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Anthony Joseph (shortly after joining the Weizmann Institute)

With Denise at Zichron Ya’acov, June 2002
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Preface

This volume is dedicated to Anthony Joseph on the occasion of his 60th birthday.
A conference entitled Representations of Lie Algebras was held in his honour at the
Weizmann Institute, Rehovot, in July 2002. Subsequently, distinguished experts in rep-
resentation theory and related areas were invited to contribute survey and research
articles, which comprise this volume.

The focus here is on semisimple Lie algebras and quantum groups, the central
subjects in representation theory to which the contribution of Tony Joseph is difficult
to overestimate. For over three decades the impact of his work has been seminal and
has changed the face of the subject.

The introductory part of the volume consists of a short note by Jacques Dixmier
describing the beginnings of Tony’s entry into mathematics, followed by the speech
of Denise at the dinner honouring her husband. From Denise, the participants got a
glimpse into another side of Tony’s personality.

The scientific part of the volume begins with two surveys which give an overview
of the central topics in representation theory to which Tony Joseph made his mark:
the first, written by W. McGovern, describes Joseph’s main input into the theory of
primitive ideals in semisimple Lie algebras; the second, coauthored by D. Farkas and
G. Letzter, is devoted to the study made by A. Joseph of quantized enveloping algebras.
Thereafter, 16 research articles cover a number of different topics in representation
theory.

J. Alev and F. Dumas study the invariants of the Weyl skew field Dn(k) under the
action of a subgroup G of GLn(k). The authors proved in some cases that the skew
field of invariants is again a Weyl skew field Dm(K ) where K is a purely transcenden-
tal extension of k.

A. Beilinson presents a “spectral decomposition” of the category of Heisenberg
modules (i.e., modules over a Heisenberg extension of a commutative Lie algebra of
formal loops on a torus T ). The “spectral parameters” form the moduli stack of T∨-
local systems on Spec k((t)).

A. Braverman and P. Etingof study a generating function defined by certain
equivariant integrals along a moduli space of framed G-bundles on P2. They prove
the conjecture of Nikita Nekrasov claiming that the leading term of asymptotics of
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this generating function is given by the instanton part of the Seiberg–Witten prepoten-
tial of the affine Toda system associated to the Langlands dual Lie algebra.

The paper of I. Cherednik is devoted to the study of polynomial representations of
double affine Hecke algebras. It is proved that the quotient of such a representation by
the radical of the duality pairing is irreducible if it is finite dimensional.

D. Gaitsgory and D. Kazhdan study representations of groups over two-dimensional
local fields. Here it makes sense to consider representations in pro-vector spaces and
work with the central extension of the original group. The authors construct the func-
tor of “semiinfinite invariants” which pairs representations corresponding to two levels
that sum up to the critical level.

A. Joseph studies a 20-year-old conjecture claiming that the tensor product of a
Demazure module with a one-dimensional Demazure module admits a Demazure flag.
This conjecture had already been proved for finite type. The present paper proves the
result for the quantized universal enveloping algebra of a Kac–Moody Lie algebra with
a simply-laced symmetrizable Cartan matrix in any characteristic.

M. Kashiwara, P. Schapira with their coauthors F. Ivorra and I. Waschkies construct
a microlocalization functor

μX : Db(I (K X ))→ Db(I (KT ∗X ))

from the derived category of Ind-sheaves of vector spaces on a C∞-manifold X to the
similar category constructed for the cotangent bundle of X . The classical microlocal-
ization is expressed now as μhom(A, B) = RHom(μX (A), μX (B)).

D. Kazhdan and Y. Varshavsky study the endoscopic decomposition for supercusp-
idal level zero representations of a reductive group over a local nonarchimedean field.

A. Kirillov and L. Rybnikov introduce and study “odd analogues” of a special
family of algebras (“family algebras”) defined earlier by A. Kirillov.

B. Kostant and W. Wallach study a Poisson analog J (n) of the Gelfand–Zetlin
algebra. This is a maximal Poisson-commutative subalgebra of the algebra of polyno-
mial functions on g = Mn(C).

In the paper of S. Kumar and K.-H. Neeb the authors study a connection between
the cohomology of an algebraic group with that of its Lie algebra. They prove an
analog of the Van Est theorem and also study extensions of an algebraic group by an
abelian algebraic group.

T. Levasseur and T. Stafford study the ring D(X) of global differential operators
on the “basic affine space” X = G/U where G is a complex semisimple Lie group and
U is a maximal unipotent subgroup. They prove that the cohomology H (X, OX ) con-
sidered as a D(X)-module decomposes into a sum of non-isomorphic simple D(X)-
modules indexed by the elements of the Weyl group.

G. Lusztig proves a remarkable identity in the Hecke algebra of type A generaliz-
ing an identity of Wallach in the group ring of the symmetric group.

L. Makar-Limanov studies centralizers of elements in a quantum space which is
the C-algebra generated by x1, . . . , xn subject to relations xi x j = qi j x j xi for i < j . In
case the coefficients qi j are “in general position,” the centralizer of any non-constant
element is a subalgebra of a polynomial ring in one variable. An example shows that
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the centralizer need not be integrally closed and that there is no upper bound on the
number of generators of the centralizer.

M. Nazarov and A. Sergeev present a centralizer construction for the Yangian of
the queer Lie superalgebra q(N).

In his linguistically refreshing paper V. Schechtman presents a new proof of the
theorem claiming that the vertex algebroid structures on a Lie algebroid T form a
gerbe whose class coincides with the Chern–de Rham class of T . This had been proved
earlier in a recent Inventiones paper by Gorbunov, Malikov and Schechtman.

Acknowledgments: The conference was supported by the Arthur and Rochelle Belfer
Institute of Mathematics and Computer Science, the Maurice and Gabriella Gold-
shleger Conference Foundation, the Albert Einstein Minerva Center for Theoretical
Physics at the Weizmann Institute of Science. Further support came from the TMR
programme “Algebraic Lie Representations” of the European Union, and Minerva
foundation, Germany.

The Editors would like to thank W. McGovern, D. Farkas and G. Letzter for their
overview papers as well as all the authors of the research papers. The Editors further
extend their thanks to Ann Kostant of Birkhäuser for her personal involvement in the
project. Special thanks are due to Raanan Michael, the administrator of the Faculty
of Mathematics and Computer Science of the Weizmann Institute, and his secretaries
Michele Bensimon and Meira Hadar for being the most skillful, devoted and efficient
team in all the organizational matters of the conference.

J. Bernstein Rehovot, June 2005
V. Hinich
A. Melnikov
Editors
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From Denise Joseph

First, I wish to thank all the guests who joined us tonight to celebrate Tony’s 60th
birthday and especially the scientists who came from abroad. They don’t know how
much we appreciate their coming to Israel in this difficult time and we thank them
heartily for their courage, support and wish to separate science from politics. I also
wish to thank Anna who worked so hard to make this conference a success, and all
who also gave so much of their time to organize so many things.

I asked Tony what I should speak about and he said I should tell how difficult it is
to be the wife of a mathematician, I would then have the sympathy of all the wives and
husbands and persons living with mathematicians. But I shall not follow his advice.

Last week we went to the BA graduation ceremony of our son in the Faculty of
Agriculture which is situated opposite the Weizmann Institute. On a big screen it was
written, “60th birthday”. Then we were shown a film of when the Faculty was inaugu-
rated in 1942 with just one building and one department of Agriculture, and we could
see how it developed so beautifully with a big campus and 14 departments. Tony said,
“you imagine it is as old as me”. I cannot speak of Tony’s mathematical achievements
although he has tried many times to explain to me on what subject he was working.

I know that Tony is not only hard on himself but also on his children and I am sure
on his students. I was nicely surprised to find out when I met some of his students not
only how highly they regard him but that they also like him.

Tony loves sport, tennis, skiing and windsurfing. I always admired his determina-
tion to be a good windsurfer although in the beginning he used to fall all the time.
One day he said, “I am going to learn to play the flute”. I was astonished since Tony
had never played any musical instrument. I asked, “are you going to take lessons?” He
replied, “of course not”. He bought some books and after a week or two I was amazed
to hear nice musical rhythms of known songs.

Tony likes to build and repair things in his spare time. I still remember when we
moved some twenty years ago to our house he built a wooden table for the garden. The
neighbour was so surprised; she said to me, “I thought people who use their brain are
not good with their hands”.

Let us raise our glasses and drink to the health happiness and long life — to Tony.



From Jacques Dixmier: A Recollection of Tony Joseph

When I saw Tony for the first time, he had published a number of papers about physics
and even chemistry. He wanted to discuss my 1968 paper concerning the Weyl algebra
A1.He explained to me why physical arguments permitted a deeper understanding. But
at some other points, he said “this is a typical mathematical idea”. So maybe I played
a little role in Tony’s transition towards mathematics. If so, I think the mathematical
world is greatly indebted to me!

After that, Tony often wrote to me (when he wasn’t in Paris). In spite of my bad
organization, I rediscovered the following old letter. Thank you, Tony, for your won-
derful work, and my warmest encouragements for the future.





Part I

Survey and Review



The work of Anthony Joseph in classical representation
theory

W. McGovern

Department of Mathematics
University of Washington
Seattle, WA 98195
USA

Over some three decades Joseph’s groundbreaking work in classical representation
theory has changed the face of the subject. Joseph has not only introduced many beau-
tiful ideas of his own but also has shown a gift for reinterpreting the work of others
in an entirely new light, establishing connections between quite disparate aspects of
the subject. What follows is a survey of this part of Joseph’s work, beginning with
his papers on primitive ideals in the enveloping algebra of a semisimple Lie algebra.
Such ideals were the primary focus of Joseph’s work from the mid-1970s until the
mid-1990s and he is responsible for the lion’s share of the advances in their theory
during that time.

Most of Dixmier’s classic 1974 text on enveloping algebras of Lie algebras g is
devoted to the case where g is solvable. What really put primitive ideals in enveloping
algebras of semisimple Lie algebras on the map was Duflo’s fundamental theorem
that any such ideal is the annihilator of a very special kind of simple module, namely
a highest weight module. Thus one can study such ideals via abstract ring theory or
highest weight theory. Joseph used both of these tools in his first papers on primitive
ideals. In [39, 41] he introduced the notion of the characteristic variety of a primitive
ideal, using the idea behind the Harish-Chandra homomorphism, and used it to detect
many inclusions and equalities among annihilators of simple highest weight modules.

In [42] he identified the annihilators of simple Harish-Chandra bimodules for com-
plex groups as annihilators of explicit highest weight modules. In [38] he used lo-
calization techniques from noncommutative ring theory to decompose the primitive
spectrum of an enveloping algebra as the union of spectra of more manageable rings;
along the way he exhibited many subalgebras of a semisimple Lie algebra whose en-
veloping algebras have centers that are polynomial rings (see also [40]). He used these
results in an unpublished preprint of 1976 to classify the primitive spectrum in types
A2 and B2 before Duflo had proved his theorem. Later he used his work on charac-
teristic varieties together with Duflo’s theorem to classify primitive ideals in type A,
via the well-known Robinson–Schensted bijection between permutations of n letters
and pairs of standard Young n-tableaux of the same shape [50, 51, 47]. More recently
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Barbasch–Vogan and Garfinkle have extended this classification to the other classical
types, working with standard domino tableaux rather than standard Young tableaux.

The connection between primitive ideals and highest weight modules was further
strengthened by the discovery of an equivalence between a large category of bimodules
over an enveloping algebra, including all of its primitive quotients and the Bernstein–
Gelfand–Gelfand category O, which includes all simple highest weight modules.
This discovery is due independently to Joseph, Bernstein–Gelfand, and Enright. Both
Joseph and Bernstein–Gelfand used it to give an algebraic proof of Duflo’s theorem
([49]; see also Comp. Math. 41 (1980), 245–285). Joseph started out by establishing
a bijection that had been conjectured by Dixmier between ideals containing a fixed
minimal primitive ideal and submodules of a Verma module. (Enright approached the
category equivalence quite differently from Bernstein–Gelfand and Joseph: he intro-
duced functors which essentially built up the bimodule structure in category O from
scratch. Later Joseph studied these functors in [60, 61], establishing the connection
between them and the techniques of [49].)

At about this time Joseph also refined his earlier work on inclusions and equalities
among primitive ideals, showing (modulo a conjecture later proved by Vogan) that the
set of primitive ideals of a fixed regular integral central character spans a vector space
carrying a natural action of the Weyl group [48]; it is determined by the multiplicities
of composition factors in Verma modules. This paper was one of the inspirations for
Kazhdan and Lusztig’s fundamental paper in Inv. Math. 53, in which they formulated
their famous conjecture for computing these multiplicities. In turn Gabber and Joseph
related this conjecture to the hereditarity of the Jantzen filtration on Verma modules
in [58]. This filtration was used to study composition factors of primitive quotients
in [94]. Gabber and Joseph also studied natural questions arising from the category
equivalence in [57].

Joseph first combined the tools of abstract ring theory and highest weight theory
in [45], where he related the Gelfand–Kirillov dimension of a simple highest weight
module L to that of U/I , I the annihilator of L in the enveloping algebra U . He did
so again in an especially beautiful way in the papers [53, 54], which studied Goldie
ranks of primitive quotients. He showed that the Goldie ranks of primitive quotients
obtained from a fixed one P by translation functors are given by a polynomial function
which moreover completely determines P once the central character of this quotient
is given. In addition this polynomial is determined up to a multiplicative scalar by the
composition factor multiplicities in Verma modules, which are given by the Kazhdan–
Lusztig polynomials evaluated at q = 1. Goldie rank polynomials attached to the set
of all primitive ideals with a fixed regular integral central character λ span a vector
space which carries a natural action of the Weyl group. As a consequence the number
of primitive ideals of central character λ equals the sum of the dimensions of cer-
tain Weyl group representations. Barbasch and Vogan later identified just which Weyl
group representations occur in this way in Math. Ann. 259 (1982) and J. Alg. 80 (1983).
In type A they all do, as was already clear from Joseph’s earlier work; in general, ex-
actly the special ones in Lusztig’s sense do. Thus the picture of the primitive spectrum
first introduced in [48] was brought to a very satisfactory culmination. In the course of
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his work on Goldie ranks Joseph also showed that they satisfy an additivity property
which he generalized to a wider setting in joint work with Small [46].

It remained (and in fact still remains) to compute the multiplicative scalars in the
Goldie rank polynomials. Joseph launched a program for doing this in [59] which was
continued in [71, 75, 76]. In these papers an important topic is the relationship between
a typical primitive quotient U/I and the Kostant ring of ad-finite maps from L to itself,
where L is a simple highest weight module with annihilator I ; Joseph had already
studied this ring in [55, 70] and proved his Goldie rank theorems in a special case.
In [59, 71, 75, 76] he studies numerical invariants attached to a Kostant ring and the
quotient U/I that it contains and shows that their ratio is a positive integer. He goes on
to establish beautiful relations among these ratios. They (and the multiplicative scalars)
can be computed exactly if one can construct sufficiently many primitive quotients
with known Goldie rank. It turns out that Goldie ranks are the easiest to compute (and
the most interesting) when they are 1, or equivalently when the primitive quotient is
completely prime.

Motivated by his earlier work in theoretical physics, Joseph had already introduced
an important completely prime primitive quotient attached to the minimal nilpotent
orbit in [37] (which he revisited with A. Braverman in [100], using deformation theory
of Koszul algebras); now he proved a positivity property for Goldie rank polynomials
which shows that completely prime primitive quotients are quite rare [80, 82]. This
property was refined and extended in [114], where he and Borho extended Dixmier’s
old notion of a sheet of adjoint orbits to primitive ideals and showed that that there are
only finitely many sheets of primitive ideals with Goldie rank bounded above by a fixed
positive integer. This reviewer used Joseph’s work extensively in AMS Memoir 519,
where he computed just which quotients by maximal ideals are completely prime in the
classical cases. Joseph also computed the Goldie ranks of certain quotients by induced
primitive ideals in [56], verifying for such quotients the Gelfand–Kirillov conjecture
that their Goldie fields are always Weyl skew fields. He verified the same conjecture
for type A in [55].

By 1982 the classification of the primitive spectrum was essentially complete, but
still rather mysterious. The appearance of special Weyl group representations can be
most satisfactorily explained by identifying them with the representations attached
by Springer to certain nilpotent orbits (also called special). In turn the closures of
these orbits arise as the associated varieties of primitive ideals. Borho and Brylinski
had proved that such associated varieties are irreducible (and thus closures of single
nilpotent orbits) in many special cases; Joseph proved it in general in [65], having
earlier verified it for type A in [52].

He also gave a more direct construction of the Springer representation π attached
to a nilpotent orbit O in [64], as follows. Intersect Ō with the nilradical n of a fixed
Borel subalgebra of the ambient semisimple Lie algebra. One obtains an algebraic
variety V with exactly dimπ irreducible components, as was known from early work
of Springer and Spaltenstein. Joseph looked at the leading terms of Hilbert–Samuel
polynomials of the coordinate rings of these components as a function of the grading
coming from the action of a Cartan subgroup. He showed that their numerators may be
regarded as polynomials in the symmetric algebra of the dual of the Cartan subalgebra
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and proved that the span of these polynomials attached to the components of V is
stable under the Weyl group W . He then conjectured that the resulting representation
of W is isomorphic to the Springer representation π . Hotta proved this in 1982 by
a fairly complicated computation; following work of Rossmann, Joseph later gave a
more direct proof by realizing the polynomials in question as integrals which represent
classes in a homology ring whose structure is well known [80]. The components of
V are called orbital varieties; they form the basic building blocks of the associated
variety of a highest weight module. Joseph also used earlier work of Steinberg on his
famous triple variety to deduce in [64] that every orbital variety lying in n arises by
taking the intersection of n with a translate of itself by some element of W , taking the
saturation under the action of the Borel subgroup B , and finally passing to the closure.
In later work with Hinich [121], Joseph showed that inclusions among orbital variety
closures behave quite similarly to inclusions among primitive ideals, though there are
also subtle differences between these two kinds of inclusions.

It turns out that simple highest weight modules, unlike primitive ideals, need not
have irreducible associated varieties; Joseph gave the first counterexample in [64] and
Tanisaki later gave other examples. Following the Kostant–Souriau program of geo-
metric quantization, Joseph formulated a quantization subprogram of his own in [77],
which essentially sought to invert the associated variety construction. More precisely,
given an orbital variety V , Joseph asked first whether there is a simple highest weight
module with associated variety V . If so, he called V weakly quantizable; the termi-
nology comes from [101]. Whenever V is weakly quantizable, he asked more strongly
whether the coordinate ring of V agrees as a module over a Cartan subalgebra with
some highest weight module M up to a weight shift. If so, he called V strongly quan-
tizable. Joseph’s student Melnikov later showed that every orbital variety is weakly
quantizable in type A (C. R. Acad. Sci. 316 (1993)).

Another student, Benlolo, exhibited two varieties in type A that are strongly quan-
tizable, but only via nonsimple highest weight modules. Joseph himself showed that
his quantization program fails in general by exhibiting orbital varieties of the minimal
nilpotent orbit that are not even weakly quantizable [101]. Nevertheless both he and
his students Benlolo, Melnikov, and Perelman have continued to investigate the quanti-
zability of various orbital varieties and obtained many positive results (see e.g., [117]).
In particular, orbital varieties lying in abelian nilradicals of maximal parabolic sub-
algebras all turn out to be strongly quantizable in an especially nice way, via unitary
highest weight modules [84]. The unitary highest weight modules arising in this way
are in some sense the most interesting ones; Enright and Joseph constructed all unitary
highest weight modules starting from these in [83]. More generally, orbital varieties
which are hypersurfaces in nilradicals of parabolic subalgebras have nice quantization
properties.

In addition to his research papers on primitive ideals, Joseph has also written a
number of expository papers on these and related topics: see [62, 63, 68, 78, 85, 94, 96].
He has also written on a variety of other topics in classical representation theory. His
first papers in pure mathematics dealt with Weyl algebras, which he became interested
in through his previous work in mathematical physics [25, 27, 44]. He also studied
homomorphic images of subalgebras of the first Weyl algebra in [43]. He proved the
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Gelfand–Kirillov conjecture mentioned above for solvable Lie algebras in [29], build-
ing on his work in [30], and generalized it in [34]. He studied double commutants in
enveloping algebras in [36]. In [67, 69] he ventured into finite-dimensional represen-
tation theory, proving the Demazure character formula for b-submodules generated
by extremal weight vectors in finite-dimensional irreducible g-modules whose high-
est weight is sufficiently far from the walls (b a Borel subalgebra); later Andersen
and Kumar proved this formula in general and Kumar and Mathieu deduced the PRV
conjecture from it.

The Demazure operators, which appeared for the first time in Joseph’s work in
these papers, reappeared beautifully and unexpectedly in [101]. They appear yet again
in a very recent paper on crystal bases [118], which established the existence of De-
mazure flags for certain tensor products; see also [122]. Joseph continued to study
finite-dimensional modules in [110]; here he, Letzter, and Zelikson gave a proof valid
for all integral weights that the jump polynomials attached to Brylinski’s filtration of
a finite-dimensional module can be computed from Lusztig’s q-polynomials. In [66]
Joseph and Stafford studied the homological properties of primitive quotients, showing
that such quotients behave well at regular central character but can be quite patholog-
ical otherwise.

In [72] Joseph revisited the induced ideals he had studied in [56] from a very
different point of view, studying the conditions under which they are generated by
minimal primitive ideals together with one copy of the adjoint representation. (He was
led to study this question by previous unpublished work of R. Brylinski on it.) Along
the way he derived an interesting and surprisingly difficult formula for the multiplicity
of the adjoint representation in any quotient of the enveloping algebra by a maximal
ideal [73]. He studied modules in category O with a ring structure in [74], finding that
such modules have a remarkably rigid structure. These modules arose again in [77],
where he studied very general rings of differential operators and developed a criterion
for such a ring to be a quotient of the enveloping algebra. This paper was motivated
by work of Levasseur and Stafford and recovered their results as a special case. Such
rings of differential operators are not in general Noetherian; Joseph showed that they
are nevertheless Goldie in [81].

In [79] Joseph studied unipotent representations of complex groups, which had
been defined (purely algebraically) by Barbasch and Vogan five years earlier. He gave
a new proof of the Barbasch–Vogan character formulas for them, using some funda-
mental calculations of Lusztig. In [88] he, Perets, and Polo gave an elementary ring-
theoretic proof of the Beilinson–Bernstein equivalence of categories between modules
over an enveloping algebra and D-modules, using just the Hilbert Nullstellensatz and
the translation principle. Their construction carries over to the quantum case [90],
which Lunts and Rosenberg interpreted as a Beilinson–Bernstein equivalence of cate-
gories in a nonabelian framework.

Following Polo, Joseph studied Galois theory in the setting of an enveloping al-
gebra in [99]. Given a finite group G of automorphisms of the quotient U/I of the
enveloping algebra by a minimal primitive ideal of regular integral central character,
he asked whether the ring (U/I )G of G-invariants could be another quotient U ′/I ′ of
the same type. He was able to show under these conditions that the Lie algebras corre-
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sponding to the enveloping algebras U,U ′ must have the same Coxeter diagram, but
he could not quite show that their Dynkin diagrams are the same. In 1997 he returned
to the Harish-Chandra homomorphism, which he had used in one of his first papers on
primitive ideals ([39]). This time he worked with the extended Harish-Chandra homo-
morphism, defined on the space of invariant differential operators on a semisimple Lie
algebra, and showed that it is graded surjective [102]. This gave an affirmative answer
to a question of Wallach, a weaker version of which had been answered affirmatively
by Levasseur and Stafford.

Joseph’s most recent work in classical representation theory is largely motivated
by his work in quantized enveloping algebras, described elsewhere in this volume. He
gave a new proof of an old result of Duflo that the annihilator of a Verma module is
generated by its intersection with the center of the enveloping algebra in [103]; his
approach here generalizes to the super and quantum cases. He studied simple weight
modules over an affine Kac–Moody algebra in [105], classifying all such modules
whose weights have bounded norm and showing in particular that any such module has
finite-dimensional weight spaces. In an important series of papers [107, 108, 109] he
studied analogues of the classical PRV determinants (studied also by Kostant) for gen-
eralized Verma modules. He gave formulas for their characters in [107], worked with
G. Letzter to interpret their zeros and give formulas for the degrees in which these ze-
ros occur in [108], and finally gave an explicit formula for the determinants themselves
in [109], working with Letzter and Todoric. Working with his student Greenstein, he
modified an old construction of Kostant and Chevalley in the semisimple case to show
that any integrable highest weight module for affine sl2 admits a realization as a sub-
algebra of a suitable Clifford algebra [113]. This has no analog for g semisimple and
does not extend to any other affine Lie algebra.

Although Joseph’s research interests have largely shifted to quantized enveloping
algebras in the last few years, much of what he does with them is motivated by and has
ramifications for classical representation theory (as indicated above). Representation
theory has benefited immensely from his many contributions. I wish him the best in
the years to come.



Quantized representation theory following Joseph

Daniel R. Farkas and Gail Letzter
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A quantum group . . . is at present a purely mythical being . . . A. Joseph

We are ignorant of the meaning of the dragon . . . but there is something in the dragon’s
image that fits man’s imagination and this accounts for the dragon’s appearance in
different places . . . L. Borges

At the beginning of his lecture for the Microprogram on Noncommutative Rings held
at the Mathematical Sciences Research Institute in July of 1989, Tony Joseph remarked
that he had finally seen an application of quantum groups — he had passed a Volkswa-
gen Quantum GL5 on his way to the talks. Not all successful marriages begin with
love at first sight.

We quickly set notation. Assume that g is a finite-dimensional semisimple Lie
algebra of rank n. Fix a root system with simple roots α1, . . . , αn . Let Q (and let P)
denote its root lattice (resp.weight lattice). Assume that q is always an indeterminate.
The quantized enveloping algebra Uq(g), which we shall always shorten to U , is the
C(q)-algebra generated by symbols xi , yi , and t±1

i for 1 ≤ i ≤ n, subject to the
associative algebra and Hopf algebra relations found in [Jbook]. (Other practitioners
use Ei instead of xi , Fi instead of yi , and Ki instead of ti .) The group generated by all
ti is denoted T .

Write τ for the isomorphism that sends the additive group Q to the multiplicative
group T via αi 	→ ti . Enlarge T to a group Ť isomorphic to P by extending τ in the
obvious way. The “simply connected” quantized enveloping algebra Ǔ is generated by
U and Ť . For many purposes, Ǔ is a more suitable algebra than U and the scalar field
should be replaced with its algebraic closure. We will be blithely sloppy in this review
and use all such algebras interchangeably. The reader, concerned whether the dropped
ornamentation of U is required for precise descriptions of Joseph’s contributions, is
welcome to suffer through the subtleties and complications on his or her own.

The moral dual to U is the quantized function algebra (or coordinate ring) Rq [G]
where G is the Lie group associated to g. Again, we abbreviate notation and simply
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write R. It is the subalgebra of the (finite) Hopf dual of U generated by the coordinate
functions of the simple highest weight modules L(λ) for λ ∈ P+.

Precise descriptions for much of the material we cover here can be found in
Joseph’s monograph, Quantum Groups and Their Primitive Ideals. Ken Brown has
written a featured review of the book for Math Reviews. We warmly recommend read-
ing his essay; it provides background and insights that complement our own idiosyn-
cratic retrospective.

1 Local Finiteness

Much of the classical representation theory for the enveloping algebra of a finite-
dimensional semisimple Lie algebra begins with the observation that the algebra is a
direct sum of finite-dimensional simple modules under the adjoint action. This propo-
sition is indispensable in the analysis of primitive ideals. In his elegant lectures at
MSRI in 1989 (which made the world of quantum groups accessible to ring theorists),
Paul Smith pointed out the disappointing fact that the quantized enveloping algebra is
not a locally finite module with respect to the quantum adjoint action ([Sm]). How-
ever, at this conference, Smith jotted down for Joseph an intriguing example of a
finite-dimensional ad Uq(sl 2) module inside Uq(sl 2). (A careful description of this
example appears in [Lg1].) This calculation became the starting point for the portrait
of the “locally finite part” of the quantized enveloping algebra, painted in a series of
joint papers with Gail Letzter ([J86], [J87], [J89], [J93]).

Set
F(U) = {a ∈ U | dim(ad U)a <∞}.

Since the action of U on finite-dimensional modules is completely reducible, F(U)
can be written as a direct sum of finite-dimensional simple ad U modules. Using Hopf
algebra arguments, it follows that F(U) is a subalgebra of U .

Smith’s example was parlayed into the fundamental observation that F(U) is
“large” inside U ([J86]). The first step in making this assertion plausible is a com-
putation establishing

F(U) ∩ T = τ (−2P+).

Notice the immediate consequence that F(U)∩ T is a multiplicative monoid but not a
group; unfortunately, this means that F(U) is not a Hopf subalgebra of U . This is one
of several shortcomings of the locally finite part that cause serious complications in
Joseph’s papers in that there is not a good representation theory for F(U) that easily
lifts to all of U . On the bright side, a calculation shows that xiτ (−2λ) lies in F(U) for
λ sufficiently large in P+. This suggests that one can recover xi from the locally finite
part by inverting members of F(U) ∩ T . Indeed, if T� denotes the group generated by
this intersection, then

Theorem 1. U is a finitely generated free module over F(U)T� and generators can be
chosen to be a transversal of coset representatives for T� in T .
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The extension U over F(U) has enough integrality properties to allow one to compare
prime ideals in the two rings. (See [J89], Section 6.1, for an illustration.)

The classical adjoint action behaves compatibly with respect to the degree func-
tion on the enveloping algebra. The close quantum analogs to degree for the quan-
tized enveloping algebra (see for example [DeK], Section 1.7) are not ad U invariant.
Joseph introduces a different filtration that is ad-invariant; information gleaned from
this choice does not appear in the classical set-up.

Recall that L(λ) denotes the finite-dimensional simple U module of highest weight
λ for a dominant integral weight λ. Viewed through the new filtration, the locally finite
part completely reduces ([J87]):

F(U) =
⊕
λ∈P+

(ad U)τ (−2λ). (1)

The representation of F(U) on the module L(λ) induces an isomorphism between
(ad U)τ (−2λ) and End L(λ) due to a positive definite property of Rosso’s form (J93]).
As a consequence, one obtains a module decomposition formula.

Theorem 2. F(U) =⊕
λ∈P+ End L(λ).

Since this decompositon looks like the Peter–Weyl Theorem for the quantized
function algebra, Joseph refers to it as the “mock Peter–Weyl theorem”; it is an ex-
ample of a quantum phenomenon that does not occur in the classical situation. The
mockification was explained by Caldero, who showed how the Rosso form can be
used to define an ad U module isomorphism from F(U) onto the quantized function
algebra ([Ca1]). Joseph exploits this idea to initiate his study of quantum Kac–Moody
algebras ([J104], [J106]). He shows that in this greater generality, there is an ad U
module isomorphism from the integral part of the quantized enveloping algebra into
the direct sum of the endomorphism algebras of the highest weight simple integrable
modules L(λ). Working backwards, he then lifts elements from the endomorphism
algebras to form a suitable completion of the integrable part, thus obtaining a mock
Peter–Weyl theorem in this context ([J106]). The locally finite machinery also leads to
a classification of bicovariant differential calculi in [BaS] and [J104].

Theorem 2 leads to a powerful description of the center Z of U . The invariants of
End L(λ) are scalars, so one can lift the identity endomorphism to an invariant (and
hence central) element zλ of U . It follows that {zλ | λ ∈ P+} is a basis for Z . (Up to a
scalar, zλ is the unique central element of

τ (−2λ)+ (ad U+)τ (−2λ) (2)

where U+ is the augmentation ideal of U .) Furthermore, Z is a polynomial ring in the
zω where ω runs over the fundamental weights in P+.

There are other approaches to the description of the center. (See [Ba1] for a com-
parison of several methods that produce the central generators.) One consequence of
the derivation found in [J86] is a transparent computation of the image of zλ under the
Harish-Chandra map; it produces an expression closely related to the character for-
mula for L(λ). A second application is found in Letzter’s theory of quantum symmet-
ric pairs ([Lg2]). Earlier results identified zonal spherical functions with orthogonal
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polynomials by means of the radial components of certain central elements. Using the
placement of zλ in (ad U)τ (−2λ) and its nice image under the Harish-Chandra map,
these radial components are calculated in a uniform manner with a relative minimum
of computation.

The local finiteness philosophy is adapted to the quantized function algebra in
Joseph’s comprehensive paper [J92]. In order to avoid losing information by localiz-
ing, he looks at a family of locally finite subalgebras of R obtained by twisting the ad-
joint action via appropriate automorphisms of the quantized function algebra. (These
twisted adjoint maps have proved fruitful, see [Le].) Playing the action of R on itself
off the action of U on R, Joseph shows that R is a finite module over the direct limit
F(R) of these locally finite subalgebras. In various precise senses, the relation of F(R)
to R parallels that of F(U) to U . This apparatus is used in [J92] to establish the orbit
yoga for R: a natural bijection between its primitive ideals and the symplectic leaves of
the associated semisimple Lie group. More precisely, Joseph completes a program of
Hodges and Levasseur ([HoL1], [HoL2]), based on earlier work of Soibelman ([So])
classifying the unitary irreducible representations of R. He shows how the prime and
primitive ideals of R break into strata parametrized by pairs of elements from the Weyl
group. The description is refined in [J98]. A reader-friendly geometric rendition of the
stratification picture can be found in the lecture notes of Brown and Goodearl ([BrG]).

The consequences of [J92] are legion. For example, R is a noetherian domain
in which all prime ideals are completely prime. Descriptions of the dual R∗ and
the Hopf algebra automorphisms of R can be deduced as well as applications to R-
matrices ([J95]). Ideas generated in [J92] have been exploited by a veritable crowd of
mathematicians, including Brown, Cauchon, Goodearl, Gorelik, Hodges, E. Letzter,
Levasseur, and Yakimov.

2 Geometry

There is a genre of mysteries in which the clue to the crime is an item that is missing
rather than one that is there. This device lurks behind some of Joseph’s fundamental
work on quantized enveloping algebras; geometry that appears to be crucial in the
classical setting is absent here. Noncommutative algebraic geometry is not sufficiently
developed to fill the gap. Indeed, some of the directions that Joseph takes have inspired
researchers who are developing the foundations of this new subject.

The Separation of Variables Theorem, due to Kostant, and the Verma Module An-
nihilator Theorem, due to Duflo, require the fact that the ideal in the associated sym-
metric algebra for g generated by the nonconstant invariant homogeneous polynomi-
als is prime. The argument provided by Kostant ([Ko1]) involves nontrivial algebraic
geometry. Thus it was quite surprising when [J87] proved

Theorem 3. There exists an ad U submodule H of F(U) such that the multiplication
map

H ⊗ Z → F(U)

is an ad U module isomorphism.
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The argument rests on delicate manipulations of the filtration associated with F(U)
(including Theorem 2) and the critical intervention of the Common Basis Theorem to
prove that the corresponding map at the graded level is injective. (“Common Basis”
is Joseph’s diplomatic name for the Canonical/Crystal Basis/Path circle of results.)
This tour-de-force turned out to be less astonishing after Bernstein and Lunts ([BeL])
presented a proof of the original Separation of Variables Theorem that also avoided al-
gebraic geometry via a filtration argument. More recently, Baumann ([Ba2]) has given
a slightly different proof of Theorem 3, again using Common Basis. His methods com-
bined with the analysis of [J87] generalize to the affine case (cf. [J115], [J116]).

A good choice for the quantum harmonics H is proposed in [J93]. With respect
to the positive definite Rosso form, graded harmonics comprise the orthogonal com-
plement to the nonconstant top symbols of (ad U)τ (λ) as λ varies over −2P+. This
is further explored in [Ba2] and [Ca3]. In particular, Caldero specializes the quantum
picture to gain new information for classical harmonics.

Joseph’s idea for circumventing geometry in a proof of the Verma Module Anni-
hilator Theorem is to compose a brilliant fugue played by two determinants. The PRV
determinant was introduced by Parthasarathy, Ranga Rao, and Varadarajan ([PRV]
and generalized by Kostant ([Ko2]) in order to prove the irreducibility and unitarity of
certain principal series representations. The Shapovalov determinant first appeared in
1972 ([Sh]); it has appeared frequently since then because of its utility in determining
when Verma-like modules are simple (and possibly unitary) in a variety of contexts.
(See [Ja] for a notable example.)

We briefly review the quantum versions of each determinant. Let L(μ) be a simple
highest weight module (for μ ∈ P+) and let

H (μ) = L(μ)1 ⊕ · · · ⊕ L(μ)m

denote the isotypical component of L(μ) in H . Choose a basis v1, . . . , vm for the
zero weight space of L(μ) and write vi j for the copy of v j in L(μ)i . The PRV de-
terminant Pμ is the determinant of the matrix (φ(vi j ))i, j where φ is the quantum
Harish-Chandra map sending U to the group algebra of T . Consider a character 	
on T and extend it to a scalar-valued algebra homomorphism of the group algebra.
Finally, set L(	) to be the simple highest weight U module of highest weight 	. As
in the classical case, one can show that

	(Pμ) = 0 if and only if AnnH(μ) L(	) = 0.

In other words, AnnH L(	) = 0 if and only if 	(Pμ) = 0 for all μ with H (μ) �= 0.
As to the Shapovalov determinant, set U− to be the algebra generated by y1, . . . , yn .

If κ is the Chevalley antiautomorphism of U , then the Shapovalov form on U− sends
(a, b) to φ(κ(a)b). The Shapovalov determinant Sη is the determinant of this form
when restricted to the −η weight space of U− for η ∈ Q+. The construction can be
extended to the Verma module M(	) for a character 	 of T , making 	(Sη) the de-
terminant of the Shapovalov form on the	q−η weight space. This time, the vanishing
property asserts that M(	) is simple if and only if 	(Sη) = 0 for all η ∈ Q+.

Both determinants can be completely factored as a product of Laurent linear poly-
nomials. (Here an element of the group algebra of T is “Laurent linear” provided it is
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a linear combination of t and t−1 for some t ∈ T .) Miraculously, the set of factors (up
to scalars) that appear in at least one of the PRV determinants is the same as the set of
factors that appear in at least one of the Shapovalov determinants. Hence 	(Sη) = 0
for all η if and only if 	(Pμ) = 0 for all μ. Consequently,

if M(	) is simple then AnnH M(	) = 0. (3)

Now the Verma module M(	) contains a simple Verma module M(	′). Assertion (3)
and Theorem 3 imply that

AnnF(U ) M(	′) = H AnnZ M(	′) = F(U)AnnZ M(	′).

Since all submodules of a Verma module admit the same central character, M(	) and
M(	′) are annihilated by the same central elements. Thus

AnnF(U ) M(	) ⊆ AnnF(U ) M(	′) = F(U)AnnZ M(	′) = F(U)AnnZ M(	).

With a bit of extra work and Theorem 1, the desired result is obtained.

Theorem 4. The annihilator in U of the Verma module M(	) is generated by its in-
tersection with the center.

After some traveling back and forth between U and F(U), the quantum analog of
Duflo’s Theorem ([Du]) is obtained as a corollary.

Theorem 5. The set of primitive ideals of U coincides with the set of annihilators of
the simple highest weight modules.

The development of two-determinant technology is the first step in Joseph’s pro-
gram to extend annihilator theorems to other types of enveloping algebras. We focus
here on quantized enveloping algebras for the Kac–Moody case and discuss appli-
cations outside the quantum realm in the next section. The Shapovalov determinant
is factored in [Jbook] (chapter 3.4), completing work in [J93]. Unexpected factors
give rise to a new family of Verma modules that does not have a counterpart either
for the quantized enveloping algebra of a semisimple Lie algebra or for the ordi-
nary enveloping algebra. Even the definition of quantum PRV determinants for Kac–
Moody algebras is problematic. Joseph and his student, D. Todoric, present a definition
([J115]) based on his Harish-Chandra map for a completed quantized enveloping alge-
bra ([J106]) and a weak separation of variables proposition. Later, the quantum affine
PRV determinant is factored ([J116]), this time into an infinite product. Thus it is not
clear how to evaluate it under a character 	, leaving the goal of a Verma module
annihilator theorem in the distance.

Inspired by Kostant’s comment in [Ko2], the scope of the PRV determinant can be
expanded by replacing the role of a Borel subalgebra with that of a parabolic. [J115]
defines the analogous quantum KPRV determinant in a natural way, using a construc-
tion not immediately available in the classical context.

It turns out that the distinction between avoiding geometry and promoting geome-
try may not exist. In [J90], Joseph identifies the quantization of the algebras of func-
tions and of differential operators on the big open Bruhat cell (determined by the
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longest element of the Weyl group) and its translates. The core difficulty is to un-
derstand his candidate for the quantization of the coordinate ring of the basic affine
space that lifts the flag variety. The justification of these constructions is a Beilinson–
Bernstein equivalence of categories in the spirit of Hodges–Smith ([HoS]) as com-
pleted in [J88]. Joseph gingerly sticks a big toe into the waters of noncommutative al-
gebraic geometry: “The appropriate framework to discuss equivalence of categories in
the present noncommutative setup seems to be provided by the Artin–van den Bergh–
Schelter–Tate theory.”

While offering the geometric challenge, [J90] only records the first step. Joseph
proves that cousins of quantum coordinate rings, including F(U), are noetherian. Ul-
timately, the argument produces filtrations with “Hilbert basis properties”, courtesy of
the Common Basis Theorem. His student, M. Gorelik, describes the prime and primi-
tive spectra of these translated function algebras in [Go1]. The skew fields of fractions
of closely related rings are characterized in [J97], an echo of Joseph’s early studies of
the Gelfand–Kirillov conjecture. More on this theme is found in [Ca2].

Although even definitions of such objects as the noncommutative ring of differen-
tial operators remain fluid, Joseph’s papers are a fertile source of insights and prob-
lems for those mathematicians building the foundations of noncommutative algebraic
geometry. Lunts and Rosenberg ([LuR]) redo [J90] in a much broader geometric con-
text but make clear that they have been inspired by Joseph’s body of work. (Also see
[BaK].)

3 Trickle Down Economics

When the algebra community embraced quantum groups, optimists expected that the
new subject would ultimately elucidate long standing questions about representations
of semisimple Lie algebras. (See the introduction of [Jbook].) Ideas generated by
Joseph and his collaborators have, indeed, percolated through quantum technicalities,
contributing to both classical and cutting edge representation theory.

The two-determinant strategy for proving Verma module annihilator theorems has
been put to advantage in many settings. Joseph has shown how to reprove Duflo’s
classical result in this fashion ([J103]). Gorelik and Lanzmann employ this strategy to
establish a conjecture of Musson for Lie superalgebras. These two students of Joseph
determine precisely which Verma modules of orthosymplectic superalgebras have an-
nihilators generated by their intersection with the center ([GoL1]). A true annihilator
theorem is obtained in their follow-up paper [GoL2]. Gorelik further pursues the an-
nihilator theme for basic classical Lie superalgebras in [Go2].

New meets old in [J102]. Recall the description of the center that came out of the
mock Peter–Weyl theorem. Exploiting equations (1) and (2), one sees that there is a
projection L from F(U) onto Z that sends a to the unique central element contained
in a + (ad U+)a. (If a ∈ U+ then L(a) = 0.) When restricted to the Weyl group
invariants in the locally finite part of the group algebra for T , this function can be
regarded as a sort of inverse to the Harish-Chandra map. Indeed, it is easy to compute
the Harish-Chandra map of the restricted L(a) using the quantum trace.
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Joseph adapts this to the classical environment by constructing an injection L :
S(h)W → S(g)G where g is a complex semisimple Lie algebra with adjoint group G,
Cartan subalgebra h, and Weyl group W . Extending this injection to a doubling of L
(with the help of Common Basis combinatorics and a result of Kumar [Ku]), he ob-
tains a multivariable version of Chevalley’s theorem. In turn, this proves the normality
of the commuting variety and settles a question asked by Wallach: the Harish-Chandra
homomorphism for the space of invariant differential operators on g is graded surjec-
tive.
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Summary. Let G be a group and ρ : G → GL(V ) a representation of G in a vector space V of
dimension n over a commutative field k of characteristic zero. The group ρ(G) acts by automor-
phisms on the algebra of regular functions k[V ], and this action can be canonically extended to
the Weyl algebra An(k) of differential operators over k[V ] and then to the skewfield of fractions
Dn(k) of An(k). The problem studied in this paper is to determine sufficient conditions for the
subfield of invariants of Dn(k) under this action to be isomorphic to a Weyl skewfield Dm (K )
for some integer 0 ≤ m ≤ n and some purely transcendental extension K of k. We obtain such
an isomorphism in two cases: (1) when ρ splits into a sum of representations of dimension one,
(2) when ρ is of dimension two. We give some applications of these general results to the actions
of tori on Weyl algebras and to differential operators over Kleinian surfaces.

Subject Classifications: 16S32, 13A50, 16K40, 17B35

Introduction

0.1.

Toute représentation ρ d’un groupe G dans un k-espace vectoriel V de dimension
n induit sur l’algèbre S = k[V ] des fonctions régulières une action d’un sous-
groupe G � ρ(G) du groupe des automorphismes de k-algèbre de S. Celle-ci se pro-
longe de façon canonique en une action par automorphismes sur l’algèbre de Weyl
An(k) = Diff S des opérateurs différentiels sur S. Au niveau du corps commutatif
k(V ) = Frac S, tout un pan de l’étude des fonctions rationnelles invariantes sous G
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gravite autour du problème classique, dit problème de Noether, consistant à déterminer
sous quelles conditions le corps k(V )G est extension transcendante pure du corps de
base k. Nous renvoyons par exemple aux articles [5], [10], [11], [14], [16], [19], [20]
ou [22], et à leurs bibliographies pour des références sur ce point.

La question discutée dans cet article peut être vue comme une extension du
problème de Noether au prolongement de l’action de G sur le corps de fractions Dn(k)
de l’algèbre de Weyl An(k). Il s’agit cette fois de déterminer des conditions suffi-
santes pour que le sous-corps d’invariants Dn(k)G soit isomorphe à un corps de Weyl
Dm,t (k) = Dm(K ), avec m un entier tel que 0 ≤ m ≤ n et K une extension transcen-
dante pure de degré de transcendance t sur k. Les travaux fondateurs de I. M. Gelfand
et A. A. Kirillov ont en effet mis en évidence que ce sont ces corps de Weyl Dm,t (k)
qui jouent pour l’étude de l’équivalence birationnelle des algèbres non commutatives
intervenant en théorie de Lie le rôle des extensions transcendantes pures de la théorie
commutative classique.

0.2.

La première section de l’article présente avec précision le problème évoqué ci-dessus,
indique quelques éléments de réponse généraux, et rappelle un résultat démontré en [1]
sur les invariants des corps de fractions des extensions de Ore, qui peut être considéré
comme une forme non commutative d’un théorème classique de K. Miyata (voir [16]).
Par la description qu’il donne du corps des fractions des invariants d’une algèbre de
polynômes sous l’action d’un groupe stabilisant le corps des coefficients, le théorème
de Miyata permet de donner une réponse positive au problème de Noether dans des
situations commutatives où l’on sait triangulariser l’action. C’est le cas lorsque la
représentation considérée est de dimension 2 ou 3 (W. Burnside, E. Noether; voir par
exemple [11]). C’est aussi le cas des travaux de E. B. Vinberg (voir [22] ou [11]) sur
les actions de groupes algébriques résolubles connexes, où le théorème de Lie–Kolchin
assure la triangularisation nécessaire à l’application itérative du théorème de Miyata.

Pour des algèbres non commutatives de polynômes (en l’occurence des extensions
de Ore itérées), le problème supplémentaire qui se pose est, une fois que l’on a obtenu
le corps des invariants comme un corps de fractions d’une extension de Ore itérée, de
le reconnaı̂tre comme un corps de Weyl. Une situation où l’on sait, en petite dimension
et de façon élémentaire, mener à bien cette reconnaissance est celle de l’article [1]; on
y démontre que pour tout groupe fini G d’automorphismes de toute extension de Ore R
en deux variables, le sous-corps des invariants sous G du corps des fractions de R est
un corps de Weyl D1 ou son analogue quantique. Dans le cadre différent du problème
de Noether non commutatif tel qu’on l’a formulé en 0.1, on parvient également à
obtenir une réponse positive dans deux situations qui font l’objet des parties suivantes.

0.3.

On montre dans la deuxième partie que, pour tout groupeG, et pour toute représentation
de G qui est somme directe de n représentations de dimension 1, il existe un entier
0 ≤ s ≤ n unique tel que Dn(k)G � Dn−s,s(k). En particulier, si k est algébriquement
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clos, on a Dn(k)G � Dn(k) pour toute représentation de tout groupe abélien fini.
L’exemple de l’action naturelle du tore Tn = (k∗)n sur l’algèbre de Weyl An(k), déjà
considérée pour d’autres problèmes par exemple en [18], montre que toutes les valeurs
de s entre 0 et n peuvent être atteintes, pour différents choix de sous-groupes G de Tn .

0.4.

Le théorème central de la troisième partie établit que, pour tout groupe G et toute
représentation de G de dimension 2, il existe deux entiers positifs m, t vérifiant 1 ≤
m + t ≤ 2 satisfaisant D2(k)G � Dm,t (k).

L’application principale que l’on développe concerne la représentation standard de
dimension 2 des sous-groupes finis de SL(2,C). Si G est un tel sous-groupe agissant
par automorphismes sur S = k[V ] en prolongeant son action linéaire naturelle sur
V = C2, l’algèbre SG est l’algèbre des fonctions régulières sur la surface de Klein
associée à G. Il est bien connu que les surfaces de Klein sont classées suivant la classi-
fication en types An , Dn , E6, E7 et E8 des sous-groupes finis de SL(2,C). Par ailleurs,
l’algèbre de Weyl A1(C) peut être considérée comme une déformation non commu-
tative de S, de dimension 2, sur laquelle G agit par automorphismes. On a montré
en [1] que pour cette action, on a D1(C)G � D1(C). La problématique abordée ici
est différente, puisqu’il s’agit de considérer le prolongement canonique de l’action de
G sur S à l’algèbre Diff (S) = A2(C), qui est de dimension 4. Comme G ne con-
tient pas de pseudoreflexion non triviale, il résulte du théorème 5 de [13] que l’algèbre
A2(C)G n’est autre que l’algèbre des opérateurs différentiels sur la surface de Klein
correspondante. L’application du théorème principal de cette partie montre que l’on a
alors Frac (Diff (SG)) = D2(C)G � D2(C). En outre, la méthode permet de calculer
explicitement des générateurs de D2(C)G , dont la détermination repose sur les pro-
priétés de certaines dérivations hamiltoniennes pour la structure de Poisson standard
sur S.

Dans tout l’article, k désigne un corps commutatif de caractéristique nulle.

1. Une extension du problème de Noether pour les algèbres
de Weyl

1.1. Action sur une algèbre de Weyl canoniquement associée à une
représentation d’un groupe

1.1.1. Données et notations

(i) Soit G un groupe. Considérons une représentation ρ : G → GL(V ) de G dans un
k-espace vectoriel V de dimension finie n. Notons G = ρ(G).

(ii) Notons S = k[V ] l’algèbre des fonctions régulières sur V , et Endk S la k-algèbre
des endomorphismes k-linéaires de S. Le plongement canonique μ : S → Endk S
consistant à identifier tout élément s à la multiplication μs par s dans S est un
morphisme d’algèbres.
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(iii) Considérons dans Endk S la sous-algèbre Diff S des opérateurs différentiels de S,
et dans Diff S le sous-espace vectoriel Derk S formé des k-dérivations de S. Si
(q1, . . . , qn) est une base de V ∗ sur k, on a S = k[q1, . . . , qn]. Une S-base de
Derk S est (∂q1, ∂q2 , . . . , ∂qn ), où ∂qi désigne la dérivation par rapport à qi pour
tout 1 ≤ i ≤ n. On a alors que Diff S est la sous-algèbre de Endk S engendrée
par μq1, . . . , μqn , ∂q1, . . . , ∂qn . L’algèbre Diff S = Diff k[q1, . . . , qn] est appelée
l’algèbre de Weyl d’indice n sur k. On la note An(k).

On synthétise dans la proposition suivante quelques propriétés bien connues de
cette action.

Proposition 1.1. Avec les données et notations ci-dessus:

(i) L’action de G par automorphismes sur V se prolonge canoniquement en une ac-
tion par automorphismes sur l’algèbre des fonctions régulières S = k[V ].

(ii) L’application G×Endk S → Endk S définie par (g, ϕ) 	→ g.ϕ = gϕg−1 détermine
une action de G par automorphismes sur Endk S prolongeant l’action canonique
de G sur S en rendant le morphisme μ covariant.

(iii) L’action par automorphismes de G sur Endk S définie ci-dessus se restreint en une
action par automorphismes de G sur la sous-algèbre An(k) = Diff S.

(iv) Pour toute base (q1, . . . , qn) de V ∗, l’action ci-dessus de G sur An(k) se restreint
en une action par automorphismes sur l’espace vectoriel V = k∂q1 ⊕ · · · ⊕ k∂qn ,
où l’algèbre symétrique S(V ) est identifiée à l’algèbre des opérateurs différentiels
à coefficients constants sur V , et cette restriction est l’action définie au départ par
la représentation ρ.

1.1.2. Définition et notation

Pour toute représentation ρ de dimension finie n d’un groupe G, l’action du groupe
G = ρ(G) par automorphismes sur l’algèbre de Weyl An(k) définie à la proposition
précédente sera dite canoniquement associée à ρ. On note

An(k)
G,ρ = An(k)

G = { f ∈ An(k) ; g( f ) = f, ∀ g ∈ G}
la sous-algèbre des invariants de An(k) sous cette action.

Le lemme suivant est bien connu. Il met en évidence que, contrairement à l’algèbre
commutative d’invariants SG , l’algèbre An(k)G,ρ ne peut pas se réduire au corps de
base k.

Lemme 1.2. Avec les données et notations ci-dessus, la dérivation d’Euler:

ω = μ1∂1 + μ2∂2 + · · · + μn∂n

appartient toujours à l’algèbre d’invariants An(k)G,ρ .
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1.1.3. Notations

Introduisons la notation usuelle pi pour désigner (pour tout 1 ≤ i ≤ n) la dérivée ∂qi

par rapport à qi dans l’algèbre S = k[q1, . . . , qn]. L’algèbre de Weyl An(k) apparaı̂t
donc comme l’algèbre engendrée sur k par q1, . . . , qn, p1, . . . , pn avec les relations
canoniques:

[pi , qi ] = 1, [pi , q j ] = [pi , p j ] = [qi , q j ] = 0 pour i �= j.

D’après la proposition 1.1, pour tout groupe G et toute représentation ρ de dimension n
de G, le groupe ρ(G) est isomorphe à un sous-groupe G d’automorphismes linéaires de
An(k) stabilisant les k-espaces vectoriels V = kp1⊕· · ·⊕kpn et V ∗ = kq1⊕· · ·⊕kqn ,
avec

[g(pi), q j ] = [pi , g−1(q j )] pour tous g ∈ G, 1 ≤ i, j ≤ n,

ou encore,

g(pi) =
n∑

j=1

∂qi (g
−1(q j ))p j pour tous g ∈ G, 1 ≤ i ≤ n.

Le groupe G apparaı̂t en particulier comme un sous-groupe du groupe symplectique
Sp(2n, k) isomorphe à un sous-groupe de GL(n, k). Remarquons que, dans cette
construction, le groupe G ne dépend (à conjugaison près) que de la classe de ρ
pour l’équivalence des représentations de G. Rappelons enfin qu’avec ces notations,
l’élément

w = q1 p1 + q2 p2 + · · · + qn pn

de An(k) est invariant sous l’action de G.

1.2. Prolongement du problème de Noether aux algèbres de Weyl

1.2.1. Définitions et notations

(i) Pour tout entier n ≥ 1, et tout corps commutatif K extension de k, on note Dn(K )
le corps de fractions de l’algèbre de Weyl An(K ). Dans le cas particulier où K
est une extension transcendante pure k(z1, . . . , zt ) avec t entier naturel, on note
Dn,t (k) le corps Dn(K ) = Dn(k(z1, . . . , zt )). Pour englober dans cette notation le
cas commutatif, on convient de noter D0,t(k) = k(z1, . . . , zt ) pour tout t ≥ 0. Les
corps Dn,t (k) où n, t ≥ 0 sont appelés corps de Weyl. Remarquons que, dans cette
notation, l’indice t désigne le degré de transcendance sur k du centre de Dn,t (k),
qui n’est autre que k(z1, . . . , zt ).

(ii) Tout automorphisme de An(k) se prolonge de façon unique en un automor-
phisme de Dn(k). Donc, pour tout sous-groupe G du groupe des automorphismes
de l’algèbre An(k) provenant d’une représentation ρ de dimension finie n d’un
groupe G suivant la construction détaillée ci-dessus en 1.1, on peut considérer le
sous-corps des invariants:

Dn(k)
G,ρ = Dn(k)

G = { f ∈ Dn(k) ; g( f ) = f, ∀ g ∈ G}.
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1.2.2. Problème de Noether non commutatif

Dans toute la problématique initiée par l’article [7] de Gelfand et Kirillov (voir [8],
[9]), les corps de Weyl jouent dans l’étude de l’équivalence birationnelle pour les
algèbres non commutatives intervenant en théorie de Lie (algèbres enveloppantes,
leurs quotients primitifs,...) un rôle comparable à celui des extensions transcendantes
pures dans la théorie commutative classique. En relation avec le problème de Noether
en théorie des invariants, on peut alors de façon significative formuler la question sui-
vante, que l’on appelera dans la suite problème de Noether non commutatif.

(*) Soit ρ une représentation d’un groupe G, de dimension finie n sur k. Le sous-
corps Dn(k)G,ρ est-il isomorphe à un corps de Weyl Dm,t (k) pour certains
entiers naturels m et t ?

Rappelons que le problème de Noether classique concerne le prolongement de
l’action de G = ρ(G) par automorphismes sur l’algèbre k[V ] des fonctions régulières
en une action par automorphismes sur le corps commutatif k(V ) = Frac k[V ] des
fonctions rationnelles, (la question étant alors de savoir si le corps d’invariants k(V )G

est extension transcendante pure du corps de base k, voir par exemple [5], [11], [19],
[20], [10], [14]).

1.2.3. Remarques

(i) Les sous-corps commutatifs maximaux du corps de Weyl Dn(k) sont de degré de
transcendance au plus n (voir [15], corollary 6.6.18). Comme un corps de Weyl
Dm,t (k) contient effectivement des sous-corps commutatifs de degré de transcen-
dance m + t , on déduit qu’une réponse positive au problème (*) ci-dessus n’est
possible que pour des valeurs m, t telles que m + t ≤ n, et donc en particulier
m ≤ n.

(ii) A notre connaissance, un des seuls éléments de réponse au problème (*) ci-
dessus apparaissant dans la littérature est le théorème 3.3 de [2], qui démontre que
Dn(k)G � Dn(k) pour tout groupe G fini et abélien d’automorphismes linéaires
de An(k). Plus généralement, dans le cas d’un groupe fini, on peut apporter au
problème de Noether non commutatif la précision suivante.

Proposition 1.3. Soit G un groupe fini. Soit ρ une représentation de G de dimension
finie n sur k. Si le sous-corps Dn(k)G,ρ est isomorphe à un corps de Weyl Dm,t (k),
alors m = n et t = 0, c’est-à-dire que Dn(k)G,ρ � Dn(k).

Preuve. On suppose que ρ est une représentation d’un groupe fini G, de dimension
finie n sur k, telle que Dn(k)G,ρ soit isomorphe à un corps de Weyl Dm,t (k) pour
certains entiers m, t ≥ 0. Pour alléger, on note D = Dn(k) et Q = Dn(k)G,ρ . On a
donc: Dm,t (k) � Q ⊂ D � Dn(k). Parce que le sous-groupe G = ρ(G) de Aut D
est fini par hypothèse, on sait d’après le lemme 2.18 de [17] que [D : Q] est fini et
≤ |G|. La question de savoir en général si [D : Q] < +∞ implique GK-trdeg Q =
GK-trdeg D reste à notre connaissance encore ouverte, où GK-trdeg désigne le degré
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de transcendance de Gelfand et Kirillov (voir [7] ou [12]). En revanche, J. Zhang a
prouvé en [23] que [D : Q] < +∞ implique Ld D = Ld Q, où Ld désigne le
degré de transcendance inférieur (lower transcendence degree). Ce nouvel invariant
dimensionnel introduit en [23], (voir aussi [12]), coı̈ncide avec le GK-trdeg pour une
large classe d’algèbres classiques, dont les algèbres de Weyl. On a donc ici 2m + t =
2n. Par ailleurs, la remarque (i) du 1.2.3 ci-dessus assure que m + t ≤ n. Les deux
conditions impliquent m = n et t = 0. ��

1.3. Invariants des corps de fractions des extensions de Ore

1.3.1. Rappels et notations

(i) Soient A un anneau (non nécessairement commutatif), σ un automorphisme de
A, et δ une σ -dérivation de A. On note A[x ; σ, δ] l’anneau des polynômes de
Ore en une variable à coefficients dans A, dont le produit est défini à partir de la
relation de commutation xa = σ(a)x + δ(a) pour tout a ∈ A, (voir par exemple
[15]). Comme d’habitude, on simplifie cette notation en A[x ; σ ] lorsque δ est
nulle, et en A[x ; δ] lorsque σ est l’identité. Lorsque A est noethérien intègre, de
corps de fractions K = Frac A, il en est de même des anneaux R = A[x ; σ, δ] et
S = K [x ; σ, δ], et l’on note Frac R = Frac S = K (x ; σ, δ).

(ii) L’algèbre de Weyl An(k) peut être vue comme l’anneau de polynômes de Ore
obtenu en itérant n fois la construction ci-dessus à partir de l’anneau commutatif
A = k[q1, q2, . . . , qn]:

An(k) = k[q1, q2, . . . , qn][p1 ; ∂1][p2 ; ∂2] . . . [pn ; ∂n],

et son corps de fractions Dn(k) comme le corps de fonctions rationnelles non
commutatif:

Dn(k) = k(q1, q2, . . . , qn)(p1 ; ∂1)(p2 ; ∂2) . . . (pn ; ∂n),

où chaque dérivation ∂i est définie sur k(q1, q2, . . . , qn) par ∂i (q j ) = δi, j , et
s’annule en les p j précédents ( j < i ). Par ailleurs, pour 1 ≤ i ≤ n, considérons
dans An(k) l’élément

wi = qi pi ,

qui vérifie

piwi−wi pi= pi , wi qi−qiwi =qi , [pi , w j ]= [qi , w j ]= [wi , w j ] = 0 si j �= i.

On en déduit deux autres façons de voir le corps Dn(k) comme corps de fractions
d’anneaux de polynômes de Ore itérés. D’une part:

Dn(k) = k(q1, q2, . . . , qn)(w1 ; d1)(w2 ; d2) . . . (wn ; dn),

avec di la dérivation eulérienne di = qi∂i pour tout 1 ≤ i ≤ n. D’autre part:

Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)(pn ; σn),

où chaque automorphisme σi est défini sur k(w1, w2, . . . , wn) par σi (w j ) =
w j + δi, j , et fixe les p j précédents ( j < i ).
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(iii) Pour tout groupe G d’automorphismes d’un anneau S, on note SG le sous-anneau
des invariants de S sous G. Lorsque S admet un corps de fractions D = Frac S,
les éléments de G se prolongent de façon unique en des automorphismes de D, et
DG est un sous-corps de D contenant Frac (SG).

Le théorème rappelé ci-dessous est un argument clef des preuves des résultats sui-
vants.

Théorème 1.4. Soient K un corps non nécessairement commutatif, σ un automor-
phisme et δ une σ -dérivation de K . Notons S = K [x ; σ, δ] et D = Frac S =
K (x ; σ, δ). Soit G un groupe d’automorphismes d’anneau de S tel que g(K ) ⊆ K
pour tout g ∈ G.

(i) Si SG ⊆ K , alors SG = DG = K G.
(ii) Si SG �⊆ K , alors, pour tout u ∈ SG de degré ≥ 1 minimum parmi les degrés

des éléments de SG de degré ≥ 1, il existe σ ′ un automorphisme de K G et δ′
une σ ′-dérivation de K G tels que SG = K G [u ; σ ′, δ′] et DG = Frac (SG ) =
K G(u ; σ ′, δ′).

Preuve. Une démonstration détaillée figure en [1]. ��

1.3.2. Remarques

(i) Ce théorème étend aux algèbres de polynômes non commutatives définies par
extension de Ore un résultat de T. Miyata ([16]) en théorie classique des invariants.
On trouvera en [11] et à la remarque 1.3 de [2] des références bibliographiques
sur ce théorème de Miyata et certaines de ses nombreuses applications.

(ii) Parmi ces applications figurent toutes les situations où le théorème de Lie–Kolchin
permet de triangulariser l’action du groupe (voir en particulier l’article [22] de
E.B. Vinberg). On conclut alors que le corps des fonctions rationnelles invariantes
est extension transcendante pure de k simplement en appliquant un nombre fini de
fois le théorème de Miyata. Pour le prolongement de l’action aux opérateurs
différentiels considéré en (*), une telle application itérative du théorème 1.4 ci-
dessus permet de même de prouver que Dn(k)G,ρ est le corps de fractions d’une
extension itérée de Ore. Le problème difficile (qui ne se pose pas dans la situa-
tion commutative) est de reconnaı̂tre ce corps Dn(k)G,ρ comme un corps de Weyl.
C’est ce que l’on parvient à faire dans les deux situations particulières qui font
l’objet des deux sections suivantes.

2. Cas d’une somme directe de représentations de dimension 1

2.1. Résolution du problème de Noether non commutatif pour une somme
directe de représentations de dimension 1

Le résultat central de cette section est le théorème suivant.
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Théorème 2.1. Soit G un groupe. Soit ρ une représentation de G qui est somme directe
de n représentations de dimension 1 de G. Alors, il existe un entier 0 ≤ s ≤ n unique
tel que Dn(k)G,ρ � Dn−s,s(k).

Preuve. L’unicité de s est claire puisque il s’agit du degré de transcendance sur
k du centre de Dn−s,s(k). La preuve de l’existence de s procède par récurrence
sur n.

1) Supposons d’abord que n = 1. Avec les notations du paragraphe 1.2, on con-
sidère donc une représentation ρ de G de dimension 1. Le groupe G = ρ(G) opère
alors sur l’algèbre de Weyl A1(k) = k[q1][p1 ; ∂1] par des automorphismes de la
forme

g(q1) = χ1(g)q1, g(p1) = χ1(g)
−1 p1, pour tout g ∈ G

où χ1 est un caractère G → k∗. Comme en 1.3.1.(ii), considérons dans A1(k)
l’élément w1 = q1 p1, qui est invariant sous l’action de G. Considérons dans le corps
D1(k) = k(w1)(p1, σ1) la sous-algèbre S1(k) = k(w1)[ p1, σ1]. Il est clair que
Frac S1(k) = D1(k). Tout g ∈ G fixe w1 et agit sur p1 par g(p1) = χ1(g)p1. On
est donc dans les conditions d’application du théorème 1.4. Ou bien S1(k)G ⊆ k(w1),
alors D1(k)G = S1(k)G = k(w1)

G = k(w1); on conclut dans ce cas que D1(k)G �
D1−s,s(k) avec s = 1. Ou bien S1(k)G �⊆ k(w1), et alors S1(k)G est une extension
de Ore de la forme k(w1)[u ; σ ′, δ′] avec σ ′ un automorphisme et δ′ une σ ′-dérivation
de k(w1), et u un polynôme en p1 à coefficients dans k(w1), tel que g(u) = u pour
tout g ∈ G, et de degré ≥ 1 minimal parmi les degrés des éléments possédant cette
propriété. Vu la forme de l’action de G sur p1, il est clair que l’on peut choisir un
tel u sous la forme d’une puissance u = pa

1 avec a entier ≥ 1, et donc σ ′ = σ a
1 et

δ′ = 0. En résumé D1(k)G = Frac S1(k)G = k(w1)(pa
1 ; σ a

1 ). Ce corps est encore
engendré par x = pa

1 et y = a−1w1 p−a
1 , qui vérifient xy − yx = 1. On conclut que

D1(k)G � D1(k) = D1−s,s(k) avec s = 0.
2) Supposons maintenant, par hypothèse de récurrence, que le théorème est vrai pour
toute représentation de dimension ≤ n − 1 de tout groupe sur tout corps de ca-
ractéristique nulle. Considérons un groupe G quelconque et ρ : G → GL(V ) une
représentation de dimension n, que l’on suppose être somme directe de représentations
de dimension 1. En reprenant les notations des paragraphes 1.1 et 1.3.1.(ii), le sous-
groupe G = ρ(G) de GL(V ) opère donc sur An(k) par automorphismes de la forme

g(qi ) = χi (g)qi , g(pi) = χi (g)
−1 pi , pour tout g ∈ G et tout 1 ≤ i ≤ n,

où χ1, χ2, . . . , χn sont des caractères G → k∗. Donc

g(wi ) = wi , pour tout g ∈ G et tout 1 ≤ i ≤ n.

Dans le corps de Weyl

Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)(pn ; σn),

considérons les sous-corps:

L = k(wn),
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K = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)

= k(wn)(w1, w2, . . . , wn−1)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)

� Dn−1(L),

ainsi que la sous-algèbre Sn(k) = K [pn ; σn], qui vérifie Frac Sn(k) = Dn(k).
D’après l’hypothèse de récurrence appliquée à la restriction de l’action de G par L-
automorphismes sur An−1(L), il existe un entier 0 ≤ s ≤ n − 1 tel que Dn−1(L)G �
Dn−1−s,s(L) � Dn−(s+1),s+1(k). Puisque K est stable par G, on peut appliquer le
théorème 1.4 à l’anneau de polynômes de Ore Sn(k) = K [pn ; σn]. Deux cas sont
donc possibles.

Premier cas: Sn(k)G = K G . On obtient directement que: Dn(k)G = Frac (Sn(k)G) =
K G � Dn−1(L)G � Dn−(s+1),s+1(k), ce qui montre le résultat voulu.

Second cas: il existe un polynôme u de degré ≥ 1 en pn , à coefficients dans K , tel
que g(u) = u pour tout g ∈ G. En choisissant u de degré ≥ 1 minimum parmi
les degrés en pn des éléments de Sn(k)G n’appartenant pas à K , il existe alors un
automorphisme σ ′ et une σ ′-dérivation δ′ de K G tels que: Sn(k)G = K G [u ; σ ′, δ′]
et Dn(k)G = Frac Sn(k)G = K G(u ; σ ′, δ′).

Développons u = fm pm
n + · · · + f1 pn + f0 où m entier ≥ 1 et fi ∈ K G pour tout

0 ≤ i ≤ m. Il est clair, vu la forme de l’action de G sur pn , que fm pm
n est lui-même

invariant sous G. On développe fm dans le corps de séries de Laurent:

K = k(w1, w2, . . . , wn)((p1 ; σ1))((p2 ; σ2)) · · · ((pn−1 ; σn−1)).

Comme l’action de G se prolonge à K en agissant diagonalement sur p1, . . . , pn−1 et
en fixant leswi , on peut finalement choisir sans restriction un u monomial, c’est-à-dire
de la forme

u = pa1
1 . . . pan

n avec (a1, . . . , an) ∈ Zn, et an ≥ 1.

Pour tout indice 1 ≤ j ≤ n, la relation de commutation entre u et w j est uw j =
(w j + a j )u. Introduisons donc les éléments:

w′1 = w1 − a−1
n a1wn, w′2 = w2 − a−1

n a2wn, . . . , w′n−1 = wn−1 − a−1
n an−1wn,

de sorte quew′j u = uw′j pour tout 1 ≤ j ≤ n−1. Comme σi (w
′
j ) = w′j+δi, j pour 1 ≤

i, j ≤ n−1, le corps Fn−1 = k(w′1, w′2, . . . , w′n−1)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)
est isomorphe à Dn−1(k). Plus précisément, Fn−1 est le corps de fractions de l’algèbre
k[q ′1, . . . , q

′
n−1][p1 ; ∂q ′1 ] . . . [pn−1 ; ∂q ′n−1

], où l’on a posé q ′i = wi p−1
i pour tout

1 ≤ i ≤ n − 1. Cette dernière algèbre est isomorphe à l’algèbre de Weyl An−1(k).
En lui appliquant l’hypothèse de récurrence, il existe un entier 0 ≤ s ≤ n − 1
tel que FG

n−1 � Dn−1−s,s(k). Il est clair par ailleurs par définition des w′j que
k(wn)(w

′
1, w

′
2, . . . , w

′
n−1) = k(wn)(w1, w2, . . . , wn−1); puisque wn commute avec

tout élément de Fn−1, on en déduit que K = Fn−1(wn). L’algèbre Sn(k)G =
K G [u ; σ ′, δ′] s’écrit alors sous la forme Sn(k)G = FG

n−1(wn)[u ; σ ′, δ′]. Mais le
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générateur u commute avec chaque w′j pour 0 ≤ j ≤ n − 1 comme on l’a vu
plus haut, commute avec tous les pi par définition, et vérifie avec wn la relation
uwn = (wn + an)u. Il suffit donc de poser u′ = a−1

n u pour obtenir: Sn(k)G =
FG

n−1(wn)[u′ ; σ ′′], avec σ ′′ qui vaut l’identité sur FG
n et satisfait: σ ′′(wn) = wn + 1.

Il en résulte que Frac Sn(k)G � D1(FG
n−1) � D1(Dn−1−s,s(k)) � Dn−s,s(k), ce qui

achève la preuve. ��

2.2. Application aux groupes abéliens finis

Corollaire 2.2. On suppose ici k algébriquement clos. Soit G un groupe abélien fini.
Pour toute représentation ρ de G, de dimension finie n sur k, on a Dn(k)G,ρ � Dn(k).

Preuve. Comme G est abélien fini, toute représentation de G est somme directe de
représentations de dimension 1. On applique alors le théorème 2.1 et la proposition 1.3.

��
Le résultat de ce corollaire est prouvé, par une méthode directe, au théorème 3.3

de [2].

2.3. Application à l’action canonique de sous-groupes d’un tore

Le corollaire suivant montre en particulier que, si l’on ne suppose pas nécessairement
que G est fini, toutes les valeurs possibles de s dans le théorème 2.1 peuvent être
atteintes.

Corollaire 2.3. Soit n un entier fixé ≥ 1. Soit ρ la représentation naturelle du tore
Tn = (k∗)n sur l’espace vectoriel kn. Alors:

(i) Pour tout sous-groupe G de Tn, il existe un entier 0 ≤ s ≤ n unique tel que
Dn(k)G,ρ � Dn−s,s(k).

(ii) Pour tout entier 0 ≤ s ≤ n, il existe au moins un sous-groupe G de Tn, tel que
Dn(k)G,ρ � Dn−s,s(k).

(iii) En particulier, s = n si G = Tn, et s = 0 si G est fini.

Preuve. Le point (i) est l’application directe du théorème 2.1. Pour le (ii), fixons un
entier 0 ≤ s ≤ n. Considérons dans Tn le sous-groupe:

G = {Diag (α1, . . . , αs , 1, . . . , 1) ; (α1, . . . , αs) ∈ (k∗)s} � Ts ,

opérant sur An(k) par automorphismes:

qi 	→ αi qi , pi 	→ α−1
i pi , pour tout 1 ≤ i ≤ s,

qi 	→ qi , pi 	→ pi , pour tout s + 1 ≤ i ≤ n.

Dans le corps Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn ; σn), introduisons
le sous-corps K = k(w1, w2, . . . , wn)(ps+1 ; σs+1)(ps+2 ; σs+2) · · · (pn ; σn).
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La sous-algèbre S = K [p1, ; σ1] · · · [ps, ; σs ] vérifie donc Frac S = Dn(k). Il
est clair que K est invariant par G. S’il existait dans SG un polynôme de degré ≥ 1 en
l’un au moins des p1, . . . , ps , il existerait en particulier (vu la forme de l’action de G)
un monôme:

u = vpd1
1 pd2

2 · · · pds
s v ∈ K , v �= 0, d1, . . . , ds ∈ N, (d1, . . . , ds) �= (0, . . . , 0)

invariant par G. On aurait alors αd1
1 α

d2
2 · · ·αds

s = 1 pour tout (α1, α2, . . . , αs ) ∈ (k∗)s ,
ce qui est impossible. On conclut donc grâce au théorème 1.4 que (Frac S)G = SG =
K G , c’est-à-dire que Dn(k)G = K . Il est clair que K � Dn−s,s(k), ce qui achève la
preuve du point (ii). Le point (iii) découle de la preuve du point (ii) ci-dessus et du
corollaire 2.2 ��

Les actions des tores Tn sur les algèbres de Weyl qui font l’objet de ce corollaire
ont été entre autres considérées dans [18].

3. Cas d’une représentation de dimension 2

3.1. Résolution du problème de Noether non commutatif pour une représen-
tation de dimension 2

3.1.1. Un résultat technique préliminaire

On commence par énoncer sous forme du lemme suivant un argument qui interviendra
plusieurs fois dans la preuve du théorème principal.

Lemme 3.1. Soit D une dérivation du corps commutatif de fractions rationnelles
k(x, y) de la forme D = ax∂x + by∂y, avec (a, b) ∈ Z2, (a, b) �= (0, 0). Alors:

Frac k(x, y)[z ; D] � D1,1(k).

Preuve. Posons A = k(x, y)[z ; D]. Notons d le pgcd de a et b. Désignons par a′ et
b′ les entiers définis par a = da′ et b = db′. En posant z′ = d−1z et D′ = d−1 D, on
a clairement A = k(x, y)[z′ ; D′]. D’après le théorème de Bezout, il existe des entiers
c, e tels que a′e − b′c = 1. Les éléments x ′ = x−b′ ya′ et y ′ = xe y−c vérifient donc
k(x, y) = k(x ′, y ′). On vérifie sans difficulté que D′(x ′) = 0 et D′(y ′) = y ′. Donc
Frac A = k(x ′, y ′)(z′ ; D′) avec [z′, x ′] = 0 et [z′, y ′] = y ′. Un dernier changement
de générateur z′′ = y ′−1z′ ramène ces relations à [z′′, x ′] = 0 et [z′′, y ′] = 1. On
conclut que Frac A = k(x ′)(y ′)(z′′ ; ∂y′) � D1(k(x ′)) � D1,1(k). ��

3.1.2. Données et notations

Pour toute la suite, on fixe un groupe G et une représentation ρ de G de dimension 2
sur k. Le groupe G = ρ(G) opère par automorphismes sur l’algèbre de Weyl A2(k).
On note, pour g ∈ G quelconque:
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g(q1) = αgq1 + βgq2, g(q2) = γgq1 + δgq2,

g(p1) = 1

�g
(δg p1 − γg p2), g(p2) = 1

�g
(−βg p1 + αg p2),

où αg, βg, γg, δg ∈ k tels que �g = αgδg − βgγg �= 0.
Comme en 1.1.3, introduisons

w = q1 p1 + q2 p2,

qui est invariant sous l’action de G d’après le lemme 1.2.

3.1.3. Triangularisation de l’action

Suivant un procédé bien connu (qui semble remonter à W. Burnside, voir [11]), on
commence par triangulariser l’action de G sur le corps commutatif k(V ) = k(q1, q2)
en posant v = q1q−1

2 , de sorte que k(V ) = k(v, q2) et que, avec les notations ci-
dessus, on a pour tout g ∈ G:

g(v) = αgv + βg

γgv + δg
, g(q2) = (γgv + δg)q2.

Comme en 1.3.1 (ii), on regarde D2(k) comme corps de fractions de l’extension de
Ore:

D2(k) = k(q1, q2)(w1 ; d1)(w2 ; d2),

avec w1 = q1 p1, w2 = q2 p2, d1 = q1∂1 et d2 = q2∂2. En notant d la dérivation
de k(q1, q2)(w1 ; d1) telle que d(q1) = q1, d(q2) = q2 et d(w1) = 0, on a encore
D2(k) = k(q1, q2)(w1 ; d1)(w ; d), d’où

D2(k) = k(v, q2)(w1 ; d1)(w ; d),

avec d1(v) = v et d(v) = d(w1) = 0. Les générateurs v, q2, w,w1 du corps D2(k)
vérifient donc les relations de commutation:

[v, q2] = [w1, q2] = [w, v] = [w,w1] = 0, [w1, v] = v, [w, q2] = q2.

L’action de G sur v, q2, w est décrite ci-dessus; pour w1 on obtient:

g(w1) = 1

�g
(αgq1 + βgq2)(δg p1 − γg p2)

= 1

�g
(αgδgq1 p1 − βgγgq2 p2 − αgγgq1 p2 + βgδgq2 p1)

= 1

�g
(αgδgw1 − βgγg(w −w1)− αgγgv(w − w1)+ βgδgv

−1w1)

= 1

�g
(αg + βgv

−1)(γgv + δg)w1 − 1

�g
γg(βg + αgv)w.
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En vue de simplifier la forme de l’action, on pose x = (q1q2)
−1w1 = v−1q−2

2 w1 =
q−1

2 p1, de sorte que g(x) = 1
�g

x − 1
�g
γgq−2

2 (γgv + δg)
−1w pour tout g ∈ G. Il

est clair que D2(k) est engendré sur k par v, q2, w, x , et on calcule [x, v] = q−2
2 ,

[x, q2] = 0, [x, w] = 2x .
Les résultats obtenus peuvent alors être synthétisés dans le lemme suivant:

Lemme 3.2. Les données et notations sont celles de 3.1.2.

(i) Les éléments w = q1 p1 + q2 p2, v = q1q−1
2 et x = q−1

2 p1 vérifient les relations
de commutation:

[q2, v] = 0, [w, v] = 0, [x, v] = q−2
2 ,

[w, q2] = q2, [x, q2] = 0,

[x, w] = 2x .

(ii) En notant:
- d la dérivation du corps commutatif k(v, q2) telle que d(v) = 0 et d(q2) = q2,
- K le corps gauche k(v, q2)(w ; d),
- σ ′ le k-automorphisme de K fixant v et q2, et tel que σ ′(w) = w + 2,
- d ′ la σ ′-dérivation de K telle que d ′(v) = q−2

2 , d ′(q2) = 0, d ′(w) = 0,
- S la k-algèbre K [x ; σ ′, d ′],

on a:

D2(k) = Frac S = K (x ; σ ′, d ′) = k(v, q2)(w ; d)(x ; σ ′, d ′).

(iii) L’action sur D2(k) d’un automorphisme quelconque g de G, défini par αg, βg, γg,
δg ∈ k∗ avec �g = αgδg − βgγg �= 0, est déterminée par son action sur ces
générateurs:

g(v) = αgv + βg

γgv + δg
, g(q2) = (γgv + δg)q2,

g(w) = w, g(x) = 1

�g
x − 1

�g
γgq−2

2 (γgv + δg)
−1w.

(iv) En particulier chacun des trois sous-corps k(v) ⊂ k(v, q2) ⊂ K = k(v, q2)(w ; d)
est stable sous l’action de G.

Le point (iv), qui traduit la triangularisation de l’action de G sur D2(k), est à la
base de la méthode utilisée pour résoudre ici le problème (*). Il va en effet permettre
d’appliquer le théorème 1.4 à l’anneau de polynômes de Ore S = K [x ; σ ′, d ′]. La
preuve se scinde alors dès le départ en deux cas, dont le plus simple est celui traité au
lemme suivant.
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3.1.4. Cas où il n’existe pas dans S de polynômes de degré ≥ 1 en x invariants
par G

On obtient alors directement une réponse positive au problème (*).

Lemme 3.3. Les données et notations sont celles du lemme 3.2. On suppose de plus
que SG ⊂ K . Alors il existe deux entiers naturels m, t vérifiant 1 ≤ 2m + t ≤ 3 tels
que

D2(k)
G = SG = K G � Dm,t (k).

Preuve. En appliquant le théorème 1.4, on alors D2(k)G = SG = K G . Soit A =
k(v, q2)[w ; d], de sorte que Frac A = K . Puisque k(v, q2) est stable par G, et comme
w est lui-même invariant par G, (de degré 1 en w, donc nécessairement minimal), on
réapplique le théorème 1.4 pour conclure que K G = Frac (AG) = k(v, q2)

G(w ; d).
Il reste à déterminer k(v, q2)

G . Posons pour cela B = k(v)[q2]. Rappelons que G agit
sur B par automorphismes de la forme g(v) = αgv+βg

γgv+δg
, g(q2) = (γgv + δg)q2. Deux

cas peuvent alors de nouveau se présenter.

Premier cas: si BG ⊂ k(v), on a k(v, q2)
G = k(v)G qui, d’après le théorème de

Lüroth, est soit une extension transcendante pure monogène k(t), soit réduit à k. On
conclut respectivement que D2(k)G = k(t)(w) � D0,2(k) ou D2(k)G = k(w) �
D0,1(k).

Second cas: sinon, il existe dans BG des polynômes de degré ≥ 1 en q2. Soit alors
q ∈ BG , de degré en q2 non-nul minimal. Vu la forme de l’action de G sur B , on
peut sans restriction prendre q monomial. Notons q = sqe

2, avec s ∈ k(v), s �= 0
et e entier ≥ 1. Il résulte du théorème 1.4 (sous la forme originale commutative de
Miyata) que k(v, q2)

G = k(v)G (q). Comme ci-dessus, le théorème de Lüroth conduit
à k(v, q2)

G = k(t, q) si k(v)G = k(t) et k(v, q2)
G = k(q) si k(v)G = k. Comme

[w, v] = 0 (d’où [w, t] = 0) et [w, q2] = q2 (d’où [w, q] = eq), on déduit que

D2(k)
G = k(t, q)(w ; d) ou D2(k)

G = k(q)(w ; d).

Il suffit de remplacer le générateur w par (eq)−1w pour conclure que D2(k)G �
D1,1(k) ou D2(k)G � D1,0(k), ce qui achève la preuve. ��

3.1.5. Cas où il existe dans S des polynômes de degré ≥ 1 en x invariants par G

Dans toute la suite, on supposera que SG n’est pas inclus dans K G .
On montre d’abord que l’on peut alors remplacer, dans l’extension de Ore S =

K [x ; σ ′, d ′], le générateur x par un générateur y qui est vecteur propre de tous les
automorphismes de G pour la représentation déterminant.

Lemme 3.4. Les données, hypothèses et notations sont celles du lemme 3.2. On sup-
pose de plus que SG n’est pas inclus dans K G.
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(i) Il existe une fraction rationnelle b(v) ∈ k(v) telle que

g(b) = 1

�g
(γgv + δg)

2b + 1

�g
γg(γgv + δg), pour tout g ∈ G.

(ii) En posant y = x + b(v)q−2
2 w = q−1

2 p1 + b(v)q−2
2 w ∈ S, on a les relations de

commutation:

[q2, v] = 0, [w, v] = 0, [y, v] = q−2
2 ,

[w, q2] = q2, [y, q2] = b(v)q−1
2 ,

[y, w] = 2y.

(iii) En notant:

- d la dérivation de k(v, q2) telle que d(v) = 0 et d(q2) = q2,
- σ ′ le k-automorphisme de K fixant v et q2, et tel que σ ′(w) = w + 2,
- d ′′ la σ ′-dérivation de K telle que d ′′(v) = q−2

2 , d ′′(q2) = b(v)q−1
2 ,

d ′′(w) = 0,

on a
S = K [y ; σ ′, d ′′] = k(v, q2)(w ; d)[y ; σ ′, d ′′].

(iv) L’action sur S d’un automorphisme quelconque g de G, défini par αg, βg, γg, δg ∈
k∗ avec �g = αgδg − βgγg �= 0, est alors déterminée par son action sur ces
générateurs:

g(v) = αgv + βg

γgv + δg
, g(q2) = (γgv + δg)q2,

g(w) = w, g(y) = 1

�g
y.

Preuve. Désignons par n l’entier≥ 1 qui est le minimum des degrés en x des éléments
de SG n’appartenant pas à K G . Choisissons dans SG un élément u = un xn + · · · +
u1x + u0 de degré n, avec ui ∈ K , un �= 0, n ≥ 1.

On a vu au point (iv) du lemme 3.2 que l’action sur x d’un automorphisme quel-
conque g ∈ G est de la forme

g(x) = 1

�g
(x + rg), où l’on a posé rg = −γg(γgv + δg)

−1q−2
2 w ∈ K .

On a donc

g(u) = g(un)

(
1

�g

)n

(x + rg)
n + g(un−1)

(
1

�g

)n−1

(x + rg)
n−1 + · · ·

+ g(u1)
1

�g
(x + rg)+ g(u0).
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En rappelant que K est stable sous l’action de G, explicitons les coefficients dans K
des termes de degré n et n − 1 en x :

g(u) = g(un)

(
1

�g

)n

xn

+
[

g(un)

(
1

�g

)n n−1∑
i=0

σ ′i (rg)+ g(un−1)

(
1

�g

)n−1
]

xn−1 + · · · .

L’égalité g(u) = u conduit donc, pour tout g ∈ G, aux égalités suivantes dans K :

g(un) = (�g)
nun,

g(un−1) = (�g)
n−1un−1 + (�g)

n−1un

n−1∑
i=0

γg(γgv + δg)
−1q−2

2 (w + 2i).

En multipliant les deux membres de la seconde par les inverses des deux membres de
la première, et en notant que

∑n−1
i=0 (w + 2i) = nw + n(n − 1), on obtient

g(u−1
n un−1) =

[
1

�g
u−1

n un−1 + 1

�g
n(n − 1)γg(γgv + δg)

−1q−2
2

]
+
[

1

�g
nγg(γgv + δg)

−1q−2
2

]
w.

L’élément u−1
n un−1 de K = k(v, q2)(w ; d) se développe dans le corps d’opérateurs

pseudo-différentiels formels K = k(v, q2)((w
−1 ; −d)), (voir par exemple [6]), en une

certaine série de Laurent u−1
n un−1 =∑

j>−∞ ϕ jw
− j avec ϕ j ∈ k(v, q2) pour tout j .

Puisque w est invariant sous G, on a g(u−1
n un−1) =∑

j>−∞ g(ϕ j )w
− j , de sorte que

l’identification des coefficients des termes en w dans l’égalité précédente conduit à

g(ϕ−1) = 1

�g
ϕ−1 + 1

�g
nγg(γgv + δg)

−1q−2
2 , pour tout g ∈ G.

L’élément ϕ−1 de k(v, q2) se développe quant à lui dans k(v)((q−1
2 )) en une série

ϕ−1 = ∑
l>−∞ alq

−l
2 avec al ∈ k(v), de sorte que l’identification des coefficients

des termes en q−2
2 dans l’égalité précédente conduit à

(γgv + δg)
−2g(a2) = 1

�g
a2 + 1

�g
nγg(γgv + δg)

−1, pour tout g ∈ G.

On a ainsi trouvé dans k(v) un élément b = n−1a2 qui vérifie

g(b) = 1

�g
(γgv + δg)

2b + 1

�g
γg(γgv + δg), pour tout g ∈ G.
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Posons y = x + bq−2
2 w. D’une part, on a pour tout g ∈ G:

g(y) = g(x)+
[

1

�g
(γgv + δg)

2b + 1

�g
γg(γgv + δg)

]
(γgv + δg)

−2q−2
2 w

= 1

�g
x − 1

�g
γgq−2

2 (γgv + δg)
−1w + 1

�g
bq−2

2 w + 1

�g
γg(γgv + δg)

−1q−2
2 w

= 1

�g
y.

D’autre part, il est clair que y engendre S sur K , et on vérifie immédiatement à partir
des relations entre v, q2, w et x que l’on a: [y, v] = q−2

2 , [y, q2] = bq−1
2 , [y, w] = 2y.

Le reste du lemme en découle. ��
Le but du lemme suivant est d’exprimer, grâce à deux applications successives du

théorème 1.4, l’algèbre SG comme une extension de Ore itérées en deux variables à
coefficients dans le corps commutatif d’invariants k(v, q2)

G .

Lemme 3.5. Les données, hypothèses et notations sont celles du lemme 3.4. On
désigne par n le minimum des degrés en x non-nuls des éléments de SG n’appartenant
pas à K .

(i) On a K G = k(v, q2)
G(w ; d), où d désigne encore la restriction de d à k(v, q2)

G.
(ii) Il existe un entier relatif m et une fraction rationnelle fm(v) ∈ k(v) tels que le

monôme f = fm(v)qm
2 ∈ k(v, q2) vérifie g( f ) = (�g)

n f pour tout g ∈ G.
(iii) L’élément z = f yn est invariant sous l’action de G.
(iv) En notant τ le k-automorphisme du corps gauche K G = k(v, q2)

G(w ; d) fixant
tout élément de k(v, q2)

G et tel que τ (w) = w+2n−m, il existe une τ -dérivation
D de K G vérifiant D(w) = 0 telle que:

SG = k(v, q2)
G(w ; d)[z ; τ, D] et D2(k)

G = k(v, q2)
G(w ; d)(z ; τ, D).

De plus la restriction de D à k(v, q2)
G est nulle lorsque n ≥ 2.

Preuve. Rappelons d’abord que l’élément non-nul un de K considéré au début de la
preuve du lemme 3.4 vérifie g(un) = (�g)

nun pour tout g ∈ G. Cet élément un

de K = k(v, q2)(w ; d) se développe dans le corps d’opérateurs pseudo-différentiels
formels K = k(v, q2)((w

−1 ; −d)) en une certaine série de Laurent un = ∑
j≥ j0

ψ j

w− j avec ψ j ∈ k(v, q2) pour tout j et ψ j0 �= 0. Comme w est invariant sous l’action
de G, on a en particulier g(ψ j0) = (�g)

nψ j0 pour tout g ∈ G. L’élément non-nul
ψ j0 de k(v, q2) se développe lui-même dans k(v)((q2)) en une série de Laurent: ψ j0 =∑

i≥m fi qi
2 avec fi ∈ k(v), fm �= 0. Et donc en particulier g( fm)(γgv + δg)

m =
(�g)

n fm pour tout g ∈ G.
Posons alors f = fmqm

2 ∈ k(v, q2). Il vérifie par construction f �= 0 et g( f ) =
(�g)

n f pour tout g ∈ G. Introduisons enfin z = f yn ∈ S. Par construction, g(z) = z
pour tout g ∈ G. Par ailleurs, il est clair que le degré en x de z dans S est égal à n,
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puisque le degré en x de y est égal à 1. Comme n est précisément la valeur minimale
des degrés des polynômes de S = K [x ; σ ′, d ′] n’appartenant pas à K et invariants
sous G, le théorème 1.4 montre qu’il existe un automorphisme τ et une τ -dérivation
D de K G tels que

SG = K G[z ; τ, D] et D2(k)
G = Frac SG = K G(z ; τ, D).

En appliquant le théorème 1.4 dans l’algèbre S0 = k(v, q2)[w ; d], dont le corps de
fractions est K , il est clair (puisquew est invariant sous G) que K G = k(v, q2)

G(w ; d),
d’où

SG = k(v, q2)
G(w ; d)[z ; τ, D] et D2(k)

G = k(v, q2)
G(w ; d)(z ; τ, D).

On peut expliciter la relation de commutation entre z et w. En effet, comme yw =
(w+2)y, on a ynw = (w+2n)yn, donc f ynw = ( fw+2n f )yn = (w f −d( f ))yn+
2nz = wz + (2n − d( f ) f −1)z. Rappelons que la dérivation d de k(v, q2) vérifie
d(v) = 0 et d(q2) = q2, de sorte que d( f ) = d( fmqm

2 ) = m fmqm
2 = m f . On a donc

finalement:
zw − wz = (2n − m)z.

On peut donner quelques précisions sur les valeurs prises par τ et D sur K G ∩
k(v, q2) = k(v, q2)

G . Rappelons d’abord que la restriction de la σ ′-dérivation d ′′ à
k(v, q2) est une (vraie) dérivation, définie par d ′′(v) = q−2

2 et d ′′(q2) = b(v)q−1
2 .

Pour toute fraction rationnelle a ∈ k(v, q2), on a ya = ay + d ′′(a), d’où par une
récurrence évidente: yna = ayn + nd ′′(a)yn−1 + · · · , où le reste désigné par les
points de suspension est de degré≤ n − 2 en y. En multipliant à gauche par l’élément
f ∈ k(v, q2), on obtient

za = az + nd ′′(a) f yn−1 + · · · pour tout a ∈ k(v, q2),

où le reste nd ′′(a) f yn−1 + · · · est dans k(v, q2)[y ; d ′′]. Si a ∈ k(v, q2)
G , on a par

ailleurs za = τ (a)z + D(a). On tire de ces deux relations que

(τ (a)− a)z + D(a) = nd ′′(a) f yn−1 + · · · pour touta ∈ k(v, q2)
G .

Donc en identifiant les coefficients dans l’égalité (τ (a) − a) f yn + D(a) =
nd ′′(a) f yn−1 + · · · ainsi obtenue, on déduit que la restriction de τ à k(v, q2)

G est
l’identité, de sorte que la restriction de D à k(v, q2)

G est une (vraie) dérivation. Si de
plus n ≥ 2, l’identification implique aussi que d ′′(a) = 0 pour tout a ∈ k(v, q2)

G , et
donc la restriction de D à k(v, q2)

G est nulle. Ce qui achève la preuve. ��
Le lemme précédant établissant que D2(k)G est le corps des fractions d’une exten-

sion de Ore itérée, il reste à l’identifier comme un corps de Weyl. Le raisonnement se
scinde en deux cas suivant que n ≥ 2 ou que n = 1.

3.1.6. Cas où n ≥ 2

Lemme 3.6. Les données, hypothèses et notations sont celles du lemme 3.5. On sup-
pose de plus que n ≥ 2. Alors D2(k)G � D0,2(k), ou D2(k)G � D1,0(k), ou
D2(k)G � D1,1(k).
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Preuve. D’après le lemme 3.5, z commute avec tout élément de k(v, q2)
G . On note

donc que D2(k)G = k(v, q2)
G(w ; d)(z ; τ ). De plus, il résulte des calculs faits ci-

dessus que d ′′(a) = 0 pour tout a ∈ k(v)G . Puisque la restriction à k(v, q2) de d ′′ est
q−2

2 ∂v + b(v)q−1
2 ∂q2 , l’intersection avec k(v) du noyau de d ′′ est réduite à k. Donc

k(v)G = k. Comme dans la preuve du lemme 3.3, on discute alors suivant les cas
possibles pour le corps commutatif k(v, q2)

G . Rappelons que, pour tout g ∈ G, on a

g(v) = αgv + βg

γgv + δg
, g(q2) = (γgv + δg)q2.

Le groupe G opère donc par automorphismes sur la sous-algèbre B = k(v)[q2], ce qui
permet d’appliquer le théorème 1.4 (sous la forme commutative originale de Miyata,
[16]). On distingue deux cas:

Premier cas: on suppose que BG ⊂ k(v)G . Donc k(v)(q2)
G = k(v)G . On a vu ci-

dessus que k(v)G = k. On obtient ainsi D2(k)G = k(w)(z ; τ ). Puisque τ est défini
par τ (w) = w+2n−m, on conclut que D2(k)G = k(w, z) � D0,2(k) lorsque m = 2n,
et que D2(k)G � D1,0(k) lorsque m �= 2n.

Second cas: on suppose que BG �⊂ k(v)G . Notons e le minimum des degrés en q2
non-nuls des éléments de BG . Soit q un élément de B de degré e invariant sous G.
Vu la forme de l’action de G sur q2, on peut sans restriction supposer que q est un
monôme de la forme q = sqe

2, avec s ∈ k(v), s �= 0. L’application du théorème 1.4
conduit alors à k(v, q2)

G = k(v)G (q), c’est-à-dire k(v, q2)
G = k(q). On en déduit que

D2(k)G = k(q)(w ; d)(z ; τ ). Rappelons que la dérivation d de k(v, q2) est définie
par d(v) = 0 et d(q2) = q2. Donc d(q) = d(sqe

2) = seqe
2 = eq . En résumé:

[w, q] = eq, [z, q] = 0, [z, w] = (2n − m)z.

Comme l’entier e est non-nul, on conclut en appliquant le lemme 3.1 à la dérivation
(2n − m)z∂z + eq∂q de k(z, q) que D2(k)G � D1,1(k). ��

3.1.7. Cas où n = 1

Lemme 3.7. Les données, hypothèses et notations sont celles du lemme 3.5. On sup-
pose de plus que n = 1. Alors D2(k)G � D0,2(k), ou D2(k)G � D1,0(k), ou
D2(k)G � D1,1(k) ou D2(k)G � D2,0(k).

Preuve. On peut expliciter les valeurs prises par D sur k(v, q2). En effet, rappelons
(voir le lemme 3.5) que z = f y, où f = fmqm

2 pour un certain entier m ∈ Z et une
fraction fm ∈ k(v) non-nulle satisfaisant la condition g( fm) = �g(γgv + δg)

−m fm

pour tout g ∈ G. Donc D = f d ′′, où la dérivation d ′′ de k(v, q2) est définie (voir
le lemme 3.4) par d ′′(v) = q−2

2 et d ′′(q2) = bq−1
2 , pour un certain b ∈ k(v). En

rappelant le lemme 3.5, on peut donc voir aussi le corps D2(k)G comme corps de
fractions d’un anneau de polynômes de Ore tordu uniquement par dérivations, sous la
forme

D2(k)
G = k(v, q2)

G(z ; D)(w ; d),
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où D est la restriction à k(v, q2)
G de la dérivation de k(v, q2) définie par D(v) =

fmqm−2
2 et D(q2) = fmbqm−1

2 , et d est la dérivation de k(v, q2)
G(z ; D) telle que

d(z) = (m − 2)z et dont la restriction à k(v, q2)
G est définie par d(v) = 0 et d(q2) =

q2.
Comme dans la preuve du lemme 3.6, on considère alors deux cas suivant la nature

des invariants sous G de l’algèbre commutative B = k(v)[q2].

Premier cas: on suppose que BG ⊂ k(v)G . Donc k(v)(q2)
G = k(v)G . D’après le

théorème de Lüroth, on a k(v)G = k ou k(v)G = k(t), extension transcendante pure
de k.

Lorsque k(v)G = k, on obtient D2(k)G = k(z)(w ; d) avec d = (m − 2)∂z ,
d’où D2(k)G = k(z, w) � D0,2(k) si m = 2, et D2(k)G � D1(k) � D1,0(k) si
m �= 2.

Lorsque k(v)G = k(t), on remarque d’abord que, puisque t ∈ k(v), on a: D(t) =
∂v(t)D(v) = ∂v(t) fm qm−2

2 . Comme D(t) doit appartenir à k(v)(q2)
G = k(t) ⊂ k(v),

et comme ni ∂v(t) ni fm ne peuvent être nuls dans k(v), on a forcément m = 2, ce
qui implique que d(z) = 0. Par ailleurs, d(t) = 0 puisque d est nulle sur k(v). On
obtient donc dans ce cas que D2(k)G = k(t)(z ; D)(w). Puisque D(t) �= 0, on pose
z′ = D(t)−1z pour réécrire D2(k)G sous la forme k(w)(t)(z′ ; ∂t ) � D1(k(w)) et
conclure D2(k)G � D1,1(k).

Second cas: on suppose que BG �⊂ k(v)G . Comme on l’a vu au début du second cas
de la preuve du lemme 3.6, on a alors k(v, q2)

G = k(v)G (q), où q est un monôme
de la forme q = sqe

2, avec s ∈ k(v) non-nulle et e un entier ≥ 1. Il est clair qu’alors
d(q) = eq , puisque d(v) = 0 et d(q2) = q2. On calcule ensuite:

D(q) = D(s)qe
2 + seD(q2)q

e−1
2 = ∂v (s)D(v)qe

2 + se fmbqe+m−2
2

= (∂v (s)+ ensb) fmqe+m−2
2 .

Cet élément D(q) = [z, q] ∈ k(v, q2)
G = k(v)G(q) se développe dans k(v)G ((q))

en une série de Laurent D(q) =∑
j>−∞ h j q j avec h j ∈ k(v)G . Puisque q j = s j qej

2
pour tout j , on déduit de l’égalité obtenue ci-dessus que D(q) est un monôme hr qr ,
où l’entier r vérifie e + m − 2 = er , et hr = s−r (∂v(s) + ensb) fm . On convient de
noter simplement dans la suite c = hr ∈ k(v)G . On a donc pour résumer:

D2(k)
G = k(v)G(q)(z ; D)(w ; d),

avec D(q) = cqr et d(q) = eq , c ∈ k(v)G , e entier≥ 1, r entier tel que e+m−2 = er .
D’après le théorème de Lüroth, on a k(v)G = k ou k(v)G = k(t), extension

transcendante pure de k. D’où la disjonction ci-dessous en deux sous-cas.

Premier sous-cas: on suppose k(v)G = k. Donc D2(k)G = k(q)(z ; D)(w ; d), avec
les relations:

[z, q] = D(q) = cqr , [w, q] = d(q) = eq, [w, z] = d(z) = (m − 2)z.

Remarquons que, puisque c ∈ k(v)G , on a ici c ∈ k. Lorsque c = 0, on obtient
D2(k)G = k(q, z)(w ; d) avec d = e∂q + (m − 2)∂z , et il suff it d’appliquer le lemme
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3.1 pour conclure que D2(k)G � D1,1(k). Lorsque c �= 0, posons z′ = c−1q1−r z,
de façon à avoir [z′, q] = q . On calcule: d(z′) = d(q1−r)c−1z + c−1q1−rd(z) =
(1 − r)eq1−rc−1z + c−1q1−r (m − 2)z = (e − re + m − 2)z′. Mais on a vu plus
haut que e + m − 2 − re = 0, de sorte que, en posant D′ = c−1q1−r D, on obtient
D2(k)G = k(q)(z′ ; D′)(w ; d), avec les relations:

[z′, q] = D′(q) = q, [w, q] = d(q) = eq, [w, z′] = d(z′) = 0.

On pose enfin w′ = w − ez′, de sorte que [w′, q] = 0, avec [w′, z′] = 0 et [z′, q] =
q , d’où D2(k)G = k(w′, q)(z′ ; q∂q), et on conclut que D2(k)G = D1(k(w′)) �
D1,1(k).

Second sous-cas: on suppose k(v)G = k(t), extension transcendante pure de k. Il est
clair que d(t) = 0 puisque d est nulle sur k(v)G . On calcule D(t) = ∂v (t)D(v) =
∂v(t) fm qm−2

2 . Mais q = sqe
2 et m − 2 = e(r − 1), d’où qm−2

2 = s1−r qr−1, et donc
D(t) = ∂v(t) fm s1−r qr−1. Posons pour simplifier a = ∂v(t) fms1−r . Remarquons que
a �= 0 dans k(v), car fm et s sont non-nuls (voir le début de cette preuve) et t /∈ k. De
plus, a = D(t)q1−r = [z, t]q1−r est invariant sous G, donc appartient à k(t). Ainsi

D2(k)
G = k(t, q)(z ; D)(w ; d),

avec

[z, t] = D(t) = aqr−1, [z, q] = D(q) = cqr , où a, c ∈ k(t), a �= 0,

[w, t] = d(t) = 0, [w, q] = d(q) = eq, [w, z] = d(z) = (m − 2)z,

et en rappelant que les entiers e,m, r vérifient e ≥ 1 et e + m − 2− re = 0.
Introduisons z′ = q1−r z de sorte que d(z′) = (m− 2)q1−rz+ (1− r)eq1−rz = 0.

En notant D′ = q1−r D, on obtient

D2(k)
G = k(t, q)(z′ ; D′)(w ; d),

avec

[q, t] = 0, [z′, t] = D′(t) = a, [w, t] = d(t) = 0,

[z′, q] = D′(q) = cq, [w, q] = d(q) = eq,

[w, z′] = d(z′) = 0.

Les quatre éléments t , q ,w′′ = 1
eqw et z′′ = − c

eaw+ 1
a z′ engendrent le corps D2(k)G

et vérifient:

[q, t] = 0, [z′′, t] = 1, [w′′, t] = 0,

[z′′, q] = 0, [w′′, q] = 1,

[w′′, z′′] = 0.

On conclut que D2(k)G � D2(k) � D2,0(k), ce qui achève la preuve du lemme.
��
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On peut alors synthétiser les résultats obtenus sous la forme du théorème principal
de cette section.

Théorème 3.8. Soit G un groupe. Soit ρ une représentation de G de dimension 2 sur k.
Alors, il existe deux entiers naturels m, t vérifiant 1 ≤ m+ t ≤ 2, tels que D2(k)G,ρ �
Dm,t (k).

Preuve. Le résultat découle directement des lemmes 3.3, 3.7 et 3.6. ��
Corollaire 3.9. Pour toute représentation ρ de dimension 2 d’un groupe fini G, on a
D2(k)ρ,G � D2(k).

Preuve. On applique le théorème 3.8 et la proposition 1.3. ��

3.2. Application aux opérateurs différentiels invariants sur les surfaces de Klein

3.2.1. Données, notations, et synthèse

On prend ici k = C. On fixe un sous-groupe fini G de SL(2,C) agissant naturellement
sur C2 et on considère le prolongement canonique de cette action par automorphismes
sur l’algèbre de Weyl A2(C) = C[q1, q2][p1 ; ∂1][p2 ; ∂2]. On note toujours S la sous-
algèbre C[q1, q2] et D2(C) le corps non commutatif FracA2(C). Comme expliqué au
paragraphe 0.4 de l’introduction, le théorème 5 de [13] montre que A2(C)G n’est autre
que l’algèbre des opérateurs différentiels sur la surface de Klein SG . Le corollaire
3.9 assure que D2(C)G � D2(C). L’objet de ce qui suit est d’illustrer par quelques
calculs explicites les raisonnements effectués en toute généralité dans la preuve du
théorème 3.8.

Commençons par synthétiser les différentes étapes de la méthode.

(i) Un automorphisme quelconque g ∈ G agit sur A2(C) par

g(q1) = αgq1 + βgq2, g(q2) = γgq1 + δgq2,

g(p1) = δg p1 − γg p2, g(p2) = −βg p1 + αg p2,

où αg, βg, γg, δg ∈ C avec ici �g = αgδg − βgγg = 1.
(ii) La triangularisation de l’action de G sur FracS = C(q1, q2) = C(v, q2) est

donnée par

v = q1q−1
2 , g(v) = αgv + βg

γgv + δg0
, g(q2) = (γgv + δg)q2.

Parce que G est fini, il existe t ∈ C(v) tel que C(v)G = C(t), et C(v)[q2]G �⊂
C(v)[q2]. On a noté e le minimum des degrés en q2 non-nuls des éléments de
C(v)[q2]G , et montré qu’il existe s(v) ∈ C(v) non-nul tel que l’élément q = sqe

2
vérifie C(v)[q2]G = C(t)[q]. En résumé:

t, s ∈ C(v) non-nuls, e ≥ 1 entier, C(v)G = C(t),

C(q1, q2)
G = C(v, q2)

G = C(t, q).
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(iii) Toujours parce que G est fini, on ne peut pas être dans le cadre du lemme 3.3,
et c’est donc le lemme 3.4 qui s’applique, permettant de déterminer une fraction
rationnelle b(v) et un générateur y; mais un point crucial est qu’ici �g = 1 pour
tout g ∈ G, ce qui rend inutile le nouveau changement de variable z = f yn du
lemme 3.5. Ce dernier s’applique donc directement avec n = 1, m = 0, f = fm =
1, z = y et D = d ′′. Et comme n = 1, on est ensuite dans le cas d’application du
lemme 3.7 et non du lemme 3.6. En résumé, on obtient:

D2(C)G = C(v, q2)
G(z ; D)(w ; d) = C(t, q)(z ; D)(w ; d),

avec
(1) w = q1 p1 + q2 p2,
(2) z = q−1

2 p1 + b(v)q−2
2 w, où b(v) ∈ C(v) vérifie g(b) = (γgv + δg)

2b +
γg(γgv + δg), pour tout g ∈ G.

(3) D est la restriction à C(t, q) = C(v, q2)
G de la dérivation de C(v, q2) définie

par D(v) = q−2
2 et D(q2) = b(v)q−1

2 ,
(4) d est la restriction à C(t, q)(z ; D) de la dérivation de C(v, q2)(z ; D) définie

par d(v) = 0, d(q2) = q2, et d(z) = −2z.
(iv) Il est alors possible de reconnaı̂tre D2(C)G comme un corps de Weyl D2(C) en

déterminant explicitement des générateurs P1, P2, Q1, Q2 du corps d’invariants
satisfaisant les relations canoniques. Rappelons le procédé décrit pour cela au
second sous-cas du second cas de la preuve du lemme 3.7. On vérifie que D(q)
est de la forme

D(q) = c(t)qr , où r entier tel que e − 2 = re, et c(t) ∈ C(t).

On vérifie que D(t) est de la forme

D(t) = a(t)q j−r , pour l’entier r ci-dessus et

a(t) = ∂v(t)s1−r ∈ C(t), a(t) �= 0.

On pose P1 = − c(t)
ea(t)w + q1−r

a(t) z, Q1 = t , P2 = 1
eqw, Q2 = q .

On a D2(C)G = C(Q1, Q2)(P1 ; ∂Q1)(P2 ; ∂Q2).
(v) En résumé, si l’on excepte l’étape (iv) ci-dessus, qui se limite à une vérification

calculatoire automatique, la méthode se ramène à deux problèmes:
– le premier de théorie classique des invariants commutatifs est la détermination

de t et q comme au (ii) ci-dessus,
– le second, spécifique au problème de Noether non commutatif, est la détermi-

nation d’un générateur z, c’est-à-dire d’une fraction rationnelle b(v) ∈ C(v),
satisfaisant la condition (2) du point (iii) ci-dessus. On donne dans la suite
une méthode de construction explicite d’un tel z.

3.2.2. Méthode de détermination d’un générateur z

L’algèbre commutative S = C[q1, q2] est munie d’une structure d’algèbre de Poisson
pour le crochet de Poisson défini à partir des relations {q1, q2} = 1 et {q1, q1} =
{q2, q2} = 0, c’est-à-dire défini par
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{s, t} = ∂1(s)∂2(t)− ∂2(s)∂1(t) pour tous s, t ∈ S.

Pour tout s ∈ S, l’application σs : t 	→ {s, t} est une dérivation de S, dite
dérivation hamiltonienne associée à s. L’action naturelle de SL(2,C) est compati-
ble avec le crochet de Poisson, et donc toute dérivation hamiltonienne associée à
un élément de SG est invariante pour le prolongement canonique de cette action à
A2(C). Par l’introduction de dérivations logarithmiques hamiltoniennes associés à cer-
tains éléments homogènes de SG , on en déduit au lemme suivant la construction de
dérivations z ∈ A2(C)G satisfaisant les conditions voulues.

Lemme 3.10. Les données hypothèses et notations sont celles de 3.2.1. Si f est un
élément non-nul de SG homogène de degré k ≥ 2, alors:

(i) l’élément z = − 1
k f −1σ f de D2(C) est invariant sous l’action de G;

(ii) l’élément b = − 1
k f −1∂1( f )q2 de C(q1, q2) appartient à C(v), et il vérifie

z = q−1
2 p1+b(v)q−2

2 w et g(b) = (γgv+δg)
2b(v)+γg(γgv+δg) pour tout g ∈ G.

Preuve. Le point (i) est clair puisque f ∈ SG , et donc σ f ∈ A2(C)G . Pour (ii), notons

f = ∑
λi q

ai
1 qk−ai

2 avec λi ∈ C et 1 ≤ ai ≤ k. On a f = (∑ λiv
ai )qk

2 , en rappelant

que v = q1q−1
2 . Par ailleurs ∂1( f ) =∑

λi ai q
ai−1
1 qk−ai

2 = (∑ λi aiv
ai−1)qk−1

2 . D’où
b ∈ C(v). Puisque f est homogène de degré k, on a (q1∂1 + q2∂2)( f ) = k f , donc

∂2( f ) = q−1
2 k f − q−1

2 q1∂1( f ) = k[q−1
2 + q1q−2

2 b(v)] f.

Il en résulte que σ f = ∂1( f )p2 − ∂2( f )p1 = −kb(v)q−1
2 f p2 − k[q−1

2 +
q1q−2

2 b(v)] f p1. L’élément z défini en (i) vérifie donc

z = b(v)q−1
2 p2 + [q−1

2 + q1q−2
2 b(v)] p1 = q−1

2 p1 + b(v)q−2
2 w,

en rappelant que par définition w = q1 p1 + q2 p2. Le calcul de g(b) s’en déduit
en utilisant les égalités g(z) = z, g(w) = w, g(q2) = γgq1 + δgq2 et g(p1) =
δg p1 − γg p2. ��

La classification des sous-groupes finis de SL(2,C) en types An , Dn , E6, E7, E8
est un résultat classique (voir par exemple [21] ou [1]). Pour tout sous-groupe fini G
de SL(2,C), SG est la C-algèbre commutative engendrée par 3 polynômes homogènes
f1, f2, f3 explicitement déterminés suivant les types (voir par exemple [3] ou [4]):

• type An : f1 = q1q2, f2 = qn
1 , f3 = qn

2 ,

• type Dn : f1 = q2
1 q2

2 , f2 = q2n
1 + (−1)nq2n

2 , f3 = q2n+1
1 q2 − (−1)nq1q2n+1

2 ,

• type E6 : f1 = q1q5
2 − q5

1 q2, f2 = q8
1 + 14q4

1q4
2 + q8

2 ,

f3 = q12
1 − 33q8

1q4
2 − 33q4

1q8
2 + q12

2 ,

• type E7 : f1 = q8
1 + 14q4

1q4
2 + q8

2 , f2 = q10
1 q2

2 − 2q6
1 q6

2 + q2
1 q10

2 ,

f3 = q17
1 q2 − 34q13

1 q5
2 + 34q5

1q13
2 − q1q17

2 ,
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• type E8 : f1 = q11
1 q2 + 11q6

1q6
2 − q1q11

2 ,

f2 = q20
1 − 228q15

1 q5
2 + 494q10

1 q10
2 + 228q5

1q15
2 + q20

2 ,

f3 = q30
1 + 522q25

1 q5
2 − 10005q20

1 q10
2 − 10005q10

1 q20
2 −522q5

1q25
2 +q30

2 .

L’application du lemme 3.10 en choisissant par exemple f = f1 permet de
déterminer explicitement b(v) et z.

Proposition 3.11. Les données, hypothèses et notations sont celles de 3.2.1. Une frac-
tion rationnelle b(v) ∈ C(v) telle que l’élément z = q−1

2 p1+ b(v)q−2
2 w satisfasse les

conditions du point (iii) de 3.2.1 est donnée suivant le type de G par

type An Dn E6 E7 E8

b(v) − 1

2v
− 1

2v
− 1− 5v4

6(v − v5)
− 8v + 56v5

8(v8 + 14v4 + 1)
− 11v10 + 66v5 − 1

12(v11 + 11v6 − v)

Preuve. Pour chaque type, on choisit le générateur f1 de SG donné dans la liste
ci-dessus. En appelant k son degré total, on calcule b(v) = − 1

k f −1∂1( f )q2 et on
applique le lemme 3.10. ��

La proposition ci-dessus résolvant la seconde des questions posées au point (v)
de 3.2.1, la méthode résumée en 3.2.1 permet en théorie de calculer explicitement
des générateurs P1, Q1, P2, Q2 de D2(C)G en fonction des générateurs p1, q1, p2, q2
de D2(C) donnés au départ. On donne ci-dessous un exemple d’un tel calcul pour le
type An .

3.2.3. Cas où G est du type An−1

On suppose ici que G = 〈γ 〉 est cyclique d’ordre n ≥ 2, où γ agit par

γ : q1 	→ ωq1, q2 	→ ω−1q2, avec ω = exp
2iπ

n
.

On a γ (v) = ω2v. On peut expliciter les calculs résumés précédemment en 3.2.1, dont
on reprend ci-dessous toutes les notations:

Premier cas: n est impair. Posons n = 2 p + 1, (p ≥ 0). On a C(v)G = C(t) pour
t = vn . L’élément q = v p+1q2 de C(v)[q2] est invariant par G, de degré en q2 égal
à 1 donc minimal; donc e = 1 et s(v) = v p+1. Conformément à la proposition 3.11,
on prend b(v) = − 1

2v . Donc D(q2) = − 1
2v q−1

2 et D(v) = q−2
2 permettent de calculer

D(q) = n
2 tq−1 et D(t) = nt2q−2, d’où r = −1, c(t) = n

2 t et a(t) = nt2. Par ailleurs,

le calcul de z = q−1
2 p1 + b(v)q−2

2 w conduit à z = 1
2 q−1

2 p1 − 1
2 q−1

1 p2. On conclut
que les quatre éléments:

Q2 = q = q p+1
1 q−p

2
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Q1 = t = q2p+1
1 q−2p−1

2

P2 = q−1w = q−p
1 q p

2 p1 + q−p−1
1 q p+1

2 p2

P1 = −c(t)a(t)−1w + q2a(t)−1z

= − p

2 p + 1
q−2p

1 q2p+1
2 p1 − p + 1

2 p + 1
q−2p−1

1 q2p+2
2 p2

vérifient

Frac SG = C(q1, q2)
G = C(Q1, Q2) et D2(C)G = C(Q1, Q2)(P1 ; ∂Q1)(P2 ; ∂Q2).

Second cas: n’est pair. Posons n = 2 p, (p ≥ 1). On détermine successivement t = v p

et q = vq2
2 , d’où e = 2 et s(v) = v. Avec toujours D(q2) = − 1

2v q−1
2 et D(v) = q−2

2 ,
on calcule D(q) = 0 et D(t) = pt2q−1, d’où r = 0, c(t) = 0 et a(t) = pt . A partir
de z = 1

2 q−1
2 p1 − 1

2 q−1
1 p2, on obtient que les quatre éléments:

Q2 = q = q1q2

Q1 = t = q p
1 q−p

2

Q1 = t = q p
1 q−p

2

P2 = 1

2
q−1w = 1

2
(q−1

2 p1 + q−1
1 p2)

P1 = −1

2
c(t)a(t)−1w + qa(t)−1z = 1

2 p
q1−p

1 q p
2 p1 − 1

2 p
q−p

1 q p+1
2 p2

vérifient

Frac SG = C(q1, q2)
G = C(Q1, Q2) et D2(C)G = C(Q1, Q2)(P1 ; ∂Q1)(P2 ; ∂Q2).

Le premier cas où l’on ne peut pas choisir pour appliquer le lemme 3.11 un élément
f1 ∈ SG monomial, ce qui rend un peu plus complexes les calculs, est celui du type
E6, que l’on traite ci-dessous à titre d’exemple.

3.2.4. Cas où G est du type E6

On suppose ici que G est le groupe tétraédral binaire. Ce groupe G, d’ordre 24, est
engendré par γ , μ et η agissant par

γ : q1 	→ iq1, q2 	→ −iq2,

μ : q1 	→ iq2, q2 	→ iq1,

η : q1 	→ 1√
2
(ζ 7q1 + ζ 7q2), q2 	→ 1√

2
(ζ 5q1 + ζq2),
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avec i = exp 2iπ
4 et ζ = exp 2iπ

8 . L’action de G sur C(c, q2) est donc définie par

γ (v) = −v, μ(v) = 1

v
, η(v) = i

v + 1

v − 1
,

γ (q2) = −iq2, μ(q2) = ivq2, η(q2) = ζ√
2
(−v + 1)q2.

On définit dans C(v) les éléments:

u = v2 + 1

v2 − 1
= q2

1 + q2
2

q2
1 − q2

2

et

h = u2 + j

u2 + j2
= jv4 + 2(1− j2)v2 + j

v4 + 2( j − j2)v2 + 1

= jq4
1 + 2(1− j2)q2

1 q2
2 + jq4

2

q4
1 + 2( j − j2)q2

1 q2
2 + q4

2

.

Ils vérifient par construction:

γ (u) = u, μ(u) = −u, η(u) = 2v

v2 + 1
,

γ (h) = h, μ(h) = h, η(h) = jh.

On a C(v)γ = C(v2). Mais C(v2) = C(u) car v2 = u+1
u−1 . Or μ(u) = −u, donc

C(v)〈γ,μ〉 = C(u2), qui n’est autre que C(h) car u2 = j− j 2h
h−1 . Puisque η(h) = jh, on

pose

t = h3 =
(

u2 + j

u2 + j2

)3

=
(

jv4 + 2(1− j2)v2 + j

v4 + 2( j − j2)v2 + 1

)3

=
(

jq4
1 + 2(1− j2)q2

1 q2
2 + jq4

2

q4
1 + 2( j − j2)q2

1 q2
2 + q4

2

)3

,

et on conclut que C(v)G = C(u2)η = C(h)η = C(t).
On détermine ensuite q = s(v)qe

2 . Comme on doit avoir γ (q) = q avec γ (v) =
−v et γ (q2) = −iq2, on a forcément e pair. Le degré minimum cherché est e = 2 car
l’élément

s(v) = vuh(h − 1) = ( j − j2)
(v2 + 1)( jv4 + 2(1− j2)v2 + j)

(v2 − 1)(v4 + 2( j − j2)v2 + 1)2
,

vérifie γ (s) = −s, μ(s) = −v−2s et η(s) = −2i(v−1)−2s, conditions qui traduisent
que q = s(v)q2

2 est invariant par G. Conformément à la proposition 3.11, on prend

b(v) = 5v4−1
6v(1−v4)

, que l’on reporte dans D(q2) = b(v)q−1
2 pour calculer, avec D(v) =
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q−2
2 , la valeur de D(q) = D(s)q2

2 + 2s(v)b(v). Après un calcul élémentaire mais
fastidieux, on obtient D(q) = 2

j− j 2 (1−2t), d’où r = 0 et c(t) = 2
j− j 2 (1−2t). Puisque

r = 0, la fraction D(q) est donnée par D(q) = a(t) = ∂v (t)s. On obtient après calcul
a(t) = 6

j 2− j
t (t − 1). Suivant les formules données au point (iv) du paragraphe 3.2.1,

on conclut que

Q2 = s(v)q2
2 ,

Q1 = t

P2 = 1

2s(v)
q−2

2 q1 p1 + 1

2s(v)
q−1

2 p2,

P1 =
[(

2s(v)b(v)− c(t)

2a(t)

)
q1 +

(
s(v)

a(t)

)
q2

]
p1 +

(
2s(v)b(v)− c(t)

2a(t)

)
q2 p2,

vérifient

Frac SG = C(q1, q2)
G = C(Q1, Q2) et D2(C)G = C(Q1, Q2)(P1 ; ∂Q1)(P2 ; ∂Q2).

On peut évidemment exprimer P1, Q1, P2, Q2 uniquement en fonction des géné-
rateurs p1, q1, p2, q2 de départ en utilisant les formules explicites définissant
b(v), s(v), t, a(t), c(t) données ci-dessus.
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[2] ——, Sur les invariants des algèbres de Weyl et de leurs corps de fractions, Lectures Notes
Pure and Applied Math. 197 (1998), 1–10.

[3] J. Alev and Th. Lambre, Comparaison de l’homologie de Hochschild et de l’homologie
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Summary. We describe a “spectral decomposition” of the category of representations of a
Heisenberg Lie algebra whose parameter space is the moduli space of the de Rham local sys-
tems for the dual torus on the formal punctured disc, and the fibers are equal to the category of
representations of the (twisted) lattice Heisenberg algebra.

Subject Classification: 17B69

Introduction

For an abelian category A it is often important to consider its “spectral decomposition”
over some space S of spectral parameters. If S is set, then this is a direct product
decomposition A = ∏

s∈S As . If S is an affine scheme, S = SpecO(S), then this is
a structure of O(S)-category on A. Notice that there is a universal affine S equal to
Spec Z(A), where Z(A) is the Bernstein center of A (which is the endomorphism ring
of the identity endofunctor of A). If S is allowed to be a space of more general nature,
then this is no longer true.

For example, the category of D-modules on a smooth variety X can be seen as
the category of O-modules on the (non-algebraic) stack S equal to the quotient of X
modulo the action of universal formal groupoid. Thus it has a spectral decomposi-
tion over S. As Fourier transform shows, a given abelian category may have different
presentations of this type.

Spectral decompositions may provide a clue to the anticipated de Rham version of
the local Langlands theory. Namely, let k be a field of characteristic 0, and K � k((t))
a local k-field, so SpecK is a formal punctured disc. Let G be a reductive group over k
and G∨ its Langlands dual. Denote by G(K ) the group ind-scheme of formal loops (so
for a test k-algebra R one has G(K )(R) := G(K ⊗̂R)). A first approximation to the
de Rham version of a smooth representation of a p-adic group is a “geometric” abelian
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category A equipped with a G(K )-action and a rigidification of the corresponding
Lie algebra action. The Langlands philosophy suggests looking for a natural spectral
decomposition of A over the moduli space LSG∨ of de Rham G∨-local systems on
SpecK .1 Probably, to define it one needs to elevate the G(K )-action on A to a certain
structure of chiral algebra origin.

In this article we consider, in an ad hoc manner, a toy example when G is a torus
T and A is the category of Heisenberg modules, i.e., representations of a Heisenberg
extension of the Lie algebra t(K ) of some integral level κ (here t is the Lie algebra of
T ). We show that it admits a natural spectral decomposition over LST ∨ whose fibers
are equivalent to the category of representations of a lattice vertex algebra of level κ
(if κ is non-degenerate, then this is a semisimple category with | det κ | non-isomorphic
irreducibles). As was noticed by E. Frenkel, the picture fits into the general pattern of
[DVVV].

In the classical situation (κ = 0) it has a simple geometric meaning. Namely, the
Heisenberg modules are the same as O!-modules on the space of connections C on a
T∨-bundle over Spec K , and our spectral decomposition corresponds to the evident
projection C � LST ∨ .

Conjecturally, the story admits a generalization to the case when G is any reduc-
tive group and A is the category of representations of the corresponding Kac–Moody
algebra of some negative integral level (on which G(K ) acts by conjugation). We hope
to return to this subject elsewhere.

V. Drinfeld was first to highlight the idea of spectral decomposition in the geomet-
ric theory of automorphic forms. I am grateful to him, D. Gaitsgory, and D. Kazhdan
for stimulating discussions. The work was partially supported by NSF grant DMS-
0100108.

1. The space of T∨-local systems

1.1.

As in the introduction, k is our base field of characteristic 0, so “scheme” means
“k-scheme”, etc. For the language of ind-schemes the reader is referred to [D] 6.3
or [BD2] 7.11. In fact, every ind-scheme S that appears below is an ind-affine rea-
sonable ℵ0-ind-scheme. Such S amounts to a topological commutative algebra O(S)
whose topology admits a base formed by a sequence of ideals I1 ⊃ I2 ⊃ . . .
such that O(S) = lim←−O(S)/In and each Ia/In ⊂ O(S)/In is a finitely gener-
ated ideal. We write S = SpfO(S) := ∪SpecO(S)/In , so for a commutative alge-
bra R the set of R-points S(R) is the set of all continuous morphisms of algebras
O(S) → R. An O!-module on S is the same as a discrete O(S)-module M of its
sections; so M = ∪M In where M In ⊂ M is the submodule of elements killed by In

(which are sections supported on SpecO(S)/In ). Such M’s form an abelian k-category
M(S).

1 Notice that LSG∨ has no global functions other than constants, so the usual Bernstein center
of A does not help.
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From now on T is our torus, � := Hom(Gm, T ) the corresponding lattice, so T =
Gm ⊗ �. Let �∨ := Hom(T,Gm) = Hom(�,Z) be the dual lattice, T∨ := Gm ⊗ �∨
the dual torus. The corresponding Lie algebras are t := k ⊗ � and t∨ = t∗ = k ⊗ �∨.

We fix a local field K � k((t)); let O � k[[t]] ⊂ K be the ring of integers, m ⊂ O
its maximal ideal. For a commutative algebra R we write K R := K ⊗̂R � R((t)),
OR := O⊗̂R � R[[t]], mR := m⊗̂R � R[[t]] � t R[[t]].

Any affine scheme Y of finite type defines an ind-scheme of formal loops Y (K )
of the above kind; one has Y (K )(R) := Y (K R). It contains a subscheme Y (O),
Y (O)(R) := Y (OR); there is a canonical morphism Y (O)→ Y defined by the projec-
tion OR → OR/mR = R. So we have a group ind-scheme T (K ) with the Lie algebra
t(K ) = t⊗ K , and so on.

1.2.

Let LST ∨ = LST ∨(X) be the moduli stack of de Rham T∨-local systems on X :=
Spec K . By definition, an R-point of LST∨ is a pair (F,∇)R = (FR,∇) where FR is
a T∨-torsor on X R := Spec K R and ∇ is an R-relative continuous connection on FR .
We assume that FR is trivial étale locally on Spec R.

Here are some convenient descriptions of LST ∨ :
Let ω(K ) be the space of 1-forms on X . This is naturally a commutative group

ind-scheme: ω(K )(R) is the space of 1-forms on X R relative to R. Thus ω(K ) =
Spf Sym̂ K where Sym̂ K := lim←−Sym(K/mn) and K is identified with the space of
continuous linear functionals onω(K ) via a canonical pairing K×ω(K )→ k, f, φ 	→
Res f φ. The ind-scheme C of connections on the trivialized T∨-torsor on X identifies
canonically with t∨ ⊗ ω(K ), ν 	→ ∇ν := ∂t + ν, so

O(C) = Sym̂ t(K ) := lim←− Sym(t⊗ (K/mn)). (1.2.1)

The group ind-scheme T∨(K ) of automorphisms of a T∨-bundle acts on C; the
corresponding gauge action on t∨ ⊗ ω(K ) is g(ν) = ν + d log(g). Thus

LST∨ = C/T∨(K ) = t∨ ⊗ ω(K )/T∨(K ). (1.2.2)

Set T∨(m) := Ker(T∨(O) � T∨) and � := T∨(K )/T∨(m). Thus T∨ =
T∨(O)/T∨(m) is a subgroup of� and�/T∨ = Q×�∨ where Q is the formal group
whose Lie algebra equals t∨⊗(K/O). Setω(K )− := ω(K )/ω(O), C̄ := t∨⊗ω(K )−;
one has C̄ = Spf(Sym t(O)) := lim−→Spec(Sym t(O/mn)) (see (1.2.1)). Since d log

yields an isomorphism T∨(m) ∼→ t∨ ⊗ ω(O), the group scheme T∨(m) acts freely
along the fibers of the projection C → C̄, i.e., one has C̄ = C/T∨(m) and

LST ∨ = C̄/�. (1.2.3)

There is a canonical decomposition ω(K )− = ω(K )irr × k where the projection
ω(K )− → k is the residue map, and k ↪→ ω(K )− is the subspace of forms with
pole of order one. Tensoring it by t∨, we get C̄ = Cirr × t∨. Since the morphism
d log : �→ t∨⊗ω(K )− kills T∨, it yields a morphism Q×�→ (t∨⊗ω(K )irr )×t∨.
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This is an embedding compatible with the product decomposition; it identifies Q with
the formal completion of t∨ ⊗ ω(K )irr at 0, and �∨ ↪→ t∨ is the usual embedding.
Therefore, by (1.2.3), we have a canonical projection

LST∨ → (C irr/Q)× (t∨/�∨) (1.2.4)

which makes LST∨ a T∨-gerbe over (C irr/Q) × (t∨/�∨). Any splitting of the ex-
tension2 0 → T∨ → � → Q × � → 0 yields a trivialization of this gerbe, i.e., an
identification

LST ∨
∼→ (C irr/Q)× (t∨/�∨)× BT∨. (1.2.5)

1.3.

We define anO!-module onLST ∨ as anO!-module on C equivariant with respect to the
action of the group ind-scheme T∨(K ). Thus this is a vector space M equipped with a
discrete O(C)-module structure and a T∨(K )-action3 so that the obvious compatibili-
ties are satisfied. The O!-modules on LST∨ form an abelian k-category M(LST∨).

Since T∨(m) acts freely along the fibers of the projection of C → C̄, we
see that M(LST∨) identifies canonically with the category of �-equivariant O!-
modules on C̄. The equivalence assigns to M as above the module of T∨(m)-invariants
MT ∨(m) equipped with the induced actions of � := T∨(K )/T∨(m) and the algebra
O(C̄).

Denote by V(M) the vector space of coinvariants of the action of the group ind-
scheme � on MT ∨(m). Since T∨(O)/T∨(m) = T∨ is reductive, its coinvariants are
the same as invariants, so one has

V(M) := (MT ∨(m))� = (MT (O))Q×�∨ . (1.3.1)

The functor M 	→ V(M) is right exact.

Remark. According to (1.2.5), an object of M(LST∨) can be thought of as a t∨-family
of D-modules on Cirr equipped with an action of the �∨-translations along t∨ and a �-
grading. Then V is the middle de Rham cohomology functor along the Cirr -variables,
followed by taking the �∨-coinvariants and the 0 component of the grading.

Problem. The definitions of M(LST∨) and V look quite ad hoc for they use two
specific structures available on the stack LST ∨ . It would be very nice to find a right
general geometric setting where they belong, which would cover, in particular, the case
of moduli space of de Rham G-local systems on X for an arbitrary group G.

2 For T = Gm such a splitting amounts to a choice of 1-jet of coordinate (which is a non-zero
element of m/m2); such a choice yields a splitting for any T .

3 A rule that assigns to any test algebra R an action of the group T∨(K R) on M⊗ R compatible
with morphisms of R’s.
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1.4.

This subsection will not be used in the sequel. The categoryM(LST∨) has a following
“Mellin transform” description which can be considered as a manifestation of the de
Rham version of the local geometric class field theory.4

To formulate it, consider the ind-scheme T (K ). A D-module on T (K ) is an O!-
module on T (K ) equivariant with respect to the translation action of the Lie algebra
t(K ) of T (K ). Precisely, this is a vector space M equipped with O(T (K ))-module
structure and a action of the commutative Lie algebra t(K ) that are compatible via the
translation action of t(K ) on O(T (K )); both O(T (K ))- and t(K )-actions are assumed
to be continuous (the topology on M is discrete). These objects form an abelian k-
category M(T (K ),D).

Proposition. There is a canonical equivalence of categories

M(LST∨)
∼→M(T (K ),D). (1.4.1)

Proof. The equivalence is a Fourier–Laumon transform [L] combined with the local
self-duality of Contou–Carrère [CC]. Namely, let M be a vector space. Let us show
that the two kind of structures on M — a structure of O!-module on LST ∨ and of
D-module on T (K ) — actually do not differ.

The first structure consists of compatible O(C)- and T∨(K )-actions, the second
one of compatible O(T (K ))- and t(K )-actions. Now a O(C)-action is the same as
a t(K )-action by (1.2.1). Also a T∨(K )-action is the same as an O(T (K ))-action.
Indeed, by [CC], the group ind-scheme Gm(K ) is Cartier self-dual in a canonical way,
so T (K ) = � ⊗Gm(K ) is Cartier dual to T∨(K ) = �∨ ⊗Gm(K ), which means that
the corresponding topological Hopf algebras are mutually dual (see [BD1] 3.10.12,
3.10.13), hence the assertion.

It remains to check that if one pair of structures is compatible, then such is the
corresponding other pair. We leave it as an exercise to the reader. �

2. The Heisenberg modules and the spectral decomposition

2.1.

The basic material on lattice vertex (or chiral) algebras and their representations can
be found in textbooks [K], [FBZ], [L], or [BD1]. We follow [BD1] 3.10 since the
exposition in loc. cit. highlights the structures we need. Notice that [BD1] deals with
chiral algebras on an algebraic curve, while we consider chiral algebras on X :=
Spec K and Spec R-families of such algebras (which are K R-modules with an extra
structure). The results and constructions from [BD1] 3.10 remain valid in this setting.

4 The next proposition was discovered by V. Drinfeld and the author about 10 years ago. There
is a companion global statement.
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Let A be a lattice chiral algebra on X for the lattice � and κ : � × � → Z the
corresponding bilinear symmetric form (so the isomorphism class of A is uniquely
determined by κ , see [BD1] 3.10.4).

Our A is a �-graded chiral algebra. The component A0 is a chiral subalgebra of A
identified naturally with the twisted chiral enveloping algebra U(tD)κ of a Heisenberg
extension tκD of the commutative Lie∗ algebra tD (see [BD1] 3.10.9). We have the
corresponding topological Heisenberg Lie algebra t(K )κ := h(tκD) which is a central
k-extension of the commutative Lie algebra t(K ) = K ⊗ � with the commutator
pairing ( f1 ⊗ γ1, f2 ⊗ γ2) 	→ κ(γ1, γ2)Res f1d f2.

2.2.

Let (F,∇)R be a Spec R-family of de Rham T∨-local systems as in 1.2. The �-
grading amounts to a T∨-action on A, so, as in [BD1] 3.4.17, one gets the twisted
form A(F,∇)R of the chiral R-algebra AR := A ⊗K K R . This is a Spec R-family of
lattice chiral algebras in the evident way.

Since the T∨-action on A0 is trivial, the 0-component A(F,∇)0R = A0(F,∇)R

of A(F,∇)R does not feel the twist, i.e., it equals A0
R . Therefore one has a canonical

identification
α : U(tD)

κ
R = A0

R
∼→ A(F,∇)0R . (2.2.1)

The above construction is compatible with the base change, so A(F,∇)R together
with the base change identifications form a LST ∨-family of chiral algebras which we
denote by A�.

In particular, we have a family of chiral algebra A�C parametrized by the ind-
scheme C (the moduli space of connections on the trivial torsor, see 1.2) equivariant
with respect to the T∨(K )-action on C.

2.3.

Below “A-module” means “chiral A-module supported at the closed point of Spec O”
(see [BD1] 3.6.2); for a vector space M we refer to an A-module structure on M as an
A-action on M . Same for A(F,∇)R-modules, and so on.

Variant: Let S = SpfO(S), O(S) = lim←−O(S)/In , be an ind-scheme as in 1.1,
and (F,∇)S be an S-family of local systems. For an O!-module M on S an A(F,∇)S-
action on M is same as a datum of mutually compatible A(F,∇)O(S)/In -actions on
M In (or A(F,∇)O(S)/In-actions on M I� for n ≥ �).

We define an A�-module on LST ∨ as a T∨(K )-equivariantO!-module M on C (see
1.3) equipped with an A�C-action such that this action is compatible with the T∨(K )-
actions on A�C and M . Such objects form an abelian category M(LST∨, A�).

2.4.

An U(tD)κ -module is the same as a discrete t(K )κ -module such that the central ele-
ment 1 ∈ k ⊂ t(K )κ acts as identity (see [BD1] 3.7.22). We denote by M(t(K ))κ the
category of t(K )κ -modules as above.
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The morphism of chiral C-algebras α : U(tD)κC → A�C (see (2.2.1)) is compatible
with the T∨(K )-action. For M ∈ M(LST∨ , A�) it defines an action of t(K )κ on M
which commutes with the T∨(K )-action. Therefore t(K )κ acts on the vector space
V(M) (see 1.3). We have defined a functor

V : M(LST∨, A�)→M(t(K ))κ . (2.4.1)

Theorem. This is an equivalence of categories.

This equivalence is the promised “spectral decomposition” of M(t(K ))κ over the
moduli space of local systems LST ∨ .

Remark. Choose any extension of A to a lattice chiral algebra on the disc Spec O ⊃
Spec K . It yields a splitting of the Heisenberg extension t(K )κ over t(O) ⊂ t(K ).
Therefore every character χ : t(O) → k yields the induced t(K )κ -module Vχ ∈
M(t(K ))κ . The corresponding A�-module is supported at the point of LST ∨ equal to
the class of χ ∈ t(O)∗ = t∨ ⊗ ω(K )− = C̄ in C̄/� (see (1.2.3)).

Proof of the Theorem. This takes the rest of the article.

2.5.

Let T ∨
X = Spec F�X := J T∨X be the jet DX -scheme of the group X-scheme T∨X =

T∨ × X . As in [BD1] 3.10.1, our A carries a canonical T ∨
X -action. The T∨-action on

A, which defines the �-grading, is the restriction of this action to the constant group
DX -subscheme T∨X ↪→ T ∨

X . The T ∨
X -action yields an action on A of the group ind-

scheme T∨(K ) (= the ind-scheme of horizontal sections of T ∨
X ).

The Hopf DX -algebra F�X is also �-graded. Consider the 0-component F�0X , so
Spec F�0 is the quotient group DX -scheme T ∨

X /T∨X . This is a vector group DX -
scheme: as in [BD1] 3.10.9, there is a canonical isomorphism of Hopf DX -algebras
Sym t�D

∼→ F�0X . It identifies the group ind-scheme of horizontal sections of T ∨
X /T∨X

with t∨ ⊗ ω(K ). Denote the projection T ∨
X � T ∨

X /T∨X
∼→ Spec Sym t�D by d log; the

corresponding morphism of ind-schemes of horizontal sections T∨(K )→ t∨⊗ω(K )
is g 	→ d log(g) = dg/g.

The T ∨
X -action on A0 ⊂ A is trivial on T∨X , hence it yields the action of the group

DX -scheme T ∨
X /T∨X . By [BD1] 3.10.9, the corresponding action on A0 = U(tD)κ of

the group ind-scheme of horizontal sections t∨ ⊗ ω(K ) comes from its evident action
on the Heisenberg extension: t∨ ⊗ ω(K ) = Hom(tD, ω)

∼→ Aut(tκD).

2.6.

We see that for any (F,∇)R the twisted algebra A(F,∇)R coincides with the twist of
AR by the induced DX -scheme T ∨

X -torsor, which is the same as the twist of AR by the
T∨(K )-torsor of sections of FR (see Remark (iv) in [BD1] 3.4.17). Thus any section
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(i.e., trivialization) s of FR yields an isomorphism of chiral R-algebras βs : AR
∼→

A(F,∇)R .
In particular, since C is the space of connections on the trivialized T∨-torsor, one

has a canonical identification of the C-families of chiral algebras

β : AC
∼→ A�C . (2.6.1)

By construction, it is compatible with the T∨(K )-actions (here T∨(K ) acts on AC via
the tensor product of the above action on A and the action on C).

Let a be a canonical automorphism of the chiral C-algebra A0
C whose value aν at a

point ν ∈ C = t∨ ⊗ ω(K ) is the action of ν on A0.

Lemma. One has5 β−1α = a ∈ Aut(A0
C).

Proof. Let s be the distinguished section of the trivialized T∨-torsor F on X , and
J s the corresponding horizontal section of J F. Any point ν ∈ C yields a horizontal
embedding iν : (F,∇ν) ↪→ JF. For a ∈ A one has β(a) = J s · a; if a ∈ A0, then
α(a) = iν(s) · a. Hence β−1α(a) = (iν(s)/J s)a. The image by d log of the section
iν(s)/J s of T ∨

X is a horizontal section of Spec Sym t�D equal to ν; we are done. �

2.7.

Let T (K )κ be the Heisenberg Gm-(super)extension of the group ind-scheme T (K )
that corresponds to A (see [BD1] 3.10.14). Therefore the structure of an A-module on
a vector space amounts to a T (K )κ -module structure, i.e., a T (K )κ -action on it such
that Gm ⊂ T (K )κ acts by homotheties.

The T∨(K )-action on A yields, by transport of structure, a T∨(K )-action on the
extension T (K )κ which can be described as follows (see loc. cit.). Write T∨(K ) =
�∨ ⊗Gm(K ) and Aut(T (K )κ) = Hom(T (K ),Gm) = �∨ ⊗Hom(Gm(K ),Gm); our
action is the tensor productt of id�∨ and the Contou–Carrère self-duality isomorphism
Gm(K )

∼→ Hom(Gm(K ),Gm).
Consider the semidirect product T∨(K )� T (K )κ with respect to this action. This

is a central Gm-(super)extension of T∨(K )×T (K ) = (T∨×T )(K ) split over T∨(K );
denote it by (T∨ × T )(K )hκ . We see that (T∨ × T )(K )hκ is a Heisenberg extension
for the symmetric bilinear form hκ on �∨ × �, hκ(γ ∨1 + γ1, γ

∨
2 + γ2) = γ ∨1 (γ2) +

γ ∨2 (γ1)+ κ(γ1, γ2) (see [BD1] 3.10.13).

2.8.

Denote by M((T∨ × T )(K ))hκ the category of (T∨ × T )(K )hκ -modules. Take any
M ∈ M((T∨ × T )(K ))hκ and consider it as a T∨(K )-module via the canonical em-
bedding T∨(K ) ↪→ (T∨ × T )(K )hκ ; set

V(M) := (MT∨(O))Q×�∨ . (2.8.1)

(recall that Q × �∨ = T∨(K )/T∨(O) is a group ind-finite ind-scheme),

5 The arrow α was defined in (2.2.1).



Langlands parameters for Heisenberg modules 59

Lemma. The functor V : M((T∨ × T )(K ))hκ → Vect is an equivalence of cate-
gories.

Proof. The bilinear form hκ is non-degenerate over Z, hence M((T∨ × T )(K ))hκ

is a semisimple category having a single irreducible object. It remains to show that
for irreducible M one has dimV(M) = 1. Choose any splittting T (O) → T (K )κ ;
an irreducible M is induced from the trivial representation of the subgroup T∨(O) ×
T (O), and the computation of the dimension is immediate. �

2.9.

Recall that an object of M(LST∨, A�) is a vector space M equipped with an A�C-
module structure and a T∨(K )-action which are compatible via the T∨(K )-action
on A�C .

Lemma. This structure on M amounts to commuting (T∨ × T )(K )hκ - and t(K )κ-
module structures.

Proof. The structure on M can be rewritten in the following equivalent ways:

(i) By (2.6.1), this amounts to an A-module structure, a commuting discrete O(C)-
module structure, and a T∨(K )-action compatible with the module structures
(here T∨(K ) acts both on A and O(C)).

(ii) Replacing the A-module structure by the corresponding T (K )κ -action, we see
that our structure amounts to discrete O(C)-module and (T∨ × T )(K )hκ -module
structures which are compatible (here (T∨ × T )(K )hκ acts on O(C) via the pro-
jection to T∨(K )).

(iii) A discrete O(C)-module structure is the same as an action of the commutative
topological Lie algebra t(K ) of its generators (see (1.2.1)). Therefore our struc-
ture amounts to a (T∨ × T )(K )hκ -module structure and an action of the Lie
algebra t(K ) such that for every a ∈ t(K ), g∨ ∈ T∨(K ), g ∈ T (K ), m ∈ M ,
and a lifting q ∈ (T∨ × T )(K )hκ of (g∨, g), one has

qaq−1(m) = a(m)− Res(a, d log g∨)m. (2.9.1)

Notice that the action of (T∨ × T )(K )hκ yields an action on M of its Lie algebra
t∨(K )� t(K )κ . For ã ∈ t(K )κ that lifts a ∈ t(K ) consider an operator on M

m 	→ ã �m := (κ(a), ã)(m)+ a(m). (2.9.2)

Here κ(a) ∈ t∨(K ) is the image of a by κ : t → t∨, so (κ(a), ã) ∈ t∨(K ) � t(K )κ ,
and the first part of (2.9.2) is the action of this Lie algebra element on M; the second
part of (2.9.2) is the action on M of a ∈ t(K ).

Compatibility (2.9.1) implies that (2.9.2) is a t(K )κ -action on M that com-
mutes with the (T∨ × T )(K )hκ -action, so we arrive to the datum from the state-
ment of the lemma. Conversely, for any t(K )κ-action � on M that commutes with
a (T∨ × T )(K )hκ -action the operators m 	→ a(m) recovered from (2.9.2) form an ac-
tion of the commutative Lie algebra t(K ) that satisfies (2.9.1), i.e., we have recovered
the structure from (iii), and we are done. �
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2.10.

Now we can finish the proof of the theorem. By the lemma from 2.9, M(LST∨, A�) is
the category of vector spaces equipped with commuting (T∨ × T )(K )hκ - and t(K )κ-
actions. By the lemma from 2.8, the functor V identifies it with the category of vector
spaces equipped with an t(K )κ -action, i.e., with M(t(K ))κ . We get an equivalence

M(LST∨ , A�)
∼→M(t(K ))κ. (2.10.1)

To finish the proof, let us show that it coincides with (2.4.1). Indeed, both functors
assign to M ∈ M(LST∨, A�) the same vector space; all we need to check is that the
two t(K )κ -actions on it coincide. As follows from the lemma in 2.6, for ã as above
its action on V(M) from (2.4.1) comes from the operator m 	→ ã(m) + a(m) on M
(commuting with the T∨(K )-action). The action from (2.10.1) comes from operator
(2.9.2). The two operators differ by an operator from the Lie algebra of T∨(K ), which
dies on V(M). We are done. �
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Summary. Let G be a simple simply connected algebraic group over C with Lie algebra g.
Given a parabolic subgroup P ⊂ G, in [1] the first author introduced a certain generating
function Zaff

G,P . Roughly speaking, these functions count (in a certain sense) framed G-bundles

on P2 together with a P-structure on a fixed (horizontal) line in P2. When P = B is a Borel
subgroup, the function Zaff

G,B was identified in [1] with the Whittaker matrix coefficient in the
universal Verma module over the affine Lie algebra ǧaff (here we denote by gaff the affinization
of g and by ǧaff the Lie algebra whose root system is dual to that of gaff).

For P = G (in this case we shall write Zaff
G instead of Zaff

G,P ) and G = SL(n) the above
generating function was introduced by Nekrasov (see [7]) and studied thoroughly in [5] and [8].
In particular, it is shown in loc. cit. that the leading term of certain asymptotic of Zaff

G is given
by the (instanton part of the) Seiberg–Witten prepotential (for G = SL(n)). The prepotential is
defined using the geometry of the (classical) periodic Toda integrable system. This result was
conjectured in [7].
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The purpose of this paper is to extend these results to arbitrary G. Namely, we use the above
description of the function Zaff

G,B to show that the leading term of its asymptotic (similar to the
one studied in [7] for P = G) is given by the instanton part of the prepotential constructed
via the Toda system attached to the Lie algebra ǧaff. This part is completely algebraic and does
not use the original algebro-geometric definition of Zaff

G,B . We then show that for fixed G these

asymptotic are the same for all functions Zaff
G,P .

1. Introduction

1.1. The partition function

This paper has grown out of a (still unsuccessful) attempt to understand the following
object. Let K be a simple1 simply connected compact Lie group and let d be a non-
negative integer. Denote by Md

K the moduli space of (framed) K -instantons on R4 of
second Chern class−d . This space can be naturally embedded into a larger Uhlenbeck
space Ud

K . Both spaces admit a natural action of the group K (by changing the framing
at ∞) and the torus (S1)2 acting on R4 after choosing an identification R4 � C2.
Moreover, the maximal torus of K × (S1)2 has a unique fixed point on Ud

K . Thus we
may consider (see [1], [5] or [7] for precise definitions) the equivariant integral∫

Ud
K

1d

of the unit K×(S1)2-equivariant cohomology class (which we denote by 1d ) over Ud
K ;

the integral takes values in the field K of fractions of the algebra A = H ∗
K×(S1)2

(pt).2

Note that A is canonically isomorphic to the algebra of polynomial functions on k×R2

(here k denotes the Lie algebra of K ) which are invariant with respect to the adjoint
action of K on k. Thus each

∫
Ud

K
1d may be naturally regarded as a rational function of

a ∈ k and (ε1, ε2) ∈ R2.
Now consider the generating function

Z =
∞∑

d=0

Qd
∫
Ud

K

1d .

It can (and should) be thought of as a function of the variables Q and a, ε1, ε2
as before. In [7] it was conjectured that the first term of the asymptotic in the
limit limε1,ε2→0 lnZ is closely related to the Seiberg–Witten prepotential of K . For
K = SU(n) this conjecture has been proved in [8] and [5]. Also in [7] an explicit
combinatorial expression for Z has been found.

1 In this paper by a simple Lie (or algebraic) group we mean a group whose Lie algebra is
simple.

2 In this paper we always consider cohomology with complex coefficients.
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1.2. Algebraic version

In [1] the first author has defined some more general partition functions containing the
function ZK as a special case. Let us recall that definition. First, it will be convenient
for us to make the whole situation completely algebraic.

Namely, let G be a complex simple algebraic group whose maximal compact sub-
group is isomorphic to K . We shall denote by g its Lie algebra. Let also S = P2 and
denote by D∞ ⊂ S the “straight line at ∞”; thus S\D∞ = A2. It is well known that
Md

K is isomorphic to the moduli space Bund
G(S,D∞) of principal G-bundles on S of

second Chern class −d endowed with a trivialization on D∞. When it does not lead
to confusion we shall write BunG instead of BunG(S,D∞). The algebraic analog of
Ud

K has been constructed in [2]; we denote this algebraic variety by Ud
G . This variety

is endowed with a natural action on G × (C∗)2.

1.3. Parabolic generalization of the partition function

Let C ⊂ S denote the standard horizontal line. Choose a parabolic subgroup P ⊂ G.
Let BunG,P denote the moduli space of the following objects:

1) A principal G-bundle FG on S;
2) A trivialization of FG on D∞ ⊂ S;
3) A reduction of FG to P on C compatible with the trivialization of FG on C∩D∞.

Let us describe the connected components of BunG,P . Let M be the Levi group
of P . Denote by M̌ the Langlands dual group of M and let Z(M̌) be its center. We
denote by 	G,P the lattice of characters of Z(M̌). Also let 	aff

G,P = 	G,P × Z be the

lattice of characters of Z(M̌)×C∗. Note that	aff
G,G = Z.

The lattice	aff
G,P contains a canonical semigroup	aff,pos

G,P of positive elements (see
[2] and [1]). It is not difficult to see that the connected components of BunG,P are

parameterized by the elements of 	aff,pos
G,P :

BunG,P =
⋃

θaff∈	aff,pos
G,P

Bunθaff
G,P .

Typically, for θaff ∈ 	aff
G,P we shall write θaff = (d, θ) where θ ∈ 	G,P and d ∈ Z.

Each Bunθaff
G,P is naturally acted on by P × (C∗)2; by embedding M into P we get

an action of M × (C∗)2 on Bunθaff
G,P . In [2] we define for each θaff ∈ 	aff,pos

G,P a certain

Uhlenbeck scheme Uθaff
G,P which contains Bunθaff

G,P as a dense open subset. The scheme

Uθaff
G,P still admits an action of M × (C∗)2.

We want to do some equivariant intersection theory on the spaces Uθaff
G,P . For this let

us denote by AM×(C∗)2 the algebra H ∗
M×(C∗)2(pt,C). Of course this is just the algebra

of M-invariant polynomials on m×C2. Also let KM×(C∗)2 be its field of fractions. We
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can think about elements of KM×(C∗)2 as rational functions on m×C2 that are invariant
with respect to the adjoint action.

Let T ⊂ M be a maximal torus. Then one can show that (Uθaff
G,P)

T×(C∗)2 consists of

one point. This guarantees that we may consider the integral
∫
U θaff

G,P
1θaff

G,P where 1θaff
G,P

denotes the unit class in H ∗
M×(C∗)2(U

θaff
G,P ,C). The result can be thought of as a rational

function on m× C2 that is invariant with respect to the adjoint action of M . Define

Zaff
G,P =

∑
θ∈	aff

G,P

q
θaff
aff

∫
U θaff

G,P

1θaff
G,P (1.1)

(we refer the reader to Section 2 of [1] for a detailed discussion of equivariant integra-
tion). One should think of Zaff

G,P as a formal power series in qaff ∈ Z(M̌) × C∗ with

values in the space of ad-invariant rational functions on m × C2. Typically, we shall
write qaff = (q, Q) where q ∈ Z(M̌) and Q ∈ C∗. Also we shall denote an element of
m×C2 by (a, ε1, ε2) (note that for general P (unlike in the case P = G) the function
Zaff

G,P is not symmetric with respect to switching ε1 and ε2). Here is the main result of
this paper.

Theorem 1.4. Let P ⊂ G be a parabolic subgroup as a above.

1. There exists a function F inst ∈ C(a)[[Q]] such that

lim
ε1→0

lim
ε2→0

ε1ε2 ln Z aff
G,P = F inst(a, Q). (1.2)

In particular, the above limit does not depend on q and it is the same for all P.
2. The function F inst(a, Q) is equal to the instanton part of the Seiberg–Witten pre-

potential of the affine Toda system associated with the Langlands dual Lie algebra
ǧaff (see Section 3 for the explanation of these words).

Since the function Zaff
G is symmetric in ε1 and ε2, Theorem 1.4 implies the follow-

ing result:

Corollary 1.5. The function ε1ε2 lnZaff
G is regular when both ε1 and ε2 are set to 0.

Moreover, one has
(ε1ε2 lnZaff

G )|ε1=ε2=0 = F inst.

Corollary 1.5 was conjectured by N. Nekrasov in [7] (in fact [7] contains only the
formulation for G = SL(n) but the generalization to other groups is straightforward).
For G = SL(n) Nekrasov’s conjecture was proved in [5] and [8]. Also, more recently,
this conjecture was proved in [9] for all classical groups. These papers, however, uti-
lize methods that are totally different from ours. In particular, in our approach the
existence of the partition functions Zaff

G,P for P �= G (in particular, for P being the
Borel subgroup) plays a crucial role.

In fact, we are going to prove the following slightly stronger version of Theo-
rem 1.4.
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Theorem 1.6. 1. Theorem 1.4 holds for P = B.
2. For every parabolic subgroup P ⊂ G one has

lim
ε2→0

ε2(lnZaff
G,P − lnZaff

G ) = 0.

1.7. Plan of the proof

Let us explain the idea of the proof of Theorem 1.6. The second part is in fact rather
routine so let us explain the idea of the proof of the first part.

The “Borel” partition function Zaff
G,B was realized in [1] as the Whittaker matrix

coefficient in the universal Verma module over the Lie algebra ǧaff. As a corollary one
gets that the function Zaff

G,B is an eigenfunction of the non-stationary Toda hamiltonian
associated with the affine Lie algebra ǧaff (see Corollary 3.7 from [1] for the precise
statement; we use [3] as our main reference about Toda hamiltonians).

It turns out that this is all that we have to use in order to prove Theorem 1.6(1).
Namely, in this paper (see Sections 2 and 3) we introduce the notion of the Seiberg–
Witten prepotential (more precisely, its instanton part) for a very general class of non-
stationary Schrödinger operators in such a way that by the definition it is equal to some
asymptotic (in some sense) of the universal eigenfunction of this operator (we were
unable to find such a definition in the literature). Usually the prepotential is attached
to a classical completely integrable system (our main references on the definition of
the Seiberg–Witten prepotential are [6] and [7]). We show that in the integrable case
our definition of the prepotential coincides with the one from loc. cit.

2. Schrödinger operators and the prepotential:
the one-dimensional case

2.1. Schrödinger operators

Let x ∈ C and let U(x) be a trigonometric polynomial in x—i.e., a polynomial in ex

and e−x . Let also h̄ and Q be formal variables. We want to study the eigenvalues of
the Schrödinger operator

T = h̄2 d2

dx2 + QU(x).

More precisely, for each a ∈ C let Wa denote the space e
ax
h̄ C(h̄)[ex , e−x ][[Q]] with

the natural action of the algebra of linear differential operators in x . Then we would
like to look for eigenfunctions of T in Wa . After conjugating T with e

ax
h̄ the operator

T turns into the operator

h̄2 d2

dx2
+ 2h̄a

d

dx
+ QU(x)+ a2.
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Let

T a = h̄2 d2

dx2
+ 2h̄a

d

dx
+ QU(x).

We now want to look for eigenfunctions of T a in W0 (this problem is obviously equiv-
alent to finding eigenfunctions of T in Wa). In fact, we want them to depend nicely on
a, so we set W = C(a, h̄)[ex, e−x ][[Q]] and we want to look for eigenfunctions of T a

(considered now as a differential operator with coefficients in C(a, h̄)[[Q]]) in W .

Proposition 2.2. 1. There exist ψ ∈ W and b ∈ QC(a, h̄)[[Q]] such that

T aψ = bψ (2.1)

and such that ψ = 1 + O(Q). Moreover, under such conditions b is unique and
ψ is unique up to multiplication by an element of 1+ QC(a, h̄)[[Q]].

2. Let φ = h̄ lnψ (note that φ is defined uniquely up to adding an element of
QC(a, h̄)[[Q]]). Then φ is regular at h̄ = 0 provided this is true for its constant
term. 3

3. The limit v(a, Q) := limh̄→0 b(a, h̄, Q) exists in C(a)[[Q]].

Proof. Let us prove the first assertion. Let us write

ψ =
∞∑

n=0

ψn Qn and b =
∞∑

n=0

bn Qn .

Note that ψ0 = 1 and thus automatically b0 = 0. Thus the equation (2.1) becomes

h̄2ψ ′′n + 2h̄aψ ′n + U(x)ψn−1 =
n−1∑
i=0

bn−iψi , (2.2)

which should be valid for each n > 0 (here and in what follows the prime denotes the
derivative of a function with respect to x). It is enough for us to prove that the system
of equations (2.2) has a unique solution if we require that for all n > 0 the constant
term of the function ψn is equal to 0.

Equation (2.2) is equivalent to

h̄2ψ ′′n + 2h̄aψ ′n = −U(x)ψn−1 +
n−1∑
i=0

bn−iψi , (2.3)

where the left-hand side is just the differential operator D = h̄ d2

dx2 + 2h̄a d
dx applied to

ψn , and the right-hand side only depends on the ψi ’s with i < n.
Let us now argue by induction on n. By the induction hypothesis we assume that

ψi and bi have already been uniquely determined for all i < n. Note that the operator
D has the following properties (whose verification is left to the reader):

3 By the “constant term” we shall always mean the constant term of a trigonometric polynomial.
The reader should not confuse this with the notion of “free term” by which we always mean
the coefficient of the 0-th power of the variable in a formal power series.
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1) ker D consists of constant (i.e., independent of x) functions.
2) im D consists of all trigonometric polynomials whose constant term is equal

to 0.

Observe now that the coefficient of bn in the RHS of (2.3) is ψ0 = 1. Thus property
2) above determines bn uniquely—it has to be chosen so that the constant term of the
RHS is equal to 0. If bn is chosen in this way, then there exists someψn satisfying (2.3).
A priori suchψn is defined uniquely up to adding a constant trigonometric polynomial,
but the requirement that the constant term of ψn is equal to 0 determines ψn uniquely.

Let us prove the second and third assertions (this is a standard WKB argument
which we include for the sake of completeness). Let us write

φ = h̄ lnψ

(the logarithm is taken in the sense of formal power series in Q; this makes sense
because ψ0 = 1).

Let us rewrite (2.1) in terms of φ. We get

(φ′)2 + h̄φ′′ + 2aφ′ + QU(x) = b. (2.4)

Let us now look for a solution φ of the form

φ =
∞∑

n=1

φn Qn .

Then (2.4) is equivalent to the following system of equations:

h̄φ′′1 + 2aφ′1 = b1 −U(x) (2.5)

and

h̄φ′′n + 2aφ′n = bn −
n−1∑
i=1

φ′iφ′n−i (2.6)

for all n > 1.
Without loss of generality we may assume that the constant term of all φn is equal

to zero. We need to show that under such conditions all φn and bn are regular when
h̄ = 0. Let us prove by induction in k that the statement is valid for n ≤ k. If k = 0,
the statement is clear, so let k > 0; we need to prove the statement for n = k. By the
induction assumption we may assume that

∑n−1
i=1 φ

′
iφ
′
n−i is regular at h̄ = 0. Arguing

as before, we see that if (2.6) has a solution, then bn has to be equal to the constant
term of

∑n−1
i=1 φ

′
iφ
′
n−i for n > 1 and of U(x) for n = 1, and thus it is also regular at

h̄ = 0. Thus the right-hand side of (2.6) is regular at h̄ = 0. This immediately implies
that the same is true for φn . ��
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2.3. Explicit calculation of limh̄→0 b via periods

We now want to explain how to evaluate the function limh̄→0 b(a, h̄, Q) = v(a, Q)
using period integrals on a certain algebraic curve. More precisely, we are going to
express a as a (multivalued) function of v and Q which will be written in terms of
such periods. Let ϕ denote the limit of φ as h̄ → 0. Then we have the equation

(ϕ ′)2 + 2aϕ ′ = v − QU(x). (2.7)

In other words, ϕ ′ satisfies a quadratic equation. Thus we may write

ϕ ′ = −a +
√

a2 + v − QU(x).

This is an equality of formal power series in Q. The square root is chosen in such a
way that the right-hand side is equal to 0 when Q = 0 (note we automatically have
v = 0 when Q = 0).

Recall, however, that ϕ was a trigonometric polynomial. This implies that

2π i∫
0

ϕ ′dx = 0.

This is equivalent to the equation

2π ia =
2π i∫
0

√
a2 + v − QU(x)dx . (2.8)

Set w = ex and recall that U(x) = P(w) for some polynomial P in w and
w−1. Set also u = a2 + v and consider the algebraic curve C = Cu which is the
projectivization of the affine curve given by the equation

z2 + Q P(w) = u.

We claim that we may write a locally as a function a(u, Q) of u and Q. Namely,
first of all a0 := a(u, 0) must satisfy a2

0 = u. Let us locally choose one of the square
roots. Then the function a is found as a series a0+ a1 Q+ · · ·+ an Qn + · · · , where ai

with i > 0 are found recursively.
Note that when Q = 0 the above curve breaks into two components corresponding

to z = ±a0. Let A = Au,Q denote the one-dimensional cycle in C satisfying the
following conditions:

1) The projection of A to the w-plane is an isomorphism between A and the unit
circle.

2) A depends continuously on Q and when Q = 0 it lies in the component of C
corresponding to z = a0.
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Such a cycle is unique at least for small values of Q. Thus the equation (2.8)
becomes equivalent to

a = 1

2π i

∮
A

z
dw

w
. (2.9)

Note that z dw
w is a well-defined meromorphic differential on C . Note also that C and

A depend only on Q and u; thus we may think of (2.9) as expressing a as a function
of u and Q.

2.4. Eigenfunctions of non-stationary Schrödinger operators

Let us now change our problem a little. Introduce one more variable κ and define new
operators

L = T − κQ
∂

∂Q
and La = T a − κQ

∂

∂Q
.

Let us now look for solutions of the equation

La� = 0 (2.10)

where � ∈ C(a, h̄, κ)[ex , e−x ][[Q]] (we shall denote this space by W (κ)). Of course
this equation is equivalent to the equation

L(e
ax
h̄ �) = a2e

ax
h̄ �.

More precisely, we want to look for the asymptotic of these eigenfunctions when both
h̄ and κ go to 0.

Proposition 2.5. 1. There exists unique solution� of (2.10) in W (κ) such that� =
1+ O(Q).

2. This solution � takes the form

� = e
�
κ +g (2.11)

where g ∈ QC(a, h̄)[ex, e−x ][[κ, Q]] and� ∈ QC(a, h̄)[[κ, Q]].
3. One has

h̄ Q
∂�

∂Q
= b.

4. The limit
F inst = lim

h̄→0
h̄�(a, h̄, Q)

exists and one has

Q
∂F inst

∂Q
= v. (2.12)

Remark. We will explain the origin of the notation a little later.
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Proof. Let us first prove (1). Let us write

� =
∞∑

n=0

�n Qn, �0 = 1.

Then (2.10) becomes equivalent to the sequence of equations:

h̄2� ′′n + 2h̄a� ′n − κn�n = U(x)�n−1. (2.13)

Let Dn denote the differential operator h̄2 d2

dx2 +2h̄a d
dx −κn. Then it is easy to see that

Dn is invertible when acting on C(a, h̄, κ)[ex, e−x ] (it is diagonal in the basis given by
the functions {ekx}k∈Z with non-zero eigenvalues). Thus by induction we get a unique
solution for each �n , n ≥ 1.

Let F = ln� . First, we claim that κF is regular when κ = 0. This is proved
exactly in the same way as part (2) of Proposition 2.2 and we leave it to the reader. Let
us now write

F =
∞∑

n=−1

Fnκ
n.

We want to compute F−1.
Equation (2.10) is equivalent to the equation

h̄2((F ′)2 + F ′′)+ 2ah̄F ′ + QU(x) = h̄κQ
∂F

∂Q
. (2.14)

Decomposing this in a power series in κ and looking at the coefficient of κ−2 we see
that� = F−1 satisfies the equation (�′)2 = 0; in other words� is indeed independent
of x .

Let us now look at the free term (in κ) in the above identity (it is easy to see that
the coefficient of κ−1 is automatically 0 on both sides). We get the equation

h̄2(F ′0)2 + h̄2 F ′′0 + 2ah̄F ′0 + QU(x) = h̄ Q
∂�

∂Q
. (2.15)

Note now that (2.15) is basically the same equation as (2.4) if we set b = h̄ Q ∂�
∂Q

and F0 = h̄−1φ. Since obviously F0|Q=0 = 0, the uniqueness statement from Propo-
sition 2.2(1) implies (3). Now (4) is equivalent to Proposition 2.2(3). ��
Definition 2.6. The function F inst(a, Q) is called the instanton part of the prepoten-
tial.

Remark. In the context of integrable systems one is usually interested in the full
Seiberg–Witten prepotential F which is defined as the sum of F inst and Fpert; here
Fpert is called the perturbative part of the prepotential and it is usually given by some
simple formula. We do not know if there is a canonical choice of Fpert in our general-
ity. However, we may observe that in all the known cases Fpert satisfies the equation
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Q
∂Fpert

∂Q
= a2.

This fixes Fpert uniquely up to adding a function which is independent of Q. Note
that if we now define F = F inst + Fpert (for any choice of Fpert satisfying the above
equation) then the equation (2.12) gets simplified: it is now equivalent to

Q
∂F
∂Q

= u. (2.16)

3. Schrödinger operators in higher dimensions and integrable
systems

We now want to generalize the results of the previous section to the higher dimensional
situation.

3.1. The setup

In this section we are going to work with the following general setup. Let h be a
finite dimension vector space over C and let 	 ⊂ h be a lattice. We denote by H the
algebraic torus whose lattice of co-characters is	 (analytically one may think of H as
h/2π i	 by means of the map x 	→ ex ); we let C[H ] denote the algebra of polynomial
functions on H ; we might think of elements of C[H ] as trigonometric polynomials on
h. We assume that h is endowed with a non-degenerate bilinear form 〈·, ·〉 which takes
integral values on 	.

Let K denote the field of rational functions on h∗ × C2 (typically, we denote an
element in h∗ × C2 by (a, h̄, κ) with a ∈ h∗; so, sometimes we shall write C(a, h̄, κ)
instead of K). Let Q be another indeterminate. We are going to be interested in the
space W (κ) := K[H ][[Q]]; its elements are power series in Q whose coefficients lie
in K.

Let � denote the Laplacian on h (or H ) corresponding to the bilinear form fixed
above. Fix now any P ∈ C[H ]. We shall denote by U the corresponding function on
h given by the formula

U(x) = P(ex ).

Now, following the previous section we define the operators

T = h̄2�+ QU(x); T a = h̄2�+ 2h̄〈∇, a〉 + QU(x).

Here for a function ψ we denote by ∇ψ its differential in the h-direction. Similarly,
we define

L = T − κQ
∂

∂Q
and La = T a − κQ

∂

∂Q
.

Here a ∈ h∗. Note that as before for a fixed a the operator T a + 〈a, a〉 is formally
conjugate to T , and the operator La + 〈a, a〉 is formally conjugate to L.
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As before, we set W = C(a, h̄)[H ][[Q]]. Then with such notations Proposi-
tions 2.2 and 2.5 hold as stated in the current situation as well. The proofs are just
word-by-word repetitions of those from the one-dimensional situation.

However, generalizing the results of Section 2.3 turns out to be a little bit more
tricky. In order to do this we need to make some integrability assumptions.

3.2. Integrability

Let us denote by D the subalgebra of the algebra of differential operators on H with
coefficients in C[h̄, Q] consisting of all differential operators of the form

∑
h̄i Di

(where Di is a differential operator on H with coefficients in C[Q]) such that the order
of Di is ≤ i . It is clear that D/h̄D is canonically isomorphic to O(T ∗H )⊗ C[Q] =
O(T ∗H × C) (here T ∗H denotes the cotangent bundle to H and O(T ∗H ) is the
algebra of regular functions on it). Note that T ∗H = H × h∗. We shall denote the
resulting map from D to O(T ∗H )⊗ C[Q] by σ and call it the symbol map.

Similarly we let Da = D ⊗O(h∗); we have Da/h̄Da � O(T ∗H × C × h∗). We
let σ a : Da → O(T ∗H ×C× h∗) denote the corresponding symbol map.

From now on we want to change our point of view a little bit and think about T a

as a differential operator on H rather than on h. Note that if we do so, then T a lies
in Da .

We now assume that in addition to the above data we are given the following:

a) An affine algebraic variety S such that dim S = dim H ;
b) A finite morphism π : h∗ → S;
c) An injective homomorphism η : O(S)→ D.

These data must satisfy the following conditions:

1) T lies in the image of η; we let C ∈ O(S) denote the (unique) function for which
η(C) = T .

2) η|Q=0 is equal to the composition of π∗ : O(S)→ O(h∗)with the natural embed-
ding O(h∗)→ D which sends every function h ∈ O(h∗) that is homogeneous of
degree d to h̄d Dh where Dh is the differential operator with constant coefficients
corresponding to h.

In this case we shall say that T is integrable. Note that if dim H = 1, then T is
automatically integrable.

Let ηa : O(S) → Da denote the composition of η with the conjugation by e
〈a,x〉

h̄ .
Note that T a = ηa(C)− 〈a, a〉.

Let also p : T ∗H × C → S denote the morphism such that for every f ∈ O(S)
we have

p∗( f ) = σ ◦ η( f ).

This morphism represents the classical integrable system, which is the classical limit
of the quantum integrable system defined by η.
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3.3. Computation of limh̄→0 b via periods in the integrable case

We now want to explain how to generalize the results Section 2.3 to our multidimen-
sional situation in the integrable case.

First, the operator T a has simple spectrum in W ; therefore the functionψ which is
an eigenfunction of T a is automatically an eigenfunction of every operator of the form
ηa( f ) ( f ∈ O(S)). More precisely, we get a homomorphism b : O(S)→ O(h∗)[[Q]]
such that for each f ∈ O(S) we have

ηa( f )(ψ)(t, a, Q, h̄) = f (b(a, Q, h̄))ψ(t, a, Q, h̄).4

Note that b = b∗(C) − 〈a, a〉. It is easy to see that the limit limh̄→0 b∗(C) exists; we
denote it by u. By the definition u is a map from h∗ ×  to S where  denotes the
formal disc with coordinate Q. It is clear that u|Q=0 = π .

Let us now look at the function ϕ = limh̄→0(h̄ lnψ). Then we have

p(dϕ(t, a, Q)+ a, Q) = u(a, Q). (3.1)

On the other hand, for any λ ∈ 	 considered as a morphism λ : C∗ → H we must
have ∮

λ∗dϕ = 0 (3.2)

where
∮

denotes the integral over the unit circle in C∗. Let us think of dϕ as a mor-
phism H → T ∗H (which depends on a and Q). We denote by α the canonical one-
form on T ∗H . Let also Lλ denote the image of the unit circle under λ. Then (3.2) is
equivalent to ∮

Lλ

(dϕ)∗α = 0. (3.3)

We can now again write a locally as a function of u and Q; a = a(u, Q). To do this
we must make a (local) choice of a0 := a0(u, Q). Note that a0 must satisfy

π(a0) = u

and therefore choosing a0 amounts to choosing a local branch of π . Let now λ be as
above. Then we denote by Aλ,u,Q the unique 1-dimensional cycle in T ∗H such that:

1) the projection of Aλ,u,Q to H is equal to Lλ;
2) Aλ,u,Q ⊂ p−1(u);
3) Aλ,u,Q depends continuously on Q and for Q = 0 it lies in the above chosen

branch of π .5

4 Here t ∈ H (i.e., we think about ψ as a function on H rather than on h).
5 More precisely, this means the following: for Q = 0 the map p is equal to the composition of

the natural projection T ∗H → h∗ and π : h∗ → S. Thus for every u we have p|−1
Q=0(u) =

H × π−1(u). We require that Aλ lie in the product of H and the corresponding branch of π.
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Then (3.1) says that for every λ ∈ 	 we have

〈a, λ〉 = 1

2π i

∮
Aλ,u,Q

α. (3.4)

3.4. Some variants

Let us choose a closed cone h∗+ ⊂ h∗ which is integral with respect to 	 (i.e., given
by finitely many inequalities given by elements of 	). We assume also that a ∈ h∗+
implies that−a �∈ h∗+ for a �= 0 (i.e., 0 is an extremal point of h+). Set	∨+ = 	∨∩h∗+.
We denote by Ŵ the corresponding completion of W ; by the definition it consists of
all formal sums ∑

cγ e〈γ,x〉

where γ ∈ 	∨ and such that for each λ̌ ∈ 	∨ the set

{γ ∈ λ̌−	+| such that cγ �= 0}
is finite.

It is easy to see that the results of this section generalize immediately to the situa-
tion when the initial Schrödinger operator T takes the form

T = h̄2�+ U(Q, x)

where U ∈ C[H ][[Q]] subject to the following condition:

• The function U(0, x) is a linear combination of e〈λ̌,x〉 with λ̌ ∈ h∗+, λ̌ �= 0.
In this case the eigenfunctionsψ and � should be elements of respectively Ŵ and

Ŵ (κ).
The above condition guarantees in particular that 0 is an eigenvalue of T a on Ŵ .

The definition of the prepotential goes through in this case without any changes.
Here is the basic example of the above situation. Let

h = {(x1, . . . , xn) ∈ Cn}/C(1, . . . , 1) 	 = {(x1, . . . , xn) ∈ Zn}/Z(1, . . . , 1).
Clearly,

h∗ =
{
(a1, . . . , an)

∣∣∣ ∑ ai = 0
}

and we set

h∗+ = {(a1, . . . , an) ∈ h∗| a1 + a2 + · · · + ak ≥ 0 for each 1 ≤ k ≤ n}.
Let

U(Q, x) = 2(ex1−x2 + ex2−x3 + · · · + exn−1−xn + Qexn−x1)

be the periodic Toda potential. It is clear that the condition above is satisfied and there-
fore we may speak of the corresponding prepotential. In the next section we explain
its connection with the standard physical definition of the prepotential.
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The periodic Toda potential is equal to the Toda potential defined by the affine
Lie algebra ŝln (see for example [3]). One can easily see that the Toda potential for
any affine Lie algebra (see [3]) satisfies our conditions and thus the corresponding
prepotential is well defined.

Note also that the operator

h̄2�+ U(Q, x)

turns into the operator

h̄2�+ 2Q1/n(ex1−x2 + · · · + exn−1−xn + exn−x1)

after the change of variables

x j 	→ x j + j ln Q

n
.

Thus when computing the prepotential we may deal with the latter operator (a
similar statement is true for all affine Lie algebras).

Remark. The variable Q that we are using is connected with the variable	 (which is
commonly used by physicists—see [6], [7] etc.) by the formula

Q = 	2n.

Remark. It is not difficult to check that if U is equal to the Toda potential for ŝln , then
our definition of F inst coincides with the one usually given by physicists (see Chapter
2 of [6]). Let us give a very brief sketch of the proof of this result (details will appear
in a subsequent publication in a more general setting). Namely, in this case (2.12)
becomes equivalent to the renormalization group equation (Proposition 2.10 of [6]).
Note that in the original (Seiberg–Witten) definition of the prepotential a is expressed
in terms of periods of some family of curves over h∗/W × C where W = Sn is the
Weyl group of sln (here the second factor is the line with coordinate Q). These curves
are called the Seiberg–Witten curves (see Section 2.1 of [6]). In our case, a is expressed
via periods on the fibers of the map pQ : T ∗H → h∗/W (note that in this case we
have S = h∗/W ). However, it is well known (see [4]) that the fibers of the map pQ are
open pieces in the Jacobians of the Seiberg–Witten curves; thus periods of a regular
one-form over these fibers are equal to the periods of a certain meromorphic one-form
over the curves themselves and it is not difficult to check that we get exactly the same
periods as we need. Some generalization of this fact will be considered in much more
detail in a further publication.

4. Proof of Nekrasov’s conjecture

In this section we want to prove Theorem 1.6 (and thus also Theorem 1.4). The first
part of Theorem 1.6 is an immediate corollary of Corollary 3.7 from [1] combined
with the definition of F inst given by definition 2.6. Thus it remains to prove the second
part of Theorem 1.6. The proof is based on the following result.
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Theorem 4.1. Let P ⊂ G be a parabolic and let (d, θ) ∈ 	aff,+
G,P . Then one of the

following is true:

a) Both
∫
Ud,θ

G,P
1 and

∫
Ud

G
1 are 0.

b)
∫
Ud

G
1 �= 0 and the ratio ∫

Ud,θ
G,P

1

∫
Ud

G

1

is regular when ε2 → 0.

Let us first explain why Theorem 4.1 implies Theorem 1.6. First of all, we claim
that for any d ≤ d ′ we have ∫

Ud ′
G

1 = Ad

∫
Ud

G

1

where Ad is a regular function on h × C2 (in particular, it is regular when ε2 →
0). Indeed, according to [2] there exists a closed G × (C∗)2-equivariant embedding

Ud id→ Ud ′ . Since Ud ′ is contractible we have H ∗
G×(C∗)2(U

d ′
G ) = AG×(C∗)2 . Thus it

follows that the direct image (id)∗1 of the equivariant unit cohomology class is equal
to some Ad ∈ AG×(C∗)2 .

Now it follows from Theorem 4.1 that the ratio

Zaff
G,P(q, Q, a, ε1, ε2)

Zaff
G (Q, a, ε1, ε2)

is regular when ε2 → 0. This means that

lim
ε2→0

ε2(lnZaff
G,P − lnZaff

G ) = 0.

This is the statement of Theorem 1.6(2).
Thus to complete the proof we need to prove Theorem 4.1. The proof is based on

the following general lemma.

Lemma 4.2. Let L1 and L2 be two algebraic tori and let L = L1 × L2. We let l1 and
l2 denote the corresponding Lie algebras. We shall denote a typical element in l by
(l1, l2), where li ∈ li .

Let π : X → Y be a morphism of L-varieties. Assume that:

1) both X L and Y L are proper;
2) the natural map X L1 → Y L1 is proper.

Then if
∫

Y 1 is zero, then
∫

X 1 is also zero (here we consider both integrals in
L-equivariant cohomology). If

∫
Y 1 �= 0, then the ratio
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X

1∫
Y

1

(where the integral is taken in L-equivariant cohomology) is regular when l2 → 0.

Lemma 4.2 is an easy corollary of the definition of the above integrals given in Section
2 of [1] and we leave the proof to the reader.

4.3. End of the proof

We now want to apply Lemma 4.2 to the case when X = Ud,θ
G,P , Y = Ud

G , L1 = T×C∗
where the C∗ factor corresponds to ε1 and L2 = C∗ corresponding to ε2. To avoid
confusion in the notation we shall denote the “first” (i.e., horizontal) copy of C∗ by C∗1
and the other copy by C∗2. We need to show that the map (Ud,θ

G,P)
T×C∗1 → (Ud

G)
T×C∗1

is proper. In fact, we claim that the following stronger statement is true:

Lemma 4.4. The map (Ud,θ
G,P)

C∗1 → (Ud
G)

C∗1 is an isomorphism.

Proof. This is an easy corollary of Theorem 10.2 of [2]. In loc. cit a natural stratifica-
tion of UG,P is described and it follows immediately that

(Ud,θ
G,P)

C∗1 = (Ud
G)

C∗1 = Symd (X\{∞})

(recall that X denotes the “vertical” axis in P2). ��
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Summary. It is proved that the quotient of the polynomial representation of the double affine
Hecke algebra by the radical of the duality pairing is always irreducible apart from the roots of
unity provided that it is finite dimensional. We also find necessary and sufficient conditions for
the radical to be zero, a generalization of Opdam’s formula for the singular parameters such that
the corresponding Dunkl operators have multiple zero-eigenvalues.

Subject Classification: 20C08

In the paper we prove that the quotient of the polynomial representation of the
double affine Hecke algebra (DAHA) by the radical of the duality pairing is always
irreducible (apart from the roots of unity) provided that it is finite dimensional. We
also find necessary and sufficient conditions for the radical to be zero, which is a q-
generalization of Opdam’s formula for the singular k-parameters with the multiple
zero-eigenvalue of the corresponding Dunkl operators.

Concerning the terminology, perfect modules in the paper are finite dimensional
possessing a non-degenerate duality pairing. The latter induces the canonical duality
anti-involution of DAHA. Actually, it suffices to assume that the pairing is perfect,
i.e., identifies the module with its dual as a vector space, but we will stick to the finite-
dimensional case.

We also assume that perfect modules are spherical, i.e., quotients of the polynomial
representation of DAHA, and invariant under the projective action of PSL(2,Z). We
do not impose the semisimplicity in contrast to [C3]. The irreducibility theorem in this
paper is stronger and at the same time the proof is simpler than that in [C3].

The irreducibility follows from the projective PSL(2,Z)-action which readily re-
sults from the τ−-invariance. The latter always holds if q is not a root of unity. At

∗ Partially supported by NSF grant DMS-0200276.
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roots of unity, it is true for special k only. We do not give in the paper necessary and
sufficient conditions for the τ−-invariance as q is a root of unity. Generally, it is not
difficult to check (if it is true).

The polynomial representation has the canonical duality paring. It is defined in
terms of the difference-trigonometric Dunkl operators, similar to the rational case
where the differential-rational operators are used, and involves the evaluation at q−ρk

instead of the value at zero. The quotient of the polynomial representation by the rad-
ical Rad of this pairing is a universal quasi-perfect representation. By the latter, we
mean a DAHA-module with a non-degenerate but maybe non-perfect duality paring.

The polynomial representation, denoted by V in the paper, is quasi-perfect and
irreducible for generic values of the DAHA-parameters q, t . It is also Y -semisimple,
i.e., there exists a basis of eigenvectors of the Y -operators, and has the simple Y -
spectrum for generic q, t .

The radical Rad is nonzero when q is a root of unity or as t = ς qk for special
fractional k and proper roots of unity ς.

We give an example of reducible V which has no radical (Bn). The complete list
will be presented in the next paper.

Semisimplicity. Typical examples of Y -semisimple perfect representations are the
non-symmetric Verlinde algebras, generalizing the Verlinde algebras. The latter de-
scribe the fusion of the integrable representations of the Kac–Moody algebras, and,
equivalently, the reduced category of representations of quantum groups at roots of
unity. The third interpretation is via factors/subfactors. Generally, these algebras ap-
pear in terms of the vertex operators (coinvariants) associated with Kac–Moody or
Virasoro-type algebras.

There are at least two important reasons to drop the semisimplicity constraint:
First, it was found recently that the fusion procedure for a certain Virasoro-type

algebra leads to a non-semisimple variant of the Verlinde algebra. As a matter of fact,
there are no general reasons to expect semisimplicity in the massless conformal field
theory. The positive definite inner product in the Verlinde algebra, which guarantees
the semisimplicity, is given in terms of the masses of the points/particles.

Second, non-semisimple representations of DAHA are expected to appear when
the whole category of representations of Lusztig’s quantum group at roots of unity
is considered. Generally, non-spherical representations could be necessary. However
the anti-spherical (Steinberg-type) representations, which are spherical constructed for
t−1 in place of t, are expected to play an important role.

The simplest non-semisimple example at roots of unity (A1) is considered at the
end of the paper in detail.

Concerning the necessary and sufficient condition for the radical of V to be
nonzero, it readily follows from the evaluation formula for the nonsymmetric Macdo-
nald polynomials [C2]. This approach does require the q, t-setting because the evalu-
ation formula collapses in the limit. See [DO], Section 3.2.

The method from [O2] (see also [DJO] and [J]) based on the shift operator is also
possible, and even becomes simpler with q, t than in the rational/trigonometric case. It
will be demonstrated in the next paper. The definition of the radical of the polynomial
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representation is due to Opdam in the rational case. See, e.g., [DO]. In the q, t-case,
the radical was introduced in [C1, C2].

Rational limit. Interestingly, the quotient of V by the radical is always irreducible
for the rational DAHA. The justification is immediate and goes as follows.

This quotient has the zero-eigenvalue (no other eigenvalues appear in the ratio-
nal setting) of multiplicity one. Any its proper submodule will generate at least one
additional zero-eigenvector, which is impossible.

The DAHA and its rational degeneration are connected by exp–log maps of some
kind [C4], but these maps are of analytic nature in the infinite dimensional case and
cannot be directly applied to the polynomial representation.

Generally, the q, t-methods are simpler in many aspects than those in the rational
degeneration thanks to the existence of the Macdonald polynomials and their ana-
lytic counterparts. It is somewhat similar to the usage of the unitary invariant scalar
product in the theory of compact Lie groups vs. the abstract theory of Lie algebras.
The q, t-generalization of Opdam’s formula for singular k and the theory of perfect
representations are typical examples in favor of the q, t-setting. However, with the ir-
reducibility of the universal quasi-perfect quotient of the polynomial representation, it
is the other way round.

My guess is that it happens because the q, t-polynomial representation contains
more information than could be seen after the rational degeneration. I mean mainly
the semisimplicity which does not exist in the rational theory and can be incorporated
only if the rational DAHA is extended by the “first jet” towards q (not published).

It must be mentioned here that the rational theory is for complex reflection groups.
The q, t-theory is mainly about the crystallographic groups. Not all complex reflection
groups have affine extensions.

I thank A. Garsia, E. Opdam, and N. Wallach for useful discussions. I would like
to thank UC at San Diego and IML (Luminy) for their kind invitations.

1. Affine Weyl groups

Let R = {α} ⊂ Rn be a root system of type A, B, . . . , F,G with respect to a euclidean
form (z, z′) on Rn $ z, z′, W the Weyl group generated by the reflections sα , R+ the
set of positive roots (R− = −R+), corresponding to (fixed) simple roots α1, . . . , αn ,
� the Dynkin diagram with {αi , 1 ≤ i ≤ n} as the vertices.

We will also use the dual roots (coroots) and the dual root system

R∨ = {α∨ = 2α/(α, α)}.
The root lattice and the weight lattice are

Q = ⊕n
i=1Zαi ⊂ P = ⊕n

i=1Zωi ,

where {ωi } are fundamental weights: (ωi , α
∨
j ) = δi j for the simple coroots α∨i .

Replacing Z by Z± = {m ∈ Z,±m ≥ 0} we obtain Q±, P±. Note that
Q ∩ P+ ⊂ Q+. Moreover, each ω j has all non-zero coefficients (sometimes ratio-
nal) when expressed in terms of {αi }. Here and further see [B].
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The form will be normalized by the condition (α, α) = 2 for the short roots. Thus,

να
def== (α, α)/2 is either 1, or {1, 2}, or {1, 3}.

We will use the notation νlng for the long roots (νsht = 1).
Let ϑ ∈ R∨ be the maximal positive coroot. Considered as a root (it belongs to

R because of the choice of normalization) it is maximal among all short positive roots
of R.

Setting νi = ναi , νR = {να, α ∈ R}, one has

ρν
def== (1/2)

∑
να=ν

α =
∑
νi=ν

ωi , where α ∈ R+, ν ∈ νR . (1.1)

Note that (ρν, α∨i ) = 1 as νi = ν. We will call ρν partial ρ.
Affine roots. The vectors α̃ = [α, να j ] ∈ Rn × R ⊂ Rn+1 for α ∈ R, j ∈ Z

form the affine root system R̃ ⊃ R (z ∈ Rn are identified with [z, 0]). We add

α0
def== [−ϑ, 1] to the simple roots for the maximal short root ϑ . The corresponding set

R̃ of positive roots coincides with R+ ∪ {[α, να j ], α ∈ R, j > 0}.
We complete the Dynkin diagram � of R by α0 (by −ϑ to be more exact). The

notation is �̃. One can obtain it from the completed Dynkin diagram for R∨ from [B]
reversing the arrows. The number of laces between αi and α j in �̃ is denoted by mij .

The set of the indices of the images of α0 by all the automorphisms of �̃ will be
denoted by O (O = {0} for E8, F4,G2). Let O ′ = r ∈ O, r �= 0. The elements ωr

for r ∈ O ′ are the so-called minuscule weights: (ωr , α
∨) ≤ 1 for α ∈ R+.

Given α̃ = [α, να j ] ∈ R̃, b ∈ B , let

sα̃(z̃) = z̃ − (z, α∨)α̃, b′(z̃) = [z, ζ − (z, b)] (1.2)

for z̃ = [z, ζ ] ∈ Rn+1.
The affine Weyl group W̃ is generated by all sα̃ (we write W̃ = 〈sα̃ , α̃ ∈ R̃+〉).

One can take the simple reflections si = sαi (0 ≤ i ≤ n) as its generators and introduce
the corresponding notion of the length. This group is the semidirect product W�Q′
of its subgroups W = 〈sα, α ∈ R+〉 and Q′ = {a′, a ∈ Q}, where

α′ = sαs[α,να] = s[−α,να ]sα for α ∈ R. (1.3)

The extended Weyl group Ŵ generated by W and P ′ (instead of Q′) is isomor-
phic to W�P ′:

(wb′)([z, ζ ]) = [w(z), ζ − (z, b)] for w ∈ W, b ∈ P. (1.4)

From now on, b and b′, P and P ′ will be identified.
Given b ∈ P+, let wb

0 be the longest element in the subgroup W b
0 ⊂ W of the

elements preserving b. This subgroup is generated by simple reflections. We set

ub = w0w
b
0 ∈ W, πb = b(ub)

−1 ∈ Ŵ , ui = uωi , πi = πωi , (1.5)

where w0 is the longest element in W, 1 ≤ i ≤ n.
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The elements πr
def== πωr , r ∈ O ′ and π0 = id leave �̃ invariant and form a group

denoted by#, which is isomorphic to P/Q by the natural projection {ωr 	→ πr }. As to
{ur }, they preserve the set {−ϑ, αi , i > 0}. The relations πr (α0) = αr = (ur )

−1(−ϑ)
distinguish the indices r ∈ O ′. Moreover (see e.g., [C3]):

Ŵ = #�W̃ , where πr siπ
−1
r = s j if πr (αi ) = α j , 0 ≤ j ≤ n. (1.6)

Setting ŵ = πr w̃ ∈ Ŵ , πr ∈ #, w̃ ∈ W̃ , the length l(ŵ) is by definition the
length of the reduced decomposition w̃ = sil · · · si2 si1 in terms of the simple reflections
si , 0 ≤ i ≤ n.

The length can be also defined as the cardinality |λ(ŵ)| of

λ(ŵ)
def== R̃+ ∩ ŵ−1(R̃−) = {α̃ ∈ R̃+, ŵ(α̃) ∈ R̃−}, ŵ ∈ Ŵ .

Reduction modulo W . The following proposition is from [C2]. It generalizes the
construction of the elements πb for b ∈ P+.

Proposition 1.1. Given b ∈ P, there exists a unique decomposition b = πbub, ub ∈
W satisfying one of the following equivalent conditions:

(i) l(πb)+ l(ub) = l(b) and l(ub) is the greatest possible,

(ii) λ(πb) ∩ R = ∅. Moreover, ub(b)
def== b− ∈ P− = −P+ is a unique element from

P− which belongs to the orbit W (b). ��
For α̃ = [α, να j ] ∈ R̃+, one has

λ(b) = {α̃, (b, α∨) > j ≥ 0 if α ∈ R+, (1.7)

(b, α∨) ≥ j > 0 if α ∈ R−},
λ(πb) = {α̃, α ∈ R−, (b−, α∨) > j > 0 if u−1

b (α) ∈ R+, (1.8)

(b−, α∨) ≥ j > 0 if u−1
b (α) ∈ R−},

λ(ub) = {α ∈ R+, (b, α∨) > 0}. (1.9)

2. Double Hecke algebras

By m, we denote the least natural number such that (P, P) = (1/m)Z. Thus m =
2 for D2k, m = 1 for B2k and Ck , otherwise m = |#|.

The double affine Hecke algebra depends on the parameters q, tν, ν ∈ {να}. The

definition ring is Qq,t
def== Q[q±1/m, t±1/2] formed by the polynomials in terms of

q±1/m and {t±1/2
ν }. We set

tα̃ = tα = tνα , ti = tαi , qα̃ = qνα , qi = qναi ,

where α̃ = [α, να j ] ∈ R̃, 0 ≤ i ≤ n. (2.1)
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It will be convenient to use the parameters {kν} together with {tν}, setting

tα = tν = qkν
α for ν = να, and ρk = (1/2)

∑
α>0

kαα.

For pairwise commutative X1, . . . , Xn,

Xb̃ =
n∏

i=1

Xli
i q j if b̃ = [b, j ], ŵ(Xb̃) = Xŵ(b̃), (2.2)

where b =
n∑

i=1

liωi ∈ P, j ∈ 1

m
Z, ŵ ∈ Ŵ .

We set (b̃, c̃) = (b, c) ignoring the affine extensions.
Later Yb̃ = Ybq− j will be needed. Note the negative sign of j .

Definition 2.1. The double affine Hecke algebra HH is generated over Qq,t by the
elements {Ti , 0 ≤ i ≤ n}, pairwise commutative {Xb, b ∈ P} satisfying (2.2), and
the group#, where the following relations are imposed:

(0) (Ti − t1/2
i )(Ti + t−1/2

i ) = 0, 0 ≤ i ≤ n;
(i) Ti Tj Ti . . . = Tj Ti Tj , . . . , mij factors on each side;

(ii) πr Tiπ
−1
r = Tj if πr (αi ) = α j ;

(iii) Ti XbTi = Xb X−1
αi

if (b, α∨i ) = 1, 0 ≤ i ≤ n;
(iv) Ti Xb = XbTi if (b, α∨i ) = 0 for 0 ≤ i ≤ n;
(v) πr Xbπ

−1
r = Xπr (b), r ∈ O ′. ��

Given w̃ ∈ W̃ , r ∈ O, the product

Tπr w̃
def== πr

l∏
k=1

Tik , where w̃ =
l∏

k=1

sik , l = l(w̃), (2.3)

does not depend on the choice of the reduced decomposition (because {T } satisfy the
same “braid” relations as {s} do). Moreover,

Tv̂Tŵ = Tv̂ŵ whenever l(v̂ŵ) = l(v̂)+ l(ŵ) for v̂, ŵ ∈ Ŵ . (2.4)

In particular, we arrive at the pairwise commutative elements

Yb =
n∏

i=1

Y li
i if b =

n∑
i=1

liωi ∈ P, where Yi
def== Tωi , (2.5)

satisfying the relations

T−1
i YbT−1

i = YbY−1
αi

if (b, α∨i ) = 1,

Ti Yb = YbTi if (b, α∨i ) = 0, 1 ≤ i ≤ n. (2.6)
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The Demazure–Lusztig operators are defined as follows:

Ti = t1/2
i si + (t1/2

i − t−1/2
i )(Xαi − 1)−1(si − 1), 0 ≤ i ≤ n, (2.7)

and obviously preserve Q[q, t±1/2][X]. We note that only the formula for T0 invol-
ves q:

T0 = t1/2
0 s0 + (t1/2

0 − t−1/2
0 )(q X−1

ϑ − 1)−1(s0 − 1),

where s0(Xb) = Xb X−(b,ϑ)ϑ q(b,ϑ), α0 = [−ϑ, 1]. (2.8)

The map sending Tj to the formula in (2.7), and Xb 	→ Xb (see (2.2)), πr 	→ πr

induces a Qq,t -linear homomorphism from HH to the algebra of linear endomor-
phisms of Qq,t [X]. This HH -module, which will be called the polynomial represen-
tation, is faithful and remains faithful when q, t take any non-zero complex values
assuming that q is not a root of unity.

The images of the Yb are called the difference Dunkl operators. To be more exact,
they must be called difference-trigonometric Dunkl operators, because there are also
difference-rational Dunkl operators.

The polynomial representation is the HH -module induced from the one di-
mensional representation Ti 	→ t1/2

i , Yi 	→ Y 1/2
i of the affine Hecke subalgebra

HY = 〈T,Y 〉. Here the PBW-Theorem is used: for arbitrary nonzero q, t, any element
H ∈ HH has a unique decomposition in the form

H =
∑
w∈W

gw fw Tw, gw ∈ Qq,t [X], fw ∈ Qq,t [Y ]. (2.9)

The definition of DAHA and the polynomial representation are compatible with
the intermediate subalgebras HH$ ⊂ HH with P replaced by any lattice B $ b
between Q and P. Respectively, # is changed to the image #$ of B/Q in #. From
now on, we take Xa,Yb with the indices a, b ∈ B.We will continue using the notation
V for the B-polynomial representation:

V = Qq,t [Xb] = Qq,t [Xb, b ∈ B].

We also set Ŵ $ = B · W ⊂ Ŵ , and replace m by the least m̃ ∈ N such that
m̃(B, B) ⊂ Z in the definition of the Qq,t .

Automorphisms. The following duality anti-involution is of key importance for
the various duality statements:

φ : Xb 	→ Y−1
b , Ti 	→ Ti (1 ≤ i ≤ n). (2.10)

It preserves q, tν and their fractional powers.
We will also need the automorphisms of HH$(see [C2], [C3]):

τ+ : Xb 	→ Xb, Yr 	→ Xr Yr q−
(ωr ,ωr )

2 , πr 	→ q−(ωr ,ωr )Xrπr ,

τ+ : Yϑ 	→ q−1 XϑT−1
0 Tsϑ , T0 	→ q−1 XϑT−1

0 , and (2.11)

τ−
def== φτ+φ, σ def== τ+τ−1− τ+ = τ−1− τ+τ−1− , (2.12)
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where r ∈ O ′. They fix Ti (i ≥ 1), tν, q and fractional powers of tν, q. Note that
τ− = στ+σ−1.

In the definition of τ± and σ, we need to add q±1/(2m) to Qq,t .
The automorphism τ− acts trivially on {Ti(i ≥ 0), πr ,Yb}. Hence it naturally

acts in the polynomial representation V . The automorphism τ+ and therefore σ do not
act in V . The automorphism σ sends Xb to Y−1

b and is associated with the Fourier
transform in the DAHA theory.

Actually, all these automorphisms act in the central extension of the elliptic braid
group defined by the relations of HH , where the quadratic relation is dropped. The
central extension is by the fractional powers of q .

The elements τ± generate the projective PSL(2,Z), which is isomorphic to the
braid group B3 due to Steinberg.

3. Macdonald polynomials

This definition is due to Macdonald (for ksht = klng ∈ Z+), who extended in [M] Op-
dam’s nonsymmetric polynomials introduced in the differential case in [O1] (Opdam
mentions Heckman’s contribution in [O1]). The general case was considered in [C2].

We continue using the same notation X,Y, T for these operators acting in the poly-
nomial representation. The parameters q, t are generic in the following definition.

Definition 3.1. The nonsymmetric Macdonald polynomials {Eb, b ∈ P} are unique
(up to proportionality) eigenfunctions of the operators

{L f
def== f (Y1, . . . ,Yn), f ∈ Q[X]}

acting in Qq,t [X] :

L f (Eb) = f (q−b% )Eb, where b%
def== b − u−1

b (ρk), (3.13)

Xa(q
b) = q(a,b) for a, b ∈ P, ub = π−1

b b, (3.14)

where ub is from Proposition 1.1.
They satisfy

Eb − Xb ∈ ⊕c&bQ(q, t)Xc, 〈Eb, Xc〉◦ = 0 for P $ c & b, (3.15)

where we set c & b if

c− − b− ∈ B ∩ Q+ or c− = b− and c − b ∈ B ∩ Q+.

The following intertwiners are the key in the theory:

�i = τ+(Ti )+ t1/2
i − t−1/2

i

Y−1
αi − 1

, i ≥ 0, Pr = τ+(πr ), r ∈ O ′, (3.16)

�ŵ = Pr�il . . . �i1 for reduced decompositions ŵ = πr sil . . . si1 .
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Note the formulas

τ+(T0) = X−1
0 T−1

0 , X0 = q X−1
ϑ , τ+(πr ) = q−(ωr ,ωr )/2 Xrπr .

The products �ŵ do not depend on the choice of the reduced decomposition, inter-
twine Yb, and transform the E-polynomials correspondingly. Namely, for ŵ ∈ Ŵ ,

�ŵYb = Yŵ(b)�ŵ, where Y[b, j ]
def== Ybq− j , (3.17)

Eb = Const�ŵ(Ec) for Const �= 0, b = ŵ((c)),
provided that πb = ŵπc and l(πb) = l(ŵ)+ l(πc).

Here we use the affine action of Ŵ on z ∈ Rn :

(wb)((z)) = w(b + z), w ∈ W, b ∈ P,

sα̃((z)) = z − ((z, α)+ j)α, α̃ = [α, να j ] ∈ R̃. (3.18)

The definition of the E-polynomials and the action of the intertwiners are com-
patible with the transfer to the intermediate subalgebras HH$. Recall that the B-
polynomial representation is

V = Qq,t [Xb]
def== Qq,t [Xb, b ∈ B].

We note that the�-intertwiners were introduced by Knop and Sahi in the case of GLn .

The coefficients of the Macdonald polynomials are rational functions in terms of
qν, tν . The following evaluation formula holds:

Eb(q
−ρk ) = q(ρk,b−)

∏
[α, j ]∈λ′(πb)

(1− q j
α tαXα(qρk )

1− q j
αXα(qρk )

)
, (3.19)

λ′(πb) = {[α, j ] | [−α, να j ] ∈ λ(πb)}. (3.20)

Explicitly, (see (1.8)),

λ′(πb) = {[α, j ] | α ∈ R+, (3.21)

− (b−, α∨) > j > 0 if u−1
b (α) ∈ R−,

− (b−, α∨) ≥ j > 0 if u−1
b (α) ∈ R+}.

Formula (3.19) is the Macdonald evaluation conjecture in the nonsymmetric variant
from [C2].

Note that one has to consider only long α (resp., short) if ksht = 0 (resp., klng = 0)
in the λ′-set.

We have the following duality formula for b, c ∈ P :

Eb(q
c% )Ec(q

−ρk ) = Ec(q
b% )Eb(q

−ρk ), b% = b − u−1
b (ρk). (3.22)
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See [C2]. The proof is based on the anti-involution φ from (2.10).
The action of τ−. The automorphism τ+ is a formal conjugation by the Gaussian

γ (qz) = q(z,z)/2 where we set Xb(qz) = q(b,z).We treat γ as an element in a comple-
tion of the polynomial representation with the extended action of HH. Actually, only
the W -invariance of γ and the relations

ω j (γ ) = q(ωi ,ωi )/2 X−1
i γ for j = 1, . . . , n

are needed here. For instance, one can (formally) take

γx
def==

∑
b∈B

q−(b,b)/2Xb. (3.23)

Applying σ and using that τ− = στ−1+ σ−1, we obtain that the automorphism τ−
in V is proportional to the multiplication by

γy
def==

∑
b∈B

q(b,b)/2Yb (3.24)

provided that |q| < 1.We use that V is a union of finite-dimensional spaces preserved
by the Y -operators. This observation is convenient, although not absolutely necessary,
to check the following proposition.

Proposition 3.2. i) For generic q, t or for any q, t provided that the polynomial Eb

for b ∈ B is well defined,

τ−(Eb) = q−
(b− , b−)

2 +(b− , ρk) Eb for P− $ b− ∈ W (b). (3.25)

ii) For arbitrary q, t,

τ−(Ti ) = Ti , τ−(�i ) = �i for i > 0, (3.26)

τ−(τ+(πr )) = q(ωr ,ωr )/2Yrτ+(πr ), τ−(τ+(T0)) = τ+(T0)
−1Y0,

τ−(�0) = �0Y0 = Y−1
0 �0, Y0 = q−1Y−1

ϑ .

iii) If q is not a root of unity for arbitrary tν, then τ− preserves an arbitrary Y -
submodule of V .

Proof. The first two claims are straightforward. As for (iii), since q is generic one
can assume that 0 < q < 1 and define τ̃− as the operator of multiplication by C−1γy

using (3.24) and taking

C =
∑
b∈B

q(b,b)/2Yb(1) =
∑
b∈B

q(b,b)/2q(b,ρk).

Then τ̃− coincides with τ− for generic k, when all E-polynomials exist and the X-
spectrum of V is simple, due to (i). This gives the coincidence for any k. ��
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4. The radical

Following [C1, C2], we set

{ f, g} = {Lı( f )(g(X))} = {Lı( f )(g(X))}(q−ρk ) for f, g ∈ V, (4.1)

ı(Xb) = X−b = X−1
b , ı(z) = z for z ∈ Qq,t ,

where L f is from Definition 3.1. It induces the Qq,t -linear anti-involution φ of HH$

from (2.10).

Lemma 4.1. For arbitrary non-zero q, tsht, tlng,

{ f, g} = {g, f } and {H ( f ), g} = { f, H φ (g)}, H ∈ HH$. (4.2)

The quotient V ′ of V by the radical Rad
def== Rad { , } of the pairing { , } is an HH$-

module such that

a) all Y -eigenspaces of V ′ are zero or one-dimensional,
b) E(q−ρk ) �= 0 if the image E ′ of E in V ′ is a non-zero Y -eigenvector.

The radical Rad is the greatest HH$-submodule in the kernel of the map f 	→
{ f, 1} = f (q−ρk ).

Proof. Formulas (4.2) are from Theorem 2.2 of [C2]. Concerning the rest, let us recall
the argument from [C3]. Since Rad{ , } is a submodule, the form { , } is well defined
and non-degenerate on V ′. For any pullback E ∈ V of E ′ ∈ V ′, E(q−ρk ) = {E, 1} =
{E ′, 1′}. If E ′ is a Y -eigenvector in V ′ and E(q−ρk ) vanishes, then

{Qq,t [Yb](E ′),H$
Y (1

′)} = 0 = {E ′,V ·H$
Y (1

′)}.
Therefore {E ′,V ′} = 0, which is impossible. ��

In the following lemma, q is generic, but tν are not supposed generic. The Macdo-
nald polynomials Eb always exist for b = bo, satisfying the conditions

q−a% �= q−bo
% for all a & bo. (4.3)

We call such bo primary. Sufficiently big b are primary.

Lemma 4.2. i) A Y -eigenvector E ∈ V belongs to Rad if and only if E(q−ρk ) = 0.
The equality E(q−ρk ) = 0 automatically results in the equalities

E(q−bo
% ) = 0 for all bo ∈ B�

def== {bo ∈ B | Ebo(q−ρk ) �= 0}. (4.4)

ii) Let us assume that the radical is nonzero. Then for any constant C > 0 (1 ≤ i ≤
n), there exists primary bo such that (αi , bo) > C and Ebo(q−ρk ) = 0, i.e., Ebo ∈
Rad.
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Proof. The first claim follows from Lemma 4.1. If E ∈ Rad and there is no such bo

for certain C, then the number of common zeros of the translations c(E) of E for any
number of c ∈ B is infinite, which is impossible because the degree of E is finite.

��
We come to the following theorem generalizing the description of singular k from

[O2].

Theorem 4.3. Assuming that q is generic, the radical vanishes if and only if Ebo(q−ρk )
�= 0 for all sufficiently big primary bo, i.e., if the product in the right-hand side of
(3.19) is non-zero for all b ∈ B with sufficiently big (b, αi ) for i > 0. ��

We can define quasi-perfect representations as HH$-modules which have a non-
degenerate form { , } satisfying (4.2). Then the greatest quasi-perfect quotient of the
polynomial represntation is V/Rad. Indeed, any quasi-perfect quotient V of V supplies
it with a form { f, g}V = { f ′, g′} for the images f ′, g′ of f, g in V . Then a proper
linear combination { , }o of { , } and { , }V will satisfy {1, 1}o = 0, which immediately
makes it zero identically.

5. The irreducibility

In this section q, t are arbitrary non-zero, including roots of unity.

Theorem 5.1. i) If the quotient V ′ of the polynomial representation V by the radical
Rad{ , } is finite dimensional and τ−-invariant, then it is an irreducible HH$-
module. The radical is always τ−-invariant if q is not a root of unity.

ii) At roots of unity, the τ−-invariance holds when the radical is HH$-generated by
linear combinations

∑
cb Eb (provided that Eb exist) where the summations are

over b with coinciding q−(b−,b−)/2−(b−,ρk) from (3.25).

Proof. Using φτ−φ = τ+, the relation

{τ+ f, g} = { f, τ−g} for f, g ∈ V ′

defines the action of τ+ in V ′ and therefore the action of σ there satisfying

τ+τ−1− τ+ = σ = τ−1− τ+τ−1− .

The pairing { f, g}σ def== {σ f, g} = { f, σ−1g} corresponds to the anti-involution ♥ =
σ · φ = φ · σ−1 of HH$ , sending

♥ : Ti 	→ Ti , πr 	→ πr , Yb 	→ Yb, Xb 	→ T−1
w0

Xς(b)Tw0 (5.1)

for 0 ≤ i ≤ n, b ∈ B.
It holds in either direction, from f to g and the other way round, but the form

{ f, g}σ , generally speaking, could be non-symmetric. Actually it is symmetric, but we
do not need it for the proof.
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Using this non-degenerate pairing, we proceed as follows. Any proper HH$-
submodule V ′′ of V ′ contains at least one Y -eigenvector e′′, so we can assume that
V ′′ = HH$e′′. The corresponding eigenvalue cannot coincide with that of 1 thanks
to the previous lemma. Therefore {1′,V ′′}σ = 0 for the image 1′ of 1 in V ′, and the
orthogonal complement of V ′′ in V ′ is a proper HH$-submodule of V ′ containing 1′,
which is impossible.

Using Proposition 3.2, we obtain (ii). ��
Let us check that the pairing { f, g}σ is symmetric. First,

{τ+(1′), 1′} = {1′, τ−(1′)} = {1′, 1′} = 1 ⇒
{1′, 1′}σ = {σ(1′), 1′} = {τ+(1′), τ−(1′)} = {τ+(1′), 1′} = 1.

Then, {1′, f }σ −{ f, 1′}σ = {(σ −σ−1)(1′), f } = {(1−σ−2)(1′), f }σ . However σ−2

coincides with Two up to proportionality in irreducible HH -modules where σ acts
(see [C3]). Thus (1 − σ−2)(1′) is proportional to 1′ and must be zero in V ′ due to the
calculation above. We obtain that 1′ is in the radical of the pairing { f, g}σ − {g, f }σ ,
which makes this difference identically zero since 1′ is a generator.

The quotient V ′ is not τ−-invariant if q is a root of unity and k are generic. In this
case (see [C2, C3]), all Eb and Eb = Eb/Eb(q−ρk ) are well defined. The radical is
linearly generated by the differences Eb − Ec when

ub = uc, b− = c− mod N A ∩ B for (A, B) = Z, q N = 1.

The polynomials Eb and Eb are τ−-eigenvectors. Their eigenvalues are
q−(b−,b−)/2−(b−,ρk ). Therefore τ− does not preserve the radical.

An example of reducible V ′. For the root system Bn(n > 2), let

n ≥ l > n/2 + 1, r = 2(l − 1), klng = − s

r
, l, s ∈ N, (s, r) = 1.

We will assume that ksht is generic.
Then Theorem 4.3 readily gives that the radical is zero. Indeed, the numerator of

the formula from (3.19) is nonzero for all b because

q j
α tαXα(q

ρk ) = q j+kα+(α∨,ρk )
α �= 1 for any α ∈ R+, j > 0, (5.2)

and the denominator is non-zero because

q j
αXα(q

ρk ) = q j+(α∨,ρk )
α �= 1 for any α ∈ R+, j > 0. (5.3)

We use that (α∨, ρk) involves ksht unless α belongs to the root subsystem An−1 formed
by εl − εm in the notation of [B].

Thus all Macdonald polynomials Eb are well defined and the Y -action in V is
semisimple. The semisimplicity results from (5.3).

The following relation holds:

q j
α t−1
α Xα(q

ρk ) = q j−kα+(α∨,ρk )
α = 1 for α = εl , j = 2(l − 1)s (5.4)
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in the notation from [B]. Indeed, (α∨, ρk) = ksht + 2(l − 1)klng. Let

α̃• = [−α, να j ] = [−εl, 2(l − 1)s].

Here α is short, so να = 1.

Proposition 5.2. The polynomial representation has a proper submodule V• which
is the linear span of Eb for b such that λ(πb) contains α̃•. The quotient V/V• is
irreducible.

Proof. This statement follows from the Main Theorem of [C3]. It is easy to check it di-
rectly using the intertwiners from (3.17). Indeed, given b, the linear span

∑
ŵ �ŵ(Eb)

is an HH$-submodule of V when all ŵ ∈ Ŵ are taken, not only the ones satisfying
l(ŵπb) = l(ŵ)+l(πb). If πb contains α̃• but ŵπc does not, then�ŵ(Eb) = 0 because
the product �ŵ�πb(1) can be transformed using the homogeneous Coxeter relations
to get the combination

· · · (τ+(Ti )− t1/2
i )(τ+(Ti )+ t−1/2

i ) · · · (1)
somewhere. This combination is identically zero. ��

6. A non-semisimple example

Let us consider the case of A1 assuming that q1/2 is a primitive 2N-th root of unity.
We set t = qk,

B = P = Z, Q = 2Z, X = Xω1 , Y = Yω1 , T = T1.

Thus the E-polynomials will be numbered by integers, and Y (Em) = qλm Em for

λm = −m%, m%
def== (m + sgn(m)k)/2, sgn(0) = −1,

provided that Em exists. The λm are called weights of Em .
Note that π = sp in the polynomial representation V = Qq,t [X, X−1] for

s( f (X)) = f (X−1), p( f (X))
def== f (q1/2X). The definition ring is Qq,t =

Q[q±1/4, t±1/2], where q1/4 is use to introduce of τ±. Otherwise q1/2 is sufficient.
We will need the following lemma, which is similar to the considerations from

[CO].
Let V̂0 = Qq,t , V̂1 = Qq,t X, . . . ,

V̂−m = Bm V̂m , V̂m+1 = A−m V̂−m, . . . ,

where m > 0, A−m = qm/2 Xπ, Bm is the restriction of the intertwiner t1/2(T +
t1/2−t−1/2

Y−2−1
) to V̂m provided that q2λm �= 1 for λm = −m/2− k/2. If q2λm = 1 and the

denominator of Bm becomes infinity, then we set Bm = t1/2T, V̂−m = V̂m + T V̂m .
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Lemma 6.1. i) The space V̂±m is one-dimensional or two-dimensional. In the latter
case, it is the Jordan 2-block satisfying (Y − q±λm )2V̂±m = {0}. If dim V̂−m = 1,
then dimV̂m+1 = 1 and the generators are

E−m = Bm−1 · · · B1 A0(1), Em+1 = A−m E−m .

If dimV̂−m = 2, then dimV̂m+1 = 2 and the E-polynomials E−m, Em+1 do not
exist, although these spaces contain the E-polynomials of smaller degree.

ii) Let us assume that either q2λm = t or q2λm = t−1. Then dimV̂−m = 1 and
this space is generated by E−m. If V̂m is one-dimensional, then respectively (T +
t−1/2)E−m = 0 or (T − t1/2)E−m = 0. If dimV̂m = 2, then respectively

(T + t−1/2)E−m or (T − t1/2)E−m

is non-zero and proportional to the (unique) E-polynomial which is contained in
the space V̂m. ��
We are going to apply the lemma to integral k. In the range 0 < k < N/2, the

corresponding perfect representation is Y -semisimple. Using the reduction modulo N
(see [CO]), it suffices to consider the interval−N/2 ≤ k < 0.

Proposition 6.2. i) For integral k such that −N/2 ≤ k < 0, the quotient V2N+4|k|
def== V/Rad by the radical of the pairing { , } is an irreducible HH -module of
dimension 2N + 4|k|.

ii) The polynomials Em exist and Em(q−k/2) �= 0 for the sequences:

m = {0, 1,−1, . . . ,−|k| + 1, |k|},
m = {−2|k|, 2|k| + 1, . . . ,−N + 1, N},
m = {−N, N + 1, . . . ,−N − |k| + 1, N + |k|},

respectively with 2|k|, 2(N−2|k|), and 2|k| elements. They do not exist for 2|k|+
2|k| indices

m = {−|k|, |k| + 1, . . . ,−2|k| + 1, 2|k|},
m = {−N − |k|, N + |k| + 1, . . . ,−N − 2|k| + 1, N + 2|k|}.

iii) The Y -semisimple component of V2N+4|k| of dimension 2N − 4|k| is linearly gen-
erated by Em for

{m = −2|k|, 2|k| + 1, −2|k| − 1, . . . , −N + 1, N}.
The corresponding Y -weights are{

λ = |k|
2
,
−|k| − 1

2
,
|k| + 1

2
, . . . ,

N − 1− |k|
2

,
|k| − N

2

}
.



94 I. Cherednik

iv) The rest of V2N+4|k| is the direct sum of 4|k| Jordan 2-blocks of the total dimension
8|k|. There are two series of the corresponding (multiple) weights λ :{−|k|

2
,
|k| − 1

2
, . . . ,

−1

2
,

0

2

}
,

{
N − |k|

2
,
|k| − N − 1

2
, . . . ,

N − 1

2
,
−N

2

}
.

Proof. We will use the chain of the spaces of generalized eigenvectors

V̂0 = Qq,t , V̂1 = Qq,t X, V̂−1, . . . , V̂m, . . .

from Lemma 6.1. Recall that m > 0. The following holds:

0) the spaces V̂±m are all one-dimensional from 0 to m = |k|, i.e., in the sequence
V0, . . . , V−|k|+1, V|k|;

1) the intertwiner Bm becomes infinity at m = |k| (B|k| = t1/2T ) and dimV̂m = 2 in
the range |k| < m ≤ 2|k|;

2) the intertwiner Bm kills 1 ∈ V̂m at m = 2|k|, and after this dimV̂m = 1 for
2|k| < m ≤ N;

3) Bm is proportional to (T+t−1/2) at m = N, E−N = X N+X−N , and dimV̂m = 1
as N < m ≤ N + |k|;

4) the intertwiner Bm becomes infinity again at m = N + |k|, and afterwards
dimV̂m = 2 when N + |k| < m ≤ N + 2|k|;

5) Bm kills E−N at m = N + 2|k|, and Bm(V̂m) is generated by E−N−2|k| of same
Y -eigenvalue as EN .

Concerning step (5), the polynomials E−N−2|k| and EN both exist, there evalua-
tions are nonzero, and the difference

E = EN/EN (q
−k/2)− E−N−2|k|/E−N−2|k|(q−k/2)

belongs to the radical Rad, i.e., becomes zero in V2N+4|k|.
Note that (T + t1/2)E = 0, which is important to know to continue the decompo-

sition of V further. It follows the same lines.
We see that step (5) is the first step which produces no new elements in V2N+4|k|.

Namely,
BN+2|k|(V̂N+2|k|) = Qq,t EN in V2N+4|k|,

and we can stop here.
The lemma gives that between (2) and (3), the polynomials Em exist, their im-

ages linearly generate the Y -semisimple part of V . It is equivalent to the inequalities
Em(q−ρk ) �= 0 because they have different Y -eigenvalues.

Apart from (2)-(3), there will be Jordan 2-blocks with respect to Y. Let us check it.
First, we obtain the 2-dimensional irreducible representation of HY = 〈T,Y, π〉

in the corresponding V̂ -space at step (1). Then we apply invertible intertwiners to
this space (the weights will go back) and eventually will obtain the two-dimensional
V̂ -space for the starting weight λ = −|k|/2. Note that E0 = 1 is not from the Y -
semisimple component of V2N+4|k|. It belongs to a Jordan 2-block.

Second, the intertwiner (2) makes the last space one-dimensional and Y -semisimple
(the corresponding eigenvalue is simple in V2N+4|k|). It will remain one-dimensional
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until (3). After step (3), we obtain the Jordan blocks. The steps (4)–(5) are parallel to
(1)–(2). ��

The above consideration readily results in the irreducibility of the module V2N+4|k|.
Indeed, Lemma 6.1, (ii) gives that if a submodule of V2N+4|k| contains at least one
simple Y -eigenvector then it contains the image of 1 and the whole space. Step (5)
guarantees that it is always the case, because we can obtain EN beginning with an
arbitrary Y -eigenvector.

The irreducibility and the existence of the projective PSL(2,Z)-action in V2N+4|k|
also follow from Theorem 5.1, (ii) because the radical is generated by E which is a
linear combination of the E-polynomials with the coinciding τ−-eigenvalues.
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Summary. In [GK] we developed a framework to study representations of groups of the form
G((t)), where G is an algebraic group over a local field K . The main feature of this theory is that
natural representations of groups of this kind are not on vector spaces, but rather on pro-vector
spaces.

In this paper we present some further constructions related to this theory. The main results
include: 1) General theorems insuring representability of covariant functors, 2) Study of the
functor of semi-invariants, which is an analog of the functor of semi-infinite cohomology for
infinite-dimensional Lie algebras, 3) Construction of representations from the moduli space of
G-bundles on algebraic curve over K .

Subject Classification: 22D20

Introduction

0.1.

Let K be a local field, G a split reductive group over K, and G((t)) the corresponding
loop group, regarded as a group ind scheme. In [GK] we suggested a categorical frame-
work in which one can study representations of the group G((t))(K) = G (K((t))).
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The main point is that G := G((t))(K) admits no interesting representations on
vector spaces, and we have to consider pro-vector spaces instead. In more detail, we re-
gard G as a group-like object in the category Set := Ind(Pro(Ind(Pro(Set0)))), where
Set0 denotes the category of finite sets. We observe that Set has a natural pseudo-
action on the category Vect = Pro(Vect) of pro-vector spaces, and we define the
category Rep(G) to consist of pairs (V, ρ), where V ∈ Vect, and ρ is an action map
G× V → V in the sense of the above pseudo-action, satisfying the usual properties.

In [GK] several examples of objects of Rep(G) were considered. One such exam-
ple is the principal series representation#, considered by M. Kapranov in [Ka]. Com-
bining the results of [Ka] and the formalism of adjoint functors developed in [GK] we
showed that the endomorphism algebra of # could be identified with the Cherednik
double affine Hecke algebra.

Another example is the “left regular” representation, corresponding to functions
on G, with respect to the action of G on itself by left translations, denoted M(G).
The main feature of M(G) is that the right action develops an anomaly: instead of
the action of G we obtain an action of the Kac–Moody central extension Ĝ0 of G by
means of the multiplicative group Gm , induced by the adjoint action of G on its Lie
algebra.

0.2.

In the present paper we continue the study of the category Rep(G). It is natural to
subdivide the contents into three parts:

In the first part, which consists of Sections 1 and 2, we prove some general results
about representability of various covariant functors on the category Rep(G). These
results are valid when G is replaced by an arbitrary group-like object on Set. We also
introduce the pro-vector space of distributions on an object of Set with values in a
pro-vector space; this notion is used to construct actions on invariants and coinvariants
of representations of G.

The second part occupies Sections 3, 4, and 5. We study representations of a cen-
tral extension Ĝ of G by means of Gm with a fixed central character c : Gm → C∗;
the corresponding category is denoted Repc(Ĝ), and (Ĝ′, c′) denotes the opposite ex-
tension with its central character, see [GK], Sect. 5.9.

Our goal here is to study the functor of semi-invariants

∞
2⊗
G

: Repc(Ĝ)× Repc′(Ĝ
′)→ Vect,

which couples the categories of representations at opposite levels. The motivation for
the existence of such functor is provided by the semi-infinite cohomology functor on
the category of representations of a Kac–Moody Lie algebra.

The construction of
∞
2⊗
G

presented here follows the categorical interpretation of

semi-infinite cohomology, developed by L. Positselsky (unpublished).
We use the functor of semi-invariants to prove the main result of this paper,

Theorem 3.3. This theorem describes for any quasi pro-unipotent subgroup H of G
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(Sect. 2.6) the ring of endomorphisms of the functor CoinvH : Rep(G)→ Vect, as the
algebra of endomorphisms of a certain object in the category of representations of Ĝ0.

In particular, we obtain a functorial interpretation of the double affine (Cherednik)
algebra in terms of the category Rep(G), as the algebra of endomorphisms of the
functor of coinvariants with respect to the maximal quasi pro-unipotent subgroup of G.

The third part consists of Sections 7 and 8, preceded by some preliminaries in
Sect. 6. We construct some more examples of objects of Rep(G), this time using the
moduli stack of bundles on an algebraic curve X over K, when we think of the variable
t as a local coordinate near some point x ∈ X .

In particular, we show in Theorem 7.9 that in this way one naturally produces a pro-
vector space, endowed with an action of G×G, such that the space of bi-coinvariants
with respect to the maximal quasi pro-unipotent subgroup I00 of G is a bi-module over
Cherednik’s algebra, isomorphic to the regular representation of this algebra.

0.3. Notation

We keep the notations introduced in [GK]. In particular, for a category C we denote by
Ind(C) (resp., Pro(C)) its ind- (resp., pro-) completion.

For a filtering set I and a collection Ai of objects of C indexed by I , we will denote
by “ lim ”−→

I

Ai the resulting object of Ind(C) and by lim−→
I

Ai := limInd(“ lim ”−→
I

Ai ) ∈ C

the inductive limit of the latter, if it exists. The notation for inverse families is similar.
As was mentioned above Set0 denotes the category of finite sets. We use the

shorthand notation Set = Ind(Pro(Set0)) and Set = Ind(Pro(Set)). We denote by
Vect0 the category of finite-dimensional vector space, Vect � Ind(Vect0) is the
category of vector spaces, and Vect := Pro(Vect) is the category of pro-vector
spaces.

0.4. A correction to [GK]

As was pointed out by A. Shapira, Lemma 2.13 of [GK] is wrong. Namely, he ex-
plained to us a counterexample of a pro-vector space V, acted on by a discrete set X
(thought of as an object of Set), such that the action of every element of X on V is
trivial, whereas the action of X on V in the sense of the pseudo-action of Set ⊂ Set
on Vect is non-trivial. Namely, V = “ lim ”←−

n∈N

Functc(Z≥n) and X = N, such that i ∈ N

acts on each Functc(Z≥n) by{
f (xn, xn+1, . . .) 	→ f (xn, xn+1, . . . , xi+1, . . .)− f (xn, xn+1, . . . , xi , . . .), i ≥ n

f (xn, xn+1, . . .) 	→ 0, i < n.

However, we have the following assertion. Let G be as in [GK], Sect. 1.12 let
and #1 = (V1, ρ1), #2 = (V2, ρ2) be two objects of Rep(G,Vect). Assume that V1
is strict as a pro-vector space, i.e., that it can be represented as “ lim ”←− Vi

1, where the
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maps in the inverse systesm V j
1 → Vi

1 are surjective. Let φ : V1 → V2 be a map in
Vect, which intertwines the actions of the set G(F) = Gtop on V1 and V2.

Lemma 0.5. Under the above circumstances, the map φ is a map in Rep(G,Vect).

Proof. We will prove a more general assertion when we do not require V1 and V2
to be representations of G on Vect, but just objects of endowed with an action of G,
regarded as an object of Set. We claim that a map V1 → V2 compatible with a point-
wise action of Gtop is compatible with an action of G as an object of Set, under the
assumption that V1 is strict.

We represent G as “ lim ”−→ Xk , Xk ∈ Pro(Set), and for each k, Xk � “ lim ”←− Xl
k ,

such the maps (Xl′
k )

top → (Xl
k)

top are surjective. The assertion of the lemma reduces
immediately to the case when V2 = W ∈ Vect, and G is replaced by Xk . In this case

Hom(Xk ⊗ V2,W) � lim−→
i

Hom(Xk ⊗ Vi
2,W).

However, by the assumption on the inverse system {Vi
1}, for every i the map

Hom((Xk)
top ×Vi

1,W)→ Hom((Xk)
top ×V1,W)

is injective. This reduces us to the case when V1 = V is an object of Vect. The rest of
the proof proceeds as in Lemma 2.13 of [GK]. ��

1. The pro-vector space of distributions

1.1.

Let X be an object of Set and V ∈ Vect. Consider the covariant functor on Vect
that assigns to W the set of actions X × V → W. We claim that this functor is rep-
resentable. We will denote the representing object by Distrc(X,V) ∈ Vect; its ex-
plicit construction is given below. It is clear from the definition that covariant functor
V → Distrc(X,V) is right exact.

We begin with some preliminaries of categorical nature:

Lemma 1.2. The category Vect is closed under inductive limits.

Proof. Since Vect is abelian, it is enough to show that it is closed under direct sums.
Let Vκ be a collection of pro-vector spaces, Vκ � “ lim ”←− Vκiκ with iκ running over

a filtering set I κ . Consider the set#
κ

I κ , whose elements can be thought of as families

{ϕ(κ) ∈ I κ ,∀κ}. This set is naturally filtering, and

⊕
κ

Vκ � “ lim ”←−

(
⊕
κ

Vκφ(κ)

)
,

where the inverse system is taken with respect to #
κ

I κ . ��
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1.3.

Let us now describe explicitly the pro-vector space Distrc(X,V).
If X is a finite set and V is a finite-dimensional vector space, let Distrc(X, V ) be

the set of V -valued functions on X , thought of as distributions. If X0 ∈ Pro(Set0)
equals “ lim ”←− Xi with Xi ∈ Set0 and V is as above, set

Distrc(X0, V ) = “ lim ”←− Distrc(Xi , V ) ∈ Vect.

Set also Distr(X0, V ) = lim←− Distrc(Xi , V ) ∈ Vect, i.e.,

Distr(X0, V ) = limProj Distrc(X0, V ).

If X is an object of Set equal to “ lim ”−→ X j , X j ∈ Pro(Set0) and V ∈ Vect is

“ lim ”−→ Vm with Vm ∈ Vect0, set

Distrc(X, V ) = lim−→
j,m

Distrc(X j , Vm) ∈ Vect,

where the inductive limit is taken in Vect. Set also

Distrc(X, V ) = lim−→
j,m

Distrc(X j , Vm) ∈ Vect.

When V is finite-dimensional, the latter is the vector space, which is the topological
dual of the topological vector space Functlc(X, V ∗) of locally constant functions on X
with values in V ∗. Note that Distrc(X, V ) is not isomorphic to limProj Distrc(X, V )
even if V is finite-dimensional.

For X0 ∈ Pro(Set) equal to “ lim ”←− Xl with Xl ∈ Set and V is a pro-vector space

equal to “ lim ”←− Vn , set

Distrc(X0,V) = lim←−
l,n

Distrc(Xl ,Vn) ∈ Vect.

Finally, for X ∈ Set equal to “ lim ”−→ Xk and V ∈ Vect, set

Distrc(X,V) = lim−→
k

Distrc(Xk,V).

Lemma-Construction 1.4. For Distrc(X,V) ∈ Vect constructed above, there exists
a natural isomorphism

HomVect(Distrc(X,V),W) � Hom(X⊗V,W).

Proof. By the definition of both sides, we can assume that X ∈ Pro(Set) and W =
W ∈ Vect. We have the following (evident) sublemma:
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Sublemma 1.5. If U = lim←−Um, where the projective limit is taken in the category

Vect, then for any X ∈ Pro(Set) and W ∈ Vect,

Hom(X⊗ U,W) � lim−→Hom(X⊗ Um,W).

The sublemma implies that we can assume that V = V ∈ Vect. By applying again
the construction of Distrc(X,V), we reduce the assertion of the lemma further to the
case when X = X ∈ Set, i.e., we have to show that

HomVect(Distrc(X,V),W) � Hom(X⊗V,W).

By the construction of Distrc(X,V) and the definition of the action, we can assume
that X ∈ Pro(Set0) and V is finite-dimensional. In this case the assertion is evident.

��
Remark. For fixed X and V as above we can also consider the contravariant functor
on Vect, given by W 	→ Hom(X × W,V). It is easy to see that this functor is ind-
representable, but Lemma 1.8 shows that it is not in general representable. We will
denote the resulting object of Ind(Vect) by Funct(X,V).

1.6.

Let now X,Y be two objects of Set. The associativity constraint of the pseudo-action
of Set and Vect gives rise to a map

Distrc(X×Y,V)→ Distrc(X,Distrc(Y,V)). (1)

Let us now recall the following definition from [GK], Sect. 2.10:
An object X ∈ Set is said to satisfy condition (**) if it can be represented as “ lim ”−→ Xk

with each Xk ∈ Pro(Set) being weakly strict. We remind (see [GK], Sect. 1.10) that
an object X′ ∈ Pro(Set) is said to be weakly strict if it can be represented as “ lim ”−→ X′i ,
X′i ∈ Set, such that the transition maps X′i → X′j are weakly surjective; in the case of
interest when all X′i ’s are locally compact, the latter condition means that the map of

topological spaces X′top
i → X′j top has dense image.

As was shown in [GK], Sect. 2.12, if G is an algebraic group over K, then the
corresponding object G ∈ Set satisfies condition (**).

Proposition 1.7. If X ∈ Set satisfies condition (**), then the map in (1) is surjective.1

This map is not in general an isomorphism. To construct a counter-example, it
suffices to take V = C—the 1-dimensional vector space, and Y a discrete set Y ∈
Set � Ind(Set0), regarded as an object of Set by means of Set0 → Pro(Set).

1 We are grateful to Alon Shapira who discovered an error in the previous version of the paper,
where the (**) assumption on X was omitted.
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Proof. We need to show that for a pro-vector space W, the map

Hom(X⊗ Distrc(Y,V),W)→ Hom((X× Y)⊗ V,W) (2)

is injective. We will repeatedly use the facts that the functor limInd : Ind(Vect) →
Vect is exact and the functor limProj : Pro(Vect)→ Vect is left-exact.

By assumption, X can be written as “ lim ”−→ Xk with Xk ∈ Pro(Set) being weakly

strict. Set also W = “ lim ”←− W j , W j ∈ Vect. Both sides of (2) are projective limits over

k and j of the corresponding objects with X replaced by Xk and W replaced by W j .
So, we can assume that X is a weakly strict object of Pro(Set) and W = W ∈ Vect.

Let us write now Y = “ lim ”−→ Yk′ with Yk′ ∈ Pro(Set), in which case

Distrc(Y,V) � lim−→Distrc(Yk′ ,V), and

Hom((X× Y)⊗ V,W) � lim←−Hom((X×Yk′ )⊗ V,W).

Lemma 1.8. If U = lim−→Um, the inductive limit taking place in Vect, then for an

object X ∈ Set, satisfying condition (**), and W ∈ Vect, the natural map

Hom(X⊗ U,W)→ lim←−Hom(X⊗ Um,W)

is injective. If X ∈ Set, then this map is an isomorphism.

Proof. As above, we can assume that W = W ∈ Vect, and X is a weakly strict object
of Pro(Set). Assume first that X = X ∈ Set. In this case the assertion of the lemma
follows from the description of inductive limits in Vect given in Lemma 1.2.

Thus, let X be represented as “ lim ”←− Xl , Xl ∈ Set, with the transition maps Xl′ →
Xl being weakly surjective. Then

Hom(X⊗U,W) � lim−→
l

Hom(Xl ⊗ U,W) � lim−→
l

lim←−
m

Hom(Xl ⊗ Um,W),

and
lim←−
m

Hom(X⊗ Um,W) � lim←−
m

lim−→
l

Hom(Xl ⊗ Um,W).

However, by the assumption, the transition maps Hom(Xl ⊗ Um ,W) →
Hom(Xl′ ⊗ Um,W) are injective. Therefore, the natural map

lim−→
l

lim←−
m

Hom(Xl ⊗ Um,W)→ lim←−
m

lim−→
l

Hom(Xl ⊗ Um,W)

is injective. ��
Hence, we are reduced to the case when Y is also an object of Pro(Set). Using

Sublemma 1.5, we reduce the assertion further to the case when V = V ∈ Vect and
Y = Y ∈ Set.
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If X = “ lim ”←− Xl , then both sides of (2) are inductive limits over l of the cor-

responding objects with X replaced by Xl . Thus, from now on we will assume that
X = X ∈ Set, and we have to show that the map

Hom(X⊗ Distrc(Y,V),W)→ Hom((X× Y)⊗ V,W) (3)

is injective, where on the left-hand side Hom is understood in the sense of the pseudo-
action of Set ⊂ Set on Vect.

By applying Lemma 1.8, we reduce the assertion to the case when Y ∈ Pro(Set0)
and V is finite-dimensional. It is clear that when Y belongs to Set0, the map in (3)
is an isomorphism. Consider now the case when Y = “ lim ”←− Yi with Yi ∈ Set0 and

X = “ lim ”−→ Xn with Xn ∈ Pro(Set0). Then, by Sublemma 1.5

Hom(X⊗Distrc(Y,V),W) � lim−→
i

Hom(X⊗ Distrc(Yi ,V),W)

� lim−→
i

lim←−
n

Hom(Xn ⊗ Distrc(Yi ,V),W) � lim−→
i

lim←−
n

Hom((Xn × Yi )⊗ V,W).

We also have an identification

Hom((X× Y)⊗ V,W) � lim←−
n

Hom((Xn ×Y)⊗ V,W)

� lim←−
n

lim−→
i

Hom((Xn × Yi )⊗ V,W).

Since Yi are finite sets, we can assume that the transition maps Yi ′ → Yi are
surjective. Therefore, the map

lim−→
i

lim←−
n

Hom((Xn × Yi )⊗ V,W)→ lim←−
n

lim−→
i

Hom((Xn × Yi )⊗ V,W)

is injective. ��

1.9.

As an application of Proposition 1.7, we will prove the following result.
Let ρ : X × V → W be an action map. We can consider ker(ρ) and coker(ρ) as

functors on Vect:

ker(ρ)(U) = {φ : U → V | ρ ◦φ = 0} and coker(ρ)(U) = {ψ : W → U |ψ ◦ρ = 0}.
As in [GK], Proposition 2.8, one shows that coker(ρ) is always representable, and

ker(ρ) is representable if condition (**) is satisfied.

Corollary 1.10. Let Y × V → V and Y × W → W be actions commuting in the
natural sense with ρ. Then, if Y satisfies (**), we have an action of Y on coker(ρ),
and if X satisfies condition (**), we have an action of Y on ker(ρ).
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This corollary will be used when V = W, and both X = G and Y = H are group-
like objects in Set, whose actions on V commute. In this case we obtain that G acts on
both invariants and coinvariants of H on V.

Proof. Let us first prove the assertion about the cokernel. Note that coker(ρ) is iso-
morphic to the cokernel of the map Distrc(X,V)→ W obtained from ρ. We need to
show that the composition

Distrc(Y,W)→ W → coker(ρ)

factors through Distrc(Y, coker(ρ)). By the right-exactness of the functor Distrc(Y, ·),
Distrc(Y, coker(ρ)) � coker

(
Distrc(Y,Distrc(X,V))→ Distrc(Y,W)

)
,

and it is enough to show that the composition

Distrc(Y,Distrc(X,V))→ W → coker(ρ)

vanishes.
However, using Proposition 1.7, we can replace Distrc(Y,Distrc(X,V)) by

Distrc(Y×X,V), and the required assertion follows from the commutative diagram:

Distrc(X,V)
ρ−−−−→ W −−−−→ coker(ρ)$⏐⏐ $⏐⏐

Distrc(Y× X,V)
ρ−−−−→ Distrc(Y,W).

The proof for ker(ρ) is similar. We have to show that the composition

Distrc(X,Distrc(Y, ker(ρ)))→ Distrc(X,V)→ W

vanishes. Using Proposition 1.7, it is sufficient to show that the composition

Distrc(X×Y, ker(ρ))→ Distrc(X,V)→ W

vanishes, which follows from the assumption. ��

2. Existence of certain left adjoint functors

2.1.

In what follows G will be group-like object in Set satisfying assumption (**). Foll-
owing [GK], we will denote by Rep(G) the category of representations of G on
Vect.

Proposition 2.2. The forgetful functor Rep(G)→ Vect admits a left adjoint.
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Proof. We have to prove for any W ∈ Vect the representability of the functor on
Rep(G) given by # = (V, ρ) 	→ HomVect(W,V). This functor obviously commutes
with projective limits in Rep(G); so, by Proposition 1.2 of [GK] (with Ind replaced by
Pro), it is enough to show that it is pro-representable.

Consider the category of pairs (#, α), where # = (V, ρ) is an object in Rep(G)
and α : W → V is a map in Vect. For any such pair we obtain an action map G×W →
V, and hence a map Distrc(G,W) → V. Since for an object of Vect the class of its
quotient objects is clearly a set, the subclass of those (#, α), for which the above map
Distrc(G,W)→ V is surjective, is also a set. This set is naturally filtered, and let us
denote it by A(W); it is endowed with a functor to Rep(G) given by (#, α) 	→ #.

We claim that lim←−
(#,α)∈A(W)

# is the object on Pro(Rep), which pro-represents our func-

tor.
Indeed, for#′ = (V′, ρ′) ∈ Rep(G), the map

HomPro(Rep(G))

⎛⎝ lim←−
(#,α)∈A(W)

#,#′
⎞⎠ = lim−→

(#,α)∈A(W)

HomRep(G)(#,#
′)

→ HomVect(W,V
′)

is evident. Vice versa, given a map W → V′ consider the induced map
Distrc(G,W) → V′, and let U be its image. We claim that the action map
G× U → V′ factors through U; this would mean that # := (U, ρ′|U) is a sub-object
of#′, and we obtain a morphism from lim←−

(#,α)∈A(W)

# to#′.

Consider the commutative diagram:

Distrc(G×G,W) −−−−→ Distrc(G,Distrc(G,W))

mult

⏐⏐* ⏐⏐*
Distrc(G,W) Distrc(G,U)⏐⏐* ⏐⏐*

U −−−−→ V′.

We need to show that the image of the vertical map Distrc(G,U) → V′ is contained
in U. Since, by construction, the morphism Distrc(G,W) → U is surjective, and the
functor Distrc(G, ·) is right-exact, it suffices to show that the image of the composed
vertical map is contained in U.

However, by Proposition 1.7, it is sufficient to check that the composed map

Distrc(G×G,W)→ V′

has its image contained in U, but this follows from the above diagram. ��
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2.3.

Let us now derive some corollaries of Proposition 2.2. We will denote the left adjoint
constructed above by V 	→ Free(V,G).

Corollary 2.4. Let G1 → G2 be a homomorphism of group-objects of Set. Then the
natural forgetful functor Rep(G2)→ Rep(G1) admits a left adjoint.

Proof. Let #1 be an object of Rep(G1). The functor on Rep(G2) given by # 	→
HomG1(#1,#) commutes with projective limits. Therefore, by Lemma 1.2 of [GK] it
suffices to show that it is pro-representable.

Let V1 be the pro-vector space underlying #1. We have an injection
HomG1(#1,#) ↪→ HomVect(V1,V), where V is the pro-vector space underlying#.

By Proposition 2.2 we know that the functor # 	→ HomVect(V1,V) is repre-
sentable. Therefore, the assertion of the proposition follows from Proposition 1.4 of
[GK]. ��

We will denote the resulting functor Rep(G1)→ Rep(G2) by # 	→ CoindG2
G1
(#)

and call it the coinduction functor.

Corollary 2.5. The category Rep(G) is closed under inductive limits.

Remark. Note that if G = G is a group-object in Set, then the proof of Lemma 1.2
shows that the category Rep(G,Vect) is closed under inductive limits. Moreover, the
forgetful functor Rep(G,Vect)→ Vect commutes with inductive limits.

For an arbitrary G ∈ Set, the latter fact is not true, and we need to resort to Propo-
sition 2.2 even to show the existence of inductive limits. We will always have a surjec-
tion from the inductive limit of underlying pro-vector spaces to the pro-vector space,
underlying the inductive limit.

Proof. Let #i = (Vi , ρi ) be a filtering family of objects of Rep(G). Consider the
covariant functor F on Rep(G) given by

# 	→ lim←− HomRep(G)(#i ,#).

Consider also the functor F′ that sends# = (V, ρ) to lim←− HomVect(Vi ,V).

By Proposition 2.2 and Lemma 1.2, the functor F′ is representable. Hence, by
Proposition 1.4 of [GK], we conclude that F is pro-representable. Since F obviously
commutes with projective limits in Rep(G), it is representable by Lemma 1.2 of [GK].

��

2.6. Inflation

Let us call a group-object H of Set quasi-unipotent if it can be presented as “ lim ”−→ Hi ,

where Hi are group-objects of Pro(Set0) and transition maps being homomorphisms,
see [GK].
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Let us call a group-object H ∈ Pro(Set) quasi-pro-unipotent if it can be presented
as “ lim ”←− Hl , where Hl are quasi-unipotent group-objects of Set, and the transition

maps Hl′ → Hl being weakly surjective homomorphisms; see [GK], Sect. 1.10.
According to Lemma 2.7 of [GK], if H is quasi-pro-unipotent, the functor of H-

coinvariants
CoinvH : Rep(H,Vect)→ Vect

is exact.

Proposition 2.7. If H is quasi-pro-unipotent, the functor CoinvH admits a left adjoint.

We will refer to the resulting adjoint functor as “inflation”, and denote it by V 	→
InfH(V).

2.8. Proof of Proposition 2.7

Let us first take H to be a quasi-unipotent group-object of Set, isomorphic to “ lim ”−→ Hi ,

where Hi are group-objects in Pro(Set0).
Let us show that for a vector space V, the functor Rep(H,Vect)→ Vect given by

# 	→ Hom(V,#H) is pro-representable.
For an index i , consider the object CoindH

Hi
(V) ∈ Rep(H,Vect), where V is

regarded as a trivial representation of Hi , and Coind is as in Corollary 2.4. Us-
ing Proposition 2.4 of [GK], we obtain that CoindH

Hi
(V) is a well-defined object of

Pro(Rep(H,Vect)), which pro-represents the functor# 	→ #Hi .
Note that if H is locally compact, and Hi ⊂ H is open, then CoindH

Hi
(V) belongs in

fact to Rep(H,Vect), and is isomorphic to the space of compactly supported V-valued
distributions on H/Hi , i.e., to the ordinary compact induction.

Since Hi is compact, we have #Hi � #Hi . Therefore, for j > i we have natural
maps

CoindH
H j
(V)→ CoindH

Hi
(V).

Therefore, we can consider the object

lim←− CoindH
H j
(V) ∈ Pro(Rep(H,Vect)),

where the projective limit is taken in the category Pro(Rep(H,Vect)).
For# ∈ Rep(H,Vect) we have

Hom
(

lim←− CoindH
Hi
(V),#

)
� lim−→Hom(V,#Hi ).

Since #H � lim−→#Hi , the RHS of the above expression is not in general isomor-

phic to Hom(V,#H), except when V is finite dimensional. In the latter case we set
InfH(V) := lim←− CoindH

Hi
(V).
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For general V, isomorphic to lim−→Vk with Vk ∈ Vect0, we set

InfH(V) = lim−→ InfH(Vk),

where the inductive limit is taken in Pro(Rep(H,Vect)), see Lemma 1.2.
Now, the existence (and construction) of the functor InfH follows from Proposition

2.4 of [GK]. Namely, if H = “ lim ”←− Hl with Hl being group-objects in Set as above,

and V = “ lim ”←− Vm , we set

InfH(V) = lim←−
l,m

InfHl
(Vm),

where the projective limit is taken in the category Rep(H,Vect) � Pro(Rep(H,
Vect)), and each InfHl

(Vm) is regarded as a representation of H via H → Hl .

3. The functor of coinvariants

3.1.

From now on we will assume that the group-like object G is obtained from a split
reductive group G over K, as in [GK], Sect. 2.12. More generally, we will consider
a central extension Ĝ of G((t)) as in Sect. 2.14 of [GK], and denote by Repc(Ĝ) the
category of representations of Ĝ at level c.

Let H be a quasi-pro-unipotent group-object in Pro(Set). Let H → G be a homo-
morphism, and we will assume that we are given a splitting of the induced extension
Ĝ|H. In particular, we have the forgetful functor Repc(Ĝ)→ Rep(H,Vect).

Consider the functor
Repc(Ĝ)→ Vect,

given by # 	→ CoinvH(#). Let E(G,H)c denote the algebra of endomorphisms of
this functor.

Remark. One can regard E(G,H)c as an analogue of the Hecke algebra of a locally
compact subgroup with respect to an open compact subgroup. Indeed, if G is a locally
compact group-like object in Set and H ⊂ G is open and compact, the corresponding
Hecke algebra, which by definition is the algebra of H-bi-invariant compactly sup-
ported functions on G, can be interpreted both as the algebra of endomorphisms of the
representation CoindG

H(C), where C is the trivial representation and as the algebra of
endomorphisms of the functor# 	→ CoinvH(#) : Rep(G,Vect)→ Vect.

3.2.

Recall now the representation Mc(G), introduced in Sect. 5.6 of [GK]. According
to the main theorem of loc.cit., the structure of Ĝ-representation on Mc(G) extends
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naturally to a structure of Ĝ× Ĝ′-representation, where Ĝ′ is the group-object of Set
corresponding to the central extension Ĝ′ of G((t)), the latter being the Baer sum of
Ĝ and the canonical extension Ĝ0, corresponding to the adjoint action of G on its Lie
algebra. The action of Ĝ′ of Mc(G) has central character c′, given by the formula in
Sect. 5.9 of [GK].

In what follows we will call objects of Repc′(Ĝ
′) “representations at the opposite

level” to that of Repc(Ĝ). We will refer to the Ĝ′-action on Mc(G) as the “right action”.
Using Corollary 1.10, by taking H-coinvariants with respect to H mapping to Ĝ′,

we obtain an object of Repc(Ĝ) which we will denote by Mc(G,H). By construction,
we have a natural map

E(G,H)c′ → EndVect(Mc(G,H)).

However, since the Ĝ and Ĝ′ actions on Mc(G) commute, from Lemma 0.5 we obtain
that endomorphisms of Mc(G,H), resulting from the above map, commute with the
Ĝ-action.

Hence, we obtain a map

E(G,H)c′ → EndRepc(Ĝ)
(Mc(G,H)). (4)

We will prove the following theorem:

Theorem 3.3. The map in (4) is an isomorphism.

3.4.

Let us consider a few examples. Suppose first that the group H is trivial. As a corollary
of Theorem 3.3 we obtain:

Theorem 3.5. The algebra E(G)c of endomorphisms of the forgetful functor
Repc(Ĝ) → Vect is isomorphic to the algebra of endomorphisms of the object
Mc(G) ∈ Repc′(Ĝ

′).

Let now H be a thick subgroup of G[[t]] (see [GK], Sect. 2.12). Note that in this
case, the object Mc(G,H) is isomorphic to the induced representation i Ĝ

H(C) of [GK],
Sect. 3.3, where C is the trivial 1-dimensional representation of H.

In particular, let us take H to be I00, the subgroup of I equal to the kernel of the
natural map I → T → 	, where I ⊂ G[[t]] is the Iwahori subgroup and 	 is
the lattice of cocharacters of T , regarded as a quotient of T by its maximal compact
subgroup.

The corresponding induced representation i Ĝ
H (C) is isomorphic to Kapranov’s rep-

resentation, denoted in Sect. 4 of [GK] by Vc. Assume now that G is semisimple and
simply-connected. In this case it follows from Corollary 4.4 of [GK] that the algebra

End(Vc) is isomorphic to the Cherednik algebra
··
Hq,c′ . From Theorem 3.3 we obtain:

Corollary 3.6. The Cherednik algebra
··
Hq,c′ is isomorphic to the algebra of endomor-

phisms of the functor#→ CoinvI00(#) : Repc(Ĝ)→ Vect.
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3.7.

Note that by combining Proposition 2.7 and Corollary 2.4, we obtain that the above
functor CoinvH : Repc(Ĝ)→ Vect admits a left adjoint:

V 	→ CoindĜ
H(InfH(V)).

Of course, the algebra of endomorphisms of this functor is isomorphic to
E(G,H)oc .

Consider now the functor Repc(Ĝ) → Vect obtained by composing CoinvH with
the functor limProj : Vect → Vect. Let E(G,H)c be the algebra of endomorphisms
of this latter functor. We have a natural map E(G,H)c → E(G,H)c.

Proposition 3.8.

(a) The map E(G,H)c → E(G,H)c is injective.

(b) The algebra E(G,H)oc is isomorphic to EndRepc(Ĝ)

(
CoindĜ

H(InfH(C))
)

.

We do not know under what conditions on H one might expect that the above map
E(G,H)c → E(G,H)c is an isomorphism.

Proof. To prove the first assertion of the proposition, note that by Theorem 3.3, the
evaluation map E(G,H)c → EndVect (CoinvH(Mc(G))) is injective.

By construction, the pro-vector space Mc(G) can be represented as a countable
inverse limit with surjective restriction maps. Hence, by Proposition 2.5 of [GK],
CoinvH(Mc(G)) ∈ Vect will also have this property. We have:

Lemma 3.9. For any pro-vector space, which can be represented as a countable in-
verse limit with surjective restriction maps, the morphism limProj(V)→ V is surjec-
tive.

This lemma implies that the map EndVect(V)→ EndVect(limProj(V)) is injective.
To prove the second assertion, we must analyze the endomorphism algebra of the

functor Vect → Repc(Ĝ) given by

V 	→ CoindĜ
H(InfH(V)).

However, as every left adjoint, this functor commutes with inductive limits. There-
fore, it is enough to consider its restriction to the subcategory Vect0. This implies the
proposition. ��

4. The functor of semi-invariants

4.1.

Our method of proof of Theorem 3.3 in based on considering the functor of G-semi-
invariants
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∞
2⊗
G

: Repc′(Ĝ
′)× Repc(Ĝ)→ Vect,

where c and c′ are opposite levels. The construction of this functor mimics the con-
struction of the semi-infinite cohomology functor for associative algebras by L. Posit-
selsky, [Pos].

For#c ∈ Repc(Ĝ),#c′ ∈ Repc′(Ĝ
′) consider the pro-vector spaces

#c′ ⊗#c and#c′ ⊗ Mc(G)⊗#c.

We consider the former as acted on by the diagonal copy of G[[t]], and the latter by
two mutually commuting copies of G[[t]]: one acts diagonally on #c′ ⊗ Mc(G) via
the left Ĝ-action on Mc(G); the other copy acts diagonally on Mc(G) ⊗ #c via the
right action. Consider the object

(#c′ ⊗ Mc(G)⊗#c)G[[t ]]×G[[t ]] .

We will construct two natural maps

(#c′ ⊗#c)G[[t ]] ⇒ (#c′ ⊗ Mc(G)⊗#c)G[[t ]]×G[[t ]] . (5)

To construct the first map recall from Lemma 5.8 of [GK] that

(Mc(G)⊗#c)G[[t ]] � i Ĝ
G[[t ]]

(
r Ĝ

G[[t ]](#c)
)
. (6)

Since G/G[[t]] is ind-compact, the functor i Ĝ
G[[t ]] is isomorphic to the induction func-

tor, ĩ Ĝ
G[[t ]]. Therefore, we obtain a morphism of Ĝ-representations

#c → i Ĝ
G[[t ]]

(
r Ĝ

G[[t ]](#c)
)
� (Mc(G)⊗#c)G[[t ]] (7)

by adjunction from the identity map r Ĝ
G[[t ]](#c)→ r Ĝ

G[[t ]](#c).
The first map in (5) comes from (7) by tensoring with #c′ and taking G[[t]]-

coinvariants.
To construct the second map in (5) we will use the following observation. Let

M̃c(G) be a representation of Ĝ × Ĝ′, obtained from the representation Mc′ (G) of
Ĝ′ × Ĝ, by flipping the roles of Ĝ and Ĝ′. We have:

Proposition 4.2.

(1) We have a natural isomorphism of Ĝ× Ĝ′-representations M̃c(G) � Mc′ (G).
(2) The resulting two morphisms

Mc(G)⇒
(
Mc(G)⊗ Mc(G)

)
G[[t ]]

one, coming from (7), and the other from interchanging the roles of c and c′,
coincide.

Remark. It will follow from the proof that statement (2) of the proposition fixes the
isomorphism of statement (1) uniquely.

The proof will be given in Sect. 5. Using this proposition we construct the second
map in (5) by simply interchanging the roles of c and c′.
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4.3.

For #c,#c′ as above, we set #c′
∞
2⊗
G
#c to be the equalizer (i.e., the kernel of the

difference) of the two maps in (5). Note that since the functor of G[[t]]-coinvariants is

only right-exact, the resulting functor
∞
2⊗
G

is a priori neither right nor left exact.

Suppose now that #c is not only a representation of Ĝ, but carries an additional
commuting action of some group-object H ∈ Set, which satisfies condition (**). In

this case it follows from Corollary 1.10 that #c′
∞
2⊗
G
#c is an object of Rep(H).

The key assertion describing the behavior of the functor of semi-invariants is the
following:

Proposition 4.4. For Mc(G), regarded as an object of Repc(Ĝ), we have a natural

isomorphism#c′
∞
2⊗
G

Mc(G) � #c′ . Moreover, this isomorphism is compatible with the

Ĝ-actions.

Proof. Consider the following general set-up. Let C1 and C2 be two abelian categories,
G : C1 → C2 be a functor, and F : C2 → C1 its right adjoint. By composing with F◦G
on the left and on the right, the adjunction map IdC1 → F ◦G gives rise to two maps

F ◦G ⇒ F ◦G ◦ F ◦G, (8)

such that IdC1 maps to their equalizer.

Lemma 4.5. Assume that the functor G is exact and faithful. Then the map

IdC1 → Equalizer
(
F ◦G ⇒ F ◦G ◦ F ◦G

)
is an isomorphism.

Proof. By assumption o G, it is enough to show that

G → Equalizer
(
G ◦ F ◦G ⇒ G ◦ F ◦G ◦ F ◦G

)
is an isomorphism, but this happens for any pair of adjoint functors. ��

We apply this lemma to C1 = Repc′(Ĝ
′), C2 = Rep(G[[t]],Vect) with F = i Ĝ

G[[t ]],

G = r Ĝ
G[[t ]]. To prove the proposition it is sufficient to show that for #c′ ∈ Repc′(Ĝ

′)
the terms and maps in (5) are equal to the corresponding ones in (8).

First, by (6) and Proposition 4.2(1), for #c′ as above, F ◦ G(#c′) is indeed iso-
morphic to (#c′ ⊗ Mc(G))G[[t ]]. Furthermore, by applying the functor F ◦ G to
the adjunction map #c′ → F ◦ G(#c′) we obtain the second of the two maps
from (5).
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Let us now calculate the adjunction map IdRepc′ (Ĝ′)→ i Ĝ
G[[t ]] ◦ r Ĝ

G[[t ]] applied to

F ◦G(#c′) � (#c′ ⊗ Mc(G))G[[t ]].

By construction, it is obtained from the adjunction map

Mc(G)→ F ◦G(Mc(G)) � (Mc(G)⊗ Mc(G))G[[t ]]

by tensoring with#c′ and taking G[[t]]-coinvariants. Therefore, by Proposition 4.2(2),
it coincides with the first map from (5). ��

Remark. Note that by Proposition 4.2(2), the two identifications Mc(G)
∞
2⊗
G

Mc(G) �
Mc(G), one coming from Proposition 4.4 applied to#c′ = Mc(G) and the other from
interchanging the roles of c and c′ as in Proposition 4.2(1), coincide.

4.6. Proof of Theorem 3.3

Let #c′ be an object of Repc′(Ĝ
′), and let #c be an object of Repc(Ĝ), carrying an

additional commuting action of a group-object H ∈ Set, which is quasi-pro-unipotent.
Then, using Corollary 1.10 and the fact that the functor CoinvH is exact (Lemma 2.7
of [GK]), we obtain an isomorphism:

#c′
∞
2⊗
G
(#c)H �

(
#c′

∞
2⊗
G
#c

)
H

.

Applying this for#c = Mc(G), we obtain a functorial isomorphism:

#c′
∞
2⊗
G

Mc(G,H) � (#c′)H. (9)

Therefore, we obtain a map

EndRepc(Ĝ)
(Mc(G,H))→ E(G,H)c′ . (10)

The fact that the composition

EndRepc(Ĝ)
(Mc(G,H))→ E(G,H)c′ → EndRepc(Ĝ)

(Mc(G,H))

is the identity map follows from the remark following the proof of Proposition 4.4.
Therefore, to finish the proof of the theorem it suffices to show that the map of (4)

is injective. For that note that for any #c′ ∈ Repc′(Ĝ
′) we have an injection #c′ ↪→

(#c′ ⊗ Mc(G))G[[t ]] (coming from the above adjunction IdRepc′ (Ĝ′) → i Ĝ
G[[t ]] ◦ r Ĝ

G[[t ]])

and a surjection#c′ ⊗ Mc(G) � (#c′ ⊗ Mc(G))G[[t ]] of objects of Repc′(Ĝ
′).

Lemma 4.7. Suppose an element α ∈ E(G,H)c′ annihilates (#c′)H for some #c′ ∈
Repc′(Ĝ

′). Then α annihilates all objects of the form (V⊗#c′)H for V ∈ Vect.
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Proof. Suppose that V = “ lim ”←− Vi , Vi ∈ Vect. Then V ⊗ #c′ � lim←− (Vi ⊗ #c′),

where the projective limit is taken in the category Vect.
Using Corollary 2.6 of [GK], we have: (V⊗#c′ )H � lim←− (Vi⊗#c′)H. This shows

that we can assume that V is a vector space, which we will denote by V.
Let us write V = lim−→Vi , where Vi ∈ Vect0.

Sublemma 4.8. For V = lim−→Vi and W ∈ Vect the natural map

lim−→ (Vi ⊗W)→ (lim−→Vi )⊗W

is surjective.

Therefore, we have a surjection

lim−→ (Vi ⊗#c′) � V⊗#c′ ,

and, hence, a surjection on the level of coinvariants. Since by assumption, α annihi-
lates every (Vi ⊗#c′)H, and the functor CoinvH commutes with inductive limits (see

Corollary 1.10), we obtain that α annihilates also
(

lim−→ (Vi ⊗#c′)
)

H
. Hence, by the

above, it annihilates also (V⊗#c′ )H. ��
Using this lemma and the exactness of the functor of H-coinvariants, we obtain

that any α ∈ ker(E(G,H)c′ → End(Mc(G,H)) annihilates all (#c′ ⊗ Mc(G))H, and
hence (#c′)H for any#c′ .

Remark. Note that the same argument proves the following more general assertion.
Let H1, and H2 be two quasi-pro-unipotent groups endowed with homomorphisms to
Ĝ. Then the space of natural transformations between the functors CoinvH1,CoinvH2 :
Repc(Ĝ)→ Vect is isomorphic to HomRepc′ (Ĝ′)(Mc(G,H1),Mc(G,H2)).

5. Proof of Proposition 4.2

5.1.

We will repeatedly use the following construction:
Let Z1 → Z2 be a map of schemes of finite type over K, such that Z1 is a principal

bundle with respect to a smooth unipotent group-scheme H on Z2. Let L be the line
bundle on Z2, given by z 	→ det(hz), where hz is the fiber at z ∈ Z2 of the sheaf of Lie
algebras corresponding to H . Let Ẑ1 be the total space of the pullback of the resulting
Gm-torsor to Z1.

Lemma 5.2. Under these circumstances we have a natural map(
Functlcc (Ẑ1)⊗ C

)
Gm

→ Functlcc (Z2),

where Gm acts on C via the standard character Gm → Z
1 	→q→ C∗.
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5.3.

Let us recall the construction of Mc(G), following [GK], Sect. 5. To simplify the
exposition, we will first assume that c = 1, in which case we will sometimes write
M(G) instead of Mc(G).

Consider the set of pairs (i,Y ), where Y is a sub-scheme of G((t)), stable under
the right action of the congruence subgroup Gi . Note that in this case the quotient
Y/Gi is a scheme of finite type over K.

The above set is naturally filtered: (i,Y ) < (i ′,Y ′) if i ′ ≥ i and Y ⊂ Y ′. Note also
that Y/Gi ′ → Y/Gi is a principal bundle with respect to the group Gi/Gi ′ .

Let Y/Gi denote the object of Set, corresponding to the scheme Y/Gi . Consider
the vector space V(i,Y ) := Functlcc (Y/G

i )⊗μ(G[[t]]/Gi), see [GK], Sect. 3.2, where
for a locally compact group H, we denote by μ(H) the space of left-invariant Haar
measures on it.

Whenever (i,Y ) < (i ′,Y ′), we have a natural map V(i ′,Y ′) → V(i,Y ). It is
defined as the composition of the restriction map Functlcc (Y

′/Gi ′)→ Functlcc (Y/G
i ′),

followed by the map

Functlcc (Y/G
i ′ )⊗ μ(Gi/Gi ′)→ Functlcc (Y/G

i ),

coming from Lemma 5.2, using μ(G[[t]]/Gi ′) � μ(G[[t]]/Gi)⊗ μ(Gi/Gi ′ ).
We have

M(G) = “ lim ”←−
(i,Y )

V(i,Y ),

as a pro-vector space.
Let us now describe the action of G × Ĝ0 on M(G). For our purposes it would

suffice to do so on the level of groups of K-valued points of the corresponding group-
indschemes.

For g ∈ G((t))(K) acting on M(G) on the left, we define V(i,Y ) → V(i, g ·
Y ) to be the natural map. In this way we obtain an action of g on the entire inverse
system.

To define the right action, for (i,Y ) as above, let j be a large enough inte-
ger, so that Adg−1(G j ) ⊂ Gi . Then the right multiplication by g defines a map of
schemes,

Y/G j → Y · g/Gi ,

such that the former is a principal Gi/Adg−1(G j )-bundle over the latter.
A lift of g to a point ĝ of the central extension Ĝ0 defines an identification

μ(G[[t]]/G j) � μ(G[[t]]/Adg−1(G j )). Hence, by Lemma 5.2, we obtain a map

V( j,Y )→ V(i,Y · g),

and hence an action of ĝ on the inverse system.
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5.4.

Let now Ĝ and c be general. We modify the above construction as follows. For each
Y ⊂ G((t)) as above, let Ŷ be its pre-image in Ĝ. Set

Vc( j,Y ) :=
(

Functlcc (G
j\Ŷ)⊗ C

)
Gm
⊗ μ(G[[t]]/G j),

where Gm acts naturally on Ŷ and by the character c on C. We have

Mc(G) = “ lim ”←−
( j,Y )

Vc( j,Y ),

and the action of Ĝ× Ĝ′ is described in the same way as above.
By definition, the representation M̃c′ (G) is the same as Mc′ (G), viewed as a rep-

resentation of Ĝ× Ĝ′ � Ĝ′ × Ĝ. Explicitly it can be written as follows. Consider the
set of pairs ( j,Y ), where Y ⊂ G((t)) is stable under the action of G j on the left; let
Ŷ ′ be the preimage of Y in Ĝ′. We have

M̃c′ (G) = “ lim ”←−
( j,Y )

Ṽc′( j,Y ),

where
Ṽc′( j,Y ) :=

(
Functlcc (G

j\Ŷ′)⊗ C
)

Gm
⊗ μ(G[[t]]/G j),

where Gm acts naturally on Ŷ and by the character c′ on C. In this presentation, the
right action of Ĝ′ is defined in an evident fashion, and the left action of Ĝ is defined
as in the case of the right action of Ĝ0 on M(G).

5.5.

We shall now construct the sought-after map M̃c′ (G)→ Mc(G). Let us mention that
when G is the multiplicative group Gm the sought-after isomorphism amounts to sim-
ply the inversion on the group.

For a pair (i,Y ) as in the definition of Mc(G), there exists an integer j large enough
so that Ady−1(G j ) ⊂ Gi for y ∈ Y (K). In particular, over Y/Gi we obtain a group-

scheme, denoted Gi, j
Y , whose fiber over y ∈ Y is Gi/Ady−1(G j ), and we have a map

G j\Y → Y/Gi , (11)

such that the former scheme is a principal Gi, j
Y -bundle over the latter.

Note that the fiber of Ŷ over a given point y ∈ Y identifies with
det(Ady(g[[t]]), g[[t]]), where g is the Lie algebra of G. Hence, we obtain a natural
map

Ṽc′( j,Y )→ Vc(i,Y )
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from Lemma 5.2. Thus, we obtain a map M̃c′ (G) → Mc(G), and from the construc-
tion, it is clear that this map respects the action of Ĝ(K) × Ĝ′(K). Now Lemma 0.5
implies that the constructed map is a morphism of Ĝ× Ĝ′-representations.

The map in the opposite direction: Mc(G) → M̃c′ (G) is constructed similarly,
and by the definition of the transition maps giving rise to the inverse systems Mc(G)
and M̃c′ (G), it is clear that both compositions Mc(G) → M̃c′ (G) → Mc(G) and
M̃c′ (G)→ Mc(G)→ M̃c′ (G) are the identity maps.

This proves point (1) of Proposition 4.2.

5.6.

Following [GK], let us denote by M(G[[t]]) the pro-vector space

“ lim ”←− Functlcc (G[[t]]/Gi)⊗ μ(G[[t]]/Gi),

where the transition maps are given by fiber-wise integration. This space carries an
action of the group G[[t]]×G[[t]]. The convolution product defines an isomorphism

(M(G[[t]])⊗ M(G[[t]])G[[t ]] � M(G[[t]]), (12)

where G[[t]] acts diagonally.
By construction, as a representation of Ĝ under the left action, Mc(G) identifies

with i Ĝ
G[[t ]](M(G[[t]])). Therefore,

HomRepc(Ĝ)
(M̃c′ (G),Mc(G)) � HomG[[t ]](M̃c′ (G),M(G[[t]])). (13)

The map M̃c′ (G) → Mc(G) constructed above corresponds to the natural restriction
morphism M̃c′ (G)→ M(G[[t]]).

Remark. From the latter description it is not immediately clear why this map is com-
patible with the right Ĝ′-action.

Note also that the map M̃c(G)→ Mc′ (G) can be described by a similar adjunction
property with respect to the right Ĝ′-action.

Let us prove now point (2) of Proposition 4.2. For any#, which is a representation
of Ĝ× Ĝ′ at levels (c, c′) we have

HomĜ×Ĝ′
(
#, (Mc(G)⊗ M̃c′ (G))G[[t ]]

) � HomG[[t ]]×G[[t ]](#,M(G[[t]]),

with the isomorphism being given by the restriction map

(Mc(G)⊗ M̃c′ (G))G[[t ]] → (M(G[[t]])⊗ M(G[[t]]))G[[t ]],

followed by the map of (12).
Let us apply this to # = Mc(G). It is clear that both maps appearing in Proposi-

tion 4.2(2), correspond under the above isomorphism to the restriction map Mc(G)→
M(G[[t]]). Therefore, these two maps coincide.
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6. Distributions on a stack

6.1.

First, let X be a locally compact object of Set. Recall that Functlc(X) denotes
the corresponding (strict) object in Vect (see [GK], Sect. 3.2), and Functlc(X) =
limProj Functlc(X). The vector space Distrc(X) introduced in Sect. 1.3 identifies with
HomVect(Functlc(X),C), or, which is the same, with the space of linear functionals
Functlc(X)→ C, continuous in the topology of projective limit.

Suppose now that X = X (K), where X is a smooth algebraic variety over K. In
this case we can introduce the subspace Distrlc

c (X) of locally constant distributions on
X (see e.g., [GK], Sect. 5.1).

Indeed, it is well known that a choice of a top differential form ω on X defines a
measure μ(ω) on X, i.e., a functional on the space Functlcc (X). For ω′ = ω · f , where
f is an invertible function on X , we have μ(ω′) = μ(ω) · | f |. Hence, the subset of
elements in Distrc(X), which can be (locally) written as μ(ω) · g, where g is a locally
constant function on X with compact support, is independent of the choice of ω. This
subset is by definition Distrlc

c (X).
Although the following is well known, we give a proof for the sake of complete-

ness.

Proposition 6.2. Let f : X1 → X2 be a smooth map between smooth varieties over
K. Then

(1) The push-forward map Distrc(X1) → Distrc(X2) sends Distrlc
c (X1) to

Distrlc
c (X2).

(2) If X1(K) → X2(K) is surjective, then f! : Distrlc
c (X1) → Distrlc

c (X2) is also
surjective.

Proof. Statement (1) is local in the analytic, and a fortiori in the Zariski topology on

X1. Therefore, we can assume that our morphism f factors as X1
f ′→ X2 × Z

f ′′→ X2,
where Z is another smooth variety, with f ′ being étale, and f ′′ being the projection
on the first factor.

Since an étale map induces a local isomorphism in the analytic topology, it is clear
that f ′! maps Distrlc

c (X1) to Distrlc
c (X2×Z). From the definition of Distrlc

c (·), it is clear
that

Distrlc
c (Z1)⊗Distrlc

c (Z2)
∼−−−−→ Distrlc

c (Z1 × Z2)⏐⏐* ⏐⏐*
Distrc(Z1)⊗Distrc(Z2) −−−−→ Distrc(Z1 × Z2).

(14)

So the map f ′′! : Distrlc
c (X2 × Z)→ Distrc(X2) can be identified with

Distrlc
c (Z)⊗ Distrlc

c (X2)

∫ × id→ Distrlc
c (X2),

implying assertion (1) of the proposition.
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We will prove a slight strengthening of assertion (2). Note that since f is smooth,
the image of X1 in X2 is open, and hence, also closed in the analytic topology. We will
show that f1 maps Distrlc

c (X1) surjectively onto the subspace of Distrlc
c (X2), consisting

of distributions, supported on the image.
The assertion is local in the analytic topology on X2. Let x2 ∈ X2(K) be a point,

and let x1 ∈ X1(K) be its pre-image. Then the local factorization of f as f ′′ ◦ f ′ as
above makes the assertion manifest. ��

6.3.

In what follows we will need a relative version of the above notions. For a smooth
morphism g : X → Z let ωrel be a relative top differential form on X . It defines a
relative measure μ(ωrel) : Functlcc (X)→ Functlcc (Z). As in the absolute situation, by
multiplying μ(ωrel) by locally constant functions on X, whose support is proper over
Z, we obtain a pro-vector sub-space inside HomFunctlc(Z)(Functlcc (X),Functlcc (Z)),

which we will denote by Distrlc
c (X/Z). Note that when X = X ′ × Z , we have:

Distrlc
c (X/Z) � Distrlc

c (X
′)⊗ Functlc(Z) (the tensor product being taken in the sense

of Vect). We will denote by Distrlc
c (X/Z) the vector space limProj Distrlc

c (X/Z).
When f : X1 → X2 is a smooth map of schemes smooth over Z , as in

Proposition 6.2 we have a push-forward map f! : Distrlc
c (X1/Z) → Distrlc

c (X2/Z),
which is surjective if f : X1(K) → X2(K) is; moreover, in this case the map
f! : Distrlc

c (X1/Z)→ Distrlc
c (X2/Z) is also easily seen to be surjective. In the partic-

ular case when X2 = Z we obtain a map
∫

: Distrlc
c (X/Z)→ Functlc(Z).

If Y is another scheme over Z , consider the Cartesian diagram

X ×
Z

Y
f ′−−−−→ X

g′
⏐⏐* g

⏐⏐*
Y

f−−−−→ Z .

(15)

We have a pullback map f ∗ : Distrlc
c (X/Z)→ Distrlc

c (X×
Z

Y/Y).

Suppose now that the scheme Z is itself smooth, and X is smooth over Z as above.
In this case the spaces Distrlc

c (X) and Distrlc
c (Z) are well defined, and we have an

isomorphism
Distrlc

c (X) � Distrlc
c (X/Z) ⊗

Functlc(Z)
Distrlc

c (Z).

If in the situation of (15) Y is also smooth over Z, and ξY ∈ Distrlc
c (Y), ξX/Z ∈

Distrlc
c (X/Z), consider the element f ∗(ξX/Z )⊗ ξY ∈ Distrlc

c (X×
Z

Y). We have

f ′! ( f ∗(ξX/Z )⊗ ξY ) = ξX/Z ⊗ f!(ξY ) ∈ Distrlc
c (X), and (16)

g′!( f ∗(ξX/Z )⊗ ξY ) = f ∗(g!(ξX/Z )) · ξY ∈ Distrlc
c (Y). (17)

Finally, let us assume that both maps f and g induce surjections on the level of
K-valued points.
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Lemma 6.4. The maps f!, g! induce an isomorphism

Distrlc
c (Z) � coker

(
Distrlc

c (X×
Z

Y)
( f ′! ,−g′!)−→ Distrlc

c (X)⊕ Distrlc
c (Y)

)
.

Proof. Let (ξX , ξY ) ∈ Distrlc
c (X) ⊕ Distrlc

c (Y) be an element such that f!(ξX ) =
g!(ξY ). We need to find an element ξ ′ ∈ Distrlc

c (X1 ×
Z

Y), such that f ′! (ξ ′) = ξX and

g!(ξ
′) = ξY . Using Lemma 6.2, we can assume that ξX = 0.
Let ξX/Z be an element in Distrlc

c (X/Z), such that
∫
ξ = 1 ∈ Funct(Z). Then

ξ ′ := f ∗(ξX/Z )⊗ ξY satisfies our requirements, by (16). ��
Let now X and Y be smooth varieties, and f : Z × X → Y a map, such that the

corresponding map f ′ : Z × X → Z × Y is smooth.

Lemma-Construction 6.5. Under the above circumstances we have a natural action
map

Z× Distrlc
c (X)→ Distrlc

c (Y).

Proof. Consider the map

f ′! : Distrlc
c (Z×X/Z)→ Distrlc

c (Z×Y/Z).

By composing it with · ⊗ 1 : Distrlc
c (X)→ Distrlc

c (Z×X/Z) we obtain a map

Distrlc
c (X)→ Distrlc

c (Y)⊗ Functlc(Z).

The latter is, by definition, the same as an action map Z×Distrlc
c (X)→ Distrlc

c (Y).
��

6.6.

Let Y be an algebraic stack. We will say that Y is K-admissible (or just admissible)
if there exists a smooth covering Z → Y , such that for any map X → Y , the corre-
sponding map of schemes

X ×
Y

Z → X

is surjective on the level of K-points.
If Y is admissible, a covering Z → Y having the above property will be called

admissible. It is clear that the class of admissible coverings is closed under Cartesian
products. It is also clear that if Y is admissible, and Y ′ → Y is a representable map,
then Y ′ is also admissible.

Lemma 6.7. Suppose that Y is a stack, which is locally in the Zariski topology has
the form Z/G, where Z is a scheme, and G is an affine algebraic group. Then Y is
admissible.



122 D. Gaitsgory and D. Kazhdan

Proof. First, we can assume that G = GLn . Indeed, by assumption, there is an em-
bedding G → GLn , and consider the scheme Z ′ := Z ×

G
GLn . Then Y = Z ′/GLn .

Now the assertion follows from Hilbert’s 90: for y ∈ Y(K) its pre-image in Z is a
GLn-torsor, which is necessarily trivial. ��

From now on, we will assume that Y is admissible. Assume in addition that Y is
smooth. We will now define the space, denoted, Distrlc

c (Y), of locally constant com-
pactly supported distributions on Y.

Namely, given two admissible coverings Z1, Z2 → Y we define

Distrlc
c (Y) := coker

(
Distrlc

c (Z1 ×
Y

Z2)→ Distrlc
c (Z1)⊕ Distrlc

c (Z2)

)
.

Lemma 6.4, combined with Proposition 6.2(2), implies that Distrlc
c (Y) is well-

defined, i.e., is independent of the choice of Z1, Z2.
If f : Y1 → Y2 is a smooth representable map of (smooth admissible) stacks, from

Proposition 6.2(1) we obtain that there exists a well-defined map f! : Distrlc
c (Y1) →

Distrlc
c (Y2).

Assume now that Y = Z/G, where G is an algebraic group acting on Z . By
Lemma 6.5, we have an action of G on the vector space Distrlc

c (Z). From Lemma 6.4
we obtain

Corollary 6.8. For Y as above,

Distrlc
c (Y) � CoinvG(Distrlc

c (Z)).

6.9. Relative version

Assume now that Y is a stack, endowed with a smooth map to a scheme Z . For a pair
of admissible coverings X1, X2 → Y , we define the pro-vector space Distrlc

c (Y/Z) as

coker

(
Distrlc

c (X1 ×
Y

X2/Z)→ Distrlc
c (X1/Z)⊕ Distrlc

c (X2/Z)
)
.

A relative version of Lemma 6.4 shows that this is well-defined, i.e., independent of
the choice of X1 and X2.

Finally, the assertion of Lemma–Construction 6.5 remains valid, where Z is a
scheme, Y,Y ′ are smooth stacks, and the map f : Z × Y → Y ′ is such that the
corresponding map f ′ : Z × Y → Z × Y ′ is smooth and representable.

7. Induction via the moduli stack of bundles

7.1.

Let X be a (smooth complete) algebraic curve over K, x ∈ X a rational point, and let
t be a coordinate near x.
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If G be a split reductive group, let BunG denote the moduli stack of principal G-
bundles on X . For i ∈ Z, let Buni,x

G denote the stack classifying bundles equipped with

a trivialization on the i -th infinitesimal neighbourhood of x. By construction, Buni,x
G is

a principal G[[t]]/Gi-bundle over BunG .
If Y ⊂ BunG is an open substack of finite type, we let Y i,x denote its pre-image in

Buni,x
G . The following is well-known:

Lemma 7.2. For any Y ⊂ BunG of finite type and i large enough, the stack Y i,x is a
scheme of finite type.

For Y as above, we let Y∞,x denote the object of Pro(Sch f t ) equal to “ lim ”←− Y i,x.

We let Bun∞,xG denote the object

“ lim ”−→
Y

Y∞,x ∈ Ind(Pro(Sch f t )).

Another basic fact is that G((t)), viewed as a group-object of Ind(Pro(Sch f t )),
acts on Bun∞,xG in the sense of the tensor structure on Ind(Pro(Sch f t )).

7.3.

By Lemma 6.7, the stacks Y i,x are admissible. Set Wi
Y = Distrlc

c (Y
i,x). For Y1 ↪→ Y2

we have a natural push-forward map on the level of distributions Wi
Y1
→ Wi

Y2
. Set

Wi := lim−→
Y

Wi
Y ∈ Vect.

For a fixed Y and j > i we have a smooth representable map of stacks Y j,x →
Yi,x; hence we obtain a map W j

Y → Wi
Y and, finally, a map W j → Wi .

We define the pro-vector space

WX,x := “ lim ”←−
i

Wi .

Now we are ready to state:

Theorem 7.4. The pro-vector space WX,x carries a natural action of the group G,
such that CoinvGi (WX,x) � Wi .

Note that by construction we have:

Corollary 7.5. The G-representation WX,x is admissible.

Indeed, the coinvariants CoinvGi (WX,x) � Wi all belong to Vect.
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7.6. Proof of Theorem 7.4

Let G((t)) = “ lim ”−→
k

Zk with Zk = “ lim ”←−
l

Z l
k , where Zl

k are schemes of finite type.

To define an action
G×WX,x → WX,x

we need to give for every k and i a map

Zl
k ×W j → Wi

defined for j and l sufficiently large.
For k and i as above let j be such that AdZk (G

j ) ⊂ Gi . The action of G((t)) on

Bun∞,xG yields a map of stacks Zk × Bun j,x
G → Buni,x

G , which factors through Zl
k for

some l. Moreover, for every sub-stack Y ⊂ BunG of finite type, there exists another
sub-stack Y ′ of finite type, such that we have a map

Zl
k × Y j,x → Y ′ j,x.

We claim that for i, j, k, l,Y,Y ′ as above, we have a map

Zl
k ×W j

Y → W j
Y ′ . (18)

This follows from the stack-theoretic version of Lemma–Construction 6.5, see
Sect. 6.9. The fact that the resulting action map G × WX,x → WX,x respects the
group law on G is a straightforward verification.

To compute CoinvGi (WX,x) note that G[[t]], and hence all Gi , act on each Bun j,x
G

individually.
Hence,

CoinvGi (WX,x) � “ lim ”←−
j≥i

CoinvGi/G j (W j ).

We claim that for j ≥ i , CoinvGi /G j (W j ) � Wi . Indeed, since each Y j,x is stable
under Gi/G j , we have:

CoinvGi/G j (W j ) � lim−→
Y

CoinvGi /G j (W j
Y) � lim−→

Y
Wi

Y � Wi ,

where the middle isomorphism follows from Corollary 6.8.

7.7. Variants and generalizations

Recall that the stack BunG is endowed with a canonical line bundle LBunG , with the
basic property that the G-action on Bunx,∞

G extends to an action of a central extension
Ĝ on the pull-back of LBunG to Bunx,∞

G .
By the same token, we consider now a representation ŴX,x of Ĝ, and for every

c : Gm → C∗ the object
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WX,x,c := (ŴX,x ⊗C)Gm ∈ Repc(Ĝ).

Note that instead of a single point x we could have considered any finite collection
x = x1, . . . , xn of rational points. By repeating the construction we obtain a pro-vector
space WX,x, acted on by the product #

k
Ĝxk , where each Ĝxk identifies with Ĝ once

we identify the local ring of X at xk with F.
Again, for a choice of a character c : Gm → C∗, we obtain a representation

of #
k

Ĝxk , denoted WX,x,c, such that the center Gk
m acts via the multiplication map

Gk
m → Gm .

7.8.

From now on we will suppose that X is isomorphic to the projective line P1, and the
number of points is two, which we will denote by x1, and x2, respectively. Assume
also that G is semi-simple and simply connected.

Consider the representation ŴP1,x1,x2,c of Ĝx1 × Ĝx2 . Let us take its coinvariants
with respect to I00

x1
⊂ Ĝx1 . By Corollary 1.10, on the resulting pro-vector space we

will have an action of Ĝx2 ; we will denote this representation by#thick
c , i.e.,

#thick
c = CoinvI00

x1
(ŴP1,x1,x2,c).

By Theorem 3.3, the algebra
··
Hq,c′ acts on #thick

c by endomorphisms. Consider
now

Uc := CoinvI00
x1×I00

x2
(ŴP1,x1,x2,c) � CoinvI00

x2
(#thick

c ).

By Corollary 7.5, this is a vector space, endowed with two commuting actions of
··
Hq,c′ . We have:

Theorem 7.9. There exists a canonically defined vector 1Uc ∈ Uc, which freely gen-

erates Uc under each of the two
··
Hq,c′ -actions.

8. Proof of Theorem 7.9

8.1.

Let Waff be the affine Weyl group corresponding to G. Since G was assumed simply
connected, Waff is a Coxeter group.

If α is a simple affine root, let Iα ⊂ Ĝ denote the corresponding sub-minimal
parahoric; let N(Iα) denote the (pro)-unipotent radical of Iα , and Mα := Iα/N(Iα)
the Levi quotient.

By definition, Mα is a reductive group of semi-simple rank 1, with a distinguished
copy of Gm in its center; we will denote by M ′

α the quotient Mα/Gm . Let Bα denote
the Borel subgroup of Mα , and B0

α the kernel of



126 D. Gaitsgory and D. Kazhdan

Bα → T → 	.

Let #αc be the quotient of the principal series representation of Mα , given by the con-
dition that Gm ⊂ Mα acts by the character c, i.e.,

#αc =
(

Functlcc (Mα/B0
α)⊗ C

)
Gm
. (19)

Let us denote by
·
Hαq,c the corresponding affine Hecke algebra of Mα , i.e., the al-

gebra of endomorphisms of the functor CoinvB0
α

: Rep(Mα,Vect)c → Vect, or which
is the same, the algebra of endomorphisms of #αc as a Mα-representation. It is well

known that Uα := CoinvB0
α
(#αc ), as a bi-module over

·
Hαq,c, is isomorphic to the regu-

lar representation. In a sense, Theorem 7.9 generalizes this result to the affine case.
The functor # 	→ CoinvI00(#) on Repc(Ĝ) can be factored into two steps. We

first apply the functor

r Ĝ
Mα : Repc(Ĝ)→ Repc(Iα,Vect)

CoinvNα−→ Repc(Mα,Vect),

where the first arrow is the forgetful functor, and then apply

CoinvB0
α

: Repc(Mα,Vect)→ Vect.

In particular, endomorphisms of the latter functor map to endomorphisms of the com-

position. As a result, we obtain the canonical embedding
·
Hαq,c′ →

··
Hq,c.

Recall also that the group-algebra C[	] is canonically a subalgebra in
··
Hq,c, con-

tained in each
·
Hαq,c′ .

8.2.

The strategy of the proof of Theorem 7.9 will be as follows. We will endow the vector
space Uc with an increasing filtration

Uc = ∪
w∈Waff

Uw

with Uw1 ⊂ Uw2 if and only if w1 ≤ w2 in the Bruhat order. This filtration will be

stable under the action of C[	] ⊂
··
Hq,c with respect to both actions of the latter on Uc.

The subquotients
Uw := Uw/ ∪

w′<w
Uw′

will be free 	-modules of rank 1 (with respect to each of the actions of
··
Hq,c). In

particular, for w = 1, the space U1 � U1 will contain a canonical element 1U1 ∈ U1,
which generates U1 under each of the 	-actions. This will be the element 1Uc of
Theorem 7.9.
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Moreover, the following crucial property will be satisfied. Suppose that w is an
element of Waff, and sα is a simple affine reflection, such that sα · w > w (resp.,
w · sα > w). Then the subquotient

Usα ·w/ ∪
w′<sα ·w,w′ �=w

Uw′ ,
(

resp., Uw·sα/ ∪
w′<w·sα,w′ �=w

Uw′
)

(20)

is stable under the action of
·
Hαq,c, embedded into the first (resp., second) copy of

··
Hq,c,

and as a
·
Hαq,c-module, it is isomorphic to

·
Hαq,c ⊗

C[	]
Uw.

The existence of a filtration with the above properties clearly implies the assertion
of the theorem.

8.3.

Let I 0 denote the (pro)-unipotent radical of I ; we have I00/I0 � T0, where T0 ⊂ T is
the maximal compact subgroup of T.

Consider the scheme GG := Bun∞,x1,x2
G /Ix2 , called the thick Grassmannian of G.

By definition, it classifies principal G-bundles on X = P1, endowed with a trivializa-
tion at the formal neighbourhood of x1 and a reduction to B of their fiber at x2. Con-
sider also the base affine space G̃G := Bun∞,x1,x2

G /I 0
x2

, which is a principal T -bundle
over GG . The loop group G((t)), where t is the coordinate near x1 acts naturally on
both GG and G̃G .

It is well known that GG can be written as a union of open sub-schemes GG,w, w ∈
Waff, each being stable under the action of Ix1 = I ⊂ G((t)), such that GG,w1 ⊂ GG,w2

if and only if w1 < w2 in the Bruhat order. Let us denote by GwG the locally closed
subscheme GG,w − ∪

w′<w
GG,w′ , and by G̃G,w, G̃wG the corresponding sub-schemes in

G̃. It is well known that the group I 0 (resp., I ) acts transitively on each GwG (resp.,
G̃wG ) with finite-dimensional unipotent stabilizers. Choosing a point in each G̃wG , we
will denote by Nw its stabilizer in I , or, which is the same, the stabilizer in I 0 of the
projection of this point to GwG .

Consider the stack

Bunx1,x2
G := Bun∞,x1,x2

G /(I 0
x1
× I 0

x2
) � G̃G/I 0.

By definition, it classifies G-bundles on X = P1 with a reduction to the maximal
unipotent at x1 and x2, and it carries a natural action of the group T × T . From the
above discussion, we obtain that Bunx1,x2

G can be canonically written as a union of
open substacks of finite type

Bunx1,x2
G = ∪

w∈Waff
Yw

with Yw1 ⊂ Yw2 if and only if w1 ≤ w2.
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Consider the locally-closed sub-stack Yw := Yw − ∪
w′<w

Yw′ . We obtain that Yw

is isomorphic to T × (pt /Nw), where Nw is as above. The first copy of T acts via
multiplication on the first factor, and the action of the second copy is twisted by the
projection of w to the finite Weyl group, acting by automorphisms on T .

We will denote by Ŷw , Ŷw the pull-back of the total space of the Gm-torsor corre-
sponding to LBunG to these sub-stacks.

8.4.

We have:

Uc �
(

lim−→
w

Distrlc
c (Ŷw)⊗ C

)
T0×T0×Gm

.

Set
Uw := (Distrlc

c (Ŷw)⊗ C)T0×T0×Gm
. (21)

We claim that each Uw maps injectively into Uc; and the images of Uw define a
filtration with the required properties. One thing is clear, however: by construction,
Uw carries an action of 	×	, and its map to Uc is compatible with this action.

8.5.

To proceed we need to introduce some more notation. Let Z be a smooth scheme,

and let L be a line bundle on Z . Let
◦
L denote the total space of the corresponding

Gm-torsor over Z . We will denote by Distrlc
c (Z)L the space(

Distrlc
c (

◦
L)⊗ C

)
Gm

,

where Gm acts on C via the standard character Gm → Z
1 	→q−→ C∗.

Let now Z1 ⊂ Z be a smooth closed subscheme, and let Z2 be its complement.
We have:

Lemma 8.6. There exists a natural short exact sequence:

0 → Distrlc
c (Z2)L → Distrlc

c (Z)L → Distrlc
c (Z1)L⊗Ln → 0,

where Ln is the top power of the normal bundle to Z1 inside Z.

Proof. Note that by definition we have

Distrlc
c (Z)L0 � Functlcc (Z),

where L0 is the inverse of the line bundle of top forms on Z . The assertion of the
lemma follows now from the fact that for any Z1 ⊂ Z we have a short exact sequence
for the corresponding spaces of locally constant functions with compact support:

0 → Functlcc (Z2)→ Functlcc (Z)→ Functlcc (Z1)→ 0.

��
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For each w < w′, the open embedding Yw ↪→ Yw′ can be covered by an open
embedding of schemes Zw ↪→ Zw′ , such that Yw′ = Zw′/N , Yw = Zw/Nwith N
being a unipotent algebraic group. Therefore, by Lemma 6.8 and the exactness of the
functor CoinvN, the map Uw → Uw′ is an embedding. Hence, Uw → Uc is also an
embedding.

Moreover, we claim that from Lemma 8.6 we obtain a (non-canonical) isomor-
phism

Uw � (Distrlc
c (Yw)T0×T0 , (22)

compatible with the 	×	-action.
Indeed, a priori, Uw � (

(Distrlc
c (Yw)L

)
T0×T0 for a certain T × T -equivariant

line bundle L on Yw. However, from the description of Yw as T × (pt /Nw), this line
bundle is (non-canonically) trivial. Note, however, that this line bundle is canonically
trivial for w = 1.

Now, the same description of Yw implies that Distrlc
c (Yw) � Functlcc (T), with the

first action of T being given by multiplication, and the second action is twisted by w.
This implies that Uw � (Functlcc (T))T0×T0 � C[	].

8.7.

We will now study the subquotient Usα ·w/ ∪
w′<sα ·w,w′ �=w

Uw′ , where sα is a simple

affine reflection such that sα ·w > w. (The case w · sα > w is analyzed similarly.)

Note first of all that for any w′ ∈ Waff, we have Iα · Gw′G ⊂ Gw′G ∪ Gsα ·w′
G . Hence,

the open subset GG,sα ·w is Iα-stable, and so is the union ∪
w′<sα ·w,w′ �=w

Gw′G . Therefore,

the subquotient in (20) is indeed
·
Hαq,c′ -stable.

We will consider two additional stacks. One is ′Y := Bun∞,x1,x2
G /(N(Iα)x1 × I 0

x2
),

on which we have an action of M ′
α . We will denote by pr the projection

′Y pr−→ ′Y/Nα � Bunx1,x2
G ,

where Nα := Bα ∩ I 0.
Another stack is the quotient

′′Y := Bun∞,x1,x2
G /(M ′

α × I 0).

The stack ′′Y can be written as a union of open sub-stacks ′′Yw numbered by
left cosets {1, sα}\Waff; we will denote by ′′Yw the corresponding locally closed sub-
stacks. Let also ′Yw and ′Yw denote the pre-images of the corresponding sub-stacks in
′Y , and ′Ŷw , ′Ŷw the total spaces of the Gm -torsors, corresponding to the pull-backs
of the line bundle LBunG .

If w is an element of Waff we have:

′Yw = pr−1(Yw ∪ Ysα ·w). (23)
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Using Lemma 8.6, the subquotient (20) is isomorphic to(
Distrlc

c (
′Ŷw)⊗ C

)
(B0
α)x1×(T0)x2×Gm

.

The vector space
(
Distrlc

c (
′Ŷw)⊗ C

)
(T0)x2×Gm

is naturally a representation of the

group Mα . We claim that as such,(
Distrlc

c (
′Ŷw)⊗ C

)
(T0)x2×Gm

� #αc . (24)

Clearly, the above isomorphism implies our assertion about the action of
·
Hαq,c′ on

the subquotient in (20).

8.8.

To prove (24) let us observe that ′′Y � ′Y/M ′
α and that ′′Yw � pt /Nw,α , where Nw,α

is a unipotent group, so that the Cartesian product

pt ×
′′Yw

′Yw

is isomorphic to M ′
α , and the action of Nw,α on M ′

α comes from a surjective homo-
morphism Nw,α → Nα and the action of the latter on M ′

α by right multiplication.
Hence,

Distrlc
c (
′Ŷw) �

(
Distrlc

c (Mα)
)

Nα
�
(

Distrlc
c (Mα/Nα)

)
,

implying (24).
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To Denise

Summary. A Demazure module can be described as the space of global sections of a suitable
line bundle on a Schubert variety. A problem posed by the author in 1985 was to show that
the tensor product of a one-dimensional Demazure module with an arbitrary one admits a De-
mazure flag, that is, a filtration whose quotients are Demazure modules. This was shown by
P. Polo (who called such filtrations “excellent”) in a large number of cases including positive
characteristic and by O. Mathieu for all semisimple algebraic groups first in zero characteristic
and later in arbitrary characteristic.

This paper settles this question in the context of a Kac–Moody algebra with symmetric
simply-laced Cartan datum and in arbitrary characteristic. The method combines the corre-
sponding “combinatorial excellent filtration” established independently by P. Littelmann et al.
and the author with the globalization techniques of G. Lusztig and M. Kashiwara. In principle
the method applies to an arbitrary symmetrizable Kac–Moody algebra; but for technical reasons
it is necessary to use a positivity result of Lusztig which applies to only the simply-laced case.

Subject Classification: 17B37

1. Introduction

Global (or canonical) bases have been of tremendous interest for their own sake exhi-
biting a deep combinatorial structure as exemplified by their multiplication properties
and by their q → 0 limit leading to crystal bases. Besides this, global bases are in-
dispensable for certain purposes. An example of this is the common basis theorem

∗ Work supported by European Community RTN network “Liegrits”, Grant No. MRTN-CT-
2003-505078.
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[J2, 6.2.19] which leads to the separation theorem [J2, 7.3.8] and quantum PRV de-
terminants [J2, 8.2] as well as to a simple proof of Richardson’s theorem (see [B] for
example, which nevertheless gives a slightly different proof though also using global
bases).

This work is a further example where the use of global bases is essential. It also
motivates two further questions concerning their structure (see 3.9, 5.18, Remark 1
and 5.23).

1.1.

The aim of this paper is to settle in some generality a question I posed [J1, 5.8] twenty
years ago. In a slightly modified form (see [J4, introduction] for details) it asks if
the tensor product of a one-dimensional Demazure module by an arbitrary Demazure
module admits a Demazure flag, that is, a filtration whose quotients are Demazure
modules. In this van der Kallen [V1] gave an interesting criterion for the existence of a
Demazure flag based on the annihilator formula for extremal vectors given in [J1, 3.4],
and generalized by Polo to positive characteristic. From this Polo [P] was able to pos-
itively answer my question in most cases including nearly all positive characteristic.
At a similar time Mathieu [M1] transformed van der Kallen’s criterion using a result
of Bott and the Whitehead lemma (concerning semisimplicity in zero characteristic)
to a criterion involving the vanishing of certain higher sheaf cohomologies, which he
verified using some particular Frobenius splittings. This latter criterion and the result-
ing proof was valid only in zero characteristic. However Mathieu later modified his
proof to include all characteristics. A trick of Donkin then recovers the assertion over
Z. (See [M5, V2]).

1.2.

Whilst the annihilator formula holds for an arbitrary symmetrizable Kac–Moody Lie
algebra, van der Kallen’s criterion fails on account of imaginary roots. Thus these
methods do not go over to the Kac–Moody case.

1.3.

Recently I gave [J4] a purely combinatorial version of the existence of a Demazure
flag at the level of crystals. (This is even valid in the non-symmetrizable case, see [J5,
Sect. 19].) It turned out that Littelmann [L4] had done something similar (see also
[LLM, 2.4]); but neither of us were able to recover the module theoretic version, al-
though Littelmann [L4, Thm. 4] did obtain the existence of a Weyl flag for the full ten-
sor product. The basis of the latter was standard monomial theory which Littelmann
himself established in complete generality [L3, Sect. 6]. Weyl flags were first stud-
ied by Donkin [Do1,2] and Wang [W]. They have applications to invariant theory.
Mathieu resolved the semisimple case in full generality — see [M3] and references
therein. Later, alternative proofs for the semisimple case were given by Paradowski
[Pa] and Kaneda [Ka] notably using canonical bases. Of course, the existence of a
Weyl flag (for tensor product) is much easier than the existence of a Demazure flag,
the former being trivial in zero characteristic.
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1.4.

In this paper I prove the existence of a Demazure flag for the tensor products described
in 1.1 with respect to the Lusztig form of the quantized enveloping algebra of a Kac–
Moody algebra g with simply-laced symmetric Cartan datum in the sense of [Lu1,
2.1.3] defined over Z[q, q−1]. Setting q = 1 gives the corresponding result over the
Kostant form of the enveloping algebra and hence for its specialization over an arbi-
trary field. In particular, the result is valid for a split semisimple algebraic group with
symmetric simply-laced Cartan datum over an arbitrary field. The proof depends heav-
ily on the corresponding combinatorial result as well as on Kashiwara’s globalization
technology. A key point is that for fundamental weights occurring in the first factor
the filtration respects the global basis (on the second factor). Moreover in this sense
it is canonical depending only on a lifting of a natural partial order (see 5.5). Once it
is realized that this should be so the proof is rather natural though still very difficult.
(Moreover it is not yet known if the filtration respects the global basis when arbi-
trary dominant weights occur in the first factor (see 5.23).) As a bonus one obtains a
Weyl flag for the full tensor product (over Z[q, q−1]). Our analysis should cover an
arbitrary symmetrizable Kac–Moody Lie algebra; but for the present at a certain point
a positivity result of Lusztig [Lu2, 22.1.7] is used and this is why the restriction to
symmetric simply-laced Cartan datum is needed. Henceforth we shall just say that g
is simply-laced.

2. Notation and background

2.1.

Our analysis depends heavily on Kashiwara’s work on crystals and their globalization
[K1,2]. For our own convenience we follow the exposition of this work given in [J2,
Chaps. 5, 6] adopting the notation there with only small changes. Here we need to
extend [J2, 6.3.8] replacing Q(q) by Z[q, q−1]. The possibility for doing this was
indicated to me by Kashiwara who also makes a brief reference to this generalization
in [K2, Remark 3.2.6]. During the writing of this manuscript a paper by Ryom–Hansen
appeared in which he also wrote down a proof [R, Lemma 3.3] of 3.8. However for the
sake of completion we have retained our analysis which also serves as a preamble.

2.2.

Let q be an indeterminate and set K = Q(q). Let ψ be the Q-linear automorphism
of K sending q to q−1. Set A = Z[q, q−1], A+ = Q[q]0 (localization at q = 0),
A− = ψ(A+) = Q[q−1]∞ (localization at q =∞). For each integer n ≥ 0 set [n]q =
(qn − q−n)/(q − q−1), [n]!

q = [n]q [n − 1]q · · · [1]q,
[ n

m

]
q = [n]!

q/[n −m]!
q [m]!

q , for
m integer 0 ≤ m ≤ n.

Let Uq(g) be the Hopf algebra over K with generators ei , fi , ti , t
−1
i : i =

1, 2, . . . , �, satisfying the relations given for example in [J2, 5.1.1] and correspond-
ing to a symmetrizable Kac–Moody algebra g with Cartan subalgebra h. Recall that
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h∗ admits a non-degenerate symmetric form ( , ) defined through the symmetrizability.
We shall often replace the subscript by α = αi which is the simple root corresponding
to i . Set π = {αi }�i=1 and let P(π) (or simply P) denote the Z lattice generated by
a choice of fundamental weights. We may assume that (μ, λ) ∈ Z, for all μ, λ ∈ P .
Let P+ denote the dominant elements of P . Given λ ∈ P+ one has (by definition)
α∨(λ) ∈ N for every simple coroot α∨ = 2α/(α, α).

Set qi = q
1
2 (αi ,αi ) and define the divided powers e(n)i = en

i /[n]!
qi
, f (n)i = f n

i /[n]!
qi

.
We shall generally omit the qi subscript (even though it depends on i ).

Let UZ
q (n

+) (resp. UZ
q (n

−)) denote the A subring of Uq(g) generated by the e(n)i

(resp. f (n)i ) : n ∈ N, i = 1, 2, . . . , �. For short we may denote them by E and F ,
respectively.

In order to separate roots it is necessary to enlarge Uq(g) slightly. Thus we view
P as a multiplicative group T by defining a map τ : P → T satisfying τ (αi ) =
ti , ∀i, τ (λ + μ) = τ (λ)τ (μ), ∀ λ,μ ∈ P and we enlarge Uq(g) so that it contains
T . Let UZ

q (g) be the A subring of Uq(g) generated by UZ
q (n

±), and T . This is the
Lusztig quantum analogue of the Kostant Z form for U(g). It specializes to the latter
at q = 1, τ (μ) = 1, ∀ μ ∈ P . A weight submodule M of UZ

q (g) is an A submodule
on which T acts by a character. We shall only consider characters of the form τ (μ) 	→
q(μ,λ) : λ ∈ P . Then the corresponding weight submodule is denoted by Mλ.

For each α ∈ π , let Uq(sα) denote the subalgebra of Uq(g) generated by eα, fα
over K T and let UZ

q (sα) be its corresponding Lusztig form.

2.3.

For each λ ∈ P+, let V (λ) denote the simple highest weight module with highest
weight λ. It is integrable and so for each α ∈ π a direct sum of simple finite-dimen-
sional Uq(sα) modules. Each such submodule V has a one dimensional highest (resp.
lowest) weight space V eα (resp. V fα ) and the Kashiwara operator f̃α (resp. ẽα) on V
and hence on V (λ) is defined by setting ( f̃ n

α − f (n)α )|V eα =0 (resp. (ẽn
α−e(n)α )|V fα =0).

This coincides with the definition in [J2, 5.1.2]. Indeed if un ∈ V eα has tα eigenvalue
qn , then f (n)α un ∈ V fα \ {0} and e(m)α f (n)α un = f (n−m)

α un , for all m : 0 ≤ m ≤ n.
Then ẽα f (n−m)

α un = ẽαe(m)α f (n)α un = e(m+1)
α f (n)α un = f (n−m−1)

α un , as required. Let
Ẽ (resp. F̃) denote the monoid generated by the ẽα (resp. f̃α) : α ∈ π .

2.4.

Fix a generator uλ of V (λ) of weight λ. Set L(λ) = A+F̃uλ. A seemingly innocent but
in fact very difficult result of Kashiwara is that L(λ) is Ẽ stable. Moreover the images
of the distinct f̃ uλ : f̃ ∈ F̃ form a Q basis B(λ) of L(λ)/q L(λ) called the crystal
basis for V (λ) [J2, Thm. 5.4.27]. There is an induced action of ẽα, f̃α : α ∈ π on B(λ)
which gives rise to a combinatorial description of V (λ). This combinatorics behaves
particularly well for tensor product [J2, Thm. 5.1.12]. An alternative description of
this combinatorial structure has been given by Littelmann [L1] but it is unlikely that
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his globalization technique [L3] will work here. In particular, Littelmann’s monomial
basis [L3, L5], although explicit, depends on a choice of reduced decomposition and
none of these choices can be made to satisfy the conclusion of 3.5 simultaneously for
all α ∈ π . Possibly Littelmann’s standard monomial basis [L3, Sect. 6] for the dual
module might be better.

2.5.

For the present work we rely heavily on Kashiwara’s global basis. It is obtained as
follows.

Set V Z(λ) = UZ
q (n

−)uλ. It is a UZ
q (g)module. Set LZ(λ) = V Z(λ)∩ L(λ). Then

(see [J2, 6.2.2]) LZ(λ)/q LZ(λ) is a free Z module with basis B(λ).
Recall 2.2 and extend ψ to a ring homomorphism of Uq(n

−) by setting ψ( fα) =
fα, ∀α ∈ π .

Define a Q-linear isomorphism on V (λ), by ψ(auλ) = ψ(a)uλ, ∀a ∈ Uq(n
−).

Since ψ( f (n)α ) = f (n)α ,∀n ∈ N, α ∈ π , it follows that ψ restricts to a UZ
q (n

−) module

isomorphism of V Z(λ) to itself. One has

[eα, f (n)α ] = f (n−1)
α

(q−(n−1)
α tα − q(n−1)

α t−1
α )

qα − q−1
α

,

and moreover the last factor becomes [α∨(γ ) − (n − 1)]qα on a vector of weight
γ . It follows that ψ commutes with eα. Consequently ψ is also a UZ

q (n
+) module

isomorphism. Set L(λ)− = ψ(L(λ)) and LZ(λ)− = ψ(LZ(λ)) = L(λ)− ∩ V Z(λ).
One has

V (λ) ∼= K ⊗A V Z(λ) ∼= K ⊗A+ L(λ) ∼= K ⊗A− L(λ)−. (∗)

By construction L(λ) is F̃ stable. Fix α ∈ π . After Kashiwara [J2, 5.1.7] the
splitting of V (λ) into a direct sum of simple Uq(sα) modules results (rather remark-
ably) in a direct sum decomposition of L(λ) whose direct summands tensored over
K are simple Uq(sα) modules. (One may add that the global basis only respects this
splitting up to “triangularity” based on dimension — see 3.8.) In particular, L(λ) =∑

n∈N A+ f̃ n
α L(λ)eα . Consequently, L(λ)− = ψ(L(λ)) = A−

∑
n∈Nψ( f (n)α L(λ)eα ) =

A−
∑

n∈N f (n)α ψ(L(λ))eα = A−
∑

n∈N f̃ n
α ψ(L(λ))

eα , which shows that L(λ)− is also
F̃ stable. Similarly L(λ)− is Ẽ stable. By contrast V Z(λ) is neither Ẽ nor F̃ stable.
Curiously, the limiting module V Z(∞), which identifies with UZ

q (n
−) and so is F

stable, is also Ẽ and F̃ stable [J2, 6.1.7]. However although the corresponding A+
lattice L(∞) is both Ẽ and F̃ stable and splits as above, it is no longer true that
L(∞)− := ψ(L(∞)) is Ẽ or F̃ stable. This is because Kashiwara’s truncated ver-
sion of eα (namely e′α in the notation of [J2, 5.3.1]) no longer admits a commutator

with f (n)α invariant underψ . We emphasize these points as they may not be recognized
by the casual (or even not so casual) reader of [K1].

Recall that LZ(λ)− = ψ(LZ(λ)). A further remarkable theorem of Kashiwara
(see [J2, 6.2.3]) is that E := V Z(λ) ∩ L(λ) ∩ L(λ)− = LZ(λ) ∩ LZ(λ)− maps
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isomorphically to LZ(λ)/q LZ(λ). This and (∗) above makes (V Z(λ), L(λ), L(λ)−) a
balanced triple for V (λ) in the language of Kashiwara [K3, Sect. 2]. Let Gλ denote
the inverse map. This provides (see [J2, 6.2.8]) a global A basis Gλ(b) : b ∈ B(λ) of
V Z(λ). It coincides with Lusztig’s canonical basis [Lu1,2]. Moreover this construction
mimics that of Lusztig [Lu1, Sect. 3] given earlier in the semisimple case.

2.6.

Recall [J2, 5.1.3] that the coproduct on Uq(g) satisfies

�(eα) = eα ⊗ t−1
α + 1⊗ eα, �( fα) = fα ⊗ 1+ tα ⊗ fα, ∀ α ∈ π.

For Lemma 5.13 some readers may prefer to now compute �( f (n)α ). In any case one
has to be particularly careful about q factors.

3. Properties of the global basis

3.1.

We first extend in sections 3.2–3.8 the results of Kashiwara described in [J2,
6.3.4–6.3.8] to be valid over A. The possibility for doing this was indicated in [K2, Re-
mark 3.2.6]. We give details for completion and as a preliminary to sections 3.9–3.14.
One may also consult [R] which makes this extension in a slightly different manner.

3.2.

Fix λ ∈ P+ and write simply B = B(λ), V = V (λ), V Z = V Z(λ), L = L(λ),
L− = L(λ)−, LZ = LZ(λ), LZ− = LZ(λ)−. Following 2.3 we use a subscript
to denote a weight subspace of these modules. Obviously Gλ respects weight space
decomposition. We shall often omit the subscript λ where it is understood. Fix α ∈ π
and set e = eα, f = fα, ẽ = ẽα, f̃ = f̃α .

3.3.

Given b ∈ B ⊂ L/q L, choose a representative b̂ ∈ L. Then b̂ − G(b) ∈ q L and
similarly f̃ n b̂ − G( f̃ nb) ∈ q L. Yet L is f̃ stable, so we conclude that

f̃ n G(b)− G( f̃ nb) ∈ q L, ∀ n ∈ N.

Now suppose eG(b) = 0. Then f (n)G(b) = f̃ nG(b). Since G(b) ∈ E = V Z∩L∩
L−, V Z is f (n) stable and L ∩ L− is f̃ n stable, we obtain f̃ nG(b) ∈ E . Consequently,

f̃ n G(b)− G( f̃ nb) ∈ E ∩ q L = 0.

Combined with a similar argument for ẽ we obtain the

Lemma. For all b ∈ B and all n ∈ N one has

(i) f (n)G(b) = f̃ nG(b) = G( f̃ nb), given eG(b) = 0,
(ii) e(n)G(b) = ẽnG(b) = G(ẽnb), given f G(b) = 0.
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3.4.

The result in 3.3 is a consequence of E being defined by the balanced triple (V Z,
L, L−) for V , combined with V Z (resp. L, L−) being stable under the e(n), f (n)

(resp. ẽn, f̃ n) : n ∈ N. Suppose that eG(b) = 0. Then ẽb = 0 and we set
B ′ = { f̃ i b : i ∈ N}. By 3.3(i) the A (resp. A+, A−) submodules generated by the
G(b′) : b′ ∈ B ′ form a balanced subtriple (WZ,M,M−) for the Uq(sα) submodule
W of V generated by G(b). Then (V Z/WZ, L/M, L−/M−) is a balanced triple for
V/W through the remaining elements G(b′′) : b′′ ∈ B \ B ′ of the global basis. (This is
obtained in a wider context, though over Q, in [K3, Lemma 2.2.2].) We conclude that
if eG(b) = 0 mod W , then similarly 3.3(i) holds mod W . A similar assertion holds if
f G(b) = 0 and moreover the submodule factored out can be assumed to be the same
in both cases. This eventually gives a finer version of Kashiwara’s [J2, Lemma 6.3.4],
described as follows. It is also due to Kashiwara.

3.5.

Following Kashiwara (see J2, 5.2.1) one may define maps εα, ϕα : B → N : α ∈ π
through εα(b) = max{n|ẽn

αb �= 0}, ϕα(b) = max{n| f̃ n
α b �= 0}. If b ∈ B , we define

{ẽm
α b, f̃ n

α b : m, n ∈ N} to be the α-string through b. Since ẽα f̃αb = b if f̃αb �= 0 and
f̃α ẽαb = b if ẽαb �= 0, it is stable by ẽα, f̃α and has εα(b)+ ϕα(b)+ 1 elements. We
call �α(b) := εα(b)+ϕα(b) its length. If b has weight ξ , then ϕα(b)−εα(b) = α∨(ξ).
Note in particular that

�α(b) = α∨(wt b) given εα(b) = 0. (∗)

As before we fix α ∈ π and omit the α-subscript. For each r ∈ N, set I r (B) =
{b ∈ B|ε(b)+ϕ(b) = r} and Wr (B) =⋃

s≥r I s(B). Given ξ ∈ λ−Nπ , set Bξ+Zα =⋃
n∈Z Bξ+nα and Wr (Bξ+Zα) = Bξ+Zα ∩ Wr (B).

Similarly consider V Z. Set Vξ+Zα =
⊕

n∈Z Vξ+nα (resp. V Z
ξ+Zα =

⊕
n∈Z V Z

ξ+nα

= Vξ+Zα ∩ V Z). It is an Uq(sα) (resp. UZ
q (sα)) submodule of V (resp. V Z). The

former is a finite direct sum of finite-dimensional simple Uq(sα) modules. Take the
direct sum Wr (Vξ+Zα) of those of dimension ≥ r + 1 up to the maximal dimension
s + 1 and set Wr (V Z

ξ+Zα
) = V Z

ξ+Zα
∩ Wr (Vξ+Zα). Since every simple submodule

of Vξ+Zα/Wr (Vξ+Zα) has dimension ≤ r , it follows that the image of V Z
ξ+Zα

in this
quotient has weights ξ + nα satisfying |α∨(ξ + nα)| ≤ (r − 1). Thus the increasing
family of UZ

q (sα) submodules W s(V Z
ξ+Zα

) ⊂ W s−1(V Z
ξ+Zα

) ⊂ · · · , of V Z
ξ+Zα

with

union V Z
ξ+Zα

, has successive quotients Wr (V Z
ξ+Zα

)/Wr+1(V Z
ξ+Zα

) with weights ξ +
nα satisfying |α∨(ξ + nα)| ≤ r .

Lemma. For all r, k ∈ N, b ∈ I r (Bξ+Zα) one has

(i) f (k)G(b) =
[
ε(b)+ k

k

]
G( f̃ kb) mod Wr+1(V Z

ξ+Zα)

(ii) e(k)G(b) =
[
ϕ(b)+ k

k

]
G(ẽkb) mod Wr+1(V Z

ξ+Zα
)
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(iii) Wr (V Z
ξ+Zα

) =⊕
b∈W r (Bξ+Zα)

AG(b).

Proof. Take b ∈ I r (B) satisfying ε(b) = 0. Then α∨(wt b) = r . Consequently
eG(b) ∈ Wr+1(Vξ+Zα). Moding out by this submodule, 3.3 applies and we obtain
f (n)G(b)− G( f̃ nb) ∈ Wr+1(Vξ+Zα)∩ V Z

ξ+Zα . Hence (i). The proof of (ii) is similar.

For (iii) recall that {G(b) : b ∈ B} is an A basis for V Z. It follows by weight space
decomposition that G(b) : b ∈ Bξ+Zα is an A basis for V Z

ξ+Zα
. Consider b ∈ Bξ+Zα

belonging to an α-string of length t ≥ r . By (i), (ii) it follows that the UZ
q (sα) module

generated by G(b) has a weight vector ξ+nα satisfying α∨(ξ+nα) = t . Consequently
G(b) belongs to Wr (V Z

ξ+Zα
). Hence (iii). ��

3.6.

For each α ∈ π , set Eα = ∑
n∈N Ae(n),Fα = ∑

n∈N A f (n). As before we fix α ∈ π ;
but we do not drop the subscript on Eα and Fα. Similarly we set Ẽα =⋃

n∈Nẽn
α, F̃α =⋃

n∈N f̃ n
α .

3.7.

Take s ∈ N and consider Ws(V Z
ξ+Zα) := V Z

ξ+Zα/W s+1(V Z
ξ+Zα). By 3.5(ii), Ws(V Z

ξ+Zα)

is a UZ
q (sα) quotient of V Z

ξ+Zα with A basis {G(b)|b ∈ Bξ+Zα \W s+1(Bξ+Zα)}. This
has no α-strings of length > s and by taking s smaller if necessary we can assume it
to have an α-string of length s. Then s has the same meaning as in 3.5. Let N be an Eα
submodule of Ws(V Z

ξ+Zα). We shall say that N admits a global basis if we can write

N =
⊕

b∈B(N)

AG(b) (∗)

for some B(N) ⊂ B . Here and in 3.8 we assume N as above.

Lemma. ẽB(N) ⊂ B(N) ∪ {0}.
Proof. Take b ∈ B(N). If ẽb �= 0, then by 3.5(ii) the expansion of eG(b) in the global
basis for Ws(V Z

ξ+Zα
) has G(ẽb) as a non-zero coefficient. Hence the assertion. ��

3.8.

Set M = UZ
q (sα)N = ∑

n≥0 f (n)N = FαN and B(M) = F̃αB(N) \ {0}. Since M

is a submodule of Ws(V Z
ξ+Zα) which is free of finite rank, it follows that M admits a

highest weight space of weight η ∈ ξ + Zα satisfying α∨(η) =: s ∈ N, by our choice
of s. Factoring out by the UZ

q (sα) module I s(M) it generates, repeating the procedure

and taking inverse images we obtain an increasing family of UZ
q (sα) submodules of

M with union M and whose successive quotients Wr (M)/Wr+1(M) have weights η
satisfying α∨(η) ≤ r . Set Wr (N) = N ∩ Wr (M). Set B(M) = F̃α(B(N)) which as
noted in 3.5 is a union of α-strings. Define Wr (B(M)) as in 3.5 and set Wr (B(N)) =
B(N) ∩ Wr (B(M)).
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Proposition. For all r ∈ N one has

Wr (N) =
⊕

b∈W r (B(N))

AG(b) (i)

Wr (M) =
⊕

b∈W r (B(M))

AG(b). (ii)

Proof. These are proved by decreasing induction on r . Since M = FαN , it follows
that its highest weight space Mη equals Nη . Also B(M)η = B(N)η by 3.7. Since G
respects weights, the hypothesis 3.7(∗) on N implies that

Mη =
⊕

b∈B(M)η

AG(b).

Since eMη = 0, f (n) and f̃ n coincide on Mη . Hence by 3.3(i) we obtain

W s (M) = FαMη =
⊕

b∈F̃α(B(M)η)
AG(b). (∗)

Moreover each b ∈ F̃α(B(M)η) ⊂ B(M) lies in an α-string of length s and so
F̃α(B(M)η) ⊂ W s (B(M)). By the hypothesis 3.7(∗) on N and (∗) we further ob-
tain

W s(N) = N ∩ W s(M) =
⊕

b∈F̃α(B(M)η)∩B(N)

AG(b). (∗∗)

Set N ′ = N/W s (N), M ′ = M/W s (M). Then N ′ is an Eα submodule of M ′
satisfying M ′ = FαN ′. In turn M ′ is a UZ

q (sα) submodule of Ws−1(V Z
ξ+Zα). By the

hypothesis on N and (∗∗) we may write

N ′ =
⊕

b∈B(N ′)
AG(b),

where B(N ′) = B(N) \ F̃α(B(M)η). In particular, B(N ′)η = ∅. Setting B(M ′) =
F̃αB(N ′), we obtain B(M ′)η = ∅. Since B(M ′) ⊂ F̃αB(N) ⊂ Bξ+Zα , every α-string
of length s in B(M ′) must have an element of weight η. This forces F̃α(B(M)η) =
W s(B(M)). Consequently (i), (ii) are proved for r = s. Repeating the argument with
N ′ which is an Eα submodule of Ws−1(V Z

ξ+Zα
) gives the general case. ��

3.9.

Take b ∈ Bξ (μ) and let Nb(μ), or simply Nb or N , be the smallest Eα submodule of
V Z
ξ+Zα

containing Gμ(b) and admitting a global basis. Thus N satisfies the hypotheses

of 3.7 and we set Mb(μ) = UZ
q (sα)Nb(μ), or simply Mb or M . From 3.7 and 3.8 we

obtain
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B(N) ⊃ Ẽαb ∪ {b′ ∈ B(M)|εα(b′) = 0}. (∗)

Unfortunately little else seems to be known, although it is an interesting and perhaps
important problem to determine B(N). Indeed the technical difficulty of our main
result would be significantly reduced if we could prove that

B(N) ⊃ {b′ ∈ B(M)|εα(b′) ≤ εα(b)}. (∗∗)

Indeed through the string property (4.7, 4.8) the conclusion of 5.11 would become
almost immediate. Such a result is very natural from the point of view of Littelmann’s
monomial basis (which approximates the global basis [L5, Prop. 10.4], [G, Sects. 4,5]).
Unfortunately(∗∗) is false. For example take π = {α, β} of type A2. Then by [Lu3],
every global basis element for UZ

q (n
−) is a monomial and so a Littelmann monomial

for some choice of reduced decomposition. Given λ ∈ P+, let bλ be the unique
element of B(λ) of weight λ. For simplicity of notation we write f̃ bλ : f̃ ∈ F̃ simply
as f̃ , and f uλ : f ∈ F as f . Then for example G( f̃β f̃ n

α ) = fβ f (n)α , ∀ n ∈ N. (This
may also be deduced from 3.5 and [J2, 6.2.9].) Now ẽα( f̃β f̃ n

α ) = f̃β f̃ n−1
α , for all

n ≥ 2, whilst ẽα( f̃β f̃α) = 0.
Now take λ ∈ P+(π) with s := α∨(λ), t := β∨(λ) sufficiently large. Take

b = f̃β f̃ n
α : s ≥ n ≥ 1 in the above. Then

B(N) = { f̃β f̃ m
α : m ≤ n},

whilst B(M) consists of the α-string f̃β f̃ i
α : 1 ≤ i ≤ s and the α-string f̃ i

α f̃β : 0 ≤
i ≤ (s + 1). From this we see that equality holds in (∗). This precludes (∗∗) if n ≥ 2.

For a second example we note that Gλ( f̃α f̃ 2
β f̃α) = fα f (2)β fαuλ. In this case taking

b = f̃α f̃ 2
β f̃α we obtain

B(N) = { f̃α f̃ 2
β f̃α, f̃ 2

β f̃α} ∪ { f̃α f̃ 2
β , f̃ 2

β }, (∗∗∗)

whilst B(M) consists of the α-strings generated by b1 = f̃ 2
β f̃α, b2 = f̃ 2

β (here both
elements are annihilated by ẽα). Thus in this case (∗∗) holds. Curiously for n ≥ 2
one also has Gλ( f̃β f̃ n

α f̃β) = fβ f (n)α fβuλ. Thus eαGλ( f̃β f̃ n
α f̃β) = [α∨(λ) − (n −

2)]qαGλ( f̃β f̃ n−1
α f̃β), for n > 2, so there is a contribution to the longer string just for

n = 1, 2.
One may ask if this is a general phenomenon. We say that the global basis satisfies

the no-gap hypothesis if whenever G(b′) does not appear in the expansion of eαG(b),
then for all i ∈ N, G( f̃ i

αb′) does not appear in the expansion of eαG( f̃ i
αb). Such

a property would be enough to extend our theorem (5.22) to the general case (see
Remark 1 of 5.18).

One may remark that the essence of the difficulty in passing from the crystal to the
global basis (both of which are canonical) is that there are more monomial identities
between the crystal operators than between the divided powers. By contrast the latter
admit, also non-monomial identities (for example Serre relations). Consequently the
relationship between the monomials formed from the crystal operators and (the sums
of) monomials of divided powers describing the corresponding global basis element
must get increasingly complex. This makes the proof of our main result more difficult.
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3.10.

Set n = εα(b) and b0 = ẽn
αb, which is just the unique highest element in the α-string

S0 containing b. Obviously Nb0 ⊂ Nb and the inclusion is strict unless n = 0. Recall
3.8.

Lemma. B(Mb0)
∐{0} = F̃αB(Nb0) = F̃αB(Nb) = B(Mb)

∐{0}.
Proof. Suppose the inclusion B(Mb0) ⊂ B(Mb) is strict. Let S be an α-string of min-
imal length of B(Mb) not occurring in B(Mb0). Recalling 3.8, factor Mb (resp. Mb0 )
by the submodule defined by all α-strings of length ≥ �(S) excluding S. This reduces
us to the case B(Mb) = B(Mb0)

∐
S. Write B(Mb0) as a disjoint union of α-strings

Si : i = 0, 1, 2, . . . ,m of increasing length, and let bi be the unique highest element of
Si . Then by construction eαG(bm) = 0, so by 3.3(i) the A submodule generated by the
G(b) : b ∈ Sm is a submodule of both Mb0 and Mb . Factoring out by this submodule
and continuing in this fashion a contradiction is reached. ��

3.11.

Fix b ∈ Bξ and let N−
b , or simply N−, be the smallest Fα submodule of V Z

ξ+Zα

containing G(b) and admitting a global basis. The symmetry with respect to ẽ, f̃
(resp. e, f ) interchange as described in 3.2–3.4 implies results analogous to 3.7 and
3.8. In particular, B(N−) ∪ {0} is F̃α stable and M− := UZ

q (sα)N
− admits a global

basis parametrized by B(M−) := ẼαB(N−)\{0}. Now set n′ = ϕα(b) and b′0 = f̃ n′
α b,

which is just the unique lowest weight element in the α-string S0 containing b. As in
3.10 we obtain B(M−

b′0
) = B(M−

b ).

Lemma. B(M−
b′0
) = B(Mb0), equivalently M−

b = Mb.

Proof. Let S be an α-string of minimal length which is either not in B(M−
b′0
) or not in

B(Mb0). As in 3.10, factor M−
b′0

(resp. Mb0 ) by the submodule defined by all α-strings

of length ≥ �(S) excluding S. This reduces us to the case B(Mb0) = B(Mb′0)
∐

S (or
vice versa). Using 3.3 the proof is completed exactly as in 3.10. ��

3.12.

To overcome the difficulty evoked in 3.9 we shall use the compatibility of the global
basis obtained by varying μ ∈ P+(π). We recall this below.

Define an order relation on P+(π), through μ & ν if μ − ν ∈ P+(π). Suppose
μ′ & μ. Then there is a surjection πμ′,μ : V Z(μ′)→ V Z(μ) ofF = UZ

q (n
−)modules

defined by πμ′,μ(uμ′) = uμ.
A deep result of Kashiwara is that πμ′,μ is compatible with the respective global

bases. (For a Cartan datum of finite type Lusztig [Lu1] previously obtained this result
for the canonical basis). More precisely one may recall (see 4.3) that B(μ) can be
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viewed as a subset of B(μ′). We use the convention that Gμ(b) = 0 if b �∈ B(μ).
(This is justified by the fact that Gμ′(b)uμ = 0.) Then by [J2, 6.2.9] (which is
eventually shown to be valid for all k defined there) one has

πμ′,μ(Gμ′(b)) = Gμ(b), ∀ b ∈ B(μ′). (∗)

In (∗) we may also take μ′ = ∞, where G∞(b) : b ∈ B(∞) is the global ba-
sis for UZ

q (n
−) with B(∞) being the direct limit of the B(μ) : μ ∈ P+(π) (see

4.3) and where π∞,μ is the F module map of V Z(∞) := UZ
q (n

−) onto V Z(μ) de-
fined by π∞,μ(1) = uμ. This means in particular that Gμ(b) = π∞,μ(G∞(b)) =
G∞(b)π∞,μ(1) = G∞(b)uμ.

By (∗) the expansion f Gμ(b) : b ∈ B(μ), f ∈ F as a sum (over A) of the
Gμ(b′), is independent of μ (except that some Gμ(b′) are zero when b �∈ B(μ)) and
is determined by the expansion of f G∞(b) : b ∈ B(∞), f ∈ F . This is not quite true
of the expansion of eGμ(b) : b ∈ B(μ), e ∈ E (and in particular for the eα : α ∈ π)
since we must eventually apply the (tα − t−1

α )/(qα − q−1
α ) factors to uμ. Here if μ′

is replaced by μ, the weights will be shifted by μ′ − μ. This affects the coefficient,
but not whether a given term appears (up to some accidental zeros). More precisely,
if Gμ(b′) occurs with a non-zero coefficient in eαGμ(b), then this also holds for all
μ′ & μ outside a Zariski closed subset. This means that if we take b ∈ Bξ (μ) and
define Nb(μ), or simply N(μ), as in 3.9, then the subset B(N(μ)) of Bξ+Zα(μ) it
defines can be assumed increasing in μ — more precisely B(N(μ′)) ⊃ B(N(μ)) for
all μ′ & μ outside a Zariski closed subset. (Remarkably by 3.10, 3.11, this last proviso
can be omitted.) Moreover we can write ξ = μ − γ , for some γ ∈ Nπ and whilst
Gμ(b) has weight ξ , Gμ′(b) has weight μ′ − γ = μ′ − μ + ξ . Thus |B(N(μ′))| will
be uniformly bounded from above. Precisely we have

|B(N(μ′))| ≤
∑
n∈N

dim Uq(n
−)−γ+nα <∞ (∗∗)

for all μ′ & μ. In particular, the number of α-strings in M will reach a (finite) maxi-
mum (as a function of μ′ & μ).

3.13.

Although the expansion of eGμ(b) evoked in 3.12 depends on μ, this dependence
vanishes on passing to the corresponding crystal. More precisely, the embedding of
B(μ) in B(μ′) (for μ ≺ μ′) is, up to a shift of weights, a full embedding (in the
language of Kashiwara [K2]), that is it commutes with the action of Ẽ . (For more
details see 4.3). Consequently, the elements of a given α-string in B(M(μ))with M(μ)
defined as in 3.8, satisfying εα(b) = 0, is independent of μ though some new α-strings
may appear as μ increases, up to some finite bound.

The above may be illustrated by the second example of 3.9. Let ρ be the sum of
the fundamental weights *α : α ∈ π . Then B(N(ρ)) is reduced to { f̃α f̃ 2

β f̃α, f̃ 2
β f̃α}

which is a complete α-string. On the other hand B(N(2ρ)) has the maximal possible
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size given in 3.9(∗ ∗ ∗), so in particular B(N(2ρ)) = B(N(μ)), for all μ * 2ρ.
The corresponding α-strings have lengths α∨(μ− α − 2β) = α∨(μ) and α∨(μ)+ 2,
which increases with μ. However the highest weight elements of the strings, namely
f̃ 2
β f̃α, f̃ 2

β , remain fixed.
We summarize the above conclusions in the following.

Proposition. Fix b ∈ B(μ), μ ∈ P+ and α ∈ π . Take μ′ ∈ μ+ N*α and let N(μ′)
be the smallest Eα stable submodule of V Z(μ′) containing Gμ′(b) and admitting a
global basis.

(i) There exists a finite set F ⊂ N such that B(N(μ′)) : μ′ ∈ μ + (N \ F)*α is
independent of μ′ and contains B(N(μ)).

(ii) M(μ′) := Fα(N(μ′)) admits a global basis. Thus B(M(μ′)) is defined, equals
F̃αB(N(μ′)) and consists of finitely many α-strings, this number being indepen-
dent of μ′ ∈ μ+ (N \ F)*α .

(iii) The length of each α-string in B(M(μ′)) increases by n on passing to B(M(μ′ +
n*α)).

(iv) For each b′ ∈ B(M(μ′)) : μ′ ∈ μ + N*α the decomposition of fαGμ′(b′) as
a linear combination of the Gμ′(b′′) : b′′ ∈ B(M(μ′)) is the same as in the
decomposition of fαGμ′′ (b′) : μ′′ ∈ μ + N*α except that a given term Gμ′(b′′)
is equal to zero if b′′ �∈ B(μ′).

(v) B(N(μ + n*α)) is increasing in n.

Proof. Clearly B(N(μ′)) is just the set of all Gμ′(b′) occurring in the decomposition

of the e(n)α Gμ′(b) : n ∈ N. Every such term can be non-zero only if Uq(n
−)−γ+nα �= 0,

where γ = −wt b with b viewed as an element of B(∞). In particular, n is uniformly
bounded by some m ∈ N from above. Since Gμ′(b′) = G∞(b′)uμ′ the dependence of

e(n)α Gμ′(b′) on μ′ comes only through the evaluation of the (tα − t−1
α )/(qα − q−1

α ) on

uμ. If Gμ(b) involves k factors in the f (s)α : s ∈ N, the number of such evaluations is
at most km. Moreover the evaluation depends linearly on μ′ ∈ μ+ N*α and so they
are all non-zero outside a finite set F . Finally the B(μ′) : μ′ = μ+ r*α : r ∈ N are
increasing in r whilst

⋃
n∈NB(μ′)μ′−γ+nα ⊂ ⋃

n≤m B(∞)−γ+nα and hence the latter
become stationary for r sufficiently large. All this establishes (i).

The first part of (ii) follows from 3.8. The second part from (i).
If b′ ∈ B(M(μ′)) satisfies εα(b′) = 0, then it generates an α-string of length

α∨(wt b′), where b′ is viewed as an element of B(μ′). Viewed as an element of B(μ′+
n*α), its weight increases by n*α . Hence (iii).

(iv) follows from 3.10(∗) since πμ′,μ commutes with Fα.
(v) follows from 3.10, 3.11 and the independence of the expansion of f Gμ′(b) on

μ′ ∈ μ+ N* . ��
Remark 1. One may give some credence to the no-gap hypothesis of 3.9. Suppose that
B(N(μ)) consists of just two strings S, S′ with �(S′) = �(S) + 2 (as in the second
example of 3.9). Let s−n (resp. s′−(n+2) be the lowest weight element of S (resp. S′)
and suppose that f Gμ(s−n) is a non-zero multiple of Gμ(s′−(n+2)). Now replace μ by
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μ+m*α : m = 1, 2, . . ., and let s−(n+m) and s′−(n+m+2) be the corresponding lowest
weight elements in the lengthened strings (see (iii) above). By 3.12(∗) the expansion
of f Gμ+*α(s−n) still contains a non-zero multiple of Gμ+*α(s′−(n+3)) and by 3.10
this forces f Gμ+*α(s−(n+1)) to be a non-zero multiple of Gμ+*α(s′−(n+4)). Repeating
this argument it follows that the expansion of f Gμ+m*α (s−(n+i)) contain a non-zero
multiple of Gμ+m*α (s

′−(n+2+i)) for all m and all i : 0 ≤ i ≤ m.
There are three difficulties in deducing the no-gap hypothesis from this argument.

First, it can break down even when there are just three strings. More seriously it only
proves the no-gap hypothesis asymptotically. Finally it concerns f not e. This is triv-
ially overcome if g is finite dimensional by noting that highest weight modules are also
lowest weight modules and using the Chevalley anti-automorphism. (Observe how-
ever that a given family of strings is not e, f interchange invariant; but one family gets
mapped to a second one. This is again evidenced by the second example of 3.9.)

Remark 2. With respect to (v), the new α-strings obtained on passing from μ+ m*α
to μ + (m + 1)*α cannot occur in an arbitrary fashion. Indeed by 3.11 and 3.12(∗)
the global basis vectors they define must form a UZ

q (sα) submodule.

3.14.

Fix α ∈ π,μ ∈ P+ and take b, N,M as in 3.9. Then B(M) consists of finitely many
α-strings of which there is just one S of shortest length (by 3.5) and this contains b.
Let S ′ be any union of α-strings of B(M) excluding S.

Lemma (g simply-laced). Fix n ∈ N+. Suppose that b′, b′′ := ẽn
αb′ ∈ S and that

en
αGμ(b

′) ∈ K ∗Gμ(b
′′)+

∑
b′′′∈S ′

K Gμ(b
′′′).

Then
ei
αGμ(b

′) ∈ K ∗Gμ(ẽ
i
αb′)+

∑
b′′′∈S ′

K Gμ(b
′′′),

for all i ≤ n.

Proof. Since g is assumed simply-laced the positivity result [Lu2, Thm. 22.1.7] of
Lusztig applies. This asserts that eαGμ(c) : c ∈ B(μ) is a linear combination of the
qnGμ(c′) : n ∈ Z, c′ ∈ B(μ) with non-negative integer coefficients. This means that
no cancellations can occur. Thus if a term, say Gμ(b′′′), in a string different to one in
S ′, appears in ei

αGμ(b′), then Gμ(ẽn−i
α b′′′) must occur in en

αGμ(b′) because by 3.5(ii)
it occurs in en−i

α G(b′′′). On the other hand ẽn−i
α b′′′ belongs to the same α-string as

b′′′. Moreover it cannot be zero, since ẽn
αb′ = b′′ �= 0 and because S is the shortest

α-string in B(M). This contradiction proves the lemma. ��
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4. The combinatorics of Demazure crystals

4.1.

Let π (resp. π∨) denote the set of simple roots (resp. coroots) of a given symmetrizable
Kac–Moody algebra.

Recall that a normal crystal B is a set with maps wt : B → P, εα, ϕα : B →
Z, ẽα, f̃α : B → B ∪ {0} : α ∈ π , satisfying

(1) εα(b) = max{n|ẽn
αb �= 0}, ϕα(b) = max{n| f̃ n

α b �= 0}, ∀ α ∈ π, b ∈ B
(2) ϕα(b)− εα(b) = α∨(wtb), ∀ β ∈ B
(3) b′ = ẽαb ⇐⇒ b = f̃αb′, ∀ b, b′ ∈ B
(4) ẽαb �= 0 -⇒ wt ẽαb = wtb + α, ∀ α ∈ π, b ∈ B .

For example a crystal basis B(λ) of a simple integral module has the structure of
a normal crystal with respect to the Kashiwara operators ẽα, f̃α : α ∈ π . In an upper
normal crystal, part two of (1) is replaced by ϕα(ẽαb) = ϕα(b)+ 1 if ẽαb �= 0.

4.2.

Let B be a normal crystal and define Ẽ, F̃ as in 2.3. A crystal is said to be of highest
weight λ ∈ P if there exists an element bλ ∈ B of weight λ such that Ẽbλ = 0, B =
F̃bλ. Assuming B normal forces λ ∈ P+. Not unexpectedly B(λ) is a highest weight
crystal.

4.3.

It is possible to form the tensor product B1 ⊗ B2 of two crystals B1, B2. It is B1 × B2
as a set and satisfies in particular (writing b1 ⊗ b2 for (b1, b2))

ẽα(b1 ⊗ b2) =
{

ẽαb1 ⊗ b2, if ϕα(b1) ≥ εα(b2)

b1 ⊗ ẽαb2, otherwise.

f̃α(b1 ⊗ b2) =
{

f̃αb1 ⊗ b2, if ϕα(b1) > εα(b2)

b1 ⊗ f̃αb2, otherwise.

for all α ∈ π, b1 ∈ B1, b2 ∈ B2.
In B(λ)⊗ B(μ), the element bλ⊗ bμ satisfies Ẽ(bλ⊗ bμ) = 0, by the above rules.

It is true but not obvious that F̃(bλ ⊗ bμ) is a crystal and further is isomorphic to
B(λ+ μ). This property and normality characterizes the family B(λ) : λ ∈ P+, up to
isomorphism [J2, Thm. 6.4.21]. Then even more remarkably one has

B(λ)⊗ B(μ) =
∐
ν∈Sλ,μ

B(ν)
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for some multisubset Sλ,μ of P+. This follows from Kashiwara’s deep work on the
q → 0 limit; but Littelmann has also given a path model construction of this (unique)
family of normal crystals and a (difficult) combinatorial proof [L2] of the above de-
composition. An exposition of this latter proof is given in [J5, Sect. 15] where it is
noted to be valid even in the non-symmetrizable case.

Recall the order relation on P+ defined through μ′ & μ -⇒ μ′ − μ ∈ P+.
Kashiwara introduced a highest weight (upper normal) crystal B(∞) generated over
F by an element b∞ of weight 0. Moreover [J2, 5.3.13] there exists a one element
crystal Sλ = {sλ} and a strict crystal embedding ψλ : B(λ) → B(∞) ⊗ Sλ given by
ψλ( f̃ bλ) = f̃ (b∞⊗sλ), ∀ f̃ ∈ F̃ . Whilst F̃ acts injectively on B(∞), it cannot do so
on B(λ). Indeed eventually f̃α( f̃ b∞ ⊗ sλ) = f̃ b∞ ⊗ f̃αsλ = 0, which by the crystal
rules exactly occurs when ϕα( f̃ b∞) ≤ εα(sλ) := −α∨(λ). Suppose μ′ & μ. Then
−α∨(μ′) ≤ −α∨(μ), for all α ∈ π . It follows that b ⊗ sμ′ ∈ Im ψμ′ for all b ∈ B(μ)
and so this construction embeds B(μ) as a subcrystal of B(μ′), up to a shift of weights.
This embedding commutes with ẽα, εα : α ∈ π and with ϕα : α ∈ π , up to a shift
imposed by 4.1(2). It does not quite (see 4.1(3)) commute with f̃α : α ∈ π . Moreover
B(∞) is just the direct limit of the B(μ) : μ ∈ P+ with respect to the above order
relation. (This is exactly analogous to the dual Verma module δM(0) being a direct
limit of the images of the V (μ) under the (unique) Uq(n

+)module map sending uμ to
a fixed zero weight vector in δM(0)).

4.4.

For every ν ∈ Sλ,μ, the unique element of B(ν) in B(λ)⊗ B(μ) of weight ν takes the
form bλ ⊗ b, for some b ∈ B(μ)ν−λ (this is easy!). We showed in [J4, Sect. 5] how to
compute b in terms of the embedding B(λ) ↪→ B(∞)⊗Sλ and Kashiwara’s involution
� on B(∞). More precisely call bλ ⊗ b ∈ B(λ) ⊗ B(μ) primitive if Ẽ(bλ ⊗ b) =
0. Then every such primitive element bλ ⊗ b satisfies ψμ(b) = b′� ⊗ sμ, for some
b′ ⊗ sλ ∈ Im ψλ. More simply, although less precisely, bλ ⊗ b is primitive if and only
if b ∈ B(λ)� ∩ B(μ). If b ∈ B(λ)�, but b �∈ B(μ) we use the convention that b = 0
and in this sense the set of primitive elements bλ ⊗ b ∈ B(λ) ⊗ B(μ) depends only
on λ.

4.5.

Define Ẽα, F̃α : α ∈ π as in 3.6. Obviously Ẽ2
α = Ẽα and F̃2

α = F̃α. As already
noted by Kashiwara (see also [J4, 4.2]) the Ẽα (resp. F̃α) : α ∈ π as monoids further
satisfy the Coxeter relations on elements of the (unique) family B(λ) : λ ∈ P+. For
example Ẽα Ẽβ Ẽα = Ẽβ Ẽα Ẽβ if {α, β} is of type A2. A simple proof of this fact using
the Littelmann path model may be found in [J5, 16.15]. Let W denote the Weyl group
(generated by the sα : α ∈ π). Thus for each w ∈ W , the subset Ẽw of Ẽ (resp. F̃w
of F̃ ) is defined (on the above family) by taking a reduced decomposition and setting
Ẽe = F̃e = {1}.

With respect to bλ ∈ B(λ),w ∈ W a Demazure “crystal” Bw(λ) is defined to
be F̃wbλ. It is a subset of B(λ) and nearly a crystal. Indeed Bw(λ) is Ẽ stable and
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admits what we call the string property, namely for all b ∈ Bw(λ) and all α ∈ π such
that εα(b) > 0 one has F̃αb ⊂ Bw(λ). Remarkably this holds regardless of whether
sαw < w; but in this case Bw(λ) itself is F̃α stable. This string property is the basis of
the Demazure character formula and as we shall see a key combinatorial component
of the existence of Demazure flags.

4.6.

In [L3, Thm. 4], see also [LLM, 2.4], or in [J4, 2.11] it was shown for all λ,μ ∈
P+, w ∈ W , there exists a finite set I such that

bλ ⊗ Bw(μ) =
∐
i∈I

Byi (νi ) (∗)

for some yi ∈ W, νi ∈ P+. More precisely, the Byi (νi ) are subsets of bλ ⊗ Bw(μ)
of the form F̃yi (bλ ⊗ bi ), where Ẽ(bλ ⊗ bi ) = 0 (and so F̃(bλ ⊗ bi ) is the subcrystal
B(νi ) of B(λ) ⊗ B(μ)). In [J4, 4.4] we described the yi explicitly. A crucial point in
the proof of the above result is that setting F̃λw,bi

= { f̃ ∈ F̃ | f̃ (bλ⊗bi ) ⊂ bλ⊗Bw(μ)}
one has

F̃λw,bi
⊃ F̃yi and F̃λw,bi

(bλ ⊗ bi ) = F̃yi (bλ ⊗ bi ). (∗∗)

(This corrects slightly [J4, 4.4] and is the assertion actually proved there. See also [J5,
Sect. 19 and in particular Remark 2 of 19.3].)
Moreover we note (and this will be important in varying μ) that yi is independent of
μ, depending only on bi . This independence follows from [J4, 3.4].

In particular, suppose we fix i , write y = yi , take a reduced decomposition y =
sα1 sα2 · · · sαk and set α = α j , z j = sα j+1 sα j+2 · · · sαk , zk = 1. Then F̃z j (bλ ⊗ bi ) =
bλ ⊗ F̃z j bi . Furthermore for each b ∈ F̃z j bi , we have f̃α(bλ ⊗ b) = bλ ⊗ f̃αb and
so εα(b) ≥ α∨(λ), by 4.3. (As one might expect it is rather that one first proves this
inequality and deduces (∗). This is achieved in [J4, 4.4]). The above inequality will
play a key role in our analysis.

We remark that I is finite even under the convention of 4.4, since B(λ)� ∩ Bw(∞)
is finite [J4, last paragraph of 5.3]. If Bw(μ) is replaced by its limiting value B(μ),
then I is still countable. This countable set can be identified with N+.

4.7.

In the notation of 4.6 we set B−i = F̃yi bi (resp. B−i (μ) = F̃yi bi ) when bi is viewed as
an element of B(∞) (resp. B(μ)). In view of [J4, 3.4] one has B−i (μ) = B(μ) ∩ B−i .
This means that we can omit μ by using our convention that b = 0 if b �∈ B(μ).
One has bλ ⊗ B−i = Byi (νi ). Similarly we set B−j,i = F̃z j bi , with a correspond-

ing convention. One has bλ ⊗ B−j,i = F̃z j (bλ ⊗ bi ) ∼= Bz j (νi ). These sets B−i , B−j,i
are neither Ẽ nor F̃ stable. Yet let us say that B ⊂ Bw(μ) has the proper string-λ
(resp. string-λ) property if for each b ∈ B and all β ∈ π such that εβ(b) ≥ β∨(λ)
(resp. εβ(b) > β∨(λ)) one has F̃βb ⊂ B ∪ {0}.
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Lemma. Take n as above. For all i ∈ I, j ∈ {0, 1, 2, . . . , k} the set B−j,i has the
string-λ property.

Proof. Suppose b ∈ B−j,i satisfies εβ(b) > β∨(λ). Since ϕβ(bλ) = β∨(λ) it follows
from 4.3 and 4.1(1) that ẽβ(bλ⊗b) = bλ⊗ ẽβb �= 0 and so εβ(bλ⊗b) > 0. (This also
follows from a rule for tensor product [J2, 5.2.4(2)] which we did not give). Since bλ⊗
B−j,i ∼= Bz j (νi ), it has the string property and so it follows that F̃β(bλ⊗ b) ⊂ Bz j (νi ).

Again since εβ(b) > ϕβ(bλ), the latter equals bλ ⊗ F̃βb by 4.3 and so F̃βb ⊂ B−j,i , as
required. ��
Remark. If we take β = α with α defined as in 4.6 we have εα(b) ≥ ϕα(bλ), for all
b ∈ B−j,i . In some sense to be made precise later, we are mainly reduced to analyzing
the case εα(b) = ϕα(bλ) = α∨(λ). This results in a simplification in the proof of the
existence of Demazure flags.

4.8.

Clearly B−i has the string-λ property; but not quite the proper string-λ property. To
take care of this we set π ′ = {α ∈ π |α∨(λ) = 0} and let Wπ ′ be the subgroup of W
generated by the sα : α ∈ π ′. Since λ ∈ P+, this is just StabWλ by say [J2, A.1.1(vii)].
Set

F̃ ŷi = lim−→{F̃x F̃yi |x ∈ Wπ ′ }, B̂−i = F̃ ŷi bi .

Of course if Wπ ′ is a finite group and wπ ′ is its unique longest element, then F̃ ŷi =
F̃wπ ′ F̃yi . Then ŷi can be taken to be the unique longest element in Wπ ′ yi . Observe
that

F̃ ŷi (bλ ⊗ bi ) = bλ ⊗ F̃ ŷi bi = bλ ⊗ B̂−i ⊂ bλ ⊗ B(μ).

Lemma. For all β ∈ π \ π ′, b ∈ B−i with εβ(b) ≥ β∨(λ) one has F̃βb ∈ B−i .

Proof. Indeed f̃ n
β (bλ ⊗ b) = bλ ⊗ f̃ n

β b, for all n ∈ N, by 4.3. Yet b = f̃ bi , for some

f̃ ∈ F̃ which by 4.6(∗∗) satisfies f̃ (bλ ⊗ bi ) = bλ ⊗ f̃ bi . Set f̃ ′ = f̃ n
β f̃ . Then

f̃ ′(bλ ⊗ bi ) = bλ ⊗ f̃ n
β b. Yet εβ(b) ≥ β∨(λ) > 0 and so F̃βb ∈ Bw(μ) by the string

property of the latter. Hence F̃βb ∈ B−i , by 4.6(∗∗). ��
Remark. This is just the proper string-λ property off the orthogonal of λ in π .

4.9.

Recall the following identity for q-binomial coefficients

qm
[ n

m

]
+ qm−n−1

[
n

m − 1

]
=
[

n + 1

m

]
, ∀ n ≥ m ≥ 0. (∗)

We need the following result which is no doubt well known. For all n, r ∈ N, let
Mn,r denote the matrix with entries
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Mn,r
s,m =

[
n + r − m

r − s

]
q(r−m)(n+s−m) : s,m ∈ {0, 1, 2, . . . , r}.

Lemma. One has det Mn,r
s,m = 1. Moreover the s = m = 0 cofactor of det Mn,r

s,m
equals 1 as well.

Proof. Since the assertion is trivial for r = 0, it is enough to show that det Mn,r
s,m =

det Mn,r−1
s,m .

The bottom row Mn,r
r,m of Mn,r is just q(r−m)(n+r−m). Starting at m = 0, multiply

the (m + 1)th column by q2(r−m)+n+1, and subtract it from the mth column. Then the
entries in the bottom row become zero except for the last. Moreover for s < r the s,m
entry becomes

q(r−m)(n+s−m)
([

n + r − m

r − s

]
− qr,s

[
n + r − m − 1

r − s

])

= q(r−m)(n+s−m)+r−s−(n+r−m)
[

n + r − 1− m

r − 1− m

]
, by (∗)

= Mn,r−1
s,m .

Since Mn,r
r,r = 1, the assertion results. The proof of the last part obtains by increasing

r, s,m by 1. ��

5. Demazure flags

5.1.

Fix μ ∈ P+, w ∈ W . By construction our first generator of uμ of V (μ) satisfies
uμ = G(bμ). The crystal basis B(μ) has precisely one element bwμ of weightwμ and
we set uwμ = G(bwμ). By 3.5(i) it may be alternatively described as in [J2, 6.3.9].

5.2.

Recall the definition of the A modules Eα,Fα : α ∈ π given in 3.7. Obviously E2
α =

Eα . Moreover they satisfy the Coxeter relations by virtue of the Verma relations on
the eα : α ∈ π . Thus Ey and similarly Fy is defined for all y ∈ W by taking a
reduced decomposition and the A module generated by the appropriate products. More
precisely, Ey = AEα1Eα2 · · · Eαn given a reduced decomposition y = sα1sα2 · · · sαn . If
y = 1, we set Ey = Fy = A.

5.3.

The Demazure module defined over Z[q, q−1] for the pair μ ∈ P+, w ∈ W
is by definition V Z

w (μ) := UZ
q (n

+)uwμ. It is clearly also T stable. We also set

Vw(μ) = Uq(n
+)uwμ. Obviously Uq(n

+)uwμ = K V Z
w (μ). The following result is

noted by Kashiwara in [K2, Remark 3.2.6] and also in [R, 3.5]. We give the proof for
completion.
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Proposition. For all μ ∈ P+, w ∈ W one has

(i) V Z
w (μ) = Fwuμ.

(ii) Fwuμ =⊕
b∈Bw(μ) AG(b).

Proof. (ii) results from 3.8 by induction on the length �(w) of w. Indeed it is enough
to recall that if w ∈ W \ {e}, then there exists α ∈ π such that �(sαw) = �(w) − 1.
Then Fwuμ = Fα(Fsαwuμ) and one applies 3.8 with N = Fsαwuμ and M = FαN to
obtain (ii).

Recall the Kac relation

e(r)α f (s)α =
min(r,s)∑

j=0

f (s− j )
α

[
tα; 2 j − r − s

j

]
e(r− j )
α

where [
tα; n

m

]
=

m∏
j=1

(
tαq(n− j+1)

α − t−1
α q−(n− j+1)

α

q j
α − q− j

α

)

with qα = q
1
2 (α,α). Evaluated on a weight vector of weight λ ∈ P+, this latter expres-

sion becomes [
α∨(λ)+ n

m

]
qα

and so is an element of A. Again [e(r)α , f (s)β ] = 0 if α �= β. From these relations

one deduces that Fwuμ is UZ
q (n

+) stable. From the definition of uwμ one checks that

uwμ ∈ Fwuμ. We conclude that Fwuμ ⊃ UZ
q (n

+)uwμ.
Finally take y ∈ W and α ∈ π such that sα y > y. Then eαuyλ = 0, so exactly

as above Fαuyλ is Eα stable and contains usα yλ and so Fαuyλ ⊃ Eαusα yλ. Similarly
Eαusα yλ is Fα stable and contains uyλ giving the opposite inclusion. Then by induction
on �(w) we obtain Fwuμ = Ew−1uwμ ⊂ UZ

q (n
+)uwμ, proving (i). ��

Remark 1. The Kac relation implies that EαFαv = FαEαv, for any weight vector v.

Remark 2. By contrast the inclusion Ẽbwμ ⊂ Bw(μ) can be strict. For example
take the adjoint module (of highest weight ρ) in type A2 with w = sαsβ of length
2. Then ẽα ẽβbwρ = 0, whilst eαeβG(bwρ) �= 0, also illustrating the triangularity
in 3.8.

5.4.

As usual, for a semisimple T module M with weight A-submodules which are finitely
generated and free, one may define the formal character of M through

ch M =
⊕
ν∈P

(rkA Mν)e
ν .
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Similarly for any crystal B one may define its formal character through

ch B =
⊕
ν∈P

(#Bν)e
ν.

From 5.3 we obtain
ch V Z

w (μ) = ch Bw(μ).

One may remark that using the string property of Bw(μ) the right-hand side is
given by the Demazure operator �w applied to eμ. Specialization at q = 1, gives
in particular Kashiwara’s proof of the Demazure character formula for the Demazure
module defined with respect to the Kostant Z form of U(n+), namely

ch V Z
w (μ) = �weμ.

5.5.

Define an order relation on P(π) through μ ≥ ν if μ − ν ∈ Nπ . Recall 4.3 and 4.6
and define a linear order on I so that wt bi < wt b j -⇒ j < i . We note that this
order relation does not depend on μ. With respect to this ordering we obtain the

Lemma. If V Z(ν j )νi+nα �= 0 : n ∈ N+, α ∈ π, then j < i .

Proof. Indeed the hypothesis implies that λ+wt bi +nα ≤ λ+wt b j and so wt bi <
wt b j forcing j < i . ��

5.6.

By the associativity of the tensor product, the condition that uλ ⊗ Vw(μ) admits a
Demazure flag reduces to the case λ fundamental. Although most of our analysis is
setup to avoid making this reduction, we shall soon meet some clear advantages in
so doing. Thus in 5.8–5.21 we shall assume α∨(λ) ≤ 1 for all α ∈ π . Aside from
ensuring that previous induction steps hold, this is not needed until 5.17.

5.7.

Recall 4.7 and set

X−i =
⊕

b∈B−i

AG(b),Y−i =
⊕
j<i

X−j , Xi = G(bλ)⊗ X−i ,Yi = G(bλ)⊗ Y−i .

It is also convenient to set C−
i =⋃

j<i B−j , Ĉ−
i =⋃

j<i B̂−j .

Let X̂−i , Ŷ
−
i , X̂i , Ŷi denote the corresponding A modules obtained by replacing

B−i by B̂−i . We shall eventually prove that Y−i is UZ
q (n

+) stable, although this is not

obvious for the moment. However Yi ⊂ G(bλ) ⊗ V Z
w (μ) and the latter is UZ

q (n
+)

stable by 5.3. Recall the definitions of bi , νi in 4.6.
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Lemma. For all n ∈ N+, α ∈ π one has

e(n)α (G(bλ)⊗ G(bi )) ⊂ Yi .

Proof. By the above remark the left-hand side is an A linear combination of the
G(bλ) ⊗ G(b) : b ∈ Bw(μ) having weight nα + νi . By 4.6(∗) it is enough to show
that b �∈ B−j , for j ≥ i . If not, then G(bλ) ⊗ G(b) ∈ V Z

y j
(ν j )nα+νi ⊂ V Z(ν j )nα+νi ,

which by 5.5 forces j < i . ��

5.8.

Fix w ∈ W . Recall the last paragraph of 4.6. Choose n so that the bλ ⊗ bi : i ∈
{1, 2, . . . , n} are the primitive elements of bλ ⊗ Vw(μ′) with μ′ ∈ P+ sufficiently
large.

Set
Zi =

∑
j<i

UZ
q (n

−)(G(bλ)⊗ G(b j ))

which is a submodule of V Z(λ)⊗ V Z(μ).
We shall prove inductively that Zi is UZ

q (g) stable and

Zi ∩ (G(bλ)⊗ V Z
w (μ)) = Yi .

Admitting this last result we obtain from 5.7 that

e(n)α (G(bλ)⊗ G(bi )) ⊂ Zi , ∀ n ∈ N, α ∈ π. (∗)

If bi �= 0 (recall 4.4) it follows that G(bλ) ⊗ G(bi ) is a (non-zero) highest weight
vector mod Zi and so Zi+1 is a UZ

q (g) module with quotient isomorphic to V Z(νi ).
We shall eventually show (5.25) that Z1 ⊂ Z2 ⊂ · · · ⊂ Zn+1 is a Weyl flag for
UZ

q (g)(G(bλ)⊗ V Z
w (μ)). Replacing V Z

w (μ) by V Z(μ) similarly gives a Weyl flag for

V Z(λ)⊗ V Z(μ).

5.9.

Our key result can be expressed as follows. Fix w ∈ W and n ∈ N+ as in 5.8.

Theorem (g simply-laced, α∨(λ) ≤ 1, ∀ α ∈ π). For all i ∈ {1, 2, . . . , n}, and all
μ ∈ P+, one has

(i) Fyi (G(bλ)⊗ G(bi ))+ Zi = Xi + Zi .
(ii) Zi+1 i s UZ

q (g) stable and Zi+1 ∩ (G(bλ)⊗ V Z
w (μ)) = Yi+1 .

Remark 1. Note that Xi ,Yi , Zi depend on μ; but the indexing and the bi , yi do not.

Remark 2. Notice that (ii) implies that Yi+1 is UZ
q (n

+) stable.

Remark 3. By the (i − 1)th induction step of (ii) one has Yi ⊂ Zi , so the first assertion
(in the i th induction step) of (ii) follows from 5.7 (see also 5.8(∗)). In view of 2.6 and
the definition (4.8) of B̂−i , this further implies Ŷi ⊂ Zi .
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5.10.

Let us first observe that 5.9 implies that G(bλ)⊗V Z
w (μ) admits a Demazure flag. Here

we can ignore those bi �∈ Bw(μ). Clearly Xi ∼= Yi+1/Yi which by the Remark 2 of 5.9
has a UZ

q (n
+) module structure. Since Yi ⊂ Zi , we obtain

(Fyi (G(bλ) ⊗ G(bi )) + Zi )/Zi

= (Xi + Yi + Zi )/Zi , by (i),

= (Yi+1 + Zi )/Zi ,

= Yi+1/Yi , by (ii).

Since G(bλ) ⊗ G(bi ) is a highest weight vector of highest weight νi , it follows from
5.3(i) that the left-hand side is an image of the Demazure module V Z

yi
(νi ). Yet by

5.3(ii) and the definition of xi we obtain ch Yi+1/Yi = ch V Z
yi
(νi ). Now by 5.3(ii)

V Z
yi
(νi ) is a direct sum of its A weight submodules which are free of finite rank,

whilst so is Yi+1/Yi by construction. Then equality of characters forces the surjec-
tion V Z

yi
(νi )→→Yi+1/Yi to be an isomorphism. Since Yn+1 = G(bλ) ⊗ V Z

w (μ) and
Y1 = 0, we obtain the

Corollary (g simply-laced, α∨(λ) ≤ 1, ∀ α ∈ π). For all λ,μ ∈ P+, w ∈
W,G(bλ)⊗ V Z

w (μ) admits an increasing and exhaustive UZ
q (n

+) filtration 0 = Y1 ⊂
Y2 ⊂ · · · Yn+1 with quotients Yi+1/Yi isomorphic to the Demazure module V Z

yi
(νi )

with generator G(bλ)⊗ G(bi ) mod Yi : i = 1, 2, . . . , n.

5.11.

The proof of 5.9 is by induction on i ∈ I ∪{0}, taking b0 = 0 in (i). This is carried out
in 5.11–5.20 below in which the hypotheses of 5.9 are assumed. The main idea is very
simple. We consider the submodule N of V Z

w (ν) with global basis given by B−j,i ∪C−
i

and show that it is UZ
q (n

+) stable. For this, the considerations of 3.7–3.8 apply with
α = α j . Had 3.9(∗∗) been true then 4.7 would allow us to apply 3.8 and 4.8 to carry
out the induction on j in the proposition below. This in turn gives the induction step i
of i +1 of 5.9(i). Because 3.9(∗∗) fails we are forced into a third induction step (Prop.
5.12) on chain lengths which we are only able to carry out when α∨(λ) ≤ 1 and g is
simply-laced. The case α∨(λ) = 0 is easy apart from a little sting in its tail from B−i
not having the proper λ-string property (see 4.8). For the case α∨(λ) = 1 we show
using notably the compatibility of the global basis with the action of UZ

q (n
−) that

the third induction step holds asymptotically (Lemma 5.17). Here we need to pass to
the field K and use a dimensionality estimate (Lemma 5.15). Finally we make use of
Lusztig’s positivity result and again the dimensionality estimate to deduce the general
case (5.18). Then we recover the assertion over A (5.19) using 5.13. We conclude the
induction process in 5.20.

Since Z1 = Y1 = 0 the assertion of 5.9 is trivial in this case. Assume now that 5.9
holds for i − 1 and establish it for i . Set yi = y and recall the notation of 4.6. Set
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X−j,i =
⊕

b∈B−j,i

AG(b), X j,i = G(bλ)⊗ X−j,i .

Proposition. For all j = {0, 1, 2 · · · , �(y)}, all μ ∈ P+ one has

(i)′ Fz j (G(bλ)⊗ G(bi))+ Zi = X j,i + Zi .

Proof (first step). The proof begins by decreasing induction on j . If j = �(y), then
z j = e and the assertions are trivial. Assume the result for j and set α = α j , z = z j .
Then Fz j−1 = FαFz . In what follows (ii) refers to 5.9(ii). Recall that we are assuming
5.9 holds for i − 1.

Set N = X−j,i + Y−i . By definition it admits a global basis. We claim that

UZ
q (n

+)N ⊂ N. (∗)

Take β ∈ π,m ∈ N. Then by 2.6

G(bλ)⊗ e(m)β N = e(m)β (G(bλ)⊗ N),

⊂ e(m)β (X j,i + Zi ), since Yi ⊂ Zi by (ii),

= e(m)β Fz j (G(bλ)⊗ G(bi))+ Zi , by (i)′,

⊂ Fz j (G(bλ)⊗ G(bi ))+ Zi , by 5.3 and 5.8, (∗)

⊂ G(bλ)⊗ N + Zi , by (i)′.

Yet N ⊂ V Z
w (μ) and the latter is UZ

q (n
+) stable by 5.3. Hence intersection with

G(bλ)⊗ V Z
w (μ) and use of (ii) gives the required claim.

In the next step we shall just use that EαN ⊂ N and eventually apply 3.5–3.12.
Observe that since Yi is UZ

q (n
+) stable we have UZ

q (n
+)Y−i ⊂ Y−i and so in particular

EαY−i ⊂ Y−i . By 3.7 we conclude that

both B−j,i ∪ C−
i and C−

i are Ẽα stable.

5.12.

In order to continue the proof of (i)′ of 5.11 we shall need a further induction para-
meter. Consider b ∈ B−j,i and recall that we are setting α = α j . Then f̃ n

α b ∈ B−j−1,i
and moreover the definition of α implies (see 4.6) that εα(b) ≥ α∨(λ). Then for the
inclusion ⊃ in (i)′ we must show that

G(bλ)⊗ G( f̃ n
α b) ∈ FαFz j (G(bλ)⊗ G(bi ))+ Zi , for all n ∈ N. (∗)

By 4.7 and since B−j,i ∪ C−
i is Ẽα stable, every α-chain S meeting B−j,i either lies

entirely in B−j,i∪C−
i or there is a single element b ∈ S∩B−j,i satisfying εα(b) = α∨(λ).
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Let T denote the union of all α-chains with the latter property and set B∼j,i = T ∩B−j,i .
One has

B∼j,i = {b ∈ B−j,i |εα(b) = α∨(λ), f̃ n
α b �∈ B−j,i , ∀ n ∈ N+}.

By the induction hypothesis it is enough to establish (∗) for b ∈ B∼j,i .
Now suppose b ∈ B∼j,i and let �(b) be the length of the α-string generated by b,

that is �(b) = ε(b) + ϕ(b). Our further (induction) hypothesis is that the required
assertion has been proved for all such b belonging to an α-string of strictly greater
length. However since we wish to vary μ (which also varies string length) it is more
convenient to view b as an element of B(∞) and set γ = −wt b. Then we only need to
consider b′ ∈ B−j,i satisfying εα(b′) ≥ α∨(λ) and take wt b′ ∈ −γ + N+α to recover
these longer strings in B−γ+Zα. Notice further that wt b′ + γ = wt b′ − wt b does
not depend on which B(μ) : μ ∈ P+ we consider b, b′ to belong (as long as they do
belong!). Recall (4.6, 4.7) that εα(b′) ≥ α∨(λ), for all b′ ∈ B−j,i . Then with b ∈ B∼j,i
fixed we set

B−j,i,b = {b′ ∈ B−j,i |wt b′ −wt b ∈ N+α},

X−j,i,b =
⊕

b′∈B−j,i,b

AG(b′), X j,i,b = G(bλ)⊗ X−j,i,b.

X̂−j,i,b =
⊕

b′∈F̃αB−j,i,b

AG(b′), X̂ j,i,b = G(bλ)⊗ X̂−j,i,b.

We show by induction on �(b) the

Proposition. For all b ∈ B∼j,i one has∑
n∈N

A(G(bλ)⊗ G( f̃ n
α b)) ⊂ Fα(G(bλ)⊗ G(b))+ Zi + FαX j,i,b.

5.13.

The proof of the above proposition is given in several steps in 5.13–5.18 below. First
we set up the general construction. For this we will need a little extra book-keeping
due to repetitions in the reduced decompositions of yi . Recall our fixed reduced de-
composition sα j+1 · · · sαk of z j . If α �∈ {α j+1, . . . , αk} set Z j,i = 0. Otherwise let
jα be the unique minimal element of { j + 1, . . . , k} such that α = α jα and set
Z j,i = Fz jα−1(G(bλ) ⊗ G(bi )). When jα is defined we can assume b �∈ B−jα,i since

by definition of jα every α-string in B−jα,i is already complete. Again we can assume

b �∈ F̃αB−j,i,b through the (last) induction hypothesis. When jα is not defined, we set

X jα,i = 0 and B−jα,i = ∅.

Let Nb be the smallest Eα stable submodule of V Z
w (μ) containing G(b) and ad-

mitting a global basis, so B(Nb) is defined and is Ẽα stable (3.7). Since G(b) ∈ N ,
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it follows from 5.11(∗) that Nb ⊂ N . Set Mb = FαNb . By 3.8, Mb admits a global
basis and B(Mb) = F̃αB(Nb). Furthermore B(Mb) is a union of α-strings and there is
just one Sb of minimal length �(b) and this contains b. Let Sb denote the union of the
remaining strings and set

MS =
⊕

b′∈Sb

AG(b′)

which by 3.5 is a UZ
q (sα) submodule of M . Set α∨(λ) = r . (We do not need to

suppose α∨(λ) ≤ 1 for the moment, except to ensure that earlier induction steps have
been completed.) Recall that b ∈ B∼j,i , so εα(b) = α∨(λ) = r .

Lemma. One has

G(bλ)⊗G( f̃ n
α b) ∈ f (n)α (G(bλ)⊗G(b))+

r∑
s=1

A f (n+s)
α (G(bλ)⊗G(ẽs

αb))+G(bλ)⊗MS ,

(∗)
for all n ∈ N.

Proof. Recall that by 2.6

�( fα) = x + y, where x = fα ⊗ 1, y = tα ⊗ fα.

From now on we omit the α-subscript on eα, fα, tα, qα, ẽα, f̃α . One checks that xy =
q2yx . Then by say [J2, 1.2.12(3)] one has

(x + y)(n) = 1

[n]!
q

n∑
m=0

[ n

m

]
q−1

q−(n−m)m xn−m ym

=
n∑

m=0

q−(n−m)m f (n−m)tm ⊗ f (m).

Setting cm = f (m)G(bλ)⊗G( f̃ n−mb), we obtain from 3.5 that mod G(bλ)⊗MS
one has

f (n+s)(G(bλ)⊗ G(ẽsb)) =
n+s∑
m=0

q−(n+s−m)m( f (m)tn+s−m G(bλ)⊗ f (n+s−m)G(ẽsb))

=
r∑

m=0

q(r−m)(n+s−m)
[

r + n − m

r − s

]
cm,

Thus the required assertion results from the two assertions in Lemma 4.9. ��

5.14.

For the moment assume α∨(λ) = 0. Of course this case should be rather easy and will
serve as a warm-up.



Modules with a Demazure flag 157

Lemma. Suppose α∨(λ) = 0 in 5.12. Then its conclusion holds.

Proof. Since B(Nb) ⊂ B(N) = B−j,i ∪ C−
i and α∨(λ) = 0, it follows from 4.8 and

the definition of B−j,i,b that Sb ⊂ F̃αB−j,i,b ∪ Ĉ−
i . Then by Remark 3 of 5.9, and 5.12

applied to b′ ∈ B−j,i,b ∩ B∼j,i we obtain

G(bλ)⊗ MS ⊂ FαX j,i,b + Ŷi ⊂ FαX j,i,b + Zi .

Yet by 3.5 we have ⊕
m∈N

AG( f̃ m
α b) ⊂ FαG(b)+ MS .

Since α∨(λ) = 0, we have fαG(bλ) = 0, so by 2.6,

Fα(G(bλ)⊗ G(b))+ Zi + FαX j,i,b ⊃ G(bλ)⊗ (FαG(b)+ MS )

⊃
⊕
n∈N

A(G(bλ)⊗ G( f̃ n
α b)),

as required. ��

5.15.

For the general case recall that eαG(b) ∈ Nb ⊂ N and suppose G(b′) occurs in its
decomposition. Then b′ ∈ B−j,i ∪ C−

i , by 5.11(∗) and 3.7. Moreover either b′ ∈ Sb or

b′ ∈ Sb. In the former case b′ = ẽαb �∈ B−j,i , because εα(ẽαb) = εα(b)− 1 < α∨(λ)
and so b′ ∈ C−

i . (Notice that this implies that all terms in the summation on the right
hand side of 5.13(∗) lie in Zi .) In the latter case εα(b′) > εα(b) − 1 = α∨(λ) − 1
and so either b ∈ C−

i or b ∈ B−j,i,b . Thus in both cases

b′ ∈ C−
i ∪ B−j,i,b.

Thus
eαG(b) ∈ Y−i + X−j,i,b. (∗)

Similarly (the whole of) Y−i + X−j,i,b is Eα stable. Hence C−
i ∪ B−j,i,b is Ẽα stable by

3.7. Moreover Yi + X j,i,b is Eα stable by 2.6. By the (i − 1) induction step of 5.9(ii)
one has Yi ⊂ Zi . Then through Remark 1 of 5.3 and the above,

Zi + FαX j,i,b is UZ
q (sα) stable.

Now let S ′b denote the union of all α-strings in Sb each of which lie entirely in

Ĉ−
i ∪F̃αB−j,i,b and set MS ′ =

⊕
b′∈S ′b AG(b′). One has G(bλ)⊗MS ′ ⊂ Zi+FαX j,i,b .

Unfortunately because 3.9(∗∗) can fail there is no reason to suppose that Sb = S ′b . For
example, see 5.21. Otherwise 5.12 would follow from 5.13.



158 A. Joseph

To overcome the above difficulty we first replace A by the field K = Q(q) here
and in 5.16–5.18 below. Here we do not have to care for divided powers.

Recall the definitions of jα, Z j,i , X jα,i given in 5.11 and 5.13.
We assume as part of the induction hypothesis that over K one has

(Zi + Z j,i + FαX j,i,b) ∩ (G(bλ)⊗ Vw(μ)) = Yi + X jα,i + X̂ j,i,b. (∗∗)

With respect to the right-hand side we recall that B−jα,i (when jα is defined) consists

of complete α-strings and those of length> �(b) already lie in F̃αB−j,i,b (by definition
of the latter).

Lemma. Consider Fα(G(bλ)⊗ G(b))mod(Zi + FαX j,i,b). Then either

dimK Fα(G(bλ)⊗ G(b)) = dimK

(∑
n∈N

K G(bλ)⊗ G( f̃ n
α b)

)
or the left-hand side is zero.

Proof. In view of 2.6

eα(G(bλ)⊗ G(b)) = G(bλ)⊗ eαG(b) ⊂ Zi + FαX j,i,b,

by (∗). Thus Fα(G(bλ)⊗G(b)) mod (Zi+FαX j,i,b) is Eα stable with G(bλ)⊗G(b)
its highest weight vector. We can assume that the latter is non-zero, otherwise the
second conclusion of the lemma holds. Definewt b when b is viewed as an element of
B(μ). Then Fα(G(bλ)⊗G(b)) mod Zi +FαX j,i,b has dimension equal to α∨(λ+
wt b)+ 1, by Uq(sl(2)) theory, specifically [J2, 4.3]. On the other hand ẽα(bλ⊗ b) =
ẽαbλ⊗b = 0 and f̃ n

α (bλ⊗b) = bλ⊗ f̃ n
α b, for all n ∈ N, since εα(b) = α∨(λ). Hence

card(bλ ⊗ F̃αb) = α∨(λ+wt b)+ 1

by crystal sl(2) theory, specifically 3.5(∗). Hence the assertion. ��
Remark 1. The equality of the lemma does not depend on which B(μ) : μ ∈ P+ we
consider b to belong (as long as it belongs!).

Remark 2. We show in 5.17(∗) that only the first assertion of the lemma can hold
(when α∨(λ) = 1 and under our hypotheses b ∈ B∼j,i , b �∈ B−jα,i , b �∈ F̃αB−j,i,b).

5.16.

Up until now μ ∈ P+ has been fixed. However we now take μ′ = μ + n*α , where
n+N avoids the finite set F in the conclusion of 3.13. Specifically we take n > Sup F ,
so (n + N) ∩ F = ∅. We claim that it will be enough to prove 5.12 for μ′ to obtain it
for μ. Indeed all computations involve just applying Fα to the G(bλ)⊗ Gμ(b). From
the form of the coproduct (2.6) we have

fα(G(bλ)⊗ Gμ(b)) = fαG(bλ)⊗ Gμ(b)+ qα
∨(λ)
α (G(bλ)⊗ fαGμ(b).

Since λ is fixed and the decomposition of fαGμ(b) does not depend on μ by 3.13(iv),
the required claim follows. This observation will be used in various forms throughout.
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5.17.

We now make use of the restriction α∨(λ) ≤ 1. (This could perhaps be avoided; but
the calculation is already complicated enough.) By 5.14 we can assume α∨(λ) = 1.
By 4.8 we can replace Ĉ−

i , as used in the definition of S ′b in 5.15 above, by C−
i .

Set
M ′

b = MS ′ +
∑

b′∈B(Mb)|εα(b′)=0

K G(b′).

We first show that

(Zi + FαX j,i,b) ∩ (G(bλ)⊗ Mb) = G(bλ)⊗ M ′
b. (∗)

Indeed by 5.12 applied to b′ ∈ B−j,i,b ∩ B∼j,i , the inclusion ⊃ follows by the definition
of S ′b and of M ′

b . On the other hand by 5.15(∗∗), the left-hand side belongs to G(bλ)⊗
(Mb ∩ (Y−i + X−jα,i + X̂−j,i,b)). Now since all terms in this latter intersection admit a

global basis, it must be spanned by the G(b′) : b′ ∈ B(Mb)∩ (C−
i ∪ B−jα,i ∪ F̃αB−j,i,b).

Since we have assumed b �∈ B−jα,i ∪ F̃αB−j,i,b and b ∈ B∼j,i (so that b �∈ C−
i ) it follows

that b cannot belong to this last intersection which is hence contained in B(M ′
b) \ {b}.

This gives the opposite inclusion in (∗).
Take μ′ as in 5.16 and set t = �(b)− 1, with b viewed as element of B(μ′) which

we recall contains B(μ). Then Sb consists of the t + 2 elements ẽαb ∈ C−
i , b ∈ B−j,i ,

f̃ s
αb ∈ B−j−1,i : s = 1, 2, . . . , t , whilst f̃ s

αb = 0, for s > t . When we replace μ′

by μ′ + *α , then Sb gains one further element namely f̃ t+1
α b and similarly all other

α-strings in B(Mb) increase in length by 1, by 3.13(iii).
Set μm = μ′ + m*α : m ∈ N. Fix t as above.

Lemma. For all m ∈ N+, s : 1 ≤ s ≤ m one has

G(bλ)⊗ Gμm ( f̃ t+s
α b) ∈ Fα(G(bλ)⊗ Gμm (b))+ Zi + FαX j,i,b.

Proof. Set
B(Nb)

+ = {b′ ∈ B(Nb)|ε(b′) = 0}.
It is clear that card B(Nb)

+ is the number of α-strings in B(Mb). Indeed B(Nb)
+ is

just the set of primitive elements (relative to α) of B(Mb). By 5.15(∗) B(Nb)
+ ⊂ C−

i ∪
B−j,i,b . Observe that α∨(wt b′ −wt b) is a positive even integer for all b′ ∈ B(Nb)

+.
Consider the K vector space J spanned by the

f
t+ 1

2α
∨(wt b′−wt b)+1

α (G(bλ)⊗ Gμm (b
′)) : b′ ∈ B(Nb)

+. (∗∗)

Since f 2
αG(bλ) = 0 each f s

α (G(bλ) ⊗ Gμm (b
′)) : b′ ∈ B(Nb)

+, s = t +
1
2α

∨(wt b′ − wt b) + 1, has just two terms, namely fαG(bλ) ⊗ f s−1
α Gμm (b

′) and
G(bλ) ⊗ f s

αGμm (b
′). Moding out by the second term one checks from 3.5 by in-

duction on length of strings that the resulting space J ′ has dimension exactly card
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B(Nb)
+. This means that J ′ contains the fαG(bλ) ⊗ Gμm (b

′) : b′ ∈ B(Mb) sat-
isfying wt b′ − wt b = −tα. Consequently all such terms can be eliminated from
f t+1
α (G(bλ)⊗Gμm (b)) by subtracting appropriate linear combinations of elements of

J . This is of course just linear algebra; but it is why we needed to replace A by the
field K . This leaves us with a term of the form

x :=
∑

b′∈B(Mb)|wt b′−wt b=−(t+1)α

cb′(G(bλ)⊗ Gμm (b
′)) : cb′ ∈ K ,

which lies in Fα(G(bλ)⊗G(b))+ Zi +FαX j,i,b . By the reasoning in 5.16 the cb′ do
not depend (up to an overall multiplicative scalar) on m ∈ N.

Now take m = 0. Then b′ := f̃ t+1
α b = 0, so that B(Mb) may be replaced by Sb

in the above sum. We claim that it may further be replaced by S ′b. Otherwise there
will be some shortest string S′b ⊂ Sb with S′b ∩ S ′b = ∅ for which cb′ : b′ ∈ S′b
is non-zero. Now consider the es

αx : s = 0, 1, 2, . . . , t + 2. These still belong to
Fα(G(bλ)⊗G(b))+ Zi +FαX j,i,b . Moreover notice that every G(b′′′) that occurs in
es
αx satisfies εα(b′′′) ≥ α∨(λ)+ t + 2− s.

Take b′′ ∈ Sb \ S′b. Suppose eαG(b′′) has a term G(b′′′) with b′′′ ∈ S′b . Then
b′′ ∈ S ′b by 3.5 and the hypothesis on S′b , so G(bλ)⊗G(b′′) ∈ Zi+FαX j,i,b . As noted
in 5.15 the latter is Eα stable. Then by 5.15(∗∗) and the remark following it, recalling
that b′′ belongs to S′b which has length > �(b), we obtain b′′′ ∈ C−

i ∪ F̃αB−j,i,b.
If such a term occurs in es

αx : s ≤ t + 2, then εα(b′′′) ≥ α∨(λ) by the previous
paragraph and so by 4.8 again S′b would belong to S ′b. This contradiction excludes
cancellations from strings in Sb strictly shorter than S′b (necessarily lying in S ′b). We
conclude from 3.5 that each es

αx : s = 0, 1, 2, . . . , t + 2 has a non-zero coefficient
of the unique term G(b′′) with b′′ ∈ S′b of weight (wt x) + sα. Consequently by (∗)
the es

αx : s = 0, 1, 2, . . . , t + 2 are linearly independent mod Zi + FαX j,i,b . They
span a space of dimension t + 3, whilst t + 2 is just right hand side in Lemma 5.15.
This contradicts its conclusion and proves our claim. The truth of the claim means that
x ∈ Zi + FαX j,i,b .

Now take m = 1. Since the cb′ do not depend on m, we conclude from the above
that

x = cb′(G(bλ)⊗ Gμm (b
′)) mod Zi + FαX j,i,b

with b′ = f̃ t+1
α b which is a non-zero element of B(μ1). Finally cb′ �= 0 by 5.13 and

3.5. This proves the lemma for the case m = 1. Taking m = 2, we must still have its
conclusion for s = 1. For s = 2 we apply the above reasoning to μ0 replaced by μ1.
This eventually gives the assertion for all m ∈ N+. ��
Remark. Let N ′ be the smallest Eα submodule containing MS ′ and admitting a global
basis. The above reasoning shows that S ′ ⊂ B(N ′) ⊂ S ′ ∪ B(Nb)

+. In particular,
B(N ′)wt b = (S ′)wt b.

5.18.

We now make use of the assumption that g is simply-laced so that 3.14 applies. Ap-
plying eα to the left-hand side occurring in Lemma 5.17 we conclude that
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G(bλ)⊗ es
αGμm ( f̃ t+m

α b) ∈ Fα(G(bλ)⊗ Gμm (b))+ Zi + FαX j,i,b

s = 0, 1, 2, . . . , t + m + 1. Moreover, since Sb is the shortest string in B(Mb) it fol-
lows by 3.5 and 5.17(∗) that these elements are all linearly independent mod Zi +
FαX j,i,b . Yet t + m + 2 is just the value of the right-hand side of 5.15. Since
B(M ′

b)wt b = (S ′b)wt b it follows by 5.17(∗) that

et+m
α Gμm ( f̃ t+m

α b) ∈ K ∗Gμm (b)+ MS ′ .

Then by 3.14 we obtain for all s : 0 ≤ s ≤ t + m that

es
αGμm ( f̃ t+m

α b) ∈ K ∗Gμm ( f̃ t+m−s
α b)+ MS ′ .

Since m ∈ N is arbitrary, we conclude that

G(bλ)⊗ Gμm ( f̃ s
αb) ∈ Fα(G(bλ)⊗ Gμm (b))+ Zi + FαX j,i,b (∗)

for all s ∈ N. Moreover by 5.16, this assertion is valid for μm replaced by μ. This
establishes the conclusion of 5.12 over K . ��

Finally we establish 5.15(∗∗) at the next induction level in our induction on α-
string length. Since we may restrict to weights of C−

i ∪ B−j,i , lying in some ξ + Zα, it
is appropriate to take c ∈ B∼j,i with �(c) = �(b)− 2.

Recall the definition of jα given in 5.15. Since X jα,i ⊂ G(bλ)⊗ Vw(μ), by defin-
ition it is immediate from the (i − 1)th induction step in 5.9(ii) and 5.11(i)′ that

(Zi + Z j,i) ∩ (G(bλ)⊗ Vw(μ)) = Yi + X jα,i .

Now consider b′ ∈ B−j,i,c and let S be the α-string it generates.

If S ⊂ C−
i , then Fα(G(bλ)⊗ G(b′′)) ⊂ FαYi ⊂ Zi , for all b′′ ∈ S.

If S �⊂ C−
i , but S ⊂ C−

i ∪ B−j,i , then sα must have occurred in our fixed reduced
decomposition of z j . Thus α ∈ {α j+1, · · · , αk} in the notation of 4.6, say α = α j2 .
Since α = α j , then α �= α j+1 and so j2 − 1 ≥ j + 1. Hence we obtain a reduced
decomposition z j = z′sαz j2 , where z′ = sα j+1 · · · sα j2−1 . Moreover we can assume

S �⊂ C−
i ∪ B−j2,i and S ⊂ C−

i ∪ B−j3,i , where z j3 = sαz j2 , that is j3 = j2 − 1. Observe
that j3 ≥ jα. By 5.11(i)′ applied to ( j3, i), we must have

Fα(G(bλ)⊗ G(b′′)) ⊂ Fα(Z j3,i + Zi ) = Z j3,i + Zi ⊂ Z j,i + Zi , for all b′′ ∈ S.

It remains to consider the case b′ ∈ B∼j,i ∩ B−j,i,c. Then 5.12 applied to b′, gives
through the equality of dimension in Lemma 5.15 (see Remark 2 of 5.15) that∑

n∈N

K (G(bλ)⊗ G( f̃ n
α b′)) = Fα(G(bλ)⊗ G(b′)) mod Zi + FαX j,i,b′ . (∗∗)

Now F̃αB−j,i ⊂ B−j−1,i , so the left-hand side also belongs to G(bλ) ⊗ Vw(μ). Now
�(b′) ≥ �(b), so 5.15(∗∗) applies to b′ through the induction hypothesis. Substitution
from (∗∗) extends the validity of 5.15(∗∗) to include the term Fα(G(bλ) ⊗ G(b′))
occurring in FαX j,i,c . Combined with the previous cases treated above establishes
5.15(∗∗) with respect to c, as required. ��
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Remark 1. Let N ′ be the Eα submodule of Mb defined in 5.17, Remark. Factoring
out by this submodule the conclusion of 5.18 would follow if one could show that
es
αG( f̃ t+m

α b) is proportional to G( f̃ t+m−s
α b), for all s = 1, 2, . . . , t + m − 1 (as a

consequence of this being true for s = t + m). For example this would follow from
the no-gap hypothesis of 3.9.

Remark 2. Even if we could refine 5.17 so that it applies to μ this would still not
obviate the need for 3.14 because f̃αb need not be zero in B(μ).

5.19.

To complete the proof of Proposition 5.12 we must show that 5.18(∗) is valid when
K is replaced by A. By 5.13 and 3.5 the left-hand side lies in Fα(G(bλ) ⊗ G(b)) +
Fα(G(bλ) ⊗ G(ẽαb)) mod (G(bλ) ⊗ MS ). Recalling that ẽαb ∈ C−

i , this must
also hold mod (G(bλ)⊗ MS ′ ) for otherwise, passing back to K , it would contradict
equality in 5.18(∗∗). ��

5.20.

We now complete the proof of (i)′. In view of 4.6 and 5.12 we obtain

X j−1,i + Zi ⊂ Fz j−1(G(bλ)⊗ G(bi ))+ Zi .

Now by (ii) of Theorem 5.9 at the (i−1)th induction step, the sum in the left-hand side
is direct and so X j−1,i embeds in (Fz j−1(G(bλ)⊗ G(bi))+ Zi )/Zi . The latter is just

an image of V Z
z j−1
(νi ) which has formal character ch Bz j−1(νi ) by 5.4. Yet Bz j−1(νi ) ∼=

bλ ⊗ F̃z j−1bi and the right-hand side is just the formal character of X j−1,i . Since in

addition X j−1,i has a basis formed from a subset of the basis of V Z(λ)⊗ V Z(μ), this
forces equality throughout and proves (i)′. ��

We now complete the proof (of the i th step) of Theorem 5.9. Part (i) results from
5.11(i)′ taking j = 0. Since Yi ⊂ Zi by the induction hypothesis, part (i) then gives

Yi+1 ⊂ Fyi (G(bλ)⊗ G(bi ))+ Zi ⊂ Zi+1

which gives the inclusion ⊃ in (ii).
Recall 5.3 and consider ⊂ in (ii). Since Yi+1 is the free A module with basis a

subset of the basis of the free A module G(bλ) ⊗ V Z
w (μ) it suffices to show that the

inclusion

K Yi+1 ⊂ G(bλ)⊗ Vw(μ) ∩
i∑

j=1

Uq(n
−)(G(bλ)⊗ G(b j )) =: N̂ (∗)

is an equality. This will be proved by showing that these K T modules have the same
formal character. Here ch M will always be with respect to the ring over which the
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weight submodules of M are defined (and free). We write ch M ≥ ch M ′ if rk Mν ≥
rk M ′

ν , for all ν ∈ P .
Set

N = G(bλ)⊗ Vw(μ) ∩
i∑

j=1

A+F̃(G(bλ)⊗ G(b j )).

Then N̂ ⊃ K N ⊃ ⋃
s∈Nq−s N ⊃ N̂ . Again N is an A+ submodule of the free A+

module M := L(λ) ⊗ L(μ). Since the latter has finite rank A+ weight submodules
and A+ is a principal ideal domain it follows that N is a free A+ module.

Consider S =∑i
j=1 A+F̃(G(bλ)⊗G(b j )). It is a free A+ module by the argument

above. Set B = ⋃i
j=1F̃(bλ ⊗ b j ) and B ′ = ⋃i

j=1bλ ⊗ F̃y j b j . Recall (4.4, 4.6) that

B =∐i
j=1 B(ν j ) and B ′ = B ∩ bλ ⊗ Bw(μ).

By 5.8, G(bλ)⊗G(bi ) mod Zi is a highest weight vector of weight νi generating
Zi+1/Zi . Hence ch S = ch Zi+1 ≤ ∑i

j=1ch V (ν j ) = ch B . On the other hand by
[J2, 5.1.12(i)] the image of S in M/q M is QB . For each b1 ⊗ b2 ∈ Bν we may view
G(b1) ∈ L(λ), G(b2) ∈ L(μ) as representatives of b1, b2. By the above there exists
c(b1, b2) ∈ q Mν such that G(b1)⊗G(b2)+ c(b1, b2) ∈ Sν . Since rk Sν <∞ and A+
is a local ring, these elements form an A+ basis of Sν . Consequently N is contained
in the A+ module generated by the subset of those elements for which b1 ⊗ b2 ∈ B ′.
Hence ch N̂ = ch N ≤ ch B ′ = ch Yi+1 = ch Zi+1, as required. ��

5.21.

We give an example when S ′b � Sb. Take π = {α, β} of type A2 and set λ = *α+*b.
Take w = sαsβ . Then in the convention of 3.9, taking μ sufficiently large, we
have B(λ)� ∩ Bw(μ) = {1, f̃α, f̃β, f̃β f̃α, f̃β f̃ 2

α }. Recall (3.9) that G( f̃β f̃ n
α ) =

fβ f (n)α , ∀ n ∈ N. Take b = f̃β f̃ 2
α . Since eαG( f̃β f̃ 2

α ) = G( f̃β f̃α) and eαG( f̃β f̃α) =
G( f̃β), it follows that S ′b = ∅, whilst Sb = { f̃ n

α f̃β : n ∈ N}. In this case one may

check that the conclusion of 5.12 directly using the Serre relation f (2)α fβ − fα fβ fα +
fβ f (2)α = 0.

Notice that f̃α f̃β ∈ B(λ)� ∩ B(μ). One can hope to rework the proof of 5.9 by
including the primitive element bλ ⊗ f̃α f̃β in the induction step. This would force
S ′b = Sb in the above; but whether this equality can be made to hold in general is
another question.

5.22.

We now relax the hypothesis that α∨(λ) ≤ 1 : α ∈ π . Recall the definitions
in 4.6(∗), 4.7 and 5.7. By 5.6 and 5.10 and induction on the order relation ≺, we
obtain the

Theorem (g is simply-laced). For all λ,μ ∈ P+, w ∈ W, one has a UZ
q (n

+) filtra-

tion 0 = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn+1 = G(bλ) ⊗ V Z
w (μ), with Yi+1/Yi isomorphic to the

Demazure module V Z
yi
(νi ) with generator G(bλ)⊗ G(bi) mod Yi : i = 1, 2, . . . , n.
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5.23.

In the above theorem we would like to make the stronger assertion that Yi+1/Yi iden-
tifies with

G(bλ)⊗
⊕

b∈B−i (μ)

AG(b).

This is exactly what results from 5.9 and 5.10 in the case when α∨(λ) ≤ 1, ∀α ∈ π . To
deduce this result by the induction argument used in 5.22, we just need to show that
the image of G(bλ) ⊗ G(b) : b ∈ B−i (μ) in Zi+1/Zi ∼= V Z(νi ) is an element of
the canonical basis of V Z(νi ). This is an interesting question in its own right and
would give an elegant interpretation of the purely combinatorial fact expressed by
F̃yi (bλ ⊗ bi ) = bλ ⊗ F̃yi bi = bλ ⊗ B−i (μ). An indication that this holds is obtained
from 5.13. For example if we take b = bi , it follows from 5.8(∗) that all terms in the
right-hand side of 5.13(∗) except the first lie in Zi . Hence

G(bλ)⊗ G( f̃ n
α bi ) = f (n)α (G(bλ)⊗ G(bi)) mod Zi .

Yet by 5.8(∗) again, the image of G(bλ)⊗G(bi ) in Zi+1/Zi ∼= V Z(νi ) can be taken to
be G(bνi ). Then f (n)α (G(bλ) ⊗ G(bi )) has image G( f̃ n

α bνi ), as required. This proves
in particular that our question has a positive answer for sl(2). Notice also that by
induction on ≺, it is enough to resolve this question for λ fundamental to obtain the
general case. Finally by 2.6 the presence of G(bλ) does not affect the action of the
e(n)α , that is e(n)α (G(bλ) ⊗ G(b)) = G(bλ) ⊗ e(n)α G(b). In some sense this is dual to
3.12(∗).

A further advantage of the more precise result we seek is that the resulting De-
mazure flag on G(bλ) ⊗ V Z

w (μ) would only depend on how we lift the partial order
on I induced by the order relation ≥ on P to a linear order (see 5.5). In this sense it
would be canonical, improving thereby the Mathieu–Polo flags described implicitly by
van der Kallen’s criterion (see 1.1). In any case the multiplicity of the quotients being
independent of the chosen flag was already immediate from the linear independence
of the Demazure characters�yi e

νi .

5.24. Lemma. For all λ,μ ∈ P+ one has

UZ
q (n

−)(G(bλ)⊗ V Z(μ)) = V Z(λ)⊗ V Z(μ).

Proof. Recall that UZ
q (n

−)G(bλ) = V Z(λ). Then the assertion follows from 2.6 by
induction on weight submodules of the first factor with respect to the order relation ≤
on weights. ��

5.25.

Recall 5.8 and set V Z∞(μ) = V Z(μ), ∀μ ∈ P+.

Theorem (g simply-laced). For all λ,μ ∈ P+, w ∈ {W,∞} one has an increasing
exhaustive filtration Z1 ⊂ Z2 ⊂ · · · , of UZ

q (g)(G(bλ)⊗V Z
w (μ)) by UZ

q modules with

Zi+1/Zi ∼= V Z(νi ), for all i ∈ I .
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Proof. By 5.22, G(bλ)⊗G(bi ) mod Zi is a highest weight vector and so Zi+1/Zi is
an image of V Z(νi ). Now each weight submodule of V Z(νi ) has an A basis (provided
by the global or canonical basis) and so is free of finite rank. Since A is a domain any
proper quotient of V Z(νi ), even as just an A module, must admit at least one weight
submodule of strictly smaller rank. Since rank is additive on exact sequences, any
Zi+1/Zi being a proper image of V Z(νi ) would imply that UZ

q (n
−)(G(bλ)⊗ V Z(μ))

has a weight submodule of strictly smaller rank than that given by the sum of the ranks
of the corresponding weight submodules of the V Z(νi ). Now the bi are just those
elements of B(λ)⊗ B(μ) for which bλ ⊗ bi is primitive so (see 4.3 and 4.4)

B(λ)⊗ B(μ) =
∐
i∈I

B(νi ),

which implies
ch(V Z(λ)⊗ V Z(μ)) =

∑
i∈I

ch V Z(νi ).

Consequently this latter sum is just the rank (which is again finite) of the corresponding
weight submodule of V Z(λ)⊗ V Z(μ). Combined with 5.24 this gives a contradiction
proving the theorem. ��

6. The PRV theorem

6.1.

Take λ,μ ∈ P+, w ∈ W . Parthasarathy–Ranga Rao–Varadarajan conjectured that
V (λ)⊗V (μ) admits an irreducible component with extreme weight λ+wμ (that is its
highest weight ν was the unique dominant element in W (λ+wμ)). Set Wλ = Stabwλ.
Obviously ν does not depend on the choice of w in its double coset WλwWμ and one
would not expect the irreducible component to depend on this choice either. Kostant
then refined this conjecture to determine V (ν) canonically from λ,μ,w by taking
it to be the presumed unique component of this highest weight in U(g)(uλ ⊗ uwμ).
This refinement was proved independently by Kumar [Ku1] and Mathieu [M2]. Later
Littelmann gave a crystal basis argument [L2] which combined with Kashiwara’s
globalization technique provided a further proof [J3]. It was a crucial element in the
main result of [J3].

6.2.

The proofs of Mathieu and Kumar were based on the annihilator formula mentioned
in 1.1 together with Frobenius splitting. That which derives from Littelmann though
short became a little messy especially if multiplicities had to be taken into account.
Here we note that the result is a very natural consequence of our main theorem and
indeed holds in this more general simply-laced Kac–Moody setting. Indeed we show



166 A. Joseph

that the required V (ν) is generated from the “radical” of G(bλ) ⊗ V Z
w (μ). More pre-

cisely our Demazure flag of the latter admits V Z
w (ν) as its top component. Since the

corresponding primitive elements bw ∈ Bλ ⊗ Bw(μ) are distinct (6.3) for distinct
double cosets so are the resulting V (ν).

6.3.

By 5.3 it follows that

UZ
q (n

+)(G(bλ)⊗ G(bwμ)) = G(bλ)⊗ V Z
w (μ).

By 5.22, there exists a Demazure flag

0 = Y1 � Y2 � · · · � Yn+1 = G(bλ)⊗ V Z
w (μ).

Consequently G(bλ) ⊗ G(bwμ) admits a non-zero image in Yn+1/Yn ∼= V Z
yn
(νn) and

is a generator for the latter. In particular, ynνn = λ + wμ. Moreover by 4.5 there
exists a unique primitive element bw ∈ bλ ⊗ Bw(μ) generating the copy of Byn(νn)
corresponding to Vyn(νn). This is just bw = bλ ⊗ bn in our previous indexation. More
precisely bn is the (necessarily unique) element of B(λ)� ∩ Bw(μ) of minimal weight
with respect to ≤. (Thus we obtain bn automatically whilst Littelmann had to do
some fancy footwork [L2]). It remains to show that

Lemma. bw
′ = bw ⇐⇒ w′ ∈ WλwWμ.

Proof. Recall that there exist y, y ′ ∈ W such that bλ ⊗ bwμ ∈ F̃ybw, bλ ⊗ bw′ ∈
F̃y′bw

′
. Moreover bw, bw

′
are primitive elements of their respective highest weight

crystals in the disjoint union 4.3(∗). Thus

bw
′ = bw ⇐⇒ Ẽ(bλ ⊗ bw′μ) ∩ Ẽ(bλ ⊗ bwμ) �= ∅.

Now ϕα(bλ) = α∨(λ), whilst εα(w′μ) = max{0,−α∨(w′μ)}. Consequently by the
tensor product rule (4.3) we can replace w (resp. w′) by its unique minimal length
element w0 (resp. w′0) in its Wλ \ W/Wμ double coset. This gives ⇐- of the lemma.
For the opposite implication it suffices to show that w0 is the unique minimal element
(for the Bruhat order) such that bw ∈ bλ ⊗ Bw0(μ). This was shown in [J3, 2.7(ii)]
using the Littelmann path model. Indeed bw is given by a Bruhat sequence [J2, 6.4.2]
which strictly ends in w0, that is to say the LS partition of wt bw corresponding to
bw [J2, 6.4.2] has a non-zero coefficient of w0(wt bw). (Regrettably we could not find
anything easier. A more detailed version of the proof of this last assertion can be found
in [J5, Sect. 17]. ��

Index of Notation

Symbols occurring frequently are given below at the place they are first defined.
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1.4. g.
2.2. q, K , ψ, A, A+, A−, [n]q, [n]!

q,
[ n

m

]
q , Uq(g), ei , fi , ti , π, P, P+, α∨, qi ,

e(n)i , f (n)i , UZ
q (n

+), UZ
q (n

−), E, F , T, UZ
q (g), Uq(sα), UZ

q (sα).

2.3. V (λ), f̃α, ẽα, Ẽ, F̃ .
2.4. uλ, L(λ), B(λ).
2.5. V Z(λ), LZ(λ), L(λ)−, LZ(λ)−, L(∞), L(∞)−, E, Gλ.
2.6. �.
3.5. εα, ϕα, �α(b), I r (B), Wr (B), Bξ+Zα, Vξ+Zα, V Z

ξ+Zα .

3.6. Eα, Fα, Ẽα, F̃α.
3.7. Ws(V Z

ξ+Zα), B(N).
3.10. &.
3.11. ρ, *α .
4.1. wt .
4.2. bλ.
4.4. �.
4.5. W, Ẽw, F̃w.
4.6. I, yi , νi , bi , z j .
4.7. B−i , B−j,i .

4.8. B̂−i .
5.1. bwμ.
5.2. Ew, Fw .
5.3. V Z

w (μ).
5.4. ch M, ch B, �w .
5.5. ≥.
5.7. X−i , Y−i , Xi , Yi , C−

i , Ĉ−
i , X̂−i , Ŷ−i , X̂i , Ŷi .

5.8. Zi .
5.11. X−j,i , X j,i .

5.12. B∼j,i , B−j,i,b, X−j,i,b, X j,i,b, X̂−j,i,b, X̂ j,i,b .
5.13. Nb, Mb, Sb, MS .
5.15. S ′b, MS ′ , jα, Z j,i .
5.17. μ′m, B(Nb)

+.
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0. Introduction

This paper is based on ideas of the authors M.K. and P.S. announced in [KS5] and
developed in a preliminary manuscript of M.K.

The idea of microlocalization goes back to M. Sato [S] in 1969 who invented
the functor of microlocalization of sheaves (along a smooth submanifold of a real
manifold) in order to analyze the singularities of hyperfunction solutions of systems of
differential equations in the cotangent bundle. This microlocalization procedure then
allowed Sato, Kashiwara and Kawai [SKK] to define functorially the sheaf of rings of
microdifferential operators on the cotangent bundle T ∗X of a complex manifold X , a
sheaf whose direct image is the sheaf of differential operators on X .

Then in the 1980s, M.K. and P.S. (See [KS2], [KS3]) developed a microlocal the-
ory of sheaves on a C∞-manifold X , based on the notion of microsupport (a conic
involutive closed subset of the cotangent bundle to X) and introduced in particular the
functor μhom. This is roughly speaking a functor that associates to a pair of sheaves
on X the sheaf of microlocal morphisms between them.

On the other hand, the Riemann–Hilbert problem, solved by M.K., tells us that
there is a one-to-one correspondence between the regular holonomic modules over the
ring of differential operators and the perverse sheaves. The notion of regular holo-
nomic modules over the ring of differential operators can be easily microlocalized
to the notion of regular holonomic modules over the ring of microdifferential opera-
tors and it is a natural question to ask if there is a natural notion of microlocalization
of perverse sheaves, or, more generally a functor μ of microlocalization for sheaves,
the microsupport of a sheaf being the support of its microlocalization and the functor
μhom being the internal hom applied to the microlocalization. This is indeed what we
do in this paper.

As an application of the new functor μ, the author I.W. [W] has recently con-
structed the stack of microlocal perverse sheaves on the cotangent bundle, after M.K.
[K] had constructed the stack of microdifferential modules.

The paper consists of two parts. The first is the technical heart of the paper. We
define kernels on a C∞-manifold X , attached to the data of a closed submanifold Z
and a 1-form σ vanishing on Z . Then we study its functorial properties. These kernels
can be seen as “general” microlocalization kernels, although their only role in this
paper is to provide us with the tools for the proofs of the functorial properties of μ.

In the second part we introduce the functor μ, which is the integral transform
with respect to the kernel KT ∗X on T ∗X × T ∗X associated with the fundamental
1-form. We discuss the functorial properties of μ, deduced from the corresponding
properties of the kernels studied in the first part. We then show how some classical mi-
crolocal properties can be generalized to ind-sheaves. We give a comparison theorem
between the micro-support of ind-sheaves F and the support of its microlocalization
μ(F).

As an application, we prove that, on a complex manifold X , μhom induces a well-
defined functor

μhom( • ,OX ) : Db(CX )
op −→ Db(EX ),

where EX is the ring of microdifferential operators.
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1. Microlocal kernels

Throughout this paper, K denotes a field.

1.1. Review on Ind-sheaves on manifolds

In this section we shall give a short overview on the theory of ind-sheaves of [KS1].
Let X be a locally compact topological space with finite cohomological dimension,

Mod(KX ) the category of sheaves of K-vector spaces on X , and Modc(KX ) its full
subcategory of sheaves with compact supports.

We denote by I(KX ) the category of ind-sheaves, which is by definition the cate-
gory of ind-objects of Modc(KX ). Then I(KX ) is an abelian category, and its bounded
derived category is denoted by Db(I(KX )).

There is a fully faithful exact functor

ιX : Mod(KX ) −→ I(KX ) given by F 	→ “lim−→”

U⊂⊂X

FU ,

where the direct limit on the right is taken over the family of relatively compact open
subsets U of X . In the sequel, we will regard Mod(KX ) as a full subcategory of I(KX ).

The functor ιX admits an exact left adjoint functor

αX : I(KX ) −→ Mod(KX ), “lim−→”

i∈I

Fi 	→ lim−→
i∈I

Fi .

Since ιX is fully faithful, we have αX ◦ ιX � IdMod(KX ). The functor αX admits an
exact fully faithful left adjoint

βX : Mod(KX ) −→ I(KX ).

Since βX is fully faithful, we get αX ◦ βX � IdMod(KX ). The functor βX is less easy to
define than αX and ιX . However, for a locally closed subset S ⊂ X ,

K̃S :=βX (KS)

is described as follows. Let Z be a closed subset; then we have

K̃Z � “lim−→”

Z⊂W

KW ,

where W runs through the open subsets containing Z . If U ⊂ X is an open subset,
then

K̃U � “lim−→”

V⊂⊂U

KV ,

where V runs through the family of relatively compact open subsets of U . If S ⊂ X is
locally closed, then we can write S = Z ∩U where U is open and Z is closed, and

K̃S � K̃U ⊗ K̃W � “lim−→”

V⊂⊂U, Z⊂W

KV∩W .
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Therefore KV∩W → KS induces a morphism K̃S −→ KS which is not an isomorphism
in general.

Note that if Z is closed and S ⊂ Z is a locally closed subset, then

KS ⊗ K̃Z � KS .

The machinery of Grothendieck’s six operations is also applied to this context. We
have the functors:

f −1, f ! : Db(I(KY ))→ Db(I(KX )),

R f∗, R f!! : Db(I(KX ))→ Db(I(KY )),

RIHom : Db(I(KX ))
op × Db(I(KX ))→ D+(I(KX )),

⊗ : Db(I(KX ))×Db(I(KX ))→ Db(I(KX )),

(here, f : X → Y is a continuous map) and we have the stack-theoretical hom

RHom : Db(I(KX ))
op ×Db(I(KX ))→ D+(KX ).

Note that the functor RIHom sends Db(KX )
op×Db(I(KX )) to Db(I(KX )) and RHom

sends Db(KX )
op × Db(I(KX )) to Db(KX ).

The inverse image functor f −1 is a left adjoint of the direct image functor R f∗.
The functor of direct image with proper support R f!! has a right adjoint functor f !.
Most formulas of sheaves have their counterpart in the theory of ind-sheaves, but some
formulas are new. We shall not repeat them here and refer to [KS1]. As an example we
state the following propositions:

Proposition 1.1.1. Consider a cartesian square

X ′
f ′ ��

g′
��

Y ′

g

��
X

f
�� Y.

Then we have canonical isomorphisms

R f ′!!g
′−1 � g−1 R f!!, R f ′∗g′! � g! R f∗, R f ′!!g

′! � g! R f!!.

Note that the last isomorphism has no counterpart in sheaf theory.

Proposition 1.1.2. For a morphism f : X → Y and for K ∈ Db(KY ), F ∈ Db(I(KX )),
we have

R f!! RIHom( f −1 K ,F) � RIHom(K ,R f!!F) in Db(I(KY )),

R f! RHom( f −1 K ,F) � RHom(K ,R f!!F) in Db(KY ).

Remark 1.1.3. Let Z be a closed subset of X and let i : Z → X , j : X \ Z → Z be the
inclusion morphisms. Then for F, F′ ∈ Db(I(KX )), we have
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R j!! j−1F � K̃X\Z ⊗F, Ri∗i−1F � KZ ⊗F,

R j∗ j−1F � RIHom(K̃X\Z ,F), Ri∗i !F � RIHom(KZ ,F),

R j∗ j−1 RHom(F′,F) � RHom(K̃X\Z ⊗F′,F).

(1.1)

Hence there are not distinguished triangles

R j!! j−1F → F → Ri∗i−1F
+1−−→ nor Ri∗i !F → F → R j∗ j−1F

+1−−→,
and instead there are distinguished triangles

R j!! j−1F → F → F ⊗ K̃Z
+1−−→ and

RIHom(K̃Z ,F)→ F → R j∗ j−1F
+1−−→ .

(1.2)

The functor β satisfies the following properties:

βX (F)⊗ βX (G) � βX (F ⊗ G) for F , G ∈ Db(KX ). (1.3 a)

For f : X → Y and G ∈ Db(KY ) and G ∈ Db(I(KX )), we have

f −1βY (G) � βX ( f −1G) and f !(G⊗ βY (G)) � f !G⊗ βX ( f −1G). (1.3 b)

For F ∈ Db(I(KX )) and K , K ′ ∈ Db(KX ), we have

RIHom(K ,F)⊗ βX (K ′) � RIHom
(
K ,F ⊗ βX (K ′)

)
in Db(I(KX )),

RHom(K ,F) ⊗ K ′ � RHom
(
K ,F ⊗ βX (K ′)

)
in Db(KX ).

(1.3 c)

In general β does not commute with direct image.

Lemma 1.1.4. Consider a closed embedding i : Z ↪→ X and F ∈ Db(KZ ). Then we
have an isomorphism

βX (Ri∗F)⊗KZ � Ri∗βZ (F).

Proof. We have

βX (Ri∗F)⊗KZ � Ri∗i−1βX (Ri∗F) � Ri∗βZ (i
−1 Ri∗F) � Ri∗βZ (F). ��

The following fact will be used frequently in the paper:

A morphism u : F → G in Db(I(KX )) is an isomorphism if and
only if F ⊗ K̃x → G⊗ K̃x is an isomorphism for all x ∈ X .

(1.4)

We list the commutativity of various functors. Here, “◦” means that the functors
commute, and “×” that they do not.
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ι α β lim−→
⊗ ◦ ◦ ◦ ◦

f −1 ◦ ◦ ◦ ◦
R f∗ ◦ ◦ × ×
R f!! × ◦ × ◦

f ! ◦ × × ◦
lim−→ × ◦ ◦

In the table, lim−→ means filtrant inductive limits. For example, the commutativity of
R f!! and lim−→ should be understood as in Proposition 2.3.2 (i) below.

Notation 1.1.5. For a continuous map f : X → Y , we denote by ωX/Y the topological
dualizing sheaf f ! KY , and ωX = ωX/{pt}. If X and Y are manifolds, ωX/Y � ωX ⊗
f −1ω⊗−1

Y .

For three manifolds Xi (i = 1, 2, 3) and for kernels K ∈ Db(I(KX1×X2)) and
K ′ ∈ Db(I(KX2×X3)), we define their convolution by

K ◦
X2

K ′ = Rp13!!(p
−1
12 K ⊗ p−1

23 K ′), (1.5)

where pi j is the projection from X1 × X2 × X3 to Xi × X j . We sometimes denote it
simply by K ◦ K ′ when there is no risk of confusion.

This product of kernels satisfies the associative law:

(K ◦ K ′) ◦ K ′′ � K ◦ (K ′ ◦ K ′′)

for K ∈ Db(I(KX1×X2)), K ′ ∈ Db(I(KX2×X3)) and K ′′ ∈ Db(I(KX3×X4)). By taking
{pt} as X3 in (1.5), we obtain the integral transform functor:

K◦ : Db(I(KX2))→ Db(I(KX1)).

The following lemma is frequently used in Section 2.

Lemma 1.1.6. Let fk : Xk → Yk (k=1, 2, 3) be morphisms and Ki j ∈Db(I(KXi×X j ))

and Li j ∈ Db(I(KYi×Y j )).

(i)
(
( f1 × idY2)

−1L12
) ◦

Y2

(
(idY2 × f3)

−1L23
) � ( f1 × f3)

−1(L12 ◦
Y2

L23) in

Db(I(KX1×X3)),
(ii)

(
( f1 × idX2)!!K12

) ◦
Y2

(
(idX2 × f3)!!K23

) � ( f1 × f3)!!(K12 ◦
X2

K23) in

Db(I(KY1×Y3)),
(iii)

(
(idY1 × f2)

−1L12
) ◦

X2
K23 � L12 ◦

Y2
R( f2 × idX3)!!K23 in Db(I(KY1×X3)).
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1.2. Kernels attached to 1-forms

Let us denote by πX : T ∗X → X the cotangent bundle to X . For a closed submanifold
Z of X , we denote by T ∗Z X its conormal bundle. In particular, T ∗X X is the zero section
of T ∗X . To a differentiable map f : X → Y , we associate the diagram

T ∗X T ∗Y×
Y

X
fπ

��
fd

�� T ∗Y.

Notation 1.2.1. For a vector bundle p : E → X, we denote by Ė the space E with
the zero section removed, and by ṗ the projection Ė → X. For example, we use the
notations π̇X : Ṫ ∗X → X, Ṫ ∗Z X, and so on.

Definition 1.2.2. A kernel data is a triple (X, Z , σ ), where X is a manifold, Z is a
closed submanifold of X and σ is a section of T ∗X ×

X
Z → Z .

We set T (σ ) = σ−1(T ∗Z X) and Z (σ ) = σ−1(T ∗X X). We have therefore

Z (σ ) ⊂ T (σ ) ⊂ Z .

Each kernel data (X, Z , σ ) defines a closed cone Pσ in TZ X ×
X

T (σ ) by

Pσ = {(x, v) ∈ TZ X; x ∈ T (σ ) and 〈v, σ (x)〉 � 0} .
Consider the deformation of the normal bundle to Z in X which will be denoted by X̃ Z

or simply by X̃ (see e.g., [KS2]). We have the following commutative diagram where
the squares marked by � are cartesian:

Here - is the open subset defined by - = {t > 0} for the natural smooth map
t : X̃ Z → R. The normal bundle TZ X is identified with the inverse image of 0 ∈ R by
t . With a local coordinate system (x, z) = (x1, . . . , xn, z1, . . . , zm) of X such that Z
is given by x = 0, X̃ Z has the coordinates (t, x̃, z) = (t, x̃1, . . . , x̃n, z1, . . . , zm) and
p is given by p(t, x̃, z) = (t x̃, z).

Recall that the normal cone CZ (A) of a subset A of X is a closed cone of TZ X
defined by

CZ (A) = TZ X ∩ p−1(A) ∩-. (1.7)

Note that p is not smooth but the relative dualizing complex ωX̃/X is isomorphic

to KX̃ [1]. In the sequel we will usually regard Pσ as a closed subset of X̃ Z by Pσ ⊂
TZ X ⊂ X̃ Z .
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Definition 1.2.3. (i) Let (X, Z , σ ) be a kernel data. We define the kernel Lσ (Z , X) ∈
Db(I(KX )) by

Lσ (Z , X) = R p!!(K-⊗ K̃Pσ )⊗ βX (Ri∗ω⊗−1
Z/X ).

(ii) A morphism of kernel data f : (X1, Z1, σ1) → (X2, Z2, σ2) is a morphism of
manifolds f : X1 → X2 satisfying
(i) f (Z1) ⊂ Z2,

(ii) σ1 = f ∗σ2.

Remark 1.2.4. Note that Lσ (Z , X) is supported on T (σ ), i.e.,

Lσ (Z , X)
∼−−→ Lσ (Z , X)⊗ K̃T(σ ) .

This kernel behaves differently on Z (σ ) and outside. We have

Lσ (Z , X)⊗ K̃Z(σ ) � KZ ⊗ K̃Z(σ )

and Lσ (Z , X)|X\Z(σ ) is concentrated in degree− codim Z (see Corollary 1.2.13).
In order to prove these facts, we shall start by the following vanishing lemma.

Lemma 1.2.5. (i) Rp!!(K-⊗ K̃TZ X ) � 0 and Rp!!(K-⊗ K̃TZ X ) � Ri∗ωZ/X .
(ii) Regarding Z as the zero section of TZ X ⊂ X̃ Z , we have

R p!!
(
K-⊗ K̃Z

) � K̃Z .

(iii)
(
Rp!!(KTZ X ⊗ K̃Pσ )

)⊗ K̃Z\Z(σ ) � 0.

Proof. (i) Since the problem is local, we may assume that X is affine endowed with
a system of global coordinates (x, z) such that Z = {x = 0}, X̃ Z = (t, x̃, z) and
p(t, x̃, z) = (t x̃, z). We then have for all integer j

R j p!!
(
K-⊗ K̃TZ X

) � R j p!!

⎛⎝ “lim−→”

R>0, ε>0

K{0<t�ε, |̃x|<R}

⎞⎠
� “lim−→”

R>0, ε>0

R j p! K{0<t�ε, |̃x|<R} � 0,

which implies the first statement. The last one follows from the distinguished tri-
angle

R p!!(K-⊗ K̃TZ X ) −→ R p!!(K-⊗ K̃TZ X ) −→ Rp!!(KTZ X )
+1−−→

and Rp!!(KTZ X ) � Ri∗ωZ/X .
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(ii) We have a chain of morphisms

Rp!!
(
K-⊗ K̃Z

)→ R p!!
(
K-⊗KZ

) � Rp!! KZ � KZ ,

which allows us to prove the isomorphism locally on X . With the coordinate
system as above, we get for all integer j

R j p!!
(
K-⊗ K̃Z

) � R j p!!

⎛⎝“lim−→”

ε>0

K{0�t�ε,|̃x|�ε}

⎞⎠ � “lim−→”

ε>0

R j p! K{0�t�ε,|̃x|�ε}

�

⎧⎪⎨⎪⎩
“lim−→”

ε>0

K{|x |�ε2} � K̃Z if j = 0,

0 if j �= 0.

(iii) For z0 ∈ T (σ ) \ Z (σ ), we have(
R p!!(KTZ X ⊗ K̃Pσ )

)⊗ K̃z0 � Rp!!
(
KTZ X ⊗ K̃Pσ∩p−1(z0)

)
.

Set σ(z0) = 〈ξ0, dx〉 �= 0. Then we have

KTZ X ⊗ K̃Pσ∩p−1(z0)
� “lim−→”

R>0,ε>0

K{t=0, −ε≤〈ξ0,x̃〉, |x̃|<R},

and for all integer j(
R j p!!(KTZ X ⊗ K̃Pσ )

)⊗ K̃z0 � K̃z0

⊗ “lim−→”

R>0, ε>0

R j p!
(
K{t=0, −ε≤〈ξ0,x̃〉, |x̃|<R}

) � 0. ��

Lemma 1.2.6. There is a natural morphism

Lσ (Z , X) −→ K̃T(σ )⊗βX

(
Ri∗ω⊗−1

Z/X

)
.

Proof. Regard T (σ ) as a subset of X̃ Z by T (σ ) ⊂ Z ⊂ TZ X ⊂ X̃ Z . Then we get a
natural morphism

Lσ (Z , X)→ Rp!!
(
K-⊗ K̃T(σ )

)⊗ βX

(
Ri∗ω⊗−1

Z/X

)
.

Hence the desired morphism is obtained by Lemma 1.2.5 (ii). ��
The following lemma provides a useful distinguished triangle to study some prop-

erties of the kernel Lσ (Z , X).

Lemma 1.2.7. There is a natural distinguished triangle

Rp!!
(
K-⊗ K̃Pσ

)⊗ βX
(
Ri∗ω⊗−1

Z/X

) −→ Lσ (Z , X)

−→ Rp!!
(
KTZ X ⊗ K̃Pσ

)⊗ Ri∗ω⊗−1
Z/X

+1−−→ .
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Proof. It is enough to apply the triangulated functor Rp!!
( · ⊗ K̃Pσ

)⊗ βX (Ri∗ω⊗−1
Z/X )

to the distinguished triangle

K- −→ K- −→ KT ∗Z X
+1−−→, (1.8)

and to use KZ ⊗βX (Ri∗ω⊗−1
Z/X ) � Ri∗ω⊗−1

Z/X . ��

Recall that Z (σ ) is the set of zeroes of σ , i.e., Z (σ ) = σ−1(T ∗X X) ⊂ Z .

Proposition 1.2.8. We have

Lσ (Z , X)⊗ K̃Z(σ ) � KZ ⊗ K̃Z(σ ) .

In particular, if σ = 0, then Lσ (Z , X) � KZ .

Proof. By the definition of Z (σ ), the cone Pσ ×
Z

Z (σ ) coincides with TZ X ×
Z

Z (σ ).

Hence we have K-⊗ K̃Pσ ⊗p−1 K̃Z(σ ) � K-⊗p−1 K̃Z(σ ), which implies that

Lσ (Z , X)⊗ K̃Z(σ ) � Rp!!(K-⊗ K̃TZ X )⊗ K̃Z(σ ) ⊗ βX (Ri∗ω⊗−1
Z/X ).

Hence the result follows from Lemma 1.2.5 (i). ��
Proposition 1.2.9. Let (X, Z , σ ) be a kernel data, and set X0 = X \ Z (σ ) and Z0 =
Z \ Z (σ ). Then there is a natural distinguished triangle

R j!!Lσ0 (Z0, X0) −→ Lσ (Z , X) −→ KZ ⊗ K̃Z(σ )
+1−−→,

where σ0 is the restriction of σ to Z0 and j denotes the open immersion X0 ↪→ X.

Proof. We have the distinguished triangle

Lσ (Z , X)⊗ K̃X0 −→ Lσ (Z , X) −→ Lσ (Z , X)⊗ K̃Z(σ )
+1−−→ .

The first term is isomorphic to R j!!Lσ0 (Z0, X0), and the last term is isomorphic to
KZ ⊗ K̃Z(σ ) by Lemma 1.2.8. ��
Corollary 1.2.10. There are natural morphisms

KZ −→ Lσ (Z , X) −→ K̃T(σ )⊗βX

(
Ri∗ω⊗−1

Z/X

)
.

Proof. The first arrow is constructed as an immediate consequence of the preceding
proposition and the obvious inclusion Pσ ⊂ P0 = TZ X . The last arrow follows from
Lemma 1.2.6. ��
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Proposition 1.2.11. Assume the section σ never vanishes. Then

Lσ (Z , X) � Rp!!
(
K-⊗ K̃Pσ

)⊗ βX
(

Ri∗ω⊗−1
Z/X

)
� “lim−→”

U

KU ⊗βX
(

Ri∗ω⊗−1
Z/X

)⊗ K̃T(σ ),

where the inductive limit is taken over the family of open subsets U of X such that

Pσ ∩ CZ (U) ⊂ Z .

Here, Z is regarded as the zero section of TZ X.

Remark that the set of such U ’s is a filtrant ordered set by the inclusion order.

Proof. By Lemma 1.2.7 and Lemma 1.2.5 (iii), we have

Lσ (Z , X) � R p!!
(
K-⊗ K̃Pσ

)⊗ βX

(
Ri∗ω⊗−1

Z/X

)
.

Hence it is enough to show that

Rp!!
(
K-⊗ K̃Pσ

) � “lim−→”

U

KU ⊗ K̃T(σ ) .

Since we have Z ∩ U = ∅ on a neighborhood of T (σ ), p−1(U) ∩ - = p−1(U) ∩-
is a closed subset of - and we get the following chain of natural morphisms :

p−1 KU � Kp−1(U ) −→ Kp−1(U )∩- −→ K- −→ K-⊗ K̃Pσ .

Since p−1(U) ∩- ∩ Pσ = CZ (U) ∩ Pσ is contained in the zero section of TZ X ,
Supp(p−1 KU ⊗ K̃Pσ ) is proper over Z . Hence we have a chain of morphisms

KU −→ p∗(p−1 KU ⊗ K̃Pσ ) � p!!(p
−1 KU ⊗ K̃Pσ ) −→ p!!

(
K-⊗ K̃Pσ

)
,

which provides a natural morphism

“lim−→”

U

KU −→ R p!!
(
K-⊗ K̃Pσ

)
.

By tensoring we get the morphism

“lim−→”

U

KU ⊗ K̃T(σ ) −→ Rp!!
(
K-⊗ K̃Pσ

)
. (1.9)

We shall now show that this morphism is an isomorphism. It is enough to show that
(1.9) is an isomorphism after tensoring by K̃x0 for any x0 ∈ T (σ ). Let us take local
coordinate system (x, z) of X such that Z = {x = 0}. We may assume x0 = (0, 0),
and we set σ(x0) = 〈ξ0, dx〉. We then have
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Rp!!
(
K-⊗ K̃Pσ

)⊗ K̃x0 � R p!!
(
K-⊗ K̃Pσ ⊗ K̃p−1(x0)

)
� R p!!

(
K-⊗ K̃Pσ∩p−1(x0)

)
,

and

K-⊗ K̃Pσ∩p−1(x0)
� “lim−→”

V⊂⊂X̃ Z , Pσ∩p−1(x0)⊂V ′
K-∩V∩V ′

� K̃x0 ⊗ “lim−→”

R>0, ε1>0, ε2>0

KAR,ε1 ,ε2
,

where we have set

AR,ε1,ε2 =
{
(t, x̃, z) ∈ X̃ Z ; 0 < t � ε1, −ε2 � 〈ξ0, x̃〉, |̃x | < R

}
.

Hence for all integer j , we have

R j p!!
(
K-⊗ K̃Pσ

)⊗ K̃x0 � K̃x0 ⊗ “lim−→”

R>0, ε1>0, ε2>0

R j p! KAR,ε1 ,ε2
.

We have

p−1((x, z)) � {t ∈ R; 0 < t ≤ ε1, −ε2 ≤ 〈ξ0, t−1x〉, |t−1x | < R}

� {t ∈ R; R−1|x | < t ≤ ε1, −ε−1
2 〈ξ0, x〉 ≤ t},

and hence
R p!(KAR,ε1 ,ε2

) � K{
R−1|x |<−ε−1

2 〈x, ξ0〉�ε1

} .
Taking the limit we can use a cofinality argument to get

Rp!!
(
K-⊗ K̃Pσ

)⊗ K̃x0 � K̃x0 ⊗ “lim−→”

ε>0

K{(x,z)∈X ; −〈ξ0,x〉>ε|x |} .

Then the theorem follows from the following easy sublemma. ��
Sublemma 1.2.12. (i) Let U = {(x, z) ∈ X; ε|x | < −〈ξ0, x〉}. Then Pσ ∩ CZ (U) ⊂

Z.
(ii) Let U ⊂ X be an open subset such that Pσ ∩ CZ (U) ⊂ Z. Then there exist ε > 0

and δ > 0 such that

U ∩ {|(x, z)| � δ} ⊂ {(x, z) ∈ X; −〈x, ξ0〉 > ε|x |}.
Corollary 1.2.13. Let (X, Z , σ ) be a kernel data. Assume that X is endowed with a
local coordinate system (x, z) such that Z = {x = 0} and σ is a nowhere vanishing
section. Then, writing σ(z) = 〈σ1(z), dx〉 + 〈σ2(z), dz〉, we have

Lσ (Z , X) � K̃{x=0, σ2(z)=0} ⊗ “lim−→”

ε>0

K{
(x,z);−〈σ1(z),x〉>ε|x |

} [codim Z ].
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Remark 1.2.14. (i) We have

αX
(
Lσ (Z , X)

) � KZ(σ ) .

(ii) Let (X, Z , σ1) and (X, Z , σ2) be kernel data, and let W be a closed subset of Z
such that σ1(x) = σ2(x) for all x ∈ W . Since Pσ1 ∩ τ−1

Z W = Pσ2 ∩ τ−1
Z W , we

have
Lσ1(X, Z)⊗ K̃W � Lσ2(X, Z)⊗ K̃W .

1.3. Functorial Properties

In this subsection, we will investigate the behavior of microlocal kernels Lσ (Z , X)
under inverse and proper direct images, and under convolution.

Let f : (X1, Z1, σ1) → (X2, Z2, σ2) be morphism of kernel data. We have the
diagrams of manifolds

T ∗Z1
X1 T ∗Z2

X2 ×
Z2

Z1
fd�� fπ �� T ∗Z2

X2

T (σ1)

σ1

��

T (σ2) ×
Z2

Z1

��

��� ��� T (σ2)

σ2

��

and

X̃1
f̃ ��

p1

��

X̃2
t ��

p2

��

R

X1
f �� X2

where X̃k = X̃k Zk (k = 1, 2). We denote by ik : Zk ↪→ Xk the inclusion map. We
have

Pσ1 ×
X2

T (σ2) = f̃ −1(Pσ2). (1.10)

Proposition 1.3.1. Let f : (X1, Z1, σ1)→ (X2, Z2, σ2) be a morphism of kernel data.
Assume that Z1 = f −1(Z2) and the morphism f : X1 → X2 is clean with respect to
Z2 (i.e., (TZ1 X1)x → (TZ2 X2) f (x) is injective for any x ∈ Z1). Then there exists a
natural morphism

f −1Lσ2(Z2, X2) −→ Lσ1(Z1, X1)⊗ βX1(Ri1∗ωZ1/Z2)⊗ ω⊗−1
X1/X2

⊗ K̃ f −1T(σ2)
.

Proof. Since f is clean, X̃1 → X̃2 ×
X2

X1 is a closed embedding and there is a mor-

phism of functors f −1 Rp2!! → Rp1!! f̃ −1 which induces a natural morphism

f −1Lσ2(Z2, X2) � f −1 Rp2!!

(
K-2

⊗ K̃Pσ2

)
⊗ f −1βX2(Ri2∗ω⊗−1

Z2/X2
)

→ R p1!! f̃ −1
(
K-2

⊗ K̃Pσ2

)
⊗ f −1βX2(Ri2∗ω⊗−1

Z2/X2
) (1.11)

� R p1!!

(
K-1

⊗ K̃ f̃ −1(Pσ2 )

)
⊗ βX1( f −1 Ri2∗ω⊗−1

Z2/X2
).
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By (1.10), we have a morphism

f −1Lσ2(Z2, X2) −→ Rp1!!

(
K-1

⊗ K̃Pσ1

)
⊗ f −1(K̃T(σ2))

⊗ βX1( f −1 Ri2∗ω⊗−1
Z2/X2

). (1.12)

Hence, to get the desired morphism, it is enough to remark that

f −1 Ri2∗ω⊗−1
Z2/X2

� Ri1∗
(
ω⊗−1

Z1/X1
⊗ ωZ1/Z2 ⊗ i−1

1 ω⊗−1
X1/X2

)
� Ri1∗ω⊗−1

Z1/X1
⊗ Ri1∗ωZ1/Z2 ⊗ ω⊗−1

X1/X2
. ��

By adjunction, we obtain:

Corollary 1.3.2. Under the hypothesis of the Proposition 1.3.1, we have a natural
morphism

Lσ2(Z2, X2) −→ R f∗
(
Lσ1(Z1, X1)⊗ βX1(Ri1∗ωZ1/Z2)⊗ ω⊗−1

X1/X2
⊗ f −1 K̃T(σ2)

)
.

Proposition 1.3.3. Let f : (X1, Z1, σ1)→ (X2, Z2, σ2) be a morphism of kernel data.
Assume that f −1(Z2) = Z1 and f is transversal to Z2. Then we have a natural
isomorphism

f −1Lσ2(Z2, X2)
∼−−→ Lσ1(Z1, X1).

Proof. Indeed if f is transversal, X̃1 → X̃2 ×
X2

X1 is an isomorphism and Z1 ∩
f −1(T (σ2)) = T (σ1), which implies that the morphism (1.11) as well as (1.12) is
an isomorphism. We have furthermore ωZ1/Z2 � i−1

1 ωX1/X2 . ��
Proposition 1.3.4. Let f : (X1, Z1, σ1)→ (X2, Z2, σ2) be a morphism of kernel data.
Then there is a natural morphism

R f!!

(
Lσ1(Z1, X1)⊗ βX1(Ri1∗ωZ1/Z2)

)
−→ Lσ2(Z2, X2).

Proof. The left-hand side is isomorphic to

R f!!

(
Rp1!!

(
K-1

⊗ K̃Pσ1

)⊗ βX1(Ri1∗ω⊗−1
Z1/X1

)⊗ βX1(Ri1∗ωZ1/Z2)
)

� R f!!

(
R p1!!

(
K-1

⊗ K̃Pσ1

)⊗ ωX1/X2 ⊗ βX1( f −1 Ri2∗ω⊗−1
Z2/X2

)
)

� R f!! Rp1!!

((
K-1

⊗ K̃Pσ1

)⊗p−1
1 ωX1/X2

)
⊗ βX2(Ri2∗ω⊗−1

Z2/X2
)

� R p2!! R f̃!!

(
f̃ −1 K-2

⊗K̃Pσ1
⊗ p−1

1 ωX1/X2

)
⊗ βX2(Ri2∗ω⊗−1

Z2/X2
)

� R p2!!

(
K-2

⊗R f̃!!
(
K̃Pσ1

⊗ωX̃1/X̃2

))⊗ βX2(Ri2∗ω⊗−1
Z2/X2

).

(1.13)



Microlocalization of ind-sheaves 185

Hence, it is enough to construct a morphism

R f̃!!

(
K̃Pσ1

⊗ ωX̃1/X̃2

)
−→ K̃Pσ2

. (1.14)

By adjunction it is enough to construct a morphism K̃Pσ1
⊗ ωX̃1/X̃2

−→ f̃ ! K̃Pσ2
.

However by (1.10), we have

K̃Pσ1
⊗ ωX̃1/X̃2

−→ K̃Pσ1 ×X2
T(σ2) ⊗ ωX̃1/X̃2

� f̃ −1 K̃Pσ2
⊗ωX̃1/X̃2

� f̃ ! K̃Pσ2
,

where the last isomorphism follows from (1.3 a). ��
Corollary 1.3.5. Let f : (X1, Z1, σ1) → (X2, Z2, σ2) be a morphism, and assume
that f is smooth and induces an isomorphism from Z1 to Z2. Then we have a natural
isomorphism

R f!!Lσ1(Z1, X1)
∼−−→ Lσ2(Z2, X2).

Proof. By the assumption, we have T (σ2) ×
Z2

Z1 = T (σ1). By (1.13), it is enough to

prove that (1.14) is an isomorphism. Since Pσ1 = f̃ −1(Pσ2), we have

R f̃!!

(
K̃Pσ1

⊗ωX̃1/X̃2

)
� K̃Pσ2

⊗R f̃!!

(
K̃TZ1 X1 ⊗ωX̃1/X̃2

)
.

Hence we have reduced the problem to

R f̃!!

(
K̃TZ1 X1 ⊗ωX̃1/X̃2

)
� K̃TZ2 X2 .

Since f is smooth, we can take local coordinate systems (x, z) on X2 and (x, y, z) on
X1 such that Z2 = {x = 0}, Z1 = {x = 0, y = 0} and f is given by the projection.
We then take a coordinate system (t, x̃, z) on X̃2 and (t, x̃, ỹ, z) on X̃1. The associated
morphism f̃ : X̃1 → X̃2 is given by (t, x̃, ỹ, z)→ (t, x̃, z). Then we can check easily
R f̃!!(K̃TZ1 X1 ⊗ωX̃1/X̃2

) � R f̃!!(K̃{t=0} ⊗ωX̃1/X̃2
) � K̃{t=0}. ��

Lemma 1.3.6. Let (X, Z , σ ) be a kernel data on X, and let f : X → Y be a smooth
morphism which induces a closed embedding Z ↪→ Y . Assume that σ(x) /∈ T ∗f (x)Y
for any x ∈ T (σ ). Then we have

R f!!Lσ (Z , X) � 0.

Proof. For any x0 ∈ T (σ ), take a local coordinate system (y, z) = (y1, . . . , yn,
z1, . . . , zm) of Y in a neighborhood of f (x0) such that f (Z) is given by y = 0.
Then we can take a local coordinate system (t, x, y, z) of X in a neighborhood of x0
such that Z is given by {t = 0, x = 0, y = 0}, and σ(x0) = −dt (x0). Then we have

Lσ (Z , X)⊗ K̃x0 �
⎛⎝ “lim−→”

δ>0, ε>0

KFδ,ε

⎞⎠⊗ βX (Ri∗ω⊗−1
Z/X )⊗ K̃x0,
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where
Fδ,ε = {(t, x, y, z); δ ≥ t > ε(|x | + |y|)}.

Hence,
(
R f!!(Lσ (Z , X)

)⊗ K̃ f (x0) � R f!!(Lσ (Z , X)⊗ K̃x0) � 0 follows from

R j f!(KFδ,ε ) � 0 for any j ∈ Z. ��
Proposition 1.3.7. Let f : (X1, Z1, σ1)→ (X2, Z2, σ2) be a morphism of kernel data,
and assume that f is a closed immersion which induces an isomorphism Z1

∼−−→ Z2.
Then there is a natural isomorphism

Lσ1(Z1, X1)
∼−−→ f !Lσ2(Z2, X2).

Proof. Since f is a closed immersion, we get the commutative diagrams

Z1
� � i1 ��

∼
��

�

X1� �

f

��

X̃1� �

f̃
��

p1��

�

-1� �
j1��

� �

��
Z2

� �

i2
�� X2 X̃2p2

�� -2� �

j2
��

and

TZ1 X1
� � s1 ��

TZ f

��
�

X̃1

f̃
��

TZ2 X2
� �

s2
�� X̃2 ,

in which the squares marked by � are cartesian. Recall the adjunction isomorphism
f ! R f!! � id. Hence it is enough to construct an isomorphism

R f!!Lσ1(Z1, X2)
∼−−→ R f!! f !Lσ2(Z2, X2).

Next recall that

R f!! f !Lσ2(Z2, X2) � RIHom
(
KX1 ,Lσ2(Z2, X2)

)
.

Therefore we may write:

R f!! f !Lσ2(Z2, X2) � RIHom

(
KX1,R p2!!

(
K-2

⊗βX̃2

(
KPσ2

⊗p−1
2 Ri2∗ω⊗−1

Z2/X2

)))
� Rp2!! RIHom

(
p2
−1 KX1,K-2

⊗βX̃2

(
KPσ2

⊗p−1
2 Ri2∗ω⊗−1

Z2/X2

))
� Rp2!!

(
RIHom

(
p−1

2 KX1 ,K-2

)⊗ βX̃2
(KPσ2

⊗p−1
2 Ri2∗ω⊗−1

Z2/X2
)
)
.

On the other hand, Pσ1 = f̃ −1 Pσ2 implies that

R f!!Lσ1(Z1, X1) � R f!! Rp1!!

(
K-1

⊗βX̃1

(
KPσ1

⊗p−1
1 Ri1∗ω⊗−1

Z1/X1

))
� R p2!! R f̃!!

(
K f̃ −1(-2)

⊗βX̃1

(
f̃ −1 KPσ1

⊗ f̃ −1 p−1
2 Rs2∗ω⊗−1

Z2/X2
⊗ p1

−1ωX1/X2

))
� R p2!! R f̃!!

(
f̃ −1

(
K-2

⊗βX̃2

(
KPσ2

⊗p−1
2 Ri2∗ω⊗−1

Z2/X2

))⊗ ωX̃1/X̃2

)
� R p2!!

(
K-2

⊗βX̃2

(
KPσ2

⊗p−1
2 Ri2∗ω⊗−1

Z2/X2

)⊗ R f̃!!ωX̃1/X̃2

)
,
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and it is enough to show that

RIHom(p−1
2 KX1,K-2

) � K-2
⊗R f̃!!ωX̃1/X̃2

.

However we have the natural chain of isomorphisms

RIHom(p−1
2 KX1 ,K-2

) � RIHom(p−1
2 KX1,R j2∗ K-2)

� R j2∗ RIHom( j2
−1 p−1

2 KX1,K-2)

� R j2∗ RIHom(K-1 ,K-2).

On the other hand, we have, as an object of Db(I(K-2)),

RIHom(K-1,K-2) � j−1
2 R f̃∗ωX̃1/X̃2

,

and hence

RIHom(p−1
2 KX1,K-2

) � R j2∗ j−1
2 R f̃∗ωX̃1/X̃2

� R j2∗ K-1 ⊗R f̃∗ωX̃1/X̃2
� K-1

⊗R f̃!!ωX̃1/X̃2
. ��

Proposition 1.3.8. Let (X, Z1, σ1) and (X, Z2, σ2) be kernel data on the same base
manifold X. Assume that Z1, Z2 are transversal submanifolds. Then there is a natural
morphism

Lσ1(Z1, X)⊗ Lσ2(Z2, X) −→ Lσ1+σ2 (Z1 ∩ Z2, X) ⊗ K̃T(σ1)∩T(σ2) .

Proof. Set Z = Z1 ∩ Z2, σ = σ1 + σ2 and N = T (σ1) ∩ T (σ2) ⊂ T (σ ) ⊂ Z .

(i) Assume first that σ1(x) and σ2(x) are linearly independent vectors of T ∗X for
every x ∈ Z . Then we have

Lσk (Zk, X) ⊗ K̃N � “lim−→”

Uk

KUk ⊗ K̃N ⊗βX

(
Rik∗ω⊗−1

Zk/X

)
,

where the inductive limits is taken over the family of open subsets Uk of X such
that CZk (Uk) ∩ Pσk ⊂ Zk . For such open subsets U1, U2, we have

CZ (U1 ∩U2) ∩
(
Pσ ×

Z
N
) ⊂ Z ,

since Pσ ×
Z

N ⊂ Pσ1 ∪ Pσ2 . Hence we get a natural morphism

Lσ1 (Z1, X)⊗ Lσ2 (Z2, X)⊗ K̃N

�
(

“lim−→”

U1

KU1 ⊗β
(

Ri1∗ω⊗−1
Z1/X

))

⊗
(

“lim−→”

U2

KU2 ⊗β
(

Ri2∗ω⊗−1
Z2/X

))
⊗ K̃N

−→
(

“lim−→”

U

KU

)
⊗ β

(
Ri1∗ω⊗−1

Z1/X

)
⊗ β

(
Ri2∗ω⊗−1

Z2/X

)
⊗ K̃N ,
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where U ranges over the family of open subsets of X such that CZ (U)∩(
Pσ ×

Z
N
) ⊂ Z .

Since Z1 and Z2 are transversal submanifolds of X , we have

ω⊗−1
Z/X �

(
ω⊗−1

Z1/X |Z
)⊗ (

ω⊗−1
Z2/X |Z

)
.

Hence we obtain

“lim−→”

U

KU ⊗βX

(
Ri1∗ω⊗−1

Z1/X

)
⊗ βX

(
Ri2∗ω⊗−1

Z2/X

)
⊗ K̃N � Lσ (Z , X)⊗ K̃N ,

which provides the desired morphism.
(ii) Consider the general case. We set An

X = X×Rn for n = 1, 2. We use coordinates
(x, t1, t2) on A2

X . We regard the manifold A1
Zk

as a submanifold of A2
X by

A1
Zk

:={(x, t1, t2) ; x ∈ Zk, tk = 0} ,

and A1
X as the submanifold {t2 = 0} of A2

X . We identify Z with

A1
Z1
∩ A1

Z2
= {(x, t1, t2) ; x ∈ Z , t1 = t2 = 0} .

Thus we obtain the following commutative diagrams

X � � i �� A1
X

� � i ′ ��

tr

A2
X

Z � � �� Z1
∼ ��

��

��

Z1
� � ��

��

��

A1
Z1

��
j1

��

and

X � � i ��

tr

A1
X

� � i ′ �� A2
X

Z � � �� Z2
� � ��

��

��

A1
Z2

∼ ��
��

��

A1
Z2

��
j2

��

where j1(z1, t) = (z1, 0, t) and j2(z2, t) = (z2, t, 0). Note that the squares
marked with tr are transversal. Define the sections

σ̃1 = σ1 + dt1 : A1
Z1
−→ T ∗A2

X ,

σ̃2 = σ2 + dt2 : A1
Z2
−→ T ∗A2

X ,

σ̃ = σ1 + σ2 + dt1 + dt2 : Z −→ T ∗A2
X .

Clearly σ̃1 and σ̃2 are linearly independent at each point, and the result in the first
part gives a morphism

Lσ̃1

(
A1

Z1
,A2

X

)
⊗ Lσ̃2

(
A1

Z2
,A2

X

)
−→ Lσ̃ (Z ,A2

X )⊗ K̃N .

We then deduce morphisms with the help of Propositions 1.3.3 and 1.3.7
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Lσ1 (Z1, X) ⊗ Lσ2 (Z2, X) � i !Lσ̃1

(
Z1,A1

X

)
⊗ i−1Lσ2

(
A1

Z2
,A1

X

)
→ i !

(
Lσ̃1

(
Z1,A1

X

)
⊗ Lσ2

(
A1

Z2
,A1

X

))
� i !

(
i ′−1Lσ̃1

(
A1

Z1
,A2

X

)
⊗ i ′!Lσ̃2

(
A1

Z2
,A2

X

))
→ i !i ′!

(
Lσ̃1

(
A1

Z1
,A2

X

)
⊗ Lσ̃2

(
A1

Z2
,A2

X

))
→ i !i ′!

(
Lσ̃ (Z ,A2

X )⊗ K̃N
) � Lσ (Z , X)⊗ K̃N ,

which completes the proof. ��
Remark 1.3.9. Although we do not give proofs, the following two facts hold.

(i) If σ1 and σ2 are linearly independent, the two morphisms constructed in the parts
(i) and (ii) of the proof of Proposition 1.3.8 coincide.

(ii) If (X, Z3, σ3) is a third kernel data such that (Z1, Z2), (Z1, Z3) and (Z2, Z3)
are transversal in X and that (Z1 ∩ Z3, Z2 ∩ Z3) is transversal in Z3, then the
following diagram is commutative where N = T (σ1) ∩ T (σ2) ∩ T (σ3):

Lσ1(Z1, X)⊗ Lσ2(Z2, X)
⊗Lσ3(Z3, X)

↓
−−→

Lσ1+σ2(Z1 ∩ Z2, X)
⊗Lσ3(Z3, X)⊗ K̃N

↓
Lσ1(Z1, X)⊗ Lσ2+σ3

× (Z2 ∩ Z3, X)⊗ K̃N
−−−→ Lσ1+σ2+σ3 (Z1 ∩ Z2 ∩ Z3, X)

⊗ K̃N ,

i.e., the composition morphisms are associative.

Lemma 1.3.10. Let (X, Z1, σ1), (X, Z2, σ2) be kernel data on X and assume that Z1,
Z2 are transversal submanifolds of X and that σ1 and σ2 never vanish. Let f : X → Y
be a smooth morphism which induces a closed embedding Z1 ∩ Z2 ↪→ Y . Assume the
following condition:(

R≥0σ1(x)+ R≥0σ2(x)
) ∩ T ∗f (x)Y = {0} for every x ∈ T (σ1) ∩ T (σ2).

Here T ∗f (x)Y is regarded as a subspace of T ∗x X by fd . Then we have

R f!!
(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)

) � 0.

Proof. Let us show that

R f!!
(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)⊗ K̃x0

) � 0

for any x0 ∈ T (σ1) ∩ T (σ2). We first reduce the proof to the case where X is
of relative dimension one over Y . Assume the assertion to be true for relative one-
dimensional morphisms. Set E = Tx0( f −1 f (x0)). Then by the assumption, E sat-
isfies

(
R≥0σ1(x0) + R≥0σ2(x0)

) ∩ E⊥ = {0}. Hence there exists a line � ⊂ E
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such that
(
R≥0σ1(x0) + R≥0σ2(x0)

) ∩ �⊥ = {0}. Decompose f into the com-

position of smooth morphisms X
g−→ Y ′ h−→ Y on a neighborhood of x0 such

that g and h are smooth and Tx0(g
−1g(x0)) = �. Then g satisfies the conditions

in the lemma. Hence applying to g the relative one-dimensional morphism case,
we obtain Rg!!

(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)⊗ K̃x0

) � 0, which implies the desired
result.

Now assume that f has relative dimension one. Since σk(x0) /∈ T ∗f (x0)
Y , the map

Zk → Y is a (local) embedding, and Tx0 Zk = f −1∗
(
T f (x0)Z

′
k

) ∩ σk(x0)
−1(0), where

Z ′k := f (Zk) ⊂ Y . Then Z ′1 and Z ′2 are transversal, and f (Z1 ∩ Z2) is a hypersurface
of Z ′1 ∩ Z ′2 since

codimY ( f (Z1 ∩ Z2)) = codimX (Z1 ∩ Z2)− 1 = codimX (Z1)+ codimX (Z2)− 1

= codimY (Z
′
1)+ codimY (Z

′
2)+ 1 = codimY (Z

′
1 ∩ Z ′2)+ 1.

Since Tx0(Z1∩ Z2) = f −1∗
(
T f (x0)(Z

′
1∩ Z ′2)

)∩σ1(x0)
−1(0)∩σ2(x0)

−1(0), the vectors
σ1(x0) and σ2(x0) are linearly independent. By multiplying by a positive constant, we
may therefore assume that

σ1(x0)− σ2(x0) ∈ T ∗f (x0)
Y \ {0}.

Take a local coordinate system (t, y1, y2, z) of Y such that

Z ′k = {yk = 0} and σ2(x0)− σ1(x0) = dt .

Then take a local coordinate system (x, t, y1, y2, z) of X such that σ1(x0) = −dx (and
hence σ2(x0) = dt − dx), and Z1 = {y1 = 0, x = 0} and f is given by forgetting x .
Set Z2 = {y2 = 0, x = ϕ(t, y1, z)}. Then replacing ϕ(t, y1, z) with t , we may assume
from the beginning that

Z2 = {y2 = 0, x = t}, Z1 ∩ Z2 = {y1 = 0, y2 = 0, x = t = 0}.
Then we have

Lσ1(Z1, X) ⊗ Lσ2(Z2, X)⊗ K̃x0 � “lim−→”

δ>0, ε>0

(
KU 1

δ, ε
⊗KU 2

δ, ε

)
⊗ βX

(
Ri1∗ω⊗−1

Z1/X ⊗ Ri2∗ω⊗−1
Z2/X

)⊗ K̃x0,

where the open sets Uk
δ, ε are given by

U1
δ, ε = {ε|y1| < x ≤ δ} and U2

δ, ε = {ε|y2| < x − t ≤ δ} .
Hence we have

U1
δ, ε ∩U2

δ, ε = {max(ε|y1|, ε|y2| + t) < x ≤ min(δ, δ + t)} .
Then the result follows from

R f!(KU 1
δ, ε∩U 2

δ, ε
) � 0. ��
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Proposition 1.3.11. Let (X, Z1, σ1), (X, Z2, σ2) be kernel data on X and (Y, Z , σ ) a
kernel data on Y . Assume that Z1, Z2 are transversal submanifolds of X. Let f : X →
Y be a smooth morphism which induces an isomorphism Z1 ∩ Z2

∼−−→ Z. Let N be a
closed subset of T (σ1) ∩ T (σ2) satisfying the following conditions:

(i) Z (σ1) ∩ Z (σ2) ⊂ N,
(ii) f ∗σ(x) = σ1(x)+ σ2(x) for every x ∈ N,

(iii) σ1(x) �∈ T ∗f (x)Y for any x ∈ N \ (Z (σ1) ∪ Z (σ2)
)
,

(iv)
(
R≥0σ1(x)+ R≥0σ2(x)

) ∩ T ∗f (x)Y = {0} for every x ∈ (T (σ1) ∩ T (σ2)
) \ N,

(v) the morphism Zk → Y is smooth at each point of Z (σk) for k = 1, 2.

Then there is a natural isomorphism

R f!!
(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)

) ∼−−→ Lσ (Z ,Y )⊗ K̃ f (N) .

Proof. The morphism is obtained as the composition

R f!!
(
Lσ1(Z1, X) ⊗ Lσ2(Z2, X)

) −→ R f!!
(
Lσ1+σ2(Z1 ∩ Z2, X) ⊗ K̃N

)
� R f!!

(
L f ∗σ (Z1 ∩ Z2, X) ⊗ K̃N

)
−→ Lσ (Z ,Y )⊗ K̃ f (N) .

In order to see that it is an isomorphism, it is enough to prove the isomorphism

R f!!
(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)⊗ K̃x0

) ∼−−→ Lσ (Z ,Y )⊗ K̃ f (N)⊗ K̃ f (x0)

for any x0 ∈ T (σ1) ∩ T (σ2).

(a) Assume first that σ1(x0) = σ2(x0) = 0. Then, (i) implies x0 ∈ N , and we have
σ( f (x0)) = 0 by (ii). Hence Proposition 1.2.8 implies

R f!!
(
Lσ1(Z1, X) ⊗ Lσ2(Z2, X)⊗ K̃x0

) � R f!!
(
KZ1 ⊗KZ2 ⊗ K̃x0

)
� KZ ⊗ K̃ f (x0) � Lσ (Z ,Y )⊗ K̃ f (N)⊗ K̃ f (x0) .

(b) Assume σ1(x0) = 0 and σ2(x0) �= 0. Then we have

R f!!
(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)⊗ K̃x0

) � R f!!
(
KZ1 ⊗Lσ2(Z2, X)⊗ K̃x0

)
� R f!!i1!!i

−1
1 Lσ2(Z2, X) ⊗ K̃ f (x0),

where i1 : Z1 −→ X is the inclusion. Proposition 1.3.3 implies i−1
1 Lσ2(Z2, X) �

Lσ2(Z1 ∩ Z2, Z1). Note that Z1 → Y is smooth at x0 by the assumption (v).
If x0 ∈ N , then Corollary 1.3.5, along with by the hypothesis (ii), implies
R f!!i1!!Lσ2(Z1 ∩ Z2, Z1) � Lσ (Z ,Y ). Assume x ∈ (

T (σ1) ∩ T (σ2)
) \ N .

Then (iv) implies that σ2(x0) �∈ T ∗ f (x0)Y , and hence Lemma 1.3.6 implies
R f!!i1!!Lσ2(Z1 ∩ Z2, Z1) � 0.
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(c) Therefore we may assume that σ1(x0) �= 0 and σ2(x0) �= 0. If x0 �∈ N , then
the result follows from (iv) and Lemma 1.3.10. We may assume therefore x0 ∈ N .
Similar to the proof of Lemma 1.3.10, we first reduce the proof to the case where X
is of relative dimension one over Y . Assume the theorem to be true in the relative
one-dimensional morphism case. Set E = Tx0( f −1 f (x0)). Let us choose a line

� ⊂ E such that σ1(x0)|� �= 0, and then decompose f into X
g−→ Y ′ h−→ Y on a

neighborhood of x0 such that g and h are smooth, and Tx0(g
−1g(x0)) = �. Then

g satisfies the conditions (i)–(iv), and applying the relative dimension one case to
g, we obtain

R f!!
(
Lσ1(Z1, X) ⊗ Lσ2(Z2, X)

) � Rh!!Lh∗σ
(
g(Z1 ∩ Z2),Y

′) � Lσ (Z ,Y ),

where the last isomorphism is deduced from Corollary 1.3.5.

Hence we may assume that the relative dimension of X over Y is one. By the
assumption (iii), Zk → Y is a (local) embedding and Tx0 Zk = f −1∗

(
T f (x0)Z

′
k

) ∩
σk(x0)

−1(0) where Z ′k := f (Zk). Then Z ′1 and Z ′2 are transversal submanifolds of Y
and Z is a one-codimensional submanifold of Z ′ := Z ′1 ∩ Z ′2. We have

σ( f (x0)) /∈ T ∗Z ′Y.

Indeed, we have

Tx0(Z1 ∩ Z2) = f −1∗
(
T f (x0)Z

′) ∩ σ1(x0)
−1(0) ∩ σ2(x0)

−1(0)

= f −1∗
(

T f (x0)Z
′ ∩ σ( f (x0))

−1(0)
)
∩ σ1(x0)

−1(0),

which implies T f (x0)Z = T f (x0)Z
′ ∩ σ( f (x0))

−1(0) �= T f (x0)Z
′.

Hence we can take local coordinates (t, y1, y2, z) ∈ R × Rm1 × Rm2 × Rn of Y
such that σ( f (x0)) = −dt ( f (x0)) and Z ′k = {yk = 0} (k = 1, 2). Then we can
choose a system of coordinates (x, t, y1, y2, z) on X such that f is given by forgetting
x , σ1(x0) = −dx(x0) by (iii) (and hence σ2(x0) = dx(x0) − dt (x0)) and that Z1 =
{y1 = 0, x = 0}. Set Z2 = {y2 = 0, x = ϕ(t, y1, z)}. Replacing ϕ(t, y1, z) with t ,
we may assume from the beginning that

Z2 = {y2 = 0, x = t} and Z = {y1 = 0, y2 = 0, t = 0}.
We then have using Corollary 1.2.13

Lσ1(Z1, X)⊗ K̃x0 � K̃x0 ⊗ “lim−→”

ε>0

KU 1
ε
⊗βX

(
Ri1∗ω⊗−1

Z1/X

)
,

Lσ2(Z2, X)⊗ K̃x0 � K̃x0 ⊗ “lim−→”

ε>0

KU 2
ε
⊗βX

(
Ri2∗ω⊗−1

Z2/X

)
,
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where the open sets Uk
ε are given by

U1
ε = {ε|y1| < x} and U2

ε = {ε|y2| < t − x}.
We may therefore write

Lσ1(Z1, X) ⊗ Lσ2(Z2, X)⊗ K̃x0

� K̃x0 ⊗ “lim−→”

ε>0

KU 1
ε ∩U 2

ε
⊗ βX

(
Ri1∗ω⊗−1

Z1/X

)⊗ βX
(

Ri2∗ω⊗−1
Z2/X

)
� K̃x0 ⊗ “lim−→”

ε>0

KU 1
ε ∩U 2

ε
⊗ βX

(
f −1 Ri∗ω⊗−1

Z/Y

)⊗ ω⊗−1
X/Y .

Since the relative dimension of X over Y is one, we have ω⊗−1
X/Y ⊗ K̃x0 � K̃x0 [1] , and

we deduce an isomorphism

R f!!

(
Lσ1(Z1, X) ⊗ Lσ2(Z2, X)⊗ K̃x0

)

� R f!!

⎛⎝K̃x0 ⊗ “lim−→”

ε>0

KU 1
ε ∩U 2

ε
⊗ ωX/Y

⎞⎠⊗ βY Ri∗ω⊗−1
Z/Y

� R f!!

⎛⎝“lim−→”

ε>0

KU 1
ε∩U 2

ε

⎞⎠ [1]⊗ K̃ f (x0)⊗βY Ri∗ω⊗−1
Z/Y .

Since U1
ε ∩U2

ε = {ε|y1| < x < t − ε|y2|}, we have

R f!
(
KU 1

ε ∩U 2
ε

) � K{ε(|y1|+|y2|)<t}[−1].

Hence we finally deduce that

R f!!

(
Lσ1(Z1, X)⊗ Lσ2(Z2, X)⊗ K̃x0

)
�
⎛⎝“lim−→”

ε>0

K{ε(|y1|+|y2|)<t}

⎞⎠
⊗ βY Ri∗ω⊗−1

Z/Y ⊗ K̃ f (x0) � Lσ (Z ,Y )⊗ K̃ f (x0) . ��
Proposition 1.3.12. Let (X1, X2, X3) be a triplet of manifolds and (Xi×X j , Zi j , σi j )
a kernel data for 1 ≤ i < j ≤ 3. Assume that Z12× X3 and X1 × Z23 are transversal
in X1 × X2 × X3 and that the projections pi j : X1 × X2 × X3 → Xi × X j induce an

isomorphism Z12 ×
X2

Z23
∼−−→ Z13. Let us denote by p2 : X1 × X2 × X3 → X2 the

second projection and by p2∗ : T ∗(X1 × X2 × X3)→ T ∗X2 the induced projection.
Let N ⊂ T (σ12) ×

X2

T (σ23) be a closed subset satisfying the following conditions:
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(i) Z (σ12) ×
X2

Z (σ23) ⊂ N,

(ii) p∗13σ13(x) = p∗12σ12(x)+ p∗23σ23(x) for every x ∈ N,
(iii) p2∗σ12(x) �∈ T ∗X2

X2 for any x ∈ N \ (Z (σ12)× X3 ∪ X1 × Z (σ23)
)
,

(iv) R≥0 p2∗σ12(x) �= R≤0 p2∗σ23(x) for every x ∈ (T (σ12) ×
X2

T (σ23)
) \ N,

(v) the morphism Z12 → X1 is smooth at each point of Z (σ12) and the morphism
Z23 → X3 is smooth at each point of Z (σ23).

Then we have an isomorphism

Lσ12(Z12, X1 × X2) ◦ Lσ23(Z23, X2 × X3)
∼−−→ Lσ13(Z13, X1 × X3)⊗ K̃ f (N) .

Proof. By Proposition 1.3.3, we have

p12
−1Lσ12(Z12, X1 × X2) � Lp∗12σ12(Z12 × X3, X1 × X2 × X3),

p23
−1Lσ23(Z23, X2 × X3) � Lp∗23σ23(X1 × Z23, X1 × X2 × X3),

and Proposition 1.3.11 implies

Rp13!!

(
Lp∗12σ12(Z12×X3, X1×X2×X3)⊗ Lp∗23σ23(X1×Z23, X1×X2 × X3)

)
� Lσ13(Z13, X1 × X3)⊗ K̃ f (N) . ��

2. Microlocalization of ind-sheaves

2.1. The kernel KX of ind-microlocalization

We shall construct the kernel of microlocalization by the methods of the preceding
section using the fundamental 1-form ωX of T ∗X . Since the construction uses only
a 1-form, we shall discuss it on homogeneous symplectic manifolds. A homogeneous
symplectic manifold is a manifold X of even dimension endowed with a 1-form ωX

such that (d ωX)
dim X/2 never vanishes. It is a classical result that there locally exists a

coordinate system (x1, . . . , xn; ξ1, . . . , ξn) where ωX does not vanish and

ωX =
n∑

i=1

ξi dxi . (2.1)

Let pi : X × X → X (i = 1, 2) be the projection and let �X denote the diagonal
of X× X. Then σX = p∗1 ωX−p∗2 ωX gives a section of T ∗�X

(X× X)→ �X.

Definition 2.1.1. The microlocalization kernel is the kernel defined on X× X by

KX = LσX (�X,X× X) ∈ Db(I(KX×X)).
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Lemma 2.1.2. There is a natural morphism

εX : K�X −→ KX

such that the compositions

KX � KX ◦K�X

KX ◦εX−−−−−→ KX ◦KX,

KX � K�X ◦KX
εX◦KX−−−−−→ KX ◦KX

are isomorphisms, and these two isomorphisms coincide.

Proof. We have constructed the morphism εX in Corollary 1.2.10. The second state-
ment easily follows from Proposition 1.3.12. The last statement follows from Lemma
2.1.3 below. ��

Lemma 2.1.3. Let F : C → C be a functor and α : idC → F a morphism of functors.
Assume that for any object X ∈ Ob(C) the morphisms

αF(X) : F(X)→ F(F(X)) F(αX ) : F(X)→ F(F(X))

are isomorphisms. Then

(i) for any two objects X,Y ∈ Ob(C), the composition with αX defines a bijection

HomC(F(X), F(Y ))
∼−−→ HomC(X, F(Y )),

(ii) αF(X) = F(αX ) for any X ∈ Ob(C).

Lemma 2.1.4. For two homogeneous symplectic manifolds X and Y, we have

KX×Y◦(KX � KY) � KX×Y and KX×Y◦KX � KX×Y.

Proof. The last isomorphism is obtained by applying Proposition 1.3.12 to (X×Y×
Y,X,X), and the first isomorphism follows from the second since

KX×Y◦(KX� KY) � (KX×Y◦KX) ◦ KY . ��

Now let X be a manifold and set X := T ∗X . Then X has a canonical structure of a
homogeneous symplectic manifold. The microlocalization functor is defined by:

μX : Db(I(KX )) −→ Db(I(KX)); F 	→ μXF :=KX◦π−1
X F.

The microlocalization functor μX may also be obtained as an integral transform
associated with a kernel LX ∈ Db(I(KT ∗X×X )) which is often easier to manipulate
than KX.
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Definition 2.1.5. The kernel LX ∈ Db(I(KKT∗X×X
)) is given by

LX = LσX

(
T ∗X ×

X
X, T ∗X × X

)
,

where σX is induced by ωX on the first factor and -id on the second factor.

Remark 2.1.6. Let (x; ξ) be a local coordinate system on X = T ∗X and let (x, ξ; η, y)
denote the associated coordinates on T ∗X. Then σX is defined by

σX (x; ξ) = ((x, ξ; ξ, 0), (x; −ξ)) ∈ T ∗X× T ∗X.

Therefore T (σX ) = T ∗X ×
X

X .

Proposition 2.1.7. Let F ∈ Db(I(KX )). There is a canonical isomorphism

μXF � L X ◦ F.

Proof. Consider the following diagram

Since q satisfies the assumptions of Corollary 1.3.5, we have the isomorphism Rq!! KX �
LX , which implies

LX ◦F � Rp′1!!

(
Rq!! KX⊗p′−1

2 F
)
� Rp′1!! Rq!!

(
KX⊗q−1 p′−1

2 F
)

� Rp1!!

(
KX⊗p−1

2 π−1
X F

)
� KX ◦π−1

X F � μXF. ��
The next lemma immediately follows from Lemma 2.1.2.

Lemma 2.1.8. For F ∈ Db(I(KX )), we have

KT ∗X ◦μXF � μXF.

Example 2.1.9. Let Z ⊂ X be a closed submanifold. Then

μX (KZ ) � LωX

(
T ∗X ×

X
Z , T ∗X

)
.

Indeed, noting that KZ � L0(Z , X), it is enough to apply Proposition 1.3.12 to the
triplet (T ∗X, X, pt) with N = T ∗X ×

X
Z .
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Note that the support of μX (KZ ) is T ∗Z X . Let us take a local coordinate system
(x, z) on X such that Z = {x = 0}. Let (x, z; ξ, ζ ) be the corresponding coordinates
on T ∗X . Then on Ṫ ∗X , we have

μX (KZ ) � “lim−→”

ε>0

K{−〈ξ,x〉>ε|x |} ⊗ K̃{x=0, ζ=0}[codim Z ].

Note that

μX (K̃Z ) � K̃T ∗X X×
X

Z . (2.3)

Lemma 2.1.10. Let F ∈ Db (I (KT ∗X )). Then

(KT ∗X ◦F)⊗ K̃T ∗X X � F ⊗ K̃T ∗X X ,

In particular if F ∈ Db (I (KX )), then

μXF ⊗ K̃T ∗X X � π−1
X F ⊗ K̃T ∗X X .

Proof. With the notations in (2.2),we have an isomorphism by Proposition 1.2.8:

KT ∗X ⊗p−1
1 K̃T ∗X X � K�T∗X ⊗p−1

1 K̃T ∗X X .

Therefore we have for F ∈ Db (I (KT ∗X ))(
KT ∗X ◦F

)⊗ K̃T ∗X X � R p1!!

(
KT ∗X ⊗p−1

2 F
)
⊗ K̃T ∗X X

= Rp1!!

(
KT ∗X ⊗p−1

1 K̃T ∗X X ⊗p−1
2 F

)
� Rp1!!

(
K�T∗X ⊗p−1

1 K̃T ∗X X ⊗p−1
2 F

)
= Rp1!!

(
K�T∗X ⊗p−1

2 F
)
⊗ K̃T ∗X X

� F ⊗ K̃T ∗X X . ��
Remark 2.1.11. The ind-sheaf μXF is conical in the sense that it is equivariant with
respect to the R>0-action on T ∗X . We will not develop here the theory of conic ind-
sheaves but simply give some consequences sufficient for our purpose. Let Ṫ ∗X be the
cotangent bundle with its zero section removed, and S∗X the associated sphere bundle.
Let γ : Ṫ ∗X → S∗X be the natural projection and F ∈ Db(I(KX )). Then we have the
following isomorphism:

μXF|Ṫ ∗X � γ−1 Rγ∗μXF|Ṫ ∗X .

Indeed, the kernel LX satisfies a similar property.
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Lemma 2.1.12. Let X be a real manifold and πE : E → X a real vector bundle over
X. Denote by SE the spherical bundle associated with E and by

j : Ė ↪→ E p : Ė → SE

the natural morphisms. Assume that F ∈ Db(I(KE )) satisfies j−1F � p−1G for some
G ∈ Db(I(KS E )). Then

(i) RπE ∗ R j!! j−1F � 0,
(ii) RπE ∗(F)

∼−−→ RπE ∗(K̃X ⊗F), where X is associated to the zero section of E,
(iii) there is a natural distinguished triangle

Rπ̇E !! j−1F −→ RπE !!F −→ RπE∗F
+1−−→ .

Proof. (a) Let EX denote the real blow up of E along X identified with the zero
section, i.e., EX =

(
Ė × R≥0

)
/R>0, hence EX = Ė � SE as a set. We have the

following commutative diagram:

where πEX and πS E are proper.
(b) We shall first show

Rq∗ Ri!! j−1F � 0.

Since q is locally trivial with fiber R≥0, we have q !G � q−1G⊗q ! KS E � q−1G⊗
Ki(Ė)[1]. Therefore we have

Rq∗(Ki(Ė)⊗q−1G) � Rq∗ RIHom
(
KEX [1], q !G

)
� RIHom

(
Rq!! KEX [1],G

) � 0

since Rq!! KEX = 0. On the other hand, we have

Rq∗
(
(Ki(Ė ) / K̃i(Ė))⊗ q−1G

)
� Rq!!

(
(Ki(Ė) / K̃i(Ė ))⊗ q−1G

)
� Rq!!

(
(Ki(Ė) / K̃i(Ė ))

)
⊗ G � 0.

Hence the desired result follows from the distinguished triangle:

Rq∗(K̃i(Ė )⊗q−1G) −→ Rq∗(Ki(Ė )⊗q−1G)

−→ Rq∗
(
(Ki(Ė ) / K̃i(Ė))⊗ q−1G

) +1−−→,

in which the first term is isomorphic to Rq∗ Ri!! j−1F.
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(i) We have a chain of isomorphisms

RπE ∗ R j!! j−1F � RπE ∗ RπEX !! Ri!! j−1F

� RπE ∗ RπEX ∗ Ri!! j−1F � RπS E∗ Rq∗ Ri!! j−1F,

which vanishes by (b).
(ii) Applying the functor RπE∗( • ⊗ F) to the distinguished triangle

K̃Ė −→ KE −→ K̃X
+1−−→, (2.4)

we obtain the distinguished triangle

RπE ∗(K̃Ė ⊗F) −→ RπE∗F −→ RπE ∗(K̃X ⊗F)
+1−−→,

in which the first term vanishes by (i).
(iii) Applying the functor RπE !!( • ⊗F) to the distinguished triangle (2.4), we obtain

the distinguished triangle

RπE !!(K̃Ė ⊗F) −→ RπE !!F −→ RπE !!(K̃X ⊗F)
+1−−→,

in which the first term is isomorphic to Rπ̇E !! j−1F and the last term is isomorphic
to RπE∗F by (ii). ��

Proposition 2.1.13. Let F ∈ Db (I (KX )). Then

(i) RπX ∗μXF � F,
(ii) RπX !!μXF � K̃�X ◦F,

(iii) Rπ̇X !!
(
μXF|Ṫ ∗X

) � (
KX×X\�X ⊗ K̃�X

) ◦ F,
(iv) there is a natural distinguished triangle

Rπ̇X !!
(
μXF|Ṫ ∗X

) −→ RπX !!μXF −→ F
+1−−→ .

Proof. (i) By Lemma 2.1.12 (ii), we have

RπX∗μXF � RπX∗
(
μXF ⊗ K̃T ∗X X

)
� RπX !!

(
π−1

X F ⊗ K̃T ∗X X

)
� F ⊗ RπX !! K̃T ∗X X � F,

where the second isomorphism follows from Lemma 2.1.10.

(ii) and (iii) Let us denote by p : T ∗X × X → X × X the canonical morphism.
Then we have isomorphisms:

RπX !! μXF � (Rp!!L X ) ◦ F,

Rπ̇X !!(μXF|Ṫ ∗X ) �
(
Rp!!(L X ⊗ K̃Ṫ ∗X×X )

) ◦ F.
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Hence, it is enough to show the isomorphism

R p!!L X � K̃�X , (2.5)

Rp!!(L X ⊗ K̃Ṫ ∗X×X ) � KX×X\�X ⊗ K̃�X . (2.6)

The natural morphism given in Corollary 1.2.10

LX −→ K̃T ∗X×
X

X ⊗βT ∗X×X

(
ω⊗−1

T ∗X×
X

X/T ∗X×X

)
= p! K̃�X

provides a morphism Rp!!L X −→ K̃�X .
We shall first show (2.6). Take a local coordinate system x = (x1, . . . , xn) on X

and let ((x; ξ), x ′) be the associated local coordinates on T ∗X×X . We have

LX ⊗ K̃Ṫ ∗X×X � “lim−→”

ε>0

K{
((x;ξ),x ′) ; 〈ξ,x ′−x〉>ε|x ′−x |

}⊗ K̃Ṫ ∗X×
X

X

⊗ β
(

Ri∗ω⊗−1
T ∗X×

X
X/T ∗X×X

)
� “lim−→”

ε>0

K{
((x;ξ),x ′) ; 〈ξ,x ′−x〉>ε|x ′−x |

}⊗p−1 K̃�X [n].

Hence

Rp!!
(
LX ⊗ K̃Ṫ ∗X×X

)
� Rp!!

⎛⎝ “lim−→”

ε>0, R>0

K{
((x;ξ),x ′) ; 〈ξ,x ′−x〉>ε|x ′−x |, |ξ |<R

}⎞⎠⊗ K̃�X [n].

For 0 < ε < R, we have

Rk p!

(
K{

((x;ξ),x ′) ; 〈ξ,x ′−x〉>ε|x ′−x |, |ξ |<R
}) � {

K{0<|x ′−x |<ε−1 R} if k = n.

0 if k �= n.
Hence we have shown that

R p!!
(
LX ⊗ K̃Ṫ ∗X×X

) � KX×X\�X [−n]⊗ K̃�X [n] � KX×X\�X ⊗ K̃�X ,

which proves (2.6). In the morphism of distinguished triangles

Rp!!
(
LX ⊗ K̃Ṫ ∗X×X

) ��

∼
��

R p!! (LX ) ��

��

R p!!(
(

LX ⊗ K̃T ∗X X×X

) +1 ��

��
KX×X\�X ⊗ K̃�X

�� K̃�X
�� K�X

+1 �� ,
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the left vertical arrow is an isomorphism by (2.6) and the right vertical arrow is an
isomorphism since

R p!!

(
LX ⊗ K̃T ∗X X×X

)
� R p!!

(
KT ∗X×

X
X ⊗ K̃T ∗X X×X

)
� K�X ⊗R p!!(K̃T ∗X X×X ) � K�X .

Hence we obtain (2.5).
(iv) follows immediately from Lemma 2.1.12 and (i). ��

Proposition 2.1.14. For F ∈ Db (I (KX )) and G ∈ Db (I (KY )), we have an isomor-
phism

μX×Y (F � G) � KT ∗(X×Y ) ◦ (μXF � μY G) .

Proof. This follows immediately from Lemma 2.1.4. ��

2.2. The link with μhom and classical microlocalization

Proposition 2.2.1. Let σ ∈ �(X,-1
X ) and F,G ∈ Db(KX ). Then we have an isomor-

phism

σ−1 μhom(F,G) � RHom
(
F,Lσ̃ (�X , X × X) ◦ G

)
,

where σ̃ = q∗1σ − q∗2σ and qi : X × X → X is the i -th projection (i = 1, 2) .

Proof. By definition we have

μhom(F,G) � νhom(F,G)∧,

where νhom is the specialization of the functor RHom (see below), and (·)∧ is the
Fourier–Sato transform. Setting

P ′ =
{
((x; ξ), (x; v)) ∈ T ∗X ×

X
T X; 〈ξ, v〉 � 0

}
,

the Fourier–Sato transform is the integral transform with kernel KP ′ . Consider the
following commutative diagram
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Then μhom(F,G) � νhom(F,G)∧ � Rπ1!

(
π−1

2 νhom(F,G)⊗KP ′
)

. Hence

σ−1 μhom(F,G) � σ−1 Rπ1!

(
π−1

2 νhom(F,G)⊗KP ′
)

� RτX !σ
′−1

(
π−1

2 νhom(F,G)⊗KP ′
)

� RτX !
(
νhom(F,G)⊗KP ′σ

)
,

where we have set P ′σ = σ ′−1(P ′) = {(x, v) ∈ T X; 〈σ(x), v〉 � 0}. Consider the
normal deformation of�X in X × X , visualized by the diagram:

Then νhom(F,G) is by definition s−1 R j∗ p̃−1 RHom(q−1
2 F, q !

1G). Since p̃ is smooth
we have

p̃−1 RHom(q−1
2 F, q !

1G) � RHom( p̃−1q−1
2 F, p̃−1q !

1G)

� RHom( j−1 p−1
2 F, j−1 p−1q !

1G).

Hence we have

νhom(F,G) � s−1 R j∗ RHom( j−1 p−1
2 F, j−1 p−1q !

1G)

� s−1 RHom(p−1
2 F,R j∗ j−1 p−1q !

1G)

� s−1 RHom(p−1
2 F,R j∗ j−1 p−1

1 G)⊗ τ−1
X ωX .

Since p1 is smooth, we have the estimate

SS(p−1
1 G) ∩ SS K- ⊂ (p1)

−1
π (T

∗X) ∩
(

T ∗T�X (X×X)
X̃ × X ∪ T ∗

X̃×X
X̃ × X

)
⊂ T ∗

X̃×X
X̃ × X ,

which implies

R j∗ j−1 p−1
1 G � RHom(K-, p−1

1 G) � RHom(K-,KX )⊗ p−1
1 G

� K-⊗p−1
1 G.
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Applying this result we obtain

νhom(F,G) � s−1 RHom(p−1
2 F, p−1

1 G⊗K-)⊗ τ−1
X ωX

� s−1 RHom(p−1
2 F, p−1

1 G⊗K-)⊗ τ−1
X ω⊗−1

�X /X×X ,

and finally

σ−1 μhom(F,G) � RτX !

(
s−1 RHom

(
p−1

2 F, p−1
1 G⊗K-

)
⊗ τ−1

X ω⊗−1
�X /X×X ⊗KP ′σ

)

� R p2! Rs!

(
s−1 RHom

(
p−1

2 F, p−1
1 G⊗K-

)
⊗ τ−1

X ω⊗−1
�X /X×X ⊗KP ′σ

)

� R p2!

(
RHom

(
p−1

2 F, p−1
1 G⊗K-

)
⊗KP ′σ ⊗p−1 Ri∗ω⊗−1

�X/X×X )

)
.

Note that this intermediate result is obtained by means of classical sheaf theory. How-
ever, formulas in the derived category of ind-sheaves allow us to continue the calcula-
tions. Using the properties (1.3 c) of the functor β and Proposition 1.1.2, we have

σ−1 μhom(F,G) � R p2! RHom

(
p−1

2 F, p−1
1 G⊗K-

⊗ β
X̃×X

(
KP ′σ ⊗p−1 Ri∗ω⊗−1

�X/X×X

))

� RHom

(
F,R p2!!

(
p−1

1 G⊗K-⊗ K̃P ′σ

⊗ p−1βX×X (Ri∗ω⊗−1
�X /X×X )

))
.

We have furthermore

Rp2!!
(

p−1
1 G⊗K-⊗ K̃P ′σ ⊗p−1βX×X (Ri∗ω⊗−1

�X /X×X )
)

� Rq2!! R p!!

(
p−1q−1

1 G⊗K-⊗ K̃P ′σ ⊗p−1βX×X (Ri∗ω⊗−1
�X/X×X )

)
� Rq2!!

(
q−1

1 G⊗ Rp!!
(
K-⊗ K̃P ′σ

)⊗ βX×X (Ri∗ω⊗−1
�X/X×X )

)



204 M. Kashiwara, P. Schapira, F. Ivorra and I. Waschkies

� Rq1!!

(
q−1

2 G⊗ Rp!!
(
K-⊗ K̃ P̃σ

)⊗ βX×X (Ri∗ω⊗−1
�X/X×X )

)
� Rq1!!

(
q−1

2 G⊗ Lσ̃ (�X , X × X)
)
� Lσ̃ (�X , X × X) ◦ G. ��

Corollary 2.2.2. Let F,G ∈ Db(KX ). Then we have an isomorphism

μhom(F,G) � RHom(π−1
X F, μXG) � RHom(μXF, μXG).

Proof. Consider the fundamental 1-form ωX ∈ �(T ∗X,-1
T ∗X ) of the cotangent bun-

dle of X . Then we have

μhom(F,G) � ω−1
X μhom(π−1

X F, π−1
X G)

and by Proposition 2.2.1 we get a natural isomorphism

μhom(F,G) = RHom(π−1
X F,KT ∗X ◦π−1

X G) � RHom(π−1
X F, μXG)

The last isomorphism is a consequence of Lemma 2.1.3 and Lemma 2.1.2. ��
Proposition 2.2.3. Let F ∈ Db(KX ) and let Z be a closed submanifold of X. Denote
by i the closed immersion i : T ∗X ×

X
Z ↪→ T ∗X. Then we have a natural isomorphism

μZ (F) � αT ∗X×
X

Z

(
i !μXF)|T ∗Z X

) � RHom(KT ∗X×
X

Z , μXF)|T ∗Z X .

Here μZ (F) denotes the classical functor of Sato’s microlocalization

See [KS2], Chapter IV for definitions and a detailed study for μZ . We only remark
here that μZ (F) � μhom(KZ ,F)|T ∗Z X .

Proof. We have by Corollary 2.2.2

μZ (F) � RHom(π−1
X KZ , μX (F))|T ∗Z X � RHom

(
Ri!! KT ∗X×

X
Z , μX (F)

)|T ∗Z X

� RHom
(
KT ∗X×

X
Z , i

!μX (F)
)|T ∗Z X �

(
αT ∗X×

X
Z i !μX (F)

)|T ∗Z X . ��

2.3. Review on the microsupport of ind-sheaves

In this section we shall give a short overview on the results of [KS4] on the microsup-
port of ind-sheaves.

The microsupport SS(F) of an object F ∈ Db(KX ) is a closed involutive cone
in the cotangent bundle T ∗X which describes the codirections in which the coho-
mology of F does not propagate (See [KS2], [KS3]). The corresponding notions for
ind-sheaves are more intricate.

Let C be an abelian category, and consider the functor

J : Db(Ind(C)) −→ Db(C)∧ given by F 	→ HomDb(Ind(C))( · ,F).
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Here Db(C)∧ is the category of contravariant functors from Db(C) to the category of
sets. Then it can be shown that J factors through Ind(Db(C)). Note that J is conserva-
tive, which is a consequence of the commutative diagram

Finally assume

C has enough injectives and finite homological dimension. (2.7)

Recall that in this case ϕ : F → G is an isomorphism in Ind(Db(C)) if and only if
IHk(ϕ) is an isomorphism for all k. Then we easily get the following result.

Lemma 2.3.1. Assume (2.7). Let F ∈ Db(Ind(C)) and let {Fi → F}i∈I be a filtrant
inductive system of morphisms in Db(Ind(C)). Then “lim−→” J(Fi )

∼−−→ J(F) if and only

if “lim−→”

i∈I

Hk(Fi )
∼−−→ Hk(F).

In particular if “lim−→” J(Fi )
∼−−→ J(F), then we have “lim−→” J(τ�nFi )

∼−−→ J(τ�nF)

for all k.
We shall apply the results above to the case of ind-sheaves, by taking Modc(KX )

as C. For a C∞-manifold X , let

JX : Db(I(KX ))→
(
Db(Modc(KX ))

)∧
be the canonical functor.

Proposition 2.3.2. Let f : X → Y be a continuous map. Let {Fi → F}i∈I be a filtrant
inductive system of morphisms in Db(I(KX )) and {G j → G} j∈J a filtrant inductive
system in Db(I(KY )) such that

JX (F) � “lim−→”

i∈I

JX (Fi ) and JY (G) � “lim−→”

j∈J

JY (G j ).

Then

(i)
JY (R f!!F) � “lim−→”

i∈I

JY (R f!!Fi ),

(ii) For K ∈ Db(I(KX )), we have

JX (K⊗ F) = “lim−→”

i∈I

JX (K⊗ Fi ),
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(iii)
JX ( f −1G) � “lim−→”

j∈J

JX ( f −1G j ) and JX ( f !G) � “lim−→”

j∈J

JX ( f !G j )

(iv)
JT ∗X (μXF) � “lim−→”

i∈I

JT ∗X (μXFi ).

Proof. By Lemma 2.3.1, we can reduce the situation by dévissage to usual ind-
sheaves, where the formulas are obvious. ��
Definition 2.3.3. (i) Let F ∈ Db(I(KX )). The micro-support of F, denoted SS(F),

is the closed conic subset of T ∗X whose complementary is the set of points p ∈
T ∗X such that there exist a conic open neighborhood U of p in T ∗X , an open
neighborhood W of πX (p) and a small filtrant inductive system {Fi }i∈I of objects
Fi ∈ Db(Modc(KX )) such that SS(Fi ) ∩U = ∅ and

JX (F ⊗KW ) � “lim−→”

i∈I

Fi ⊗KW .

(ii) For F ∈ Db(I(KX )), one sets SS0(F) = Supp(μXF).

Remark 2.3.4. The micro-support defined above coincides with the classical definition
for objects of Db(KX ); it satisfies the triangular inequality (in a distinguished triangle,
the micro-support of an object is contained in the union of the micro-supports of the
two others), and we have

Supp(F) = SS(F) ∩ T ∗X X, SS(αX (F)) ⊂ SS(F) for F ∈ Db(I(KX )).

In general, it is no longer an involutive subset of T ∗X .

Proposition 2.3.5. Let F ∈ Db(I(KX )). Then

SS0(F) ⊂ SS(F).

If F ∈ Db(KX ), then
SS0(F) = SS(F).

Proof. The result for sheaves is actually an obvious consequence of Corollary 2.2.2
since

SS(F) = Supp(μhom(F,F)) = Supp(RHom(μXF, μXF)) = Supp(μXF).

Now assume that F ∈ Db(I(KX )) and p �∈ SS F. Consider a filtrant inductive system
Fi in Db(Modc(KX )) and an open neighborhood W of πX (p), a neighborhood U ⊂
πT ∗X

−1(W ) of p such that

JX (F ⊗KW ) � “lim−→”

i

(Fi ⊗KW )
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and SS(Fi ) ∩U = ∅. We have by Proposition 2.3.2

JX
(
μX (F ⊗KW )

) � “lim−→”

i

JX
(
μX (Fi ⊗KW )

)
,

and we get μXF|U � 0 since Supp(μXFi ) = SS (Fi ). ��
Example 2.3.6. For a closed submanifold Z of X , we have

SS0(KZ ) = SS(KZ ) = T ∗Z X and

SS0(K̃Z ) = T ∗X X ×
X

Z , SS(K̃Z ) = T ∗Z X.

Lemma 2.3.7. Let- be an open subset of Ṫ ∗X and let F ∈ Db(K-), G ∈ Db(I(K-)).
Assume that F is cohomologically constructible (see [KS2, Definition 3.4.1]). Assume
further that

ω−1
X

(
SS(F)

) ∩ Supp(G) = ∅,
where ωX is considered as a map T ∗X → T ∗(T ∗X). Then we have an isomorphism

RHom(F,K-)⊗ (K- ◦G) ∼−−→ RIHom(F,K- ◦G) in Db(I(K-)).

Proof. By shrinking-, we may assume from the beginning that ω−1
X

(
SS(F)

) = ∅.
(i) Assume first that G ∈ Db(K-). For p = (x0, ξ0) ∈ -, we shall prove that

RHom(F,K-)⊗ (K- ◦G)⊗ K̃p
∼−−→ RIHom(F,K- ◦G)⊗ K̃p .

Since p /∈ T ∗X X , we have

(K- ◦G)⊗ K̃p � (K-⊗ K̃(p,p)) ◦ G

� “lim−→”

ρ>0

KKρ ⊗
⎛⎝⎛⎝ “lim−→”

δ>0,ε>0

KFδ,ε

⎞⎠ [−n] ◦ G

⎞⎠ , (2.8)

where
Kρ = {(x, ξ); |x − x0| ≤ ρ, |ξ − ξ0| ≤ ρ}

and
Fδ,ε =

{
δ � 〈ξ0, x ′ − x〉 > ε(|x ′ − x | + |ξ ′ − ξ |)}.

Let p1 : T ∗-× T ∗-→ T ∗- be the first projection. For sufficiently small ε, δ and ρ,
π−1

X Kρ ∩ p1
(
SS(KFδ,ε )

)
is contained in a sufficiently small neighborhood of ωX (p),

and hence so is π−1
X Kρ ∩ SS(KFδ,ε ◦G). Thus we obtain by assumption

π−1
X Kρ ∩ SS F ∩ SS(KFδ,ε ◦G) ⊂ T ∗XX.
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Then by [KS2, Corollary 6.4.3], we have an isomorphism

KKρ ⊗RHom(F,K-)⊗ (KFδ,ε ◦G) ∼−−→ KKρ ⊗RHom(F,KFδ,ε ◦G)
in Db(K-). Therefore we have

J- (RHom(F,K-) ⊗(K- ◦G)⊗ K̃p
)

� “lim−→”

δ>0, ε>0, ρ>0

J-
(
KKρ ⊗RHom(F,K-)⊗ (KFδ,ε ◦G)[−n]

)

� “lim−→”

δ>0, ε>0, ρ>0

J-
(
KKρ ⊗RHom

(
F,KFδ,ε ◦G[−n]

))

� J-
(
RIHom(F,K- ◦G)⊗ K̃p

)
,

and the lemma is proved when G ∈ Db(K-).

In the general case, taking a filtrant inductive system Gk in Db(K-) such that
J-(G) � “lim−→” Gk . we have

J- (RHom(F,K-) ⊗(K- ◦G)) � “lim−→”

k

J- (RHom(F,K-)⊗ (K- ◦Gk))

� “lim−→”

k

J- (RHom(F, K- ◦ Gk)) � J-
(

RHom(F,K- ◦G)
)
,

which completes the proof. ��
We prove now in the framework of ind-sheaves a well-known result for sheaves.

Proposition 2.3.8. Let F ∈ Db(KX ) and G ∈ Db(I(KX )). Assume that F is cohomo-
logically constructible. Assume further the non-characteristic condition

SS(F) ∩ SS0(G) ⊂ T ∗X X.

Then we have an isomorphism

RHom(F,KX )⊗ G
∼−−→ RIHom(F,G).

Proof. Since ω−1
X SS(π−1

X F) = SS F, the non-characteristic condition may be rewrit-
ten as

ω−1
X SS(π−1

X F) ∩ SuppμXG ∩ Ṫ ∗X = ∅,
and Lemma 2.3.7 assures that(

π−1
X RHom(F,KX )⊗ μXG

)
|Ṫ ∗X �

(
RHom(π−1

X F,KT ∗X )⊗ μXG
)
|Ṫ ∗X

� RIHom(π−1
X F, μX G)|Ṫ ∗X .
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Applying the functor Rπ̇X !!, we obtain

RHom(F,KX )⊗ Rπ̇X !!
(
μXG|Ṫ ∗X

) � RIHom
(
F,Rπ̇X !!

(
μXG|Ṫ ∗X

))
.

Now Proposition 2.1.13 gives the following morphism of distinguished triangles where
F∗ = RHom(F,KX ):

F∗ ⊗ Rπ̇X !!(
μXG|Ṫ ∗X

) ��

∼
��

F∗ ⊗ (K̃�X ◦G) ��

��

F∗ ⊗ G
+1 ��

��RIHom(
F,Rπ̇X !!(μXG|Ṫ ∗X )

) �� RIHom(F, K̃�X ◦G) �� RIHom(F,G)
+1 �� .

The middle vertical arrow is an isomorphism by the following lemma, and hence the
right arrow is an isomorphism. ��
Lemma 2.3.9. Let F ∈ Db(KX ) and G ∈ Db(I(KX )). Assume that F is cohomologi-
cally constructible. Then we have an isomorphism

RHom(F,KX )⊗
(
K̃�X ◦G

) ∼−−→ RIHom(F, K̃�X ◦G).
Proof. Let pk : X × X → X be the k-th projection (k = 1, 2). Then we have

p−1
1 RHom(F,KX )⊗ p−1

2 G
∼−−→ RHom(p−1

1 F, p−1
2 G) for any G ∈ Db(I(KX )).

Hence we have

RHom(F,KX )⊗
(
K̃�X ◦G

) � R p1!!
(

p−1
1 RHom(F,KX )⊗ p−1

2 G⊗ K̃�X

)
� R p1!!

(
RIHom(p−1

1 F, p−1
2 G)⊗ K̃�X

)
� R p1!! RIHom(p−1

1 F, p−1
2 G⊗ K̃�X )

� RIHom
(
F,R p1!!

(
p−1

2 G⊗ K̃�X

))
� RIHom(F, K̃�X ◦G). ��

Corollary 2.3.10. Assume that i : Z ↪→ X is a closed immersion and F ∈ Db(I(KX ))
satisfies the condition

SS0(F) ∩ T ∗Z X ⊂ T ∗X X.

Then we have an isomorphism

i−1F ⊗ ωZ/X
∼−−→ i !F.

Proof. We have i−1F⊗ωZ/X � i−1F⊗i−1 RHom(KZ ,KX ) � i−1 RIHom(KZ ,F)
� i !F. ��
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Lemma 2.3.11. Let- ⊂ Ṫ ∗X be an open subset and K ∈ Db(I(KY×-)). Assume that

SS(K)a ∩ (T ∗Y × ωX (-)
) = ∅,

where a denotes the antipodal map. Then

(K ◦ KT ∗X )|Y×- = 0.

Proof. We can easily reduce to the case where K ∈ Db(KY×-). In this case, let us
prove that

(K ◦ KT ∗X )⊗ K̃p � 0 for p ∈ Y ×-.

We may assume that X , Y are affine and p = (y0, x0; ξ0). We have

KT ∗X ⊗ K̃(x0,ξ0) � “lim−→”

δ>0,ε>0

KFδ,ε [2 dim X],

where we have set Fδ,ε = {δ � 〈ξ0, x ′ − x〉 > ε(|x ′ − x | + |ξ ′ − ξ |)}. Hence it is
enough to show that there exists a neighborhood U of p such that

(K ◦KFδ,ε )|U � 0

for 0 < δ 1 ε 1 1. Let pi j be the (i, j)-th projection from Y ×-× - to Y ×- or
-×-. Then we have

K ◦KFδ,ε � Rp13!(p
−1
12 K⊗ p−1

23 KFδ,ε ).

For SS(Fδ,ε) contained in a sufficiently small neighborhood of (ωX (p),−ωX (p)),
SS
(

p−1
12 K⊗ p−1

23 KFδ,ε

)
does not intersect T ∗Y × {−〈ξ0, dx〉} × T ∗-. Since the map

Y × Supp(KFδ, ε )→ Y ×R× T ∗X induced by 〈ξ0, x〉 is proper, Proposition 5.4.17 in
[KS2] implies that

(
K ◦KFδ,ε

)|U � 0. ��
Proposition 2.3.12. Let K ∈ Db(I(KY×X )) be a kernel and F ∈ Db(I(KX )). Assume
that

SS(K)a ∩ (T ∗Y × SS0(F)
) ⊂ T ∗Y × T ∗X X.

Then we have an isomorphism

K ◦ K̃�X ◦F ∼−−→ K ◦ F.

Proof. It is enough to show that K ◦ (Ker(K̃�X → K�X )
) ◦ F � 0.

Let p : Y × T ∗X → Y × X be the projection. We have

SS
(

p−1K
)
⊂
{
((y; η), (x, ξ; ξ ′, 0)); ((y; η), (x; ξ ′)) ∈ SS(K)

}
.

Hence

SS
(
π−1

X K
)
∩
(

T ∗Y × ωX (SS0(F) \ T ∗X X)
)

⊂
{
((y; η), (x, ξ; ξ, 0)); ((y; η), (x; ξ))∈SS(K), (x, ξ)∈SS0(F)\ T ∗X X

}
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is empty by assumption. Therefore Lemma 2.3.11 assures that

Supp(p−1K ◦ KT ∗X ) ∩
(
Y × SS0(F)

) ⊂ Y × T ∗X X.

Let p1 : Y × T ∗X → Y and p2 : Y × T ∗X → T ∗X be the projections. Then

p−1K ◦ (μXF ⊗ K̃Ṫ ∗X

) � p−1K ◦ KT ∗X ◦
(
μXF ⊗ K̃Ṫ ∗X

)
� R p1!

(
(p−1K ◦ KT ∗X )⊗ p−1

2 (μXF ⊗ K̃Ṫ ∗X )
)
� 0.

This proves the proposition since p−1K ◦ (μXF ⊗ K̃Ṫ ∗X ) � K ◦ RπX !!(μXF ⊗
K̃Ṫ ∗X ) by Lemma 1.1.6 (iii), and RπX !!

(
μXF⊗ K̃Ṫ ∗X

) � Ker
(
K̃�X → K�X

) ◦ F by
Proposition 2.1.13 (iii). ��

2.4. Functorial properties of microlocalization

To study the functorial behavior of the functor μX , it is convenient to introduce vari-
ous transfer kernels. They will be used exclusively inside the proofs in order to keep
notations as simple as possible. In the sequel, we frequently use Lemma 1.1.6 without
mentioning it.

Let f : X → Y be a morphism of manifolds. Let us recall the commutative dia-
gram:

T ∗X

πX

��

T ∗Y ×
Y

X
fd�� fπ ��

��

T ∗Y

X
f �� Y .

We have f ∗d ωX = f ∗π ωY . Consider the maps(
T ∗Y ×

Y
X

)
× X

fd×idX−−−−−→ T ∗X × X,(
T ∗Y ×

Y
X

)
× Y

fπ×idY−−−−−→ T ∗Y × Y,

T ∗Y × X
idT ∗Y × f−−−−−−→ T ∗Y × Y.

They define morphisms

�

(
T ∗X ×

X
X,-1

T ∗X×X

)
−→ �

(
T ∗Y ×

Y
X,-1

(T ∗Y×
Y

X)×X

)
,

�
(

T ∗Y,-1
T ∗Y×Y

)
−→ �

(
T ∗Y ×

Y
X,-1

(T ∗Y×
Y

X)×Y

)
,

�
(

T ∗Y,-1
T ∗Y×Y

)
−→ �

(
T ∗Y ×

Y
X,-1

T ∗Y×X

)
.



212 M. Kashiwara, P. Schapira, F. Ivorra and I. Waschkies

We denote by σY←X , σX→Y and σX |Y the images of the section σX , σY and σY (defined
in 2.1.5), respectively. We set

LY←X = LσY←X

((
T ∗Y ×

Y
X

)
×
X

X,

(
T ∗Y ×

Y
X

)
× X

)
,

LX→Y = LσX→Y

((
T ∗Y ×

Y
X

)
×
Y

Y, (T ∗Y ×
Y

X)× Y

)
,

LX |Y = LσX |Y

(
T ∗Y ×

Y
X, T ∗Y × X

)
.

Note that if f = idX : X → X , then these three kernels coincide and are isomorphic
to LX .

Lemma 2.4.1. Let f : X → Y be a morphism of manifolds. There are natural isomor-
phisms

(i) LX � R (idT ∗X ×πX )!! KT ∗X ,
(ii) ( fd × idX )

−1 LX � LY←X ,
(iii) LX |Y � (idT ∗Y × f )−1 LY ,
(iv) KT ∗Y ◦

T ∗Y
LX |Y � LX |Y ,

(v) R( fπ × idX )!! LY←X −→ KT ∗Y ◦
T ∗Y

R( fπ × idX )!! LY←X
∼−−→ LX |Y ,

(vi) R( fπ × idX )!! LY←X
∼−−→ LX |Y if f is smooth,

(vii) ( fπ × idY )
−1 LY � LX→Y .

(viii) Moreover, there is a morphism R(idT ∗Y×
Y

X × f )!! LY←X −→ LX→Y which is an

isomorphism if f is smooth.

The results easily follow from the first part of the paper.

Theorem 2.4.2 (proper direct image). Let f : X → Y be a morphism of manifolds
and F ∈ Db (I (KX )). Then

(i) we have a natural morphism and a natural isomorphism

R fπ !! fd
−1μXF −→ KT ∗Y ◦R fπ !! fd

−1μXF
∼−−→ μY (R f!!F) ;

(ii) if f is smooth we get an isomorphism

R fπ !! fd
−1μXF

∼−−→ μY (R f!!F) .

Proof. We have fd
−1μXF � LY←X ◦F by Lemma 2.4.1 (ii), and a natural morphism

by Lemma 2.4.1 (v),

R( fπ × idX )!! LY←X −→ KT ∗Y ◦
T ∗Y

R( fπ × idX )!! LY←X
∼−−→ LX |Y .
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However (R( fπ × idX )!! LY←X ) ◦ F � R fπ !! fd
−1μXF and L X |Y ◦ F � μY (R f!!F).

Hence we get natural morphisms

R fπ !! fd
−1μXF −→ KT ∗Y ◦R fπ !! fd

−1μXF
∼−−→ μY (R f!!F) ,

which are isomorphisms if f is smooth by Lemma 2.4.1 (vi). ��
Proposition 2.4.3 (inverse image). Let f : X → Y be a morphism of manifolds and
G ∈ Db (I (KY )). Then

(i) we have a natural morphism

fd
−1μX ( f −1G) −→ fπ

−1μY G,

which is an isomorphism if f is smooth,
(ii) we have a natural morphism

μX ( f −1G) −→ R fd∗ fπ
−1μY G.

Proof. We have

fd
−1μX

(
f −1G

)
� LY←X ◦ f −1G and fπ

−1μY G � LX→Y ◦G.

Since LY←X ◦ f −1G �
(

R (idT ∗Y×
Y

X × f )!! LY←X

)
◦ G, we deduce a morphism by

Lemma 2.4.1 (viii):

fd
−1μX

(
f −1G

)
�
(

R (idT ∗Y×
Y

X × f )!! LY←X

)
◦ G −→ LX←Y ◦G � fπ

−1μY G,

which is an isomorphism whenever f is smooth. By adjunction we get then the inverse
image morphism μX ( f −1G) −→ R fd∗ fπ−1μY G. ��
Theorem 2.4.4 (embedding case). Let f : X ↪→ Y be a closed embedding. Then the
following statements hold: for G ∈ Db (I (KY )):

(i) we have a natural morphism

R fd !! fπ
−1μY (G) −→ μX ( f −1G),

(ii) if X is non-characteristic for G (i.e., SS0(G) ∩ T ∗X Y ⊂ T ∗Y Y ), then the morphism
in (i) is an isomorphism and SS0( f −1G) ⊂ fd fπ−1 SS0(G).

Proof. (i) Consider the following diagrams:

T ∗X T ∗Y ×
Y

X
fd��

� �

fπ
��

T ∗Y

and X T ∗Y ×
Y

X
p�� (

T ∗Y ×
Y

X
) × X

p2 ��p1��
� �

f ′
��

X� �

f

��
T ∗Y ×

Y
X

(
T ∗Y ×

Y
X
)× Y

p′2 ��
p′1�� Y.
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We have

fd
−1μX

(
f −1G

)
� LY←X ◦ f −1G and fπ

−1μY G � LX→Y ◦G.
Since f is a closed immersion, fd is smooth and we get

fd
!μX

(
f −1G

)
� (

LY←X ◦ f −1G
)⊗ ωT ∗Y×

Y
X/T ∗X .

Since the cotangent bundles are canonically orientable, we have

ωT ∗Y×
Y

X/T ∗X � p−1ωX/Y [2(dim Y − dim X)] � p−1ω⊗−1
X/Y ,

where p : T ∗Y ×
Y

X → X is the projection. Hence we get

fd
!μX

(
f −1G

) � (
LY←X ◦ f −1G

)⊗ p−1ω⊗−1
X/Y .

Now since f ′ is a closed immersion, LY←X � f ′ ! LX→Y using Proposition 1.3.7,
which induces a morphism

f ′−1 LX→Y → LY←X ⊗ω⊗−1
X×(T ∗Y×

Y
X)/Y×(T ∗Y×

Y
X)

� LY←X ⊗p−1
2 ω⊗−1

X/Y � LY←X ⊗p−1
1 p−1ω⊗−1

X/Y .

Then the preceding morphism together with the adjunction morphism id → R f ′∗ f ′−1 �
R f ′!! f ′−1 provides a morphism

fπ
−1μY G � LX→Y ◦G = Rp′1!!(LX→Y ⊗p′−1

2 G)

� R p′1!! R f ′!! f ′−1
(LX→Y ⊗p′−1

2 G)

−→ R p1!!(LY←X ⊗p−1
1 p−1ω⊗−1

X/Y ⊗ p−1
2 f −1G)

� (LY←X ◦ f −1G)⊗ p−1ω⊗−1
X/Y .

Finally we obtain a morphism

fπ
−1μY G −→ (LY←X ◦ f −1G)⊗ p−1ω⊗−1

X/Y

� fd
−1μX

(
f −1G

)
⊗ p−1ω⊗−1

X/Y � fd
!μX

(
f −1G

)
,

and by adjunction the desired morphism

R fd !! fπ
−1μY (G) −→ μX ( f −1G).

(ii) Assume now that X is non-characteristic for G. By induction we may assume that
X is a hypersurface in Y . For p ∈ T ∗X , let us show that R fd !! fπ−1μY (G)⊗ K̃p

∼−−→
μX ( f −1G)⊗ K̃p.
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Assume first that p ∈ T ∗X X . Since X is non characteristic for G we get

R fd!! f −1
π μY G⊗ K̃p � R fd!!

(
f −1
π μY G⊗ K̃T ∗X Y

)⊗ K̃p

� R fd!!
(

f −1
π

(
μY G⊗ K̃T ∗Y Y

))⊗ K̃p

� R fd!!
(

f −1
π (π−1

Y G⊗ K̃T ∗Y Y )
)⊗ K̃p

� R fd!!
(

f −1
d π−1

X f −1G⊗ K̃T ∗Y Y×
Y

X
)⊗ K̃p

� π−1
X f −1G⊗ R fd!! K̃T ∗Y Y×

Y
X ⊗ K̃p � π−1

X f −1G⊗ K̃p

� μX f −1G⊗ K̃p .

Assume now that p �∈ T ∗X X . Consider the following diagram:

Note that

R fd!! f −1
π μY G � (Rr!! LX→Y )◦G and μX f −1G � LX ◦ f −1G � (R f1!! LX )◦G.

Hence we have to prove that(
Rr!! LX→Y ⊗ K̃p

) ◦ G � (
R f1!! LX ⊗ K̃p

) ◦ G.

Here we identify p ∈ T ∗X with
(

p, f (πX (p))
) ∈ T ∗X × Y . Take a local coordi-

nate system (t, x) = (t, x1, . . . , xn) of Y such that X is given by t = 0 and denote
by (t, x, τ, ξ) and (x, ξ) the associated coordinates on T ∗Y and T ∗X , respectively.
Set p = (0, ξ0). Let ((x, τ, ξ), (t ′, x ′)) be the coordinates of (T ∗Y ×

Y
X) × Y . Then

r((x, τ, ξ), (t ′, x ′)) = ((x, ξ), (t ′, x ′)). We have

Rr!! LX→Y ⊗ K̃p

� Rr!!

⎛⎝ “lim−→”

ε>0, R>0

K{τ t ′+〈ξ0,x ′−x〉>ε(|t ′|+|x ′−x |), |τ |<R}[dim Y ]

⎞⎠⊗ K̃p .

Since the fiber of {τ t ′ + 〈ξ0, x ′ − x〉 > ε(|t ′| + |x ′ − x |), |τ | < R} over ((x, ξ), t ′, x ′)
is a non-empty open interval if R|t ′| + 〈ξ0, x ′ − x〉 > ε(|t ′| + |x ′ − x |), and empty
otherwise, we obtain
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Rr!! LX→Y ⊗ K̃p �
⎛⎝ “lim−→”

ε>0, R>0

K{R|t ′|+〈ξ0,x ′−x〉>ε(|t ′|+|x ′−x |)}[dim Y − 1]

⎞⎠⊗ K̃p .

Therefore

(
Rr!! LX→Y ⊗ K̃p

) ◦ G �
⎛⎝ “lim−→”

ε>0, R>0

K{R|t ′|+〈ξ0,x ′−x〉>ε|x ′−x |}[dim X]⊗ K̃p

⎞⎠◦ G.

On the other hand we have

(
R f1!! LX ⊗ K̃p

) ◦ G �
⎛⎝R f1!!

(
“lim−→”

ε>0

K{〈ξ0,x ′−x>ε|x ′−x |}[dim X]
)⊗ K̃p

⎞⎠ ◦ G

�
⎛⎝“lim−→”

ε>0

K{〈ξ0,x ′−x〉>ε|x ′−x |, t ′=0}[dim X]⊗ K̃p

⎞⎠ ◦ G.

Hence it is enough to show that⎛⎝ “lim−→”

ε>0, R>0

K{R|t ′|+〈ξ0,x ′−x〉>ε|x ′−x |, 0<t ′} ⊗ K̃p

⎞⎠ ◦ G � 0.

Let us set Uε, δ, R = {R t ′ + 〈ξ0, x ′ − x〉 > |x − x |, 0 < t ′ ≤ δ}. For ε, δ suffi-
ciently small and R sufficiently large, SS(KUε, δ, R ) is contained in a sufficiently small
neighborhood of −Rdt ′ + 〈ξ0, d(x − x ′)〉 on a neighborhood of p. Hence we obtain

SS(KUε, δ, R )
a ∩ T ∗(T ∗X)× SS0(G) ⊂ T ∗(T ∗X)× T ∗Y X

on a neighborhood of p for R 2 0.
Therefore Proposition 2.3.12 implies that(

KUε, δ, R ◦ K̃�Y

) ◦ G � KUε, δ, R ◦G on a neighborhood of p for R 2 0.

Hence we have reduced the problem to⎛⎝ “lim−→”

ε>0, δ>0 R>0

KUε, δ, R ⊗ K̃p

⎞⎠ ◦ K̃�Y � 0.

Consider the projection on the first and third factors

h : T ∗X×Y ×Y −→ T ∗X×Y i.e., ((x; ξ), (t ′, x ′), (t ′′, x ′′)) 	→ ((x; ξ), (t ′′, x ′′)).

Then⎛⎝ “lim−→”

ε>0, δ>0 R>0

KUε, δ, R ⊗ K̃p

⎞⎠ ◦ K̃�Y � Rh!!

⎛⎝ “lim−→”

ε>0, δ>0 R>0

KVε, δ, R

⎞⎠⊗ K̃p,

where Vε, δ, R = {R t ′ +〈ξ0, x ′ − x〉 > ε|x ′− x |, 0 < t ′ ≤ δ, |x ′ − x ′′| ≤ δ, |t ′ − t ′′| ≤
δ}. This vanishes by the following lemma. ��
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Sublemma 2.4.5. Let (t, t ′, x, y) = (t, t ′, x1, . . . , xn, y1, . . . , yn) be the coordinates
of R × R × Rn × Rn, and let h : R × R × Rn × Rn → R × Rn be the projection,
h(t, t ′, x, y) = (t ′, y). For ξ ∈ Rn \{0} and δ > 0, set Vδ = {(t, t ′, x, y); t+〈ξ0, x〉 >
|x |, |x − y| ≤ δ, 0 < t ≤ δ, |t − t ′| ≤ δ}. Then

Supp
(
Rh! KVδ

) �$ 0.

Proof. Let us decompose h into R×R×Rn ×Rn h1−−→ R×Rn ×Rn h2−−→ R×Rn ,
where h1(t, t ′, x, y) = (t ′, x, y) and h2(t ′, x, y) = (t ′, y). When |x− y| ≤ δ, the fiber
Vδ∩h−1

1 (t ′, x, y) is {t;max(0, |x |−〈ξ0, x〉) < t ≤ min(δ, t ′ +δ), t ′ −δ ≤ t}. Hence,
setting

Wδ = {(t ′, x, y);max(0, |x | − 〈ξ0, x〉) < t ′ − δ ≤ min(δ, t ′ + δ), |x − y| ≤ δ},
we have Rh1! KVδ � KWδ . Since Supp(KWδ ) ⊂ {(t ′, x, y); δ ≤ t ′}, we obtain

Supp(Rh! KVδ ) ⊂ {(t ′, y); δ ≤ t ′}. ��

2.5. Microlocal convolution of kernels

Let X , Y and Z be manifolds, and let pi j be the (i, j)-th projection from T ∗X ×
T ∗Y × T ∗Z . As usual, denote by a : T ∗X → T ∗X the antipodal map. Then define the
antipodal projection pa

12 by

pa
12 : T ∗X × T ∗Y × T ∗Z

p12−−→ T ∗X × T ∗Y id×a−−−−→ T ∗X × T ∗Y.

For F ∈ Db(I(KT ∗X×T ∗Y )) and G ∈ Db(I(KT ∗Y×T ∗Z )), we set

F
a◦ G = Rp13!!

(
pa−1

12 F ⊗ p−1
23 G

)
.

In an analogous way, for S1 ⊂ T ∗X × T ∗Y and S2 ⊂ T ∗Y × T ∗Z , we set

S1
a×

T ∗Y
S2 = pa−1

12 (S1) ∩ p−1
23 (S2) ⊂ T ∗X × T ∗Y × T ∗Z .

Now we are ready to state the main theorem:

Theorem 2.5.1 (Microlocal convolution of kernels). Let K1 ∈ Db(I(KX×Y )) and
K2 ∈ Db(I(KY×Z )).

(i) There is a natural morphism

μX×Y K1
a◦ μY×ZK2 −→ μX×Z (K1 ◦K2). (2.9)

(ii) Assume the non-characteristic condition

SS0(K1)
a×

T ∗Y
SS0(K2) ∩ (T ∗X X × T ∗Y × T ∗Z Z)

⊂ T ∗X X × T ∗Y Y × T ∗Z Z . (2.10)
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Then (2.9) is an isomorphism outside

p13
(

SS0(K1)
a×

T ∗Y
SS0(K2) ∩ T ∗X × T ∗Y Y × T ∗Z

)
.

Proof. (a) We shall first construct the morphism. Consider the manifolds X1 = X ×
Y , X2 = Y × Z and X = X1 × X2 = X × Y × Y × Z together with the diagonal
embedding

Y := X × Y × Z
j
↪→ X.

Denote by Z = X × Z , and let q13 : Y → Z be the projection. The map

T ∗Y ↪→ Y×
X

T ∗X given by (x, y, z; ξ, η, ζ ) 	→ (x, y, y, z; ξ,−η, η, ζ )
defines the cartesian square in the following commutative diagram:

By Proposition 2.1.14, we have an isomorphism

KT ∗X◦(μX1K1 � μX2K2) � μX(K1 � K2).

By Theorem 2.4.4 we have a morphism

R jd!! j−1
π μX(K1 � K2) −→ μY( j−1(K1 � K2)). (2.11)

Since q13 is smooth we also have an isomorphism by Theorem 2.4.2 (ii):

Rq13π!!q
−1
13dμY( j−1(K1 � K2))

∼−−→ μZ(Rq13!! j−1(K1 � K2)) � μZ(K1 ◦K2).

Hence we get a morphism

Rq!! p−1
(

KT ∗X◦(μX1K1 � μX2K2)
)
−→ μZ(K1 ◦K2). (2.12)

Hence we obtain

μX1K1
a◦ μX2K2 � Rq!! p−1(μX1K1 � μX2K2)

−→ Rq!! p−1
(

KT ∗X◦(μX1K1 � μX2K2)
)
−→ μZ(K1 ◦K2).
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(b) By Theorem 2.4.4, (2.11) is an isomorphism under the non-characteristic hypoth-
esis, and hence (2.12) is also an isomorphism under the same hypothesis.

Therefore in order to show (ii), it is enough to show that

μX1
K1

a◦ μX2
K2 � Rq!! p−1

(
KT ∗X◦(μX1

K1 � μX2
K2)

)
outside p13

(
SS0(K1)

a×
T ∗Y

SS0(K2) ∩ T ∗X × T ∗Y Y × T ∗Z
)
.

(2.13)

First note that

μX1K1
a◦ μX2K2 � (KT ∗X1 ◦μX1K1)

a◦ (KT ∗X1 ◦μX2K2)

� (
KT ∗X1

◦
T ∗Y

KT ∗X2

) ◦ (μX1K1 � μX2K2
)
.

Consider the diagram

Then we have

Rq!! p−1
(

KT ∗X◦(μX1K1 � μX2K2)
)
� (

Rq ′!! p′−1 KT ∗X
) ◦ (μX1K1 � μX2K2).

Using Proposition 1.3.3 and Corollary 1.3.5, we have

Rq ′!! p′−1 KT ∗X � Lσ
(
T ∗Y, T ∗Z× T ∗X

)
,

where T ∗Y is embedded into T ∗Z× T ∗X by (q, p) and the section σ is given by

σ = (ωX , ωZ ,−ωX ,−ωY ,−ωY ,−ωZ ).

In order to see (2.13) under the non-characteristic hypothesis, it is enough to show
that

KT ∗X1
◦

T ∗Y
KT ∗X2

−→ Lσ
(
T ∗Z ×

T ∗Z
T ∗Y, T ∗Z× T ∗X

)
is an isomorphism on T ∗Z×(

T ∗X × Ṫ ∗(Y × Y )× T ∗Z
) ⊂ T ∗Z× T ∗X.

(2.14)

However it is a consequence of Proposition 1.3.12 (note that (iii) and (v) in the propo-
sition fail on T ∗X × T ∗Y Y × T ∗Z ). ��

2.6. A vanishing theorem for microlocal holomorphic functions

Theorem 2.6.1. Let X be a complex manifold of dimension n. Then, μX (OX )|Ṫ ∗X is
concentrated in degree −n.
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Proof. We may assume X = Cn . Let q1 : T ∗X × X → T ∗X and q2 : T ∗X × X → X
be the projections. Let p = (x0, ξ0) ∈ Ṫ ∗X . Then, we have

μX (OX )⊗ C̃p � C̃p ⊗Rq1!!

⎛⎝“lim−→”

ε,δ>0

(CFδ,ε ⊗q−1
2 OX )

⎞⎠ [2n],

where Fδ,ε =
{(
(x, ξ), x ′

); δ � 〈ξ0, x ′ − x〉 > ε|x ′ − x |}. Hence it is enough to show
that

Rq1!(CFδ,ε ⊗q−1
2 OX )

is concentrated in degree n. We have

Rq1!(CFδ,ε ⊗q−1
2 OX )(x1,ξ1) � R�c

({x ′ ∈ X; δ � 〈ξ0, x ′ − x1〉 > ε|x ′ − x1|},OX
)
.

The cohomology with compact support of OX on the difference of two convex open
subsets is concentrated in degree n. ��

Now H−n
(
μX (OX )|Ṫ ∗X

)
has a structure of EX |Ṫ ∗X -module, i.e., there exists a

canonical ring homomorphism EX |Ṫ ∗X → End
(
H−n(μX (OX )|Ṫ ∗X )

)
.

Indeed, let pk : X × X → X be the k-th projection, and O
(0,n)
X×X :=OX×X ⊗p−1

2 OX

p−1
2 O

(n)
X . We have morphisms R p1!(O

(0,n)
X×X [n]⊗ p−1

2 OX )→ Rp1!(O
(0,n)
X×X [n])→ OX

which induce O
(0,n)
X×X [n] → RHom(p−1

2 OX , p!
1OX ). Thus we obtain

EX → μ�X (O
(0,n)
X×X [n])→ μ�X

(
RHom(p−1

2 OX , p!
1OX )

)
� μhom(OX ,OX ) � RHom

(
μX (OX ), μX (OX )

)
.

Hence, Theorem 2.6.1 implies that μX (OX )|Ṫ ∗X belongs to

Db(Mod
(
EX |Ṫ ∗X , I(CṪ ∗X )

))
,

the derived category of the abelian category Mod
(
EX |Ṫ ∗X , I(CṪ ∗X )

)
of ind-sheaves F

on Ṫ ∗X endowed with a ring homomorphism EX |Ṫ ∗X → End (F). This implies the
following theorem.

Theorem 2.6.2. Let X be a complex manifold. Then F 	→ μhom(F,OX )|Ṫ ∗X is a well
defined functor from Db(CX ) to Db(EX |Ṫ ∗X ).

Acknowledgments

The authors would like to thank A. D’Agnolo for many helpful comments.



Microlocalization of ind-sheaves 221

References

[K] M. Kashiwara, Quantization of contact manifold, Publ. of Research Institute for Math-
ematical Sciences, 32 no.1 (1996) 1–7.

[KS1] M. Kashiwara and P. Schapira, Ind-Sheaves, Astérisque, Vol. 271, Soc. Math. France,
2001.

[KS2] ——, Sheaves on Manifolds, Springer, 1990.
[KS3] ——, Microlocal Study of Sheaves, Astérisque, Vol. 128, Soc. Math. France, 1985.
[KS4] ——, Microlocal Study of Ind-Sheaves I: Micro-Support and Regularity, Astérisque,

Vol. 284, Soc. Math. France, 2003.
[KS5] ——, Ind-sheaves, distributions, and microlocalization, Sém Ec. Polytechnique, May

18, 1999, arXiv:math.AG/9906200.
[S] M. Sato, Hyperfunctions and partial differential equations, in Proc. Int. Conf. on Func-

tional Analysis and Related Topics, Tokyo Univ. Press, 1969.
[SKK] M. Sato, T. Kawai, and M. Kashiwara, Hyperfunctions and pseudo-differential equa-

tions, in Komatsu (ed.), Hyperfunctions and pseudo-differential equations, Proceedings
Katata 1971, Lecture Notes in Mathematics, Springer, Vol. 287, 1973, pp. 265–529.

[W] I. Waschkies, The stack of microlocal perverse sheaves, Bull. Soc. Math. France, 132
no.3, (2004) pp 397–462.



Endoscopic decomposition of certain depth zero
representations

David Kazhdan1 and Yakov Varshavsky2∗

Institute of Mathematics
The Hebrew University of Jerusalem
Givat-Ram
Jerusalem 91904
Israel
1kazhdan@math.huji.ac.il
2vyakov@math.huji.ac.il

Dedicated to A. Joseph on his 60th birthday

Summary. We construct an endoscopic decomposition for local L-packets associated to ir-
reducible cuspidal Deligne–Lusztig representations. Moreover, the obtained decomposition is
compatible with inner twistings.

Key words: Endoscopy, Deligne–Lusztig representations

Subject Classifications: Primary: 22E50; Secondary: 22E35

0. Introduction

Let E be a local non-archimedean field, � ⊃ W ⊃ I the absolute Galois, the Weil
and the inertia groups of E , respectively. Let G be a reductive group over E , and let
L G = Ĝ � W be the complex Langlands dual group of G. Denote by D(G(E)) the
space of invariant generalized functions on G(E), that is, the space of Int G-invariant
linear functionals on the space of locally constant compactly supported measures on
G(E).

Every admissible homomorphism λ : W → L G (see [Ko1, §10]) gives rise to a
finite group Sλ := π0(ZĜ(λ)/Z(Ĝ)�), where ZĜ(λ) is the centralizer of λ(W ) in Ĝ.
To every conjugacy class κ of Sλ, Langlands [La1] associated an endoscopic subspace
Dκ,λ(G(E)) ⊂ D(G(E)). For simplicity, we will restrict ourselves to the elliptic case,
where λ(W ) does not lie in any proper Levi subgroup of L G.

∗ Both authors were supported by The Israel Science Foundation (Grants No. 38/01 and 241/03).
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Langlands conjectured that every elliptic λ corresponds to a finite set #λ, called
an L-packet, of cuspidal irreducible representations of G(E). Moreover, the subspace
Dλ(G(E)) ⊂ D(G(E)), generated by characters {χ(π)}π∈#λ , should have an en-
doscopic decomposition. More precisely, it is expected ([La1, IV, 2]) that there ex-
ists a basis {aπ}π∈#λ of the space of central functions on Sλ such that χκ,λ :=∑
π∈#λ aπ(κ)χ(π) belongs to Dκ,λ(G) for every conjugacy class κ of Sλ.
The goal of this paper is to construct the endoscopic decomposition of Dλ(G(E))

for tamely ramified λ’s such that ZĜ(λ(I )) is a maximal torus. In this case, G splits
over an unramified extension of E , and λ factors through L T ↪→ L G for an elliptic
unramified maximal torus T of G.

Each κ ∈ Sλ = T̂�/Z(Ĝ)� gives rise to an elliptic endoscopic triple Eκ,λ for G,
while characters of Sλ are in bijection with conjugacy classes of embeddings T ↪→
G, stably conjugate to the inclusion. By the local Langlands correspondence for tori
([La2]), a homomorphism λ : W → L T defines a tamely ramified homomorphism
θ : T (E)→ C×. Therefore each character a of Sλ gives rise to an irreducible cuspidal
representation πa,λ of G(E) (denoted by πa,θ in Notation 2.1.3).

Our main theorem asserts that if the residual characteristic of E is sufficiently
large, then each χκ,λ := ∑

a a(κ)χ(πa,λ) is Eκ,λ-stable (see Definition 1.6.6). More
generally (see Corollary 1.6.12 (b)), for each inner form G′ of G, we denote by χ ′κ,λ
the corresponding generalized function on G′(E), and our main theorem asserts that
χκ,λ and χ ′κ,λ are “Eκ,λ-equivalent” (see Definition 1.6.10 for a more precise term).
Although in this work we show this result only for local fields of characteristic zero,
the case of local fields of positive characteristic follows by approximation (see [KV2]).

Our argument goes as follows. First, we prove the equivalence of the restrictions of
χκ,λ and χ ′κ,λ to the subsets of topologically unipotent elements of G(E) and G′(E). If
the residual characteristic of E is sufficiently large, topologically unipotent elements
of G(E) and G′(E) can be identified with topologically nilpotent elements of the Lie
algebras G(E) and G′(E), respectively. Thus we are reduced to an analogous asser-
tion about generalized functions on Lie algebras. Now the equivalence follows from a
combination of a Springer hypothesis (Theorem A.1), which describes the trace of a
Deligne–Lusztig representation in terms of Fourier transform of an orbit, and a gener-
alization of a theorem of Waldspurger [Wa2] to inner forms, which asserts that up to a
sign, Fourier transform preserves the equivalence.

To prove the result in general, we use the topological Jordan decomposition
([Ka2]). We would like to stress that in order to prove just the stability of χκ,λ one
still needs a generalization of [Wa2] to inner forms.

This paper is organized as follows.
In the first section we give basic definitions and constructions of a rather general

nature. In particular, most of the section is essentially a theory of endoscopy, which
was developed by Langlands, Shelstad and Kottwitz. In order to incorporate both the
case of algebraic groups and Lie algebras we work in a more general context of alge-
braic varieties equipped with an action of Gad.

More precisely, in Subsection 1.1 we recall basic properties, results and construc-
tions concerning inner twistings and stable conjugacy. In Subsections 1.2 and 1.3 we
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give basic definitions and properties of dual groups and of endoscopic triples. Then in
Subsection 1.4 we prove that certain subsets of the group Z(Ĝad)� are actually sub-
groups. Unfortunately, this result is proved case-by-case. In Subsection 1.5 we spe-
cialize previous results to the case of endoscopic triples over local non-archimedean
fields.

In Subsection 1.6 we define the notions of stability and equivalence of generalized
functions, while in Subsection 1.7 we write down explicitly the condition for stability
and equivalence for generalized functions coming from invariant locally L1 functions.
Note that the notion of equivalence is much more subtle than that of stability. In par-
ticular, it depends not just on an endoscopic triple but also on a triple (a, a′; [b]),
consisting of compatible embeddings of maximal tori into G, G′ and the endoscopic
group.

We finish the section by Subsection 1.8 in which we study basic properties of
certain equivariant maps from reductive groups to their Lie algebras, which we call
quasi-logarithms. We use these maps to identify topologically unipotent elements of
the group with topologically nilpotent elements of the Lie algebra.

The second section is devoted to the formulation and the proof of the main theorem.
More precisely, in Subsection 2.1 we give two equivalent formulations of our main
result. In Subsection 2.2 we prove the equivalence of the restrictions of χκ,λ and χ ′κ,λ
to topologically unipotent elements.

In Subsection 2.3 we rewrite character χ(πa,θ ) of G(E) in terms of restrictions to
topologically unipotent elements of corresponding characters of centralizers Gδ(E).
For this we use the topological Jordan decomposition. In the next Subsection 2.4 we
compare endoscopic triples for the group G and for its centralizers Gδ(E). Finally, in
Subsections 2.5–2.7 we carry out the proof itself.

We finish the paper by two appendices of independent interest, crucially used in
Subsection 2.2. In Appendix A we prove the Springer hypothesis. In the case of large
characteristic this result was proved by the first author in [Ka1]. For the proof in gen-
eral, we use Lusztig’s interpretation of a trace of the Deligne–Lusztig representation in
terms of character sheaves [Lu] and results of Springer [Sp] on the Fourier transform.

In Appendix B we prove a generalization of both the theorem of Waldspurger
[Wa2] and that of Kazhdan–Polishchuk [KP, Thm. 2.7.1] (see also Remark B.1.3). Our
strategy is very similar to those of [Wa2] and [KP]. More precisely, using stationary
phase principle and the results of Weil [We], we construct in Subsection B.2 certain
measures whose Fourier transform can be explicitly calculated. Then in Subsection
B.3 we extend our data over a local field to a corresponding data over a number field.
Finally, in Section 1.4 we deduce our result from a simple form of the trace formula.

For the convenience of the reader, we also include a list of main terms and symbols,
indexed by the page number in which they first appear.

This work is an expanded version of the announcement [KV1]. In the process
of writing, we have learned that DeBacker and Reeder obtained similar results (see
[DBR]). After the work was completed, it was pointed out to us that our scheme of the
argument is similar to the one used by Mœglin–Waldspurger in [MW].

We would like to thank the referee for his numerous valuable remarks.
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Notation and conventions

For a finite abelian group A, we denote by AD the group of complex characters of
A.

For an algebraic group G, we denote by G0, Z(G), Gad, Gder and W (G) the con-
nected component of the identity of G, the center of G, the adjoint group of G, the
derived group of G, and the Weyl group of G, respectively. Starting from 1.1.9, G will
always be assumed to be reductive and connected, in which case we denote by Gsc the
simply connected covering of Gder.

We denote by G, H, T and L Lie algebras of algebraic groups G, H , T and L,
respectively.

Let an algebraic group G act on an algebraic variety X . For each x ∈ X , we denote
by Gx and Gx the stabilizers of x in G and G, respectively. Explicitly, Gx is the kernel
of the differential at g = 1 of the morphism G → X (g 	→ g(x)). (Note that x and
therefore also Gx and Gx will have different meanings starting from 1.8.5.)

Each algebraic group acts on itself by inner automorphisms and by the adjoint ac-
tion on its Lie algebra. For each g ∈ G we denote by Int g and Ad g the corresponding
elements in Int G ⊂ Aut(G) and Ad G ⊂ Aut(G), respectively.

For a field E , we denote by E a fixed algebraic closure of E , and by Esep the
maximal separable extension of E in E . � will always be the absolute Galois group of
E . When � acts on a set X we will write σ x instead of σ(x).

For a reductive algebraic group G over E , we denote by rkE (G) the rank of G over
E , and put e(G) := (−1)rkE (Gad). We also set e′(G) := e(G)e(G∗), where G∗ is the
quasi-split inner form of G. Then e′(G) coincides with the sign defined by Kottwitz
([Ko5]).

Starting from Subsection 1.5, E will be a local non-archimedean field with ring of
integers O, maximal ideal m, and residue field Fq of characteristic p. We denote by
Enr the maximal unramified extension of E in E . Starting from Subsection 2.2, we
will assume that the characteristic of E is zero.

1. Basic definitions and constructions

1.1. Stable conjugacy

In this subsection we recall basic definitions and constructions concerning inner forms
and stable conjugacy.

Let G be an algebraic group over a field E . Starting from 1.1.9, we will assume
that G is reductive and connected.

Let X be an algebraic variety over E (that is, a reduced scheme locally of finite
type over E) equipped with an action of Gad (that is, with an action of G, trivial on
Z(G)).

Our basic examples will be X = G and X = G with the natural action of Gad.
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1.1.1. Inner twistings (a) Let G′ be an algebraic group over E . Recall that an inner
twisting ϕ : G → G′ is an isomorphism ϕ : GEsep

∼→ G′
Esep such that for each

σ ∈ � the automorphism cσ := ϕ−1σ ϕ ∈ Aut(G) is inner. In this case, {cσ }σ form a
cocycle of � in Int G = Gad, and we denote by inv(ϕ) = inv(G,G′) ∈ H 1(E,Gad)
the corresponding cohomology class.

(b) Two inner twistings are called isomorphic if they differ by an inner automor-
phism. Then the map (ϕ : G → G′) 	→ inv(G,G′) gives a bijection between the set
of isomorphism classes of inner twistings of G and H 1(E,Gad).

(c) Each inner twisting ϕ : G → G′ gives rise to a twisting ϕX : X → X ′,
where X ′ is an algebraic variety over E equipped with an action of G′, and ϕX is a
GEsep ∼= G′

Esep -equivariant isomorphism X Esep
∼→ X ′Esep . Explicitly, X ′ is a twist of X

by the image of the cocycle {cσ }σ ⊂ Gad in Aut(X). In particular, for each σ ∈ � we
have σ ϕX = ϕ ◦ cσ .

By construction, for each x ∈ X and g ∈ G, we have ϕX (g(x)) = ϕ(g)(ϕX (x)).
(d) An inner twisting ϕ is called trivial, if inv(ϕ) = 1. Explicitly, ϕ is trivial if and

only if there exists g ∈ G(Esep) such that ϕ ◦ Int g induces an isomorphism G
∼→ G′

over E . In particular, the identity map IdG : G → G is a trivial inner twisting.

Definition 1.1.2. (a) Two points x, x ′ ∈ X (E) are called conjugate if there exists
g ∈ G(E) such that x ′ = g(x).

(b) Let ϕ : G → G′ be an inner twisting, and ϕX : X → X ′ the corresponding
twisting. Elements x ∈ X (E) and x ′ ∈ X ′(E) are called Esep-conjugate if there exists
g ∈ G(Esep) such that x ′ = ϕX (g(x)).

(c) When G and Gx (and hence also G′ and G′
x ′) are connected reductive groups,

Esep-conjugate x and x ′ are also called stably conjugate.

Remark 1.1.3. All of our examples will satisfy assumption (c). In this case, our notion
of stable conjugacy generalizes the standard one (see [Ko3]).

1.1.4. Cohomological invariants Let x ∈ X (E) and x ′ ∈ X ′(E) be Esep-conjugate
elements. Denote by Gx,x ′ the set of g ∈ G(Esep) such that x ′ = ϕX (g(x)).

(a) Assume that ϕ = IdG . Then for each g ∈ Gx,x ′ , the map σ 	→ g−1σ g defines
a cocycle of � in Gx . Moreover, the corresponding cohomology class inv(x, x ′) ∈
H 1(E,Gx ) is independent of g. Furthermore, the correspondence x ′ 	→ inv(x, x ′)
gives a bijection between the set of conjugacy classes of x ′ ∈ X (E) stably conjugate
to x and Ker [H 1(E,Gx )→ H 1(E,G)] (compare [Ko2, 4.1]).

(b) Let ϕ be general. Then for each g ∈ Gx,x ′ , the map σ 	→ g−1(ϕ−1σ ϕ)σ g
defines a cocycle of � in Gx/Z(G) = (Gad)x ⊂ Int G. Moreover, the corresponding
cohomology class inv(x, x ′) ∈ H 1(E, (Gad)x) is independent of g. Furthermore, the
correspondence x ′ 	→ inv(x, x ′) gives a surjection from the set of conjugacy classes
of x ′ ∈ X ′(E) stably conjugate to x to the preimage of inv(G,G′) ∈ H 1(E,Gad) in
H 1(E, (Gad)x).

When ϕ = IdG , then inv(x, x ′) is the image of inv(x, x ′) under the natural projec-
tion H 1(E,Gx )→ H 1(E, (Gad)x).
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(c) For each g ∈ Gx,x ′ , the map h 	→ ϕ(ghg−1) defines an inner twisting Gx →
G′

x ′ . Moreover, the corresponding invariant inv(Gx ,G′
x ′) ∈ H 1(E, (Gx)

ad) is just
the image of inv(x, x ′). In particular, G′

x ′ is canonically identified with Gx , if Gx is
abelian.

(d) Assume that Gx is abelian, and let y ∈ X (E) and y ′ ∈ X ′(E) be Esep-
conjugates of x and x ′. Then the identification G′

y′ = G′
x ′ = Gx = Gy identifies

inv(y, y ′) with the product of inv(x, x ′) and the images of inv(y, x) and inv(x ′, y ′).
Moreover, if ϕ = IdG , the same identification identifies inv(y, y ′) with the product
inv(y, x) inv(x, x ′)inv(x ′, y ′).

1.1.5. Generalization (Compare [LS, (3.4)]). Let ϕ : G → G′ be an inner twisting,
X1, . . . , Xk a k-tuple of algebraic varieties over E equipped with an action of Gad,
and X ′1, . . . , X ′k the corresponding inner twistings. Let xi ∈ Xi (E) and x ′i ∈ X ′i (E) be
Esep-conjugate for each i = 1, . . . , k.

Choose representatives c̃σ ∈ G(Esep) of cσ = ϕ−1σ ϕ ∈ Gad(Esep) for all σ ∈ �
and choose elements gi ∈ G(Esep) such that x ′i = ϕXi (gi(xi )) for i = 1, . . . , k. Then
the map σ 	→ [(g−1

i c̃σ σ gi )i ] ∈ Gk/Z(G) gives a cocycle of � in (
∏

i Gxi )/Z(G),
independent of the choice of c̃σ ’s, and the corresponding cohomology class

inv((x1, x ′1); . . . ; (xk, x ′k)) ∈ H 1

(
E,

(∏
i

Gxi

)/
Z(G)

)

of [(g−1
i c̃σ σ gi)i ] is independent of the gi ’s.

Note that inv((x1, x ′1); . . . ; (xk, x ′k)) lifts both

(inv(xi , x ′i )i ) ∈
∏

i

H 1(E,Gxi /Z(G))

and �(inv(G, G′)) ∈ H 1(E, (Gk)/Z(G)). (Here � : Gad → (Gk)/Z(G) is the
diagonal embedding.)

The following result follows immediately from definitions.

Lemma 1.1.6. (a) inv((x1, x ′1); . . . ; (xk, x ′k)) depends only on the conjugacy classes
of xi ’s and x ′i ’s.

(b) If ϕ = IdG, then inv((x1, x ′1); . . . ; (xk, x ′k)) is the image of ((inv(xi , x ′i )i ) ∈
H 1(E,

∏
i Gxi ).

(c) The canonical projection (
∏k

i=1 Gxi )/Z(G)→ (
∏k−1

i=1 Gxi )/Z(G) maps
inv((x1, x ′1); . . . ; (xk, x ′k)) to inv((x1, x ′1); . . . ; (xk−1, x ′k−1)).

(d) The diagonal map Gx/Z(G) ↪→ (Gx)
2/Z(G) maps

inv(x, x ′) ∈ H 1(E,Gx/Z(G))

to inv((x, x ′); (x, x ′)) ∈ H 1(E, (Gx)
2/Z(G)).
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(e) Assume that each Gxi is abelian, yi ∈ Xi (E) is an Esep-conjugate of xi , and y ′i ∈
X ′i (E) is an Esep-conjugate of x ′i . Then identifications Gxi = Gyi = Gx ′i identify

inv((y1, y ′1); . . . ; (yk, y ′k)) with the product of inv((x1, x ′1); . . . ; (xk, x ′k)) and the
images of ((inv(yi , xi )i ) ∈ H 1(E,

∏
i Gyi ) and ((inv(x ′i , y ′i )i ) ∈ H 1(E,

∏
i Gx ′i ).

(f) Let ϕ′ : G′ → G′′ be another inner twisting, ϕ′X ′ : X ′ → X ′′ the correspond-
ing twisting of X ′, and x ′′i ∈ X ′′(E) a stable conjugate of xi and x ′i for each
i = 1, . . . , k. If each Gxi is abelian, then identifications Gxi = Gx ′i identify

inv((x1, x ′′1 ); . . . ; (xk, x ′′k ))inv((x1, x ′1); . . . ; (xk, x ′k))−1 with inv((x ′1, x ′′1 ); . . . ;
(x ′k, x ′′k )).

Notation 1.1.7. (a) For each x ∈ X (E), we denote by [x] ⊂ X (E) the Esep-conjugate
class of x and by ax : Gx ↪→ G the corresponding inclusion map.

(b) When G is reductive and connected, we denote by X sr the set of x ∈ X such
that Gx ⊂ G is a maximal torus and Gx ⊂ G is a Lie algebra of Gx . We will call
elements of X sr strongly regular.

Remark 1.1.8. The condition on Gx holds automatically if the characteristic of E is
zero.

From now on we will assume that G is reductive and connected, and T is a torus
over E of the same absolute rank as G.

1.1.9. Embedding of tori (a) There exists an affine variety Emb(T,G) over E equi-
pped with an action of Gad such that for every extension E ′/E the set Emb(T,G)(E ′)
classifies embeddings TE ′ ↪→ GE ′ , and G acts by conjugation.

To show the assertion, note that both G and T split over Esep; therefore there
exists an embedding ι : TEsep ↪→ GEsep . Consider the affine variety Embι(T,G) :=
G×NormG(ι(T ))Aut(T ) over Esep. Then the map [g, α] 	→ (Int g)◦ι◦α defines a G(E ′)-
equivariant bijection ψι : Embι(T,G)(E ′) ∼→ Emb(T,G)(E ′) for every extension E ′
of Esep (compare (the proof of) Lemma 1.1.10 (a) below).

For every two embeddings ι1, ι2 : TEsep ↪→ GEsep , there exists a unique iso-
morphism Embι1(T,G)

∼→ Embι2(T,G), compatible with the ψι j ’s, and we define
Emb(T,G) to be the inverse limit of the Embι(T,G)’s. Finally, since Embι(T,G) is a
disjoint union of affine varieties, it descends to E .

(b) For each a ∈ Emb(T,G), the stabilizer Ga = a(T ) is a maximal torus of G,
which we will identify with T . It follows that Emb(T,G)sr = Emb(T,G). Also if
ϕ : G → G′ is an inner twisting, then the corresponding inner twisting Emb(T,G)′ of
Emb(T,G) is naturally isomorphic to Emb(T,G′). In particular, we can speak about
stable conjugacy of embeddings a : T ↪→ G and a′ : T ↪→ G′.

(c) If x ∈ X sr(E) and x ′ ∈ X ′sr(E) are stably conjugate, then ax : Gx ↪→ G and
ax ′ : Gx ∼= G′

x ′ ↪→ G′ are stably conjugate. Moreover, inv(ax , ax ′) = inv(x, x ′), (and
inv(ax , ax ′) = inv(x, x ′) when ϕ = IdG .)

Conversely, for every stably conjugate embeddings a : T ↪→ G and a′ : T ↪→ G′
and each t ∈ T (E), elements a(t) ∈ G(E) and a′(t) ∈ G′(E) are Esep-conjugate.
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Lemma 1.1.10. (a) Every conjugacy class [a] of embeddings TE ↪→ GE contains an
Esep-rational embedding a.

(b) If G is quasi-split, then every �-invariant conjugacy class [a] of embeddings
TE ↪→ GE contains an E-rational embedding a : T ↪→ G.

(c) Let ϕ : G → G′ be an inner twisting such that G ′ is quasi-split. Then for every
embedding a : T ↪→ G there exists an embedding a′ : T ↪→ G′ stably conjugate
to a.

Proof. (a) Let S ⊂ G be a maximal torus over E . Then there exists a ∈ [a] such that
a(TE ) = SE . Since both T and S split over Esep, we get that a is Esep-rational.

(b) When E is perfect, the assertion was shown in [Ko3, Cor. 2.2]. In general, the
proof is similar: Since there is a �-equivariant bijection between maximal tori of G
and those of Gsc, we can assume that G is semisimple and simply connected. Next
fix an Esep-rational a′ ∈ [a], which exists by (a). Since every homogeneous space for
a connected group over a finite field has a rational point, the assertion holds in this
case. Thus we may assume that E is infinite; therefore there exists t ∈ T (E) such that
a′(t) ∈ G(Esep) is strongly regular.

The conjugacy class of a′(t) ∈ G(Esep) is Esep-rational and �-invariant. Thus
it is E-rational. By the theorem of Steinberg [St, Thm 1.7] (when E is perfect) and
Borel and Springer [BS, 8.6] (in the general case) there exists g ∈ G(Esep) such that
ga′(t)g−1 ∈ G(E). Then ga′(t)g−1 ∈ Gsr(E), hence a := ga′g−1 : T ↪→ G is
E-rational.

(c) Since ϕ is an inner twisting, the conjugacy class of ϕ ◦ a : TE ↪→ G′
E

is
�-invariant. Hence by (b), [ϕ ◦ a] contains an E-rational element a′, which by defini-
tion is stably conjugate to a. ��
Corollary 1.1.11. Let ϕ : G → G′ be an inner twisting, and ϕX : X → X ′ the
corresponding twisting. If G ′ is quasi-split, then for every x ∈ X sr(E) there exists
x ′ ∈ X ′sr(E) stably conjugate to x ′.

Proof. Denote by ι : G/Gx ↪→ X the canonical G-equivariant embedding [g] 	→
g(x), and by ι′ : (G/Gx)

′ ↪→ X ′ the twisted map. By Lemma 1.1.10 (c), there
exists an embedding a′x : Gx ↪→ G′ stably conjugate to ax : Gx ↪→ G. More-
over, (G/Gx)

′ is G′-equivariantly isomorphic to G′/a′x(Gx ). It follows that the image
of [1] ∈ G′/a′x(Gx )(E) under ι′ is stably conjugate to x . ��
Definition 1.1.12. By a quasi-isogeny we call a homomorphism π : G̃ → G such
that π(Z(G̃)) ⊂ Z(G) and the induced homomorphism πad : G̃ad → Gad is an
isomorphism.

1.1.13. Quasi-isogenies Let π : G̃ → G be a quasi-isogeny.
(a) Each inner twisting ϕ : G → G′ gives rise to an inner twisting ϕ̃ : G̃ → G̃′

such that inv(G̃, G̃′) = inv(G,G′) (in H 1(E, G̃ad) = H 1(E,Gad)).
(b) X is equipped with an action of G̃ trivial on Z(G̃).
(c) There is a π- and �-equivariant bijection between embeddings of maximal tori

a : T ↪→ G and the corresponding embeddings ã : T̃ ↪→ G̃. Indeed, given a, put
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T̃ = T ×G G̃ := {t ∈ T, g̃ ∈ G̃ | a(t) = π(g̃)} and ã(t, g̃) := g̃. Conversely, given ã,
define a be the embeddingπ(̃a(T̃ )) ↪→ G. In particular, a1 and a2 are stably conjugate
if and only if ã1 and ã2 are such.

We will call ã the lift of a and [̃a] the lift of [a].
(d) For each i = 1, . . . , k, let ai : Ti ↪→ G and a′i : Ti ↪→ G′ be stable

conjugate embeddings of maximal tori, and let ãi : T̃i ↪→ G̃ and ã′i : T̃i ↪→ G̃′
be the lifts of the ai ’s and the a′i ’s, respectively. Then inv((a1, a′1); . . . ; (ak, a′k)) ∈
H 1(E, (

∏
i Ti )/Z(G)) is the image of

inv((̃a1, ã
′
1); . . . ; (̃ak, ã

′
k)) ∈ H 1

(
E,

(∏
i

T̃i

)/
Z(G̃)

)

under the canonical map (
∏

i T̃i )/Z(G̃))→ (
∏

i Ti )/Z(G)).

1.2. Preliminaries on dual groups

In this subsection, we will recall basic properties of Langlands dual groups. More
specifically, we will study properties of triples (G, H, [η]) from 1.2.3. Constructions
from this subsection will be later used in the case when H is an endoscopic group
for G.

Notation 1.2.1. For each connected reductive group G over a field E , we denote by
Ĝ (or {G }̂ ) the complex connected Langlands dual group, and by ρG : �→ Out(Ĝ)
the corresponding Galois action.

1.2.2. Basic properties of dual groups (a) The map G 	→ (Ĝ, ρG) defines a surjec-
tion from the set of isomorphism classes of connected reductive groups over E to that
of pairs consisting of a connected complex reductive group Ĝ, and a continuous ho-
momorphism ρ : �→ Out(Ĝ). Moreover, (Ĝ1, ρG1)

∼= (Ĝ2, ρG2) if and only if G2 is
an inner twist of G1. In particular, each pair (Ĝ, ρG ) comes from a unique quasi-split
group G over E .

(b) Let T be a torus over E of the same absolute rank as G. Then there exists a
canonical (hence �-equivariant) bijection [a] 	→ [̂a] between conjugacy classes of
embeddings TE ↪→ GE and conjugacy classes of embeddings T̂ ↪→ Ĝ. In particular,
[a] is �-invariant if and only if [̂a] is such.

(c) For each embeddings of maximal tori TE ↪→ GE and T̂ ↪→ Ĝ related as in
(b), the set of roots (resp. coroots) of (GE , TE ) is canonically identified with the set
of coroots (resp. roots) of (Ĝ, T̂ ). In particular, the Weyl group W (Ĝ) is canonically
identified with W (G).

(d) Each quasi-isogeny π : G1 → G2 gives rise to a conjugacy class [π̂] of quasi-
isogenies Ĝ2 → Ĝ1. In particular, it induces a homomorphism Z[π̂] : Z(Ĝ2) →
Z(Ĝ1).
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1.2.3. Triple For the rest of this subsection, we fix a triple (G, H, [η]), consisting of a
connected reductive group G over a field E , a quasi-split reductive group H over E of
the same absolute rank as G, and a �-invariant Ĝ-conjugacy class [η] of embeddings
Ĥ ↪→ Ĝ.

1.2.4. Properties of the triple (G, H, [η]) (a) Every stable conjugacy class [b] of
embeddings of maximal tori T ↪→ H defines a �-invariant conjugacy class [̂b] of
embeddings T̂ ↪→ Ĥ (by 1.2.2), hence a �-invariant conjugacy class [̂b]G := [η] ◦ [̂b]
of embeddings T̂ ↪→ Ĝ, and thus a �-invariant conjugacy class [b]G of embeddings
TE ↪→ GE .

(b) There are exist canonical (�-equivariant) embeddings Z(Ĝ) ↪→ Z(Ĥ),
Z(G) ↪→ Z(H ) and W (H ) ↪→ W (G).

To see it, fix a maximal torus T̂ ⊂ Ĥ and an embedding η : Ĥ ↪→ Ĝ from [η].
Then T̂ is a maximal torus of Ĝ, hence the set of roots (therefore also of coroots)
of (Ĥ , T̂ ) is naturally a subset of that of (Ĝ, T̂ ). It follows that W (H ) = W (Ĥ ) is
naturally a subgroup of W (Ĝ) = W (G). Also by 1.2.2 (c), the set of roots of (H, T )
is naturally a subset of that of (G, T ). Since Z(Ĝ) ⊂ T̂ (resp. Z(G) ⊂ T ) is the
intersection of kernels of all roots of (Ĝ, T̂ ) (resp. of (G, T )), and similarly for Z(Ĥ)
(resp. Z(H )), we get an embedding Z(Ĝ) ↪→ Z(Ĥ) (resp. Z(G) ↪→ Z(H )).

(c) [η] naturally gives rise to a conjugacy class [η] of embeddings Ĥ/Z(G) ↪→
Ĝad. Namely, each η : Ĥ ↪→ Ĝ from [η] has a unique lift η : Ĥ/Z(G) ↪→ Ĝad, and
we denote by [η] the corresponding conjugacy class.

By (b), [η] thus induces a homomorphism Z[η] : Z(Ĝad)� → π0(Z(Ĥ/Z(G))�).

1.2.5. Example Any embedding a : T ↪→ G of a maximal torus gives rise to a
triple 1.2.3 with H = T and [η] = [̂a]. In particular, it gives rise to a �-equivariant
embedding Z(Ĝ) ↪→ T̂ , hence to a homomorphism π0(Z(Ĝ)�)→ π0(T̂ �). We will
denote both of these maps by Z [̂a].

1.2.6. Construction of an exact sequence For each maximal torus T ⊂ H , we
consider the exact sequence

0 → T̂
μT−→ ̂T 2/Z(G)

νT−→ ̂T/Z(G)→ 0, (1.2.1)

dual to the exact sequence 0 → T/Z(G)
ν̂T−→ T 2/Z(G)

μ̂T−→ T → 0, where ν̂T is the
diagonal morphism and μ̂T ([t1, t2]) := t1/t2.

Since a center of a reductive group equals to the intersection of kernels of all roots,

we conclude that μT (Z(Ĥ)) ⊂ Z( ̂H 2/Z(G)), νT (Z( ̂H 2/Z(G))) ⊂ Z(Ĥ/Z(G)),
and the induced sequence

0 → Z(Ĥ )
μH−→ Z( ̂H 2/Z(G))

νH−→ Z(Ĥ/Z(G)) (1.2.2)

is �-equivariant and exact. Furthermore, since over E all maximal tori of H are con-
jugate, the sequence (1.2.2) is independent of the choice of T .
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Observe that the composition ofμH with the projection Z( ̂H 2/Z(G))→ Z(Ĥ 2) =
Z(Ĥ)2 is the map z 	→ (z, z−1).

Lemma 1.2.7. For every i, j ∈ {1, 2, 3}, let μi, j : Z(Ĥ) ↪→ Z( ̂H 3/Z(G)) be the

composition of μH and the embedding Z( ̂H 2/Z(G)) ↪→ Z( ̂H 3/Z(G)) correspond-
ing to the projection H 3/Z(G) → H 2/Z(G) to the i -th and the j -th factors. Then
μ1,3 = μ1,2μ2,3.

Proof. Consider the projection λi, j : T 3/Z(G)→ T given by the rule λi, j ([t1, t2, t3])

= t j/ti . Since each μi, j is the restriction of λi, j : T̂ ↪→ ̂T 3/Z(G)) to Z(Ĥ ), the
equality μ1,3 = μ1,2μ2,3 follows from the equality λ1,3 = λ1,2λ2,3. ��

1.2.8. Construction of two homomorphisms (a) Consider a pair [bi ] of stable con-
jugacy classes of embeddings of maximal tori Ti ↪→ H . Then the [bi ]’s give rise to a
stable conjugacy class [b1, b2] of embeddings (T1 × T2)/Z(G) ↪→ H 2/Z(G), hence
to a �-invariant embedding

ι([b1], [b2]) := Z
[̂b1,b2]

◦ μH : Z(Ĥ) ↪→ {(T1 × T2)/Z(G)}̂ . (1.2.3)

In its turn, ι([b1], [b2]) induces a homomorphism

κ([b1], [b2]) : π0(Z(Ĥ )
�)→ π0(({(T1 × T2)/Z(G)}̂ )�). (1.2.4)

(b) Assume that in the notation of (a), we have T1 = T2 = T and [b1]G = [b2]G .

Then ι([b1]G, [b2]G) = ι([b1], [b2])|Z(Ĝ) factors throughμT : T̂ ↪→ ̂T 2/Z(G), hence
the image of ι([b1]G, [b2]G) lies in Ker νT . Thus the composition νT ◦ ι([b1], [b2]) :
Z(Ĥ)→ ̂T/Z(G) factors through Z(Ĥ)/Z(Ĝ) and induces a homomorphism

κ

(
[b1]

[b2]

)
: π0(Z(Ĥ)

�/Z(Ĝ)�)→ π0( ̂T/Z(G)
�
). (1.2.5)

(c) For every i = 1, 2, denote by [bi ] the stable conjugacy class of embed-
dings T/Z(G) ↪→ H/Z(G) induced by [bi ]. Then the composition of the projection
Z(Ĥ/Z(G))→ Z(Ĥ ) and νT ◦ ι([b1], [b2]) : Z(Ĥ)→ ̂T/Z(G) equals the quotient
Z

[̂b1]
/Z

[̂b2]
: Z(Ĥ/Z(G))→ ̂T/Z(G).

This gives the following description of the map κ
(

[b1]
[b2]

)
. For each representa-

tive s̃ ∈ Z(Ĥ/Z(G)) of s ∈ π0(Z(Ĥ)�/Z(Ĝ)�), the quotient Z
[̂b1]
(̃s)/Z

[̂b2]
(̃s) ∈

̂T/Z(G) is �-invariant, and κ
(

[b1]
[b2]

)
(s) equals the class of Z

[̂b1]
(̃s)/Z

[̂b2]
(̃s). (Note

that s̃ ∈ Z(Ĥ/Z(G)) is not always �-invariant).

Lemma 1.2.9. (a) Let [b1] and [b2] be as in 1.2.8, and let š ∈ π0(Z(Ĥ)�) be a
representative of s ∈ π0(Z(Ĥ)�/Z(Ĝ)�). Then the quotient Z[b̂1](š)/Z[b̂2](š) ∈
π0(T̂�) equals the image of κ

(
[b1]
[b2]

)
(s).
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(b) Let [b1], [b2] and [b3] be stable conjugacy classes of embeddings of maximal

tori T ↪→ H such that [b1]G = [b2]G = [b3]G. Then we have κ
(

[b1]
[b3]

)
=

κ
(

[b1]
[b2]

)
κ
(

[b2]
[b3]

)
.

Proof. Both assertions follow from the description of κ
(

[bi ]
[b j ]

)
, given in 1.2.8 (c). ��

1.3. Endoscopic triples: basic properties

Let G be a connected reductive group over a field E . In this subsection we give basic
constructions and properties of endoscopic triples (compare [Ko1, §7]).

Definition 1.3.1. (a) A triple E = (H, [η], s) consisting of
- a quasi-split reductive group H over E of the same absolute rank as G;
- a �-invariant Ĝ-conjugacy class [η] of embeddings Ĥ ↪→ Ĝ;
- an element s ∈ π0(Z(Ĥ)�/Z(Ĝ)�), where the �-equivariant embedding

Z(Ĝ) ↪→ Z(Ĥ) is induced by [η] (see 1.2.4 (b)),
is called an endoscopic triple for G if for each generic representative
s ∈ Z(Ĥ)�/Z(Ĝ)� of s we have η(Ĥ) = Ĝη(s) for all η ∈ [η]. Such a represen-
tative s will be called E-compatible.

(b) An endoscopic triple E for G is called elliptic if the group Z(Ĥ)�/Z(Ĝ)� is
finite.

(c) An isomorphism from an endoscopic triple E1 = (H1, [η1], s1) to
E2 = (H2, [η2], s2) is an isomorphism α : H1

∼→ H2 such that the corresponding
element [̂α] of Isom(Ĥ2, Ĥ1)/ Int(Ĥ2) satisfies [η1] ◦ [̂α] = [η2] and s1 = [̂α](s2).

(d) We denote by Aut(E) the group of automorphisms of E and by 	(E) the quo-
tient Aut(E)/H ad(E).

(e) An endoscopic triple E is called split (resp. unramified) if H is a split (resp.
unramified) group over E .

Remark 1.3.2. (a) When E is a local non-archimedean field, our notion of an en-
doscopic triple is equivalent to the standard one ([Ko1, 7.4]). Indeed, let (H, η, s)
be an endoscopic triple in the sense of [Ko1, 7.4]. Since Z(Ĥ)�/Z(Ĝ)� is a sub-
group of finite index in [Z(Ĥ)/Z(Ĝ)]� , condition [Ko1, 7.4.3] asserts that the image
of s ∈ Z(Ĥ) in Z(Ĥ)/Z(Ĝ) belongs to Z(Ĥ)�/Z(Ĝ)� , thus defining an element
s ∈ π0(Z(Ĥ)�/Z(Ĝ)�). Moreover, the map (H, η, s) 	→ (H, [η], s) defines an equiv-
alence of categories between endoscopic triples in the sense of [Ko1, 7.4] and those in
our sense.

If (H, η1, s1) and (H, η2, s2) are two endoscopic triples in the sense of [Ko1, 7.4]
such that [η1] = [η2] and s1 = s2, then they are canonically isomorphic. Therefore we
have chosen to deviate from the Kottwitz notation and to identify these objects.

(b) When E is a number field, then our notion of an endoscopic triple slightly
differs from the standard one ([Ko1, 7.4]). However in this paper we will only consider
the case G = Gsc (see Appendix B). In this case, Z(Ĝ) = 1, hence both notions
coincide.
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Remark 1.3.3. Since an inner twisting ϕ : G → G′ identifies the dual groups of G
and G′, every endoscopic triple for G defines the one for G′.

Remark 1.3.4. In the notation of Definition 1.3.1 (c), the map [α] 	→ [̂α] identifies
Isom(E1, E2)/H ad

1 (E) with the set of all �-invariant [̂α] ∈ Isom(Ĥ2, Ĥ1)/ Int(Ĥ2)

such that [η1] ◦ [̂α] = [η2] and s1 = [̂α](s2).
In particular, for each endoscopic triple E = (H, [η], s), the map [α] 	→ [̂α]

identifies	(E) with the set of g ∈ Out(Ĥ)� such that g(s) = s and [η] ◦ g = [η].

1.3.5. Homomorphisms, corresponding to endoscopic triples To every endosco-
pic triple E = (H, [η], s) for G, we associate a homomorphism πE : 	(E) →
π0(Z(Ĥ/Z(G))�). Moreover, the image of πE lies in the image of the canonical map
Z[η] : Z(Ĝad)� → π0(Z(Ĥ/Z(G))�) from 1.2.4 (c).

To define πE , fix η ∈ [η], and identify Ĥ with its image η(Ĥ) ⊂ Ĝ. Then η
lifts to an embedding Ĥ/Z(G) ↪→ Ĝad = Ĝsc. For every α ∈ 	(E), choose g ∈
NormĜad(Ĥ) inducing α̂ ∈ Out(Ĥ). Then g normalizes Ĥ/Z(G) ⊂ Ĝsc, hence it

induces an element ˜̂α ∈ Out(Ĥ/Z(G)). Moreover, ˜̂α is �-invariant and independent
of the choices of η and g.

Furthermore, ˜̂α is trivial on the kernel Ker[Ĥ/Z(G)→ Ĥ/Z(Ĝ)]. Therefore for
every t̃ ∈ Z(Ĥ/Z(G)), the quotient ˜̂α(̃t)/̃t ∈ Z(Ĥ/Z(G)) depends only on the im-
age t ∈ Z(Ĥ)/Z(Ĝ) of t̃ . Hence the map t 	→ ˜̂α(̃t)/̃t defines a �-equivariant ho-
momorphism Z(Ĥ)/Z(Ĝ) → Z(Ĥ/Z(G)), which in turn induces a homomorphism
α̃ : π0(Z(Ĥ )�/Z(Ĝ)�)→ π0(Z(Ĥ/Z(G))�).

We define πE by the formula πE (α) := α̃(s) ∈ π0(Z(Ĥ/Z(G))�). Since
α̂(s) = s, we see that πE is a homomorphism, and the image of πE lies in the ker-
nel Ker[π0(Z(Ĥ/Z(G))�)→ π0(Z(Ĥ)�/Z(Ĝ)�)]. As the last group coincides with
the image of Z[η] : Z(Ĝad)� → π0(Z(Ĥ/Z(G))�) (see [Ko1, Cor. 2.3]), we get the
assertion.

Lemma 1.3.6. For every embedding of maximal torus b : T ↪→ H the corresponding

map Z
[̂b]

: π0(Z(Ĥ/Z(G))�)] → π0( ̂T/Z(G)
�
) maps πE (α) to κ

(
α([b])

[b]

)
(s).

Proof. The assertion follows immediately from 1.2.8 (c). ��
Notation 1.3.7. Let E = (H, [η], s) be an endoscopic triple for G.

(a) Denote by #E the map sending a stable conjugacy class [b] of embeddings
of maximal tori T ↪→ H to a pair consisting of an E-rational conjugacy class
[b]G (see 1.2.4 (c)) of embeddings TE ↪→ GE and an element κ[b] := Z [̂b](s) ∈
π0(T̂�/Z(Ĝ)�).

(b) Denote by Z(E) ⊂ Z(Ĝad)� the preimage of ImπE ⊂ π0(Z(Ĥ/Z(G))�)
under Z[η].

(c) For every pair ([a], κ) ∈ Im#E , we denote by S([a],κ) ⊂ π0( ̂T/Z(G)
�
)

the subgroup consisting of elements κ
(

[b1]
[b2]

)
(s), where b1 and b2 run through the
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set of embeddings b : T ↪→ H such that #E ([b]) = ([a], κ). We denote by
Z(E, [a], κ) ⊂ Z(Ĝad)� the preimage of S([a],κ) under the map Z [̂a] : Z(Ĝad)� →
π0( ̂T/Z(G)

�
).

(d) We call embeddings of maximal tori a : T ↪→ G and b : T ↪→ H compatible
if a ∈ [b]G .

1.3.8. Endoscopic triples, corresponding to pairs (a) Following Langlands ([La1,
II, 4]), we associate an endoscopic triple E = E([a],κ) for G to each pair ([a], κ),
consisting of a stable conjugacy class of an embedding a : T ↪→ G of maximal torus
and an element κ ∈ T̂ �/Z(Ĝ)� . Moreover, E([a],κ) is elliptic if a(T ) is an elliptic torus
of G.

For the convenience of the reader, we will recall this important construction.
Choose an element â : T̂ ↪→ Ĝ of [̂a], and identify T̂ with â(T̂ ). Choose a rep-
resentative κ̃ ∈ T̂ � of κ , put s := â(̃κ) ∈ Ĝ/Z(Ĝ), Ĥ := Ĝ0

s , and let [η] be the
conjugacy class of the inclusion Ĥ ↪→ Ĝ. Then the image of ρT : � → Out(T̂ )
lies in NormAut(Ĝ)(T̂ )/T̂ , and ρG : � → Out(Ĝ) is the composition of ρT :

� → NormAut(Ĝ)(T̂ )/T̂ with the canonical homomorphism NormAut(Ĝ)(T̂ )/T̂ ↪→
Aut(Ĝ)→ Out(Ĝ).

As κ̃ belongs to T̂ � , the image of ρT lies in NormAut(Ĝ) (T̂ )s/T̂ , where

NormAut(Ĝ)(T̂ )s is the stabilizer of s in NormAut(Ĝ)(T̂ ). Since NormAut(Ĝ)(T̂ )s ⊂
NormAut(Ĝ)(Ĥ ), we can compose ρT : � → NormAut(Ĝ)(T̂ )s/T̂ with the canoni-

cal homomorphism NormAut(Ĝ)(T̂ )s/T̂ → NormAut(Ĝ)(Ĥ )/Ĥ ⊂ Out(Ĥ ). We denote
the composition �→ Out(Ĥ) by ρ, and let H be the unique quasi-split group over E
corresponding to the pair (Ĥ , ρ) (see 1.2.2 (a)).

By construction, [η] is �-equivariant, and s belongs to Z(Ĥ )� . Denote by s ∈
π0(Z(Ĥ)�/Z(Ĝ)�) the class of s. Then (H, [η], s) is an endoscopic triple for G,
independent of the choices of â and κ̃. We denote this endoscopic triple by E([a],κ).

(b) In the notation of (a), we have ([a], κ) ∈ Im#E .
To find [b] ∈ #−1

E ([a], κ), we choose â and κ̃ as in (a) and identify T̂ with â(T̂ ).
By construction, there exists η ∈ [η] such that T̂ ⊂ η(Ĥ ) and η(s) = κ̃. Let [̂b] be the
conjugacy class of the inclusion T̂ ↪→ η(Ĥ) ∼= Ĥ . Then [̂b] is �-equivariant; hence it
gives rise to a stable conjugacy class [b] of embeddings T ↪→ H (see Lemma 1.1.10
(b)), which belongs to#−1

E ([a], κ).

Lemma 1.3.9. Let E = (H, [η], s) be an endoscopic triple for G, b : T ↪→ H and
a : T ↪→ G embeddings of maximal tori, κ an element of π0(T̂ �/Z(Ĝ)�) such that
#E ([b]) = ([a], κ).

(a) There exists a representative κ ∈ T̂�/Z(Ĝ)� of κ such that E ∼= E([a],κ).
(b) The group Z(E) is contained in Z(E, [a], κ). Moreover, if b(T ) ⊂ H is elliptic,

then we have Z(E, [a], κ) = Z(E). In particular, Z(E, [a], κ) = Z(E) if a(T ) ⊂
G is elliptic.
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Proof. (a) Let s ∈ Z(Ĥ)�/Z(Ĝ)� be an E-compatible representative of s, and let κ ∈
T̂ �/Z(Ĝ)� be the image of s under the embedding Z(Ĥ)�/Z(Ĝ)� ↪→ T̂�/Z(Ĝ)� ,
induced by [̂b]. Then κ is a representative of κ, and we claim that E([a],κ) ∼= E . To
show it, choose an embedding b̂ : T̂ ↪→ Ĥ such that b̂ ∈ [̂b]. Then for each η ∈ [η],
the composition â := η ◦ b̂ : T̂ ↪→ Ĝ belongs to [̂a] and satisfies η(Ĥ) = Ĝ0

â(κ).

Finally, since the conjugacy class of the embedding b̂ : T̂ ↪→ Ĥ is �-invariant, the
homomorphism ρH : �→ Out(Ĥ) is induced by ρT : �→ Out(T̂ ), as in 1.3.8 (a).

(b) Since for each α ∈ 	(E), the stable conjugacy class α([b]) belongs to
#−1

E ([a], κ), the inclusion Z(E) ⊂ Z(E, [a], κ) follows from Lemma 1.3.6.
Assume now that b(T ) ⊂ H is elliptic. Then for the second assertion, it will

suffice to check that for each [b′] ∈ #−1
E ([a], κ), there exists α ∈ 	(E) such that

[b′] = α([b]).
Embed Ĥ into Ĝ by means of an element of [η], choose embeddings b̂ : T̂ ↪→

Ĥ ⊂ Ĝ and b̂′ : T̂ ↪→ Ĥ ⊂ Ĝ from [̂b] and [̂b′], respectively, and identify T̂ with its
image b̂(T̂ ) ⊂ Ĥ . Replacing b̂′ by its Ĥ -conjugate, we may assume that b̂′(T̂ ) = T̂ .

Choose a representative s ∈ Z(Ĥ )� of s such that Ĥ = Ĝ0
s . Since #E ([b′]) =

#E ([b]), there exists an element g ∈ Ĝ such that b̂′ = gb̂g−1 and (g−1sg)s−1 belongs
to (T̂ �)0 Z(Ĝ)� = (Z(Ĥ )�)0 Z(Ĝ)� ⊂ Z(Ĥ). Therefore g−1sg ∈ Z(Ĥ), hence
gĤ g−1 = Ĥ . Let g ∈ Out(Ĥ) be the class of g. Since the conjugacy classes of
b̂ : T̂ ↪→ Ĥ and b̂′ : T̂ ↪→ Ĥ are �-invariant, we get from the equality b̂′ = gb̂g−1

that g is �-invariant. In other words, there exists α ∈ 	(E) such that α̂ ∈ Out(Ĥ)
equals g. Then [b′] = α([b]), as claimed. ��
Lemma 1.3.10. Let E = (H, [η], s) be an endoscopic triple for G, and let π : G̃ →
G be a quasi-isogeny.

(a) There exists a unique pair consisting of an endoscopic triple Ẽ = (H̃ , [̃η], s̃)
for G̃ and a stable conjugacy class of quasi-isogenies π ′ : H̃ → H such that
[̃η] ◦ [π̂ ′] = [π̂] ◦ [η] and Z[π̂ ′] maps s to s̃.
Furthermore, the endoscopic triple Ẽ satisfies the following properties.

(b) For an embedding of maximal torus a : T ↪→ G and an element κ ∈ T̂�/Z(Ĝ)� ,

denote by ã : T̃ ↪→ G̃ the lift of a, and by κ̃ ∈ ̂̃T�/Z(̂̃G)� the image of κ . If
E ∼= E([a],κ), then Ẽ ∼= E([̃a],̃κ).

(c) We have 	(E) = 	(Ẽ) and Z(Ẽ) = Z(E).
(d) In the notation of (b), the map sending an embedding of a maximal torus b : T ↪→

H to its lift b̃ : T̃ ↪→ H̃ induces a bijection between#−1
E ([a], κ) and#−1

Ẽ ([̃a], κ̃).

Moreover, for each two embeddings b1 and b2, we have κ
(

[b1]
[b2]

)
(s) = κ

(
[b̃1]
[b̃2]

)
(̃s).

Proof. (a) Choose η ∈ [η], a quasi-isogeny π̂ : Ĝ → ̂̃G corresponding to π , and an
E-compatible representative s ∈ Ĥ�/Z(Ĝ)� of s. Identify Ĥ with η(Ĥ) ⊂ Ĝ and put
s̃ := π̂(s) ∈ ̂̃G/Z(̂̃G).

Set ̂̃H := (̂̃G)0s̃ . Then π̂ induces a quasi-isogeny π̂ ′ : Ĥ → ̂̃H , and we have a

canonical isomorphism ̂̃H ∼→ Ĥ ×Z(Ĝ) Z(̂̃G). Since both homomorphisms ρH : �→
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Out(Ĥ) and ρG̃ : � → Aut(Z(̂̃G)) induce the natural Galois action on Z(Ĝ), their

product defines a homomorphism ρ : �→ Out(̂̃H).
Denote by H̃ the quasi-split group over E , corresponding to the pair (̂̃H , ρ) (see

1.2.2 (a)), by s̃ ∈ π0(Z(̂̃H )�/Z(̂̃G)�) the class of s̃, by [̃η] the conjugacy class of
the inclusion ̂̃H ↪→ ̂̃G, and by [π ′] the conjugacy class of quasi-isogenies H̃ → H
corresponding to π̂ ′. Then Ẽ := (H̃ , [̃η], s̃) is an endoscopic triple for G̃, and the pair
(Ẽ, [π ′]) satisfies the required properties. The proof of uniqueness is similar.

(b) follows immediately from the description of Ẽ in (a).
(c) For every α ∈ 	(E), the corresponding element α̂ ∈ Out(Ĥ ) is �-invariant and

is induced by an element of Gad = G̃ad. Therefore α induces a unique element α̃ ∈
	(Ẽ) and vice versa. Also we have an equality πE = πẼ , implying that Z(E) = Z(Ẽ).

(d) is clear. ��

1.4. Endoscopic triples: further properties

Let E = (H, [η], s) be an elliptic endoscopic triple for G, and b : T ↪→ H an
embedding of a maximal torus. Put ([a], κ) := #E ([b]), and denote by S[b] the subset{
κ
(

[b1]
[b]

)
(s)
}

[b1]∈#−1
E ([a],κ)

of π0( ̂T/Z(G)
�
).

The primary goal of this subsection is to prove the following result.

Proposition 1.4.1. The subset S[b] ⊂ π0( ̂T/Z(G)
�
) is a subgroup.

This proposition has the following corollary.

Corollary 1.4.2. For each z ∈ Z(E, [a], κ), there exists [b1] ∈ #−1
E ([a], κ) such that

κ
(

[b1]
[b]

)
(s) = Z [̂a](z).

Proof of the corollary. By definition, Z [̂a](Z(E, [a], κ)) = S([a],κ), while S([a],κ) is
the group generated by S[b]. Since S[b] itself is a group, we get that S([a],κ) = S[b],
implying the assertion. ��

To prove the proposition, we will first show several results of independent interest,
while the proof itself will be carried out in 1.4.9.

As E is elliptic, we denote s ∈ π0(Z(Ĥ )�/Z(Ĝ)�) = Z(Ĥ)�/Z(Ĝ)� simply by
s. Note that π0(Ĝs) is a �-invariant subgroup of Out(Ĥ).

Lemma 1.4.3. Choose η ∈ [η] and identify Ĥ with η(Ĥ) ⊂ Ĝ.

(a) There exists a natural isomorphism 	(E) ∼= π0(Ĝs)
� , and a �-equivariant injec-

tion ι : π0(Ĝs) ↪→ Z(Ĝsc). Moreover, ι induces an isomorphism	(E) ∼→ Z(E).
(b) If G is split, then the image of ρH : � → Out(Ĥ) lies in π0(Ĝs), and 	(E) is

canonically isomorphic to π0(Ĝs).
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Proof. For the proof we can replace G by Gsc and E by the corresponding endoscopic
triple; thus we can assume that G = Gsc.

(a) Using the fact that E is elliptic, the first assertion follows from Remark 1.3.4.
Next for each g ∈ Ĝs , choose a representative g̃ ∈ Ĝsc of g and a representative
s̃ ∈ Ĝsc of s. Then the element (g̃̃s g̃−1)̃s−1 ∈ Z(Ĝsc) does not depend on the choices,
and the map g 	→ (g̃̃s g̃−1)̃s−1 defines a homomorphism ι̃ : Ĝs → Z(Ĝsc). Moreover,
g ∈ Ker ι̃ if and only if g̃ ∈ (Ĝsc)̃s . By [St, §8], the last group is connected; therefore
Ker ι̃ = Ĝ0

s . Hence ι̃ induces an embedding ι : π0(Ĝs) ↪→ Z(Ĝsc), which is clearly
�-equivariant.

Since E is elliptic, the group Z(Ĥ/Z(G))� is finite. As πE is the composition of
ι|	(E) with the embedding Z(Ĝsc)� ↪→ Z(Ĥ/Z(G))� = π0(Z(Ĥ/Z(G))�), the last
assertion follows.

(b) The first assertion follows from the definition. Since embedding ι : π0(Ĝs) ↪→
Z(Ĝsc) is �-equivariant and � acts trivially on Z(Ĝsc), we conclude from (a) that that
	(E) ∼= π0(Ĝs)

� = π0(Ĝs), as claimed. ��

1.4.4. Action of Z(Ĝsc) on the extended Dynkin diagram D̃Ĝ of Ĝ Let T̂ ad

and T̂ sc be the abstract Cartan subgroups of Ĝad and Ĝsc, respectively, and let C ⊂
X∗(T̂ ad)⊗R be the fundamental alcove. For every μ ∈ X∗(T̂ ad) there exists a unique
element wμ ∈ W aff of the affine Weyl group of Ĝ such that wμ(C + μ) = C . Then
the map cμ : x 	→ wμ(x + μ) defines an affine automorphism of C , and hence an
automorphism of D̃Ĝ . Moreover, the map c : μ 	→ cμ is a homomorphism, and
X∗(T̂ sc) ⊂ Ker c. Thus c induces an action of Z(Ĝsc) = X∗(T̂ ad)/X∗(T̂ sc) on C ,
hence on D̃Ĝ .

Lemma 1.4.5. Let G be a split simple group. Then there exists a bijection [α] 	→
E[α] = (H[α], s[α], [η][α]) between the set of Z(Ĝsc)-orbits of vertices of D̃Ĝ and the
set of isomorphism classes of split elliptic endoscopic triples for G.

Moreover, for every vertex α ∈ D̃Ĝ , the stabilizer Z(Ĝsc)α is canonically isomor-
phic to 	(E[α]), and the order ord(s[α]) is equal to the coefficient of α in the reduced
linear dependence

∑
α∈D̃Ĝ

nαα = 0.

Proof. The set of isomorphisms of split endoscopic triples for G is in bijection
with the set of conjugacy classes of semisimple elements s ∈ Ĝad such that Ĝ0

s
is semisimple, hence with the set of W (Ĝ)-orbits of elements s ∈ T̂ ad such that
[X∗(T̂ ad) : X∗(T̂ ad)s] <∞.

Note that X∗(T̂ ad) ⊗ R/X∗(T̂ ad)(= Hom(X∗(T̂ ad),R/Z)) is naturally isomor-
phic to T̂ (C)1 = Hom(X∗(T̂ ad), S1). This isomorphism induces a bijection between
W (Ĝ)-orbits on T̂ (C)1 and (X∗(T̂ ad)� W (Ĝ))-orbits on X∗(T̂ ad) ⊗ R. Since C is a
fundamental domain for the action of W aff = X∗(T̂ sc)�W (Ĝ), the latter set coincides
with the set of Z(Ĝsc)-orbits on C .

For each s ∈ T̂ (C)1 and each representative s̃ ∈ C ⊂ X∗(T̂ ad) ⊗ R of s, the set
of roots α of Ĝ such that α(s) = 1 are in bijection with the set of affine roots β of Ĝ
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such that β(̃s) = 0. Therefore [X∗(T̂ ad) : X∗(T̂ ad)s] < ∞ if and only if s̃ is a vertex
C , that is, a vertex of D̃Ĝ . The last assertion is clear. ��

The proof of the following result is done case-by-case.

Claim 1.4.6. Let G be an absolutely simple group over E such that (G∗)sc is not
isomorphic to SLn. For every embedding a : T ↪→ G of a maximal torus, and κ ∈
π0(T̂�/Z(Ĝ)�) such that ([a], κ) ∈ Im#E , we have

[Z [̂a](Z(E, [a], κ)) : Z [̂a](Z(E))] ≤ 2.

Proof. Replacing G by G∗, we can assume that G is quasi-split. Replacing G by Gsc

and E by the corresponding endoscopic triple, we can assume that G = Gsc.
Assume that our assertion is false, that is, [Z [̂a](Z(E, [a], κ)) : Z [̂a](Z(E))] > 2.

Since Z(E, [a], κ) is a subgroup of Z(Ĝsc)� , we conclude that |Z(Ĝsc)� | > 2. There-
fore by the classification of simple algebraic groups, we get that G (hence also Ĝ) is
of type A, D or E6. Moreover, since the group Out(Ĝ) acts faithfully on Z(Ĝsc), we
see case-by-case that the assumption |Z(Ĝsc)� | > 2 implies that G is split.

By our assumption, G is not of type A; therefore |Z(Ĝsc)| ≤ 4. Since by our
assumption [Z(Ĝsc) : Z(E)] > 2, we get that Z(E) = 1, hence 	(E) = 1 (see
Lemma 1.4.3 (a)). It follows from Lemma 1.4.3 (b) that Im ρH = 1, thus E is split.
Therefore by Lemma 1.4.5, E corresponds to a Z(Ĝsc)-orbit [α] ⊂ D̃Ĝ . Moreover,
since 	(E) = 1, we get that |[α]| = |Z(Ĝsc)| > 2.

Recall that Z [̂a](Z(E, [a], κ)) consists of images of s = s[α] under certain homo-

morphisms κ
(

[b1]
[b2]

)
: Z(Ĥ )→ π0( ̂T/Z(G)

�
). Therefore every z ∈ Z [̂a](Z(E, [a], κ))

satisfies zord(s[α]) = 1. Since Z [̂a](Z(E , [a], κ)) �= {1}, we get (ord(s[α]), |Z(Ĝsc)|)
�= 1. In particular, the orbit [α] is non-special, that is, it consists of non-special
vertices.

Now it is easy to get a contradiction. Indeed, in the case of Dn , there are no non-
special Aut(D̃Ĝ )-orbits of cardinality greater than two, while in the case of E6, there
is only one such orbit. However in this case we have ord(s[α]) = 2 and |Z(Ĝsc)| = 3,
contradicting the assumption that (ord(s[α]), |Z(Ĝsc)|) �= 1. ��

1.4.7. Restriction of scalars (a) Let E ′ be a finite separable extension of E , �′ =
Gal(E/E ′), G′ a reductive group over E ′, and G = RE ′/E G′. Then (Ĝ, ρG) has the
following description. First, Ĝ = ∏

σ∈HomE (E ′,E)
σ̂G′, where σG′ is a group over

σ(E ′) induced from G′ by σ . Every τ ∈ � induces a canonical element of ρG ′(τ, σ ) ∈
Isom(σ̂G′, τ̂σG′)/ Int(σ̂G′), which coincides with ρσG ′(τ ) if τ ∈ Gal(E/σ(E ′)).
Then for every τ ∈ � we have ρG(τ ) =∏

σ ρG ′(τ, σ ).

(b) There is a canonical isomorphism Z(Ĝ)�
∼→ Z(Ĝ′)�′ .

(c) Every endoscopic triple E ′ = (H ′, [η′], s′) for G′ gives rise to an endoscopic
triple E = (H, [η], s) for G = RE ′/E G′, denoted by RE ′/EE ′, defined as follows.
H = RE ′/E H ′, [η] is a product

∏
σ [η′σ ], where [η′σ ] is the conjugacy class of embed-

dings σ̂ H ′ ↪→ σ̂G′ induced by [η′], and s is the preimage of s′ under the canonical
isomorphism Z(Ĥ )�/Z(Ĝ)�

∼→ Z(Ĥ ′)�′/Z(Ĝ′)�′ .
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Lemma 1.4.8. (a) For every embedding of a maximal torus a : T ↪→ G = RE ′/E G′,
there exists an embedding a′ : T ′ ↪→ G′ of a maximal torus such that T =
RE ′/E T ′ and a = RE ′/E a′. Moreover, the map [a′] 	→ [RE ′/E a′] induces a bi-
jection between the sets of stable conjugacy classes of embeddings T ′ ↪→ G′ and
T ↪→ G.

(b) For every endoscopic triple E = (H, [η], s) for G, there exists a unique endo-
scopic triple E ′ = (H ′, [η′], s ′) for G′ such that RE ′/EE ′ ∼= E .

(c) In the above notation, for each ([a′], κ) ∈ Im#E the map b′ 	→ b := RE ′/E b′
induces a bijection between #−1

E ′ ([a
′], κ) and #−1

E ([RE ′/E a′], κ). Moreover, for

each two embeddings b′1, b′2 : T ′ ↪→ H ′, the isomorphism Z(Ĥ/Z(G))�
∼→

Z( ̂H ′/Z(G′))�′ maps κ
(

[b1]
[b2]

)
(s) to κ

(
[b′1]
[b′2]

)
(s′).

Proof. (a) Note first that G′ is a direct factor of GE ′ , and denote by T ′ the image

of the composition map TE ′
a
↪→ GE ′ → G′. Then RE ′/E T ′ ∼= T , and the embed-

ding a′ : T ′ ↪→ G′ satisfies RE ′/E a′ = a. The second assertion follows from the
first.

(b) Choose a : T ↪→ G and κ ∈ T̂�/Z(Ĝ)� such that E ∼= E([a],κ). Let

a′ : T ′ ↪→ G′ be the embedding as in (a), and let κ ′ ∈ T̂ ′�
′
/Z(Ĝ′)�′ be the image of

κ . Then E ′ := E([a′],κ ′) satisfies RE ′/EE ′ ∼= E . The uniqueness is clear.
(c) follows immediately from (a). ��

1.4.9. Proof of Proposition 1.4.1. The proof will be carried out in two steps. First we
will treat the case G = SLn , and then reduce the general case to it.

Step 1: The case G = SLn . In this case, we will describe all the objects involved
explicitly.

First, there exists a divisor m|n, a cyclic Galois extension K ⊂ E of E of degree
m such that H is isomorphic to (RK/E GL n

m
)1 = {g ∈ RK/E GL n

m
| NK/E (det g) =

1}. Next s ∈ Z(Ĥ) ∼= (C×)Gal(K/E)/C× is a class [(μ(σ))σ∈Gal(K/E)] for a certain

isomorphism μ : Gal(K/E)
∼→ {z ∈ C× | zm = 1}.

Moreover, if we embed H ↪→ SLn by means of any E-linear isomorphism K
∼→

Em , then for every embedding of maximal torus b : T ↪→ H , we get that [b]G is the

stable conjugacy class of the composition T
b
↪→ H ↪→ SLn .

Every maximal torus T ⊂ H ⊂ SLn is of the form (
∏l

i=1 RKi/E Gm)
1, where

(
∏l

i=1 RKi/E Gm)
1 = {ti ∈ ∏l

i=1 RKi/EGm | ∏i NKi /E (ti ) = 1}, for certain finite
extensions Ki/K with

∑
i [Ki : K ] = n

m . Denote by b the inclusion T ↪→ H . Then
embeddings b′ : T ↪→ H such that [b′] = [b] (resp. [b′]G = [b]G) are in canonical
bijection with K -linear (resp. E-linear) algebra embeddings⊕l

i=1 Ki ↪→ Mat n
m
(K ).

In particular, we get a bijection [ι] 	→ b[ι] from the set of l-tuples ι = (ι1, . . . , ιl) of
E-algebra embeddings ιi : K ↪→ Ki to that of stable conjugacy classes [b′] of embed-
dings T ↪→ H such that [b′]G = [b]G . Therefore both sets are principal homogeneous
spaces for the action of the group Gal(K/E)l .
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The dual torus T̂ is [
∏l

i=1(C
×)HomE (Ki ,E)]/C×, and (T̂ �)0 is the image of the

diagonal map [(C×)l ]/C× ↪→ T̂ . Also ̂T/Z(G) consists of elements {ci,σi }i,σi of∏
i (C

×)HomE (Ki ,E) such that
∏

i
∏
σi

ci,σi = 1.
For every stable conjugacy class [bι] of embeddings T ↪→ H , the corresponding

embedding Z[b̂ι] : Z(Ĥ) ↪→ T̂ sends s ∈ Z(Ĥ ) to an element [(ci,σi )i,σi ], given by the

rule ci,σi := μ(σi ◦ ιi ) (here σi ◦ ιi ∈ HomE (K , E) = Gal(K/E)). When ι is replaced
by ι ◦ τ for certain τ = (τ1, . . . , τl), then each ci,σi is multiplied by μ(τi ). It follows

that κ
(

[bι◦τ ]
[bι]

)
(s) is the class [(μ(τi))i,σi ] ∈ ̂T/Z(G)

�
. In particular, the image of

each κ
(

[bι◦τ ]
[bι]

)
(s) in π0(T̂�) is trivial. Thus (see Lemma 1.2.9) we get that #E ([bι])

is independent of ι (hence#E ([bι]) = ([a], κ) for every ι). As a result, the subset S[b]
consists of classes of elements [(μ(τi))i,σi ] where τ runs through Gal(K/E)l . Hence
S[b] is a group, as claimed.

Step 2: The general case. It follows from Lemma 1.3.10 (d) that the subset S[b]
will not change if we replace G by Gsc, E by the corresponding endoscopic triple for
Gsc (see Lemma 1.3.10 (a)) and b by its lifting bsc : T sc ↪→ Gsc. Thus we are reduced
to the case when G is semisimple and simply connected.

Then G is the product of its simple factors G =∏
i Gi , and there exist embeddings

of maximal tori bi : Ti ↪→ Gi such that T = ∏
i Ti and b = ∏

i bi . Then S[b]

decomposes as a product
∏

i S[bi ] ⊂ ∏
i π0( ̂Ti/Z(Gi )

�
) = π0( ̂T/Z(G)

�
). Thus it

will suffice to show that each S[bi ] is a subgroup, thus reducing us to the case when G
is simple and simply connected.

There exists a finite separable extension E ′ of E and an absolutely simple simply
connected algebraic group G′ over E ′ such that G ∼= RE ′/E G′. Using Lemma 1.4.8,
the subset S[b] will not change if we replace E by E ′, G by G′, E by E ′ and [b] by [b′].
Thus we can assume that G is absolutely simple. Replacing G by G∗, we can assume
that G is quasi-split, not isomorphic to SLn .

For each embedding b1 : T ↪→ H such that #E ([b1]) = #E ([b]) and each
α ∈ 	(E) we have #E (α([b1])) = #E ([b]). By Lemmas 1.2.9 and 1.3.6 we have

κ
(
α([b1])

[b]

)
(s) = κ

(
[b1]
[b]

)
(s)Z [̂a] (πE (α)). In other words, S[b] is invariant under the

multiplication by elements from Z [̂a](Z(E)).
On the other hand, by definition, S[b] ⊂ Z [̂a](Z(E, [a], κ)). Since by Claim 1.4.6,

we have [Z [̂a](Z(E, [a], κ)) : Z [̂a](Z(E))] ≤ 2, we conclude that S[b] is equal either
to Z [̂a](Z(E, [a], κ)) or to Z [̂a](Z(E)). Hence it is a group, as claimed. ��

1.5. The case of local fields

In this subsection we will apply the results from 1.1–1.3 to the case of endoscopic
triples for a reductive group G over a local non-archimedean field E .

1.5.1. Tate–Nakayama duality For every torus T over E , Tate–Nakayama duality
provides us with a functorial isomorphism DT : H 1(E, T )

∼→ π0(T̂ �)D of finite
abelian groups.
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Kottwitz showed that for every connected reductive group G over E its cohomol-
ogy group H 1(E,G) has a unique structure of a finite abelian group such that for
every maximal torus T ⊂ G the natural map H 1(E, T ) → H 1(E,G) is a group
homomorphism (see [Ko2, Thm 1.2]). Moreover, there exists a group isomorphism
DG : H 1(E,G)

∼→ π0(Z(Ĝ)�)D such that for every maximal torus T of G, the
embedding T ↪→ G induces a commutative diagram:

H 1(E, T ) −−−−→ H 1(E,G)

DT

⏐⏐* DG

⏐⏐*
π0(T̂ �)D −−−−→ π0(Z(Ĝ)�)D.

In particular, we have a canonical surjection

T̂ �/Z(Ĝ)� → Coker[π0(Z(Ĝ)
�)→ π0(T̂

�)]
∼→ (Ker [H 1(E, T )→ H 1(E,G)])D.

Remark 1.5.2. Borovoi [Bo] showed that for every reductive group G over E there
is a functorial group isomorphism H 1(E,G)

∼→ (π1(G)�)tor, where (·)tor means for
torsion. In particular, for every homomorphism of reductive groups f : G1 → G2,
the induced map H 1(E,G1)→ H 1(E,G2) is a group homomorphism as well. Now
the existence of the Kottwitz isomorphism DG follows from the �-equivariant isomor-
phism π1(G)

∼→ X∗(Z(Ĝ)).

Lemma 1.5.3. Let a : T ↪→ G be an embedding of a maximal elliptic torus. Then
for every inner twisting ϕ : G → G′, there exists an embedding a′ : T ↪→ G′ stably
conjugate to a.

Proof. By assumption, T/Z(G) is anisotropic, therefore ̂T/Z(G)
�

is finite. Hence

the canonical map π0(Z(Ĝad)�) = Z(Ĝad)� ↪→ ̂T/Z(G)
� = π0( ̂T/Z(G)

�
) is injec-

tive. By duality, the canonical map H 1(E, T/Z(G))→ H 1(E,Gad) is surjective (see
1.5.1). This implies the assertion (see 1.1.4 (b)). ��
Lemma 1.5.4. Assume that we are in the situation of 1.1.5 with k = 2. Let E =
(H, [η], s) be an endoscopic triple for G, b1 : T1 ↪→ H and b2 : T2 ↪→ H are
embeddings of maximal tori compatible with a1 and a2, respectively. Then for every
z ∈ π0(Z(Ĝ)�) its image z̃ := κ([b1], [b2])(z) ∈ π0(([(T1 × T2)/Z(G)] )̂�) (see
1.2.8) satisfies

〈
inv((a1, a′1); (a2, a′2), z̃

〉 = 1.

Proof. Recall that z̃ is the image of μG(z) ∈ π0(Z( ̂G2/Z(G))�) under the map

Z [̂a1,a2] : π0(Z( ̂G2/Z(G))�)→ π0(([(T1 × T2)/Z(G)] )̂�). Therefore by the com-
mutative diagram of 1.5.1, we have〈

inv((a1, a
′
1); (a2, a

′
2)), z̃

〉 = 〈
�(inv(G,G′)), μG(z)

〉
.

Moreover, the latter expression equals
〈
inv(G,G′), νG(μG(z))

〉 = 〈
inv(G,G′), 0

〉 = 1,
as claimed. ��
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Notation 1.5.5. Let E = (H, [η], s) be an endoscopic triple for G, ϕ : G → G′
an inner twisting, (ai , a′i , [bi ]) two triples consisting of stably conjugate embeddings
of maximal tori ai : Ti ↪→ G and a′i : Ti ↪→ G′, and stably conjugate classes
[bi ] of embeddings of maximal tori Ti ↪→ H , compatible with ai . To these data one
associates elements inv((a1, a′1); (a2, a′2)) ∈ H 1(E, (T1 × T2)/Z(G)) (see 1.1.5) and
κ([b1], [b2])(š) ∈ π0(({(T1× T2)/Z(G)}̂ )�) for every representative š ∈ π0(Z(Ĥ)�)
of s (see 1.2.8). By Lemma 1.5.4, the pairing〈

a1, a′1; [b1]

a2, a′2; [b2]

〉
=
〈

a1, a′1; [b1]

a2, a′2; [b2]

〉
E

:= 〈
inv((a1, a

′
1); (a2, a

′
2)), κ([b1], [b2])(š)

〉 ∈ C×

is independent of the choice of š.

Remark 1.5.6. This invariant is essentially the term �1 of Langlands–Shelstad ([LS,
(3.4)]).

Lemma 1.5.7. (a) For any three triples (ai , a′i , [bi ]), (i = 1, 2, 3), we have〈
a1, a′1; [b1]

a3, a′3; [b3]

〉
=
〈

a1, a′1; [b1]

a2, a′2; [b2]

〉 〈
a2, a′2; [b2]

a3, a′3; [b3]

〉
.

(b) Assume that T1 = T2 = T , a1 = a2 = a and a′1 = a′2 = a′. Then〈
a,a′;[b1]
a,a′;[b2]

〉
=

〈
inv(a, a′), κ

(
[b1]
[b2]

)
(s)
〉
. If, moreover, κ

(
[b1]
[b2]

)
(s) = Z [̂a](z) for

some z ∈ Z(Ĝad)� , then
〈

a,a′;[b1]
a,a′;[b2]

〉
= 〈

inv(G,G′), z
〉
.

(c) Assume that T1 = T2 = T and b1 = b2 = b. Then〈
a1, a′1; [b]

a2, a′2; [b]

〉
= 〈

inv(a1, a2), κ [b]
〉 〈

inv(a′1, a′2), κ [b]
〉−1
.

(d) Assume that ϕ = IdG. Then
〈

a1,a
′
1;[b1]

a2,a′2;[b2]

〉
= 〈

inv(a1, a′1), κ [b1]
〉 〈

inv(a2, a′2), κ[b2]
〉−1

.

(e) Let π : G̃ → G be a quasi-isogeny, Ẽ the endoscopic triple for G̃ induced from
E , ϕ̃ : G̃ → G̃′ the inner twisting induced from ϕ, and ãi , ãi

′ and [b̃i ] the lifts of

ai , a′i and [bi ], respectively. Then
〈

ã1,ã1
′;[b̃1]

ã2,ã2
′;[b̃2]

〉
Ẽ
=
〈

a1,a′1;[b1]
a2,a

′
2;[b2]

〉
E

.

(f) Let ϕ′ : G′ → G′′ be another inner twisting, and for each i = 1, 2, let a′′i : T ↪→
G′′ be a stable conjugate of ai and a′i . Then〈

a1, a′′1 ; [b1]

a2, a′′2 ; [b2]

〉
=
〈

a1, a′1; [b1]

a2, a′2; [b2]

〉 〈
a′1, a′′1 ; [b1]

a′2, a′′2 ; [b2]

〉
.

Proof. All assertions follow from the functoriality of the Tate–Nakayama duality
1.5.1.

(a) By Lemma 1.1.6 (c),

〈
ai ,a′i ;[bi ]
a j ,a′j ;[b j ]

〉
equals the pairing of inv((a1, a′1); (a2, a′2);

(a3, a′3)) with the image of κ([bi ], [b j ])(š) in π0(({(∏3
i=1 Ti )/Z(G)}̂ )�). Thus the

assertion follows from Lemma 1.2.7.
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(b) The first assertion follows from Lemma 1.1.6 (d), while the second follows
from the fact that the image of inv(a, a′) in H 1(E,Gad) equals inv(G,G′).

(c) Since κ([b], [b]) equals μT ◦ Z [̂b], we get that〈
a1, a′1; [b]

a2, a′2; [b]

〉
= 〈
μ̂T (inv((a1, a

′
1); (a2, a

′
2)), Z [̂b](š)

〉
.

Using Lemma 1.1.6 (d) and (e), we conclude that

μ̂T (inv((a1, a
′
1); (a2, a

′
2))) = inv(a1, a2) inv(a′1, a′2)−1,

implying the assertion.
(d) By Lemma 1.1.6 (b), inv((a1, a′1); (a2, a′2)) is the image of

(inv(a1, a
′
1), inv(a2, a

′
2)).

Since the image of κ([b1], [b2])(š) in π0(T̂1
�
/Z(Ĝ)�) × π0(T̂2

�
/Z(Ĝ)�) equals

(κ[b1], κ
−1
[b2]), the assertion follows.

(e) By 1.1.13 (d), inv((a1, a′1); (a2, a′2)) ∈ H 1(E, (T1 × T2)/Z(G)) is the image
of inv((ã1, ã1

′); (ã2, ã2
′)) ∈ H 1(E, (T̃1 × T̃2)/Z(G̃)). Choose a representative š ∈

π0(Z(Ĥ)�) of s, and let s̃ ∈ π0(Z(
̂̃H )�) be the image of š. Then κ([b̃1], [b̃2])(̃s) is

the image of κ([b1], [b2])(š), and the assertion follows.
(f) Follows from Lemma 1.1.6 (f). ��

Definition 1.5.8. Let E be an endoscopic triple for G, and ([a], κ) a pair belonging
to Im#E . An inner twisting ϕ : G → G′ is called E-admissible (resp. (E, [a], κ)-
admissible) if the corresponding class inv(G,G′) ∈ H 1(E,Gad) ∼= (Z(Ĝad)�)D is
orthogonal to Z(E) ⊂ Z(Ĝad)� (resp. orthogonal to Z(E, [a], κ) ⊂ Z(Ĝad)�).

Lemma 1.5.9. (a) If ϕ is (E, [a], κ)-admissible, then ϕ is E-admissible. The converse
is true if a(T ) ⊂ G is elliptic.

(b) For every i = 1, 2, the function [bi ] 	→
〈

a1,a′1;[b1]
a2,a′2;[b2]

〉
is constant on the fiber

#−1
E ([ai ], κ) if and only if ϕ is (E, [ai ], κ)-admissible.

Proof. (a) The assertion is a translation of Lemma 1.3.9 (b).
(b) We will show the assertion for i = 1, while the case i = 2 is similar. For

every [b1], [b′1] ∈ #−1
E ([a1], κ), the quotient

〈
a1,a

′
1;[b′1]

a2,a′2;[b2]

〉
/
〈

a1,a
′
1;[b1]

a2,a′2;[b2]

〉
equals the pairing〈

inv(a1, a′1), κ
(

[b1]
[b′1]

)
(s)
〉

(use Lemma 1.5.7 (a) and (b)). Since by definition, elements

κ
(

[b1]
[b′1]

)
(s) run through Z [̂a](Z(E, [a1], κ)), our assertion follows from the last asser-

tion of Lemma 1.5.7 (b). ��
Notation 1.5.10. (a) Assume that in Notation 1.5.5, ϕ is (E, [a1], κ[b1])-admissible

(resp. (E, [a2], κ [b2])-admissible). Then we will denote
〈

a1,a′1;[b1]
a2,a′2;[b2]

〉
by

〈
a1,a′1;κ[b1]

a2,a′2;[b2]

〉
(resp.

〈
a1,a

′
1;[b1]

a2,a′2;κ[b2]

〉
). This notion is well defined by Lemma 1.5.9 (b).
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(b) If in addition, ϕX : X → X ′ is an inner twisting induced by ϕ, a1 = ax

and a′1 = ax ′ (see 1.1.1 (c) and 1.1.9 (c)), then we will denote
〈

a1,a′1;κ[b1]

a2,a′2;[b2]

〉
simply by〈

x,x ′;κ[b1]

a2,a
′
2;[b2]

〉
.

1.6. Definitions of stability and equivalence

In this subsection we will define the notions of stability and equivalence of invariant
generalized functions.

1.6.1. Set up (a) Let G be a connected reductive group over a local non-archimedean
field E , ωG a non-zero translation invariant differential form on G of the top degree,
and dg := |ωG | the corresponding Haar measure on G(E). Let ωG a non-zero trans-
lation invariant differential form on G of the top degree such that the identification
T1(G) = G = T0(G) identifies ωG |g=1 with ωG |x=0.

We also assume that G contain regular semisimple elements, which hold automat-
ically if the characteristic of E is different from two.

(b) Let (X, ωX ) be a pair consisting of a smooth algebraic variety X over E ,
equipped with a Gad-action, and a nowhere vanishing G-invariant top degree differ-
ential form ωX on X , and let dx := |ωX | be the corresponding measure on X (E).
We assume that X sr ⊂ X is Zariski dense. This condition automatically implies that
X sr ⊂ X is open (see Lemma 1.7.6 (a), below). In order to avoid dealing with algebraic
spaces in Subsection 1.7, we assume that X is quasi-projective.

The results from this and the next subsections will later be used in two particular
cases: (X, ωX ) = (G, ωG ) and (X, ωX ) = (G, ωG) with the actions of Int G = Gad

and Ad G = Gad, respectively.
(c) Let ϕ : G → G′ be an inner twisting. The inner twist X ′ of X is smooth, and

the differential form ωX ′ := (ϕ−1
X )∗(ωX ) on X ′ is E-rational and G′ad-invariant.

We also denote by G∗ the quasi-split inner twist of G, and by X∗ the corresponding
twist of X .

(d) Let E = (H, [η], s) be an endoscopic triple for G.

Notation 1.6.2. (a) let C∞
c (X (E)) be the space of locally constant functions on X (E)

with compact support, and let S(X (E)) be the space of locally constant measures on
X (E) with compact support, that is, measures of the form φ = f dx , where f ∈
C∞

c (X (E)).
Denote by D(X (E)) = (S(X (E))∗)G(E) the space of G(E)-invariant linear func-

tionals on S(X (E)), which we call (invariant) generalized functions.
(b) Let U ⊂ X (E) be an open and closed subset. For each φ = f dx ∈ S(X (E)),

put φ|U := ( f |U )dx ∈ S(X (E)). Moreover, if U is G(E)-invariant, then for each
F ∈ D(X (E)), the generalized function F |U given by the formula F |U (φ) := F(φ|U )
belongs to D(X (E)).

(c) For every smooth morphism π : X1 → X2, the integration along fibers π! maps
S(X1(E)) to S(X2(E)). Moreover, if π is G-equivariant, then the dual of π! induces
a map π∗ : D(X2(E))→ D(X1(E)).
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Remark 1.6.3. The map φ 	→ φ
dx identifies S(X (E)) with C∞

c (X (E)), hence the
space D(X (E)) with the space of invariant distributions on X (E). Below we list sev-
eral reasons why S(X (E)) and D(X (E)) are more convenient to work with.

(i) The space C∞
c (X (E)) is not functorial with respect to non-proper maps.

(ii) Characters of admissible representations of G(E) belong to D(X (E)).
(iii) Orbital integrals behave better (see Remark 1.6.5 below).

Notation 1.6.4. For each x ∈ X sr(E) and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�),

(i) fix an invariant measure dgx on Gx (E) such that the total measure of the max-
imal compact subgroup of Gx(E) is 1, and define orbital integral Ox ∈ D(X (E)) by
the formula

Ox (φ) :=
∫

G(E)/Gx (E)

(
φ

dx

)
(g(x))

dg

dgx

for every φ ∈ S(X (E));
(ii) denote by Oξ

x ∈ D(X (E)) the sum
∑

x ′
〈
inv(x, x ′), ξ

〉
Ox ′ , taken over a set of

representatives x ′ ∈ X (E) of conjugacy classes stably conjugate to x ;

(iii) when ξ = 1, we will write SOx instead of Oξ
x . More generally, for each

x∗ ∈ (X∗)sr(E) we define SOx∗ ∈ D(X (E)) be zero unless there exists a stable
conjugate x ∈ X (E) of x∗, in which case SOx∗ := SOx (compare Corollary 1.1.11).

Remark 1.6.5. If (X, ωX ) is either (G, ωG ) or (G, ωG), then measure dx is induced by
dg, and orbital integrals Ox are independent of a choice of dg.

Definition 1.6.6. (i) A measure φ ∈ S(X (E)) is called E-unstable if Oξ
x (φ) = 0 for

all x ∈ X sr(E) and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) such that ([ax ], ξ) ∈ Im#E .

(ii) A generalized function F ∈ D(X (E)) is called E-stable if F(φ) = 0 for all
E-unstable φ ∈ S(X (E)).

Remark 1.6.7. Denote by D0(X (E)) ⊂ D(X (E)) the closure of the linear span of
{Ox }x∈X sr(E). Our notion of E-stability (and of (a, a′; [b])-equivalence below) seems
to be “correct” only for generalized functions belonging to D0(X (E)).

However, all generalized functions considered in this paper belong to D0(X (E)).
Indeed, if (X, ωX ) is either (G, ωG ) or (G, ωG), it follows from the results of Harish-
Chandra [HC2, Theorem 3.1] (at least when the characteristic of E is zero) that
D0(X (E)) = D(X (E)) (see also Remarks 1.7.2 and 1.7.12 below).

Notation 1.6.8. Fix a triple (a, a′; [b]), consisting of stably conjugate embeddings
of maximal tori a : T ↪→ G, a′ : T ↪→ G′, and a stable conjugacy class [b] of
embeddings T ↪→ H , compatible with a and a′. For every φ′ ∈ S(X ′(E)), x ∈ X sr(E)
and embedding c : Gx ↪→ H compatible with ax : Gx ↪→ G, we define

(O[c]
x )(a,a′;[b]) :=

∑
x ′

〈
ax , ax ′ ; [c]

a, a′; [b]

〉
Ox ′ ∈ D(X ′(E)),

where the sum is taken over a set of representatives x ′ ∈ X ′(E) of conjugacy classes
stably conjugate to x .
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Remark 1.6.9. If ϕ = IdG (and a′ = a), then (O[c]
x )(a,a;[b]) = O

κ[c]
x (by Lemma

1.5.7 (d)). In general, (O[c]
x )(a,a′;[b]) vanishes unless there exists a stable conjugate

x ′ ∈ X ′(E) of x , in which case, (O[c]
x )(a,a′;[b]) =

〈
ax ,ax ′ ;[c]
a,a′;[b]

〉
O
κ [c]
x ′ (by Lemma 1.5.7

(a) and (c)).

Definition 1.6.10. Let (a, a′; [b]) be as in Notation 1.6.8. By Lemma 1.1.10 (b), we
can choose a stably conjugate embedding a∗ : T ↪→ G∗ of a and a′.

(a) Measures φ ∈ S(X (E)) and φ′ ∈ S(X ′(E)) are called (a, a′; [b])-indistingui-
shable, if for each x∗ ∈ (X∗)sr(E) and each embedding c : G∗

x∗ ↪→ H compatible
with ax∗ : G∗

x∗ ↪→ G∗, we have

(O[c]
x∗ )(a∗,a;[b])(φ) = (O[c]

x∗ )(a∗,a′;[b])(φ
′). (1.6.1)

(b) Generalized functions F ∈ D(X (E)) and F ′ ∈ D(X ′(E)) are called (a, a′; [b])-
equivalent if F(φ) = F ′(φ′) for every pair of (a, a′; [b])-indistinguishable measures
φ ∈ S(X (E)) and φ′ ∈ S(X ′(E)).

Lemma 1.6.11. Measures φ ∈ S(X (E)) and φ′ ∈ S(X ′(E)) are (a, a′; [b])-indistin-
guishable if and only if the following conditions are satisfied:

(i) For each x ∈ X sr(E) and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) such that ([ax], ξ ) ∈ Im#E and

x does not have a stable conjugate element in X ′(E), we have Oξ
x (φ) = 0.

(ii) Condition (i) holds if x, X,G, φ are replaced by x ′, X ′,G′, φ′.
(iii) For every stable conjugate x ∈ X sr(E) and x ′ ∈ X ′sr(E) and every ξ ∈

π0(Ĝx
�
/Z(Ĝ)�) such that ([ax ], ξ ) ∈ Im#E we have

(i i i)′ Oξ
x (φ) = Oξ

x ′(φ
′) = 0, if ϕ is not (E, [ax ], ξ)-admissible, and

(i i i)′′ Oξ
x (φ) =

〈
x,x ′;ξ

a,a′;[b]

〉
Oξ

x ′(φ
′), if ϕ is (E, [ax ], ξ )-admissible.

Proof. Fix x∗ ∈ (X∗)sr(E) and ξ ∈ π0(Ĝ∗
x∗
�
/Z(Ĝ)�) such that ([ax∗], ξ) ∈ Im#E .

Using Remark 1.6.9, we see that equalities (1.6.1) for all [c] ∈ #−1
E ([ax∗], ξ) are

equivalent to equalities:
- 0 = 0, if there are no stable conjugates of x∗ either in X (E) or in X ′(E);
- Oξ

x (φ) = 0, if there exists a stable conjugate x ∈ X (E) of x∗ but there is no such
conjugate in X ′(E);

- Oξ
x ′(φ

′) = 0, if there exists a stable conjugate x ′ ∈ X ′(E) of x∗ but there is no
such conjugate in X (E);

- Oξ
x (φ) =

〈
ax ,ax ′ ;[c]
a,a′;[b]

〉
Oξ

x ′(φ
′) for all [c] ∈ #−1

E ([ax ], ξ), if there exist stable

conjugates x ∈ X (E) and x ′ ∈ X ′(E) of x∗ (use Lemma 1.5.7 (f)).
Moreover, by Lemma 1.5.9 (b), the last equalities are equivalent to the equalities

(i i i)′ and (i i i)′′. Now the assertion follows from Corollary 1.1.11. ��
Corollary 1.6.12. (a) The notion of (a, a′; [b])-equivalence is independent of the

choice of a∗.
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(b) Every two (a, a′; [b])-equivalent generalized functions F and F ′ are E-stable.
(c) Assume that ϕ is not E-admissible. Then every E-stable F ∈ D(X (E)) and F ′ ∈

D(X ′(E)) are (a, a′; [b])-equivalent.
(d) Assume that a(T ) is elliptic. If F ∈ D(X (E)) and F ′ ∈ D(X ′(E)) are (a, a′; [b])-

equivalent, then they are (a, a′; [b′])-equivalent for all b′ : T ↪→ H such that
#E ([b′]) = #E ([b]).

Proof. All assertions follow almost immediately from Lemma 1.6.11.
(a) is clear.
(b) By duality, we have to check that every E-unstable measures φ ∈ S(X (E)) and

φ′ ∈ S(X ′(E)) are (a, a′; [b])-indistinguishable, which is clear.
(c) By duality, we have to check that every (a, a′; [b])-indistinguishable φ ∈

S(X (E)) and φ′ ∈ S(X ′(E)) are E-unstable. Hence the assertion follows from the
first assertion of Lemma 1.5.9 (a).

(d) When ϕ is not E-admissible, the assertion was proved in (c). When ϕ is E-
admissible, the assertion follows from Lemma 1.5.9. ��
Corollary 1.6.13. Let π : G̃ → G be a quasi-isogeny, and let ϕ̃ : G̃ → G̃′, Ẽ,
(̃a, ã′; [̃b]) be the corresponding objects for G̃. Generalized functions F ∈ D(X (E))
and F ′ ∈ D(X ′(E)) are (̃a, ã′; [̃b])-equivalent if and only if they are (a, a′; [b])-
equivalent.

Proof. By duality, we have to show that measures φ ∈ S(X (E)) and φ′ ∈ S(X ′(E))
are (a, a′; [b])-indistinguishable if and only if they are (̃a, ã′; [̃b])-indistinguishable. It

follows from Lemma 1.3.10, that for each x ∈ X sr(E) and ξ̃ ∈ π0(
̂̃Gx

�
/Z(̂̃G)�) such

that ([̃ax ], ξ̃ ) ∈ Im#Ẽ , there exists ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) such that (ax , ξ) ∈ Im#E

and ξ̃ is the image of ξ . Moreover, we have O ξ̃
x = cOξ

x , where c ∈ C× is such
that measure dg̃

dg̃x
on (G̃/G̃x )(E) = (G/Gx)(E) equals c dg

dgx
. Therefore the assertion

follows from Lemmas 1.6.11, 1.5.7 (e), and 1.3.10 (c), (d). ��
Definition 1.6.14. Let a : T ↪→ G and a′ : T ↪→ G′ be stable conjugate embeddings
of maximal elliptic tori; let κ be an element of T̂�/Z(Ĝ)� such that ([a], κ) ∈ Im#E .
We say that F ∈ D(X (E)) and F ′ ∈ D(X ′(E)) are (a, a′; κ)-equivalent if they are
(a, a′; [b])-equivalent for some or, equivalently, for all [b] ∈ #−1

E ([a], κ) (see Corol-
lary 1.6.12 (d)).

Lemma 1.6.15. (a) Let π : X1 → X2 be a smooth G-equivariant morphism.
For every E-unstable φ ∈ S(X1(E)), its push-forward π!(φ) ∈ S(X2(E)) is
E-unstable.

(b) Let ϕ : G → G′ be an inner twisting, and π ′ : X ′1 → X ′2 the corresponding
inner twisting of π . For every (a, a′; [b])-indistinguishable φ ∈ S(X1(E)) and
φ′ ∈ S(X ′1(E)), their push-forwards π!(φ) ∈ S(X1(E)) and π ′!(φ′) ∈ S(X ′1(E))
are (a, a′; [b])-indistinguishable.

Proof. Recall that ωX1 and ωX2 are global nowhere vanishing sections of sheaves
of top degree differential forms -

dim X1
X1

and -
dim X2
X2

, respectively. Therefore
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ωX1 ⊗π∗(ωX2)
−1 is a global nowhere vanishing section of-dim X1

X1
⊗π∗(-dim X2

X2
)−1,

which induces a measure, denoted by dy := dx1
dx2

on all fibers of π(E) : X1(E) →
X2(E).

For every x ∈ X sr
2 (E) and y ∈ π(E)−1(x), we have y ∈ X sr

1 (E) and Gx = Gy .

Moreover, for all ξ ∈ π0(Ĝx
�
/Z(Ĝ)�), we have Oξ

x (π!(φ)) =
∫
π(E)−1(x) Oξ

y (φ)dy.
From this the assertion follows. ��

Lemma 1.6.15 has the following corollary.

Corollary 1.6.16. (a) Let π : X1 → X2 be a smooth G-equivariant morphism. For
every E-stable F ∈ D(X2(E)), its pullback π∗(F) ∈ D(X1(E)) is E-stable.

(b) Let ϕ : G → G′ be an inner twisting, and π ′ : X ′1 → X ′2 the inner twist of π . For
every (a, a′; [b])-equivalent F ∈ D(X2(E)) and F ′ ∈ D(X ′2(E)), their pullbacks
π∗(F) ∈ D(X1(E)) and π ′∗(F ′) ∈ D(X ′1(E)) are (a, a′; [b])-equivalent.

1.7. Locally L1 functions

The goal of this subsection is to write down explicitly the condition for E-stability
and (a, a′; [b])-equivalence of generalized functions coming from invariant locally L1

functions.

Notation 1.7.1. (a) Denote by L1
loc(X (E)) the space of G(E)-invariant locally L1

functions on X (E), whose restriction to its open subset X sr(E) is locally
constant.

(b) We have a canonical embedding L1
loc(X (E)) ↪→ D(X (E)), which sends each

F ∈ L1
loc(X (E)) to a generalized function φ 	→ ∫

X (E) Fφ. For simplicity of notation,

we identify functions from L1
loc(X (E)) with the corresponding generalized functions

from D(X (E)).

Remark 1.7.2. For every F ∈ L1
loc(X (E))), the corresponding generalized function

is contained in D0(X (E)).

Notation 1.7.3. For a G(E)-invariant function F : X (E)→ C and a pair x ∈ X sr(E)

and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�), we put F(x, ξ) :=∑

x ′
〈
inv(x, x ′), ξ

〉−1
F(x ′), where x ′ ∈

X (E) runs over a set of representatives of G(E)\[x] ⊂ G(E)\X (E).

Proposition 1.7.4. In the notation of Definition 1.6.10,

(a) F ∈ L1
loc(X (E)) ⊂ D(X (E)) is E-stable if and only if for every pair

x ∈ X sr(E) and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) such that ([ax], ξ ) /∈ Im#E , we have

F(x, ξ ) = 0.
(b) F ∈ L1

loc(X (E)) and F ′ ∈ L1
loc(X

′(E)) are (a, a′; [b])-equivalent if and only if
the following two conditions are satisfied:

(i) F and F ′ are E-stable;
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(ii) for all stably conjugate x ∈ X sr(E) and x ′ ∈ X ′sr(E) and all

ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) such that ([ax], ξ ) ∈ Im#E and ϕ is (E, [ax ], ξ)-

admissible, we have

F ′(x ′, ξ ) =
〈

x, x ′; ξ
a, a′; [b]

〉
F(x, ξ).

After certain preparations, the proof of the proposition will be carried out in 1.7.14.

Notation 1.7.5. Denote by T or the variety of all maximal tori in G.

Lemma 1.7.6. (a) The subset X sr ⊂ X is open, and there exists a smooth morphism
π : X sr →T or such that π(x) = Gx for each x ∈ X sr.

(b) There exists a geometric quotient Y = G\X sr. Moreover, the canonical projection
f : X sr → Y is smooth, the restriction of f to each fiber of π is étale, and the
induced map f (E) : X sr(E)→ Y (E) is a (locally) trivial fibration.

Proof. (a) Denote by X reg the set of x ∈ X such that dimGx = rkE (G). Then X reg

contains X sr, and therefore X reg is Zariski dense in X . Our first step will be to show
that X reg is open in X , and the map x 	→ Gx gives an algebraic morphism π from
X reg to the Grassmannian GrG,rkE (G)

, classifying linear subspaces of G of dimension
rkE (G).

Observe that the action μ : G × X → X induces a map T (μ) : T (G)× T (X)→
T (X) of tangent bundles. The restriction of T (μ) to G×X , where G = T1(G) ⊂ T (G),
and X ⊂ T (X) is the zero section, is a map of vector bundles f : G × X → T (X)
such that for every x ∈ X , the kernel of fx : G → Tx(X) is Gx . In other words, X reg

can be described as the set of x ∈ X such that rk fx = dimG − rkE (G). Since X reg

is dense in X , we get that rk fx ≤ dimG − rkE (G) for each x ∈ X , and X reg ⊂ X is
open. Moreover, the restriction Ker f |X reg is a vector subbundle of G× X reg; therefore
it gives rise to a morphism π : X reg → GrG,rkE (G)

such that π(x) = Gx .
Next consider a subset X rss of X reg consisting of points x such that Gx ⊂ G is a

Cartan subalgebra of G (hence G0
x ⊂ G is a maximal torus). Since we assumed that

Grss �= ∅, every Cartan subalgebra of G has a non-zero intersection with Grss. Hence
X rss equals the set of x ∈ X reg such that Gx ∩ Grss �= ∅. Since Grss is open in G, we
conclude that X rss is open in X reg, hence in X .

Note that the map T 	→ T = Lie T identifies T or with the variety of Cartan
subalgebras of G, which is a locally closed subvariety of GrG,rkE (G)

. Therefore the
restriction of π |X rss can be viewed as a morphism π : X rss → T or such that π(x) =
G0

x for each x ∈ X rss.
We claim that π is smooth. Since both X rss and T or are smooth, we only have

to check that the differential dπx : Tx(X) → Tπ(x) (T or) is surjective for each x ∈
X rss. Put T := π(x). Then G0

x = T , Gx ⊂ NormG(T ), G(x) ∼= G/Gx and T or
∼= G/NormG(T ). Hence π |G(x) is étale, thus dπx |Tx (G(x)) is surjective, which implies
the surjectivity of dπx .

It remains to show that X sr is open in X rss. Fix T ∈ T or, and put W =
NormG(T )/T . Then W acts on π−1(T ), and ZT := π−1(T ) ∩ X sr consists of points
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x ∈ π−1(T ) such that w(x) �= x for all w �= 1. Hence ZT ⊂ π−1(T ) is open, and W
acts freely on ZT . In particular, ZT is smooth.

Consider the natural map ι : (G/T ) ×W ZT → X rss : [g, x] 	→ g(x). This is a
map between smooth spaces, which induces an isomorphism between tangent spaces,
hence ι is étale. Since ι induces a bijection between (G/T ) ×W ZT and X sr ⊂ X rss,
we get that X sr ∼= (G/T )×W ZT is open in X rss.

(b) Since X is quasi-projective, ZT is quasi-projective as well. Hence a quasi-
projective scheme Y := W\ZT is a geometric quotient G\X sr = G\[(G/T )×W ZT ].
Moreover, the projection f : X sr → Y is smooth, and f |ZT is étale.

To show the last assertion, choose x ∈ X sr(E) and put T := Gx . Since the
projection f |ZT is étale, there exist open neighborhoods U ⊂ ZT (E) of x and

V ⊂ Y (E) of f (x) such that f induces a homeomorphism U
∼→ V . Then the map

(G/T )(E) × U → X sr(E) sending ([g], u) to g(u) induces a G(E)-equivariant iso-
morphism between (G/T )(E)×U ∼= (G/T )(E)× V and f (E)−1(V ). ��
Construction 1.7.7. (a) For every T ∈ T or (E) and an open and compact subset
U ⊂ π−1(T )(E), there exists a measure φU ∈ S(X (E)) such that Ox (φU ) = 1 for
each x ∈ G(E)(U), and Ox (φU ) = 0 otherwise.

Explicitly, for each open and compact subgroup K ⊂ G(E), the measure φU :=
|dt |(K∩T (E))
|dg|(K ) χK (U )dx , where χK (U ) is the characteristic function of K (U) ⊂ X sr(E)

and dt is an invariant measure on T (E) such that the total measure of the maximal
compact subgroup of T (E) is 1, satisfies the required properties.

(b) For every stable conjugates x ∈ X sr(E) and x ′ ∈ X ′sr(E), there exists a natural
isomorphism ϕx,x ′ between π−1(Gx) ⊂ X sr and π ′−1(G′

x ′) ⊂ X ′sr.
Explicitly, choose g ∈ G(Esep) such that x ′ = ϕX (g(x)). Then the map X Esep →

X ′Esep : y 	→ ϕX (g(y))mapsπ−1(Gx) to π ′−1(G′
x ′), and the corresponding morphism

ϕx,x ′ : π−1(Gx )→ π ′−1(G′
x ′) is E-rational, independent of g and ϕx,x ′(x) = x ′.

Corollary 1.7.8. (a) Given x ∈ X sr(E) and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) such that ([ax ], ξ)

/∈ Im#E , there exists an E-unstable measure φ ∈ S(X (E)) such that Oξ
x (φ) �= 0

and Oξ
′

x (φ) = 0 for each ξ
′ �= ξ .

(b) Let x ∈ X sr(E) and ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) be such that ([ax ], ξ) ∈ Im#E , ϕ

is (E, [ax ], ξ)-admissible and there exists a stable conjugate x ′ ∈ X ′(E) of x.
Then there exist (a, a′; [b])-indistinguishable measures φ ∈ S(X (E)) and φ′ ∈
S(X ′(E)) such that Oξ

x (φ) �= 0, Oξ
x ′(φ

′) �= 0 and Oξ
′

x (φ) = Oξ
′

x ′ (φ
′) = 0 for

each ξ
′ �= ξ .

Proof. (a) Let x1 = x, . . . , xn ∈ X (E) be a set of representatives of conjugacy classes
stably conjugate to x . Choose an open neighborhood U ⊂ π−1(Gx) of x , and for
every i = 1, . . . , n put Ui := ϕx,xi (U) ⊂ π−1(Gxi )(E), and let φUi ∈ S(X (E)) be

as in Construction 1.7.7 (a). Then measure φ :=∑
i

〈
inv(x, xi ), ξ

〉−1
φUi satisfies the

required property.
(b) Now choose a set of representatives x ′1, . . . , x ′n ∈ X ′(E) of conjugacy classes

stably conjugate to x , and put U ′
i := ϕx,x ′i (U) ⊂ π ′

−1(G′
xi
)(E). Then measures φ :=
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∑
i

〈
inv(x, xi), ξ

〉−1
φUi and φ′ := ∑

i

〈
x,x ′i ;ξ

a,a′;[b]

〉−1

φUi satisfy the required property

(use Lemma 1.6.11). ��
Lemma 1.7.9. (a) Let F ∈ D(X (E)) be of the form F = ∑

ξ cx,ξOξ
x , where x ∈

X sr(E), cx,ξ ∈ C and ξ runs over π0(Ĝx
�
/Z(Ĝ)�). Then F is E-stable if and

only if cx,ξ = 0 for each ξ with ([ax ], ξ) /∈ Im#E .

(b) Let F ∈ D(X (E)) and let F ′ ∈ D(X ′(E)) be of the form F = ∑
ξ cx,ξOξ

x and

F ′ =∑
ξ cx ′,ξOξ

x ′ for some stable conjugate x ∈ X sr(E) and x ′ ∈ X ′sr(E). Then
F and F ′ are (a, a′; [b])-equivalent if and only if they satisfy the following two
conditions:
(i) F and F ′ are E-stable;

(ii) for each ξ ∈ π0(Ĝx
�
/Z(Ĝ)�) = π0(Ĝ′

x ′
�
/Z(Ĝ′)�) such that ([ax ], ξ) ∈

Im#E and ϕ is (E, [ax ], ξ)-admissible, we have cx ′,ξ =
〈

x,x ′;ξ
a,a′;[b]

〉
cx,ξ .

Proof. (a) The “if” assertion is clear. The “only if” assertion follows from the equality
F(φ) = 0 applied to measure φ from Corollary 1.7.8 (a).

(b) Assume that F and F ′ satisfy assertions (i) and (i i). Then it follows from
Lemma 1.6.11 and assertion (a), that for every (a, a′; [b])-indistinguishable φ ∈
S(X (E)) and φ′ ∈ S(X ′(E)) we have F(φ) = F ′(φ′). Conversely, assume that F
and F ′ are (a, a′; [b])-equivalent. Then condition (i) was proved in Corollary 1.6.12
(b) and condition (i i) follows from the equality F(φ) = F ′(φ′) applied to measures φ
and φ′ from Corollary 1.7.8 (b). ��

The following result is clear.

Lemma 1.7.10. Let f : Z → Y be a morphism of smooth algebraic varieties over
E such that the induced map f (E) : Z(E) → Y (E) is a locally trivial fibration.
Fix a measure μ on Y (E), and let U1 ⊃ U2 ⊃ . . . be a basis of open and compact
neighborhoods of y ∈ Y (E). Then for every locally constant function F on Z(E) and
every φ ∈ S(Z(E)), the sequence 1

μ(Ui )
F | f −1(Ui )

(φ) stabilizes.

Notation 1.7.11. For each x ∈ X sr(E) and F ∈ L1
loc(X (E)), denote by Fx ∈

D(X (E)) the generalized function φ 	→ SOx (Fφ). For each x∗ ∈ (X∗)sr(E),
F ∈ L1

loc(X (E)) and F ′ ∈ L1
loc(X

′(E)), we denote by Fx∗ ∈ D(X (E)) and
F ′x∗ ∈ D(X ′(E)) the generalized functions φ 	→ SOx∗(Fφ) and φ′ 	→ SOx∗(F ′φ′),
respectively (see Notation 1.6.4 (iii)).

Remark 1.7.12. Clearly, Fx and Fx∗ belong to D0(X (E)).

Claim 1.7.13. (a) F ∈ L1
loc(X (E)) is E-stable if and only if Fx ∈ D(X (E)) is E-

stable for all x ∈ X sr(E).
(b) F ∈ L1

loc(X (E)) and F ′ ∈ L1
loc(X

′(E)) are (a, a′; [b])-equivalent if and
only if Fx∗ ∈ D(X (E)) and F ′x∗ ∈ D(X ′(E)) are (a, a′; [b])-equivalent for all
x∗ ∈ (G∗)sr(E).
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Proof. (a) Since X sr is Zariski dense in X , the complement X (E)� X sr(E) is nowhere
dense. As F ∈ L1

loc(X (E)), we get that F is E-stable if and only if the restriction
F |X sr(E) is E-stable.

Consider the map f : X sr → Y from Lemma 1.7.6. Then for every x ∈
X sr(E) and φ ∈ S(X (E)), the value Fx (φ) is the limit of the stabilizing sequence

1
μ(Ui )

F | f −1(Ui )
(φ), where Ui is any basis of open and compact neighborhoods of

f (x) ∈ Y (E) (use Lemma 1.7.10). From this the assertion follows.
Indeed, if F |X sr(E) is E-stable, then each F | f −1(Ui )

is E-stable. In particular, for
every E-unstable φ, we have F | f −1(Ui )

(φ) = 0 for each i , hence Fx (φ) = 0. Con-
versely, assume that each Fx is E-stable, and pick an E-unstable φ. Then there exists
an open disjoint covering {Uα}α of f (Suppφ) such that each F | f −1(Uα)(φ) = 0 for
each α, hence F(φ) =∑

α F | f −1(Uα)(φ) = 0. This shows that F is E-stable.
(b) As in (a), F and F ′ are (a, a′; [b])-equivalent if and only if F |X sr(E) and

F ′|X ′sr(E) are (a, a′; [b])-equivalent. Next since G acts trivially on Y , we get identifi-
cations Y ′ = Y ∗ = Y , and the projection f : X sr → Y induces maps f ′ : X ′sr → Y
and f ∗ : (X∗)sr → Y . Moreover, by Corollary 1.1.11, both Im f (E) and Im f ′(E) are
contained in Im f ∗(E). Now the assertion follows from Lemma 1.7.10 by exactly the
same arguments as (a). ��

1.7.14. Proof of Proposition 1.7.4. (a) For each x ∈ X sr(E), we denote by Nx the

cardinality of π0(Ĝx
�
/Z(Ĝ)�). By Claim 1.7.13 (a), F is E-stable if and only if each

Fx is stable. Since Fx = 1
Nx

∑
ξ F(x, ξ)Oξ

x , the assertion then is just a reformulation
of Lemma 1.7.9 (a).

(b) The proof of (b) is similar. By Claim 1.7.13 (b), F ∈ L1
loc(X (E)) and F ′ ∈

L1
loc(X

′(E)) are (a, a′; [b])-equivalent if and only if each Fx∗ ∈ D(X (E)) and F ′x∗ ∈
D(X ′(E)) are (a, a′; [b])-equivalent. By definition this means that each Fx and F ′x ′ are
E-stable, and for every stable conjugate x ∈ X sr(E) and x ′ ∈ X ′sr(E), Fx and F ′x ′ are
(a, a′; [b])-equivalent. But by Claim 1.7.13 (a) and Lemma 1.7.9 (b), these conditions
are equivalent to conditions (i) and (i i), respectively. ��
Corollary 1.7.15. (a) Let π : X1 → X2 be a smooth G-equivariant morphism of

varieties as in 1.6.1 (b) and U ⊂ X1(E) an open G(E)-invariant subset. For
every F ∈ L1

loc(X2(E)) such that π∗(F)|U is E-stable, the restriction F |π(U ) is
E-stable.

(b) Let π ′ : X ′1 → X ′2 be the inner twisting of π and U ′ ⊂ X ′1(E) an open G′(E)-
invariant subset. For every F ′ ∈ L1

loc(X
′
2(E)) such that π∗(F)|U and π ′∗(F ′)|U ′

are (a, a′; [b])-equivalent, the restrictions F|π(U ) and F ′|π ′(U ′) are (a, a′; [b])-
equivalent.

Proof. (a) Since π is smooth and G-equivariant, the subset π(U) ⊂ X2(E) is open
and G(E)-invariant. Thus F |π(U ) is defined and belongs to L1

loc(X2(E)). Let (x, ξ)
be as in Proposition 1.7.4 (a). If [x] ∩ π(U) = ∅, then F |π(U ) vanishes on [x], hence
F |π(U )(x, ξ ) = 0. Assume now that [x] ∩ π(U) �= ∅. Replacing x by a stable con-
jugate, we can assume that x = π(x1) for some x1 ∈ X1(E). Then x1 ∈ X sr

1 (E),
Gx1 = Gx , ax1 = ax , and π induces a G(E)- and �-equivariant isomorphism
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[x1]
∼→ [x]. Hence F |π(U )(x, ξ) = π∗(F)|U (x1, ξ ) = 0. Thus the assertion follows

from Proposition 1.7.4 (a).
(b) Follows from Proposition 1.7.4 (b) by exactly the same arguments as (a). ��

1.8. Quasi-logarithm maps

Starting from 1.8.5, E will be a local non-archimedean field, O the ring of integers of
E , m the maximal ideal of O, Fq the residue field of E , p the characteristic of Fq , and
G a reductive group over E split over Enr.

Definition 1.8.1. Let G be an algebraic group over a field k. By a quasi-logarithm
we call a Gad-equivariant algebraic morphism � : G → G such that �(1) = 0 and
d�1 : G = T1(G)→ G is the identity map.

Example 1.8.2. Let ρ : G → Aut V be a representation such that the corresponding
G-invariant pairing 〈a, b〉ρ := Tr(ρ(a)ρ(b)) on G is non-degenerate. Denote by prρ :
End V → G be the projection given by the rule Tr(prρ(A)ρ(b)) = Tr(Aρ(b)) for each
b ∈ G. Then the map �ρ : g 	→ prρ(ρ(g)− IdV ) is a quasi-logarithm G → G.

Lemma 1.8.3. Let � : G → G be a quasi-logarithm map.

(a) For every Borel subgroup B of G, we have�(B) ⊂ Lie B;
(b) If a Cartan subgroup of G is a maximal torus, then � induces a quasi-logarithm

map Gred := G/Ru(G)→ Gred

Proof. Let T ⊂ B be a maximal torus, and C := CentG(T ) the corresponding Cartan
subgroup.

(a) Since� is Gad-equivariant,�(C) is contained in the set of fixed points of Ad T
in G, that is, �(C) ⊂ Lie C . Therefore

�(Int B(C)) = Ad B(�(T )) ⊂ Ad B(Lie C) ⊂ Lie B.

Since C is a Cartan subgroup of B , Int B(C) ⊂ B is Zariski dense, hence �(B) is
contained in Lie B .

(b) We have to show that for each g ∈ G and u ∈ Ru(G), we have

�(gu)−�(g) ∈ Lie Ru(G). (1.8.1)

Since we assumed that T is a Cartan subgroup, Int G(T ) is Zariski dense in G. There-
fore it is enough to check the equality (1.8.1) only for g ∈ Int G(T ), hence (since� is
Gad-equivariant and Ru(G) is normal in G), only for g = t ∈ T . Consider subgroup
H = T Ru(G) ⊂ G. Then T is a Cartan subgroup of H , hence Int H (T ) is Zariski
dense in H . Since H = T � Ru(G), it will therefore suffice to check (1.8.1) under the
additional assumption that tu = vtv−1 for certain v ∈ Ru(G). In this case,

�(tu)−�(t) = (Ad v − Id)(�(t)) ∈ (Ad v − Id)(T ) ⊂ Lie Ru(G),

as claimed. ��
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Remark 1.8.4. If we do not assume that the Cartan subgroup of G is a maximal torus,
then the assertion (b) of the lemma is obviously false. For example, it is false for
abelian groups.

From now on, G is a reductive group over a local non-archimedean field E , which
is split over Enr.

1.8.5. Bruhat–Tits building (a) Denote by B(G) the (non-reduced) Bruhat–Tits
building of G. For every point x ∈ B(G), we denote by Gx ⊂ G(E) (resp. Gx ⊂ G)
the corresponding parahoric subgroup (resp. subalgebra), and let Gx+ ⊂ Gx (resp.
Gx+ ⊂ Gx ) be the pro-unipotent (resp. pro-nilpotent) radical of Gx (resp. of Gx ) (com-
pare [MP1]).

(b) For every x ∈ B(G), denote by Gx the canonical smooth connected group
scheme over O whose generic fiber is G and Gx (O) = Gx , and let Gx be the spe-
cial fiber of Gx . Then Gx is a connected group over Fq , whose Cartan subgroup is a
maximal torus. (Here we use the assumption that G splits over Enr).

(c) For every x ∈ B(G), denote by Lx the quotient (Gx )red = Gx/Ru(Gx ). We
have canonical identifications Lx (Fq) = Gx/Gx+ and Lx := Lie Lx = Gx/Gx+ . For
every g ∈ Gx and a ∈ Gx , we put g := gGx+ ∈ Lx (Fq) and a := a + Gx+ ∈ Lx (Fq).

(d) If G = T is a torus, then the group scheme T x is independent of x ∈ B(T ), and
coincides with the canonical O-structure TO of T . We denote by T the special fiber of
TO, and will write T (O) instead of TO(O).

Notation 1.8.6. (a) We call an invariant pairing 〈·, ·〉 on G non-degenerate at x ∈
B(G) if it is non-degenerate over E and the dual lattice

(Gx )
⊥ := {x ∈ G(E) | 〈x, y〉 ∈ m for each y ∈ Gx }

equals Gx+ .
(b) We call a quasi-logarithm� : G → G defined at x ∈ B(G) if � extends to the

morphism�x : Gx → Gx of schemes over O.

Lemma 1.8.7. (a) If an invariant pairing 〈·, ·〉 on G is non-degenerate at x for some
x ∈ B(G), then it is non-degenerate at x for all x ∈ B(G). In this case, 〈·, ·〉
defines an invariant non-degenerate pairing 〈·, ·〉x on Lx for all x ∈ B(G).

(b) If a quasi-logarithm� : G → G over E is defined at x for some x ∈ B(G), then
it is defined at x for all x ∈ B(G). In this case, � gives rise to a quasi-logarithm
map �x : Lx → Lx for all x ∈ B(G).

Proof. (a) Assume that (Gx)
⊥ = Gx+ . Since mGx ⊂ Gx+ , we get that 〈a, b〉 ∈ O for

every a, b ∈ Gx , and the pairing on Lx given by the formula
〈
a, b

〉
x := 〈a, b〉 ∈ Fq for

every a, b ∈ Gx is well defined, Lx -invariant and non-degenerate.
It remains to show that for every x, y ∈ B(G), the equalities (Gx )

⊥ = Gx+ and
(Gy)

⊥ = Gy+ are equivalent. For this we can extend scalars to Enr. Also we can
assume that Gy is an Iwahori subalgebra of Gx .

Assume first that (Gx )
⊥ = Gx+ . Since Gx+ ⊂ Gy ⊂ Gx , we get that Gx+ ⊂

(Gy)
⊥ ⊂ Gx . Moreover, (Gy)

⊥/Gx+ ⊂ Lx is the orthogonal complement of the Borel
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subalgebra Gy/Gx+ ⊂ Lx with respect to the non-degenerate pairing 〈·, ·〉x . Hence
(Gy)

⊥/Gx+ is the nilpotent radical of Gy/Gx+ , thus (Gy)
⊥ = Gy+ . Conversely, assume

that (Gy)
⊥ = Gy+ . Since Gx = ∪g∈Gx Ad g(Gy) and Gx+ = ∩g∈Gx Ad g(Gy+), we get

that Gx+ = (Gx )
⊥, as claimed.

(b) The strategy will be similar to that of (a). Assume that� extends to a morphism
�x : Gx → Gx . Then the special fiber of �x is a quasi-logarithm Gx → Gx . Since
Lx = (Gx)red, the existence�x follows from Lemma 1.8.3 (b) and the observation of
1.8.5 (b).

It remains to show that for every x, y ∈ B(G), the existence of �x is equiva-
lent to that of �y . Notice first that the existence of �x is equivalent to the fact that
�(Gx (OEnr)) ⊂ Gx ⊗O OEnr (see [BT, Prop. 1.7.6]). Thus we can extend scalars to
Enr, and we are required to check that the inclusions �(Gx ) ⊂ Gx and �(Gy) ⊂ Gy

are equivalent. Also we can assume that Gy is an Iwahori subgroup of Gx .
Assume that �(Gx) ⊂ Gx . As we have shown, � induces a quasi-logarithm

�x : Lx → Lx . By Lemma 1.8.3 (a), we get �x (Gy/Gx+) ⊂ Gy/Gx+ , thus
�(Gy) ⊂ Gy . Conversely, assume that �(Gy) ⊂ Gy . As � is Gad-equivariant,
the inclusion �(Gx) ⊂ Gx follows from equalities Gx = ∪g∈Gx gGyg−1 and
Gx = ∪g∈Gx Ad g(Gy). ��

Lemma 1.8.7 allows us to give the following definition.

Definition 1.8.8. (a) We call an invariant pairing 〈·, ·〉 on G non-degenerate over O if
it is non-degenerate at x for some (or, equivalently, for all) x ∈ B(G).

(b) We call a quasi-logarithm � : G → G defined over O if it is defined at x for
some (or, equivalently, for all) x ∈ B(G).

Lemma 1.8.9. (a) Let ϕ : G → G′ be an inner twisting defined over Enr. Every non-
degenerate over O invariant pairing 〈·, ·〉 on G gives rise to the corresponding
pairing 〈·, ·〉′ on G′. Every quasi-logarithm� : G → G defined over O gives rise
to the corresponding quasi-logarithm�′ : G′ → G′.

(b) If the pairing 〈·, ·〉ρ on G corresponding to a representation ρ : G → Aut(V ) is
non-degenerate over O, then the corresponding quasi-logarithm �ρ : G → G is
defined over O.

Proof. (a) Recall that ϕ induces isomorphisms GEnr
∼→ G′

Enr and GEnr
∼→ G′Enr .

Hence � and 〈·, ·〉 give rise to a quasi-logarithm �′ : G′
Enr → G′Enr and a pairing

〈·, ·〉′ : GEnr × GEnr → Enr, respectively. Furthermore, since the twisting ϕ is inner,
while � and 〈·, ·〉 are Gad-equivariant, the quasi-logarithm �′ and the inner twisting
〈·, ·〉′ are defined over E . Finally, to show that�′ and 〈·, ·〉′ are defined over O, we can
extend scalars to Enr. Then the assertion follows from the corresponding assertion for
� and 〈·, ·〉.

(b) For the proof we can replace E by its finite unramified extension so that G is
split over E . Fix a hyperspecial vertex x ∈ B(G); we have to show that�ρ(Gx ) ⊂ Gx .
As (Gx)

⊥ = Gx+ , it is enough to show that Tr(ρ(g)ρ(a)) ∈ m for every g ∈ Gx and
a ∈ Gx+ = mGx . Choose any ρ(Gx )-invariant O-lattice Vx ⊂ V . Then Vx is ρ(Gx)-
invariant, hence ρ(g)ρ(a)(Vx) ⊂ mVx . Thus Tr(ρ(g)ρ(a)) ∈ m, as claimed. ��
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Definition 1.8.10. We say that the group G over E satisfies property (vg) if Gsc ad-
mits a quasi-logarithm map Gsc → Gsc defined over O, Gsc admits an invariant pairing
non-degenerate over O, and p does not divide the order of Z(Gsc).

Remark 1.8.11. By Lemma 1.8.9 (a), for every inner twisting ϕ : G → G′, the group
G satisfies property (vg) if and only if G′ satisfies property (vg).

Lemma 1.8.12. Write (G∗)sc in the form
∏

i REi /E Hi , where each Hi is a quasi-split
absolutely simple over a finite unramified extension Ei of E. Then G satisfies property
(vg), if the following conditions are satisfied:

(i) p is good for each Hi in the sense of [SS, I, §4];
(ii) p does not divide the order of each Z(Hi);

(iii) p does not divide [Ei [Hi] : Ei ], where Ei [Hi ] is the splitting field of Hi .

Proof. Assume that p satisfies assumptions (i)–(i i i) of the lemma. By Lemma 1.8.9
(a), we may replace G by (G∗)sc hence by each REi /E Hi , thus assuming that G is
quasi-split simple and simply connected. By Lemma 1.8.9 (b), it will suffice to con-
struct a representation ρ of G such that the corresponding pairing 〈·, ·〉ρ on G is non-
degenerate over O. We will construct such a ρ in three steps.

Assume first that G = Hi is split. In this case, take ρ to be the standard repre-
sentation if G is classical, and the adjoint representation if G is exceptional. Then
assumptions (i) and (i i) imply (as in [SS, I, Lemma. 5.3]) that the pairing 〈·, ·〉ρ is
non-degenerate at every hyperspecial vertex of B(G), hence non-degenerate over O.

Next we assume that G = Hi is absolutely simple, set E ′ := E[G], and put
G′ := GE ′ . Then by the claims proven above, there exists a representation ρ′ : G′ →
AutE ′(V ) such that the pairing 〈·, ·〉ρ′ on G′ is non-degenerate over OE ′ . Take ρ to be
the restriction of RE ′/Eρ

′ : RE ′/E G′ → AutE (V ) to G. Extending scalars to E ′, we
get ρE ′ ∼= (ρ′)[E ′:E], hence 〈·, ·〉ρE ′ = [E ′ : E] 〈·, ·〉ρ′ . Therefore by assumption (i i i),
〈·, ·〉ρE ′ is non-degenerate over OE ′ , and thus 〈·, ·〉ρ is non-degenerate over O.

In the general case, choose a representation ρ′ : Hi → AutEi (V ) such that 〈·, ·〉ρ′
is non-degenerate over OEi . Then the representation ρ := REi /Eρ

′ : G → AutE (V )
satisfies the required property. ��
Remark 1.8.13. The designation (vg) was chosen to indicate the fact that it is closely
related to the notion of a very good prime. (Recall that p is called very good for Hi if
it satisfies properties (i) and (i i) of Lemma 1.8.12.)

Notation 1.8.14. (a) For an algebraic group H , we denote by U(H ) ⊂ H and
N (H) ⊂ H the subvarieties of unipotent elements of H and of nilpotent elements
of H, respectively.

(b) For every x ∈ B(G), we denote by Gx,tu ⊂ Gx and Gx,tn ⊂ Gx the preimages
of U(Lx )(Fq) ⊂ Lx(Fq) and N (Lx )(Fq) ⊂ Lx , respectively.

(c) Put G(E)tu := ∪x∈B(G)Gx,tu and G(E)tn := ∪x∈B(G)Gx,tn.

Lemma 1.8.15. For every x ∈ B(G),



Endoscopic decomposition 259

(a) Gx,tu = ∪y Gy+ and Gx,tn = ∪yGy+ , where y runs over the union of alcoves in
B(G), whose closures contain x.

(b) Gx,tu = Gx ∩ G(E)tu ⊂ G(E) and Gx,tn = Gx ∩ G(E)tn ⊂ G(E).

Proof. (a) is clear.
(b) The first assertion follows from the equality Gx,tu = {g ∈ Gx | g pn −→

n→∞ 1}.
For the second equality, we have to show that for each z ∈ B(G), there exists y as
in (a), such that Gx ∩ Gz+ ⊂ Gy+ . But every y, lying in the segment [x, z] ⊂ B(G),
satisfies this property. ��
Proposition 1.8.16. Let � : G → G be a quasi-logarithm defined over O.

(a) For every x ∈ B(G), � induces measure preserving analytic isomorphisms
Gx,tu

∼→ Gx,tn and Gx+
∼→ Gx+ (with respect to measures |ωG | and |ωG | cho-

sen in 1.6.1).
(b) � induces a measure preserving analytic isomorphism G(E)tu

∼→ G(E)tn.
(c) Let 0G ⊂ G be the biggest open subset U ⊂ G such that �|U is étale. Then

0G(E) contains G(E)tu.

Proof. (a) For the proof, one can replace E by a finite unramified extension, so we can
assume that G splits over E . By Lemma 1.8.7 (b), we have �(Gx+) ⊂ Gx+ for each
x ∈ B(G); therefore by Lemma 1.8.15 (a), �(Gx,tu) ⊂ Gx,tn. Since |ωG |(Gx+) =
|ωG |(Gx+), the second assertion follows from the first.

Let us first show the assertion for a hyperspecial vertex x ∈ B(G). By Lemma
1.8.7 (b), � extends to the morphism �x : Gx → Gx of schemes over O, whose
special fiber is a quasi-logarithm map �x : Lx → Lx . By [BR, 9.1, 9.2, 9.3.3 and
6.3] (compare [BR, 9.4]), �x induces an isomorphism U(Lx )

∼→ N (Lx ). Moreover,
there exists an open affine neighborhood V ⊂ Lx of U(Lx ) such that �x |V is étale
(see [BR, Thm 6.2 and 9.1]). Therefore by Hensel’s lemma, �x induces an analytic
isomorphism Gx,tu

∼→ Gx,tn.
Since �x is an algebraic morphism over O, we get that �(gGx,r) = �(g)+ Gx,r

for each g ∈ Gx,tu and r ∈ N. But |ωG |(gGx,r) = |ωG |(�(g) + Gx,r ), and
{gGx,r}g,r form a basis of open neighborhoods of Gx,tu. Hence the analytic isomor-

phism Gx,tu
∼→ Gx,tn is measure-preserving.

It remains to show that for every x, y ∈ B(G), the assertions for x and y are
equivalent. Moreover, we can assume that Gy is an Iwahori subgroup of Gx (compare
the proof of Lemma 1.8.7). Then Gy,tu = Gx,tu ∩ Gy and Gy,tn = Gx,tn ∩ Gy (see
Lemma 1.8.15), so the assertion for x implies that for y. The opposite direction follows
from equalities Gx,tu = ∪g∈Gx gGy,tug−1 and Gx,tn = ∪g∈Gx Ad g(Gy,tn).

(b) By (a), we get that�(G(E)tu) = G(E)tn, and that the induced map G(E)tu →
G(E)tn is open. Thus we have to check that the restriction of � to G(E)tu is one-to-
one.

Assume that g1, g2 ∈ G(E)tu satisfy �(g1) = �(g2). Choose x, y ∈ B(G) such
that g1 ∈ Gx+ and g2 ∈ Gy+ (use Lemma 1.8.15). By (a), � induces a measure-
preserving embedding Gx+ ∩ Gy+ ↪→ Gx+ ∩ Gy+ . Since measures of both sides are
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equal, the last embedding is surjective. But �(g1) = �(g2) belongs to Gx+ ∩ Gy+ ,
hence there exists g3 ∈ Gx+ ∩ Gy+ such that �(g1) = �(g3) = �(g2). Since �|Gx+
and �|G y+ are injective, we get that g1 = g3 = g2, as claimed.

(c) We have to check that for each g ∈ G(E)tu, the differential d�g : Tg(G) →
T�(g)(G) is an isomorphism. But this follows from (b). ��

We finish this subsection with a result, which we will need later.

Lemma 1.8.17. (a) Let π : G̃ → G be an isogeny (that is, a finite surjective quasi-
isogeny) of order prime to p. Then π(G̃(E)tu) = G(E)tu.

(b) Let π : G̃ → G be a surjective quasi-isogeny such that S = kerπ is a torus split
over Enr. Then for every x ∈ B(G̃), we have π(G̃x) = Gπ(x).

Proof. (a) Since π is an isogeny, it identifies B(G̃) with B(G). Thus we have to check
that for each x ∈ B(G̃) = B(G), we have π(G̃x,tu) = Gx,tu. Since the order of π is
prime to p, the corresponding map πx : G̃x → Gx of group schemes over O is étale.

Since the special fiber π x : G̃x → Gx induces an isomorphism U(G̃x)
∼→ U(Gx), the

assertion follows from Hensel’s lemma.
(b) The homomorphism π gives rise to an exact sequence 1 → SO → G̃x

πx−→
Gπ(x) → 1 of group schemes over O. In particular, πx is smooth. Passing to special

fibers, we get an exact sequence 1 → S → G̃x
π x−→ Gπ(x) → 1 of groups over Fq .

Since S is connected, we get that H 1(Fq , S) = 1, hence the map π x (Fq) = πx(Fq) is
surjective. Therefore the surjectivity of πx (O) follows from Hensel’s lemma. ��
Corollary 1.8.18. Let ι : Gsc → G be a canonical map. Then for every x ∈ B(G)
and an unramified maximal torus T ⊂ G, we have Gx ⊂ ι(Gsc)(E) · T (O).

Proof. Assume first that Gder = Gsc. Denote by q the projection G → Gab. Then we
have to check that q(Gx) ⊂ q(T (O)). Since q(Gx) ⊂ Gab(O), the assertion follows
from part (b) of the lemma applied to the morphism q|T : T → Gab.

For a general G, there exists a surjective quasi-isogeny π : G̃ → G such that
G̃der = G̃sc(= Gsc), and Kerπ is an induced torus splitting over Enr (see [MS, Prop.
3.1]). Then for every x̃ ∈ B(G̃) such that π(̃x) = x we have π(G̃ x̃) = Gx , so the
assertion for Gx and T follows from that for G̃ x̃ and π−1(T ) ⊂ G̃. ��

2. Endoscopic decomposition

2.1. Main Theorem

In this subsection we will give two equivalent formulations of the main result of the
paper.
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2.1.1. Deligne–Lusztig representations Let L be a connected reductive group over
Fq , a : T ↪→ L an embedding of a maximal torus of L, and θ : T (Fq)→ C× a char-
acter. To this data Deligne and Lusztig [DL] associate a virtual representation Rθ

a(T )
of

L(Fq). Moreover, if the torus a(T ) ⊂ L is elliptic and the character θ is non-singular,

then ρa,θ := (−1)rkFq (L)−rkFq (T )Rθ
a(T )

(= e(L)Rθ
a(T )

) is a cuspidal representation (see

[DL, Proposition 7.4 and Theorem 8.3]). In particular, ρa,θ is a genuine representation

and not a virtual one. Moreover, ρa,θ is irreducible if θ is in general position.

2.1.2. Recall that there is an equivalence of categories T 	→ T between tori
over E splitting over Enr and tori over Fq . Moreover, every such T has a canoni-
cal O-structure. We denote by T (O)+ and T (O)+ the kernels of the reduction maps
Ker[T (O)→ T (Fq)] and Ker[T (O)→ T (Fq)], respectively.

Notation 2.1.3. (a) Let G be a reductive group over E , T a torus over E splitting over
Enr, and a : T ↪→ G an embedding of a maximal elliptic torus of G.

For every vertex x of B(T ), a(x) is a vertex of B(G). Moreover, since T is elliptic,
we have B(T ) = B(Z(G)0). Thus the Z(G)0(E)-orbit of a(x), hence also the para-
horic subgroup Ga(x) does not depend on x . Therefore we can denote Ga(x) by Ga , and
similarly for Ga(x), Ga(x)+, Ga(x)+, La(x) and La(x). We also set G̃a := Z(G)(E)Ga .

An embedding a : T ↪→ G induces an embedding a : T ↪→ La of a maximal
elliptic torus of La .

(b) Let θ : T (E) → C× be a non-singular character (that is, θ is not orthogonal
to any coroot of (G, T )), trivial on T (O)+. Denote by θ : T (Fq)→ C× the character
of T (Fq) defined by θ . Then there exists a unique representation ρa,θ of G̃a , whose
central character is the restriction of θ , extending the inflation to Ga of the Deligne–
Lusztig representation ρa,θ of La(Fq). We denote by πa,θ the induced representation

IndG(E)
G̃a

ρa,θ of G(E). Since for each irreducible factor ρ′ ⊂ ρa,θ , the induced rep-

resentation IndG(E)
G̃a

ρ′ is cuspidal and irreducible (see [MP2, Prop. 6.6]), we get that
πa,θ is a semisimple cuspidal representation of finite length, which is irreducible, if θ
is in general position.

Definition 2.1.4. (a) Let a : T ↪→ G be an embedding of a maximal torus split over
Enr. We say that an element t ∈ T (Fq) is a-strongly regular if t is not fixed by a
non-trivial element of the Weyl group W (G, a(T )) ⊂ Aut(TEnr ) = Aut(T Fq

).

(b) Let asc : T sc ↪→ Gsc be the lift of a. We say that G satisfies property (vg)a if G
satisfies property (vg) (see Definition 1.8.10) and there exists an asc-strongly regular
element t ∈ T sc

(Fq).

Notation 2.1.5. To each κ ∈ T̂�/Z(Ĝ)� , an embedding a0 : T ↪→ G, and a character
θ of T (E) as in Notation 2.1.3, we associate an invariant generalized function

χa0,κ,θ := e(G)
∑

a

〈inv(a0, a), κ〉χ(πa,θ ) ∈ D(G(E)).
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Here a runs over a set of representatives of conjugacy classes of embeddings T ↪→ G
which are stably conjugate to a0, and χ(πa,θ ) denotes the character of πa,θ .

Now we are ready to formulate our main result of the paper.

Theorem 2.1.6. Let (a0, κ, θ) be as in Notation 2.1.5. Assume that the characteristic
of E is zero and G satisfies property (vg)a0 . Then

(a) The generalized function χa0,κ,θ is E([a0],κ)-stable.
(b) For each inner twisting ϕ : G → G′ and each embedding a′0 : T ↪→ G′, stably

conjugate to a0, the generalized functions χa0,κ,θ on G(E) and χa′0,κ,θ on G′(E)
are (a0, a′0; κ)-equivalent.

Remark 2.1.7. By Corollary 1.6.12 (b), assertion (a) is a particular case of (b). More-
over, if ϕ is not E([a0],κ)-admissible, then assertions (a) and (b) are equivalent (by
Corollary 1.6.12 (c)).

Notation 2.1.8. (a) To each a : T ↪→ G and θ : T (E)→ C× as in Notation 2.1.3 we
associate a function ta,θ on G(E), supported on G̃a and equal there to Tr ρa,θ .

(b) Since ta,θ is cuspidal, it follows from [HC1, Lem. 23] that for every γ ∈ Gsr(E)
and every compact open subgroup K ⊂ G(E), the sum

∑
g∈Db

ta,θ (gγ g−1), where

Db := G̃a\G̃abK , does not vanish only for finitely many b ∈ G̃a\G(E)/K . Therefore
the sum

Fa,θ (γ ) :=
∑

b∈G̃a\G(E)/K

⎡⎣∑
g∈Db

ta,θ (gγ g−1)

⎤⎦
stabilizes, and the resulting value is independent of K .

Explicitly, Fa,θ (γ ) = ∑
g∈G̃a\- ta,θ (gγ g−1) for each sufficiently large compact

modulo center subset - = G̃a-K ⊂ G(E). In particular, Fa,θ is a locally constant
invariant function on Gsr(E).

(c) For every κ ∈ T̂ �/Z(Ĝ)� , put

Fa0,κ,θ := e(G)
∑

a

〈inv(a0, a), κ〉 Fa,θ ,

where a runs over a set of representatives of conjugacy classes of embeddings T ↪→ G
which are stably conjugate to a0.

Lemma 2.1.9. Assume that the characteristic of E is zero. Then for each a and θ
as in Notation 2.1.3, Fa,θ belongs to L1

loc(G(E)), and the corresponding generalized
function is equal to χ(πa,θ ).

Proof. Since πa,θ is cuspidal, the assertion is a combination of the theorem of
Harish-Chandra ([HC1, Theorem 16]) and a formula for characters of induced rep-
resentations. ��

For the next result, we will use Notation 1.7.3.
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Theorem 2.1.10. Under the assumptions of Theorem 2.1.6, let γ ∈ Gsr(E) and ξ ∈
π0(Ĝγ

�
/Z(Ĝ)�) be such that Fa0,κ,θ (γ, ξ) �= 0 . Then

(i) ([aγ ], ξ ) ∈ Im#E ;
(ii) if ϕ : G → G′ is (E, [aγ ], ξ)-admissible, then for every stable conjugate γ ′ ∈

G′(E) of γ we have F ′a′0,κ,θ (γ
′, ξ ) =

〈
γ,γ ′;ξ
a,a′;κ

〉
Fa0,κ,θ (γ, ξ).

Lemma 2.1.11. Theorem 2.1.10 is equivalent to Theorem 2.1.6.

Proof. The equivalence follows from Lemma 2.1.9 and Proposition 1.7.4. More
precisely, Proposition 1.7.4 (a) implies the equivalence between Theorem 2.1.6 (a)
and Theorem 2.1.10 (i), while Proposition 1.7.4 (b) implies the equivalence between
Theorem 2.1.6 (b) and a combination of Theorem 2.1.6 (a) and Theorem 2.1.10 (i i).

��
Remark 2.1.12. If the characteristic of E is positive, then it is not known that
χ(πa,θ ) belongs to L1

loc(G(E)). However the restriction χ(πa,θ )|Gsr(E) belongs to
L1

loc(G
sr (E)); therefore Proposition 1.7.4 implies that Theorem 2.1.10 for E is equiv-

alent to an analog of Theorem 2.1.6 for restrictions χa0,κ,θ |Gsr(E) and χa′0,κ,θ |G ′sr(E).
Moreover, Theorem 2.1.10 for local fields of positive characteristic follows from

that for local fields of characteristic zero by approximation arguments of [Ka3] and
[De] (see [KV2]).

2.2. Stability of the restriction to G(E)tu

Starting from this subsection we will assume that the characteristic of E is zero. In this
subsection we will strongly use definitions and results from Subsection 1.8.

2.2.1. Assumptions Assume that G admits a quasi-logarithm map � : G → G
defined over O, G admits an invariant pairing 〈·, ·〉 non-degenerate over O, and there
exists t ∈ T (O), whose reduction t ∈ T (Fq) is a0-strongly regular (see Definition
2.1.4 (a)).

Notation 2.2.2. (a) For every generalized function F ∈ D(G(E)), denote by Ftu
the restriction of F |G(E)tu (see Notation 1.6.2 and Notation 1.8.14). Since G(E)tu ⊂
0G(E) (see Proposition 1.8.16 (c)), we can consider Ftu as an element either of
D(G(E)) or of D(0G(E)).

(b) Denote by 0� : 0G → G the restriction of � to 0G.

The goal of this subsection is to prove the following particular case of Theorem
2.1.6.

Theorem 2.2.3. Let (a0, κ, θ) be as in Notation 2.1.5. Under the assumptions of
2.2.1, the generalized functions (χa0,κ,θ )tu and (χa′0,κ,θ )tu are (a0, a′0; κ)-equivalent.
In particular, each (χa0,κ,θ )tu is E([a0],κ)-stable.

Theorem 2.2.3 will be deduced in 2.2.13 from the corresponding statement about
generalized functions on Lie algebras.
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Notation 2.2.4. For every a : T ↪→ G as in Notation 2.1.3, we denote by -a,t ⊂
La(Fq) the Ad La(Fq)-orbit of a(t), by -a,t ⊂ Ga ⊂ G(E) the preimage of -a,t , and
let δa,t and δa,t be the characteristic functions of -a,t and -a,t , respectively.

Lemma 2.2.5. (a) For each y ∈ -a,t , its stabilizer Gy ⊂ G is Ga-conjugate to a(T );
(b) for each y ∈ -a,t and g ∈ G(E) such that Ad g(y) ∈ -a,t , we have g ∈ G̃a.

Proof. (a) Since t ∈ T (Fq) is a0-strongly regular, we see that a(t) ∈ a(T (E)) ⊂
G(E) is strongly regular, hence Ga(t) = a(T ).

First, we will show that for every y ∈ a(t)+ Ga+ , we have y ∈ Gsr(E), and Gy is
Ga+-conjugate to a(T ). By [DB, Lemma. 2.2.2], it will suffice to prove that y ∈ G(E)
is G-regular, and Gy splits over Enr. For this we can replace E by an unramified
extension, so we may assume that T splits over E . Under this assumption we will
show that y is G(E)-conjugate to an element of a(t + T (O)+).

Choose an Iwahori subgroup I ⊂ Ga , containing a(T (O)), and let I, I+ and I+
be the corresponding Iwahori subalgebra, the pro-unipotent radical of I and the pro-
nilpotent radical of I, respectively. Since α(a(t)) ∈ O× for each root α of (G, a(T )),
it follows from direct calculations that every element of a(t)+ I+ is I+-conjugate to
an element of a(t + T (O)+). But y ∈ a(t)+ Ga+ ⊂ a(t)+ I+, and therefore we get
the assertion in this case.

For an arbitrary y ∈ -a,t , there exists h ∈ Ga such that Ad h(y) ∈ a(t)+ Ga+ . So
the general case follows from the previous one.

(b) Replacing y and Ad g(y) by their Ga-conjugates, we can assume that y ∈
a(t) + Ga+ and Ad g(y) ∈ a(t) + Ga+ . Then by the claim shown in (a), one can
further replace y and Ad g(y) by their Ga+-conjugates, so that both Gy and GAd g(y) =
gGyg−1 equal a(T ). Thus g ∈ NormG(a(T )).

Since Ad g(y) = a(t) = y is not fixed by a non-trivial element of the Weyl group
W (G, a(T )), we get that g ∈ a(T )(E). By Corollary 2.2.7 (a) below, g therefore
belongs to G̃a , as claimed. ��
Lemma 2.2.6. Let T be an unramified torus over E, and S ⊂ T a maximal split
subtorus. Then T (E) = T (O)S(E).

Proof. By a very particular case of Lemma 1.8.17 (b), the projection T (O) →
(T/S)(O) is surjective, and therefore we have to check that (T/S)(E) = (T/S)(O).
Since T/S is anisotropic over E , the group (T/S)(E) is compact. Hence (T/S)(E) is
contained in (T/S)(E) ∩ (T/S)(OEsep ) = (T/S)(O), as claimed. ��
Corollary 2.2.7. (a) G̃a = a(T )(E)Ga;
(b) Ga is the unique maximal compact subgroup of G̃a.

Proof. (a) Since Z(G) ⊂ a(T ), we get the inclusion G̃a ⊂ a(T )(E)Ga . It remains
to show that a(T )(E) is contained in G̃a . Let S ⊂ T be the maximal split subtorus.
Since a(T ) ⊂ G is elliptic, we get a(S) ⊂ Z(G). Now the assertion follows from the
inclusion a(T (O)) ⊂ Ga and Lemma 2.2.6.

(b) Assume that g ∈ G̃a belongs to a compact subgroup. Choose ga ∈ Ga and
z ∈ Z(G)(E) ⊂ a(T )(E) such that g = gaz. Since Ga is compact and the sequence
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{gn}n = {gn
a zn}n ⊂ G̃a has a convergent subsequence, the sequence {zn}n ⊂ a(T )(E)

has a convergent subsequence. Hence z is contained in a(T )(O) ⊂ Ga , thus g ∈ Ga .
��

Notation 2.2.8. It follows from Lemma 2.2.5 (b) that for every x ∈ G(E) there exists
at most one coset g ∈ G̃a\G(E) such that δa,t (Ad g(x)) �= 0. Therefore

�a,t(x) :=
∑

g∈G̃a\G(E)

δa,t(Ad g(x))

is the characteristic function of an open and closed subset Ad G(E)(-t,a) ⊂ G(E).
In particular, �a,t lies in L1

loc(G(E)) ⊂ D(G(E)). Similar to Notation 2.1.5, we de-
fine elements �a0,κ,t := e(G)

∑
a 〈inv(a0, a), κ〉�a,t ∈ L1

loc(G(E)) and �′
a′0,κ,t

=
e(G′)

∑
a′
〈
inv(a′0, a′), κ

〉
�a′,t ∈ L1

loc(G′(E)).

Lemma 2.2.9. e(G)�a0,κ,t is (a0, a′0; κ)-equivalent to e(G′)�′a′0,κ,t .

Proof. By Proposition 1.7.4, we have to show that for each x0 ∈ Gsr(E) and ξ ∈
π0(Ĝx0

�
/Z(Ĝ)�) such that�a0,κ,t(x0, ξ) �= 0, we have

(i) ([ax0], ξ) ∈ Im#E ;
(ii) if ϕ : G → G′ is (E, [ax0], ξ )-admissible, then for every stable conjugate

x ′0 ∈ G′(E) of x0, we have e(G′)�′a′0,κ,θ (x
′
0, ξ ) =

〈
x0,x ′0;ξ
a0,a

′
0;κ

〉
e(G)�a0,κ,θ (x0, ξ ).

Recall that

e(G)�a0,κ,t(x0, ξ) =
∑

x

∑
a

〈
inv(x0, x), ξ

〉−1 〈inv(a0, a), κ〉�a,t(x),

where x runs over a set of representatives of G(E)\[x0] ⊂ G(E)\G(E). We identify
T with a0(T ) ⊂ G and T with a0(T ) ⊂ G. By Lemma 2.2.5 (a), the support of each
�a,t consists of elements, stably conjugate to T (E). Hence replacing x0 by a stable
conjugate, we can assume that x0 ∈ T (E). Then Gx0 = T , ax0 = a0, and thus ξ is an
element of T̂�/Z(Ĝ)� .

For a stable conjugate x of x0, we have �a,t(x) = 1 if and only if inv(x0, x) =
inv(a0, a). Therefore e(G)�a0,κ,t (x0, ξ ) = ∑

a

〈
inv(a0, a), κξ

−1
〉
. Since the latter

sum is non-zero, we get that ξ = κ , and e(G)�a0,κ,t (x0, ξ ) = |T̂�/Z(Ĝ)�|. Since
E = E([a0],κ), we get that ([ax0], ξ ) = ([a0], κ) ∈ Im#E , showing the assertion (i).

To show (i i), we can replace x ′0 by a stably conjugate a′0(a
−1
0 (x0)) ∈ a′0(T (E)) ⊂

G′(E). Then the same arguments show that e(G′)�′a′0,κ,t (x
′
0, ξ ) = |T̂ �/Z(Ĝ)�|. Now

the required assertion

〈
x0,x ′0;ξ
a0,a

′
0,κ

〉
= 1 follows from equalities ax0 = a0, ax ′0 = a′0 and

ξ = κ . ��
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2.2.10. Fourier transform Fix an additive character ψ : E → C× such that ψ|O is
non-trivial, but ψ|m is trivial.

(a) The pairing 〈·, ·〉 and the measure dx = |ωG | on G(E) give rise to the Fourier
transform F = F(ψ, 〈·, ·〉 , dx) on C∞

c (G(E)). Then F induces Fourier transforms
on S(G(E)) and D(G(E)) given by the formulas F( f dx) := F( f )dx for each f ∈
C∞

c (G(E)) and F(F)(φ) := F(F(φ)) for each φ ∈ S(G(E)) and F ∈ D(G(E)).
(b) For each f1, f2 ∈ C∞

c (G(E)) we have
∫
G(E) f1F( f2)dx = ∫

G(E) F( f1) f2dx .
Therefore the embedding C∞

c (G(E)) ↪→ D(G(E)) commutes with the Fourier trans-
form.

(c) For each parahoric subalgebra Ga ⊂ G(E), we denote by F = F(ψ, 〈·, ·〉a , μ)
the Fourier transform on La(Fq), where the character ψ : Fq → C× is induced by
ψ , pairing 〈·, ·〉a is induced by 〈·, ·〉 (see Lemma 1.8.7 (a)) and μ(l) = 1 for each
l ∈ La(Fq).

Lemma 2.2.11. Denote by I+ the pro-nilpotent radical of an Iwahori subalgebra of
G. Then for each u ∈ G(E)tu, we have

ta,θ (u) = F(δa,t)(�(u))|ωG |(I+)−1.

Proof. First, we claim that F(δa,t)(x) = 0 for each x ∈ G(E)�Ga , and F(δa,t)(x) =
F(δa,t )(x)|ωG |(Ga+) for each x ∈ G(E) � Ga . Indeed, since δa,t vanishes outside of
Ga , we have an equality

F(δa,t)(x) =
∫
G(E)

ψ(〈x, y〉)δa,t(y)dy =
∫
Ga

ψ(〈x, y〉)δa,t (y)dy

for each x ∈ G(E). Since δa,t (y + y ′) = δa,t(y) for each y ′ ∈ Ga+ , we conclude that
F(δa,t)(x) equals ∑

z

ψ(〈x, z〉)δa,t (z)
∫
Ga+

ψ(〈x, y〉)dy,

where z runs over a set of representatives of Ga/Ga+ in Ga .
The assumptions on ψ and 〈·, ·〉 imply that Ga is the orthogonal complement of

Ga+ with respect to the pairing (x, y) 	→ ψ(〈x, y〉). Therefore F(δa,t )(x) = 0 for
each x /∈ Ga , and

F(δa,t)(x) =
∑

z∈La(Fq )

ψ(〈x, z〉)δa,t (z)|ωG |(Ga+) = F(δa,t )(x)|ωG |(Ga+)

for each x ∈ Ga .
Now we are ready to prove the lemma. Assume first that u ∈ Ga,tu. It follows from

Lemma 1.8.9 (b) that �(u) ∈ Ga and � induces a quasi-logarithm �a : La → La

satisfying�(u) = �a(u). ThereforeF(δa,t)(�(u)) equals F(δa,t)(�a(u))|ωG |(Ga+).
It now follows from a combination of Theorem A.1 (see Appendix A) and the equality

|ωG |(Ga+)= q− 1
2 dim(La/T )|ωG |(I+) that F(δa,t)(�(u)) equals

|ωG |(I+)Trρa,θ (u) = |ωG |(I+)ta,θ (u).
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Finally, assume that u ∈ G(E)tu � Ga,tu. In this case, ta,θ (u) = 0. On the other

hand, by Proposition 1.8.16, � induces bijections G(E)tu
∼→ G(E)tn and Ga,tu

∼→
Ga,tn; therefore�(u) ∈ G(E)tn � Ga,tn. Using the equality Ga,tn = G(E)tn ∩ Ga from
Lemma 1.8.15 (b), we conclude that �(u) /∈ Ga , hence F(�a,t )(�(u)) = 0. This
completes the proof of the lemma. ��
Corollary 2.2.12. For each a, we have χ(πa,θ )tu = 0�∗(F(�a,t ))tu|ωG |(I+)−1.

Proof. Note first that 0� is étale, hence smooth, therefore the pullback 0�∗(F(�a,t))
is defined. Consider generalized functions ta,θ ∈ C∞

c (G(E)) ⊂ D(G(E)) and δa,t ∈
C∞

c (G(E)) ⊂ D(G(E)). In light of 2.2.10 (b), Lemma 2.2.11 implies the equality of
generalized functions

(ta,θ )tu = 0�∗(F(δa,t))tu|ωG |(I+)−1. (2.2.1)

Since πa,θ = IndG(E)
G̃a

ρa,θ is admissible, it follows from the formula for characters of
induced representations that

χ(πa,θ ) =
∑

g∈G̃a\G(E)

(Int g)∗(ta,θ ). (2.2.2)

Explicitly, χ(πa,θ )(φ) =∑
g∈G̃a\G(E)(Int g)∗(ta,θ )(φ) for each φ ∈ S(G(E)), where

only finitely many terms in the sum are non-zero. On the other hand, by the very
definition of �a,t , we have

�a,t =
∑

g∈G̃a\G(E)

(Ad g)∗(δa,t). (2.2.3)

Since 〈·, ·〉 and � are G-equivariant, we get the equality

0�∗(F((Ad g)∗δa,t)) = 0�∗(Ad g)∗(F(δa,t)) = (Int g)∗0�∗(F(δa,t )). (2.2.4)

Now our corollary is an immediate consequence of equalities (2.2.1)–(2.2.4). ��

2.2.13. Proof of Theorem 2.2.3. Let �′ : G′ → G′ and 〈·, ·〉′ be the quasi-logarithm
map and the pairing on G′ induced by� and 〈·, ·〉, respectively (see Lemma 1.8.9 (a)).
We denote by F = F(ψ, 〈·, ·〉′ , |ωG ′ |) the corresponding Fourier transform G′(E) and
by I ′+ the pro-nilpotent radical of an Iwahori subalgebra of G′(E).

By Lemma 2.2.9, e(G)�a0,κ,t is (a0, a′0; κ)-equivalent to e(G′)�′
a′0,κ,t

. Using the

equality e(G)e(G′) = e′(G)e′(G′), it follows from Theorem B.1.2 (see Appendix B)
that F(�a0,κ,t ) is (a0, a′0; κ)-equivalent to F(�′a′0,κ,t). Hence by Corollary 1.6.16, the

pullback 0�∗(F(�a0,κ,t )) is (a0, a′0; κ)-equivalent to 0�′∗ (F(�′a′0,κ,t )). By Corollary

2.2.12, we thus get that |ωG |(I+)(χa0,κ,θ )tu and |ωG ′ |(I ′+)(χa′0,κ,θ )tu are (a0, a′0; κ)-
equivalent. Since |ωG |(I+) = |ωG ′ |(I ′+) (see, for example, [Ko4, p. 632]), the asser-
tion follows. ��
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2.3. Reduction formula

In this subsection we will assume that Gder = Gsc. Our goal is to rewrite character
χ(πa,θ ) in terms of restrictions to topologically unipotent elements of the correspond-
ing characters of the centralizers Gδ(E).

Lemma 2.3.1. Assume that Gder = Gsc. Then

(a) For each semisimple element δ ∈ G, the centralizer Gδ is connected.
(b) The stabilizer in G(E) of each x ∈ B(G) is Gx .

Proof. (a) was shown in [St, Cor. 8.5] when G is semisimple, and in [Ko3, pp. 788–
789] in the general case.

(b) When G is semisimple, the result was proved in [BT, Prop. 4.6.32]. For a gen-
eral G, we can replace E by an unramified extension so that G is split over E . Choose
a split maximal torus T ⊂ G such that x ∈ B(T ). Since StabG(E)(x) is compact,
we see as in Corollary 1.8.18 that StabG(E)(x) is contained in Gder(E)T (O). Since
T (O) ⊂ StabG(E)(x), we get that StabG(E)(x) is contained in StabGder(E)(x)T (O),
hence (use [BT, Prop. 4.6.32]) in (Gder)x T (O) = Gx , as claimed. ��
Notation 2.3.2. (a) We will call an element γ ∈ G(E) compact if it generates a
relatively compact subgroup of G(E).

(b) We will call an element γ ∈ G(E) topologically unipotent if the sequence
{γ pn }n converges to 1.

Corollary 2.3.3. (a) The set of compact elements of G(E) is ∪x∈B(G)Gx .
(b) The set of topologically unipotent elements of G(E) is G(E)tu (see Notation

1.8.14).

Proof. As each Gx is compact and every compact element of G(E) stabilizes a point
of B(G), (a) follows from Lemma 2.3.1 (b). Since every topologically unipotent ele-
ment is compact, (b) follows from (a) and the fact that Gx,tu is a set of all topologically
unipotent elements of Gx . ��

The following result is a straightforward generalization of [Ka2, Lemma 2, p. 226].

Lemma 2.3.4. For every compact element γ ∈ G(E), there exists a unique decom-
position γ = δu = uδ such that δ is of finite order prime to p, and u is topologically
unipotent. In particular, this decomposition is compatible with conjugation and field
extensions.

Notation 2.3.5. The decomposition γ = δu from Lemma 2.3.4 is called the topolog-
ical Jordan decomposition of γ .

Remark 2.3.6. If δ ∈ G(E) is an element of finite order prime to p, then δ is auto-
matically semisimple.

The goal of this subsection is to prove the following result.
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Proposition 2.3.7. For every embedding a : T ↪→ G and a compact element γ ∈
G(E) with topological Jordan decomposition γ = δu, we have the following formula

e(G)Fa,θ (γ ) = e(Gδ)
∑

b

θ(b−1(δ))Fb,θ (u). (2.3.1)

Here b runs over a set of representatives of conjugacy classes of embeddings T ↪→ Gδ,
whose composition with the inclusion Gδ ↪→ G is conjugate to a.

First we need to prove two preliminary results.

Lemma 2.3.8. (a) For each vertex x of B(G), we have e(Lx) = e(G).
(b) Let δ ∈ G(E) be an element of finite order, prime to p. Then the centralizer Gδ

splits over Enr, and the building B(Gδ) is canonically identified with the set of
invariants B(G)δ ⊂ B(G).

(c) For each x ∈ B(Gδ) ⊂ B(G), the parahoric subgroup (Gδ)x is a subgroup of
finite index in (Gx )δ , and the canonical map (Gx)δ ↪→ Gx → Lx(Fq) induces

isomorphisms (Gx )δ/(Gδ)x+
∼→ (Lx )δ(Fq) and (Gδ)x/(Gδ)x+

∼→ (Lx )
0
δ
(Fq).

(d) Let δ, δ′ ∈ Gx be two elements of finite orders prime to p. Then δ and δ′ are Gx-
conjugate if and only if their reductions δ, δ

′ ∈ Lx (Fq) are Lx(Fq)-conjugate.

Proof. (a) For every x ∈ B(G), the maximal split torus of Lx is the reduction of that
of G, therefore rkFq (Lx ) = rkE (G). If, moreover, x is a vertex, then rkFq (Z(Lx)

0) =
rkE (Z(G)0), hence e(Lx) = e(G).

(b) The second assertion is shown in [PY]. For the first, recall that GEnr splits,
hence there exists a split maximal torus T ⊂ GEnr . Choose g ∈ G(E) such that
gδg−1 ∈ T (E). Then gδg−1 is of finite order, prime to p, therefore it follows from
Hensel’s lemma that gδg−1 ∈ T (OEnr) ⊂ T (Enr). Hence g gives rise to a cocycle
σ 	→ g−1σ g ∈ Gδ(E) over Enr. Since H 1(Enr,Gδ) = 0, there exists h ∈ Gδ(E)
such that h−1σh = g−1σ g for each σ ∈ Gal(E/Enr). It follows that gh−1 ∈ G(Enr),
and (gh−1)δ(gh−1)−1 = gδg−1 ∈ T (Enr). Therefore (gh−1)−1T (gh−1) is a split
maximal torus of (Gδ)Enr .

(c) As (Gx)δ ⊂ Gδ(E) is the stabilizer of x ∈ B(Gδ), it is compact. Therefore
(Gδ)x is a subgroup of finite index in (Gx )δ , thus the corresponding group scheme
Gδ x

over O is the connected component of (Gx )δ. In particular, (Gx)δ is smooth

over O. Therefore by Hensel’s lemma, the reduction map Gx → Gx(Fq) surjects
(Gx)δ = (Gx)δ(O) onto (Gx)δ(Fq) = (Gx )δ(Fq).

As Lx is the quotient Gx/Ru(Gx ), we see that (Lx )δ is the quotient (Gx )δ/Ru(Gx)δ .
Since Ru(Gx )δ is a connected group over Fq , Lang’s theorem implies that the pro-
jection Gx(Fq) → Lx (Fq) surjects (Gx)δ(Fq) onto (Lx )δ(Fq). Therefore the pro-
jection Gx → Lx(Fq) induces a surjection (Gx)δ → (Lx )δ(Fq), whose kernel is
(Gx)δ ∩ Gx+ = (Gδ)x+ . This shows the first isomorphism, while the proof of the
second one is similar but easier.

(d) The “only if” assertion is clear. Assume now that δ and δ
′

are Lx (Fq)-
conjugate. Let us first show that δ and δ′ are Gx (OEnr)-conjugate. For this we can
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replace E by an unramified extension, so that G, Gδ and Gδ′ are split over E (use (b)).
Since δ lies in Gx , we get that x belongs to B(G)δ = B(Gδ) (use (b)). Therefore there
exists a split maximal torus T ⊂ Gδ ⊂ G such that x ∈ B(T ). Similarly, there exists
a split maximal torus T ′ ⊂ Gδ′ ⊂ G such that x ∈ B(T ′). By a property of buildings,
there exists g ∈ Gx such that gT g−1 = T ′. Replacing δ′ by g−1δ′g, we may assume
that δ, δ′ ∈ T (E).

Next we observe that the projection NormGx (T )→ NormLx (Fq )(T ) is surjective.

Indeed, for each g ∈ NormLx (Fq )(T ) ⊂ Lx (Fq), choose a representative g ∈ Gx .

Then gT g−1 = T , hence by [DB, Lemma 2.2.2], there exists h ∈ Gx+ such that
h(gT g−1)h−1 = T . In other words, hg ∈ NormGx (T ) is a preimage of g.

By the assumption, δ, δ′ ∈ T (Fq) are conjugate in Lx(Fq), therefore they are

conjugate in NormLx (Fq ) (T ). Hence there exists g ∈ NormGx (T ) such that g−1δ′g =
δ. But the projection T (O) → T (Fq) defines a bijection between elements of T (O)
of finite order prime to p and elements of T (Fq). Hence g−1δ′g = δ, implying that δ
and δ′ are conjugate by an element of Gx (OEnr).

To show that δ and δ′ are conjugate by Gx , consider the closed subscheme Z (resp.
Z ′) of Gx (resp. Lx ) consisting of elements g (resp. g) such that gδg−1 = δ′ (resp.

gδg−1 = δ′). By the assumption, Z ′(Fq) �= ∅, and we have to show that Z(O) �= ∅.
By the assertion shown above, Z(OEnr ) �= ∅. Thus Z and (Gx )δ are isomorphic over
OEnr . In particular, Z is smooth over O, thus by Hensel’s lemma it suffices to show
that the projection Z(Fq)→ Z ′(Fq) is surjective.

Denote by Z ⊂ Gx the special fiber of Z . Since all fibers of the projection
Z → Z ′ are principal homogeneous spaces for the connected group Ru(Gx )δ, the
surjectivity of the projection Z(Fq) = Z(Fq) → Z ′(Fq) follows from Lang’s
theorem. ��
Lemma 2.3.9. For every γ ∈ Ga with topological Jordan decomposition γ = δu, we
have an equality

e(G)ta,θ (γ ) = e(Gδ)
∑

b

∑
h∈(Gδ)b\(Ga)δ

θ(b−1(δ))tb,θ (huh−1), (2.3.2)

where b runs over a set of representatives of conjugacy classes of embeddings T ↪→
Gδ , which are Ga-conjugate to a : T ↪→ G.

Proof. We start from the following claim.

Claim 2.3.10. The correspondence b 	→ b induces a bijection between the set of con-
jugacy classes of embeddings T ↪→ Gδ which are Ga-conjugate to a : T ↪→ G
and the set of conjugacy classes of embeddings b : T ↪→ (La)δ , which are La(Fq)-
conjugate to a : T ↪→ La.

Proof. For simplicity of notation, we identify T with a(T ) and T with a(T ). Then

the maps b 	→ t := b−1(δ) and b 	→ t := b
−1
(δ) identify our sets with the sets of

elements t ∈ T (E), which are Ga-conjugate to δ, and elements t ∈ T (Fq), which are
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La(Fq)-conjugate to δ, respectively. Since the reduction map t 	→ t induces a bijection
between elements of T (E) of finite order prime to p and elements of T (Fq), we get
the injectivity. The surjectivity follows from Lemma 2.3.8 (d). ��

Now we are ready to prove the lemma. By Lemma 2.3.8 and Claim 2.3.10, the
right-hand side of (2.3.2) equals

e((La)
0
δ
)
∑

b

⎡⎢⎣ ∑
h∈(La)

0
δ
(Fq )\(La)δ(Fq)

θ(b
−1
(δ))Tr ρb,θ (huh

−1
)

⎤⎥⎦ , (2.3.3)

where b runs over a set of representatives of (La)δ(Fq)-conjugacy classes of embed-
dings T ↪→ (La)δ , which are La(Fq)-conjugate to a.

Next note that (2.3.3) can be rewritten as

e((La)
0
δ
)

∑
b:T ↪→(La)

0
δ

θ(b
−1
(δ))Tr ρb,θ (u), (2.3.4)

where b runs over a set of representatives of conjugacy classes of embeddings, La(Fq)-
conjugate to a. By the formula of Deligne–Lusztig [DL, Theorem 4.2], (2.3.4) equals
e(La)Trρa,θ (γ ). Hence it is equal to e(G)ta,θ (γ ), as claimed. ��

2.3.11. Proof of Proposition 2.3.7. Notice first that the map b 	→ b−1(δ) embeds the
set of conjugacy classes of embeddings b : T ↪→ Gδ, conjugate to a : T ↪→ G, into
the finite set {t ∈ T (E) | tord δ = 1}. Therefore the sum in (2.3.1) is finite.

Fix a set of representatives J ⊂ G(E) of double classes G̃a\G(E)/Gδ(E). For
every h ∈ J , put γh = hγ h−1, and let γh = δhuh be the topological Jordan decompo-
sition of γh .

By [HC1, Lemma 23] (compare Notation 2.1.8 (b)), for each sufficiently large
compact modulo center G̃a-bi-invariant subset - ⊂ G(E), we have

Fa,θ (γ ) = e(G)
∑

g∈G̃a\-
ta,θ (gγ g−1).

Since G(E) decomposes as a disjoint union �h∈J G̃ahGδ(E) = �h∈J G̃aGδh (E)h,
we have a finite decomposition G̃a\- = �h∈J G̃a\[G̃aGδh (E)h ∩-]. Therefore

Fa,θ (γ ) = e(G)
∑
h∈J

∑
g∈G̃a\[G̃a Gδh (E)h∩-]

ta,θ (gγ g−1).

Using the identifications

G̃a\[G̃a Gδh (E)h ∩-] = (G̃a)δh\[Gδh (E)h ∩-] = (G̃a)δh\[Gδh (E) ∩-h−1]h,

we get that Fa,θ (γ ) equals
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∑
h∈J

e(G)

⎡⎢⎣ ∑
g∈(G̃a)δh \[Gδh (E)∩-h−1]

ta,θ (gγh g−1)

⎤⎥⎦ . (2.3.5)

Using Corollary 2.2.7, we see that for each embedding b : T ↪→ Gδh which

is Ga-conjugate to a, the group (̃Gδh )b is contained in (G̃a)δh and we have a natural

isomorphism (Gδh )b\(Ga)δh
∼= (̃Gδh )b\(G̃a)δh . Then by Lemma 2.3.9 applied to γh =

δhuh , the contribution of each h ∈ J to (2.3.5) equals

e(Gδh )
∑

b:T ↪→Gδh

θ(b−1(δh))
∑

g∈(̃Gδh )b\[Gδh (E)∩-h−1]

tb,θ (guh g−1), (2.3.6)

where b runs over the a set of representatives of conjugacy classes of embeddings,
which are Ga-conjugate to a : T ↪→ G.

Conjugating by h−1, we can rewrite (2.3.6) in the form

e(Gδ)
∑

b:T ↪→Gδ

θ(b−1(δ))
∑

g∈(̃Gδ)b\[Gδ(E)∩h−1-]

tb,θ (gug−1), (2.3.7)

where b runs over a set of representatives of conjugacy classes of embeddings such that
a = gbg−1 for some g ∈ G̃ahGδ(E). In particular, b has a non-trivial contribution to
(2.3.7) only for a unique h ∈ J , which we denote by hb. It follows that Fa,θ (γ ) equals

e(Gδ)
∑

b:T ↪→Gδ

θ(b−1(δ))
∑

g∈(̃Gδ)b\[Gδ(E)∩h−1
b -]

tb,θ (gug−1), (2.3.8)

where b runs over a (finite) set of representatives of conjugacy classes to embeddings,
which are G(E)-conjugate to a.

Replacing b’s by their Gδ(E)-conjugates, we can assume that a = gbg−1 for some

g ∈ G̃ahb. Then hb(Gδ)bh−1
b ⊂ Ga , hence hb (̃Gδ)bh−1

b ⊂ G̃a (use Corollary 2.2.7).

It follows that the subset Gδ(E) ∩ h−1
b - ⊂ Gδ(E) is compact modulo center, (̃Gδ)b-

invariant from the left, and hb (̃Gδ)bh−1
b -invariant from the right. Since the number of

b’s is finite, it follows from [HC1, Lemma 23] that for each sufficiently large - ⊂
G(E), the contribution of each b to (2.3.8) equals θ(b−1(δ))Fb,θ (u). This completes
the proof.

��

2.4. Endoscopy for G and Gδ

Let G be a connected reductive group over E such that Gder = Gsc, δ ∈ G(E) a
semisimple element, and ι : Gδ ↪→ G the canonical embedding. In this subsection we
will compare endoscopic triples for G and for Gδ.
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2.4.1. (a) Similar to 1.2.4 (b), there exists a natural embedding Z(Ĝ) ↪→ Z(Ĝδ).
Indeed, every maximal torus T of Gδ is a maximal torus of G, and the set of roots of
(Gδ, T ) equals the set of those roots of (G, T ) which vanish on δ. Hence the set of
coroots (hence also of roots) of (Ĝδ, T̂ ) is naturally a subset of those of (Ĝ, T̂ ). Thus
Z(Ĝ) is naturally a subgroup of Z(Ĝδ).

(b) Fix an embedding aδ : T ↪→ Gδ of a maximal torus and κ ∈ T̂�/Z(Ĝ). Set
a := ι ◦ aδ : T ↪→ G, let κ ∈ π0(T̂�/Z(Ĝ)�) and κ ′ ∈ π0(T̂�/Z(Ĝδ)�) be the
classes of κ , and put E := E([a],κ) = (H, [η], s) and E ′ := E([aδ],κ) = (H ′, [η′], s′).

Also we fix embeddings c′ : T ↪→ H ′ and c : T ↪→ H such that #E ([c]) =
([a], κ) and#E ′([c′]) = ([aδ], κ ′) (see 1.3.8 (b)).

Lemma 2.4.2. (a) There is a natural �-equivariant embedding Z(Ĥ ) ↪→ Z(Ĥ ′)
mapping Z(Ĝ) into Z(Ĝδ) and an embedding W (H ′) ↪→ W (H ), both of which
depend on c and c′. The induced map

π0(Z(Ĥ)
�/Z(Ĝ)�)→ π0(Z(Ĥ

′)�/Z(Ĝδ)
�)

sends s to s′.
(b) There is a natural map [b′] 	→ [b], depending on c and c′, from the set of stable

conjugacy classes of embeddings of maximal tori S ↪→ H ′ to those of embeddings
S ↪→ H .

(c) In the notation of (b), we have [b]G = ι ◦ [b′]Gδ , and Z [̂b] : Z(Ĥ) ↪→ Ŝ is the

restriction of Z [̂b′] : Z(Ĥ ′) ↪→ Ŝ (see (a)). In particular, κ[b′] ∈ π0(Ŝ�/Z(Ĝδ)�)

is the image of κ[b] ∈ π0(Ŝ�/Z(Ĝ)�).
(d) Let [b′i ] be two stable conjugacy classes of embeddings of maximal tori Ti ↪→ H ′,

and let [bi ] be the corresponding stable conjugacy classes of embeddings Ti ↪→
H . Then the following diagram is commutative:

Z(Ĥ)
ι([b1],[b2])−−−−−−→ {(T1 × T2)/Z(G)}̂⏐⏐* $⏐⏐

Z(Ĥ ′)
ι([b′1],[b′2])−−−−−−→ {(T1 × T2)/Z(Gδ)}̂ .

(Here the left vertical map was defined in (a), the right one is induced by the inclu-
sion Z(G) ↪→ Z(Gδ), and the horizontal maps are the homomorphisms (1.2.3)
from 1.2.8.)

Proof. (a) Embed T into G,Gδ, H and H ′ by a, aδ, c and c′, respectively. Then the
set of roots of (Ĝδ, T̂ ) (resp. of (Ĥ , T̂ ), resp. of (Ĥ ′, T̂ )) is the set of those roots α̂
of (Ĝ, T̂ ) such that α(δ) = 1 (resp. α̂(κ) = 1, resp. α(δ) = 1 and α̂(κ) = 1). In
particular, the set of roots of (Ĥ ′, T̂ ) is canonically a subset of those of (Ĥ , T̂ ). This
gives us the required embeddings W (H ′) ↪→ W (H ) and Z(Ĥ ) ↪→ Z(Ĥ ′). The last
assertion follows from the fact that both s and s′ are the classes of κ .

(b) Choose an embedding b′ : S ↪→ H ′ from [b′], and identify S with b′(S) ⊂ H ′
and T with c′(T ) ⊂ H ′. Choose g ∈ H ′(E) such that gSg−1 = T . Then Int g defines
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an isomorphism SE
∼→ TE . Let b : SE ↪→ H be the composition c ◦ Int g. We claim

that the H (E)-conjugacy class [b] of b is �-invariant and independent of the choices
of g and b′.

If g′ ∈ H ′(E) is another element such that g′Sg′−1 = T , then g−1g′ ∈
NormH ′(S), and b′ := c ◦ Int g′ equals b ◦ Int(g−1g′). But Int(g−1g′) : SE → SE is
induced by an element of W (H ′) ⊂ W (H ), therefore b′ is conjugate to b. Thus [b]
is independent of the choice of g. For each σ ∈ �, we have σb = c ◦ Int(σ g) and
σ gS(σ g)−1 = T . Hence from the above, σb is conjugate to b. Finally, if b′ is replaced
by Int h ◦ b′ and g by gh−1 for some h ∈ H ′(E), then the resulting isomorphism
SE

∼→ TE (and, therefore, b) do not change.

(c) Since the assertion is over E , we can identify SE
∼→ TE , as in (b), and thus

replace [b′] by [c′] and [b] by [c]. Now the first assertion follows from the fact that
ι◦[c′]Gδ = ι◦[aδ] = [a] = [c]G , while the second was the definition of the embedding
Z(Ĥ) ↪→ Z(Ĥ ′).

(d) Mimicking the proof of (a) and (b), we see that there exists a �-equivariant em-

bedding Z( ̂H 2/Z(G)) ↪→ Z( ̂(H ′)2/Z(G)) characterized by the following property:
For each pair [c′i ] of stable conjugacy classes of embeddings of maximal tori Si ↪→ H ′
with the corresponding stable conjugacy classes [ci ] of embeddings of maximal tori

Si ↪→ H , the embedding Z [̂c1,c2] : Z( ̂H 2/Z(G)) ↪→ {(S1× S2)/Z(G)}̂ is the restric-

tion of Z
[̂c′1,c′2]

: Z( ̂(H ′)2/Z(G)) ↪→ {(S1× S2)/Z(G)}̂ . Then our diagram extends to

the following diagram:

Z(Ĥ )
μH−−−−→ Z( ̂H 2/Z(G))

Z
[̂b1,b2]−−−−→ {(T1 × T2)/Z(G)}̂⏐⏐* ⏐⏐* ∥∥∥

Z(Ĥ ′)
μH ′−−−−→ Z( ̂(H ′)2/Z(G))

Z
[̂b′1,b′2]−−−−→ {(T1 × T2)/Z(G)}̂∥∥∥ $⏐⏐ $⏐⏐

Z(Ĥ ′)
μH ′−−−−→ Z( ̂(H ′)2/Z(Gδ))

Z
[̂b′1,b′2]−−−−→ {(T1 × T2)/Z(Gδ)}̂ .

It remains to show that each inner square of the diagram is commutative. The com-
mutativity of the top right square follows from the characterization of the embedding

Z( ̂H 2/Z(G)) ↪→ Z( ̂(H ′)2/Z(G)). The commutativity of the top left square follows
from the characterization of the vertical maps and the fact that both μH and μH ′ are

restrictions of μT : T̂ ↪→ ̂T 2/Z(G). The commutativity of the two bottom squares is
clear. ��
Corollary 2.4.3. Let [b′1] and [b′2] be stable conjugacy classes of embeddings of max-
imal tori S ↪→ H ′ such that [b′1]Gδ = [b′2]Gδ , and let [b1] and [b2] be the correspond-
ing stable conjugacy classes of embeddings S ↪→ H .
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Then [b1]G = [b2]G, and the image of κ
(

[b′1]
[b′2]

)
(s′) ∈ π0( ̂S/Z(Gδ)

�
) in

π0( ̂S/Z(G)
�
) equals κ

(
[b1]
[b2]

)
(s).

Proof. The first assertion follows from Lemma 2.4.2 (c). For the second, choose a
representative š ∈ π0(Z(Ĥ)�) of s, and let š′ ∈ π0(Z(Ĥ ′)�) be the image of š.

Then κ( [b1]
[b2])(s) = νS(ι([b1], [b2])(š)) and κ(

[b′1]
[b′2] )(s

′) = νS(ι([b′1], [b′2])(š′)). So the

assertion follows from Lemma 2.4.2 (d). ��

2.4.4. Let ϕ : G → G′ be an inner twisting such that δ′ := ϕ(δ) belongs to G′(E).
For every i = 1, 2, let (aδ)i : Ti ↪→ Gδ and (a′δ)i : Ti ↪→ G′

δ′ be stably conjugate
embeddings of maximal tori, and let b′i : Ti ↪→ H ′ be an embedding of a maximal
torus compatible with (aδ)i .

Let ι′ : G′
δ′ ↪→ G′ be the natural embedding, and for each i = 1, 2, set ai :=

ι ◦ (aδ)i : Ti ↪→ G and a′i := ι′ ◦ (a′δ)i : Ti ↪→ G′, and denote by [bi ] the stable
conjugacy class of embeddings of maximal tori Ti ↪→ H ′ corresponding to [b′i ] (and
compatible with ai by Lemma 2.4.2 (b)).

Lemma 2.4.5. (a) The image of inv((a1, a′1); (a2, a′2)) ∈ H 1(E, (T1 × T2)/Z(G)) in
H 1(E, (T1 × T2)/Z(Gδ)) equals inv((aδ)1, (a′δ)1); ((aδ)2, (a′δ)2)).

(b) We have an equality
〈

a1,a
′
1;[b1]

a2,a′2;[b2]

〉
E
=
〈
(aδ)1,(a

′
δ)1;[b′1]

(aδ)2,(a′δ)2;[b′2]

〉
E ′

.

Proof. (a) Follows immediately from the definition of the invariant.
(b) Let š and š′ be as in the proof of Corollary 2.4.3. Then by Lemma 2.4.2 (a)

and (d), we obtain that κ([b1], [b2])(š) ∈ π0(({(T1 × T2)/Z(G)}̂ )�) is the image of
κ([b′1], [b′2])(š′) ∈ π0(({(T1 × T2)/Z(Gδ)}̂ )�). Now the assertion follows from (a)
and the functoriality of the Tate–Nakayama duality. ��

2.4.6. Let dδ : S ↪→ Gδ be an embedding of a maximal torus, ξ an element of
π0(Ŝ�/Z(Ĝ)�), d := ι ◦ dδ : S ↪→ G, ξ δ ∈ π0(Ŝ�/Z(Ĝδ)�) the class of ξ , and
ϕ : G → G′ an (E, [d], ξ )-admissible inner twisting.

Lemma 2.4.7. Assume that there exists [b′] ∈ #−1
E ′ ([dδ], ξδ) such that the correspond-

ing stable conjugacy class [b] of embeddings S ↪→ H satisfies#E ([b]) = ([d], ξ).
If there exists a stably conjugate embedding d ′ : S ↪→ G′ of d, then there exists

a stable conjugate d ′ of d for which G′
d ′(d−1(δ))

is an (E ′, [dδ], ξδ)-admissible inner
form of Gδ .

Proof. For brevity, we will denote Z(E, [d], ξ) ⊂ Z(Ĝad)� by Z and Z(E ′, [dδ], ξδ)
⊂ Z(Ĝad

δ )
� by Zδ. The embedding dδ : S ↪→ Gδ ⊂ G induces homomorphisms

H 1(E, (Gδ)
ad)

g←− H 1(E, S/Z(G))
f−→ H 1(E,Gad),

hence dual homomorphisms Z((̂Gδ)ad
�
)

g D

−→ π0( ̂S/Z(G)
�
)

f D

←− Z(Ĝad)� .
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First we claim that the assertion of the lemma is equivalent to the inclusion

gD(Zδ) ∩ Im f D ⊂ f D(Z). (2.4.1)

Indeed, put x := inv(G,G′). By our assumptions, x ∈ Z⊥ ∩ Im f , and the lemma
is equivalent to the assertion that there exists y ∈ f −1(x) such that g(y) ∈ (Zδ)⊥.
Equivalently, we have to show that f −1(x) ∩ g−1((Zδ)⊥) �= ∅. Since g−1((Zδ)⊥) =
[gD(Zδ)]⊥, we have to check that x belongs to f ([gD(Zδ)]⊥) = [( f D)−1(gD(Zδ))]⊥.
In other words, the lemma asserts that Im f ∩ Z⊥ ⊂ [( f D)−1(gD(Zδ))]⊥, or by
duality that ( f D)−1(gD(Zδ)) ⊂ Z + Ker f D . But the last inclusion is equivalent
to (2.4.1).

To show (2.4.1), take any element y ∈ gD(Zδ) ∩ Im f D ⊂ π0( ̂S/Z(G)
�
). Note

that gD factors through Z
[d̂δ]

: Z((̂Gδ)ad)� → π0( ̂S/Z(Gδ)
�
). Therefore it follows

from Corollary 1.4.2 that there exists [b′1] ∈ #−1
E ′ ([dδ], ξδ) such that y is the image of

κ
(

[b′1]
[b′]

)
(s′) ∈ π0( ̂S/Z(Gδ)

�
). Let [b1] be the stable conjugacy class of embeddings

S ↪→ H corresponding to [b′1]. Then [b1]G = [b]G and y = κ
(

[b1]
[b]

)
(s) (by Corollary

2.4.3). Since y ∈ Im f D , the image of κ
(

[b1]
[b]

)
(s) in π0(Ŝ�/Z(Ĝ)�) is trivial. Since

this image equals κ[b1]/κ[b] (use Lemma 1.2.9 (a)), we conclude that #E ([b1]) =
#E ([b]) = ([d], ξ). Therefore y = κ

(
[b1]
[b]

)
(s) belongs to f D(Z), as claimed. ��

2.5. Preparation for the proof of the Main Theorem

Lemma 2.5.1. Let π : G̃ → G be a quasi-isogeny such that G̃ splits over Enr, ã0 :

T̃ ↪→ G̃ the lift of a0 : T ↪→ G, and θ̃ the composition T̃ (E)→ T (E)
θ−→ C×.

For every stable conjugate a of a0, the representation πa,θ ◦ π of G̃(E) is iso-
morphic to the direct sum

∑
ã πã,̃θ , taken over the set of all conjugacy classes of

embeddings ã : T̃ ↪→ G̃ such that π ◦ ã : T ↪→ G is conjugate to a.

Proof. Observe first that for each quasi-isogeny π : L̃ → La , the representation
ρa,θ ◦ π of L̃(Fq) is isomorphic to the Deligne–Lusztig representation ρ

ã ,̃θ
, where

ã : T̃ ↪→ L̃ is the lift of a, and θ̃ is the composition T̃ (Fq)→ T (Fq)
θ−→ C×.

For each ã as in the lemma, denote by πã : ˜̃Gã → G̃a the restriction of π . Then
by the above observation, the representation ρa,θ ◦πã is isomorphic to ρã ,̃θ . It follows
that each πã,̃θ is a subrepresentation of πa,θ ◦ π .

Since conjugacy classes of the ã’s are naturally identified with the double coset
π(G̃(E))\G(E)/a (T (E)), while the set of irreducible factors of πa,θ ◦ π is naturally
identified with π(G̃(E))\G(E)/G̃a , it remains to check that these two double cosets
coincide.

By Corollary 2.2.7, we have G̃a = a(T (E))Ga ; therefore it will suffice to show
that Ga ⊂ π(G̃(E)) a(T (O)). But this inclusion follows from Corollary 1.8.18. ��
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Corollary 2.5.2. In the notation of Lemma 2.5.1, let κ̃ ∈ ̂̃T �/Z(̂̃G)� be the image of
κ ∈ T̂�/Z(Ĝ)� . Then π∗(χa0,κ,θ ) = χã0,̃κ ,̃θ

.

Proof. Since each ã as in the lemma satisfies 〈inv(̃a0, ã), κ̃〉 = 〈inv(a0, a), κ〉, the
assertion follows from the lemma. ��
Lemma 2.5.3. It will suffice to prove Theorem 2.1.6 under the assumption that the
derived group of G is simply connected.

Proof. Let G be an arbitrary group satisfying the assumptions of Theorem 2.1.6. Since
G splits over Enr, there exists a surjective quasi-isogeny π : G̃ → G such that G̃der =
G̃sc, and Kerπ is an induced torus splitting over Enr (use [MS, Prop. 3.1]). (Such a
quasi-isogeny Kottwitz calls a z-extension.) Let ã0 : T̃ ↪→ G̃ be the lift of a0. Then T̃
splits over Enr, hence G̃ satisfies all the assumptions of Theorem 2.1.6.

Let κ̃ ∈ ̂̃T �/Z(̂̃G)� be the image of κ , θ̃ the composition T̃ (E) → T (E)
θ−→

C×, π ′ : G̃′ → G′ the inner twist of π , induced by ϕ, and ã′0 : T̃ ↪→ G̃′ the
lift of a′0 : T ↪→ G′. By the assumption, generalized functions χã0,̃κ ,̃θ

and χã′0,̃κ ,̃θ
are (̃a0, ã′0; κ̃)-equivalent. Since H 1(E,Kerπ) = 0, we get that π(G̃(E)) = G(E)
and π ′(G̃′(E)) = G′(E). Therefore it follows from Corollaries 2.5.2 and 1.7.15 that
generalized functions χa0,κ,θ and χa′0,κ,θ are (̃a0, ã′0; κ̃)-equivalent. Thus by Corollary
1.6.13, they are (a0, a′0; κ)-equivalent, as claimed. ��

From now on we will assume that Gder = Gsc.

Lemma 2.5.4. Let G and a0 be as in Theorem 2.1.6, δ ∈ G(E) an element of finite
order prime to p, and b0 : T ↪→ Gδ an embedding stably conjugate to a0. Then

(a) the conclusion of Theorem 2.2.3 holds for Gδ and b0,
(b) the set of topologically unipotent elements of Gδ(E) equals Gδ(E)tu.

Proof. (a) First, it follows from Lemma 2.3.8 (b) that Gδ splits over Enr. Consider
the canonical isogeny π : Gsc × Z(G)0 → G. It induces the isogeny πδ : (Gsc)δ ×
Z(G)0 → Gδ, where (Gsc)δ := {g ∈ Gsc | Int δ(g) = g} is connected by [St, Thm.
8.1].

Since G satisfies property (vg), the order of Z(Gsc) is prime to p. Therefore π
and hence πδ are of order prime to p. As in the proof of Lemma 2.5.3, we see (using
Lemma 1.8.17 (a) and Corollaries 2.5.2, 1.7.15 and 1.6.13) that we can replace Gδ by
(Gsc)δ × Z(G)0 and b0 by its lift. Thus it will suffice to show that (Gsc)δ and the lift
bsc

0 : T sc ↪→ (Gsc)δ of b0 satisfy the assumptions of 2.2.1.
Since G satisfies property (vg), Gsc admits a quasi-logarithm � : Gsc → Gsc

defined over O, and Gsc admits a non-degenerate over O invariant pairing 〈·, ·〉. As
Lie(Gsc)δ = (Gsc)δ, the quasi-logarithm � induces a quasi-logarithm �δ for (Gsc)δ,
and 〈·, ·〉 induces an invariant pairing 〈·, ·〉δ on Lie(Gsc)δ . Furthermore, as δ is of finite
order prime to p, we get that �δ is defined over O and 〈·, ·〉δ is non-degenerate over
O. Finally, since bsc

0 : T sc ↪→ (Gsc)δ is stably conjugate to asc
0 : T sc ↪→ Gsc and since
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G satisfies property (vg)a0 , there exists a bsc
0 -strongly regular element of T

sc
(Fq),

implying the last assumption of 2.2.1.
(b) The proof is a generalization of Corollary 2.3.3. Each topologically unipotent

element u ∈ Gδ(E) stabilizes some point x ∈ B(Gδ) ⊂ B(G). Hence u belongs
to Gδ(E) ∩ Gx,tu (by Lemma 2.3.1 (b)). Therefore u ∈ Lx(Fq) belongs to (Lx )δ ∩
U(Lx ) (by Lemma 2.3.8 (b)). By Lemma 2.5.5 below, u belongs to (Lx )

0
δ
∩ U(Lx ) =

U((Lx )
0
δ
), hence u belongs to (Gδ)x,tu ⊂ Gδ(E)tu, as claimed.

��
Lemma 2.5.5. Let L be a connected reductive group, and s ∈ L a semisimple element.
Then U(L)s = U(L) ∩ Ls is contained in L0

s .

Proof. Recall that the canonical homomorphism ι : Lsc → L induces an L-equivariant
isomorphism U(Lsc)

∼→ U(L), hence an isomorphism U(Lsc)s
∼→ U(L)s . Therefore

U(L)s = ι(U(Lsc)s) is contained in ι((Lsc)s). Since (Lsc)s is connected (by [St, The-
orem. 8.1]), the latter group is contained in L0

s , as claimed. ��
Notation 2.5.6. (a) For a compact element γ0 ∈ Gsr(E) with a topological Jordan
decomposition γ0= δ0u0, we say that t ∈ T (E) is (G, a0, γ0)-relevant if there exists
an embedding b0 : T ↪→ Gδ0 ⊂ G stably conjugate to a0 such that b0(t)=δ0.

(b) Assume that t ∈ T (E) is (G, a0, γ0)-relevant. Since b0(T ) ⊂ Gδ0 is elliptic,
Kottwitz’s theorem (see 1.5.1) implies that H 1(E, T ) → H 1(E,Gδ0) is surjective
(compare the proof of Lemma 1.5.3). Hence for each δ ∈ G(E) stably conjugate to
δ0 there exists an embedding bt,δ : T ↪→ Gδ ⊂ G stably conjugate to a0 such that
bt,δ(t) = δ. Furthermore, bt,δ is unique up to a stable conjugacy, and the endoscopic
triple Et := E([bt,δ],κ) = (Ht, [ηt ], st ) of Gδ0 is independent of δ.

Lemma 2.5.7. For every compact element γ0 ∈ Gsr(E) with topological Jordan de-

composition γ0 = δ0u0 and each ξ ∈ π0(Ĝγ0

�
/Z(Ĝ)�), we have

Fa0,κ,θ (γ0, ξ ) =
∑

t

θ(t)
∑
δ

It,δ, (2.5.1)

where

(i) t runs over the set of (G, a0, γ0)-relevant elements of T (E);
(ii) δ runs over a set of representatives of the conjugacy classes in G(E) stably con-

jugate to δ0, for which there exists a stably conjugate γ of γ0 with topological
Jordan decomposition γ = δu;

(iii) It,δ equals 〈
inv(a0, bt,δ), κ

〉 〈
inv(γ0, γ ), ξ

〉−1
Fbt,δ ,κ,θ (u, ξ ) (2.5.2)

for every γ = δu as in (ii).

Proof. Recall that

Fa0,κ,θ (γ0, ξ ) = e(G)
∑

a

∑
γ

〈inv(a0, a), κ〉
〈
inv(γ0, γ ), ξ

〉−1
Fa,θ (γ ),
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where a : T ↪→ G and γ ∈ G(E) run over sets of representatives of conjugacy classes
within the stable conjugacy classes of a0 and γ0, respectively.

Using Proposition 2.3.7, we see that Fa0,κ,θ (γ0, ξ) equals the triple sum∑
γ=δu

∑
a

〈inv(a0, a), κ〉
〈
inv(γ0, γ ), ξ

〉−1
e(Gδ)

∑
b

θ(b−1(δ))Fb,θ (u), (2.5.3)

where γ and a are as above, and b runs over conjugacy classes of embeddings T ↪→
Gδ , which are conjugate to a : T ↪→ G.

Then (2.5.3) can be rewritten in the form∑
γ=δu

e(Gδ)
∑

b

〈inv(a0, b), κ〉
〈
inv(γ0, γ ), ξ

〉−1
θ(b−1(δ))Fb,θ (u), (2.5.4)

where b runs over the set of conjugacy classes of embeddings T ↪→ Gδ, whose com-
position with the inclusion Gδ ↪→ G is stably conjugate to a0.

Furthermore, each t := b−1(δ) ∈ T (E), appearing in the sum, is (G, a0, γ0)-
relevant, and the contribution of each such t to (2.5.4) is

θ(t)
∑
γ=δu

〈
inv(a0, bt,δ), κ

〉 〈
inv(γ0, γ ), ξ

〉−1
e(Gδ)

[∑
b

〈
inv(bt,δ, b), κ

〉
Fb,θ (u)

]
,

(2.5.5)
where b runs over a set of representatives of conjugacy classes of embeddings T ↪→
Gδ stably conjugate to bt,δ. But (2.5.5) coincides with the sum θ(t)

∑
δ It,δ as in the

lemma. ��

2.5.8. We fix γ0 ∈ Gsr(E) and ξ ∈ π0(Ĝγ0

�
/Z(Ĝ)�) such that Fa0,κ,θ (γ0, ξ) �= 0, and

we are going to show that (γ0, ξ) satisfies the conditions (i), (i i) of Theorem 2.1.10.

2.6. Proof of Theorem 2.1.10 (i)

2.6.1. Since the support of each ta,θ is contained in G̃a , the assumption on γ0 implies
that there exists z ∈ Z(G)(E) such that zγ0 is compact. But Fa0,κ,θ (zγ0, ξ ) = θ(z)
Fa0,κ,θ (γ0, ξ ) for each z ∈ Z(G)(E); therefore the assertions of Theorem 2.1.10 for
γ0 are equivalent to those for zγ0. Hence we can and will assume that γ0 is compact.
In particular, Lemma 2.5.7 holds for γ0.

Every stably conjugate γ of γ0 is compact as well, and we denote by γ0 = δ0u0
and γ = δu their topological Jordan decompositions. We also let ξδ0 be the image of

ξ in π0(Ĝγ0

�
/Z(Ĝδ0)

�).

Notation 2.6.2. We will say that stable conjugates δ1, δ2 ∈ G(E) of δ0 are (γ0, ξ)-
equivalent if there exist stable conjugate γ1 and γ2 of γ0 with topological Jordan
decompositions γi = δi ui , and Gδ2 is an (Et , [aγ0], ξ δ0)-admissible inner form of
Gδ1 . In this case we will write δ1 ∼(γ0,ξ )

δ2.
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2.6.3. Fix t which has a non-zero contribution to (2.5.1). Since the set of conjugacy
classes of δ in Lemma 2.5.7 (ii) decomposes as a union of (γ0, ξ )-equivalent classes,
we can replace γ0 by a stably conjugate element, so that

∑
δ∼(γ0,ξ )δ0

It,δ �= 0. Further

replacing γ0, we can moreover assume that It,δ0 �= 0, thus Fbt,δ0 ,κ,θ
(u0, ξ δ0) �= 0.

We also fix embeddings of maximal tori c : T ↪→ H and c′ : T ↪→ Ht such that
#E ([c]) = ([a0], κ) and #Et ([c

′]) = ([bt,δ0], κ) (see 2.4.1 (b)). This enables us to
apply the results of Subsection 2.4.

2.6.4. Since Gder = Gsc, we get that u0 ∈ Gδ0(E)tu and the conclusion of Theorem
2.2.3 holds for Gδ0 and bt,δ0 (see Lemma 2.5.4). Therefore as in Lemma 2.1.11, there
exists an embedding b′ : Gγ0 = (Gδ0)u0 ↪→ Ht such that #Et ([b

′]) = ([aγ0], ξδ0),
where aγ0 : Gγ0 ↪→ Gδ0 is the natural inclusion.

Let [b] be the stable conjugacy class of embeddings Gγ0 ↪→ H corresponding to

[b′] (see Lemma 2.4.2 (b)), and put ξ [b′] := κ[b] ∈ π0(Ĝγ0

�
/Z(Ĝ)�).

To prove the assertion (i) of Theorem 2.1.10, it will suffice to show the existence
of [b′] ∈ #−1

Et
([aγ0], ξδ0) such that ξ [b′] = ξ .

2.6.5. For each [b′] ∈ #−1
Et
([aγ0], ξδ0), we denote by

z[b′] ∈ π0(Ĝγ0

�
/Z(Ĝ)�Z(Et , [au0 ], ξδ0))

the image of the quotient ξ [b′]/ξ ∈ π0(Ĝγ0

�
/Z(Ĝ)�), where Z(Et , [au0 ], ξδ0) ⊂

Z( ̂(Gδ0)ad)� is mapped into Ĝγ0

�
via the homomorphism

Z( ̂(Gδ0)ad)→ ̂Gγ0/Z(Gδ0)→ Ĝγ0 .

We claim that z[b′] does not depend on [b′]. Indeed, for each [b′1], [b′2] ∈
#−1

Et
([aγ0], ξδ0), the quotient ξ [b′1]/ξ [b′2] is the image of

κ

(
[b′1]

[b′2]

)
(st ) ∈ π0( ̂Gγ0/Z(Gδ0)

�
)

(by Corollary 2.4.3 and Lemma 1.2.9 (a)). Thus ξ [b′1]/ξ [b′2] belongs to the image of

Z(Et , [au0 ], ξδ0). It follows that z := z[b′] is independent of [b′], as claimed.

2.6.6. Our next goal is to show that z = 1. By definition, z belongs to the image

Im
[
π0(Z(Ĝδ0)

�/Z(Ĝ)�)→ π0(Ĝγ0

�
/Z(Ĝ)�Z(Et , [au0 ], ξδ0))

]
. (2.6.1)

Denote by V ⊂ Ker[H 1(E,Gδ0) → H 1(E,G)] the intersection of the image
of Ker[H 1(E,Gγ0)→ H 1(E,G)] and the preimage of

Z(Et , [au0], ξ δ0)
⊥ ⊂ H 1(E, (Gδ0)

ad).

Then for a stable conjugate δ ∈ G(E) of δ0, we have δ ∼(γ0,ξ )
δ0 if and only if the

invariant inv(δ0, δ) ∈ Ker[H 1(E,Gδ0)→ H 1(E,G)] lies in V .
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By Kottwitz’s theorem (1.5.1), the dual group V D of V is naturally identified with
the group (2.6.1). In particular, z belongs to V D . Therefore for each δ ∼(γ0,ξ )

δ0 one
can form a pairing 〈inv(δ0, δ), z〉. Explicitly,

〈inv(δ0, δ), z〉 = 〈inv(γ0, γ ), z̃〉 (2.6.2)

for every stably conjugate γ of γ0 with topological Jordan decomposition γ = δu, and

every representative z̃ ∈ π0(Ĝγ0

�
/Z(Ĝ)�) of z.

Claim 2.6.7. For each δ ∼(γ0,ξ )
δ0, we have It,δ = 〈inv(δ0, δ), z〉 It,δ0 .

Proof. Let γ ∈ G(E) be a stable conjugate of γ0 with topological Jordan decompo-
sition γ = δu. Then u ∈ Gδ(E) is a stable conjugate of u0 ∈ Gδ0(E). Since by
assumption Fbt,δ0 ,κ,θ

(u0, ξ δ0) �= 0 and u0 ∈ Gδ0(E) is topologically unipotent, we
conclude from Lemma 2.5.4 (as in Lemma 2.1.11) that

Fbt,δ ,κ,θ (u, ξδ0) =
〈

u0, u; ξδ0
bt,δ0, bt,δ; κ

〉
Et

Fbt,δ0 ,κ,θ
(u0, ξ δ0).

Hence the quotient It,δ/It,δ0 equals〈
u0, u; ξ δ0

bt,δ0, bt,δ; κ

〉
Et

〈
inv(bt,δ0, bt,δ), κ

〉 〈
inv(γ0, γ ), ξ

〉−1
.

Thus our claim is equivalent to the equality〈
u0, u; ξδ0

bt,δ0, bt,δ; κ

〉
Et

= 〈inv(δ0, δ), z〉 〈inv(γ0, γ ), ξ
〉 〈

inv(bt,δ0, bt,δ), κ
〉−1
. (2.6.3)

The left-hand side of (2.6.3) equals
〈

au0 ,au ;[b′]
bt,δ0 ,bt,δ;[c′]

〉
Et

for each [b′] ∈ #−1
Et
([aγ0], ξ δ0). By

Lemma 2.4.5 (b) and Lemma 1.5.7 (d), it therefore equals〈
aγ0, aγ ; [b]

bt,δ0, bt,δ; [c]

〉
E
= 〈

inv(γ0, γ ), κ [b]
〉 〈

inv(bt,δ0, bt,δ), κ [c]
〉−1
.

But κ[c] = κ , κ[b] = (ξ [b′]/ξ)ξ and ξ [b′]/ξ is a representative of z. Therefore equality
(2.6.3) follows from (2.6.2). ��
2.6.8. By Claim 2.6.7, the sum

∑
δ∼(γ0,ξ )δ0

It,δ0 equals It,δ0(
∑
v∈V 〈v, z〉). It follows

that
∑
v∈V 〈v, z〉 �= 0, hence z = 1.

Choose now an arbitrary [b′] ∈ #−1
Et
([aγ0], ξδ0). Since z = 1, the quotient

ξ [b′]/ξ ∈ π0(Ĝγ0

�
/Z(Ĝ)�) lies in the image of Z(Et , [au0 ], ξδ0). Hence by Corol-

lary 1.4.2, there exists [b′1] ∈ #−1
Et
([aγ0], ξ δ0) such that ξ [b′]/ξ equals the image of

κ
(

[b′]
[b′1]

)
(st ). Since by Corollary 2.4.3 and Lemma 1.2.9 (a), the image of κ

(
[b′]
[b′1]

)
(st )

in π0(Ĝγ0

�
/Z(Ĝ)�) equals ξ [b′]/ξ [b′1], we get that ξ [b′1] = ξ , completing the proof

of (i).
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2.7. Proof of Theorem 2.1.10 (i i)

2.7.1. Let γ ′0 ∈ G′(E) be a stable conjugate of γ0. Since γ0 is compact, so is γ ′0, and
we denote by γ ′0 = δ′0u′0 its topological Jordan decomposition. By Lemma 2.5.7, we
can write Fa′0,κ,θ (γ

′
0, ξ ) in the form

Fa′0,κ,θ (γ
′
0, ξ ) =

∑
t ′
θ(t ′)

∑
δ′

It ′,δ′,

where t ′, δ′ and It ′,δ′ have the same meaning as in Lemma 2.5.7.
First, we claim that an element t ∈ T (E) is (G, a0, γ0)-relevant if and only if it is

(G′, a′0, γ ′0)-relevant. Indeed, assume that t is (G, a0, γ0)-relevant, and let b0 : T ↪→
Gδ0 ⊂ G be the corresponding embedding. Since T/Z(G) is anisotropic, Kottwitz’s
theorem implies that the map H 1(E, T/Z(G)) → H 1(E,Gδ0/Z(G)) is surjective
(compare the proof of Lemma 1.5.3). Hence there exists a stable conjugate b′0 : T ↪→
G′
δ′0
⊂ G′ of b0 such that b′0(t) = δ′0, thus t is (G′, a′0, γ

′
0)-relevant.

Therefore it will suffice to show that for each (G, a0, γ0)-relevant t , we have

∑
δ′

It,δ′ =
〈
γ0, γ

′
0; ξ

a0, a′0, κ

〉
E

∑
δ

It,δ. (2.7.1)

2.7.2. Fix (G, a0, γ0)-relevant t . Generalizing Notation 2.6.2, we will say that sta-
ble conjugates δ ∈ G(E) and δ′ ∈ G′(E) of δ0 are (γ0, ξ )-equivalent (and we will
write δ ∼(γ0,ξ )

δ′) if there exist stable conjugates γ ∈ G(E) and γ ′ ∈ G′(E) of γ0

with topological Jordan decompositions γ = δu and γ ′ = δ′u′ such that G′
δ′ is an

(Et , [au0 ], ξδ0)-admissible inner form of Gδ.
Assume that ϕ : G → G′ is (E, [aγ0 ], ξ)-admissible. We claim that for every stable

conjugate γ ∈ G(E) of γ0 with topological Jordan decomposition γ = δu, there exists
a stable conjugate γ ′ ∈ G′(E) of γ ′0 with topological Jordan decomposition γ ′ = δ′u′
such that δ ∼(γ0,ξ )

δ′.
Indeed, we have shown in Subsection 2.6 that there exists [b′] ∈ #−1

Et
([aγ0], ξ δ0)

such that the corresponding stable conjugacy class [b] of embeddings Gγ0 ↪→ H sat-
isfies #E ([b]) = ([aγ0], ξ). Since the inclusion aγ : Gγ ↪→ G has a stable conjugate
aγ ′0 : Gγ ∼= G′

γ ′0
↪→ G′, the assertion follows from Lemma 2.4.7.

Therefore equality (2.7.1) follows from the following generalization of Claim
2.6.7.

Claim 2.7.3. For each δ′ ∼(γ0,ξ )
δ, we have It,δ′ =

〈
γ0,γ

′
0;ξ

a0,a′0;κ

〉
E

It,δ.

Proof. The proof is very similar to that of Claim 2.6.7. By Theorem 2.2.3 for the inner
twisting Gδ → G′

δ′ (use Lemma 2.5.4), we have

Fbt,δ′ ,κ,θ (u
′, ξ δ0) =

〈
u, u′; ξδ0

bt,δ, bt,δ′ ; κ

〉
Et

Fbt,δ ,κ,θ (u, ξδ0).
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Hence the quotient It,δ′/It,δ equals〈
u, u′; ξδ0

bt,δ, bt,δ′ ; κ

〉
Et

〈
inv(a′0, bt,δ′), κ

〉 〈
inv(a0, bt,δ), κ

〉−1 〈inv(γ ′0, γ ′), ξ
〉−1 〈

inv(γ0, γ ), ξ
〉
.

Thus we have to check that

〈
u,u′;ξδ0

bt,δ,bt,δ′ ;κ
〉
Et

=
〈

aγ ,aγ ′ ;[b′]
bt,δ ,bt,δ′ ;[c′]

〉
Et

equals〈
γ0, γ

′
0; ξ

a0, a′0; κ

〉
E

〈
inv(a′0, bt,δ′), κ

〉−1 〈
inv(a0, bt,δ), κ

〉 〈
inv(γ ′0, γ

′), ξ
〉 〈

inv(γ0, γ ), ξ
〉−1
.

Since the latter expression equals
〈

aγ ,aγ ′ ;[b]
bt,δ,bt,δ′ ;[c]

〉
E

(use Lemma 1.5.7 (a), (c)), the asser-

tion follows from Lemma 2.4.5 (b). ��
This completes the proof of Theorems 2.1.10 and 2.1.6.

Appendix A. Springer Hypothesis

The goal of this appendix is to prove the following result, conjectured by Springer and
playing a crucial role in Subsection 2.2. In the case of large characteristic this result
was first proved in [Ka1].

Theorem A.1. Let L be a reductive group over a finite field Fq , � : L → L a quasi-
logarithm (see Definition 1.8.1), 〈·, ·〉 a non-degenerate invariant pairing on L, T ⊂ L
a maximal torus, θ a character of T (Fq), ψ a character of Fq , and t an element of
T (Fq) ∩ Lsr(Fq).

Denote by δt the characteristic function of the Ad L(Fq)-orbit of t, by F(δt ) its

Fourier transform, and by (−1)rkFq (L)−rkFq (T )ρT ,θ the Deligne–Lusztig [DL] virtual
representation of L(Fq) corresponding to T and θ .

For every unipotent u ∈ L(Fq), we have

TrρT ,θ (u) = q−
1
2 dim(L/T )F(δt )(�(u)).

Notation A.2. For each Weil sheaf A over a variety X over a finite field Fq , we denote
by Func(A) the corresponding function on X (Fq).

Proof. The theorem is a consequence of the results of Lusztig ([Lu]) and Springer
([Sp]), and seems to be well known to experts. Set U := U(L) ⊂ L and N :=
N (L) ⊂ L. To carry out the proof, we will construct a Weil sheaf A on L × T such
that the restrictions At to L × {t} ∼= L are perverse for all t ∈ T (Fq) and satisfy the
following properties:

(i) The restriction At |N is independent of t .

(ii) If t ∈ Lsr(Fq), then Func(At ) = q− 1
2 dim(L/T )F(δt ).

(iii) Func(�∗(A0))|U = TrρT ,θ |U .
The existence of such an A implies the Theorem. Indeed, fix u ∈ U(Fq). By (i i i),

TrρT ,θ (u) equals Func(A0)(�(u)). Since �(U) ⊂ N (see [BR, 9.1, 9.2]), we have
�(u) ∈ N . Therefore the assertion follows from (i) and (i i).
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A. 3. Construction of A

Let T ′ be the abstract Cartan subgroup of L, and W ⊂ Aut(T ′) the Weyl group of
L (see [DL, 1.1]). Denote by L̃ the Springer resolution of L classifying pairs (B, x),
where B ⊂ L is a Borel subalgebra and x is an element of B. Consider the diagram

L× T ′ π×Id←− L̃× T ′ α×Id−→ T ′ × T ′ 〈·,·〉′−→ A1,

where π and α send (B, x) to x and x ∈ B/[B,B] = T ′, respectively, and 〈·, ·〉′ is the
form on T ′ induced by 〈·, ·〉. Put

A′ := (π × Id)!(α × Id)∗〈·, ·〉′∗(Lψ)[dim L],

where Lψ is the Artin–Schreier local system on A1 corresponding to ψ .
To construct A, we will show first that for every w ∈ W , there exists a canonical

isomorphism (Id×w)∗A′ ∼→ A′. Denote by upper index (·)sr the restriction to (the
preimage of) Lsr. First we will show that (Id×w)∗Asr is canonically isomorphic to
Asr. As π sr : L̃sr → Lsr is an unramified Galois covering with the Galois group W ,
the functor π sr

! is isomorphic to π sr
! ◦ w∗. Since αsr is W -equivariant, and 〈·, ·〉′ =

〈·, ·〉′ ◦ (w × w), we have a canonical isomorphism of functors

(Id×w)∗(π sr × Id)!(αsr × Id)∗〈·, ·〉′∗ ∼= (π sr × Id)!(Id×w)∗(αsr × Id)∗〈·, ·〉′∗ ∼=
(π sr × Id)!(w ×w)∗(αsr × Id)∗〈·, ·〉′∗ ∼= (π sr × Id)!(αsr × Id)∗〈·, ·〉′∗,

implying the isomorphism (Id×w)∗A′sr ∼→ A′sr. Since α and 〈·, ·〉′ are smooth mor-
phisms, while π is small, we see that A′[dim T ] is a semisimple perverse sheaf, which
is the intermediate extension of A′sr[dim T ]. Thus the constructed above isomorphism
(Id×w)∗A′sr ∼→ A′sr uniquely extends to an isomorphism (Id×w)∗A′ ∼→ A′.

Denote by Fr : T ′ → T ′ the geometric Frobenius morphism corresponding to the
Fq -structure of T ′, and choose an isomorphism between T and T ′ over Fq . Then there
exists w ∈ W such that the Fq -structure of T corresponds to the morphism Frw :=
w ◦ Fr : T ′ → T ′. Denote by A the Weil sheaf A on L × T , which is isomorphic to
A′ over Fq , and the Weil structure corresponds to the composition Fr∗(Id×w)∗A′ ∼→
Fr∗A′ ∼→ A′, where the first isomorphism was constructed above, and the second one
comes from the Weil structure of A′.

It remains to show that A satisfies properties (i)–(i i i).

A. 4. Proof of properties (i)–(i i i)

(i) Put Ñ := π−1(N ) ⊂ L̃. Then α(Ñ ) = 0, hence (α× Id)∗〈·, ·〉′∗(Lψ)|Ñ×T ′ ∼= Ql .
This implies the assertion for A′. To show the assertion for A, notice that Ñ is smooth
of dimension dim(L/T ), and the projection Ñ → N is semi-small. It follows that
A′|N×T is a semisimple perverse sheaf. Therefore for each t ∈ T (Fq) the restriction
map

Hom(Fr∗wA′|N×T ,A′|N×T )→ Hom(Fr∗wA′|N×{t},A′|N×{t})
is an isomorphism. Thus the Weil structure of At |N is independent of t as well.
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(ii) Denote by ICt the constant perverse sheaf Ql(
dim(L/T )

2 )[dim(L/T )] on the
orbit Ad L(t) ⊂ L, and let F(ICt ) be the Fourier–Deligne transform of ICt . As

dim(L/T ) is even, we get that Func(F(ICt )) = q−
dim(L/T )

2 F(δt ). Therefore the as-
sertion follows from well-known equality F(ICt ) = At (see for example [Sp]).

(iii) By [DL, Thm. 4.2], Tr ρT ,θ |U(Fq) does not depend on θ , hence we can as-
sume that θ = 1. It was proved by Lusztig (see [Lu, Theorem. 1.14 (a) and Propo-
sition. 8.15] and compare [BP]) that there exists a perverse sheaf KT on L such that
TrρT ,1 = Func(KT ). More precisely, in [Lu, Theorem. 1.14 (a)] Lusztig showed the
corresponding result for general character sheaves if q is sufficiently large, while by
[Lu, Prop. 8.15] the restriction on q is unnecessary in our situation.

Thus it will suffice to check that KT |U = �∗(A0)|U . The description of KT is very
similar to that of A. Let πL : L̃ → L be the Springer resolution, put Ũ := π−1

L (U),
and we denote by π sr

L : L̃sr → Lsr the restriction of π to the preimage of Lsr. Then the
semisimple perverse sheaf KT is equal to (πL)!(Ql)[dim L] over Fq , while the Weil

structure of KT is induced (as in A.3) by isomorphism of functors Fr∗w(π sr
L )!

∼→ (π sr
L )!.

By [BR, Theorem. 6.2 and 9.1], there exists a Lad-invariant open affine neighbor-
hood V ⊃ U in L such that �|V : V → L is étale. We claim that KT |V is isomorphic
to �∗(A0)|V = (�|V )∗(A0). As both KT |V and (�|V )∗(A0) are semisimple perverse
sheaves, which are immediate extensions of their restrictions to V ∩�−1(Lsr), it will
suffice to show that �∗(A0)|�−1(Lsr)

∼= KT |�−1(Lsr).
Note that �−1(Lsr) ⊂ Lsr and that � gives rise to the commutative diagram

L̃
�̃−−−−→ L̃

πL

⏐⏐* π

⏐⏐*
L

�−−−−→ L
(use Lemma 1.8.3 (a)), whose the restriction to Lsr is Cartesian and W -equivariant.
Therefore the required isomorphism �∗(A0)|�−1(Lsr)

∼→ KT |�−1(Lsr) follows from
the proper base change theorem.

Appendix B. (a, a′; [b])-equivalence and Fourier transform

B.1. Formulation of the result

B.1.1. Let G be a reductive group over a local field E of characteristic zero, E =
(H, [η], s) an endoscopic triple for G, and ϕ : G → G′ an inner twisting. Fix a triple
(a, a′; [b]), where a : T ↪→ G and a′ : T ↪→ G′ are stably conjugate embeddings
of maximal tori, and [b] is a stable conjugacy class of embeddings of maximal tori
T ↪→ H , compatible with a and a′.

Fix a non-trivial character ψ : E → C×, a non-degenerate G-invariant pairing
〈·, ·〉 on G, and a non-zero translation invariant top degree differential form ωG on
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G. Denote by 〈·, ·〉′ the G′-invariant pairing on G′, induced 〈·, ·〉, and let dx = |ωG |
and dx ′ = |ωG ′ | be the invariant measures on G(E) and G′(E) induced by ωG . These
data define Fourier transforms F 	→ F(F) on G(E) and F ′ 	→ F(F ′) on G′(E) (see
2.2.10).

The following result generalizes both the theorem of Waldspurger [Wa2] (who
treated the case φ′ = 0) and of Kazhdan–Polishchuk [KP, Thm. 2.7.1] (where the
stable case is treated).

Theorem B.1.2. Generalized functions F ∈ D(G(E)) and F ′ ∈ D(G′(E)) are
(a, a′; [b])-equivalent if and only if e′(G)F(F) and e′(G′)F(F ′) are (a, a′; [b]))-
equivalent.

Remark B.1.3. When this work was already written, we learned that our Theorem
B.1.2 seems to follow from the recent work of Chaudouard [Ch].

By duality, Theorem B.1.2 follows from the following result.

Theorem B.1.4. Measures φ ∈ S(G(E)) and φ′ ∈ S(G′(E)) are (a, a′; [b])-indistin-
guishable if and only if e′(G)F(φ) and e′(G′)F(φ′) are (a, a′; [b])-indistinguishable.

For the proof, we will combine arguments from [Wa1, Wa2] with those from [KP].

Lemma B.1.5. (a) The validity of Theorem B.1.4 is independent of the choice of ωG,
ψ and 〈., .〉.

(b) It will suffice to show Theorem B.1.4 under the assumption that G = Gsc.
(c) It will suffice to show Theorem B.1.4 under the assumption that E is elliptic. (Note

that this is the only case used in this paper).

Proof. The proof follows by essentially the same arguments as [Wa2, II].
(a) Another choice of the data results in replacing the Fourier transform F by

B∗ ◦ F for a certain linear automorphism B of G commuting with Ad G. Thus the
assertion follows from Lemma 1.6.15.

(b) Let Ẽ be the endoscopic triple for Gsc induced by E , and let (̃a, ã′; [̃b]) be
the lift of (a, a′; [b]) (see Lemma 1.3.10). Fix a pair of (a, a′; [b])-indistinguishable
measures φ ∈ S(G(E)) and φ′ ∈ S(G′(E)).

Denote by Z the Lie algebra of Z(G) = Z(G′). Then G = Gsc ⊕ Z and
G′ = G′sc ⊕ Z , hence there exist measures hi ∈ S(Z(E)), fi ∈ S(Gsc(E)) and
f ′i ∈ S(G′sc(E)) such that the hi ’s are linearly independent, φ = ∑

i fi × hi

and φ′ =∑
i f ′i × hi .

For each x ∈ (Gsc)sr(E), z ∈ Z(E) and κ ∈ π0(Ĝx+z
�
/Z(Ĝ�)), we have

Oκ
x+z(φ) =

∑
i O κ̃

x ( fi )Oz(hi ), where κ̃ ∈ π0(Ĝsc
x
�
) is the image of κ , and similarly

for φ′. Since the hi ’s are linearly independent, it follows from Lemmas 1.6.11 and
1.3.10 that fi and f ′i are (̃a, ã′; [̃b])-indistinguishable for each i (compare Corollary
1.6.13 and its proof).

Let 〈., .〉 be a direct sum of pairings on Gsc andZ . ThenF(φ) =∑
i F( fi )×F(hi )

and F(φ′) = ∑
i F( f ′i ) × F(hi ). By our assumptions, e′(G)F( fi ) and e′(G′)F( f ′i )
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are (̃a, ã′; [̃b])-indistinguishable for each i , therefore e′(G)F(φ) and e′(G′)F(φ′) are
(a, a′; [b])-indistinguishable, as claimed.

(c) The assertion follows from the arguments of [Wa2, II. 3]. Since we do not use
this result in the main body of the paper, we omit the details. ��

From now on, we assume that E is elliptic, G is semisimple and simply connected,
and 〈., .〉 is the Killing form.

Notation B.1.6. (a) Consider the natural map [y] 	→ [y]G from the set of stable
conjugacy classes of elements of Hsr(E) to the set of E-rational conjugacy classes in
Gsr(E), defined as follows. For each y ∈ Hsr(E), denote by by the inclusion Hy ↪→ H .
Each embedding a : (Hy)E ↪→ GE from [by]G defines an embedding da : (Hy)E ↪→
GE , and we denote by [y]G be the conjugacy class of da(y) ∈ G(E).

(b) We say that y ∈ Hsr(E) and x ∈ Gsr(E) are compatible if x ∈ [y]G .
(c) For each x ∈ Gsr(E), the map b 	→ y := db(x) defines a bijection between

embeddings of maximal tori b : Gx ↪→ H compatible with ax : Gx ↪→ G and
elements y ∈ Hsr(E) compatible with x . Let y 	→ by be the inverse map.

We will write κ [y] ∈ π0(Ĝx
�
) instead of κ[by ], O[y]

x instead of O
κ [y]
x , and

〈
x,x ′;[y]
a,a′;[b]

〉
,

where x ′ ∈ G′(E) is a stable conjugate of x , instead of
〈

ax ,ax ′ ;[by]
a,a′;[b]

〉
.

B.2. Local calculations

The primary goal of this subsection is to construct (a, a′; [b])-indistinguishable mea-
sures whose Fourier transforms are (a, a′; [b])-indistinguishable in some region. We
mostly follow [KP].

B.2.1. (a) For every t ∈ Gsr(E), fix a top degree form ωGt �= 0 on the vector space
Gt and identify it with the corresponding top degree translation invariant differential
form. Then ωGt defines a Gt -invariant top degree form ν = νt := ωG ⊗ (ωGt )

−1 on
G/Gt , which uniquely extends to a non-zero top degree G-invariant form on G/Gt ,
which we will also denote by ν.

(b) We denote by dg and du the measures |ν| on (G/Gt )(E) and |ωGt | on Gt (E),
respectively.

(c) Consider the map # : (G/Gt ) × Gsr
t → Gsr given by the rule #(g, x) =

Ad g(x). Then# is étale, and we have an equality #∗(ωG) = ν ∧ ωGt .

B.2.2. Preliminaries on quadratic forms over local fields (a) To every non-
degenerate quadratic form q on an E-vector space V one associates a rank rk q =
dim V , a determinant det q ∈ (det V )⊗(−2) and a Hasse–Witt invariant e(q) ∈ {−1, 1}.
Any trivialization det V

∼→ E associates to det q an element of E×. Moreover, the
class of det q in E×/(E×)2 is independent on the trivialization.

To each isomorphism class (q, ψ), where ψ is a non-trivial additive character of
E , Weil [We] associated an 8th root of unity γ (q, ψ). For each non-zero top degree
form ν on V , we set c(q, ν, ψ) := γ (q, ψ)| det(q)/ν2|−1/2.
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(b) Weil proved that for every non-degenerate quadratic forms q and q ′ satisfying
rk q = rk q ′ and det q ≡ det q ′ mod (E×)2, we have γ (q, ψ)/γ (q, ψ) = e(q)e(q ′).

(c) To each t ∈ Gsr(E) and y, z ∈ Gsr
t (E) we associate a non-degenerate quadratic

form q = qy,z : x 	→ 〈
y, (ad x)2(z)

〉
on V := G/Gt . Then the form ν on V , chosen in

B.2.1 (a) gives rise to an invariant c(qy,z, ν, ψ).
(d) Let t ′ ∈ G′sr(E) be a stable conjugate of t , ν′ the form on G′/G′

t ′ induced by ν,

and ϕt,t ′ the canonical isomorphism Gt
∼→ G′t ′ from Construction 1.7.7 (b). For every

y, z ∈ Gsr
t , we set y ′ = ϕt,t ′(y) and z′ = ϕt,t ′(z).

It follows from results of [KP] that c(qy,z, ν, ψ)/c(qy′,z′, ν′, ψ) = e′(G)e′(G′).
In particular, c(qy,z, ν, ψ) = c(qy′,z′ , ν′, ψ) if G′ = G. Indeed, since det qy,z/ν

2 =
det qy′,z′/ν′2 and rk q = rk q ′, the assertion is a combination of the result of Weil (see
(b)) and [KP, Lemma. 2.7.5 and the remark following it].

Notation B.2.3. Fix t ∈ Gsr(E) and sufficiently small open compact subgroups K ⊂
G(E) and U ⊂ Gt (E) such that t+U ⊂ Gsr

t (E) and K ∩NormG(E)(Gt ) = K ∩Gt (E).
For each a ∈ E×, put Sa := Ad K (at + U) ⊂ G(E), and we denote by χa =

χa,t,K ,U be the characteristic function of Sa .

B.2.4. Stationary phase principle For each u ∈ Gsr(E) and x ∈ G(E), we define
function fx,u : (G/Gu)(E) → E by the rule fx,u(g) := 〈x,Ad g(u)〉. Then g ∈
(G/Gu)(E) is a critical point for fx,u if and only if x ∈ Ad g(Gu) = GAd g(u). In this
case, the corresponding quadratic form on Tg(G/Gu) = G/Gu is qAd g−1(x),u .

By the stationary phase principle (see [KP, Lem 2.5.1]), for each compact subset
C ⊂ Gsr(E) there exists N0 = N0(t, K ,U, c) ∈ N such that for each x ∈ C , u ∈ t+U
and a ∈ E× with |a| > N0, the integral

∫
K/K∩Gt (E)

ψ(a 〈x,Ad g(u)〉)dg equals

c(qAd k(x),u, ν, ψ)ψ(a 〈x, u〉)|a|−
1
2 dimG/Gt , (B.2.1)

if there exists (a unique) element k ∈ K/K ∩ Gt (E) such that Ad k(x) ∈ Gsr
t (E), and

vanishes otherwise.
Indeed, the map fx,u |K/K∩Gt (E) has a unique non-degenerate critical point g =

k
−1

in the former case and has no critical points in the latter one. Thus the assertion
for a ∈ (E×)2 follows from [KP, Lem 2.5.1]. Since the quotient E×/(E×)2 is finite,
the general case now follows from the previous one applied to the compact set �bbC ,
where b ∈ E× runs over a set of representatives of E×/(E×)2.

Lemma B.2.5. Let t, K and U be as in Notation B.2.3, and let [x] ⊂ Gsr(E) be a
stable conjugacy class. Then there exists N = N(t, K ,U, [x]) ∈ N such that for each
x ∈ [x] and a ∈ E× with |a| > N, the Fourier transform F(χa)(x) equals

c(qAd k(x),t, ν, ψ)ψ(a 〈x, t〉)|a|
1
2 dimG/Gt

∫
U
ψ(〈x, u〉)du, (B.2.2)

if there exists (a unique) element k ∈ K/K ∩ Gt (E) such that Ad k(x) ∈ Gsr
t (E), and

vanishes otherwise.



Endoscopic decomposition 289

Proof. First we claim that there exists a compact set C0 ⊂ G(E) containing the support
of F(χa) for all a ∈ E � O. To show this we will find an O-lattice L ⊂ G such that
Sa + L = Sa for all a ∈ E � O. Then the dual lattice C0 := {x ∈ G |ψ(〈x, L〉) = 1}
satisfies the required property.

Recall that the map (k, u) 	→ Ad k(t + u) gives an analytic isomorphism F :
(K/K ∩Gt (E))×U

∼→ S1, and we denote by π : S1 → U the composition pr2 ◦F−1.
Since S1 is compact, π has a bounded derivative. Therefore there exists a lattice L ⊂
G(E) such that for each b ∈ E and x ∈ S1, we have π(x + bL) ⊂ π(x) + bU .
Shrinking L if necessary, we can moreover assume that S1 + L = S1.

Fix a ∈ E � O. Then a−1Sa = Ad K (t + a−1U) ⊂ S1 and, moreover, a−1Sa

is the preimage of a−1U ⊂ U under π . Therefore a−1Sa + a−1L ⊂ S1 + L = S1
and π(a−1Sa + a−1L) ⊂ π(a−1Sa) + a−1U = a−1U . Hence a−1Sa + a−1L ⊂
π−1(a−1U) = a−1Sa , thus Sa + L = Sa , as claimed.

As the intersection Gsr
t ∩ [x] is finite, the set Ad K (Gsr

t ∩ [x]) and therefore also
C := C0 ∪ Ad K (Gsr

t ∩ [x]) is compact. Since [x] ⊂ G(E) is closed, the intersection
C ∩ [x] is compact as well. Take any N ≥ N0(t, K ,U,C ∩ [x]) (see B.2.4) such
that quadratic forms qx,u and qx,t are isomorphic for each element x of the finite set
Gt (E) ∩ [x] and each u ∈ t + a−1U with |a| > N . We claim that this N satisfies the
required properties.

Indeed, the Fourier transform F(χa)(x) =
∫

Sa
ψ(〈x, y〉)dy equals

|a|dimG
∫

a−1Sa

ψ(a 〈x, y〉)dy = |a|dimG
∫

t+a−1U
du

∫
K/K∩Gt (E)

ψ(x 〈a,Ad g(u)〉)dg

(by B.2.1 (c) and our assumptions in Notation B.2.3). Therefore the assertion for
x ∈ [x] ∩ C follows from B.2.4. Finally, if x ∈ [x] � C , then x /∈ Ad K (Gsr

t ) and
F(χa)(x) = 0 (by B.4), implying the assertion in the remaining case. ��
Corollary B.2.6. For each triple (y, x, x ′), where x ∈ Gsr(E) and x ′ ∈ G′sr(E) are
stably conjugate, and y ∈ Hsr(E) is compatible with x, there exist measures φ ∈
S(G(E)) and φ′ ∈ S(G′(E)) satisfying the following properties:

(i) φ and φ′ are supported on elements stably conjugate to Gsr
x (E).

(ii) O[y]
u (φ) =

〈
x,x ′;[y]
a,a′;[b]

〉
O[y]

u′ (φ
′) for each u ∈ Gsr

x (E) and u′ = φx,x ′(u) ∈ G′sr
x ′(E).

(iii) Oξ
u (φ) = Oξ

u′ (φ
′) = 0 for each u ∈ Gsr

x (E), u′ = φx,x ′(u) and ξ �= κ[y].

(iv) Oξ
x (F(φ)) = Oξ

x ′(F(φ
′)) = 0 for each ξ �= κ [y].

(v) e′(G)O[y]
x (F(φ)) = e′(G′)

〈
x,x ′;[y]
a,a′;[b]

〉
O[y]

x ′ (F(φ
′)) �= 0.

Proof. (Compare Corollary 1.7.8). Let x1 = x, x2, . . . , xl be all elements of Gx (E) ∩
[x]. Pick t ∈ Gsr

x (E) such that all
〈
x j , t

〉
are distinct, and put t ′ := φx,x ′(t) ∈ G′sr

x ′(E).
Choose sufficiently small subgroups K ⊂ G(E), K ′ ⊂ G′(E) and U ⊂ Gt (E) satis-
fying the assumptions of Notation B.2.3 and such that ψ(

〈
x j , u

〉
) = 1 for each u ∈ U

and each j = 1, . . . , l.
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Let t1 = t, t2, . . . , tk ∈ G(E) and t ′1 = t ′, t ′2, . . . , t ′k ∈ G′(E) be sets of represen-
tatives of conjugacy classes stably conjugate to t and t ′. For each i = 1, . . . , k, put
Ui := ϕt,ti (U) ⊂ Gti (E) and U ′

i := ϕt,t ′i (U) ⊂ G′t ′i (E).
For each i = 1, . . . , k, let νi and ν′i be the forms on G/Gti and G′/G′

t ′i
respec-

tively, induced by ν. For each a ∈ E � O, put φi = 1
|νi |(K/K∩Gti (E))

χa,ti ,Ui ,K dx

and φ′i = 1
|ν ′i |(K ′/K ′∩G ′

t ′i
(E))χa,t ′i ,U ′

i ,K
′dx ′. Define φ and φ′ by the formulas φ :=

∑
i

〈
inv(t, ti ), κ [y]

〉−1
φi and φ′ := ∑

i

〈
at ,at ′i ;[by]

a,a′;[b]

〉−1

φ′i . Then φ and φ′ clearly sat-

isfy properties (i)–(iii) for each a ∈ E � O, so it remains to show the existence of a
for which properties (iv) and (v) are satisfied.

Let N be the maximum of the N(ti ,Ui , K , [x])’s and the N(t ′i ,U ′
i , K ′, [x ′])’s.

Then Lemma B.2.5 implies that for each ξ ∈ π0(Ĝx
�
) and a ∈ E× with |a| > N , we

have

Oξ
x (F(φ1)) = |a| 1

2 dimG/Gt |ωGt |(U)
l∑

j=1

〈
inv(x, x j ), ξ

〉
c(qx j ,t , ν, ψ)ψ(a

〈
x j , t

〉
).

(B.2.3)
Moreover, for each i = 1, . . . , n, observation B.2.2 (d) and the equality ϕ∗t,ti (ωGti

) =
ωGt imply that

Oξ
x (F(φi )) =

〈
inv(t, ti ), ξ

〉
Oξ

x (F(φ1)). (B.2.4)

Then (B.2.3) and (B.2.4) together with similar formulas for the φ′i ’s imply the equali-

ties from (iv) and (v) and that O[y]
x (F(φ)) = kO[y]

x (F(φ1)).
It remains to show the existence of a ∈ E× with |a| > N such that O[y]

x (F(φ1)) �=
0. Since all

〈
x j , t

〉
are distinct, the functions a 	→ ψ(a

〈
x j , t

〉
) are linearly independent.

The assertion now follows from (B.2.3). ��
Later we will need the following result.

Lemma B.2.7. Let G be an unramified semisimple simply connected group over
E, K ⊂ G(E) a hyperspecial subgroup, K ⊂ G(E) the corresponding subalge-
bra, 1K the characteristic function of K, and E = (H, [η], s) an endoscopic triple
for G.

(a) If H is ramified, then O[y]
x (1Kdx) = 0 for all compatible elements y ∈ Hsr(E)

and x ∈ Gsr(E).
(b) If H is unramified, then there exists an open neighborhood of zero - ⊂ H(E)

such that O[y]
x (1Kdx) �= 0 for all compatible elements y ∈ - ∩ Hsr(E) and

x ∈ Gsr(E).
(c) If x ∈ K has a regular reduction modulo m, then every stably conjugate x ′ ∈ K of

x is K -conjugate. In particular, Oξ
x (1Kdx) �= 0 for each ξ ∈ π0(Ĝx

�
).
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Proof. Since in the notation of [Wa1, Wa2], O[y]
x (1Kdx) is a non-zero multiple of

J G,H (y, 1K), the assertions follow from [Wa1, 7.2 and 7.4] and [Wa2, III, Prop.]
(compare [Ko2, Prop. 7.1 and 7.5]). ��

B.3. Global results

For the proof of Theorem B.1.4 we will use global methods. In this subsection we will
recall necessary notation and results.

B.3.1. (a) Let E be a number field, which we will always assume to be totally imagi-
nary, � the absolute Galois group of E , and A the ring of adèles of E . We denote
by V , V∞ and V f the set of all places, all infinite places and all finite places of E ,
respectively. For each v ∈ V f , we have a natural conjugacy class of embeddings�v ↪→
�. For every object S over E and each v ∈ V , we will denote by Sv the corresponding
object over Ev .

(b) For every reductive group G over E , consider a sequence

H 1(E,G)→
⊕
v∈V f

H 1(Ev ,G)
∗−→ π0(Z(Ĝ)

�)D, (B.3.1)

where the restriction of ∗ to H 1(Ev ,G) is the composition of the isomorphism

DG : H 1(Ev ,G)
∼→ π0(Z(Ĝ)�v )D from 1.5.1 and the projection π0(Z(Ĝ)�v )D →

π0(Z(Ĝ)�)D . Kottwitz proved (see [Ko2, Prop 2.6]) that the sequence (B.3.1) is exact.
(c) For each c ∈ H 1(E,G), κ ∈ π0(Z(Ĝ)�) and v ∈ V f , we denote by cv ∈

H 1(Ev ,G) and κv ∈ π0(Z(Ĝ)�v ) the images of c and κ , respectively. Then Kottwitz’s
theorem from (b) asserts that

∏
v∈V f

〈cv , κv〉 = 1.

Lemma B.3.2. Let G be a reductive group over E, and u ∈ V f .

(a) If u is inert in the splitting field E[G∗] of the quasi-split inner form G∗ of G, then
the diagonal map H 1(E,G)→⊕

v �=u H 1(Ev ,G) is surjective.

Assume in addition that G is either semisimple and simply connected or adjoint.
Then

(b) The map from (a) is an isomorphism.
(c) Let T be a maximal torus of G, and let c ∈ H 1(E,G) be such that cv ∈

H 1(Ev ,G) belongs to Im[H 1(Ev , T ) → H 1(Ev ,G)] for each v �= u. Then
c ∈ Im[H 1(E, T )→ H 1(E,G)] in each of the following cases:

(i) u is inert in the splitting field E[T ] of T ;
(ii) u inert in E[G∗], and T u ⊂ Gu is elliptic.

Proof. (a), (b) By assumption, we have Z(Ĝ)� = Z(Ĝ)�u , so assertion (a) follows
from the exactness of (B.3.1) while assertion (b) follows from the Hasse principle.

(c) Consider commutative diagram
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H 1(E, T )
A−−−−→ ⊕

v �=u H 1(Ev , T )⏐⏐* D

⏐⏐*
H 1(E,G)

B−−−−→ ⊕
v �=u H 1(Ev ,G).

In both cases, u is inert in E[G∗], hence B is injective (by (b)). Since by our assump-
tion, B(c) = (cv )v �=u belongs to Im D, it will suffice to show that A is surjective. In
the case (i), the surjectivity of A follows from (a). In the case (i i), the canonical map

π0(T̂
�
) = T̂

�
/Z(Ĝ)� ↪→ T̂

�v /Z(Ĝ)�v = π0(T̂
�u ) is injective. Therefore surjectiv-

ity of A follows from the exactness of (B.3.1). ��
From now on, G is a semisimple and simply connected group over E .

B.3.3. (a) Let E ′ = (H ′, [η′], s′) be an endoscopic triple for G. For each v ∈ V f , E ′
gives rise to an (isomorphism class of an) endoscopic triple E ′v = (H ′

v, [η
′
v ], s′v ) for

Gv .
In particular, if E ′ ∼= E([a],κ) for a certain pair (a, κ) consisting of an embedding

of a maximal torus a : T ↪→ G and κ ∈ T̂ � , then E ′v ∼= E([av ],κv ).
(b) Let E ′i = (H ′

i , [η
′
i ], s

′
i ), i = 1, 2, be a pair of endoscopic triples for G. Assume

that there exists v ∈ V f , inert in both splitting fields E[H ′
1] and E[H ′

2], such that
(E ′1)v ∼= (E ′2)v . Then E ′1 ∼= E ′2.

Indeed, the image of ρH ′
i

: � → Out(Ĥ ′
i ) coincides with that of ρ(H ′

i )v
: �v →

Out(Ĥ ′
i ) for each i = 1, 2, and therefore by Remark 1.3.4, the map

Isom(E ′1, E ′2)/(H ′
1)

ad(E)→ Isom((E ′1)v , (E ′2)v )/(H ′
1)

ad(Ev )

is bijective.
(c) Let E ′ = (H ′, [η′], s′) be an endoscopic triple for G, ϕ : G → G′ an inner

twisting, and (a′i , ai , [bi ]) be two triples consisting of stably conjugate embeddings
of maximal tori ai : T i ↪→ G and a′i : T i ↪→ G′, and stably conjugate classes [bi ]
of embeddings of maximal tori T i ↪→ H ′, compatible with ai . Then we have the
following product formula∏

v∈V f

〈
(a1)v , (a

′
1)v ; [b1]v

(a2)v , (a
′
2)v ; [b2]v

〉
E ′v
= 1.

Indeed, consider elements c := inv((a1, a
′
1); (a2, a

′
2)) ∈ H 1(E, (T 1 × T 2)/Z(G))

(see 1.1.5) and κ := κ([b1], [b2])(s′) ∈ π0(({(T 1 × T 2)/Z(G)}̂ )� (see 1.2.8). Since〈
(a1)v ,(a

′
1)v ;[b1]v

(a2)v ,(a
′
2)v ;[b2]v

〉
E ′v
= 〈cv , κv 〉 for each v ∈ V f , the product formula follows from

Kottwitz’s theorem (see B.3.1 (c)).

B.3.4. Denote by dg and dx =∏
v dxv the Tamagawa measures on G(A) and G(A),

respectively (defined by a non-zero translation invariant top degree differential form
ωG on G).
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For each v ∈ V∞, denote by S(G(Ev )) the space of measures on G(Ev ) of the
form fvdxv , where fv is a Schwartz function. Put S(G(A)) := ⊗′v∈VS(G(Ev )), and
fix a non-trivial character ψ = ∏

v ψv : A/E → C×. Then ψ gives rise to a Fourier
transform F : S(G(A))→ S(G(A)) such that F(⊗vφv) = ⊗vF(φv), where F(φv) is
the Fourier transform of φv corresponding to a measure dxv and a character ψv .

For each x ∈ Gsr(E), κ ∈ Ĝx
�

, and φ = ⊗vφv ∈ S(G(A)) put Oκ
x (φ) =:∏

v∈V O
κv
xv (φv), where O

κv
xv := Oxv for each x ∈ V∞. It follows from Kottwitz’s theo-

rem (see B.3.1 (c)) that generalized function O
κ
x depends only on the stable conjugacy

class of x .
The main technical tool for the proof of Theorem B.1.4 is the following simple

version of the trace formula. Let θ be a generalized function on G(A) defined by the
rule θ( f dx) =∑

x∈G(F) f (x). For each g ∈ G(A), put θg := (Ad g)∗(θ).

Proposition B.3.5. (a) Let φ = ⊗vφv be an element of S(G(A)) such that Supp(φ)∩
Ad G(A)(G(E)) consist of regular elliptic elements. Then the integral

0(φ) :=
∫

G(A)/G(E)
θ g(φ)dg

converges absolutely. Furthermore,

0(φ) =
∑

x

∑
κ∈Ĝx

�

O
κ
x (φ),

where x runs over the set of regular elliptic stably conjugacy classes of G(E).
(b) If F(φ) also satisfies the support assumption of (a), then 0(φ) = 0(F(φ)).
Proof. (a) The first assertion (see [Wa1, 10.8]) is a direct analog of the corresponding
result of Arthur, while the second one (see, for example, [KP, Thm 3.2.1]) is an analog
of a result of Kottwitz.

(b) By the Poisson summation formula, we have F(θ) = θ . Therefore the assertion
follows from the absolute convergence of 0(φ) and 0(F(φ)). ��

To apply the trace formula, we will embed our local data into global ones.

Claim B.3.6. There exist a totally imaginary number field E, two finite placesw and u
of E, a semisimple simply connected group G over E, an inner twisting ϕ : G → G′,
an endoscopic triple E = (H , [η], s) for G, a tori T over E, a pair of stably conjugate
embeddings of maximal tori a : T ↪→ H and a′ : T ↪→ G′, and an embedding
b : T ↪→ G compatible with a satisfying the following conditions:

(a) Ew ∼= E, Gw
∼= G, ϕ

w
∼= ϕ, Ew ∼= E , Tw ∼= T , [b]w = [b], while aw are a′w

are conjugate to a and a′, respectively.
(b) For each v �= u, w, the groups Gv and G′

v are quasi-split, and ϕ
v

is trivial.

Moreover, after we identify Gv with G′
v by means of some G(Ev )-conjugate of ϕ

v
,

embeddings av and a′v are conjugate.
(c) u is inert in E[T ], and Eu is elliptic.
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Proof. (I) Put E ′ := E[T ], and set �′ := Gal(E ′/E). Choose a dense subfield F ′
of E ′, which is a finite extension of Q. Increasing F ′, we may assume that F ′ is
�′-invariant. Set F := (F ′)�′ , and let w0 be the prime of F , corresponding to the
embedding F ↪→ (E ′)�′ = E . In particular, Fw0

∼= E . Choose a totally imaginary
quadratic extension E of F0 such that w0 splits in E , and let w and u be the primes
of E lying over w0. Finally, let E ′ be the composite field E · F ′. We have natural
identifications Ew ∼= Eu

∼= E and Gal(E ′/E) ∼= Gal(E ′/E), and both w and u are
inert in E ′.

(II) Let ϕ∗ : G → G∗ be the inner twisting such that G∗ is quasi-split.
Since G, H and T split over E ′, the homomorphisms ρG , ρH and ρT factor through
Gal(E ′/E). We denote by G∗ (resp. H , resp. T ) the quasi-split group over E such
that Ĝ∗ = Ĝ (resp. Ĥ = Ĥ , resp. T̂ = T̂ ) and ρG∗ (resp. ρH , resp. ρT ) is
the composition of the projection � → Gal(E ′/E) ∼= Gal(E ′/E) and the homo-
morphism ρG : Gal(E ′/E) → Out(Ĝ) (resp. ρH : Gal(E ′/E) → Out(Ĥ), resp.
ρT : Gal(E ′/E)→ Out(T̂ )).

By construction, we have G∗
w
∼= G∗, Hw

∼= H and Tw ∼= T . Moreover, the conju-
gacy classes of embeddings T̂ ↪→ Ĝ and T̂ ↪→ Ĥ corresponding to a : T ↪→ G and
[b] are �-invariant. Therefore they come from stable conjugacy classes of embeddings
a∗ : T ↪→ G∗ and b : T ↪→ H . Furthermore, (a∗)w is stably conjugate to a, and
[b]w = [b].

(III) Since u is inert in E ′ = E[T ] ⊃ E[G∗], the canonical map H 1(E, (G∗)ad)→⊕
v �=u H 1(Ev , (G

∗)ad) is an isomorphism (by Lemma B.3.2 (b)). Hence there exist

unique inner twistings ϕ∗ : G∗ → G and ϕ : G → G′ such that ϕ∗
w
∼= (ϕ∗)−1,

ϕ
w
∼= ϕ, while ϕ∗

v
and ϕ

v
are trivial for all v �= w, u.

Applying Lemma B.3.2 (c) for the embedding a∗ : T /Z(G) ↪→ (G∗)ad we con-
clude from 1.1.4 (b) that there exist embeddings a : T ↪→ G and a′ : T ↪→ G′ stably
conjugate to a∗. Applying now Lemma B.3.2 (c) for T , we can further replace a and
a′ so that aw is conjugate to a, a′w is conjugate to a′, while av and a′v are conjugate
for all v �= w, u.

(IV) Since w is inert in E[T ] ⊃ E[H ], we get that Z(Ĥ)� = Z(Ĥ)� , and the
conjugacy class [η] of embeddings Ĥ = Ĥ ↪→ Ĝ = Ĝ is �-invariant. Hence the
triple E := (H , [η], s) is an endoscopic triple for G. Moreover, Ew ∼= E and Eu
is elliptic. Indeed, u is inert in E[H ], therefore Z(Ĥ)�u = Z(Ĥ)� = Z(Ĥ)� is
finite. ��

B.4. Proof of Theorem B.1.4

B.4.1. Fix (a, a′; [b])-indistinguishable φ ∈ S(G(E)) and φ′ ∈ S(G′(E)). We want
to show that e′(G)F(φ) and e′(G′)F(φ′) are (a, a′; [b])-indistinguishable. Using
Lemma 1.6.11 and the symmetry between G and G′, it will suffice to check that for
each compatible x ∈ Gsr(E) and y ∈ Hsr(E) we have:

(i) O[y]
x (F(φ)) = 0, if x does not have a stable conjugate in G′(E);

(ii) e′(G)O[y]
x (F(φ)) = e′(G′)

〈
x,x ′;[y]
a,a′;[b]

〉
O[y]

x ′ (F(φ
′)), for each stable conjugate

x ′ ∈ G′sr(E) of x .
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B.4.2. Fix x and y as in B.4.1. Let-x ⊂ Gsr
x (E) be an open neighborhood of x such

that O
κ [y]
x̃ (F(φ)) = O

κ[y]
x (F(φ)) for each x̃ ∈ -x , and O

κ [y]

x̃ ′ (F(φ′)) = O
κ [y]

x ′ (F(φ′))
for each stable conjugate x ′ ∈ G′(E) of x and each x̃ ′ ∈ ϕx,x ′(-x) ⊂ G′sr

x ′(E). Denote

by-y ⊂ Hsr
y (E) the image of-x under the natural isomorphismGx

∼→ Hy , sending x
to y, and choose an open neighborhood- ⊂ Hsr(E) of y contained in Ad H (E)(-y).

By construction, for each ỹ ∈ - there exists x̃ ∈ -x ⊂ Gsr(E) compatible with
y. Moreover, since conditions (i), (i i) from B.4.1 do not change when y and x are re-
placed by stable conjugates, it will suffice to show (i), (i i) for some pair of compatible
elements ỹ ∈ - ⊂ Hsr(E) and x̃ ∈ Gsr(E).

B.4.3. Strategy of the proof Choose E , u,w, G, ϕ, E , T , a, a′, [b] as in Claim B.3.6,
and identify Gv with G′

v for each v �= w, u as in Claim B.3.6 (b). Finally, we fix a
non-trivial character ψ : AF/F → C×.

Our strategy will be to construct measures φ = ⊗v∈Vφv ∈ S(G(A)) and φ′ =
⊗v∈Vφ

′
v ∈ S(G′(A)) and compatible elements y ∈ Hsr(E) and x ∈ Gsr(E) satisfying

the following properties:
(A) y

w
∈ -, φw = φ and φ′w = φ′.

(B) x has a stable conjugate in G′(E) if xw has a stable conjugate in G′(E).
(C) both φ and φ′ satisfy the support assumption of Proposition B.3.5 (a), and we

have 0(φ) = 0(φ′).
(D) F(φ) and F(φ′) satisfy the support assumption of Proposition B.3.5 (a),

and we have 0(F(φ)) = O
[y]
x (F(φ)) and 0(F(φ′)) = O

[y]
x (F(φ′)). (We define

O
[y]
x (F(φ′)) to be zero unless there exists a stable conjugate x ′ ∈ G′(E) of x , in

which case we define O
[y]
x (F(φ′)) to be O

[y]
x ′ (F(φ

′)).)

(E) For each v �= w, we have O
[y]v
xv (F(φv)) �= 0.

(F) For each v ∈ V f � w, there exists a stable conjugate x ′v ∈ G′(Ev ) of xv , and
we have

e′(Gv )O
[y]v
xv (F(φv)) = e′(G′

v )

〈
xv , x ′v ; [y]v

av , a
′
v ; [b]v

〉
Ev

O
[y]v
x ′v (F(φ

′
v )).

Once these data are constructed, the result follows. Indeed, by (A) and the obser-
vation at the end of B.4.2, it will suffice to check that y

w
and xw satisfy conditions

(i), (i i) of B.4.1. Next (C), (D) and Proposition B.3.5 (b) imply that O
[y]
x (F(φ)) =

O
[y]
x (F(φ′)). Assume first that xw does not have a stable conjugate in G′(E). Then x

does not have a stable conjugate in G′(E), thus O
[y]
x (F(φ)) =∏

v O
[y]v
xv (F(φv)) = 0.

Hence the vanishing of O
[y]w
xw (F(φw)) follows from (E).

Assume now that that xw has a stable conjugate in G′(E), then by (B), there

exists a stable conjugate x ′ ∈ G′(E) of x . Then O
[y]
x (F(φ)) = O

[y]
x ′ (F(φ

′)) and

each x ′v ∈ G(E) is a stable conjugate of xv . Using product formulas
∏
v∈V e′(Gv ) =
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v∈V e′(G′

v ) = 1 (see [Ko5]) and
∏
v∈V f

〈
xv ,x

′
v ;[y]v

av ,a
′
v ;[b]v

〉
Ev
= 1 (B.3.3 (c)), the required

equality e′(G)O[y]w
xw (F(φ)) = e′(G′)

〈
xw,x

′
w;[y]w

a,a′;[b]

〉
O

[y]w
x ′w

(F(φ′)) follows from (E) and

(F).

B.4.4. Construction of φ, φ′, y and x (a) Choose an O-subalgebra K ⊂ G(E), and
let S1 ⊂ V be a finite subset containing V∞ ∪ {w, u} such that for each v /∈ S1 we
have

- H v and Gv are unramified;
- the Ov -subalgebra Kv ⊂ G(Ev ), spanned by K, is hyperspecial and satisfies

F(1Kv ) = 1Kv .
(b) Let A be the set of isomorphisms classes of those endoscopic triples for G,

which are unramified outside of S1. Then A is finite (see [La1, Lem. 8.12]), and
E ∈ A. Let A′ be the subset of A consisting of triples (Ha, [ηa], sa) such that
E[Ha] is not contained in E[H ]. For each a ∈ A′, we fix a prime va ∈ V f � S1
which splits in E[H ] but does not split in E[Ha]. Put S2 := {va | a ∈ A′}, and set
S := S1 ∪ S2.

(c) Choose y ∈ Hsr(E) such that y
w
∈ -, y

u
∈ Hsr(Eu) is elliptic (that is,

H y
u
⊂ H u is elliptic) and y

v
∈ Hsr(Ev ) is split (that is, H y

v
⊂ H v is split) for each

v ∈ S2.
Choose an element x∗ ∈ G∗(E) compatible with y (exists by Lemma 1.1.10 (b)).

Then (G∗
x∗)u ⊂ G∗

u is an elliptic torus. Since y
w
∈ -, element x∗w has a stable con-

jugate in -x ⊂ Gsr
x (E). Since ϕ∗

v
is trivial for each v �= w, u, it follows from Lemma

B.3.2 (c) (ii) (as in the proof Claim B.3.6 (III)) that there exists a stably conjugate
x ∈ G(E) of x∗.

(d) Choose a stably conjugate x ′u ∈ G′(Eu) of xu (which exists by Lemma 1.5.3),
and set x ′v := xv for each v �= w, u. For each v ∈ S � (V∞ ∪ w), choose measures
φv ∈ S(G(Ev )) and φ′v ∈ S(G ′(Ev )) constructed in Corollary B.2.6 for the triple
(y
v
, xv , x ′v ). In particular, φv = φ′v for each v ∈ S � (V∞ ∪ {u, w}).
For every v ∈ S � V∞, let ωv ⊂ E×v be an open neighborhood of the identity

such that - is invariant under the multiplication by ωw , while F(φv ) and F(φ′v ) are
invariant under the multiplication by ωv if v �= w.

For each v ∈ V � S, put φv = φ′v = 1Kvdxv . Finally, put φw := φ and φ′w := φ′.
(e) Choose a finite set S3 ⊃ S such that for each v /∈ S3, we have xv ∈ Kv , and the

reduction of xv modulo v is regular. Choose λ ∈ E× such that
(i) valv (λ) = 0 for every v /∈ S3;
(ii) λ ∈ ωv for every v ∈ S � V∞;
(iii) For every v ∈ S3 � S, valv (λ) is so large that (λy)v belongs to the open

neighborhood of zero prescribed in Lemma B.2.7 (b).
Finally, we replace y and x constructed in (c) by λy and λx , respectively.
(f) Recall that F(φv) and F(φ′v ) are compactly supported for each v ∈ V f and

F(φv) = F(φ′v ) = 1Kvdxv for each v /∈ S. Since E ⊂ A is discrete, one can
choose a compact neighborhood Cv ⊂ G(Ev ) = G′(Ev ) of xv for each v ∈ V∞
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such that all elements of G(E) ∩ (∏v∈V∞ Cv × ∏
v∈V f

Supp(F(φv))) and G ′(E) ∩
(
∏
v∈V∞ Cv ×∏

v∈V f
Supp(F(φ′v ))) are stable conjugate to x .

For every v ∈ V∞, choose a measure φv = φ′v of S(G(Ev )) such that F(φv) =
fvdxv for a smooth non-negative function fv on G(Ev ) supported on Cv such that
fv (xv ) �= 0. Put φ := ⊗v∈Vφv and φ′ := ⊗v∈Vφ

′
v .

To complete the proof of Theorem B.1.4, it remains to show that the constructed
above φ, φ′, y and x satisfy conditions (A)–(F) of B.4.3.

B.4.5. Proof of conditions (A)–(F) (A) is clear (see B.4.4 (c) and (e)).
(B) Since xu is elliptic, the assertion follows from Lemma B.3.2 (c) (ii) (as in the

proof of Claim B.3.6 (III)).
(C) Since the support of φu and φ′u is regular elliptic, both φ and φ′ satisfy the

support assumption of Proposition B.3.5 (a). Because of symmetry between φ and φ′,
it will therefore suffice to check that for every z ∈ G(E) and κ ∈ Ĝz

�
such that

O
κ
z (φ) �= 0, there exists a stable conjugate z′ ∈ G′(E) of z, and we have O

κ
z (φ) =

Oκ
z ′(φ

′).

Fix z ∈ G(E) and κ ∈ Ĝz
�

such that O
κ
z (φ) �= 0. Consider the endoscopic

triple E ′ := E([az],κ) = (H ′, [η′], s′) for G. Following [Wa1, 10.9], we will show that
E ′ ∼= E .

By the assumption, O
κv
zv
(φv ) �= 0 for each v ∈ V . Since Kv ⊂ G(Ev ) is a hyper-

special subalgebra and φv = 1Kvdxv for each v ∈ V � S, we conclude from Lemma
B.2.7 (a) that E ′ is unramified outside of S.

For each v ∈ S2, measure φv is supported on split elements (by Corollary B.2.6
(i)) and satisfies O

κv
zv
(φv ) �= 0. Therefore Gzv

is split, hence E ′v ∼= E([azv ],κv ) is split.

In particular, E ′ is unramified outside of S1. Moreover, H ′ splits at each v ∈ S2, hence
E[H ′] ⊂ E[H].

Since O
κu
zu
(φu) �= 0, we get by Corollary B.2.6 (i), (iii) that zu is stable conjugate

to an element of Gsr
xu
(Eu), and the class of κu ∈ Ĝz

�u ∼= Ĝx
�u equals κ [y]u

. Since xu

is elliptic, we get that E ′u ∼= E([axu ],κ[y]u ) is isomorphic to Eu (use Lemma 1.3.9 (a)).

As u is inert in E[H ] ⊃ E[H ′], we conclude from this that E ′ ∼= E (use B.3.3 (b)), as
claimed.

By the above, there exists y′ ∈ Hsr(E) compatible with z such that κ = κ[y′],

thus Oκ
z (φ) = O

[y′]
z (φ) �= 0. In particular, O

[y′]w
zw

(φw) �= 0. Since φw and φ′w are
(a, a′; [b])-indistinguishable, it follows from Lemma 1.6.11 that there exists a stable
conjugate z′w ∈ G′(E) of zw. Since Gzu

⊂ Gu is elliptic, there exists z′ ∈ G′(E)
stably conjugate to z such that z′v is conjugate to zv for each v �= u, w (use Lemma
B.3.2 (c) and 1.1.4).

It now remains to show that O
[y′]
z (φ) = O

[y′]
z ′ (φ

′). By the product formula (B.3.3
(c)), it will suffice to check that for each v ∈ V f , we have



298 D. Kazhdan and Y. Varshavsky

O
[y′]v
zv

(φv) =
〈

zv , z′v ; y ′v
av , a

′
v ; [b]v

〉
Ev

O
[y′]v
z ′v

(φ′v ).

The assertion for v = w follows from Lemma 1.6.11, while the assertion for v = u
follows from Corollary B.2.6 (ii). Finally, the assertion for v �= u, w follows from the
fact that under the identification G′

v = Gv , we have φ′v = φv , z′v is conjugate to zv ,
and a′v is conjugate to av .

(D) By B.4.4 (f), Supp(F(φ))∩Ad G(A)(G(E)) consists of elements stably conju-
gate to x . Since xu is elliptic, x is elliptic, thus F(φ) satisfies the support assumption

of Proposition B.3.5 (a). Therefore 0(F(φ)) = ∑
κ∈Ĝx

� O
κ
x (F(φ)). Let κ ∈ Ĝx

�

be such that O
κ
x (F(φ)) �= 0. Then O

κu
xu
(F(φu)) �= 0. Since xu is elliptic, it follows

from Corollary B.2.6 (iv) that κu = κ[y]u . But the map Ĝx
�
↪→ Ĝx

�u = π0(Ĝx
�u ) is

injective, therefore κ = κ [y]. This shows that 0(F(φ)) = O
[y]
x (F(φ)). The proof for

φ′ is similar.
(E), (F) For v ∈ S � (V∞∪w), the assertions follows from Corollary B.2.6 (v). For

v �= u, w, (F) follows from the fact that under the identification Gv = G′
v , we have

φ′v = φv , and a′v is conjugate to av . It remains to show (E) for v ∈ V∞ ∪ (V � S).
If v ∈ V∞, the assertion follows from the fact that F(φv) = fvdxv , while fv is non-
negative and satisfies fv (xv ) �= 0. Assume now that v /∈ S. Then F(φv) = 1Kvdxv .
The assertion now follows from Lemma B.2.7 (c) if v /∈ S3 and from the choice of λ
in B.4.4 (e) (and Lemma B.2.7 (b)) if v ∈ S3.
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E-admissible, 245
(E, [a], κ)-admissible, 245
compact element, 268
compatible, 236, 287
E-compatible, 234
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Esep-conjugate, 227
defined at x , 256
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tation, 261
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topological Jordan decom-
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[̂a], 231
ax , 229
a, 256
B(G), 256
[b]G , 232
bt,δ, 278
C∞

c (X (E)) 246
D(X (E)), 246
DG , 243
D0(X (E)), 247
dg = |ωG |, 246
dx = |ωX |, 246
E , 226
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Fq , 226
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Ga+ , Ga+ , 261
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Gx+ , Gx+ , 256
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Gx , Gx , 256
g, 256
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Int G, Int g, 226
inv(G,G′), 227
inv(x, x ′), 227
inv(x, x ′), 227
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228
L, 226

L1
loc(X (E)), 250

La , La , 261
Lx , Lx , 256
m, 226
N (H), 258
O, 226
Ox , 247

Oξ
x , 247

O[y]
x , 287

p, 226
SOx , SOx∗ , 247
S([a],κ), 235
S[b], 238
S(X (E)), 246
T , 226
T or , 251
TO, T , 256
ta,θ , 262
U(H ), 258
W (G), 226
X sr, 229
X∗, 246
[x], 229
[y]G , 287
Z(G), 226
Z(E), 235
Z(E, [a], κ), 236
Z [̂a], 232
Z[η], 232
�, 226
�a,t , 265
�a0,κ,t , 265
δ1 ∼(γ0,ξ )

δ2, 279, 282

δa,t , δa,t , 264
θ : T (E)→ C×, 261
θ : T (Fq)→ C×, 261
ι([b1], [b2]), 233
κ([b1], [b2]), 233

κ
(

[b1]
[b2]

)
, 233

κ [b], 235
κ [y], 287
	(E), 234
μH , νH , 232
#E , 235
πE , 235
πa,θ , 261
[π̂], 231
ρa,θ , 261
ρa,θ , 261
ρG : �→ Out(Ĝ), 231
� : G → G, 255
�x : Gx → Gx , 256
�x : Lx → Lx , 256
0�, 263
�ρ , 255
φ|U , 246
ϕ : G → G′, 227
ϕX : X → X ′, 227
ϕx,x ′ , 252
χ(πa,θ ), 262
χa0,κ,θ , 262
-a,t , -a,t , 264
ωG , ωG , 246
ωX , 246
ωX ′ , 246〈

a1,a′1;[b1]
a2,a′2;[b2]

〉
, 244〈

a1,a′1;[b1]
a2,a′2;[b2]

〉
E

, 244〈
a1,a′1;κ

a2,a′2;[b2]

〉
, 245〈

a1,a′1;[b1]
a2,a

′
2;κ

〉
, 245〈

x,x ′;κ
a,a′;[b]

〉
, 246〈
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〉
, 287

〈·, ·〉x , 256
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Hermann, Paris, 1984.

[DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.
Math. (2), 103 (1976), 103–161.

[HC1] Harish-Chandra, Harmonic Analysis on Reductive p-adic Groups (Notes by G. van
Dijk), Lecture Notes in Mathematics 162, Springer-Verlag, Berlin, New York, 1970.

[HC2] ——, Admissible invariant distributions on reductive p-adic groups, Preface and notes
by S. DeBacker and P. J. Sally, Jr., University Lecture Series, 16, Amer. Math. Soc.,
Providence, 1999.

[Ka1] D. Kazhdan, Proof of Springer’s hypothesis, Israel J. Math. 28 (1977), 272–286.
[Ka2] ——, On lifting, in Lie group representations, II (College Park, Md., 1982/1983), 209–

249, Lecture Notes in Mathematics 1041, Springer, Berlin, 1984.
[Ka3] ——, Representations of groups over close local fields, J. Analyse Math. 47 (1986)

175–179.
[KP] —— and A. Polishchuk, Generalization of a theorem of Waldspurger to nice represen-

tations in The Orbit Method in Geometry and Physics (Marseille, 2000), 197–242, Prog.
Math., Vol. 213, Birkhäuser, Boston, MA, 2003.
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Summary. A new class of associative algebras related to simple complex Lie algebras (or root
systems) was introduced and studied in [K1] and [K2]. They were named classical and quantum
family algebras. The aim of this paper is to introduce the odd analogue of these algebras and
expose some results about their structure. In particular, we describe the structure of g-module
	(g) and compute the odd exponents for some cases.
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1. Generalities about odd family algebras

We assume that the reader is acquainted with the general background of the theory of
semisimple Lie algebras (see e.g., [OV]).

1.1. Basic definitions

First, we recall some standard notations used in [K2].
Let g be a simple complex Lie algebra with the canonical decomposition

g = n− ⊕ h⊕ n+.
∗ Supported by CRDF grant RM1-2543.
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We denote by P (respectively by Q) the weight (resp. root) lattice in h∗ and by P+
(resp. Q+) the semigroup generated by fundamental weights ω1, . . . , ωl (resp. by
simple roots α1, . . . , αl ). By ρ we denote the weight 1

2

∑
α∈R+ α =

∑l
k=1 ωk .

For every λ ∈ P+ let (πλ, Vλ) be an irreducible representation of g with highest
weight λ. We denote by d(λ) the dimension of Vλ.

Let us denote by Wt (λ) the multiset of all weights of (πλ, Vλ) and by mλ(μ) the
multiplicity of the weight μ ∈ Wt (λ). In particular, if θ is the maximal root of g, then
(πθ , Vθ ) is equivalent to the adjoint representation (ad, g) of g on itself.

By λ∗ we denote the highest weight of the dual (or contragradient) representa-
tion which acts in V ∗

λ by πλ∗(X) = −(πλ(X))∗. It is clear that d(λ) = d(λ∗) and
Wt (λ∗) = −Wt (λ).

Choosing a basis in Vλ, we can identify the g-module End Vλ � Vλ⊗ V ∗
λ with the

matrix space Matd(λ)(C) where g acts by the formula

X · A = [πλ(X), A].

Now we introduce the odd analogues of the symmetric algebra S(g) and the uni-
versal enveloping algebra U(g). The first is the exterior algebra 	(g) while the sec-
ond is the Clifford algebra Cl(g, K ), where K is the Killing form on g. Recall that
Cl(g, K ) is a quotient of the tensor algebra T (g) by the ideal generated by expressions
X2−(X, X)K ·1, X ∈ g. The algebra	(g) is naturally graded by degree of odd poly-
nomials while Cl(g, K ) has a natural filtration such that associated graded algebra is
isomorphic to 	(g). Therefore, 	(g) and Cl(g, K ) have isomorphic g-module struc-
tures. The spectrum and multiplicities of this module are still not explicitly known.
The following important result is due to B. Kostant [Ko2].

Theorem 1 (Kostant). There is an isomorphism of g-modules

	(g) ∼= 2l Vρ ⊗ Vρ.

Let G̃ be a connected and simply connected Lie group with Lie(G̃) = g. The
action of g on any finite-dimensional g-module gives rise to the corresponding action
of G̃. In particular, G̃ acts on 	(g), Cl(g, K ) and End Vλ by automorphisms of these
algebras. Actually, this action is trivial for g ∈ C , the center of G̃. So, we can consider
it as the action of the adjoint group G = G̃/C. Note that the irreducible representation
(πλ, Vλ) of G̃ is trivial on C iff λ ∈ P+ ∩ Q.

In [K1] the following two algebras were introduced: the classical family algebra
Cλ(g) = (End Vλ ⊗ S(g))G and the quantum family algebra Qλ(g) =
(End Vλ ⊗U(g))G . We define here the odd analogues of these algebras.

Namely, let

Codd
λ (g) := (End Vλ ⊗	(g))G , Qodd

λ (g) := (End Vλ ⊗ Cl(g, K ))G . (1)

Note that there is a natural filtration on Qodd
λ (g) and a natural grading on Codd

λ (g)
coming from the filtration on Cl(g, K ) and the grading on	(g), respectively. We have
grQodd

λ (g) = Codd
λ (g).
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We hope that some important questions in the theory of semisimple Lie algebras
and their representations can be studied using these family algebras.

One of these questions is the computation of odd exponents. Recall (see [Ko1])
that the algebra S(g) is a free module over the algebra I (g) := S(g)G and the graded
character of the isotypic component of type λ is

χλ(q) =
∑K (λ)

k=1 qek(λ)∏rk g
i=1 1− qei

,

where the numbers el are ordinary exponent of g and ek(λ) are so-called generalized
exponents of the simple module (πλ, Vλ). It is also known that the number K (λ) is
equal to the multiplicity of zero weight in Wt (λ).

In the odd situation the algebra 	(g) is still a module over I odd(g) = 	(g)G

but this module is no longer free. Nevertheless, every isotypic component of 	(g)
has a system of homogeneous generators of degrees eodd

1 (λ), . . . , eodd
L(λ)(λ) which we

call odd exponents corresponding to the simple module (πλ, Vλ). In other words,

the polynomial
∑L(λ)

i=1 teodd
i (λ) is a Poincaré series for the graded g-module 	(g)λ/

I odd(g)+	(g)λ, where I odd(g)+ ⊂ I odd(g) is the ideal consisting of all elements of
positive degree. It turns out that the isotypic component of the adjoint representation
is in many cases an “almost free” module over I odd(g), i.e., there is only one (very
simple) relation. We will show this in Section 4.

2. The character of g-module 	(g)

2.1. The general formula

Let (π, V ) be any finite-dimensional g-module and let Wt (V ) denote the multiset of
weights of V . A simple combinatorial argument shows that the graded g-module	(V )
has the character

χ	(V )(q) =
∏

μ∈W t (V )

(1+ qeμ). (2)

This is the odd analogue of the fact that the character of the graded module S(V ) is

χS(V)(q) =
∏

μ∈W t (V )

(1− qeμ)−1.

The right-hand side of (2) for the g-module g can be rewritten as

χ	(g)(q) = (1+ q)l ·
∏
α∈R+

(
1+ qeα)(1+ qe−α)

where l = rk g and R+ is the set of positive roots for g.
Recall that the character of the irreducible g-module with the highest weight λ ∈

P+ is

χλ = Eλ+ρ
Eρ

where Eλ =
∑
w∈W

(−1)l(w)ew(λ).
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We use also the identity
Eρ = eρ

∏
α∈R+

(1− e−α).

Then the multiplicity of πλ in 	(g) is the coefficient of eλ+ρ in χ	(g) · Eρ . The latter
quantity can be written as

(1+ q)leρ
∏
α>0

(
(1+ qeα)(1+ qe−α)(1− e−α)

)
(3)

or

qr (1+ q)le3ρ
∏
α>0

(
1− (q − 1+ q−1)e−α − (q − 1+ q−1)e−2α + e−3α)

)
, (4)

where l = rk g, r = |R+| = 1
2 (dim g− rk g).

We derive from (4) the following.

Theorem 2. The multiplicity of πλ in 	(g) depends on how the weight 2ρ − λ can be
expressed as a linear combination of distinct positive roots with coefficients 1, 2 or 3.

Namely, each linear combination which contains k1 roots with the coefficient 1,
k2 roots with the coefficient 2 and k3 roots with the coefficient 3, contributes to the
multiplicity in question the summand (−1)k2+k3 Pk1+k2(q) where

Pk(q) = qr (1+ q)l(q − 1+ q−1)k = qr−k(1+ q)l−k(1+ q3)k . (5)

Proof. Consider the general term in the expansion of the product (4). To get it, we
have to take from each parentesis in (4) one of four summands and multiply the chosen
terms.

If we take k0 times the zeroth summand, k1 times the first summand, k2 times the
second summand and k3 times the last summand (so that k0 + k1 + k2 + k3 = r ), we
get the product of the form

(q − 1+ q−1)k1+k2 exp

⎛⎝− k1∑
i=1

αi − 2
k2∑

i=1

βi − 3
k3∑

i=1

γi

⎞⎠ . (6)

The corresponding term in (4) will be (6) multiplied by qr (1+ q)le3ρ . Now the state-
ment of the theorem becomes evident. ��

E.g., the term e2ρ enters with coefficient P0(q) = qr (1+q)l since the zero weight
has a unique expression 0 = 0.

For the same reason, the terms e2ρ−α for a simple root α enter with coefficient
P1(q) = (1+ q)l−1(1+ q3).

Theorem 1 gives the method to compute the graded character of	(g) for any semi-
simple Lie algebra g. So, we have a tool to calculate the odd analogues of exponents
for any weight λ between 0 and 2ρ. But this method is practical only for weights which
are not far from the maximal weight 2ρ, or for algebras of low rank.
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2.2. Example 1: the classical algebra An � sln+1

In the case of g = sln+1 we have l = n, r = n(n+1)
2 . The explicit formulae for

multiplicities of simple modules (πλ, Vλ) in	k are known for n = 1, 2, 3. We collect
these results in the tables below.

Table 1. Case g = sl2

λ d(λ) 	0 	1 	2 	3

(0) 1 1 0 0 1

(2) 3 0 1 1 0

Table 2. Case g = sl3

λ d(λ) 	0 	1 	2 	3 	4 	5 	6 	7 	8

(0,0) 1 1 0 0 1 0 1 0 0 1

(1,1) 8 0 1 1 1 2 1 1 1 0

(3,0) 10 0 0 1 1 0 1 1 0 0

(0,3) 10 0 0 1 1 0 1 1 0 0

(2,2) 27 0 0 0 1 2 1 0 0 0

Table 3. Case g = sl4

λ d(λ) 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 . . .

(0,0,0) 1 1 0 0 1 0 1 0 1 1 0 . . .

(1,0,1) 15 0 1 1 1 2 2 3 2 2 3 . . .

(0,1,2) 45 0 0 1 1 1 3 3 3 3 3 . . .

(2,1,0) 45 0 0 1 1 1 3 3 3 3 3 . . .

(0,2,0) 20 0 0 0 1 2 1 1 3 3 1 . . .

(2,0,2) 84 0 0 0 1 2 2 3 4 4 3 . . .

(1,2,1) 175 0 0 0 1 2 3 5 5 5 5 . . .

(0,0,4) 35 0 0 0 1 1 0 1 1 1 1 . . .

(4,0,0) 35 0 0 0 1 1 0 1 1 1 1 . . .

(0,4,0) 105 0 0 0 0 1 1 0 2 2 0 . . .

(1,1,3) 256 0 0 0 0 1 2 2 3 3 2 . . .

(3,1,1) 256 0 0 0 0 1 2 2 3 3 2 . . .

(3,0,3) 300 0 0 0 0 0 1 2 1 1 2 . . .

(2,3,0) 280 0 0 0 0 0 1 2 1 1 2 . . .

(0,3,2) 280 0 0 0 0 0 1 2 1 1 2 . . .

(2,2,2) 729 0 0 0 0 0 0 1 3 3 1 . . .
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We list here the odd exponents of the adjoint representation:

For sl2 : 1, 2.
For sl3 : 1, 2, 3, 4.
For sl4 : 1, 2, 3, 4, 5, 6.

2.3. Example 2: The classical algebra B2 � so5 � sp4 � C2

In this case we have the following table.

Table 4. Case g = so5 = sp4.

λ d(λ) 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

(0,0) 1 1 0 0 1 0 0 0 0 0 0 1

(0,1) 5 0 0 0 1 1 0 1 1 0 0 0

(2,0) 10 0 1 1 0 1 2 1 0 1 1 0

(4,0) 35 0 0 0 1 1 0 1 1 0 0 0

(2,1) 35 0 0 1 1 1 2 1 1 1 0 0

(0,2) 14 0 0 0 1 1 0 1 1 0 0 0

(2,2) 81 0 0 0 0 1 2 1 0 0 0 0

The odd exponents of the adjoint representation are: 1, 2, 5, 6.

2.4. The exceptional algebra g2

In this case we have the following table.

Table 5. Case g = g2.

λ d(λ) 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 . . .

(0,0) 1 1 0 0 1 0 0 0 0 0 0 . . .

(0,1) 7 0 0 0 0 0 1 1 0 1 1 . . .

(1,0) 14 0 1 1 0 1 1 0 0 0 1 . . .

(0,2) 27 0 0 0 1 1 0 1 2 1 0 . . .

(1,1) 64 0 0 0 0 1 1 1 2 1 1 . . .

(0,3) 77 0 0 1 1 0 2 2 0 2 2 . . .

(2,0) 77 0 0 0 1 1 0 1 2 1 0 . . .

(0,4) 182 0 0 0 1 1 0 1 2 1 0 . . .

(1,2) 189 0 0 0 0 1 2 2 2 2 2 . . .

(1,3) 448 0 0 0 0 1 1 1 2 1 1 . . .

(2,1) 286 0 0 0 0 0 1 1 0 1 1 . . .

(0,5) 378 0 0 0 0 0 1 1 0 1 1 . . .

(2,2) 729 0 0 0 0 0 0 1 2 1 0 . . .

The odd exponents of the adjoint representation are: 1, 2, 9, 10.
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3. Structure of odd family algebras

3.1. Kostant decomposition of quantum odd family algebras

There is a distinguished g-module isomorphism between 	(g) and Cl(g, K ), namely,
the anti-symmetrization map

σ : 	(g) −→ Cl(g, K ),

sending any element
x1 ∧ . . . ∧ xn ∈ 	(g)

to the element
1

n!

∑
s∈Sn

sign(s)xs(1) . . . . . . xs(n) ∈ Cl(g, K ).

The subspace σ(	2(g)) ⊂ Cl(g, K ) is closed with respect to the commutator oper-
ation on Cl(g, K ). This subspace can be naturally identified with Lie algebra so(g, K ).
Namely, for h ∈ σ(	2(g)) ⊂ Cl(g, K ) the operator ad h acting on Cl(g, K ) pre-
serves σ(	1(g)) = g. The action of ad h on g preserves the Killing form, so the map
h 	→ ad h induces a Lie algebra isomorphism σ(	2(g)) −→ so(g, K ).

The adjoint representation defines a Lie algebra homomorphism

ϕ0 : g −→ so(g, K ) = σ(	2(g)).

Let us write this homomorphism in coordinates. Let {xi} be an orthonormal basis of
g with respect to the Killing form, and let ci jk be the structure constants of g (i.e.,
[xi , x j ] =∑

k ci j k xk). Note that ci jk is a totally antisymmetric tensor. Then

ϕ0(xi ) = −1

2

∑
j,k

σ(ci jk x j ∧ xk) =
∑
j<k

ci j k xk x j . (7)

This homomorphism extends to a filtered associative algebra homomorphism

ϕ : U(g) −→ Cl(g, K ).

The following result is due to Kostant [Ko2].

Theorem 3 (Kostant Decomposition Theorem). There is a g-equivariant isomor-
phism of associative algebras

Cl(g, K ) ∼= End Vρ ⊗ Cl(g, K )G .

The image of the homomorphism ϕ0 is End Vρ ⊗ 1.

The following result can be easily deduced from the Kostant decomposition Theo-
rem.
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Proposition 1. The quantum odd family algebra Qodd
λ (g) decomposes as follows

Qodd
λ (g) ∼= [End(Vλ ⊗ Vρ)]G ⊗ Cl(g, K )G .

Note that the algebra [End(Vλ ⊗ Vρ)]G is the image of the even quantum family
algebra Qeven

λ (g) = [End(Vλ) ⊗ U(g)]G under the homomorphism πρ sending U(g)
to End Vρ .

Recall that the center Z(g) of the universal enveloping algebra U(g) is contained in
Qeven
λ (g) = [End(Vλ)⊗ U(g)]G as the subalgebra of scalar matrices, i.e., matrices of

the form 1Vλ⊗ A, A ∈ Z(g). Since Vρ is irreducible, elements of Z(g) go to constants
under the homomorphism πρ : U(g) −→ End(Vρ). Thus we have the following

Proposition 2. There is a filtered algebra homomorphism

ϕ = 1⊗ ϕ0 : Qeven
λ (g) −→ Qodd

λ (g),

which maps the elements of Z(g) ⊂ Qeven
λ (g) to constants. The odd family algebra

decomposes as follows:

Qodd
λ (g) ∼= ϕ(Qeven

λ (g))⊗ Cl(g, K )G .

Since the homomorphism ϕ maps the elements of Z(g) ⊂ Qeven
λ (g) to constants,

the associated graded homomorphism

� = 1⊗�0 : Ceven
λ (g) −→ Codd

λ (g),

maps the ideal I even+ (g), generated by all homogeneous elements of positive degree in
I even(g) ⊂ Qeven

λ (g), to zero.

Corollary 1.

dim Codd
λ (g) = dim Qodd

λ (g) = 2rk g dim ϕ(Qeven
λ (g))

= 2rk g dim �(Ceven
λ (g)) ≤ 2rk g dim (Ceven

λ (g)/I even+ (g)).

Remark. Unfortunately, there is no decomposition of the classical odd family algebra
into tensor product of I odd(g) and some complement subalgebra.

3.2. Differential structures on odd family algebras

We define a differential d0 on 	(g) as follows. Put d0(x) = �0(x) for x ∈ g = 	1(g)
and extend d0 to the whole algebra 	(g) by the (super-) Leibnitz rule. In coordinates
we have

d0 = −1

2
ci jk x j ∧ xk∂i , (8)

where ∂i denotes the operator of super-differentiation by xi .
The cohomology of the differential d0 is I odd(g) = 	(g)G (see e.g., [F]). It is

well known that the algebra I odd(g) = 	(g)G of g-invariant elements in 	(g) is the
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Grassmann algebra generated by the elements ξ1, . . . , ξl whose degrees are very sim-
ply related to the (even) exponents of the adjoint representation: deg ξi = 2ei (θ)+ 1.
More precisely, let I1, . . . , Il be the homogeneous generators of the algebra I even(g)
(they have degrees deg Ii = ei (θ) + 1). The elements Ii can be considered as sym-
metric elements of g⊗(ei+1). The elements ξi can be considered in the same way
as antisymmetric elements of g⊗(2ei+1). Let Alt : g⊗(2ei+1) � 	2ei+1(g) be the
alternation operator. In other words, Alt is the unique GL(g)-invariant projector
g⊗(2ei+1) � 	2ei+1(g). The following explicit formula is well known (see e.g.,
[Ko2], Theorem 64).

Theorem 4 (Trangression formula). ξi = Alt ◦(d⊗ei
0 ⊗ 1)(Ii ).

One can define the differential d on Codd
λ (g) = (End Vλ ⊗ 	(g))G as the restric-

tion of 1 ⊗ d0. Since the differential d0 is g-invariant, the definition is correct. The
cohomology of this differential is, clearly, 1⊗ I odd(g).

Proposition 3. �(Ceven
λ (g)) ⊂ d(Codd

λ (g)) ⊂ Codd
λ (g). In particular, the differential d

is zero on �(Ceven
λ (g)).

Proof. Observe that for the generators of S(g) we have

�0(x) = d0(x).

Therefore�0(S(g)) ⊂ d0(	(g)), and the proposition is proved. ��
The quantum odd family algebra also has a differential structure. The differential

d is defined as follows:

d = ad γ, γ = −1

6

⎛⎝1⊗
∑
i j k

ci j k xi x j xk

⎞⎠ . (9)

This quantum differential deforms the classical one and the homology of this differen-
tial is zero as well (see [AM]).

3.3. Some distinguished elements in family algebras

Recall that a special element M was introduced in [K1] both in quantum and classical
family algebras. Such an element exists also in the odd analogues.

Namely let again {xi } be an orthonormal basis in g with respect to the Killing form.
Then the element

Modd :=
∑

i

πλ(xi )⊗ xi

belongs to Codd
λ (g) (resp. to Qodd

λ (g)) if we interpret xi as an element of	(g) (resp. as
an element of Cl(g, K )).

There is the following relation between the elements M of the odd and even clas-
sical family algebras.
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Proposition 4.
−M2

odd = d(Modd) = �(Meven). (10)

Proof. The second equality is obvious. Let us prove the first.

M2
odd =

∑
i

πλ(xi)⊗ xi ·
∑

j

πλ(x j )⊗ x j = 1

2

∑
i, j

[πλ(xi ), πλ(x j )]⊗ xi ∧ x j

= 1

2

∑
i, j,k

ci j kπλ(xk)⊗ xi ∧ x j = −
∑

k

πλ(xk)⊗ d0(xk) = −d(Modd). ��

Remark. Note that the equation (10) is known as the Maurer–Cartan equation. It
means that the operator D := d + ad M is also a differential on Codd

λ (g). This is a par-
ticular case of the general construction of a differential computing g-module-valued
cohomology of g. The cohomology of D is the same as of d: 1 ⊗ I odd(g) (see e.g.,
[F]).

Now let us recall the definition of more general elements of Ceven
λ (g) (resp. to

Qeven
λ (g)) which correspond to the elements of I (g) in the classical case and of Z(g)

in the quantum case. We call them M-type elements.

I. Classical case. Let again {xi} be an orthonormal basis in g and {∂i } be the
corresponding partial derivatives. For any P ∈ I (g) we put

MP =
∑

i

πλ(xi )⊗ ∂i (P).

An easy check shows that MP ∈ Ceven
λ (g). For a quadratic invariant polynomial C =

1
2

∑
i x2

i the element MC coincides with Meven.

II. Quantum case. In this case we have no partial derivatives but we can use the
Hopf structure on U(g) to define M-type elements in Qodd

λ (g).
Let� : U(g) −→ U(g)⊗U(g) be the comultiplication homomorphism given by

�(x) = x ⊗ 1+ 1⊗ x for x ∈ g.

Define the homomorphism δ : U(g) −→ Matd(λ)(U(g)) as the composition:

δ : U(g)
�−→ U(g)⊗U(g)

πλ⊗1−→ End Vλ ⊗U(g) ∼= Matd(λ)(U(g)).

Example. For the quadratic element C = 1
2

∑
i x2

i ∈ Z(g) we have

δ(C) = πλ(C)⊗ 1+ Meven + 1⊗ C.

We call the elements δ(A) where A ∈ Z(g) the M-type elements of the quantum
family algebra. It is justified by the fact that gr(δ(A)− 1⊗ A) = Mgr A ∈ Ceven

λ (g).
Note that the quantum family algebra is the image of the bigger algebra [U(g) ⊗

U(g)]G of diagonal invariants in U(g)⊗U(g) under the homomorphism πλ ⊗ 1. The
algebra [U(g)⊗U(g)]G can be considered as the commutant of the algebra�(U(g))
in U(g) ⊗ U(g). For any A ∈ Z(g) we have �(A) ∈ [U(g) ⊗ U(g)]G . On the other
hand,�(A) ∈ �(U(g)). This proves the following.
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Proposition 5. For any A ∈ Z(g) the element δ(A) = (πλ⊗ 1) ◦�(A) belongs to the
center of Qeven

λ (g).

The next assertion follows directly from Propositions 2 and 5.

Proposition 6. The images of all M-type elements of Qeven
λ (g) under the homomor-

phism ϕ belong to the center of the algebra Qodd
λ (g).

Since the classical family algebras are associated graded of the corresponding
quantum family algebras, the classical analog of Proposition 6 is also true.

3.4. Odd family algebras and odd exponents

Let us consider the decomposition of the g-module End Vλ into irreducible compo-
nents:

End Vλ =
p⊕

i=1

Wi , Wi ∼= Vλi as g-modules.

In [K1] the highest weights λi , 1 ≤ i ≤ p are called (as well as the corresponding
irreducible representations (πλi , Vλi )) the children of λ.

When πλ is self-dual (i.e., λ = λ∗), the space End Vλ ∼= Vλ ⊗ Vλ naturally splits
into the sum of the symmetric part S2Vλ and the antisymmetric part 	2Vλ. Corre-
spondingly, the set of children splits into girls and boys.

Note that any λ ∈ P+ has two “obligatory” children: the zero weight 0 (trivial
representation) and the maximal root θ (adjoint representation). In a self-dual case 0
is a girl and θ is a boy.

We can construct an element of Codd
λ (g) by filling the subspace Wi ⊂ End Vλ by

elements of some subspace U ⊂ 	(g) which transforms according to the representa-
tion πλ∗i , dual to πλi . Namely, let A(i)(U) be a nonzero element of the one-dimensional

space (Wi ⊗U)G . Clearly, the odd family algebra Codd
λ (g) is spanned by the elements

of the form A(i)(U).
Let {e(i)1 , . . . , e

(i)
k i
} be the set of odd exponents for λi . To each e(i)m we have a sub-

space H (i)
m ⊂ 	e(i)m (g)λ∗/I odd+ (g)	e(i)m (g)λ∗ , which transforms according to the repre-

sentation πλ∗i , dual to πλi (since for all m the g-module 	m(g) is self-dual, λ and λ∗
have the same set of exponents).

Setting U = H (i)
m we can construct an element A(i)m of Codd

λ (g)/I odd+ . The following
obvious assertion is an odd analog of Proposition 1.3 in [K2].

Proposition 7. The elements A(i)m , 1 ≤ m ≤ k i , 1 ≤ i ≤ p, form a basis of the space
Codd
λ (g)/I odd+ (g).

4. Odd family algebras for standard representations of Classical
Lie algebras (types A, B, C)

The following fact is useful for the further consideration.
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Theorem 5 (Amitsur–Levitski). Let M be an n × n-matrix whose entries are odd
elements of any supercommutative algebra. Then M2n = 0.

Proof. For k = 1, 2, . . . , we have

tr M2k = tr(M · M2k−1) = − tr(M2k−1 · M) = − tr M2k .

Therefore tr M2k = 0 for k = 1, 2, . . . . Since the matrix M2 has even entries, it
satisfies the Hamilton–Cayley identity. Thus M2n = 0. ��

4.1. The case g = An = sln+1

Consider the standard representation Vω1 of sln+1.
It is known from [K1] that the even family algebra Ceven

ω1
(sln+1) is a free

I even(sln+1)-module with the generators 1, Meven, . . . , Mn
even. This means that

dim(Ceven
ω1
(g)/I even+ (g)) = n + 1. (11)

The algebra I even(sln+1) is generated by Ik = tr Mk+1
even , k = 1, . . . , n. By the

equation (10) and the transgression formula we obtain that the algebra	(sln+1)
G is a

Grassmann algebra with the generators ξk = tr M2k+1
odd , k = 1, . . . , n. By the Amitsur–

Levitski theorem we have M2n+2
odd = 0.

We now consider the algebra Codd
ω1
(sln+1) as a 	(ξ1, . . . , ξn−1)-module, and let

B ⊂ Codd
ω1
(sln+1) be the	(ξ1, . . . , ξn−1)-submodule generated by 1,Modd,M2

odd, . . . ,

M2n+1
odd .

Lemma 1. B is a free 	(ξ1, . . . , ξn−1)-module.

Proof. It suffices to check that ξ1 ∧ · · · ∧ ξn−1 M2n+1
odd �= 0. We have

tr ξ1 ∧ · · · ∧ ξn−1 M2n+1
odd = ξ1 ∧ · · · ∧ ξn−1 ∧ ξn �= 0. ��

Lemma 2. B = Codd
ω1
(sln+1).

Proof. Indeed, dim Codd
ω1
(g) ≤ 2n(n + 1) = dim B . ��

Corollary 2. The algebra Codd
ω1
(sln+1) is generated by the odd super-cummuting ele-

ments ξ1, . . . , ξn−1 of degrees 3, . . . , 2n − 1, and the element Modd of degree 1, with
the defining relation M2n+2

odd = 0. In particular, the Poincaré series of Codd
ω1
(g) is

PCodd
ω1
(sln+1)

(q) = (1− q2n+2)(1+ q3) . . . (1+ q2n−1)

1− q
.

The standard representation Vω1 of sln+1 has two children: λ0 = 0 (the trivial
representation) and λ1 = ω1 + ωn (the adjoint representation). The space W0 consists
of scalar matrices and W1 of traceless matrices. The Poincaré series for the trivial
representation is (1+ q3) . . . (1+ q2n+1).

Corollary 3. The Poincaré series for the adjoint representation is

Pad(q) = q(1− q2n)(1+ q3) . . . (1+ q2n−1)

1− q
.

The odd exponents of the adjoint representation are 1, . . . , 2n.
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4.2. The case g = Bn = so2n+1

The standard representation Vω1 of so2n+1 has dimension 2n + 1 and is orthogonal.
It is known from [K1] that the even family algebra Ceven

ω1
(so2n+1) is a free

I even(so2n+1)-module with generators 1, Meven, . . . , M2n
even. This means that

dim(Ceven
ω1
(so2n+1)/I even+ (so2n+1)) = 2n + 1. (12)

The algebra I even(so2n+1) is generated by the elements Ik = tr M2k
even , k =

1, . . . , n. By the equation (10) and the transgression formula we obtain that the algebra
	(so2n+1)

G is a Grassmann algebra with the generators ξk = tr M4k−1
odd , k = 1, . . . , n.

Lemma 3. dimϕ(Qeven
ω1
(so2n+1)) ≤ 2n.

Proof. Since the the representation Vω1 has simple spectrum, the dimension of ϕ(Qeven
ω1

(so2n+1)) = [End Vω1 ⊗ Vρ]G is the number of irreducible components of the repre-
sentation Vω1⊗Vρ . The highest weights of these components are ρ+λi , λi ∈ Wt (ω1).
Note that −αn ∈ Wt (ω1) and the weight ρ − αn is not dominant. Therefore,
dimϕ(Qeven

ω1
(so2n+1)) ≤ dim Vω1 − 1 = 2n. ��

Consider the algebra Codd
ω1
(so2n+1) as a 	(ξ1, . . . , ξn−1)-module. Let B ⊂ Codd

ω1

(so2n+1) be the	(ξ1, . . . , ξn−1)-submodule generated by 1,Modd,M2
odd, . . . ,M4n−1

odd .
The following fact are proved as above.

Lemma 4. B is a free 	(ξ1, . . . , ξn−1)-module.

Lemma 5. B = Codd
ω1
(g).

Corollary 4. The algebra Codd
ω1
(so2n+1) is generated by the odd super-cummuting ele-

ments ξ1, . . . , ξn−1 of degrees 3, . . . , 4n − 5, and the element Modd of degree 1, with
the defining relation of degree 4n. In particular, the Poincaré series of Codd

ω1
(so2n+1) is

PCodd
ω1
(so2n+1)

(q) = (1− q4n)(1+ q3) . . . (1+ q4n−1)

1− q
.

The standard representation Vω1 of Bn is orthogonal, and therefore the space
End(Vω1) splits into symmetric and antisymmetric parts. There is one boy 	2(Vω1)
(isomorphic to the adjoint representation) and two girls: the space of scalar matrices
E and the space of traceless symmetric matrices S2

0 (Vω1).
The matrix M2

odd = −�(Meven) is antisymmetric and its k-th power is antisymmet-
ric for odd k and symmetric for even k. Since d(Modd) = −M2

odd we have d(M2k
odd) = 0

and d(M2k−1
odd ) = −M2k

odd. Since the cohomology of the differential d is I odd(g), non-
trivial irreducible components of M2k

odd and M2k−1
odd are the same.

Corollary 5. The Poincaré series for the adjoint representation of so2n+1 is

Pad(q) = q(1− q4n−4)(1+ q)(1+ q3) . . . (1+ q4n−5)

1− q4
.
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The odd exponents of the adjoint representation are

1, 2, 5, 6, . . . , 4n − 3, 4n − 2.

The Poincaré series for the representation S0(Vω1) of so2n+1 is

PS2
0
(q) = q3(1− q4n−8)(1+ q)(1+ q3) . . . (1+ q4n−5)

1− q4
.

The odd exponents of the representation S2
0 (Vω1) of so2n+1 are

3, 4, 7, 8, . . . , 4n − 5, 4n − 4.

4.3. The case g = Cn = sp2n

The standard representation Vω1 of sp2n has dimension 2n and is symplectic.
It is known from [K1] that the even family algebra Ceven

ω1
(sp2n) is a free I even(sp2n)-

module with the generators 1, Meven, . . . , M2n−1
even . This means that

dim(Ceven
ω1
(sp2n)/I even+ (g)) = 2n. (13)

The algebra I even(sp2n) is generated by Ik = tr M2k
even, k = 1, . . . , n. By the

equation (10) and the transgression formula we obtain that the algebra 	(sp2n)
G is a

Grassmann algebra with the generators ξk = tr M4k−1
odd , k = 1, . . . , n. By the Amitsur–

Levitski theorem we have M4n
odd = 0.

Let us now consider the algebra Codd
ω1
(sp2n) as a 	(ξ1, . . . , ξn−1)-module and let

B ⊂ Codd
ω1
(sp2n) be the	(ξ1, . . . , ξn−1)-submodule generated by 1, Modd, M2

odd, . . . ,

M4n−1
odd .

The following statements can be proved exactly as in the An case.

Lemma 6. B is a free 	(ξ1, . . . , ξn−1)-module.

Lemma 7. B = Codd
ω1
(g).

Corollary 6. The algebra Codd
ω1
(g) is generated by the odd super-cummuting elements

ξ1, . . . , ξn−1 of degrees 3, . . . , 4n − 5, and the element Modd of degree 1, with the
defining relation M4n

odd = 0. In particular, the Poincaré series of Codd
ω1
(g) is

PCodd
ω1
(g)(q) =

(1− q4n)(1+ q3) . . . (1+ q4n−5)

1− q
.

The standard representation Vω1 of Cn is symplectic, and therefore the space
End(Vω1) splits into symmetric and antisymmetric parts. There is one girl S2(Vω1)
(isomorphic to the adjoint representation) and two boys: the trivial representation E
and its complement	2

0(Vω1) in 	2(Vω1).
The matrix M2

odd = −�(Meven) is antisymmetric and its k-th power is antisymmet-
ric for odd k and symmetric for even k. Since d(Modd) = −M2

odd we have d(M2k
odd) = 0

and d(M2k−1
odd ) = −M2k

odd. Since the cohomology of the differential d is I odd(g), non-
trivial irreducible components of M2k

odd and M2k−1
odd are the same.
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Corollary 7. The Poincaré series for the adjoint representation is

Pad(q) = q(1− q4n−4)(1+ q)(1+ q3) . . . (1+ q4n−5)

1− q4
.

The odd exponents of the adjoint representation are

1, 2, 5, 6, . . . , 4n − 3, 4n − 2.

The Poincaré series for the representation	2
0(Vω1) is

P	2
0
(q) = q3(1− q4n−8)(1+ q)(1+ q3) . . . (1+ q4n−5)

1− q4
.

The odd exponents of the representation	2
0(Vω1) are

3, 4, 7, 8, . . . , 4n − 5, 4n − 4.

5. Other examples

5.1. The case of a 7-dimensional representation of g = G2

The representation Vω2 of the exceptional Lie algebra G2 has dimension 7. This rep-
resentation has 4 children: the trivial representation, the 7-dimensional representation
ω2, the 14-dimensional representation θ = ω1, and the 27-dimensional representation
2ω2. Let us denote by p1, p7, p14, and p27 the corresponding projectors. We com-
pute here the algebra Codd

ω2
(G2) and the odd exponents for the children of ω2, using the

following result concerning the even family algebra Ceven
ω2
(G2).

Lemma 8 (Theorem G in [K1]).

1. The algebra I even(G2) is generated by elements tr M2
even, tr M6

even.

2. The I even(G2)-module p27(Ceven
ω2
(g)) is spanned by elements p27(M2k

even) for k =
1, 2, 3.

3. The I even(G2)-module p14(Ceven
ω2
(G2)) is spanned by elements p14(Mk

even) for k =
1, 5.

4. The I even(G2)-module p7(Ceven
ω2
(g)) is spanned by p7(M3

even).

By (10) and the transgression formula we obtain that the algebra 	(G2)
G is

a Grassmann algebra with the generators ξ1 = tr M3
odd, ξ2 = tr M11

odd. Since
p27(	

12(G2)) � p27(	
2(g)) = 0 (see Table 5), we have M12

odd = �(M6
even) = 0.

Therefore dim�(Ceven
ω2
) ≤ 6.

Consider the algebra Codd
ω2
(G2) as a 	(ξ1)-module. Let B ⊂ Codd

ω2
(G2) be the

	(ξ1)-submodule generated by 1,Modd,M2
odd, . . . ,M11

odd.

Lemma 9. B is a free 	(ξ1)-module.
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Proof. It suffices to check that ξ1 M11
odd �= 0. We have

tr ξ1 M11
odd = ξ1 ∧ ξ2 �= 0. ��

Lemma 10. B = Codd
ω2
(G2).

Proof. Indeed, dim Codd
ω2
(G2) ≤ 24 = dim B . ��

Corollary 8. The algebra Codd
ω2
(G2) is generated by ξ1 of degree 3, and the element

Modd of degree 1, with the defining relation M12
odd = 0. In particular, the Poincaré

series of Codd
ω2
(G2) is

PCodd
ω2
(g)(t) =

(1− t12)(1+ t3)

1− t
.

Corollary 9. 1. The Poincaré series for the representation Vω2 is

Pω2(q) = q5(1+ q)(1+ q3).

The odd exponents of this representation are 5, 6.
2. The Poincaré series for the representation Vω1 is

Pω1(q) = q(1+ q9)(1+ q)(1+ q3).

The odd exponents of this representation are 1, 2, 9, 10.
3. The Poincaré series for the representation V2ω2 is

P2ω2(q) = q3(1+ q4)(1+ q)(1+ q3).

The odd exponents of this representation are 3, 4, 7, 8.
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Summary. Let M(n) be the algebra (both Lie and associative) of n × n matrices over C. Then
M(n) inherits a Poisson structure from its dual using the bilinear form (x, y) = −tr xy. The
Gl(n) adjoint orbits are the symplectic leaves and the algebra, P(n), of polynomial functions
on M(n) is a Poisson algebra. In particular, if f ∈ P(n), then there is a corresponding vector
field ξ f on M(n). If m ≤ n, then M(m) embeds as a Lie subalgebra of M(n) (upper left hand
block) and P(m) embeds as a Poisson subalgebra of P(n). Then, as an analogue of the Gelfand–
Zeitlin algebra in the enveloping algebra of M(n), let J (n) be the subalgebra of P(n) generated
by P(m)Gl(m) for m = 1, . . . , n. One observes that

J (n) ∼= P(1)Gl(1) ⊗ · · · ⊗ P(n)Gl(n).
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We prove that J (n) is a maximal Poisson commutative subalgebra of P(n) and that for any
p ∈ J (n) the holomorphic vector field ξp is integrable and generates a global one-parameter
group σp(z) of holomorphic transformations of M(n). If d(n) = n(n + 1)/2, then J (n) is
a polynomial ring C[p1, . . . , pd(n)] and the vector fields ξpi , i = 1, . . . , d(n − 1), span a
commutative Lie algebra of dimension d(n − 1). Let A be a corresponding simply-connected
Lie group so that A ∼= Cd(n−1). Then A operates on M(n) by an action σ so that if a ∈ A, then

σ(a) = σp1(z1) · · · σpd(n−1)(zd(n−1))

where a is the product of exp zi ξpi for i = 1, . . . , d(n − 1). We prove that the orbits of A are
independent of the choice of the generators pi . Furthermore, for any matrix the orbit A · x may
be explicitly given in terms of the adjoint action of a n − 1 abelian groups determined by x . In
addition we prove the following results about this rather remarkable group action.

(1) Let x ∈ M(n). Then A · x is an orbit of maximal dimension (d(n − 1)) if and only if the
differentials (dpi )x , i = 1, . . . , d(n), are linearly independent.

(2) The orbits, Ox , of the adjoint action of Gl(n) on M(n) are A-stable, and if Ox is an orbit of
maximal dimension (n(n−1)), that is, if x is regular, then the A-orbits of dimension d(n−1)
in Ox are the leaves of a polarization of a Zariski open dense subset of the symplectic
manifold Ox .
The results of the paper are related to the theory of orthogonal polynomials. Motivated
by the interlacing property of the zeros of neighboring orthogonal polynomials on R, we
introduce a certain Zariski open subset M-(n) of M(n) and prove

(3) M-(n) has the structure of (C×)d(n−1) bundle over a (d(n)-dimensional) variety of Hes-
senberg matrices. Moreover, the fibers are maximal A-orbits. The variety of Hessenberg
matrices plays a major role in this paper.

In Part II of this two-part paper, we deal with a commutative analogue of the Gelfand–
Kirillov theorem. The fibration in (3) leads to the construction of n2 + 1 functions (including a
constant function) in an algebraic extension of the function field of M(n) which, under Poisson
bracket, satisfies the commutation relations of the direct sum of a 2 d(n − 1) + 1 dimensional
Heisenberg Lie algebra and an n-dimensional commutative Lie algebra.

0. Introduction

0.1.

Let M(n), for any positive integer n, denote the Lie (and asssociative) algebra of all
complex n × n complex matrices. Let P(n) be the graded commutative algebra of
all polynomial functions on M(n). The symmetric algebra over M(n), as one knows,
is a Poisson algebra. Using the bilinear form (x, y) = −tr xy on M(n) this may be
carried over to P(n), defining on P(n) the structure of a Poisson algebra and hence
the structure of a Poisson manifold on M(n). Consequently, to each p ∈ P(n) there
is associated a holomorphic vector field ξp on M(n) such that ξp q = [p, q] where
q ∈ P(n) and [p, q] is Poisson bracket.

For any positive integer k, put d(k) = k(k + 1)/2 and let Ik be the set {1, . . . , k}.
If m ∈ In we will regard M(m) (upper left hand m × m corner) as a Lie subalgebra
of M(n). As a “classical mechanics” analogue to the Gelfand–Zeitlin commutative
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subalgebra of the univeral enveloping algebra of M(n), let J (n) be the subalgebra of
P(n) generated by P(m)Gl(m) for all m ∈ In . Then

J (n) = P(1)Gl(1) ⊗ · · · × P(n)Gl(n).

In addition, J (n) is a Poisson commutative polynomial subalgebra of P(n) with d(n)
generators. In fact we can write J (n) = C[p1, . . . , pd(n)] where, for x ∈ M(n),
pi (x), i ∈ Id(n), “run over” the elementary symmetric functions of the roots of the
characteristic polynomial of xm, m ∈ In . Here and throughout, xm ∈ M(m) is the
upper left m ×m minor of x . The algebraic morphism

�n : M(n)→ Cd(n) where �n(x) = (p1(x), . . . , pd(n)(x)) (0.1)

plays a key role in this paper. Let be be the d(n)-dimensional affine space of all x ∈
M(n) of the form

x =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 1 a1 2 · · · a1 n−1 a1 n

1 a2 2 · · · a2 n−1 a2 n

0 1 · · · a3 n−1 a3 n

...
...
. . .

...
...

0 0 · · · 1 an n

⎞⎟⎟⎟⎟⎟⎟⎠ (0.2)

where ai j ∈ C are arbitrary. Elements x ∈ M(n) of the form (0.2) are called Hes-
senberg matrices. As a generalization of classical facts about companion matrices we
prove

Theorem 0.1. The restriction
be → Cd(n) (0.3)

of the map�n is an algebraic isomorphism.

See Theorem 2.3 and Remark 2.4. The real and imaginary parts of a complex
number define a lexicographical order in C. For any x ∈ M(n) and m ∈ In , let
Ex(m) = {μ1 m(x), . . . , μm m(x)} be the (increasing) ordered m-tuple of eigenvalues
of xm , with the multiplicity as roots of the characteristic polynomial. As a corollary of
Theorem 0.1, one has the following independence (with respect to m) of the eigenvalue
sequences Ex (m).

Theorem 0.2. For all m ∈ In let E(m) = {μ1 m, . . . , μm m} be an arbitrary m-tuple
with values in C. Then there exists a unique x ∈ be such that E(m) = Ex (m), up to
ordering, for all m ∈ In.

See Theorem 2.5. For any c ∈ Cd(n) let Mc(n) = �−1
n (c) be the “fiber” of�n over

c. If x, y ∈ M(n), then x and y lie in the same fiber if and only if Ex(m) = Ey(m) for
all m ∈ In .

Remark 0.3. Theorem 0.1 implies that �n is surjective and asserts that be is a cross-
section of�n . That is, to any c ∈ Cd(n) the intersection Mc(n)∩be consists of exactly
one matrix.
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0.2.

One of the main results of the present paper, Part I, of a two-part paper, concerns the
properties of a complex analytic abelian group A of dimension d(n − 1) that operates
on M(n). One has

Theorem 0.4. The algebra J (n) is a maximal Poisson commutative subalgebra of
P(n). Furthermore the vector field ξp, for any p ∈ J (n), is globally integrable on
M(n), defining an analytic action of C on M(n). Moreover, the fiber Mc(n) is stable
under this action, for any c ∈ Cd(n).

See Theorem 3.4, Proposition 3.5 and Theorem 3.25. The generators pi of J (n) are
replaced by a more convenient set of d(n) generators p(i), i ∈ Id(n). See Section 3.1
and (3.20). The span of ξp(i) , i ∈ Id(n), is a commutative d(n − 1)-dimensional Lie
algebra of analytic vector fields on M(n). The Lie algebra a integrates to an action
of a complex analytic group A ∼= Cd(n−1) on M(n). In a sense A is a very extensive
enlargement of a group, for the case where R replaces C, introduced in §4 of [GS].
However, no diagonalizability, compactness or eigenvalue interlacing is required for
the existence of A. In the complex setting the second statement of Theorem 0.4 and
the existence of the action of A can be deduced from an iteration of Theorem 4.1 in
[Kn]. The proof given in this paper is independent of the theory supporting Theorem
4.1 in [Kn] and leads to an explicit description of an arbitrary orbit A · x is terms of
the adjoint action of n − 1 abelian groups defined by x ∈ M(n). (See Theorem 0.6)
below.

Now let x 	→ Vx (0.4)

be the nonconstant dimensional tangent space “distribution” on M(n) defined by
putting Vx = {(ξp)x | p ∈ J (n)}. Let D(n) be the group of all diagonal matrices
in Gl(n) and let Ad D(n) be the group of automorphisms of M(n) defined by the
adjoint action of D(n) on M(n).

Theorem 0.5. The orbits of A are leaves of the distribution (0.4). Furthermore Mc(n)
is stable under the action of A, for any c ∈ Cd(n), so that Mc(n) is a union of A-orbits.
Finally, the abelian d(n − 1)-dimensional group of analytic isomorphisms of M(n)
(as an analytic manifold) defined by A, contains Ad D(n) as an n − 1-dimensional
subgroup.

See Theorem 3.4 and Proposition 3.5. For the last statement in the Theorem 0.5,
see Theorem 3.27.

For any x ∈ M(n) and m ∈ In , let Zx,m ⊂ M(m) be the (obviously commutative)
associative subalgebra generated by xm and the identity of M(m). Let Gx,m ⊂ Gl(m)
be the commutative algebraic subgroup of Gl(n) corresponding to Zx,m when the latter
is regarded as a Lie algebra. The orbits of A are described in

Theorem 0.6. Let x ∈ M(n). Consider the following morphism of nonsingular irre-
ducible affine varieties

Gx,1 × · · · × Gx,n−1 → M(n) (0.5)
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where for g(m) ∈ Gx,m, m ∈ In−1,

(g(1), . . . , g(n − 1)) 	→ Ad (g(1) · · · g(n − 1))(x). (0.6)

Then the image of (0.5) is exactly the A-orbit A ·x. In particular A ·x is an irreducible,
constructible (in the sense of Chevalley) subset of M(n). Furthermore the Zariski clo-
sure of A · x is the same as its closure in the Euclidean topology. In addition A · x
contains a Zariski open subset of its closure.

See Theorem 3.6. One should note that even though the groups Gx,m, m ∈ In ,
are commutative (and A is commutative) they do not commute with each other, so the
order in (0.6) is important.

Let x ∈ M(n). Then, by definition, x is regular (in M(n)) if the Gl(n) adjoint
orbit of x is of maximal dimension, 2 d(n). One knows that x is regular if and only
if dim Zx,n = n or if and only if the differentials (dpd(n−1)+k)x , k ∈ In , are linearly
independent where the indexing of the pi is such that the ring of invariants, P(m)Gl(m),
is generated by pd(m−1)+k, k ∈ Im . We will now say that x is strongly regular if
(dpi)x , i ∈ Id(n), are linearly independent.

One has that dim A · x ≤ d(n − 1).

Theorem 0.7. Let x ∈ M(n). Then the following conditions are equivalent:

(a) x is strongly regular,
(b) A · x is an orbit of maximal dimension, d(n − 1),
(c) dim Zx,m = m, ∀m ∈ In, and Zx,m ∩ Zx,m+1 = 0, ∀m ∈ In−1.

See Theorem 2.14 and (3.29).
Let Msreg(n) ⊂ M(n) be the Zariski open set of all strongly regular matrices. Note

that Msreg(n) is not empty since in fact be ⊂ Msreg(n). Theorem 0.6 for the case where
x ∈ Msreg(n) is especially nice.

Theorem 0.8. Let x ∈ Msreg(n). Then the morphism (0.5) is an algebraic isomor-
phism onto its image, the maximal orbit A · x. In particular A · x is a nonsingular
variety and as such

A · x ∼= Gx,1 × · · · × Gx,n−1. (0.7)

See Theorem 3.14.

0.3.

Let x ∈ M(n). Motivated by the Jacobi matrices that arise in the theory of or-
thogonal polynomials on R, we will say that x satisfies the eigenvalue disjointness
condition if, for any m ∈ In , the eigenvalues of xm have multiplicity one (so that
xm is regular semisimple in M(m)) and, as a set, Ex(m) ∩ Ex(m + 1) = ∅ for
any m ∈ In−1. Let M-(n) be the dense Zariski open set of such x ∈ M(n). One
readily has that M-(n) = �−1

n (-(n)) where -(n) is a dense Zariski open set
in Cd(n).
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Theorem 0.9. One has M-(n) ⊂ Msreg(n). In fact, if c ∈ -(n), then the entire fiber
Mc(n) is a single maximal A-orbit. Moreover, if c ∈ -(n) and x ∈ Mc(n), then Gx,m

is a maximal (complex) torus in Gl(m), for any m ∈ In−1, so that Mc(n) = A · x is a
closed nonsingular subvariety of M(n) and as such

Mc(n) ∼= (C×)d(n−1). (0.8)

See (2.55) and Theorem 3.23. Let u be the d(n − 1)-dimensional nilpotent Lie
algebra of all strictly upper triangular matrices. One has a natural projection

M(n)→ u, x 	→ xu, (0.9)

where xu is such that x − xu is lower triangular. Another “snapshot” picture of Mc(n),
when c ∈ -(n), is given in

Theorem 0.10. Let c ∈ -(n) and let uc be the image of Mc(n) by the projection (0.9).
Then uc is a dense Zariski open subset of u and the restriction

Mc(n)→ uc (0.10)

of (0.9) to Mc(n) is an algebraic isomorphism.

See Theorem 3.26.
Let c ∈ -(n). Then it follows from Theorem 0.9 that the subgroup Dc =

{a ∈ A | a · x = x, ∀x ∈ Mc(n)} is closed and discrete in A. Let Ac = A/Dc

so that the action of A on Mc(n) descends to an action of Ac. Furthermore, the latter
action is simple and transitive so that Ac has the structure of an algebraic group and as
such

Ac ∼= (C×)d(n−1). (0.11)

In particular, if Fc = {a ∈ Ac | a2 = 1}, then Fc is a finite group of order 2d(n−1).
It is suggestive from the example of symmetric Jacobi matrices that if x is a sym-

metric matrix, then x is close to being determined by knowing the spectrum of xm for
all m ∈ In . Let c ∈ -(n) and let M(sym)

c (n) be the set of all symmetric matrices in
Mc(n). The following theorem appears in the paper as Theorem 3.32.

Theorem 0.11. Let c ∈ -(n) (see (2.53)). Then M (sym)
c (n) is a finite set of cardinality

2d(n−1). In fact M(sym)
c (n) is an orbit of Fc.

If c ∈ Cd(n), put Ec(m) = Ex(m), for m ∈ In , and any (and hence all) x ∈ Mc(n).
Also put μk m(c) = μk m(x) for any k ∈ Im . We will say that c ∈ Cd(n) satisfies the
eigenvalue interlacing condition if one has μk m(c) ∈ R for all m ∈ In, k ∈ Im and,
writing μk m = μk m(c),

μ1 m+1 < μ1 m < μ2 m+1 < . . . < μm m+1 < μm m < μm+1 m+1 (0.12)

for any m ∈ In−1. If c satisfies the eigenvalue interlacing condition, then obviously
c ∈ -(n). The following result is established in the paper as Theorem 3.34.
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Theorem 0.12. Let c ∈ -(n). Then the following conditions are equivalent:

(a) c satisfies the eigenvalue interlacing condition,
(b) there exists a real symmetric matrix in M(sym)

c (n),
(c) all 2d(n−1) matrices in M(sym)

c (n) are real symmetric.

Example 0.13. Consider the case where n = 3 so that there are 8 symmetric ma-
trices in Mc(3) for any c ∈ -(n). Let c be defined so that Ec(1) = {0}, Ec(2) =
{1,−1}, Ec(3) = {√2, 0,−√2} so that c is eigenvalue interlacing. Then 2 of the 8
real symmetric matrices in Mc(3) are

x =
⎛⎜⎝0 1 0

1 0 1

0 1 0

⎞⎟⎠ , y =
⎛⎜⎝0 1 1

1 0 0

1 0 0

⎞⎟⎠
noting that x , but not y, is Jacobi. The remaining 6 are obtained by sign changes in x
and y.

Let φk(t), k ∈ Z+, be an orthonormal sequence of polynomials in L2(R, ν) (for
a suitable measure ν on R) obtained by applying the Gram–Schmidt process to the
monomial functions {tk},m ∈ Z+. The φk are uniquely determined up to sign. Let
Wk be the span of 1, . . . , tk−1 and let 	k be the orthogonal projection of L2(R, ν) on
Wk so that {φ j−1(t)}, j ∈ Ik , is an orthonormal basis of Wk . Let t̃ be the operator on
L2(R, ν) of multiplication by t .

Theorem 0.14. Let x ∈ M(n) be the matrix of 	n t̃ with respect to the basis φk, k =
0, . . . , n − 1 and let c = �n(x) (see (0.1)). Then c satisfies the eigenvalue interlacing
condition and x ∈ M(sym)

c . Moreover x is Jacobi (see §2.5) and in the 2d(n−1)-element
set M(sym)

c there are precisely 2n−1 Jacobi matrices. The latter represents 	n t̃ when
the basis φk is replaced, using sign changes, by 2n−1 different choices of the orthonor-
mal polynomials.

Finally, the characteristic polynomial of xm, for m ∈ In, is the monic polynomial
corresponding to φm. In particular, the numbers in Ex (m) are the zeros of the orthog-
onal polynomial φm.

See Theorems 2.20, 2.21 and (2.67) where the ak > 0.

0.4.

For any x ∈ M(n) let Ox be the Gl(n) adjoint orbit generated by x . The symplectic
leaves of the Poisson structure on M(n) are, of course, all the adjoint orbits and any
adjoint orbit stable under the action of A. For any x ∈ M(n) let Osreg

x = Ox∩Msreg(n)
so that Osreg

x is an A-stable Zariski open set in Ox .

Theorem 0.15. Let x ∈ M(n). Then Osreg
x is not empty if and only if x is regular. In

such a case Osreg
x is a 2 d(n − 1)-dimensional symplectic (in the complex sense) open

and dense submanifold of Ox . Furthermore, the orbits of A in Osreg
x (necessarily of

dimension d(n − 1)) are the leaves of a polarization of Osreg
x .
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See Theorem 3.36.
Part II of this paper, [K-W], is devoted to a “classical” analogue of the Gelfand–

Kirillov theorem. The main result there will use results in the present paper. The eigen-
value functionsμk m(x), for m ∈ In and k ∈ Im , can only be defined locally on M-(n).
However, they can be defined globally on a suitable covering, M-(n, e) of M-(n) and
they Poisson commute on this covering. A second set of d(n − 1) Poisson commuting
functions on M-(n, e) is then defined using the action of an algebraic Ar on M-(n, e).
A “Lagrangian” property of Hessenberg matrices is then used to show that these two
sets of Poisson commuting elements generate a phase space coordinate system. The
coordinate functions are in an algebraic extension of the function field of M(n).

0.5.

We wish to thank Pavel Etingof for fruitful conversations.

1. Preliminaries

1.1.

For any positive integer n let M(n) be the algebra (both Lie and associative) of all
n × n complex matrices. With respect to its Lie algebra structure let U(n) be the uni-
versal enveloping algebra of M(n). Let S(n) = ⊕∞k=0 Sk(n) be the (graded) symmetric
algebra over M(n). Then S(n) = Gr U(n) with respect to the usual filtration in U(n).
Commutation in U(n) induces the structure of a Poisson algebra [u, v] on S(n) where

[S j (n), Sk(n)] ⊂ S j+k−1(n). (1.1)

If one identifies M(n) with S1(n), then the Poisson bracket on M(n) induced by (1.1)
is of course the same as the given Lie algebra bracket.

Let P(n) = ⊕∞k=0 Pk(n) be the graded algebra of polynomial functions on M(n).
We identify P1(n) with the dual space M(n)∗ to M(n). For any positive integer k, let
Ik = {1, . . . , k}. For i, j ∈ In we will, throughout the paper, let αi j ∈ P1(n) be the
linear function defined so that, for x ∈ M(n),

αi j (x) is the i j th entry of x . (1.2)

Of course M(n) is the Lie algebra of the general linear group Gl(n). The adjoint action
of Gl(n) on M(n) induces a GL(n)-module structure on the algebras U(n), S(n) and
P(n). It will be convenient in this paper to transfer the coadjoint orbit theory of GL(n)
to adjoint orbits and to transfer the Poisson algebra structure on S(n) to P(n). Let
γ : M(n)→ P1(n) be the linear isomorphism defined by

〈γ (x), y〉 = −B(x, y) (1.3)

where B is the bilinear B(x, y) = tr xy on M(n). Then γ extends to an algebra Gl(n)-
isomorphism
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γ : S(n)→ P(n). (1.4)

Consequently P(n) becomes a Gl(n)-Poisson algebra where [γ (u), γ (v)] = γ ([u, v])
for u, v ∈ S(n). If ei j ∈ M(n) is the i j th matrix unit of M(n), one notes that

αi j = γ (−e j i). (1.5)

Since negative transpose defines a Lie algebra automorphism on M(n), the bracket
structure for the linear functionals αi j is the same as for the matrix units. That is,

[αi j , αst ] = 0 if i �= t and j �= s

[αi j , α j k] = αik if i �= k (1.6)

[αi j , α j i ] = αii − α j j .

1.2.

Let T (M(n)) and T ∗(M(n)) be, respectively, the holomorphic tangent and cotangent
bundles of M(n). All vector fields and 1-forms considered here will be, respectively,
holomorphic sections of T (M(n)) and T ∗(M(n)) defined on some open subset (most
often on M(n) itself) of M(n). The Poisson algebra structure on P(n) defines a Poisson
structure, in the holomorphic sense, on M(n). See Chapter 1 in [CG]. If ϕ ∈ P(n) the
map ψ 	→ [ϕ,ψ] is a derivation of P(n) and hence there exists a vector field ξϕ on
M(n) such that

ξϕψ = [ϕ,ψ].

Since ξϕψ = −ξψϕ it is clear that (ξϕ)x , for any x ∈ M(n), depends only on (dϕ)x
so that in fact one has a bundle map

� : T ∗(M(n))→ T (M(n)) (1.7)

and (ξϕ)x = �((dϕ)x ).
If W ⊂ M(n) is any open set, let H(W ) be the algebra of holomorphic functions

on W and let Vec(W ) be the Lie algebra of (holomorphic) vector fields on W . For
any y ∈ M(n) let ∂ y ∈ Vec(M(n)) be the translation invariant vector field on M(n)
defined so that if ψ ∈ H(M(n)) and x ∈ M(n), then

(∂ y ψ)(x) = (∂ y)xψ

= d/dt (ψ(x + ty))t=0.

Let
M(n)→ Vec(M(n)), y 	→ ηy

be the corresponding Lie algebra homomorphism corresponding to the adjoint action
of Gl(n). If O is an adjoint orbit, then obviously ηy|O is tangent to O. Explicitly it is
immediate that if x, y ∈ M(n), then

(ηy)x = (∂−[y,x])x (1.8)
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so that if Ox is the adjoint orbit containing x , then

Tx (Ox ) = {(∂−[y,x])x | y ∈ M(n)}. (1.9)

Using γ we may carry over the symplectic structure (in the holomorphic sense, see
[CG], Chapter 1) on coadjoint orbits to adjoint orbits. If x ∈ M(n), let ωx be the value
of the symplectic formωO on O = Ox at x . Then for y, z ∈ M(n) (taking into account
the minus sign in the definition of γ , and (5.3.1) and (5.3.3) in [K]) one has

ωx (η
y, ηz) = B(x, [y, z]) (1.10)

in the notation (1.3).

Lemma 1.1. One has
ξγ (y) = ηy (1.11)

for any y ∈ M(n).

Proof. For any v ∈ P1(n) and x ∈ M(n) one has

(ηy v)(x) = −〈v, [y, x]〉 (1.12)

by (1.8). But then if w ∈ M(n), one has

(ηy γ (w))(x) = B(w, [y, x]). (1.13)

On the other hand,

(ξγ (y)γ (w))(x) = [γ (y), γ (w)](x)

= γ ([y, w])(x)

= B([w, y], x).

But then (ηy γ (w))(x) = (ξγ (y)γ (w))(x). This proves (1.11). ��
We may enlarge the family of functions ϕ for which the vector field ξϕ is defined.

Let W ⊂ M(n) be any open set. For any ϕ ∈ H let ξϕ be the vector field on W defined
so that if x ∈ W , then

(ξϕ)x = �((dϕ)x). (1.14)

Let y j , j = 1, . . . , n2, be a basis of M(n) and let v j ∈ P1(M(n)) be the dual
basis so that, in the notation of (1.14),

dϕ =
∑

j

∂ y j ( f ) dv j (1.15)

on W . But this implies
ξϕ =

∑
j

∂ y j ( f ) ξv j (1.16)

on W .
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Remark 1.2. Using (1.8),(1.9) and (1.11) and the notation of (1.14), note that for any
x ∈ W the tangent vectors (ξv j )x , j = 1, . . . , n2, span Tx(Ox ).

The following proposition essentially recovers the fact that the adjoint orbits are
the symplectic leaves of the Poisson structure on M(n). It also removes a possible
ambiguity in the definition of the vector fields ξϕ . If x ∈ M(n) andψ is a holomorphic
function defined in a neighborhood of x in Ox , then the Hamiltonian vector field ξψ
defined in this neighborhood is such that

ωx ((ξψ)x , u) = u ψ (1.17)

for any u ∈ Tx (Ox ) (see (4.1.3) in [K]).

Proposition 1.3. Let W ⊂ M(n) be an open set and let x ∈ W. Let ϕ ∈ H(W ). Then

(ξϕ)x ∈ Tx(Ox ). (1.18)

Furthermore, if V = W ∩ Ox , then

ξϕ |V = ξϕ|V . (1.19)

Proof. One has (1.18) by Remark 1.2 and (1.16). Let ψ = ϕ|V . Since ωx is nonsin-
gular, to prove (1.19) it suffices, by Remark 1.2 and (1.18), to prove that

ωx ((ξϕ)x , (ξv )x ) = ωx ((ξψ)x , (ξv )x) (1.20)

for any v ∈ P1(n). But now it follows from (1.15), (1.16) and (1.17) that to prove
(1.20) it suffices to assume W = M(n) and to take ϕ ∈ P1(n). Write v = γ (y)
and ϕ = γ (w) for y, w ∈ M(n). Then the right side of (1.20) is (ξγ (y)γ (w))(x)
by (1.17). But the end of the proof of Lemma 1 implies that this equals tr [w, y] x .
On the other hand the left-hand side of (1.20) equals tr x [w, y] by (1.10). This
proves (1.19). ��

Classical properties (see e.g., (4.1.4) in [K] for the real case) of Poisson bracket of
functions and Hamiltonian vector fields on symplectic manifolds remain valid for the
Poisson manifold M(n).

Proposition 1.4. Let W ⊂ M(n) be any open set. Then H(W ) is a Lie algebra under
Poisson bracket and the map

H(W )→ Vec(W ), ϕ 	→ ξϕ (1.21)

is a Lie algebra homomorphism.

Proof. This is immediate from (1.19) since any adjoint orbit is a symplectic manifold.
��
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2. Commuting vector fields arising from Gelfand–Zeitlin theory

2.1.

Let m ∈ In and let Lm be the set of all n2 − m2 pairs (i, j) where {i, j} ⊂ In but
{i, j} �⊂ Im . We identify (“upper left hand corner”) as

M(m) = {x ∈ M(n) | αi j (x) = 0, ∀(i, j) ∈ Lm}.
We will regard M(m) as a Lie subalgebra of M(n). The corresponding subgroup
{g ∈ Gl(n) | αi j (g) = δi j , ∀(i, j) ∈ Lm} naturally identifies with Gl(m). One
has the direct sum

M(n) = M(m)⊕ M(m)⊥, (2.1)

where M(m)⊥ is the B-orthocomplement of M(m) in M(n). For any x ∈ M(n) let
xm ∈ M(m) be the component of x in M(m) relative to (2.1). That is, xm ∈ M(m) is
defined so that αi j (xm) = αi j (x) for all (i, j) ∈ Im . We will also refer to xm as the
m × m cutoff of x . The surjective map M(n) → M(m) defined by (2.1) induces an
injection P1(m)→ P1(n). The latter extends to an injective homomorphism

P(m)→ P(n). (2.2)

It follows immediately from (1.6) that (2.2) is an injective homomorphism of Poisson
algebras and hence M(m) embeds as a Poisson submanifold of M(n). Henceforth we
will identify P(m) with its image in P(n) under (2.2).

Let m ∈ In and let Idm be the identity element of the associative algebra M(m). For
any k ∈ Im , let fk,m ∈ P(n) be the coefficient of the cutoff characteristic polynomial
defined by

det(λ Idm − xm) = λm +
m∑

k=1

(−1)m−k+1 fk,m (x)λ
k−1. (2.3)

One readily notes that if {μ j }, j = 1, . . . ,m, are the eigenvalues (always with multi-
plicity as roots of the characteristic polynomial) of xm , then

fk,m (x) is the elementary symmetric polynomial of degree m − k + 1 in the μ j .
(2.4)

For any nonnegative integer k let d(k) = k(k + 1)/2. Note that

d(n − 1)+ d(n) = n2.

Since k,m are arbitrary subject to the condition 1 ≤ k ≤ m ≤ n, the number of
polynomials fk,m defined by (2.3) is d(n). It will be convenient to simply order these
polynomials, defining p j , for j ∈ Id(n), by putting

pd(m−1)+k = fk,m . (2.5)

One readily deduces the following proposition from the commutativity of the Gelfand–
Zeitlin ring in the enveloping algebra U(M(n)). The proof given here is self-contained.
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Proposition 2.1. One has the Poisson commutativity

[pi , p j ] = 0 (2.6)

for any {i, j} ⊂ Id(n).

Proof. One of course knows that the ring of invariants P(n)Gl(n) is the polynomial
ring in pd(n−1)+k, k ∈ In . Hence for these values of k it follows that pd(n−1)+k is
constant on any adjoint orbit Ox . This implies that

ξpd(n−1)+k = 0 (2.7)

by (1.19). Thus one has (2.6) if j = d(n− 1)+ k and k ∈ In . But then, replacing n by
any m ≤ n, (2.6) follows for all {i, j} ⊂ Id(n). ��

2.2.

Let �n be the regular algebraic map

�n : M(n)→ Cd(n), �n(x) = (p1(x), . . . , pd(n)(x)), (2.8)

and for any c = (c1, . . . , cd(n)) ∈ Cd(n), let Mc(n) = �−1
n (c) so that Mc(n) is a

typical fiber of �n and hence

M(n) = �c∈Cd(n) Mc(n). (2.9)

From the definition we note that if x, y ∈ M(n), then x, y lie in the same fiber of
�n if and only if the characteristic polynomial of the cutoffs xm and ym are equal
for all m ∈ In . Expressed otherwise, introduce a lexicographical order in C so that if
z1, z2 ∈ C, then z1 < z2 if 4 z1 < 4 z2 and 5 z1 < 5 z2 in case 4 z1 = 4 z2. Let
c ∈ Cd(n) and for m ∈ In , let

Ec(m) = {μ1 m(c), . . . , μm m(c)} (2.10)

be the roots, in increasing order, of the polynomial

λm +
m∑

k=1

(−1)m−k+1cd(m−1)+kλ
k−1. (2.11)

Then x ∈ Mc(n) if and only if Ec(m) is an m-tuple of the eigenvalues of xm , for all
m ∈ In , where the multiplicity is as a root of the characteristic polynomial of xm .

Remark 2.2. Of course given any set of n sequences, E(m) = {μ1 m, . . . , μm m}, m ∈
In , there exists a unique c ∈ Cd(n) such that E(m) = Ec(m), up to an ordering, for all
m ∈ In .

Let e ∈ M(n) be the principal nilpotent element e = −∑n−1
i=1 ei+1,i and let b ⊂

M(n) be the Borel subalgebra of all upper triangular matrices. Thus x ∈ e + b if and
only if x is of the form
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x =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 1 a1 2 · · · a1 n−1 a1 n

−1 a2 2 · · · a2 n−1 a2 n

0 −1 · · · a3 n−1 a3 n

...
...
. . .

...
...

0 0 · · · −1 an n

⎞⎟⎟⎟⎟⎟⎟⎠ (2.12)

where ai j ∈ C is arbitrary. That is αi j (x) = ai j for i ≤ j . If one considers the n-
dimensional subvariety s = {x ∈ e + b | ai j = 0 for 1 ≤ i ≤ j ≤ n − 1}, then from
well-known facts about companion matrices, for all k ∈ In and x ∈ s,

αk n(x) = pd(n−1)+k(x). (2.13)

In particular the restriction of the Gl(n)-invariants, pd(n−1)+k to s defines a coordinate
system on s and the map

s → Cn, x 	→ (pd(n−1)+1(x), . . . , pd(n−1)+n(x)) (2.14)

is an algebraic isomorphism. We now generalize this statement to the entire affine
variety e + b.

Theorem 2.3. Let qi = pi |e+ b for i ∈ Id(n). Then the qi are a coordinate system on
e + b. In particular for any x ∈ e + b the differentials

(dqi)x , i ∈ Id(n), are linearly independent (2.15)

and hence the differentials

(dpi)x , i ∈ Id(n), are linearly independent. (2.16)

Furthermore the map

e + b → Cd(n), x 	→ (p1(x), . . . , pd(n)(x)) (2.17)

is an algebraic isomorphism.

Proof. We will prove Theorem 2.3 by induction on n. If n = 1, the proof is immediate.
Assume that the theorem is true for n−1. Let (e+b)n−1 be equal to e+b when n−1
replaces n. Then x 	→ xn−1 defines a surjection

e + b → (e + b)n−1. (2.18)

If z ∈ (e + b)n−1 and F(z) is the fiber of (2.18) over z, then

F(z)→ Cn, x 	→ (α1n(x), . . . , αnn(x))

is an algebraic isomorphism. If x ∈ F(z), then x j = z j for j = 1, . . . , n − 1. Now
expanding the determinant det(λIn − x) using the last column of x ∈ F(z) one has
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det(λIn − x) = λn +
n∑

k=1

(−1)n−k+1 pd(n−1)+k(x)λ
k−1

= (λ− ann(x)) det (λ In−1 − z)

+
n−1∑
k=1

(−1)n−k+1αkn(x) det (λ Ik−1 − zk−1)

= (λ− αnn(x))gn−1(λ)+
n−1∑
k=1

(−1)n−k+1αkn(x) gk−1(λ) (2.19)

where det (λ I0 − z0) is interpreted as 1 and g j (λ) is a monic polynomial of degree
j in λ whose coefficients are fixed elements of P(n − 1) evaluated at z. Comparing
coefficients there exists a upper trianglar n×n matrix bi, j of fixed elements in P(n−1)
evaluated at z such that

pd(n−1)+n(x) = αn n(x)+ bn,n

pd(n−1)+n−1(x) = αn−1 n(x)+ bn−1,n−1 + bn−1,nαn n(x)

pd(n−1)+n−2(x) = αn−2 n(x)+ bn−2,n−2 + bn−2,n−1 αn−1 n(x)+ bn−2,n αn n(x)

... = ...
pd(n−1)+1(x) = α1 n(x)+ b1,1 + b1,2 α2 n(x)+ · · · + b1,n αn n(x). (2.20)

By induction the bi, j are polynomials in pi (z) = pi (x), for i ≤ d(n − 1). Given the
triangular nature of (2.20) we can solve for the αk n(x) in terms of p j (x), j ∈ Id(n),
and hence we can write any αi j |e + b, i ≤ j , as a polynomial in q j for j ∈ Id(n).
But since αi j |e + b, i ≤ j is a coordinate sysytem for e + b, this proves (2.15) (and
hence also (2.16)) and the injectivity of (2.17). The surjectivity of (2.17) follows from
induction and the fact that the αk n(x) in (2.20) are arbitrary. ��

Let be = −e + b. The elements of be are called Hessenberg matrices (We thank
Gil Strang for this information).

Remark 2.4. Note that (2.16) in Theorem 2.3 implies that the functions p j , j ∈ Id(n),
are algebraically independent in P(n). Note also, upon conjugating e + b by an in-
vertible diagonal matrix g, that Theorem 2.3 is still true if e is replaced by any sum∑n−1

i=1 zi ei+1,i where zi ∈ C×. This is clear, since g is diagonal,

p j (g xg−1) = p j (x)

for any j ∈ Id(n) and x ∈ M(n). In particular Theorem 2.3 is true for the space be of
Hessenberg matrices.

Let x ∈ M(n), and for m ∈ In , let Ex(m) = {μ1 m(x), . . . , μm m(x)} be the m-
tuple of the eigenvalues of xm , in increasing (lexicographical) order, with multiplicity
as roots of the characteristic polynomial. In the notation of (2.10), one has
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Ex(m) = Ec(m), ∀m ∈ In, ⇐⇒ x ∈ Mc(n). (2.21)

Theorem 2.3 has a number of nice consequences. For one thing it implies that be is a
cross-section of the surjection �n . For another, for x ∈ be, the spectrum of xm over
all m ∈ In can be chosen arbitrarily and (independently) and in so doing uniquely
determines x . That is,

Theorem 2.5. The restriction of the map �n : M(n) → Cd(n) (see (2.8)) to be is an
algebraic isomorphism

be → Cd(n). (2.22)

Furthermore given any set of n sequences E(m) = {μ1 m, . . . , μm m}, m ∈ In, there
exists a unique (Hessenberg matrix) x ∈ be such that E(m) = Ex(m), up to a reorder-
ing, for all m ∈ In.

Proof. One has only to note that if c ∈ Cd(n), then

Mc(n) ∩ be = {x} (2.23)

where x ∈ be is the unique point such that pi(x) = ci for all i ∈ Id(n). The final
statement follows from Remark 2.2. ��

2.3.

For any x ∈ M(n) let M(n)x be the centralizer of x in M(n) and let Zx,n be the
(necessarily commutative) associative subalgebra generated by x and Idn . One knows
that

Zx,n = cent M(n)x

dim Zx,n ≤ n ≤ dim M(n)x .
(2.24)

One says that x is regular if dim M(n)x = n, and as one knows

x is regular ⇐⇒ dim Zx,n = n ⇐⇒ Zx,n = M(n)x . (2.25)

If x ∈ M(n), it follows from (2.24) that dim Ox ≤ 2 d(n) and

x is regular ⇐⇒ dim Ox = 2 d(n). (2.26)

Let Tx (Ox )
⊥ be the orthocomplement of Tx(Ox ) in T ∗x (M(n).

Proposition 2.6. Let x ∈ M(n). Then x is regular if and only if {(d fk,n)x },
k ∈ In, are linearly independent. In fact x is regular if and only if {(d fk,n)x }, k ∈ In,
is a basis of Tx (Ox )

⊥.

Proof. The first statement follows from Theorem 9, p. 382 in [K-1]. If {(d fk,n)x}, k ∈
In, is a basis of Tx(Ox )

⊥, then necessarily dim Ox = 2 d(n) so that x is regular by
(2.26). Conversely, (d fk,n)x ∈ Tx(Ox )

⊥ for any k ∈ In and any x ∈ M(n) since fk,n

is constant on Ox . But then {(d fk,n)x}, k ∈ In, is a basis of Tx (Ox )
⊥ by the first

statement and (2.26). ��
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We will say that x ∈ M(n) is strongly regular if (dpi)x for all i ∈ Id(n) are linearly
independent. Let Msreg(n) be the set of all strongly regular elements in M(n). By
(2.16) one has

be ⊂ Msreg(n) (2.27)

It is then clear that

Msreg(n) is a nonempty Zariski open subset of M(n). (2.28)

Theorem 2.7. Let x ∈ M(n) so that (ξp)x ∈ Tx(Ox ) by (1.18) for any p ∈ P(n). Then
x is strongly regular if and only if the tangent vectors (ξpi )x ∈ Tx(Ox ), i ∈ Id(n−1),
are linearly independent.

Proof. Assume that x is strongly regular. Then x is regular by Proposition 2.6. But
if qi = pi | Ox , then (dqi)x , for all i ∈ Id(n−1) is a linearly independent set since
otherwise there is a nontrivial linear combination of (dpi)x for i ∈ Id(n−1) which lies
in Tx(Ox )

⊥. But this and Proposition 2.6 would contradict the strong regularity of x .
But now

ξqi = ξpi |Ox (2.29)

by (1.19). But this proves the tangent vectors (ξpi )x ∈ Tx (Ox ), i ∈ Id(n−1), are lin-
early independent since Ox is symplectic. Conversely, assume that the tangent vectors
(ξpi )x ∈ Tx(Ox ), i ∈ Id(n−1), are linearly independent. Then recalling (1.7) it fol-
lows that the covectors (dpi)x for i ∈ Id(n−1) are linearly independent. But then, by
(2.29), the same statement is true if we replace the pi by the restrictions qi (using the
notation of (2.29)). Let Wx ⊂ Tx (Ox ) be the span of (ξpi )x ∈ Tx (Ox ), i ∈ Id(n−1),
so that dim Wx = d(n − 1). But (2.6) and (1.19) imply that ωx ((ξpi )x , (ξp j )x ) = 0
for i, j ∈ Id(n−1). Thus Wx is a Lagrangian subspace of the symplectic vector space
Tx(Ox ). Thus dim Ox ≥ 2 d(n−1). Hence x is regular. Thus (dpd(n−1)+k)x for k ∈ In

are linearly independent by Proposition 2.6. But then the full set (dpi)x , for i ∈ Id(n),
is linearly independent by Proposition 2.6 and the fact that the (dqi)x , for i ∈ Id(n−1),
are linearly independent. ��

2.4.

For m ∈ In one knows that P(m)Gl(m) is a polynomial ring with the m generators
pd(m−1)+k, k ∈ Im . Let J (n) ⊂ P(n) be the algebra generated by P(m)Gl(m), over all
m ∈ In . By Remark 2.4

J (n) ∼= P(1)Gl(1) ⊗ · · · ⊗ P(n)Gl(n) (2.30)

and J (n) is the polynomial ring with the d(n) generators pi , i ∈ Id(n). It then follows
from (2.6) that

[p, q] = 0, for all p, q ∈ J (n), (2.31)

and hence for the corresponding vector fields

[ξp, ξq ] = 0, for all p, q ∈ J (n) (2.32)
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(see Proposition 1.4). Now for any x ∈ M(n) one defines a subspace of Tx(M(n)) by
putting

Vx = {(ξp)x | ∀p ∈ J (n)}.
Remark 2.8. If x ∈ M(n), note that it follows from Proposition 1.3, (1.19) and (2.32)
that Vx ⊂ Tx(Ox ) and Vx is an isotropic subspace of Tx (Ox ) with respect to the
symplectic form ωx . In particular

dim Vx ≤ 1

2
dim Ox (2.33)

and hence
dim Vx ≤ d(n − 1). (2.34)

Moreover note that if J (n) is generated by {qi}, i ∈ Ik , for some integer k, then Vx is
spanned by (ξqi )x , i ∈ Ik , since, clearly, (dp)x is in the span of (dqi)x , i ∈ Ik (see
(1.7)) for any p ∈ J (n). Recalling (2.7) note then that Theorem 2.7 may be expressed
by the statement

One has equality in (2.34) ⇐⇒ x is strongly regular. (2.35)

Remark 2.9. Even though the function x 	→ dim Vx on M(n) is nonconstant, by abuse
of terminology, we will refer to x 	→ Vx as a distribution on M(n) (one readily shows
that the two other conditions in the definition of an involutory distribution are satis-
fied). An analytic submanifold X of M(n) will be said to be a leaf of this distribution
if Tx(X) = Vx for all x ∈ X .

One of the main results of the paper will be to show that that there exists a con-
nected analytic group A, operating on M(n), all of whose orbits are leaves of the
distribution x 	→ Vx . In addition, it will be shown that ξp , for any p ∈ J (n), integrates
to a flow on M(n). Furthermore the flow commutes with A and stabilizes the orbits of
A. In order to do this we will first determine Vx very explicitly. For any m ∈ In and
x ∈ M(n) let Vx(m) = {(ξp)x | p ∈ P(m)Gl(m)}. It is immediate (2.7) that Vx(n) = 0
and from Remark 2.8 one has (choosing k = d(n) and qi = pi ) that

Vx =
∑

m∈In−1

Vx(m). (2.36)

For m ∈ In let M(m)⊥ be defined as in (2.1). Clearly if u ∈ M(m), then

u + M(m)⊥ = {y ∈ M(n) | ym = u}. (2.37)

To determine Vx(m) we replace the generators fk,m (see (2.3)) of P(m)Gl(m) by the
generators f(k,m) of P(m)Gl(m) (recalling the theory of symmetric functions) where
for k ∈ Im and x ∈ M(n),

f(k,m)(x) = 1

m + 1− k
tr (xm)

m+1−k . (2.38)



Gelfand–Zeitlin and classical mechanics. I 337

Lemma 2.10. Let x ∈ M(n) and let m ∈ In, k ∈ Im. Then for any v ∈ M(n) and any
w ∈ xm + M(m)⊥ one has

(∂v)w f(k,m) = tr (xm)
m−k v. (2.39)

Proof. By definition

(∂v)w f(k,m) = 1

m + 1− k
d/dt (tr ((w + tv)m )

m+1−k)t=0

= 1

m + 1− k
d/dt (tr ((xm + tvm)

m+1−k)t=0

= tr (xm)
m−k vm

= tr (xm)
m−kv

since (xm)
m−k ∈ M(m), and hence (xm)

m−k is B-othogonal to the component of v in
M(m)⊥ relative to the decomposition M(n) = M(m)+ M(m)⊥. ��

Let x ∈ M(n) and let

T ∗x (M(n))→ P1(n), ρ 	→ ρ̃ (2.40)

be the isomorphism defined so that if v ∈ M(n) and ρ ∈ T ∗x (M(n)), then 〈ρ, (∂v )x 〉 =
〈ρ̃, v〉. Clearly (dρ̃)x = ρ so that if q ∈ P(n) and we put ρ = (dq)x , then

(ξρ̃)x = (ξq)x (2.41)

by (1.7).

Proposition 2.11. Let x ∈ M(n). Let m ∈ In and k ∈ Im. Let γ be defined as in (1.3).
Then

γ ((xm)
m−k) = − ˜(d f(k,m))x . (2.42)

Proof. This is immediate from (2.39) since we can put w = x in (2.39). ��
For notational convenience put ξ(k,m) = ξ f(k,m) .

Theorem 2.12. Let m ∈ In and k ∈ Im. Then for any x ∈ M(n) one has

(ξ(k,m))x = (∂ [(xm)
m−k ,x])x . (2.43)

Proof. Put y = −(xm)
m−k . Then by (1.11) and (1.8) one has

(ξγ (y))x = (∂−[y,x])x . (2.44)

But then if ρ = (d f(k,m))x one has

γ (y) = ρ̃ (2.45)

by (2.42). But (ξρ̃)x = (ξ(k,m))x by (2.41) where q = f(k,m). But then (2.43) follows
from (2.44) and (2.45). ��
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For any x ∈ M(n) and m ∈ In , let Zx,m be the associative subalgebra generated
by Idm and xm so that Zx,m is spanned by (xm)

m−k, k ∈ Im . Here (xm)
0 = Idm . Also

let M(m)xm be the centralizer of xm in M(m). One has that dim Zx,m ≤ m and xm is
regular in M(m) if and only if dim Zx,m = m which is the case if and only if

Zx,m = M(m)xm . (2.46)

Also put
Zx =

∑
m∈In

Zx,m. (2.47)

As a corollary of Theorem 2.12 one has

Theorem 2.13. Let x ∈ M(n). Then for any m ∈ Im,

Vx(m) = {(∂ [z,x])x | z ∈ Zx,m} and

Vx = {(∂ [z,x])x | z ∈ Zx}. (2.48)

Moreover x is strongly regular if and only if (1) xm is regular in M(m) for all m ∈
In and (2) the sum (2.47) is a direct sum. Equivalently, x is strongly regular if and
only if the elements (xm)

m−k , over all m ∈ In and k ∈ Im, are linearly independent
in M(n).

Proof. The equalities (2.48) follow from (2.36) and of course Theorem 2.12. See also
the last part of Remark 2.8. The statement about strong regularity follows from Propo-
sition 2.11 and the isomorphism (2.41). ��

The following result is a simpler criterion for strong regularity.

Theorem 2.14. Let x ∈ M(n). Then x is strongly regular if and only if (a) xm is
regular in M(m) for all m ∈ In and (b)

Zx,m ∩ Zx,m+1 = 0, ∀m ∈ In−1. (2.49)

Proof. If x is strongly regular, then (a) and (b) are satisfied by (1) and (2) in Theorem
2.13. Conversely, assume (a) and (b) are satisfied. We have only to show that (2) in
Theorem 2.13 is satisfied. Assume (2) is not satisfied and so there exists 0 �= zi ∈
Zx,mi , i ∈ Ik , for k > 1, and mi a strictly increasing sequence with values in In , such
that

k∑
i=1

zi = 0. (2.50)

Let m = m1 so that m ∈ In−1. But now if i > 1, then note that

[zi , x]m+1 = 0. (2.51)

Indeed
M(n) = M(mi )⊕ M(mi )

⊥ (2.52)
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by (2.1). But zi ∈ M(mi ) and clearly both components in (2.52) are stable under
ad M(mi ). However the component of x in M(mi ) is xmi . But zi ∈ Zx,mi so that z
commutes with xmi . Thus [zi , x] ∈ M⊥

mi
. But mi ≥ m + 1 and hence M⊥

mi
⊂ M⊥

m+1.
This proves (2.51). But then (2.50) implies that [z1, x]m+1 = 0. But ad M(m) clearly
stabilizes both components of the decomposition M(n) = M(m + 1)⊕ M(m + 1)⊥.
Since the component of x in M(m + 1) is xm+1 one has [z1, xm+1] = 0. Thus z1 ∈
M(m + 1)xm+1 = Zx,m+1. But then z1 ∈ Zx,m ∩ Zx,m+1. This is a contradiction since
z1 �= 0. ��

Recall equation (2.10). We will say that c ∈ Cd(n) satisfies the eigenvalue disjoint-
ness condition if (I) the numbers in Ec(m) are distinct for all m ∈ In and (II), as a set,
one has Ec(m) ∩ Ec(m + 1) = ∅ for all m ∈ In−1. Similarly, we will say x satisfies
the eigenvalue disjointness condition if (I) and (II) are satisfied where c is replaced by
x . See (2.21). As explained later conditions (I) and (II) are motivated by the theory of
orthogonal polynomials. If x satisfies the eigenvalue disjointness condition, by abuse
of notation, we will, on occasion, regard Ex(m) as a set, rather than as a sequence.

Remark 2.15. Note that if x ∈ M(n) satisfies the eigenvalue disjointness condition,
then xm is a regular semisimple element of M(m) for all m ∈ In .

Let -(n) be the set of all c ∈ Cd(n) which satisfy the eigenvalue disjointness
condition and let M-(n) be the set of all x ∈ M(n) which satisfy this condition so that
in the notation of (2.8),

M-(n) = �−1
n (-(n)). (2.53)

Remark 2.16. We note here that -(n) and M-(n) are (obviously nonempty) Zariski
open subsets of Cd(n) and M(n), respectively. Indeed if c ∈ Cd(n), then condition I
is just the condition that the discriminant of the polynomial (2.11) is nonzero for all
m ∈ In . Condition II is that ∏

i∈Im , j∈Im+1

μi,m (c)− μ j,m+1(c) (2.54)

not vanish for m ∈ In−1. But the polynomial functions (2.54) on the roots Ec(m), m ∈
In , are clearly invariant under the product of the root permutation groups  (m), m ∈
In . Consequently (2.54) can be expressed as polynomial functions on Cd(n). Thus
conditions I and II are the nonvanishing of certain polynomial functions on Cd(n). A
similar statement clearly then applies to M(n), thereby establishing the assertion of
Remark 2.16.

Although with a different application in mind, the constructions in the proof of the
following theorem already appear in Section 4 of [GS].

Theorem 2.17. If x ∈ M(n) satisfies the eigenvalue disjointness condition, then x is
strongly regular. That is,

M-(n) ⊂ Msreg(n). (2.55)

Proof. Assume x ∈ M(n) satisfies the eigenvalue disjointness condition. Let m ∈
In−1. It suffices by (2.46) and Theorem 2.14 to prove that
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Zx,m ∩ M(m + 1)xm+1 = 0. (2.56)

But now since xm is regular semisimple it can be diagonalized. That is, there exists
g ∈ Gl(m) such that

g xm g−1 = diag(μ1 m(x), . . . , μm m(x)). (2.57)

Then, writing μi m = μi m(x), g xm+1 g−1 is of the form

g xm+1 g−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

μ1 m 0 · · · 0 a1 m+1

0 μ2 m · · · 0 a2 m+1

...
...

. . .
...

...

0 0 · · · μm m am m+1

bm+1 1 bm+1 2 · · · bm+1 m d

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.58)

But now {μ1 m+1(x), . . . , μm+1 m+1(x)} are roots of the characteristic polynomial
p(λ) of xm+1. On the other hand, by (2.58)

p(λ) = (λ− d)(
m∏

i=1

(λ− μi m)−
m∑

i=1

ai m+1bm+1 i

∏
j∈(Im−{i})

(λ− μ j m). (2.59)

But μi m is a root of all the m + 1 polynomial summands of (2.59) except for the
summand

ai m+1bm+1 i

∏
j∈(Im−{i})

(λ− μ j m).

Since, as sets, Ex(m) ∩ Ex (m + 1) = ∅ one must have that

ai m+1bm+1 i �= 0, ∀i ∈ Im . (2.60)

But now the subalgebra of M(m) generated by Idm and g xm g−1 is the algebra d(m)
of all diagonal matrices in M(m). But now if y = g xm+1 g−1 and M(m + 1)y is the
centralizer of y in M(m), to prove (2.56) it suffices, by conjugation, to prove

d(m) ∩ M(m + 1)y = 0. (2.61)

But if 0 �= d ∈ d(m) and d = diag(d1, . . . , dm), then d j �= 0 for some j ∈ Im . But

α j m+1([d, y]) = d j a j m+1. (2.62)

Thus [d, y] �= 0 by (2.60). This proves (2.61). ��

2.5.

If x ∈ M(n) and x is a real symmetric matix, then xm , for any m ∈ In , is real symmet-
ric so that the eigenvalues of xm are real. Hence, for the m-tuple, Ex(m), one has
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μ1 m ≤ · · · ≤ μm m (2.63)

where we have written μ j,m for μ j,m(x). Under certain conditions, strong regularity
implies the eigenvalue disjointness condition. A key argument in the proof of Propo-
sition 2.18 is well known.

Proposition 2.18. Assume x ∈ M(n) is strongly regular and x is a real symmetric
matrix, so that in the notation of (2.63), the inequality ≤ is replaced by the strict
inequality < . Then x satisfies the eigenvalue disjointness condition. In fact if m ∈
In−1, then using the notation of (2.63) one has the interlacing condition

μ1 m+1 < μ1 m < μ2 m+1 < . . . < μm m+1 < μm m < μm+1 m+1. (2.64)

Proof. We use the notation in the proof of Theorem 2.17. But now instead of assuming
that x satisfies the eigenvalue disjointness condition, assume that x is strongly regular
so that one has (2.56) and hence also (2.61). Since x is symmetric, the element g ∈
Gl(m) can be chosen to be orthogonal. Thus one has ai m+1 = bm+1,i for all i ∈ Im .
But (2.61) implies that [d, y] �= 0. On the other hand, clearly αik([d, y]) = 0 for all
i, k ∈ In unless, as an ordered pair, {i, k} = { j,m + 1} or {i, k} = {m + 1, j}. But
α j m+1([d, y]) = d j a j m+1 and αm+1 j ([d, y]) = −d j a j m+1. Thus a j m+1 �= 0 for
all j ∈ Im . But as a rational function of the parameter λ of R one has

p(λ)/
m∏

i=1

(λ− μi m) = λ− d −
∏

j∈(Im−{i})
a2

j m+1/(λ− μi m). (2.65)

Consider λ in the open interval (μi m, μi+1 m) for i ∈ Im−1. As λ approaches μi m the
function (2.65) clearly approaches −∞ and (2.65) approaches +∞ as λ approaches
μi+1 m . Thus there exists μi+1 m+1 ∈ (μi m, μi+1 m ). On the other hand, if we con-
sider λ in the open interval (−∞, μ1 m), one notes that (2.65) approaches −∞ as λ
approaches −∞ and (2.65) approaches +∞ as λ approaches μ1 m . Thus there exists
μ1 m+1 ∈ (−∞, μ1 m). Similarly there existsμm+1,m+1 ∈ (μm m ,+∞). This accounts
for m+ 1 distinct roots of p(λ) not only establishing Ex(m)∩ Ex(m+ 1) = ∅ (so that
x satisfies the eigenvalue disjointness condition) but also (2.64). ��

In this article x ∈ M(n) is called a Jacobi matrix if αi j (x) = 0 if |i − j | >
1 and αi j (x) �= 0 if |i − j | = 1. That is, x is “tridiagonal” except that the main
diagonal is arbitrary and the entries of x are nonzero along the two diagonals adjacent
to the main diagonal. If these nonzero entries are all positive, we will say that x has
positive adjacent diagonals. Among other statements the following result says that if x
is real symmetric and Jacobi, the assumption of strong regularity in Proposition 2.18
is unnecessary since it is automatically satisfied. In particular the conclusions of that
proposition hold.

It is clear that Mc(n) is stable under conjugation by any diagonal matrix in Gl(n)
for any c ∈ Cd(n).

Theorem 2.19. Assume x ∈ M(n) is a Jacobi matrix. Then x is strongly regular. Fur-
thermore if y ∈ M(n) is also a Jacobi matrix, then x and y are conjugate by a diagonal
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matrix in Gl(n) if and only if Ex(m) = Ey(m) for all m ∈ In (i.e., if and only if x
and y lie in the same fiber Mc(n) of �n — see (2.21)). Moreover if x is real symmet-
ric, then x satisfies the eigenvalue disjointness condition and one has the eigenvalue
interlacing

μ1 m+1 < μ1 m < μ2 m+1 < . . . < μm m+1 < μm m < μm+1 m+1 (2.66)

where we have written μ j k = μ j k(x).

Proof. The first statement follows from (2.16) and Remark 2.4. Given Jacobi matrices
x, y it follows from Remark 2.5 that there exists diagonal matrices gx and gv in Gl(n)
such that gx x g−1

x and gy y g−1
y both lie in e + b. But then gx x g−1

x = gy y g−1
y by

Theorem 2.5 if x and y lie in the same fiber Mc(n). Thus the same fiber condition im-
plies that x and y are conjugate by a diagonal matrix in Gl(n). The converse direction
is obvious. But now if x is real symmetric, then the remaining statements follow from
Proposition 2.18. ��

Theorem 2.19 has an immediate application to the theory of orthogonal polynomi-
als. Let ρ(t) be a nonnegative integrable (with respect to Lebesgue measure) function
on a (finite or infinite) interval (a, b) ⊂ R. Assume that the measure ν = ρ(t)dt on
(a, b) has a positive integral and φ(t) is integrable with respect to ν for any polyno-
mial function φ(t). Let Wk for k ∈ Z+ be the k-dimensional subspace of the Hilbert
space L2(R, ν) spanned by 1, . . . , tk−1. Let φk(t), k ∈ Z+, be the orthonormal se-
quence in L2(R, ν) obtained by applying the Gram–Schmidt process to the functions
{tk}, k ∈ Z+, so that, for any k ∈ Z+, {φ j−1(t)}, j ∈ Ik , is an orthonormal basis of
Wk . This basis may be normalized so that ak > 0 where ak tk is the leading term of
φk(t). Then one knows that there is a 3-term formula (see e.g., (10), p. 157 in [J])

t φk(t) = ak

ak+1
φk+1(t)+ ckk φk(t)+ ak−1

ak
φk−1(t) (2.67)

where ckk ∈ R. Let 	k be the orthogonal projection of L2(R, ν) onto Wk . Let t̃ be the
multiplication operator on L2(R, ν) by the function t . Then if x ∈ M(n) is the matrix
of 	n t̃ |Wn with respect to the basis φm−1(t), m ∈ In , of Wn , it follows from (2.67)
that x is the real symmetric Jacobi matrix given by

x =

⎛⎜⎜⎜⎜⎜⎜⎝

c00 a0/a1 0 0 · · · 0

a0/a1 c11 a1/a2 0 · · · 0

0 a1/a2 c22 a2/a3 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · an−1/an cnn

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.68)

By Theorem 2.19 x is strongly regular and satisfies the eigenvalue disjointness condi-
tion. In addition one has the eigenvalue interlacing

μ1 m+1 < μ1 m < μ2 m+1 < . . . < μm m+1 < μm m < μm+1 m+1 (2.69)
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where we have put μ j k = μ j k(x). An important object of mathematical study is
the zero set of the polynomials φk(t). The following result, which is no doubt well
known, but proved here for completeness, asserts that one can recover the orthogonal
polynomial φm(t), m ∈ In , from the characteristic polynomial of xm . In particular
Ex(m) = {μ1 m, . . . , μm m} is the zero set of the polynomial φm(t).

Theorem 2.20. Let the notation be as above. In particular, let x ∈ M(n) be given by
(2.68). For m ∈ In, let φ(1)m (t) = 1

am
φm(t) so that φ(1)m (t) is the monic polynomial

corresponding to φm(t). Then φ(1)m (λ) is the characteristic polynomial of xm so that

Ex(m) is the set of zeros of φm(t) (2.70)

and one has the interlacing (2.69).

Proof. Let m ∈ In so that, by (2.67), xm is the matrix of 	m t̃ |Wm with respect to the
basis {φ j−1}, j ∈ Im , of Wm . Let y ∈ M(m) be the matrix of	m t̃|Wm with respect to
the basis {t j−1}, j ∈ Im , of Wm . If j ∈ Im−1, then of course 	m t̃(t j−1) = t j ∈ Wm .
But now let bi ∈ R be such that

φ(1)m (t) = tm +
∑
j∈Im

b j t j−1. (2.71)

But 	m(φ
(1)
m (t)) = 0 by orthogonality. Thus

	m t̃(tm−1) = 	m(t
m)

= −
∑
j∈Im

b j t j−1. (2.72)

Hence y is the companion matrix⎛⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −b1

1 0 · · · 0 −b2

0 1 · · · 0 −b3

...
...
. . .

...
...

0 0 · · · 1 −bm

⎞⎟⎟⎟⎟⎟⎟⎠ .

But then φ(1)m (λ) is the characteristic polynomial of y. Consequently, φ(1)m (λ) is also
the characteristic polynomial of xm . ��

Applying Theorem 2.19 we can say something about the uniqueness of x ∈ M(n)
(see (2.68)) in yielding the orthogonal polynomials φm(t), m ∈ In .

Theorem 2.21. Let {φm(t)},m ∈ In, be the set of normalized orthogonal polynomials,
where deg φm(t) = m, for a general measure ν on R specified as above. Then the
matrix x ∈ M(n), given by (2.68), is the unique symmetric Jacobi matrix with positive
adjacent diagonals such that Ex (m), for any m ∈ In, as a set, is the set of zeros of the
polynomial φm(t).
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Proof. If y ∈ M(n) is a Jacobi matrix such that Ey(m) = Ex (m) for any m ∈ In

then, by Theorem 2.19, y is a conjugate of x by a diagonal matrix g ∈ Gl(n). But if
conjugation by g is to preserve symmetry and the positivity condition, it is immediate
that g must be a constant matrix. In such a case of course x = y. ��

3. The group A and its orbit structure on M(n)

3.1.

Let m ∈ In . Recall that P(m)Gl(m) (see (2.30)) is the polynomial ring with the m
generators f(k,m), k ∈ Im (see (2.38)). Let a(m) be the commutative (see (2.32)) Lie
algebra of analytic vector fields on M(n) spanned by ξ(k,m) for k ∈ Im . Here we are
retaining the notation (2.43).

If m = n, then a(n) = 0 by the argument which implies (2.7). Now assume
m ∈ In−1. Note then that dim a(m) = m by (2.43), (2.46), (2.49) and the existence
of strongly regular elements. Let A(m) be a simply connected complex analytic group
where a(m) = Lie A(m). Of course A(m) ∼= Cm . We wish to prove that a(m) inte-
grates to an analytic action of A(m) on M(n).

For any x ∈ M(n) we recall the subspace Vx(m) ⊂ Tx(M(n)) defined as in (2.36).
Since { f(k,m)}, k ∈ Im , generate P(m)Gl(m),

Vx(m), for any x ∈ M(n), is spanned by {(ξ(k,m))x }, k ∈ Im . (3.1)

Consequently, if x ∈ M(n),
dim Vx(m) ≤ m. (3.2)

However
dim Vx(m) = m if x is strongly regular, by Theorem 2.7.

For any w ∈ M(m) clearly

w + M(m)⊥ = {x ∈ M(n) | xm = w} (3.3)

using the notation of (2.37). But obviously one has the fibration

M(n) = �w∈M(m) w + M(m)⊥. (3.4)

Lemma 3.1. For any ξ ∈ a and any w ∈ M(m) the vector field ξ is tangent to the
fiber w + M(m)⊥. That is,

Vx(m) ⊂ Tx(xm + M(m)⊥) (3.5)

for any x ∈ M(n) (noting of course that x ∈ xm + M(m)⊥).

Proof. Obviouslyw+M(m)⊥ is the nonsingular affine subvariety of M(n) defined by
the equations αi j − αi j (w) = 0 for all {i, j} ⊂ Im . A vector field η on M(n) is then
clearly tangent to w + M(m)⊥ if η(αi j ) = 0 for all {i, j} ⊂ Im . But this is certainly
the case if η = ξ . Indeed f(k,m) ∈ P(m)Gl(m), for k ∈ Im , and αi j ∈ P(m). Hence
f(k,m) Poisson commutes with αi j . ��
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Recalling the notation of (2.46) let x ∈ M(n) and let Gx,m ⊂ Gl(m) be the
(commutative) subgroup of all g ∈ Gl(m) such that gm is an invertible element in
Zx,m (where Idm is taken as the identity). It is clear that Gx,m is an algebraic sub-
group of Gl(n) and Zx,m (as a Lie algebra) is the Lie algebra of Gx,m . Since A(m)
is simply-connected there clearly exists a homomorphism of commutative complex
analytic groups

ρx,m : A(m)→ Gx,m (3.6)

whose differential (ρx,m)∗ is given by

(ρx,m)∗(ξ(k,m)) = −(xm)
m−k (3.7)

for any k ∈ Im .

Remark 3.2. Note that Gx,m is connected since first of all Gx,m ∼= {gm | g ∈ Gx,m}
and clearly

{gm | g ∈ Gx,m} = {y ∈ Zx,m | f1,m(y) �= 0}.
It follows that

ρx,m : A(m)→ Gx,m, is surjective (3.8)

since, clearly, (ρx,m)∗ is a surjective Lie algebra homomorphism of a(m) to Zx,m .
Let x ∈ M(n). Now obviously M(m) and M(m)⊥ are both stable under ad M(m)

and Ad Gl(m). But obviously xm is fixed by Ad Gx,m . Consequently,

xm + M(m)⊥ is stable under Ad Gx,m . (3.9)

Theorem 3.3. Let m ∈ In−1. Then a(m) integrates to a (complex analytic) action of
A(m) on M(n),

A(m)× M(n)→ M(n), (a, y) 	→ a · y. (3.10)

More explicitly, if x ∈ M(n) and y ∈ xm + M(m)⊥ (noting that any y ∈ M(n) is of
this form by (3.3) and (3.4)) one has

a · y = Ad (ρx,m(a))(y) (3.11)

for any a ∈ A(m).

Proof. For the first statement it suffices, by Lemma 3.1, to show that
a(m)|(xm + M(m)⊥) integrates to an action of A(m) on xm + M(m)⊥.

Using the notation of §2.1 let Y ⊂ P1(n) be the span of αi j for (i, j) ∈ Lm so
that dim Y = n2−m2 and Y is the orthocomplement of M(m) in P1(n). Let Y be the
affine algebra of functions on xm + M(m)⊥. For any α ∈ Y let αo ∈ Y be defined so
that if u ∈ M(m)⊥, then

αo(xm + u) = α(u). (3.12)

Let Yo = {αo | α ∈ Y } so that clearly the subspace Yo of Y generates Y . Let

r : Y → Yo (3.13)
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be the linear isomorphism defined by putting r(α) = αo. Since any α ∈ Y vanishes on
xm , note that

r(α) = α|(xm + M(m)⊥) ∀α ∈ Y. (3.14)

Since Zx,m ⊂ M(m) it is clear that Y is stable under the coadjoint representation of
Zx,m and Gx,m (resp. coad and Coad) on P1(n). We now wish to prove that Yo is stable
under a(m) and in fact, on Y , one has

ξ ◦ r = r ◦ coad ((ρx,m)∗(ξ)) (3.15)

for any ξ ∈ a(m). To prove (3.15) we first note that if k ∈ Im and y ∈ xm + M(m)⊥,
then

(ξ(k,m))y = (∂ [(xm)
m−k ,y])y . (3.16)

Indeed (3.16) follows from Theorem 2.12 where we have replaced x by y in (2.43)
and recognize that xm = ym in our present notation. Applying both sides of (3.16) to
α ∈ Y one has, by (3.14),

(ξ(k,m)αo)(y) = (ξ(k,m)α)(y)
= 〈α, [(xm)

m−k , y]〉
= (−coad (xm)

m−k(α))(y).

But this proves (3.15) (and hence also the stability of Yo under a(m)) since (ρx,m)∗
(ξ(k,m)) = −(xm)

m−k for k ∈ Im .
But now the action of a(m) on Yo is a linear representation of a(m) on a finite-

dimensional vector space. Hence it exponentiates to a representation π of A(m) on Y .
But then the commutative diagram (3.15) yields the commutative diagram

π(a) ◦ r = r ◦ Coad (ρx,m(a)) (3.17)

on Y for any a ∈ A(m). But now if one defines an action of A(m) on xm +M(m)⊥ by
putting a · y = Ad (ρx,m(a))(y) we observe that, for any α ∈ Y ,

αo(a
−1 · y) = (π(a)(αo))(y). (3.18)

Indeed this follows from (3.17) since

α(Ad ρx,m(a
−1)(y)) = (Coad (ρx,m(a))(α))(y).

But now replacing a in (3.18) by exp t ξ for ξ ∈ a(m) and differentiating it follows
from the definition of π that the action of A(m) on xm + M(m)⊥ given by (3.11)
integrates the Lie algebra a(m)|(xm + M(m)⊥). ��

3.2.

By Theorem 2.7, and the existence of strongly regular elements (see e.g., (2.27)) the
sum a of the a(m) for m ∈ In is a direct sum of the a(m) where m ∈ In−1 so that we
can write



Gelfand–Zeitlin and classical mechanics. I 347

a = ⊕m∈In−1 a(m). (3.19)

We note then that a is a commutative Lie algebra of analytic vector fields on M(n) of
dimension d(n − 1) with basis ξp(i) i ∈ d(n − 1), where for m ∈ In , and k ∈ Im ,

p(d(m−1)+k) = f(k,m) (3.20)

(see (2.38)). Let A = A(1)×· · ·× A(n− 1) so that we can regard a = Lie A and note
that as an analytic group

A ∼= Cd(n−1). (3.21)

As a consequence of Theorem 3.3 one has

Theorem 3.4. The Lie algebra a of vector fields on M(n) integrates to an action of A
on M(n) where if a ∈ A and a = (a(1), . . . , a(n − 1)) for a(m) ∈ A(m), then

a · y = a(1) · (· · · (a(n − 1) · y) · · · ) (3.22)

for any y ∈ M(n). Furthermore the orbits of A on M(n) are leaves of the distribution,
x 	→ Vx , on M(n). See §2.4, Remark 2.9 and Theorem 2.13.

Proof. Since a is commutative the actions of A(m) for all m ∈ In−1 clearly commute
with one another. Thus (3.22) defines an action of A on M(n) which, by Theorem 3.3,
integrates a. The final statement of the theorem follows from Theorem 2.12 and (2.48).

��
Recall that J (n) ⊂ P(n) is the Poissson commutative associative subalgebra de-

fined in §2.4. See (2.30).

Theorem 3.5. Let p ∈ J (n) be arbitrary. Then the vector field ξp is globally inte-
grable defining an action of C on M(n). Furthermore this action commutes with A
and stabilizes any A-orbit.

Let {p′i }, i ∈ Id , for some integer d, be an arbitrary set of generators of J (n).
Let a′ be the (commutative) Lie algebra spanned by ξp′i , i ∈ Id , and let A′ be a
corresponding simply connected Lie group. Then a′ integrates to an action of A′ on
M(n). Furthermore the action of A′ commutes with the action of A and the orbits of A′
are the same as the orbits of A. In particular any A′-orbit is a leaf of the distribution
x 	→ Vx on M(n).

Proof. Let y ∈ M(n) and let Q be the orbit A · y of A so that Q is an analytic
submanifold of M(n). By Theorem 3.4 one has

Vx = Tx (Q) ∀x ∈ Q. (3.23)

Let p = { f ∈ a | ξ f |Q = 0} and let q be a linear complement of p in q. Then by the
commutativity of A it follows that if dim Q = �, then dim q = � and if q j , j ∈ I�, is
a basis of q, then {(ξq j )x }, j ∈ I�, is a basis of Tx (Q) for all x ∈ Q. But now ξp|Q is
tangent to Q by (3.23). Thus there exists functions h j , j ∈ I� on Q so that
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ξp =
∑
j∈I�

h jξq j (3.24)

on Q. But the commutativity [ξp, ξq j ] = 0 implies that the functions h j are constant
on Q. By Theorem 3.3 the vector field ξq j |Q integrates to an action, t 	→ exp t ξq j |Q
of C on Q. But then one gets another action of C on Q by putting

b(t) = exp t h1 ξq1 · · · exp t h� ξq� |Q.
But then it is immediate from (3.24) that ξp|Q integrates to the action of b(t) on Q.
Thus ξp integrates to an action of C on M(n). Clearly this action of commutes with
the action of A on M(n) by (2.32). In addition the argument above implies that any
A-orbit is stable under the action of C.

It then follows that a′ integrates to an action of A′ on M(n) and the action of
A′ commutes with the action of A. In addition the argument above implies that any
A-orbit Q is stable under the action of A′. But since the p′i generate J (n) the span of
(dp′i)x , for i ∈ Id , is the same as the span of (dp( j ))x , for j ∈ Id(n), for any x ∈ M(n).
Thus (ξp′i )x , for i ∈ Id , spans Vx by (1.14). Consequently all orbits of A′ on Q are
open. But Q is connected since A is connected. But then A′ is obviously transitive
on Q. ��

3.3.

In this section we will give some properties of the group A. We first observe the el-
ementary property that A operates “vertically” with respect to the “fibration” (2.9)
of M(n). Recall (see (2.8)) the morphism �n : M(n) → Cd(n). Regarding c j as a
coordinate function on Cd(n) note that, by (2.8), for j ∈ Id(n),

c j ◦�n = p j . (3.25)

Proposition 3.6. The group A stabilizes the “fiber” Mc(n) of M(n) (see (2.9)) for any
c ∈ Cd(n). In fact Mc(n) is stabilized by the action of C defined in Theorem 3.5.

Proof. For i, j ∈ Id(n) one has ξp(i) p j = 0 by (2.31) (see (3.20)). But then the function
p j on M(n) is invariant under A. Hence Mc(n) is stabilized by A, for any c ∈ Cd(n),
by (3.25). The final statement follows from Theorem 3.5. ��
Note: At a later point Knop determined that Theorems 3.4, 3.5 and Proposition 3.6
could be deduced from Theorem 4.1 in [Kn].

Let x ∈ M(n). We wish to give an explicit description of the A-orbit A · x . Ob-
viously Gx,m is an algebraic subgroup of Gl(n), for any m ∈ In , and the adjoint
representation of Gx,m on M(n) is an algebraic representation. In the following theo-
rem we use the term “constructible set”. This is a concept in algebraic geometry due
to C. Chevalley. For its precise definition and properties see §5, Chapter II in [C] or
Exercise 1.9.6, p. 19 in [S], or §1.3, p. 3 in [B].
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Theorem 3.7. Let x ∈ M(n). Consider the following morphism of nonsingular irre-
ducible (see Remark 3.2) affine varieties

Gx,1 × · · · × Gx,n−1 → M(n) (3.26)

where for g(m) ∈ Gx,m, m ∈ In−1,

(g(1), . . . , g(n − 1)) 	→ Ad (g(1)) · · ·Ad (g(n − 1))(x). (3.27)

Then the image of (3.26) is exactly the A-orbit A · x. In fact if a ∈ A and a =
a(1) · · ·a(n − 1) where a(m) ∈ A(m), then a · x is given by the right side of (3.27)
where g(m) = ρx,m(a(m)). In particular A · x is an irreducible, constructible (in the
sense of Chevalley) subset of M(n). Furthermore, the Zariski closure of A · x is the
same as its usual Hausdorff closure. In addition A · x contains a Zariski open subset
of its closure.

Proof. Let m ∈ In−1. For g(m) ∈ Gx,m there exists, by (3.8) and Theorem 3.2, a(m) ∈
A(m) such that a(m) = Ad g(m) on xm + M(m)⊥. Let b(m) = a(m) · · ·a(n − 1)
and h(m) = g(m) · · · g(n − 1). Obviously the right side of (3.27) can be written
Ad h(1)(x). Inductively (downwards) assume that b(m + 1) · x = Ad h(m + 1)(x)
for m < n − 1. Note that the induction assumption is satisfied if m + 1 = n − 1 by
Theorem 3.2. But since p(i) is invariant under Gl(m) for i > d(m − 1), note (key
observation) that (b(m + 1) · x)m = xm so that b(m + 1) · x ∈ xm + M(m)⊥. Thus
b(m) · x = Ad h(m)(x) by Theorem 3.2. Hence, by induction, Ad h(1)(x) ∈ A · x .
Conversely let a ∈ A so that we can write a = a(1) · · ·a(n−1) for a(m) ∈ A(m). Let
g(m) = ρx,m(a(m)) so that g(m) ∈ Gx,m . Then the argument above establishes that
a · x = Ad h(1)(x). Hence the image of (3.26) is A · x . The image of an irreducible
set under a morphism is obviously irreducible. But the image A · x is constructible by
Proposition 5 in Chapter V, p. 95–96 in [C] or by Proposition, p. 4 in [B]. See also
Corollary 2, §8, p.51 in [M]. But then the Euclidean closure of A · x is the same as
its Zariski closure by Corollary 1, §9, p. 60 in [M]. On the other hand the irreducible
constructible set A · x contains a Zariski open subset of its closure by Proposition 4 in
Chapter 5, p. 95 in [C] or by Proposition, p. 4 in [B]. ��
Remark 3.8. In (3.22) the ordering of the terms a(m) is immaterial since these ele-
ments commute with one another. However, the ordering of the terms g(m) in (3.27)
cannot be permuted in general. The groups Gx,m do not, in general, commute with one
another. The point is that A(m) is given by Ad Gx,m only on xm + M(m)⊥.

By the final statement of Theorem 3.4 and (2.34) one has, for any x ∈ M(n),

dim A · x ≤ d(n − 1) (3.28)

and, by (2.35),

dim A · x = d(n − 1) ⇐⇒ x is strongly regular (see §2.3). (3.29)

That is, (see §2.3) the nonempty Zariski open subset Msreg(n) of M(n) is stable under
the action of A and
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the A-orbits in Msreg(n) are exactly all the A-orbits of maximal dimension (d(n−1)).
(3.30)

We will now see that we can make a much stronger statement about A · x than that in
Theorem 3.6 in case x is strongly regular. We first need some preliminary results.

Let c ∈ Cd(n). One has Mc(n) = (�n)
−1(c) (see (2.8)) so that Mc(n) is a Zariski

closed subset of M(n). Now let Msreg
c (n) = Mc(n) ∩ Msreg(n).

Remark 3.9. Note that Msreg
c (n) is a Zariski open subset of Mc(n). Furthermore

Msreg
c (n) is not empty since Mc(n) ∩ (e + b) is a one point subset of Msreg

c (n), by
Theorem 2.5 and (2.27). However Msreg

c (n) may not be dense in Mc(n). In fact one
can show that it is not dense if n = 3 and c = 0.

Let N(c) be the number of irreducible components of Msreg
c (n) and let Msreg

c,i (n),
i = 1, . . . , N(c), be some indexing of these components. In the following proposition
overline is Zariski closure.

Proposition 3.10. The irreducible component decomposition of Msreg
c (n) is

Msreg
c (n) =

N(c)⋃
i=1

Msreg
c,i (n), (3.31)

noting that Msreg
c,i (n) is a closed subvariety of Mc(n). Furthermore one recovers

Msreg
c,i (n) from its closure by

Msreg
c,i (n) = (Msreg

c,i (n)) ∩ Msreg(n) (3.32)

so that Msreg
c,i (n) is an Zariski open subvariety of its Zariski closure. Furthermore,

Msreg
c,i (n) is a constructible set so that its Zariski closure is the same as its usual Haus-

dorff closure (see p. 60 in [M]).

Proof. The equality (3.31) is immediate. The statement that (3.31) is an irreducible
component decomposition is an easy consequence of (3.32). In fact it is a general
result. See the last paragraph in §1.1, p.3 in [B]. Clearly the left side of (3.32) is con-
tained in the right-hand side. But the right-hand side is an irreducible set in Msreg

c (n).
Thus one has (3.32) by the irreducible maximality of Msreg

c,i (n) in Msreg
c (n). We have

used Proposition 2 in Chapter II of [C], p. 35 throughout. Msreg
c,i (n) is a constructible

set by (3.32) and Proposition 3 in Chapter II of [C], p. 94. The last statement of the
proposition follows from Corollary 1, §9, p. 60 in [M]. ��
Proposition 3.11. Let the assumptions and notations be as in Proposition 3.10. Then

Msreg
c,i (n) and hence Msreg

c,i (n) have dimension d(n−1) for all i . Furthermore Msreg
c,i (n)

is nonsingular in Msreg
c (n) and a fortiori Msreg

c,i (n) is nonsingular in Msreg
c,i (n).

Proof. The proof is an application of Theorem 4 in §4 of Chapter 3 in [M], p. 172,

where in the notation of that reference, X = M(n), Y = Msreg
c (n), U runs through all

open affine subvarieties of a finite affine cover of Msreg(n), k = d(n), fi = pi − ci .
��
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Let c ∈ Cd(n) be arbitrary. Then since Mc(n) is stable under the action of A it
follows from (3.30) that Msreg

c (n) is stable under A.

Theorem 3.12. Let the assumptions and notations be as in Proposition 3.10. Then
there are exactly N(c) orbits of A in Msreg

c (n) and these orbits are identical to the
irreducible components Msreg

c,i (n) of Msreg
c (n). In particular all the orbits are nonsin-

gular algebraic varieties of dimension d(n − 1).

Proof. Let x ∈ Msreg
c (n) so that A · x ⊂ Msreg

c (n). But by the irreducibility of A · x
(see Theorem 3.6) the Zariski closure A · x is irreducible. Thus, by Proposition 3.10,
there exists i such that

A · x ⊂ Msreg
c,i (n). (3.33)

But then if k = dim A · x one has k ≤ d(n − 1) and one has equality in (3.33) if
k = d(n − 1). But A · x contains a Zariski open set U of A · x by the last statement in
Theorem 3.7. Let W ⊂ U be the nonsingular Zariski open subvariety of simple points
in U . Then W is an analytic submanifold of dimension k in M(n). But, as a nonempty
Zariski open subvariety of a closed subvariety, W = V ∩ A · x where V is a Zariski
open subset of M(n). Thus W is open in A · x . But A · x is a d(n − 1)-dimensional
analytic submanifold of M(n). Thus k = d(n − 1), by invariance of dimension of
submanifolds, so that

A · x = Msreg
c,i (n). (3.34)

But now (3.34) implies that Msreg
c,i (n) is stable under the action of A since A · x is the

closure of A·x in the usual Euclidean topology. But then Msreg
c,i (n)must be stable under

the action of A by (3.32). In particular A · x ⊂ Msreg
c,i (n) since, clearly, x ∈ Msreg

c,i (n)

by (3.32) and (3.33). Assume A · x �= Msreg
c,i (n) and let y ∈ Msreg

c,i (n) − A · x . Then

clearly we may replace x by y in (3.34) so that A · y = Msreg
c,i (n). But then A · x and

A · y contain disjoint nonempty Zariski open subsets of Msreg
c,i (n). This contradicts the

irreducibility of Msreg
c,i (n). Thus we have proved that Msreg

c,i (n) is an A-orbit. If j �= i

we may find z ∈ Msreg
c, j (n) which does not lie in any other component of Msreg

c (n). The

argument above then implies that Msreg
c, j (n) = A · z. ��

3.4.

Let x ∈ Msreg(n). Then by Theorems 3.6 and 3.12 one has the following surjective
morphism of nonsingular varieties:

νx : Gx,1 × · · · × Gx,n−1 → A · x (3.35)

where
νx (g(1), . . . , g(n − 1)) = Ad(g(1)) · · ·Ad(g(n − 1))(x). (3.36)
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We now prove

Lemma 3.13. The map (3.35) is injective so that in fact νx is bijective for any x ∈
Msreg(n).

Proof. Assume g(m), g(m)′ ∈ Gx,m for m = 1, . . . , n − 1, and

Ad(g(1)) · · ·Ad(g(n − 1))(x) = Ad(g(1)′) · · ·Ad(g(n − 1)′)(x).

By upward induction we will prove that g(m) = g(m)′ for all m. The inductive ar-
gument to follow also establishes that the result is true for m = 1. Assume we have
proved that g(i) = g(i)′ for i < m. Then if y = Ad(g(m)) · · ·Ad(g(n − 1))(x)
one has y = Ad(g(m)′) · · ·Ad(g(n − 1)′)(x). Let z = Ad(g(m))−1(y) and z′ =
Ad(g(m)′)−1(y). Then zm+1 = z′m+1 = xm+1. But z = Ad(h(m))(z′) where h(m) =
g(m)−1g(m)′. But then h(m) commutes with xm+1. Thus h(m)−Idn ∈ Zx,m∩Zx,m+1
by (2.46). But Zx,m ∩ Zx,m+1 = 0 by (2.49). Thus g(m) = g(m)′ and hence νx is in-
jective. ��

We can now describe the structure of all A-orbits of maximal (i.e., d(n − 1)) di-
mension.

Theorem 3.14. Let x ∈ Msreg(n) and for m = 1, . . . , n−1, let Gx,m be the centralizer
of xm in Gl(m) so that Gx,m is a connected commutative algebraic group of dimension
m. Then the morphism (3.35) is an algebraic isomorphism of nonsingular varieties so
that as a variety

A · x ∼= Gx,1 × · · · × Gx,n−1. (3.37)

Proof. Since νx is a bijective morphism of varieties of dimension d(n − 1) it follows
that νx is birational by Theorem 3 of §IV in [C], p. 115 (n = 0 in the notation of this
reference). But then νx is an isomorphism of algebraic varieties by Theorem, p. 78,
§18 of Chapter AG in [B] and also Theorem 5.2.8, p. 85 in [S] since the range and
domain of νx are nonsingular by Theorem 3.12. ��
Example 3.15. Since e ∈ e + b note that the principal nilpotent element e is strongly
regular. If x = e, then one readily sees that A · x is the set of all principal nilpotent
elements in the nilpotent Lie algebra u′ of all strictly lower triangular matrices and
A · x = u′. Writing the set of all principal nilpotent elements in u′ uniquely, using the
right-hand side of (3.36), when x = e, may be new.

3.5.

In this section we will assume x satisfies the eigenvalue disjointness condition. That is,
x ∈ M-(n). See §2.4 and more specifically (2.53). We recall that M-(n) is a Zariski
open subset of Msreg(n) so that, in particular, Theorem 3.14 applies to x .
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Theorem 3.16. Let x ∈ M(n) satisfy the eigenvalue disjointness condition. Then Zx,m

is a Cartan subalgebra of M(m), for any m ∈ In, and Gx,m is a maximal (complex)
torus in Gl(m) so that

Gx,m ∼= (C×)m . (3.38)

In addition the orbit A · x is an algebraic subvariety of M(n) and as such

A · x ∼= (C×)d(n−1). (3.39)

Proof. Zx,m is a Cartan subalgebra of M(m) since xm is a regular semisimple element
of M(m). But this of course implies that Gx,m is a maximal (complex) torus in Gl(m)
since Lie Gx,m = Zx,m . One then has (3.38). Theorem 3.14 then implies the remaining
statements of Theorem 3.16. ��

For m ∈ In−1 let Y (m) be the span of ei m+1, i ∈ Im , so that Y (m) is an m-
dimensional subspace of M(m)⊥. It is clear that Y (m) is stable under Ad Gl(m) and
ad M(m) and hence Y (m) inherits, respectively, the structure of a Gl(m) and a M(m)-
module. On the other hand Cm is a module for Gl(m) and M(m) with respect to the
natural action of Gl(m) and M(m). One immediately observes that the linear isomor-
phism

Y (m)→ Cm, y 	→ (α1 m+1(y), . . . , αm m+1(y)) (3.40)

is an isomorphism of Gl(m) and M(m)-modules.
Let H (m) be a maximal torus of Gl(m) and let h(m) = Lie H (m) be the corre-

sponding Cartan subalgebra of M(m). Then, by restriction, Y (m) is a H (m)-module
with respect to Ad and an h(m)-module with respect to ad. One notes in fact that Y (m)
is a cyclic H (m)-module and a cyclic h(m)-module. This is transparent, from the mod-
ule isomorphism (3.40), in case we choose H (m) = Diag(m) where Diag(m) is the
group of diagonal matrices in Gl(m). The general case follows by conjugation. An
element y ∈ Y (m) will be called a cyclic H (m)-generator in case it generates Y (m)
under the action of H (m). A similar terminology will be used for h(m). By going to
the diagonal case it is immediate that y is a cyclic generator for H (m) if and only if it
is a cyclic generator for h(m). Indeed let

Y×(m) = {y ∈ Y (m) | αi m+1(y) �= 0, ∀i ∈ Im}. (3.41)

Then clearly y is a cyclic generator for Diag(m) and a cyclic generator for Lie Diag(m)
if and only if y ∈ Y×(m). The following proposition is established by again going to
the diagonal case and conjugating (using of course the module isomorphism (3.40)).

Proposition 3.17. Let m ∈ In−1. Let H (m) be a maximal torus of GL(m) and let
h(m) = Lie H (m). Let y ∈ Y (m). Then the following conditions are all equivalent:

(a) y is a cyclic generator for H (m) (or h(m)),
(b) Ad H (m)(y) is the unique Ad H (m)-orbit in Y (m) of maximal dimension (m),
(c) Ad h(y) = y for h ∈ H (m) implies h = Idn,
(d) If w ∈ Y (m), then w ∈ Ad H (m)(y) ⇐⇒ w is a cyclic generator for H (m),
(e) {[z(i), y]}, i ∈ Im , is a basis of Y (m) if {z(i)}, i ∈ Im, is a basis of h(m).



354 B. Kostant and N. Wallach

For any x ∈ M- and m ∈ In−1 let

Y x (m) = {y ∈ Y (m) | y is a cyclic generator for Gx,m}. (3.42)

We recall that xm is the “cutoff” of x in M(m) for any x ∈ M(n) where m ∈ In .
Henceforth, if m ∈ In−1, let x{m} ∈ Y (m) be the “component” of x in Y (m). That is,
x{m} =∑m

i=1 αi m+1(x)ei m+1.

Proposition 3.18. Let x ∈ M-(n). Then x{m} ∈ Y x (m).

Proof. Let g ∈ Gl(m) be such that g xm g−1 ∈ Diag(m). Then clearly g Gx,m g−1 =
Diag(m). It suffices then to show that g x{m} g−1 ∈ Y×(m). To prove this we use the
notation and the argument in the proof of Theorem 2.17. But then the result follows
from (2.60). ��

Proposition 3.17 lists a number of criteria for y ∈ Y (m) to be an element of Y x (m).
It is convenient to add the following to this list.

Proposition 3.19. Let x ∈ M-(n) and let m ∈ In−1. Let y ∈ Y (m). Then y ∈ Y x(m)
if and only if {(ad xm)

j (y)}, j = 0, . . . ,m − 1, is a basis of Y (m).

Proof. As noted in Proposition 3.17 one has y ∈ Y x(m) if and only if y is a cyclic
Zx,m generator. But xm is a regular semisimple element of M(m). But then ad xm |Y (m)
is diagonalizable with m distinct eigenvalues, by the module isomorphism (3.40). But
this readily establishes the proposition by standard linear algebra. ��
Remark 3.20. If x ∈ M-(n), note that Y x(m) is a Zariski open Ad Gx,m-orbit in Y (m)
by Proposition 3.17. However, if m > 1 the maximal torii Gx,m of Gl(m) do not run
through all maximal torii of Gl(m) as x runs through M-(n). For example one easily
has Gx,m �= Diag(m) for any x ∈ M-(n). This restricts the possible sets Y x (m). In
fact, for example, the following theorem implies that Y x(m) �= Y×(m) for all x ∈
M-(n).

Theorem 3.21. Let m ∈ In−1. One has em m+1 ∈ Y x(m) for all x ∈ M-(n).

Proof. Let x ∈ M-(n). If m = 1, the result is obvious. Assume m > 1. Let W be
the subspace of Y (m) spanned by (ad xm)

j (em,m+1) for j = 0, . . . ,m − 1. Using the
characteristic polynomial of ad xm it is clear that W is stable under ad xm . To show that
em,m+1 is a cyclic Gx,m generator (= cyclic Zx,m generator) it suffices, by Proposition
3.19, to show that W = Y (m). For this, of course, it suffices to show

dim W = m. (3.43)

Let Yo(m) be the span of ei m+1, i = 1, . . . ,m − 1, so that dim Yo(m) = m − 1.
Let Q : Y (m) → Yo(m) be the projection with respect to the decomposition
Y (m) = Yo(m)⊕ C em m+1. Let Wo = W ∩ Yo(m). Since em m+1 ∈ W one has W =
Wo ⊕ C em m+1. To prove (3.43) it suffices to show that Wo = Yo(m). Clearly
Q(W ) = Wo. Let v ∈ Wo. Then, since αm m+1(v) = 0, note that
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Q[xm, v] = [xm−1, v] (3.44)

so that Wo is stable under ad xm−1. But now [xm, em m+1] ∈ W and hence
Q[xm, em m+1] ∈ Wo. Thus if w j = (ad xm−1)

j (Q[xm, em m+1]), then

w j ∈ Wo (3.45)

for j ∈ {0, . . . ,m − 2}. But note that

[Q[xm, em m+1], em+1 m] = x{m−1}. (3.46)

But ad xm−1 commutes with ad em+1 m . Thus

[w j , em+1 m ] = (ad xm−1)
j x{m−1}. (3.47)

But x{m−1} ∈ Y x (m − 1) by Proposition 3.18. Hence the dimension of the subspace
spanned by the vectors on the right-hand side of (3.47) for j ∈ {0, . . . ,m−2} is m−1
by Proposition 3.19. Thus the space spanned by the w j must have dimension m − 1.
This proves that Wo = Yo(m). ��

For any x ∈ M(n) let x T be the transpose matrix and for any subset X ⊂ M(n) let
X T = {x T | x ∈ X}. Obviously

pi(x) = pi (x
T ) (3.48)

for all x ∈ M(n) and i ∈ Id(n) so that

Mc(n) = Mc(n)
T (3.49)

for any c ∈ Cd(n). Note that (see Sections 2.1 and (2.12))

−eT =
∑

m∈In−1

em m+1. (3.50)

Let u ⊂ M(n) be the Lie algebra of strictly upper triangular matrices. Then clearly

u = ⊕m∈In−1 Y (m). (3.51)

Lemma 3.22. Let x ∈ M-(n). Then there exists bx ∈ A such that

bx · x ∈ (−e+ b)T . (3.52)

Proof. Let m ∈ In−1. Assume inductively (downward) we have found g(k) ∈ Gx,k for
k = m, . . . , n − 1 such that if h(m) = g(m) · · · g(n − 1) and y(m) = (Ad h(m))(x),
then

y(m){ j } = e j j+1 for j = m, . . . , n − 1.

If m = n − 1, this induction assumption is satisfied, by Theorem 3.21, in that we can
choose g(n − 1) ∈ Gx,n−1 such that Ad g(n − 1)(x{n−1}) = en−1 n . To advance the
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induction assume m > 1 and note that, since xk is fixed by Ad Gx,k for all k, one
has (y(m))m = xm . Hence y(m){m−1} = x{m−1}. By Theorem 3.21 we can choose
g(m − 1) ∈ Gx,m−1 so that

Ad g(m − 1)(x{m−1}) = em−1 m . (3.53)

Let h(m − 1) = g(m − 1)h(m) and y(m − 1) = (Ad h(m − 1))(x). The point is that
the induction assumption is satisfied for y(m − 1) since the element e j j+1 ∈ Y ( j) is
clearly fixed under the adjoint action of Gl(m − 1) on Y ( j) for j = m, . . . , n − 1. By
Theorem 3.6 there exists bx ∈ A such that bx ·x = (Ad h(1))(x). But then (bx ·x){k} =
ek k+1 for k = 1, . . . , n − 1. But then by (3.50) one has bx · x + eT ∈ bT . ��

Let c ∈ -(n) where we recall -(n) ⊂ Cd(n) is the Zariski open set defined by
the eigenvalue disjointness condition. See Sections 2.4 and (2.53). We now have the
following neat description of the fiber Mc(n) of (2.8).

Theorem 3.23. Let c ∈ -(n). See (2.53). Then the group A operates transitively on
the fiber Mc(n) of (2.8). Furthermore Mc(n) is an A-orbit of maximal dimension in
M(n). Moreover Mc(n) is a nonsingular Zariski closed subvariety of M(n) of dimen-
sion d(n − 1). As an algebraic variety

Mc(n) ∼= (C×)d(n−1). (3.54)

Proof. Since Mc(n) ⊂ Msreg(n) (see (2.55)) one has Msreg
c (n) = Mc(n) in the nota-

tion of Remark 3.9. But obviously Mc(n) is Zariski closed in M(n). But, by Theorem
3.12, the irreducible components of Mc(n) are then the A-orbits in Mc(n), each of
which is a maximal orbit and a nonsingular variety of dimension d(n − 1). We now
show that there is only one orbit (i.e., N(c) = 1 in the notation of Theorem 3.12). By
Remark 2.4 we may replace e by −e in Theorem 2.5. We have put be = −e + b (see
Section 2.2) and, hence recalling (3.48), be by bT

e so that the restriction

�n : bT
e → Cd(n) (3.55)

is an algebraic isomorphism. But now if x, y ∈ Mc(n) there exists, by Lemma 3.22,
bx , by ∈ A such that both bx · x and by · y are in bT

e . But since Mc(n) is stabilized by
A, it follows from (3.55) that bx · x = by · y. Thus x and y are A conjugate and hence
N(c) = 1. The isomorphism (3.54) follows from the isomorphism (3.39). ��

The following two results could have been proved at an earlier point. However they
are manifestly transparent as a consequence of Theorem 3.23.

Proposition 3.24. Let c ∈ -(n) and let x ∈ Mc(n). Then the tangent vectors
(ξp(i) )x , i ∈ Id(n−1), are a basis of Tx(Mc(n)) (see (3.20)).

Proof. The tangent vectors in the statement of the theorem are obviously a basis of
Tx(A · x) since A · x is a maximal orbit. But then the proposition follows from the
equality A · x = Mc(n). ��
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The subalgebra J (n) ⊂ P(n) (see (2.30)) is Poisson commutative by (2.31). Since
P(n) is a Poisson algebra, the set of all f ∈ P(n), which Poisson commutes with all
polynomials in J (n), is an algebra containing J (n). We now assert that this set is equal
to J (n).

Theorem 3.25. Let J (n) ⊂ P(n) be the subalgebra (and polynomial ring in d(n) gen-
erators) defined by (2.30). Then J (n) is a maximal Poisson commutative subalgebra
of P(n).

Proof. Since e + b is a translate of linear subspace of M(n) it follows from Theorem
2.3 that the affine ring of e+b is the polynomial ring in the restrictions pi |(e+b), i ∈
Id(n). Thus for any f ∈ P(n) there exists p ∈ J (n) such that f = p on e + b. But
now if f Poisson commutes with all elements in J (n), then f |Mc(n) is a constant
by Proposition 3.24 and the connectivity of Mc(n), implied by Theorem 3.23. Thus
f = p on M-(n). But M-(n) is Zariski dense in M(n). Hence f = p. ��

We recall (see (3.51)) u is the Lie algebra of all lower triangular matrices. For any
x ∈ M(n) let xu be the “component” of x in u. That is xu ∈ u is such that x− xu ∈ bT .
Noting Proposition 3.18 one has

xu =
∑

m∈In−1

x{m}. (3.56)

Clearly (3.56) is just the decomposition of xu defined by the direct sum (3.51). Now
let c ∈ Cd(n) and let

βc : Mc(n)→ u (3.57)

be the regular morphism defined by putting βc(x) = xu. Of course u is a nonsingular
variety of dimension d(n − 1). If c ∈ -(n), then Mc(n) is also a nonsingular variety
of dimension d(n − 1) by Theorem 3.23. For such c we can establish the following
description of Mc(n).

Theorem 3.26. Let c ∈ -(n) (see (2.53)). Let uc ⊂ u be the image of βc. Then uc is a
nonempty Zariski open subset of u and

βc : Mc(n)→ uc (3.58)

is an algebraic isomorphism.

Proof. We first prove that βc is injective. Let x, y ∈ Mc(n) and assume xu = yu.
But then x{m} = y{m} for all m ∈ In . To prove that x = y we will inductively
(upward) prove that xm = ym for all m ∈ In . Since xm and ym have the same
spectrum one has tr xm = tr ym for all m ∈ In and hence α j j (x) = α j j (y) for
all j ∈ In . In particular this holds for j = 1. Thus x1 = y1. Assume m ∈ In−1
and xm = ym . Let g ∈ GL(m) be such that g xm g−1 is diagonal in M(m). We
use the notation and arguments in the proof of Theorem 2.17. The characteristic
polynomial of xm+1 and also of ym+1 is given by (2.59). But, from (2.59), the
residue of p(λ)/

∏m
i=1(λ − μi m) at λ = μi m , where i ∈ Im , is −ai m+1bm+1 i .
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This is nonzero by (2.60) and is unchanged if y replaces x . But x{m} = y{m} im-
plies that αi m+1(g xm+1g−1) = αi m+1(g ym+1g−1) (recalling that Ym is stable under
Ad Gl(m)). Thus αm+1 i (g xm+1g−1) = αm+1 i (g ym+1g−1). But then g xm+1g−1 =
g ym+1g−1. Hence xm+1 = ym+1. This proves the injectivity of (3.57).

We next wish to prove that the differential of (3.57) is an isomorphism at all points
of Mc(n). Assume not, so there exists x ∈ Mc(n), 0 �= ξ ∈ a such that (βc)∗(ξx ) = 0.
Recalling (3.19) let ξ j be the component of ξ in a( j) (so that j ∈ In−1). Let m be
minimal such that ξm �= 0. But now ξ(αk m+1)(x) = 0 for k ∈ Im . On the other hand
ξ j (αk m+1) = 0 for j ≥ m+ 1 since f(i, j ) ∈ P( j)Gl( j ) (see (2.38)) Poisson commutes
with αk m+1 for all i ∈ I j . Thus ξm(αk m+1)(x) = 0. But then, by (2.43) there exists
0 �= z ∈ Zx,m (see (2.46)) such that αk m+1([z, x]) = 0 for all k ∈ Im . Let W (m) be
the B-orthocomplement of Y (m)T in M(n) so that one has

M(n) = Y (m)⊕ W (m) (3.59)

(see (3.40)). It is clear that both summands in (3.59) are stable under ad M(m). But
the component of x in Y (m) relative to (3.59) is x{m}. But αk m+1 clearly vanishes on
W (m). Thus αk m+1([z, x{m}]) = 0 for all k ∈ Im . But this implies [z, x{m}] = 0.
However x{m} ∈ Y x(m) by Proposition 3.18. But then [z, x{m}] = 0 clearly contradicts
(e) of Proposition 3.17. This proves that the differential of (3.57) is everywhere a
linear isomorphism. The fact that uc is Zariski open in u follows by combining III,
Proposition 10.4, p. 270 in [H] with III, Exercise 9.1, p. 266 in [H]. (We thank P.
Etingof for this reference). But then (3.58) is an isomorphism by Theorem 5.2.8, p. 85
in [S]. ��

3.6.

Let adiag be the n − 1 dimensional subalgebra spanned by ξ(m,m), m ∈ In−1 and let
Adiag ⊂ A be the corresponding n − 1 dimensional subgroup. In Remark 2.4 it was
noted that the p j , j ∈ In , are invariant under Ad Diag(n). Consequently the same
statement is true for any p ∈ J (n) and hence Ad Diag(n) necessarily commutes with
the action of A. We now observe that, in fact, Adiag(n) operates on M(n) as Ad Diag(n)
so that A can be thought of as an d(n − 1)-dimensional extension of Ad Diag(n). Let
d(n) be the Lie algebra of all diagonal matrices in M(n) so that d(n) = Lie Diag(n).
Actually we have already, analogously defined d(m) ⊂ M(m) for m ∈ In−1. See
(2.61). Clearly Im, m ∈ In, is a basis of d(n). But ad Idn operates trivially on M(n) so
that Ad Diag(n) is an n − 1-dimensional group. Let

ρdiag : Adiag → Diag(n) (3.60)

be the homomorphism whose differential, (ρdiag)∗, is such that

(ρdiag)∗(ξ(m,m)) = −Im (3.61)

for m ∈ In−1. One notes then that Adiag → Ad Diag(n) where a 	→ Ad ρdiag(a) is an
epimorphism.
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Theorem 3.27. Let a ∈ Adiag and x ∈ M(n). Then one has

a · x = Ad ρdiag(a)(x) (3.62)

so that the action of Ad Diag(n) on M(n) is realized by the subgroup Adiag of A on
M(n).

Proof. Write a = a(1) · · · a(n − 1) where a(m) ∈ A(m) (see (3.21)). Then there
exists b(m) ∈ C such that a(m) = exp b(m) ξ(m,m). Let g(m) = ρx,m(a(m)) (see
(3.7)). Then, by Theorem 3.6, a · x = Ad h(x) where h = g(1) · · · g(m−1). Of course
a(m) ∈ Adiag and hence it suffices to show that ρx,m(a(m)) = ρdiag(a(m)) (which
implies g(m), in this case, is independent of x). But to prove this it suffices to show
that

(ρx,m)∗(ξ(m,m)) = (ρdiag)∗(ξ(m,m)). (3.63)

But indeed both sides of (3.63) are equal to −Idm by (3.8) and (3.61). ��
Let c ∈ -(n) (see (2.53)). Let

Dc = {a ∈ A | a operates as the identity map on Mc(n)}.
Since A is abelian and operates transitively on Mc(n) (see Theorem 3.23) it follows
that

Dc = {a ∈ A | there exists x ∈ Mc(n) such that a · x = x}. (3.64)

For m ∈ In−1 let Dc(m) = Dc ∩ A(m). Let Ac = A/Dc.

Theorem 3.28. Let c ∈ -(n) (see (2.53)) and let x ∈ Mc(n). Then (see (3.7))
Dc(m) = Kerρx,m. Moreover Dc(m) is a closed discrete subgroup of A(m) and

A(m)/Dc(m) ∼= Gx,m

∼= (C×)m
(3.65)

giving A(m)/Dc(m) the structure of an abelian reductive algebraic group (i.e., a com-
plex torus). In addition Dc = Dc(1)× · · · × Dc(n − 1) so that

Ac ∼= (A(1)/Dc(1))× · · · × (A(n − 1)/Dc(n − 1)) (3.66)

so that Ac has the structure of a complex torus of dimension d(n − 1) which operates
simply and transitively on Mc(n).

Proof. One has Ker ρx,m ⊂ Dc by (3.11) where we put y = x . On the other hand let
a ∈ A(m) and let g = ρx,m(a) so that a · x = Ad g(x) by (3.11). But if Ad g(x) = x ,
then g = 1 by Theorem 3.14 where we put g = g(m) and g(k) = 1 for k �= m (see
(3.35)). This proves Dc(m) = Kerρx,m , using (3.64). Of course Dc(m) is closed and
discrete in A(m) since (ρx,m)∗ is an isomorphism (see (3.8)). The equalities (3.65)
then follow from (3.38). Now let a ∈ Dc so that a · x = 1. Write a = a(1) · · ·a(n−1)
where a(m) ∈ A(m). Let g(m) = ρx,m(a(m)). Then g(m) = 1 for all m ∈ In−1 by
Theorem 3.14 (see (3.35)). Hence a(m) ∈ Dc(m) for all m ∈ In−1. But this readily
implies (3.66). The last statement then follows from Theorem 3.23. ��
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Let c ∈ -(n) and let Ddiag
c = Dc ∩ Adiag.

Theorem 3.29. Let c ∈ -(n). Then independent of c one has (see (3.60))

Ddiag
c = Kerρdiag (3.67)

and ρdiag induces an isomorphism

Adiag/Ddiag
c

∼= Ad Diag(n)

∼= (C×)n−1. (3.68)

In particular Ad Diag(n) operates faithfully and without fixed point on Mc(n).

Proof. Let x ∈ Mc(n). Obviously Ker ρdiag ⊂ Ddiag
c by (3.62). Conversely, let a ∈

Ddiag
c . We will use the notation and arguments in the proof of Theorem 3.27. One has

a · x = x . But then g(m) = 1 for all m ∈ In−1 by Theorem 3.14. But, as established
in the proof of Theorem 3.27, g(m) = ρdiag(a(m)). Thus a(m) ∈ Kerρdiag for all
m ∈ In−1. Hence a ∈ Kerρdiag. But it is immediate from the definition of ρdiag that

Diag(n) = Cent Gl(n)× Imρdiag. (3.69)

But this readily implies (3.68). ��

3.7.

We recall that the operation of transpose (x 	→ xT ) in M(n) stabilizes Mc(n) for any
c ∈ Cd(n). The relation of this operation to the action of A is given in

Proposition 3.30. Let a ∈ A and let x ∈ M(n). Then

(a · x)T = a−1 · x T . (3.70)

Proof. Write a = a(1) · · ·a(n − 1) where a(m) ∈ A(m) for m ∈ In−1. Let g(m) =
ρx,m(a(m)). Then for y ∈ xm+M(m)⊥ one has a(m) · y = g(m) y g(m)−1, by (3.11),
so that

(a(m) · y)T = (g(m)T )−1 yT g(m)T (3.71)

since (g(m)T )−1 = (g(m)−1)T . Let gT (m) = ρxT ,m(a(m)). On the other hand
(xm)

T = (x T )m and hence yT ∈ (xT )m + M(m)⊥. Thus

(a(m))−1 · yT = (gT (m))
−1 yT gT (m). (3.72)

But we now assert that
g(m)T = gT (m). (3.73)

Indeed, by (3.8), (ρxT ,m)∗(ξ(k,m)) = −((xT )m)
m−k . But clearly ((x T )m)

m−k =
((xm)

m−k)T . Thus
(ρxT ,m)∗(ξ) = (ρx,m)∗)(ξ)T (3.74)
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for any ξ ∈ a(m). But this clearly implies (3.73). But then (3.71) and (3.72) yield

(a(m) · y)T = a(m)−1 · yT (3.75)

for any y ∈ xm +M(m)⊥. But since x is arbitrary one has (3.75) for all y ∈ M(n) and
all m ∈ In−1. However since A is commutative this immediately implies (3.70). ��
Remark 3.31. If c ∈ -(n) the action of A on Mc(n) descends to an action of the
d(n − 1)-dimensional torus Ac on Mc(n), by Theorem 3.28. If, in Proposition 3.30,
one has x ∈ Mc(n), where c ∈ -(n), one clearly has (3.70) where we can regard
a ∈ Ac.

It is suggestive from Theorems 2.19 and 2.21 that if x ∈ M(n) satisfies the eigen-
value disjointness condition (i.e., x ∈ M-(n)) and x is symmetric (i.e., x = xT ) then
x is “essentially” uniquely determined by the set of eigenvalues Ex(m) of xm for all
m ∈ In . The precise statement is given in Theorem 3.32 below. If c ∈ -(n) let Fc be
the group of elements of order ≤ 2 in Ac so that Fc is a group of order 2d(n−1) and let
M(sym)

c (n) be the set of symmetric matrices in Mc(n).

Theorem 3.32. Let c ∈ -(n) (see (2.53)). Then M(sym)
c (n) is a finite set of cardinality

2d(n−1). In fact M(sym)
c (n) is an orbit of Fc (see Remark 3.31).

Proof. Let x ∈ Mc(n) so that the most general element y ∈ Mc(n) is uniquely of the
form y = a ·x for a ∈ Ac by Theorem 3.28. But then the condition that y be symmetric
is that a · x = a−1 · x T by (3.70) and Remark 3.31. But this is just the condition that

a2 · x = x T . (3.76)

But now by (3.49) and Theorem 3.28 there exists b ∈ Ac such that b · x = x T . But
since Ac ∼= (C×)d(n−1) there exists a ∈ Ac such that b = a2. But then y ∈ M(sym)

c (n)
where y = a · x . Thus M(sym)

c (n) �= ∅. Now choose x ∈ M(sym)
c (n). But then, by

(3.76), a necessary and sufficient conditon that y ∈ M(sym)
c (n) is that a ∈ Fc. ��

An important special case of Theorem 3.32 is when Mc(n) contains a real symmet-
ric matrix. Let c ∈ Cd(n). The using the notation of (2.10) we will say that c satisfies
the eigenvalue interlacing condition if μk m(c) is real for all m ∈ In, k ∈ Im , and
(2.64) is satisfied where μk m = μk m(c). In such a case of course c ∈ -(n).

For any c ∈ Cd(n) and m ∈ In let pc,m(λ) be the polynomial defined by putting

pc,m(λ) =
m∏

k=1

(λ− μk m). (3.77)

Remark 3.33. Assume that c ∈ -(n) and that μk m(c) is real for all m ∈ In, k ∈ Im .
The lexicographical ordering implies

μk m(c) < μk+1 m(c) ∀m ∈ In, k ∈ Im−1. (3.78)

Note that if c satisfies the eigenvalue interlacing condition, then for m ∈ In−1,

sign(pc,m+1(μi m(c))) = (−1)m+1−i ∀i ∈ Im . (3.79)
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Theorem 3.34. Let c ∈ -(n). Then the following conditions are equivalent:

(1) c satisfies the eigenvalue interlacing condition,

(2) there exists a real symmetric matrix in M(sym)
c (n), (3.80)

(3) all 2d(n−1) matrices in M(sym)
c (n) are real symmetric.

Proof. Obviously (3) implies (2). Assume (2) and let x ∈ M(sym)
c (n) be real symmet-

ric. Then x is strongly regular by (2.55). Thus (2) implies (1) by Proposition 2.18. Now
assume (1) and let x ∈ M(sym)

c (n). We wish to show that x is real. But now (3.78) is
satisfied. Obviously x1 is real since x1 = μ1 1(c). Assume inductively that m ∈ In−1
and that xm is real. We use the notation and argument in the proof of Theorem 2.17.
We can take g to be an orthogonal matrix. Then g xm+1g−1 is still symmetric so that
a j m+1 = bm+1 j . It suffices then to show that ai m+1 is real for i ∈ Im . (One has
αm+1 m+1(x) is real since the reality of Ex(m + 1) implies that tr xm+1 is real.) But
p(λ) = pc,m+1(λ). See (2.59). But then

pc,m+1(μi,m (c)) = −a2
i m+1

∏
j∈Im−{i}

(μi m − μ j m). (3.81)

But clearly
sign(−

∏
j∈Im−{i}

(μi m − μ j m) = (−1)m+1−i .

Thus a2
i m+1 > 0 by (3.79). Hence ai m+1 is real for all i ∈ Im . ��

Let c ∈ -(n). Recalling Theorem 3.29 put Adiag
c = Adiag/Ddiag

c so that Adiag
c is

an n − 1-dimensional subtorus of Ac, by (3.68). Now let Fdiag
c be the group of all

elements a ∈ Adiag
c of order ≤ 2 so that Fdiag

c is a subgroup of Fc of order 2n−1. The
determination of a · x for a ∈ Fc and x ∈ Mc(n) seems quite nontransparent to us.
However if a ∈ Fdiag

c , then it is easy to exhibit a · x . Indeed it follows from Theorem
3.29 (see also (3.69)) that for each a ∈ Fdiag

c and j ∈ In−1 there exists ε j (a) ∈ {1,−1}
such that for the faithful descent of ρdiag to Fdiag

c one has

ρdiag(a) = diag(ε1(a), . . . , εn−1(a), 1) (3.82)

and
a · x = ρdiag(a) x ρdiag(a). (3.83)

Remark 3.35. Let x ∈ M(n) be a real symmetric Jacobi matrix (e.g., arising say from
orthogonal polynomials on R—see Theorem 2.20). Let c ∈ Cd(n) be such that x ∈
Mc(n) so that c is eigenvalue interlacing by Theorem 2.19. Then note that

{a · x | a ∈ Fdiag
c } is the set of all symmetric Jacobi matrices in M(sym)

c , (3.84)

by Theorem 2.19. It is interesting to note that if a ∈ Fc − Fdiag
c , then a · x ∈ M(sym)

c
is non-Jacobi.



Gelfand–Zeitlin and classical mechanics. I 363

Example. Consider the case where n = 3 so that there are 8 symmetric matri-
ces in Mc(3) for any c ∈ -(n). Let c be defined so that Ec(1) = {0}, Ec(2) =
{1,−1}, Ec(3) = {√2, 0,−√2} so that c is eigenvalue interlacing. Then 2 of the 8
real symmetric matrices in Mc(3) are

x =
⎛⎜⎝0 1 0

1 0 1

0 1 0

⎞⎟⎠ , y =
⎛⎜⎝0 1 1

1 0 0

1 0 0

⎞⎟⎠
noting that x , but not y, is Jacobi. The remaining 6 are obtained by sign changes in x
and y. That is, by applying the three nontrivial elements in Fdiag

c to x and y.

3.8.

In Part II we will need the following result on polarizations of regular adjoint orbits
and maximal A-orbits. Let x ∈ M(n). It is clear from (1.18) that the adjoint Ox is
stable under the action of A. Let Osreg

x = Msreg ∩ Ox so that Osreg
x is Zariski open

subset of Ox .

Theorem 3.36. Let x ∈ M(n). Then Osreg
x is non-empty (and hence dense in Ox ) if

and only if x is regular, in M(n). In particular if x is regular, then Osreg
x is a symplectic

2 d(n − 1)-dimensional manifold (in the complex sense). Furthermore Osreg
x is stable

under the action of A and the orbits of A in Osreg
x (necessarily of dimension d(n − 1))

are the leaves of a polarization of Osreg
x .

Proof. If x is not regular, then all elements in Ox are not regular so that Osreg
x is empty

(strongly regular implies regular — see Theorem 2.13). Now assume that x is regular.
But now by Theorem 2.5 there exists y ∈ e + b such that Ex(n) = Ey(n). But y is
regular by (2.27). But, as one knows, any two regular matrices with the same spectrum
are conjugate (they are both conjugate to the same companion matrix). Thus y ∈ Ox .
But then y ∈ Osreg

x by (2.27). Hence Osreg
x is not empty. But then Osreg

x is a union of
maximal A-orbits by (3.30). But each such orbit is a Lagrangian submanifold of Ox

by dimension (see (3.29)) and the vanishing of (1.17), by (2.31), where ψ = p(i) and
u = (ξp( j))x (see (1.18)) for i, j ∈ Id(n−1). ��
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Introduction

Let G be a connected complex algebraic group and A an abelian connected algebraic
group, together with an algebraic action of G on A via group automorphisms. The aim
of this article is to study the set of isomorphism classes Extalg(G, A) of extensions of
G by A in the algebraic group category. The following is our main result (cf. Theorem
1.8).

0.1. Theorem. For G and A as above, there exists a split exact sequence of abelian
groups:

0 → Hom(π1([G,G]), A)→ Extalg(G, A)
π−→ H 2(g, gred, au)→ 0 ,
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where Au is the unipotent radical of A, Gred is a Levi subgroup of G, gred, g, au are
the Lie algebras of Gred,G, Au, respectively, and H ∗(g, gred, au) is the Lie algebra
cohomology of the pair (g, gred) with coefficients in the g-module au.

Our next main result is the following analogue of the Van-Est Theorem for the
algebraic group cohomology (cf. Theorem 2.2).

0.2. Theorem. Let G be a connected algebraic group and let a be a finite-dimensional
algebraic G-module. Then, for any p ≥ 0,

H p
alg(G, a) � H p(g, gred, a).

By an algebraic group G we mean an affine algebraic group over the field of com-
plex numbers C and the varieties are considered over C. The Lie algebra of G is
denoted by L(G).

1. Extensions of Algebraic Groups

1.1. Definition. Let G be an algebraic group and A an abelian algebraic group, to-
gether with an algebraic action of G on A via group automorphisms, i.e., a morphism
of varieties ρ : G × A → A such that the induced map G → Aut A is a group
homomorphism. Such an A is called an algebraic group with G-action.

By Extalg(G, A) we mean the set of isomorphism classes of extensions of G by
A in the algebraic group category, i.e., surjective morphisms q : Ĝ → G with kernel
isomorphic to A as an algebraic group with G-action. We obtain on Extalg(G, A) the
structure of an abelian group by assigning to two extensions qi : Ĝi → G of G by
A the fiber product extension Ĝ1 ×G Ĝ2 of G by A × A and then applying the group
morphism m A : A× A → A fiberwise to obtain an A-extension of G (this is the Baer
sum of two extensions). Then, Extalg assigns to a pair of an algebraic group G and
an abelian algebraic group A with G-action, an abelian group, and this assignment is
contravariant in G (via pulling back the action of G and the extension) and if G is
fixed, Extalg(G, ·) is a covariant functor from the category of abelian algebraic groups
with G-actions to the category of abelian groups. Here we assign to a G-equivariant
morphism γ : A1 → A2 of abelian algebraic groups and an extension q : Ĝ → G of
G by A1 the extension

γ∗Ĝ := (A2 � Ĝ)/�(γ )→ G, [(a, g)] 	→ q(g),

where �(γ ) is the graph of γ in A2 × A1 and the semidirect product refers to the
action of Ĝ on A2 obtained by pulling back the action of G on A2 to Ĝ. In view of the
equivariance of γ , its graph is a normal algebraic subgroup of A2 � Ĝ so that we can
form the quotient γ∗Ĝ.

We define a map

D : Extalg(G, A)→ Ext(L(G), L(A))
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by assigning to an extension

1 → A
i−→ Ĝ

q−→ G → 1

of algebraic groups the corresponding extension

0 → L(A)
di−→ L(Ĝ)

dq−→ L(G)→ 0

of Lie algebras. Since i is injective, di is injective. Similarly, dq is surjective. More-
over, dim G = dim L(G) and hence the above sequence of Lie algebras is indeed
exact.

It is clear from the definition of D that it is a homomorphism of abelian groups. If
g is the Lie algebra of G and a the Lie algebra of A, then the group Ext(g, a) is isomor-
phic to the second Lie algebra cohomology space H 2(g, a) of g with coefficients in
the g-module a (with respect to the derived action) ([CE]). Therefore, the description
of the group Extalg(G, A) depends on a “good” description of kernel and cokernel of
D which will be obtained below in terms of an exact sequence involving D.

In the following G is always assumed to be connected. The following lemma re-
duces the extension theory for connected algebraic groups A with G-actions to the two
cases of a torus As and the case of a unipotent group Au .

1.2. Lemma. Let G be connected and let A be a connected algebraic group with G-
action. Further, let A = Au As denote the decomposition of A into its unipotent and
reductive factors. Then, A ∼= Au × As as a G-module, where G acts trivially on As

and G acts on Au as a G-stable subgroup of A. Thus, we have

Extalg(G, A) ∼= Extalg(G, Au)⊕ Extalg(G, As). (1)

Proof. Decompose
A = Au As, (2)

where As is the set of semisimple elements of A and Au is the set of unipotent ele-
ments of A. Then, As and Au are closed subgroups of A and (2) is a direct product
decomposition (see [H, Theorem 15.5]). The action of G on A clearly keeps As and
Au stable separately. Also, G acts trivially on As since Aut(As) is discrete and G is
connected (by assumption). Thus, the action of G on A decomposes as the product
of actions on As and Au with the trivial action on As . Hence, the isomorphism (1)
follows from the functoriality of Extalg(G, ·). ��

If G = Gu � Gred is a Levi decomposition of G, then Gu being simply-connected,

π1(G) ∼= π1(Gred),

where Gu is the unipotent radical of G, Gred is a Levi subgroup of G and π1 denotes
the fundamental group. The connected reductive group Gred is a product of its con-
nected center Z := Z(Gred)0 and its commutator group G′

red := [Gred,Gred] which is
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a connected semisimple group. Thus, G′
red has an algebraic universal covering group

G̃′
red, with the finite abelian group π1(G′

red) as its fiber. We write G̃red := Z × G̃′
red,

which is an algebraic covering group of Gred; denote its kernel by #G and observe
that

G̃ := Gu � G̃red

is a covering of G with #G as its fiber. We write qG : G̃ → G for the corresponding
covering map.

1.3. Lemma. If G and A are tori, then Extalg(G, A) = 0.

Proof. Let q : Ĝ → G be an extension of the torus G by A. Then, as is well known,
Ĝ is again a torus (cf. [B, §11.5]). Since any character of a subtorus of a torus extends
to a character of the whole torus ([B, §8.2]), the identity IA : A → A extends to a
morphism f : Ĝ → A. Now, ker f yields a splitting of the above extension. ��

The following proposition deals with the case A = As .

1.4. Proposition. If A = As, then D = 0 and we obtain an exact sequence

Hom(G̃, As)
res−→ Hom(#G , As)

�−→ Extalg(G, As),

where� assigns to any γ ∈ Hom(#G , As) the extension γ∗G̃. The kernel of� consists
of those homomorphisms vanishing on the fundamental group π1(G′

red) of G′
red and�

factors through an isomorphism

�′ : Hom(π1(G
′
red), As) � Extalg(G, As).

Proof. Consider an extension

1 → As → Ĝ → G → 1.

Since As is a central torus in Ĝ, the unipotent radical Ĝu of Ĝ maps isomorphically
on Gu . Also

1 → As → Ĝred → Gred → 1

is an extension whose restriction to Z splits by the preceding lemma. On the other hand
the commutator group of Ĝred has the same Lie algebra as G′

red, hence is a quotient of
G̃′

red. Thus, Ĝred is a quotient of As × Z × G̃′
red, which implies that Ĝ is a quotient of

As × G̃. Hence, Ĝ is obtained from As × G̃ by taking its quotient by the graph of a
homomorphism#G → As . This proves that� is surjective. In particular, the pullback
q∗G Ĝ of Ĝ to G̃ always splits.

We next show that ker� coincides with the image of the restriction map from
Hom(G̃, As) to Hom(#G , As). Assume that the extension Ĝγ = γ∗G̃ defined by
γ ∈ Hom(#G , As) splits. Let σ : G → Ĝγ be a splitting morphism. Pulling σ back
via qG , we obtain a splitting morphism

σ̃ : G̃ → q∗G Ĝγ ∼= As × G̃.
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Thus, there exists a morphism δ : G̃ → As of algebraic groups such that σ satisfies
σ(qG(g)) = β(δ(g), g) for all g ∈ G̃, where β : As × G̃ → Ĝγ = (As × G̃)/�(γ )
is the standard quotient map. For g ∈ #G = ker qG we have β(δ(g), g) = 1, and
therefore δ(g) = γ (g) for all g ∈ #G . This shows that δ is an extension of γ to G̃.
Conversely, if γ extends to G̃, Ĝγ is a trivial extension of G.

That D = 0 follows from the fact that Ĝ and q∗G Ĝ have the same Lie algebras,
which is a split extension of g by as .

We recall that G̃ = Gu �(Z×G̃′
red). If a homomorphism γ : #G → As extends to

G̃, then it must vanish on the subgroup π1(G′
red) of#G since, G̃′

red being a semisimple
group, there are no nonconstant homomorphisms from G̃′

red → As . Conversely, if a
homomorphism γ : #G → As vanishes on π1(G′

red), then γ defines a homomorphism

Z ∩ G′
red
∼= #G/π1(G

′
red)→ As .

But since As is a torus, this extends to a morphism f : Z → As ([B, §8.2]) which
in turn can be pulled back via Z ∼= G̃/(Gu � G̃′

red) to a morphism f̃ : G̃ → As

extending γ . This proves that the image of Hom(G̃, As) under the restriction map in
Hom(#G , As) is the annihilator of π1(G′

red) so that

� : Hom(#G , As)→ Extalg(G, As)

factors through an isomorphism

�′ : Hom(π1(G
′
red), As) � Extalg(G, As). ��

1.5. Remark. A unipotent group Au over C has no nontrivial finite subgroups, so that

Hom(π1(G
′
red), As) ∼= Hom(π1(G

′
red), A).

Now, we turn to the study of extensions by unipotent groups. In contrast to the
situation for tori, we shall see that these extensions are faithfully represented by the
corresponding Lie algebra extensions.

1.6. Lemma. The canonical restriction map

H 2(g, gred, au) −→ H 2(g, au)

is injective.

Proof. Let ω ∈ Z2(g, au) be a Lie algebra cocycle representing an element of
H 2(g, gred, au) and suppose that the class [ω] ∈ H 2(g, au) vanishes so that the ex-
tension

ĝ := au ⊕ω g → g, (a, x) 	→ x

with the bracket [(a, x), (a′, x ′)] = (x .a′ − x ′.a+ω(x, x ′), [x, x ′]) splits. We have to
find a gred-module map f : g → au vanishing on gred with

ω(x, x ′) = (dg f )(x, x ′) := x . f (x ′)− x ′. f (x)− f ([x, x ′]), x, x ′ ∈ g.
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Since the space C1(g, au) of linear maps g → au is a semisimple gred-module (au

being a G-module; in particular, a Gred-module), we have

C1(g, au) = C1(g, au)
gred ⊕ gred.C

1(g, au);
and similarly for the space Z2(g, au) of 2-cocycles. As the Lie algebra differential
dg : C1(g, au) → Z2(g, au) is a gred-module map, each gred-invariant coboundary is
the image of a gred-invariant cochain in C1(g, au). We conclude, in particular, that ω =
dgh for some gred-module map h : g → au . For x ∈ gred and x ′ ∈ g, it follows that

0 = ω(x, x ′) = x .h(x ′)− x ′.h(x)− h([x, x ′])
= h([x, x ′])− x ′.h(x)− h([x, x ′]) = −x ′.h(x),

showing that h(gred) ⊆ a
g
u , which in turn leads to [gred, gred] ⊆ ker h. As

z(gred) ∩ [g, g] = {0}, the map h|z(gred) extends to a linear map f : g → a
g
u vani-

shing on [g, g]. Moreover, since f vanishes on [g, g], f is clearly a g-module map;
in particular, a gred-module map. Then, dg f = 0, so that dg(h − f ) = ω, and h − f
vanishes on gred. ��
1.7. Proposition. For A = Au the map D : Extalg(G, Au) → H 2(g, au) induces a
bijection

D : Extalg(G, Au)→ H 2(g, gred, au).

Proof. In view of the preceding lemma, we may identify H 2(g, gred, au) with a sub-
space of H 2(g, au). First we claim that im(D) is contained in this subspace. For any
extension

1 → Au → Ĝ → G → 1, (3)

we choose a Levi subgroup Ĝred ⊂ Ĝ mapping to Gred under the above map Ĝ → G.
Then,

Ĝred ∩ Au = {1}.
Moreover, Ĝred → Gred is surjective and hence an isomorphism. This shows that the
extension (3) restricted to Gred is trivial and that ĝu contains a ĝred-invariant com-
plement to au . Therefore, ĝ can be described by a cocycle ω ∈ Z2(g, gred, au); in
particular, ω vanishes on g× gred. This shows that Im D ⊂ H 2(g, gred, au).

If the image of the extension (3) under D vanishes, then the extension au ↪→
ĝu →→ gu splits, which implies that the corresponding extension of unipotent groups
Au ↪→ Ĝu →→ Gu splits. Moreover, the splitting map can be chosen to be Gred-
equivariant since ω is Gred-invariant. This means that we have a morphism
Gu � Gred → Ĝ ∼= Ĝu � Gred splitting the extension (3). This proves that D is
injective.

To see that D is surjective, let ω ∈ Z2(g, gred, au). Let q : ĝ := au ⊕ω g → g
denote the corresponding Lie algebra extension. Since au is a nilpotent module of gu ,
the subalgebra ĝu := au ⊕ω gu of ĝ is nilpotent, hence corresponds to a unipotent
algebraic group Ĝu which is an extension of Gu by Au . Further, the Gred-invariance of
the decomposition ĝ = au ⊕ g implies that Gred acts algebraically on ĝu and hence on
Ĝu , so that we can form the semidirect product Ĝ := Ĝu � Gred which is an extension
of G by Au mapped by D onto ĝ. ��
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Combining the previous results, we get the following.

1.8. Theorem. For a connected algebraic group G and a connected abelian algebraic
group A with G-action, we have the following isomorphisms of abelian groups induced
respectively by the decomposition A = Au As, the map � of Proposition 1.4 and the
map D.

(a) Extalg(G, A) � Extalg(G, Au)⊕ Extalg(G, As),

(b) Extalg(G, As) � Hom(π1([G,G]), As), and
(c) Extalg(G, Au) � H 2(g, gred, au) � H 2(gu, au)

g,

where a = L(A), Gred is a Levi subgroup of G, gred = L(Gred), gu = L(Gu), g =
L(G) and au = L(Au).

(Observe that, by the following proof, the fundamental group π1([G,G]) is a finite
group.)

Moreover, the isomorphisms in (a) and (b) are functorial in both A and G. Also, the
first isomorphism in (c) is functorial in A as well as in the category of pairs (G,Gred),
where G is a connected algebraic group and Gred is a Levi subgroup. (Recall that given
any algebraic group morphism f : G → H , we can always choose Levi subgroups
Gred ⊂ G and Hred ⊂ H such that f (Gred) ⊂ Hred.)

Proof. In view of the Levi decomposition of the commutator [G,G] = [G,G]u�G′
red,

we have π1([G,G]) = π1(G′
red). Now, we only have to use Lemma 1.2 and the

preceding results Propositions 1.4 and 1.7 on extensions by As and Au to com-
plete the proof of (a), (b) and the first isomorphism of (c). The restriction map
γ : C∗(g, gred, a)→ C∗(gu, a)

gred between the standard cochain complexes is clearly
an isomorphism. Thus, the last isomorphism in (c) follows since the action of gred on
g and au is completely reducible and, moreover, the standard action of any Lie algebra
s on H ∗(s,M) is trivial (for any s-module M).

The functoriality of the isomorphisms follows from their proofs. ��

2. Analogue of Van-Est Theorem for algebraic group cohomology

2.1. Definition. Let G be an algebraic group and A an abelian algebraic group with
G-action. For any n ≥ 0, let Cn

alg(G, A) be the abelian group consisting of all the
variety morphisms f : Gn → A under the pointwise addition. Define the differential

δ : Cn
alg(G, A)→ Cn+1

alg (G, A) by

(δ f )(g0, . . . , gn) = g0 · f (g1, . . . , gn)+ (−1)n+1 f (g0, . . . , gn−1)

+
n−1∑
i=0

(−1)i+1 f (g0, g1, . . . , gi gi+1, . . . , gn).
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Then, as is well known (and easy to see),

δ2 = 0. (4)

The algebraic group cohomology H ∗
alg(G, A) of G with coefficients in A is defined

as the cohomology of the complex

0 → C0
alg(G, A)

δ−→ C1
alg(G, A)

δ−→ · · · .
We have the following analogue of the Van-Est Theorem [V] for the algebraic

group cohomology.

2.2. Theorem. Let G be a connected algebraic group and let a be a finite-dimensional
algebraic G-module. Then, for any p ≥ 0,

H p
alg(G, a) � H p(g, gred, a) � H p(gu, a)

g,

where g is the Lie algebra of G, gu is the Lie algebra of the unipotent radical Gu of
G, and gred is the Lie algebra of a Levi subgroup Gred of G as in Section 1.

Proof. Consider the homogeneous affine variety X := G/Gred and let {-q =
-q(X, a)}q denote the complex vector space of algebraic de Rham forms on X with
values in the vector space a. Since X is a G-variety under the left multiplication of
G and a is a G-module, -q has a natural locally-finite algebraic G-module structure.
Define a double cochain complex A =⊕

p,q≥0 A p,q , where

A p,q := C p
alg(G,-

q)

and C p
alg(G,-

q) consists of all the maps f : G p → -q such that im f ⊂ M f ,
for some finite-dimensional G-stable subspace M f ⊂ -q and, moreover, the map
f : G p → M f is algebraic. Let δ : A p,q → A p+1,q be the group cohomology
differential as in Section 2.1 and let d : A p,q → A p,q+1 be induced from the standard
de Rham differential -q → -q+1, which is a G-module map. It is easy to see that
dδ − δd = 0 and, of course, d2 = δ2 = 0. Thus, (A, δ, d) is a double cochain
complex. This gives rise to two spectral sequences both converging to the cohomology
of the associated single complex (C, δ + d) with their E1-terms given as follows:

\E p,q
1 = H q

d (A
p,∗), and (5)

\\
E p,q

1 = H q
δ (A

∗,p). (6)

We now determine
\
E1 and

\\
E1 more explicitly in our case.

Since X is a contractible variety, by the algebraic de Rham theorem [GH, Chap. 3,
§5], the algebraic de Rham cohomology

H q
dR(X, a)

{
� a, if q = 0

= 0, otherwise.
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Thus,
\
E p,q

1

{
� C p

alg(G, a), if q = 0

= 0, otherwise.

Therefore,
\
E p,q

2 = H p
δ (H

q
d (A)) =

{
H p

alg(G, a), if q = 0

0, otherwise.
(7)

In particular, the spectral sequence
\
E∗ collapses at

\
E2. From this we see that there

is a canonical isomorphism

H p
alg(G, a) � H p(C, δ + d). (8)

We next determine
\\
E1 and

\\
E2. But first we need the following two lemmas.

2.3. Lemma. For any p ≥ 0,

H q
alg(G,-

p) =
{
-pG , if q = 0

0, otherwise,

where -pG denotes the subspace of G-invariants in -p = -p(X, a).

Proof. The assertion for q = 0 follows from the general properties of group cohomol-
ogy. So we need to consider the case q > 0 now.

Since L := Gred is reductive, any algebraic L-module M is completely reducible.
Let

πM : M → M L

be the unique L-module projection onto the space of L-module invariants M L of M .
Taking M to be the ring of regular functions C[L] on L under the left regular repre-
sentation, i.e., under the action

(k · f )(k ′) = f (k−1k ′), for f ∈ C[L], k, k ′ ∈ L,

we get the L-module projection π = πC[L] : C[L] → C. Thus, for any complex
vextor space V , we get the projection π ⊗ IV : C[L]⊗ V → V , which we abbreviate
simply by π , where IV is the identity map of V . We define a “homotopy operator” H ,
for any q ≥ 0,

H : Cq+1
alg (G,-

p)→ Cq
alg(G,-

p)

by (
(H f )(g1, . . . , gq)

)
g0 L

= π(0 f
(g0,...,gq )

)
,

for f ∈ Cq+1
alg (G,-

p) and g0, . . . , gq ∈ G, where 0 f
(g0,...,gq )

: L → -
p
g0 L is defined

by

0
f
(g0,...,gq )

(k) =
(
(g0k) · f (k−1g−1

0 , g1, g2, . . . , gq)
)

g0 L
,
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for k ∈ L. (Here -p
g0 L denotes the fiber at g0L of the vector bundle of p-forms in X

with values in a and, for a form ω, ωg0 L denotes the value of the form ω at g0L.) It is
easy to see that on Cq

alg(G,-
p), for any q ≥ 1,

H δ + δH = I. (9)

To prove this, take any f ∈ Cq
alg(G,-

p) and g0, . . . , gq ∈ G. Then,(
(H δ f )(g1, . . . , gq)

)
g0 L

= π(0δ f
(g0,...,gq )

)
= (

f (g1, . . . , gq)
)

g0 L

+ (−1)q+1π
((
(g0k) · f (k−1g−1

0 , g1, . . . , gq−1)
)

g0 L

)
+

q−1∑
i=1

(−1)i+1π
((
(g0k) · f (k−1g−1

0 , g1, . . . , gi gi+1, . . . , gq)
)

g0 L

)
− π

((
(g0k) · f (k−1g−1

0 g1, g2, . . . , gq)
)

g0 L

)
, (10)

where
(
(g0k) · f (k−1g−1

0 , g1, . . . , gq−1)
)

g0 L means the function from L to -p
g0 L de-

fined as k 	→ (
(g0k) · f (k−1g−1

0 , g1, . . . , gq−1)
)

g0 L . Similarly,(
(δH f )(g1, . . . , gq)

)
g0 L

=
(

g1 ·
(
(H f )(g2, . . . , gq)

))
g0 L

+ (−1)q
(
(H f )(g1, . . . , gq−1)

)
g0 L

+
q−1∑
i=1

(−1)i
(
(H f )(g1, . . . , gi gi+1, . . . , gq)

)
g0 L

=
(

g1 ·
(
(H f )(g2, . . . , gq)

))
g0 L

+ (−1)qπ
((
(g0k) · f (k−1g−1

0 , g1, . . . , gq−1)
)

g0 L

)
+

q−1∑
i=1

(−1)iπ
((
(g0k) · f (k−1g−1

0 , g1, . . . , gi gi+1, . . . , gq)
)

g0 L

)
. (11)

From the definition of the G-action on -p , it is easy to see that

π
((
(g0k) · f (k−1g−1

0 g1, g2, . . . , gq)
)

g0 L

)
=
(

g1 ·
(
(H f )(g2, . . . , gq)

))
g0 L
. (12)

Combining (10)–(12), we clearly get (9).
From the above identity (9), we see, of course, that any cocycle in Cq

alg(G,-
p)

(for any q ≥ 1) is a coboundary, proving the lemma. ��
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2.4. Lemma. The restriction map γ : -pG → C p(g, gred, a) (defined below in the
proof) is an isomorphism for all p ≥ 0, where C∗(g, gred, a) is the standard cochain
complex for the Lie algebra pair (g, gred) with coefficient in the g-module a. Moreover,
γ commutes with differentials. Thus, γ induces an isomorphism in cohomology

H ∗(-G)
∼−→ H ∗(g, gred, a).

Proof. For anyω ∈ -pG , define γ (ω) as the value ofω at eL. Since G acts transitively
on X , and ω is G-invariant, γ is injective.

Since any ωo ∈ C p(g, gred, a) can be extended (uniquely) to a G-invariant form
on X with values in a, γ is surjective. Further, from the definition of differentials on
the two sides, it is easy to see that γ commutes with differentials. ��

2.5. Continuation of the proof of Theorem 2.2

We now determine
\\
E . First, by (6) of (2.2),

\\
E p,q

1 = H q
δ (A

∗,p) = H q
alg(G,-

p).

Thus, by Lemma 2.3,
\\
E p,0

1 = H 0
alg(G,-

p) = -pG

and \\
E p,q

1 = 0, if q > 0.

Moreover, under the above equality, the differential of the spectral sequence
d1 :

\\
E p,0

1 → \\
E p+1,0

1 can be identified with the restriction of the de Rham dif-
ferential

-pG → -p+1G
.

Thus, by Lemma 2.4,

\\
E p,q

2 =
{

H p(g, gred, a), if q = 0

0, otherwise.
(13)

In particular, the spectral sequence
\\

E as well degenerates at the
\\

E2-term. More-
over, we have a canonical isomorphism

H p(g, gred, a) � H p(C, δ + d). (14)

Comparing the above isomorphism with the isomorphism (8) of §2.2, we get a canon-
ical isomorphism:

H p
alg(G, a) � H p(g, gred, a).

For the isomorphism H p(g, gred, a) � H p(gu, a)
g, see Theorem 1.8 and its proof.

This proves Theorem 2.2. ��
2.6. Remark. Even though we took the field C as our base field, all the results of this
paper hold (by the same proofs) over any algebraically closed field of characteristic 0,
if we replace the fundamental group π1 by the algebraic fundamental group.
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[V] W.T. Van-Est, Une application d’une méthode de Cartan–Leray, Indag. Math. 18 (1955),
542–544.



Differential operators and cohomology groups on the
basic affine space

Thierry Levasseur1 and J. T. Stafford2
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Summary. We study the ring of differential operators D(X) on the basic affine space X = G/U
of a complex semisimple group G with maximal unipotent subgroup U . One of the main re-
sults shows that the cohomology group H∗(X,OX) decomposes as a finite direct sum of non-
isomorphic simple D(X)-modules, each of which is isomorphic to a twist of O(X) by an auto-
morphism of D(X).

We also use D(X) to study the properties of D(Z) for highest weight varieties Z. For exam-
ple, we prove that Z is D-simple in the sense that O(Z) is a simple D(Z)-module and produce
an irreducible G-module of differential operators on Z of degree −1 and specified order.

Key words: semisimple Lie group, basic affine space, highest weight variety, rings of
differential operators, D-simplicity

Subject Classifications: 13N10, 14L30, 16S32, 17B56, 20G10

1. Introduction

Fix a complex semisimple, connected and simply connected Lie group G with maxi-
mal unipotent subgroup U and Lie algebra g. Then the basic affine space is the quasi-
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affine variety X = G/U . The ring of global differential operators D(X) has a long
history, going back to the work [GK] of Gelfand and Kirillov in the late 1960s who
used this space to formulate and partially solve their conjecture that the quotient divi-
sion ring of the enveloping algebra U(g) should be isomorphic to a Weyl skew field.

The variety X is only quasi-affine and, when g is not isomorphic to a direct sum of
copies of sl(2), the affine closure X of X is singular. In general, rings of differential
operators on a singular variety Z can be quite unpleasant; for example, and in contrast
to the case of a smooth affine variety, D(Z) need not be noetherian, finitely gener-
ated or simple and (conjecturally) it will not be generated by the derivations DerC(Z).
Moreover, the canonical module O(Z) need not be a simple D(Z)-module. Recently,
Bezrukavnikov, Braverman and Positselskii [BBP] proved a remarkable result on the
structure of D(X) which shows that it actually has very pleasant properties. Specifi-
cally, they proved that there exist automorphisms {Fw}w, indexed by the Weyl group
W of G, such that for any nonzero D(X)-module M there exists w ∈ W such that
DX ⊗D(X) Mw �= 0, where Mw = M Fw is the twist of M by Fw . (The Fw should be
thought of as analogues of partial Fourier transforms.) Since X is smooth this implies
that, for any finite open affine cover {Xi }i of X, the ring

⊕
i,w D(Xi )

w is a noetherian,
faithfully flat overring of D(X). As is shown in [BBP], it follows easily that D(X) is a
noetherian domain of finite injective dimension.

The aim of this paper is to extend and apply the results of [BBP]. Our first result,
which combines Proposition 3.1, Theorem 3.3 and Theorem 3.8, further elucidates the
structure of D(X).

Proposition 1.1. Let X = G/U denote the basic affine space of G. Then:

(1) D(X) is a simple ring satisfying the Auslander–Gorenstein and Cohen–Macaulay
conditions (see Section 3 for the definitions);

(2) D(X) is (finitely) generated, as a C-algebra, by {O(X)w : w ∈ W } ∪ ĥ.

Note that D(X) is quite a subtle ring; for example, if G = SL(3,C), then D(X) ∼=
U(so(8))/J , where J is the Joseph ideal as defined in [Jo1] (see Example 2.4).

The variety X = G/U has a natural left action of G and a right action of the max-
imal torus H for which B = HU is a Borel subgroup. Differentiating these actions
gives embeddings of g = Lie(G), respectively ĥ = Lie(H ) into DerC(X). It follows
easily from the simplicity of D(X) that O(X) = H0(X,OX) is a simple D(X)-module.
One of the main results of this paper extends this to describe the D(X)-module struc-
ture of the full cohomology group H∗(X,OX):

Theorem 1.2 (Theorem 4.8). Let X = G/U and set M = D(X)/D(X)g.

(1)M ∼= H∗(X,OX).

(2) For each i , Hi (X,OX) ∼=⊕{
O(X)w : w ∈ W : �(w) = i

}
.

(3) For w �= v ∈ W, the D(X)-modules O(X)w and O(X)v are simple and noniso-
morphic.

A result analogous to Theorem 1.2, but in the l-adic setting, has been proved in [Po,
Lemma 12.0.1]. It is not clear to us what is the relationship between the two results.
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A key point in the proof of Theorem 1.2 is that by the Borel–Weil–Bott theo-
rem one has an explicit description of the G-module structure of the H∗(X,OX) and
one then proves Theorem 1.2 by comparing that structure with the G-module struc-
ture of the O(X)w. Theorem 1.2 is rather satisfying since it relates the left ideal of
D(X) generated by the derivations coming from g to the only “obvious” simple D(X)-
modules O(X)w . In contrast, if one considers the left ideal generated by all the “obvi-
ous” derivations, D(X)g+D(X)̂h, then one obtains:

Proposition 1.3 (Theorem 4.5). As left D(X)-modules,

D(X)
D(X)g+D(X)̂h

= D(X)
D(X)DerC(X)

∼= O(X).

This proposition is somewhat surprising since, at least when g is not a direct sum
of copies of sl(2), one can show that D(X) is not generated by O(X) and DerC(X) as a
C-algebra (see Corollary 5.10). Of course, the analogue of Proposition 1.3 for smooth
varieties is standard.

A natural class of varieties associated to G are S-varieties: closures Y of a G-
orbit Y = Y� = G.v� where v� is a sum of highest weight vectors in some finite-
dimensional G-module. In such a case there exists a natural surjection X � Y =
G/S� , for the isotropy group S� of v� . This induces, by restriction of operators, a map
ψ� : D(X)S� → D(Y) and allows us to use our structure results on D(X) to give
information on D(Y). For this to be effective we need the mild assumption that Y is
normal and codimY(Y�Y) ≥ 2 or, equivalently, that O(Y) = O(Y) (see Theorem 5.3
for further equivalent conditions).

Corollary 1.4 (Proposition 5.6). Let Y be an S-variety such that O(Y) = O(Y). Then
O(Y) is a simple D(Y)-module.

When Y = Y� is singular, this result says that there exists operators D ∈ D(Y)
that cannot be constructed from derivations; these are “exotic” operators in the termi-
nology of [AB]). As the name suggests, exotic operators can be hard to construct—see
[AB] or [BK2], for example—but in our context their construction is easy; they arise
as ψ�Fw0(O(Y�∗)). In the special case of a highest weight variety (this is just an
S-variety Yγ = Y� for � = Nγ ) we can be more precise about these operators.

Corollary 1.5 (Corollary 6.6). Suppose that Y = Yγ is a highest weight variety.
Then there exists an irreducible G-module E ∼= V (γ ) of differential operators on Y
of degree −1 and order 〈γ, 21∨〉.

Corollary 1.4 also proves the Nakai conjecture for S-varieties satisfying the hy-
potheses of that result and this covers most of the known cases of normal, singular
varieties for which the conjecture is known. See Section 5 for the details.

A fundamental question in the theory of differential operators on invariant rings
asks the following. Suppose that Q is a (reductive) Lie group acting on a finite-
dimensional vector space V such that the fixed ring O(V )Q is singular. Then, is the
natural map D(V )Q → D(O(V )Q) surjective? A positive answer to this question is
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known in a number of cases and this has had significant applications to representation
theory; see, for example, [Jo2, LS1, LS2, Sc] and Remark 6.8. It is therefore natural to
ask when the analogous map ψ� : D(X)S� → D(Y�) is surjective. Although we do
not have a general answer to this question, we suspect that ψ� will usually not be sur-
jective. As evidence for this we prove that this is the case for one of the fundamental
examples of an S-variety: the closure of the minimal orbit in a simple Lie algebra g.

Proposition 1.6 (Theorem 6.7). If Yγ is the minimal (nonzero) nilpotent orbit of
a simple classical Lie algebra g, then ψγ is surjective if and only if g = sl(2) or
g = sl(3).

2. Preliminaries

In this section we describe the basic results and notation we need from the literature,
notably the relevant results from [BBP]. The reader is also referred to [GK, HV, Sh1,
Sh2] for the interrelationship between differential operators on the base affine space
and the corresponding enveloping algebra.

We begin with some necessary notation. The base field will always be the field C
of complex numbers. Let G be a connected simply-connected semi-simple algebraic
group of rank �, B a Borel subgroup, H ⊂ B a maximal torus, U ⊂ B a maximal
unipotent subgroup of G. The Lie algebra of an algebraic group is denoted by the
corresponding gothic character; thus g = Lie(G), h = Lie(H ) and u = Lie(U).

We will use standard Lie theoretic notation, as for example given in [Bo]. In par-
ticular, let � denote the root system of (g, h) and fix a set of positive roots �+ such
that u = ⊕

α∈�+ uα . Denote by W the Weyl group of �. Let 	 be the weight lattice
of � which we identify with the character group of H . The set of dominant weights
is denoted by 	+. Fix a basis  = {α1, . . . , α�} of �+ and write {*1, . . . ,*�} for
the fundamental weights; thus 〈*i , α

∨
j 〉 = δi j . Denote by 1, respectively 1∨, the half

sum of the positive roots, respectively coroots. Let w0 be the longest element of W
and set λ∗ = −w0(λ) for all λ ∈ 	. Then w0(1) = −1, w0(1

∨) = −1∨ and, by [Bo,
Chapter 6, 1.10, Corollaire],

〈λ∗, 1∨〉 = 〈λ, 1∨〉 =
�∑

i=1

mi if λ =
�∑

i=1

miαi .

For each ω ∈ 	+ let V (ω) be the irreducible G-module of highest weight ω and
let V (ω)μ be the subspace of elements of weight μ ∈ 	; we will denote by vω a
highest weight vector of V (ω). Recall that the G-module V (ω)∗ identifies naturally
with V (ω∗). If E is a locally finite (G × H )-module, we denote by E[λ] the isotypic
G-component of type λ ∈ 	+ and by Eμ the μ-weight space for the action of H ≡
{1} × H . Hence,

E =
⊕{

E[λ]μ : μ ∈ 	, λ ∈ 	+} .
Let Y be an algebraic variety. We denote by OY the structural sheaf of Y and by O(Y)
its algebra of regular functions. The sheaf of differential operators on Y is denoted
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by DY with global sections D(Y) = H0(Y,DY). The O(Y)-module of elements of
order ≤ k in D(Y) is denoted by Dk(Y), and the order of D ∈ D(Y) will be written
ord D. Now suppose that Y is an irreducible quasi-affine algebraic variety, embedded
as an open subvariety of an affine variety Y. We will frequently use the fact that if Y
is normal with codimY(Y � Y) ≥ 2, then O(Y) = O(Y), and so D(Y) = D(Y).

Let Q be an affine algebraic group. We say that an algebraic variety Y is a Q-
variety if it is equipped with a rational action of Q. For such a variety, O(Y),Dk(Y)
and D(Y) are locally finite Q-modules, with the action of a ∈ Q on ϕ ∈ O(Y)
and D ∈ D(Y) being defined by a.ϕ(y) = ϕ(a−1.y) for y ∈ Y, respectively
(a.D)(ϕ) = a.D(a−1.ϕ). If Y is also an affine variety such that O(Y)Q is an affine
algebra, we define the categorical quotient Y//Q by O(Y//Q) = O(Y)Q . We then
have a restriction morphism

ψ : D(Y)Q −→ D(Y//Q), ψ(D)( f ) = D( f ) for f ∈ O(Y)Q .

Notice thatψ(Dk(Y)Q) ⊆ Dk(Y//Q) for all k. In many cases O(Y) will be a Z-graded
algebra, O(Y) = ⊕

n∈Z On , in which case D(Y) has an induced Z-graded structure,
with the nth graded piece being

D(Y)n = {θ ∈ D(Y) : θ(Or ) ⊆ Or+n for all r ∈ Z}. (2.1)

In this situation, D(Y)n will be called operators of degree n.
Assume now that V is a (G×H )-module and that Y is a (G×H )-subvariety of V .

Then
O(Y) =

⊕
μ∈	
λ∈	+

O(Y)[λ]μ ⊂ D(Y) =
⊕
μ∈	
λ∈	+

D(Y)[λ]μ.

It follows easily from the definitions that

D(Y)μ = {
d ∈ D(Y) : d(O(Y)λ) ⊆ O(Y)λ+μ for all λ ∈ 	}. (2.2)

One clearly has a surjection S(V ∗)[λ]μ � O(Y)[λ]μ. Furthermore, if V = V−γ ∗ for
some 0 �= γ ∗ ∈ 	, we will identify Sm(V ∗) with S(V ∗)mγ ∗ and obtain the surjective
G-morphism Sm(V ∗)[λ] � O(Y)[λ]mγ ∗ . In this case, O(Y) =⊕

m∈N O(Y)mγ ∗ and
D(Y) = ⊕

m∈Z D(Y)mγ ∗ are Z-graded and (2.2) can be interpreted as saying that
D(Y)mγ ∗ is the set of differential operators of degree m on Y.

The previous results apply in particular to the basic affine space X = G/U .
We need to collect here a few facts about the (G × H )-variety X and its canon-
ical affine closure X. For these assertions, see, for example, [GK, Gr, VP]. Set
V = V (*1)

⊕ · · ·⊕ V (*�) and recall that there is an isomorphism

X ∼−−→G.(v*1 ⊕ · · · ⊕ v*�) ⊂ V , ḡ 	→ g.(v*1 ⊕ · · · ⊕ v*�),
where ḡ denotes the class of g ∈ G modulo U . We identify X with this G-orbit and
write

O = O(X) and D = D(X).
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Then the Zariski closure X of X in V is a normal irreducible affine variety that satisfies
codimX(X � X) ≥ 2; thus O = O(X), etc.

Identify w0 with an automorphism of H ; thus λ∗(h) = λ(w0(h−1)) for all λ ∈ 	
and h ∈ H . Define the twisted (right) action of H on X by rh .ḡ = gw0(h). Endow the
G-module V with the action of H ≡ {1} × H defined by

rh .(u1 ⊕ · · · ⊕ u�) = * ∗
1 (h

−1)u1 ⊕ · · · ⊕* ∗
� (h

−1)u�.

Then the embedding X ↪→ V is a morphism of (G × H )-varieties. The induced (left)
action of H onO is then given by (rh . f )(ḡ) = f (rh−1 .ḡ) for all f ∈ O, h ∈ H, ḡ ∈ X.
It follows that O[ν∗] = Oν∗ , Oμ = 0 if μ /∈ 	+, and we can decompose the (G×H )-
module O as

O =
⊕
λ∈	+

Oλ, Oλ = O[λ] ∼= V (λ). (2.3)

The final isomorphism in (2.3) comes from the fact that the G-action on O is multi-
plicity free [VP, Theorem 2]. Notice that the algebra O is (finitely) generated by the
G-modules O* j , 1 ≤ j ≤ �. Also, (2.2) implies that Dμ(Oλ) = 0 when λ+ μ is not
dominant.

Notation 2.1. The differentials of the actions of G and H (via h 	→ rh) on X yield
morphisms of algebras ı : U(g)→ D and j : U(h)→ D. By [GK, Corollary 8.1 and
Lemma 9.1], ı and j are injective; from now on we will identify U (g) with ı(U(g)) but
write ĥ = j (h) and U (̂h) = j (U(h)), to distinguish these objects from their images
under ı .

Let 0 �= M be a left D-module and τ ∈ Aut(D), the C-algebra automorphism
group ofD. Then the twist of M by τ is the D-module Mτ defined as follows: Mτ = M
as an abelian group but a · x = τ (a)x for all a ∈ D, x ∈ M . Recall also that the
localization of M on X is

L(M) = DX ⊗D M ∼= OX ⊗O M.

Thus L(M) is a quasi-coherent left DX-module. Clearly L(M) = 0 when M is sup-
ported on X�X but, remarkably, one can obtain a nonzero localization by first twisting
the module M:

Theorem 2.2 ([BBP, Proposition 3.1 and Theorem 3.4]). Let D = D(X). Then:

(1) There exists an injection of groups F : W ↪→ Aut(D) written w 	→ Fw .
(2) For each D-module M �= 0 there exists w ∈ W such that L(M Fw ) �= 0. ��

This theorem is also valid for right modules. The morphisms Fw can be regarded as
variants of partial Fourier transforms, and more details on their structure and properties
can be found in [BBP].

It will be convenient to reformulate Theorem 2.2, for which we need some nota-
tion. Since X is an open subset of the nonsingular locus of X, we can fix an open (and
smooth) affine cover of X:
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X =
k⋃

j=1

X j , where X j = {x ∈ X : f j (x) �= 0}, (2.4)

for the appropriate fi ∈ O(X). Notice that D(X j ) = D[ f −1
j ] for each j and so D(X j )

is a flat D-module. If M is D-module and w ∈ W , let Mw denote the twist of M by
Fw .

For each pair (w, j) with w ∈ W and 1 ≤ j ≤ k, we have an injective morphism
of algebras φw j : D ↪→ D(X j ) given by φw j (d) = F−1

w (d). We write D(X j )w for the
algebra D(X j ) regarded as an overring of D under this embedding. The significance of
this construction is that, for any left D-module M , the map d ⊗ v 	→ d ⊗ v induces an
isomorphism D(X j )⊗D Mw ∼= D(X j )w ⊗D M of left D(X j )-modules. Theorem 2.2
can now be rewritten as follows.

Corollary 2.3. Let 0 �= M be a left D-module. Then:

(1) There exists a pair (w, j) such that D(X j )w ⊗D M �= 0.
(2) Set Rw =⊕k

j=1 D(X j )w and R =⊕
w∈W Rw . Then R is a faithfully flat (left or

right) overring of D.

Proof. Part (1) is just a reformulation of Theorem 2.2. This in turn implies that R is
a faithful right D-module. It is flat since D(X j )w is isomorphic, as a D-module, to
the localization of D at the powers of Fw( f j ). Since Theorem 2.2 also holds for right
modules, the same argument shows that R is a faithful flat left D-module. ��

When g = sl(2) it is easy to check that X = C2, and so there is no subtlety to the
structure of either X or D. However, when g �= sl(2)m , X will be singular and D will
be rather subtle. The simplest example is:

Example 2.4. Assume that g = sl(3) and set X = SL(3)/U . Then X is the quadric∑3
i=1 ui yi = 0 inside C6. Moreover, D = D(X) ∼= U(so(8))/J , where J is the

Joseph ideal.
An explicit set of generators of D is given in [LS3, (2.2)]. The algebra Fw0(O) is

generated by the operators {� j ,0 j } of order 2 from [LS3, (2.2)].

Proof. The proof of the first assertion is an elementary and classical computation,
which is left to the reader. The second assertion then follows from [LSS, Remark 3.2(v)
and Corollary A]. The claim in the second paragraph will not be used in this paper and
so is left to the interested reader (the next proposition may prove useful). A second
way of interpreting this example is given in Remark 6.8. ��

In the main body of the paper we will need some more technical results from [BBP]
about the automorphisms Fw and for the reader’s convenience we record them in the
following proposition. This summarizes Lemma 3.3, Corollary 3.10, Proposition 3.11
and the proof of Lemma 3.12 of that paper.

Proposition 2.5. Let η ∈ 	+, μ ∈ 	 and w ∈ W. Then:
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(1) Fw is G-linear and Fw(Dμ) = Dw(μ). Thus Fw(Oη) ∼= V (η) as G-modules.
(2) Fw(h) = w(h)+ 〈w(h) − h, 1〉 for all h ∈ ĥ.
(3) ord Fw(d) = ord d + 〈μ−w(μ), 1∨〉 for all 0 �= d ∈ Dμ. In particular, if

0 �= f ∈ Oη, then ord Fw0( f ) = 〈η, 21∨〉.
(4) Let { fi }1≤i≤n ⊂ Oη and {gi }1≤i≤n ⊂ Oη∗ ∼= (Oη)∗ be dual bases such that (up

to a constant)
∑

i fi ⊗ gi is the unique G-invariant element in Oη ⊗ Oη∗ . Then
the (G × H )-invariant operator Pη =∑n

i=1 fi Fw0(gi ) ∈ U (̂h) is given by

Pη = cη
∏

α∨∈�∨+

〈η,α∨〉∏
i=1

(α∨ + 〈α∨, 1〉 − i), (2.5)

for some cη ∈ C � {0}. Moreover, ord Pη = 〈η, 21∨〉.
(5) U (̂h) =∑

w∈W U (̂h)Fw(Pη). ��

3. The structure of D(G/U).

In [BBP], the authors use Theorem 2.2 to prove that D is a noetherian ring of finite
injective dimension. In this section we investigate other consequences of that result to
the structure of D. The notation from the last section will be retained; in particular,
G is a connected, simply connected semi-simple algebraic group over C, with basic
affine space X = G/U and D = D(X).

We begin with an easy application of the faithful flatness of the ring R =⊕
w, j D(X j )w defined in Corollary 2.3.

Proposition 3.1. The ring D is simple and O is a simple left D-module.

Proof. Let J be a nonzero ideal of D. As in the proof of Corollary 2.3, D(X j ) is a
noetherian localization ofD and so, by [MR, Proposition 2.1.16(vi)], each D(X j )w⊗D
J ∼= D(X j ) ⊗D Jw is an ideal of D(X j ) and it is nonzero since D is a domain. But
X j is a smooth affine variety and so D(X j ) is a simple ring. Thus D(X j )w ⊗D J =
D(X j )w for allw ∈ W and 1 ≤ j ≤ k. This means that the module M = D/J satisfies
R ⊗D M = 0, hence M = 0 by Corollary 2.3(2). In other words, J = D.

If O is not a simple D-module, pick a proper factor module O/K and note that K
is then an ideal of O. But now the annihilator annD(O/K ) of O/K as a D-module is
an ideal of D that contains K . This contradicts the simplicity of D. ��

We now turn to the homological properties of D. Two conditions that have
proved very useful in applying homological techniques (see for example [Bj] or
[LS1]) are the Auslander and Cohen–Macaulay conditions. These are defined as
follows. A noetherian algebra A of finite injective dimension is called Auslander–
Gorenstein if, for any finitely generated (left) A-module M and any right submod-
ule N ⊆ ExtiA(M, A), one has Ext j

A(N, A) = 0, for j < i . The grade of M is

jA(M) = inf{ j : Ext j
A(M, A) �= 0} (with the convention that jA(0) = +∞). The
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Gelfand–Kirillov dimension of M will be denoted GKdimA M . We say that the alge-
bra A is Cohen–Macaulay if

GKdimA M + jA(M) = GKdim A for all M �= 0.

If Z is a smooth affine variety, then D(Z) is Auslander–Gorenstein and Cohen–
Macaulay with GKdimD(Z) = 2 dim Z (see [Bj, Chapter 2, Section 7]). This applies,
of course, when Z = X j for 1 ≤ j ≤ k and so R =⊕

w, j D(X j )w also satisfies these
properties. As we show in Theorem 3.3, these properties descend to D = D(X).

If M is a (finitely-generated) D-module, write

Mw
j = D(X j )⊗D Mw, for 1 ≤ j ≤ k and w ∈ W.

Lemma 3.2. If M is a finitely generated left D-module, then

GKdimD M = max{GKdimD(X j ) Mw
j : 1 ≤ j ≤ k, w ∈ W }.

Proof. By definition, R ⊗D M =⊕k
j=1

⊕
w∈W Mw

j and so

GKdimR R ⊗D M = max{GKdimD(X j ) Mw
j : 1 ≤ j ≤ k, w ∈ W }.

By faithfully flatness (Corollary 2.3), the natural map M → R ⊗D M is injective and
it follows that GKdimD M ≤ GKdimR R ⊗D M . Conversely, since Mw

j is the local-
ization of Mw at the Ore subset { f s

j : s ∈ N}, it follows from [Lo, Theorem 3.2] that
GKdimD(X j ) Mw

j ≤ GKdimD Mw . Since GKdimD Mw = GKdimD M , this implies
that GKdimR R ⊗D M ≤ GKdimD M and the lemma is proved. ��
Theorem 3.3. The algebra D is Auslander–Gorenstein and Cohen–Macaulay.

Proof. Let M be a finitely-generated (left) D-module and N is a (right) submodule of
Extp

D(M,D). As R is a flat D-module,

R ⊗D ExtiD(N,D) ∼= ExtiR(N ⊗D R, R)

and N ⊗D R is a submodule of Extp
R(R⊗D M, R). Since R is Auslander–Gorenstein,

this implies that R ⊗D ExtqD(N,D) = 0, for any q < p. Since R is a faithful D-
module, it follows that ExtqD(N,D) = 0. Thus D is Auslander–Gorenstein.

From ExtiR(R ⊗D M, R) ∼= ExtiD(M,D) ⊗D R and the faithful flatness of RD
we get that ExtiR(R ⊗D M, R) = 0 ⇐⇒ ExtiD(M,D) = 0. Thus, jR(R ⊗D M) =
jD(M). But,

Extp
R(R ⊗D M, R) ∼=

⊕
j,w

Extp
D(X j )

(Mw
j ,D(X j ))

and so jD(M) = jR(R ⊗D M) = min{jD(X j )
(Mw

j ) : 1 ≤ j ≤ k, w ∈ W }.
Each X j is a smooth affine variety of dimension dim X and so each D(X j ) is

Cohen–Macaulay. It therefore follows from Lemma 3.2 that
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GKdimD M = max{GKdimD(X j ) Mw
j : 1 ≤ j ≤ k, w ∈ W,Mw

j �= 0}
= max{2 dim X− jD(X j )

(Mw
j ) : 1 ≤ j ≤ k, w ∈ W,Mw

j �= 0}
= 2 dim X−min{jD(X j )

(Mw
j ) : 1 ≤ j ≤ k, w ∈ W }

= 2 dim X− jD(M),

as required. ��
Remark 3.4. The last result should be compared with [YZ, Corollary 0.3] which shows
that a simple noetherian C-algebra with an affine commutative associated graded ring
is automatically Auslander–Gorenstein and Cohen–Macaulay. It is not clear whether
that result applies to D, since we do not have a good description of the associated
graded ring of D.

When Z is a smooth affine variety, D(Z) is a finitely generated C-algebra, simply
because it is generated by O(Z) and DerC(Z). When Z is singular, it can easily hap-
pen that D(Z) is not affine (see, for example [BGG]). However, as we will show in
Theorem 3.8, the C-algebra D is finitely generated. We begin with some lemmas.

Lemma 3.5. Let γ ∈ 	+. There exists a nondegenerate pairing of G-modules

τ : Fw0(Oγ )×Oγ ∗ −→ C, (Fw0( f ), g) 	→ Fw0( f )(g).

Proof. By Proposition 2.5 and (2.2), Fw0 (Oγ )(Oγ
∗
) ⊆ Ow0(γ )+γ ∗ = O0 = C. Also,

(a.Fw0( f ))(a.g) = a.Fw0( f )(a−1.(a.g)) = a.Fw0( f )(g) = Fw0( f )(g),

for all a ∈ G. Therefore, τ is a well-defined pairing of G-modules and it induces a
G-linear map Fw0(Oγ ) → (Oγ ∗)∗. Since Fw0(Oγ ) ∼= (Oγ ∗)∗ ∼= V (γ ), it suffices
to show that τ is nonzero in order to show that it is nondegenerate. In the notation of
Proposition 2.5(4), we will show that Fw0 ( fi )(gi ) �= 0 for some i .

By Proposition 2.5(2),

Fw0(α
∨) = w0(α

∨)+ 〈w0(α
∨)− α∨, 1〉 = w0(α

∨)− 2〈α∨, 1〉
and so Proposition 2.5(4) implies that

Fw0(Pγ ) = cγ
∏

α∨∈�∨+

〈γ,α∨〉∏
i=1

(w0(α
∨)− 〈α∨, 1〉 − i).

Since w0(α
∨) ∈ ĥ is a vector field on X, we have w0(α

∨)(1) = 0 and so

Fw0(Pγ )(1) = cγ
∏

α∨∈�∨+
(−1)〈γ,α∨〉

〈γ,α∨〉∏
i=1

(〈α∨, 1〉 + i) �= 0,

since 〈α∨, 1〉 > 0 for all α∨. By Proposition 2.5(4),
∑

i Fw0( fi )(gi) = Fw0(Pγ )(1)
and so Fw0( fi )(gi ) �= 0 for some 1 ≤ i ≤ n. ��
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Lemma 3.6. The O(X)-module map m : O(X) ⊗ Fw0(O(X)) → D(X) given by
g ⊗ Fw0( f ) 	→ gFw0( f ) is injective.

Proof. Let t ∈ Ker(m) and write t = ∑
i, j hi j ⊗ Fw0( fi j ) where { fi j } j is a basis of

Oμi , for some μ1, . . . , μs ∈ 	+, and hi j ∈ O for all i, j . We may assume that s is
minimal; thus, for each 1 ≤ i ≤ s, some hi j �= 0. Partially order 	 by ω∗ � λ∗ if
ω∗ − λ∗ ∈ 	+ and assume that μ∗1 is minimal among the μ∗i ’s for this ordering. By
Lemma 3.5, for each i there exists a basis {gi j } j of Oμ∗i such that Fw0( fi j )(gik) = δ j k.
When i > 1 we have Fw0( fi j )(g1k) ⊆ Oμ∗1−μ∗i = 0, since μ∗1 − μ∗i /∈ 	+. Therefore,
for each k, we have

0 = m(t)(g1k) =
∑
i, j

hi j Fw0( fi j )(g1k) =
∑

j

h1 j Fw0( f1 j )(g1k) = h1k,

contradicting the minimality of s. ��
Define a finitely generated subalgebra of D(X) by

S = C〈O, Fw0 (O)〉 = C〈O*i , Fw0 (O* j ) ; 1 ≤ i, j ≤ �〉,
where � = rank(g). The elements of O act locally nilpotently on D, and therefore on
S. Thus C = O�{0} is an Ore subset of S. Let K = C−1O denote the field of fractions
of O. Recall that C−1D(X) = D(K) is the ring of differential operators on K and that
Dr (X) = Dr (K) ∩D(X) for all r ∈ N (see, for example, [MR, Theorem 15.5.5]).

Lemma 3.7. We have C−1S = D(K). In particular, for any finite dimensional sub-
space E ⊂ D(X), there exists 0 �= f ∈ O(X) such that f E ⊂ S.

Proof. The aim of the proof is to apply [LS2, Lemma 8].
Applying the exact functor K⊗O− to the injective map m of Lemma 3.6 yields the

K-linear injection m : K ⊗ Fw0(O) ↪→ A = C−1S. Since Fw0(O) is a commutative
algebra of dimension n = dim X = trdegC K, we may pick u1, . . . , un ∈ Fw0(O)
algebraically independent over C and set P = C[u1, . . . , un]. For any q ∈ N, denote
by Pq the subspace of polynomials of degree at most q and define

0q = {d ∈ K⊗ P : ord m(d) ≤ q} and k = max{ord m(ui ) : 1 ≤ i ≤ n}.
Observe that {0q}q and {K⊗ Pq }q are two increasing filtrations on the K-vector space
K ⊗ P and that the map q 	→ dimK(K ⊗ Pq ) is a polynomial function of degree n.
Furthermore, since m(ui u j ) = m(ui )m(u j ), we have K⊗ Pq ⊆ 0kq for all q . Hence,
dimK0q ≥ p(q) for some polynomial p of degree n. If Aq = Dq(K) ∩ A, then
m(0q) ⊆ Aq and so dimK Aq ≥ p(q). It follows that

lim sup
q→∞

{logq(dimK Aq/Aq−1)} ≥ n − 1.

The hypotheses of [LS2, Lemma 8] are now satisfied by the pair A ⊆ D(K) and,
by that result, D(K) = A = C−1S. The final assertion of the lemma follows by
clearing denominators. ��
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We can now describe a generating set for the C-algebra D, for which we recall the
definition of ĥ from Notation 2.1.

Theorem 3.8. As a C-algebra, D is generated by ĥ and the Fw(O), for all w ∈ W.

Proof. Set B = C〈 ĥ, Fw(O) ; w ∈ W 〉; thus B is a G-submodule of D containing
both S and U (̂h). Moreover, as Fw(U (̂h)) = U (̂h) (see Proposition 2.5(2)), Fw(B) =
B for all w ∈ W . As D is a locally finite G-module, it suffices to show that E ⊂ B for
all finite-dimensional G-submodules E of D. For such a module E , set L = {b ∈ B :
bE ⊂ B} and Iw(E) = {g ∈ O : Fw(g)E ⊂ B} for w ∈ W. We aim to show that the
left ideal L of B contains 1.

Clearly, Iw(E) is an ideal of O. It is also a G-submodule since

Fw(a.g)E = Fw(a.g)a.E = a.(Fw(g)E) ⊂ a.B = B

for all a ∈ G and g ∈ Iw(E). Since S ⊆ B, Lemma 3.7 implies that I1(E) �= 0. For
each w, Fw−1(E) is a G-submodule of D (isomorphic to E) and

g ∈ Iw(E) ⇐⇒ gFw−1(E) ⊂ B ⇐⇒ g ∈ I1(Fw−1(E)).

Thus, Iw(E) �= 0 for all w ∈ W . Since O is a domain, it follows that I =⋂
w∈W Iw(E) is a nonzero G-submodule of O. Now, O =⊕

λ∈	+ Oλ and so Oγ ⊂ I
for some γ ∈ 	+. By Proposition 2.5(4), Fw(Pγ ∗) = ∑

i Fw( fi )Fww0(gi ) for some
fi ∈ Oγ ∗ and gi ∈ Oγ . By the definition of I and the choice of γ , we have
Fww0(gi )E ⊂ B; that is, Fww0(gi ) ∈ L, for all w ∈ W . Since Fw( fi ) ∈ Fw(O) ⊂ B
we obtain that Fw(Pγ ∗) ∈ L for all w ∈ W . Finally, as U (̂h) ⊂ B, Proposition 2.5(5)
implies that 1 ∈ L and hence that E ⊂ B. ��

We conjecture that ĥ is unnecessary in the last theorem; i.e., we conjecture that

D = C〈Fw(O) : w ∈ W 〉.
Using Example 2.4 the authors can prove this for g = sl(3); indeed we can even show
that D = C〈O, Fw0 (O)〉 in this case. However, the argument heavily uses facts about
so(8) and so it may not be a good guide to the general case.

4. The D(X)-module H∗(X,OX)

As before, set X = G/U with associated rings O = O(X) and D = D(X). In this
section we give a complete description of H∗(X,OX) = ⊕

i∈N Hi (X,OX) as a D-
module. Specifically, we will show that H∗(X,OX) is simply the direct sum of the
twists Ow = OFw of O by w ∈ W .

The first cohomology group to consider is H0(X,OX) = O. As a D-module, O ∼=
D/I where I = {d ∈ D : d(1) = 0} is a maximal left ideal of D (Proposition 3.1).
Clearly, I ⊇ Dg + Dĥ, in the terminology of Notation 2.1. The first main result of
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this section, Theorem 4.5, shows that this is actually an equality and, further, that
D/Dg ∼=⊕

w∈W Ow .
Before proving this theorem, we need some preliminary notation and lemmas. As

in (2.4), we cover X by affine open subsets X j = {x ∈ X : f j (x) �= 0} and let
C j = { f s

j : s ∈ N}, for 1 ≤ j ≤ k, denote the associated Ore subsets in D. If M is a
left D-module, the kernel of the localization map M → M f j = D(X j )⊗D M is

Tj (M) = {v ∈ M : f s
j v = 0 for some s > 0}.

Lemma 4.1. For all w ∈ W and x ∈ g, one has Fw(x) = x.

Proof. By Proposition 2.5(1), Fw is a G-linear automorphism of D and hence is g-
linear, where g acts by the adjoint action. Therefore, for any θ ∈ D and x ∈ g,

[Fw(x), Fw(θ)] = Fw([x, θ ]) = [x, Fw(θ)].

Thus [Fw(x), y] = [x, y] for all y ∈ D. If y ∈ g, then g-linearity also implies that
[Fw(x), y] = Fw([x, y]) and hence that [x, y] = [Fw(x), y] = Fw([x, y]). As g is
semisimple, [g, g] = g, and so this implies Fw(z) = z for all z ∈ g. ��

The next lemma shows why we should expect all the Ow to appear in a decompo-
sition of D/Dg.

Lemma 4.2. (1) Each D-module Ow is a factor of M = D/Dg.
(2) Set N = I/Dg. Then, N = Tj (M) for 1 ≤ j ≤ k and D/I is the unique factor

of M isomorphic to O as a D-module.

Proof. (1) Since the action of d ∈ D on Ow is given by d · f = Fw(d)( f ) for f ∈ O,
we have Ow ∼= D/F−1

w (I ). As we noted above, I ⊇ Dg+Dĥ and so, by Lemma 4.1,
F−1
w (I ) ⊇ Dg.

(2) Let TxX denote the tangent space of X at x ∈ X. Observe that, if e = U/U ∈ X,
then StabG(e) = U and so g/u identifies naturally with TeX. Since X is a homoge-
neous space, the map ı : g → DerC O induces an isomorphism g/u ∼= TeX ∼= TxX.
As X j ⊆ X is affine, it follows that DerO(X j ) = O(X j )g for each j = 1, . . . , k.
Furthermore, since X j is smooth, the D(X j )-module O(X j ) is simple and isomorphic
to D(X j )/D(X j )DerO(X j ). Since O =M/N , this implies that

O(X j ) = C−1
j (M/N ) ∼= D(X j )/D(X j )g = C−1

j M (4.1)

for all j . Therefore C−1
j N = 0, and so N ⊆ Tj (M). The equality N = Tj (M) then

follows from Tj (O) = 0.
Now suppose that O ∼= D/L for some maximal left ideal L ⊇ Dg. Then C−1

j L ⊇
D(X j )g and C−1

j O = O(X j ) ∼= D(X j )/C−1
j L for all j . By (4.1), the left ideal D(X j )g

is maximal and so C−1
j L = D(X j )g for all j . Therefore L/Dg ⊆ Tj (M) = N =

I/Dg, which implies that L ⊆ I . Hence L = I . ��
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As in [Bo, Théorème 2, Section VI.1.5],  ∨ = {α∨1 , . . . , α∨� } defines a dominant
chamber

C( ∨) = {
y ∈ ĥR : 〈y, αi 〉 > 0 for all i = 1, . . . , �

}
in the root system �∨ = j (�∨) ⊂ ĥR =

⊕�
i=1 Rα∨i ⊂ ĥ.

Lemma 4.3. If y ∈ C( ∨) and w ∈ W � {1}, then Fw(y) /∈ I .

Proof. Using [Bo, Ch. VI, Section 1.6,Corollaire de la Proposition 18], we have 0 �=
y −w(y) =∑�

i=1 niα
∨
i with ni ∈ R+. Hence, Proposition 2.5(2) implies that

Fw(y)−w(y) = 〈w(y)− y, 1〉 = −∑
i

ni ∈ C � {0}.

Thus Fw(y)−w(y) /∈ I . Since w(y) ∈ ĥ ⊂ I , this implies that Fw(y) /∈ I . ��
Lemma 4.4. As D-modules, Ow ∼= Ow′ if and only if w = w′.
Proof. Since (Ow)v ∼= Owv it suffices to prove the result when w′ = 1. So, assume
that Ow ∼= O for some w �= 1 and set Nw = F−1

w (I )/Dg; thus N1 = N . Then
Ow = D/F−1

w (I ) = M/Nw and Lemma 4.2 implies that Nw = N1; equivalently,
Fw−1(I ) = I . Now pick y ∈ C( ∨). Since y ∈ I , this implies that Fw−1(y) ∈ I ,
contradicting Lemma 4.3. ��

The following theorem gives a precise description of the D-modules O and M; it
shows in particular that M is a multiplicity free, semisimple module of length |W |.
Theorem 4.5. Write O(X) ∼= D(X)/I for I = {d ∈ D(X) : d(1) = 0} and define
M = D(X)/D(X)g. Then:

(1)M ∼=⊕
w∈W O(X)w as a D(X)-module;

(2) I = D(X)g+D(X)̂h = D(X)g+D(X)y for all y ∈ C( ∨).

Proof. (1) Set Nw = F−1
w (I )/Dg, for w ∈ W . By Lemmas 4.2(2) and 4.4, the D-

modules Ow ∼= M/Nw are nonisomorphic, so the natural map M → ⊕
w∈W Ow

is surjective with kernel N = ⋂
w∈W Nw . It therefore remains to prove that N = 0.

By Lemma 4.2, if x ∈ I , then there exists t ∈ N such that f t
j x ∈ Dg for j =

1, . . . , k. Therefore Fw−1( f j )
t Fw−1(x) ∈ Dg for all j ; equivalently, each element

[Fw−1(x) + Dg] ∈ Nw is torsion for Fw−1(C j ). Consequently, if v ∈ N , then there
exists s ∈ N such that Fw( f j )

sv = 0 for all 1 ≤ j ≤ k and w ∈ W . In other words,
Nwf j

= (0), for all such j and w. By faithful flatness (Corollary 2.3) this implies that
N = 0.
(2) It suffices to prove that I = Dg + Dy for y ∈ C( ∨). Set I = (Dg + Dy)/Dg.
By part (1) and Lemma 4.2, the Nw , w ∈ W , are the only maximal submodules of
M. Therefore, if I � N1 we must have I ⊆ Nw for some w �= 1. This implies that
Fw(Dg + Dy) ⊆ I , hence Fw(y) − w(y) ∈ I , in contradiction with Lemma 4.3.
Therefore N1 = I and I = Dg+Dy. ��
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We will prove in Theorem 4.8 that H∗(X,OX) is isomorphic to M as a D-module.
In order to prove this, we need to recall some results on the cohomology of line bundles
over the flag variety B = G/B .

We begin with some general remarks. Let Z be a smooth G-variety and write τ :
g → DerOZ for the differential of the G-action. Let F be a G-equivariant OZ-module
as defined, for example, in [Ka, Section 4.4]. This implies, in particular, that F is a
compatible (g,OZ)-module in the sense that for any open subset - ⊆ Z, one has
ξ.( f v) = τ (ξ)( f )v + f (ξ.v) for all ξ ∈ g, f ∈ OZ(-) and v ∈ F(-). In this setting,
the cohomology group Hi (Z,F) inherits a structure of compatible (G,O(Z))-module,
see [Ke, Theorem 11.6]. If F is a coherent G-equivariant DZ-module, then it follows
from [Ka, Sections 4.10 and 4.11] that Hi (Z,F) is endowed with a D(Z)-module
structure such that τ (ξ)v = d

dt |t=0(e
tξ .v) for all v ∈ Hi (Z,F) and ξ ∈ g. We will

apply these observations in two cases: one is when Z = X = G/U and F = OX is a
G-equivariant DX-module under left translation; the other is described next.

Let π : G � B = G/B , φ : G � X and ϕ : X � B be the natural projections,
thus π = ϕ◦φ. For each λ ∈ 	, the one-dimensional H -module C−λ can be viewed as
a B-module with trivial action of U . As in [Ke, pp. 333–335], define the G-equivariant
OB-module L(λ) to be the sections of the line bundle G ×B C−λ. Since G ×B C−λ ∼=
X×H C−λ, one has

Γ (-,L(λ)) = { f : ϕ−1-→ C : f (ḡh) = λ(h) f (ḡ)

for all h ∈ H and ḡ ∈ ϕ−1-}. (4.2)

where - ⊆ B is any open subset.
Recall from (2.3) that the decomposition O = O(X) =⊕

γ∈	+ Oγ is induced by
the twisted action of H on X. Hence, h ∈ H acts on f ∈ Γ (-,L(λ)) via

(rh . f )(ḡ) = f (ḡw0(h
−1)) = λ(w0(h)

−1) f (ḡ) = λ∗(h) f (ḡ). (4.3)

Passing to Čech cohomology, H therefore acts on Hi (B,L(λ)) with weight λ∗.
The cohomology groups of the line bundle L(λ) are described as G-modules by the

Borel–Weil–Bott theorem, that we now recall (see [Ja, Corollaries II.5.5 and II.5.6],
up to a switch from B to the opposite Borel). The length of w ∈ W is denoted by �(w)
and we will write

W (i) = {w ∈ W : �(w) = i}.
The “dot action” of w ∈ W on ξ ∈ h∗ is defined by w · ξ = w(ξ + 1)− 1.

Theorem 4.6 (Borel–Weil–Bott). The G-module Hi (B,L(λ)) is isomorphic to{
V (μ)∗ if ∃ (w,μ) ∈ W (i)×	+ such that λ = w · μ;

0 otherwise. ��

The following standard proposition reduces the computation of the G-module
H∗(X,OX) to the Borel–Weil–Bott theorem. We include a proof since we could not
find an appropriate reference.
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Proposition 4.7. The morphism ϕ : X → B is affine and one has ϕ∗OX ∼=⊕
ν∈	L(ν)

as (g,OB)-modules. In particular, for each i ∈ N, there is a G-module isomorphism

Hi (X,OX) ∼=
⊕
ν∈	

Hi (B,L(ν)).

Proof. By the Bruhat decomposition, B is covered by the affine open subsets -w =
π(ẇU−B) where ẇ ∈ NG (H ) is a representative of w ∈ W and U− is the opposite
maximal unipotent subgroup of G, see [Ja, (II.1.10)]. As ẇU−B ∼= U− × H ×U , the
subset ϕ−1-w = φ(ẇU−B) is affine and isomorphic to U−×H as an H -variety. Thus
ϕ is an affine morphism and Hi (X,OX) ∼= Hi (B, ϕ∗OX) by [Ha, III, Exercise 4.1].

The affine algebra Γ (-w, ϕ∗OX) = OX(ϕ
−1-w) is endowed with a regular action

of H . Hence, Γ (-w, ϕ∗OX) decomposes as
⊕
ν∈	OX(ϕ

−1-w)ν with

OX(ϕ
−1-w)ν = { f : ϕ−1-w → C : f (ḡh) = ν(h) f (ḡ)

for all h ∈ H and ḡ ∈ ϕ−1-w}.
Therefore, by (4.2), Γ (-w, ϕ∗OX) ∼=⊕

ν∈	 Γ (-w,L(ν)) as (g,OB(-w))-modules,
and it follows that ϕ∗OX ∼=⊕

ν∈	L(ν) as (g,OB)-modules. ��
One consequence of this proposition is that Hi (X,OX) = 0 for i > dim B =

�(w0) = |R+|. We can now give the promised description of H∗(X,OX).

Theorem 4.8. As D(X) modules, Hi (X,OX) ∼=⊕
w∈W (i)O(X)w for 0 ≤ i ≤ dim B.

Moreover
H∗(X,OX) ∼= D(X)/D(X)g ∼=

⊕
w∈W

O(X)w

is a direct sum of nonisomorphic simple D-modules.

Proof. By Proposition 3.1 and Lemma 4.4, the Ow are nonisomorphic simple mod-
ules. Combining Theorem 4.6 with Proposition 4.7 gives

Hi (X,OX) ∼=
⊕
ν∈	

Hi (B,L(ν)) ∼=
⊕
μ∈	+
w∈W (i)

Hi (B,L(w · μ)).

Since H�(w)(B,L(w · μ)) ∼= V (μ∗), the multiplicity [Hi (X,OX) : V (λ)] is equal to
|W (i)| for any λ ∈ 	+.

Fix w ∈ W (i) and pick 0 �= ew in the trivial G-module H�(w)(B,L(w · 0)). As
OX is a (G × H )-equivariant DX-module, xew = d

dt |t=0(e
t x .ew) = 0 for x ∈ g and,

by (4.3), y ∈ ĥ acts on ew with weight

(w · 0)∗ = −w0(w(1)− 1) = w0ww0(1)− 1.
Hence yew = 〈w0ww0(1)− 1, y〉ew = 〈1,w0w

−1w0(y)− y〉ew, for all y ∈ ĥ. Sub-
stituting this into the formula from Proposition 2.5(2) shows that Fw0ww0(y)ew = 0.
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Thus
(
Dg+ DFw0ww0 (̂h)

)
ew = 0 and so, by Theorem 4.5(2), Dew ∼= Ow0w

−1w0 .
Since the map w 	→ w0w

−1w0 permutes W (i) and the Ow are nonisomorphic sim-
ple modules, we conclude that Hi (X,OX) ⊇ ∑

w∈W (i)Dew ∼= ⊕
w∈W (i)Ow . By

Lemma 4.1, Ow ∼= O ∼=⊕
λ∈	+ V (λ) as G-modules. Thus, for each λ ∈ 	+, the first

paragraph of the proof implies that[ ⊕{Ow : w ∈ W (i)} : V (λ)
] = |W (i)| = [

Hi (X,OX) : V (λ)
]
.

Consequently, Hi (X,OX) ∼=⊕
w∈W (i)Ow. Theorem 4.5 then implies that

H∗(X,OX) =
�(w0)⊕
i=0

Hi (X,OX) ∼=
⊕
w∈W

Ow ∼= D/Dg,

which completes the proof. ��

5. Differential operators on S-varieties

In this section we consider highest weight varieties and, more generally, S-varieties Y
in the sense of [VP]. These are natural generalizations of the closure X of the basic
affine space X and there is a natural map from D(X) to the ring of differential operators
D(Y) over such a variety. Although this map need not be surjective (see Theorem 6.7)
it does carry enough information to prove, under mild assumptions, that Y is D-simple
in the sense that O(Y) is a simple D(Y)-module. We will continue to write O = O(X)
and D = D(X).

Definition 5.1. An irreducible affine G-variety Y is called an S-variety if it contains a
dense orbit Y = G.v such that U ⊆ StabG(v), the stabilizer of v in G.

Remark 5.2. One important feature of S-varieties is that any affine spherical variety
(i.e., an irreducible affine G-variety having a dense B-orbit) is a flat deformation of an
S-variety (see, for example, [Gr, Theorem 22.3]).

The S-varieties have been completely described in [VP]. We begin with the rel-
evant notation. Set � = ∑s

j=1 Nγ j , where γ1, . . . , γs ∈ 	+ are distinct dominant
weights. Write V� = ⊕s

j=1 V (γ j ) $ v� = vγ1 ⊕ · · · ⊕ vγs and define Y� = G.v� .
The following theorem summarizes the results of [VP, Section 3] that we need.

Theorem 5.3. (1) The closures Y� give all the S-varieties.
(2) One has O(Y�) =⊕

γ∈�∗ Oγ ⊆ O(Y�) =⊕
μ∈Z�∗∩	+ Oμ.

(3) The following assertions are equivalent:
(i) O(Y�) = O(Y�);

(ii) � = Z� ∩	+;
(iii) Y� is normal and codimY� (Y� � Y�) ≥ 2. ��
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We will always assume that � satisfies the equivalent conditions from Theo-
rem 5.3(3); that is,

Z� ∩	+ = �. (5.1)

Hence, for an S-variety Y� satisfying (5.1) we have D(Y�) = D(Y�). Notice also that
�∗ =∑s

j=1 Nγ ∗j satisfies (5.1) if and only if � does. Natural examples of S-varieties
satisfying (5.1) are the following and more examples can be found in [Gr, Ch. 2, §11]).

Examples 5.4. (1) For � = 	+ we obtain the basic affine space X = Y	+ .
(2) Let γ ∈ 	+ and � = Nγ . Then, Y� will be denoted by Yγ and is the orbit of

a highest weight vector vγ ∈ V (γ ). Its closure Yγ is called a highest weight or
HV-variety [VP, Section 1].

(3) An important example of highest weight variety is the closure of the minimal
(nonzero) orbit in a simple Lie algebra g: in this case γ = α̃ is the highest root
and V (α̃) ∼= g is the adjoint representation.

Set S� = StabG(v�); thus Y� ∼= G/S� . Since S� = ⋂s
j=1 StabG(vγ j ), we see

that h normalizes s� = Lie(S�). Let �(h, s�) denote the set of roots of h in the Lie
algebra s� . Then S� = S′�Q� where Q� = H ∩ S� and S′� is generated by the one
parameter groups Uα, α ∈ �(h, s�) (see [VP, p. 753] or [Gr, Corollary 3.5]). Clearly,
Q� = {h ∈ H : ∀γ ∈ �, γ (h) = 1} is a diagonalizable subgroup of H with character
group 	/Z�. Under the right action of the given groups on O(Y�), the proof of [Gr,
Lemma 17.1(b)] shows that

O(Y�) = O(G)S� = O(G)U Q� = OQ� .

When (5.1) holds, this implies that O(Y�) = O(Y�) = OQ� and Y� = X//Q� .
If an algebraic group L acts on the right on some variety Z we denote by δg : z 	→

z.g the right translation by g ∈ L on Z. It induces a right action on f ∈ O(Z) by
δg. f (z) = f (z.g). This applies for example to S� acting on G and Q� acting on X.
In this notation, D(X)μ = {d ∈ D(X) : ∀h ∈ H, δh .d = μ∗(h)d} for any μ ∈ 	.

When Y� = Yγ is an HV-variety we will set Sγ = S� and Qγ = Q� , etc.

Proposition 5.5. Suppose that Y� is an S-variety satisfying (5.1). Then DQ� =⊕
μ∈Z�∗ Dμ and there is a natural morphism of algebras ψ� : DQ� → D(Y�).

Proof. Let d = ∑
μ∈	 dμ∗ with dμ∗ ∈ D(X)μ∗ . It is clear that d ∈ D(X)Q� if and

only if δh .dμ∗ = dμ∗ , for all h ∈ Q� . This condition is equivalent to μ(h)dμ∗ = dμ∗ ;
that is, μ(h) = 1 when dμ∗ �= 0. Since Q� is a diagonalizable group, [Sp, Proposi-
tion 2.5.7(iii)] implies that Z� = {μ ∈ 	 : ∀h ∈ Q�, μ(h) = 1}. It follows that
D(X)Q� = ⊕

μ∈Z�∗ D(X)μ. The morphism ψ� is simply the restriction morphism

coming from the identification Y� = X//Q� . ��
An affine variety Z (respectively an algebra R) is called D-simple if O(Z) (respec-

tively R) is a simple D(Z)-module (respectively D(R)-module). This does not hold for
arbitrary varieties; for example when Z is the cubic cone in C3, O(Z) does not even
have finite length as a D(Z)-module [BGG]. It is, however, important in many situa-
tions to know that a variety is D-simple. We first note that for S-varieties satisfying
(5.1) this is an easy consequence of Proposition 3.1:
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Proposition 5.6. Let Y� be an S-variety satisfying (5.1). Then O(Y�) is a simple left
D(Y�)-module.

Proof. Since O(Y�) = O(X)Q� with Q� reductive, O(Y�) is an O(Y�)-module
summand of O(X). The proposition is now a consequence of Proposition 3.1 and the
following result. ��
Proposition 5.7 ([Sm, Proposition 3.1]). Let R ↪→ T be an inclusion of commutative
C-algebras and suppose that R is a direct summand of the R-module T . If T is D-
simple, then R is D-simple. ��

We next refine Proposition 5.6 by showing that O(Y�) is a simple module over a
rather explicit subring of D(Y�). Let S� be the subalgebra of D(X) generated by the
two finitely generated commutative subalgebras O(Y�) and Fw0(O(Y�∗)). Observe
that Fw0(O(Y�∗)) is isomorphic to O(Y�∗) (as both an algebra and a G-module) and
so

S� = C〈Oγ ∗i , Fw0(Oγ j ) ; 1 ≤ i, j ≤ s〉.
By Proposition 2.5(1), Fw0(Oγ ) ⊆ D−γ ∗ and so S� ⊆ D(X)Q� , by Proposition 5.5.
We will consider O(Y�) as an S�-module through the map ψ� defined in the latter
result.

Proposition 5.8. Let Y� be an S-variety satisfying (5.1). Then O(Y�) is a simple S�-
module.

Proof. As in Lemma 3.6, partially order 	 by ω∗ � λ∗ if ω∗ − λ∗ ∈ 	+. Let 0 �=
g ∈ O(Y�) and write g = gλ∗0 +

∑
λ∗j ��λ∗0 gλ∗j with gλ∗0 �= 0 and gλ∗i ∈ Oλ∗i ⊂

O(Y�) for all i . By Lemma 3.5 there exists f ∈ Oλ0 such that Fw0( f )(gλ∗0) = 1.
Hence Proposition 2.5(1) implies that Fw0( f )(g) = 1 +∑

λ∗j ��λ∗0 Fw0( f )(gλ∗j ) with

Fw0( f )(gλ∗j ) ∈ O−λ∗0+λ∗j . But O−λ∗0+λ∗j = 0 when λ∗j �� λ∗0. Thus Fw0( f )(g) = 1 and
O(Y�) is simple over S� . ��

Let Z be an affine variety with R = O(Z) and consider the subalgebra

�(R) = �(Z) = C〈O(Z),DerC(O(Z) 〉 ⊆ D(Z).

It is known [MR, Corollary 15.5.6] that �(Z) = D(Z) when Z is smooth. The Nakai
conjecture [Na] says that the converse should be true:

�(Z) = D(Z) ?-⇒ R is regular.

The reader can consult [Be, Tr], [Sc, Section 12.3] and the references therein for work
related to this conjecture.

The following observation, which is implicit in [Tr], implies that many singular
varieties, notably S-varieties satisfying (5.1), do satisfy the conclusion of Nakai’s con-
jecture.
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Lemma 5.9. Assume that Z is irreducible and O(Z) is D-simple. Then the Nakai con-
jecture holds for Z.

Proof. Suppose that D(R) = �(R). Then R is simple as a �(R)-module and the
result follows from [MR, Theorem 15.3.8]. ��
Corollary 5.10. (1) The Nakai conjecture holds for S-varieties which satisfy (5.1).
(2) More generally, suppose that R ⊆ T are finitely generated C-algebras such that

R is a summand of the R-module T and that T is D-simple. Then the Nakai con-
jecture holds for R.

Proof. Part (1) is immediate from Lemma 5.9 combined with Proposition 5.6. Simi-
larly, part (2) follows from Lemma 5.9 and Proposition 5.7. ��

One significance of the Nakai conjecture is that it implies the Zariski–Lipman
conjecture: Z is smooth whenever DerC O(Z) is a projective O(Z)-module. Part (1) of
Corollary 5.10 does not give new information about that conjecture; indeed since S-
varieties always have graded coordinate rings, the Zariski–Lipman conjecture for these
varieties already follows from [Ho]. It is not clear whether part (2) of Corollary 5.10
has significant applications in this direction.

A natural situation where Corollary 5.10 applies is for invariant rings:

Corollary 5.11. Let Q be an affine algebraic group and V be an irreducible affine
Q-variety. Suppose that O(V) is D-simple (for example, when V is smooth). Then the
Nakai conjecture holds for V//Q in the following two cases:

(a) Q is reductive;
(b) V is a G-variety and Q = U.

Proof. (a) As in the proof of Proposition 5.6, O(V//Q) is a summand of O(V). Thus
Corollary 5.10(2) applies.
(b) Observe that D(X × V) ∼= D(X) ⊗ D(V); therefore, by hypothesis and Proposi-
tion 3.1 (or Proposition 5.8), O(X×V) ∼= O(X)⊗O(V) is D-simple. By [Kr, III.3.2,
p. 191]), (X×V)//G ∼= V//U where G acts componentwise on X×V. Thus the result
follows from (a) applied to G acting on X×V. ��

Surprisingly, and despite the simplicity of its proof, only special cases of Corol-
lary 5.11 have appeared before in the literature and these have typically required sub-
stantially harder proofs. See, for example, [Is, Theorem 2.3] and [Sc, Section 12.3].

6. Exotic differential operators

The results from the last section raise two questions which we study in this section.
First, can one say more about the structure, notably the order, of the exotic differential
operators in D(Y�) induced from the ring S� of Proposition 5.8? This is answered by
Theorem 6.5 and Corollary 6.6 and proves Corollary 1.5 from the introduction.
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The second question concerns the following basic question in the theory of rings of
differential operators. If V is a finite dimensional representation of a reductive group
K , then restriction of operators induces a ring homomorphism D(V )K → D(V //K ).
When is this map surjective? The conjectural answer is that this happens if and only if
V //K is singular. Positive answers to this question have been found in many cases and
these solutions had significant applications to Lie theory (see, for example, [Jo2, Jo3,
LS1, Sc]). These results have almost always been in situations where V //K is a highest
weight variety. Now let Y = Y� be any HV-variety, or even S-variety satisfying (5.1).
It is natural to ask whether the resulting map ψ� : D(X)Q� → D(Y) is surjective. As
we will show in Theorem 6.7, this even fails for the minimal orbit Omin = Yα̃ of a
simple classical Lie algebra g. This proves Proposition 1.6 from the introduction.

The idea behind the proof of Theorem 6.7 is as follows. Let Y = Yγ be an HV-
variety. Then O(Y) = ⊕

p∈N Opγ ∗ is an N-graded algebra and so D(Y) is Z-graded

by (2.1). There exist examples of HV-varieties Y, notably the closures of minimal
orbits Yα̃ , for which one can find an irreducible G-module E consisting of “exotic”
operators of degree −1 and order at most 4, see [AB, BK2, LS3]. On the other hand,
by combining (2.2) with Propositions 2.5(1,3) and 5.5 the only obvious operators of
order−1 in Im(ψγ ) and small order are those in ψγ (Fw0(Oγ )). But their order is only
bounded above by k(γ ), where we write

k(λ) = 〈λ, 21∨〉 = 2
∑

i mi for λ =∑
i miαi ∈ 	+. (6.1)

Typically k(γ ) is significantly larger than 4 (see the table at the end of the section).
The aim of the proof is therefore to show that for the minimal orbit the bound k(γ ) is
attained and hence that the G-module E cannot lie in Im(ψγ ).

We begin with some technical lemmas, the first of which is a mild generalization
of [BBP, Lemma 3.8]. The subalgebra U (̂h) ∼= S(h) of D can be identified with O(h∗)
and it follows from the definitions that u(g) = u(λ)g for u ∈ U (̂h) and g ∈ Oλ. We
denote by {Um (̂h)}m∈N the standard filtration on the enveloping algebra U (̂h).

Lemma 6.1. Let f1, . . . , fn ∈ O be linearly independent and pick D ∈ Dp. Suppose
that there exist functions ci : 	+ → C such that D(g) = ∑n

i=1 ci (μ) fi g for all
g ∈ Oμ and μ ∈ 	+. Then D =∑n

i=1 fi c̃i for some c̃1, . . . , c̃n ∈ Up (̂h).

Proof. For any function c : 	+ → C and λ ∈ 	+, define Tλ(c) : 	+ → C by
Tλ(c)(μ) = c(λ+μ)−c(μ). As ord D ≤ p, we have [gp+1, [gp, [. . . , [g1, D]] . . . ] =
0 for all 0 �= g j ∈ Oλ j . This easily implies that Tλ1 ◦ Tλ2 ◦ · · · ◦ Tλp ◦ Tλp+1(ci ) = 0
for all λi ∈ 	+. Since Tλ is a difference operator, it follows that ci is a polynomial
function of degree ≤ p on 	+ and it is clear that there exist c̃i ∈ U(h) (of degree
≤ p) such that c̃i (λ) = ci (λ) for all λ ∈ 	+. Obviously, D(g) = (∑n

i=1 fi c̃i
)
(g) for

all g ∈ Oλ, hence the result. ��
[Sh2, Theorem 1] shows that, for all γ ∈ 	+ and w ∈ W , one has D[γ ]w(γ ) ∼=

U (̂h) ⊗ E , where E is a G × H -module of dimension dim V (γ ). The next lemma
provides an explicit G × H -module E with this property.
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Lemma 6.2. Let γ ∈ 	+. Then, via the multiplication map m : D⊗D → D, we have

Dp[γ ]w(γ ) = Fw(Oγ )⊗Up (̂h) = Up (̂h)⊗ Fw(Oγ )

for all w ∈ W and p ∈ N. In particular, D[γ ]w(γ ) is a free U (̂h)-module with basis
being any C-basis of Fw(Oγ ).

Proof. It is sufficient to prove the lemma for w = 1; indeed, applying Fw to the
equalities Dp[γ ]γ = Oγ ⊗Up (̂h) = Up (̂h)⊗Oγ and appealing to Proposition 2.5(1)
gives the general result.

By [Sh2, Theorem 1], n = rkU (̂h)D[γ ]γ = dim V (γ ). Let {D1, . . . , Dn} be a

basis of the right U (̂h)-module D[γ ]γ , and fix a basis { f1, . . . , fn} of the G-module
Oγ . It is easy to see that Up (̂h) ⊗ Oγ ∼= Up (̂h)Oγ = OγUp (̂h) ∼= Oγ ⊗ Up (̂h),
and that this space is contained in D[γ ]γ . For the converse, write f j = ∑

i Di ai j for
ai j ∈ U (̂h). Then, f j g = ∑

i ai j (μ)Di (g) for all 0 �= g ∈ Oμ. Thus
⊕n

j=1 C f j g ⊆∑n
j=1 CD j (g). Since dim

(⊕n
j=1 C f j g

) = n ≥ dim
(∑n

j=1 CD j (g)
)
, we obtain that⊕n

j=1 C f j g =⊕n
j=1 CD j (g). Therefore, for all g ∈ Oμ, there exist unique elements

ci j (g, μ) ∈ C such that D j (g) =∑n
i=1 ci j (g, μ) fi g.

We next show that the ci j (g, μ)’s depend only on μ. Indeed, it follows from

f j g =
∑

k

akj (μ)Dk(g) =
∑

i

∑
k

akj (μ)cik(g, μ) fi g

that
∑

k cik(g, μ)akj (μ) = δi j for all 1 ≤ i, j ≤ n. In other words, the matrix
[cik(g, μ)]ik is the inverse of the matrix [akj (μ)]kj . Since the akj ’s do not depend
on g, nor do the cik(g, μ).

We can therefore write D j (g) =∑n
i=1ci j (μ) fi g for any g ∈ Oμ. By Lemma 6.1

we deduce that D j =∑n
i=1 fi c̃i j with c̃i j ∈ Up (̂h). ��

Return to an S-variety Y = Y� satisfying (5.1) and define ψ = ψ� : D(X)Q� →
D(Y) by Proposition 5.5. Recall that � = ∑s

i=1 Nγi for some γi ∈ 	+ and order
the γi so that Q� = ⊕r

i=1 Qγi . Set t = {h ∈ ĥ : 〈�∗, h〉 = 0}; thus t ∼= Lie(Q�)
has dimension rank(g) − r . Pick x1, . . . , xr ∈ ĥ such that ĥ = (⊕r

i=1 Cxi
) ⊕ t and

〈γ ∗i , x j 〉 = δi j for 1 ≤ i, j ≤ r . Set y j = ψ(x j ) ∈ D(Y) and let u ∈ U (̂h). From
the identity u( f ) = ψ(u)( f ) = u(μ) f for μ ∈ �∗ and f ∈ Oμ, one deduces easily
that ψ(u) = 0 when u ∈ t U (̂h) and that ψ induces an isomorphism of polynomial
algebras:

ψ : C[x] = C[x1, . . . , xr ] ∼−−→ C[y] = C[y1, . . . , yr ].

For m = (m1, . . . ,mr ) ∈ Nr we set xm = ∏r
i=1 xmi

i and ym = ∏r
i=1 ymi

i . Note
that if u(y) ∈ C[y], the (total) degree of u(y) coincides with its order as a differential
operator on Y. We recall the definition of k(λ) from (6.1).

Proposition 6.3. Let Y = Y� satisfy (5.1) and set ψ = ψ� . Let γ ∈ �, 0 �= f ∈ Oγ
and u(y) ∈ C[y]. Then,

ordψ(Fw0 ( f ))u(y) = k(γ )+ deg u(y).
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In particular, the elements
{
ψ(Fw0 ( fm))ym : m ∈ Nr

}
are linearly independent for

any fm ∈ Oγ � {0}.
Proof. As the variety Y is irreducible, the associated graded ring grD(Y) = ⊕

k
Dk(Y)/Dk−1(Y) is a domain and so ord ab = ord a + ord b for a, b ∈ D(Y). Since
ord u(y) = deg u(y), it therefore suffices to show that ordψ(Fw0 ( f )) = k(γ ). By
Proposition 2.5(3), we do have ordψ(Fw0 ( f )) ≤ ord Fw0( f ) = k(γ ).

Consider the operator Pγ ∗ = ∑
i gi Fw0( fi ) (where gi ∈ Oγ ∗ , fi ∈ Oγ ) defined

by Proposition 2.5(4). For each α∨ ∈ �∨+ we have α∨ = ∑r
j=1 〈α∨, γ ∗j 〉x j + z with

z ∈ t. Thus, applying ψ to (2.5) gives

ψ(Pγ ∗) = cγ ∗
∏

α∨∈�∨+

〈γ ∗,α∨〉∏
i=1

(∑
j

〈α∨, γ ∗j 〉y j + 〈α∨, 1〉 − i

)
. (6.2)

Write γ ∗ = ∑r
j=1 m jγ

∗
j for some m j ∈ Q and pick α such that 〈γ ∗, α∨〉 �= 0. Then∑

j m j 〈α∨, γ ∗j 〉 �= 0 and so 〈α∨, γ ∗j 〉 �= 0 for some 1 ≤ j ≤ r . Hence degψ(α∨) =
deg

(∑
j 〈α∨, γ ∗j 〉y j

) = 1. Thus (6.2) implies that ψ(Pγ ∗) = ∑
i giψ(Fw0 ( fi )) has

order
∑
α∨∈�∨+ 〈γ ∗, α∨〉 = k(γ ). Therefore, there exists i ∈ {1, . . . , n} such that

ordψ(Fw0( fi )) = k(γ ). In particular, ψ(Fw0 (Oγ )) is nonzero.
Consider the symbol map grk(γ ) : Dk(γ )(Y) → Dk(γ )(Y)/Dk(γ )−1(Y). No-

tice that grk(γ ) is a morphism of G-modules and that, by the previous paragraph,
grk(γ )(ψ(Fw0 ( fi ))) �= 0 for some fi ∈ Oγ . Since ψ(Fw0(Oγ )) ∼= V (γ ) is an ir-
reducible G-module, we deduce that grk(γ )(ψ(Fw0 ( f ))) �= 0 for all 0 �= f ∈ Oγ ;
that is to say, ordψ(Fw0 ( f )) = k(γ ). This proves the first assertion, from which the
second follows immediately. ��
Corollary 6.4. Let Y� satisfy (5.1), write ψ = ψ� and pick γ ∈ �. Then ψ induces
an isomorphism of G-modules:

Fw0 (Oγ )⊗ C[x] ∼−−→ ψ(D[γ ]−γ ∗) = ψ(Fw0(Oγ ))⊗ C[y].

Proof. We claim that D[γ ]−γ ∗ ∩ Kerψ = Fw0(Oγ ) ⊗ t U (̂h). Let Q ∈ D[γ ]−γ ∗ ∩
Kerψ . By Lemma 6.2, write Q = P + T , where P = ∑

m∈Nr Fw0( fm)xm for some
fm ∈ Oγ , and T ∈ Fw0(Oγ ) ⊗ t U (̂h). Since T ∈ Kerψ , certainly 0 = ψ(P) =∑

mψ(Fw0 ( fm))ym. By Proposition 6.3, this implies that fm = 0 for all m. Hence
P = 0 and Q ∈ Fw0(Oγ ) ⊗ t U (̂h). Since the opposite inclusion is clear, the claim
is proven. As U (̂h) = C[x]

⊕
t U (̂h), it follows that ψ induces the required isomor-

phism. ��
Theorem 6.5. Let Y� be an S-variety satisfying (5.1), set ψ = ψ� and pick γ ∈ �.
Let E ⊂ ψ(D[γ ]−γ ∗) be an irreducible G-module. Then E = ψ(Fw0 (Oγ ))u(y) for
some 0 �= u(y) ∈ C[y] and ord q = k(γ )+ deg u(y) for all 0 �= q ∈ E.

In particular, if ψ is surjective then ord q ≥ k(γ ) for all 0 �= q ∈ D(Y)[γ ]−γ ∗ .
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Proof. Let q ∈ E � {0}; by Corollary 6.4 we may write q = ∑
i piui (y) where the

pi ∈ ψ(Fw0 (Oγ )) are linearly independent and 0 �= ui (y) ∈ C[y]. Sinceψ(Fw0 (Oγ ))
is an irreducible G-module, the Jacobson Density Theorem produces an element a ∈
CG such that a.pi = δi,1 p1 for all i . Recall that G acts trivially on ĥ, hence a.q =
p1u1(y) ∈ E � {0}. Therefore, E = CG.(a.q) = ψ(Fw0(Oγ ))u1(y). This proves the
first claim and the second is then a consequence of Proposition 6.3.

Suppose that ψ is surjective. Since ψ is a (G × H )-module map, we must have
D(Y)[γ ]−γ ∗ = ψ(D[γ ]−γ ∗) and the final claim follows from the previous ones. ��

Assume now that Y� = Yγ is an HV-variety and recall that, by Example 5.4(2),
Yγ automatically satisfies (5.1). Then O(Yγ ) is graded and from the discussion after
(2.2) we know that D(Yγ )−mγ ∗ identifies with the space of differential operators of
degree −m on the graded ring O(Yγ ). In particular, we obtain the following explicit
module of exotic differential operators:

Corollary 6.6. Let Y = Yγ be an HV-variety. Then D(Y) contains an irreducible G-
module E = ψγ (Fw0(Oγ )) ∼= V (γ ) of differential operators of degree −1 and order
k(γ ) = 〈γ, 21∨〉. ��

For a number of important HV-varieties, G-modules of differential operators of de-
gree −1 have been constructed, but these constructions are typically quite subtle (see,
for example, [AB, BK1, BK2]). The results of [AB] apply to the minimal nilpotent
orbit. In our final result we will show that their operators almost never appear in the
image of ψ and therefore that ψ is not surjective for those varieties.

Assume that G is simple. Then the minimal (nonzero) nilpotent orbit of g =
Lie(G) is Omin = Yα̃ , where α̃ = α̃∗ is the highest root. In this case k(α̃) is easy
to compute. Indeed, by [Bo, Ch. VI, 1.11, Proposition 31], k(α̃) = 2(h − 1), where
h is the Coxeter number of the root system �. These Coxeter numbers are described,
for example, in [Bo, Planche I–IX] and we therefore obtain the following values for
k(α̃).

Type of g A� B�, � ≥ 2 C�, � ≥ 2 D�, � ≥ 3 E6 E7 E8 F4 G2

k(α̃) 2� 2(2�− 1) 2(2�− 1) 2(2�− 3) 22 34 58 22 10

It is now easy to prove Proposition 1.6 from the introduction.

Theorem 6.7. Let Omin = Yα̃ be the minimal nonzero orbit in a simple classical Lie
algebra g. Then the restriction map ψ : D(X)Q α̃ → D(Yα̃) is surjective if and only if
g = sl(2) or g = sl(3).

Proof. By Example 5.4(3), Yα̃ is an HV-variety and so it satisfies (5.1).
Suppose that ψ is surjective. As g is classical, it follows from [AB, Theorem 3.2.3

and Equation 3] that D(Yα̃) contains a G-module E ∼= V (α̃) of differential operators
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of degree−1 and order≤ 4. Asψ is a G×H -module map, and D(Yα̃)−α̃
∗

is the space
of operators of degree −1, this forces E ⊆ D(Yα̃)[α̃]−α̃∗ = ψ(D[α̃]−α̃∗). Therefore,
Theorem 6.5 says the operators in E have order 4 ≥ k(α̃). The table shows that this is
only possible when g = sl(2) or sl(3).

Conversely, if g = sl(2), then D = C[u, v, ∂u , ∂v ] is the second Weyl algebra,
Qα̃ = {±id} ∼= Z/2Z and O(Yα̃) = OQ α̃ = C[u2, v2, uv]. Thus ψ is just the
isomorphism DQ α̃ = C[u2, v2, uv, ∂2

u , ∂
2
v , ∂u∂v ] ∼−→D(Yα̃).

Now suppose that g = sl(3). Then X is the quadratic cone {∑3
i=1 ui yi = 0} in

C3 × C3, Qα̃ ∼= C∗ and the natural map ψ : DQ α̃ → D(Yα̃) is surjective by [LS3,
Lemma 1.1 and Theorem 2.14]. ��

Differential operators have also been extensively studied for lagrangian subvari-
eties of minimal orbits in [BK1, BK2, LS3]. The varieties discussed in those papers
are HV-varieties for an appropriate Lie algebra (see, for example, [BK1, Table 1])
and they again have differential operators of order ≤ 4 and degree −1. As might be
expected by analogy with Theorem 6.7, the corresponding map ψ does produce oper-
ators of the required order for Lie algebras of small rank but in large rank the map ψ
is definitely not surjective. We omit the details of these assertions since they are rather
technical.

The differential operators constructed in [BK1, BK2, AB] have a number of in-
teresting properties, as is explained in those papers. It would be interesting to know
whether the operators constructed for arbitrary HV-varieties by Corollary 6.6 also have
distinctive properties.

Remark 6.8. It is instructive to compare the results of this section with those from
[LSS, LS1]. One of the main aims of those papers was to construct D(Z) for certain
specific singular affine varieties Z. The typical situation is that Z is an irreducible
component of O ∩ n+, where O is a nilpotent orbit of a simple Lie algebra g̃ with
triangular decomposition g̃ = n− ⊕ l ⊕ n+. Those papers then show that D(Z) =
U (̃g)/P for some primitive ideal P . However, Z will almost never be an S-variety for
g̃. Rather, Z will be contained in the nilradical of a parabolic subalgebra p of g̃ and,
at least when O is the minimal orbit, Z then will be an HV-variety for a smaller Lie
algebra g contained in the Levi factor of p. For these examples one would not expect
to find a group Q and a surjective map ψ : D(G/U)Q → D(Z), simply because it is
unlikely for the big Lie algebra g̃ to lie in the image of such a map.

The reader is referred to [LSS, Theorem 5.2] and [LS1, Introduction] for explicit
examples of this behaviour and to [Jo2] for a more general framework. One example is
provided by Example 2.4, for which we take g̃ = so(8). The parabolic p is described
explicitly in [LSS, Table 3.1 and Remark 3.2(v)], so suffice it to say that p has rad-
ical r ∼= C6 and Levi factor a ⊕ C, where a ∼= s0(6). The variety Z is the quadric∑3

i=1 xi yi = 0 inside r. Since r is the natural representation for a it follows easily that
Z is an HV-variety for a. Example 2.4 follows from this discussion by the lucky coin-
cidence that the closure X of the basic affine space for sl(3) identifies with Z under an
embedding of sl(3) into a.
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Summary. N. Wallach has considered an element of the group algebra of the symmetric group
Sn which is the sum of an n-cycle, an (n − 1)-cycle, . . . , a 2-cycle and the identity. He showed
that multiplication by this element has eigenvalues 0, 1, 2, . . . , n−2, n.We prove an analogous
result in which the group algebra of Sn is replaced by the corresponding Hecke algebra.

Subject Classification: 20G99

1.

Let n be an integer ≥ 2. For i ∈ [1, n − 1] let si be the transposition (i, i + 1) in the
group Sn of permutations of [1, n]. (Given two integers a, b we denote by [a, b] the
set of all integers c such that a ≤ c ≤ b.) Consider the following element of C[Sn]
(the group algebra of Sn):

t = s1s2 . . . sn−1 + s2s3 . . . sn−1 + · · · + sn−2sn−1 + sn−1 + 1.

(The sum of an n-cycle,an n − 1-cycle, . . . , a 2-cycle and the identity.) Wallach [WA]
proved the remarkable identity

t
∏

k∈[1,n],k �=n−1

(t− k) = 0 (a)

in C[Sn] and used it to establish a vanishing result for some Lie algebra cohomolo-
gies. In particular, left multiplication by t in C[Sn] has eigenvalues in {0, 1, 2, . . . ,
n−2, n}. A closely related result appeared later in connection with a problem concern-
ing shuffling of cards in Diaconis, Fill and Pitman [DFP] and also in Phatarfod [PH].
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Let q be an indeterminate. Let H be the Z[q]-algebra with generators
T1, T2, . . . , Tn−1 and relations (Ti + 1)(Ti − q) = 0 for all i , Ti Tj Ti = Tj Ti Tj for
|i − j | = 1, Ti Tj = Tj Ti for |i − j | ≥ 2, a Hecke algebra of type An−1. Set

τ = T1T2 . . . Tn−1 + T2T3 . . . Tn−1 + · · · + Tn−2Tn−1 + Tn−1 + 1 ∈ H.

Under the specialization q = 1, τ becomes the element t of C[Sn]. Our main result is
the following q-analogue of (a):

Proposition 2. The following equality in H holds:

τ
∏

k∈[1,n],k �=n−1

(τ − 1− q− q2 − · · · − qk−1) = 0.

The proof will be given in Section 4. The proof of the Proposition is a generaliza-
tion of the proof of 1(a) given in [GW]. However, there is a new difficulty due to the
fact that the product of two standard basis elements of H is not a standard basis ele-
ment (as for Sn) but a complicated linear combination of basis elements. To overcome
this difficulty we will work in a model of H as a space of functions on a product of
two flag manifolds over a finite field.

Let V be a vector space of dimension n over a finite field Fq of cardinal q . Let F
be the set of complete flags

V∗ = (V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn)

in V where Vk is a subspace of V of dimension k for k ∈ [0, n]. Now GL(V ) acts on
F by

g : V∗ 	→ gV∗ = (gV0 ⊂ gV1 ⊂ gV2 ⊂ . . . ⊂ gVn)

and on F × F by g : (V∗, V ′∗) 	→ (gV∗, gV ′∗). Let H be the C-vector space of all
functions f : F × F → C that are constant on the orbits of GL(V ). This is an
associative algebra with multiplication

f, f ′ 	→ f ∗ f ′, ( f ∗ f ′)(W∗, V∗) =
∑

V ′∗∈F
f (W∗, V ′∗) f ′(V ′∗, V∗).

Define f1 ∈ H by
f1(W∗, V ′∗) = 1 if there exists g ∈ [1, n] (necessarily unique) with Wr = V ′

r for
r ∈ [1, g − 1], V ′

r �= Wr ⊂ V ′
r+1 for r ∈ [g, n − 1];

f1(W∗, V ′∗) = 0, otherwise.

For t ∈ [0, n] and any sequence 1 ≤ i1 < i2 < · · · < in−t ≤ n let Xi1,i2,...,in−t
t be the

set of all pairs (V ′∗, V∗) ∈ F×F such that V ′
r ⊂ Vir , V ′

r �⊂ Vir−1 for r ∈ [1, n− t]. For

t ∈ [0, n] let Xt = ∪Xi1,i2,...,in−t
t ⊂ F×F where the union is taken over all sequences

1 ≤ i1 < i2 < · · · < in−t ≤ n. Clearly, this union is disjoint and X0 ⊂ X1 ⊂ X2 ⊂
. . . ⊂ Xn = F × F . Also, X0 is the diagonal in F ×F . Define ft ∈ H by

ft (V ′∗, V∗) = 1 if (V ′∗, V∗) ∈ Xt , ft (V ′∗, V∗) = 0, otherwise.
For t = 1 this agrees with the earlier definition of f1. Note that f0 is the unit element
of H. The following result is a q-analogue of a result in [DFP].
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Lemma 3. For t ∈ [1, n−1] we have f1 ∗ ft = (1+q+q2+· · ·+qt−1) ft +qt ft+1.

Let f = f1 ∗ ft . From the definitions we have f =∑n
g=1 φg where φg ∈ H is defined

as follows: for (W∗, V∗) ∈ F ×F , φg(W∗, V∗) is the number of V ′∗ ∈ F such that
V ′

r = Wr for r ∈ [1, g − 1], V ′
r �= Wr ⊂ V ′

r+1 for r ∈ [g, n − 1] and there exists
1 ≤ i1 < i2 < · · · < in−t ≤ n with V ′

r ⊂ Vir , V ′
r �⊂ Vir−1 for r ∈ [1, n − t].

Here V ′
r is uniquely determined for r ∈ [1, g − 1] (we have V ′

r = Wr ) while for
r ∈ [g + 1, n − 1], V ′

r is equal to V ′
g + Wr−1 (this follows by induction from V ′

r =
V ′

r−1+Wr−1 which holds since V ′
r−1,Wr−1 must be distinct hyperplanes of V ′

r ). Hence
φg(W∗, V∗) is the cardinal of the set Yg consisting of all g-dimensional subspaces V ′

g
of V such that

Wg−1 ⊂ V ′
g ,

V ′
g + Wr−1 �= Wr for r ∈ [g, n − 1] (or equivalently V ′

g �⊂ Wn−1),
and there exists 1 ≤ i1 < i2 < · · · < in−t ≤ n (necessarily unique) with

Wr ⊂ Vir ,Wr �⊂ Vir−1 if r ∈ [1, n − t] ∩ [1, g − 1],
V ′

g ⊂ Vig , V ′
g �⊂ Vig−1 if g ∈ [1, n − t],

V ′
g + Wr−1 ⊂ Vir , V ′

g + Wr−1 �⊂ Vir−1 if r ∈ [1, n − t] ∩ [g + 1, n − 1].
Assume first that g ∈ [1, n−t]. If a V ′

g ∈ Yg exists and if 1 ≤ i1 < i2 < · · · < in−t ≤ n
is as above then, setting jr = ir for r ∈ [1, g− 1] and jr = ir+1 for r ∈ [g, n− t − 1],
we have 1 ≤ j1 < j2 < · · · < jn−t−1 ≤ n and
(a) Wr ⊂ Vjr ,Wr �⊂ Vjr−1 for r ∈ [1, n − t − 1].
(For r ∈ [1, g− 1] this is clear. Assume now that r ∈ [g, n− t − 1]. Since V ′

g +Wr ⊂
Vjr , we have Wr ⊂ Vjr . If Wr ⊂ Vjr−1 then, since V ′

g ⊂ Vig ⊂ Vjr−1 and jr = ir+1,
we would have V ′

g + Wr ⊂ Vir+1−1, contradiction.) We see that φg(W∗, V∗) = 0 if
(W∗, V∗) /∈ Xt+1. We now assume that (W∗, V∗) ∈ Xt+1. Let 1 ≤ j1 < j2 < · · · <
jn−t−1 ≤ n be such that (a) holds. Then φg(W∗, V∗) is the number of g-dimensional
subspaces V ′

g of V such that
(b) Wg−1 ⊂ V ′

g �⊂ Wn−1,
and
(c) if g = 1 ≤ n − t − 1, then V ′

g ⊂ Vi , V ′
g �⊂ Vi−1 for some i with 1 ≤ i < jg;

(d) if g ∈ [2, n − t − 1], then V ′
g ⊂ Vi , V ′

g �⊂ Vi−1 for some i with jg−1 < i < jg;
(e) if g = n − t ≥ 2, then V ′

g ⊂ Vi , V ′
g �⊂ Vi−1 for some i with jg−1 < i ≤ n.

Now conditions (c), (d), (e) can be replaced by:
(c′) if g = 1 ≤ n − t − 1, then V ′

g ⊂ Vjg−1;
(d′) if g ∈ [2, n − t − 1], then V ′

g ⊂ Vjg−1, V ′
g �⊂ Vjg−1;

(e′) if g = n − t ≥ 2, then V ′
g �⊂ Vjg−1 .

Setting L = V ′
g/Wg−1 we see that φg(W∗, V∗) is the number of lines L in V/Wg−1

such that L �⊂ Wn−1/Wg−1 and
if g = 1 ≤ n − t − 1, then L ⊂ Vjg−1/Wg−1;
if g ∈ [2, n − t − 1], then L ⊂ Vjg−1/Wg−1, L �⊂ Vjg−1/Wg−1;
if g = n − t ≥ 2, then L �⊂ Vjg−1/Wg−1.
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Since Wn−1/Wg−1 is a hyperplane in V/Wg−1, we see that φg(W∗, V∗) is given by
(q jg−g − q jg−g−1)/(q − 1) = q jg−g−1 if g = 1 ≤ n − t − 1 and Vjg−1 �⊂ Wn−1,
0 if g = 1 ≤ n − t − 1 and Vjg−1 ⊂ Wn−1,
(q jg−g − q jg−g−1 − q jg−1−g+1 + q jg−1−g)/(q − 1) = q jg−g−1 − q jg1−g

if g ∈ [2, n − t − 1] and Vjg−1 �⊂ Wn−1,

(q jg−g − q jg−g−1)/(q − 1) = q jg−g−1 if g ∈ [2, n − t − 1] and
Vjg−1 ⊂ Wn−1, Vjg−1 �⊂ Wn−1,

0 if g ∈ [2, n − t − 1] and Vjg−1 ⊂ Wn−1,

(qn−g+1−qn−g−q jg−1−g+1+q jg−1−g)/(q−1) = qn−g−q jg−1−g if g = n−t ≥ 2
and Vjg−1 �⊂ Wn−1,

qn−g if g = n − t ≥ 2 and Vjg−1 ⊂ Wn−1,

qn−g if g = 1 = n − t .
Now there is a unique u ∈ [1, n] such that Vu−1 ⊂ Wn−1, Vu �⊂ Wn−1.
From (a) we see that u /∈ { j1, j2, . . . , jn−t−1} (we use that n − t − 1 < n − 1).

Using the formulas above, we can now compute N =∑
g∈[1,n−t ] φg(W∗, V∗).

If u < j1 and n − t ≥ 2 (so that Vj1−1 �⊂ Wn−1) we have
N = q j1−2 +∑n−t−1

g=2 (q jg−g−1 − q jg−1−g)+ (qt − q jn−t−1−1)qt .
If jh−1 < u < jh for some h ∈ [2, n − t − 1] (so that Vjh−1 ⊂ Wn−1, Vjh−1 �⊂ Wn−1)
we have

N = q jh−h−1 +∑n−t−1
g=h+1(q

jg−g−1 − q jg−1−g)+ (qt − q jn−t−11) = qt .

If jn−t−1 < u and n − t ≥ 2 (so that Vjn−t−1 ⊂ Wn−1) we have N = qt .
If n − t = 1, we have N = qt .
We see that in any case we have N = qt .
Assume next that g ∈ [n− t + 1, n]. If a V ′

g ∈ Yg exists then there exists 1 ≤ i1 <
i2 < · · · < in−t ≤ n such that

(f) Wr ⊂ Vir ,Wr �⊂ Vir−1 if r ∈ [1, n − t].
We see that φg(W∗, V∗) = 0 if (W∗, V∗) /∈ Xt . We now assume that (W∗, V∗) ∈ Xt

and that 1 ≤ i1 < i2 < · · · < in−t ≤ n is such that (f) holds. Then φg(W∗, V∗) is the
number of g-dimensional subspaces V ′

g of V such that
Wg−1 ⊂ V ′

g �⊂ Wn−1
that is, the number of lines L in V/Wg−1 such that L �⊂ Wn−1/Wg−1. We see that
φg(W∗, V∗) = qn−g . Hence

∑
g∈[n−t+1,n] φg(W∗, V∗) = 1+ q + q2 + · · · + qt−1.

Summarizing, we see that for (W∗, V∗) ∈ F×F , f (W∗, V∗) =∑n
g=1 φg(W∗, V∗)

is equal to

1+ q + q2 + · · · + qt if (W∗, V∗) ∈ Xt ,

qt if (W∗, V∗) ∈ Xt+1 − Xt ,

0 if (W∗, V∗) /∈ Xt+1.

The lemma follows immediately.
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4.

We show that

(a) q1+2+···+(t−1) ft = f1∗( f1−1)∗( f1−1−q)∗· · ·∗( f1−1−q−q2−· · ·−qt−2)
for t ∈ [1, n − 1] by induction on t . For t = 1 this is clear. Assume that t ∈ [2, n − 1]
and that (a) holds when t is replaced by t − 1. Using Lemma 3 we have qt−1 ft =
( f1−1−q−q2−· · ·−qt−2)∗ ft−1. Using this and the induction hypothesis we have

q1+2+···+(t−1) ft = ( f1 − 1− q − q2 − · · · − qt−2) ∗ f1 ∗ ( f1 − 1)∗
∗ ( f1 − 1− q) ∗ · · · ∗ ( f1 − 1− q − q2 − · · · − qt−3).

This proves (a).
Next we note that Xn−1 is the set of all (V ′∗, V∗) ∈ F × F such that for some i ∈

[1, n] we have V ′
1 ⊂ Vi , V ′

1 �⊂ Vi−1. Thus, Xn−1 = F × F = Xn so that fn−1 = fn .
Using this and Lemma 3 we see that f1 ∗ fn−1 = (1+ q + q2 + · · · + qn−1) fn−1 that
is ( f1 − 1− q − q2 − · · · − qn−1) fn−1 = 0. Hence multiplying both sides of (a) (for
t = n − 1) by ( f1 − 1− q − q2 − · · · − qn−1) we obtain

f1 ∗ ( f1 − 1) ∗ ( f1 − 1− q) ∗ · · · ∗
∗ ( f1 − 1− q − q2 − · · · − qn−3) ∗ ( f1 − 1− q − q2 − · · · − qn−1) = 0.

Thus an identity like that in Proposition 2 holds in H instead of H (with f1, q instead
of τ,q). It is known that the algebra H may be identified with C⊗Z [q]H (where C is
regarded as a Z[q]-algebra via the specialization q 	→ q) in such a way that 1 ⊗ τ is
identified with f1. Since q can take infinitely many values, the identity in Proposition
2 follows.

5.

Setting ft = 0 for t > n, we see that the identity in Lemma 3 remains valid for
any t ≥ 0. We see that the subspace of H spanned by { ft ; t ≥ 0} coincides with the
subspace spanned by { f t

1 ; t ≥ 0}; in particular it is a commutative subring.

6.

Consider the endomorphism of Q(q)⊗Z[q] H given by left multiplication by τ . Propo-
sition 2 shows that the eigenvalues of this endomorphism are in

{0, 1, 1+ q, 1+ q+ q2, . . . , 1+ q+ · · · + qn−3, 1+ q+ · · · + qn−1}.
The multiplicity of the eigenvalue 1+q+· · ·+qk−1 is preserved by the specialization
q = 1 hence it is the same as the multiplicity of the eigenvalue k for the left multi-
plication by t on C[Sn], which by [DFP] is the number of permutations of [1, n] with
exactly k fixed points.
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To Tony Joseph who is certainly an inspiration.

Summary. Dixmier discovered that the centralizers of elements of the first Weyl algebra have
some unexpected properties. Sometimes a centralizer is not integrally closed. Also there are
cases when the field of fractions of a centralizer is not a purely transcendental field. In this
article I am going to discuss what happens if the Weyl algebra is replaced by the quantum
plane algebra or a quantum space algebra of any dimension. I became interested in this question
after a conversation with L. Small and J. Zhang during a meeting in Taiwan in June of 2001.
To my great surprise it turns out that though the centralizers (of non-central elements) are not
necessarily integrally closed, the fields of fractions of centralizers of non-constants are always
purely transcendental fields of dimension 1 for a “general position” situation.

Subject Classifications: 16S36, 16W35, 17B37, 16W50

Introduction

Let A1 be the first Weyl algebra over C, i.e., an algebra over the field of complex
numbers C generated by p and q subject to the relation pq−qp = 1. In the paper [Di]
Dixmier gave the following example of peculiar behavior of centralizers of elements
of this algebra. If u = p3 + q2 − α where α ∈ C, v = 1

2 p, U = u2 + 4v, V =
u3 + 3(uv + vu), then V 2 − U3 = α. This equality implies that U and V commute,
and so when α �= 0, the centralizer C(U) of U is isomorphic to the ring of regular

∗ The author was supported by an NSA grant while working on this project.
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functions on an elliptic curve and its field of fractions is not isomorphic to the field of
rational functions C(z).

On the other hand, when α = 0, the field of fractions of C(U) is isomorphic
to C(z), but C(U) is not integrally closed. Here is a simpler example of the last
kind: if t = pq and h = pt (t − 1)−1(t − 2), then both h2, h3 ∈ A1 although
h ∈ D1\A1, where D1 is the skew-field of fractions of A1. I cannot properly attribute
the latter example save that it was constructed by someone in Moscow, Russia about
1968.

Another example of this kind was found by Bergman (see [Be]) that is, of h =
p−1(t − 1)(t + 1). These two examples are actually very similar. Very close examples
were found in 1922 by Burchnall and Chaundy (see [BC]). These examples are of a bit
different kind because Burchnall and Chaundy were looking only at monic differential
operators, i.e., at elements that are monic polynomials in p and worked in an algebra
larger than A1. Burchnall and Chaundy observed, e.g., that P = p2 − 2q−2 and Q =
p3 − 3q−2 + 3q−3 commute without being polynomials of an element of the form
p+ f (q). Since P = q−2t (t−3) and Q = q−3t (t−2)(t−4), they are the square and
cube of h = q−1t (t − 1)−1(t − 2) correspondingly. Burchnall and Chaundy also gave
an example of a centralizer isomorphic to the ring of regular functions on an elliptic
curve but the elements involved are not in D1.

The effect discovered by Dixmier is somewhat surprising because A1 may be
looked at as a deformation of the polynomial algebra C[x, y], and in C[x, y] any
maximal subalgebra of transcendence degree one is isomorphic to a polynomial ring
C[z] (see [Za]).

It is reasonable to compare the centralizers of non-scalar elements of A1 with the
maximal subalgebras of transcendence degree one of C[x, y] because it is known
that the centralizer of a non-scalar element of A1 is a maximal subalgebra of A1 of
transcendence degree one. Also if C[x, y] is embedded into a Poisson algebra, then
centralizers of non-scalar elements of C[x, y] are maximal subalgebras of C[x, y] of
transcendence degree one (see [SU]).

The theorem about centralizers in A1 has a somewhat entertaining history. It is
usually attributed to Amitsur (see [Am]) who attributes it to Flanders (see [Fl]) who
attributes it to Schur (see [Sc]). See also the paper [Go] which contains a lot of infor-
mation about centralizers of A1 and its generalizations.

Another popular deformation of C[x, y] is the coordinate algebra of the quantum
plane Cq [x, y], i.e., the C-algebra generated by x and y subject to the relation yx =
qxy. So it seems rather natural to compare the structure of the centralizers of elements
of this algebra with the structure of the centralizers of elements of A1 and with the
maximal subalgebras of transcendence degree one of polynomial rings.

Centralizers in Cq

It is known that the centralizers of non-scalar elements of Cq [x, y] when q is not a
root of 1 are commutative algebras of transcendence degree one (see [AC] and [BS]).
Actually in [AC] this is shown for the field of fractions Cq(x, y) of Cq [x, y]. See
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also [HS] where it is independently proved that any two commuting elements of the
q-deformed Heisenberg algebra Hq[x, y], which is a subalgebra of Cq(x, y), are al-
gebraically dependent and [LS] where some examples of centralizers of Hq[x, y] are
provided.

In this section we check that, unlike the Weyl algebra setting, these centralizers are
always subalgebras of a polynomial ring in one variable. In the next section we extend
this result to quantum space algebras, i.e., algebras with n generators x1, x2, . . . , xn

subject to the relations x j xi = qi j xi x j .
Actually this result can be deduced from Theorem 1.1 of [BS] which implies that

a centralizer of a non-scalar element of Cq [x, y] has transcendence degree one and
Proposition 6.1 of [Be] which implies that any subalgebra of Cq [x, y] has a non-
trivial mapping into C[z]. On the other hand, the proofs here are shorter and more
straightforward than in these papers which deal with much more general settings.

It is tempting to conjecture that the centralizers of non-central elements of Cq [x, y]
when q is a root of 1 are subalgebras of a polynomial ring in two variables. But this is
not the case, as we can see from the following example.

Let q = −1. The center of C−1[x, y] is C[x2, y2]. Let us take z = x3 + xyt3

where t = x2y2 + 1. It is easy to check by a straightforward computation that the
centralizer C(z) = C[x2, y2, z] and that z2 = x6 − (t − 1)t6. The claim is that
C[u, v][

√
u3 − (t − 1)t6] where u = x2, v = y2, and t = uv+1 cannot be embedded

into a polynomial ring with two variables. If we would have such an embedding, say
into C[a, b], then the images U and V of u and v should be algebraically indepen-
dent polynomials and the image T of t should be relatively prime with both U and V .
Assume that U3 − (T − 1)T 6 = Z2. Then T and Z are also relatively prime polyno-
mials. By taking the Jacobian (relative to a, b) of this equality with U , we get T 5(6−
7T )J(U, T ) = 2ZJ(U, Z). So T 5 divides J(U, Z), while Z divides (6 − 7T )J(U, T )
since (T, Z) = 1. Now deg J( f, g) < deg f +deg g where deg denotes the total degree
of the corresponding polynomial relative to a, b. Therefore deg U + deg Z > 5 deg T
and 2 deg T +deg U > deg Z . So deg U+deg Z+2 deg T +deg U > 5 deg T +deg Z
and 2 deg U > 3 deg T , which is impossible since deg T = deg U + deg V .

So let us go back to the case when q is not a root of 1. The next examples
show that we should not expect a centralizer to be integrally closed. Take h =
x(1 − y)(1 − qy)−1(1 − q2y) in the skew-field Cq(x, y) of fractions of Cq [x, y].
Then both h2, h3 ∈ Cq [x, y] and C(h2) = C[h2, h3]. Similarly, if we take h =
x(1− y)n(1−qy)−1(1−q2y)−1 . . . (1−qn y)−1(1−qn+1y)n , then hi �∈ Cq [x, y] for
i < n + 1, hn+1 ∈ Cq [x, y], and C(hn+1) = C[hn+1, . . . , h2n+1]. So the centralizers
of elements of Cq [x, y] are neither integrally closed nor is there a bound on the size
of a set of generators of a centralizer.

Let us start the proof of the main claim also by an example. Let h =∑n
i=0 hi (x)yi

and assume that h0 is not a constant. If g ∈ C(h)\0 and g =∑m
i=0 gi (x)yi , then g0 is

not zero since otherwise g and h cannot commute. So the restriction of the substitution
map f (x, y)→ f (x, 0) on C(h) is an embedding of C(h) into C[x].
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Now the general case. Define the weights w(x) = ρ, w(y) = σ and w(xi y j ) =
iρ + jσ where ρ and σ are integers. It is clear that w(M1 M2) = w(M1)+w(M2) for
any monomials.

Let h(x, y) ∈ Cq [x, y]\C. We can always find a non-zero pair of integers ρ and
σ , so that the weights of all monomials of h are non-negative and that at least one non-
constant monomial of h has zero weight. If we take ρ ≤ 0 ≤ σ and relatively prime,
then u = xσ y−ρ ∈ Cq [x, y] generates the semigroup of all monomials of weight
zero. It is clear that C(u) = C[u] since xi2 y j2 xi1 y j1 = q Dxi1 y j1xi2 y j2 where D =
i1 j2− j1i2. It is also clear that C(p(u)) = C[u] if p(u) is a non-constant polynomial in
u. Indeed, any g ∈ Cq [x, y] can be presented as g =∑m

i=−k gi (u)Gi wherew(Gi ) =
i and gi(u) are polynomials in u. So if [p(u), g] = 0, then

∑m
i=−k gi(u)[ p(u),Gi ] =

0. Since w([p(u),Gi ]) = i if [p(u),Gi ] �= 0, we have [p(u),Gi ] = 0 for all i . But if
w(Gi ) �= 0, then from M2 M1 = q D M1 M2 we see that Gi cannot commute with p(u).
So g ∈ C[u].

Let us look at h = ∑n
i=0 hi (u)Hi where hi are polynomials in u and Hi are

monomials with w(Hi ) = i . Since the choice of Hi may be not unique let us choose
Hi of the smallest total degree possible. With our choice of weights, H0 = 1 and h0 is
a non-trivial polynomial in u. For g ∈ C(h)\C, we have g = ∑m

i=−k gi(u)Gi where
w(Gi ) = i . If gh = hg, then g−k(u)G−kh0(u) = h0g−k(u)G−k and monomial G−k

must commute with h0. We observed that this implies G−k ∈ C[u]. So k = 0, and the
mapping of the elements of C(h) given by g → g0 defines an embedding of C(h) into
C(u) = C[u].

Centralizers in quantum spaces

Let Cq be an algebra over C with n generators x1, x2, . . . , xn subject to the relations
x j xi = qi j xi x j where i < j . Assume that qi j where i < j is a free basis of an abelian
group Q.

In this section we check that the centralizers of non-constant elements of Cq are
subalgebras of a polynomial ring in one variable. The proof is very similar to the one
in the previous section.

For any integers ρ1, ρ2, . . . , ρn , we can define the weight w(xi1
1 xi2

2 . . . x
in
n ) =∑

ikρk and, of course, w(M1 M2) = w(M1) + w(M2) for any two monomials. If
h ∈ Cq\C, we can choose integers ρ1, ρ2, . . . , ρn so that the weights of all monomi-
als of h are non-negative, at least one non-constant monomial of h has zero weight, and
all monomials of h of zero weight are proportional to the powers of a monomial M .
Indeed, take the Newton polyhedron H of h, that is, mark the origin in n-dimensional
space and all integer points which correspond to the monomials of h, and then take the
convex hull of this set of points. Clearly the origin is one of the vertices of the polyhe-
dron. Take an edge e of H which contains the origin and choose a hyperplane P which
intersects H only at e and has a normal vector with integer coefficients. Take a normal
vector to P in the direction of H and use the values of its components as the weights
{ρi }. Then all conditions on the weight are satisfied with monomial M corresponding
to the shortest vector with integer coordinates belonging to e.
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As in the previous section it is easy to check that C(M) = C[M]. Indeed, if N

is a monomial, then M N = (
∏

g
di j
i j )N M where di j is the determinant of a two by

two matrix formed by powers of xi and x j in the monomials N and M and, since
qi j form a free group, commutation means that the power-vectors of M and N are
proportional.

It is again clear that if g ∈ C(h)\C, then the weights of all monomials of g are
non-negative and that the zero-weight component of g is a non-zero polynomial of M .
So we have an embedding of the C(h) into the algebra C[M].

Conclusion and remarks

The lesson here is that as far as the centralizers are concerned, Cq is closer to the
polynomial algebra with n generators or to the free algebra of rank n (just recall the
result of G. Bergman that the centralizer of a non-scalar element of a free algebra is
isomorphic to the polynomial ring with one generator (see [Be])).

On the other hand, consider, instead of Cq , its field of fractions or even the ana-
log of the Laurent polynomial ring. It is still possible to show that the centralizers
of non-central elements are commutative by looking at appropriately defined deficit
functions on centralizers (see [ML]; also in [AC] it is proved that the centralizers are
commutative in the case of the field of fractions of Cq [x, y]). But the structure of the
centralizers may become more complicated since it is not always possible to introduce
weights giving “good” components of weight zero and our technique fails in general.
Of course, it is still entirely possible that the centralizers of non-central elements of the
field of fractions of Cq with appropriate restrictions on the group Q are isomorphic
to the field of rational functions in one variable, and it would be very interesting to
research this question.

If we consider the subalgebra L of Cq(x, y) generated by x, y, and y−1, then it
is still possible to find “good” zero components and show that the centralizer of a
non-scalar element is always isomorphic to a subalgebra of the Laurent polynomial
ring C[t, t−1]; so the corresponding fields of fractions are isomorphic to the field of
rational functions in one variable. Since the q-deformed Heisenberg algebra Hq[x, y]
can be embedded in L when q �= 1, we can conclude that the same is true for the
centralizers of Hq .

Lastly, all of these centralizers are finitely generated since any subalgebra of
C[t, t−1] is finitely generated. Let A ⊂ C[t, t−1]. Assume that A �⊂ C[t]. Choose
an a ∈ A for which order o(a) = n of a is negative and the largest possible under this
condition. (The order of an element is the smallest degree of monomials of this ele-
ment.) For any remainder i (mod n) take an element ai for which o(ai ) ≡ i (mod n),
o(ai) < 0, and o(ai) is the largest possible under this conditions. Of course, for some
i we may have no elements at all. Then for any element b ∈ A with negative order we
can find ai and a non-negative integer k so that o(b) = o(ai ak). Hence we can find
c ∈ C for which o(b − cai ak) > o(b). After several steps like that we will get an
element of R = A ∩ C[t]. We will be done if we show that any subalgebra R of C[t]
is finitely generated. Choose an r ∈ R for which degree deg(r) = m of r is positive
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and the smallest possible under this condition. For any remainder i (mod m) take an
element ri for which deg(ri ) ≡ i (mod m) and deg(ri ) is the smallest possible under
this condition. It is clear that R is generated by r and r1, r2, . . . , rm−1 and therefore A
is generated by a, a1, a2, . . . , an−1 and r , r1, r2, . . . , rm−1.
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Summary. Consider the complex matrix Lie superalgebra glN |N with the standard generators
Ei j where i , j = ±1 , . . . , ± N . Define an involutive automorphism η of glN |N by η (Ei j ) =
E−i,− j . The queer Lie superalgebra qN is the fixed point subalgebra in glN |N relative to η .
Consider the twisted polynomial current Lie superalgebra

g = { X (t) ∈ glN |N [t] : η (X (t)) = X (−t) } .
The enveloping algebra U(g) of the Lie superalgebra g has a deformation, called the Yangian of
qN . For each M = 1 ,2 , . . . , denote by AM

N the centralizer of qM ⊂ q N+M in the associative
superalgebra U(q N+M ) . In this article we construct a sequence of surjective homomorphisms
U(qN ) ← A1

N ← A2
N ← . . . . We describe the inverse limit of the sequence of centralizer

algebras A1
N ,A2

N , . . . in terms of the Yangian of qN .

Subject Classifications: 16S30, 16S40, 16W35, 17B35, 17B37, 17B65

1. Main results

In this article we work with the queer Lie superalgebra qN . This is perhaps the most
interesting super-analogue of the general linear Lie algebra glN , see for instance [S2].
We will realize qN as a subalgebra in the general linear Lie superalgebra glN |N over
the complex field C. Let the indices i , j run through −N , . . . ,−1 ,1 , . . . , N . Put



418 M. Nazarov and A. Sergeev

ı̄ = 0 if i > 0 and ı̄ = 1 if i < 0. Take the Z2 -graded vector space CN |N . Let
ei ∈ CN |N be the standard basis vectors. The Z2 -gradation on CN |N is defined so that
degei = ı̄ . Let Eij ∈ End(CN |N ) be the matrix units: Eij ek = δ j k ei . The algebra
End(CN |N ) is Z2 -graded so that deg Eij = ı̄ + j̄ . We will also regard Eij as basis
elements of the Lie superalgebra glN |N . The queer Lie superalgebra qN is the fixed
point subalgebra in glN |N with respect to the involutive automorphism η defined by

η : Eij 	→ E−i,− j . (1.1)

Thus as a vector subspace, qN ⊂ glN |N is spanned by the elements

Fij = Eij + E−i,− j .

Note that F−i,− j = Fij . The elements Fij with i > 0 form a basis of qN .
The vector subspace of End(CN |N ) spanned by the elements Fij is closed with

respect to the usual matrix multiplication. Hence we can also regard it as an associative
algebra. Denote this associative algebra by QN to distinguish its structure from that
of the Lie superalgebra qN . Both End(CN |N ) and QN are simple as associative Z2 -
graded algebras, see [J, Theorem 2.6].

The enveloping algebra U(qN ) of the Lie superalgebra qN is a Z2 -graded associa-
tive unital algebra. In this article we will always keep to the following convention. Let
A and B be any two associative Z2 -graded algebras. Their tensor product A ⊗ B is a
Z2 -graded algebra such that for any homogeneous elements X, X ′ ∈ A and Y,Y ′ ∈ B

(X ⊗ Y )(X ′ ⊗ Y ′) = (−1) deg X ′deg Y X X ′ ⊗ Y Y ′, (1.2)

deg (X ⊗ Y ) = deg X + degY . (1.3)

By definition, an anti-homomorphism ω : A → B is any linear map which pre-
serves the Z2 -gradation and satisfies any for homogeneous X, X ′ ∈ A

ω(X X ′) = (−1) deg X deg X ′ ω(X ′) ω(X) . (1.4)

For any Lie superalgebra a, the principal anti-automorphism of the enveloping Z2 -
graded algebra U(a) is determined by the assignment X 	→ −X for X ∈ a .

The supercommutator of any two homogeneous elements X,Y ∈ A is by definition

[ X ,Y ] = XY − (−1) deg XdegY Y X. (1.5)

This definition extends to arbitrary elements X,Y ∈ A by linearity. It is the bracket
(1.5) that defines the Lie superalgebra structure on the vector space A = End(CN |N ) .
Thus, for any indices i , j ,k , l = ±1 , . . . , ±N we have

[ Eij , Ekl ] = δkj Eil − (−1) ( ı̄ + j̄ ) ( k̄+ l̄ ) δil Ekj ;
[ Fij , Fkl ] = δkj Fil − (−1) ( ı̄+ j̄ ) ( k̄+ l̄ ) δil Fkj

+ δ−k, j F−i,l − (−1) ( ı̄+ j̄ ) ( k̄+ l̄ ) δi,−l Fk,− j . (1.6)
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For any A and any subset C ⊂ A, by the centralizer of C in A we mean the
collection of all elements X ∈ A such that [ X ,Y ] = 0 for any Y ∈ C. To remind
the reader about this convention, we shall then refer to the Z2 -graded algebra A as
a superalgebra. The centre Z(qN ) of the enveloping algebra U(qN ) will be always
taken in the superalgebra sense. A set of generators of the algebra Z(qN ) was given in
[S1]. In particular, all central elements of U(qN ) were shown to have Z2 -degree 0. A
distinguished basis of the vector space Z(qN ) was constructed in [N2].

Let us recall the principal results of [S1] here. For any indices n � 1 and i , j =
±1 , . . . , ±N , denote by F (n)

i j |N the element of the algebra U(qN )∑
k1,...,kn−1

(−1) k̄1 + ...+ k̄n−1 Fi k1 Fk1k2 . . . Fkn−2kn−1 Fkn−1 j (1.7)

where each of the indices k1 , . . . , kn−1 runs through ±1 , . . . , ± N . Note that

F (n)
−i,− j |N = (−1) n−1 F (n)

i j |N . (1.8)

Of course, here F (1)
i j |N = Fij . Observe that if n > 1, then by the definition (1.7)

F (n)
i j |N =

∑
k

(−1) k̄ Fik F (n−1)
kj |N (1.9)

where the index k runs through ±1 , . . . , ± N . Using this observation one proves by
induction on n = 1 ,2 , . . . the following generalization of (1.6) : in the Z2 -graded
algebra U(qN ) the supercommutator

[ Fij , F (n)
kl |N ] = δkj F (n)

il |N − (−1) ( ı̄ + j̄ ) ( k̄+ l̄ ) δil F (n)
kj |N

+ δ−k, j F (n)
−i,l |N − (−1) ( ı̄ + j̄ ) ( k̄+ l̄ ) δi,−l F (n)

k,− j |N . (1.10)

For a more general formula, expressing the supercommutator [ F (m)
i j |N , F (n)

kl |N ] for any
m and n, see Proposition 3.1 and the remark after its proof. Now put

C (n)
N =

∑
k

F (n)
kk |N (1.11)

where the index k runs through±1 , . . . , ±N . The relations (1.10) immediately imply
that C (n)

N ∈ Z(qN ) . Note that C (2)
N = C (4)

N = . . . = 0 due to (1.8). The following
proposition has been stated in [S1] without proof.

Proposition 1.1. The elements C (1)
N ,C (3)

N , . . . generate the centre Z(qN ) .

The dependence of the elements C (n)
N and F (n)

i j |N of U(qN ) on the index N has been
indicated for the purposes of the next argument, which extends [S1].

For any integers N � 0 and M � 1 consider the Lie superalgebra q N+M . Now
let the indices i , j run through −N − M , . . . , − 1 ,1 , . . . , N + M . Regard the
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Lie superalgebras qN and qM as the subalgebras of q N+M spanned by the elements
Fij = F (1)

i j |N+M where |i | , | j | � N and |i | , | j | > N , respectively. Denote by AM
N the

centralizer of qM in the associative superalgebra U(q N+M ).
By definition, the centralizer AM

N contains the centre Z(q N+M ) of the U(q N+M ) .
It also contains the subalgebra U(qN ) ⊂ U(q N+M ) . Moreover, the relations (1.10)
imply that the centralizer AM

N contains the elements

F (1)
i j |N+M , F (2)

i j |N+M , . . . where |i | , | j | � N. (1.12)

Theorem 1.2. The elements C (1)
N+M ,C

(3)
N+M , . . . and (1.12) generate AM

N .

We prove this theorem in Section 2 of the present article. In the particular case
N = 0, we will then obtain Proposition 1.1.

Now take the Lie superalgebra q N+M−1 . As a subalgebra of the Lie superalgebra
q N+M , it is spanned by the elements Fij where |i |, | j | < N+M . In particular, the sub-
algebras qN and q M−1 of q N+M−1 are spanned by the elements Fij where |i | , | j | � N
and N < |i | , | j | < N + M , respectively. The enveloping algebra U(q N+M−1) and
its subalgebra AM−1

N will be also regarded as subalgebras in the associative algebra
U(q N+M ) . We assume that M � 1 and A 0

N = U(qN ) .
Denote by I N+M the right ideal in the algebra U(q N+M ) generated by the elements

FN+M,±1 , . . . , FN+M,±(N+M) . (1.13)

Lemma 1.3. (a) the intersection I N+M ∩ AM
N is a two-sided ideal of AM

N ;
(b) there is a decomposition AM

N = AM−1
N ⊕ ( I N+M ∩ AM

N ) .

We prove this lemma in Section 3. Using Part (b) of the lemma, denote by αM the
projection of AM

N to its direct summand AM−1
N . By (a), the map αM : AM

N → AM−1
N is

a homomorphism of associative algebras. The proof of the next proposition will also
be given in Section 3.

Proposition 1.4. For any n � 1 and any i , j such that |i | , | j | � N we have

αM (F
(n)

i j |N+M ) = F (n)
i j |N+M−1 and αM (C

(n)
N+M ) = C (n)

N+M−1 .

The standard filtration (2.32) on the enveloping algebra U(q N+M ) defines a fil-
tration on its subalgebra AM

N . By definition, the map αM : AM
N → AM−1

N preserves
that filtration. It also preserves the Z2 -gradation, inherited from U(q N+M ) . Using the
homomorphisms α1 ,α2 , . . . define an algebra AN as the inverse limit of the sequence
A 0

N ,A
1
N ,A

2
N , . . . in the category of associative filtered algebras. The main result of

this article is an explicit description of the algebra AN in terms of generators and
relations.

By definition, an element of AN is any sequence of elements Z0 , Z1 , Z2 , . . . of the
algebras A 0

N ,A
1
N ,A

2
N , . . . , respectively, such that αM (Z M ) = Z M−1 for each M �

1, and the filtration degrees of the elements in the sequence are bounded. Utilising
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Proposition 1.4, for any indices n = 1 ,2 , . . . and any i , j = ±1 , . . . , ±N define an
element F (n)

i j ∈ AN as the sequence

F (n)
i j |N , F (n)

i j |N+1 , F (n)
i j |N+2 , . . . . (1.14)

Further, for any n = 1 ,3 , . . . define an element C (n) ∈ AN as the sequence

C (n)
N , C (n)

N+1 , C (n)
N+2 , . . . . (1.15)

The filtration degree of every element in (1.14) and (1.15) does not exceed n .
Note that the algebra AN is unital and comes with a Z2 -gradation, such that for all

possible indices n and i , j we have

deg C (n) = 0 and deg F (n)
i j = ı̄ + j̄ . (1.16)

By their definition, the elements C (1),C (3), . . . ∈ AN are central. Due to (1.8)

F (n)
−i,− j = (−1) n−1 F (n)

i j . (1.17)

Theorem 1.5. (a) The algebra AN is generated by the elements C (1),C (3), . . . and
F (1)

i j , F (2)
i j , . . . .

(b) The central elements C (1),C (3), . . . of AN are algebraically independent.
(c) Together with the centrality and algebraic independence of C (1),C (3), . . . , the

defining relations of the Z2 -graded algebra AN are (1.17) and

[ F (m)
i j , F (n)

kl ]

= F (m+n−1)
il δkj − (−1) ( ı̄+ j̄ ) ( k̄+ l̄ ) δil F (m+n−1)

kj

+ (−1)m−1 ( F (m+n−1)
−i,l δ−k, j − (−1) ( ı̄ + j̄ ) ( k̄+ l̄ ) δi,−l F (m+n−1)

k,− j )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄
min(m,n)−1∑

r=1

( F (m+n−r−1)
il F (r)

kj − F (r)
il F (m+n−r−1)

kj )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄ + k̄ + l̄

×
min(m,n)−1∑

r=1

(−1)m+ r( F (m+n−r−1)
−i,l F (r)

−k, j − F (r)
i,−l F (m+n−r−1)

k,− j ) (1.18)

where m ,n = 1 ,2 , . . . and i , j ,k , l = ±1 , . . . , ±N.

The proof will be given in Section 3. In particular, Theorem 1.5 shows that the
algebra AN is isomorphic to the tensor product of its two subalgebras, generated by
the elements C (1),C (3), . . . and by the elements F (1)

i j , F (2)
i j , . . . respectively. Denote

the latter subalgebra by BN , it is a Z2 -graded subalgebra.
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The algebra BN appeared in [N3] in the following guise. Let us consider the as-
sociative unital Z2-graded algebra Y(qN ) over the field C with the countable set of
generators T (n)i j where n = 1 ,2 , . . . and i, j = ±1 , . . . , ±N . The Z2-gradation on

the algebra Y(qN ) is determined by setting deg T (n)i j = ı̄ + j̄ for any n � 1. To write
down the defining relations for these generators, put

Ti j (x) = δi j · 1+ T (1)
i j x−1 + T (2)

i j x−2 + . . .

where x is a formal parameter, so that Ti j (x) ∈ Y(qN )[[x −1]] . Then for all possible
indices i , j ,k , l we have the relations

T−i,− j (x) = Ti j (−x) , (1.19)

(x2 − y2 ) · [ Ti j (x), Tkl(y)] · (−1) ı̄ k̄ + ı̄ l̄ + k̄ l̄

= (x + y) · (Tkj (x) Til(y)− Tkj (y) Til (x))

− (x − y) · (T−k, j (x) T−i, l (y)− Tk,− j (y) Ti,−l (x)) · (−1) k̄ + l̄ (1.20)

where y is a formal paramater independent of x , so that (1.20) is an equality in the
algebra of formal Laurent series in x −1, y−1 with coefficients in Y(qN ) .

The algebra Y(qN ) is called the Yangian of the Lie superalgebra qN . Note that the
centre of the associative superalgebra Y(qN ) with N � 1 is not trivial. For a descrip-
tion of the centre of Y(qN ) see [N3, Section 3]. In particular, all central elements of
Y(qN ) have Z2 -degree 0. In our Section 3 we will prove

Proposition 1.6. The assignment F (n)
i j 	→ (−1) ı̄ T (n)

j i for any n = 1 ,2 , . . . and
i, j = ±1 , . . . , ±N extends to an anti-isomorphism of Z2 -graded algebras

ω : BN → Y(qN ) .

Now denote by ωN+M the principal anti-automorphism of the enveloping algebra
U(q N+M ) . It preserves the subalgebra U(qM ) ⊂ U(q N+M ) . So it also preserves the
centralizer AM

N ⊂ U(q N+M ) of that subalgebra. For any M � 0 let πM : AN → AM
N

be the canonical homomorphism. By definition,

πM (F (n)
i j ) = F (n)

i j |N+M (1.21)

for any n = 1 ,2 , . . . and i , j = ±1 , . . . , ±N . Using Proposition 1.6, we can define
a homomorphism τM : Y(qN )→ AM

N by the equality

τM ◦ ω = ωN+M ◦ (πM |BN ) .

By (1.21),
τM (T

(n)
i j ) = (−1) j̄ ωN+M (F (n)

j i |N+M ) .

Using the homomorphisms τM for all M = 0 ,1 ,2 , . . . , one can define a family of
irreducible finite-dimensional Y(qN )-modules; see [N4, Section 1] and [P]. Another
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family of irreducible finite-dimensional Y(qN )-modules can be defined by using the
results of [N1] and [N3, Section 5]. It should be possible to give a parametrization of
all irreducible finite-dimensional Y(qN )-modules, similarly to the parametrization of
the irreducible finite-dimensional Y(glN )-modules as given by V. Drinfeld; see [D2,
Theorem 2] and [M].

It was shown in [N3] that the associative Z2 -graded algebra Y(qN ) has a nat-
ural Hopf superalgebra structure. In particular, the homomorphism of comultiplication
Y(qN )→ Y(qN )⊗Y(qN ) can be defined by

Ti j (x) 	→
∑

k

Tik(x)⊗ Tkj (x) · (−1)( ı̄+ k̄ )( j̄ + k̄ ) (1.22)

where the tensor product is over the subalgebra C[[x −1]] of Y(qN )[[x −1]] , and k
runs through ±1 , . . . , ±N . See [N3, Section 2] for the definitions of the the counit
map Y(qN )→ C and the antipodal map Y(qN )→ Y(qN ) .

There is a distinguished ascending Z-filtration on the associative algebra Y(qN ) .
It is obtained by assigning to every generator F (n)

i j the degree n−1. The corresponding

Z-graded algebra will be denoted by gr Y(qN ) . Let G (n)
i j be the element of grY(qN )

corresponding to the generator F (n)
i j ∈ Y(qN ) . The algebra gr Y(qN ) inherits the Z2 -

gradation from the algebra Y(qN ) , so that

deg G (n)
i j = ı̄ + j̄ .

Moreover, gr Y(qN ) inherits from Y(qN ) the Hopf superalgebra structure. It follows
from the definition (1.22) that with respect to the homomorphism of comultiplication
gr Y(qN )→ gr Y(qN )⊗ gr Y(qN ) , for any n � 1 we have

G (n)
i j 	→ G (n)

i j ⊗ 1+ 1⊗ G (n)
i j .

On the other hand, for arbitrary Lie superalgebra a , a comultiplication map
U(a) → U(a) ⊗ U(a) can be defined for X ∈ a by X 	→ X ⊗ 1 + 1 ⊗ X , and then
extended to a homomorphism of Z2 -graded associative algebras by using the conven-
tion (1.2). Let us now consider the enveloping algebra U(g) of the twisted polynomial
current Lie superalgebra

g = { X (t) ∈ glN |N [ t ] : η(X (t)) = X (−t) } .
Here we employ the automorphism (1.1) of the Lie superalgebra glN |N . As a vector
space, g is spanned by the elements

E ij t n + E−i,− j (− t)n (1.23)

where n = 0 ,1 ,2 . . . and i , j = ±1 , . . . , ± N . Note that the Z2 -degree of the
element (1.23) equals ı̄ + j̄ . The algebra U(g) also has a natural Z-gradation, such
that the degree of the element (1.23) is n .

It turns out that U(g) and gr Y(qN ) are isomorphic as Hopf superalgebras. By
[N3, Theorem 2.3] their isomorphism U(g) → gr Y(qN ) can be defined by mapping
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the element (1.23) of the algebra U(g) to the element (−1) ı̄ +1 G (n+1)
j i of the algebra

gr Y(qN ) . Moreover, Y(qN ) is a deformation of U(g) as a Hopf superalgebra; see the
end of [N3, Section 2] for details.

Let us finish this introductory section with a few remarks of an historical nature.
Our construction of the algebra AN follows a similar construction for the general lin-
ear Lie algebra glN instead of the queer Lie superalgebra qN , due to G. Olshanski
[O1, O2]. It was he who first considered the inverse limit of the sequence of central-
izers of glM in the enveloping algebras U(glN+M ) for M = 1 ,2 , . . . . Following a
suggestion of B. Feigin, he then described the inverse limit in terms of the Yangian
Y(glN ) of the Lie algebra glN . The latter Yangian is a deformation of the enveloping
algebra of the polynomial current Lie algebra glN [t] in the class of Hopf algebras [D1].

The elements (1.7) of U(qN ) were initially considered by A. Sergeev [S1], in order
to describe the centre of the superalgebra U(qN ) . The homomorphisms αM : AM

N →
AM−1

N for M = 1 ,2 , . . . and the elements F (1)
i j , F (2)

i j , . . . of the inverse limit algebra
AN were introduced by M. Nazarov following [O1, O2]. He then identified the algebra
defined by the relations (1.19) and (1.20), as a deformation of the enveloping algebra
U(g) in the class of Hopf superalgebras [N3]. It was also explained in [N3] why this
deformation should be called the Yangian of qN . Discovery of this deformation led
to the construction [N1] of analogues of the classical Young symmetrizers for projec-
tive representations of the symmetric groups. However, Theorems 1.2 and 1.5 were
only conjectured by M. Nazarov. The purpose of the present article is to prove these
conjectures.

We hope these remarks indicate importance of the role that G. Olshanski played at
various stages of our work. We are very grateful to him for friendly advice. This work
was finished while M. Nazarov stayed at the Max Planck Institute of Mathematics in
Bonn. He is grateful to the Institute for hospitality. M. Nazarov has been also supported
by the EC grant MRTN-CT-2003-505078.

2. Proof of Theorem 1.2

We will use basic properties of complex semisimple associative superalgebras and
their modules [J]. Most of these properties were first established in [W], in a general-
ity greater than we need in the present article. We will also use the following simple
lemma. Its proof carries over almost verbatim from the ungraded case, but we shall
include the proof for the sake of completeness. Let A be any finite-dimensional Z2 -
graded associative algebra over the complex field C. Let G be a finite group of auto-
morphisms of A. The crossed product algebra G �A is also Z2 -graded: for any g ∈ G
we have degg = 0 in G � A.

Lemma 2.1. Suppose the superalgebra A is semisimple. Then the superalgebra G � A
is also semisimple.

Proof. We will write G � A = B. Let V be any module over the superalgebra B, and
let ρ : B → End(V ) be the corresponding homomorphism. Here we assume that the
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homomorphism ρ preserves Z2 -gradation. Let U ⊂ V be any B-submodule. Since
A is semisimple, we have the decomposition V = U ⊕ U ′ into a direct sum of A-
modules for some U ′ ⊂ V . Let P ∈ End(V ) be the projection onto U along U ′.
Put

S = 1

|G|
∑
g∈G

ρ(g)P ρ(g)−1 ∈ End(V ) .

For any element X ∈ A let X g be its image under the automorphism g. Then

ρ(X)S = 1

|G|
∑
g∈G

ρ(X)ρ(g)P ρ(g)−1 = 1

|G|
∑
g∈G

ρ(g)ρ(X g)P ρ(g)−1

= 1

|G|
∑
g∈G

ρ(g)P ρ(X g)ρ(g)−1 = 1

|G|
∑
g∈G

ρ(g)P ρ(g)−1ρ(X)= Sρ(X) .

For any h ∈ G we also have ρ(h)S = Sρ(h) by the definition of S. Note that
S ∈ End(V ) is of Z2 -degree 0, as is P . So ker S ⊂ V is a B-submodule.

Since U is a B-submodule, we have the equalities P ρ(g)P = ρ(g)P for all
g ∈ G. Using the definition of S, these equalities imply that S P = P and P S = S.
The latter pair of equalities guarantees that im S = im P = U and S 2 = S. So
V = U ⊕ ker S. Since V is an arbitrary module over the superalgebra B, this superal-
gebra is semisimple by [J,Proposition 2.4]. ��

We will also need the following general “double centralizer theorem”. Let V
be a Z2 -graded complex vector space. The associative algebra End(V ) is then also
Z2 -graded. Take any subalgebra B in the superalgebra End(V ). Here we assume that
B as a vector space splits into the direct sum of its subspaces of Z2 -degrees 0 and 1.
Denote by B′ the centralizer of B in the superalgebra End(V ).

Proposition 2.2. Suppose that the superalgebra B is finite dimensional and semisim-
ple. Also suppose that the B′ -module V is finitely generated. Then B = B′′ in End(V ).

Proof. First, we will establish an analogue of the Jacobson density theorem [L, Theo-
rem XVII.1] for the superalgebra B. Namely, we shall prove that for any homogeneous
v1 , . . . , vn ∈ V and X ∈ B′′, there exists Y ∈ B such that Xvr = Y vr for any in-
dex r = 1 , . . . , n. Then we will choose v1 , . . . , vn to be homogeneous generators
of V over B′. By writing any vector v ∈ V as the sum Z1v1 + . . . + Znvn for some
homogeneous Z1 , . . . , Zn ∈ B′, we will get

Xv =
n∑

r=1

X Zr vr =
n∑

r=1

(−1) deg X deg Zr Zr X vr

=
n∑

r=1

(−1) deg X deg Zr Zr Y vr =
n∑

r=1

Y Zr vr = Y v .

Along with the obvious embedding B ⊂ B′′, this will prove Proposition 2.2.



426 M. Nazarov and A. Sergeev

Recall that the Z2 -graded vector space V opposite to V is obtained from V by
changing the Z2 -gradation deg to deg+1. Define the action of the algebra B in V as
the pullback of its action in V via the involutive automorphism Y 	→ (−1)degY Y ,
where Y is any homogeneous element of the Z2 -graded algebra B. Now consider the
direct sum of B-modules

W =
n⊕

r=1

Vr ,

where the B-module Vr equals V or V depending on whether degvr in V is 0 or 1.
For each index r = 1 , . . . , n, we have an embedding of vector spaces Ar : V → W ,
and a projection Br : W → V . Note that the Z2 -degrees of the linear maps Ar and
Br coincide with that of the vector vr . We also have the equality Bp Aq = δpq · id in
End(V ), and the equality

n∑
r=1

Ar Br = id

in End(W ) . Any homogeneous element Y ∈ B acts in W as the linear operator

Ỹ =
n∑

r=1

(−1) degvr degY Ar Y Br .

Given X ∈ B′′, put

X̃ =
n∑

r=1

(−1) degvr deg X Ar X Br .

Any homogeneous element Z ∈ End(W ) can be written as

Z =
n∑

p,q=1

A p Z pq Bq

for some homogeneous Z pq ∈ End(V ), where deg Z pq = deg Z + degv p + degvq .
Then

Ỹ Z =
n∑

r=1

(−1) degvr deg Y Ar Y Br ·
n∑

p,q=1

A p Z pq Bq (2.24)

=
n∑

p,q=1

(−1) degv p deg Y A p Y Z pq Bq ,

Z Ỹ =
n∑

p,q=1

A p Z pq Bq ·
n∑

r=1

(−1) degvr deg Y Ar Y Br (2.25)

=
n∑

p,q=1

(−1) degvq deg Y A p Z pq Y Bq .
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Suppose that the element Z ∈ End(W ) belongs to the centralizer of the image of the
superalgebra B in End(W ). Due to (2.24) and (2.25), the assumption [ Ỹ , Z ] = 0 is
equivalent to the collection of equalities [Y, Z pq ] = 0 for all p ,q = 1 , . . . , n. Since
here Y ∈ B is arbitrary and X ∈ B′′, we then have [ X , Z pq ] = 0 for all p ,q =
1 , . . . , n. A calculation similar to (2.24) and (2.25) then shows that [ X̃ , Z ] = 0 in
End(W ).

Now take the vector

w =
n∑

r=1

Ar vr ∈ W ,

it has Z2 -degree 0. Let U be the cyclic span of the vector w under the action of B.
Since the superalgebra B is finite-dimensional semisimple, we have the decomposition
W = U ⊕ U ′ into a direct sum of B-modules for some U ′ ⊂ W ; see [J,Proposi-
tion 2.4]. Choose the element Z ∈ End(W ) from the centralizer of the image of B to
be the projector onto U ′ along U . Here deg Z = 0. Then Z X̃w = X̃ Zw = 0, and
X̃w ∈ U . So there exists Y ∈ B such that X̃w = Ỹw. The last equality means that
Xvr = Y vr for each r = 1 , . . . , n. ��

In the notation of Proposition 2.2, we have the following corollary.

Corollary 2.3. Suppose that the vector space V is finite dimensional, and that the
superalgebra B ⊂ End(V ) is semisimple. Then B = B′′ in End(V ).

Now for any integer n � 1 consider the tensor product (End(V ))⊗n of n copies of
the Z2 -graded algebra End(V ). This tensor product is a Z2 -graded associative algebra
defined using the conventions (1.2) and (1.3). The proof of the following lemma is also
included for the sake of completeness.

Lemma 2.4. Suppose that B contains the identity 1 ∈ End(V ). Then the centralizer of
B⊗n in the superalgebra (End(V ))⊗n coincides with (B′)⊗n.

Proof. We will use the induction on n . If n = 1, the statement of Lemma 2.4 is
tautological. Suppose that n > 1. The centralizer of B⊗n contains (B′)⊗n due to
the conventions (1.2) and (1.3). Now suppose that for some homogeneous elements
X1 , . . . , Xl ∈ End(V ) and Y1 , . . . , Yl ∈ (End(V ))⊗ (n−1) the sum of the prod-
ucts X1 Y1 + . . .+ Xl Yl belongs to the centralizer of B⊗n . In particular, then for any
homogeneous Y ∈ B⊗ (n−1) we have

l∑
k=1

Xk ⊗ (Yk Y ) =
l∑

k=1

(Xk ⊗ Yk)(1⊗ Y )

=
l∑

k=1

(−1) (deg Xk + degYk) degY (1⊗ Y )(Xk ⊗ Yk)

=
l∑

k=1

(−1) degYk deg Y Xk ⊗ (Y Yk) .
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We may assume that the elements X1 , . . . , Xl are linearly independent. Then the
above equalities imply that for any k the element Yk ∈ (End(V ))⊗ (n−1) belongs to the
centralizer of B⊗ (n−1). Then Yk ∈ (B′)⊗ (n−1) by the induction assumption. A similar
argument shows that Xk ∈ B′ for any index k. ��

For any N � 0 and M � 1 take the Z2 -graded vector space C N+M |N+M . Identify
the Z2 -graded vector spaces CN |N and CM |M with the subspaces in C N+M |N+M

spanned by the vectors ei where respectively i = −N , . . . , − 1 ,1 , . . . , N and
i = −N − M , . . . , − N − 1 ,N + 1 , . . . , N + M . The decomposition

CN |N = CN |N ⊕CM |M (2.26)

determines the embeddings of the Lie superalgebras glN |N and glM |M into
gl N+M |N+M , and of their subalgebras qN and qM into the Lie algebra q N+M .

Let us now regard End(CN |N ) and QM as subalgebras in the associative superal-
gebra End(C N+M |N+M ) , using the decomposition (2.26). The elements∑

|i|>N

Eii and
∑
|i|>N

(−1) ı̄ Ei,−i

of End(C N+M |N+M ) span a subalgebra, isomorphic to the associative algebra Q1.
Using this isomorphism, a direct calculation shows that the centralizer of QM in
End(C N+M |N+M ) coincides with End(CN |N ) ⊕ Q1 . This centralizer is a semisim-
ple associative Z2 -graded algebra, denote it by C.

For any integer n � 1 consider the tensor product V = (C N+M |N+M )⊗n of n
copies of the Z2 -graded vector space C N+M |N+M . Identify the algebras

(End(C N+M |N+M ))⊗n and End((C N+M |N+M )⊗n) (2.27)

so that for any homogeneous elements X1 , . . . , Xn ∈ End(C N+M |N+M ) and any
homogeneous vectors u1 , . . . , un ∈ C N+M |N+M

(X1 ⊗ . . .⊗ Xn) (u1 ⊗ . . .⊗ un) = (−1)d X1u1 ⊗ . . .⊗ Xnun

where
d =

∑
1�p<q�n

deg u p deg Xq .

By identifying the two algebras we determine an action on V of the subalgebra

C⊗n ⊂ (End(C N+M |N+M ))⊗n . (2.28)

The symmetric group Sn acts on V so that for any adjacent transposition σp =
(p , p + 1)

σp (u1 ⊗ . . .⊗ u p ⊗ u p+1 ⊗ . . .⊗ un)

= (−1) degu p degu p+1 u1 ⊗ . . .⊗ u p+1 ⊗ u p ⊗ . . .⊗ un .
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The action of Sn and C⊗n on V extends to that of Sn � C⊗n . Here the group Sn acts
by automorphisms of the algebra (End(C N+M |N+M ))⊗n so that

σp (X1 ⊗ . . .⊗ X p ⊗ X p+1 ⊗ . . .⊗ Xn)

= (−1) deg X p deg X p+1 X1 ⊗ . . .⊗ X p+1 ⊗ X p ⊗ . . .⊗ Xn . (2.29)

Now consider the action of enveloping algebra U(qN ) on the vector space V , as
of a subalgebra of the Z2 -graded associative algebra U(gl N+M |N+M ) . We use the
comultiplication

U(gl N+M |N+M )→ U(gl N+M |N+M )
⊗n (2.30)

along with the identification of the two algebras in (2.27).

Proposition 2.5. The centralizer of the image of U(qM ) in the associative superalge-
bra End(V ) coincides with the image of Sn � C⊗n .

Proof. The Z2 -graded algebra C⊗n is semisimple, see [J, Proposition 2.10]. So is the
crossed product Sn � C⊗n , see our Lemma 2.1. Let B be the image of the crossed
product in End(V ). The Z2 -graded algebra B is semisimple too. By Corollary 2.3
it suffices to prove that the centralizer of B in End(V ) coincides with the image of
U(qM ) .

Let us describe the latter image. Consider the span in End(C N+M |N+M ) of qM

and of the identity element 1. It is a subalgebra in End(C N+M |N+M ) , denote this
subalgebra by D. We will prove that the invariant subalgebra

(D⊗n)Sn ⊂ (End(C N+M |N+M ))⊗n

coincides with the image of U(qM) . Here we use the definition (2.29), and the comul-
tiplication (2.30). There is no need to identify the two algebras (2.27) here.

Due to the convention (1.2) and the definition of the comultiplication (2.30), the
image of U(qM ) in (End(C N+M |N+M ))⊗n is contained in (D⊗n)Sn . Now for any n
elements X1 , . . . , Xn ∈ D consider their symmetrized tensor product

〈X1 , . . . , Xn〉 = 1

n!

∑
σ∈Sn

σ (X1 ⊗ . . .⊗ Xn) . (2.31)

Suppose that for some p ∈ {1 , . . . , n} we have Xq ∈ C 1 if and only if p < q . By
induction on p , let us prove that 〈X1 , . . . , X p, 1 , . . . , 1〉 belongs to the image of
U(qM ) in (End(C N+M |N+M ))⊗n . This is evident if p = 1. If p > 1, then

〈X1 , . . . , X p−1, 1 , . . . , 1〉 〈X p, 1 , . . . , 1〉
equals

n − p + 1

n
〈X1 , . . . , X p, 1 , . . . , 1〉

plus a sum of certain symmetrized tensor products in (End(C N+M |N+M ))⊗n which
belong to the image of U(qM ) by the induction assumption.
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To prove that the centralizer of B in End(V ) coincides with the image of U(qM ) , it
now suffices to show that the centralizer of the subalgebra (2.28) coincides with D⊗n .
But we have C ′ = D in End(C N+M |N+M ) by definition. Using Lemma 2.4 we now
complete the proof of Proposition 2.5. ��

Consider the symmetric algebra S(q N+M ) of the Lie superalgebra q N+M . The
standard filtration

C = U0(q N+M ) ⊂ U1(q N+M ) ⊂ U2(q N+M ) ⊂ . . . (2.32)

on the algebra U(q N+M ) determines for each n = 1, 2, . . . a linear map

Un(q N+M ) /Un−1(q N+M ) → Sn(q N+M ) , (2.33)

which is bijective by the Poincaré–Birkhoff–Witt theorem for Lie superalgebras [MM,
Theorem 5.15]. Using (2.33), for all indices i, j = ±1 , . . . , ±(N + M) define an
element f (n)i j |N+M ∈ Sn(q N+M ) as the image of the element

F (n)
i j |N+M ∈ Un(q N+M ) ;

the latter element is the sum (1.7) where each of the indices k1 , . . . , kn−1 runs through
±1 , . . . , ±(N + M) . Define c (n)N+M ∈ Sn(q N+M ) as the image of

C (n)
N+M ∈ Un(q N+M ) ;

see (1.11). Note that if n is even, then C (n)
N+M = 0 and hence c (n)N+M = 0.

Now consider adjoint action of the Lie superalgebra q N+M on S(q N+M ) . In par-
ticular, consider the action of qM on S(q N+M ) as that of a subalgebra of q N+M . Then
take the subalgebra of invariants S(q N+M )

qM ⊂ S(q N+M ) .

Proposition 2.6. The subalgebra S(q N+M )
qM is generated by the elements c (1)N+M ,

c (3)N+M , . . . and f (1)i j |N+M , f (2)i j |N+M , . . . where |i | , | j | � N.

Proof. Consider (End(C N+M |N+M ))⊗n as a vector space. Define a linear map ϕn

from this space to the n th symmetric power Sn(q N+M ) by setting

ϕn (Ei1 j1 ⊗ . . .⊗ Ein jn) = Fi1 j1 . . . Fin jn (2.34)

for any indices i, j = ±1 , . . . , ±(N + M) . The map ϕn commutes with the natural
action of the Lie superalgebra q N+M on (End(C N+M |N+M ))⊗n and Sn(q N+M ) . The
map ϕn has a right inverse linear map ψn which commutes with the action of q N+M

as well. Namely, using (2.31) we set

ψn (Fi1 j1 . . . Fin jn) = 2−n 〈Fi1 j1 , . . . , Fin jn〉 .
It follows that the subspace of qM - invariants of the Z-degree n in S(q N+M ) ,
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Sn(q N+M )
qM = ϕn (((End(C N+M |N+M ))⊗n)qM ) = ϕn(B)

by Proposition 2.5; here B is the image of the crossed product Sn � C⊗n in

(End(C N+M |N+M ))⊗n = End((C N+M |N+M )⊗n) .

The vector subspace C ⊂ End(C N+M |N+M ) is spanned by the identity element
1, the elements Eij where |i | , | j | � N and by the element

J =
∑

i

(−1) ı̄ Ei,−i

where the summation index i runs through ±1 , . . . , ± (N + M) . For each p =
1 , . . . , n introduce the elements of the algebra (End(C N+M |N+M ))⊗n ,

E (p)
i j = 1⊗ (p−1) ⊗ Eij ⊗ 1⊗ (n−p) and Jp = 1⊗ (p−1) ⊗ J ⊗ 1⊗ (n−p) .

The vector subspace B ⊂ (End(C N+M |N+M ))⊗n is spanned by the products of the
form

Jq1 . . . Jqb E (p1)
i1 j1

. . . E (pa)
ia ja

H (2.35)

where

1 � p1 < . . . < pa � n , 1 � q1 < . . . < qb � n ,

{p1 , . . . , pa} ∩ {q1 , . . . , qb} = ∅ ,

|i1| , | j1| , . . . , |ia| , | ja| � N

and H is the image in (End(C N+M |N+M ))⊗n of some permutation from Sn .
By the definition of the symmetric algebra S(q N+M ) and due to (2.29), we have

the identity ϕn ◦ σ = ϕn for any σ ∈ Sn . Therefore it suffices to compute the ϕn -
image of the element (2.35) where the factor H corresponds to a permutation of the
form

(1, 2 , . . . , r1) (r1 + 1, r1 + 2 , . . . , r2) . . . (rc + 1, rc + 2 , . . . , n)

where c � 0 and 0 < r1 < r2 < . . . < rc < n . But for any p = 1 , . . . , n − 1 we
have the relation

ϕp(X) ϕn−p(Y ) = ϕn(X ⊗ Y ) , (2.36)

X ∈ (End(C N+M |N+M ))⊗ p and Y ∈ (End(C N+M |N+M ))⊗ (n−p) .

Hence it suffices to consider only the case where H corresponds to the cyclic permu-
tation (1, 2 , . . . , n) . Suppose this is the case. Then we may assume that p1 = 1 or
a = 0. Here we use the identity ϕn ◦ σ = ϕn for σ = (1, 2 , . . . , n) .

For the cyclic permutation (1, 2 , . . . , n) we have

H =
∑

k1,...,kn

(−1) k̄1 + ...+ k̄n−1 E (1)
kn k1

E (2)
k1k2

. . . E (n)
kn−1kn

(2.37)
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where each of the indices k1 , . . . , kn runs through±1 , . . . , ± (N + M) . Hence

E (1)
i j H =

∑
k1,...,kn−1

(−1) k̄1+ ...+ k̄n−1 E (1)
kn k1

E (2)
k1k2

. . . E (n)
kn−1kn

. (2.38)

Further, for any p = 1 , . . . , n − 1 we have the equality

E (1)
i j E (p+1)

kl H = (−1) j̄ k̄ + j̄ l̄+ k̄ l̄ E (1)
il E (p+1)

kj H ′ H ′′

where the factors H ′ and H ′′ are the images in (End(C N+M |N+M ))⊗n of the cyclic
permutations (1 , . . . , p) and (p + 1 , . . . , n) . Using this equality together with the
relation (2.36), we reduce the case a > 1 to the case a = 1.

Suppose that a = 1 and p1 = 1. In this case, the ϕn - image of (2.35) equals∑
k1,...,kn−1

(−1) k̄1+ ...+ k̄n−1 + b ı̄ + q1+ ...+ qb F (−1)b i,k1
Fk1k2 . . . Fkn−1 j

= (−1) b ı̄ + q1+ ...+ qb f (n)
(−1)b i , j |N+M

;
we use the equality (2.38), the definition (2.34) and the identity F−k,−l = Fkl .

It remains to consider the case a = 0. Then the ϕn - image of (2.35) equals

(−1) q1+ ...+ qb
∑

k1,...,kn

(−1) k̄1 + ...+ k̄n−1 + b k̄n F(−1)b kn ,k1
Fk1k2 . . . Fkn−1kn ;

we use the equality (2.37), the definition (2.34) and the identity F−k,−l = Fkl . De-
note by f the sum over k1 , . . . , kn in the above display. If the number b is even, then
f = c (n)N+M . Now suppose that the number b is odd, so that f is∑

k1,...,kn

(−1) k̄1 + ...+ k̄n−1 + k̄n F−kn ,k1 Fk1k2 . . . Fkn−1kn . (2.39)

By changing the signs of the indices k1 , . . . , kn in (2.39) and then using the identity
F−k,−l = Fkl one shows that f = (−1)n f . So f = 0 if n is odd. Since

deg F−kn ,k1 = k̄1 + k̄n + 1 = deg (Fk1k2 . . . Fkn−1 kn )+ 1 ,

the element (2.39) of the symmetric algebra S(q N+M ) can be also written as∑
k1,...,kn

(−1) k̄1 + ...+ k̄n−1 + k̄n Fk1k2 . . . Fkn−1kn F−kn ,k1 . (2.40)

By changing the signs of the indices k2 , . . . , kn in (2.40) and then using the identity
F−k,−l = Fkl one shows that f = (−1)n−1 f . So f = 0 if n is even. ��

By using the fact that for each n � 1 the linear map (2.33) commutes with the
adjoint action of the Lie superalgebra q N+M on Un(q N+M ) and Sn(q N+M ) , we
can now complete the proof of Theorem 1.2. Take any element X ∈ AM

N . We have
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X ∈ Un(q N+M ) for some n � 0. Let us demonstrate by induction on n that X be-
longs to the subalgebra in U(q N+M ) generated by the elements C (1)

N+M ,C
(3)
N+M , . . .

and (1.12). Since U0(q N+M ) = C, here we can take n � 1 and make the induc-
tion assumption. By Proposition 2.6, the image of X in Sn(q N+M ) under the map
(2.33) is a linear combination of the products of the elements c (1)N+M , c (3)N+M , . . .

and f (1)i j |N+M , f (2)i j |N+M , . . . where |i |, | j | � N . By replacing these elements of

S(q N+M ) respectively by C (1)
N+M ,C

(3)
N+M , . . . and (1.12) in the linear combination,

we obtain a certain element Y ∈ U(q N+M ) such that X − Y ∈ U (n−1)(q N+M ) . We
also have Y ∈ AM

N . By applying the induction assumption to the difference X −Y , we
complete the the proof.

3. Proof of Theorem 1.5

Here we prove Theorem 1.5 along with Lemma 1.3 and Propositions 1.4 and 1.6.

Proof of Lemma 1.3. Together with the right ideal I N+M generated by the elements
(1.13), consider the left ideal J N+M in U(q N+M ) generated by the elements

F±1,N+M , . . . , F±(N+M),N+M .

By the Poincaré–Birkhoff–Witt theorem for Lie superalgebras, every element X ∈
U(q N+M ) can be uniquely written as a sum of the products of the form

F p 1
N+M,1 F

p−1
N+M,−1 . . . F

p N+M−1
N+M,N+M−1 F

p−N−M + 1
N+M,−N−M +1

× F p N+M
N+M,N+M F p−N−M

N+M,−N−M Y

× F q 1
1,N+M F

q−1
−1,N+M . . . F

q N+M − 1
N+M−1,N+M F

q−N−M + 1
−N−M +1,N+M (3.1)

where each of the exponents pk and qk runs through 0 ,1 ,2 , . . . or through 0 ,1 if
k > 0 or k < 0 respectively, whereas the factor Y ∈ U(q N+M−1) depends on these
exponents. Note that here

[ FN+M,N+M , Y ] = 0 and [ F−N−M,N+M , Y ] = 0 . (3.2)

Now suppose that X ∈ AM
N . In particular, then we have

[ FN+M,N+M , X ] = 0 (3.3)

since M � 1 by our assumption. Note that if |k | < N + M , then due to (1.6)

[ FN+M,N+M , FN+M,k ] = FN+M,k ,

[ FN+M,N+M , Fk,N+M ] = − FN+M,k .
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If |k | = N + M , then

[ FN+M,N+M , Fk,N+M ] = 0 .

Hence the condition (3.3) implies that X is a sum of the products (3.1) where

p1 + p−1 + . . .+ p N+M−1 + p−N−M +1

= q1 + q−1 + . . .+ q N+M−1 + q−N−M +1 . (3.4)

The intersection I N+M ∩ AM
N consists of those elements X ∈ AM

N which are sums
of the products (3.1) where

p1 + p−1 + . . .+ p N+M + p−N−M > 0 .

Due to the equality (3.4), the latter inequality is equivalent to

q1 + q−1 + . . .+ q N+M−1 + q−N−M +1 + p N+M + p−N−M > 0 .

So by using (3.2),
I N+M ∩ AM

N = J N+M ∩ AM
N . (3.5)

In particular, the intersection I N+M ∩ AM
N is a two-sided ideal of AM

N . Thus we get
Part (a) of Lemma 1.3.

Furthemore, due to (3.4) there is only one summand (3.1) of X ∈ AM
N with

p1 + p−1 + . . .+ p N+M + p−N−M = 0 , (3.6)

this summand has the form of Y ∈ U(q N+M−1) . Note that the right ideal I N+M of
U(q N+M ) is stable under the adjoint action of the subalgebra q N+M−1 ⊂ q N+M .
Indeed, if |i |, | j | < N + M , then by (1.6) we have

[ Fij , FN+M, l ] = − (−1) ı̄ l̄+ j̄ l̄ δ il FN+M, j − (−1) ı̄ l̄+ j̄ l̄ δ i,−l FN+M,− j

for any index l = ±1 , . . . ,±(N+M) . In particular, I N+M is stable under the adjoint
action of q M−1 . So the condition [ Z , X ] = 0 on X for any Z ∈ q M−1 implies the
condition [ Z , Y ] = 0 on the summand Y of X corresponding to (3.6) . Therefore
Y ∈ AM−1

N , and we get Part (b) of Lemma 1.3. ��

Proof of Proposition 1.4. Suppose that |i |, | j | � N . Let us prove by induction on
n = 1 ,2 , . . . that the differences

F (n)
i j |N+M − F (n)

i j |N+M−1 and C (n)
N+M − C (n)

N+M−1 (3.7)

belong to the left ideal J N+M in U(q N+M ) . Due to (3.5), Proposition 1.4 will then
follow. Neither of the elements F (n)

i j |N+M and C (n)
N+M , nor the ideal J N+M depend on

the partition of the number N + M into N and M . Hence it suffices to consider the
case M = 1. Note that according to the definition (1.11)
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C (n)
N+1 − C (n)

N =
∑
|k|�N

( F (n)
kk |N+1 − F (n)

kk |N )

+ F (n)
N+1,N+1 |N+1 + F (n)

−N−1,−N−1 |N+1

where the last two summands belong to J N+1 , by their definition. Therefore it suffices
to consider only the first of the differences (3.7), where M = 1.

If n = 1, that difference is zero. Now suppose that n > 1, and make the induction
assumption. Using the relation (1.9),

F (n)
i j |N+1 − F (n)

i j |N =
∑
|k|�N

(−1) k̄ Fik ( F (n−1)
kj |N+1 − F (n−1)

kj |N )

+ Fi ,N+1 F (n−1)
N+1, j |N+1 − Fi ,−N−1 F (n−1)

−N−1, j |N+1 .

At the right-hand side of the last equality, the summands corresponding to |k| � N
belong to the left ideal J N+1 by the induction assumption. Using (1.10) and (1.8), the
remainder of the right-hand side is equal to the sum

(−1) ı̄ j̄ F (n−1)
N+1, j |N+1 Fi ,N+1 − (−1) (ı̄ +1) (j̄ +1) F (n−1)

−N−1, j |N+1 Fi ,−N−1

+ (−1) ı̄ j̄ + 1 ( 1+ (−1) ı̄ + j̄ + n ) δi j F (n−1)
N+1,N+1 |N+1

+ (−1) (ı̄+1) (j̄ +1) ( 1+ (−1) ı̄ + j̄ + n ) δi,− j F (n−1)
−N−1,N+1 |N+1 .

But in this sum, every summand evidently belongs to the left ideal J N+1 . ��
Let us now prove Theorem 1.5. First, we will verify the formula (1.18) for the

supercommutator [ F (m)
i j , F (n)

kl ] in the algebra AN . We will use

Proposition 3.1. In U(qN ) for m ,n = 1 ,2 , . . . and i , j ,k , l = ±1 , . . . , ± N

[ F (m)
i j |N , F (n)

kl |N ] = F (m+n−1)
il |N δkj − (−1) ( ı̄ + j̄ ) ( k̄+ l̄ ) δil F (m+n−1)

kj |N

+ (−1)m−1 ( F (m+n−1)
−i,l |N δ−k, j

− (−1) ( ı̄+ j̄ ) ( k̄+ l̄ ) δi,−l F (m+n−1)
k,− j |N )+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄

×
m−1∑
r=1

( F (n+r−1)
il |N F (m−r)

kj |N − F (m−r)
il |N F (n+r−1)

kj |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄ + k̄ + l̄

×
m−1∑
r=1

(−1)r ( F (n+r−1)
−i,l |N F (m−r)

−k, j |N − F (m−r)
i,−l |N F (n+r−1)

k,− j |N ) .

Proof. The formula for the supercommutator [ F (m)
i j |N , F (n)

kl |N ] in the Z2 -graded algebra
U(qN ) displayed above is easy to verify by using the induction on m . When m = 1,
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this formula coincides with (1.10). Now make the induction assumption. Let the index
h run through±1 , . . . , ±N . Then due to (1.9),

[ F (m+1)
i j |N , F (n)

kl |N ] =
∑

h

(−1) h̄ [ Fih F (m)
h j |N , F (n)

kl |N ]

=
∑

h

(−1) h̄ Fih [F (m)h j |N , F (n)
kl |N ]+

∑
h

(−1) h̄ + (h̄ + j̄ ) (k̄ + l̄ ) [ Fih , F (n)
kl |N ] F (m)

h j |N

=
∑

h

(−1) h̄ Fih ( F (m+n−1)
hl |N δkj − (−1) ( h̄+ j̄ ) ( k̄+ l̄ ) δhl F (m+n−1)

kj |N

+ (−1)m−1 ( F (m+n−1)
−h,l |N δ−k, j − (−1) ( h̄+ j̄ ) ( k̄+ l̄ ) δh,−l F (m+n−1)

k,− j |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄
m−1∑
r=1

( F (n+r−1)
hl |N F (m−r)

kj |N − F (m−r)
hl |N F (n+r−1)

kj |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄ + k̄ + l̄
m−1∑
r=1

(−1)r (F (n+r−1)
−h,l |N F (m−r)

−k, j |N − F (m−r)
h,−l |N F (n+r−1)

k,− j |N ))

+
∑

h

(−1) h̄ + (h̄ + j̄ ) (k̄ + l̄ ) ( δkh F (n)
il |N − (−1) ( ı̄+ h̄ ) ( k̄+ l̄ ) δil F (n)

kh |N

+ δ−k,h F (n)
−i,l |N − (−1) ( ı̄+ h̄ ) ( k̄+ l̄ ) δi,−l F (n)

k,−h |N ) F (m)
h j |N .

Here we used the induction assumption with the index i replaced by h , and the re-
lation (1.10) with the index j replaced by h . Using the relation (1.9) repeatedly, the
right-hand side of the above displayed equalities equals

F (m+n)
il |N δkj − (−1) ( ı̄ + j̄ ) ( k̄+ l̄ ) δil F (m+n)

kj |N

+ (−1)m ( F (m+n)
−i,l |N δ−k, j − (−1) ( ı̄+ j̄ ) ( k̄+ l̄ ) δi,−l F (m+n)

k,− j |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄ ( F (n)
il |N F (m)

kj |N − F (1)
il |N F (m+n−1)

kj |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄ + k̄ + l̄((−1)m+1 F (1)
i,−l |N F (m+n−1)

k,− j |N − F (n)
−i,l |N F (m)

−k, j |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄
m−1∑
r=1

( F (n+r)
il |N F (m−r)

kj |N − F (m−r+1)
il |N F (n+r−1)

kj |N )

+ (−1) j̄ k̄ + j̄ l̄ + k̄ l̄ + k̄ + l̄

×
m−1∑
r=1

(−1)r+1( F (n+r)
−i,l |N F (m−r)

−k, j |N + F (m−r+1)
i,−l |N F (n+r−1)

k,− j |N ).

But the last displayed sum can also be obtained by replacing m by m + 1 on the
right-hand side of the equality in Proposition 3.1. Thus we have made the induction
step. ��
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If m > n, then on the right-hand side of the equality in Proposition 3.1, the sum-
mands corresponding to the indices r = 1 , . . . , m − n cancel in each of the two sums
over r = 1 , . . . , m − 1. In the first of the two sums, this is obvious. To cancel these
summands in the second sum, one utilizes the relations (1.8). Hence if m > n, the
summation over r = 1 , . . . , m − 1 in Proposition 3.1 can be replaced by the sum-
mation over r = m − n + 1 , . . . , m − 1. Thus if we change the running index r to
m − r , the latter index should run through 1 , . . . , min(m ,n)− 1. Using this remark,
the relation (1.18) in Theorem 1.5 follows from Proposition 3.1.

In the remainder of the proof of Theorem 1.5, we will also make use of the next
proposition. For any integers M � 0 and n � 1 consider the elements

c (n)N+M and f (n)i j |N+M (3.8)

of the algebra S(q N+M )
qM , see Proposition 2.6. Fix any positive integer s .

Proposition 3.2. Take the elements f (n)i j |N+M where

1 � n � s , 1 � i � N , 1 � | j | � N . (3.9)

Along with these elements, take the elements c (n)N+M where 1 � n � s and n is odd.
For any sufficiently large number M, all these elements are algebraically independent
in the supercommutative algebra S(q N+M ) .

Proof. We will use arguments from [MO, Subsection 2.11]. By the Poincaré–Birkhoff–
Witt theorem for Lie superalgebras, the elements

Fkl = f (1)kl |N+M

where k = 1 , . . . , N + M and l = ±1 , . . . , ±N + M are free generators of the
supercommutative algebra S(q N+M ) . Let X s be the quotient algebra of S(q N+M ) ,
defined by imposing the following relations on these free generators.

For every triple ( i , j ,n) satisfying the conditions (3.9), choose a subset

O (n)
i j ⊂ {N + 1 , N + 2 , . . . }

of cardinality n − 1 in such a way that all these subsets are disjoint. Let M be so large
that all these subsets are contained in {N + 1 , . . . , N + M − s }. If

O (n)
i j = {l1 , . . . , ln−1 } ,

then put
Fi l1 = Fl1l2 = . . . = Fln−2 ln−1 = 1 .

Denote by x (n)i j the image of the element Fln−1 j ∈ S(q N+M ) in the algebra X s .
Having done this for every triple ( i , j ,n) satisfying the conditions (3.9), for every
r = 1 , . . . , s denote by xr the image in X s of the element

F N+M−s+r ,N+M−s+r ∈ S(q N+M ).
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Finally, put Fkl = 0 if k > 0 and (k , l) is not one of the pairs

( i , l1) , (l1 , l2) , . . . , (ln−2 , ln−1) , (ln−1 , j)

for any triple ( i , j ,n) satisfying (3.9), and not one of the pairs

(N+M−s+r ,N+M−s+r) where r = 1 , . . . , s .

The elements x1 , . . . , xs and the elements x (n)i j for all the triples (i , j ,n) satisfy-
ing (3.9) are free generators of the algebra X s . For any of these triples, the image in
X s of

f (n)i j |N+M ∈ S(q N+M )

equals x (n)i j plus a certain linear combination of products of the elements x (m)kl where
1 � m < n. For any odd n , the image in X s of the element

c (n)N+M ∈ S(q N+M )

equals

2n(xn
1 + . . .+ xn

s )

plus a linear combination of products of elements x (m)kl where 1 � m � n . Hence all
these images are algebraically independent in the quotient X s of the supercommutative
algebra S(q N+M ) . ��

Let us show that the associative algebra AN is generated by the elements C (1),
C (3), . . . and F (1)

i j , F (2)
i j , . . .. Take any element Z ∈ AN , and consider its canonical

image Z M = πM (Z) ∈ AM
N for any M � 0. By Theorem 1.2, the element Z M is a

linear combination of the products of the elements C (n)
N+M where n = 1 ,3 , . . . and

of the elements F (n)
i j |N+M where n = 1 ,2 , . . . , whereas i = 1 , . . . , N and j =

±1 , . . . , ±N ; see (1.8). Choose any linear ordering of all these elements. Applying
Proposition 3.1 to the algebra U(q N+M ) instead of U(qN ) , we will assume that any of
the products in the linear combination Z M is an ordered monomial in these elements.
If ı̄ + j̄ = 1, then the element F (n)

i j |N+M may appear in any of these monomials only
with degree 1.

We will assume that for any M � 1, the map αM preserves the ordering. Then for
every monomial YM appearing in the linear combination Z M , the monomial αM (YM )
may appear in the linear combination αM (Z M ) = Z M−1 .

The filtration degrees of the elements in the sequence Z0 , Z1 , Z2 , . . . are bounded.
Hence for any factor C (n)

N+M or F (n)
i j |N+M of the monomials appearing in linear combi-

nation Z M , we have n � s for a certain integer s which does not depend on M . Then
for a sufficiently large number M , the coefficients of the monomials appearing in the
linear combinations Z M , Z M+1 , Z M+2 , . . . are determined uniquely. The uniqueness
follows from Proposition 3.2.

Now fix a sufficiently large number M , as above. Let YM be any monomial ap-
pearing in the linear combination Z M , say with a coefficient z ∈ C . We assume that
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z �= 0. Then for any integer L > M , the linear combination Z L contains the summand
z YL where YL is a monomial and

(αM+1 ◦ . . . ◦ αL )(YL) = YM .

For any nonnegative integer L � M , define YL = (αL ◦ . . . ◦ αM )(YM ). The se-
quence Y0 ,Y1 ,Y2 , . . . determines an element Y ∈ AN , which is a monomial in
C (1),C (3), . . . and F (1)

i j , F (2)
i j , . . . . Here 1 � i � N and 1 � | j | � N . The element

Z ∈ AN is then a sum of the products of the form z Y . This sum is finite because any
such product corresponds to a summand z YM in the linear combination Z M . Thus we
have proved Part (a) of Theorem 1.5.

Let us now prove Parts (b) and (c). By definition, the algebra AN comes with
an ascending Z-filtration, such that the generators C (n) and F (n)

i j of AN have the

degree n . Denote the corresponding Z-graded algebra by gr AN . Let c (n) and f (n)i j

be the generators of the algebra gr AN corresponding to C (n) and F (n)
i j . We always

assume that the index n in C (n) and c (n) is odd. We also assume that |i | , | j | � N in
F (n)

i j and f (n)i j . It follows from (1.17) that for any n = 1 ,2 , . . .

f (n)−i,− j = (−1) n−1 f (n)i j .

The algebra gr AN also inherits from AN a Z2 -gradation, such that

deg c (n) = 0 and deg f (n)i j = ı̄ + j̄ ,
see (1.16). The relation (1.18) demonstrates that the Z2 -graded algebra gr AN is su-
percommutative. To complete the proof of Theorem 1.5, it suffices to show that the el-
ements c (1), c (3), . . . together with the elements f (1)i j , f (2)i j , . . . where i = 1 , . . . , N
and j = ±1 , . . . ,±N are algebraically independent in the supercommutative algebra
gr AN .

The algebra gr AN can also be obtained as an inverse limit of the sequence of the
supercommutative algebras S(q N+M )

qM where M = 0 ,1 ,2 , . . . . The limit is taken
in the category of Z-graded algebras. We assume that if M = 0, then S(q N+M )

qM =
S(qN ) . The definition of the surjective homomorphism

S(q N+M )
qM → S(q N+M−1)

qM−1

for any M � 1 is similar to the definition of the surjective homomorphism αM :
AM

N → AM−1
N , see Lemma 1.3. Here we omit the details, but notice that the elements

c (n) and f (n)i j of gr AN correspond to the sequences of elements (3.8) of the algebras
S(q N+M )

qM where M = 0 ,1 ,2 , . . . . Proposition 3.2 now guarantees the algebraic
independence of the elements c (1), c (3), . . . together with the elements f (1)i j , f (2)i j , . . .
where i = 1 , . . . , N and j = ±1 , . . . , ±N .

Proof of Proposition 1.6. Under the correspondence F (n)
i j 	→ (−1) ı̄ T (n)

j i , the collec-
tion of relations (1.17) in the algebra BN for the indices n = 1 ,2 , . . . corresponds
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to the equality (1.19) in Y(qN )[[u−1]] . Put T (0)
i j = δi j for any i , j = 1 , . . . , ±N .

Using (1.4), the relation (1.18) in BN then corresponds to

(−1) ı̄ j̄ + ı̄ k̄ + j̄ k̄ [ T (m)
j i , T (n)

lk ]

=
m−1∑
r=0

( T (m+n−r−1)
j k T (r)

li − T (r)
j k T (m+n−r−1)

li ) + (−1) ı̄ + j̄ +1

×
m−1∑
r=0

(−1)m+ r ( T (m+n−r−1)
− j,k T (r)

−l,i − T (r)
j,−k T (m+n−r−1)

l,−i ). (3.10)

Here we also used a remark on the summation over r = 1 , . . . , m − 1 similar to that
made immediately after the proof of Proposition 3.1.

Put T (−1)
i j = 0 for any i , j = 1 , . . . , ± N . The collection of relations (3.10) for

m ,n = 1 ,2 , . . . is equivalent to the collection of relations

(−1) ı̄ j̄ + ı̄ k̄ + j̄ k̄ ( [ T (m+1)
j i , T (n−1)

lk ]− [ T (m−1)
j i , T (n+1)

lk ] )

= T (n−1)
j k T (m)

li − T (m)
j k T (n−1)

li + T (n)
j k T (m−1)

li − T (m−1)
j k T (n)

li + (−1) ı̄ + j̄

× (T (n−1)
− j,k T (m)

−l,i − T (m)
j,−k T (n−1)

l,−i − T (n)
− j,k T (m−1)

−l,i + T (m−1)
j,−k T (n)

l,−i ) (3.11)

for m ,n = 0 ,1 ,2 , . . . . Multiplying the relation (3.11) by x 1−m y 1−n and taking the
sum of resulting relations over m ,n = 0 ,1 ,2 , . . . we get the relation

(x2 − y2 ) · [ Tj i(x), Tlk(y)] · (−1) ı̄ j̄ + ı̄ k̄ + j̄ k̄

= (x + y) · (Tjk(y) Tli (x)− Tjk(x) Tli (y))

+ (x − y) · (T− j,k(y) T−l, i (x)− Tj,−k(x) Tl,−i (y)) · (−1) ı̄ + j̄ . (3.12)

Using (1.5), we can rewrite the left-hand side of the relation (3.12) as

( y2 − x2 ) · [ Tlk(y), Tj i (x)] · (−1) ı̄ j̄ + ı̄ l̄ + j̄ l̄ .

Replacing in the resulting relation the indices i , j ,k , l and the parameters x , y by
l ,k , j , i and y , x respectively, we obtain exactly the relation (1.20) . Thus the defin-
ing relations of the subalgebra BN ⊂ AN correspond to the defining relations of the
algebra Y(qN ) , see Theorem 1.5. ��
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Summary. An algebra of differential operators is the enveloping algebra of a Lie algebroid T
of vector fields. Similarly, a vertex algebra of differential operators is the enveloping algebra of
a vertex algebroid, which is a Lie algebroid equipped with certain complementary differential
operators. These operators should satisfy some complicated identities, these identities being a
corollary of the Borcherd’s axioms of a vertex algebra.

In this note we attempt to shed some light at the definition of a vertex algebroid, by propos-
ing a new, equivalent definition which has nothing to do with the axioms of a vertex algebra and
uses only classical objects such as complexes of De Rham, Hochschild and Koszul. This point
of view works nicely for Calabi–Yau structures as well and opens the way to higher dimensional
generalisations.

Subject Classification: 17B69

Prooemium

1. Sint k anulus commutativus Q continens, A k-algebra commutativa et T A-
algebroid Lietianus.
Posito - := HomA(T, A), habemus derivatio canonica d : A −→ -, ubi
〈τ, da〉 = τ (a), denotante per 〈, 〉 : T ⊗A - −→ A copulationem canonicam.

2. Revocamus (vide commentatione [V. Gorbounov, F. Malikov, V. Schechtman,
Gerbes of chiral differenial operators. II. Vertex algebroids, Inventiones Mathe-
maticae, 155, 605–680 (2004)], 1.4), structura verticiana super T triplex A =
(γ, 〈, 〉, c) est, ubi elementa γ ∈ Hom(A ⊗ T,-), 〈, 〉 ∈ Hom(S2T, A) et
c ∈ Hom(	2T,-) aequationibus sequentibus satisfacit:
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γ (a, bτ )− γ (ab, τ )+ aγ (b, τ ) = −τ (a)db− τ (b)da (A1)

〈aτ, τ ′〉 = a〈τ, τ ′〉 − ττ ′(a)+ 〈γ (a, τ ), τ ′〉 (A2)

c(aτ, τ ′) = ac(τ, τ ′)+ γ (a, [τ, τ ′])− γ (τ ′(a), τ )

+ τ ′γ (a, τ )+ 1

2
ad〈τ, τ ′〉 − 1

2
d〈aτ, τ ′〉 (A3)

〈[τ, τ ′], τ ′′〉 + 〈τ ′, [τ, τ ′′]〉 = τ 〈τ ′, τ ′′〉 − 1

2
τ ′〈τ, τ ′′〉 − 1

2
τ ′′〈τ, τ ′〉

+ 〈τ ′, c(τ, τ ′′)〉 + 〈τ ′′, c(τ, τ ′)〉 (A4)

atque

Cycleτ,τ ′,τ ′′

[
c([τ, τ ′], τ ′′)− τc(τ ′, τ ′′)+ 1

3
d〈τ, c(τ ′, τ ′′)〉

]

= −1

6
Cycleτ,τ ′,τ ′′d〈τ, [τ ′, τ ′′]〉, (A5)

ubi denotabimus, brevitatis gratia:

Cycleτ,τ ′,τ ′′ f (τ, τ ′, τ ′′) := f (τ, τ ′, τ ′′)+ f (τ ′, τ ′′, τ )+ f (τ ′′, τ, τ ′).

3. E (A2) prodit:

1

2
ad〈τ, τ ′〉 − 1

2
d〈aτ, τ ′〉 = −1

2
da 〈τ, τ ′〉 + 1

2
dττ ′(a)− 1

2
d〈τ ′, γ (a, τ )〉,

ergo (A3) ita exhiberi licet:

c(aτ, τ ′) = ac(τ, τ ′)+ γ (a, [τ, τ ′])− γ (τ ′(a), τ )+ τ ′γ (a, τ )

− 1

2
d〈τ ′, γ (a, τ )〉 − 1

2
da 〈τ, τ ′〉 + 1

2
dττ ′(a). (A3)bis

4. Applicatio h : A −→ A′ elementum h ∈ Hom(T,-) est, axiomatibus sequen-
tibus satisfaciens:

h(aτ )− ah(τ ) = γ (a, τ )− γ ′(a, τ ) (Mor)γ

〈τ, h(τ ′)〉 + 〈τ ′, h(τ )〉 = 〈τ, τ ′〉 − 〈τ, τ ′〉′ (Mor)〈,〉
et

h(|τ, τ ′])− τh(τ ′)+ τ ′h(τ )+ 1

2
d〈τ, h(τ ′)〉 − 〈τ ′, h(τ )〉}

= c(τ, τ ′)− c′(τ, τ ′). (Mor)c

5. Posito -n := HomA(	
n
AT, A), revocamus differentiale DE RHAMIANUM

d : -n−1 −→ -n
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ubi

dω(τ1, τ2, . . .) = ω([τ1, τ2], τ3, . . .)− . . .+ (−1)i+ j+1ω([τi , τ j ], τ1, . . .)+ . . .
− τ1ω(τ2, . . .)+ . . .+ (−1)iτiω(τ1, . . . , τ̂i , . . .)+ . . .

= Alt12...n

{
1

2(n − 2)!
ω([τ1, τ2], τ3, . . .)− 1

(n − 1)!
τ1ω(τ2, . . .)

}
.

6. Quodque-n in complexum HOCHSCHILDIANUM immergi potest:

0 −→ -n −→ Hom(	n−1T,-)
dH−→ Hom(A ⊗ T ⊗	n−2T,-)

dH−→ . . .

−→ . . .
dH−→ Hom(A⊗i ⊗ T ⊗	n−2T,-)

dH−→ . . . ,

ubi

dHω(a, b, c, . . . , e, f, τ1, . . .) = aω(b, c, . . . , e, f, τ1, . . .)

− ω(ab, c, . . . , e, f, τ1, . . .)+ . . .± ω(a, b, . . . , e, f τ1, . . .)

Manifesto,-n = Ker dH .
7. Rursus, sit V k-modulus, potestas extera sua in genum complexus KOSZULIANI

immerseri potest:

0 −→ 	n V −→ Hom(V ∗,	n−1V )
Q−→ Hom(S2V ∗,	n−2V )

Q−→ . . .
Q−→ Hom(Si V ∗,	n−i V )

Q−→ . . . ,

ubi V ∗ := Hom(V , k) ac

Qc(τ1, τ2) = 〈τ1, c(τ2)〉 + 〈τ2, c(τ1)〉;
Qc(τ1, τ2, τ3) = 〈τ1, c(τ2, τ3)〉 + 〈τ2, c(τ3, τ1)〉 + 〈τ3, c(τ1, τ2)〉,

etc. Manifesto, 	nV = Ker Q.
8. In hac commentatione solum inspicimus partem complexus de Rhamiani

-[2,5] : -2 −→ . . . −→ -5

Copulatione complexuum Koszulianorum, Hochschildianorum de Rhamian-
orumque usa, definiamus complexum

W [2,5] : W 2 −→ . . . −→ W 5,

de inclusione complexuum -[2,5] ⊂ W [2,5] atque de cocyclo canonico E ∈ W 4

ornatum. Structura verticiana super T elementum A ∈ W 3 est, aequationi DA =
E satisfaciens. Sagittula A −→ A′ elementum h ∈ W 2 est, talis ut fit Dh =
A−A′, vide Caput Secundum, Pars Tertia.
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Caput primum. Structurae Calabi–Yautianae

1. Revocatio

1.1.

Revocamus (vide op.cit., 11.1), structure Calabi–Yautianae super T est applicatio c :
T −→ A, duabus proprietatibus sequentibus satisfaciens:

c(aτ ) = ac(τ )+ τ (a) (CY 1)

atque
c([τ, τ ′]) = τc(τ ′)− τ ′c(τ ). (CY 2)

2. Complexus Hochschild–De Rhamianus

(a)

2.1.

Definimus operator

dD R : Hom(T, A) −→ Hom(	2T, A)

per formulam:

dD Rc(τ1, τ2) = c([τ1, τ2])− τ1c(τ2)+ τ2c(τ1).

2.2.

Rursus, inspicimus complexum Hochschildianum

0 −→ Hom(T, A)
d0

H−→ Hom(A ⊗ T, A)
d1

H−→ Hom(A⊗2 ⊗ T, A),

ubi differentialia Hochschildiana per regulas definitur:

d0
H c(a, τ ) = c(aτ )− ac(τ )

ac
d1

H c(a, b, τ ) = ac(b, τ )− c(ab, τ )+ c(a, bτ )

Liquet quod fit - = Kerd0
H .
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2.3.

Simili modo, consideremus complexum Hochschildianum:

0 −→ Hom(	2T, A)
d0

H−→ Hom(A ⊗ T⊗2, A)
d1

H−→ Hom(A⊗2 ⊗ T⊗2, A),

ubi differentialia Hochschildiana per formulas definiuntur:

d0
H c(a, τ, τ ′) = c(aτ, τ ′)− ac(τ, τ ′)

atque
d1

H c(a, b, τ, τ ′) = ac(b, τ, τ ′)− c(ab, τ, τ ′)+ c(a, bτ, τ ′)

Nunc erit -2 = Ker d0
H .

2.4.

Porro, introducamus operator

dD R : Hom(A ⊗ T, A) −→ Hom(A ⊗ T⊗2, A)

per regulam

dD Rc(a, τ, τ ′) = c(a, [τ, τ ′])− c(τ ′(a), τ )+ τ ′c(a, τ ) = Lieτ ′c(a, τ ).

2.5. Lemma. d0
H dD R = dD Rd0

H .

2.6. Demonstratio. Pro elemento c ∈ Hom(T, A), habebimus

d0
H dD Rc(a, τ, τ ′) = dD Rc(aτ, τ ′)− adD Rc(τ, τ ′),

ubi
dD Rc(aτ, τ ′) = c([aτ, τ ′])− aτc(τ ′)+ τ ′c(aτ )

ac
−adD Rc(τ, τ ′) = −ac([τ, τ ′])+ aτc(τ ′)− aτ ′c(τ ),

unde

d0
H dD Rc(a, τ, τ ′) = c(a[τ, τ ′])− ac([τ, τ ′])− c(τ ′(a)τ )+ τ ′c(aτ )− aτ ′c(τ )

= c(a[τ, τ ′])− ac([τ, τ ′])− c(τ ′(a)τ )+ τ ′c(aτ )
− τ ′{ac(τ )} + τ ′(a)c(τ ) = dD Rd0

H c(a, τ, τ ′), qed
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(b)

2.7.

Definimus operator

dD R : Hom(A⊗2 ⊗ T, A) −→ Hom(A⊗2 ⊗ T⊗2, A)

per

dD Rc(a, b, τ, τ ′) = Lieτ ′c(a, b, τ ) = τ ′c(a, b, τ )− c(τ ′(a), b, τ )

− c(a, τ ′(b), τ )− c(a, b, [τ ′, τ ]).

2.8. Lemma. dH dD R = dD RdH .

2.9. Demonstratio. Pro elemento c ∈ Hom(A ⊗ T, A), fit

dH dD Rc(a, b, τ, τ ′) = adD Rc(b, τ, τ ′)− dD Rc(ab, τ, τ ′)+ dD Rc(a, bτ, τ ′),

ubi

adD Rc(b, τ, τ ′) = aτ ′c(b, τ )− ac(τ ′(b), τ )− ac(b, [τ ′, τ ]); −dD Rc(ab, τ, τ ′)

= −τ ′c(ab, τ )+ c(τ ′(ab), τ )+ c(ab, [τ ′, τ ])

= −τ ′c(ab, τ )+ c(τ ′(a)b + aτ ′(b), τ )+ c(ab, [τ ′, τ ])

atque

dD Rc(a, bτ, τ ′) = τ ′c(a, bτ )− c(τ ′(a), bτ )− c(a, [τ ′, bτ ])

= τ ′c(a, bτ )− c(τ ′(a), bτ )− c(a, τ ′(b)τ − b[τ ′, τ ])

Adde huc
0 = τ ′(a)c(b, τ )− τ ′(a)c(b, τ ).

2.10.

Sed

− ac(b, [τ ′, τ ])+ c(ab, [τ ′, τ ])+ c(a, b[τ ′, τ ]) = −dH c(a, b, [τ ′, τ ]);
aτ ′c(b, τ )− τ ′c(ab, τ )+ τ ′c(a, bτ )+ τ ′(a)c(b, τ ) = τ ′dH c(a, b, τ );
− ac(τ ′(b), τ )+ c(aτ ′(b), τ )− c(a, τ ′(b)τ ) = −dH c(a, τ ′(b), τ )

atque
c(τ ′(a)b, τ )− c(τ ′(a), bτ )− τ ′(a)c(b, τ ) = −dH (τ

′(a), b, τ )
Qua addendo obtinemus effatum lemmatis.
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3. Cocyclus canonicus

3.1.

Inspicimus elementum ε ∈ Hom(A ⊗ T, A) per formulam definitum:

ε(a, τ ) = τ (a).
3.2. Lemma. dHε = dD Rε = 0.

Habemus enim,

dD Rε(a, τ, τ
′) = Lieτ ′ε(τ, a) = τ ′τ (a)− ττ ′(a)+ [τ, τ ′](a) = 0

(scilicet, ε operator invariens est).
Rursus,

dHε(a, b, τ ) = aτ (b)− τ (ab)+ bτ (a) = 0.

3.3.

Aliter, ε cocyclum (bi)complexus Hochschild–De Rhamiani est.

3.4. Definitio altera. Structura Calabi–Yautiana est elementum c ∈ Hom(T, A), sat-
isfaciens equationi Dc = ε, denotanti per D differentiale complexus Hochschild–De
Rhamiani.

Caput secundum. Structurae verticianae

Pars prima. Aedificium sinistrum

1. Koszul et de Rham

(a)

1.1.

Definimus operatores Q : Hom(T,-) −→ Hom(S2T, A) per

Qh(τ, τ ′) = 〈τ, h(τ ′)〉 + 〈τ ′, h(τ )〉,
ergo Ker Q = -2, atque Q : Hom(	2T,-) −→ Hom(S2T ⊗ T, A) per

Qc(τ, τ ′, τ ′′) = 〈τ, c(τ ′, τ ′′)〉 + 〈τ ′, c(τ, τ ′′)〉,
ergo Ker Q = -3.
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1.2.

Definimus operatores dD R : Hom(T,-) −→ Hom(	2T,-) per

dD Rh(τ, τ ′) = h([τ, τ ′])− τ {h(τ ′)} + τ ′{h(τ )} + 1

2
d{〈τ, h(τ ′)〉 − 〈τ ′, h(τ )〉}.

1.3.

atque
dD R : Hom(S2T, A) −→ Hom(S2T ⊗ T, A)

per

dD Rh(τ, τ ′, τ ′′) = Symτ,τ ′

[
h(τ, [τ ′, τ ′′])+ 1

2
τ ′′{h(τ, τ ′)} − 1

2
τ {h(τ ′, τ ′′)}

]
.

1.4. Lemma. QdD R = dD R Q.

Demonstratio. Si h ∈ Hom(T,-), habemus

QdD Rh(τ, τ ′, τ ′′) = Symτ,τ ′ 〈τ, dD Rh(τ ′, τ ′′)〉

= Symτ,τ ′

〈
τ, h([τ ′, τ ′′])− τ ′{h(τ ′′)} + τ ′′{h(τ ′)}

+1

2
d{〈τ ′, h(τ ′′)〉 − 〈τ ′′, h(τ ′)〉}

〉
= Symτ,τ ′

[
〈τ, h([τ ′, τ ′′])〉 − τ ′(〈τ, h(τ ′′)〉

+ 〈[τ ′, τ ], h(τ ′′)〉 + τ ′′(〈τ, h(τ ′)〉 − 〈[τ ′′, τ ], h(τ ′)〉

+1

2
τ (〈τ ′, h(τ ′′)〉)− 1

2
τ (〈τ ′′, h(τ ′)〉)

]
Sed

Symτ,τ ′ [〈τ, h([τ ′, τ ′′])〉 − 〈[τ ′′, τ ], h(τ ′)〉]
= Symτ,τ ′ [〈τ ′, h([τ, τ ′′])〉 + 〈[τ, τ ′′], h(τ ′)〉] = Symτ,τ ′ Qh(τ, [τ ′, τ ′′]);

Symτ,τ ′ 〈[τ ′, τ ], h(τ ′′)〉 = 0,

Symτ,τ ′ [τ
′′(〈τ, h(τ ′)〉] = τ ′′{Qh(τ, τ ′)}

ac

Symτ,τ ′

[
−τ ′(〈τ, h(τ ′′)〉 + 1

2
τ (〈τ ′, h(τ ′′)〉)− 1

2
τ (〈τ ′′, h(τ ′)〉)

]
= −1

2
Symτ,τ ′

[
τ (〈τ ′, h(τ ′′)〉 + τ (〈τ ′′, h(τ ′)〉)] = −1

2
Symτ,τ ′τ {Qh(τ ′, τ ′′)},

unde QdD Rh(τ, τ ′, τ ′′) = dD R Qh(τ, τ ′, τ ′′), quod erat demonstrandum.
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1.5.

Axioma (A4) etiam sic exhiberi potest:

Qc = dD R〈, 〉 (A4)

(b)

1.6.

Definimus operatores

dD R : Hom(	2T,-) −→ Hom(	3T,-)

per

dD Rc(τ, τ ′, τ ′′) = Cycleτ,τ ′,τ ′′

[
c([τ, τ ′], τ ′′)− τ {c(τ ′, τ ′′)} + 1

3
d〈τ, c(τ ′, τ ′′)〉

]
= dLiec(τ, τ ′, τ ′′)+ d ′c(τ, τ ′, τ ′′),

ubi

d ′c(τ, τ ′, τ ′′) = 1

3
Cycleτ,τ ′,τ ′′d〈τ, c(τ ′, τ ′′)〉

1.7.

atque
R : Hom(S2T, A) −→ Hom(	3T,-)

per

Rh(τ, τ ′, τ ′′) = −1

6
Cycleτ,τ ′,τ ′′dh([τ, τ ′], τ ′′).

1.8. Lemma. d2
D R = RQ.

1.9. Demonstratio. Fit

d2
D R = (dLie + d ′)2 = dLied ′ + d ′dLie + d ′2

ob d2
Lie = 0.

Si h ∈ Hom(T,-), habemus

dLied ′h(τ, τ ′, τ ′′) = Cycleτ,τ ′,τ ′′ [d
′h([τ, τ ′], τ ′′)− τ {d ′h(τ ′, τ ′′)}]

= 1

2
Cycleτ,τ ′,τ ′′

[
d{〈[τ, τ ′], h(τ ′′)〉 − 〈τ ′′, h([τ, τ ′])〉}

− τd{〈τ ′, h(τ ′′)〉 − 〈τ ′, h(τ ′′)〉}].
Observamus:

−1

2
Cycleτ,τ ′,τ ′′

[
τd{〈τ ′, h(τ ′′)〉 − 〈τ ′, h(τ ′′)〉}] = −1

2
Altτ,τ ′,τ ′′τd〈τ ′, h(τ ′′)〉.
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1.10.

Rursus

d ′dLieh(τ, τ ′, τ ′′) = 1

3
Cycleτ,τ ′,τ ′′d〈τ, dLieh(τ ′, τ ′′)〉

= 1

3
Cycleτ,τ ′,τ ′′d〈τ, h([τ ′, τ ′′]〉 −

1

3
Altτ,τ ′,τ ′′d〈τ, τ ′{h(τ ′′)}〉,

ubi

− 1

3
Altτ,τ ′,τ ′′d〈τ, τ ′{h(τ ′′)}〉 = −1

3
Altτ,τ ′,τ ′′d[τ ′〈τ, h(τ ′′)〉 + 〈[τ, τ ′], h(τ ′′)〉]

= −1

3
Altτ,τ ′,τ ′′dτ

′〈τ, h(τ ′′)〉 + 2

3
Cycleτ,τ ′,τ ′′d〈[τ, τ ′], h(τ ′′)〉.

1.11.

Denique,

d ′2h(τ, τ ′, τ ′′) = 1

6
Altτ,τ ′,τ ′′dτ {〈τ ′, h(τ ′′)〉}.

1.12.

Post summationem termini dτ {〈τ ′, h(τ ′′)〉} exeunt, dum termini reliqui praebunt

d2
D Rh(τ, τ ′, τ ′′) = −1

6
Cycleτ,τ ′,τ ′′d

{〈[τ, τ ′], h(τ ′′)〉 + 〈τ ′′, h([τ, τ ′])〉}
= −1

6
Cycleτ,τ ′,τ ′′d Qh([τ, τ ′], τ ′′) = RQh(τ, τ ′, τ ′′), qed

1.13.

Axioma (A5) sic exhiberi potest:

dD Rc = R〈, 〉 (A5)

(c)

1.14.

Determinamus operator

dD R : Hom(S2T ⊗ T, A) −→ Hom(S2T ⊗	2T, A)

per formulam

dD Rc(τ1, τ2, τ3, τ4) = −c(τ1, τ2, [τ3, τ4])− Alt3,4τ4c(τ1, τ2, τ3)

+ Sym1,2Alt3,4

{
c(τ1, [τ2, τ3], τ4)− 1

3
τ1c(τ2, τ3, τ4)

}
.
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1.15. Lemma. Fit dD R Q = QdD R.

1.16. Démonstratio. Si c ∈ Hom(	2T,-), habemus

QdD Rc(τ1, τ2, τ3, τ4) = Sym1,2〈τ1, dD Rc(τ2, τ3, τ4)〉

= Sym1,2Cycle2,3,4

〈
τ1, c([τ2, τ3], τ4)− τ2c(τ3, τ4)

+1

3
d〈τ2, c(τ3, τ4)〉

〉
,

ubi
−〈τ1, τ2c(τ3, τ4)〉 = 〈[τ2, τ1], c(τ3, τ4)〉 − τ2〈τ1, c(τ3, τ4)〉

atque
〈τ1, d〈τ2, c(τ3, τ4)〉〉 = τ1〈τ2, c(τ3, τ4)〉.

1.17.

Primo, fit

Sym1,2Cycle2,3,4{〈τ1, c([τ2, τ3], τ4)〉 + 〈[τ2, τ1], c(τ3, τ4)〉}

= Sym1,2Alt3,4

{〈
τ1, c([τ2, τ3], τ4)+ 1

2
c([τ3, τ4], τ2)

〉

+1

2
〈[τ2, τ1], c(τ3, τ4)〉 + 〈[τ3, τ1], c(τ4, τ2)〉

}
= −Qc(τ1, τ2, [τ3, τ4])+ Sym1,2Alt3,4 Qc(τ1, [τ2, τ3], τ4).

1.18.

Secundo,

Sym1,2Cycle2,3,4

{
−τ2〈τ1, c(τ3, τ4)〉 + 1

3
τ1〈τ2, c(τ3, τ4)〉

}

= Sym1,2Alt3,4

{
− 1

2
τ2〈τ1, c(τ3, τ4)〉 − τ3〈τ1, c(τ4, τ2)〉

+ 1

6
τ1〈τ2, c(τ3, τ4)〉 + 1

3
τ1〈τ3, c(τ4, τ2)〉

}

= Alt3,4τ3 Qc(τ1, τ2, τ4)− 1

3
Sym1,2Alt3,4τ1 Qc(τ2, τ3, τ4)

Hinc lemma nostra sponte sequitur.
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(d) Junctio

1.19. Lemma. Compositio

d2
D R : Hom(S2T, A) −→ Hom(S2T ⊗ T, A) −→ Hom(S2T ⊗	2T, A)

aequat Q R.

1.20. Demonstratio. Si c ∈ Hom(S2T, A), fit

d2
D Rc(τ1, τ2, τ3, τ4) = −dD Rc(τ1, τ2, [τ3, τ4])− Alt3,4τ4dD Rc(τ1, τ2, τ3)

+ Sym1,2Alt3,4

{
dD Rc(τ1, [τ2, τ3], τ4)− 1

3
τ1dD Rc(τ2, τ3, τ4)

}
.

1.21.

Primo,

−dD Rc(τ1, τ2, [τ3, τ4]) = −c(τ1, [τ2, [τ3, τ4]])− c(τ2, [τ1, [τ3, τ4]])

− [τ3, τ4]c(τ1, τ2)+ 1

2
τ1c(τ2, [τ3, τ4])+ 1

2
τ2c(τ1, [τ3, τ4])

Secundo,

Sym1,2Alt3,4dD Rc(τ1, [τ2, τ3], τ4) = Sym1,2Alt3,4

{
c(τ1, [[τ2, τ3], τ4])

+ c([τ2, τ3], [τ1, τ4])+ τ4c(τ1, [τ2, τ3])

−1

2
τ1c([τ2, τ3], τ4)− 1

2
[τ2, τ3]c(τ1, τ4)

}
Tertio,

−Alt3,4τ4dD Rc(τ1, τ2, τ3) = −Alt3,4

{
τ4c(τ1, [τ2, τ3])+ τ4c(τ2, [τ1, τ3])

+ τ4τ3c(τ1, τ2)− 1

2
τ4τ1c(τ2, τ3)

−1

2
τ4τ2c(τ1, τ3)

}
et quatro,

−1

3
Sym1,2Alt3,4τ1dD Rc(τ2, τ3, τ4) = −1

3
Sym1,2Alt3,4

{
τ1c(τ2, [τ3, τ4])

+ τ1c(τ3, [τ2, τ4])+ τ1τ4c(τ2, τ3)

−1

2
τ1τ2c(τ3, τ4)− 1

2
τ1τ3c(τ2, τ4)

}
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1.22.

Termini formae c([τi , τ j ], [τk, τl ]) evanescunt symmetrisatione causa, cum c symmet-
ricos est.

Post summationem, termini cum triplicibus uncinis evanescunt Jacobi causa. Ter-
mini formae τiτ j c(τk, τl) quoque exire videri possunt.

Tandem termini formae τi c(τ j , [τk, τl ]) praebunt

−1

6
Sym1,2Cycle2,3,4τ1c(τ2, [τ3, τ4]) = −1

6
Sym1,2Cycle2,3,4〈τ1, dc(τ2, [τ3, τ4])〉

= Q Rc(τ1, τ2, τ3, τ4), qed

(e) Differentiale de Rhamianum tertium

1.23.

Definimus operator

dD R : Hom(	3T,-) −→ Hom(	4T,-)

ubi

dD Rc(τ1, τ2, τ3, τ4) = c([τ1, τ2], τ3, τ4)− c([τ1, τ3], τ2, τ4)+ . . .
− τ1c(τ2, τ3, τ4)+ τ2c(τ1, τ3, τ4)− . . .

+ 1

4
d{〈τ1, c(τ2, τ3, τ4)〉 − 〈τ2, c(τ1, τ3, τ4)〉+}

= Alt1234

[
1

4
c([τ1, τ2], τ3, τ4)− 1

6
τ1c(τ2, τ3, τ4)

+ 1

24
d〈τ1, c(τ2, τ3, τ4)〉

]
= {dLie + d ′}c(τ1, τ2, τ3, τ4),

ubi

d ′c(τ1, τ2, τ3, τ4) := 1

24
Alt1234 d〈τ1, c(τ2, τ3, τ4)〉,

confer artt. 1.2 et 1.6.

1.24.

Insuper introducamus operator

R : Hom(S2T ⊗ T, A) −→ Hom(	4T,-),

ubi

Rc(τ1, τ2, τ3, τ4) := − 1

24
Alt1234 dc([τ1, τ2], τ3, τ4),

confer art. 1.7.
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1.25. Lemma. Fit d2
D R = RQ.

1.26. Demonstratio. Primo, d2
Lie = 0.

Secundo, ostendetur methodo simili a 1.9.–1.12,

{dLied ′ + d ′dLie + d ′2}c(τ1, τ2, τ3, τ4)

= − 1

24
Alt1234 d

{〈[τ1, τ2], c(τ3, τ4)〉 + 〈τ3, c([τ1, τ2], τ4)〉
}

= − 1

24
Alt1234 d Qc([τ1, τ2], τ3, τ4) = RQc(τ1, τ2, τ3, τ4), qed

1.27.

Consideremus duos operatores R ex artt. 1.7 et 1.24.

1.28. Lemma. Fit dD R R = RdD R.

1.29. Demonstratio. Primo, habemus

dD R Rc(τ1, τ2, τ3, τ4) = Alt1234

[
1

4
Rc([τ1, τ2], τ3, τ4)

−1

6
τ1 Rc(τ2, τ3, τ4)+ 1

24
d〈τ1, Rc(τ2, τ3, τ4)〉

]

= Alt1234

[
− 1

24
d{c([[τ1, τ2], τ3], τ4)+ c([τ3, τ4], [τ1, τ2])

+c([τ4, [τ1, τ2]], τ3)}+ 1

36
dτ1{c([τ2, τ3], τ4)

+c([τ3, τ4], τ2)+ c([τ4, τ2], τ3)}− 1

144
d〈τ1, d{c([τ2, τ3], τ4)

+ c([τ3, τ4], τ2)+ c([τ4, τ2], τ3)}〉
]

(termini, uncinos triplices continentes, exeunt, relatione identica Jacobiana causa)

= Alt1234

[
− 1

24
dc([τ3, τ4], [τ1, τ2])+ 1

16
dτ1c([τ2, τ3], τ4)

]
.
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1.30.

Rursus fit

RdD Rc(τ1, τ2, τ3, τ4) = − 1

24
Alt1234 ddD Rc([τ1, τ2], τ3, τ4)

= − 1

24
Alt1234 d

[
c([τ1, τ2], [τ3, τ4])+ c(τ3, [[τ1, τ2], τ4])

+τ4c([τ1, τ2], τ3)− 1

2
[τ1, τ2]c(τ3, τ4)− 1

2
τ3c([τ1, τ2], τ3)

]
(termini formae [τ1, τ2]c(τ3, τ4) exibunt, quum c symmetricos est)

= − 1

24
Alt1234 d

{
c([τ1, τ2], [τ3, τ4])− 3

2
τ4c([τ1, τ2], τ3)

}
= dD R Rc(τ1, τ2, τ3, τ4),

qed

2. Pede plana

(a) Paries recessus

2.1.

Definimus operatores:

dH : Hom(T,-) −→ Hom(A ⊗ T,-)

per formulam
dH c(a, τ ) = c(aτ )− ac(τ )

et
dH : Hom(	2T,-) −→ Hom(A ⊗ T⊗2,-)

per regulam:
dH c(a, τ, τ ′) = c(aτ, τ ′)− ac(τ, τ ′).

2.2.

Introducamus operator:

dD R : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2,-)

per regulam:

dD Rc(a, τ, τ ′) = c(a, [τ, τ ′])− c(τ ′(a), τ )+ τ ′c(a, τ )− 1

2
d〈τ ′, c(a, τ )〉

= Lieτ ′c(a, τ )− 1

2
d〈τ ′, c(a, τ )〉.
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2.3.

Insuper, operator:

M : Hom(S2T, A) −→ Hom(A ⊗ T⊗2,-)

definitur per regulam:

Mc(a, τ, τ ′) = −1

2
c(τ, τ ′)da.

2.4. Lemma. Fit dH dD R = dD RdH + M Q.

2.5. Demonstratio. Elementum c ∈ Hom(T,-) datum, habebimus

dH dD Rc(a, τ, τ ′) = dD Rc(aτ, τ ′)− adD Rc(τ, τ ′)

ubi

dD Rc(aτ, τ ′) = c([aτ, τ ′])− (aτ )c(τ ′)+ τ ′c(aτ )+ 1

2
d{〈aτ, c(τ ′)〉 − 〈τ ′, c(aτ )〉}

= c(a[τ, τ ′]− τ ′(a)τ )− aτc(τ ′)− da〈τ, c(τ ′)〉 + τ ′c(aτ )

+ 1

2
da〈τ, c(τ ′)〉 + 1

2
ad〈τ, c(τ ′)〉 − 1

2
d〈τ ′, c(aτ )− ac(τ )〉

− 1

2
da〈τ ′, c(τ )〉 − 1

2
ad〈τ ′, c(τ )〉,

addemus huc:
0 = −τ ′{ac(τ )} + τ ′(a)c(τ )+ aτ ′c(τ )

Rursus,

−adD Rc(τ, τ ′) = −ac([τ, τ ′])+ aτc(τ ′)− aτ ′c(τ )− 1

2
ad{〈τ, c(τ ′)〉 − 〈τ ′, c(τ )〉}.

2.6.

Sed

c(a[τ, τ ′])− ac([τ, τ ′]) = dH c(a, [τ, τ ′]);
−c(τ ′(a)τ )+ τ ′(a)c(τ ) = −dH c(τ ′(a), τ );

τ ′c(aτ )− τ ′{ac(τ )} = τ ′dH c(a, τ );

−1

2
d〈τ ′, c(aτ )− ac(τ )〉 = −1

2
d〈τ ′, dH c(a, τ )〉,

terminos reliquos praebendo

−1

2
da{〈τ, c(τ ′)〉 + 〈τ ′, c(τ )〉} = −1

2
da Qc(τ, τ ′) = M Qc(a, τ, τ ′),

lemma nostrum sequitur.
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(b) Frons

2.7.

Revocamus,
dD R : Hom(S2T, A) −→ Hom(S2T ⊗ T, A)

definitur per formulam:

dD Rc(τ1, τ2, τ3) = c(τ1, [τ2, τ3])+ c(τ2, [τ1, τ3])+ τ3c(τ1, τ2)

− 1

2
τ1c(τ2, τ3)− 1

2
τ2c(τ1, τ3)

= Lieτ3c(τ1, τ2)− 1

2
τ1c(τ2, τ3)− 1

2
τ2c(τ1, τ3)

= {Lie+ d ′D R}c(τ1, τ2, τ3),

ubi ponamus
Lie c(τ1, τ2, τ3) = Lieτ3c(τ1, τ2)

et

d ′D Rc(τ1, τ2, τ3) = −1

2
τ1c(τ2, τ3)− 1

2
τ2c(τ1, τ3)

Rursus, definimus

dD R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T⊗3, A)

per formulam:

dD Rc(a, τ1, τ2, τ3) = τ3c(a, τ1, τ2)− c(τ3(a), τ1, τ2)+ c(a, [τ1, τ3], τ2)

+ c(a, τ1, [τ2, τ3])− 1

2
τ2c(a, τ1, τ3)

= Lieτ3 c(a, τ1, τ2)− 1

2
τ2c(a, τ1, τ3)

= {Lie+ d ′D R}c(a, τ1, τ2, τ3),

ubi ponamus
Lie c(a, τ1, τ2, τ3) = Lieτ3c(a, τ1, τ2)

et

d ′D Rc(a, τ1, τ2, τ3) = −1

2
τ2c(a, τ1, τ3)

Denique, introducamus

Q : Hom(A ⊗ T⊗2,-) −→ Hom(A ⊗ T⊗3, A)

per regulam:
Qc(a, τ1, τ2, τ3) = 〈τ2, c(a, τ1, τ3)〉.
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2.8. Lemma. Fit dH dD R = dD RdH + QM.

2.9. Demonstratio. Primo, dH commutat cum Lie. Si enim c ∈ Hom(S2T, A), habe-
mus:

dH Lie c(a, τ1, τ2, τ3) = Lie c(aτ1, τ2, τ3)− aLie c(τ1, τ2, τ3)

ubi

Lie c(aτ1, τ2, τ3) = τ3c(aτ1, τ2)+ c(a[τ1, τ3]− τ3(a)τ1, τ2)+ c(aτ1, [τ2, τ3])

et

−aLie c(τ1, τ2, τ3) = −aτ3c(τ1, τ2)− ac([τ1, τ3], τ2)− ac(τ1, [τ2, τ3])

Addemus huc:

0 = −τ3{ac(τ1, τ2)} + τ3(a)c(τ1, τ2)+ aτ3c(τ1, τ2)

Habebimus

τ3c(aτ1, τ2)− τ3{ac(τ1, τ2)} = τ3dH c(a, τ1, τ2);
c(a[τ1, τ3], τ2)− ac([τ1, τ3], τ2) = dH c(a, [τ1, τ3], τ2);
c(aτ1, [τ2, τ3])− ac(τ1, [τ2, τ3]) = dH c(τ1, [τ2, τ3])

et
−c(τ3(a)τ1, τ2)+ τ3(a)c(τ1, τ2) = −dH c(τ3(a), τ1, τ2)

unde
dH Lie c(a, τ1, τ2, τ3) = Lieτ3 dH c(a, τ1, τ2).

2.10.

Secundo,

dH d ′D Rc(a, τ1, τ2, τ3) = d ′D Rc(aτ1, τ2, τ3)− ad ′D Rc(τ1, τ2, τ3)

ubi

d ′D Rc(aτ1, τ2, τ3) = −1

2
aτ1c(τ2, τ3)− 1

2
τ2c(aτ1, τ3)

et

−ad ′D Rc(τ1, τ2, τ3) = 1

2
aτ1c(τ2, τ3)+ 1

2
aτ2c(τ1, τ3).

Addemus huc:

0 = 1

2
τ2{ac(τ1, τ3)} − 1

2
τ2(a)c(τ1, τ3)− 1

2
aτ2c(τ1, τ3).
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Nanciscemur:

dH d ′D Rc(a, τ1, τ2, τ3) = −1

2
τ2dH c(a, τ1, τ3)− 1

2
τ2(a)c(τ1, τ3),

ubi

−1

2
τ2(a)c(τ1, τ3) =

〈
τ2,−1

2
da c(τ1, τ3)

〉
= QMc(a, τ1, τ2, τ3)

unde hoc lemma sequitur.

(c) Camera

2.11.

Revocamus differentialia de Rhamiana:

dD R : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2,-)

definiuntur per formulam (vide art. 2.2):

dD Rc(a, τ, τ ′) = Lieτ ′c(a, τ )− 1

2
d〈τ ′, c(a, τ )〉

ac
dD R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T⊗3, A)

definiuntur per regulam (vide art. 2.7):

dD Rc(a, τ1, τ2, τ3) = Lieτ3 c(a, τ1, τ2)− 1

2
τ2c(a, τ1, τ3).

2.12. Lemma. Fit dD R Q = QdD R.

2.13. Demonstratio. Primo,
Lie Q = Q Lie

Habemus enim,

Lieτ3 Qc(a, τ1, τ2)

= τ3 Qc(a, τ1, τ2)− Qc(τ3(a), τ1, τ2)+ Qc(a, [τ1, τ3], τ2)+ Qc(a, τ1, [τ2, τ3])

= τ3〈τ2, c(a, τ1)〉 − 〈τ2, c(τ3(a), τ1)〉 + 〈τ2, c(a, [τ1, τ3]〉 + 〈[τ2, τ3], c(a, τ1)〉
= 〈τ2,Lieτ3c(a, τ1)〉.
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2.14.

Secundo,
d ′D R Q = Qd ′D R

Computamus enim,

d ′D R Qc(a, τ1, τ2, τ3) = −1

2
τ2 Qc(a, τ1, τ3) = −1

2
τ2〈τ3, c(a, τ1)〉

=
〈
τ2,−1

2
d〈τ3, c(a, τ1)〉

〉
= 〈τ2, d

′
D Rc(a, τ1, τ3)〉 = Qd ′D Rc(a, τ1, τ2, τ3),

quod trahit effatum lemmatis.

(d) Paries rectus

2.15.

Revocamus operatores:

Q : Hom(	2T,-) −→ Hom(S2T ⊗ T, A)

definitum per formulam:

Qc(τ1, τ2, τ3) = 〈τ1, c(τ2, τ3)〉 + 〈τ2, c(τ1, τ3)〉
atque

Q : Hom(A ⊗ T⊗2,-) −→ Hom(A ⊗ T⊗3, A)

definitum per regulam:

Qc(a, τ1, τ2, τ3) = 〈τ2, c(a, τ1, τ3)〉.
2.16. Lemma. dH Q = QdH .

Si enim c ∈ Hom(	2T,-), habemus:

dH Qc(a, τ1, τ2, τ3) = Qc(aτ1, τ2, τ3)− a Qc(aτ1, τ2, τ3)

= 〈aτ1, c(τ2, τ3)〉 + 〈τ2, c(aτ1, τ3)〉 − a〈τ1, c(τ2, τ3)〉
− a〈τ2, c(τ1, τ3)〉

= 〈τ2, dH c(a, τ1, τ3)〉 = QdH c(a, τ1, τ2, τ3)
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(e) Paries sinister

2.17.

Revocamus operatores:

Q : Hom(T,-) −→ Hom(S2T, A)

definitur per regulam:

Qc(τ1, τ2) = 〈τ1, c(τ2)〉 + 〈τ2, c(τ1)〉
atque

Q : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2, A)

definitur per formulam:

Qc(a, τ1, τ2) = 〈τ2, c(a, τ1)〉.
2.18. Lemma. Fit dH Q = QdH .

Quod probatur eadem ratione ut in art. 2.16.

3. Tabulatum primum

(a) Paries recessus

3.1.

Determinamus sagittulas

dD R : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

dD Rc(a, b, τ, τ ′) = τ ′c(a, b, τ )− c(τ ′(a), b, τ )− c(a, τ ′(b), τ )+ c(a, b, [τ, τ ′])

− 1

2
d〈τ ′, c(a, b, τ )〉

= Lieτ ′c(a, b, τ )− 1

2
d〈τ ′, c(a, b, τ )〉;

(commodum est introducere operatores

Lie c(a, b, τ, τ ′) := Lieτ ′c(a, b, τ )

atque

d ′D Rc(a, b, τ, τ ′) := −1

2
d〈τ ′, c(a, b, τ )〉,

ergo dD R = Lie+ d ′D R);
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3.2.

ac
dH : Hom(A ⊗ T,-) −→ Hom(A⊗2 ⊗ T,-)

per regulam
dH c(a, b, τ ) = ac(b, τ )− c(ab, τ )+ c(a, bτ );

deinde
dH : Hom(A ⊗ T⊗2,-) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

dH c(a, b, τ, τ ′) = ac(b, τ, τ ′)− c(ab, τ, τ ′)+ c(a, bτ, τ ′);

3.3.

Q : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2, A)

per regulam
Qc(a, τ, τ ′) = 〈τ ′, c(a, τ )〉,

3.4.

denique
M : Hom(A ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

Mc(a, b, τ, τ ′) = 1

2
da c(b, τ, τ ′).

3.5. Lemma. Fit dH dD R = dD RdH + M Q.

3.6. Demonstratio. Pro c ∈ Hom(A ⊗ T,-) habebimus

dH dD Rc(a, b, τ, τ ′) = dH {Lie+ d ′D R}c(a, b, τ, τ ′).

3.7.

Primo, derivatio Lietiana et differentiale Hochschildianum commutant:

dH Lie c(a, b, τ, τ ′) = Lie dH c(a, b, τ, τ ′).



Definitio nova algebroidis verticiani 465

3.8.

Secundo, fit:

dH d ′D Rc(a, b, τ, τ ′) = −1

2
{ad〈τ ′, c(b, τ )〉 − d〈τ ′, c(ab, τ )〉 + d〈τ ′, c(a, bτ )〉}.

Addemus huc:

0 = 1

2
{−d〈τ ′, ac(b, τ )〉 + da 〈τ ′, c(b, τ )〉 + ad〈τ ′, c(b, τ )}.

Adipiscemur:

dH d ′D Rc(a, b, τ, τ ′) = −1

2
d〈τ ′, dH c(a, b, τ )〉 + 1

2
da 〈τ ′, c(b, τ )〉

ubi manifesto
1

2
da 〈τ ′, c(b, τ )〉 = M Qc(a, b, τ, τ ′)

unde lemma sequitur.

(b) Paries sinister

3.9.

Contemplemur operatores

Q : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2, A),

per regulam
Qc(a, τ, τ ′) = 〈τ ′, c(a, τ )〉,

definitur, tamquam in art. 2.17, atque

Q : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2, A)

per formulam
Qc(a, b, τ, τ ′) = 〈τ ′, c(a, b, τ )〉

definitur.

3.10. Lemma. Fit dH Q = QdH .

3.11. Demonstratio. Pro c ∈ Hom(A ⊗ T,-) habeatur

dH Qc(a, b, τ, τ ′) = a Qc(b, τ, τ ′)− Qc(ab, τ, τ ′)+ Qc(a, bτ, τ ′)

= a〈τ ′, c(b, τ )〉 − 〈τ ′, c(ab, τ )〉 + 〈τ ′, c(a, bτ )〉
= 〈τ ′, dH c(a, b, τ )〉 = QdH c(a, b, τ, τ ′), qed
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(c) Paries rectus

3.12.

Contemplemur operatores:

Q : Hom(A ⊗ T⊗2,-) −→ Hom(A ⊗ T⊗3, A)

per regulam
Qc(a, τ1, τ2, τ3) = 〈τ2, c(a, τ1, τ3)〉,

definitur, et

Q : Hom(A⊗2 ⊗ T⊗2,-) −→ Hom(A⊗2 ⊗ T⊗3, A)

per formulam
Qc(a, b, τ1, τ2, τ3) = 〈τ2, c(a, b, τ1, τ3)〉,

definitur.

3.13. Lemma. Fit dH Q = QdH .

Quod probatur eodem modo ut in art. 3.11.

(d) Camera

3.14.

Contemplemur operatores: primo, sagittulam

dD R : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

dD Rc(a, b, τ, τ ′) = Lieτ ′c(a, b, τ )− 1

2
d〈τ ′, c(a, b, τ )〉

definitam (vide art. 3.1); secundo, sagittulam novam,

dD R : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗3, A)

per formulam

dD Rc(a, b, τ1, τ2, τ3) = Lieτ3 c(a, b, τ1, τ2)− 1

2
τ2c(a, b, τ1, τ3)

definitam.

3.15. Lemma. Fit QdD R = dD R Q.
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3.16.

Primo, Q Lie = Lie Q.
Habeatur enim,

QLiec(a, b, τ1, τ2, τ3) = 〈τ2,Lietau3c(a, b, τ1)〉
= 〈τ2, τ3c(a, b, τ1)− c(τ3(a), b, τ1)− c(a, τ3(b), τ1)

+c(a, b, [τ1, τ3])〉
= τ3〈τ2, c(a, b, τ1)〉 + 〈[τ2, τ3], c(a, b, τ1)〉
+ 〈τ2,−c(τ3(a), b, τ1)− c(a, τ3(b), τ1)+ c(a, b, [τ1, τ3])〉

= τ3 Qc(a, b, τ1, τ2)+ Qc(a, b, τ1, [τ2, τ3])

− Qc(τ3(a), b, τ1, τ2)− Qc(a, τ3(b), τ1, τ2)

+ Qc(a, b, [τ1, τ3], τ2)

= Lieτ3 Qc(a, b, τ1, τ2), qed

3.17.

Secundo,

Qd ′D Rc(a, b, τ1, τ2, τ3) =
〈
τ2,−1

2
d〈τ3, c(a, b, τ1)〉

〉

= −1

2
τ2τ3, c(a, b, τ1)

〉〉
= −1

2
τ2 Qc(a, b, τ1, τ3)

= d ′D R Qc(a, b, τ1, τ2, τ3),

unde lemma sequitur.

(e) Frons

3.18.

Revocamus sagittulas:

dD R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T⊗3, A)

per formulam

dD Rc(a, τ1, τ2, τ3) = Lieτ3c(a, τ1, τ2)− 1

2
τ2c(a, τ1, τ3),

definitam, vide art. 2.7, atque

dD R : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗3, A)
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per regulam

dD Rc(a, b, τ1, τ2, τ3) = Lieτ3c(a, b, τ1, τ2)− 1

2
τ2c(a, b, τ1, τ3),

definitam, vide art. 3.14, ac denique

M : Hom(A ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

Mc(a, b, τ, τ ′) = 1

2
da c(b, τ, τ ′),

definitam, vide art. 3.4.

3.19. Lemma. Fit dH dD R = dD RdH + QM.

3.20. Demonstratio. Primo, fit dH Lie = Lie dH .
Habeatur enim:

dH Liec(a, b, τ1, τ2, τ3) = aLieτ3 c(b, τ1, τ2)− Lieτ3c(ab, τ1, τ2)

+ Lieτ3c(a, bτ1, τ2),

ubi

aLieτ3 c(b, τ1, τ2) = aτ3c(b, τ1, τ2)− ac(τ3(b), τ1, τ2)+ ac(b, [τ1, τ3], τ2)

+ ac(b, τ1, [τ2, τ3]);
−Lieτ3 c(ab, τ1, τ2) = −τ3c(ab, τ1, τ2)+ c(τ3(a)b + aτ3(b), τ1, τ2)

− c(ab, [τ1, τ3], τ2)− c(ab, τ1, [τ2, τ3])

atque

Lieτ3c(a, bτ1, τ2) = τ3c(a, bτ1, τ2)− c(τ3(a), bτ1, τ2)+ c(a, b[τ1, τ3]

− τ3(b)τ1, τ2)+ c(a, bτ1, [τ2, τ3]).

Addemus huc:

0 = τ3{ac(b, τ1, τ2)} − τ3(a)c(b, τ1, τ2)+ aτ3c(b, τ1, τ2)

Post summationem, videamus statim:

dH Liec(a, b, τ1, τ2, τ3) = τ3dH c(a, b, τ1, τ2)− dH c(τ3(a), b, τ1, τ2)

− dH c(a, τ3(b), τ1, τ2)+ dH c(a, b, [τ1, τ3], τ2)

+ dH c(a, b, τ1, [τ2, τ3])

= Lieτ3 dH c(a, b, τ1, τ2),
qed



Definitio nova algebroidis verticiani 469

3.21.

Secundo,

dH d ′D Rc(a, b, τ1, τ2, τ3) = −1

2
{aτ2c(b, τ1, τ3)− τ2c(ab, τ1, τ3)+ τ2c(a, bτ1, τ3)}.

Addemus huc:

0 = −1

2
{τ2{ac(b, τ1, τ3)} − τ2(a)c(b, τ1, τ3)− aτ2c(b, τ1, τ3)}

Post summationem, adipiscemur:

dH d ′D Rc(a, b, τ1, τ2, τ3) = d ′D RdH c(a, b, τ1, τ2, τ3)+ 1

2
τ2(a)c(b, τ1, τ3),

ubi
1

2
τ2(a)c(b, τ1, τ3) =

〈
τ2,

1

2
da c(b, τ1, τ3)

〉
= 〈τ2,Mc(b, τ1, τ2, τ3)〉 = QMc(a, b, τ1, τ2, τ3) qed

(f) Junctio

3.22.

Revocamus sagittulas:

M : Hom(S2T, A) −→ Hom(A ⊗ T⊗2,-)

per regulam

Mc(a, τ, τ ′) = −1

2
da c(τ, τ ′)

definitam, atque

M : Hom(A ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

Mc(a, b, τ, τ ′) = 1

2
da c(b, τ, τ ′)

definitam.

3.23. Lemma. Fit dH M = −MdH .

3.24. Demonstratio. Pro elemento c ∈ Hom(S2T, A), habemus

dH Mc(a, b, τ, τ ′) = aMc(b, τ, τ ′)− Mc(ab, τ, τ ′)+ Mc(a, bτ, τ ′)

= −1

2
{adb c(τ, τ ′)− d(ab)c(τ, τ ′)+ da c(bτ, τ ′)}

− 1

2
{−da bc(τ, τ ′)+ da c(bτ, τ ′)} = −1

2
dadH c(b, τ, τ ′)

= −MdH c(a, b, τ, τ ′), qed
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4. Tabulatum secundum

(a) Paries recessus

4.1.

Revocamus sagittulam:

dD R : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2,-)

per formulam

dD Rc(a, b, τ, τ ′) = Lieτ ′c(a, b, τ )− 1

2
d〈τ ′, c(a, b, τ )〉,

definitam (vide art. 3.1) atque introducamus sagittulam:

dD R : Hom(A⊗3 ⊗ T,-) −→ Hom(A⊗3 ⊗ T⊗2,-)

per regulam

dD Rc(a, b, c, τ, τ ′) = Lieτ ′c(a, b, c, τ )− 1

2
d〈τ ′, c(a, b, c, τ )〉

definitam.

4.2.

Determinamus sagittulas:

dH : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗3 ⊗ T,-)

per formulam:

dH c(a, b, c, τ ) = ac(b, c, τ )− c(ab, c, τ )+ c(a, bc, τ )− c(a, b, cτ );
porro

dH : Hom(A⊗2 ⊗ T⊗2,-) −→ Hom(A⊗3 ⊗ T⊗2,-)

per regulam:

dH c(a, b, c, τ, τ ′) = ac(b, c, τ, τ ′)− c(ab, c, τ, τ ′)+ c(a, bc, τ, τ ′)− c(a, b, cτ, τ ′).

4.3.

atque
M : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗3 ⊗ T⊗2,-)

per formulam:

Mc(a, b, c, τ, τ ′) = 1

2
da c(b, c, τ, τ ′).



Definitio nova algebroidis verticiani 471

4.4.

Tandem, revocamus sagittulam:

Q : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2, A)

per formulam
Qc(a, b, τ, τ ′) = 〈τ ′, c(a, b, τ )〉,

definitam, vide 3.9.

4.5. Lemma. Fit dH dD R = dD RdH + M Q.

Quod probatur eodem modo ut in arts. 3.7, 3.8.

(b) Paries sinister

4.6.

Revocamus sagittulam:

Q : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2, A)

per regulam
Qc(a, b, τ, τ ′) = 〈τ ′, c(a, b, τ )〉,

definitam, vide art. 3.9, atque introducamus sagittulam novam:

Q : Hom(A⊗3 ⊗ T,-) −→ Hom(A⊗3 ⊗ T⊗2, A)

per formulam
Qc(a, b, c, τ, τ ′) = 〈τ ′, c(a, b, c, τ )〉

definitam.

4.7. Lemma. Fit dH Q = QdH .

Quod probatur eodem modo ut in art. 3.11.
(c) Paries rectus

4.8.

Revocamus operatorem:

Q : Hom(A⊗2 ⊗ T⊗2,-) −→ Hom(A⊗2 ⊗ T⊗3, A),

definitum per formulam:

Qc(a, b, τ1, τ2, τ3) = 〈τ2, c(a, b, τ1, τ3)〉,
vide art. 3.12, ac determinamus operatorem novum:

Q : Hom(A⊗3 ⊗ T⊗2,-) −→ Hom(A⊗3 ⊗ T⊗3, A)

per regulam:
Qc(a, b, c, τ1, τ2, τ3) = 〈τ2, c(a, b, c, τ1, τ3)〉.
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4.9. Lemma. Fit dH Q = QdH .

Quod etiam probatur eadem ratione ut in art. 3.11.
(d) Camera

4.10.

Contemplemur sagittulam:

dD R : Hom(A⊗3 ⊗ T,-) −→ Hom(A⊗3 ⊗ T⊗2,-)

per regulam

dD Rc(a, b, c, τ, τ ′) = Lieτ ′c(a, b, c, τ )− 1

2
d〈τ ′, c(a, b, c, τ )〉,

definitam, vide art. 4.1, atque introducamus sagittulam novam:

dD R : Hom(A⊗3 ⊗ T⊗2, A) −→ Hom(A⊗3 ⊗ T⊗3, A)

per formulam:

dD Rc(a, b, c, τ1, τ2, τ3) = Lieτ3 c(a, b, c, τ1, τ3)− 1

2
τ2c(a, b, c, τ1, τ3).

4.11. Lemma. Fit QdD R = dD R Q.

Quod probatur simili calculo ut in artt. 3.16, 3.17.

(e) Frons

4.12.

Revocamus sagittulas:

dD R : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗3, A),

definitam per:

dD Rc(a, b, τ1, τ2, τ3) = Lieτ3c(a, b, τ1, τ2)− 1

2
τ2c(a, b, τ1, τ3),

vide art. 3.14, porro:

dD R : Hom(A⊗3 ⊗ T⊗2, A) −→ Hom(A⊗3 ⊗ T⊗3, A)

definitam per:

dD Rc(a, b, c, τ1, τ2, τ3) = Lieτ3c(a, b, c, τ1, τ2)− 1

2
τ2c(a, b, c, τ1, τ3),
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vide art 4.10, denique:

M : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗3 ⊗ T⊗2,-)

definitam per:

Mc(a, b, c, τ, τ ′) = 1

2
da c(b, c, τ, τ ′),

vide art. 4.3.

4.13. Lemma. Fit dH dD R = dD RdH + QM.

Quod probatur omnino simili modo ut in artt. 3.20, 3.21.

(f) Junctio

4.14.

Revocamus operatores:

M : Hom(A ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗2,-)

definitum per:

Mc(a, b, τ, τ ′) = 1

2
da c(b, τ, τ ′),

vide art. 3.4, et

M : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗3 ⊗ T⊗2,-)

definitum per:

Mc(a, b, c, τ, τ ′) = 1

2
da c(b, c, τ, τ ′),

vide art. 4.3.

4.15. Lemma. Fit dH M = M dH .

Quod probatur eodem modo ut in art. 3.24.

Pars secunda. Aedificium rectum

1. Pede plana

(a) Paries recessus

1.1.

Revocamus operatores:

dD R : Hom(	2T,-) −→ Hom(	3T,-)
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definitum per formulam:

dD Rc(τ, τ ′, τ ′′) = Cycleτ,τ ′,τ ′′

[
c([τ, τ ′], τ ′′)− τ {c(τ ′, τ ′′)} + 1

3
d〈τ, c(τ ′, τ ′′)〉

]

= Altτ ′,τ ′′
{

c([τ, τ ′], τ ′′)− 1

2
c(τ, [τ ′, τ ′′])− 1

2
τc(τ ′, τ ′′)

+τ ′c(τ, τ ′′)+ 1

6
d〈τ, c(τ ′, τ ′′)〉 − 1

3
d〈τ ′, c(τ, τ ′′)〉

}
,

vide Pars Prima, art. 1.6, atque

Q : Hom(	2T,-) −→ Hom(S2T ⊗ T, A)

definitum per:
Qc(τ, τ ′, τ ′′) = Symτ,τ ′ 〈τ, c(τ ′, τ ′′)〉.

1.2.

Introducamus operatores:

dD R : Hom(A ⊗ T⊗2,-) −→ Hom(A ⊗ T ⊗	2T,-)

per regulam:

dD Rc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′
{
τ ′c(a, τ, τ ′′)− c(τ ′(a), τ, τ ′′)+ c(a, [τ, τ ′], τ ′′)

−1

2
c(a, τ, [τ ′, τ ′′])− 1

3
d〈τ ′, c(a, τ, τ ′′)〉

}
= {Lie+ d ′D R}c(a, τ, τ ′, τ ′′),

ubi

Liec(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′
{
τ ′c(a, τ, τ ′′)− c(τ ′(a), τ, τ ′′)

+c(a, [τ, τ ′], τ ′′)− 1

2
c(a, τ, [τ ′, τ ′′])

}
et

d ′D Rc(a, τ, τ ′, τ ′′) = −1

3
Altτ ′,τ ′′d〈τ ′, c(a, τ, τ ′′)〉,
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1.3.

ac
M : Hom(S2T ⊗ T, A) −→ Hom(A ⊗ T ⊗	2T,-)

definitam per:

Mc(a, τ, τ ′, τ ′′) = −1

3
da Altτ ′,τ ′′c(τ, τ

′, τ ′′).

1.4. Lemma. Fit dH dD R = dD RdH + M Q.

1.5. Demonstratio. Habemus

dH dD Rc(a, τ, τ ′, τ ′′) = dD Rc(aτ, τ ′, τ ′′)− adD Rc(τ, τ ′, τ ′′),

ubi

dD Rc(aτ, τ ′, τ ′′) = Altτ ′,τ ′′
{

c([aτ, τ ′], τ ′′)− 1

2
c(aτ, [τ ′, τ ′′])

− 1

2
(aτ )c(τ ′, τ ′′)+ τ ′c(aτ, τ ′′)+ 1

6
d〈aτ, c(τ ′, τ ′′)〉

−1

3
d〈τ ′, c(aτ, τ ′′)〉

}

= Altτ ′,τ ′′
{

c(a[τ, τ ′]− τ ′(a)τ, τ ′′)

− 1

2
c(aτ, [τ ′, τ ′′])− 1

2
aτc(τ ′, τ ′′)− 1

2
da〈τ, c(τ ′, τ ′′)〉

+ τ ′c(aτ, τ ′′)+ 1

6
da〈τ, c(τ ′, τ ′′)〉 + 1

6
ad〈τ, c(τ ′, τ ′′)〉

−1

3
d〈τ ′, c(aτ, τ ′′)〉

}
ac

−adD Rc(τ, τ ′, τ ′′) = −aAltτ ′,τ ′′
{
τ ′c(a, τ, τ ′′)− c(τ ′(a), τ, τ ′′)

+ c(a, [τ, τ ′], τ ′′)− 1

2
c(a, τ, [τ ′, τ ′′])

−1

3
d〈τ ′, c(a, τ, τ ′′)〉

}
.
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Addemus huc:

0 = −Altτ ′,τ ′′
[
τ ′{ac(τ, τ ′′)} − τ ′(a)c(τ, τ ′′)− aτ ′c(τ, τ ′′)

−1

3
{d〈τ ′, ac(τ, τ ′′)〉 − da〈τ ′, c(τ, τ ′′)〉 − ad〈τ ′, c(τ, τ ′′)〉}

]
Post rationem parvam, effectus proditur.

(b) Junctio camerae

1.6.

Determinamus operatorem:

R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T ⊗	2T,-)

per:

Rc(a, τ, τ ′, τ ′′) = −1

6
Altτ ′,τ ′′d

[
c(a, [τ, τ ′], τ ′′)+ 1

2
c(a, τ, [τ ′, τ ′′])

+ c(τ ′′(a), τ, τ ′)
]

atque revocamus operatores:

dD R : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2,-)

definitum per:

dD Rc(a, τ, τ ′) = Lieτ ′c(a, τ )− 1

2
d〈τ ′, c(a, τ )〉,

vide Pars Prima, art. 2.2, ac

Q : Hom(A ⊗ T,-) −→ Hom(A ⊗ T⊗2, A)

definitum per:
Qc(a, τ, τ ′) = 〈τ ′, c(a, τ )〉,

vide art. 2.17.

1.7. Lemma. Fit d2
D R = RQ.
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1.8. Demonstratio. Primo, Lie2 = 0. Vero,

Lie2c(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′ {τ ′Lieτ ′′c(a, τ )− Lieτ ′′c(τ
′(a), τ )

+ Lieτ ′′c(a, [τ, τ
′])} − Lie[τ ′,τ ′′]c(a, τ ),

ubi

Altτ ′,τ ′′τ
′Lieτ ′′c(a, τ ) = Altτ ′,τ ′′ {τ ′τ ′′c(a, τ )− τ ′c(τ ′′(a), τ )+ τ ′c(a, [τ, τ ′′])};

−Altτ ′,τ ′′Lieτ ′′c(τ
′(a), τ ) = Altτ ′,τ ′′ {−τ ′′c(τ ′(a), τ )+ c(τ ′′τ ′(a), τ )

− c(τ ′(a), [τ, τ ′′])};
Altτ ′,τ ′′Lieτ ′′c(a, [τ, τ

′]) = Altτ ′,τ ′′ {τ ′′c(a, [τ, τ ′])− c(τ ′′(a), [τ, τ ′])

+ c(a, [[τ, τ ′], τ ′′])}
ac

−Lie[τ ′,τ ′′]c(a, τ ) = −[τ ′, τ ′′]c(a, τ )+ c([τ ′, τ ′′](a), τ )− c(a, [τ, [τ ′, τ ′′]])

Addendo adipiscimur protenus 0.

1.9.

Secundo, fit

Lied ′D Rc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′ {τ ′d ′D Rc(a, τ, τ ′′)

− d ′D Rc(τ ′(a), τ, τ ′′)+ d ′D Rc(a, [τ, τ ′], τ ′′)}
− d ′D Rc(a, τ, [τ ′, τ ′′])

= −1

2

[
Altτ ′,τ ′′ {dτ ′〈τ ′′, c(a, τ )〉

− d〈τ ′′, c(τ ′(a), τ )〉 + d〈τ ′′, c(a, [τ, τ ′])〉}
− d〈[τ ′, τ ′′], c(a, τ )〉]

ubi
τ ′〈τ ′′, c(a, τ )〉 = 〈[τ ′, τ ′′], c(a, τ )〉 + 〈τ ′′, τ ′c(a, τ )〉

1.10.

Tertio, fit

d ′D RLie c(a, τ, τ ′, τ ′′) = −1

3
Altτ ′,τ ′′d〈τ ′,Lieτ ′′c(a, τ )〉

= −1

3
Altτ ′,τ ′′d〈τ ′, τ ′′c(a, τ )− c(τ ′′(a), τ )+ c(a, [τ, τ ′′])〉.
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1.11.

Denique fit quarto

d ′2D Rc(a, τ, τ ′, τ ′′) = −1

3
Altτ ′,τ ′′d〈τ ′, d ′D Rc(a, τ, τ ′′)〉

= 1

6
Altτ ′,τ ′′d〈τ ′, d〈τ ′′, c(a, τ )〉〉 = 1

6
Altτ ′,τ ′′dτ

′〈τ ′′, c(a, τ )〉.

1.12.

Addendo obtenebimus:

d2
D Rc(a, τ, τ ′, τ ′′) = {Lied ′D R + d ′D RLie+ d ′2D R}c(a, τ, τ ′, τ ′′)

= −1

6
d〈[τ ′, τ ′′], c(a, τ )〉 + 1

6
Altτ ′,τ ′′

{
d〈τ ′, c(a, [τ, τ ′′])〉

− d〈τ ′, c(τ ′′(a), τ )〉
}

= 1

6
d
[−Qc(a, τ, [τ ′, τ ′′])

+ Altτ ′,τ ′′ {Qc(a, [τ, τ ′′], τ ′)− Qc(τ ′′(a), τ, τ ′)}]
= RQc(a, τ, τ ′, τ ′′), qed

(c) Junctiones...

1.13.

Revocamus operatores:

R : Hom(S2T, A) −→ Hom(	3T,-)

definitum per:

Rc(τ, τ ′, τ ′′) = −1

6
Cycleτ,τ ′,τ ′′dc([τ, τ ′], τ ′′)

= −1

6

[
Altτ ′,τ ′′dc([τ, τ ′], τ ′′)+ dc([τ ′, τ ′′], τ )

]
,

vide Pars Prima, 1.7, atque

R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T ⊗	2T,-)
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definitum per:

Rc(a, τ, τ ′, τ ′′) = −1

6
d
[
Altτ ′,τ ′′ {c(a, [τ, τ ′], τ ′′)+ c(τ ′′(a), τ, τ ′)}

+ c(a, τ, [τ ′, τ ′′])
]
,

vide art. 1.6.

1.14.

Porro,
M : Hom(S2T, A) −→ Hom(A ⊗ T⊗2,-)

definitum per:

Mc(a, τ, τ ′) = −1

2
c(τ, τ ′)da,

vide Pars Prima, art. 2.3, ac

M : Hom(S2T ⊗ T, A) −→ Hom(A ⊗ T ⊗	2T,-)

definitum per

Mc(a, τ, τ ′, τ ′′) = −1

3
da Altτ ′,τ ′′c(τ, τ

′, τ ′′),

vide art. 1.3.

1.15. Lemma. Fit dH R = RdH + MdD R + dD R M.

1.16. Demonstratio. Primo, habeatur

H Rc(a, τ, τ ′, τ ′′) = Rc(aτ, τ ′, τ ′′)− a Rc(τ, τ ′, τ ′′),

ubi

Rc(aτ, τ ′, τ ′′) = −1

6

[
Altτ ′,τ ′′dc([aτ, τ ′], τ ′′)+ dc([τ ′, τ ′′], aτ )

]
= −1

6

[
Altτ ′,τ ′′dc(a[τ, τ ′]− τ ′(a)τ, τ ′′)+ dc([τ ′, τ ′′], aτ )

]
et

−a Rc(τ, τ ′, τ ′′) = −1

6
a
[
Altτ ′,τ ′′dc([τ, τ ′], τ ′′)+ dc([τ ′, τ ′′], τ )

]
.

Addemus huc:

0 = 1

6
Altτ ′,τ ′′ [d{ac([τ, τ ′], τ ′′)} − da c([τ, τ ′], τ ′′)− adc([τ, τ ′], τ ′′)],

0 = −1

6
Altτ ′,τ ′′ [d{τ ′(a)c(τ, τ ′′)} − dτ ′(a) c(τ, τ ′′)− τ ′(a)dc(τ, τ ′′)]
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et

0 = 1

6
Altτ ′,τ ′′ [d{ac([τ ′, τ ′′], τ )} − da c([τ ′, τ ′′], τ )− a dc([τ ′, τ ′′], τ )],

unde post summationem:

dH Rc(a, τ, τ ′, τ ′′) = −1

6

{
Altτ ′,τ ′′ [ddH c(a, [τ, τ ′], τ ′′)− ddH c(τ ′(a), τ, τ ′′)]

+ ddH c(a, τ, [τ ′, τ ′′])+ Altτ ′,τ ′′ [da c([τ, τ ′], τ ′′)

+ adc([τ, τ ′], τ ′′)− dτ ′(a) c(τ, τ ′′)− τ ′(a)dc(τ, τ ′′)]

+ da c([τ ′, τ ′′], τ )+ a dc([τ ′, τ ′′], τ )
}

= RdH c(a, τ, τ ′, τ ′′)+ Altτ ′,τ ′′ [da c([τ, τ ′], τ ′′)

+ adc([τ, τ ′], τ ′′)− dτ ′(a) c(τ, τ ′′)− τ ′(a)dc(τ, τ ′′)]

+ da c([τ ′, τ ′′], τ )+ a dc([τ ′, τ ′′], τ ).

1.17.

Secundo autem,

MdD Rc(a, τ, τ ′, τ ′′) = −1

3
da Altτ ′,τ ′′dD Rc(τ, τ ′, τ ′′)

(vide Pars Prima, art. 1.3)

= −1

3
da Altτ ′,τ ′′ {c(τ, [τ ′, τ ′′])+ c(τ ′, [τ, τ ′′])− 1

2
τ ′c(τ, τ ′′)+ τ ′′c(τ, τ ′)}

et

dD R Mc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′
{
τ ′Mc(a, τ, τ ′′)− Mc(τ ′(a), τ, τ ′′)

+ Mc(a, [τ, τ ′], τ ′′)− 1

3
d〈τ ′,Mc(a, τ, τ ′′)〉

}
− Mc(a, τ, [τ ′, τ ′′]),

ubi

τ ′Mc(a, τ, τ ′′) = −1

2
{τ ′da c(τ, τ ′′)+ da τ ′c(τ, τ ′′)};

−Mc(τ ′(a), τ, τ ′′) = 1

2
dτ ′(a) c(τ, τ ′′);
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Mc(a, [τ, τ ′], τ ′′) = −1

2
da c([τ, τ ′], τ ′′);

−Mc(a, τ, [τ ′, τ ′′]) = 1

2
da c(τ, [τ ′, τ ′′])

et

−1

3
d〈τ ′,Mc(a, τ, τ ′′)〉 = 1

6
d{τ ′(a)c(τ, τ ′′)}

= 1

6
{dτ ′(a) c(τ, τ ′′)+ τ ′(a)dc(τ, τ ′′)},

unde, post summationem,

{MdD R + dD R M}c(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′ [da c([τ, τ ′], τ ′′)+ adc([τ, τ ′], τ ′′)

− dτ ′(a) c(τ, τ ′′)− τ ′(a)dc(τ, τ ′′)]

+ da c([τ ′, τ ′′], τ )+ a dc([τ ′, τ ′′], τ ),

unde lemma nostrum sponte sequitur.

(d) Paries rectus

1.18.

Revocamus operatorem:

Q : Hom(	3T,-) −→ Hom(S2T ⊗	2T, A),

definitum per
Qc(τ1, τ2, τ3, τ4) = Sym1,2〈τ1, c(τ2, τ3, τ4)〉

atque introducamus operatorem

Q : Hom(A ⊗ T ⊗	2T,-) −→ Hom(A ⊗ T⊗2 ⊗	2T, A)

per
Qc(a, τ1, τ2, τ3, τ4) = 〈τ2, c(a, τ1, τ3, τ4)〉.

1.19. Lemma. Fit dH Q = QdH .

Demonstratio. Exstat

dH Qc(a, τ1, τ2, τ3, τ4) = Qc(aτ1, τ2, τ3, τ4)− a Qc(τ1, τ2, τ3, τ4),
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ubi

Q(aτ1, τ2, τ3, τ4) = 〈aτ1, c(τ2, τ3, τ4)〉 + 〈τ2, c(aτ1, τ3, τ4)〉
= a〈τ1, c(τ2, τ3, τ4)〉 + 〈τ2, c(aτ1, τ3, τ4)〉,

unde
dH Qc(a, τ1, τ2, τ3, τ4) = 〈τ2, dH c(τ1, τ3, τ4)〉

Hinc lemma nostra sequitur sponte.

(e) Camera

1.20.

Revocamus sagittulam

DD R : Hom(A ⊗ T⊗2,-) −→ Hom(A ⊗ T ⊗	2T,-)

per formulam

dD Rc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′
{
τ ′c(a, τ, τ ′′)− c(τ ′(a), τ, τ ′′)

+ c(a, [τ, τ ′], τ ′′)− 1

2
c(a, τ, [τ ′, τ ′′])− 1

3
d〈τ ′, c(a, τ, τ ′′)〉

}
definitam, vide art. 1.2.

Eadem definitio etiam ita scriberi potest:

dD Rc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′Lieτ ′c(a, τ, τ
′′)+ c(a, τ, [τ ′, τ ′′])

− 1

3
Altτ ′,τ ′′d〈τ ′, c(a, τ, τ ′′)〉.

Introducamus autem operatorem:

dD R : Hom(A ⊗ T⊗3, A) −→ Hom(A ⊗ T⊗2 ⊗	2T, A)

per formulam:

dD Rc(a, τ1, τ2, τ3, τ4) = Alt3,4

{
Lieτ3 c(a, τ1, τ2, τ4)− 1

3
τ2c(a, τ1, τ3, τ4)

}
+ c(a, τ1, τ2, [τ3, τ4]).

1.21. Lemma. Fit QdD R = dD R Q.
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1.22. Demonstratio. Exstat

QdD Rc(a, τ1, τ2, τ3, τ4) = 〈τ2, dD Rc(a, τ1, τ3, τ4)〉

= Alt3,4

〈
τ2,Lieτ3 c(a, τ1, τ4)+ 1

2
c(a, τ1, [τ3, τ4])

− 1

3
d〈τ3, c(a, τ1, τ4)〉

〉
.

Probatur sponte, primo:

〈τ2,Lieτ3 c(a, τ1, τ4)〉 = Lieτ3 Qc(a, τ1, τ2, τ4);
Secundo, manifesto:

〈τ2, c(a, τ1, [τ3, τ4])〉 = Qc(a, τ1, τ2, [τ3, τ4])

et
〈τ2, d〈τ3, c(a, τ1, τ4)〉〉 = τ2〈τ3, c(a, τ1, τ4)〉〉 = τ2 Qc(a, τ1, τ3, τ4),

unde lemma nostrum statim sequitur.

(f) Frons

1.23. Lemma. Fit dH dD R = dD RdH + QM.

1.24. Demonstratio. Exstat:

dH dD Rc(a, τ1, τ2, τ3, τ4) = dD Rc(aτ1, τ2, τ3, τ4)− adD Rc(τ1, τ2, τ3, τ4)

Sed (vide Pars Prima, art. 1.14)

dD Rc(aτ1, τ2, τ3, τ4) = −c(aτ1, τ2, [τ3, τ4])+ Alt3,4

{
c(aτ1, [τ2, τ3], τ4)

+ c(τ2, a[τ1, τ3]− τ3(a)τ1, τ4)− τ4c(aτ1, τ2, τ3)

− 1

3
aτ1c(τ2, τ3, τ4)− 1

3
τ2c(aτ1, τ3, τ4)

}
.

Addemus huc:

0 = Alt3,4{τ4{ac(τ1, τ2, τ3)} − τ4(a)c(τ1, τ2, τ3)− aτ4c(τ1, τ2, τ3)}
cum

0 = 1

3
Alt3,4{τ2{ac(τ1, τ3, τ4)} − τ2(a)c(τ1, τ3, τ4)− aτ2c(τ1, τ3, τ4)}.
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Post summationem obtinemus statim:

dH dD Rc(a, τ1, τ2, τ3, τ4) = dD RdH c(a, τ1, τ2, τ3, τ4)

− 1

3
Alt3,4τ2(a)c(τ1, τ3, τ4),

ubi

−1

3
Alt3,4τ2(a)c(τ1, τ3, τ4) =

〈
τ2,−1

3
Alt3,4da c(τ1, τ3, τ4)

〉
= QMc(a, τ1, τ2, τ3, τ4), qed

(g) Junctio camerae altera

1.25.

Revocamus operatores:

dD R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T⊗3, A),

ubi

dD Rc(a, τ1, τ2, τ3) = Lieτ3c(a, τ1, τ2)− 1

2
τ2c(a, τ1, τ3)

=: {L + d ′D R}c(a, τ1, τ2, τ3)

(vide Pars Prima, art. 2.7),

dD R : Hom(A ⊗ T⊗3, A) −→ Hom(A ⊗ T⊗2 ⊗	2T, A),

ubi

dD Rc(a, τ1, τ2, τ3, τ4) = Alt3,4Lieτ3c(a, τ1, τ2, τ4)

+ c(a, τ1, τ2, [τ3, τ4])− 1

3
Alt3,4τ2c(a, τ1, τ3, τ4)

=: {L + d ′D R}c(a, τ1, τ2, τ3),

vide art 1.20; tandem,

R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T ⊗	2T,-),

ubi

Rc(a, τ, τ ′, τ ′′) = −1

6
Altτ ′,τ ′′d{c(a, [τ, τ ′], τ ′′)− c(τ ′(a), τ, τ ′′)}

− 1

6
c(a, τ, [τ ′, τ ′′]),

vide art. 1.6.
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1.26. Lemma. Fit d2
D R = Q R.

1.27. Demonstratio. Habemus d2
D R = {L + d ′D R}2.

Primo, ostendetur, posito

Lie c(a, τ1, τ2, τ3) := Lieτ3 c(a, τ1, τ2)

et
Lie c(a, τ1, τ2, τ3, τ4) := Lieτ4c(a, τ1, τ2, τ3),

habebimus
Alt3,4Lie2c(a, τ1, τ2) = −Lie[τ3,τ4]c(a, τ1, τ2),

Hinc subito fluit L2 = 0.

1.28.

Secundo, videamus post rationem:

{Ld ′D R + d ′D R L + d ′2D R}c(a, τ1, τ2, τ3, τ4)

= −1

6
Alt3,4τ2

{
c(a, [τ1, τ3], τ4)− c(τ3(a), τ1, τ4)+ 1

2
c(a, τ1, [τ3, τ4])

}

=
〈
τ2,−1

6
Alt3,4d

{
c(a, [τ1, τ3], τ4)− c(τ3(a), τ1, τ4)+ 1

2
c(a, τ1, [τ3, τ4])

}〉
= Q Rc(a, τ1, τ2, τ3, τ4), qed

2. Tabulatum primum

(a) Paries recessus

2.1.

Revocamus operatorem:

dD R : Hom(A ⊗ T⊗2,-) −→ Hom(A ⊗ T ⊗	2T,-),

ubi

dD Rc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′Lieτ ′c(a, τ, τ
′′)+ c(a, τ, [τ ′, τ ′′])

− 1

3
Altτ ′,τ ′′d〈τ ′, c(a, τ, τ ′′)〉,

sive
dD Rc(a, τ, τ ′, τ ′′) = {L + d ′D R}c(a, τ, τ ′, τ ′′)
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ubi
Lc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′Lieτ ′c(a, τ, τ

′′)+ c(a, τ, [τ ′, τ ′′]),

vide art. 1.20, et definimus operatores:

dD R : Hom(A⊗2 ⊗ T⊗2,-) −→ Hom(A⊗2 ⊗ T ⊗	2T,-),

ubi

dD Rc(a, b, τ, τ ′, τ ′′) = Altτ ′,τ ′′Lieτ ′c(a, b, τ, τ
′′)

+ c(a, b, τ, [τ ′, τ ′′])− 1

3
Altτ ′,τ ′′d〈τ ′, c(a, b, τ, τ ′′)〉,

sive
dD Rc(a, b, τ, τ ′, τ ′′) = {L + d ′D R}c(a, b, τ, τ ′, τ ′′)

ubi

Lc(a, b, τ, τ ′, τ ′′) = Altτ ′,τ ′′Lieτ ′c(a, b, τ, τ
′′)+ c(a, b, τ, [τ ′, τ ′′]),

porro:
M : Hom(A ⊗ T⊗3, A) −→ Hom(A⊗2 ⊗ T ⊗	2T,-),

ubi

Mc(a, b, τ, τ ′, τ ′′) = 1

3
da Altτ ′,τ ′′c(b, τ, τ

′, τ ′′),

confer Pars Prima, art. 3.4.

2.2. Lemma. Fit dH dD R = dD RdH + M Q.

2.3. Demonstratio. Primo, posito

Lie c(a, τ, τ ′, τ ′′) = Lieτ ′c(a, τ, τ
′′)

et simili modo
Lie c(a, b, τ, τ ′, τ ′′) = Lieτ ′c(a, b, τ, τ

′′)

probatur, dH Lie = Lie dH , unde subito sequitur LdH = dH L.
Secundo, fit

dH d ′D Rc(a, b, τ, τ ′, τ ′′) = d ′D RdH c(a, b, τ, τ ′, τ ′′)+ 1

3
da Altτ ′,τ ′′ 〈τ ′, c(b, τ, τ ′′)〉,

ubi patet
1

3
da Altτ ′,τ ′′ 〈τ ′, c(b, τ, τ ′′)〉 = M Qc(a, b, τ, τ ′, τ ′′),

unde manifesto lemma nostrum fluit.
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(b) Junctio camerae

2.4.

Revocamus operatorem

dD R : Hom(A⊗2 ⊗ T,-) −→ Hom(A⊗2 ⊗ T⊗2,-)

ubi

dD Rc(a, b, τ, τ ′) = τ ′c(a, b, τ )− c(τ ′(a), b, τ )− c(a, τ ′(b), τ )+ c(a, b, [τ, τ ′])

− 1

2
d〈τ ′, c(a, b, τ )〉 =:= {L + d ′D R}c(a, b, τ, τ ′),

vide Pars Prima, art. 3.1, definimusque operatorem

R : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T ⊗	2T,-),

ubi

Rc(a, b, τ, τ ′, τ ′′) = −1

6
d
[
Altτ ′,τ ′′ {−c(τ ′(a), b, τ, τ ′′)− c(a, τ ′(b), τ, τ ′′)

+ c(a, b, [τ, τ ′], τ ′′)} + c(a, b, τ, [τ ′, τ ′′])
]
,

confer 1.6.

2.5. Lemma. Fit d2
D R = RQ.

2.6. Demonstratio. Primo, probatur, L2 = 0.
Secundo, computatur:

{Ld ′D R + d ′D R L + d ′2D R}c(a, b, τ, τ ′, τ ′′)

= −1

6
d
[〈[τ ′, τ ′′], c(a, b, τ )〉 + Altτ ′,τ ′′ 〈τ ′′, c(a, b, [τ, τ ′])

− c(τ ′(a), b, τ )− c(a, τ ′(b), τ )〉]
= RQc(a, b, τ, τ ′, τ ′′),

unde lemma nostrum subito fluit.

(c) Junctio duarum cellarum tabulati primi

2.7.

Revocamus operatorem

R : Hom(A ⊗ T⊗2, A) −→ Hom(A ⊗ T ⊗	2T,-)
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ubi

Rc(a, τ, τ ′, τ ′′) = −1

6
d
[
Altτ ′,τ ′′ {c(a, [τ, τ ′], τ ′′)− c(τ ′(a), τ, τ ′′)}

+ c(a, τ, [τ ′, τ ′′])
]
,

vide art. 1.6 vel art. 1.13.

2.8. Lemma. Fit dH R = RdH + dD R M + MdD R.

Confer art. 1.15.

2.9. Demonstratio. Fit

dH Rc(a, b, τ, τ ′, τ ′′) = a Rc(a, b, τ, τ ′, τ ′′)− Rc(ab, τ, τ ′, τ ′′)+ Rc(a, bτ, τ ′, τ ′′).

Primo, computatur methodo simili ut in art. 1.16:

{dH R − RdH }c(a, b, τ, τ ′, τ ′′) = 1

6
da d[Altτ ′,τ ′′ {c(b, [τ, τ ′], τ ′′)− c(τ ′(b), τ, τ ′′)}

− c(b, τ, [τ ′, τ ′′])]− 1

6
Altτ ′,τ ′′d{τ ′(a)c(b, τ, τ ′′)}

Secundo, ostendetur {dD R M + MdD R}c(a, b, τ, τ ′, τ ′′) eamdem responsionem prae-
bere, unde lemma fluit.

(d) Paries rectus

2.10.

Introducamus operatorem:

Q : Hom(A⊗2 ⊗ T ⊗	2T,-) −→ Hom(A⊗2 ⊗ T⊗2 ⊗	2T, A),

ubi
Qc(a, b, τ1, τ2, τ3, τ4) = 〈τ2, c(a, b, τ1, τ3, τ4)〉.

2.11. Lemma. Fit dH Q = QdH .

(e) Camera

2.12.

Introducamus sagittulam:

dD R : Hom(A⊗2 ⊗ T⊗3, A) −→ Hom(A⊗2 ⊗ T⊗2 ⊗	2T, A),
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ubi

dD Rc(a, b, τ1, τ2, τ3, τ4) = Alt3,4

{
Lieτ3 c(a, b, τ1, τ2, τ4)

−1

3
τ2c(a, b, τ1, τ3, τ4)

}
+ c(a, b, τ1, τ2, [τ3, τ4]),

confer art. 1.20.

2.13. Lemma. Fit QdD R = dD R Q.

Demonstratio. procedit ut in art. 1.22.

(f) Frons

2.14. Lemma. Fit dH dD R = dD RdH + QM.

Confer art. 1.23.

Demonstratio. Probatur eodem modo ut in art. 1.24:

{dH dD R − dD RdH }c(a, b, τ1, τ2, τ3, τ4) = 1

3
Alt3,4τ2(a)c(b, τ1, τ3, τ4)

=
〈
τ2,

1

3
da Alt3,4c(b, τ1, τ3, τ4)

〉
= 〈τ2,Mc(a, b, τ1, τ3, τ4)〉
= QMc(a, b, τ1, τ2, τ3, τ4), qed

(g) Junctio camerae altera

2.15.

Contemplemur compositio sagittulae

dD R : Hom(A⊗2 ⊗ T⊗2, A) −→ Hom(A⊗2 ⊗ T⊗3, A),

ubi

dD Rc(a, b, τ1, τ2, τ3) = Lieτ3c(a, b, τ1, τ2)− 1

2
τ2c(a, b, τ1, τ3),

vide Pars Prima, art. 3.14, cum sagittula dD R ex art. 2.12.

2.16. Lemma. Fit d2
D R = Q R.

Demonstratio. Eadem ut in art. 1.27.
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Pars tertia. Finale

1. Cocyclus canonicus

(a)

1.1.

Contemplemur elementa ε ∈ Hom(A ⊗ T⊗2, A), ε′ ∈ Hom(A ⊗ T⊗2,-) atque
ε′′ ∈ Hom(A⊗2 ⊗ T,-) definita per:

ε(a, τ, τ ′) = ττ ′(a), ε′(a, τ, τ ′) = −1

2
dττ ′(a)

et
ε′′(a, b, τ ) = −τ (a)db− τ (b)da.

1.2. Lemma. Fit dD Rε = Qε′.

1.3. Demonstratio. Constat:

dD Rε(a, τ1, τ2, τ3) = Lieτ3ε(a, τ1, τ2)− 1

2
τ2τ1τ3(a),

vide Pars Prima, art. 2.11. Terminus primus evadit, quod ε operator invariens sit. Hinc

dD Rε(a, τ1, τ2, τ3) = −1

2
τ2τ1τ3(a) = 〈τ2, ε

′(a, τ1, τ3)〉 = Qε′(a, τ1, τ2, τ3),

1.4. Lemma. Fit dHε = Qε′′.

1.5. Demonstratio. Habemus:

dHε(a, b, τ, τ
′) = aττ ′(b)− ττ ′(ab)+ bττ ′(a)
= −τ (a)τ ′(b)− τ ′(a)τ (b) = 〈τ ′, ε′′(a, b, τ )〉 = Qε′′(a, b, τ, τ ′),

qed

1.6. Lemma. Fit dD Rε
′′ = dHε

′ − Mε.

1.7. Demonstratio. Habemus (vide Pars Prima, art. 2.7):

dD Rε
′′(a, b, τ, τ ′) = Lieτ ′ε

′′(a, b, τ )− 1

2
d〈τ ′, ε′′(a, b, τ )〉

(cum ε′′ invariens est)

= 1

2
d{τ (a)τ ′(b)+ τ ′(a)τ (b)}
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Rursus,

dHε
′(a, b, τ, τ ′) = −1

2

[
adττ ′(b)− dττ ′(ab)+ d{bττ ′(a)}]

= 1

2
[d{τ (a)τ ′(b)+ τ ′(a)τ (b)} + da ττ ′(b)]

= dD Rε
′′(a, b, τ, τ ′)+ Mε,

unde sequitur lemma.

1.8. Lemma. Fit dHε
′′ = 0.

1.9. Demonstratio. Statuamus:

ε′′0 (a, b, τ ) := −τ (a)db; ε′′1 (a, b, τ ) := −τ (b)da,

ergo ε′′ = ε′′0 + ε′′1 . Adipiscimur:

dHε
′′
0 (a, b, c, τ ) = aε′′0 (b, c, τ )− ε′′0 (ab, c, τ )+ ε′′0 (a, bc, τ )− ε′′0 (a, b, cτ )

= −aτ (b)dc+ τ (ab)dc− τ (a)d(bc)+ cτ (a)db = 0

Simili modo probatur, dHε
′′
1 = 0, unde lemma fluit.

1.10. Lemma. dD Rε
′ = Rε.

1.11. Demonstratio. Primo observamus, quod definitio sagittulae dD R ex Parte Se-
cunda, art. 1.2, ita exhiberi potest:

dD Rc(a, τ, τ ′, τ ′′) = Altτ ′,τ ′′Lieτ ′c(a, τ, τ
′′)+ c(a, τ, [τ ′, τ ′′])

− 1

3
Altτ ′,τ ′′d〈τ ′, c(a, τ, τ ′′)〉,

unde, quia Lieτ ε′ = 0, sequitur:

dD Rε
′(a, τ, τ ′, τ ′′) = ε′(a, τ, [τ ′, τ ′′])− 1

3
Altτ ′,τ ′′d〈τ ′, ε′(a, τ, τ ′′)〉

= −1

2
dτ [τ ′, τ ′′](a)+ 1

6
Altτ ′,τ ′′dτ

′ττ ′′(a)

= Altτ ′,τ ′′
{

1

2
dττ ′′τ ′(a)+ 1

6
dτ ′ττ ′′(a)

}
.
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1.12.

Secundo, habemus

Rε(a, τ, τ ′, τ ′′) = −1

6
d[Altτ ′,τ ′′ {ε(τ ′′(a), τ, τ ′)+ ε(a, [τ, τ ′], τ ′′)} + ε(a, τ, [τ ′τ ′′])]

= −1

6
dAltτ ′,τ ′′ {ττ ′τ ′′(a)+ [τ, τ ′]τ ′′(a)+ ττ ′τ ′′(a)}

= −1

6
dAltτ ′,τ ′′ {3ττ ′τ ′′(a)− τ ′ττ ′′(a)} = dD Rε

′(a, τ, τ ′, τ ′′),

qed

2. Definitio altera

(a)

2.1.

Primo, axioma (A1) structurae verticianae ita exhiberi potest:

dHγ = ε′′. (A1)

2.2.

Secundo, axioma (A2) ita scriberi licet:

dH 〈, 〉 − Qγ = −ε. (A2)

2.3.

Tertio, axioma (A3)bis ita exhiberi potest:

dH c− dD Rγ − M〈, 〉 = −ε′. (A3)bis

2.4.

Quatro, axioma (A4) ita quoque exhiberi licet:

Qc = dD R〈, 〉, (A4)

confer Pars Prima, 1.5.
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2.5.

Tandem axioma (A5) ita exhiberi licet:

dD Rc = R〈, 〉, (A5)

confer Pars Prima, art. 1.13.

(b)

2.6.

Applicatio structurarum verticianarum

h : A = (γ, 〈, 〉, c) −→ A′ = (γ ′, 〈, 〉′, c′)
elementum h ∈ Hom(T,-) est, talis ut:

dH h = γ − γ ′; Qh = 〈, 〉 − 〈, 〉′

atque
dD Rh = c − c′.

3. Complexus de Rham–Koszul–Hochschildianus

3.1.

Introducamus moduli: W ijk , i ≥ 2; j = 0, 1; k ≥ 0, posito: W 200 := Hom(T,-),
tractandoque indices: i tamquam gradum DE RHAMIANUM, j tamquam gradum
KOSZULIANUM ac k tamquam gradum HOCHSCHILDIANUM, ergo:

W 300 = Hom(	2T,-), W 210 = Hom(S2T, A), W 201 = Hom(A ⊗ T,-),

etc.
Statuimus W n := ⊕i+ j+k=n W ijk , ergo:

W 2 = W 200;
W 3 = W 300 ⊕ W 210 ⊕ W 201;
W 4 = W 400 ⊕ W 310 ⊕ W 301 ⊕ W 211 ⊕ W 202

et
W 5 = W 500 ⊕ W 410 ⊕ W 401 ⊕ W 311 ⊕W 302 ⊕W 212 ⊕W 203.
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3.2.

Introducamus operatores D = DD RQ H +R+M : W i −→ W i+1, ubi

DD RQ H ci jk = {dD R + (−1)i Q + (−1)i+ j dH }ci jk ,

Rc3 = −Rc210; Rc4 = Rc310 − Rc211

atque
Mc3 = Mc210; Mc4 = Mc310 + Mc211

Partium Primae Secundaeque summa significat, D2 = 0, unde eruimus complexum

W [2,5] : W 2 D−→ W 3 D−→ W 4 D−→ W 5,

de inclusione canonica complexuum:-[2,5] −→ W [2,5] ornatum.

3.3.

Contemplemur elementum:

E := (ε′, ε, ε′′) ∈ W 301 ⊕W 211 ⊕W 202 ⊂ W 4

Sectionis 1 summa significat, DE = 0.

3.4.

Structura verticiana super T est elementum

A = (c, 〈, 〉, γ ) ∈ W 300 ⊕ W 210 ⊕ W 201 = W 3,

talis ut fit DA = E .

3.5.

Applicatio structurarum verticianarum h : A −→ A′ elementum h ∈ W 200 = W 2

est, talis ut fit Dh = A−A′.
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