given by [cf. Exercise 3.5-3]

A

=y, (3.657a)
7, =sinx—y, cot ycosx, (3.657b)
7, =cos X + y, cot ysin x. (3.657¢)

The point symmetries (3.657a—c) form the Lie algebra SO(3) with generators

_0 — 9 yginx S - inx 2 _ 0
X, = o’ X, cotycosxéx +smxay, X, cotysmx6x cosxéy .
We now apply Theorem 3.8.2-2(i), using (3.657a—c) to obtain first integrals of ODE
(3.656) that yield its complete quadrature. The Wronskians (3.648) arising for the three
pairs of symmetries obtained from (3.657a—c) are given by

R non 2 +sin? €OS x — Sin x sin y cos
W(T]l,ﬂz) — 1 X 2,\ — ((yl) y)(y] — y y) , (3.6583)
D7, D7, sin” y
A A 2 . 2 . .
W, 7,) = 771A 773A __ ()" +sin” y)(», §1n2x+cosx51nycosy)’ (3.658b)
D7, D7, sin” y
A 7 :
W (h,,Hy) = 1)2;7 1)377 =—((»)" +sin” y), (3.658¢)
2 3

where
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D=i+yli+(2(y1)2 cot y-+sin ycos ) -
o oy 0

Vi
Hence, the ratios (3.655a) arising from (3.658a—c) yield the three first integrals

_W(#,,n,) —y, cosx+sinxsinycosy

= 2V Th) : ) (3.659a)

1 W (11,,175) sin”

- W(;Z],7Z3) _»sinx+ c9s2xs1nycosy ’ (3.659b)
W (11,,175) Sy

3_W(nl,y;z):—y1 COS X +SInXSin ycos y (3.659¢)

C W(#H,,h,)  y sinx+cosxsinycosy

Clearly, any two of (3.659a—c) are functionally independent and thus yield the quadrature
of the second-order ODE (3.656). In particular, i, =const=c,, W, =const=c, yield its
general solution

¢, sin x + ¢, cos x = cot y. (3.660)

As a second example, we return to the nonlinear Duffing equation (3.627), which
admits two point symmetries (3.628a,b) and two point-form adjoint-symmetries
(3.629a,b). Here, we apply Theorem 3.8.2-2(ii), using together the pairs (3.628a,b) and
(3.629a,b) to obtain the first integral (3.631c). The Wronskians corresponding to
(3.628a,b) and (3.629a,b) are given by

W (. 7,) = 1)177 1)277 =4ae“"" (L (y, +Lay)’ + Y, (3.661a)
1 2
(0] (4]
W(w,o,)= Dlw Dzw =4ae"" (L (y, +Lay)? +1 ). (3.661b)
1 2

Hence, the corresponding product (3.655b) yields the first integral
v=Gae GOy @)’ + Y (3:662)

which is a multiple of the square of (3.631c¢).

For a third example, we return to the third-order nonlinear ODE (3.632)
represented by the surface

ys==w=f.n). (3.663)

ODE (3.663) admits the first-order adjoint-symmetries (3.634a—c). Since f, =0, from

Theorem 3.8.2-1 it follows that three adjoint-symmetries could yield a first integral
(3.654) of ODE (3.663). However, we find that the Wronskian arising from (3.634a—c)
vanishes:
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0, 0, 1y 17 ()
W(w,0,,0,)= Do, Do, Do,|=0 y (¥ +2y,)y, |=0. (3.664)
D’w, D’w, Da,| [0 ¥, y’y, +2(y,)’

Consequently, from Lemma 3.8.2-1, it follows that the adjoint-symmetries (3.634a—c) are
linearly dependent with respect to surface (3.663) and, hence, we cannot apply Theorem
3.8.2-1 in this situation. However, the linear dependence among (3.634a—c) directly leads
to two first integrals as follows. From (3.664), we have

1 y 17+ )’
al0(+c|y |+¢ yzyl+2yly2 =0 (3.665)
0 Y2 y2y2+2(y2)2

for some functions ¢, satisfying

Dc, =0 where D =£+yli+y2i—yyli-
ox oy oy, oy,
The linear system (3.665) yields

c

=2 )= (3.666a)
3

c

=2 5y =) =y (3.666b)
3

Thus, since ¢,/c, and ¢, /c, are not constants, the expressions (3.666a,b) give two first
integrals y, and y, of ODE (3.663) which clearly are functionally independent. Note

that w, and 1, are multiples of the first integrals arising from integrating factors
(3.634a,b) [cf. Section 3.6.5].

For a fourth example, consider the third-order ODE

"3 "2
ym — 6x (y')2 + 6 (y ,)
() y

represented by the surface

M3 :6x(y2)3(y1)_2 +6(y2)2(y1)_1 =f(x,¥,),) (3.667)

in(x,y,y,,5,,;)—space. As shown in Section 3.5.2, ODE (3.667) admits three point
symmetries and seven contact symmetries. It also admits three second-order adjoint-
symmetries that are integrating factors, as shown in Section 3.6.5. Here, we obtain the
three corresponding first integrals of (3.667) through Theorem 3.8.2-2(i) by using the
three admitted point symmetries

A

m=y, m=xy, =1 (3.668)
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and the two admitted contact symmetries
7=, (3.669a)
ns = (J’1)72- (3.669b)

Note that, since fy2 #0, we need at least four symmetries in order to obtain two
independent Wronskians (3.648). Now from (3.668) and (3.669a,b), we obtain
51/(3!2!) =10 Wronskians using sets of three symmetries each. The corresponding ratios

(3.655a) of these Wronskians yield 45 first integrals, which can be shown to include three
functionally independent ones. In particular, the following are functionally independent:

_ WG, 1,,15)

=2 B = x(y) +1 (1) (1) (3.670a)
W(n,,15,1,)

1

— W(ﬁl’ﬁzﬂ%)
W(ﬁloﬁbﬁs)

2

W=3x(3)" +5 ) ()7 (3.670b)

_ W (i, 155 1,) lW(ﬁpﬁz:ﬁs)

W (B, h5,0,) " W (@15, 15)

3 :_%y+2xy1+%()ﬁ)2(y2)71- (3.670c)

From the 45 first integrals, one can show that among those connected with just (3.668)
and either (3.669a) or (3.669b), there are only two functionally independent ones. Hence,
both of the contact symmetries (3.669a,b) are needed to obtain three functionally
independent first integrals of (3.667).

As a final example, we consider the fourth-order ODE

@ :i (ylﬂ)Z
3 y//

y

represented by the surface

_40)" 3.671
Yy = =f(¥2,73) (3.671)
37
in (x,y,¥,,,,¥;,¥,)—space. In Section 3.5.2, it was shown that ODE (3.671) admits 12
second-order symmetries. Similarly, one can show that ODE (3.671) admits 17 second-
order adjoint-symmetries [cf. Exercise 3.7-3]. Since f, #0, at least five symmetries or
adjoint-symmetries are needed to obtain two independent Wronskians (3.648) yielding a
first integral of ODE (3.671) from Theorem 3.8.2-2(i). Here we obtain four functionally

independent first integrals of the fourth-order ODE (3.671) by using five of its admitted
symmetries

1/3

ﬁl :(yz)ma ﬁz :x(y2)l/39 ﬁ3 :y(yz) > ﬁ4 =xy(y2)”3, ﬁs :x2(y2)1/3’
(3.672)

and five of its admitted adjoint-symmetries
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)74/3 )—4/3 —4/3

, w5 =xy(y,)
(3.673)

@, :(J’2)74/3a @, :x(J’2)74/3a o = y(y, s 0, =y (y,

From (3.672), we obtain five Wronskians using sets of four symmetries each, yielding 10
first integrals given by the ratios (3.655a). Likewise, we obtain 10 first integrals from
(3.673). Each set of first integrals can be shown to lead to four functionally independent
first integrals of (3.671). In particular, we obtain

W, n0,,0.,1 | W(w,,0,,0,,® _
= PO T o 1) L 0,000 05) s 20, (3.674a)
W@n,n,,m,1s) 2W(o,o,,0,,0,)

1

= VTl ) _ W@, 00,0,05) _ ), 5y, (3.674b)
W@n,n,,15,1s)  Ww,, 0,,a0,)

2

— W(ﬁl’ﬁ3’ﬁ4’ﬁ5) — W(a)zaa)3:a)4:a)5)
Wi, 1,,15.15)  W(w,0,,0,,0,)

-1

=2xy, =y +3(» ¥, _x(J’2)2)(J’3) 5

3
(3.674c)

_ W(R,515> 1415 ) _ W(w,,o;,o0,,0))W(o,o,,0;,0;)
WA, 10515-15) [W(w1=w2>w4=a)5)]2

4

=—xy+x’y, + Gy, —3x°(1,)? =3, (r;) . (3.674d)

The same first integrals arise from Theorem 3.8.2-2(ii) through products of Wronskians
involving (3.672) and (3.673). Then, from (3.674a—d), we have the quadrature of ODE
(3.671) given by y, =const =c¢,, i =1,2,3,4, which yields

c,—Cx+c¢C x2
p=amStTar (3.675)

xX—c,

3.8.3 FIRST INTEGRALS FOR SELF-ADJOINT ODEs

Here we briefly specialize the results of Sections 3.8.1 and 3.8.2 to self-adjoint ODEs.
Recall that for an nth-order ODE given by the surface (3.645), the conditions for self-
adjointness are that » is even and that f(x,y, y,,...,y, ,) satisfies (3.540b). In particular,

it is necessary that fyn,] =0, and thus,

Vo =S OGY Viser Vin)s 22, (3.676)

For a self-adjoint ODE (3.676), adjoint-symmetries are symmetries. If one knows
at least two linearly independent symmetries, then Theorem 3.8.1-1 yields a first integral
of (3.676) for each such pair of admitted symmetries 7,(x,»,),,....¥,) and

7,(x, ¥, V,---»¥,), given by the algebraic formula
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n—1 n— i

y (@)=, (/D)D" g, + 3 Y (=)D @ f, DA,

3
J=0 =0 j=0
(3.677)
provided that oy (7,,7,)/ 0y, , #0. We emphasize that the symmetries used in (3.677)
need not be variational symmetries.
Now suppose 7,(x,, y,,...,»,) and 7,(x,»,,,...,y,) are variational symmetries

of order / of a self-adjoint ODE (3.676). Then one can show [Exercise 3.8-6] that the
first integral (3.677) is yielded by the integrating factor

A@.h) =Y, ((B), DA, - (), D'A) = X", X4, (3.678)
i=0

A

. 0 . . . . A .
where X, = nig is the infinitesimal generator corresponding to 7,,i=1,2. Since an

integrating factor is a variational symmetry for a self-adjoint ODE [cf. Section 3.7.4], it
follows that the integrating factor (3.678) of a self-adjoint ODE (3.676) is a symmetry of
(3.676). In particular,

N B
X = A(Ul,ﬂz)g =[X,,X,] (3.679)

is equal to the commutator symmetry of the symmetries 7, and 7,. Correspondingly,
if y, and y, are first integrals arising from integrating factors given by the variational
symmetries 7, and 7,, then

v (B, h,) =Xy, =X ), (3.680)

Now suppose a self-adjoint ODE (3.676) admits a scaling symmetry

A

ny = py—gxy,, p=const, g =const, (3.681)

ie, x> a’x, y—>a’y. If one knows a variational symmetry 7(x,y,y,,...,y,) of order
¢ of (3.676) with noncritical scaling weight s # (n—1)g — p with respect to (3.681), then

(3.677) yields an algebraic formula for the corresponding first integral of ODE (3.676)
given by

9y =" (0= (=D, — @/ )i
£y (=g, - qu,-ﬂ)[(—l)"""‘n"""lﬁ £y DG, >}

i=

(3.682a)

where
r=s+p-—(n-1yg. (3.682b)
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Finally, since f, =0 holds for a self-adjoint ODE (3.676), Theorem 3.8.2-1

yields a first integral of (3.676) if one knows a set of » symmetries
7,(X, Y, Y5 ¥,), i=12,...,n, that is linearly independent with respect to the surface
(3.676). In particular, the first integral is given by

.. .. A - Dj,
V(@A) =| . . (3.683)
D", - D"'p,

provided that oy (7,,....,77,)/ 0y, , #0. The symmetries used in (3.683) need not be
variational symmetries.

For n=2, we note that (3.683) and (3.677) both yield the same first integral
formula w(7,,7,)=nDn, —n,D7n,. However, for n>2, the corresponding formulas are
different.

We now consider two examples.

As a first example, we consider the nonlinear Duffing equation (3.627) with no
damping, i.e., the self-adjoint ODE 3" +by+y’ =0. This second-order ODE admits the
point symmetry (3.628a). In the case b =0, the fully nonlinear Duffing equation

Y437 =0 (3.684)

admits a second point symmetry given by the scaling symmetry x = ax, y =>a ' y. We

now apply the Wronskian (3.683) to obtain a first integral of the self-adjoint ODE (3.684)
from the two admitted point symmetries

M=y, Th=y+xy. (3.685)
This yields
v (,,1,) =2(0)" + " (3.686)
The corresponding integrating factor is given by the variational point symmetry
A 1,) = 4y, = 47, (3.687)

Consequently, the first integral (3.686) can also be obtained directly in terms of 7, from

the scaling formula (3.682a,b) since the scaling weight s = -2 of (3.687) is noncritical
(i.e., ¢g=1, p=—1,andhence,r =—4#0). Note that the first integral (3.686) is a

multiple of the energy of the nonlinear oscillator described by (3.684).

As our final example, we consider the fourth-order nonlinear ODE [Sheftel
(1997)]

@ =y, (3.688)
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Its admitted point symmetries are given by [cf. Exercise 3.5-7]

A

=M (3.689)
1, =3y-2xy, (3.689Db)
Ay, =3xy—x"y,. (3.689¢)

Hence, there are an insufficient number of symmetries to apply the first integral
Wronskian formula (3.683). However, we can apply the first integral formula (3.677) by
using pairs of symmetries (3.689a—c). This yields three functionally independent first
integrals

v, (0,,10,) = 23,0, = (1) + 377, (3.690a)
W (1,71) = (29, =39y + 1y, = 2(,)” +3x97°7, (3.690b)

W3 (10,5 713) = (<2X°y, + 6x9)y; =63y, =2x0,y, + X7 (1,)” +4(y) =3x"y ",
(3.690¢)

with corresponding integrating factors given by

Ay(B,7,) =2y, =27, (3.691a)
Az(ﬁlaﬁ3):2xy1 _3)/:_7?2, (3.691Db)
Ay (B, Hy) = =2x7y, + 6xy = 273, (3.691c)

Hence, the three point symmetries, including the scaling symmetry, are variational
symmetries of ODE (3.688). Note that the two first integrals (3.690a,c) can also be
obtained using the scaling formula (3.682a) in terms of (3.689a,c). We also note that the
commutators (3.679) arising from the three point symmetries (3.689a—c) are given by

[Xp Xz] =2X1a [Xp 5(3] Z_Xza [Xza X3]= 25(3:

in accordance with the results (3.678) and (3.691a—c).
Finally, from (3.690a—c), we obtain three quadratures y, =const=c,;, i =1,2,3,
yielding a reduction of ODE (3.688) to a first-order ODE given by

4/3

%(xzcl - 2xc, _Cz)()ﬁ)z —3(xe, —¢y)yy, +C1y2 -3y +%(x201 - 2xc, _03)2 =0.

(3.692)

EXERCISES 3.8

1. Consider the harmonic oscillator equation y”+v>y =0, v = const. Find first integrals

from its admitted point symmetries by using the scaling formula (3.682a,b) and the
Wronskian formula (3.683).
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Consider the third-order ODE y” = y~*(3")?, which admits the translation symmetry
X —> x+e¢&,y > y and the scaling symmetries x — ax, y = fy. Use the Wronskian

formula (3.654) with these three admitted point symmetries to find a first integral and
corresponding integrating factor.

. Consider the third-order ODE (3.667), which admits the scaling symmetries

xX>ax, y— Py

(a) Find first integrals from the admitted second-order adjoint-symmetries (3.513)
and (3.515) by using the scaling formula (3.626). Compare the results obtained
from invariance under the x and y scalings, respectively.

(b) Classify which of the second-order adjoint-symmetries (3.513) and (3.515) of
ODE (3.667) have noncritical scaling dimension with respect to the x and y
scalings. Determine if there is a combination of the x and y scalings such that

all the second-order adjoint-symmetries (3.513) and (3.515) have noncritical
scaling dimensions.

. Consider the fourth-order ODE (3.671), which admits the scaling symmetries

xX—ox, y— py.

(a) Find first integrals from the admitted second-order adjoint-symmetries [cf.
Exercise 3.7-3] by using the scaling formula (3.626) for the x and y scalings.

(b) Find first integrals from the admitted second-order symmetries and adjoint-
symmetries by using the Wronskian formula (3.655a,b).

(c) Compare the results obtained from the scaling formula and the Wronskian
formula.

. Consider the fourth-order wave speed ODE (3.639). Find first integrals by using the
Wronskian formulas (3.655a,b) for:

(a) admitted first- and second-order symmetries [cf. Section 3.5.2]; and

(b) admitted first- and second-order adjoint-symmetries [cf. Section 3.7.3].

Show that the first integral formula (3.677) for a pair of variational symmetries
reduces to the expression (3.680). Show that the corresponding integrating factor is
given by the commutator expression (3.678), (3.679).

. Prove Lemma 3.8.2-2.

. Prove Theorem 3.8.2-2.

. Here we consider another algebraic formula for first integrals that applies to the
special class of nth-order ODEs

Vo= L5V Yo)s S, =0, (3.693)

i.e., f has no dependence on y. For an ODE (3.693), the adjoint-symmetry
determining equation (3.543) takes the form

n—

Dy =0, y=(1)'D"0-Y ()D"(f, o) (3.694)

1
i=1

274



Hence, (3.694) yields a first integral of ODE (3.693) provided that y/, #0.

(a) Calculate first integrals given by (3.694) for the third-order ODE (3.506) by using
its admitted second-order adjoint-symmetries [cf. Section 3.7.3].

(b) Calculate first integrals given by (3.694) for the fourth-order ODE (3.612) by
using its admitted adjoint-symmetries determined in Exercise 3.7-3.

3.9 APPLICATIONS TO BOUNDARY VALUE PROBLEMS

We show how reduction of order is applied to boundary value problems for ODEs. Since
reduction of order holds for essentially all solutions of a given ODE, it follows that a
posed boundary value problem for the given ODE will map into a boundary value
problem for the reduced order ODE. We illustrate this through an example.

Consider again the Prandtl-Blasius problem for a flat plate discussed in Section
1.3.1. The boundary value problem (1.62a—e) reduces to solving the Blasius equation

Y'+3p"=0, 0<x<oo, (3.695a)

with the boundary conditions
¥(0)='(0) =0, (3.695b)
y'(0)=1. (3.695¢)

We wish to determine the value of o = y"(0).

In Section 3.4.2, we saw that the invariance of (3.695a) under the two-parameter
Lie group of point transformations (3.139a,b) reduced this ODE to the first-order ODE

1+V+U
a_viztr+v (3.696)
au uU| 20—V

plus the quadratures (3.171) and (3.172), where

14 !

r=2, uv=2.
Yy y
Let V =¢(U;C,)be the general solution of (3.696). Consider the phase plane

diagram in the UV-plane associated with (3.696). At some point on the solution curve of
the boundary value problem (3.695a—c), one must have y’'>0. Then, from the phase

plane diagram, it follows that U >0 along the whole solution curve of the boundary
value problem (3.695a—). Consequently, y >0,y >0 for 0<x <oo. Then, at some

point along the solution curve of (3.695a—c), one must have y” > 0. Hence, the solution

curve of the boundary value problem (3.695a—c) must lie entirely in the first quadrant [cf.
Figure 3.3]. It then follows that along the solution curve one has y >0,y" >0,y" >0 for

0 <x <oo. Thus, y"(0) =0 >0. Then,
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U _Yiy_auyz0 if vz o,
dx y

leads to the direction of increasing x indicated by the arrows in Figure 3.3. Thus, as
x>, (U,V)—>(0,0). As x —> 0, three cases can arise: (U,V) — (0,0); U — o with
V <<U; and (U,V) — (0,0) with V' = O(U). We examine each of these three cases in
terms of the boundary conditions (3.695b,c¢):

Vv

R V=2U

Figure 3.3

Casel. (U,V)— (0,0) as x —> 0.
Here dV /dU ~-V /U as x — 0. Then y"/y’ =VU ~const=C, as x — 0, which is
impossible if »"(0) = o = const # 0.

Casell. U > o with V' <<U as x > 0.
Here dV /dU ~V /2U as x — 0. Then y"/(y')’"* ~ const = C, as x — 0, which again
is impossible.

Thus, the following case must hold:

Case IIl. (U,V) — (%,0) with '=0(U) as x - 0.
From ODE (3.696), it follows that the solution must lie along a separatrix (exceptional
path) [see Section 3.10]

V~iU a x—0,

ie., y"~1()’/y as x — 0. Then ODE (3.170) becomes
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—~—-— as x>0,

which leads to

o
y

~const=C, as x—>0".

Then »"(0)=+4C,.
As x — oo, the boundary condition (3.695c) leads to (U,V)— (0,0) with
V<< U. Consequently, as x — o, we have

av v
du 4U?*’
so that
V~d8_1/4U
0

for some constant d,. Thus, from ODE (3.170), we get y' =s=const=C, as x — .

As shown in Section 1.3.1, it then follows that & = C, /2(C,)’".

The solution of the boundary value problem (3.695a—) is now obtained by
starting from the exceptional path as U —>oo, then integrating out to

V ~de"* as U0, and finally determining constants C, and C,. Then we obtain
o =C,/2(C,)"". See Dresner (1983) for further details.

Further examples of applications to boundary value problems appear in Bluman
and Cole (1974) and Dresner (1983, 1999).

EXERCISES 3.9

1. Consider the nonlinear diffusion equation
u, =(u ), 0<x<owo, 0<t<oo,
with the boundary conditions

u(x,0)=0, x>0,
u(0,0)=1, t>0.

From its invariance under scalings, its solution is of the form u = y(n) with

77=x/\/;.

(a) Derive the second-order ODE satisfied by y(77) and the corresponding boundary
conditions.
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(b) Show that this ODE admits a one-parameter Lie group of point transformations.
Reduce this ODE to a first-order ODE plus a quadrature.

(c) Study the phase plane of this first-order ODE and discuss which path yields the
solution of the posed boundary value problem.

(d) Sketch u(x,?) = y(n).

. Consider the Thomas—Fermi equation
y!r — x—1/2y3/2' (3.697)

(a) Find a scaling symmetry admitted by (3.697).

(b) Use this symmetry to reduce ODE (3.697) to a first-order ODE.

(c) Find the curve in the phase plane that corresponds to the physically interesting
boundary conditions

¥(0)=1, y(0)=0.

For a full discussion of this problem, see Bluman and Cole (1974) and Dresner
(1999).

. In a geometrically nonlinear theory of axisymmetric deformation of a membrane
under pressure loading, one obtains the ODE

3

(fMY=fo—§;ﬂm,0<x<L (3.698)

where y is the deflection from the original shape, x is a radial spherical coordinate,
v(x) is a shape function with v(x) =const for a sphere, and ¢(x) is a load function

with g(x) ~ x* for uniform pressure. Assume that the membrane is spherical and
loaded with constant pressure near x = 0. The boundary conditions are

¥(0) is finite (regularity at the axis), (3.699a)
y(1) =0 (membrane fixed at the edge). (3.699Db)

(a) Show that ODE (3.698), with v(x) and ¢(x) having the desired properties and

with the solution satisfying the regularity condition, admits a one-parameter Lie
group of point transformations if and only if v(x) and g(x) are of the form

v(x)=v,(1+ax’)”, q(x)=qyx*(1+ax’)”, (3.700)

for arbitrary constants «,v,,q,.
(b) Show that the infinitesimal generator of the point symmetry admitted by ODE
(3.698), when its coefficients satisfy (3.700), is given by

X:(x+ax3)i+2yi. (3.701)
ox oy
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(c) Accordingly, reduce ODE (3.698) to a first-order ODE and isolate the particular
path in the phase plane that solves the boundary value problem (3.698),
(3.699a,b).

For a full discussion of this problem, see Bluman and Cole (1974).

3.10  INVARIANT SOLUTIONS

Consider an nth-order ODE

v = f(xp, Ly (3.702)

or, equivalently, the surface y, = f(x,y,y,,...,»,), that is assumed to admit a one-

parameter Lie group of point transformations (point symmetry) with the infinitesimal
generator

X = &G, y)% e y)% (3.703)

Definition 3.10-1. y =¢@(x) is an invariant solution of ODE (3.702) resulting from its
invariance under the point symmetry (3.703) if and only if:
(1) y=¢(x) is an invariant curve of (3.703), i.e., X(y —@(x)) =0 when y = ¢(x);
(i) y =¢(x) solves (3.702).

It follows that y = ¢(x) is an invariant solution of ODE (3.702) resulting from its
invariance under the point symmetry (3.703) if and only if y = ¢(x) satisfies

(1) S(x, p(x))'(x) = 17(x, p(x)); (3.704a)
(i) ¢ (x) = [(x,(x),8'(x),....,4 " (x)). (3.704b)

More generally, @(x, y) = 0 defines an invariant solution of ODE (3.702) resulting
from its invariance under the point symmetry (3.703) if and only if:
(i) D(x,y)=0 isan invariant curve of (3.703), i.e., X® =0 when @ =0;
(1)  D(x,y) =0 solves (3.702).
In particular, here (i) and (ii) are equivalent to:
(1)  ®D(x,y)=0 isasolution of the first-order ODE ' = n(x, y)/&(x, y);
(i) @(x,y)=0 isasolution of the ODE y = f(x,y,)',...,y" ™).

An obvious (naive) procedure to find invariant solutions of ODE (3.702),
resulting from its invariance under the point symmetry (3.703), is to first try to solve the
ODE y'=n(x,y)/&(x,y) to obtain its general solution g(x,y;C)=0. If one is able to
do this, the values of C that yield invariant solutions, if any exist, are then determined by
substituting this general solution into the given ODE (3.702). Any such value of C=C*
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determines an invariant solution ®@(x,y) = g(x, y;C*) =0 of ODE (3.702) resulting from

its invariance under (3.703).
A better alternative procedure that avoids determining the general solution of
y' =n(x,y)/&(x,y) will now be given. In particular, we will see that usually it is not

necessary to solve the ODE y' =n(x,y)/£(x,y) or any other ODE in order to find the

invariant solutions of ODE (3.702) resulting from its invariance under the point
symmetry (3.408).

Theorem 3.10-1 [Bluman (1990c¢)]. Suppose an nth-order ODE (3.702) admits the point
symmetry (3.703) with £ 20. Let Y = 83 (s, y)ai where P(x, ) = n(x, y) | £(x, ).
x y

Consider the function Q(x,y) defined by

Q(X, y) = (y,, - f(X, YsViseens yn_l)xyszk_lLP =YY"y = f(x, v, ¥, YY,... ,Yn_zl},).
(3.705)

Three cases arise for the algebraic equation Q(x,y)=0:
(1) QO(x,y)=0 defines no curves in the xy-plane;
(1) QO(x,y) =0 is identically satisfied for all values of x and y;
(i11) Q(x,y) =0 defines curves in the xy-plane.

In Case (1), the ODE (3.702) has no solutions resulting from its invariance under
the point symmetry (3.703).
In Case (ii), any solution of the ODE y' =n(x,y)/&(x, y) is an invariant solution

of the ODE (3.702) resulting from its invariance under the point symmetry (3.703).

In Case (ii), an invariant solution of ODE (3.702), resulting from its invariance
under the point symmetry (3.703), is a curve satisfying Q(x,y) =0 and, conversely, any
curve satisfying Q(x,y) =0 is an invariant solution of ODE (3.702) resulting from its
invariance under (3.703).

Proof. If y, =)' =n(x,y)/E(x,y)=¥(x,y), then we successively obtain y, =y =

d" 'y, /dx*" =Y, for k=1,2,...,n. Hence, any invariant solution of ODE (3.702),
resulting from its invariance under the point symmetry (3.703), must satisfy the algebraic
equation

O(x,y)=0.
From this it immediately follows that:
(1) if QO(x,y)=0 defines no curves in the xy-plane, then ODE (3.702) has no
solutions resulting from its invariance under the point symmetry (3.703); and
(i) if Q(x,y)=0 forall x,y, then any solution of the ODE ' =n(x,y)/&(x,y) is

an invariant solution of ODE (3.702) resulting from its invariance under (3.703).
In Case (iii), consider any curve satisfying Q(x, y) =0. This curve is an invariant

solution of ODE (3.702), resulting from its invariance under the point symmetry (3.703),
if and only if its differential consequence
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0,+0,y' =0
satisfies ODE y' =n(x,y)/&(x, y). This is equivalent to
YO=0 when Q(x,y)=0. (3.706)

We now show that (3.706) holds for any curve defined by Q(x, y) =0.

Since ODE (3.702) admits the point symmetry (3.703), it follows that the point
symmetry determining equation

S/ AU A U S (3.707a)
ox Oy oy, oy

n-1

must hold for all values of x,y,y,,...,y, satisfying

Vo =S50 005005 Y00) 5 (3.707b)

with 7" given by (2.100a,b) for k=1,2,...,n. Given any values of x and y, from
(3.705) we see that the wvalues x,y,yk=Yk_1‘P, k=12,...,n, satisfy (3.707b) if

O(x,y)=0. Then it follows that Y = D, where D is the total derivative operator (2.96).
Hence, in (3.707a), we have

n"=Dn-yDE=Yn-WYE=Y(EV)-VYE =YY
and, by induction,
77(k+1) :Dn(k) _yk+1D§:é:Yk+11};’ k:l’z’,..,l’l—l-

Thus, the point symmetry determining equation (3.707a) yields

Y'Y = g+ ‘Pg+ (Y‘P)i+ et (Y“"“\P)i (3.708)
ox oy 0

Vi n-1

evaluated aty, = YW, k =1,2,...,n—1, for any curve satisfying Q(x,y)=0. On the
other hand, by applying Y to (3.705), we have

YQEY"IP—|:z+l}1z+(YlP)i+n_+(Yn—ll},)ii|
Ox 5)/ ayl ayn_l

evaluated aty, = YW, k =1,2,...,n—1. Hence, from (3.708), we obtain

YQO=0 when Q(x,y)=0. i

A similar result holds for invariant solutions of ODE (3.702) resulting from an
admitted point symmetry (3.703) with & =0.
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Theorem 3.10-2. Suppose an nth-order ODE (3.702) admits a point symmetry (3.703)
with & = 0. Consider the algebraic equation n(x,y)=0. Then two cases arise:

(1) 7n(x,y) =0 defines no curves in the xy-plane; and
(1) 7n(x,y) =0 defines curves in the xy-plane.

In Case (1), ODE (3.702) has no invariant solutions resulting from its invariance
under (3.703).
In Case (1), a curvey = ¢(x) is an invariant solution of ODE (3.702) resulting

from its invariance under (3.703) if and only if this curve satisfies n(x,y)=0.

Proof. Left to Exercise 3.10-13. O

As a first example, consider the nth-order linear homogeneous ODE with constant

coefficients,

y(n) +a1y(”_1) 4ot an_ly' + a,y = 0. (3709)

We find all invariant solutions of ODE (3.709) from its invariance under both translations
in x and scalings in y generated by the infinitesimal generator

X=0¢£+,6’yi
ox oy

for arbitrary constants «,f. Let A= /f/a with a #0. The corresponding invariant
solutions y = ¢@(x) satisfy

!

yi===. (3.710)

n
S
[Hence, we have ¥ = Ay, Y = a—ax + ly%,y”‘) =Y*"¥ = 2*y.] Substituting (3.710) into
ODE (3.709), we obtain
O(x,y)=[A +al " ++a,_A+a,]y=0.

This yields the well-known characteristic polynomial equation

P = +al " ++a, A+a,=0, (3.711)
that arises for determining solutions y = Ce™, C = const, of ODE (3.709). Here these

solutions are the invariant solutions of the given ODE (3.709) resulting from invariance

under X =a -2 + ,63/2, ie., y=Ce™ satisfies [X(y— Ceb‘)]‘ =0 when p(1)=0.
Ox oy y=Ce
In terms of Theorem 3.10-1, Case (ii) arises when A is a root of p(41)=0, Case (iii)

arises when A is not a root of p(4) =0, and here y =0 is the corresponding (trivial)
invariant solution. In Case (ii), an invariant solution is any solution of ODE (3.710) of
the form y = Ce™, for arbitrary constant C.
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As a second example, consider again the Blasius equation
V'3 =0, (3.712)
which admits

d d
X =(ax + f)— —ay—,
(ax ﬁ)ax ayay

for arbitrary constants «,f. When « =0, the corresponding invariant solution is

y =const = C, for any constant C. When a #0, let 1= f/a.

We first consider obtaining invariant solutions through the obvious procedure.
Then an invariant solution y = ¢(x) satisfies the ODE

!

[ A (3.713a)

n
E x+ A

which has the general solution,

y= ¢ , (3.713b)
x+A

for an arbitrary constant C. After substituting (3.713b) into ODE (3.712), we find that
C =0 or C =6, which leads to the corresponding invariant solutions

6
y=6x)=0, y=¢,(x)=——, (3.714)
X+ A4
of the Blasius equation (3.712) for an arbitrary constant A.
Now we obtain the invariant solutions (3.714) through the procedure arising from

Theorem 3.10-1. Here

y=O_ Y 0 gy Y yg_ 2y2, 2y = 6y3.
ox x+A0y x+ A (x+A4) (x+ A1)
Then
2
6
O(x,y) = — L

(x+ )2 (x+ )}
Consequently, O(x,y) =0 yields the invariant solutions (3.714).

For both examples, there is little difference in the amount of computation for the
two approaches. However, in general, the procedure outlined in Theorem 3.10-1 is
clearly superior since it avoids an unnecessary integration of the ODE y' =n/¢.

Invariant solutions are especially interesting for first-order ODEs.
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3.10.1 INVARIANT SOLUTIONS FOR FIRST-ORDER ODE:s:
SEPARATRICES AND ENVELOPES

In the case of a first-order ODE
v =f(x,y), (3.715)

one only considers invariant solutions resulting from invariance under a nontrivial
infinitesimal generator (3.703), admitted by (3.715), for whichn(x, y)/&(x,y) Z f(x,»),

re., O(x,y)=n(x,y)/ &(x,y)— f(x,y) Z 0 for all values of x, y. This clearly follows
from Theorem 3.10-1, since if 7n(x,y)/&(x,y) = f(x,y), then O(x,y)=0 and hence,
trivially, all solutions of ODE (3.715) are invariant solutions.

Consider the set of all solution curves of ODE (3.715) in the xy-plane (phase
plane). This set may include separatrices (exceptional paths), e.g., limit cycles, which
are solution curves that behave topologically “abnormally” in relation to neighboring
solution curves, i.e., “separate” topologically distinct solution curves [Lefschetz (1963)].
By the following argument we show that a separatrix is an invariant solution of ODE
(3.715) for any admitted Lie group of transformations.

A one-parameter (&) Lie group of transformations admitted by ODE (3.715)
induces a continuous deformation of the solutions of (3.715) to other solutions of (3.715)
through the parameter(¢). But two solutions of ODE (3.715) that are topologically
distinct cannot be continuously deformed to each other and, hence, cannot be mapped
into each other under the group. Thus, it follows that a separatrix must be an invariant
solution of ODE (3.715) for all admitted Lie groups of transformations.

By a similar argument as that for separatrices, it follows that any singular
solution, in particular any envelope solution (if one exists), for a first-order ODE

F(x,y,y) =0, (3.716)

must be an invariant solution for any admitted Lie group of transformations. If ODE
(3.716) admits a nontrivial one-parameter Lie group of transformations with the

infinitesimal generator X = &(x, y)@i +1(x, y)%, then

X

XVF=8F, +nF, +[n,+(1, =&)y' = &,()’1F, =0 when F(x,y,y) =0,
and

F[x,y,m
&(x, )

By a simple extension of Theorem 3.10-1, it follows that the invariant solutions of ODE

j # 0 for all values of x, y.

(3.716), resulting from its invariance under X = &(x, y)ai+f7(x, y)%, are the curves
X

defined by the algebraic equation
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Fl x, ,MJZO. 3.717
(” £(x.y) G719

Hence, an envelope solution of ODE (3.421) satisfies the algebraic equation (3.717) for
any point symmetry X = &(x, y)ai +n(x, y)% admitted by (3.716).
X

As a first example, consider the first-order ODE

y' =y, (3.718)
which obviously admits

X, :i, X, :xi_)’i-
ox oy

From its invariance under X,, it follows that a separatrix solution y =¢@(x) of
ODE (3.718) must satisfy

O(x. ) =%—f<x,y>:—y2 _o.

Hence, the only possible separatrix solution could be y = 0.

From its invariance under X,, it follows that a separatrix solution y = ¢(x) of
ODE (3.718) must also satisfy

0(x,y) =M—f<x,y>=—(1+y2j=—y(y+lj ~0,
g(xay) X X

which leads to possible separatrices y=0 and y=-1/x. Since y=-1/x is not an
invariant solution of (3.718), resulting from its invariance under X,, it cannot be a

separatrix of ODE (3.718). This solution is a particular solution of ODE (3.718) arising
from its general solution y =—1/(x+ C), C = const, when C = 0. The solution curves are

illustrated in Figure 3.4. Clearly, y = 0 is a separatrix.
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Separatrix
y=0

Figure 3.4. Solution curves of y' = y°.

As a second example, consider the first-order ODE

L Xy x° 17+ y(x*+y =1)

T ey e o
which admits the rotation group
Xzyé—x%. (3.720)
Invariant curves of (3.720) are the circles
x*+y? =c. (3.721)

Thus, a separatrix of ODE (3.719) must satisfy (3.721). After substituting (3.721) into
ODE (3.719), we get

X xc+ y(c® 1)
y o oxe’-D-ye’
so that ¢ = 1. Hence, the only possible separatrix is the circle
x>+’ =1 (3.722)

One can show that the circle (3.722) is indeed a limit cycle of ODE (3.719). The
situation is illustrated in Figure 3.5.
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Separatrix
¥yt -1

Figure 3.5. Solution curves of ODE (3.719).

As a third example, consider Clairaut’s equation
y=x/+2, (3.723)
y

where m is a constant.
Clearly, ODE (3.723) admits the scaling group

X=2x£+yi. (3.724)
ox oy

An envelope solution of ODE (3.723) must satisfy the algebraic equation (3.717) with
n/é=y/2x, ie.,

y=gy+—
y

and so
y? = 4mx. (3.725)

Hence, y° = 4mx is the only possible envelope solution of ODE (3.723).
The invariance of ODE (3.723) under (3.724) yields its general solution
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y=cx+ 2 (3.726)
C

for an arbitrary constant c. Clearly, the parabola defined by (3.725) is the envelope of the
family of straight lines (3.726). The situation is illustrated in Figure 3.6 for m = 1.

Envelope y*=4x

Figure 3.6. Typical solution curves of ODE (3.723) form = 1.

EXERCISES 3.10

1. (a) Suppose that A =r is a double root of the characteristic polynomial equation
(3.711).

(i) Show that X = a@i +(fy+ 7e”‘)§ is admitted by ODE (3.709) for arbitrary
X

constants «, 3, .

(i) Find the corresponding invariant solutions of ODE (3.709).
(b) What is the situation if A =r is a root of multiplicity k of the characteristic
polynomial equation (3.711)?

2. Consider the Euler equation

x*y"+ Axy'+ By =0, A=const, B =const.
Find its general solution in terms of invariant solutions. Note that the scalings

0 0 . . .
X = axa— + /3)/8— are admitted by the Euler equation for arbitrary constants «, £.
X v
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10.

1.

Find all invariant solutions of ODE (3.194) resulting from its invariance under the
three-parameter Lie group of point transformations (3.195a,b).

Find the general solution of ODE (3.719) and sketch several of the solution curves.

Use the invariance of ODE (3.723) under (3.724) to derive its general solution
(3.726).

Find necessary conditions for a first-order ODE ' = f(x,y) so that it admits the

. 0 0 . ..
rotation group X =y——x— and has the circle x>+y° =1 as a limit cycle
Ox

(separatrix).

Consider the ODE
y' =42, A=const#0. (3.727)

(a) Find invariant solutions resulting from the invariance of ODE (3.727) under

. 0
1) X, =x—;
1 X, xax

(i) X, =yi; and
o

0 0
m) X, =x—+y—.
(i) X, o Y ey
(b) Determine the separatrices of ODE (3.727).
(c) Sketch typical solution curves of ODE (3.727).

Use the invariance of the ODE )'=x/yp under X=xai+y§ to find its
X y

separatrices.

Find the separatrices and sketch typical solution curves for the ODE

Yy —2x)
x(x—2y)'

Show that the ODE

has no separatrices, without explicitly solving it.

Consider the ODE

y+3() =+ (")) =0. (3.728)

(a) Find a one-parameter Lie group of transformations admitted by ODE (3.728).
(b) Sketch typical solution curves of ODE (3.728).
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(c) Find the envelope of the solution curves of ODE (3.728).
12. Do the same as in the Exercise 3.10-11 for the Clairaut ODE

1/2

y=x'+1+(")H".
13. Prove Theorem 3.10-2.

3.11 DISCUSSION

In this chapter, we have shown how to:

(1) use invariance under Lie groups of point transformations to construct solutions to
a given ODE;
(i1) use invariance under one-parameter groups of local transformations (point,
contact, higher-order) to reduce the order of a given ODE;
(i11) find infinitesimal generators of local transformations admitted by a given ODE
through solving determining equations arising from Lie’s algorithm,;
(iv) find the most general nth-order ODE that admits a given Lie group of
transformations;
(v) use first integrals to reduce the order of a given ODE;
(vi) find first integrals through corresponding integrating factors admitted by a given
ODE; and
(vil) construct first integrals algebraically through use of symmetries and adjoint-
symmetries admitted by a given ODE.

If a given nth-order ODE admits a one-parameter Lie group of point
transformations, then its order can be reduced, constructively, to an (n — 1)th-order ODE
through the use of canonical coordinates or differential invariants associated with the
group. Moreover, the solution of the given ODE can be found by quadrature after the
reduced ODE is solved.

The invariance of a first-order ODE under a nontrivial one-parameter Lie group of
transformations is equivalent to the existence of an integrating factor for the ODE. In
general, this equivalence does not hold for higher-order ODEs. However, if a higher-
order ODE possesses a variational formulation (Lagrangian), then its invariance under a
one-parameter Lie group of local transformations admitted by the variational principle for
the ODE (variational symmetry) is equivalent to the existence of an integrating factor of
the ODE (the classical Noether’s Theorem). An nth-order ODE (n>1) possesses a

variational principle if the linearized equation of the ODE is self-adjoint (which is only
possible if the ODE is of even order). For a self-adjoint ODE, a one-parameter Lie group
of point transformations admitted by its variational principle leads, constructively, to a
reduction of order by two [Olver (1986)]. A geometrical reduction procedure for such an
ODE in a Hamiltonian setting is discussed in Marsden and Ratiu (1999).

Any first-order ODE admits a nontrivial infinite-parameter Lie group of point
transformations. A second-order ODE admits at most an eight-parameter Lie group of
point transformations. Moreover, if a second-order ODE does admit an eight-parameter
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Lie group of point transformations, then there exists a point transformation mapping the
ODE into a linear ODE and, in particular, to the ODE y” = 0. An nth-order ODE (n > 3)

admits at most an (n + 4)-parameter Lie group of point transformations.
Olver (1986) showed that if an nth-order ODE admits an r-parameter solvable Lie
group of point transformations (» < n), then it can be reduced to an (n» — r)th-order ODE

plus r quadratures. The reduction algorithm presented in Section 3.4 appeared in Bluman
(1990b). The use of solvable Lie groups (called integrable groups in earlier literature) to
reduce the order of a system of first-order ODEs appears to have been first considered by
Bianchi (1918, Section 167) [Eisenhart (1933, Section 36)].

One can extend Lie’s work on the invariance of ODEs under Lie groups of point
transformations (point symmetries) to invariance under more general local
transformations characterized by infinitesimal generators depending on derivatives of
dependent variables. Such extensions include invariance under Lie groups of contact
transformations (contact symmetries) relevant for second- or higher-order ODEs or, more
generally, higher-order transformations (higher-order symmetries) relevant for third- and
higher-order ODEs. In making such generalizations, it is more convenient to consider the
invariance of an ODE from the point of view of directly mapping its solutions into
solutions by local transformations that keep the independent variable of the ODE fixed.
Here, a symmetry (point, contact, or higher-order) of an ODE is generated by any
solution of the linear determining equation arising from linearization about al/l/ solutions
of the given ODE. Contact symmetries for ODEs are considered in Abraham-Shrauner et
al. (1995), Stephani (1989), and Hydon (2000).

Geometrically, symmetries of an nth order ODE describe motions on its space of
solutions. Such motions are most naturally formulated in the setting of jet spaces [c.f.
Section 2.8] whose coordinates consist of the independent variable, and the dependent
variable and its derivatives up to at least mth-order. Here, a given nmth-order ODE
corresponds to a surface of co-dimension one, and its symmetries (one-parameter local
transformation groups) in characteristic form represent integral curves of vector fields
that are tangent to the surface and involve no motion with respect to the coordinate given
by the independent variable, while preserving the derivative relations (contact ideal)
among the remaining coordinates. Point symmetries and contact symmetries are
distinguished as local transformations that arise from vector fields well-defined on the
entire jet space (i.e., irrespective of the ODE and its corresponding surface), whereas
higher-order symmetries cannot be so defined except on the infinite-order extension
(prolongation) of the jet space to include coordinates given by derivatives of the
dependent variable to all orders

Any second-order ODE admits an infinite number of contact symmetries, i.e., an
infinite-parameter Lie group of contact transformations. Any nth-order ODE (n > 3)

admits an infinite number of (n — 1)th-order symmetries, i.e., an infinite-parameter group
of local transformations of order »—1. However, an nth-order ODE (n > 3) admits at most

a finite number of symmetries of order strictly less than n—1, i.e., any admitted group of
local transformations of order at most n—2 has finite dimension. The complete
symmetry group of an ODE naturally has the structure of an abstract infinite-dimensional
Lie group [cf. Section 2.8]. Subgroups of admitted point symmetries and contact
symmetries correspond to finite-dimensional abstract Lie groups in the cases of ODEs of
orders n > 2 and n >3, respectively.
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Similarly, any second- or nth-order ODE (n >2) admits an infinite number of

linearly independent integrating factors of order n—1 (i.e., with an essential dependence
on up to (n — 1)th-order derivatives of the dependent variable) but admits at most a finite
number with order strictly less than »—1. In general, an integrating factor of an ODE has
no obvious relation to any underlying invariance or geometrical motion other than in the
case of the classical Noether’s Theorem where integrating factors are symmetries that
leave invariant a variational principle for the ODE.

An integrating factor multiplying an ODE transforms it into an total derivative
(exact) form. Consequently, any integrating factor admitted by an nth-order ODE
satisfies a system of linear determining equations arising from annihilation by an Euler
operator [Olver (1986)] applied to the product of the ODE and the integrating factor. The
basic framework for exact nth-order ODEs and integrating factors is given in Kamke
(1943) and Kaplan (1958). For a first-order ODE, the classical formulation of integrating
factors involves transforming the ODE to an exact differential form
dy(x,y) = A(x, y)dy — f(x,y)dx) =0 in the independent and dependent variables. This

generalizes naturally in the context of jet space to higher-order ODEs, since one can write
an exact nth-order ODE dw(x,y,y,,...,y, )/ dx =0 as a system of n exact differential

forms  dy(x, 3,5, ¥,) = MY, Vyseos Vo )@Y = f (6,9, 1150, ¥,)dx) =0, and
dy, =y, dx, i=01,..,n-2, [y, =y] using the jet space coordinates. Here, the
determining equations for an integrating factor A(x,y,»,,...,»,,) can be derived from

the fact that any exact differential form is closed. This leads to a system of
1+ (n(n—1)/2) determining equations that is essentially the same as the system obtained

from the standard Euler operator framework. Moreover, the line integral formula for first
integrals w(x,»,¥,,...,y,_,) 1s the same as the Poincaré homotopy formula [Olver (1986)]

used for showing that a closed differential form is locally exact.

In contrast, our framework for exact nth-order ODEs, presented in Section 3.6.4,
uses a truncation of the standard Euler operator (defined on the infinite-order jet space) to
the finite-order jet space naturally associated with a given ODE. Most signifcantly, this
leads to a simplification of the integrating factor determining equations into an equivalent
smaller system of 1+[n/2] determining equations, which has not, to our knowledge,
appeared elsewhere in the literature.

Any integrating factor also satisfies the adjoint equation of the linear determining
equation for symmetries of a given ODE. In particular, the 1+[n/2] determining

equations for integrating factors have a natural splitting into this adjoint equation plus
[n/2] extra determining equations. Use of the adjoint equation appears in related work
by Gordon (1986) and Sarlet et al. (1987, 1990), where solutions of the adjoint equation
are named “adjoint symmetries.” Keeping in mind that, in general, the solutions of the
adjoint equation are not themselves generators of symmetries unless the given ODE is
self-adjoint, we call them adjoint-symmetries. The splitting of the integrating factor
determining equations leads to the useful alternative characterization of integrating
factors as adjoint-symmetries that satisfy extra adjoint invariance conditions, as given in
Section 3.7.2. Moreover, from this point of view, the classical equivalence between
integrating factors and variational symmetries in the case of an ODE with a variational
principle is obviously generalized to an equivalence between integrating factors and those
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adjoint-symmetries satisfying the adjoint invariance conditions in the case of an ODE
without any variational principle. Finally, this provides a more geometrically appealing
formulation of the symplified system of 1+[n/2] determining equations for integrating

factors from Section 3.6.4, where the total derivative operator on jet space is now
replaced by a tangential derivative with respect to the surface defined by the ODE.

The local existence theory for mth-order ODEs guarantees that a given ODE
admits » functionally independent first integrals (i.e., none is a function combination of
the others). Any admitted first integral is equal to a constant for each solution of the
ODE and hence its total derivative with respect to the independent variable of the ODE
yields an integrating factor multiplying the ODE. The correspondence between a first
integral and an integrating factor can be thought of as being similar to the correspondence
between a group of local transformations and the infinitesimal of its infinitesimal
generator in characteristic form.

Any integrating factor admitted by an ODE leads, constructively, to a single
reduction of order of the ODE through the corresponding first integral given by the line
integral formula. This reduction of order method is complementary to Lie’s symmetry
method for reducing the order of a given ODE. Moreover, the integrating factor
procedure is computationally no more complex than Lie’s algorithm. Most important, the
integrating factor approach yields first integrals which are reductions of order in terms of
the given variables, unlike the situation for reduction of order under Lie groups of
transformation where the reduction of order does not usually hold in terms of the original
variables. A full discussion of the integrating factor approach appears in Anco and
Bluman (1997a, 1998). Related work also appears in Sheftel (1997, Section 3.5), Cheb-
Terrab and Roche (1999), and Hydon (2000).

The nature of the calculation of symmetries, adjoint-symmetries, and integrating
factors of an ODE is similar, as in each situation there is a linear determining system to
solve. Moreover, for an nth-order ODE, the determining system reduces to an
overdetermined system of linear homogeneous PDEs when one calculates symmetries,
adjoint-symmetries, or integrating factors of order strictly less than n—1. Typically, in
these cases, all solutions of the respective determining systems can be obtained explicitly
by obvious extensions of the standard calculational algorithm for solving the
overdetermined linear system for point symmetries. One can also use effective ansatzes
to seek particular solutions by directly splitting the determining equations into an
overdetermined system of linear homogeneous PDEs. Such ansatzes include a point-form
ansatz, an elimination of variables ansatz, and an invariant-solution ansatz [see Chapter
4] arising naturally from any admitted Lie group of point transformations of a given
ODE. Available powerful computer algebra systems, e.g., REDUCE, MATHEMATICA,
MAPLE (which was used for the calculations for the ODE examples in Sections 3.5-3.8),
are readily adapted for solving the resulting overdetermined systems.

Most important, the cardinality of the class of ODEs admitting symmetries of a
given ansatz is, in general, the same as that of the class of ODEs admitting integrating
factors of the same ansatz. Consequently, the use of the integrating factor method for
reducing the order of ODEs should be viewed as having an a priori utility no less than
that of symmetry methods.

Another procedure for reducing the order of an ODE is through direct
construction of first integrals by special formulas using either symmetries or adjoint-
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symmetries. The scaling symmetry formula in Section 3.8.1 is a counterpart for ODEs of
a conservation law formula in the case of linear PDEs appearing in works of Olver (1986)
and Anco and Bluman (1996, 1997a). The Wronskian formula in Section 3.8.2 is a
generalization of a related procedure given in Hydon (2000) for obtaining a first integral
of any nth-order ODE that admits at least #n+1 point symmetries.

In the case of a boundary value problem for an nth-order ODE, invariance of the
ODE under an r-parameter solvable Lie group of transformations (r <n) reduces the

given boundary value problem to a boundary value problem for an (» — r)th-order ODE.
This can be especially useful for obtaining qualitative results about the solution of the
boundary value problem. Moreover, finding a Lie group of transformations admitted by
the ODE of a boundary value problem may lead to an effective numerical method for
solving the ODE [Dresner (1983, 1999)]. In addition, if the boundary conditions are of
the right type, then the shooting method may be reduced to a single shooting when used
in combination with Lie group invariance (which yields a parameter-dependent family of
solutions from a given solution).

If an ODE admits a Lie group of transformations, then one can construct special
solutions that are invariant under the admitted transformations. Such solutions are also
invariant curves of the group. The construction of invariant solutions for an nth-order
ODE can be extended to invariance with respect to an admitted Lie group of local
transformations of any order less than n. For a second- or higher-order ODE, invariant
solutions, resulting from invariance under point symmetries, can be found without
explicitly solving the given ODE. For a first-order ODE, invariant solutions are found by
solving related algebraic equations. Moreover, separatrices and singular envelope
solutions, if they exist, are invariant solutions for any admitted Lie group of
transformations. Consequently, such solutions can be found without determining the
general solution of the given first-order ODE. The results presented in Section 3.10
appeared in Bluman (1990c). Wulfman (1979) considered group aspects of separatrices
that are limit cycles. The construction of separatrices in the case of scaling invariance is
discussed in Dresner (1983, 1999). Discussions of envelope solutions from invariance
considerations appear in Page (1896, 1897), Cohen (1911), and Dresner (1999).

Some known results for systems of ODEs are now summarized. Using the ideas
developed in Section 3.2, one can show that a system of first-order ODEs always admits
an infinite-parameter Lie group of nontrivial point transformations and an infinite-
parameter Lie group of trivial point transformations. But there is no constructive
procedure for finding the groups [Ovsiannikov (1982, Section 8)]. Gonzalez-Gascon and
Gonzalez-Lopez (1983) showed that a system of m nth-order ODEs can admit at most a

[2(m +1)*]—parameter Lie group of point transformations if » = 2, and at most a

(2m* + mn + 2) —parameter Lie group of point transformations if » > 2. If a given

system of m first-order ODEs admits an r-parameter solvable Lie group of point
transformations (» < m), then it can be reduced to a system of m — r first-order ODEs
plus » quadratures. The latter two results appear in Olver (1986). The framework for
constructing integrating factors for systems of ODEs appears in Anco and Bluman
(1998). Interesting examples appear in Senthilvelan and Lakshmanan (1995).

In Chapter 4, we consider the invariance of PDEs under Lie groups of point
transformations. In general, unlike the case for an ODE where invariance under a one-
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parameter Lie group of transformations leads to a reduced ODE whose solution includes
all solutions of the given ODE, the invariance of a PDE does not lead to a reduced PDE
whose solution includes all solutions of the given PDE. However, in the same way as for
ODEs, we can define and construct invariant solutions for PDEs resulting from
invariance under Lie groups of transformations. For ODEs, such special solutions are
obtained by solving reduced algebraic equations; for PDEs, such special solutions arise
from solving reduced PDEs with fewer independent variables.

295



4

Partial Differential Equations (PDEs)

4.1 INTRODUCTION

In this chapter, we show how to construct solutions of partial differential equations
(PDEs) from invariance under Lie groups of point transformations (point symmetries).
We will consider both scalar PDEs and systems of PDEs.

As is the situation for an ordinary differential equation (ODE), we will see that
the infinitesimal criterion for the invariance of a PDE leads directly to an algorithm to
determine the infinitesimal generators of the Lie group of point transformations admitted
by a given PDE. The invariant surfaces of the Lie group of point transformations lead to
invariant solutions (similarity solutions). These solutions are obtained by solving PDEs
with fewer independent variables than appear in the given PDE.

We will discuss how one can use invariance under Lie groups of point
transformations to solve boundary value problems for PDEs. If a one-parameter Lie
group of point transformations admitted by a PDE also leaves invariant both the domain
and boundary conditions of a posed boundary value problem, then the solution of the
boundary value problem is an invariant solution. Hence, the boundary value problem is
reduced constructively to a posed boundary value problem with one less independent
variable. The situation is less restrictive in the case of a linear PDE. Here, one need not
leave invariant the boundary conditions of a posed boundary value problem. A
superposition of invariant solutions, corresponding to an eigenfunction expansion, could
yield the solution of the boundary value problem, where the eigenvalue arises from the
invariance of a linear homogeneous PDE under scalings of its dependent variables. We
will also consider the invariance of boundary value problems under multiparameter Lie
groups of point transformations.

4.1.1 INVARIANCE OF A PDE

First we consider a scalar PDE. We represent a kth-order scalar PDE by
F(x,u,0u,0u,...,0"u) =0, (4.1)

where x =(x,,x,,...,x,) denotes the coordinates corresponding to its » independent

variables, u denotes the coordinate corresponding to its dependent variable, and 0’u

denotes the coordinates with components 0’u/ 8xi18xi2---6xi,= u i,=12,...,n,

for j =1,2,...,k, corresponding to all jth-order partial derivatives of u with respect to x.
In terms of the coordinates x,u,du,d’u,...,0"u, the PDE (4.1) becomes an

algebraic equation that defines a hypersurface in (x,u,0u,0’u,...,0"u)—space. [Here,



(x,u,0u)—space is of dimension 2n+1, (x,u,0u,0’u)—space is of dimension
L(n* +5n+2), etc.] For any solution u = ®(x) of PDE (4.1), the equation

(x,u,0u,0%u,...,0"u) = (x,0(x),00(x),0°0(x),..., 0" O(x))

defines a solution surface that lies on the surface F(x,u,0u,d’u,...,0"u) =0.

We assume that PDE (4.1) can be written in solved form in terms of some specific
component of the {th-order partial derivatives of u:

F(x,u,0u,0’u,...,0"u)=u — f(x,u,0u,0u,...,0"u) =0, (4.2)

lliZ”'lf

where f(x,u,0u,du,...,0"u) does not depend explicitly on u,

biyeeiy *

Definition 4.1.1-1. The one-parameter Lie group of point transformations
x*=X(x,u;¢€), (4.3a)
u*=U(x,u;¢), (4.3b)

leaves invariant the PDE (4.1), i.e., is a point symmetry admitted by PDE (4.1), if and
only if its kth extension, defined by (2.115a—d) and (2.116a,b), leaves invariant the
surface (4.1).

A solution u#=0(x) of PDE (4.1) lies on the surface (4.1) with
by, = 8"6)(x)/6xi18xi2 ---axi/, i;=12,...,n, for j=L2,....,k. The invariance of
surface (4.1) under the kth-extension of (4.3a,b) means that any solution u = ®(x) of
PDE (4.1) maps into another solution u = ®(x;&) of (4.1) under the action of the one-

u

parameter group (4.3a,b) for any &. Moreover, if a transformation (4.3a,b) maps any
solution u =®(x) of PDE (4.1) into another solution u = ®(x;¢&) of (4.1), then the

=0'®(x; &)/ o, 0x, -+ 0x, ,
i,=12,...,n, for j=12,....k. Consequently, the set of all solutions of PDE (4.1) is
invariant under the one-parameter Lie group of point transformations (4.3a,b) if and
only if (4.1) admits (4.3a,b).

The following theorem arises from Definition 4.1.1-1, Theorem 2.6.7-1 on the
criterion for an invariant surface in terms of an infinitesimal generator, and Theorem

2.4.4-1 on extended infinitesimals. [For the rest of this section, we assume the
summation convention for repeated indices.]

surface (4.1) is invariant under (4.3a,b) with u

iy

Theorem 4.1.1-1 (Infinitesimal Criterion for the Invariance of a PDE). Let
X=¢ (x,u)i+ 77(x,u)i (4.4)
Ox, ou

be the infinitesimal generator of the Lie group of point transformations (4.3a,b). Let
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X® =& ()c,u)i +1(x, u)i +1" (x,u, 6u)i + -
ox, Ou Ou,

0
k 2 k
+77ifi2?,_ik (x,u,0u,0°u,...,0"u)

™ (4.5)

be the kth-extended infinitesimal generator of (4.4), where n" is given by
(2.119a) and n' ; by (2.119b), i, =1.2,....n, for j=12,....k, in terms of {(x,u) =

(& (x,u), & (x,u),...,¢ (x,u)), n(x,u). Then the one-parameter Lie group of point

transformations (4.3a,b) is admitted by PDE (4.1), i.e., is a point symmetry of PDE (4.1),
if and only if

XYPF(x,u,0u,0u,...,0u)=0 when F(x,u,0u,0u,...,0"u) =0. (4.6)

Proof. Leftto Exercise 4.1-3. O

4.1.2 ELEMENTARY EXAMPLES

(1) Group of Translations
The second-order PDE

Z/lxx = f(uxt Jull 7ux ’ut JM’X) (47)

admits the one-parameter (&) Lie group of translations

x*=x, (4.8a)
tf=t+e, (4.8b)
u*=u, (4.8¢)
since under (4.8a—c) we have
* — % — % — L L -
u xEx* T uxx’ u Xk T uxt’ u trrx T urt’ u x* ux’ u T ut’

so that the surface defined by (4.7) is invariant in (x,u,0u,d’u)—space with
X, =x,x, =t. Then
u = P(x) (4.9)

is invariant under (4.8a—c) and defines a solution (invariant solution) of PDE (4.7)
provided that ¢(x) solves the second-order ODE

¢"(x) = f(0,0,4'(x),0, #(x), x).
Note that
u=0(x,1)
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defines an invariant surface of (4.8a—c) [cf. Theorem 2.6.7-1] if and only if

80(x, )

X(u—-0(x,t))=- =0 when u=0(x,1),

o . . . . .
where X :a— is the infinitesimal generator of the Lie group of translations (4.8a—c).
t

This leads to the invariant form (similarity form) (4.9) for an invariant solution resulting
from the invariance of PDE (4.7) under (4.8a—c).

Under the action of the Lie group of translations (4.8a—c), a solution u = ®(x,?)
of PDE (4.7) is mapped into a one-parameter family of solutions
u=a(x,t;¢) =0O(x,t+ &) provided that # = O(x,7) is not an invariant solution of PDE
(4.7) resulting from its invariance under (4.8a—c), i.e., ®(x,¢) depends essentially on .

(2) Group of Scalings
The wave equation

u,_=u, (4.10)
admits the one-parameter (o) Lie group of scalings

x* = ax, (4.11a)

t* =, (4.11b)

u*=u, (4.11¢c)

. -2 -2
since u* .. =a u_, u*..=a u, and, consequently, u* ., =u*.. when u_ =u,.

If one chooses canonical coordinates r =x/t, s =logt, u, so that the Lie group
of scalings (4.11a—c) becomes r* =r, s* =s+loga, u* =u, then PDE (4.10) transforms

into the PDE
(-, —u, +2ru, +u’ —2ru, =0. (4.12)

Correspondingly,
u=g(r)= ¢[§j (4.13)

defines an invariant solution of PDE (4.12), and hence of the wave equation (4.10),
provided that ¢(r) satisfies the ODE

(1—-r*)g"(r)—2r¢'(r)=0. (4.14)

The infinitesimal generator of the group of scalings (4.1la—c) is given by

X = x@i + tai. Hence, u = ®(x,?) defines an invariant surface of (4.11a—c) if and only if
X t

X(u—-0O(x,1)) =0 when u =0(x,?),
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i.e., if and only if
X0 +10, =0. (4.15)
The solution of the corresponding characteristic equations

d _di_do

X t 0

5

leads to the invariant form (4.13). The substitution of (4.13) into the wave equation
(4.10) yields the ODE (4.14). We see that it is unnecessary to find canonical coordinates
of the Lie group of scalings (4.11a—c) in order to find the resulting invariant solutions.

Moreover, under the action of the Lie group of scalings (4.11a—c), a solution
u = 0(x,t) of the wave equation (4.10) maps into the one-parameter family of solutions
u=a(x,t;a) =0(ax,at) of (4.10) provided that u = ®(x,#) is not an invariant solution
of (4.10) resulting from its invariance under (4.11a—c), i.e., u = ®(x,?) is not of the form
(4.13).

(3) Superposition of Invariant Solutions for Linear PDEs
The wave equation (4.10) admits the one-parameter (&) Lie group of point

transformations

x*=x, (4.16a)
*F=t+e, (4.16b)
w* =e"u, (4.16¢)

for any constant A € C. The infinitesimal generator of (4.16a—c) is given by

Actually, the Lie group of point transformations (4.16a—c) defines a two-parameter (&,4)

Lie group of transformations corresponding to the invariance of the wave equation under
translations in ¢ and scalings in u. The resulting invariant solutions # = ®(x,#) must

satisfy the invariant surface condition
Xwu—-0(x,t))=Au—-0, =0 when u=0(x,?),

1e.,

u, = Au. (4.17)

t

As 1s the situation for ODEs [cf. Section 3.10], we can find invariant solutions through
two procedures:

Method (I) (Invariant Form Method). The solution of the invariant surface condition
(4.17) 1s given by the invariant form

u = g(x)e”, (4.18)
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for an arbitrary function @#(x). Then the substitution of (4.18) into the wave equation
(4.10) yields the ODE

¢"(x) = A'¢(x).
Hence, after solving this simple ODE, we obtain invariant solutions
u=0(x,t) = Ce'"™ (4.19)
of PDE (4.10), where C is an arbitrary constant.

Method (II) (Direct Substitution Method). Here we directly substitute the invariant
surface condition (4.17) into PDE (4.10) and avoid solving explicitly (4.17). Then

u, =Au, = Fu. Hence, u_ = A’u, so that
u=y(t)e™ (4.20)

for an arbitrary function y/(z). Then the substitution of (4.20) into the invariant surface
condition (4.17) leads to (¢) satisfying the ODE w'(f) = Aw(¢), and hence to the
invariant solutions (4.19).

Since the wave equation (4.10) is a linear homogeneous PDE, it follows that
superpositions of invariant solutions

D C() ™, Y [C (A + Cy(1)e™ ], j C(A)e" ™ dA, etc.,
7 7 r

define solutions of (4.10) where A € C is an “eigenvalue,” and y defines a path in the

complex A-plane. Special superpositions correspond to Fourier series, the Laplace
transform, and the Fourier transform representations of solutions.

As a general remark, we note that the Invariant Form Method is useful if one can
find the general solution of the invariant surface condition whereas the Direct
Substitution Method must be used if one is unable to solve explicitly the invariant surface
condition.

EXERCISES 4.1

1. Find invariant solutions for the wave equation (4.10) resulting from its invariance
under the one-parameter (&) Lie group of translations

x*=x+eg,
*=t+ae,

for any fixed constant & € R. How do these solutions relate to the general solution of
PDE (4.10)?
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2. (a) Show that the most general second-order PDE that admits the two-parameter
(&,,€,) Lie group of translations x* =x+¢,, t*=¢+¢,, 1s of the form

Fu,_,u,u,,u_u,u)=0.

xx 27" xt

(b) Find the invariant solutions of this PDE resulting from its invariance under the
one-parameter (&) Lie group of translations x*=x+cg, t* =1+ ¢, where ce R

is a fixed constant. Interpret these solutions.

(c) As an example, find invariant solutions of the Korteweg—de Vries (KdV)
equation u, +uu +u . =0. In particular, show that u=0(x,r)=U(z)+c
satisfies the KdV equation where z = ¢t — x, ¢ = const > 0, and U(z) satisfies the
ODE U"+UU'=0. Verify that U = ¢c(3sech’ (+ \/Zz) —1) is a particular solution
of this ODE. Show that the corresponding traveling wave solution u = ®(x,?) of

the KdV equation, the well-known KdV soliton solution, satisfies # — 0 as
X —> oo,

3. Prove Theorem 4.1.1-1.

4.2  INVARIANCE FOR SCALAR PDEs

4.2.1 INVARIANT SOLUTIONS

Consider a kth-order PDE (4.1) (k > 2) that admits a one-parameter Lie group of point
transformations with the infinitesimal generator (4.4). We assume that &(x,u) # 0.

Definition 4.2.1-1. u =®(x) is an invariant solution of PDE (4.1) resulting from its

admitted point symmetry with the infinitesimal generator (4.4) if and only if:
(1) u =0(x) is an invariant surface of (4.4); and

(11) u =0O(x) solves (4.1).

It follows that u = ®(x) is an invariant solution of PDE (4.1) resulting from its
invariance under the point symmetry (4.4) if and only if « = ®(x) satisfies both:
(1) X(u—-0O(x))=0 when u=0(x), ie.,

00(x)
Ox,

1

S (x,0(x)) =1(x,0(x)); (4.21a)

and
(i) F(x,u,0u,0u,...,0'u)=0 when u=0(x), ie.,

F(x,0(x),0(x),0°0(x),...,0"0(x)) = 0. (4.21b)
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Equation (4.21a) is called the invariant surface condition for the invariant
solutions resulting from invariance under the point symmetry (4.4). Invariant solutions
for PDEs were first considered by Lie (1881). They can be determined by two
procedures.

() Invariant Form Method. Here, we first solve the invariant surface condition, i.e.,
the first-order PDE (4.21a), by solving the corresponding characteristic equations for
u=0(x):

dx, dx, dx du

n

(o) &) &) o)

If y,(x,u),y,(x,u),...,»y, ,(x,u),v(x,u) are n functionally independent constants arising
from solving the system of » first order ODEs (4.22) with 0v/ou # 0, then the general
solution u =®(x) of PDE (4.21a) is given, implicitly, by the invariant form

V()C, U) = (D(yl (x,u), yz (X,M),. ceo yn—l ()C,M)), (423)

where @ is an arbitrary differentiable function of y,(x,u),y,(x,u),...,», (x,u). Note

(4.22)

that y, (x,u), y, (x,u),...,»,  (x,u),v(x,u) are n functionally independent group invariants
of the point symmetry (4.4) and thus are » canonical coordinates for the Lie group of
point transformations (4.3a,b). Lety, (x,u)be the (n +1)th canonical coordinate satisfying

Xy, =1.

If PDE (4.1) is transformed to another kth-order PDE in terms of independent variables
V15Y,,--.,y, and dependent variable v, then the transformed PDE would admit the one-

parameter Lie group of translations

y*¥ =y, i=12,...,n—-1, (4.24a)
y* =y +&, (4.24b)
vE=v, (4.24¢)

Thus, the variable y, would not appear explicitly in the transformed PDE, and hence, the

transformed PDE would have solutions of the form (4.23). Consequently, the PDE (4.1)
has invariant solutions given implicitly by the invariant form (4.23). Such solutions are
found by solving a reduced differential equation with »—1 independent variables
Vi»Vys---»¥,, and a dependent variable v. The variables y,,»,,...,y,, are commonly

called similarity variables. The reduced differential equation is found by substituting the
invariant form (4.23) into PDE (4.1). We assume that this substitution does not lead to a
singular differential equation for v. Note that if 0£/0u =0, as is usually the case, then

v, =y;(x),i=12,...,n—-1; if n = 2, then the reduced differential equation is an ODE and
we denote the similarity variable by ¢ = y,.
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(I) Direct Substitution Method. This procedure is especially useful, in fact, it is
necessary to use it, if one cannot solve explicitly the invariant surface condition (4.21a),
i.e.,, the characteristic equations (4.22). We can assume that & (x,u)#0. [If
S(x,u)=0,i=12,...,n, then the solutions w=0(x) of the algebraic equation
n(x,u) =0 define the invariant surfaces satisfying (4.21a). Any such u# =®(x) is an

invariant solution of (4.1) if and only if it satisfies the given PDE (4.1).] Hence, the first-
order PDE (4.21a) can be written as

ou _ n(x,u) L& (x,u) ou
ox, & (x,u) Zl & (x,u) ox, (4.25)

From (4.25) and its differential consequences, it follows that any term involving
derivatives of u with respect to x, can be expressed in terms of x, u, and derivatives of
Hence, after directly substituting (4.25)

and its differential consequences into the given PDE (4.1), for all terms in (4.1) that
involve derivatives of u with respect to x,, we obtain a reduced differential equation of

u with respect to the variables x,x,,...,x

n-1°

order at most k& involving the dependent variable u, the » — 1 independent variables
XisXys.. and the parameter x,. Any solution of this reduced differential equation

n 1>
defines an invariant solution of PDE (4.1), resulting from its invariance under the Lie
group of point transformations with infinitesimal generator (4.4), provided that the
invariant surface condition (4.25) or, equivalently, the given PDE (4.1) itself, is also
satisfied. If n = 2, the reduced differential equation is an ODE. The constants appearing
in the general solution of this ODE are arbitrary functions of the parameter x,. These
arbitrary functions are then determined by substituting this general solution into either
(4.25) or the given PDE (4.1). Note that the Direct Substitution Method is
computationally better than the Invariant Form Method since it avoids integration of the
characteristic ODEs.

In Section 4.4.1, we extend the Invariant Form Method and the Direct
Substitution Method to obtain invariant solutions from admitted multiparameter groups of
point symmetries.

4.2.2 DETERMINING EQUATIONS FOR SYMMETRIES OF A kth-ORDER PDE

Consider a kth-order PDE (k > 2,/ <k)

= f(x,u,0u,0u,...,0"u), (4.26)

’1’2 Iy

where f(x,u,0u,0%u,...,0"u) does not depend explicitly on u, From Theorem

ll l

4.1.1-1, we see that PDE (4.26) admits the one-parameter L1e group of point
transformations with the infinitesimal generator

X=¢ (x,u)% + n(x,u)% , (4.27)

i
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and with its kth extension given by (4.5), if and only if &(x,u) and 7(x,u) satisfy the
symmetry determining equation

Zh +77g+77‘.“i+ w 9

A et
J J JiJ2 Tk
ox; Ou Ou, oy,

77;1’:;)“,1.( =& when u satisfies (4.26).

(4.28)

It is easy to show that:
(1) 775’;) is linear in the components of the coordinates 6”u if p>2; and
JiJ2 " Jp

. (p) . . . . 2 P .
i) 7. j, isa polynomial in the components of the coordinates ou,0°u,...,0"u, with
coefficients that are linear homogeneous in &(x,u),n(x,u) and their derivatives

with respect to x and u to order p.

From (i) and (ii), it follows that if f(x,u,0u,0"u,...,0"u) is a polynomial in the
components of u,0%u,...,0"u, then the symmetry determining equation (4.28) is a

polynomial equation in the components of ou,du,...,0"u with coefficients that are
linear homogeneous in &(x,u),n(x,u), and their derivatives to order k. Observe that at

any point x, we can assign arbitrary values to each component of u,du,du,...,0u

provided that PDE (4.26) is satisfied. In particular, after u,, , 1is replaced by

f(x,u,0u,0%u,...,0"u) in the symmetry determining equation (4.28), the resulting
expression must hold for arbitrary values of the remaining components of coordinates
x,u,0u,0%u,...,0"u. Moreover, the resulting expression is a polynomial equation in the

remaining components of du,0%u,...,0"u. Consequently, the coefficients of this
polynomial equation must vanish separately. This yields a system of linear homogeneous
PDEs for the n + 1 functions &(x,u),n(x,u). This system of linear PDEs is called the set
of determining equations for the infinitesimal generators (4.27) admitted by PDE (4.26).
The set of determining equations 1is an overdetermined system of PDEs
for £(x,u) and 7(x,u) since, in general, there are more than » +1 determining equations.
When PDE (4.26) is not a polynomial equation in the components of
ou,0%u,...,0"u, one can still split the symmetry determining equation (4.28) into a
system of linear homogeneous PDEs for &(x,u) and 7(x,u) by using the independence

of the components of Ou,d’u,...,0"u after substitution for the component u.

Typically, the resulting set of determining equations will be an overdetermined system
for &(x,u), n(x,u).

When the set of determining equations is overdetermined, it often happens that its
only solution is the trivial solution &(x,u)=n(x,u)=0. In this case, the given PDE

(4.26) does not admit point symmetries (although (4.26) could still admit contact
symmetries, higher-order symmetries, or nonlocal symmetries, that result from
considering a more general infinitesimal generator than (4.27)).

When the general solution of the set of determining equations is nontrivial, two
cases arise: If the general solution contains at most a finite number  of essential arbitrary
constants, then it yields an r-parameter Lie group of point transformations admitted by
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PDE (4.26); if the general solution cannot be expressed in terms of a finite number of
essential constants (e.g., when it contains an infinite number of essential constants or
involves arbitrary functions of components of x, u), then it yields an infinite-parameter
Lie group of point transformations admitted by PDE (4.26).

One can easily verify that any linear nonhomogeneous PDE, defined by a linear
operator L,

Lu = g(x), (4.29)

admits a trivial infinite-parameter Lie group of point transformations
x* = x, (4.30a)
u* =u+ ew(x), (4.30b)

where w(x) is any solution of the associated linear homogeneous PDE
Lo =0. (4.31)

[The group (4.30a,b) is important when considering the problem of mapping nonlinear
PDEs to linear PDEs [Kumei and Bluman (1982); Bluman and Kumei (1990a)].] To
within this trivial infinite-parameter Lie group of point transformations, the Lie group of
point transformations admitted by a linear PDE typically has at most a finite number of
parameters.

We now state some useful results on the forms of admitted point symmetries for
wide classes of scalar PDEs (4.1) that arise in applications. For a given PDE (4.1), these
results significantly simplify the many calculations involved in setting up and solving the
set of determining equations for the admitted infinitesimals &(x,u), n(x,u). Suppose

PDE (4.1) is such that F(x,u,du,du,...,0"u) is linear in the components of 6*u and, in
addition, suppose the coefficients of the components of *x depend at most on x and u.
Then PDE (4.1) is of the form

A (g, = g(x,u,0u,...,0'u), (4.32)

with coefficients A4, ., (x,u) that are symmetric with respect to their indices. The
following theorems hold:

Theorem 4.2.2-1. Suppose a kth-order PDE (4.26) is of the form

Oy =g, ou,...,0 ), (4.33)

k > 2, and admits a Lie group of point transformations with the infinitesimal generator

(4.27). If there does not exist a change of independent variables x under which PDE
(4.33) is equivalent to a PDE

iy iy

k
QU _ Gxou.ou,...0"u) (4.34)

k
1

for some function G(x,u,0u,...,0"'u), then
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Theorem 4.2.2-2. Suppose a PDE of the form (4.34) is of order k > 2 and admits a Lie
group of point transformations with the infinitesimal generator (4.27). Then

9,

—L=0, i=2,...,n
ou

Theorem 4.2.2-3. Suppose a PDE (4.26), of order k >3, is of the form

(x,u,0u)u; +h(x,u,0u,...,0" u), (4.35)

Ji2 Tk

A, (x,u)u,

hiy i~ 7 jifar ke

and admits a Lie group of point transformations with the infinitesimal generator (4.27).
Then

2% _,

, i=12,....n.
ou

Theorem 4.2.2-4. Suppose a PDE (4.26), of order k >3, is of the form

A4, o, =C (x,u)u +h(x,u,du,...,0"u), (4.36)

Qi T o dka Jij2 T

and admits a Lie group of point transformations with the infinitesimal generator (4.27).
Then

and

Theorem 4.2.2-5. Suppose a second-order PDE (4.26) is of the form
A, (x,uyu; = C, (x,u)u, +h(x,u),

and admits a Lie group of point transformations with the infinitesimal generator (4.27)
such that

- 07 = 1’25 ,}’l
ou
Then
2
o _y,
ou
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Theorem 4.2.2-6. Suppose a PDE (4.26), of orderk > 2, is a linear PDE that admits a
Lie group of point transformations with the infinitesimal generator (4.27). Then

o,
ou
o’n

o’ =0.

Theorems 4.2.2-1 to 4.2.2-5 are proved in Bluman (1990a). Theorem 4.2.2-6 is
proved in Ovsiannikov (1962, Chapter 6; 1982, Section 27) for £ = 2, and in Bluman
(1990a) for £ > 2. Further classification results for special cases of PDEs of the form
(4.32) appear in Heredero and Olver (1996).

For n = 2, introduce the notations

X, =x, x, =t §(x,x,)=8(x,1), &(x,x,)=1(x,10),
and

ou ou
_ _ _ o _ M
x ’ u2_ut_ ’ 771 _77x’ 772
ox

ot

If 06/0u=0, 0r/ou=0, 8°n/ou’ =0, then an admitted infinitesimal generator
for a point symmetry is of the form

M M

u =u =n,’, etc.

X = f;‘(x,t)a—ax + r(x,t)% +[f(,)u+ g(x, t)]%. (4.37)

It follows that for an infinitesimal generator of the form (4.37), we have [cf. (2.123)-
(2.137)]

n=fu+g, (4.38)
dg of o¢ or

- Ay S N TRy 4.39

T ox Ox ! [f ox } e ox u, (4.39)

- S A I L (4.40)
ot ot ot ot

@) _ azg " 62fu
xx 2 2 2
ox ox Oox Ox

<z>_62_g+52_fu+[1_62_§}u +[1_5_2f}, 9%

+21—ﬁ}ux 0t [f—zaﬂum—zﬁu (4.41)

oxt Ox ox

= u
T oxot oOxot Ox Oxot ot oxot o ™
+{ _%e —ﬁ}uﬁ —zu”, (4.42)
ox Ot ox
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o'g O f 8% of 0% o0& or
77;2) = 5;2 + atz u— atz Ux+ 25—67 ut—25uﬁ+ f—25 u,. (443)

423 EXAMPLES

(1) Heat Equation
Consider the heat equation

u.=u,.

XX t

(4.44)

From Theorem 4.2.2-6, it immediately follows that the infinitesimal generator of a point
symmetry

0 0 0
X =E(x,t,u)—+ t(x, t,u) — + n(x,t,u) — 4.45
S(x,t,u) o 7(x,1,u) py n(x,t,u) . (4.45)

admitted by PDE (4.44) must be of the form (4.37). We now find all infinitesimal
generators of point symmetries (4.37) admitted by the heat equation (4.44). For PDE
(4.44), the symmetry determining equation (4.28) becomes

(2 M

n. =n, when v =u,. (4.46)

Substituting (4.40) and (4.41) into (4.46), and then eliminating u _ through (4.44), we
obtain

|:62_g_a_gi|+|:az_f_g:|u+|:2g_ﬁ+%:|u

ox* ot ox* ot ox ox* ot
2
+ [% - % - 2%}4 - 2%% = 0. (4.47)
X X X

The symmetry determining equation (4.47) must hold for all values of x,f,u,u_,u,,u_,.

x>t

Hence, from setting to zero the coefficients of u ,u,,u _,u and the first bracketed term of

xt>7to
(447) we obtain the following set of five determining equations for

s(x,0),7(x,0), f(x,1), g(x,1) :

Lo, 4.48a
ax ( )
2
@—6—2—26—5 =0, (4.48b)
ot Ox ox
2
2 I e O, (4.48¢)
ox Ox ot
2
% _T (4.48d)
ox ot
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0’g _og
—22 -. 4.48e
ox® ot ( )
The solution of PDE (4.48¢) corresponds to the trivial infinite-parameter Lie group of
point symmetries (4.30a,b) with w(x) = g(x,7). Nontrivial point symmetries arise from
solving the system of linear PDEs (4.48a—d). One can show that the solution of the
determining equations (4.48a—d) is given by

E(x,t) =K+ P+t + o, (4.49a)
t(x,)=t(t)=a+28+n*, (4.49b)
f0)=—y(Ex* +1n -1+ 2, (4.49¢)

where «, f,7,0,k,A are six arbitrary parameters [Bluman and Cole (1969)]. Hence, the
point symmetry generators admitted by the heat equation (4.44) are given by

X =2, x,=2 X, =xZanl) X mwZer Lo il
ox ot ox ot ox ot ou
0 0 0
X.=t——3txu—, X, =u—. 4.50
: ox ° ou ¢ ou ( )

The infinitesimal generators (4.50) correspond to a six-parameter Lie group of nontrivial
point transformations acting on (x,#,u) —space.

The commutator table for the Lie algebra arising from the infinitesimal generators
(4.50) is given by

X, X, X, X, X, X,
X, | 0 0 X, X, -iX, 0
X,| 0 0 2X, X,-iX, X, 0
X, [-X, -2X, 0 2X, X, 0
X, | =X, -X,+iX, -2X, 0 0 0
X, [1X, ~X, - X, 0 0 0
X, | 0 0 0 0 0 0

From the form of the infinitesimals (4.49a,b), we see that the infinitesimal
generators (4.50) induce a five-parameter («,f,y,0,kx) Lie group of point

transformations acting on (x,#)—space

3, Y2=ﬁ, Y3=x£+2t£, Y4=xt£+t2£, Y5=ti (4.51)
ox ot ox ot ox ot ox
This five-parameter Lie group is a subgroup of the eight-parameter Lie group of

projective transformations in R® defined by (2.168a,b) with infinitesimal generators
given by (2.169).

Y, =
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Consider the infinitesimal generator X, (parameter y) in (4.50). The
corresponding one-parameter Lie group of point transformations is obtained by solving

the initial value problem for the first order system of ODEs,
dx *

:X*t*,
de
dt*
- - I* 2,
e (%)

du* )
= L 4 L,

de

with u*=u, x*=x, t*=1t at ¢ =0. This yields

X
x*=X(x,t,u;6)=——,
1—&t

t
t*:T(xatau;g):—a
11—t

(sz
u*=U(x,t,u;&) =1— &t exp| — u.
(5:6,236) p[ 41— &)

Now we find the invariant solutions u =®(x,#) of the heat equation (4.44)
resulting from its invariance under X, by both methods outlined in Section 4.2.1.

(I) Invariant Form Method. Here, the invariant surface condition (4.21a) becomes
(4.52)

xtu, +tu, = —(Lx* + 1.
The corresponding characteristic equations are given by

dx_ﬁ_ du

xt 17 — (X +%t)u'

This solution of the characteristic equations yields two invariants of X, :
X
F==, v=Ate M
t

Thus, the solution of the invariant surface condition (4.52) is given by the invariant form

\/;€x2/4tu _ ¢(§j

or, after we solve for u,
(4.53)

u=0(x,1) =%e‘“"¢(4)
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in terms of the similarity variable ¢ = x/¢. Substitution of (4.53) into the heat equation
(4.44) leads to ¢(¢) satisfying the reduced ODE

¢"(¢)=0.

Hence, the invariant solutions of PDE (4.44), resulting from its invariance under X,, are
given by

u=0(x,t)= i{q +C, ﬂ e (4.54)

Vi

where C, and C, are arbitrary constants.

(I) Direct Substitution Method. Here, we first express the invariant surface condition
in a solved form for u, :

X x? 1
u =—u_ —|—+— u. 4.55
I A [4% 2t} (353

After substituting (4.55) into the heat equation (4.44), we obtain the following ODE with
¢t playing the role of a parameter:

2
u. +u +["—+i}u=o. (4.56)

The general solution of the parametric ODE (4.56) is given by
u=[A®{)+B@)xle™ ", (4.57)

where A(¢) and B(¢) are arbitrary functions. Substitution of (4.57) into the invariant
surface condition (4.55) yields

KA'U) S A(t)j + (B’(t) + iB(t)jx}e"‘z =0,
2t 2t

Hence,

A+ A) =0,
2t

BU()+—- B(t) =0,
21

which in turn yields the invariant solutions (4.54).
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We now find the one-parameter(¢) family of solutions u = ®(x,#;¢), resulting
from the invariance of the heat equation (4.44) under the point symmetry X,, obtained
from any solution u = ®(x,?) that is not of the form (4.54). Let

~ X
x:X(x’t:u;g) =7 >
1-&t

A t
t =T(x,t,u;e) =——,
1—et

u=0(x, ¢ ).
Then

A n oA 1 ?
u=90(x,t;e)=U(x,t,u;—¢) = exp ad ®( al ) ! j
1—& 4(1-&r) l—e 1—a

Lie (1881) found the admitted group of point transformations of the heat equation
(4.44). Bluman (1967, Chapter II) [see also Bluman and Cole (1969, 1974 (Section 2.7))]
constructed all corresponding invariant solutions of the heat equation (4.44).

(2) Nonlinear Heat Conduction Equation

For a second example, we consider a group classification problem. In particular, we
completely classify the admitted point symmetries for the nonlinear heat conduction
equation

u, =(K@yu,)_, (4.58)

in terms of the conductivity K (). Since PDE (4.58) is of the form (4.34), from Theorem
4.2.2-2 it immediately follows that for any K («), an admitted infinitesimal generator for a
point symmetry (4.45) must be of the form

0 0 0
X = E(x,t,u)— + 7(x, 1) — + n(x, t,u)—.
&(x,t,u) 8x 7(x,1) Py n(x,t,u) P™

For PDE (4.58), the symmetry determining equation (4.28) becomes
n =K', +K"@)w,) Y+ K@nd + 2K @u, 1, (4.592)
with
u, =(K@wu,), =Kwu,, +K'u)u,), (4.59b)

where 7", 7", 7n? are given by (2.123)(2.125). After using the given PDE (4.59b) to

eliminate u, from (4.59a), we obtain a polynomial equation in powers of _,u ,, and u_

xx?? “xt?

that must hold for arbitrary values of x,f,u,u _,u_,u_,. From the coefficients of

xx > xt*®

and u_u_, we find that

xt xx7x

u
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% _o, 97, (4.60a)
ou ox
so that & = &(x,1), 7 = 7(f). Using (4.60a) we get, from the coefficients of u_,u_,(u, ),

respectively,

o¢ o'n 9%
2K (u ) + K(u ){ A } 0, (4.60b)
K(u)[r’(t) - 22—5} +K'(u)n =0, (4.60c¢)
X
K27 2’7 LK (u){ (1) - 2% + %} + K"(u)y = 0. (4.60d)

The terms not involving u lead to the final determining equation

xx 2 xl’ux’

o’n _on
K =0. 4.60e
() —— 2 ar (4.60¢)
Solving (4.60c) for 77, and then substituting this result into (4.60¢), we find that
' K(u
E() = p IO+ Bl 0), neta) = D l4pe 28], (461)

where p, [ are arbitrary constants and y(¢) is an arbitrary function of 7. After substituting
(4.61) into the determining equation (4.60d), we find that if one of p, f is nonzero then it
is necessary that the conductivity K(u) satisfy the ODE

K@) _,
K'(u)
whose solution is given by K(u) = A(u + k)" (with the limiting case K (u) = Ae™), where

A,k,v are arbitrary constants. Finally, after substituting (4.61) into the determining
equation (4.60b), we obtain

27" () + 7" (H)x + 4,0[7 - 4M}K(u) =0.

[K'(w)])
Hence, for any K(u) # const, it immediately follows that »'(¢)=7"(¢)=0, so that
y =const, 7(t) =0t +o0. Thus, there are five possible parameters S, p,7,0,0. The

parameters y,0,0 exist for any K(u#) but the existence of the parameters [, o depends
on the form of K(u). Three cases arise:
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Case l. K(u)arbitrary.
Here, p= /=0, and the nonlinear heat conduction equation (4.58) admits a three-
parameter Lie group of point transformations with its infinitesimal generators given by

X, :i, X, :ﬁ, X, :xi+2t2. (4.62)
Ox ot Oox ot

Casell. K(u)=A(u+x)".

Here, p =0, and PDE (4.58) admits a four-parameter Lie group of point transformations
with its infinitesimal generators given by (4.62) and

X, :xi+g(u+K)i. (4.63)
ox v ou

In the limiting case, where K(u) = Ae"™, the infinitesimal generator (4.63) becomes

CaseIIl. K(u)=Au+x)"".
Here, PDE (4.58) admits a five-parameter Lie group of point transformations with its
infinitesimal generators given by (4.62), (4.63) [v =—4/3], and

X, =x’ i—?’)c(u +K)i.
ox ou

Ovsiannikov (1959, 1962) derived the above results by considering PDE (4.58) as
a system of PDEs v=K(u)u_,v, =u, The classification presented here appeared in

Bluman (1967) [see also Bluman and Cole (1974); Ovsiannikov (1982)]. The group
classification problem for the #n-dimensional radially symmetric nonlinear heat

conduction equation, u, = x'”"(x"" K (u)u,),, is presented in Sophocleous (1992).

(3) Wave Equation for an Inhomogeneous Medium
As a third example, we consider the complete group classification, with respect to
admitted point symmetries, for the wave equation with a variable wave speed c(x):

u, =c*(x)u,,. (4.64)

Since PDE (4.64) is a linear PDE, from Theorem 4.2.2-6 it follows that (4.64)
only admits point symmetries with infinitesimal generators of the form (4.37). The
symmetry determining equation (4.28) is given by

7, =t + 2e(x)c (&
with
u, =c*(x)u

xx 2
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where 7'? and 1" are given by (4.41) and (4.43), respectively (without loss of
generality, we can set g =0). For an arbitrary wave speed c(x), after eliminating u,

through use of the given PDE (4.64), and then using the independence of
u,u_,u,u_u, we obtain the following set of five determining equations for

xt? 7 xx 27t

E(x,0),7(x,0), f(x,1):

aa—f—cz(x)% =0, (4.652)

c(x)[% —%} +c'(X)E =0, (4.65b)

%?—cz( )%—2‘? 0, (4.65¢)

‘;5 v ){ g Zx‘f } 0, (4.65d)
e ewll-o (4.65¢)

Solving (4.65a) for Or/0x, (4.65b) for Or/0t, and then wusing
0%t/ 0x0t = 0°r / Otdx, we obtain the equation

¢ ag 8

P ¢ (x ) x[H( x)¢]=0, (4.60)
where
c'(x
Hw =S5,
The solution of PDE (4.66) and the determining equation (4.65d) lead to
f(x,t) =L H(Xx)E(x, 1)+ S(2), (4.67)

where S(7) is an arbitrary function of ¢ After substituting (4.67) into the determining
equation (4.65c), solving (4.65a) for 0£/0¢ and (4.65b) for 0&/0x, and then using

0*E [ oxot = 0>E | otox, we find that S(¢) = const = s. Hence, we obtain
S, t) =T H(x)E(x, 1) +5. (4.68)

After substituting (4.68) into the determining equation (4.65¢) and then using the
determining equation (4.65d), we obtain

H 0+ 2 () 5 Oc +H(x)—(H<x>§) 0
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or, equivalently,
ai[(ZH'(x) +H*(x)&EP]=0. (4.69)
X
Three cases then arise:

Casel. 2H'(x)+ H*(x) =0.
Here, it is easy to show that
c(x) = (Ax+ B)?, (4.70)

where A, B are arbitrary constants, with H(x) =2A4/(Ax+ B). For any solution &(x,t)
of the corresponding PDE (4.66), we find that the functions 7(x,?), f(x,?), solving the set
of determining equations (4.65a—¢), are given by

r(x,0) = | {Z—g—H(x)ﬁ}dt, (4.71a)
X
oo =—2 e (4.71b)
" Ax+ B e '

The set of functions {£,7, f}, determined by any solution &£(x,7) of PDE (4.66) and by

(4.71a,b), corresponds to the invariance of the wave equation (4.64) under a nontrivial
infinite-parameter Lie group of point transformations when its wave speed is given by
(4.70). One can show that for 4 # 0, the wave equation

u, =(Ax+B)'u_ (4.72)
can be transformed to the wave equation
Wy =0
by the point transformation [Bluman (1983b)]
X =[Ax + B] ™" + 41,
T =[Ax+B]" — 4t,
w=[Ax+ B]'u.
Hence, the general solution of (4.72) is given by
u=~Ax+ B)[F(X)+G(T)],
where F(X),G(T) are arbitrary twice differentiable functions of their respective

arguments.

Casell. 2H'(x)+ H*(x) #0, &(x,1) # 0.
Here, from (4.69) it follows that £(x,#) can be expressed in the separable form

S(x,1) = a(x)5(), (4.73)
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where
a’(x)= p[2H'(x)+ H*(x)]" (4.74)

for some constant p; f(¢) is to be determined. After substituting (4.68) and (4.73) into
the determining equation (4.65d), we find that

p10) _ @)= H@a@) o oo (4.75)
A) a(x) ’

where o is a real or imaginary constant. We distinguish the subcases o =0, o # 0.

CaseIla. 0 =0.
Here, the wave speed c(x) must satisfy the fourth-order ODE

[a'(x)— H(x)a(x)] = 0. (4.76)
Correspondingly, from (4.75),
Bt)=p+aqt,

where p, g are arbitrary constants. Substitution of (4.68) and (4.73) into the determining
equation (4.65¢) leads to the equation

[a(x)H(x)]" =0. 4.77)
The wave speed c(x) must satisfy (4.76), (4.77), and (4.74). This leads to
a(x)=Bx*+Cx+D,
a(x)H(x)= A+ 2Bx,
p=4BD+ A% -2AC,

where 4,B,C,D are arbitrary constants. Consequently,

c'(x A+2Bx
( )=H(X)=—2 ,
c(x) Bx*+Cx+D

1e.,

(i)  c(x)=[Bx* + Cx+ Dlexp[(4-C) j [Bx> + Cx + D] "dkx.
The corresponding &(x,7) and f(x,¢) are obtained, respectively, from (4.73) and (4.68);

7(x,t) 1s obtained from the determining equations (4.65a,b). This yields a four-

parameter Lie group of point transformations admitted by the corresponding wave
equation (4.64). The infinitesimal generators are given by
0

0 0 0
X, =—, X, =[Bx*+Cx+D]—+[C—-Alf—+[+ A+ Bxlu—,
155 2 =1 ]8x [ ]at [3 ] .
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2
X, =[B¥’ +Cx+ D2+ | L(C— Ay + jwdx O iasBgm
Ox c”(x) ot ou

X, = ui
ou
The nonzero commutators of the corresponding Lie algebra are given by
X, X,]=(C-4)X,,[X,,X;]=X,,[X,,X;]=(C—-4)X,. One can show that the Lie
algebra with basis generators X,, X,, X; is isomorphic to the Lie algebra SO(2,1) when

A#C. When 4=C, onehas c(x)= Bx*> +Cx+D.
It is easy to see that to within arbitrary scalings and translations in x, a wave
speed c(x), given by (i), is equivalent to one of the following five canonical forms:
(@) c(x)=x"[B=D=0,C=1];
(b) c(x)=e"[B=C=0,4=D =1];,
(©) c(x)=(1+x*)e™™ [C=0,B=D=1];
(d) c(x)=1+x)""1A-x)"?[C=0,B=-1,D=1]; and
(e) c(x)=x*""[C=D=0,4=-1,B=1].

We now list special cases of the wave speed (i), together with the infinitesimal generators
(constants 4, B, C, D are renamed) admitted by the corresponding wave equations (4.64).

(i)  c(x)=(4x+B)°, C=0,1,2.

0 0 0 0
X, =—, X,=(Ax+B)—+A0-C)t—++ ACu—,
" 2 =( )ax ( )at 2 ou

2-2C
X5 =(Ax+B)t§+%{A(1—C)t2 +M} 0 0 5
X

—+41ACtu—, X, =u—.
A1-C) |at ou ou

The commutator table is the same as for (i) with (C — A4) replaced by A(1 — C).

(i)  c(x)= Ax+B.

0 0 0
X, =—, X,=(Ax+B)—++Au—,
1= e s U B Ay
0 0 0 0
X, =(Ax+ B)t—++log(Ax+ B)—+1 Atu—, X,=u—.
s = (d )ang(x )atzuau = o

The nonzero commutators of the corresponding Lie algebra are given by [X,,X;]=X,,
[X,,X,]=X,.

(iv)  c(x) = Ae™.
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0 0 0 0
X, = At— —L[ABt* + (A4B)'e | —+L1 ABtu—, X,=u—.
’ ox g (4B) ]at ? du Y u

The commutator table is the same as for (i) with C— A replaced by — 4B.

Case IlIb. o #0.
Here, (4.75) leads to the wave speed c(x) solving the fourth-order ODE

> (X)[a'(x) - H(x)a(x)] = o a(x), (4.78)

where H(x)=c'(x)/c(x), and a(x) is given by (4.74). [Without loss of generality,
p =11n(4.74).] One can show that if ¢(x) satisfies ODE (4.78), then the corresponding

wave equation (4.64) admits a four-parameter Lie group of point transformations with its
infinitesimal generators given by

6 ot i -1 ' _ 2 1 i
X, = 5, X, =e {a(x) . +o0 (a'(x)— H(x)a(x)) Py +5a(x)H(x)u 514}
X, =e” {a(x)% —o'(a'(x)- H(x)a(x))g +1a(x)H (x)u %} X, = ua—au

The nonzero commutators of the corresponding Lie algebra are given by
[X,,X,]=0X,, [X,,X;]=-0X,,
[X,,X;]=20"[(&'(x) - H(x)a(x))* — (oa(x)/c(x))1X,.

It immediately follows that
(a'(x) — H(x)a(x))*-(oa(x)/c(x))* = const = K. (4.79)

Hence, (4.79) is a quadrature of ODE (4.78), i.e., the commutator [X,,X,] yields a first
integral of ODE (4.78)! The third-order ODE (4.79) for the wave speed c¢(x) admits two
point symmetries. Using the methods of Chapter 3, it can be reduced to a first-order
ODE. If the reduced ODE can be solved, then the general solution of ODE (4.79) is
obtained through three quadratures. [When o 1is imaginary, then appropriate linear
combinations of X, and X; yield the corresponding infinitesimal generators.] When
K # 0, one can show that the Lie algebra with basis generators X,,X,,X; is isomorphic
to the Lie algebra of SO(2,1).

Caselll. £=0.

From the determining equations (4.65a—¢), it immediately follows that
r=const=r, f =const =s and, hence, the wave equation (4.64) here only admits

translations in 7 and scalings in . In particular, if the wave speed c(x) does not satisfy
(4.74) and (4.79) for any values of the constants p,o,K, then the wave equation (4.64)

only admits the two-parameter Lie group of point transformations with infinitesimal

0 0
generators X, =—, X, =u—.
ot Ou
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In summary, we have the following theorem:

Theorem 4.2.3-1. The wave equation (4.64), whose wave speed c(x) is a solution of the
system (4.74) and (4.79) for some constants p,o,K, admits a four-parameter Lie group
of point transformations. This group becomes an infinite-parameter group if and only if
c(x)=(Ax+ B),C =0,2. For all other wave speeds c(x), the wave equation (4.64)
only admits the two-parameter Lie group of translations in t and scalings in u.

The group classification of the wave equation (4.64) appeared in Bluman and
Kumei (1987). This paper includes the corresponding invariant solutions.

(4) Biharmonic Equation
As a final example, we find the Lie group of point transformations admitted by the

fourth-order biharmonic equation
Au=V*Viu=0,
where V* = 0% /ox* + 0% /dy” or, equivalently, the PDE

u, =-2u_. —u (4.80)

vy xxyy xxxx *

From Theorem 4.2.2-6 [x, =x, x, =y], we see that for the PDE (4.80) an admitted
nontrivial point symmetry has an infinitesimal generator of the form

0 0 0
X=X, ) —+Y(,y)—+ f(x,y)u—,
Ox oy ou

where the symmetry determining equation (4.28) is given by

Mo = =200, =1, (4.81a)
with
Uy = _2uXny T U - (4.81b)

Then it is straightforward to derive the following set of determining equations for
X(x, ), Y(x,9), f(x,):

or  ox _

+ 0, (4.82a)
ox Oy
ox_or =0, (4.82b)
ox Oy
2 2
2@_36_)(_6 X =0, (4.82¢)

2

Ox ox oy

2
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2 2 2
2%—4522—32{—‘2{:0, (4.82d)
X X Yy

2 2 2
Lo O _L@X X _

0, 4.82¢
ox  OxOy o*  ox’ ( )
2 2

2%_3;_{_‘2 Y o, (4.82f)
X
2 2 3 3
3Z{+Zy{—2{%f+;§z}=o, (4.82g)
X X X Oy
2 3 3 3 3
28f_8X_6X_6Y 8Y_0, (4.82h)

xdy o oy o oy

2 2 3 3
38]2‘+8]2‘_2813’+ 82Y =0, (4.821)
oy ox dy-  Ox” Oy
3 3 4 4 4
48]3‘+ afz —8)4(— 82X2_8)4(=0, (4.82))
ox>  OxOy ox ox~ oy oy
3 3 4 4 4
48]3‘+ azf —824,— 62Y2_6I4/=0, (4.82k)
oy oOx"0oy| Ox ox~oy” Oy
Af =0. (4.820)
From the determining equations (4.82a,b), it follows that
VX =0, VY =0. (4.83)
After substituting (4.83) into the determining equations (4.82c,f), we find that
f(x,y)= %—X +s, §=const. (4.84)
X

Then the determining equations (4.82d,e) are also satisfied. After substituting (4.84),
(4.82a,b) into the determining equations (4.82g—1), we find that third-order derivatives of
X and Y vanish. Consequently, the remaining determining equations (4.82j—() are
automatically satisfied. Hence, we obtain

X(x,y)=a1x2+/3’1xy+7/1y2+51x+1<1y+p1, (4.85a)
Y(x,¥) = a,x” + Boxy+ 1,y + 0, X+ K,V + s, (4.85b)
and, after renaming s in (4.84),

f(x,y)=2ax+p,y+s, (4.85¢)
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where the indicated constants are to be determined. From the determining equations
(4.82a,b), it follows that

20,x+ B,y +0, =B x-2y,y—kK,, 2a,x+p[,y+06,=Lx+2y,y+kK,.
Hence,
B ="2a,, y,=-a,, B,=2a, y =-a,, k,=0,, K, =-0,.
Consequently, after renaming the constants J,,0,, p,, p,,s, we see that the point

symmetry generators

X = X(x, y)% FY(r, y)% e y)ua—au

admitted by the biharmonic equation (4.80) are given by the infinitesimals

X(x,y)=a,(x* - y?) =2,y +ax—a,y +as, (4.86a)
Y(x,y)=2axy+a,(x’ -y ) +a,y+a,x+a,, (4.86b)
S(x,»)=2ax-2a,y+a,. (4.86¢)

It is left to Exercise 4.2-5 to show that, in terms of the complex variable z = x +iy, these
infinitesimal generators determine a seven-parameter (¢,,c,,...,a,) Lie group of point
transformations given by

ALY (4.87a)
cz+d
%
= A0 (4.87b)
dz

where a,b,c,d are arbitrary complex constants such that ad —bc#0, and A is an
arbitrary real constant. Equation (4.87a) is a general Mobius (bilinear) transformation.
This example was considered in Bluman and Gregory (1985).

Reid (1990, 1991) showed that the distinguished cases in group classification
problems for admitted point symmetries of a given PDE can be determined without
solving the determining equations. Lisle (1992) modified Reid’s algorithm by
introducing a method based on moving frames to show how to solve complex
classification problems that involve two or more classifying functions. He applied his
method to give the complete group classification, with respect to admitted point
symmetries, for the scalar diffusion convection equation

u, =(Dwu, — Ku)),,
in terms of two classifying functions: the diffusion D(u#) and convection K (u).
The point symmetries admitted by the porous medium equation,

u, =w”)  +g@u’+ f(x)(u"),, for various functions g(x), f(x) and constants p,q,r,
are considered in Gandarias (1996).
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EXERCISES 4.2

1.

Consider the heat equation (4.44).
(a) Find the invariant solutions of PDE (4.44) resulting from its invariance under X,

using both methods of Section 4.2.1.
(b) For any solution u# = ®(x,#) that is not an invariant solution related to invariance

under X, find the generated one-parameter family of solutions ®(x,#; &) of PDE
(4.44).

(a) For which solutions u# = ®(x,?7) of the heat equation (4.44) do the infinitesimal
generators X,,X,,...,X,, given by (4.50), yield a six-parameter family of
solutions u = ®(x,;¢,,&,,...,&,) of (4.44)?

(b) Determine ®(x,t;¢,,&,,...,E)-

Consider the wave equation u, =e*u_.
(a) Find invariant solutions resulting from its admitted infinitesimal generators:
(1) X, +sX,; and
(i) X, +sX,,
where s is an arbitrary constant.
(b) Given any solution u =®(x,¢) of this wave equation, find the four-parameter

family of solutions generated by X,,X,,X;,X,. What condition must ©O(x,?)
satisfy?

Show that (4.49a—) yield the general solution of the set of determining equations
(4.48a—d).

Show that (4.87a,b) define a seven-parameter Lie group of point transformations with
its infinitesimals given by (4.86a—c).

Consider the heat equation in # spatial dimensions.

(a) Find the nine-parameter Lie group of point transformations admitted by
u, =u, +u, [n=2].

(b) Find the 13-parameter Lie group of point transformations admitted by
u, =u, +u, +u, [n=3].

(c) Generalize to the case of the n-dimensional heat equation u, = Z’;zl u, . .

Consider the axisymmetric wave equation
u,=u, +—1u,. (4.88)

(a) Show that the Lie group of point transformations admitted by PDE (4.88) has its
infinitesimal generators given by
0 0

X, =r—+t—, X, =2rt£+(r2 +t2)2—tu—
or ot or ot Ou

% il w2
ou ot
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(b) Find invariant solutions of PDE (4.88) resulting from the admitted infinitesimal
generators:
(1) X, +sX;; and
(1) X, +sX;,
where s is an arbitrary constant.

Consider the nonlinear wave equation

u, =c*(uu (4.89)

xx 2

c(u) # const. In terms of infinitesimal generators, show that the group classification

for the invariance of PDE (4.89), with respect to point symmetries, is given by:
(a) c(u) arbitrary:

X, =x2etl x,=2 x,=2
ox Ot Ox ot
(b) c(u) = A(u + B)“,where A4,B,C are arbitrary constants:
X, X, X5, X4:Cxi+(u+3)i.
ox ou

(c) c(u) = A(u+ B)*, where A and B are arbitrary constants:

X,, X,, X;, X,(C=2), X, =x2£+x(u+8)i.
ox ou

Consider Laplace’s equation in # > 3 dimensions,
Du,, =0. (4.90)
j:l 77T

(a) Show that the [l1+4(n+1)(n+2)]—parameter Lie group of point
transformations admitted by PDE (4.90) has the infinitesimal generator

< 0 0
X= (X)—+ f(D)u—

2 W o

with the infinitesimals given by
E)=a;+ ) Bux =7, 0. (x) +2x,> yx, +Ax,, j=12,...n,
k=1 k=1 k=1
[()=2-n) yx +6,
k=1

where a,,8,4,y,, and B, =-p,, j,k=12,...,n, are 1+ 3 (n+1)(n+2)arbitrary

constants. The subgroup corresponding to 6 =0 is called the conformal group.
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10.

11.

12.

13.

14.

One can show that the conformal group is isomorphic to SO(n+1,1) [Bluman

(1967)].
(b) Find the corresponding global seven-parameter Lie group of point transformations
admitted by PDE (4.90) when »n =2.

Consider the nonlinear diffusion equation
u, =) u,. (4.91)

(a) Find the infinite-parameter Lie group of point transformations admitted by PDE
(4.91).

(b) Compare the Lie algebra for the infinitesimal generators admitted by PDE (4.91)
with the Lie algebra for the infinitesimal generators admitted by the linear heat
equation (4.44).

Find the five-parameter Lie group of point transformations admitted by Burgers’
equation u, =u__ —uu_. The admitted point symmetries and corresponding invariant

solutions for the two- and three-dimensional Burgers’ equations, u, = V’u —uu_,
appears in Edwards and Broadbridge (1995).

Find the four-parameter Lie group of point transformations admitted by the Kortweg—
de Vries (KdV) equation

u, . +uu +u, =0. (4.92)

Find the four-parameter Lie group of point transformations admitted by the
cylindrical KdV equation

u, . +uu +2itu +u, =0. (4.93)

See Bluman and Kumei (1989b, Chapter 6) on relating PDEs (4.92) and (4.93)
through their group properties.

The motion of an incompressible two-dimensional constant-property fluid is
described by the stream-function equation

2 2 2 4
Viu, +uVu —uVu =vVu, (4.94)

where u(x,y,t) is the stream function for the flow, v =const is the kinematic

viscosity, and V* = 8%/ ox* +0* / oy°.

(a) If v =0, show that the infinite-parameter Lie group of point transformations
admitted by PDE (4.94) can be represented by the infinitesimal generator

8 8 G G
X = X(x, p,0)— + Y(x, p, 1) — + T(1)— + 1(x, v, {,u)—
(xy)ax (xy)ay ()at n(x,y u)au

with the infinitesimals given by

X(x,y,t) =ax+by+cyt+ f,(2),
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15.

16.

Y(xayat) = ay_bx_c'Xt+f2(t)a
T(t) = ht +k,

n(x, y,tu) = (2a—hu+3e(x* +y*) + flOy = f(Ox + f,(0),

where a,b,c,h,k are arbitrary constants and f,(?), f,(¢), f;(¢f) are arbitrary

differentiable functions of the time coordinate ¢.
(b) If v #0, show that the admitted group is the same as for (a) except that 7 = 2a
[Cantwell (1978)].

Consider the nonlinear reaction—diffusion equation
u, =u_ + F(u). (4.95)

For an arbitrary reaction function F(x), one can show that PDE (4.95) is only

invariant under translations in x and ¢z. Show that PDE (4.95) admits a three-
parameter Lie group of point transformations only if F(u) is given by one of the

three forms: Au”,u(A+ Blogu), Ae™, to within translations in u, where 4 and B

are arbitrary constants. [Liu and Fang (1986). For generalizations, see Galaktionov et
al. (1988).]

Consider the nonlinear wave equation
ult = (cz(u)ux))m (4'96)

c(u) # const. In terms of the infinitesimal generators for admitted Lie groups of point

transformations, show that the group classification of PDE (4.96) is given by:
(a) c(u) arbitrary:

X, =x2eil x,=2 x,=2
ox ot ox ot
(b) c(u) = A(u+ B), where 4,B,C are arbitrary constants:
X, X, X, X,=CxZ v+l
ox ou
(c) c(u)= A(u+B), where A4 and B are arbitrary constants:
, 0 0
X, X, X5, X (C==2), X,=t"—+tu+B)—.
ot ou
(d) c(u) = A(u+ B)™*"”, where A and B are arbitrary constants:

X, Xy, Xy, X,(C==2), X, =x* 2 —3a(u+ B2
ox ou

[Ames, Lohner, and Adams (1981). A group classification for PDE (4.96) with c(u)
replaced by c(x,u) has been investigated by Torrisi and Valenti (1985).
Generalizations to higher-dimensional nonlinear wave equations of the form
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17.

18.

19.

u, =(f@u,), +(gwu,), +(h(u)u_ ), are given in Baikov, Gazizov, and
Ibragimov (1990, 1991).]

Show that the two-dimensional nonlinear Schrodinger equation
u, +u,, +r|u’|u=iu, r=const,

admits an eight-parameter Lie group of point transformations with its infinitesimal
generators given by

X, —ﬁ, X, =i, X, =ﬁ, X, =xﬁ+yi+2tﬁ, X =y£—xi,
ox oy ot ox oy ot ox Oy
0
X =t——tixu—, X, =t—-Liyu—,
© Tox P ou T oy e ou
0 0 0 0
Xg =xt—+ yt—+1> ——[t +Li(x* + y*)Ju—
kP s Pl Lhn LG )
[Tajiri (1983)].
Show that the PDE u  +u, +(e").. =0, which arises in Riemannian geometry,
admits
=L xoel, = xyexZay Ll
ox oy 0z ox oy 0Oz

and the infinite-parameter Lie group of point transformations represented by the
infinitesimal generator

0 0 0
X, =alx,y)x—+al(x, — 2a(x,y)—,
» =a(x,y) . ( y)yay ( y)au

where V’a(x,y)=0. [See Drew, Kloster, and Gegenberg (1989) where the
cylindrically symmetric case is also considered.]

Show that the most general second-order scalar PDE u = f(x,t,u,u_,u,,u ,u,) that

admits the group of the heat equation with the six infinitesimal generators (4.53) is
given by

o=+ 8L k),
u

XX

where

2
uu,, —3uuu,

(u,)’
and K(¢) is any solution of the first-order ODE

g:

(K-3¢-3)K'+K =0.
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Find a point symmetry admitted by this first-order ODE and show that its general
solution is given by

K3

—————— =const.
(2K -2-9)

20. Consider the nonlinear second-order PDE
u +2uu_ +zu_ + zzuyz +zuu_ =0,

which arises in the classification of ODEs that admit point-form adjoint-symmetries
[cf. Section 3.7.5]. Find the two-parameter Lie group of scalings admitted by this
PDE and the corresponding invariant solutions.

4.3 INVARIANCE FOR A SYSTEM OF PDEs

Consider a system of N PDEs (N > 1) with » independent variables x = (x,,x,,...,X,)

and m dependent variables u = (u',u’,...,u™), given by

F*(x,u,0u,0u,...,0"u)=0, u=12,...,N. (4.97)

Definition 4.3-1. The one-parameter Lie group of point transformations
x*=X(x,u;¢e), (4.98a)
u*=U(x,u;¢), (4.98b)

leaves invariant the system of PDEs (4.97), 1.e., is a point symmetry admitted by (4.97), if
and only if its kth extension, defined by (2.134a—d), (2.130)—(2.132), leaves invariant the

N surfaces in (x,u,0u,du,...,0"u) -space, defined by (4.97).
In analogy to the situation for a scalar PDE, it is easy to prove the following
theorem. [For the rest of this section, we assume the summation convention for repeated

indices.]

Theorem 4.3-1 (Infinitesimal Criterion for the Invariance of a System of PDEs). Let

X =¢ (x,u)i +n"(x,u) 0 (4.99)
ox;

ou”

1

be the infinitesimal generator of the Lie group of point transformations (4.98a,b). Let

X® =& (x,u)i+ nv(x,u)i+ " (x,u,@u)i+
ox; ou” Ou;

1
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0

+ mff?i-k (x,u,0u,0%u,...,0"u) (4.100)

\4

be the kth-extended infinitesimal generator of (4.99) where 1" is given by (2.135) and
U:ﬁi)..v.i,. by (2.136), v=12,...,m, and i,=12,....,n, for j=12,....,k, in terms of
E0x,u) = (& (x,u), & (v, u), .., &, (x,1)), 17(x,u) = (7' (x,u), 17 (o, 1), " (x,u)). Then

the one-parameter Lie group of point transformations (4.98a,b) is admitted by the system
of PDEs (4.97) if and only if

X®F° (x,u,0u,0%u,...,0"u) =0 when u satisfies (4.97) (4.101)
foreach o =1,2,...,N.

Proof. Left to Exercise 4.3-1. O

Note that the invariance criterion (system of symmetry determining equations
(4.101)) involves the substitution of the N PDEs (4.97) and their differential
consequences into each of the N determining equations given by (4.101).

4.3.1 INVARIANT SOLUTIONS

Consider a system of PDEs (4.97) that admits a one-parameter Lie group of point
transformations with the infinitesimal generator (4.99). We assume that £(x,u) # 0.

Definition 4.3.1-1. « = ®(x), with components ©" = ®"(x), v =1,2,...,m,is an invariant
solution of the system of PDEs (4.97) resulting from an admitted point symmetry with
infinitesimal generator (4.99) if and only if:

(1) u" =0"(x) isaninvariantsurface of (4.99) foreach v=12,...,m;
(1) u =0(x) solves (4.97).

It follows that # = ®(x) is an invariant solution of the system of PDEs (4.97),

resulting from its invariance under the Lie group of point transformations (4.98a,b), if
and only if # = ®(x) satisfies:

(1) X" -0"(x))=0 when u=0(x),v=12,...,m, i.e.,

00" (x)
Ox,

1

& (x,0(x)) =1n"(x,0(x)), v=12,....,m; (4.102)

() F*(x,u,0u,0’u,...,0"u)=0 when u=0(x), £=12,...,N, ie.,

F*“(x,0(x),00(x),0°0(x),...,0"0(x)) =0, u=12,...,N. (4.103)
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where 8/©(x) denotes 8’©"(x)/ dx, dx,, Ox,v=12,..,m, and i; =1,2,...,n,

for j=1,2,...,k.

Equations (4.102) are the invariant surface conditions for the invariant solutions
of the system of PDEs (4.97) resulting from its invariance under the point symmetry

(4.99). As is the situation for a scalar PDE, invariant solutions can be determined by two
procedures.

(I) Invariant Form Method. Here, we solve the invariant surface conditions (4.102)
by explicitly solving the corresponding characteristic equations for # = ®(x) given by

de,  dx, o dx, du' 3 du’ ___'_i
é:l(xau) gz(xau) gn(xau) nl(xau) 772()@”) Um(xa“)

If y,(x,u),y,(xu),....y,., (x,u),v' (x,u), v (x,u),...,v" (x,u), are n+m—1 functionally

. (4.104)

independent constants that arise from solving the system of n+m—1 first-order ODEs
(4.104) with the Jacobian o(v',v*,...,v")/0(u"',u’,...,u”™) # 0, then the general solution
u = O(x) of the system of PDEs (4.102) is given implicitly by the invariant form

Vv(x’u) = (Dv(yl (X, ”)ayz (X, Zl),. . "yn—l (X,Zl)), (4105)

where ®@" is an arbitrary differentiable function of y, (x,u),y,(x,u),...,», (x,u), for
v=12,...,m. Note that y,(x,u),y,(x,u),...,y,  (x,u),v' (x,u),v>(x,u),...,v" (x,u) are
n+m—1 functionally independent group invariants of (4.99) and hence are n+m—1
canonical coordinates for the Lie group of point transformations (4.98a,b). Let y, (x,u)
be the (n+ m)th canonical coordinate satisfying

Xy, =1.

If the system of PDEs (4.97) is transformed into a system of PDEs in terms of
independent variables y,,»,,...,y, and dependent variables vi,v?,...,v", then the
transformed system of PDEs admits the one-parameter Lie group of translations

y* =y, i=L2,...,n-1,

y*nzyn+g7

v¥ =y vy=12,....,m.

Thus, the variable y, does not appear explicitly in the transformed system of PDEs and,

hence, the transformed system of PDEs has solutions of the form (4.105). Consequently,
the system of PDEs (4.97) has invariant solutions given implicitly by the invariant form
(4.105). Such solutions are found by solving a reduced system of differential equations

m

with 7 — 1 independent variables y,,y,,...,y, , and m dependent variables v',v*,...,v".
The variables y,,y,,...,y,, are commonly called similarity variables. The reduced
system of differential equations is found by substituting the invariant form (4.105) into
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the given system of PDEs (4.97). We assume that this substitution does not lead to a
singular differential equation. Note that if 0&/0u =0, as is typically the case, then

v, =y,(x),i=L2,...,n—=1. If n =2, then the reduced system of differential equations is a
system of ODEs and we denote the similarity variable by ¢ = y,.

(I) Direct Substitution Method. This procedure is essential if one is unable to solve
explicitly the invariant surface conditions (4.102), i.e., the characteristic equations
(4.104). We assume that & (x,u)# 0. Then the first-order system of PDEs (4.102) can

be written as

4 v n-1 v
X1 (x’u)—zg"(x’u) My =12,m (4.106)
axn é:n ()C,U) i=l1 é:,, (X,M) axl.

From (4.106) and its differential consequences, it follows that any term involving
derivatives of u with respect to x, can be expressed in terms of x, u, and derivatives of

u with respect to the variables x,,x,,...,x, ;. Hence, after directly substituting (4.106)
and its differential consequences into the given system of PDEs (4.97) for all terms in
(4.97) that involve derivatives of u with respect to x,, we obtain a reduced system of

m

differential equations involving m dependent variables u',u”,...,u", n— 1 independent

variables x,,x,,...,x, ,, and parameter x,. Any solution of this reduced system of
differential equations defines an invariant solution of the system of PDEs (4.97) resulting
from its invariance under the Lie group of point transformations with the infinitesimal
generator (4.99), provided that the invariant surface conditions (4.102) or, equivalently,
the given system of PDEs (4.97) itself, are also satisfied. If » =2, the reduced system of
differential equations is a system of ODEs. The constants appearing in the general
solution of this system of ODEs are arbitrary functions of the parameter x,. These
arbitrary functions are then determined by substituting this general solution into either the
invariant surface conditions (4.102) or the given system of PDEs (4.97).

4.3.2 DETERMINING EQUATIONS FOR SYMMETRIES OF A SYSTEM OF PDEs

Consider a system of PDEs (4.97) with each of its PDEs given in a solved form
ur = f*(x,u,0u,du,..., 0 u), (4.107)

iyiy i

in terms of some specific / #th-order partial derivative of u"* for some v, = 1,2,...,m,

where ' (x,u,0u,0’u,...,0"u) does not depend explicitly on any of the components

us. . ,o=12,...,N, for each £=12,...,N. From Theorem 4.3-1, we see that the

hiyy,

system of PDEs (4.107) admits the point symmetry

X=§,-(x,u)i+77”(x,u)i, (4.108)
Ox, ou"”

1
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with the kth extension of (4.108) given by (4.100), if and only if

u u u u
N =§,i+n”i+nﬁmi+---+ . /AT S
(4.1092)
with
us. . = f%(x,u,ou,du,..,0"u), oc=12,..,N. (4.109b)

11,2...,{0

It is easy to see that »""  is a polynomial in the components of du,0%u,...,0"u,

J
with coefficients that are linear homogeneous in the components of &(x,u), n(x,u) and
their derivatives to order p. Thus, & and 7 appear linearly in (4.109a). As is the
situation for a given scalar PDE, the system of symmetry determining equations
(4.109a,b) leads to a system of linear homogeneous PDEs for & and . First, we

eliminate the components u,;7 , and their differential consequences from (4.109a) by

substitution from (4.109b) and the differential consequences of (4.109b), o =1,2,..., N.

Consequently, the components of x,z and the remaining components of du,du,...,0" u

that appear in the resulting system of symmetry determining equations (4.109a) are
themselves independent variables, i.e., take on arbitrary values. Since the resulting
expression for (4.109a) holds for any values of these independent variables, one obtains a
system of linear homogeneous PDEs for £ and 7 that constitutes a set of determining

equations for the infinitesimal generators X admitted by the given system of PDEs (4.97).
In particular, if each f*(x,u,0u,du,...,0"u), u=1,2,...,N, is a polynomial in the
components of du,0%u,...,0"u, then the system of symmetry determining equations
(4.109a) yields polynomial equations in the independent components of ou,d’u,...,0%u .

Consequently, the coefficients of these polynomial equations must vanish separately.
This yields the set of linear determining equations for & and 7. Typically, the number

of determining equations is far greater than n+m, so that the set of determining
equations is very overdetermined.

A linear system of nonhomogeneous PDEs,

Lu = g(x), (4.110)

admits a trivial infinite-parameter Lie group of point transformations
x*=x, (4.111a)
u* =u+ cw(x), (4.111b)

where w(x) is any solution of the associated linear homogeneous system of PDEs

Lu=0.
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To within this trivial infinite-parameter Lie group of point transformations, the Lie group
of point transformations admitted by a linear system of PDEs usually has at most a finite
number of parameters.

Unlike the case for scalar PDEs, there still appears to be very little known about
the forms of admitted point symmetries for systems of PDEs. It is conjectured that for a
linear system of PDEs (4.110), an admitted infinitesimal generator for a point symmetry
(modulo the admitted trivial infinite-parameter Lie group of point transformations
(4.111a,b)) is such that £ has no dependence on u, and 7 is linear in u, i.e.,

& =4&6(x), i=L2,...,n, (4.112a)
n" =k (x)u°, (4.112b)

for some functions k. (x) for o,v=12,...,m. We will assume that the conditions

(4.112a,b) hold for a Lie group of point transformations admitted by a linear system of
PDEs. [t is easy to check that the conditions (4.112a,b) hold for all examples treated in
this book.]

For a linear system with » = 2 and m = 2, write x, =x, x, =t¢, & =&(x,?),
E=1(x,0), u'=u, u'=v, n'=n"=f(x,Ou+g(xty, n°=n"=k(x,t)v+L(x,t)u.
Here an admitted infinitesimal generator for a point symmetry is of the form

X = f(x,t)i + r(x,t)2 +[f(x,0)u+ g(x, t)v]i +[k(x,t)v+l(x, t)u]i, (4.113)
Ox ot ou ov

and the once-extended infinitesimals are given by

of og o0& or
O = b 2y -2y ——u, +gv., 4.114
77): ax u ax v |:f ax :|ux ax ul gvx ( )
nil)vz%u+%v+£ux+|:k—8—§:|vx—ﬁvt’ (4115)
Ox ox Ox Ox
of og O ot
v =2 b 28y 25y | =, +gv, 4.116
R UL P s P
TP IS CL SV P @.117)
ot ot ot ot
433 EXAMPLES
(1) System of Wave Equations
Consider the linear system of first-order wave equations
v, =u,, (4.118a)
u, =x'v,_. (4.118b)
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Note that if the pair (u(x,7),v(x,t)) solves (4.118a,b), then u(x,7) solves the wave
equation

and v(x,?) solves the wave equation
4
v, =(X7v,),.

The system of symmetry determining equations (4.102a,b) for the system of PDEs
(4.118a,b) is given by

n® =np0, (4.119a)
n® = axPy £+ xtnW, (4.119b)

.. After substituting (4.114)~(4.117) into (4.119a,b), and then

eliminating v, and u, through substitutions from the given system of PDEs (4.118a,b),

: _ _ 4
with v, =u_,u, =x"v

we obtain the system of symmetry determining equations given by

[%—g}u+{%—a—g}v+{x4(£+zj—g—a—§}@ +{k—f+g—§—ﬁ}ux =0,
X

ot Ox ot Ox Ox ot ot
(4.120a)
g—x‘*% u+ 6_g_x4% v+ g—a—§+x4 ﬁ—f u,
ot ox ot ox ot ox
o0& ot 3
+ x| fk+—=2—— |4 =0. 4.120b
[x (f ~ atj x }vx (4.120b)

Each of the equations (4.120a,b) must hold for arbitrary values of x,z,u,v,u_,v .

Consequently, we obtain a set of eight symmetry determining equations for
&1, f,g,k, 0, that simplify to the equations

%—a—gzo, (4.121a)
ot Ox

%—@:0, (4.121b)
ot Ox

x"—-g=0, (4.121¢)
x4g_a_§:0’ (4.121d)
ox Ot
k%2 _, “.121¢)
ox Ot
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N/ @.121f)

Oox Ot
or o0&
22428 =0, 4.121
x[ o 8x:| 4 ( g)
o0& ot
k—f+—=—-——=0. 4.121h
/ ox Ot ( )

It is left to Exercise 4.3-3 to show that the solution of the symmetry determining
equations (4.121a-h) is given by

E(x,1) = ax + 2t (4.122a)
1(x,f) = —at — f(x > +17)+7, (4.122b)
ft)=3p+3, (4.122¢)
g(x,t) =—f, (4.122d)
k(x,) =20 — ft + 6, (4.122¢)
U(x,0) ==, (4.122f)

where a, f,y,0 are four arbitrary constants. Hence, the point symmetry generators
admitted by the system of wave equations (4.118a,b) are given by

X, :2, X, :xi—t2—2vi,

ot ox Ot ov
X, :2)cz‘i—()c_2 +t2)2+(3tu—xv)i—(tv+x_3u)£, X, :ui+v£.
Ox ot ou ov ou  Ov

These infinitesimal generators determine a nontrivial four-parameter Lie group of point
transformations acting on (x,z,u,v)—space. The nonzero commutators of the

corresponding Lie algebra are given by

[X,,X,]=-X,, [X,X,]=2X,+3X,, [X,,X,]=-X,.

One can show that the Lie algebra with basis generators Y, =X,,Y, =X, +3X,,
Y, = X;, is isomorphic to the Lie algebra of SO(2,1).
Consider the infinitesimal generator X, (parameter ). We find the resulting

invariant solutions (u,v) = (®,(x,?),®,(x,?)) by both procedures outlined in Section 4.3.1.

(I) Invariant Form Method. Here, the characteristic equations (4.104) become

dx _ 2a’t - du _ dv3‘ (4.123)
2xt X T+t 3tu — xv wv+x"u
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The integration of the first ODE in (4.123), i.e., dx/dt =—2xt/(x +1t*), yields the
similarity variable (invariant)

1

y,=¢ =const=x" —xt°. (4.124)

To determine the other invariants of (4.123), we consider the corresponding system of
first-order characteristic ODEs

% _ o, (4.1252)
% = (x> +12), (4.125b)
% = 3tu— v, (4.125¢)
L), (4.125d)

After substituting the constant of integration (4.124) into the system of ODEs (4.125a,b),
from (4.125b) we obtain

{7'xt+&=const=E. (4.126)

The constant £ is related to the invariance of (4.125a—d) under translations in ¢. Without
loss of generality, we can set £ = 0. From (4.125a—d), we get

2
d . 4t — =0,
de de

Then using (4.124), one can show that this ODE simplifies to

2

1o (xv) =0.

Hence,
xw=v'e+v?, (4.127a)
where v' and v* are constants of integration. Equation (4.125d) now yields
u=x[t0'e+v)-v']. (4.127b)
Using ¢ = —¢ 'xt [cf. (4.126)], we can eliminate & from (4.127a,b), and thus obtain
u= xz[—xtzé’_lv1 +0? —v'],
v=x"[-xtV +].

The constants £,v',v* are independent invariants of (4.123); ¢ is the similarity variable
for the invariant solutions resulting from X,. These invariant solutions are now found by

338



replacing v',v* by functions of ¢, ie., v' = F({),v* =G() [®' =F,0* =G in the
invariant form (4.105)]. Then

= x [-xt’¢ T F(O) +tG(E) - F(O)], (4.128a)
v=x"[-xtC'F($)+G()]. (4.128b)

We now substitute (4.128a,b) into the wave equations (4.118a,b) to determine F'({) and
G(&). Equations (4.118a,b), respectively, lead to the system

xXt[2G($) +{G (ON+[F' () - ¢ F({)] =

2

[ZG(C)+§G(§)]+ 22[47’(4) Fg)l=

Consequently,
2G(£)+¢G'(€) =0,
CF'(E)-F(&) =0,
and thus,
G()=al™, F()=0¢,

where a, b are arbitrary constants. This yields the two linearly independent solutions

(u,v) = (x,1), (4.129a)
and
x't X
(u’v)_[[l_xztz]z ’[l_xztz]z J’ (4.129b)

of the system of wave equations (4.118a,b).

(I) Direct Substitution Method. Here, the invariant surface conditions (4.106)
become

u, =[x+ x 7w, +3x 7w -1, (4.130a)

=[x+ x7y, - x v —x7 . (4.130b)

X

Using (4.130a,b), we now eliminate derivatives of # and v with respect to x from
(4.118a,b) so that these equations become

v, =37 x4 35w =17, (4.131a)
u, = 3[[xt™ +x7t]y, = x’v—1"u], (4.131b)

which is a system of first-order ODEs with independent variable ¢ and parameter x.
Expressing (4.131a,b) in solved form in terms of v,, u,, and setting o = xt, we

obtain
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o cB+c’Ww+(1-50")x""u

’ 4.132a
7 (1-0?%) ( )
_ 2 2 1y+2
y = o(l+3c7)u +2(320 I)x v (4.132b)
(1-07)

Next we take 0/0c of (4.132a) and eliminate u_ through (4.132b). Finally, we
eliminate u through expressing (4.132a) in the form

u=x2£0(3+0'2)v2+(0'2—1)v6} (4.133)
S0 -1
This leads to the second-order ODE
(1-56%)o” -1) SZVZ —40(50° + 1)%+ 4(56% +1)v =0. (4.134)
Linearly independent solutions of (4.134) are given by
v=c, v=(1-0°)"
Hence,
v=A(x)o+B(x)1-0c?)" (4.135a)

is the general solution of ODE (4.134) where A(x),B(x) are arbitrary functions. From
(4.133), we then get

u=x"Ax)+x*B(x)oc(1-c°)7. (4.135b)

After substituting (4.135a,b) into the given PDE (4.118a), we find that

[A(x) + xA'(x)] = ————[B(x) — xB'(x)]. (4.136)
(1-07)

Since (4.136) must hold for all values of x and o, we get
A(x)=ax™', B(x)=bx,

where a and b are arbitrary constants. In turn, this leads to the solutions (4.129a,b).

Note that the Direct Substitution Method avoids integration of the characteristic
equations (4.104) and, hence, it is more adaptable to automatic computation through
symbolic manipulation programs.

(2) Nonlinear Heat Conduction Equation
Consider again the nonlinear heat conduction equation

u, =(K@u,),. (4.137)

We form an associated system of PDEs
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v, =K@u_, (4.138a)
V. =u. (4.138b)

X

Note that if the pair (u(x,?),v(x,t)) solves the system of PDEs (4.138a,b), then u(x,?)
solves the nonlinear heat conduction equation (4.137), and v(x,#) solves the nonlinear
diffusion equation

v, =KW, ).

The Lie group of point transformations admitted by the system of PDEs (4.138a,b) can
yield a symmetry admitted by the scalar PDE (4.137) that is neither a point
transformation nor even a local transformation. For a full discussion of how to find and
use such nonlocal symmetries for a given system of PDEs, see Bluman, Kumei, and Reid
(1988), Bluman and Kumei (1989b, Chapter 7)), Bluman and Doran-Wu (1995), and
Anco and Bluman (1996, 1997b).

We now completely classify the invariance properties of the system of PDEs
(4.138a,b) in terms of its admitted point symmetries. We leave many details to the
reader. Suppose the system of PDEs (4.138a,b) admits an infinitesimal generator of the
form

X=§(x,t,u,v) +r(x t,u v)%+77 (x,t,u v) 0 +77 "(x,t,u v)i. (4.139)
ov

Here, the system of symmetry determining equations (4.102) becomes

n" =K' wun" + K@n™, (4.140a)
n" =n", (4.140b)
with
v=KWu_, v, =u, (4.140c¢)
where 7", 7", n"" are given by (2.135). After eliminating v, and v, through

substitution from the given system of PDEs (4.138a,b), we obtain
on’ 62’ n" 877” on" oOr on" 8:,5
+| K - -K'
[ ot 6t K )[ ov H { (u)( ov Ot Ou 6x wn’

677" 8{: g g %_ ﬁ -
+{ P +K(u )( . +u avﬂu’ +K(U)[8u K(u) av}(ux) 0, (4.141a)

[ai+uai—ua—§—uza—§—n”}+[ai % K(u)(ﬁ+u2—rﬂux
Ox v

Ox ov Oox ov ou 6u

—K(u)a—:(ux)z - 0. (4.141b)
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Each of the symmetry determining equations (4.141a,b) must hold for arbitrary values of
x,t,u,v,u_,u,. Consequently, we obtain a set of seven symmetry determining equations

for &,7,n",n", that simplify to the equations

o7 ), (4.142a)
ou
7 L, 9% o, (4.142b)
Ox ov
o _ % _ (4.142¢)
ou ou
% _kwE o, (4.142d)
ou ov
o _ 05 _ g 214,01 | 2o, (4.142¢)
ot ot ox ov
ai_ﬁ_aiJr%_@ “ =0, (4.1421)

ov ot ou ox K(u)

4.142
Ox ov Ox ov ( &

The solution of the set of symmetry determining equations (4.142a—g) is left to
Exercise 4.3-5. The results can be summarized as follows [Bluman, Kumei, and Reid
(1988)].

Case l. K(u) arbitrary.

Here, the given system of PDEs (4.138a,b) admits a four-parameter Lie group of point
transformations with its infinitesimal generators given by

Xlzi’ XZ:Q, X3:x£+2tﬁ+vi, X4:£. (4.143)
ot ox ot Ov ov

Casell. K(u)=A(u+x)".

Here, the system of PDEs (4.138a,b) admits a five-parameter Lie group of point
transformations with its infinitesimal generators given by (4.143) and

X, = xi +2v T (u+ K)i +[A+2v W+ 2v‘lkx]i. (4.144)
Oox ou ov

Case L. K(u) = A(u+x)>.
Here, the system of PDEs (4.138a,b) admits an infinite-parameter Lie group of point
transformations with its infinitesimal generators given by (4.143), (4.144) [with v = -2],
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X =—x(v+ loc)i +(u+r)v+x(u+ 2/()]i +[2A¢ + kx(v + Kx)]i,
ox ou Ov
X, = —x[(v+xx)* + Mt]ai +401° % +(u+K)[6At+(v+urx) +2x(u+x)(v+ roc)]ai
X u

+[re(v+xx)* + 2402 + 31@)8i ,
\

, 04(z,1) &

0
X, =¢(z,t)——(u+
o =0 =t K) —————

- K¢(z,t)i, (4.145)
ov

where z =v+kx, and w= ¢(z,¢) 1s any solution of the linear heat equation
w, =Aw_.
The use of the infinitesimal generator X to map the nonlinear heat conduction equation
u, =2(u+x)"u,),

to a linear PDE is discussed in Kumei and Bluman (1982) and Bluman and Kumei
(1990a) [see also Bluman and Kumei (1989b, Chapter 6)].

Case IV. K(u) = , where p,q,r are arbitrary constants

1 u
—————exp| 7 J.z—
u +pu+gq u +pu+gq
such that p* —4g—r> #0.

Here, the system of PDEs (4.138a,b) admits a five-parameter Lie group of point
transformations with its infinitesimal generators given by (4.143) and

0 0 5 0 0
Xi=v—+F—-pit—-— +pu+q)—-— + —. 4.146
s=Vo (r—p) Py (u” + pu q)au (gx pV)av ( )

(3) Wave Equation for an Inhomogeneous Medium
Consider again the wave equation in an inhomogeneous medium with a variable wave
speed c(x):

u, =c’(xXu,,. (4.147)
We form an associated system of first-order PDEs
(4.148a)
u =c’(x)v,. (4.148b)

If the pair (u(x,1),v(x,1)) solves (4.148a,b), then u(x,?) solves the wave equation (4.147)
and v(x,?) solves the hyperbolic equation

v, = (),),.

We now give a complete group classification of the system of PDEs (4.148a,b) with
respect to its invariance under a Lie group of point transformations. Suppose (4.148a,b)
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admits an infinitesimal generator of the form (4.113). It is left to Exercise 4.3-6 to show
that the set of symmetry determining equations for &(x,1), 7(x,1), f(x,?), g(x,?),

k(x,t), {(x,t) is given by
ok 0Og

———==0, 4.149a
ot 0Ox ( )
o o =0, (4.149Db)
ot Ox
c(x)—g=0, (4.149c¢)
, 0t 0&
===, 4.149d
¢ (x) o ( )
, Ok Og
—_Z= =, 4.149¢
¢’ (x) = ot ( )
, ol of
—-Z -, 4.149
¢ (x) = o ( f)
or 0¢&
——— |+ =0, 4.149
C(x){ Py ax} c'(x)¢ ( g)
o¢ ot
k—f+—=-—=0. 4.14%h
4 ox ot ( )

The integrability conditions arising from the determining equations (4.149a—c,f) lead to
g(x,t) satisfying

% F(x)+ gH'(x) =0, (4.150)
Ox
where
H(x)=%. (4.151)
Consequently,
2(x1) = _%, 4.152)

in terms of an arbitrary function a(z). Two cases arise that depend on whether or not the
wave speed c(x) satisfies the ODE

14

cc'(%) = const = 4, (4.153)
c

for some constant . If c(x) satisfies ODE (4.153), then a(?) satisfies the ODE
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a"(t) = pa(t).

If ¢(x) does not satistfy ODE (4.153) for any constant &, then a(¢) =0, and the

corresponding system of PDEs (4.148a,b) only admits the two obvious infinitesimal
generators

X, :ﬁ, X, =ui+v£. (4.154)
ou ov
If the wave speed c(x) satisfies ODE (4.153), then one can show that the

corresponding system of PDEs (4.148a,b) admits a four-parameter Lie group of point
transformations. In terms of the solutions of ODE (4.153), the group classification is
summarized as follows, modulo scalings and translations in x [Bluman and Kumei

(1987, 1988)]:
@ u=0.
In this case,
c(x)=e" orx°, (4.155)

where C is an arbitrary constant.

(1) =0,

Here, the ODE (4.153) cannot be solved explicitly but reduces to one of the following
first-order ODEs:

¢’ =v'sin(vlogce); (4.156a)
¢’ =v 'sinh(vlogc); (4.156b)
¢ =logc; (4.156¢)
¢’ =v" cosh(vlogc); (4.156d)

v # 0 is an arbitrary constant. If c(x)=¢(x,v) is a solution of any one of the ODEs
(4.156a—d), then the corresponding general solution of ODE (4.153) is given by

c(x)=K¢(Lx + M,v),

where K°I* =|u| for arbitrary constants L,M,v. The admitted infinitesimal
generators for the various subcases include:

Casel. u=0.

Casela. c(x)=x°,C#0,1.

X, =2, X, =x£+(1—C)t2—Cvi,
ox ot ov
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2-2C

C}%+[(2C Dtu— xv]i—[z‘v+x1 ¢ ]%,

X, = 2xt3+ [(1 —O) 4
ox

0 0
X, =u—+v—. 4.157
! ou ov ( )
Case Ib. c(x) = x.
X, =2, X, =xi—vi, X, = 2xti+210gxﬁ+[tu—xv]i—[tv+x_lu]i,
ot ox  ov ox ot ou ov
0 0
X, =u—+v—. 4.158
! ou ov ( )
Caselc. c(x)=e¢".
X2 x,_0_ 2 0
ot ox Ot Ov
X, =—4t£+2[t2 +e ] — 0 +2[—2tu+v]i+2e_2x i, X, =ui+v£.
ox ot ou ov ou ov
(4.159)

CaseIl. u#0.
If the wave speed c(x) satisfies either of the ODEs (4.156a or b), then the given system
of PDEs (4.148a,b) admits

N
ot

X, = e’{zc(c'ﬁ % £2[(e() ) - 1]% HI2 — (@)Y (') v]%
—[(c(c'>‘1>'v+(cc'>ui},

X, = {2c(c Y20 () )] [(2—(c<c')‘1)')u+c<c')-‘v]%
@)Yy (ec'yu 5},

X, :ui+v£. (4.160)

ou ov

The resulting invariant solutions appear in Bluman and Kumei (1987, 1988).
Special classes of invariant solutions will be considered in Section 4.4.3.

Lisle (1992) gave a partial group classification of the diffusion convection system
of PDEs
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V. =u,
v, =D(u)u, —K(u),

by delineating those classes of functions D(u), K(u) for which the system admits extra

point symmetries (including those that induce nonlocal symmetries of the scalar diffusion
convection equation).

Akhatov, Gazizov, and Ibragimov (1988) [see also Ibragimov (1995)] present the
group classification of the one-dimensional system of adiabatic gas equations given by

P, +vp, +pv, =0,
pv,+w)+p, =0,
p(p, +vp.)+ B(p,p)v, =0,

where p(x,t) is the density of the gas, p(x,?) is the pressure, v(x,?) is the velocity, and
B(p, p) is the constitutive law.
Many further examples are exhibited in Ibragimov (1995).

EXERCISES 4.3

1. Prove Theorem 4.3-1.

2. Show that the infinitesimal generators for point symmetries admitted by the system of
PDEs (4.118a,b) are of the form (4.113).

3. Show that (4.122a—f) is the general solution of the set of symmetry determining
equations (4.121a-h).

4. The linear system of wave equations (4.118a,b) admits the infinitesimal generator
0 2 2.0 0 3 4,0
X=X,+sX, =2xt——[x"+t" | —+[@Bt+s)u—xv]—+[(s —)v—x"u]—.
3 4 . [ ]at (Bt +5) ]au [(s—1) ]av
(a) For invariant solutions resulting from invariance under X, show that the invariant
form is given by
u=x2e™ [—xt’C T (L;8) +1G(E55) — F(S39)],
v=x"e [—xr®’CTF(E8) + G(E ),

where F'({';s) and G({';s) are arbitrary functions of ¢ and s. The similarity
variable { is given by (4.124).
(b) Determine the coupled system of ODEs that are satisfied by F({;s),G(<;s).

Simplify and express the solution in terms of special functions.
(c) Derive these invariant solutions by the Direct Substitution Method.
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5. Complete the group classification of the system of PDEs (4.138a,b) and derive
(4.143)—(4.140).

6. Derive the set of symmetry determining equations (4.149a—h).

7. Consider the two-dimensional nonstationary boundary layer equations
u +uu, +vu,+p . =u,, p =0, u +v =0, (4.161)

[u(x, y,t),v(x, y,t) are components of the velocity vector; p(x,7)is the pressure;
without loss of generality, the viscosity and density constants are set to equal one].
Show that the admitted point symmetries of (4.161) are given by

X, =2, X, =2xﬁ+yi+2t2—v£, X, =x£+ui+2pi,
ot ox oy ot ov ox ou op

N _ 02 pin — 02
X, =al) g +ad Oz —xa' O, X, =B+ f 05 X, =70,

where «a(t), f(t), and y(¢) are arbitrary sufficiently smooth functions of ¢
[Ovsiannikov (1982)].

8. Show that the two-dimensional steady-state boundary layer equations [«#, =0 in the
system of PDEs (4.161)] admit

X, =2, X, =2x£+y£—vi, X, =xi+ui+2pi, X, =i,
Ox oy ov Ox Ou op op

0 0
X =d(x)—+ud'(x)—,
» = P(x) & #'(x) Y
where @(x) is an arbitrary differentiable function [Ovsiannikov (1982)].

9. Show that the three-dimensional incompressible Navier—Stokes equations [x,, x,, X,
are spatial variables; ¢ is time; u',u”,u’ are components of the velocity vector; p is

ressure; V2 = > 9%/ dx2; without loss of generality, the viscosity is set to equal 1],
P 07 /ox, g y y q
3 . . 3 . . .

u, =0, u/ +2u’u;i +p, = Viu/, j=1,2,3,
= ;

i=1

1

admit
3
Xlzéa Xzzz xti_ ii‘ té_[)i s
ot par) Ox; ou' ot op
0 0 0 0 0 0 0
X, xz——xlax +u261—182, X4_x38__x18 +u3al—163,
. 5 u X, Xy u u
Xs = x; ¢ X ‘ +u’ a2 —u’ a3’
5 Oox, ou Ou
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10.

11.

0 0 0
X =a.(t)—+d (t)——-xa'(t)—, j=12,3,
=05 O x @O

X, = ﬁ(t)%,

where f(1), a;(t), j=1,2,3, are arbitrary functions. [See Boisvert, Ames, and

Srivastava (1983). In this paper various invariant solutions are given.]
If the complex-valued wave function y(x,?) satisfies the cubic nonlinear Schrédinger
equation

iy, =y, +Vy+ly|’w (4.162)

for an external potential V'(x), then the canonical transformation

p(x 1) =ve ™",

where u(x,t) and v(x,?) are real-valued functions, transforms PDE (4.162) into the
nonlinear system of PDEs, representing a Madelung fluid, given by

u,+ ) 2027 (0) =27 200 v ), =0, (4163)

xx 2

Show that if V' (x) =—x, then the system of PDEs (4.163) admits the infinitesimal
generators

X, = +3) 2 v 2l sty Lol x, =2
ox ot ou ov ot
X3=f£+(x+f2)i, X4=i, X5=i+2ti.
Ox Ou Ou Ox Oou

[See Baumann and Nonnenmacher (1987), where these infinitesimal generators and
resulting invariant solutions are given.]

Show that the coupled two-dimensional nonlinear system of Schrédinger equations
i, —u, +u,+|u Pu-2uv=0, v +v, —(u "), =0,

where u(x,t) and v(x,t) are complex-valued functions, admits the infinitesimal
generators

Xlzi, Xzzi, X3=g, X4=x£+yi+2t£—ui—2vi,
ox oy ot ox oy ot ou ov
X =—t£+%ixu—, X, =t£+%iyui,
Ox ou oy ou
X, =xt£+yt£+t2£—[t+%i(x2 —yz)]ui—Ztvi, X =iui.
ox oy ot ou ov ou

[Tajiri and Hagiwara (1983).]
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12. Show that the shallow water wave equations for two-dimensional flow over a flat

13.

bottom, given by
u +uu, +vu,+gH =0, v, +vu +vu, +gH =0,
H,+uH_ +vH , +H(u, +v,)=0,

where u(x,y,t),v(x, y,t) are the components of the velocity vector, H(x,y,?) is the

depth of the water, and g = const is the acceleration due to gravity, admit the point
symmetries

=2 xo=l, x =l et lal x4 2
ot Ox Y Ox Ou dy Ov
Xé—yi—xi+vi—u£, X7=t—+x—+yi,

ox Oy Ou ov ot ox oy
0 0 0 0 0

Xeg=x—+y—+u—+v—+2H —,
Ox dy Ou Ov OH

X, =t2£+fxi+lyi+(x—tu)i+(x—tv)i—thi.
ot ox oy ou ov oH
[Ibragimov (1983).]
Consider the mapping from (x,u,0u,0’u,...,0'u) —space to (y,v,0v,0v,...,0'v) —

space given by x=X(,v), u=U(p,v), where X=(x,%Xy,...,X,),

u=@"u’,....u"), y=00Ys...y,), and v=0"v?,...,v"); 0’'v denotes jth-
order partial derivatives of the components of v with respect to the components of y.
A function u = ®(x) transforms to a function v = ®(y) through solving the equations

O“(X(y,v)=U%(y,v), a=12,...,m. Let
DXkZGXk+6Xk 8v“, DU“:8U“ ou”* ov*
Dy, oy, ov" oy, Dy
DU _ a'u” N o°’U* ov* . o’U” ov* ov’ L ou” o’v” '
Dy Dy, 0y;0p, 0y;0v" 0y, oviov' dy, g, ov' o0y,

+— ,
i oy, ov' oy,

Assume that under the above mapping, the Jacobian determinant satisfies

DX, DX,
DX _D(X\.X,.....X,) _, IDX,| _ D:y1 D?vn 0
Dy D(y,y55--5,) Dy;| |px, DX,

Dyl Dyn
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(a) Show that

DU“ DX, ou®

Dy, Dy, ox, ’
and hence,
D(X,,X,,... X, , U Xy X))
ou” Dy
o, DX
Dy

(b) Show that

DXU* D’X, ou* DX, DX, 3%u“

+ .
Dy Dy, Dy,Dy, ox, Dy, Dy, dy,0y,

(c) One can show that

o 2%, x| Ipx,  px, ||=(DXJ
B O B DO e

[Greub (1967, p. 26)]. Hence, as an example, show that

DU* DX, ou” DX, DX, DX, DX,

Dy;  Dy; ox, Dy, Dy Dy, Dy,

DU* DX, au® DX, DX,  DX,6 DX,

Dy, Dy, DyDy, ox, Dy, Dy, Dy, Dy,

D*U® D*X, ou® DX, DX, DX, DX,

ou* | Dyl Dy @, Dy, Dy, Dy, Dy,
ox; B Dx\"
o

44  APPLICATIONS TO BOUNDARY VALUE PROBLEMS

In Sections 4.1 to 4.3, we have shown how to find point symmetries admitted by given
PDEs and how to use them to find resulting invariant solutions. Now we consider the
problem of using invariance to solve boundary value problems posed for PDEs. The
application of Lie symmetries to boundary value problems for PDEs is much more
restrictive than is the situation for ODEs.

In the case of an ODE, an admitted integrating factor or point symmetry (or, more
generally, a higher-order symmetry) leads to a reduction in the order of the ODE. In
terms of the original variables (integrating factor reduction) or in terms of the
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corresponding differential invariants (point symmetry reduction), any posed boundary
value problem for the ODE 1is automatically reduced to a boundary value problem for a
lower order ODE.

In the case of a PDE, an invariant solution arising from an admitted point
symmetry solves a given boundary value problem provided that the symmetry leaves
invariant all boundary conditions. This means that the domain of the boundary value
problem or, equivalently, its boundary as well as the conditions (boundary conditions)
imposed on the boundary must be invariant.

The situation is not so restrictive in the case of boundary value problems posed
for linear PDEs. Here a boundary value problem need not be completely invariant
(incomplete invariance) since one can use an appropriate superposition of invariant
solutions in the following situations:

(1) For a linear nomhomogeneous PDE with linear homogeneous boundary

conditions, an infinitesimal generator X;tua—, admitted by the associated linear
u

homogeneous PDE, is useful if X is also admitted by the homogeneous boundary
conditions. Then the boundary value problem can be solved by a superposition (i.e.,
eigenfunction expansion, integral transform representation) of invariant form functions

arising from the infinitesimal generator X + Au —, where A is an arbitrary constant,
Ou

since X+ﬂ,uai is admitted by both the associated linear homogeneous PDE and the
u

homogeneous boundary conditions [A plays the role of an eigenvalue].

(1) For a linear homogeneous PDE with p>1 linear homogeneous boundary
conditions and one linear nonhomogeneous boundary condition, an infinitesimal

generator X;tuai, admitted by the PDE, is useful if X is also admitted by the p
u

homogeneous boundary conditions. Consequently, for any complex constant A, the

infinitesimal generator X+/1uai is admitted by the PDE and its p homogeneous
u

boundary conditions. Here, one solves the boundary value problem by first constructing

. . . . 0 . .
the invariant solutions, resulting from X+ Au—, that satisfy the PDE and its
Ou

homogeneous boundary conditions. Then one finds a superposition of these invariant
solutions that solves the nonhomogeneous boundary condition. Note that in this case
(unlike in (1)), X does not necessarily leave invariant the domain of the boundary value
problem.

The results to be presented in Sections 4.4.1 and 4.4.2 first appeared in a more

rudimentary form in Bluman (1967, 1974) and Bluman and Cole (1969, 1974). [For the
rest of this section, we assume the summation convention for repeated indices. ]
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44.1 FORMULATION OF INVARIANCE OF A BOUNDARY
VALUE PROBLEM FOR A SCALAR PDE

Consider a boundary value problem for a kth-order (k > 2) scalar PDE that can be written
in a solved form

F(x,u,0u,0u,....,0"u)=u,

iy iy

- f(x,u,&u,@zu,...,aku) =0 (4.164a)

[/ (x,u,0u,0u,...,0"u) does not depend explicitly on .,

ll’Z"'i{

], defined on a domain
Q _in x—space [x =(x,,X,,...,x,)] with boundary conditions

B, (x,u,ou,...,0'u)=0 (4.164Db)
prescribed on boundary surfaces

0,(x)=0, a=12,..,s. (4.164c)

We assume that the boundary value problem (4.164a—c) has a unique solution.
Consider an infinitesimal generator of the form

X = §i(x)£+f7(x,u)%, (4.165)

1

which defines a point symmetry acting on both (x,u)—space as well as on its projection
to x —space.

Definition 4.4.1-1. The point symmetry X of the form (4.165) is admitted by the
boundary value problem (4.164a—c) if and only if:

(i) XWF(x,u,0u,0%u,...,0"u)=0 when F(x,u,0u,0%u,...,0"u) =0; (4.166a)

(1) X, (x)=0 when w,(x)=0,a=12,...,s; (4.166b)
(iii) X“"B, (x,u,0u,...,0"'u)=0

when B, (x,u,0u,...,0'u)=0 on ®,(x)=0,aa=12,...,s. (4.166¢)

Theorem 4.4.1-1. Suppose the boundary value problem (4.164a—) admits the Lie group
of point  transformations  with  infinitesimal  generator  (4.165).  Let
y=0(x),y,(x),...,y,,(x)) be n—-1 functionally independent group invariants of

(4.165) that depend only on x. Let v(x,u) be a group invariant of (4.165) such that
ov/ou #0. Then the boundary value problem (4.164a—c) reduces to

G(y,v,0v,0%v,...,0"v) =0 (4.167a)

defined on some domain Q , in y —space with boundary conditions

C,(y,v,0v,0v,...,0'v) =0 (4.167b)
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prescribed on boundary surfaces

v (y)=0, (4.167¢)

for some G(y,v,0v,0°v,...,0"v), C,(y,v, ov,0%,...,0"), v,(y), a=12,...,s.
Moreover, in the boundary value problem (4.167a,b), 8’v represents the components of
Jth-order partial derivatives of v with respect to y=(y,(x),y,(x),...,»,,(x)),

j=12,....k; and (4.167a) can be written in a solved form in terms of some specific
{th-order partial derivative of v with respect to y.

Proof. Left to Exercise 4.4-1. O

Note that the surfaces y (x)=0,j=12,...,n-1, are invariant surfaces of the

point symmetry (4.165). The invariance condition (4.166b) means that each boundary
surface @, (x) =0 is an invariant surface v, (y) = 0 of the projected point symmetry

& (x)i (4.168)
ox,

1

given by the restriction of point symmetry (4.165) to x-space. From the invariance of the
boundary value problem under the point symmetry (4.165), the number of independent
variables in (4.164a—c) is reduced by one. In particular, the solution of the boundary
value problem (4.164a—c) is an invariant solution

V=00, Y55 Y,1) (4.169)

of the PDE (4.167a) resulting from its invariance under point symmetry (4.165). In terms
of the dependent variable » and independent variables x appearing in PDE (4.164a), the
corresponding invariant solution u = ®(x) of PDE (4.164a) must satisfy

X(u—-0(x))=0 when u=0(x), (4.170)
1e.,

00(x)

() —

= 1(x,0(x)). (4.171)

Theorem 4.4.1-2. If the infinitesimal generator X, given by (4.165), is of the form
0 0
X=(()—+ f(u—, (4.172)
Ox; Ou
then the group invariant v(x,u) is of the form v(x,u)=u/g(x) for some specific

function g(x) and hence the invariant form related to invariance under X can be
expressed in the separable form
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u=0(x)=g(x)D(y), (4.173)

in terms of an arbitrary function ®(y) of y =(y,(x),y,(x),..., v, (x)).
Proof. Left to Exercise 4.4-2. i

If the boundary value problem (4.164a—c) admits an r-parameter Lie group of
point transformations with infinitesimal generators of the form

X,-=§,-»(x)i+f7,-(x,u)i, i=12,...,7, (4.174)
) ou

J

then the unique solution u =®(x) of the boundary value problem (4.164a—c) is an
invariant solution satisfying

X,u—-0(x))=0 when u=0(x), i=12,...,r.

The proof of the following theorem is left to Exercise 4.4-3:

Theorem 4.4.1-3 (Invariance of a Boundary Value Problem Under a Multiparameter Lie
Group of Point Transformations). Suppose the boundary value problem (4.164a—c)
admits an r-parameter Lie group of point transformations with infinitesimal generators
of the form

Xi Zé:i‘(x)i-i_’]i(xﬂu)iﬂ i=1,2,...,}’. (4175)
7 ox, ou

J

Let R be the rank of the r x n matrix

Sn(x) &(x) - &, (x)
En(x) Sp(x) - §2n(x).

2(x) = (4.176)
$i(x) &,(x) -+ &,(x)

Let g =n—R, and let z,(x),z,(x),...,z,(x) be a complete set of functionally independent
invariants of (4.175), satisfying

fl.j(x)m:O, i=12,...,r, £=12,...,q. (4.177)
ox;
Let
u
v (4.178)
g(x)

be an invariant of (4.175) satisfying
Xv=0, i=12,...,r
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Then the boundary value problem (4.164a—c) reduces to a boundary value problem with
g = n — R independent variables z =(z,(x),z,(x),...,z,(x)) and dependent variable v

given by (4.178). The solution of the boundary value problem (4.164a—c) is an invariant
solution that can be expressed in terms of a separable form

u = g(x)D(z), (4.179)

where the function ®(z) is to be determined.

The following examples are illustrative:

(1) Fundamental Solutions of the Heat Equation
Consider again the heat equation (4.47) defined on the domain 7> 0, a < x <b. Recall

that PDE (4.47) admits the six-parameter («,f,7,0,kx,4) Lie group of point
transformations given by infinitesimal generators of the form

X =§(x,t)a—i+r(t)%+f(x,t)u%,

with its infinitesimals given by the equations

E(x,0) =K + P+t + O, (4.180a)
() =a+2pt+n*, (4.180b)
font)=—y(Ex? +1)—Loe+ A, (4.180c)

The boundary curves of the domain are # = 0, x = a, x = b. The invariance of ¢ = 0 leads
to

7(0)=0,
and, hence, ¢ =0. If a =- and b =0, then there is no further parameter reduction

resulting from invariance of the boundary curves. If a# —oo, then the invariance of
x =a leads to

&(a,t)=0
for any ¢ > 0, and hence,
K=-pa, 6=-)a.

Similarly, if b # oo, then the invariance of x =5 yields

K=—pb, 6=-b

Consequently, if a# - and b # o, then f =y =0 =x =0, and so there is no

nontrivial Lie group of point transformations admitted by both the heat equation and the
boundary of a boundary value problem for the heat equation (4.47) defined on the domain
t>0,a<x<b. However, since PDE (4.47) is linear, it is not necessary to leave all
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boundary curves of the domain invariant, as mentioned in the introductory remarks of
Section 4.4, and as will be shown in Section 4.4.2.

If a =-w and b =, then a four-parameter Lie group of point transformations is
admitted by the boundary of a boundary value problem posed for the heat equation (4.47)
on the domain ¢ > 0, a < x < b, and hence, a boundary value problem could admit at most
a five-parameter (f,y,0,x,4) Lie group of point transformations.

If a # —o (without loss of generality a = 0) and b = oo, then a two-parameter Lie
group of point transformations is admitted by the boundary of a posed boundary value
problem for the heat equation (4.47), and hence, a boundary value problem could admit at
most a three-parameter (f,y,4) Lie group of point transformations with infinitesimals

given by
§(x,1) = fx+ pt, (4.181a)
w()y=2p+n’, (4.181b)
fty=—yEx*+1+ A, (4.181¢)

We now derive fundamental solutions for the heat equation (4.47) when
u(x,0) = 6(x - x,),

where &(x—x,) is the Dirac delta function centered at x,,a <x, <b, for an infinite
domain (a = -, b = ©) or a semi-infinite domain (a =0, b = ©).

(1) Infinite Domain (a,b) = (—,). Consider the boundary value problem

u, =u_, (4.182a)
on the domain ¢ > 0, — o < x < o0, with boundary conditions
u(xo,t) =0, >0,
and
u(x,0) = o(x). (4.182b)

Without loss of generality, one can set x, = 0.

The Lie group of point transformations with infinitesimals (4.180a—c) is admitted
by the boundary value problem (4.182a,b) provided that

F(x,0)u(x,0) =£(x,0)0'(x) when u(x,0)=0(x),
1e.,
f(x,0)0(x) = &(x,0)0"(x). (4.183)

From the properties of the Dirac delta function (a generalized function [Lighthill
(1958)]), we see that (4.183) is satisfied if

$(0,00=0 (4.184a)
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and
£(0,0) ==& _(0,0). (4.184b)
Thus, in the infinitesimal equations (4.180a—c), we have
k=0, A=-p.

Consequently, a three-parameter (f,y,0) Lie group of point transformations is admitted

by the boundary value problem (4.182a,b). The infinitesimal generators of this group are
given by

X, =x%+2t%—u%, X, :ta—i—%xu%, X, :xt%+t2%—[ﬁx2 +%t]ua—au.
(4.185)
The corresponding matrix
x 2t
Ex,t)=|t 0
xt t

has rank R =2, so that group invariance reduces the boundary value problem completely
in the sense that the number of independent variables is reduced from two to zero. Note
that

X, = 1[X, +xX,]. (4.186)

Hence, an invariant solution resulting from joint invariance under X, and X, must also
be an invariant solution resulting from X,. Let u =®(x,7) be an invariant solution

resulting from joint invariance under X, and X,. Then
X, (u—-0O(x,t))=0 when u=0(x,?)

yields the invariant form
u=0(x,t) =%®1(4’1), (4.187)
with the similarity variable given by
£ = %
The equation

X,(u-0(x,1))=0 when u=0(x,?)

leads to the invariant form
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u=0(x,1)=e"""D, (), (4.188)

with the similarity variable given by

6, =t

From the uniqueness of the solution to the boundary value problem (4.182a,b), it follows
that

1 >
_(D — —X /4[CD )
\/; () =e ,(S5)

After expressing the variables x and ¢ in terms of the similarity variables £, and ¢,, we
see that

¢ D,(4,) =, @,(¢,) = const = c.

Hence, the solution of the boundary value problem (4.182a,b) is given by the well-known
expression

U=0(x,t)=—=e* ¥ (4.189)

e
Vi

for some constant c. The initial condition (4.182b) yields

Note that from relation (4.186) it must automatically follow that

C 24
X |u——e =0
{ i j

for any value of the constant c.

(i) Semi-Infinite Domain (a,b) =(0,0). Consider the boundary value problem

u, =u_, (4.190a)
on the domain 7 > 0, x > 0, with boundary conditions
u(0,1)=0, >0, (4.190b)
and
u(x,0)=0(x—x,), 0<x, <oo. (4.190¢)

The three-parameter Lie group of point transformations with infinitesimals given by
(4.181a—) is admitted by PDE (4.190a), the boundary curves t = 0 and x = 0, and the
boundary condition (4.190b). The invariance of the initial condition (4.190c) leads to the
restriction
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S (x,0)u(x,0) = &(x,0)0"(x —x,) when u(x,0)=0(x—x,),
1e.,
f(x,0)00(x —x,) =&(x,0)0"(x — x;).

Hence,

¢(xy,0) =0,

S (%9,0) = =€, (x,,0).
Consequently, in the infinitesimal equations (4.181a—c), we must have

B=0, A=5(x)7.
Thus, the boundary value problem (4.190a—c) admits the point symmetry
X = xta—i+ t? %+ [L(x,)" — (x> +10)] ua—au

The corresponding invariant solution has the invariant form

—[x2+(x) 1/ 4t

u=0(x,f)= eTqa(g), (4.191)

where @(¢) is an arbitrary function of the similarity variable

X
¢= -
After substituting the invariant form (4.191) into the heat equation (4.190a), we find that
(&) satisfies the ODE

Q" =1(x,)* .
Hence, the solution of the boundary value problem (4.190a—c) has the form
i
Ji

for some constants C and D. The boundary condition (4.190b) leads to D = —C, and from

the initial condition (4.190c) we find that C =1/+/47. This yields the well-known
solution of the boundary value problem (4.190a—c), usually obtained by the method of
images, given by

u= @(X, t) = [Ce—(x—xo)2/4z + De_(x+X0)2/4’]

u=0(x,t)=G(x—-x,,t) - G(x+ x,,1),

where

—x% /4t
e
G(x,1) =

Jam
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(2) Fundamental Solution of the Axisymmetric Wave Equation
The fundamental solution of the axisymmetric wave equation (4.88) is the solution of the
boundary value problem

Lu=u, —u. —u = s(80),
7 2mr

1e.,
rLu = L o(r)o(e), (4.192a)
27

on the domain » > 0, 7 > 0, with the causality condition that
u=0 if r>t (4.192b)
It is left to Exercise 4.2-7 to show that the linear homogeneous equation
Lu=0

admits a four-parameter («, f,7,4) Lie group of point transformations represented by
the infinitesimal generator

X = p(r, t)a—ar+r(r, z‘)§+f(t)ua—au, (4.193)
with its infinitesimals given by
p(r,t)=ar+2prt, (4.194a)
t(r)=at+ B> +t*)+y, (4.194b)
f@O)y==pt+ A (4.194c)

The invariance of the wavefront » = ¢ leads to
p(t,1) =17(t,1),

and hence, y =0.
Under the action of (4.193), we have

FHEL* gt = {1 + g[ £ =27,(r, 1) + M} + 0(52)}Lu,
r

S(F*)o(t*) = 6(r)o(t) + [ p(r,)S' (1S () + t(r, )0 (r)o' ()] + O(g?).
Hence, (4.193), (4.194a—) is admitted by (4.192a) if

[ F@t) =27, (r,0) + M}ama(r) = p(r,1)3' (NS (t) + t(r,H)S(1)S'(1).  (4.195)
r

Since zd'(z) =-0(z), after using this in (4.195) with z = r, ¢, we see that (4.192a,b)
admits (4.193) and (4.194a—) if
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{ £ =22, (m ) + 2 p(r) + %r(r, t)}é‘(r)é‘(t) = 0. (4.196)
r

Equation (4.196) reduces to
2
[/1 ‘ot ﬂ%}ﬂr)&(t) - 0. (4.197)

Since (4.197) needs to be satisfied only on the wavefront » = ¢ when ¢ = 0, it
follows that £ remains arbitrary and A =-a. Thus, the boundary value problem

(4.192a,b) admits a two-parameter Lie group of point transformations given by the
infinitesimal generators

X, =r3+t3—ui, X, =2rt3+(r2 +t2)3—mi. (4.198)
u or ot ou

Let u = ©®(r,t) be an invariant solution resulting from joint invariance under X,
and X,. Then

X, (u-0O(r,t))=0 when u=0(r,?)

yields the invariant form
u=0(r,t) :%CDI(JI), (4.199)

with the similarity variable

~ |~

and
X,(u—-0(r,t))=0 when u=0(r,1)

leads to the invariant form
1
u=0(,t)=—4=0 s 4.200
(r,1) 75 (£>) (4.200)
with the similarity variable
1
¢, :_(tz _rz)‘
r
The uniqueness of the solution of the boundary value problem (4.192a,b) leads to
1 1
ﬁq)Z(gz):;(Dl(é’l)' (4.201)

Since
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t= , r= _,
1-(£)? 1-(£)

it follows that after making these substitutions in (4.201), we have

V6 0,(8,) = 1-(£)*®,(£,) = const.

_ 666Gy

Hence,

u=0(r1) = + (4.202)

t*—r?

for some constant ¢. One can show that ¢ =1/27x.

(3) Fundamental Solutions of Fokker—Planck Equations
As a third example, we consider probability distributions that arise as fundamental
solutions of Fokker—Planck equations with drifts ¢(x). In particular, we consider the

boundary value problem
u, =u, +(@(xu),, (4.203a)
on the domain 7 > 0, a < x < b, with the initial condition
u(x,0)=0(x—x,), a<x,<b, (4.203b)
and reflecting boundaries x =a and x =5 on which

lim [u, + @(x)u] = 0. (4.203¢)

x—at.,b”

Let u = G(x,t;x,) be the solution of the boundary value problem (4.203a—c). Then it

follows that for any x,, a <x, <b, one must have
[Gertix,)de=1. (4.204)

We consider the group classification problem with respect to drifts ¢(x) for the
boundary value problem (4.203a,b) for the physically interesting situation where @(x) is

an odd function of x. Complete details appear in Bluman (1967, 1971) and Bluman and
Cole (1974).
One can show that the linear PDE (4.203a) admits a point symmetry

&(x, t)é_i +7(x, t)% + f(x,t)u % (4.205)

if and only if

(x,1) =1(2),
E(x,t) =3xz(t)+ A@),
f(x,t) =—5xg(x)7'(2) —éxzr"(t) — 2 P(x)A(t) — 5 xA'(t) + B(1),
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where for a given drift ¢(x), the functions A(¢), B(¢),7(¢) must satisty
P(x,t)+Q(x,1) =0,
with
P(x,1) = 5[4° (x) + xp(x)$'(x) = 26 (x) = x4" ()] () + 5 7"(0) =5 X°"(0) + B'(0),
O(x,1) = 3[p(x)p'(x) = " ()] A(0) — 3 xA" (D).
After imposing the restriction that ¢(x) is an odd function of x, we see that
P(x,t)=0, (4.206a)
O(x,1)=0. (4.206b)

From the identity (2.406a), it follows that if z'(z) # 0, then the drift ¢(x) must
satisfy the fifth-order ODE

[4° (x) + x(x)'(x) = 2¢'(x) = x¢"(x)]" = 0 (4.207)
for the Fokker—Planck equation (4.203a) to admit nontrivial point symmetries (other than
the obvious invariance under translations in ).

One can show that ODE (4.207) (with the restriction that ¢(x) is odd) reduces to
the Riccati equation

20'(x) - 2 (x) + B2x% —y + 16V22_ L o, (4.208)
X

where £, 7, and v are arbitrary constants. After substituting (4.208) into (4.206a), we
see that 7(¢#) and B(¢) must satisfy the system of ODEs

(1) = 48°7'(2), (4.209a)
B'(1) = L[yr' () - " (1)]. (4.209b)

From the identity (4.206b), it now follows that if A(z) # 0, then an odd drift ¢(x)
must satisfy the Riccati equation

2¢'(x) - ¢*(x) + p*x* —y = 0. (4.210)
After substituting (4.210) into (4.206b), we see that A(z) must satisty the ODE
A"(t) = B2A(2). (4.211)

Hence, a drift ¢(x) simultaneously satisfies ODEs (4.208) and (4.210) if and only
if ¢(x) satisfies ODE (4.210). From (4.209a,b) and (4.211), we see that a Fokker—Planck
PDE (4.203a) with an odd drift ¢(x) admits a six-parameter Lie group of point
transformations if and only if #(x) satisfies ODE (4.210). Moreover, we see that if an

364



odd drift @(x) satisfies ODE (4.208) with v # -

16 >
Planck equation (4.203a) admits a four-parameter Lie group of point transformations.
The invariance of the boundary curve # = 0 leads to 7(0) = 0 and thus reduces the
number of parameters by one. The invariance of the initial condition (4.203b) requires
that

then the corresponding Fokker—

4’:()60 ,0) = 0)
S(x0,0) = =&,(xy,0).

Hence, a three-parameter Lie group is admitted by (4.203a,b) if an odd drift ¢(x)
satisfies ODE (4.210); a one-parameter Lie group is admitted by (4.203a,b) if an odd drift
$(x) satisfies ODE (4.208) with v* = L.
The standard substitution
V'(x)

P(x) = —2m

transforms any solution of the second-order linear ODE

47" (x) + [y - B*x* - 16V22_ I}V(x) =0 (4.212)
X

to a solution of the Riccati ODE (4.208). Since ODE (4.212) is invariant under
reflections in x, its general solution can be expressed in the form

V(x)=cV,(x)+c,V,(x),

where V,(x), V,(x) are, respectively, even and odd functions of x. Then ¢(x) is an odd
function of x that satisfies ODE (4.208) if and only if either

)
po=-2
or
NG
=2

Only V,(x) leads to a physically interesting drift. One can show that
N = AT e M e d g A, (4213)

where M(c,d,z) denotes Kummer’s hypergeometric function of the first kind with
c=++v-y/8B, d=1+2v, v>-1 B #0. The properties of M(c,d,z) are well-
known [Abramowitz and Stegun (1970, Chapter 13)]:
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As z—>0,

M(c,d,z) =1+ 22 +0(22). (4.2142)
As z > o,
M(c,d,z) = Ld)z"“’ez[l + 0(%} (4.214b)
I'(c) z

From the asymptotic properties (4.214a,b), it follows that
() _
X

lim xg(x) =—(4v +1), lim

—B.
The following cases arise:

Casel. v’ =L.

Here, a three-parameter Lie group of point transformations is admitted by (4.203a,b) with
its infinitesimal generators given by

X, =2fxsinh 2ﬁtﬁ+ 4sinh’ ﬁtﬁ
ox ot

+[ysinh® gt — Bsinh 2 8t(1+ xp(x)) + B ((x,)” — x° cosh Zﬂt)]uai, (4.215a)
u

X, =2sinh ,[7’ti +[B(x, —xcosh Sr) — ¢(x)sinh ftlu i, (4.215b)
ox ou

X, =4p(x, cosh ff — xcosh 2/3’t)ai —4sinh Zﬂtg +[4 cosh® St + 2 f(x)
X
x (xcosh 2 it — x, cosh ) + 2 8> x(xsinh 2 i — x, sinh f) — y sinh 2 Bt Ju ai
u

(4.215¢)

Note that
X, =—2coth frX, + 2 B(xcosech S + x, coth )X, .

Let u =0(x,f) be a resulting invariant solution for the three-parameter Lie group of
point transformations (4.215a—c). Then

X, (u-0O(x,1))=0 when u=0(x,?)
leads to the invariant form

u=g (x0P(), (4.216)
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where

he T Be)' e coth i

gl(xat)z\/m p 4 2(1_62ﬂt) 4 :|’

with the similarity variable given by

X
6= 2sinh At

On the other hand,
X,(u=0(x,1))=0 when u=0(x,?)
leads to the invariant form
u=g,(x,0)d,(<,), (4.217)

where

g1<x,r>:m(x>exp[ Ay —ﬂxzcmhﬁ’}

2sinh ¢ 4
with the similarity variable

¢, =t

Assuming uniqueness of the solution to the boundary value problem (4.203a,b), we
equate the invariant forms (4.216) and (4.217) to obtain

_d (D ey P
q)z(é/z)_q)z(t)_ Wexp[ 4 +2(1_€2ﬂt):|a

where D is an arbitrary constant.
We now consider separately the subcases v = 1.

Casel(a). v=—1.
Here,

Vi) =e ™4 M(c, 4,5 ), c:%—é.

If there is no reflecting boundary, i.e., a = -0, b =c0, then the solution of the
boundary value problem (4.203a,b) is given by

D
u=Gy(x,t;x)) = ———M(c, 3,3 f) exply yt — 4 f(1+ coth fr)(x —xpe )],
+/sinh ft

(4.218a)
with
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D=\/Z><[M(Ca%a%/3(xo)2)]_l, (4.218b)
4

on the domain ¢ >0, — o0 < x < o0,
If a = 0 is a reflecting boundary and b =, then the solution of the boundary
value problem (4.203a—) is given by

u=G(x,t;x,)+G, (x,t;-x,), t>0,0<x<oo, (4.219)

which is an even function of x with the extension of the domain of x in (4.219) to
—o < x<oo. The solution (4.219) can be interpreted as representing the response to
sources located at £ x, when 7= 0.

Note that in the limiting case ¢ = 0, the drift becomes ¢(x) = fx, and here the

solutions (4.218a,b) and (4.219) become the well-known probability distributions for a
free particle in a Brownian motion.

Case I(b). v=1.
Here,

Vi) =xe ™ M(e, 3,3 ), e=3-L,

84

x > 0, with @ = 0 as a reflecting boundary and b =co. The resulting solution of the
corresponding boundary value problem (4.203a—c) is given by

u=G,(x,t;x))+G,(x,t;=x,), t>0, 0<x<oo,

where
E
G,(x,t;x,) =——=—=xM(c,3,+ Bc*) exp[+ 1 —+ B(1 + coth fr)(x — x,e™”)?],
+/sinh S
with

E=L [ 2 M(e,2 .2 BT
4

Xo

Casell. v>—1.

Here, only a one-parameter Lie group of point transformations is admitted by the
boundary value problem (4.203a,b), with its infinitesimal generator given by (4.215a).
The resulting invariant solution arises from the invariant form (4.216). After substituting
(4.216) into PDE (4.203a) and letting &, =&, @,({,) = @(&), we find that O() satisfies

a second-order linear ODE for which the general solution can be expressed in terms of
modified Bessel functions:

D) =4 AL, (Brol) + AL, (Bl for x>0,
D) = ¢ [ [BK,, (Bry | D)+ Byl (Bry [ S D] for x <0,
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where A4,,4,,B,,B, are arbitrary constants to be determined from boundary and
continuity conditions. As ¢ — 0, — «. From Watson (1922, Section 7.23), we find

that, as z — oo,
T 1/2 r 1 T
K, (2)= (—j e’ |1+ O(—j
2z i z) ]

(L) e ieof2)]

One can show that with 4, = B, = B, =0, we obtain a solution valid for v # -5, >0,

S

x>0 (i.e., x=0 is areflecting boundary) with the constant
A =20x) " GBI M (e, d, 5 Bxg) D]

One can show that the reflecting boundary condition (4.203c) admits the point
symmetry (4.215a) when x = a. An important consequence is that the conservation law
equation

J:O G(x,t;x,)dx =1

admits (4.215a), and hence, all moments of the probability distribution can be computed
from this invariance and invariance of successive higher-order moments [Bluman and
Cole (1974, pp. 272-274)].

An interesting special case, when the drift ¢(x)= fx+«a/x, is considered in
Exercise 4.4-8.

The problem of finding fundamental solutions for wider classes of Fokker—Planck
equations with time-dependent coefficients through mappings to the heat equation
(mappings to a Wiener process) is considered in Bluman (1980) and Bluman and Shtelen
(1998). Point symmetries are found for various examples of Fokker—Planck equations in
Stognii and Shtelen (1991), Cicogna and Vitali (1990), and Rudra (1990).

The use of point symmetries to find fundamental solutions of linear scalar PDEs
is also considered in Aksenov (1995). Rosinger and Walus (1994) give a general setting
for considering the group invariance of generalized solutions.

King (1989, 1991) gives many examples of using group invariance to solve
boundary value problems for nonlinear diffusion equations of the form (4.58).

4.4.2 INCOMPLETE INVARIANCE FOR A LINEAR SCALAR PDE

Consider a boundary value problem for a kth-order (k > 2) linear scalar PDE
Lu =g(x) (4.220a)

defined on a domain Q, with linear boundary conditions
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L,u=h,(x) (4.220b)
prescribed on boundary surfaces
,(x)=0, (4.220c¢)

where L is a kth-order linear operator and L is a linear operator of order at most k — 1,

a=1,2,...,s. We assume that the boundary value problem (4.220a—c) has a unique

solution. Formally, the solution of the boundary value problem (4.220a—) can be
represented as a superposition

u=u,+ iuﬁ,
B=1
where u, satisfies
Lu, = g(x), xeQ,
Lu,=0 onw, (x)=0, a=12,..,s,
and u , satisfies

Lu,=0, xeQ,

B
uﬂ=§aﬂha(x) on w,(x)=0, «a,f=L2,...,s.

[0, 1s the Kronecker symbol. ]

The solution of the boundary value problem (2.220a—c) reduces to the solutions
of two types of boundary value problems:

(1) alinear nonhomogeneous PDE with s linear homogeneous boundary conditions:

Lu=g(x), xeQ, (4.221a)
Lu=0onw,(x)=0, a=12,..,s. (4.221b)

(i1) a linear homogeneous PDE with s — 1 linear homogeneous boundary conditions
and one linear nonhomogeneous boundary condition (without loss of generality the
sth one):

Lu=0, xeQ, (4.222a)
Lu=0onw,(x)=0, a=12,...,5-1, (4.222Db)

L u=h(x) on o, (x)=0. (4.222c¢)

Now consider the homogeneous boundary value problem
Lu=0, xeQ, (4.223a)
Lu=0onw,(x)=0, a=12,...,s, (4.223b)
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associated with the given boundary value problem (4.220a—c). Suppose the nontrivial
infinitesimal generator

X, =¢ (x)é + f(x)u % (4.224)

is admitted by Lu =0 [£(x) #0]. Clearly, the homogeneous boundary value problem
(4.223a,b) admits

X, = ui (4.225)
ou
For the solution of (i), let
u=a(x;4) (4.226)

be the invariant form related to the invariance of the boundary value problem (4.223a,b)
under the infinitesimal generator X, =X, + AX, where A is an arbitrary complex

constant. Then the superposition of invariant forms

u=y O(x;2) (4.227)
A
solves the boundary value problem (4.221a,b) if
D LO(x;2) = g(x), (4.228)
A
and if
L, ®d(x;A)=0 onw,(x)=0, a=12,...,s, (4.229)

for each A in the sum (4.227). In (4.227) the superposition Z;, could also represent
L dA for some curve I' in the complex A-plane. Typically, one solves (4.228) for

g(x)=0(x—x,) for any x, €. Then a superposition over the resulting Green’s
function is used to solve the boundary value problem (4.221a,b) for an arbitrary g(x).

For the solution of (ii), let
u=0(x;1) (4.230)

be the most general invariant solution of (4.222a,b) resulting from its invariance under
X ,, which usually exists for only certain complex eigenvalues A. A superposition over

such invariant solutions given by

u=>y 0(x;1) (4.231)

solves the boundary value problem (4.222a—c) provided that
> L.O(x;4) = h(x) onw,(x)=0. (4.232)
A
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Again the superposition Z ., In(4.231) could also represent L dA for some curve I' in

the complex A-plane. The appropriate superposition is then found so as to satisfy (4.232).
Typically, one first solves (4.232) for h(x)=J(x—x,) for any x, € QQ, and then uses a

superposition over the resulting Green’s function to solve the boundary value problem
(4.222a—c) for an arbitrary A(x).

The following examples are illustrative:
(1) Fundamental Solutions of the Heat Equation for a Finite Spatial Domain

(1) Nomhomogeneous Heat Equation with Linear Homogeneous Boundary
Conditions. Consider the boundary value problem for the nonhomogeneous heat
equation

Lu=u,—u_ =06(x—x,)0(t), (4.233a)

defined on the domain 7>0,0<x <1, where 0 <x, <1, with linear homogeneous
boundary conditions

u(0,1) =u(1,7) = 0. (4.233b)
Clearly, the point symmetry (invariance under translations in 7)
5 -2
ot

is admitted by Lz = 0 and the homogeneous boundary conditions (4.233b). The
invariant form resulting from invariance under

X, = 9 + ﬂui
ot ou
is given by
u=o(x,t;4) = y(x;)e”. (4.234)

Now consider the superposition of invariant forms

u=>y y(x; e (4.235)

After substituting (4.235) into PDE (4.233a), we formally find that
> (Vo — et ==8(x—x,)S(0). (4.236)
A

To satisty the homogeneous boundary condition (4.233b), we require that for any A4 in
the superposition (4.235), we have

(0;4) = y(1;4) = 0. (4.237)
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A natural superposition (4.235) arising from (4.234) is the inverse Laplace
transform representation of the solution of the boundary value problem (4.233a,b) given
by

u(x,t) = —— [y e da, (4.238)
2727 y—io

where 7 € R lies to the right of all singularities of y(x;A) in the complex A-plane. [This
superposition integral is the well-known Bromwich contour.] Formally,
5t =—— """ eda.
2727 y—io
Hence, y(x;A) satisfies the ODE
Vv, —A=-0(x-x,) (4.239)
together with the boundary conditions (4.237). Consequently,

sinhv/Ax sinh /2 (x, — 1)

, O<x<x,,
‘ VA sinh+/2 ’
¥ ) =9 ,
sinh \/zxo sinh+/4 (x—1)
X, <x<lI.

A sinh/4 ’

Using the calculus of residues, one obtains the following solution representation of the
boundary value problem (4.233a,b) that is useful for large values of #:

u(x,t) = 22 e 7! sinnx, sinn . (4.240)
n=1

Using the asymptotic expansion of y(x;A4) valid for large values of |A| along the

Bromwich contour of the inverse Laplace transform, one obtains the following solution
representation of the boundary value problem (4.233a,b) that is useful for small values of
t

u(x,t) = i[G(x - X, —2n,t) - G(x+ x, +2n,1)],

n=—o0

where

1 >
G(x,t)=—e"'".
©0" T
In principle, the approach presented here applies to any boundary value problem
for a linear PDE that has a nontrivial point symmetry admitted by the homogeneous PDE
and its homogeneous boundary conditions with the symmetry also admitted by a
boundary surface on which no boundary conditions are imposed. One proceeds by using
canonical coordinates r(x,y),s(x,y) associated with the point symmetry. Then 0/0s

plays the role in solution of the transformed boundary value problem that 0/0¢ played in
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the solution of the boundary value problem (4.233a,b). The solution representation of the
transformed boundary value problem would then be the inverse Laplace transform with s
playing the role of 7.

(1)) Homogeneous Heat Equation with a Linear Nonhomogeneous Boundary
Condition. Consider the following boundary value problem for the linear heat equation:

u,—u_ =0, 0<x<l, 1>0, (4.241a)
u(0,0) =u(1,1) =0, (4.241b)
u(x,0) = h(x). (4.241¢)
Clearly,
X, = g + /Iua—au

is admitted by (4.241a,b). The invariant form for the related invariant solution is given
by

u=0(x,t1)=y(x;A)e", (4.242)

which satisfies (4.241a,b) if and only if

A=A, =-n'n’,
with
y(x;A4,) =a, sinnmnx,
where a, is an arbitrary constant, » =1,2,... . If h(x) = 6(x—x,), then the superposition

of invariant solutions
u(x,0) =) O(x,1;4,)
n=1
satisfies the initial condition if a, =2sinnmx,. Of course, this is the solution

representation (4.240) since the boundary value problems (4.233a,b) and (4.241a—c) are
equivalent problems when /(x) = o(x —x,). Let

0
—_ 2.2 . .
K(x,t;x,) = 228 "7 sin nzx, sin nx.
n=1

Then the solution of the boundary value problem (4.141a—c) is given by

u(x,t) = _Eh(xo VK (x,t;x,) dx,.
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(2) An Inverse Stefan Problem
A nontrivial example is illustrated by the inverse Stefan problem that is given by the
boundary value problem

u,=u_, 0<x<X(), t>0, (4.243a)
u(X(0),0)=0, t>0, (4.243D)
u (0,0)=h (), t>0, (4.243¢)
u(x,0)=h,(x), 0<x<l, (4.243d)
hy(t) =ku (X(1),0)— X'(¢), t>0, (4.243¢)

where, for a prescribed moving boundary X(¢) with X(0)=1, an arbitrary initial
distribution 4, (x), fixed constant k, and arbitrary flux 4, (¢), the aim is to determine
u(x,t) and the flux A, (¢) so that the boundary value problem (4.243a—e) is solved.

Our strategy will be to first obtain a solution # = ®,(x,#) of (4.243a—). Then we
will solve (4.243a—d), with 4, (¢)=0 and u(x,0) = h,(x)-0,(x,0), to obtain a second
function # = ®,(x,?) that is the unique solution of this second boundary value problem.

Consequently, the solution of the boundary value problem (4.243a—¢) is given by
u=0,(x,t)+0,(x,t) with

00,

hz(t)=k{ (X (@), t)+ (X(f) t)} X'(0).

Details of this example appear in Bluman and Cole (1974, pp. 213-219, 235-245) and
Bluman (1974).

Consider the six-parameter Lie group of point transformations admitted by the
heat equation (4.44) with its infinitesimals given by (4.49a—c). One can show that this
group leaves invariant a fixed curve, representing a moving boundary, x = X(#) with

X(0)=1, ifand only if k¥ =6 =0. After solving the resulting ODE given by
E(X(@),)=7(t)X'(t) with X(0)=1,

one can show that X () must be of the form

X(O)=A1+20t+ 1",

for arbitrary constants # and y. We now examine in detail the interesting subcase where
y = *. Here

X(0) =1 —%, T=—p" (4.244)

If X(z) is of the form (4.244), then (4.243a,b) admits
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X, = ﬁx(1+,6’t)a—i+(1+,8t)2 %—ﬁz(%xz +%t)u%. (4.245)

We consider the situation where 7 > 0, so that 0 < ¢ < T, i.e.,, X'(¢) <0, which

corresponds to a “melting” situation with the melt completed when ¢ = 7. The
corresponding similarity variable is given by
X X

X 1

T

with { =0 correspondingto x =0, and ¢ =1 corresponding to x = X(¢)=1-¢/T.
The similarity curves (invariant curves) ¢ = const are illustrated in Figure 4.1.

=

, 0<¢ <, (4.246)

Figure 4.1. The invariant curves ¢ = const.

. . . . o 0
The invariant form corresponding to the infinitesimal generator X, = X, + Au —

ou
is given by
1 VT CPX()
u=0(x,t;v)=—exp| — + V), 4.247
(x,1;v) X0 p[ Yo ar y(&5v) (4.247)
with
vi=A-1T"". (4.248)

After substituting the invariant form (4.247) into the heat equation (4.243a), we find that
¥(&;v) satisfies the ODE

Yo +viy=0. (4.249)
The boundary condition (4.243b) yields
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y(;v) =0, (4.250)
so that
v(&;v) = A(v) sin v(§ —1), (4.251)

for an arbitrary constant 4(v). Hence any formal superposition of invariant solutions

AW) exp{_ VT .\ CAX(@)

~ X () X(t) AT

solves the homogeneous problem (4.243a,b).

u=

}sin W& =1) (4.252)

Now let
t 2 27Z'l T
r=——, s=—v-, B(s)=—=¢e""" A(v),
X (1) JT
and replace Z by j y,m ds. Thus, formally, we obtain the following solution
v y-io

representation of the boundary value problem (4.243a—c) in terms of an inverse Laplace
transform:

u=0,(x,)=r+Te *rD 2i [ " B(s)sinh[\s (1= O)leds.  (4.253)
Jrl Y r-io

Letting

r+

rT
H(r)_hl(t)_hl( Tja

and then taking the inverse of (4.253) so that the boundary condition (4.243c) is satisfied,
we find that
H(r)

B r’
s coshafs 0 (r+ 1)

Now we proceed to find ©,(x,7). Let

B(s)=-

e dr. (4.254)

H,(x) = hy(x) —0,(x,0),

and consider the boundary value problem (4.243a—d) with %,(¢) =0 and A,(x) replaced
by H,(x). In particular, we consider the boundary value problem

u,=u_, 0<x<X(t), t>0, (4.255a)
u(X(@),t)=0, t>0, (4.255b)
u (0,t)=h(1), t>0, (4.255¢)
u(x,0)=H,(x), 0<x<l, (4.255d)
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with X (¢) given by (4.244). 1t is easy to check that the point symmetry (4.245) is
admitted by (4.255a—c). Consequently, one obtains the similarity variable (4.246). The

infinitesimal generator X, = X, + lu@i yields the invariant form (4.247), (4.248). The
u

substitution of (4.247) into the heat equation (4.255a) leads to ODE (4.249). The
boundary conditions (4.255b,c) then yield the homogeneous boundary conditions (4.250)
and

7 (0;1) =0 (4.256)
for ODE (4.249). Thus,

v=v =n+Hr
n 2

and

y(é/; Vn) = An COs Vné/’
where A, is an arbitrary constant, »=0,1,2,... . The formal superposition of invariant
solutions

_ _~_ 4, _W)'T X
u—@z(x,t)—; —X(t) exp[ X0 + T

satisfies (4.255a—c). The initial condition (4.255d) is satisfied by setting

}cos v.¢ (4.257)

© 2

H,(x)=)Y 4, exp{z—T —(n+1)? 7[2Ti| cos(n + 1) mx.
n=0

Let v, (x)=cos(n+1)mx,n=0,1,2,.... Then the set of eigenfunctions {y,(x)}

form a complete orthogonal set of functions on the interval [0,1] with

[[v, v, @dc =15, Ths,

A =2 I;Hz(x)y/n(x)e‘xz/”dx, n=0,1,2,....

n

The above solutions have been used to develop a numerical procedure for solving
the direct nonlinear Stefan problem described by boundary value problem (4.243a—¢)
where the aim is to find the unknown moving boundary X (#) and the distribution u(x,7)

for arbitrary 4, (x),h,(t), h,(¢), and constant k [Milinazzo (1974); Milinazzo and Bluman
(1975)].
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4.43 INCOMPLETE INVARIANCE FOR A LINEAR SYSTEM OF PDEs

As an example, consider the initial value problem for the linear system of wave equations

v, =u,, (4.258a)
u =c’(x)v,, (4.258b)
with
u(x,0) = U(x), (4.258c¢)
v(x,0) =V (x), (4.258d)

on the domain — <x<oo,f>0. We consider the physically interesting wave speed
¢(x) found in Section 4.3.4 that satisfies the ODE

c¢'=msin(vlogc), v =const. (4.259)

One can show that for any solution of ODE (4.259), the wave speed c¢(x) is a monotonic

function of x. In particular, for the corresponding wave equation (4.147), such a wave
speed c(x) describes wave propagation in two-layered media with smooth transitions,
with the properties,

lim ¢(x) =1, (4.260a)
lime(x)=e""" =y, y>0, (4.260Db)
max ¢'(x)=m when m >0, (4.260c)

xe€(—0,0)

where y, m are independent parameters with y representing the ratio of asymptotic wave
speeds. [One can easily adapt the results presented here to the situation where

X—>—0

limc(x)=¢, >0, lime(x)=c, >0,

by appropriate scalings.] Note that, without loss of generality, from the invariance of
ODE (4.259) under translations in x, we can set ¢'(0) =m. A typical profile for such a

wave speed c(x) is exhibited in Figure 4.2.
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=50 50 100

Figure 4.2. Typical profiles for the wave speed c(x).

The four-parameter Lie group of point transformations (4.160) is admitted by the
system of PDEs (4.258a,b) when c(x) satisfies the first-order ODE (4.259). It is easy to

see that the point symmetry X = X, + X leaves invariant the curve #=0. One can show

that the relevant invariant solutions of the given system of PDEs (4.258a,b) arise from its
invariance under

X+4uni[ui+v£} (4.261)
ou ov
for all integers n.
For n=0,1,2,..., these invariant solutions are given by
u(x’ t) un (x’ t) : —2niarctan[cot y sech(mw)] Cl/z (x) 0
= = \/sin ! X
[v(x, t)} Ln (x, t)} e 0 ()
y \/cosh(m vt) + sinh(muor) cos y \/cosh(m vt) — sinh(mut) cos y y 1.(2)
\/ cosh(murt) + sinh(mut)cosy — \/ cosh(mv)t —sinh(mor)cos y | | g,(2) ]
(4.262)
where
P
y=vlogc(x), z=sinh(mot)sin y, [f" (Z)} =M, (z){f()(z)}{ ! },
g,(2) g0(2) ] 9,
with

|:f0(2)} — (2% + 1)1/2|: CO.S w(z) sin ‘//(Z):|’ w(z) = Llog(z N m),
g,(2) —siny(z) cosy(z) 2v
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1 0
M, (2) =R, (2)x R, (2)x--x R (2) x R (2), RO(Z){O J,

and, for n>1,

z—1i 2 i—2nz
i)
R (Z)= ! z+1 ! 20 ZZ+1 .
n 2nZ+l (nZ_i(Z-'_ij_LU—z 5
20827 +1 Nz-i) *

the constants P, and O, are chosen separately for each invariant solution pair
(u,(x,1),v, (x,t)) in terms of the initial data (4.258c,d).

For n=-1,-2,..., the corresponding invariant solutions can be expressed in
terms of the invariant solutions (4.262) through

u(e,ty] [u,(e0] [, (x0)
voun ] v, [, ]
where a bar denotes complex conjugation.

Consequently, the solution of the initial value problem (4.258a—d) can be
represented formally in the form

u(x, )| u,(x,1) B 2 u, (x,1) u,(x,1)
[v(x,r)} } Z[v (m)} - ZRe(;[vn (. r)D ' LO (x,r)}

The constants P, and Q, are now determined. First, note that

u,(x,0)=(=1)"(P, + Q,)/c(x)sin ye'*"”, (4.263a)
v, (50) = (<) (P, —0,) |20 g2 (4.263b)
c(x)

0 < y <. Consequently, from the Fourier series representation (4.263a,b), we find that

P, = (_2—1) [ e (sin y) e U (x(p)) +e” >V (x(y))] dy.
T

0, =C [ sin ) e U () "V (x(r)]
T

For a given initial value problem (4.258a—d), after determining the constants
P and O, , for n=1,2,..., one can directly compute the solution for any time ¢,
0<t<o. Note that no time-step marching is required as would be the case for

numerical procedures based on the method of characteristics. Full details of the
derivation of these solutions and their properties are found in Bluman and Kumei (1988).
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EXERCISES 4.4

il

Prove Theorem 4.4.1-1.
Prove Theorem 4.4.1-2.
Prove Theorem 4.4.1-3.

Obtain the fundamental solution of the heat equation (4.47) for an infinite spatial
domain (a,b) =(—w0,0) by using the invariant forms arising from the following
combinations of the infinitesimal generators (4.185):

(@ X,,X;; and

(b) X,, X,.

The problem of finding the steady-state temperature distribution near the surface of

the Earth due to a periodic temperature variation at the Earth’s surface approximately
reduces to finding the steady-state solution of the following boundary value problem:

u,=u_, 0<x<o, 0<t<oo, (4.264a)
u(x,0) = h(x), (4.264b)
u(0,¢) = Acos at, (4.264c¢)
u(eo,t) = 0. (4.264d)

(a) Show that the steady-state solution of the boundary value problem (4.264a—d) is
independent of the initial distribution /(x).

(b) Let v(x,¢) solve

v, =v_, 0<x<oo, 0<t<oo, (4.265a)
v(0,1) = de™”, (4.265b)
v(o0,1) = 0. (4.265¢)

Find a one-parameter Lie group of point transformations that is admitted by the
boundary value problem (4.265a—). Find the resulting invariant solution of
(4.265a—c).

(c) Find the steady-state solution of the boundary value problem (4.264a—d).

. Find the fundamental solution (Riemann function) for the Euler—Poisson—Darboux

equation, i.e., solve
A
u, +—u, —u, =0(x—x,)0(t). (4.266)
X
This solution is the source solution for isentropic flow for a polytropic gas where x is

the sound speed in the gas, ¢ is the fluid velocity in some fixed direction, u is the time
variable, and the constant A is related to the ratio of specific heats of the gas.
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(a) Show that (4.266) admits the point symmetry

2 2 2
_ 20 () -y -r'jo 0 (4.267)
A Ox A ot ou

(b) Show that the similarity variable arising from the point symmetry (4.267) is given
by

B (x—xo)2 -t

X

& (4.268)

(c) Derive the invariant form for the resulting invariant solution.
(d) Show that the solution of PDE (4.266) is given by

2 N
u=u(x,t;x) = [( (2;20) 27 F(%ﬂa%ﬂ;l;%}
X+x,) — X+Xx,) -

where F'(a,b;c;z) is the hypergeometric function [Bluman (1967)].

. Consider the boundary value problem for the response due to a unit impulse for a
vibrating string with a nonlinear restoring force:

U, =ty + f(u)=5(x)o(),
u=0 if x>t¢,
with
fw)==f(-u), f(u)>0 for u>0.

(a) Find a point symmetry admitted by this boundary value problem.
(b) Find the invariant form for the resulting invariant solution.

(c) For the case f(u) = ku’, study the solution in a suitable phase plane. What
conditions must apply at the wavefront x = ¢?

. Consider the Fokker—Planck equation
u,=u_+(@xu), t>0, 0<x<omo, (4.269a)

with the drift
a
¢(X)=—+ﬂx, a<17 ﬂ>0a
X

and the initial condition
u(x,0)=0(x—x,), 0<x,<oo. (4.269b)

(a) Find a point symmetry X admitted by the boundary value problem (4.269a,b).
(b) Let u(x,#;x,) be the solution of the boundary value problem (4.269a,b). Since
the conservation law equation
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‘fuﬁjmﬁdle (4.270)

must hold for any allowed values of ¢, x,, it follows that (4.270) must admit the

point symmetry X. Consequently, use the invariance of the conservation law
(4.270) under the point symmetry X to show that the second moment of the

solution u(x,#;x,) of the boundary value problem (4.269a,b) is given by

(x*) = .[Ow x*u(x,t;x,) dx = (I_Taj(l —e M)+ (x)) e (4.271)

without explicitly determining u(x,t;x,).
(c) Show that the solution of the boundary value problem (4.269a,b) is given by the
following invariant solution related to invariance under the point symmetry X:

g | XS ﬁm 11— 1 A2
u(x,t;x,) = f 2sinhﬂt(x} exp[3(1-a)pt — B(1+coth ) (x —x,e™")"]

X1 2y1ar) (fxS)s (4.272)

where the similarity variable is given by
X

¢ = Jsimh A’

and / (z) is a modified Bessel function.

(d) Use (4.270)—(4.272) and the fact that a/l moments must admit the point symmetry
X to derive explicit expressions for definite integrals involving / (z) [Bluman
and Cole (1974)].

9. Use group methods to find the fundamental solution of the heat equation in n > 2
spatial dimensions, i.e., solve the initial value problem

n 2
a—u= 8—124, t>0, —o<x, <o fori=12,...,n,
ot ‘I ox;
with
u(x,,x,,...,x,,0) =0(x,)0(x,) - 5(x,).
10. Consider the problem of finding the Green’s function for an instantaneous line
particle source diffusing in a gravitational field and under the influence of a linear

shear wind [Neuringer (1968); Bluman and Cole (1974)]. This problem reduces to
solving the initial value problem

u, +yu, —u,—du, +u,)=0, (4.273a)

u(x,,0)=5(x)0(y —y,), (4.273b)
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on the domain 7 >0, —0 < x <0, —00 < y < With —0 <y, <oo.
(a) Show that the initial value problem (4.273a,b) admits the point symmetries

0 0 0
X, =t —=—+2%—+d ' (y, -y - Du—,
| o & (Vo =y )uau

X, = (£’ —6t)i+3t2 i+3d_1 (x—1r? —yt)ui. (4.274)
Ox oy ou

(b) Find invariant forms for the solution of the initial value problem (4.273a,b)
resulting from the infinitesimal generators X, and X, , respectively. Then show

that the solution of the initial value problem (4.273a,b) reduces to solving a first-
order ODE.
(c) Show that the solution of the initial value problem (4.273a,b) is given by

exp| - L[ [2¥ (y+y20)t] L4 D7
Admt1+ L1 l16d fl+4517] !

u(x,y,t) =

(4.275)

(d) Use the point symmetries (4.274) to compute directly the moments (x), (y),
(xyy, (x*), (¥*), etc., without using the explicit solution (4.275).

11. The Poisson kernel is the solution of

v2u=uw+lur+i2u% =0, 0<r<l, 0<0<2nr, (4.276a)
r r

with
u(1,0)=96(6). (4.276b)
(a) Let z=re”. Show that the boundary value problem (4.276a,b) admits the

infinite-parameter Lie group of point transformations corresponding to the
infinitesimal generator

X, = rS(r,6)£+ T(r,&)i-i- /lui,
or 00 0

u

where
S(r,0)=>[a,(z"-z")+b,(z"=Z")], zZ=re",
n=1

T'(r,0) is the harmonic conjugate of S(r,8), 7(1,0)=0, A =-T,(1,0), and a,, b,
are arbitrary complex parameters for n =1,2,....
(b) Consider the subgroup for which a =a#0,b,=b+#0,a,=b,=0 for j=#1.

Show that the boundary value problem (4.276a,b) admits the two-parameter
subgroup given by the infinitesimal generators
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12.

X, =(1—r2)sin6’i+ (r+ljcost9—2 i,
or 06

r

X, =’ —l)cosﬁi+(r+ljsinﬁi—2ui.
or r 00 ou

(c) Show that the invariant solution resulting from point symmetry X, has the
invariant form u = ®(¢"), with the similarity variable given by

1-7?
1-2rcos@+r?"
(d) Use the invariant surface condition X, (¥ —®({)) =0 when u = D(S), to show

that ®({) satisfies the ODE ¢®'(¢)—-®()=0. Hence, derive the Poisson
kernel

¢ =

u(r 6’)—L 1-r"
’ 27 1-2rcos@+r>

[Bluman and Cole (1974).]

Consider a well-posed boundary value problem for a linear homogeneous PDE with
independent variables ¢ and x =(x,,x,,...,x,):

Lu=0, t>0, xeQ, (4.277a)
with k£ — 1 linear homogeneous boundary conditions
Lu=0onw,(x)=0, a=1,2,... k-1, (4.277b)
and one linear nonhomogeneous initial condition

L,u=h(x) when t=0. (4.277¢)

If the associated homogeneous boundary value problem admits X = aﬁ, show that the
t

solution of the boundary value problem (4.277a—c) has the inverse Laplace transform
representation

u(n,t) = —— | "R (x;s)e ds, (4.278)
zm ¥ —ioo

where F'(x;s) is determined by substituting (4.278) into the boundary value problem
(4.277a—c). What is the situation when the right-hand side of (4.277a) is g(x) and
the initial condition (4.277¢) becomes homogeneous?
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4.5  DISCUSSION

In this chapter, we showed how to:

(1) find the point symmetries admitted by a scalar PDE or system of PDEs;
(11) use admitted point symmetries of PDEs to construct resulting invariant solutions
(also called similarity solutions); and
(i11)) find and use point symmetries admitted by a boundary value problem for a PDE
to reduce the boundary value problem to one involving fewer independent
variables.

Invariant solutions for scalar PDEs were discovered by Lie (1881). Such
solutions for scalar PDEs or systems of PDEs can be determined from an admitted point
symmetry in two ways:

(1) Using the Invariant Form Method, one first solves explicitly the characteristic
equations arising from the invariant surface conditions to obtain the invariant form for
resulting invariant solutions. The invariant solutions are then determined by substituting
the invariant form into the given PDEs.

(i) Using the Direct Substitution Method [Bluman and Kumei (1989b)], one first isolates
a specific independent variable and treats it as a parameter. Then one substitutes the
invariant surface conditions and necessary differential consequences into the given PDEs
in order to eliminate all derivatives with respect to this isolated (parametric) independent
variable.

The resulting invariant solutions are determined by solving the reduced PDEs (with one
less independent variable than the given PDEs) and then substituting solutions of the
reduced PDEs into either the invariant surface conditions or the given PDEs. Most
important, the Direct Substitution Method allows one to construct invariant solutions
without explicitly solving the characteristic equations corresponding to the invariant
surface conditions. One can extend these two methods to obtain invariant solutions from
an admitted multiparameter group of point symmetries [cf. Section 4.4.1].

A boundary value problem for a scalar PDE, or system of PDEs, admits a point
symmetry if the symmetry separately leaves invariant the boundary, the boundary
conditions, and the PDEs of the boundary value problem. If the boundary value problem
is well-posed, then its solution is an invariant solution resulting from the admitted point
symmetry. The construction of the solution of the boundary value problem further
simplifies if the boundary value problem admits a multiparameter Lie group of point
transformations.

When applying invariance under point symmetries to a linear boundary value
problem, it is unnecessary to leave invariant the boundary conditions of the boundary
value problem. Moreover, one only needs to leave invariant the associated homogeneous
PDE of a nonhomogeneous PDE, since a homogeneous PDE always admits a uniform
scaling of its dependent variables. Here a superposition of invariant solutions or invariant
forms, arising from invariance of the associated homogeneous boundary value problem,
can be used to solve the given boundary value problem.

Invariant solutions arising from a multiparameter group of point symmetries
admitted by a system of PDEs are considered in Anderson, Fels, and Torre (2000) for the
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situation when the group does not admit sufficiently many independent invariants in
relation to the number of independent and dependent variables. This requires a more
complicated invariant form for finding invariant solutions than in the situation arising
from invariance under a one-parameter group [cf. Section 4.3.1]. In particular, this is the
case when seeking rotationally invariant solutions that arise from invariance under the
rotation group SO(3) for systems of PDEs in three spatial dimensions, e.g., the Euler
equations for fluid flow whose dependent variables include a vector function of its
independent variables.

Often, the asymptotic solution of a boundary value problem for a nonlinear PDE
is either an invariant solution of self-similar type (self-similar or automodel solution)
arising from scaling invariance, or a traveling-wave solution arising from invariance
under translations in space and time. Comprehensive reviews of self-similar asymptotics
appear in Newman (1984) and Galaktionov, Dorodnitsyn, Elenin, Kurdyumov, and
Samarskii (1988). For applications of self-similar and traveling-wave asymptotics to
physical problems, see Barenblatt and Zel’dovich (1972), Barenblatt (1979, 1987, 1996),
and Goldenfeld (1992). Barenblatt and Zel’dovich (1972) and Barenblatt (1979, 1987,
1996) consider examples of “intermediate asymptotics” where, in an intermediate space—
time domain, the solution of a boundary value problem is approximated by a similarity
solution which does not depend on the given boundary conditions—in such examples the
similarity solution is not an equilibrium state. Kamin (1975) rigorously justified the
evolution of the solution of a porous medium equation to a self-similar solution. For
other papers that rigorously justify self-similar asymptotics, see Atkinson and Peletier
(1974), Friedman and Kamin (1980), Galaktionov and Samarskii (1984), and Kamin
(1975).

Point symmetries of a scalar PDE, or a system of PDEs, describe geometrical
motions on its solution space. As is the situation for ODEs, such motions are naturally
formulated in the jet space [cf. Section 2.8] associated to the PDE, or system of PDEs,
with coordinates given by the independent variables, dependent variables and their partial
derivatives up to a finite order. Here an admitted point symmetry geometrically
represents the integral curve of a vector field that is tangent to the surface defined by a
given scalar PDE, or simultaneously tangent to the set of surfaces defined by a given
system of PDEs, and preserves the derivative relations (contact ideal) among the
coordinates on the entire jet space. Such vector fields also arise naturally when one
considers first-order and higher-order symmetries. Point symmetries in particular
correspond to vector fields given by extensions (prolongations) of one-parameter Lie
groups of transformations defined on the coordinates for the independent and dependent
variables to transformations acting on the coordinates including all partial derivatives of
dependent variables with respect to the independent variables [cf. Section 2.4] in jet
space. All the point symmetries admitted by a scalar PDE, or a system of PDEs, form a
group which has the structure of an abstract connected Lie group [cf. Section 2.8] whose
Lie algebra is characterized by a Lie bracket which is isomorphic to the commutators of
the vector fields representing the point symmetries on the jet space associated to the PDE,
or the system of PDEs.

In a subsequent volume, we will consider many other topics related to the
invariance of PDEs, including:
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(1) the algorithmic computation of local conservation laws for PDEs, analogous to
finding first integrals of ODEs [cf. Sections 3.6 and 3.7], [Olver (1986); Anco and
Bluman (1997a, 2002a,b)];

(i1)) the computation and use of higher-order symmetries (so-called Lie—Backlund
symmetries) for PDEs, including recursion operators for linearization [Anderson, Kumei,
and Wulfman (1972); Olver (1977, 1986); Bluman and Kumei (1980, 1989b); Mikhailov,
Shabat, and Sokolov (1991); Krasil'shchik and Vinogradov (1989)];

(ii1) the use of point symmetries and contact symmetries for linearizations of PDEs and
to discover mappings relating PDEs [Kumei and Bluman (1982); Bluman and Kumei
(1989b, 1990a); Bluman (1983b)];

(iv) the computation of nonlocal symmetries (including potential symmetries resulting
from conservation laws) and their uses for finding invariant solutions, linearizations, and
conservation laws [Bluman and Kumei (1987, 1988, 1989b, 1990b); Bluman, Kumei, and
Reid (1988); Mikhailov, Shabat, and Sokolov (1991); Anco and Bluman (1996, 1997b)];
and

(v) the generalization of the method of finding invariant solutions resulting from
invariance under point symmetries to the nonclassical method for finding solutions of
PDEs [Bluman and Cole (1969)] which, in the case of a nonlinear PDE, allows one to
find solutions that cannot be obtained as invariant solutions resulting from the point
symmetries of the PDE [Levi and Winternitz (1989); Nucci and Clarkson (1992);
Clarkson and Mansfield (1994a,b)].
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measurable, 10
dimensionless variable, 17
Dirac delta function, 17, 357 [31]
Direct Substitution Method, 302, 305,

313, 333, 339, 340, 387 [325,
347]
domain, 245, 246, 296, 352

drift, 364, 365 [383]
Duffing equation
adjoint-symmetries, 240
first integral(s), 199, 241, 242, 259,
267,272 [229]
integrating factor(s), 198, 199, 241,
272 [229]
reduction of order, 199, 242
symmetries, 240 [184]
dynamical units, 13, 17 [24, 29, 30]

E
eigenfunction expansion, 352, 371
eigenvalue, 352, 371
energy
heat, 14
mechanical, 14
envelope, 3, 102, 284, 287, 288, 294
[290]
equation(s)
adiabatic gas, 347
Bernoulli, 191
biharmonic, 322-324 [325]
Blasius, see Blasius equation
boundary layer, see boundary layer
equations
Burgers, [327]
characteristic, see characteristic
equation(s)
characteristic polynomial, 282 [288]
Clairaut, 287 [289, 290]
cubic Schroedinger, [349]
determining, see determining
equation(s)
Duffing, see Duffing equation
Euler, 1, 177, 203 [288]
Euler-Lagrange, 246, 247
Euler—Poisson—Darboux, [382]
Fokker—Planck, 363—-369 [383]
functional, 27
harmonic oscillator, see harmonic
oscillator equation
heat, see heat equation
homogeneous, 103
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Korteweg—de Vries (KdV), see
Korteweg—de Vries (KdV))
equation

Laplace, [326, 385]

linear homogeneous, 107, 126-129,
307,334 [164, 184, 228, 386]

linear nonhomogeneous, 108, 143,
307,334 119, 139, 228]

linearized, see linearized equation

Navier—Stokes, [24, 348]

nonlinear diffusion, [30, 327]

nonlinear heat conduction, see heat
equation

nonlinear Schroedinger, [329, 349]

nonlinear wave, see wave
equation(s)

porous medium, 324, 388

reaction-diffusion, [328]

Riccati, 116, 127, 364

rotationally invariant, 141, 204

shallow water wave, [350]

sphere geodesic, 267 [184]

stream-function, [327]

Thomas—Fermi, [ 185, 229, 278]

van der Pol, [228]

variable-frequency oscillator, [229]

vibrating string, [383]

wave, see wave equation(s)

wave speed, see wave speed
equation(s)

equilateral triangle, 35 [38]

equilibrium state, 388

essential constant, 48, 101, 125, 186,
304, 307, 322

essential parameter, 28

Euler operator, 246, 291

truncated, 189, 192, 209, 231, 236,

247
Euler—Lagrange equation(s), 246, 247
Euler—Poisson—Darboux equation, [382]
exact differential, 292
exceptional path, 276, 277, 284
exponentiation, 74, 94
extended infinitesimal(s), 97, 330 [70,
71]
kth-extended, 60, 61, 68, 70

once-extended, 60, 61, 66, 67, 70,
309
twice-extended, 60, 61, 66, 67, 70,
309, 310
extended infinitesimal generator(s), 1,
60, 65, 66, 70, 94, 200, 219,
248; see also infinitesimal
generator(s)
extended infinitesimal transformation(s),
60, 61, 62-70
extended Lie group of transformations
first-, 54
kth-, 55, 60, 64, 65, 67, 69, 70
for m dependent and » independent
variables, 70
for one dependent and »
independent variables, 65—-68
for one dependent and one
independent variable, 64, 65
second-, 55
extended transformation(s), 53-70 [70]
k times, 56
extension, see also Lie group of
transformation(s)
of group, 52
first, 54
kth, 55, 59
second, 55
extremal(s), 232, 246

F
first extension, 54
first integral(s), 2, 101, 185, 188, 190,
191, 208, 250, 290
algebraic formula for, 255, 256,
271,294 [273, 274]
first-order ODE(s), 187-191 [120]
line integral formula for, 188, 194,
214, 222, 227, 251
mapping of, 200, 201, 219, 220, 257
scaling invariance, 258, 271
second-order ODE(s), 191-194
third- and higher-order ODE(s),
208-215, 222, 227
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Wronskian formula for, 255, 265,
272, 294 [273, 274]
first-order ODE(s), see ODE(s)
flip, 35
flow, 18 [24, 30, 327]
isentropic, [382]
stationary, 1, 36, 41
fluid, Madelung, [349]
fluid flow, 388
Fokker—Planck equation, 363-369 [383]
form
differential, 291 [120]
invariant, 27, 300, 301, 304, 312,
332,371
separable, 354, 356 [382]
similarity, 27, 300
solved, 208, 236, 248, 298, 333
Fourier series, 302, 381
Fourier transform, 302
fractals, 32
Fréchet derivative, 2, 101, 232
free particle, 386
functional equation, 27
functional independence, 48, 355
functionally independent
first integrals, 1, 101, 186, 187,
195, 197, 215, 217, 292
criteria for, 195, 215-217
invariants, 179, 304, 332, 355
fundamental dimension(s), 6, 33 [16]
choice of, 13-15
mechanical, 5
fundamental solution(s), 356-369, 372—
37431, 382-386]
fundamental theorems of Lie, see Lie’s
fundamental theorems

G

generalized solutions, 369

gradient operator, 43

Green’s function, 371 [384]

group, see also Lie group, symmetry,
symmetry group,
transformation group

Abelian, 34, 35

bilinear, 324 [84]

commutator, 79

conformal, [326, 327]

integrable, 291

invariant(s) of, 125, 304, 332

Mobius, 324 [84]

one-parameter, 36 [38]

projective, 90, 94, 96 [84]

rigid motions, 81

rotation, see rotation(s)

scaling, see scaling(s)

similitude, 81

SO(3), 141, 266, 388

SO(2,1), 320, 321, 337

SO(n + 1,1), [327]

translation, see translation(s)
group classification, 314-322, 324, 340—

347 [326, 328, 329]

H
Hamiltonian, 290
harmonic oscillator equation
first integral(s), [253, 273]
integrating factor(s), [253]
nonlinear, 176; see also Duffing
equation
reduction of order, 176, 177
symmetries, [253]
heat conduction, 13—15, 17, 18, 25 [24];
see also heat equation
heat equation, 17, 18, 25, 310-313, 356—
360, 372378 [325, 382]
commutator structure (table), 311
determining equations, 310
fundamental solutions, 356-360,
372,373 [382, 384]
finite domain, 372, 373
infinite domain, 357-359
semi-infinite domain, 359, 360
invariant solutions, 312, 313 [140,
325]
mapping to, 369
n-dimensional, [325, 384]
nonhomogeneous, 372
nonlinear, 314, 315, 340-343
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determining equations, 314,
342
as first-order system, 340-343
group classification, 314-316,
340-342 [347]
symmetries, 314-316, 341-343
one-parameter family of solutions,
314
Stefan problem, 375-378
symmetries, 311, 312
higher-order ODE(s), see ODE(s)
higher-order symmetries, 2, 166, 173,
181, 291, 388 [184]
characteristic form of, 166
higher-order transformation(s), 95, 97,
166, 291
homogeneous boundary conditions, 352,
372 [386]
homogeneous ODE, 103
homotopy formula, 292
hypergeometric function, 365 [383]
hypersurface, 297; see also surface(s)

|
ideal, 82
null, 82
one-dimensional, 83
identity element, 34, 98
identity transformation, 8
images, method of, 360
incomplete invariance, 352, 369-381
infinite-parameter Lie group, 111, 290,
291, 343 [83]
nontrivial, 111, 114, 318
trivial, 111, 113, 307, 334
infinitesimal(s), 39, 44, 97, 98, 166 [51,
325]

extended, 60, 61, 67, 68, 70, 98 [70,

71]
once-extended, 67, 309, 335
twice-extended, 68, 309

infinitesimal criterion of invariance, 167,

168, 298, 353 [303, 347]

infinitesimal generator(s), 1, 31, 4245,
74,97, 110, 168, 201, 220, 290
[52, 83-85, 119, 120]
extended, 60, 61, 66-68, 70, 79, 94
form of, 134, 307-309
identity satisfied by, 201 [231]
nontrivial, 111, 114, 284
infinitesimal matrix, 73
infinitesimal transformation, 38—41, 97
[119]
extended (prolonged), 60, 61, 65—
68, 70, 98
inhomogeneous medium, 156, 316, 343
initial value problem, 32, 39, 40, 41,
379, 381 [51]
integrability conditions, 78, 189, 193,
211, 344
integrable group, 290
integral curve, 98, 291, 388
integral transform, 352
integrating factor(s), 1, 101, 186, 192,
255,257,290, 291 [119, 120]
ansatzes for, 190, 196208, 218—
221
cardinality of classes, 233, 251, 252
characteristic equation for, 186,
188, 192, 209, 250
classical, 106, 109, 190, 203, 233,
251,291
determining equations for, 188,
190, 194, 212-215, 222, 223,
226, 249, 291
first-order, 187, 204, 227 [231]
higher-order, 187, 225, 226 [230]
mapping of, 200, 201, 219, 220
point-form, 187, 196, 197, 203,
222,252 [230]
scaling invariance, 201, 222
separation of variables, 190
relation to variational symmetries,
232, 249, 293
invariance criterion (invariance
condition), 167, 168, 298, 353
[347]
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invariance of boundary value problem,
353-356, 369-371 [382]
incomplete, 352, 369-371
invariance of ODE, 101, 102-105, 121,
141-163, 290
contact symmetry (transformation),
166, 290
higher-order symmetry
(transformation), 166, 290
local symmetry (transformation),
166-168, 290
point symmetry (transformation),
166, 290
invariance of PDE(s), see PDE(s)
invariant(s), 7, 9, 46, 97, 115, 124, 125,
150-155, 304, 332
for boundary value problem, 25
differential, see differential
invariant(s)
functionally independent, 304, 332,
355
invariant curve(s), 85, 86, 90, 97, 102,
109, 110, 279, 286, 294 [92,
106]
invariant family of curves, 87, 88 [92,
106, 119, 141]
invariant family of surfaces, 87, 88, 91,
97 [92]
invariant form, 27, 300, 301, 304, 312,
332,371 [383, 385]
Invariant Form Method, 304, 312, 332,
337,387 [325]
invariant function, 46
invariant point, 86, 97 [92]
invariant solution(s), 2, 296
ansatz, 202, 221
of ODEC(s), 102, 279-288, 294, 295
[289]
of PDEC(s), 294, 297, 300, 301,
303-305, 331-333, 387 [277,
302, 303, 325, 326, 347, 349,
382-384, 386]
invariant surface(s), 27, 85, 86, 91, 97,
298, 300, 304, 353
invariant surface condition(s), 27, 304,
332, 387 [386]

iverse element, 34

inverse Laplace transform, 373, 377
[386]

inverse Stefan problem, 375-378

involution, 98

involutive, 98

isentropic flow, [382]

isomorphism, 320, 321, 337 [327]

J

Jacobian, [350]

Jacobi’s identity, 78

jet space, 97, 98, 291, 292, 388

K
kinematic viscosity, 19 [387]
Korteweg—de Vries (KdV) equation,
[303]
cylindrical, [327]
point symmetries, [327]
soliton solution, [303]
traveling wave equation, [184, 303]
adjoint-symmetries, 260 [253]
first integral(s), 222, 260, 268
[253]
integrating factor(s), 222 [230,
253]
reduction of order, 223
symmetries, [184]
Kronecker symbol, 370
Kummer’s hypergeometric function, 365

L

Lagrangian, 2, 247, 290

Lagrangian formulation, 245-247

Laplace equation, [326, 385]

Laplace transform, 1, 302, 373, 377
[386]

law of composition, 34, 36, 38, 41, 42,
73,75 (38, 51, 83]

Lie algebra, 1, 72, 78, 79-82, 97, 99,
311, 320

Abelian, 82 [84, 165]
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abstract, 98, 388
complex, 141
even-dimensional, 141
nonsolvable, 141 [85, 165]
real, 141
r-dimensional, 72, 141, 155 [165]
solvable, 72, 82, 83, 98, 150, 155
[84, 164, 165]
two-dimensional, 82, 141 [164]
Lie bracket, 77, 98, 388
Lie group; see also Lie group of
transformations
abstract, 98, 291, 388
Lie group of point transformations, see
Lie group of transformations
Lie group of transformations, 1, 32, 36,
97,98, 102, 290, 388
extended, 97 [70, 71]
global, 97 [321]
identity element, 36, 98
infinite-parameter, 111, 113, 290,
291, 294, 307, 334
local, 97
multiparameter, see multiparameter
Lie group, r-parameter Lie
group of transformations
nontrivial, 111, 114, 284, 290, 294,
318
one-parameter, 36, 37, 98, 284, 290
[38,51,52,71,72]
r-parameter, 73, 74, 77, 78, 98, 101,
141, 150, 155, 290, 291, 355
solvable, 99, 101, 291 [165]
trivial, 111, 113, 294, 307, 334
two-parameter, 130, 142, 143, 144,
145, 146-148 [164, 165]
Lie’s algorithm, 1; see also determining
equation(s)
Lie’s fundamental theorems, 1
first, 3941, 4144, 73, 98
second, 78, 99
third, 78, 99
Lie series, 44, 45 [52]
limit cycle, 284, 286 [288]
line integral formula, 188, 194, 214, 222,
227, 251, 292

linear homogeneous boundary
condition(s), 352, 372 [386]
linear homogeneous ODE(s), 107, 126—
129 [164, 184, 228]
linear homogeneous PDE(s), 307, 334,
352 [386]
associated, 307, 334
boundary value problem for, 352,
370-372
linear nonhomogeneous boundary
condition(s), 352, 372
linear nonhomogeneous ODE, 108, 143
[119, 139, 228]
linear nonhomogeneous PDE, 307, 334
[386]
boundary value problem for, 369—
372
linear operator, 307, 334, 369
linear PDE, 309; see also PDE(s)
linearization, 2, 102, 233, 234, 291
adjoint, 2, 102, 233, 234, 291
adjoint operator, 234, 256
operator, 233, 234, 256
linearized equation, 235, 290
adjoint, 235
linearly independent [164]
integrating factors, 197, 215, 217
with respect to a surface, 263, 265,
268
local symmetries, 168
local transformation(s), 94, 95, 97, 166,
232,245, 248, 290
infinite-parameter Lie group of, see
Lie group of transformations
logarithmic spiral, 88

M
Madelung fluid, [349]
mapping(s), [350]
of curve(s), 89, 92, 110-112
of first integral(s), 200, 201, 219,
220, 257
relating differential equations, 291,
318, 369, 389
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of solution curves, 101, 110, 112,
132,168
of solutions to solutions, 166, 168,
291, 298, 300, 301, 314 [325]
of surfaces, 91
matrix, 28, 63 [71]
dimension, 6
infinitesimal, 73
rank, 7, 355
measurable quantity, 6
method, see also Direct Substitution
Method, Invariant Form
Method
of canonical coordinates, 115, 122,
138
of characteristics, 381
of differential invariants, 115-117,
124-126, 137, 138
of images, 360
of moving frames, 324
of undetermined coefficients, 1
of variation of parameters, 1, 145
[164]
Mobius (bilinear) transformation(s), 324
[84]
modified Bessel function, 386 [384]
moment(s), 369 [384, 385]
moving boundary, 375
moving frames, 324
multiparameter Lie group, 72, 73, 74,
77,78, 97,150, 290, 291, 355,
387
multiplier, 2, 248, 291

N

Navier—Stokes equations, [24, 348]

Noether’s Theorem, 232, 249, 250, 290,
292

nonclassical method, 389

nonclassical solutions, 389

nonhomogeneous boundary condition(s),
352,372

nonlinear harmonic oscillator, 176; see
also Duffing equation

nonlinear heat equation (conduction),
see heat equation

nonlinear wave equation, see wave
equation(s)

nonlocal symmetries, 341, 347, 389

normal subalgebra, 82

null ideal, 82

null space, 28

(0]
ODE(s), 101-295

boundary value problem, 102, 275—
277,294 [278]

Euler-Lagrange, 246, 247 [254]

exact, 291

first-order, 102, 106-118, 187-191,

290

first integral(s), 109, 187
integrating factor(s), 109, 188
symmetries, 112, 113

homogeneous, 1, 103

intermediate, 155

invariance of, 121-139, 166—168

invariant solutions, 102, 279-287
[288-290]

linear homogeneous, 107, 126129
[164, 184, 228]

linear nonhomogeneous, 108, 143
[119, 139, 228]

local existence theory, 187, 293

overdetermined system of, 159, 160
[165]

scaling invariant, 258, 271

second-order, 102, 121-145, 191-

208

first integral(s), 191
integrating factor(s), 194
symmetries, 133, 134

self-adjoint, 235, 248, 270 [254]

separable, 1, 191, 208 [106]
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skew-adjoint, [255]
in solved form, 208, 248
system of, 159-163, 294
third- and higher-order, 102, 145—
163, 208-228
first integral(s), 208
integrating factor(s), 215-218
symmetries, 133, 134
variational principle (action
functional, Lagrangian),
245-248
once-extended infinitesimal, 67, 309,
335
one-parameter Lie group of
transformations, 36, 37, 98,
284,290 [38, 51, 52, 71, 72]
operator(s)
Euler, 291
gradient, 43
linear, 307, 334, 369
linearization, 233, 234, 256
adjoint, 234, 256
surface tangential derivative, 167,
188, 191, 209, 234
total derivative, 59, 63, 167, 188,
191, 209, 234, 249, 281
truncated Euler, 189, 192, 209, 231,
249
ordinary differential equation(s), see
ODE(s)
overdetermined, 134, 167, 217, 251,
293, 306, 334
system of ODE(s), 159, 160 [165]

P
parameter, 36
essential, 28
partial differential equation(s), see
PDE(s)
PDE(s); see also scalar PDE(s),
system(s) of PDEs
invariance of, 297-301
scalar, 305-309
system, 330, 331, 333-335

invariant solutions, 294, 297, 300,
303-305, 331-333 [277, 302,
303, 325, 326, 347, 349, 382—
384, 386]
linear
homogeneous, 307, 334, 352
nonhomogeneous, 307, 334,
369-372 [386]
in solved form, 298, 333
permutation, 35
phase plane, 275, 284 [278, 279]
Pi-theorem, see Buckingham Pi-theorem
point symmetries, 1, 101, 121, 132, 166,
200, 202, 219, 238, 252, 257,
260, 261, 266, 298, 387, 388;
see also Lie
group of transformations
characteristic form of, 166
inherited, 202, 221
point transformation(s), 62, 68, 92, 93;
see also Lie group of
transformations
characteristic form of, 93 [96]
Poisson kernel, [385]
polar coordinates, 51
polytropic gas, [382]
porous medium equation, 324, 388
potential(s), 21
potential symmetries, 389
Prandtl boundary layer equations, 18-23
probability distribution, 363
projection group, see projective group
projective group, 79-81, 90, 94, 96, 135,
311 [84]
projective transformation, 79, 80, 135,
311 [84]
prolongation(s), 52, 94, 97, 291, 388; see
also extended
transformation(s), extended
infinitesimal transformation(s)
prolonged, 1, 97
infinitesimal transformation(s), see
extended infinitesimal
transformation(s)
Pythagoras theorem, [5]
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Q
quadrature(s), 101, 126, 146, 154, 155,

160, 186, 290
quantity
dimensionless, 6
measurable, 6

R
range space, 28
rank, 7, 355 [24]
ratio of asymptotic wave speeds, 379
ratio of specific heats, [382]
Rayleigh flow problem, [24, 30]
reaction-diffusion equation, [328]
recursion operator(s), 389
reduction algorithm, 156159, 291 [164]
reduction of order, 101, 121, 290
algorithm for, 159
by canonical coordinates, 122—
124,127, 128, 290 [140,
165]
by differential invariants, 124—
126, 128-131, 290 [ 140,
165]
direct method
using contact symmetries, 179—
181
using higher-order symmetries,
181-183
using point symmetries, 175,
176
by first integrals, 2, 293, 294
Lie method, 2, 101, 293
for overdetermined systems, 159,
160
for self-adjoint ODE(s), 290
reduction to quadratures, 130, 131
reflecting boundary, 363
renormalization group, 32
Riccati equation, 116, 127, 364
Riccati transformation, 116, 127
Riemann function, [382]
rigid motions 81, 83
rotation(s), 35, 81; see also SO(3)
canonical coordinates, 50, 118

differential invariants, 118

extended group, 58

extended infinitesimals, 62 [70, 71]

first-order ODE(s) admitting, 118,
286 [289]

group, 50, 81, 118 [51, 72, 92, 96]

infinitesimal(s), 45 [51]

infinitesimal generator, 45 [51, 289]

invariants, 204

invariant solutions, 388

Lie series, 45

second-order ODE(s) admitting,

141, 204

S

scalar PDE(s), 297, 298, 303, 304, 369-
378

invariant solutions of, 294, 297, 300,
301, 303-305, 312, 313, 387
[277, 302, 303]

scaling(s), 8, 31, 37, 81, 201, 202, 221,
232,239, 248, 249, 258, 271

boundary value problem, 20, 21,
25-29

canonical coordinates, 49, 104, 117,
138, 300

differential invariants, 138

dimensional analysis, 6, 31

extended group, 57

extended infinitesimals, 62

first-order ODE(s) admitting, 117
[119]

group, 3, 8, 49, 90, 94, 95, 117, 138,
300

higher-order ODE(s) admitting,
179, 181, 223, 242, 273 [ 184,
230, 274]

infinitesimal generator, 49, 86

invariant curves, 86

invariant family of curves, 88

invariant solutions, 25-29, 32, 169,
282,283, 294, 388

law of composition, 38

second-order ODE(s) admitting,
138, 139 [141]
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self-similar solutions, 25-29, 300
scaling group, see scaling(s)
scaling weight, 258
Schroedinger equation
cubic, [349]
two-dimensional nonlinear, [329,
349]
second extension, 55
second moment, [384, 385]
second-order ODE(s), see ODE(s)
self-adjoint, 233, 235, 248, 290 [254]
self-similar asymptotics, 388
self-similar solution(s), 3, 17, 27, 388
[24]
first kind, 25
second kind, 25
self-similarity, 32
separable form, 354, 356 [382]
separable ODE(s), see ODE(s)
separation of variables, 3
separatrix, 3, 102, 276, 277, 284, 285,
286, 294 [289]
series
Fourier, 302, 381
Lie, 44, 45 [52]
Taylor, 44
shear, 19
shear wind, [384]
shock wave, 11
shooting method, 23, 294
similar triangle, [15]
similarity form, 27, 300 [31]
similarity solution, 3, 27, 297, 387
similarity variable(s), 27, 304, 332 [347,
382]
singular envelope, see envelope
skew-adjoint, [255]
skin friction, 19
SO(3), 141, 266, 388 [184]; see also
rotation(s)
SO(2,1), 320, 321, 337
SO(n + 1,1), [327]
soliton, [33]
solution(s)
automodel, 3, 17, 27, 388

fundamental, 356-369, 372-374
[31, 382-386]
invariant, see invariant solution(s)
nonclassical, 389
one-parameter family of, 112, 168,
298, 300, 301, 314 [325]
self-similar, see self-similar
solution(s)
similarity, 3, 27, 297, 387
source, [382]
steady-state, [382]
solution curve(s), 109, 110, 112, 132,
168, 275, 284, 285 [289, 290]
family of, 109, 112, 168
mapping of, 101, 110-112, 168
solvable Lie algebra, 72, 82, 83, 98, 150,
155 [84, 164, 165]
solvable Lie group, 99, 101, 291 [165]
solvable subalgebra, 82
solved form, 208, 236, 248, 298, 333
source, 13 [31]
special functions, [347]
specific heat(s), 13
ratio of, [382]
stationary flow, 1, 36, 41
stationary points, 247
steady-state solution, [382]
Stefan problem, 375-378
stream function, 21 [30]
stream-function equation, [327]
structure constant(s), 78, 99, 150
subalgebra, 79, 99 [84]
normal, 82
solvable, 82
subgroup, 34 [84, 385]
one-parameter, 74, 97
superposition(s), 1, 301, 352
of invariant forms, 301, 370
of invariant solutions, 301, 352,
370, 387
surface(s), 101, 112, 121, 124, 132, 167,
168, 175, 178, 187, 191, 200,
208,219, 221, 226, 234, 235,
247, 256, 258,262, 263, 265,
291, 297
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boundary, 353
invariant, 27, 85, 86, 91, 97, 298,
300, 304, 353
invariant family, 87, 88, 91
mapping of, 91
symbolic manipulation, 1, 168, 219, 293,
340
symmetries, 1, 101, 255, 265, 290, 291,
388
cardinality of classes, 233, 251,
252,293
characteristic form of, 2, 166, 235,
236
contact, 166, 170-172, 179, 291
[184]
determining equation for, 168, 235,
262
group, 291
higher-order, 166, 173, 181, 291,
388 [184]
inherited, 169, 202, 239
local, 168, 248, 291
nonlocal, 341, 347
point, see point symmetries
potential, 389
scaling, see scaling(s)
translation, see translation(s)
variational, 232, 248, 249, 271
determining equation for, 249
symmetry characteristic, 166, 168, 233
symmetry group, 35, 291
of contact transformations, 291
of point transformations, 291
system(s) of differential equations, 68,
294
overdetermined, 134, 167, 217,
251, 293, 306, 334
system(s) of ODEs, 159-163, 294
system(s) of PDEs, 330-347, 379, 380
invariant solutions of, 331-333,
339, 340, 379, 380, 387
linear, 334, 350, 379, 380
system of units, 7

T
tangent vector, 98
tangential derivative, 167, 188, 191, 209
Taylor series, 44
Taylor’s theorem, 43
theorem(s)
Buckingham—P1i, 5-15, 28
Lie’s fundamental, 1, 39—41, 78,
98, 99
Noether’s, 232, 249, 250, 290, 292
thermal conductivity, 13 [16]
thermal units, 14, 15 [24, 29]
total derivative operator, 59, 63, 167,
188, 191, 209, 234, 249, 281
associated to a surface, see
tangential derivative
transform
Fourier, 302
integral, 352
Laplace, 1, 302, 373, 377 [386]
transformation(s)
bilinear, 324 [84, 85, 325]
conformal, [84]
contact, 1, 94, 166, 291
derivative-dependent, 94, 95, 166
extended, 53-57 [70]
higher-order, 95, 97, 166
identity, 8
infinitesimal, 38—41, 97 [119]
local, 94, 95, 97, 166, 232, 245,
248, 290
Mobius, 324 [84]
nonlocal, 97
point, 62, 68, 92, 93, 95
projective, 79, 80, 135, 311 [84]
Riccati, 116, 127
scaling, see scaling(s)
transformation group, 36 [38]
contact, 292
infinite-parameter, [83]
point, 291
projective, 79-81, 90, 135, 311
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translation(s), 33, 37, 41, 83, 177, 202,
221,239 [38]
extended group, 57
extended infinitesimals, 62
first-order ODE(s) admitting, 102
group, 299
invariant solutions, 169, 239, 299
[302, 303]
law of composition, 37
second-order ODE(s) admitting,
176,239 [184]
second-order PDE(s) admitting,
[303]
traveling wave, 388 [303]
for KdV equation, [184, 303]
adjoint-symmetries, 260 [253]
first integral(s), 222, 260, 268
[253]
integrating factor(s), 222 [230,
253]
reduction of order, 223
truncated Euler operator, 189, 192, 209,
236,247 [231]
twice-extended infinitesimal, 68, 309
two-layered medium, 379

U

undetermined coefficients, 1

units
dynamical, 13, 17 [24, 29, 30]
system of, 7
thermal, 14, 15 [24, 29]

A\
variable(s), 1, 52, 97, 98, 101, 291, 292,
388
dependent, 16, 52, 101
dimensionless, 16
independent, 16, 52, 101, 291
dimensionless, 16
similarity, 27, 304, 332 [347, 382]
variation of parameters, 1, 145 [164]
variational formulation, 244—-247, 290
variational principle, 2, 232, 247, 290

variational symmetries, 2, 232, 248, 249,
271
vector
dimension, 6
tangent, 98
vector field
left invariant, 98
right invariant, 98
tangent, 98, 167, 168, 291, 388
[183]
viscosity, 19 [327, 348]
viscous diffusion equation, [24]
viscous drag, 19

W
wave equation(s), 300, 316, 335, 343,
379 [325, 326, 328, 347, 383]
axisymmetric, 361-363 [325]
commutator structure, 320, 321, 337
determining equations, 316, 336,
344 [348]
as first-order system, 335-337,
343-346 [347]
group classification, 316-321, 343—
346 [326, 328]
infinite-parameter Lie group, 318,
322
initial value problem, 379-381
invariant solutions, 300, 301, 337—-
340, 379-381 [325, 347, 383]
nonlinear, [326, 328, 383]
symmetries, 318-321, 337, 345,
346
wave propagation, 379
wave speed, 316, 322, 343, 344, 379
wave speed equation(s)
adjoint-symmetries, 244, 261
first integrals, 228, 245, 261, 262
[274]
integrating factors, 227, 245
reduction of order, 149, 156159,
161-163, 228, 245
symmetries, 148, 156, 174, 261
system of, 161
wavefront, 361, 362 [383]
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Wiener process, 369
Wronskian, 144, 262264 [274]
first integral formula, 255, 265,
272,294 [273, 274]
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